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Preface

Perhaps as many as ten years ago a colleague of mine pointed out to me
that the Second Edition of this book was “out of print”. I mentioned this
to my editor, who at that time was Helmut Lotsch, and he enthusiastically
encouraged me to write a Third Edition. Thus began the long process that
has finally resulted in this new edition. My primary goal was to get the book
back into print, not necessarily to rewrite a new book. But I have taken
the opportunity to change emphasis on some material as a result of recent
developments and to add new material. For example, an entire chapter on
thin film magnetic multilayers has been added.

The rationale for a book on magnetism is as valid today as it was when the
first two editions were published. Magnetic phenomena continue to be discov-
ered with deep scientific implications and novel applications. Since the Second
Edition, for example, Giant Magneto Resistance (GMR) was discovered and
the new field of “spintronics” is expanding rapidly. In addition, magnetic
properties are often an important clue to our understanding of new materials.
High temperature superconductors are a good example. The “parent” (un-
doped) compounds are antiferromagnetic. Their magnetic properties, studied
by susceptibility measurements, nuclear magnetic resonance, neutron scatter-
ing, etc., have provided insight to the superconducting state. The purpose of
this book is to provide a framework for understanding magnetic phenomena.

This framework is built upon linear response theory. In particular, mean
field theory, or the random phase approximation, is used to determine the
response of materials to magnetic fields. This approach provides a physical
description of most magnetic phenomena. But it is not as powerful and ele-
gant as other approaches applied to many interesting problems represented
by magnetic systems. For example, I do not cover the renormalization group
or the techniques used to obtain exact solutions to lower dimensional sys-
tems. Thus, this book may be thought of as a poor man’s theory of magnetic
phenomena.

One of the challenges of producing this edition was that the previous edi-
tions had been type-set, so the material did not exist in a digital format. This



VIII Preface

meant retyping everything using LaTeX. I am extremely grateful to Ferna
Hartman of Carnegie Mellon for recreating not only the text but the many
equations as well. The figures also had to be scanned and new ones created.
For this I am grateful to Dr. Chando Park. Sergio Rezende and Vladimir
Safonov kindly read the entire manuscript and offered helpful suggestions.
I want to thank Jeff Lynn for his comments on the chapter on neutron scat-
tering; Luc Berger for reviewing the section on spin transfer; and Christian
Ruegg for reading the section on quantum phase transitions. I would also
like to thank the Materials Science and Engineering Department at Stanford,
Shan Wang in particular, and the Geballe Laboratory for Advanced Materials
for their hospitality during the final stage of writing.

Palo Alto, September 2006 R.M. White
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1

The Magnetic Susceptibility

Any system may be characterized by its response to external stimuli. For
example, in electronics the proverbial “black box” is characterized by its
measured output voltage when an input current is applied. This transfer
impedance, as it is called, provides all the information necessary to understand
the operation of the black box. If we know what is in the black box – for
example, the detailed arrangement of resistors, diodes, etc. – then we can
predict, through analysis, what the transfer impedance will be.

Similarly, a system of charges and currents, such as a crystal, may be
characterized by a response function. In this text we shall be concerned
mainly with the response of such a system to a magnetic field. In this case
the “output” is the magnetization and the response function is the magnetic
susceptibility. A complete analysis of the magnetic susceptibility is virtually
impossible since the system consists of about 1021 particles. Therefore we usu-
ally look to a measured susceptibility for clues to the important mechanisms
active in the system and then use these to analyze the system. In order to
carry out such a program, we must know what possible mechanisms exist and
what effect they have on the susceptibility.

Determination of the susceptibility entails evaluation of the magnetization
produced by an applied magnetic field. In general, this applied field may
depend on space and time. The resulting magnetization will also vary in space
and time. If the spatial dependence of the applied field is characterized by a
wave vector q and its time dependence is characterized by a frequency ω,
and if we restrict ourselves for the time being to the magnetization with this
wave vector and frequency, we obtain the susceptibility χ(q, ω). As we shall
see shortly, the magnetization is the average magnetic moment. The magnetic
moment itself is a well-defined quantity. The problem, however, is the com-
putation of its average value. In order to compute this average it is necessary
to know the probabilities of the system being in its various configurations.
This information is contained in the distribution function associated with the
system.
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We shall see in this chapter that the distribution function depends on
the total energy, or Hamiltonian, of the system. Therefore the first step in
understanding magnetic properties is the identification of those interactions
relevant to magnetism. In Chap. 2 the origin of these interactions is discussed,
and they are expressed in a form which facilitates their application in later
chapters. The reader is asked to keep in mind that Chaps. 1 and 2 both con-
stitute background material for the theoretical development which begins in
Chap. 3. The motivation for the material in these first two chapters should
become clear as this theory unfolds.

In the absence of time-dependent fields we may assume that the system is
in thermal equilibrium. In this case the distribution function is easily obtained.
In Chap. 3 this is used to compute the response of noninteracting moments to
a static field. This computation leads to the susceptibility χ(q, 0). In Chaps. 4
and 5 the response χ(q, 0) of an interacting system of moments to a static
field is investigated in the random-phase approximation.

In the presence of time-dependent fields the distribution function must be
obtained from its equation of motion. In the case of localized moments this
consists of solving the Bloch equations. For itinerant moments the distribu-
tion function is obtained from a Boltzmann equation. In Chaps. 6 and 7 these
equations are solved for weakly interacting systems to obtain the generalized
susceptibility χ(q, ω). Finally, in Chap. 8 the generalized susceptibility asso-
ciated with strongly interacting systems is investigated. This function is of
particular interest because its singularities determine the magnetic-excitation
spectrum of the system.

With the development of thin film deposition techniques it became pos-
sible to fabricate inhomogeneous magnetic materials, particularly thin films.
Chapter 9 describes some of the phenomena associated with such structures.

One of the most powerful techniques for studying the spatial and temporal
behavior of magnetic materials is neutron scattering. While pulsed and “cold”
sources have expanded the range of neutron studies since the first edition of
this book, the scattering description provided in Chap. 10 remains valid.

The next few sections introduce the basic quantities with which we shall
be concerned throughout this text. Since these quantities may be defined in
various ways, the reader may find it informative to compare other approaches
(especially the classic work [1]).

1.1 The Magnetic Moment

Let us begin by discussing the magnetic moment. To see why this particular
object is of interest let us consider the classical description of a system of
charges and currents. Such a system is governed by Maxwell’s equations. The
appropriate forms of these equations in a medium are the so-called macro-
scopic Maxwell equations, which are obtained from the microscopic equations
by averaging over a large number of particles, see [2]. The microscopic equation
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in which we shall be particularly interested is the one representing Ampere’s
law, which has the differential form

∇× h =
4π

c
j +

∂e

∂t
. (1.1)

We define the average fields

〈h〉 ≡ B ,

〈e〉 ≡ E . (1.2)

Here 〈. . .〉 is a spatial average over a region which is small compared with
the size of the sample, yet large enough to contain many atomic systems (the
lower limit to the macroscopic domain would typically be 10 nm).

When we write B(r) or E(r), the coordinate r refers to the center of
the region over which the average is taken. Thus the first equation of (1.2)
might have been written as B(r) = 〈h〉r. In this description it is assumed
that any spatial variations are large in comparison with interatomic spacings.
The actual details of the averaging will be discussed in Sect. 1.2. With this
notation the macroscopic version of (1.1) becomes

∇× B =
4π

c
〈j〉 +

1
c

∂E

∂t
. (1.3)

The objective now is to calculate the average current density. To do this
we separate the total current density into two parts, that associated with
conduction electrons and that localized at an ionic site. The average value of
the conduction electron current density is the free current density jfree.

The ionic current density may be further separated into two contributions.
First of all, the ion may possess an electric-dipole moment which is charac-
terized by a dipole charge density ρdip. If this charge density is time depen-
dent, there is a polarization current density jpol which satisfies the continuity
equation

∇ · jpol = −∂ρdip

∂t
. (1.4)

Taking the average of this equation and assuming that the average commutes
with the time and space derivatives, we obtain〈∑

ions

jpol

〉
=

∂P

∂t
, (1.5)

where the sum is over those ions within the averaging volume and P is the
electric polarization defined by〈∑

ions

ρdip

〉
= −∇ · P .
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The second contribution to the ionic current density arises from the internal
motion of the ionic electrons. Since this current density jmag is stationary,
∇·jmag = 0. This is the current density responsible for the magnetic moment
m of the ion. If the center of mass of the ion is at R, the magnetic moment
is defined as

m =
1
2c

∫
dr(r − R) × jmag . (1.6)

A convenient representation for jmag which has zero divergence and satisfies
(1.6) is

jmag = −cm ×∇f(|r − R|) , (1.7)

where f(|r − R|) a smoothly varying function centered at R which goes to 0
at the ionic radius and is normalized to 1. In Chap. 2 we shall see that this
function has a quantum mechanical interpretation. Then〈∑

ions

jmag

〉
= c

〈∑
ions

∇f(|r − R|) × m

〉
= c∇×

〈∑
ions

f(|r − R|)m
〉

.

(1.8)
The last average in (1.8) is the magnetization M , defined by

M ≡
〈∑

ions

f(|r − R|)m
〉

. (1.9)

Combining these results, we may now write (1.3) as

∇× B =
4π

c
jfree +

4π

c

∂P

∂t
+ 4π∇× M +

1
c

∂E

∂t
. (1.10)

Defining
H = B − 4πM (1.11)

and
D = E + 4πP , (1.12)

we have the familiar result

∇× H =
4π

c
jfree +

1
c

∂D

∂t
. (1.13)

Thus we see that the magnetization which appears in the macroscopic
Maxwell’s equations is the average of the ionic magnetic moment density.
Since f(|r − R|) is normalized to the volume the magnetization is the mag-
netic moment per unit volume.

As an example of the use of definition (1.6), let us neglect the possibility of
nuclear currents and consider only the electron currents within the ion. Then
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j free (fixed)

jmag

H
~

Fig. 1.1. Geometry envisioned in deriving the magnetic energy

jmag(r) =
∑
α

evαδ(r − rα) , (1.14)

where e is the charge on the electron, which is −|e|, and va is the velocity of
the αth electron. From (1.6) we find for the total magnetic moment of the ion

m =
e

2c

∑
α

rα × vα . (1.15)

Recalling that the orbital angular momentum of an electron is

lα = rα × mvα , (1.16)

we have
m =

∑
α

e

2mc
lα . (1.17)

Since e = −|e|, we see that the orbital magnetic moment of an electron is in
the opposite direction to its orbital angular momentum.

We shall find it convenient to adopt a more general definition of the mag-
netic moment than that given by (1.6). This definition is based on the energy
of the magnetic system (magnetic energy is discussed in [3] and [4]). The form
of the magnetic energy depends upon the definition of the magnetic system.
Let us define our magnetic system by the ionic magnetic current density jmag.
This excludes the free currents, jfree, which are assumed to be fixed and are
the source of an external field H in which our magnetic ion is to be located.1

We now want to know the change in energy of this magnetic system when
the field H is applied or, equivalently, we may think of bringing the currents
jmag in from infinity to a position in the field (see Fig. 1.1).

The energy difference results from the work done by the magnetic currents
as they accommodate to the increasing external field. Since the magnetic field
itself does no work on moving charges, we must use the induced electric field

1 The magnetic field H is understood to be the field in vacuum. Strictly speaking,
this is the magnetic induction on flux density, B. But in vacuum and in cgs units,
B = H . It has become common practice to denote the field in vacuum as H .
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which is present while the external magnetic field is being turned on (due to
the relative motion). This is given by

∇× E = −1
c

∂H

∂t
. (1.18)

The work done by the magnetic currents in a time δt is

δW =
∫

jmag · Edr δt . (1.19)

Making use of the representation (1.7) for jmag, integrating by parts, and then
using (1.18), we obtain

δW = −
∫

f(|r − R|)m · δH dr . (1.20)

If the field H is uniform over the ionic dimension, δH may be taken outside
the integral. Since m is just a constant vector and f(|r − R|) is normalized
to unity,

δW = −m · δH . (1.21)
This work corresponds to Kittel’s “scheme A” for applying the field [4]. Kittel
also calculates the work needed to create the magnetized material in zero
field in the first place (“scheme B”). The work associated with scheme A is
important because this is the work that results in the change in the energy of
the system given by its quantum mechanical eigenvalues [4].

Neither of these results give the total change in energy of the system when
the magnetic material is introduced into the field since they do not include
the work done by the source in keeping jfree fixed. Jackson shows that the
total change in energy is given by

W =
1
2

∫
M · H0dr ,

where H0 is the field (B0) in the absence of the magnetic material, and the
1
2 arises from an assumed linear relation between M and B.

The resulting change in the energy of the magnetic system is δE = W .
Thus from (1.21)

m = − ∂E

∂H
. (1.22)

As an example of the application of this definition, consider the ionic system
of electrons which gave rise to the current density of (1.14). In the presence
of a uniform field H, which may be obtained from a vector potential A by
H = ∇× A, the energy of such a system is

E =
∑
α

1
2
mv2

α +
∑
α

eφα , (1.23)
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where φα is the ionic potential. We see that the magnetic field H does not
appear explicitly in this energy. However, the velocity is, in fact, a function
of the field. In general, the task of finding the field dependence of the total
energy of the system is a difficult one. However, in this case the actual field
dependence is revealed by expressing the energy in terms of the canonical
coordinates of the system. The reason for this is that in a slowly varying
uniform field the canonical momentum does not change. When expressed in
canonical coordinates, the energy is the same as the Hamiltonian function.
For this reason the Hamiltonian H is often used in place of the energy E in
definition (1.22).

In Chap. 2 we shall find that the Hamiltonian is

H =
∑
α

1
2m

(
pα − e

c
A
)2

+
∑
α

eφα . (1.24)

With the gauge A = 1
2H × r this becomes

H =
∑

a

p2
a

2m
−
∑

a

e

2mc
(ra ×pa) ·H +

e2

8mc2

∑
a

(H ×ra)2 +
∑

a

eφa . (1.25)

Differentiating with respect to H and using the fact that the canonical
momentum is given by pα = mvα + (e/c)A, we obtain (1.15).

1.2 The Magnetization

The magnetization is obtained by averaging the ionic moments over a region
of space which is large enough to give such an average a meaning but smaller
than spatial variations in the system. In order to perform this average we
must know the ionic-current distributions. In general they are not known. In
fact, herein lies the principle difficulty in the theory of magnetism. In any
real system the motion of charge in one region is governed by the charge
and currents throughout the system. Thus we have a many-body problem.
Historically, there have been two ways of describing magnetic systems, that of
localized moments and that of itinerant moments. The choice between these
two descriptions depends on the nature of the material and in many cases is
a difficult one to make.

In certain cases the relevant current distributions are localized within
a lattice cell. In such cases the ionic magnetic moment is relatively unam-
biguous. The interaction with external charge and current distributions is
then expressed in terms of this moment. This approach leads to the spin
Hamiltonian, which has proved extremely useful. In other cases we begin by
assuming that the current distributions are those associated with free elec-
trons. Thus, although these electrons may extend throughout the lattice, the
fact that they may be approximated as a “gas” provides a certain simplifica-
tion. With these two types of current distributions-that corresponding to very
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localized electrons and that corresponding to itinerant electrons-we can pro-
ceed to determine the average moment. The computation of averages necessar-
ily relies on the techniques of statistical mechanics. Since this is not the place
to develop such techniques, they will be introduced in a rather ad hoc manner.
A more thorough derivation may be found in texts on statistical physics [5].

If the system possesses translational invariance, then the statistical aver-
age over numerous unit cells of the crystal is equivalent to the time average
over one cell. This average is determined by the probability that the system
will have some particular current distribution. For example, in the case of a
magnetic insulator the average over a cell is an average of the magnetic ion.
If this ion consists of h electrons, then, classically, the state of the ion is char-
acterized by the 6h coordinates and momenta, (q1, . . . , q3h, p1, . . . , p3h). The
magnetization is obtained by multiplying the magnetic moment, which is a
function of all the coordinates and momenta, by the probability that the sys-
tem is in the state (q1, . . . , p1, . . . ) and then integrating over all the coordinates
and momenta. This probability is determined by the ion’s environment, which
defines a temperature T . For the most part this will be the temperature of
the lattice in which the ions are located. Classically, the equilibrium probabil-
ity function is the Boltmann distribution function exp(−βHion), where Hion,
is the Hamiltonian for the ion and β = 1/kBT . Therefore the equilibrium
magnetization associated with N/V ions per unit volume is

M =
N

V
〈m〉 =

N

V

∫
. . .
∫

m exp (−βHion)dq1 . . . dp1 . . .∫
. . .
∫

exp(−βHion)dq1 . . . dp1 . . .
. (1.26)

It is interesting that this classical averaging procedure leads to the conclusion
that there can be no magnetism in thermodynamic equilibrium. The reason
for this is that the integrals over the momenta in (1.26) run from −∞ to +∞.
Therefore adding a vector potential may shift the momentum origin, but it
will not affect the limits of integration. Since the vector potential always enters
the integrand as an addition to the momentum, it may be transformed away.
This is readily seen by considering the partition function Z, which is just the
integral of exp(−βHion) over phase space,

Z =
∫ ∞

−∞
dx dy dz

∫ ∞

−∞
dpxdpydpz exp{−β[px−(e/c)Ax]2/2m+. . .} . (1.27)

This function is of importance because the equilibrium thermodynamic prop-
erties of the system can be calculated from it. For example, the energy is
E = −∂
nZ/∂β.

We introduce
u = px − e

c
Ax, . . . , (1.28)

where, in general, A may be a function of r. Then

Z = V

∫ ∞

−∞
du dv dw exp[−β(u2 + v2 + w2)/2m] , (1.29)
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which is independent of A. Therefore the derivative of Z with respect to the
field H, which can be shown to be proportional to the magnetization, is 0.
This result, known as Miss van Leeuwen’s theorem, forces us to consider the
discreteness of the eigenvalues of the system and hence its quantum-mechanical
nature. This interesting result has the following physical interpretation (see
the discussion in [1] Sect. 26). In the presence of a magnetic field the electrons
move in circular orbits in the plane perpendicular to the field. Those electrons
that complete such orbits contribute a diamagnetic moment. However, those
electrons which strike the boundary have their orbits interrupted with the result
that they creep around the boundary giving rise to a paramagnetic moment. It
turns out that this paramagnetic moment just cancels the diamagnetic moment.
Furthermore, it is independent of the size and nature of the boundary.

Quantum mechanically, the magnetic system is described by a Hamiltonian
operator H which has eigenfunctions ψ with eigenvalues E. The total magnetic
moment of the system when it is in the state ψ is, according to (1.22),

MV = − ∂E

∂H
. (1.30)

This may be written in a more useful form. First we differentiate the eigenvalue
relation

(H− E)ψ = 0 (1.31)

with respect to H to obtain(
∂H
∂H

− ∂E

∂H

)
ψ = −(H− E)

∂ψ

∂H
. (1.32)

Forming the scalar product with ψ and using the fact that H is a hermitian
operator, i.e., Hij = H∗

ji, we find
〈

ψ| ∂H
∂H

|ψ
〉
− ∂E

∂H
= −

〈
ψ|(H− E)| ∂ψ

∂H

〉

= −
〈

∂ψ

∂H
|(H− E)|ψ

〉∗
= 0 . (1.33)

Therefore

MV = −
〈

ψ

∣∣∣∣ ∂H∂H

∣∣∣∣ψ
〉

. (1.34)

This leads us to define a magnetic-moment operator

M = − ∂H
∂H

. (1.35)

Hereafter M will be understood to be an operator.
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Since the derivation above was independent of the detailed form of the
Hamiltonian and its eigenfunctions, the result (1.35) is quite general. For
example, the magnetic-moment operator for a particle governed by the non-
relativistic Schrödinger Hamiltonian (1.25) is

Mz =
e

2mc
(xpy − ypx) − He2

4mc2
(x2 + y2) =

e

2c
(xẏ − yẋ) . (1.36)

For a relativistic electron governed by the Dirac equation (which will be dis-
cussed briefly in Chap. 2) the magnetic moment becomes

Mz = −e

2
(αxy − αyx) . (1.37)

Since the α’s are 4 × 4 matrices acting on negative as well as positive energy
states, the physical meaning of the operator is not clear. However, if we apply
a transformation to this operator which separates the positive and negative
energy states, then we find that an intrinsic spin contribution to the magnetic
moment emerges automatically.

To find the magnetization we must take the expectation value of the mag-
netic moment operator,

〈M〉 =
∫

ψ∗MψΠ
i
dri . (1.38)

If we knew the wavefunction ψ this would be straightforward. But the fact
that we are describing the system at a temperature T implies that the system
is in equilibrium with some temperature bath. Let us describe the system in
terms of its eigenfunctions, ϕk(r1, r2, . . . , rN ). The effect of the temperature
bath is to cause the system to move through different states k much as a
classical system moves through phase space. That is, the wavefunction ψ may
be written as a superposition of states,

ψ (r1, r2, . . . , rN , t) =
∑

k

ck(t)ϕk (r1, r2, . . . , rN ) . (1.39)

The expectation value then becomes

〈M〉 =
∑

k

∑
k′

c∗k(t)ck′(t)Mkk′ , (1.40)

where
Mkk′ =

∫
ϕ∗

kMϕk′Π
i
dri . (1.41)

When we measure the magnetization we actually do a time average,

〈
M
〉

=
∑

k

∑
k′

c∗k(t)ck′(t)Mkk′ . (1.42)
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The quantity c∗k(t)ck′(t) is defined as the statistical density matrix, ρkk′ . Thus〈
M
〉

= Tr(ρM) . (1.43)

If the system is isolated from the temperature bath then the ck’s are inde-
pendent of time and ρkk′ = |ck|2δkk′ . The states comprise the microcanonical
ensemble. In contact with the temperature bath ρkk′ = exp(−βEk)δkk′ and
we speak of this weighted set of states as the canonical ensemble. In the pres-
ence of time-dependent fields it is necessary to solve for ρkk′ from its equation
of motion. From the Schrödinger equations

i�
∂φ(t)∗

∂t
= −Hφ(t)∗ , (1.44)

i�
∂φ(t)

∂t
= Hφ(t) , (1.45)

we obtain the equations for the expansion coefficients. From our definition of
the density matrix, we find that

i�
∂ρk′k

∂t
= −

∑
k′′

ρk′k′′Hk′′k +
∑
k′′

Hk′k′′ρk′′k (1.46)

or

i�
∂ρ

∂t
= [H, ρ] . (1.47)

This is often a more convenient approach to the density matrix, for, as we shall
see below, when perturbation theory applies, (1.47) may be solved iteratively.

Notice that (1.42) gives the average of the magnetic moment over the
entire system. If we are interested in the magnetization at point r, M(r) this
behavior can be projected out by introducing the Dirac delta function,

M(r) =
1
2

∑
α

[µαδ(r − rα) + δ(r − rα)µα] . (1.48)

Since the delta functions have dimensions of a reciprocal volume, M(r) is
the magnetic-moment operator per unit volume. Here µa is the magnetic-
moment operator associated with the αth electron. Notice that since this is
a function of rα and pα, we must form the symmetric product denoted by
{· · · }. Therefore the magnetization becomes

M(r) = Tr{ρM(r)} . (1.49)
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1.3 The Generalized Susceptibility

When we speak of a susceptibility, we are usually referring to a medium in
which the response is proportional in some sense to the excitation. If the
medium is linear, the response is directly proportional to the excitation. If
the medium is nonlinear, the proportionality involves higher powers of the
excitation. However, if the excitation is very small, the response will be given
to a good approximation by the linear susceptibility. Since time- and space-
varying magnetic fields are generally quite small, a linear response theory is
usually adequate. Nonlinear effects become important in dealing with hys-
teresis phenomena or high-power absorption in magnetic materials. For the
most part, then, we shall be concerned with a linear response theory. In this
section we shall define the wave-vector-dependent frequency-dependent linear
susceptibility and investigate some of its properties.

Let us consider the magnetization M(r, t) associated with a particu-
lar magnetic field H(r, t). These quantities are related to their Fourier
components by

M(r, t) =
1

2πV

∑
k

∫
dΩM(k, Ω)ei(k·r−Ωt) , (1.50)

H(r, t) =
1

2πV

∑
q

∫
dωH(q, ω)ei(q·r−ωt) . (1.51)

To invert these expansions we use the following relations:∫
dr ei(k−k′)·r = V ∆(k − k′) , (1.52)

∫
dt e−i(Ω−Ω′)t = 2πδ(Ω − Ω′) , (1.53)

∑
k

eik·(r−r′) =
V

(2π)3

∫
dk eik·(r−r′) = V δ(r − r′) . (1.54)

Here ∆(k−k′) is the Kronecker delta function and δ(r−r′) is the Dirac delta
function.

We now define the generalized wave-vector-dependent frequency-dependent
susceptibility by

Mν(k, Ω) =
∑

q

∫
dω
∑

µ

χνµ(k, q; Ω, ω)Hµ(q, ω) , (1.55)

where ν and µ = x, y, or z. This may be written in the more convenient
dyadic form

M(k, Ω) =
∑

q

∫
dω χ(k, q; Ω, ω) · H(q, ω) .
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In general χ(k, q; Ω, ω) will depend on the particular form of H(r, t), or
equivalently, H(q, ω); that is, the susceptibility is a functional of the field.
The susceptibility is also a tensor. Furthermore, since the magnetization may
be out of phase with the exciting field, the susceptibility is also complex.
Substituting this expression into (1.50) gives

M(r, t) =
1

2πV

∑
k

∫
dΩ
∑

q

∫
dωχ (k, q; Ω, ω) · H (q, ω) ei(k·r−Ωt)

(1.56)
or

M(r, t) =
∫ ∫

dr′ dt′

×
{[

1
2πV

∑
k

∫
dΩ
∑

q

∫
dωχ(k, q; Ω, )eik·(r−r′)e−iΩ(t−t′)

]

×ei(k−q)·r′
e−i(Ω−ω)t′

}
· H(r′, t′) , (1.57)

where the quantity in braces defines a general spatial-temporal susceptibility
density χ(r, r′; t, t′).

If the magnetic medium possesses translational invariance, then this sus-
ceptibility must be a function only of the relative coordinate r− r′. From the
expression above we see that this implies that in the wave-vector-dependent
susceptibility q is equal to k. Furthermore, if the medium is stationary, it can
be shown that the temporal dependence is t − t′, which implies a monochro-
matic response to a monochromatic excitation with the same frequency, that
is, Ω = ω. Therefore, when these conditions are satisfied, the susceptibility
takes the form

χ(k, q; Ω, ω) = χ(q, ω)∆(k − q)δ(Ω − ω) .

Thus
M(r, t) =

∫ ∫
dr′ dt′χ(r − r′, t − t′) · H(r′, t′) , (1.58)

where

χ (r − r′, t − t′) =
1

2πV

∑
q

∫
dωχ(q, ω)eiq·(r−r′)e−iω(t−t′) , (1.59)

and its Fourier transform is

χ(q, ω) =
∫

d(t − t′)
∫

d(r − r′)χ(r − r′, t − t′)e−iq·(r−r′)eiω(t−t′) . (1.60)

The more general susceptibility is required whenever the presence of impurities
destroys the translational invariance. The response of a typical paramagnet is
such a case.
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Since the susceptibility has such a general nature, it should not be
surprising that there are various important theorems involving this
quantity. We shall consider three of these now. The first theorem, known
as the Kramers–Kronig relations, relates the real and imaginary parts of the
susceptibility. The second is the fluctuation-dissipation theorem, which relates
the susceptibility to thermal fluctuations in the magnetization. Finally, we
shall present a derivation of the so-called Onsager relation that describes the
symmetry of the susceptibility tensor.

1.3.1 The Kramers–Kronig Relations

As a consequence of some rather general properties of

χ(q, ω) = χ′(q, ω) + iχ′′(q, ω) ,

its real part χ′(q, ω) and its imaginary part χ′′(q, ω) are connected on the
real axis ω by integral relations known as the Kramers–Kronig relations, or
just as dispersion relations. To the electrical engineer, the real and imaginary
parts of the response function are related by the Hilbert transform. Let us
consider a medium which is linear and stationary (and translationally invari-
ant, although this is not a necessary condition). Then χ(q, ω) is related to
χ(r − r′, t− t′) by (1.60). If the system obeys the principle of causality, then
χ(r − r′, t − t′) = 0 for t < t′. Hence the time integral in (1.60) runs only
from 0 to ∞; that is,

χ(q, ω) =
∫ ∞

0

dtχ(q, t)eiωt . (1.61)

Therefore the function χ(q, ω) is a complex function of ω which has no sin-
gularities at the ends of the real axis, provided that∫ ∞

0

χ(q, t)dt

is finite. This is equivalent to the assumption that the response to a finite
excitation is finite. The finite values of χ(q, ω) at the ends of the real axis
may be identified with the real part of the susceptibility χ′(q, ∞). The fact
that χ′′(q, ω) vanishes as ω → ∞ may be obtained from the following physical
argument. As we shall see in Chap. 5, the rate of energy absorption by a
magnetic system is proportional to ωχ′′(q, ω). If this is to remain finite as
ω → ∞, then χ′′(q, ω) must go to 0 as ω → ∞. This result may also be
derived from the finite-response assumption.

There is no reason for the real part of the susceptibility to vanish as
ω → ∞. Therefore let us define limω→∞ χ′(q, ω) = χ(q, ∞). The quan-
tity χ(q, ω)−χ(q, ∞) is then a complex function which vanishes at the ends
of the real axis. The theory of complex variables tells us that the function
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χ(q, z) − χ(q, ∞), where z is a complex variable, will be analytic in the
upper half plane. The residue theorem then says∮

c

χ(q, z) − χ(q, ∞)
z − ω

dz = 0 , (1.62)

where the contour C runs from −∞ to +∞ along the real axis and closes
in the upper half plane. In terms of its principal value, this integral may be
written as

P
∫ ∞

−∞

χ(q, ω′) − χ(q, ∞)
ω′ − ω

dω′ − iπ[χ(q, ω) − χ(q, ∞)] = 0 . (1.63)

Equating the real and imaginary parts to 0 separately gives the result

χ′(q, ω) − χ(q, ∞) =
1
π
P
∫ ∞

−∞

χ′′(q, ω′)
ω′ − ω

dω′ , (1.64)

χ′′(q, ω) =
1
π
P
∫ ∞

−∞

χ′(q, ω′) − χ(q, ∞)
ω′ − ω

dω′ . (1.65)

The usefulness of this result lies in the fact that χ′′ is proportional to the
absorption spectrum of the medium. Therefore (1.64) tells us, for example,
that the static susceptibility may be obtained by integrating over the absorp-
tion spectrum. This is, in fact, an experimental technique used to obtain the
static susceptibility of certain systems.

Since the response M(r, t), is a real quantity, it follows that χ′(q, ω) is
an even function of ω while χ′′(q, ω) is odd. This enables us to express the
Kramers–Kronig relations in terms of integrals over positive frequencies. In
particular,

χ′′(q, ω) = −2ω

π
P
∫ ∞

0

χ′(q, ω′)
ω′2 − ω2

dω′ . (1.66)

The term involving χ(q,∞) vanishes because the principal value of the integral
of 1/(ω′2 − ω2) is zero.

1.3.2 The Fluctuation-Dissipation Theorem

It is well known that a colloidal suspension of particles exhibits Brownian
motion; that is, the particles move about irregularly because they are being
bombarded by the molecules of the liquid. Now, suppose that these particles
are charged, and we attempt to accelerate them with an external electric
field. Because of the impacts with the molecules, the particles experience a
resistive force which is proportional to their velocity. Thus the mechanism
that produces the random fluctuations in the position of the particle is also
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responsible for its response to an external excitation. The relationship between
the response of a system and its thermal fluctuation spectrum is called the
fluctuation-dissipation theorem. This relationship is a very general one, and
we shall consider only its specific application to a magnetic medium.

Let us consider a linearly polarized magnetic field of amplitude Hµ cos(q·r)
oscillating at a frequency ω in the µ direction, Hµ cos(q · r) cos ωt. Since we
have a linear system, the principle of superposition applies. Therefore we may
construct the response to an arbitrary field if we know the response to this
particular field. The response in the ν direction to such an excitation is given
by (1.55). Since

Hµ(q′, ω′) =
πH1V

2
[∆(q′ − q)δ(ω′ + ω) + ∆(q′ − q)δ(ω′ − ω)

+∆(q′ + q)δ(ω′ + ω) + ∆(q′ + q)δ(ω′ − ω)] , (1.67)

we obtain

Mν(k, Ω) =
πH1V

2
[χνµ(k, q; Ω, −ω) + χνµ(k, q; Ω, ω)

+χνµ(k,−q; Ω, −ω) + χνµ(k, −q; Ω, ω)] . (1.68)

Let us now compute Mν(k, Ω), using the prescription given in Sect. 1.2. The
magnetization is

Mν(r, t) = Tr{ρMν(r)} . (1.69)

Although ρ is a function of time, we shall not display this dependence explic-
itly, for a reason that will be apparent later. Since the time-varying field now
disrupts the thermodynamic equilibrium, we must solve for ρ. We write the
total Hamiltonian as

H = H0 + H1 , (1.70)

where H1 = −
∫

drM(r) ·H(r, t). For the particular field we are considering
this becomes

H1 = −H1

∫
drMµ(r) cos (q · r) cos ωt = −H1

2
[Mµ(q) +Mµ(−q)] cos ωt .

(1.71)
The equation of motion for the density matrix is

∂ρ

∂t
=

i

�
[ρ, H0 + H1] . (1.72)

It is now convenient to introduce

ρ(t) ≡ exp
(

iH0t

�

)
ρ exp

(
−iH0t

�

)
. (1.73)
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Differentiating (1.73) and using (1.72) gives

dρ(t)
dt

=
i

�

[
ρ(t), exp

(
iH0t

�

)
H1 exp

(
−iH0t

h

)]
. (1.74)

This has the solution

ρ(t) = ρ(−∞) +
i

�

∫ t

−∞

[
ρ(t′), exp

(
iH0t

′

�

)
H1 exp

(
−iH0t

′

�

)]
dt′ . (1.75)

If the interaction is turned on adiabatically, then ρ(−∞) = ρ0, which is the
equilibrium density matrix ρ0 = exp(−βH0)/Z where Z = Tr{exp(−βH0)}.
Inverting (1.75), using (1.71), and replacing ρ within the commutator by ρ0,
we have

ρ � ρ0 − i
H1

2�

∫ ∞

0

{
ρ0, exp

(
−iH0t

′

�

)
[Mµ(q) + Mµ(−q)] exp

(
iH0t

′

�

)}
.

(1.76)
The magnetization is obtained from (1.69). If the system is ordered in the
absence of the applied field, then Tr {ρ0Mν} ≡ Mν(−∞) is nonzero. The
response of such a system is then defined by the difference Mν(r, t)−Mν(−∞)
resulting from the applied field. In the following we shall understand Mν(r, t)
to be the response to the applied field. Then,

Mν(r, t) = −i
H1

2�

×Tr
{∫ ∞

0

{
ρ0, exp

(
−iH0t

′

�

)
[Mµ(q) + Mµ(−q)]

× exp
(

iH0t
′

�

)}
Mν(r)

}
cos ω(t − t′)dt′ . (1.77)

Taking the Fourier transform of this equation gives

Mν(k, Ω) = −πH1

2�
Tr
{∫ ∞

0

[ρ0, Mµ(q, −t′)]Mν(k)
}

eiωt′dt′δ(Ω + ω)

+ (terms involving − q and − ω) . (1.78)

Here Mµ(q, t) is defined in a manner identical to (1.73). The delta function
involving the frequency results from our having linearized the expression for
ρ when we replaced ρ by ρ0 within the commutator.

If we now commute the integral with the trace in (1.78) and make use of
the cyclic invariance of the trace, we have

Tr
{∫ ∞

0

[ρ0, Mµ(q, −t′)]Mν(k)
}

e−iωt′dt′

=
∫
〈[Mµ(q, −t′), Mν(k)]〉eiωt′dt′ . (1.79)



18 1 The Magnetic Susceptibility

By comparing the resulting expression for Mν(k, Ω) with (1.68) we make the
following identification:

χνµ(k, q; Ω, ω) =
i

�V

∫ ∞

0

〈[Mν(k, t), Mµ(−q)]〉eiωtdt δ(Ω − ω) . (1.80)

Since the q component of the applied field couples to the −q component of
the magnetization, let us consider χνµ(q, q, ω) which we write as χνµ(q, ω).
Therefore,

χνµ(q, ω) =
i

�V

∫ ∞

0

〈[Mν(q, t), Mµ(−q)]〉eiωtdt . (1.81)

The quantity

(i/�)〈[Mν(q, t), Mµ(−q)]〉 ,

or equivalently

i

�
Tr{[Mµ(−q), ρ0]Mν(q, t)} ,

is referred to in the literature as the response function of the system. The
susceptibility may also be written as an integral over the full range of time by
multiplying the integrand by the theta function θ(t) which equals 1 for t > 0
and 0 for t < 0. The product of the response function and this theta function
is called the double-time-retarded Green’s function and represented by double
angular brackets:

〈〈Mν(q, t), Mµ(−q)〉〉 ≡ −i〈[Mν(q, t), Mµ(−q)]〉θ(t) .

These functions are very useful in calculating thermodynamic properties but
are beyond the scope of this monograph.

Since the response function does not have a classical analog and is not a
well-defined observable, it is more convenient to relate the susceptibility to the
correlation function 〈{Mν(q, t)Mµ(−q)}〉, where {· · · } is the symmetrized
product, which is defined by

{Mν(q, t)Mµ(−q)} ≡ 1
2
[Mν(q, t)Mµ(−q) + Mµ(−q)Mν(q, t)] ,

In order to relate the response function to the correlation function let us
consider their Fourier transforms,

fνµ(q, ω) =
i

�

∫ ∞

−∞
〈[Mν(q, t), Mµ(−q)]〉eiωtdt , (1.82)

gνµ(q, ω) =
∫ ∞

−∞
〈{Mν(q, t)Mµ(−q)}〉eiωtdt . (1.83)
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We can rewrite (1.82) by using the following relation:∫ ∞

−∞
dt〈Mµ(−q)Mν(q, t)〉eiωt

=
∫ ∞

−∞
dt Tr

{
exp(−βH0)Mµ(q) exp

(
iH0t

�

)
Mν(q) exp

(
−iH0t

�

)}
eiωt

=
∫ ∞

−∞
dt Tr

{
exp(−βH0) exp

(
iH0(t − i�β)

�

)
Mν(q)

× exp
[
−iH0(t − i�β)

�

]
Mµ(−q)

}
eiωt

= e−β�ω

∫ ∞

−∞
dt〈Mν(q, t)Mµ(−q)〉eiωt . (1.84)

Therefore

fνµ(q, ω) =
i

�
(1 − e−β�ω)

∫ ∞

−∞
dt〈Mν(q, t)Mµ(−q)〉eiωt . (1.85)

From the definition of gνµ we see that its relation to fνµ is

gνµ(q, ω) = (�/2i) coth(β�ω/2)fνµ(q, ω) . (1.86)

We can also relate fνµ to the susceptibility by separating the time integral as
follows:

fνµ(q, ω) =
i

�

∫ ∞

0

dt〈[Mν(q, t), Mµ(−q)]〉eiωt

+
i

�

∫ 0

−∞
dt〈[Mν(q, t), Mµ(−q)]〉eiωt . (1.87)

If we now make the transformation t → −t in the second integral and use the
fact that χµν(−q, −ω) = χ∗

µν(q, ω), which follows from (1.81), then

fνµ(q, ω) = [χνµ(q, ω) − χ∗
µν(q, ω)]V

and

gνµ(q, ω) = (�V/2i) coth(β�ω/2)[χνµ(q, ω) − χ∗
µν(q, ω)] .

Therefore

∫ ∞

−∞
dt〈{Mν(q, t)Mµ(−q)}〉seiωt = �V coth(β�ω/2)χ′′

νµ(q, ω)s, (1.88)

where the subscript s indicates the symmetric part of the tensor.
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This is the result we had set out to find. It tells us that the Fourier trans-
form of the correlation function is proportional to the imaginary part of the
susceptibility. The derivation has been presented here in detail because it is
a very important relationship, and we shall make frequent reference to this
result throughout the text.

The imaginary part of the susceptibility describes the absorptive or lossy,
response of the magnetic system. The fluctuation-dissipation theorem there-
fore relates the fluctuations in the magnetization to energy loss. This is a
general result that applies to many systems. One example that may be fa-
miliar to the reader is Johnson noise. This is the noise associated with ther-
mal fluctuations in a resistive electrical circuit element. The voltage noise
power is given by 〈v2〉/R. Since this power is due to thermal fluctuations it
may also be expressed as the unit of thermal energy, kBT , divided by the
measurement time, which is the reciprocal of the frequency bandwidth, ∆f .
A rigorous derivation gives

〈v2〉 = 4kBTR∆f .

This form of the fluctuation-dissipation theorem is known as the Nyquist
theorem.

1.3.3 Onsager Relation

Generally, when we probe a magnetic system it is in the presence of a dc
field H. Therefore H0 and hence the response function, is a function of this
field. In 1931 Onsager pointed out that microscopic reversibility requires the
simultaneous reversal of both the magnetic field and time. To see this, consider
the response function for the susceptibility:

〈[Mν(q, t),Mµ(−q)]〉 =
∑

n

〈n|ρ0(H0)[Mν(q, t),Mµ(−q)]|n〉 .

Let us introduce time reversal through the time reversal operator, T , which
satisfies the relation

〈ψ|ϕ〉 = 〈Tψ|Tϕ〉∗ . (1.89)

Therefore

〈[Mν(q, t),Mµ(−q)]〉 =
∑

n

〈Tn|Tρ0(H0)[Mν(q, t),Mµ(−q)]|n〉∗ . (1.90)

We now insert T−1T between all the factors. If the system is invariant under
time reversal then Tρ0(H0)T−1 = ρ0(H0), where any magnetic field has been
reversed. Let us display this explicitly as ρ0(−H). We also have factors like
TMν(q, t)T−1. Since the magnetic moment changes sign under time reversal,

TMν(q, t)T−1 = −Mν(q, −t) . (1.91)
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If we also recognize that the state T |n > is some eigenstate |m >, then the
sum over n is the same as the sum over m, which can then be relabled as
n. These steps enable us to carry out all the time reversal operations in the
expression for the response function above,

〈[Mν(q, t),Mµ(−q)]〉 =
∑

n

〈n|ρ0(−H)[Mν(q, t),Mµ(−q)]|n〉∗ . (1.92)

To remove the complex conjugation we introduce the Hermitian adjoint 0† of
an arbitrary operator 0 by the relation

〈ψ|0|ϕ〉∗ = 〈ϕ|0†|ψ〉 . (1.93)

The first term in the commutator becomes

(ρ0(−H)Mν(q, −t)Mµ(−q))† = Mµ(−q)†Mν(q, −t)†ρ0(−H)†

= Mµ(q)Mν(−q, −t)ρ0(−H) , (1.94)

where we have used the fact that the magnetic moment and the Hamiltonian
are Hermitian operators. We now use the cyclic invariance of the trace to write

〈[Mν(q, t),Mµ(−q)]〉 =
∑

n

〈n|ρ0(−H[Mµ(q),Mν(−q,−t)]|n〉

=
∑

n

〈n|ρ0(−H)[Mµ(q, t),Mν(−q)]|n〉 . (1.95)

Therefore we have the relation

χνµ(q, ω,H) = χµν(q, ω,−H) . (1.96)

which is known as the Onsager relation. Note that this tells us immediately
that the diagonal components of the susceptibility tensor must be even func-
tions of the field.

1.4 Second Quantization

Magnetism, particularly in metals, is a many-body phenomenon. It is therefore
important to incorporate the fermion statistics of the electrons that govern
the magnetic behavior. In this section we shall briefly develop the technique of
second quantization which facilitates this description. We shall have occasion
to use these results later, particularly in setting up the so-called Anderson
and Hubbard Hamiltonians.
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Let us begin by considering a system of N interacting particles described
by the Hamiltonian

H =
N∑

i=1

T (ri, ṙi) +
1
2

N∑
i, j = 1
i �= j

V (ri, rj) (1.97)

The many-body wave function ψ(ri, . . . , rN , t) satisfies the Schrödinger
equation

i�
∂

∂t
ψ(r1, . . . rN , t) = Hψ(r1, . . . , rN , t) . (1.98)

We now expand this wave function in terms of products of single-particle wave
functions characterized by quantum numbers Ei,

ψ(r1, . . . , rN , t) =
∑

(E1,...,EN )

c(E1, . . . , EN , t)ϕE1(r1)ϕE2(r2) . . . ϕEN
(rN ) ,

(1.99)
where the sum is over all possible sets of quantum numbers. The statistical
nature of the particles is contained in the coefficients c(E1, . . . , EN , t). For
example, if the particles are bosons, the sign of the coefficient is invariant
under particle interchange,

c(E1, . . . , Ek, . . . , Ei, . . . , EN , t) = c(E1, . . . , Ei, . . . , Ek, . . . , EN , t) , (1.100)

and any number of particles may occupy a given state. If the particles are
fermions,

c(E1, . . . , Ek, . . . , Ei, . . . , EN , t) = −c(E1, . . . , Ei, . . . , Ek, . . . , EN , t) .
(1.101)

This insures that there may not be more than one particle in a particular
state.

Since we shall be concerned mainly with electrons, which are fermions, we
shall be faced with the problem of keeping track of the minus sign introduced
when two electrons are interchanged. It is to facilitate this bookkeeping that
the concept of second quantization is introduced.

The coefficients in the expansion of ψ above are characterized by the set of
N quantum numbers. We could just as well, however, have chosen coefficients
characterized by the number of electrons in each of the possible states. That
is, instead of the set of N numbers {E1, . . . , EN} we could have used the
infinite set of numbers {n1, . . . , n∞}, where for fermions n = 0 or 1. We must
be very careful in making this transcription. For example, suppose that the
electron at ri is in a state Ei and the electron rk is in a state Ek. In this case
the occupation-number description would be the same as if the electron at ri,
were in state Ek and the electron at rk were in state Ei. However,
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c(E1, . . . , Ek, . . . , Ei, . . . , EN , t) = −c(E1, . . . , Ei, . . . , Ek, . . . , EN , t) .
(1.102)

If we wish to use the occupation-number scheme, we must account for this
minus sign. This is done by arbitrarily assigning a certain order to the par-
ticular set of quantum numbers {E1, . . . , EN}. Then the relative sign of any
permutation of the electrons from this order is automatically given by writing
the single-particle wave functions as a Slater determinant :

c(E1, . . . , EN , t)ϕE1(r1) . . . ϕEN
(rN )

+ (all permutations within the set {E1, . . . , EN})

= f(n1, . . . , n∞, t)

∣∣∣∣∣∣
ϕE1(r1) · · ·ϕE1(rN )
· · · · · · · · · · · · · · · · · · · · ·
ϕEN

(r1) · · ·ϕEN
(rN )

∣∣∣∣∣∣ (1.103)

where f(n1, . . . , n∞, t) has the sign and magnitude of the first c. Summing
over all sets {E1, . . . , EN} is equivalent to summing over all combinations of
occuped states. Therefore

ψ(r1, . . . , rN , t) =
∑

n1,··· ,n∞

f(n1, . . . , n∞, t)
1√
N !

∣∣∣∣∣∣
ϕE1(r1) · · · ϕE1(rN )
· · · · · · · · · · · · · · · · · · · · ·
ϕEN

(r1) · · · ϕEN
(rN )

∣∣∣∣∣∣ .

(1.104)

The states used in constructing the determinant are, of course, those occupied.
By using this occupation-number description we have succeeded in moving

the statistics from the expansion coefficients into the basis functions, which,
in fact, form an orthonormal antisymmetric set.

Let us now define an abstract vector space, or Hilbert space, spanned by
vectors |n1, n2, . . . , n∞〉. We introduce operators which satisfy the anticom-
mutation relations

{ai, a†
j} ≡ aia

†
j + a†

jai = δij , {ai, aj} = {a†
ia

†
j} = 0 . (1.105)

From these relations it can be shown that a†
i creates an entry in position i

(provided one does not already exist there) and ai destroys an entry at i.
Therefore we may represent a basis vector of our Hilbert space as

|n1, . . . , n∞〉 = (a†
1)

n1(a†
2)

n2(a†
∞)n∞ |0〉 . (1.106)

Now consider operating on this with ak. If nk = 0, then ak can be commuted
all the way over to the “vacuum”, where it gives 0. If nk = 1, then ak will
commute until it comes to a†

k.

ak|n1, . . . , nk, . . . , n∞〉 = (−1)
∑

k(a†
1)

n . . . aka†
k . . . (a†

∞)n∞ |0〉 . (1.107)
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Here
∑

k = n1 + n2 + · · ·nk−1 accounts for all the sign changes that ak left
in its wake as it commuted over to a†

k. We now use aka†
k = 1 − a†

kak. In the
second term ak may again commute over to the vacuum to give 0. Thus we
are left with

ak|n1, . . . , nk, . . . , n∞〉 =

{
0 nk = 0

(−1)
∑

k |n1, . . . , nk − 1, . . . , n∞〉 nk = 1 .

(1.108)

Similarly,

a†
k|n1, . . . , nk, . . . , n∞〉 =

{
(−1)

∑
k |n1, . . . , nk + 1, . . . , n∞〉 nk = 0

0 nk = 1 .

(1.109)

Since it can be shown that a†
kak has the eigenvalue nk, we can simplify these

results by writing

ak|n1, . . . , nk, . . . , n∞〉 = (−1)
∑

k
√

nk|n1, . . . , nk − 1, . . . , n∞〉 ,

a†
k|n1, . . . , nk, . . . , n∞〉 = (−1)

∑
k

√
nk + 1|n1, . . . , nk + 1, . . . n∞〉 .

(1.110)

Having developed the properties of the Hilbert space, we now use the expan-
sion coefficients f(n1, . . . , n∞, t) to define the abstract state vector

|ψ(t)〉 =
∑

n1,··· ,n∞

f(n1, . . . , n∞t)|n1, . . . , n∞〉 . (1.111)

The reason for this becomes clear when we consider the equation of motion
of this state vector. Taking the time derivative, we have

i�
∂|ψ(t)〉

∂t
= i�

∑
n1,··· ,n∞

∂f(n1, . . . , n∞, t)
∂t

|n1, . . . , n∞〉 . (1.112)

To evaluate this we go back to the real-space Schrödinger equation,

i�
∂|ψ(r1, . . . , rN , t)〉

∂t

= i�
∑

(n1,··· ,n∞)

∂(n1, . . . , n∞, t)
∂t

1√
N !

∣∣∣∣∣∣
ϕE1(r1) · · · ϕE1(rN )
· · · · · · · · · · · · · · · · · · · · ·
ϕEN

(r1) · · · ϕEN
(rN )

∣∣∣∣∣∣ ,

= H
∑

n1,··· ,n∞

f(n1, . . . , n∞, t)
1√
N !

∣∣∣∣∣∣
ϕE1(r1) · · · ϕE1(rN )
· · · · · · · · · · · · · · · · · · · · ·
ϕEN

(r1) · · · ϕEN
(rN )

∣∣∣∣∣∣ . (1.113)
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We now multiply through from the left by the conjugate Slater determinant
appropriate for some particular set of occupation numbers {n1, . . . , n∞}. The
left-hand side just gives

i�
∂f(n1, . . . , n∞, t)

∂t
. (1.114)

Consider the one-particle terms of the right-hand side of (1.113), which arise
from the T (ṙi) term in (1.97). We write the Slater determinant as

1√
N !

∑
p

(−1)pPϕE1(r1)ϕE2(r2) · · ·ϕEN
(rN ) , (1.115)

where P is an operator which permutes the order of the electrons and p is the
number of such permutations. Then the matrix element becomes

1
N !

∑
i

∑
n′

1,··· ,n′
∞

∑
p,p′

(−1)p+p′
f(n′

1, . . . , n
′
∞, t)

×
∫

Pϕ∗
E1

(r1) · · ·T (ṙi)P ′ϕE′
1
(r1) · · · dr1 · · · drN . (1.116)

Since T (ṙi) is a one-particle operator, the set of numbers {n′
1, . . . , n

′
∞} cannot

differ from the particular set {n1, . . . , n∞} by more than two numbers. In par-
ticular, let the set {n′

1, . . . , n
′
∞} contain the state Ei and the set {n1, . . . , n∞}

contain the state Ek. The sums over i, p, and p′ give N !, leaving us with

∑
k,l

(−1)
∑

k
+
∑

�

∫
drϕ∗

Ek
(r)T (ṙ)ϕEl

(r)f(n1, . . . , nk − 1, nl + 1, . . . , n∞, t) .

(1.117)
Therefore

i�
∂|ψ(t)〉

∂t
=

∑
n1,··· ,n∞

∑
k,l

〈k|T |l〉 (1.118)

×f(n1, . . . , nk = 0, . . . , nl = 1, . . . , n∞, t)(−1)
∑

k
+
∑

l

×|n1, . . . , nk = 1, . . . , nl = 0, . . . , n∞〉 + (interaction terms) .

We now recall from above that

(−1)
∑

k
+
∑

l |n1, . . . , nk, . . . nl, . . . , n∞〉

= a†
kal|n1, . . . , nk − 1, . . . , nl + 1, . . . , n∞〉 . (1.119)

Substituting this into the equation for ∂|ψ(t)〉/∂t, we see that the sum over
{n1, . . . , n∞} just gives |ψ(t)〉. Carrying through the same arguments for the
two-particle interaction terms, we find
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i�
∂|ψ(t)〉

∂t
= H|ψ(t)〉 , (1.120)

where
H =

∑
k,l

〈k|T |l〉a†
kal +

1
2

∑
k,l,s,t

〈kl|V |st〉a†
ka†

l atas . (1.121)

Thus we have the important result that in this occupation-number space the
state vector |ψ(t)〉, as defined above, also satisfies a Schrödinger-like equa-
tion, with the Hamiltonian expressed in this second-quantized form. It is
easy to show that the matrix elements of such second-quantized operators
between occupation-number states are the same as the matrix elements of
“first-quantized” operators between the usual states.

Since we shall often have occasion to express an operator in second-
quantized form, let us develop a prescription for doing this. For this purpose
it is convenient to define what is called the field operator in our Hilbert space,

ψ(r) =
∑

k

ϕk(r)ak . (1.122)

Here again the ϕk(r) are a complete set of single-particle states characterized
by the quantum numbers k, and ak is the fermion operator introduced above.
To second quantize a one-particle operator such as T (ṙi) we write ri → r,
sandwich this operator between ψ†(r) and ψ(r), and integrate over all space.
For a two-particle operator such as V (ri, rj) we let ri → r and rj → r′, sand-
wich it between ψ†(r)ψ†(r′) and ψ(r′)ψ(r), and integrate over dr and dr′.

1.4.1 Example: The Degenerate-Electron Gas

As an example of the use of this prescription let us second quantize the
Hamiltonian for a gas of electrons moving in the field of a uniform positive
charge distribution. The total Hamiltonian is

H = He1−e1 + He1−n + Hn−n . (1.123)

The electron-electron Hamiltonian is

He1−e1 =
∑

i

p2
i

2m
+

e2

2

∑
i�=j

exp(−µ|ri − rj |)
|ri − rj |

, (1.124)

where a screening factor has been inserted for mathematical convenience. The
interaction of the electrons with the positive background due to the nuclei is

He1−n = −e2
∑

i

∫
ρ(r′)

|ri − r′| exp(−µ|ri − r′|)dr′ , (1.125)
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where ρ(r) is the positive charge density, which for a uniform distribution is

ρ(r) =
N

V
. (1.126)

Thus He1−n becomes

He1−n = −e2

(
N

V

)∑
i

∫
exp(−µ|ri − r′|)

|ri − r′| dr′ . (1.127)

If µ−1 is much smaller than L, where L is the sample dimension, we may
replace the integral over dr′ by one over d(r′ − ri), which gives

He1−n = −e2 N2

V

4π

µ2
. (1.128)

Finally, the self-energy of the background charge is

Hn−n = −1
2
e2

∫
ρ(r)ρ(r′)
|r − r′| e−µ|r−r′|dr dr′ =

e2

2
N2

2
4π

µ2
. (1.129)

We must now decide what functions to use as a basis for our field operator.
Since the eigenfunctions for a gas of free electrons are plane waves, we shall
use these as our basis. These states are characterized by their wave vector k
and spin quantum number σ. Thus

ψ(r) =
∑
k,σ

1√
V

eik·rησakσ , (1.130)

where

η↑ =
(

1
0

)
and η↓ =

(
0
1

)
. (1.131)

Notice that ∫
ψ†(r)ψ(r)dr =

∑
kσ

a†
kσakσ

= N . (1.132)

Since the terms He1−n and Hn−n do not involve any electron coordinates,
they are carried over directly into our Hilbert space. The kinetic energy of the
electron-electron Hamiltonian becomes

∑
kσ

�
2k2

2m
a†

kσakσ . (1.133)
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For the Coulomb interaction we have

e2

2
1

V 2

∑
kσ

∑
k′σ′

∑
k′′,σ′′

∑
k′′′.σ′′′

∫
dr

∫
dr′e−i(k·r+k′·r′) e

−µ|r−r′|

|r − r′| ei(k′′′·r′+k′′·r)

×η†
σ(r)η†

σ′(r′)ησ′′′(r′)ησ′′(r)a†
kσa†

k′σ′ak′′′σ′′′ak′′σ′′

=
e2

2
1

V 2

∑
k,σ

∑
k′,σ′

∑
k′′,σ′′

∑
k′′′,σ′′′

δσ,σ′′δσ′,σ′′′

∫
dr

∫
dr′e−i(k+k′−k′′−k′′′)·r

×ei(k′−k′′′)·(r−r′)e−µ|r−r′|

|r − r′| a†
kσa†

k′σ′ak′′′σ′′′ak′′σ′′ . (1.134)

If we again treat r and r − r′ as independent variables, the integrations may
be carried out separately to give

e2

2
1
V

∑
k,σ

∑
k′,σ′

∑
k′′,σ′′

∑
k′′′,σ′′′

δσ,σ′′′δσ′,σ′′′∆(k + k′ − k′′ − k′′′)

× 4π

(k′ − k′′′)2 + µ2
a†

kσa†
k′σ′ak′′′σ′′′ak′′σ′′ . (1.135)

If we define k′−k′′′ ≡ q and collect all the terms, we obtain the total second-
quantized Hamiltonian,

H =
∑
kσ

�
2k2

2m
a†

kσakσ +
e2

2V

∑
k

∑
k′

∑
q

∑
σ,σ′

4π

q2 + µ2

×a†
k−q,σa†

k′+q,σ′ak′,σ′ak,σ − e2N2

2V

4π

µ2
. (1.136)

It is convenient to introduce an equivalent electron radius r0 by

4
3
πr3

0 =
V

N
. (1.137)

This is made dimensionless by dividing it by the Bohr radius a0 = �
2/me2. We

also define r0/a0 = rs and V/r3
0 ≡ Ω. Since 1 Rydberg = me4/�

2 = e2/2a0,
the Hamiltonian expressed in Rydbergs is

H =
1
r2
s

∑
k,σ

(r0k)2a†
kσakσ

+
1

rsΩ

∑
k,σ

∑
k′,σ′

∑
q

4π

r2
0(q2 + µ2)

×a†
k−q,σa†

k′+q,σ′ak′,σ′ak,σ − N2

rsΩ

4π

(r0µ)2
. (1.138)

Notice that the electron-electron interaction for q = 0 gives a term propor-
tional to N2, which cancels the contribution from the positive background,
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plus a term proportional to N , which vanishes by virtue of the condition
µ−1 
 L. Thus we finally have

H=
∑
k,σ

εka†
k,σak,σ+

∑
k,σ

∑
k′,σ′

∑
q �=0

V (q)a†
k−q,σa†

k′+q,σ′ak′,σ′ak,σ, (1.139)

where εk ≡ (r0k/rs)2 and V (q) ≡ 4π/[rsΩ(r0q)2].
Aside from its advantages for handling particle statistics, the second-

quantization formalism also lends itself readily to graphical interpretation.
For example, the interaction term above corresponds to the destruction of
two particles in states (k, σ) and (k′, σ) and the creation of two particles in
states (k′ + q, σ′) and (k − q, σ). This may be represented as

q( k − , ( k + q ,

)k( ,)( k ,

) )

In general, we shall also have particle-hole interactions which have the form

q( k − , ( k + q ,

)k( ,)( k ,

) )

We shall see that long-range magnetic order may be characterized as a coher-
ent electron-hole state just as superconductivity is characterized as a coherent
electron-electron state.

1.4.2 Example: The Zeeman Interaction

Finally, let us apply this second quantization prescription to the interaction
of an electron spin with a magnetic field H cos(q · r). In the next chapter we
shall show that this interaction has the form

H = µBσzH cos(q · r) ,

where µB is the Bohr magneton and σz the Pauli matrix

σz =
(

1 0
0 −1

)
.

In terms of the field operators (1.122) this becomes

H =
1
2
µBH

∑
k

(a†
k+q,↑ak↑ − a†

k+q,↓ak↓ + a†
k−q,↑ak↑ + a†

k−q,↓ak↓) .
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Since H0 = 0 in this simple example, σz(t) = σz and the calculation of
the longitudinal susceptibility using (1.81) simply involves terms of the form
〈a†

k↑ak+q↑a
†
k+q,↑ak↑〉. This has the diagammatic representation

(q) =zz z

k ,

k+ q ,

z

In more complex systems it is convenient to characterize various approxima-
tions in terms of their diagrammatic representations.

Problems

1.1. The current density j associated with a wave function ψ is given by

j = eRe

(
ψ∗ �

im
∇ψ

)
.

Assuming a hydrogenic wave function of the form

ψ(r − R) = Rn�(r − R)Y m
� (θ, ϕ)

calculate the magnetic moment from (1.6).

1.2. Consider a two-dimensional harmonic oscillator with the Hamiltonian

H =
1

2m
(p2

x + m2ω2x2) +
1

2m
(p2

y + m2ω2y2) .

Introduce the operators

aµ =
(mω

2�

) 1
2

µ + i(2m�ω)−
1
2 pµ

a†
µ =

(mω

2�

) 1
2

µ − i(2m�ω)−
1
2 pµ , (µ = x, y)

(a) Compute the commutation relation [aµ, a†
µ] recalling [µ, pµ] = i�.

(b) Express the Hamiltonian in terms of the operators aµ, a†
µ

(c) Let |nµ〉 be an eigenvector of a†
µaµ with eigenvalue nµ. The spectrum of

these eigenvalues consists of the set of non-negative integers. Sketch the
lowest lying eigenvalues of the oscillator indicating any degeneracies.

(d) Treat the second term in (1.25) as a perturbation and calculate its affect
on the first excited state.
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1.3. If χ′(ω) = 1
1+ω2τ2 find χ′′(ω) from the relation (1.65).

Hint: The principal value is given by

lim
R→∞

[∫ ω−ε

−R

χ′

ω′ − ω
dω′ +

∫ R

ω+ε

χ′

ω′ − ω
dω′

]

=
∮

χ′

ω′ − ω
dω′ −

∫
c

χ′

ω′ − ω
dω′ −

∫
c′

χ′

ω′ − ω
dω′ ,

where the contour of integration is shown in the figure on page 31. Show that
the form (1.66) gives the same answer.

τ
i

c

c

ω R

1.4. Consider a gas of electrons. The particle density is

ρ(r) =
∑

i

δ(r − ri) .

The dynamic form factor is defined as

S(q, ω) =
∑

n

|〈n|ρ†q|0〉|2δ(ω − ωn0) ,

where the states |n〉 are the eigenstates of the electron system. We shall show
later that the scattering of electrons or neutrons from a metal is proportional
to this form factor.

(a) Second quantize

ρ†q =
∫

d3rρ(r)e−iq·r

in terms of normalized free electron plane wave states.
(b) Evaluate the form factor S0(q, ω) for a free electron system characterized

by a Fermi sphere of radius kF .
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The Magnetic Hamiltonian

Most of the magnetic properties that we shall consider arise from electrons. In
this chapter we shall develop the Hamiltonian which pertains to the magnetic
behavior of a system of electrons. It has been found experimentally that the
electron possesses an intrinsic magnetic moment, or spin. The existence of
such a moment is a consequence of relativistic considerations. Therefore it is
essential that we look for a relativistic description of the motion of an electron.
This is given by the Dirac wave equation. We shall limit our discussion of
the Dirac equation to the origin of the spin and the form of the spin-orbit
interaction (for a more thorough treatment see [6]).

2.1 The Dirac Equation

The objective in developing a relativistic quantum theory of the electron is
to ensure that space coordinates and time enter the theory symmetrically.
There are several ways of doing this. One way is to start with the general
wave equation

i�
∂ψ(r, t)

∂t
= Hψ(r, t) . (2.1)

Since the first derivative with respect to time enters on the left, the Hamil-
tonian must contain a linear space derivative, that is, the Hamiltonian must
be linear in the momentum, p = −i�∇. Thus we assume that the Hamiltonian
has the form

H = cα · p + βmc2 , (2.2)

where α and β are arbitrary coefficients. By imposing certain requirements
on the solutions of (2.1), such as that it gives the correct energy-momentum
relation E2 = p2c2 + m2c4 we obtain conditions on the quantities α and β.
These conditions may be satisfied by the 4 × 4 representations

β =
[
1 0
0 −1

]
and α =

[
0 σ
σ 0

]
, (2.3)
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where the σi are the Pauli matrices

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
, 1 =

[
1 0
0 1

]
. (2.4)

Thus the wave function ψ must be a four-component object. Two of the
components correspond to positive-energy solutions and the other two cor-
respond to negative-energy solutions. Holes in the negative-energy spectrum
correspond to positrons and require energies of the order of mc2 for their
production.

From a Lagrangian formulation we find that the effect of an external elec-
tromagnetic field described by the vector potential A and the scalar potential
φ may be included by making the substitutions p → p − (e/c)A and adding
eφ to the Hamiltonian. Thus the Dirac equation becomes

i�
∂ψ

∂t
=
[
cα ·

(
p − e

c
A
)

+ βmc2 + eφ
]
ψ . (2.5)

Since the energies encountered in magnetic phenomena are much smaller
than mc2, it is convenient to decouple the positive- and negative-energy
solutions. This is accomplished by a canonical transformation due to Foldy and
Wouthuysen [7]. The resulting Hamiltonian associated with the positive-energy
solutions has the form

H =

⎡
⎣mc2 +

1
2m

(
p − e

c
A
)2

− p4

8m
·

3c2

⎤
⎦+ eφ − e�

2mc
σ · H

−i
e�

2

8m2c2
σ · ∇ × E − e�

4m2c2
σ · E × p − e�

2

8m2c2
∇ · E . (2.6)

The interesting terms in this Hamiltonian are the last four. The term

−(e�/2mc)σ · H

corresponds to the interaction of the intrinsic spin of the electron with the
external field H. The next two terms are spin-orbit terms. In a stationary
vector potential ∇ × E = 0. And, if the scalar potential, V (r), is spherically
symmetric,

σ · E × p = −1
r

∂V

∂r
σ · r × p = −�

r

∂V

∂r
σ · l ,

where �l = r × p. Thus, the spin-orbit terms reduce to

e�
2

4m2c2

1
r

∂V

∂r
σ · l . (2.7)

This is what would be expected for an electron spin interacting with the
field produced by its orbital motion, except that it is reduced by a factor
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of 1
2 due to relativistic kinematics, also known as the Thomas precession.

The last term in (2.6), the so-called Darwin term, represents a correction to
the Coulomb interaction due to fluctuations (zitterbewegung) in the electron
position arising from the presence of the negative-energy component in the
wave function.

The term p4/8m3c2 in (2.6) is very small, and along with the Darwin term,
it may be neglected for our purposes. If we define the zero of energy as the
rest-mass energy, the Hamiltonian which governs the magnetic behavior of an
electron is

H =
1

2m

(
p − e

c
A
)2

+ eφ − e�

2mc
σ · H + ζl · σ , (2.8)

where we have introduced the spin-orbit parameter

ζ =
e�

2

4m2c2

1
r

∂V

∂r
.

The wave functions associated with (2.8) have two components. These two
component functions transform differently under rotations in 3-dimensional
space, as we shall see below, than vectors. They are called spinors.

2.2 Sources of Fields

In developing the general Hamiltonian for a single electron we found that
the interaction of an electron with its environment is described by the scalar
potential φ and the vector potential A. Both these potentials are functions of
the position of the electron under consideration as well as of the coordinates
and momenta of any other particles in the system, that is,

φ(r; r1, r2, . . . ,p1,p2, . . .) and A(r; r1, r2, . . . ,p1,p2, . . .) .

In this section we shall investigate the form these potentials take in a crys-
talline solid. Our objective is to catalog all the interactions that enter into the
magnetic properties of solids so that we shall be free to draw on these results
later.

2.2.1 Uniform External Field

The simplest potentials are those arising from uniform external fields. For an
electric field E, uniform over all space, the interaction eφ becomes −er · E,
where er is the electric-dipole-moment operator.

For a uniform magnetic field H the magnetic vector potential is not
uniquely defined. However, it is convenient to take A = 1

2H × r. In this
gauge ∇ · A = 0. Thus (p − eA/c)2/2m becomes
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p2

2m
− e

2mc
(r × p) · H +

e2

8mc2
(H × r)2 . (2.9)

The first term is the kinetic-energy term. The second term is a paramagnetic
term. Since r × p = �l is related to the electron’s orbital moment µl, by

µl =
e

2mc
r × p = − |e|�

2mc
l = −µBl , (2.10)

where

µB ≡ |e|�
2mc

is the Bohr magneton, this second term may be written as µBl ·H. The third
term is a diamagnetic term. When H is in the z direction, that is, H = Hẑ,
then this term reduces to (e2H2/8mc2)(x2 + y2). This gives, for the total
Hamiltonian of an electron in a uniform magnetic field,

H =
p2

2m
+ µB(l + σ) · H +

e2H2

8mc2
.(x2 + y2) + ζl · σ . (2.11)

2.2.2 The Electric Quadrupole Field

Let us now look into the potentials the electron sees as it moves around or past
a nucleus. If we assume that the electron remains outside the nuclear charge
and current distributions, we may expand |r − rn|−1 in spherical harmonics,
which results in a multipole expansion.

Let us first consider the charge distribution. If ρ(rn) is the charge density
at a point rn inside the nucleus, the electrostatic potential becomes

φ(r) =
∫

drn
ρ(rn)

|r − rn|

= 4π
∞∑

l=0

l∑
m=−l

Y m
l (θ, ϕ)

(2l + 1)rl+1

∫
drnρ(rn)Y m∗

l (θn, ϕn)rl
n , (2.12)

where Y m
l (θ, ϕ) is the sperical harmonic (see Table 2.1). Writing out the first

few terms explicitly, we have

φ(r) = 4π
Y 0

0 (θ, ϕ)
r

∫
drnρ(rn)Y 0∗

0 (θn, ϕn)

+4π

1∑
m=−1

Y m
1 (θ, ϕ)

3r2

∫
drnρ(rn)rnY m∗

1 (θn, ϕn)

+4π

2∑
m=−2

Y m
2 (θ, ϕ)

5r3

∫
drnρ(rn)r2

nY m∗

2 (θn, ϕn) + . . . . (2.13)
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Table 2.1. Spherical Harmonics

Y 0
0

√
(1/4π)

√
(1/4π)

Y −1
1

√
(3/8π) sin θe−iϕ

√
(3/8π)(x − iy)/r

Y 0
1

√
(3/4π) cos θ

√
(3/4π)(z/r)

Y 1
1 −

√
(3/8π) sin θeiϕ −

√
(3/8π)(x + iy)/r

Y −2
2

√
(15/32π) sin2 θe−2iϕ

√
(15/32π)[(x − iy)2/r2]

Y −1
2

√
(15/8π) sin θ cos θe−iϕ

√
(15/8π)[z(x − iy)/r2]

Y 0
2

√
(5/16π)(3 cos2 θ − 1)

√
(5/16π)[(3z2 − r2)/r2]

Y 1
2 −

√
(15/8π) sin θ cos θeiϕ −

√
(15/8π)[z(x + iy)/r2]

Y 2
2

√
(15/32π) sin2 θe2iϕ

√
(15/32π)[(x + iy)2/r2]

Since Y 0
0 (θ, ϕ) = 1/

√
4π, the first term becomes

1
r

∫
drnρ(rn) =

Ze

r
, (2.14)

which is just the field arising from a point charge at the origin. We can make
use of the spherical-harmonic addition theorem

4π

2l + 1

l∑
m=−l

Y m∗

l (θ1, ϕ1)Y m
l (θ2, ϕ2) = Pl(cos θ12) (2.15)

to write the second term as

r̂

r2
·
∫

drnρ(rn)rn . (2.16)

The integral is the electric-dipole-moment operator of the nucleus. If the
nuclear states have definite parity, the diagonal matrix elements of this
operator vanish by symmetry. The third term is the quadrupole term.

Since we shall eventually be interested in computing matrix elements of the
quadrupole term, as well as various other similar operators, it is appropriate to
digress for a moment to develop a technique known as operator equivalents,
for rewriting such operators in a form which greatly facilitates the evalua-
tion of their matrix elements. This technique is based on the transformation
properties of these operators.

Operator Equivalents. Suppose we consider a rotation of our coordinate sys-
tem through some angle θ about an axis defined by n̂. Let this rotation be
defined by a linear operator R which rotates any vector r into Rr. If θ is
regarded as infinitesimally small, then
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Rr = r + θn̂ × r . (2.17)

Under such a rotation a scalar wave function ψ(r) is transformed into a new
wave function ψ′(Rr). If the system is invariant under rotation, then

ψ′(Rr) = ψ(r) . (2.18)

This change may be characterized by a transformation UR(θ) defined by

UR(θ)ψ(r) = ψ′(r) . (2.19)

Using (2.18) this becomes

UR(θ)ψ(r) = ψ(R−1r) . (2.20)

Expanding the right side,

UR(θ)ψ(r) = ψ(r − θn̂ × r) � ψ(r) − (θn̂ × r) · ∇ψ(r)

� ψ(r) − i

�
(θn̂ × r) · pψ(r) .

Therefore
UR(θ) � 1 − iθn̂ · l , (2.21)

where l is the orbital angular momentum in units of �. For this reason we
refer to l as the “generator” of infinitesimal rotations. This argument may be
extended to finite rotations with the result

UR(θ) = exp(−iθn̂ · l) . (2.22)

Since the spinor wave function associated with the Dirac equation is defined
with respect to a definite axis, a rotation in ordinary three-dimensional space
will also transform the components of this wave function. Rotation in the
complex two-dimensional space is described by 2×2 complex unitary matrices.
For example, the matrix for a clockwise rotation of θ about the z-axis is [13],
p. 109 ⎛

⎜⎝ cos
θ

2
− i sin

θ

2
0

0 cos
θ

2
+ i sin

θ

2

⎞
⎟⎠ = 1 cos

θ

2
− iσz sin

θ

2
.

Since σ2n
z = 1 and σ2n+1

z = σz, where n is an integer, this matrix expression
is equivalent to exp(− 1

2 iθσz) which may be generalized to

exp(−iθn̂ · σ/2) (2.23)

Since σ/2 is therefore the generator for rotations in spinor space we identify it
as the spin angular momentum, s. The total angular momentum then becomes
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j = l + s

and the transformation generalizes to

UR(θ) = exp(−iθn̂ · j) . (2.24)

The orbital part, l, acts on the r-dependence of the wave function while
s rearranges the components of the wave function.

For many-electron systems, such as atoms or ions, the total angular
momentum is the vector sum of the angular momenta of the individual
electrons,

L =
∑

i

li , S =
∑

i

si (2.25)

and J = L + S.
Let |JM〉 be an eigenfunction of J2 and Jz. (Since J2 commutes with Jz

one can form a complete set of common eigenfunctions of J2 and Jz.) Then

UR(θ)|JM〉 = exp(−iθn̂ · J)|JM〉 . (2.26)

Inserting the identity in the form∑
M ′

|JM ′〉〈JM ′| = 1

on the right gives

UR(θ)|JM〉 =
∑
M ′

〈JM ′| exp(−iθn̂ · J)|JM〉|JM ′〉 =
∑
M ′

Dj
MM ′(αβγ)|JM ′〉 .

(2.27)
Thus the rotation operator transforms the function |JM〉 into a linear

combination of the states |JM ′〉 whose coefficients are the matrix elements
of the rotation operator itself, DJ

MM ′(αβγ), where α, β, and γ are the Euler
angles that specify the rotation.

Under the rotation UR an operator O is transformed into UROU−1
R . If the

operator O consists of 2J + 1 functions TJM (M = −J, −J + 1, . . . , J), and if
it transforms according to

URTJMU−1
R =

∑
M ′

DJ
MM ′(αβγ)TJM ′ , (2.28)

then it is called an irreducible tensor operator of rank J . This may seem
a rather restrictive definition. However, it turns out that many operators
encountered in physical situations are, in fact, tensor operators. For example,
a vector is a tensor of rank 1; moments of inertia and quadrupole moments
are tensors of rank 2. An example of an operator which may not be a tensor
is the density operator discussed earlier.

Tensors have their own algebra, including various theorems. One of the
most useful of these for our purposes is the Wigner–Eckart theorem. This states
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that the matrix element of a tensor operator may be factored into a part which
involves the projection quantum numbers and is independent of the tensor
itself, and a part not involving the projection quantum numbers, called the
reduced matrix element. The first part is, in fact, just the Clebsch–Gordan
coefficient encountered in the coupling of angular momenta. Thus we have

〈J ′M ′|TJ ′′M ′′ |JM〉 = C(JJ ′′J ′;MM ′′M ′)〈J ′‖TJ ′′‖J〉 , (2.29)

where C(JJ ′′J ′;MM ′′M ′) is the Clebsch-Gordan coefficient and 〈J ′‖TJ ′′‖J〉
is the reduced matrix element. Notice that if T ′ is also a tensor operator of the
same rank as T , then the matrix elements of T are proportional to those of T ′.
This result has immense practical application to our magnetic Hamiltonian.

Let us return now to the quadrupole terms in φ(r). Writing the nuclear
charge density as

ρ(rn) = e
∑

i

δ(rn − ri) , (2.30)

where ri is the coordinate of a proton, the quadrapole moment QM
2 becomes

QM
2 =

√
4π

5

∑
i

er2
i Y M

2 (θi, ϕi) . (2.31)

Since the quadrupole moment operators QM
2 are proportional to the spherical

harmonics, they are tensor operators of rank 2. We can also form a tensor
of rank 2 from the components of the total nuclear angular momentum I.
Thus if

T+1
2 = Q+1

2 =
√

6
4

∑
i

zi(xi + iyi) , (2.32)

this suggests that we form

(T ′)+1
2 =

√
6

4
(IzI

+ + I+Iz) . (2.33)

Notice that (2.33) is written in the symmetrized form. The reason for this
is that the coordinates entering (2.32) commute with each other, whereas
the angular momenta do not. Therefore, in order to preserve this symmetry,
we must symmetrize the operator equivalent. By the Wigner–Eckart theorem,
the matrix elements of these two operators must be proportional. Thus

〈IM ′ ∣∣Q+1
2

∣∣ IM〉 = α〈IM ′|
√

6
4

(IzI
+ + I+Iz)|IM〉 , (2.34)

or,

〈IM ′ ∣∣Q+1
2

∣∣ IM〉 = α

√
6

4
(2M + 1)

√
(I − M)(I + M + 1)δM ′,M+1 . (2.35)
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It is customary to define the particular matrix element 〈II|Q0
2|II〉 as eQ. The

proportionality constant α then becomes eQ/I(2I − 1).
As long as we remain within a manifold in which I is a good quantum

number, we may also equate the operators themselves. Thus

Q+1
2 =

eQ

I(2I − 1)

√
6

4
(IzI

+ + I+Iz) (2.36)

with similar expressions for the other operators. The corresponding term in
the quadrupole potential is therefore

−
√

4π

5
Y −1

2

r3

eQ

I(2I − 1)

√
6

4
(IzI

+ + I+Iz) . (2.37)

It is obvious that we could now write the electron part in terms of the total
orbital angular momentum of the electron state [8, 9]. Thus,

eφ(r) = −Ze2

r
+ e2Qξ[3(l · I)2 + 3/2(l · I) − l(l + 1)I(I + 1)] ,

where ξ is a constant that is proportional to the reduced matrix element
of the electronic angular momentum. Notice that an s-state electron is not
affected by the quadrupole field of the nucleus. The quadrupole field is, in
general, small compared with other fields acting on the electron. From the
point of view of the nucleus, however, this interaction is very important. If
the electron is in a nondegenerate state characterized by the orbital quantum
numbers l,ml, and the coordinates are chosen to lie along the principal axes
of the tensor lµlν , then the nuclear Hamiltonian becomes

HQ =
e2qQ

4I(2I − 1)

[
3I2

z − I(I − 1) +
1
2
η(I2

+ + I2
−)
]

, (2.38)

where

q = ξ〈l2z〉 and η =
(〈l2x〉 − 〈l2y〉)

〈l2z〉
.

The same expression also characterizes the interaction with a more general
surrounding charge distribution. In this case q is proportional to the electric
field gradient produced by this charge distribution.

2.2.3 The Magnetic Dipole (Hyperfine) Field

The vector potential arising from the nuclear currents may also be expanded
to yield
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A(r) =
∫

drn
ρ(rn)v(rn)
c |r − rn|

=
1
cr

∫
drnρ(rn)v(rn) +

1
2cr3

∫
drnρ(rn)

×{(r · rn)v(rn) + [r · v(rn)]rn}

− r

r3
× 1

2c

∫
drnρ(rn)[rn × v(rn)] + . . . . (2.39)

If the current distribution is stationary with respect to the angular-momentum
axis, then the first two terms vanish, leaving only the third. The integral in
this term is the nuclear magnetic dipole moment µI , which is related to the
nuclear angular momentum by

µI = gNµNI = γN�I ,

where µN is the nuclear magneton, γN is the nuclear gyromagnetic ratio, and
gN is the nuclear g value.

Notice that the nuclear angular momentum I is in units of �. Thus

A(r) = µI ×
r

r3
. (2.40)

Substituting this into the expression

1
2m

(
p − e

c
A
)2

− e�

2mc
σ · ∇ × A (2.41)

and recognizing that ∇ · A(r) = 0, we obtain

p2

2m
− e

mc

(µI × r) · p
r3

+
e�

2mc
σ ·
[
µI

r3
− 3

(r · µI)r
r5

]
. (2.42)

Interchanging the dot and cross products in the second term gives the orbital
hyperfine interaction

2µB
µI · �

r3
. (2.43)

The last term in (2.42) containing the square brackets is the dipolar hyperfine
interaction.

If the electron is in an s state, then the matrix elements of the orbital
hyperfine interaction will clearly vanish. Similarly, the matrix elements of
the dipolar hyperfine interaction also vanish for an s-state electron. However,
there is an additional interaction for s-state electrons that is not included in
expansion (2.39), since it is valid only for charge distributions which vanish
at the nucleus. To obtain this additional interaction we consider the matrix
element of the hyperfine interaction for an electron orbital state ψ(r):
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− e�

2mc

∫
all space

drψ∗(r)σ · ∇ × A(r)ψ(r)

= − e�

2mc

∫
r<R

drψ∗(r)σ · ∇ × A(r)ψ(r)

− e�

2mc

∫
r>R

drψ∗(r)σ · ∇ × A(r)ψ(r) . (2.44)

The radius R defines a sphere which encloses the nucleus. Outside this sphere
A(r) has the form (µI × r)/r3. The second term in (2.44) gives the dipo-
lar hyperfine interaction derived previously. The first term is the additional
interaction, which may be rewritten as

− e�

2mc

∫
r<R

dr∇ · (A × σ)|ψ(r)|2 = − e�

2mc
σ ·
∫

dS × A|ψ(r)|2 . (2.45)

Because the sphere of integration has been chosen to lie outside the nucleus,
A(r) has the form (µI × r)/R3. Since ψ(r) is essentially constant over this
surface and is equal to ψ(0), the interaction becomes

− e�

2mc
σ ·
∫

r × (µI × r)
R2

dΩ|ψ(0)|2 = −8π

3
e�

2mc
σ · µI |ψ(0)|2

=
16π

3
gNµBµNI · σ|ψ(0)|2 . (2.46)

This is the contact hyperfine interaction, often written as the operator

(8π/3)gNµBµNI · σδ(r) .

Combining these results gives us the total hyperfine interaction,

Hhyper = 2gNµBµN
l · I
r3

− gNµBµNσ ·
[

I

r3
− 3

(r · I)r
r5

]

+
8π

3
gNµBµNσ · Iδ(r) . (2.47)

The Hamiltonian (2.11) plus the interactions (2.38), (2.47) determine the
behavior of a single electron in the presence of a nucleus.

2.2.4 Other Electrons on the Same Ion

Let us now consider the effect of other electrons. One of the most important
sources of the electric field felt by an ionic electron is the Coulomb field arising
from the other electrons on the same ion,

φ(r) =
∑

i

e

|r − ri|
. (2.48)
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In ionic materials this interaction leads to the term levels (the determination
of these many-electron states in terms of their Coulomb integrals is discussed
in [10]). In itinerant-electron materials it is often assumed that the electrons
experience a Coulomb repulsion only if they both happen to be in the same
ionic cell. We shall consider the corresponding Hamiltonian for this situation
later.

2.2.5 Crystalline Electric Fields

The Coulomb interactions between each electron and all the charges external
to the ion are described by the electrostatic potential V (r). In the case of iron-
group ions the magnetic electrons (the 3d electrons) are outermost and hence
are strongly affected by such a potential. In the case of rare-earth ions the
magnetic 4f electrons are shielded by the 5s25p6 shells and are less affected.

Since the charge distribution associated with neighboring ions may overlap
that of the electron in question, the full treatment of this problem is very
complex. The external charge distributions of these neighboring ions are called
ligands, and their effects are computed by means of ligand field theory [11].
However, for our purposes, it will be sufficient to treat the neighboring ions as
point charges; the problem may then be handled by crystal field theory . The
advantage of using point charges is that V (r) satisfies Laplace’s equation and
may be expanded in spherical harmonics as

V (r, θ, ϕ) =
∑
L′

∑
M ′

AM ′

L′ rL′
Y M ′

L′ (θ, ϕ) . (2.49)

The number of terms that need be considered is greatly reduced, for the fol-
lowing reasons. Suppose we consider an iron-group ion in a crystal field. Then
we shall eventually be interested in matrix elements of the form

∫
χ∗ V ψdτ ,

where χ and ψ are d-electron wave functions. Since the density χ∗ψ, when
expanded in spherical harmonics will not contain terms with L′ > 4, the in-
tegrals with L′ > 4 will vanish by orthogonality of the spherical harmonics.
Similarly, the integral vanishes for all terms in V which have L′ odd. The
term for L′ = 0 is usually dropped because it is an additive constant. If we
are considering several 3d electrons within a term, then L′

max is determined by
the L value of this term (for example, L′ ≤ 6 for an F -state ion, i.e., L′ ≤ 2L).

The potential energy of a charge q′ at (r, θ, ϕ), in a potential due to charges
q at a distance d from the origin and arranged in a cubic coordination, is

Vc(r, θ, ϕ) = D′
4

{
Y 0

4 (θ, ϕ) +

√
5
14
[
Y 4

4 (θ, ϕ) + Y −4
4 (θ, ϕ)

]}

+D′
6

{
Y 0

6 (θ, ϕ) −
√

7
2
[
Y 4

6 (θ, ϕ) + Y −4
6 (θ, ϕ)

]}
, (2.50)
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where, for example, D′
4 = + 7

3

√
πq′r4/d5 for sixfold coordination. The coeffi-

cients in such expansions have been tabulated by Hutchings [12]. The potential
may also be expressed in terms of cartesian coordinates (see Table 2.1). Thus
the above potential may be written as

Vc(x, y, z) = C4

[
(x4 + y4 + z4) − 3

5
r4

]
+ C6

[
(x6 + y6 + z6) (2.51)

+
1 5
4

(x2y4 + x2z4 + y2x4 + y2z4 + z2x4 + z2y4) − 15
14

r6

]
,

where C4 = + 3 5
4 qq′/d5 for sixfold coordination.

We are now faced with the problem of calculating the matrix elements of
this potential. This is easily accomplished by the operator-equivalent method,
which makes use of the fact that the matrix elements of operators involving
x, y, and z within a given L or J manifold are proportional to those of Lx, Ly,
and Lz or Jx, Jy, and Jz. As pointed out earlier, the fact that the angular-
momentum operators do not commute necessitates some care in constructing
the operator equivalents. Fortunately there are tables for these (a good source
is [12]). For example, within a manifold where L is constant the sum of the
potential energies of all the electrons contributing to L is

∑(
x4 + y4 + z4 − 3

5
r4

)

⇒ βr4

8
[
35L4

z − 30L(L + 1)L2
z + 25L2

z − 6L(L + 1) + 3L2(L + 1)2
]

+
βr4

8
[
(L+)4 + (L−)4

]
≡ βr4

20
O0

4 +
βr4

4
O4

4 = B0
4O0

4 + B4
4O4

4 , (2.52)

where r4 is the average value of the fourth power of the electron radius. The
operators Om

n appear frequently in the literature. The ground state β is a
constant which depends on the term; for a 2D or a 5D term β = 2

6 3 .
Consider a single 3d electron. This has the term 2D, which is fivefold or-

bitally degenerate, with states 2D(Lz, Sz). The matrix elements of Vc are [12]

2D(2) 2D(1) 2D(0) 2D(−1) 2D(−2)

βr4

20

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

12 0 0 0 60

0 −48 0 0 0

0 0 72 0 0

0 0 0 −48 0

60 0 0 0 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
(2.53)
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The eigenvalues and eigenvectors are easily found to be

Energy Eigenfunctions

1 2
5

βr4

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2D(1, Sz)
2D(−1, Sz)

1√
2
[2D(2, Sz) − 2D(−2, Sz)]

−18
5

βr4

⎧⎪⎨
⎪⎩

2D(0, Sz)

1√
2
[2D(2, Sz) + 2D(−2, Sz)] .

The quantity 6β is often written as ∆. Therefore we find that the 2D term is
split into two states separated by C4r4∆. Notice that C4 can be positive or
negative, depending on the coordination. This is illustrated in Fig. 2.1.

The nature of such splittings obviously depends on the symmetry of the
crystal field. For this reason group theory is a powerful tool in determining
the degeneracies associated with various symmetries. Group theory as applied
to crystal wave functions is discussed fully elsewhere [13], Chap. 4, but it is
worth our while to digress again briefly to introduce some of the group-theory
terminology and notation which will enter our discussions from time to time.

Symmetry Representations. The symmetry of a system is generally specified
by those operations which leave its physical appearance unchanged. For exam-
ple, the symmetry operations which leave an equilateral triangle unchanged
are listed in Table 2.2. A collection of symmetry operations that satisfies cer-
tain conditions is called a group. In order to take advantage of the powerful

TD

(a) (b)
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T 2

E

--
-
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-

-

--

-

-

-

Fig. 2.1. Splitting of a D state in a cubic crystal field for (a) sixfold coordination
and (b) eightfold coordination
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Table 2.2. Symmetry operations associated with an equilateral triangle

E = identity

CA
2 = rotation of π around the A-axis

CB
2 = rotation of π around the B-axis

CC
2 = rotation of π around the C-axis

Cz
3 = rotation of 2π/3 around the z-axis

(Cz
3 )2 = rotation of 4π/3 around the z-axis

3

A

B

2

C

1

theorems associated with group theory we always work with those symme-
try operations which do, in fact, constitute a group. These operations may
be specifically represented by matrices which describe how a coordinate point
transforms under the particular symmetry operation. Thus, if r represents a
rotation and t represents a translation, the most general coordinate transfor-
mation is x′ = rx + t. Such a collection of operations is called a space group.
The rotational part, obtained by setting t = 0, itself forms a group, called the
point group. When we are dealing with noninteracting ions, the point group is
sufficient to characterize the properties of the system. However, for interacting
systems the full space group must be employed. Fortunately, since the point
groups in a crystal must be compatible with translational symmetry, there
are only 32 such groups [13], p. 55. Our equilateral triangle is characterized
by the point group labeled D3 in the so-called Schöflies notation, or 32 in the
“international” notation.

Now, let us consider a function whose form depends on the arrangement of
the system. For example, suppose that three protons are located at the vertices
of an equilateral triangle. The energy of an electron in such an environment
depends on the positions of the protons, but this energy is unchanged under
any permutation of the protons. Notice that there are 3!, or six, such permuta-
tions. These are just the result of the six symmetry operations which leave the
triangle invariant. If a figure is defined by some arrangement of identitical par-
ticles, the operations which leave it invariant also leave the interaction energy
between these two particles and other particles invariant. Thus it is conve-
nient to introduce a new group, isomorphic to the coordinate-transformations
group, in which the group elements are operators which operate on functions
rather than on coordinates. These operators are defined by

PRf(x) ≡ f(r−1x) . (2.54)

The particular function with which we shall be concerned is the energy in its
operator form, the Hamiltonian H. Those symmetry operations which leave
the Hamiltonian invariant comprise the “group of the Schrödinger equation”.
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If PR leaves H invariant, then it must commute with H. Therefore

PRHψn = HPRψn = EnPRψn . (2.55)

Thus any function PRψn obtained by operating on an eigenfunction ψn with
a symmetry operator of the group of the Schrödinger equation will also be
an eigenfunction having the same energy. Suppose that the state n is ln-fold
degnerate. Then the function PRψn must be a linear combination of ln ortho-
normal eigenfunctions, which we shall denote ψ

(n)
µ (µ = 1, . . . , ln). Therefore

PRψ(n)
µ =

l∑
ν=1

Γ (n)(r)µνψ(n)
ν . (2.56)

The transformation coefficients constitute a set of matrices which form an
irreducible representation of the group of the Schrödinger equation. Further-
more, we see that the nth representation is associated with the nth eigenstate,
and the dimensionality of the representation is equal to the degeneracy of this
eigenstate. This representation is irreducible, since there is always an opera-
tor in the group that will transform each function into any other function. If
this were not true, we could construct smaller sets of states which would, in
general, have different eigenvalues, contradicting our original hypothesis.

Because of the relation (2.56), we speak of the ψ(n) as “transforming ac-
cording to Γ (n)”. For this reason energy eigenstates are labeled by their ir-
reducible representations. Also, since the representations are generated from
the eigenfunctions, we say that the ln degenerate eigenfunctions ψ

(n)
µ form a

basis for an ln-dimensional representation Γ (n) of the group of the Schrödinger
equation.

The number and nature of the irreducible representations associated with
the various symmetry groups have all been tabulated in what is known as a
character table. The character χn(r) associated with the operation r belonging
to the nth irreducible representation is merely the trace of the matrix of that
representation, that is,

χn(r) =
∑

µ

Γ (n)(r)µµ . (2.57)

One of the powerful features of group theory is that it enables us to determine
the irreducible representations and all their characters without ever having to
know specifically the basis functions. The character table for the equilateral-
triangle symmetry group D3 is given in Table 2.3. To see what this character
table implies, let us suppose that we have a single electron, bound, say, to some
ionic core giving rise to certain eigenstates. Since this system has complete
rotational symmetry, these states are labeled by the familiar s, p, d, etc. Let us
surround the system by three protons located at the vertices of an equilateral
triangle. The symmetry of this system is D3. The character table for D3 tells
us that the eigenfunctions of the electron are now labeled by the irreducible
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Table 2.3. Character table for the point group D3

Symmetry Group Operations

D3 E 2C3 3C′
3

Irreducible

representations Characters

A1 1 1 1

A2 1 1 −1

E 2 −1 0

representations A1, A2, or E. The character associated with the identity oper-
ation, E, tells us the degeneracy of the various representations. For example,
A1 and A2 are nondegenerate states, and E is doubly degenerate.

Exactly how the original states decompose into the new types of states
depends on the original states themselves and on the symmetry group char-
acterizing the environment. Fortunately, such decompositions have been tab-
ulated for a great number of situations. For example, in Fig. 2.1 we saw that
a D state, when exposed to a cubic crystal field, splits into a doublet labeled
by E and a triplet labeled by T2. Group theory, however, does not tell us the
ordering of the states or their relative separations. Such specific information
can be obtained only by doing a calculation, as we did at the beginning of
this section.

Quenching. At this point it is convenient to introduce a general property of
angular momentum. This might be stated as a theorem:

The matrix element of the orbital angular momentum between non-degenerate
states has an arbitrary phase. In particular, it may be pure real or pure imagi-
nary.

To prove this let us consider the time-reversal operator T acting on a state
ψ [13], p. 141. If we neglect the spin, then Tψ = ψ∗. Furthermore, if the
Hamiltonian of the system is Hermitian, then ψ∗ has the same eigenvalue
as ψ, but if ψ is nondegenerate, then ψ and ψ∗ must be linearly dependent.
That is, ψ∗ = cψ, where c is a coefficient of proportionality. Operating on this
relation with T gives ψ = |c|2ψ which requires that |c|2 = 1 or c = eiϕ, where
ϕ is a real quantity.

Now consider the matrix element 〈n|L|m〉. Inserting the identity oper-
ator T−1T , we may write this as 〈n|T−1TLT−1T |m〉. Under time reversal
the angular momentum changes sign, TLT−1 = −L. Also, since T satisfies
〈n|T−1|m〉 = 〈Tn|m〉∗, we obtain

〈n|L|m〉 = − exp[i(ϕn − ϕm)]〈n|L|m〉∗ .

Since the phases are arbitrary we could, for example, choose ϕn −ϕm = 0, in
which case this matrix element would be the negative of its complex conjugate,
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which would make it pure imaginary. If ϕn−ϕm = π/2, then it would be pure
real.

This theorem has an important corollary:

The expectation value of L for any nondegenerate state is 0.

In the theorem, if |m〉 = |n〉, then 〈n|L|n〉 must be pure imaginary. But
〈n|L|n〉 is a physical observable. Therefore it must be 0.

Thus if the crystal field has sufficiently low symmetry to remove all the
orbital degeneracy, then, to lowest order, the orbital angular momentum is 0,
and we say that the crystal field has completely quenched it. For this reason
the static susceptibility of iron-group salts is found experimentally to arise
predominantly from the spin.

2.2.6 Dipole–Dipole Interaction

The magnetic neighbors surrounding a given ion will contribute to the vec-
tor potential a term similar to that which we found for the electron-nucleus
magnetic coupling, (2.42). If the ions have moments µi, the dipole-dipole
interaction has the form

Hdip =
∑
i,j �=

i

j

1
r3
ij

[µi · µj − 3(µi · r̂ij)(µj · r̂ij)] . (2.58)

It is convenient to separate this into various terms, the meaning of which will
become evident later. Assuming the moments arise from spin, µi = gµBSi,
and (2.58) becomes

Hdip = g2µ2
B

∑
i>j

{
−3 cos2 θij − 1

r3
ij

Sz
i Sz

j

+
3 cos2 θij − 1

4r3
ij

(S+
i S−

j + S−
i S+

j )

−3
2

sin θij cos θij exp(−iϕij)
r3
ij

(Sz
i S+

j + S+
i Sz

j )

−3
2

sin θij cos θij exp(−iϕij)
r3
ij

(Sz
i S−

j + S−
i Sz

j )

−3
2

sin2 θij

r3
ij

[exp(−2iϕij)S+
i S+

j + exp(2iϕij)S−
i S−

j ]

}
, (2.59)

where θij and ϕij are the angles that rij makes with the fixed coordinate
system.
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2.2.7 Direct Exchange

The exchange energy is the contribution to the interaction energy of a system
of electrons which arises from the use of antisymmetrized wave functions, as
opposed to single products of one-electron wave functions. Under certain con-
ditions the same effect may be achieved with single-product wave functions if
an exchange-interaction term is added to the Hamiltonian. This effect was dis-
covered simultaneously and independently by Dirac and Heisenberg in 1926.
Since then a great deal of work has been done on this subject, particularly in
developing the appropriate Hamiltonian [14]. In this section we shall discuss
the origin of exchange and indicate the approximations under which it may
be represented by an effective interaction Hamiltonian.

Let us begin by considering two electrons interacting with each other and a
fixed positive point charge Ze. Let us assume that we know the eigenfunctions
of the one-electron Hamiltonian H0(r,σ). For the time being let us assume
that this does not include the spin-orbit interaction. Then H0(r,σ) = H0(r)
and we may write the eigenfunctions as products of an orbital function ϕn(r)
and a spinor ηµ(σ). We shall consider the modifications introduced by the
spin-orbit interaction later.

The two-electron Hamiltonian is

H = H0(r1) + H0(r2) +
e2

|r1 − r2|
. (2.60)

Let us assume that the electron-electron interaction is, on average, smaller
than H0, so that it may be treated by perturbation theory. We must now
determine what functions to use as the basis for computing the matrix
elements of the electron-electron interaction. The fact that the Hamiltonian
without the electron-electron interaction is separable suggests that we try
product wave functions. Thus, if electron 1 is in an orbital state n with spin
up and electron 2 is in an orbital state m, also with spin up, we might try
ϕn(r1)α(σ1)ϕm(r2)α(σ2), where α is the spin-up spinor. However, the Pauli
exclusion principle requires that the wave functions be antisymmetric with
respect to particle interchanges. This condition may be satisfied by writing
the wave function as a normalized Slater determinant. If the single-electron
wave functions are orthogonal, the appropriate determinantal wave function is

1√
2

∣∣∣∣∣ϕn(r1)α(σ1) ϕn(r2)α(σ2)

ϕm(r1)α(σ1) ϕm(r2)α(σ2)

∣∣∣∣∣ . (2.61)

Since there are an infinite number of orbital states, we could construct an
infinite number of such Slater determinants. The general wave function would
be a linear combination of such determinants. However, if the electron-electron
interaction is small, we may neglect this admixture of other orbital states.
In particular, let us assume that electron 1 has a low-lying nondegenerate
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orbital state ϕa with energy Ea and electron 2 has a similar low-lying non-
degenerate orbital state ϕb with energy Eb. If both spin functions are up, the
determinantal wave function becomes

ψ1 =
1√
2

∣∣∣∣∣ϕa(r1)α(σ1) ϕa(r2)α(σ2)

ϕb(r1)α(σ1) ϕb(r2)α(σ2)

∣∣∣∣∣ . (2.62)

If the spin function associated with orbital a is down, then

ψ2 =
1√
2

∣∣∣∣∣ϕa(r1)β(σ1) ϕa(r2)β(σ2)

ϕb(r1)α(σ1) ϕb(r2)α(σ2)

∣∣∣∣∣ . (2.63)

There are two additional possible spin configurations which lead to wave func-
tions ψ3 and ψ4. These four functions form a complete orthonormal set and
therefore constitute an appropriate bais with which to evaluate the matrix
elements of H. The result is

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ea + Eb + Kab − Jab 0 0 0

0 Ea + Eb + Kab −Jab 0

0 −Jab Ea + Eb + Kab 0

0 0 0 Ea + Eb + Kab − Jab

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(2.64)

where

Kab =
∫∫

dr1dr2
e2

r12
|ϕa(r1)|2|ϕb(r2)|2 (2.65)

and

Jab =
∫∫

dr1dr2ϕ
∗
a(r1)ϕ∗

b(r2)
e2

r12
ϕb(r1)ϕa(r2) . (2.66)

Diagonalizing this matrix gives a singlet with energy

Es = Ea + Eb + Kab + Jab (2.67)

and a triplet with energy

Et = Ea + Eb + Kab − Jab . (2.68)

Since Jab is the self-energy of the charge distribution eϕ∗
a(r)ϕb(r), it is positive

definite. Therefore the triplet always has a lower energy than the singlet. This
is the origin of Hund’s rule, which says that the ground state of an atom has
maximum multiplicity.

Dirac noticed that the eigenvalues (2.67), (2.68) could be obtained with a
basis consisting only of products of spin functions if an exchange interaction
were added to the Hamiltonian. To obtain the form of this effective interaction
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term we notice that just as any 2 × 2 matrix may be expressed as a linear
combination of Pauli matrices plus the unit matrix, any 4 × 4 matrix may
be written as a quadratic function of direct products of Pauli matrices [13],
p. 320. For example, if

σ1x =
[

0 1
1 0

]
and σ2x =

[
0 1
1 0

]
, (2.69)

then

σ1x ⊗ σ2x =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ . (2.70)

We are particularly interested in that quadratic form which gives three equal
eigenvalues. Such a form is

σ1 · σ2 =

⎡
⎢⎢⎣

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

⎤
⎥⎥⎦ . (2.71)

Therefore the Hamiltonian which will produce in a spinor basis the same
eigenvalues as (2.52) evaluated in a fully antisymmetrized basis is

H =
1
4
(Es + Et) −

1
4
(Es − Et)σ1 · σ2 = const. − 1

4
Jσ1 · σ2 . (2.72)

Thus the exchange interaction, which is a purely electrostatic effect, may be
expressed as a spin-spin interaction. The exchange parameter J is Es −Et. If
J is positive, we say that the interaction is ferromagnetic.

In obtaining the exchange interaction (2.72) we have made two important
assumptions. The first was that we could restrict ourselves to a certain subset
of nondegenerate orbital states. There is no real justification for this, as the
Coulomb interaction does, in fact, couple different orbital states. We shall
see this more clearly in our discussion of exchange in the N -electron system.
The second assumption was that the orbital functions were orthogonal. When
we are dealing with wave functions that have a common origin, as in an atom,
this is usually the case. However, as soon as we begin talking about electrons
centered at different sites the problem becomes very complex.

The hydrogen molecule is perhaps the simplest example of such a two-
center problem. This was first considered by Heitler and London in 1927 [15].
In the limit of infinite separation we shall assume we have two neutral hydro-
gen atoms. The Hamiltonian for a single hydrogen atom located at ra is

H∞(r) = −�
2∇2

2m
− e2

|r − ra|
. (2.73)
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The corresponding orbital eigenfunctions are ϕ(r − ra) ≡ a(r). The Hamil-
tonian for the two-proton system is

H = −�
2∇2

1

2m
− �

2∇2
2

2m
− e2

|r1 − ra|
− e2

|r1 − rb|
− e2

|r2 − ra|
− e2

|r2 − rb|

+
e2

|r1 − r2|
+

e2

|ra − rb|
. (2.74)

Heitler and London assumed basis functions of the form (2.61) but rather than
taking eigenfunctions of noninteracting electrons in the field of two nuclei,
they took the eigenfunctions of isolated free atoms. Thus, if both electrons
are “up”,

ψ1 =
1√

2 − 2
2

∣∣∣∣∣
a(1)α(1) a(2)α(2)

b(1)α(1) b(2)α(2)

∣∣∣∣∣ , (2.75)

where 
 =
∫

dr a∗(r)b(r) is the overlap integral. If one spin is “up” and the
other “down” there are two Slater determinants

φ1 =

∣∣∣∣∣
a(1)α(1) a(2)α(2)

b(1)β(1) b(2)β(2)

∣∣∣∣∣ (2.76)

and

φ2 =

∣∣∣∣∣
a(1)β(1) a(2)β(2)

b(1)α(1) b(2)α(2)

∣∣∣∣∣ . (2.77)

Due to the overlap, these are not orthogonal, i.e.,

〈φ1|φ2〉 = −2
2 . (2.78)

An orthogonalized pair of basis functions is

ψ2 =
1

2
√

1 − 
2
(φ1 + φ2) (2.79)

ψ3 =
1

2
√

1 − 
2
(φ1 − φ2) . (2.80)

The fourth basis function is identical to (2.75) with β in place of α. In this
basis the Hamiltonian matrix is, in fact, diagonal:

H =

⎛
⎜⎜⎝

Et 0 0 0
0 Et 0 0
0 0 Es 0
0 0 0 Et

⎞
⎟⎟⎠ , (2.81)
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where

Et = E0
a + E0

b +
e2

|ra − rb|
− K − ∆a − ∆b − 2
∆ab − J

1 − 
2
, (2.82)

Es = E0
a + E0

b +
e2

|ra − rb|
+

K − ∆a − ∆b − 2
∆ab + J

1 + 
2
. (2.83)

Here ∆a and ∆b represent shifts in the distant-atom eigenvalues, E0
a and E0

b ,
respectively, due to the other core. ∆ab is the interaction of the “overlap charge
density”, a(r)b(r), with a core, and

K =
∫∫

dr1dr2|a(r1)|2|b(r2)|2
e2

|r1 − r2|
(2.84)

and

J =
∫∫

dr1dr2 a∗(r1)b∗(r2)
e2

|r1 − r2|
b(r1)a(r2) . (2.85)

The difference between the singlet and the triplet is

Es − Et = −2
(K − ∆a − ∆b − 2
∆ab)
2 − J

1 − 
4
. (2.86)

Notice that this may be positive or negative, depending upon the relative sizes
of the various parameters. Thus, it is not obvious whether the ground state
will be ferromagnetic or antiferromagnetic. Actual evaluation shows that for
realistic separations the singlet lies lowest. As the nuclei are brought together,
and 
 increases, the denominators in Et and Es cause Et to increase and Es

to decrease. Eventually, internuclear repulsion also causes Es to increase:

E t

E s

R ab

Equation (2.86) can be evaluated exactly for the case of hydrogenic wave
functions. It is found that for very large separations the triplet has lower
energy. This cannot be, for, as Herring pointed out, the lowest eigenvalue
of a semibounded Sturm–Liouville differential operator, such as (2.74), must
be free of nodes. This means it must always be a singlet. This would be a
good description of the chemical bond, but would not explain magnetism. The
problem arises from the oversimplified nature of the Heitler–London states.
The exchange coupling measures the rate at which two identifiable electrons
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exchange places by tunneling through the barrier separating them. In the
Heitler–London approximation this tunneling is uncorrelated. In reality, how-
ever, the two electrons will tend to avoid one another. This reduces the ampli-
tude of the wave function for configurations with both electrons close to the
internuclear line. Fortunately, however, (2.85) is a reasonably good approxi-
mation for separations generally encountered.

In considering more than two electrons we find that difficulties arise from
the nonorthogonality of the wave functions we have been using thus far. When
the Heitler–London method is applied to a very large system the nonorthog-
onality integrals enter the secular equation with high powers and lead to an
apparent divergence. This “nonorthogonality catastrophy” is a purely mathe-
matical difficulty [14], and Herring has reviewed various treatments that show
that even for large systems the energies and eigenstates are given by the
exchange interaction with exchange constants having the same values as for
a two-site system.

One approach to the problem of exchange among many sites is to give up
our well-defined but nonorthogonal functions and work with functions which
are orthogonal. An example of such a set of orthogonal functions are Wannier
functions. The Wannier function φnλ(r−ra) resembles the nth atomic orbital
with spin λ near the αth lattice site, but it falls off throughout the crystal in
such a way that it is orthogonal to similar functions centered at other sites.
Since the exchange interaction is essentially a quantum-statistical effect the
technique of second quantization discussed in Chap. 1 is very convenient for
obtaining the exchange Hamiltonian.

Let us consider N electrons reasonably localized on N lattice sites. The
Hamiltonian for such a system is

H =
∑

i

p2
i

2m
−
∑
i,a

Ze2

|ri − ra|
+

1
2

∑
i,j

e2

|ri − rj |
. (2.87)

In Chap. 1 we found that the prescription for second quantizing such a Hamil-
tonian entailed introducing a field operator which could be expanded in terms
of a complete set of single-particle wave functions. In this case the appropri-
ate set of functions are the Wannier functions. Thus the field operator (1.122)
becomes

ψ(r) =
∑

α,n,λ

φnλ(r − rα)anλ(rα) , (2.88)

where anλ(rα) annihilates an electron in orbital state n and spin state λ at
the lattice site α. The interaction part of the Hamiltonian (2.87) becomes

1
2

∑
α1,α2,α3,α4
n1,n2,n3,n4

λ1,λ2

〈α1n1;α2n2 |V |α3n3; α4n4〉

×a†
n1λ1

(rα1)a
†
n2λ2

(rα2)an4λ2(rα4)an3λ1(rα3) . (2.89)
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Since the Wannier states are localized to within a unit cell, the main contri-
butions to (2.89) arise from those terms in which α3 = α1 and α4 = α2 or
α3 = α2 and α4 = α1. The remaining terms involve various orbital excitations
induced by the Coulomb interaction. These lead to off-diagonal exchange. Just
as in the two-electron case, we shall restrict each electron to a definite orbital
state. That is, we shall keep only those terms in which n3 = n1 and n4 = n2 or
n3 = n2 and n4 = n1. If, for simplicity, we also neglect orbital-transfer terms,
in which two electrons interchange orbital states, then (2.89) reduces to

1
2

∑
α,α′

n,n′

λ,λ′

[
〈α, n; α′, n′|V |α, n; α′, n′〉a†

nλ(rα)a†
n′λ′(rα′)an′λ′(rα′)anλ(Rα)

+〈α, n; α′, n′|V |α′, n′; α, n〉a†
nλ(rα)a†

n′λ′(rα′)αn,λ′(rα)an′λ(rα′)
]
.

(2.90)

The first term is called the direct term and the second is the exchange term.
Using the fermion anticommutation relation{

a†
nλ(rα), an′λ′(rα′)

}
= δαα′δnn′δλλ′ , (2.91)

we may write the exchange term as

−1
2

∑
α,α′

n,n′

λ,λ′

Jnn′(rα, rα′)a†
nλ(rα)anλ′(rα)a†

n′λ′(rα′)an′λ(rα′) . (2.92)

When the spin sum is expanded, we obtain four terms. These may be written
in a particularly revealing way by noting the following. First of all, if we allow
only one electron to occupy each orbital, then

Nn↑(rα) + Nn↓(rα) = 1 , (2.93)

where Nnλ(rα) = a†
nλ(rα)anλ(rα) is the number operator associated with the

nth orbital with spin λ at the site α. We also have

Nn↑(rα) − Nn↓(rα) = σz(rα) . (2.94)

Combining these two relations gives

Nn↑(rα)Nn′↑(rα′) + Nn′↓(rα)Nn′↓(rα′) =
1
2
σz(rα)σz(rα′) +

1
2

. (2.95)

We also note that
a†

n↑(rα)an↓(rα) =
1
2
σ+(rα) (2.96)
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and
a†

n↓(rα)an↑(rα) =
1
2
σ−(rα) . (2.97)

With these results the exchange interaction (2.92) becomes

∑
αα′

nn′

Jnn′(rα, rα′)
[
1
4

+
1
4
σ(rα) · σ(rα′)

]
. (2.98)

This is the many-electron generalization of our earlier result for two electrons.
Since the wave functions used in Jnn′ are orthogonal, this exchange is always
ferromagnetic. In the next section on superexchange we shall see that when
we allow for the fact that an electron can hop onto a neighboring site giving
it a double occupancy, the result is an exchange of the form (2.98) but with
an antiferromagnetic coupling.

In most practical situations we do not have just N electrons each localized
on one of N lattice sites, but rather Nh electrons, where h is the number of
unpaired electrons on each ion. If these h electrons all have the same exchange
integrals with all the other electrons, then the interaction may be expressed
in terms of the total ionic spin,

Hex = −
∑
α,α′

n,n′

Jnn′(rα, rα′)
[
1
4

+ S(rα) · S(rα′)
]

. (2.99)

As Van Vleck has pointed out, this form is also valid if the unfilled shells of
each ion are half full and the atom is in its state of maximum multiplicity [16].
Such a situation is always true for S-state ions but may also arise as a result
of quenching by crystal fields. We shall consider an example of this in our
discussion on effective exchange. Equation (2.99), usually referred to as the
Heisenberg exchange interaction, often forms the starting point for discussions
of ferromagnetism or antiferromagnetism in insulators. The fact that it is valid
only under certain conditions does not seem to deter its application. In fact,
it works surprisingly well, as we shall see in later chapters.

2.2.8 Superexchange

The exchange constant in (2.99) involves essentially an eigenfunction of the
whole crystal. Needless to say, such a function is difficult to obtain. Let us
therefore consider an approach which has proven useful in discussing exhange
in insulators. The transition-metal flourides MnF2, FeF2, and CoF2 are all
observed to be antiferromagnets at low temperatures, with crystal struc-
ture and spin configuration indicated in Fig. 2.2. This exchange is difficult
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Fig. 2.2. Spin configuration of the transition-metal flourides

Fig. 2.3. Schematic representations of one of the intermediate states in super-
exchange

to understand in terms of direct exchange between the cations because of the
intervening flourine anions. A similar situation arises in the case of magnetic
oxides. In 1934 Kramers proposed the explanation that the cation wave func-
tions were being strongly admixed with the flourine wave functions, enabling
the cations to couple indirectly with each other. Kramers applied perturba-
tion theory to obtain the effective exchange resulting from this mechanism.
Let us consider two Mn2+ ions and an intervening F− ion. Because of the
overlap of their wave functions, one of the p electrons from the F− hops over
to one of the Mn2+ ions. The remaining unpaired p electron on the F then
enters into a direct exchange with the other Mn2+ ion. This excited state is
illustrated in Fig. 2.3 for the case in which the exchange between the unpaired
p electron and the Mn2+ is antiferromagnetic. By using such excited states
in a perturbation calculation of the total energy of the system we obtain an
effective exchange between the Mn2+ ions. The sign of this exchange depends
on the nature of the orbitals involved. However, a number of general features
that have evolved through the work of Goodenough [17] and Kanamori [18]
enable us to qualitatively predict the nature of the superexchange. Two such
features are that the electron transfer can take place only if the cation and
anion orbitals are nonorthogonal, and that if the cation-anion orbitals are
orthogonal, the direct exchange referred to above is positive (ferromagnetic);
otherwise it is negative (antiferromagnetic).

As an example of the application of these rules, let us consider the antifer-
romagnet CaMnO3. In this material the manganese occurs in the tetravelent
state Mn4+, which means that we have three d electrons. The crystal field at
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the Mn4+ sites is cubic. The d electrons are strongly affected by this crystal
field. In fact, the approximation is often made that the crystal field is stronger
than the intraionic Coulomb interaction, so that the latter may be neglected.
Then each electron may be considered separately. The effect of a cubic field
on the fivefold orbitally degenerate d state of a single electron is to split this
state into a threefold degenerate state labeled t2g and a twofold degenerate
state labeled eg. This splitting with the associated wave functions is shown in
Fig. 2.4. There is, in fact, some intraionic Coulomb interaction, which leads to
a Hund’s rule coupling of the spins. Therefore, since the t2g state lies lowest
for the particular coordination in CaMnO3, the three electrons will each go
into one of the t2g orbitals with their spins up.

The superexchange in this case involves the p electrons of the O2−. The
p orbitals are illustrated in Fig. 2.5. Examination of the wave functions in
Fig. 2.4, shows that the pz orbital is orthogonal to all the cation orbitals except
dx2−y2 . Therefore, if a pz electron hops over to a Mn4+, it must go into this
eg orbital. Since Hund’s rule requires that the total spin be a maximum, it
is the up spin from the pz orbital that transfers if the spins of the Mn4+ to
which it is going are up. The remaining pz down spin, since it is orthogonal to
eg orbitals, couples ferromagnetially to the other Mn4+. As a result, we find
that the pz orbital has produced a net antiferromagnetic coupling between the
cations themselves. It turns out that the contributions from the px orbitals
are much smaller.

The Goodenough–Kanamori rules predict that 180◦ superexchange bet-
ween electronic configurations d3−d5 bridged via an oxygen is ferromagnetic.
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Fig. 2.4. Representations of the eigenvalues and eigenfunctions of a d electron in a
cubic crystal field
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Fig. 2.5. Representations of the p orbitals

An example is Fe3+ and Cr3+ introduced alternately on the B sites of the per-
ovskites, ABO3. Attempts to synthesize a ferromagnet with LaCr0.5 Fe0.5 O3

originally failed because the material phase separates into the antiferromag-
nets LaCrO3 and LaFeO3. However, with new thin film fabrication techniques,
such as laser molecular beam epitaxy, it is possible to deposit alternating
monolayers of LaCrO3 and LaFeO3. The resulting superlatttice is indeed a
ferromagnet with a Curie temperature of 375 K [19].

Anderson [20] reformulated Kramer’s theory in an attempt to avoid the
high order perturbation expansion, and his results suggest that antiferro-
magnetism may be more common than Kramer’s theory implies. Anderson
worked in a basis of ligand wave functions which are a covalent admixture
of cation and anion functions. In Anderson’s theory magnetism is the result
of the interplay between two effects–the hopping of electrons between ligand
complexes, characterized by a hopping matrix element tαα′ , and an average
Coulomb interaction U between electrons on the same complex. In the limit
where the hopping may be treated as a perturbation, Anderson found that the
super-exchange interaction has the same spin dependence as (2.99) but with
a coefficient −t2αα′/U .

In recent years chemists have recast superexchange in terms of molecular
orbitals. Hay et al. [21] for example, have shown that the exchange interaction
between two spin 1

2 ions can be expressed as

J = Jab −
(ε1 − ε2)2

Kaa − Kbb
. (2.100)

The exchange Jab involves orthogonalized molecular orbitals and is therefore
inherently ferromagnetic. The energies ε1 and ε2 are the bonding and anti-
bonding energies associated with the molecular orbitals on the two metal ions.
The K’s are defined in terms of molecular orbitals analogous to (2.84). Since
Kaa > Kbb the nature of the exchange depends upon the magnitude of ε1−ε2.
This quantity turns out to be a sensitive function of the metal-ligand-metal
angle. Willett [22] and his co-workers have exploited this fact to synthesize a
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Fig. 2.6. Exchange interactions between Eu-Eu pairs in Eu monochalcogenides
versus the pair separation Rτ . The horizontal arrows indicate the range of Rτ values
from the oxides to the tellurides. Open symbols indicate results deduced assuming
only second-nearest-neighbor coupling [23]. Units are degrees K

variety of pseudo-one-dimensional magnetic systems based on copper dimeric
species.

In semiconductors the anion energies form bands. As a result the superex-
change can extend to distant neighbors as illustrated in Fig. 2.6. These results
were deduced from the measured spin-wave dispersion relations just as atomic
force constants are deduced from phonon dispersion relations. We shall discuss
spin-waves in Chap. 8.

2.2.9 Molecular Magnets

Ordinarily we do not associate magnetism with organic or molecular-based
materials. Recently, however, chemists have synthesized materials with inter-
esting magnetic properties. One approach has been to synthesize organic
molecules with large numbers of unpaired spins that are in a high-spin state.
Examples include a hexacarbene with S = 6 and a nonocarbene with S = 9.
Incorporating these molecules into solids is still a challenge.

A more successful approach has been the synthesis of organometallic solids
comprised of linear chains of alternating metallocenium donors and cyano-
carbon acceptors. One such system is [FeCp∗

2]
+ [TCNE]− based on decamethy-

ferrocene (Cp∗ = C5(CH3)5) and tetracyanoethylene, shown in Fig. 2.7.
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Fig. 2.7. Alternating donor/acceptor linear chain structure observed for
[FeCp∗

2]
+[TCNE]−. Open circles = H, solid circles = C, small hatched circles

= N , and larged hatched circles = Fe [J. Miller]

There are many variations in which the iron is replaced by other
transition metals ions and the radical anion is replaced by other radical
anions such as TCNQ (tetracyano-p-quinodimethanide) or DDQ (dichloro-5,6-
dicyanobenzoquinone). As their long names suggest, the magnetic species
are widely separated which means that the magnetization, or magnetic
moment per unit volume is small. The magnetization of [FeCp∗

2]
+ [TCNE]−
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is 47 emu/cm3 which is to be compared with that of iron of 1715 emu/cm3.
The large separation between cations is also responsible for relatively weak
exchange interactions as reflected in low ordering temperatures. The Curie
temperature of our example Fig. 2.7 is 4.8 K. It may be surprising that these
materials show any coupling, considering that the transition metal ion sits
in the center of a relatively large molecule. The point is, however, that the
wavefunctions of these molecules are molecular orbitals with charge density
and spin density that extends throughout the molecule. These molecular or-
bitals have been calculated for the similar, but simpler, molecule, ferrocene,
Fe(C5H5)2, usually written Fe(Cp)2. The structure consists of two planar
C5H5 rings with the iron sandwiched in between. There are low-lying bonding
states associated with the C5 rings. The states involving the FeIII are:

e 2g

a1g

1ge )

)2(3dz

(3dxy, 3d yz

(3d ,xy 3d 2 −yx 2)

FeIII has the low spin d5 configuration. These five electrons fill the orbitals
as shown, giving a molecular spin of 1/2. The TCNE− also has one unpaired
electron.

There is some overlap of the cation and anion orbitals that gives rise to an
exchange interaction. McConnell [24] was the first to point out that such ionic
crystals could have ferromagnetic exchange. The mechanism McConnell pro-
posed is based on the virtual charge transfer. Suppose, for example, the anion
(A = acceptor) and cation (D = donor) spins are ferromagnetically aligned:

AD

Then the charge transfer D+A− → D+2A−2 leads to an intermediate state,
in which there are two electrons in orthogonal orbitals with parallel spin on
the cation:

D A

Had we started with an antiferromagnetic alignment:
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AD

then the intermediate state would have antiparallel spins on the cation:

D A

The parallel configuration has the lower energy (Hund’s rule). Therefore the
charge transfer favors the ferromagnetic state.

The unpaired electron on the anion could also transfer back to the cation
(i.e., D+A → D◦A◦). This favors antiferromagnetic coupling. Consistant with
the observed data the exchange is governed more by the D → A transfer.
There are also various interchain exchange interactions that could influence
the nature of the 3-dimensional ordering. However, it appears that the order-
ing in these salts is governed by the intrachain exchange.

Much of the recent work on these molecular magnets has been done by
Miller and Epstein [25] who have also discovered a polymeric magnet involving
vanadium with a Curie temperature about 400 K.

2.2.10 Double Exchange

In Anderson’s formulation of superexchange, the electron hopping is a virtual
process. If, however, we actually have carriers in the magnetic material, then
the hopping matrix element tαα′ enters directly into the band energy in a
tight-binding approximation. If we assume that the intra-atomic exchange is
so strong that the spin of a carrier is parallel to the local ionic spin then the
band energy is dependent upon the ionic spin configuration. This correlation
between the magnetism and the conductivity was first addressed by Zener [26]
and subsequently in more detail by Anderson and Hasegawa [27]. To determine
how the magnetic order affects a conduction electron, we recall our discussion
of how the spinor part of the electron wavefunction transforms under rotations.
Let us consider the following geometry:

z

α

α

z y

x
x
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The ionic spin is assumed to be rotated by an angle θ about the y-axis. If the

spinor at site α is
(

1
0

)
, then at site α′, it is given by the matrix for a rotation

about the y-axis, (
cos θ

2 sin θ
2

− sin θ
2 cos θ

2

)(
1

0

)
=

(
cos θ

2

− sin θ
2

)
.

Since we assume electron hopping can only occur if the electron hops into the(
1
0

)
state, the orbital transfer integral bαα′ is multiplied by cos θ

2 . Thus,

tαα′ = bαα′ cos
θ

2
. (2.101)

If the ionic spins have an exchange, J , then the tipping between α and α′ gives
an exchange energy proportional to J cos θ. DeGennes has shown [28] that
minimizing the kinetic energy associated with the hopping and the exchange
energy can lead to a canted spin structure. Distortion of the spin lattice
around the hopping electron results in a magnetic polaron. This is discussed
in Sect. 10.4.

2.2.11 Exchange on a Surface

Recent developments in nanotechnology enable one to experimentally study
the exchange interaction between individual atoms. Figure 2.8 shows the tip
on a scanning tunneling microscope which is used to position Mn atoms next
to one another (0.36 nm apart) on an insulating surface. The tip can also be

Thin insulating layer

above metallic bulk

Magnetic atoms

Metallic tip

Mn Mn

N
N

N

Cu

Cu
Cu

Cu

Cu

Fig. 2.8. CuN surface showing how a scanning tunneling microscope can be used
to position two manganese atoms next to one another (C.F. Hirjibehedin)
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used to measure the conductance of these artificially created Mn clusters. The
inelastic electron tunneling spectra for a dimer shows structure that has been
indentified as an excitation between an antiparallel ground state involving
two spin 5/2 moments and a parallel excited state ref [29]. The voltage at
which this structure occurs enables a determination of the exchange interac-
tion between the two Mn moments. This has the values 2.7 meV or 6.4 meV
at 0.6 K depending upon where the dimer sits on the CuN surface. The insert
in Fig. 2.8 shows the cross-section of the charge density as calculated from a
“first-principles” calculation. The Mn 3d electrons couple to this surrounding
charge density through an “s-d” exchange interaction, Jsd S.s. This provides
an effective exchange between the two Mn moments of the order of J2

sd/Eg,
where Eg is the bandgap of the CuN. Since Jsd is of order 0.1 eV and Eg is
several eV the Mn-Mn exchange is of order of several meV as observed.

2.3 The Spin Hamiltonian

The Hamiltonian developed in the preceding section is completely general,
and a knowledge of its eigenvalues would accurately describe the magnetic
properties of any material. Unfortunately, because of the large number of par-
ticles involved, such a knowledge is beyond us at this time. Therefore we try
to project out of the Hamiltonian those terms which adequately describe the
situation and yet are amenable to calculation. Experimentalists in particular
often propose “phenomenological” Hamiltonians to explain certain observa-
tions, leaving to theoreticians the job of establishing the legitimacy of such
forms. In the remainder of this chapter we shall indicate the origin of such
phenomenological Hamiltonians.

2.3.1 Transition-Metal Ions

The first row of transition-metal ions and their electronic configurations are
listed in Table 2.4. The important feature about transition-metal ions is that
the magnetic, or unpaired, electrons lie in the outermost shell of the ion.
Therefore they are easily influenced by any external field produced by neigh-
boring ligands. That is, the crystal field is likely to be one of the largest
terms in the Hamiltonian. Thus we might expect that the contributions to
the Hamiltonian, in order of descending strength, are

H = Hintraatomic Coulomb + Hcrystal field + Hspin−orbit + HZeeman . (2.102)

Of course, depending on the situation, we may have to consider additional
terms, such as the hyperfine interaction. However, let us consider the eigen-
states of the Hamiltonian (2.102). First of all, the intraatomic Coulomb inter-
action leads to spectroscopic energy levels, the lowest of which is determined
by Hund’s rules. This ground state is indicated in the last column of Table 2.4.
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For most magnetic properties it is sufficient to consider only the lowest term.
This is because term energies are of the order of tens of thousands of wave
numbers, whereas magnetic energies are at most tens of wave numbers.

The behavior of a given term in the crystal field may be calculated by
the technique developed in the last section. Cubic symmetry is the predomi-
nant symmetry encountered in most crystals, and Fig. 2.9 indicates how group
theory predicts splitting of the various terms of Table 2.4 in such a case. The
eigenfunctions of Hintra +Hcryst will be denoted as |Γ, γ; S, MS〉, where Γ is
the irreducible representation of the point-group symmetry.

Consider, for example, the 3d3 configuration. From Hund’s rules, the
ground state is

|L, ML; S, MS〉 =
∣∣∣∣3, ML;

3
2
, MS

〉
, (2.103)

which is (2L + 1)(2S + 1) = 28-fold degenerate. In the presence of a cubic
crystal field this state splits as shown in Fig. 2.9. Thus the ground state would
be denoted as |A2, γ; 3

2 , MS〉.
The g Tensor. Now consider the spin-orbit and Zeeman terms. Since we
are considering matrix elements only within a given LS term, the matrix
elements of ∑

i

ξ(ri)li · si

are proportional to those of L ·S, by the Wigner–Eckhart theorem. Thus the
spin-orbit Hamiltonian may be written

Hsp−orb = λL · S , (2.104)

Table 2.4. Configuration of the iron-group ions

Ti3+, V4+ 3d1 2D

V3+ 3d2 3F

Cr3+, V2+ 3d3 4F

Mn3+, Cr2+ 3d4 5D

Fe3+, Mn2+ 3d5 6S

Fe2+ 3d6 5D

Co2+ 3d7n 5D

Co2+ 3d7n 5D

Co2+ 3d7n 4F

Ni2+ 3d8 3F

Cu2+ 3d9 2D
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where λ is the spin-orbit parameter. Similarly, the Zeeman Hamiltonian is

HZ = µB(L + 2S) · H . (2.105)

We now transform Hsp−orb + HZ into the so-called spin Hamiltonian by a
method proposed by Pryce, in which we project out the orbital dependence.
Since neither Hintra nor Hcryst has mixed orbital and spin states, our eigen-
functions are products of the form |Γ, γ〉|S, MS〉. Let us evaluate the expecta-
tion value of Hsp−orb +HZ for an orbitally nondegenerate ground state |Γ, γ〉.
To second order in perturbation theory,

Heff = 〈Γ, γ|Hsp−orb + HZ |Γ, γ〉

= 2µBH · S −
∑
Γ ′,γ′

|〈Γ ′, γ′|µBH · L + λL · S|Γ, γ〉|2
EΓ ′,γ′ − EΓ,γ

. (2.106)

Expanding the square gives

Heff = 2µH · S − 2µBλ
∑
µ,ν

ΛµνSµHν − λ2
∑
µ,ν

ΛµνSµSν − µ2
B

∑
µ,ν

HµHν ,

(2.107)

where

Λµν =
∑
Γ ′γ′

〈Γ, γ|Lµ|Γ ′, γ′〉〈Γ ′, γ′|Lν |Γ, γ〉
EΓ ′,γ′ − EΓ,γ

. (2.108)
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F
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Fig. 2.9. Crystal-field splittings of the iron-group ion ground states. The first set
of splittings are the result of a cubic crystal field. Subsequent splittings are due to
an additional tetragonal distortion
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This may be written as

Heff =
∑
µ,ν

(µBgµνHµSν − λ2AµνSµSν − µ2
BΛµνHµHν) , (2.109)

where gµν is the g tensor

gµν = 2(δµν − λΛµν) . (2.110)

The fact that gµµ differs from 2 tells us that owing to the spin-orbit interaction,
the magnetization is now no longer spin only. That is, a small amount of orbital
angular momentum has been admixed back into the ground state.

The g value of the free electron is not precisely 2. There are quantum
electrodynamic corrections which lead to the value g = 2.002319.

As an example of how this value is changed in a solid let us consider
the semiconductor silicon. In the ideal crystalline state each silicon atom has
four valence electrons which form bonds with four neighboring silicon atoms.
If this ideal crystal is irradiated, with high-energy electrons, for example,
defects are introduced. One of these is the divacancy illustrated in Fig. 2.10a.
The removal of the two atoms A and B leaves six broken bonds, or unpaired
electrons. Those electrons associated with atoms 2 and 3 and those associated
with 5 and 6 reconstruct bonds as indicated in the figure. The remaining
two electrons from atoms 1 and 4 then form an “extended” bond across the
vacancy. If one of these latter two electrons is removed by some means, leaving
the defect with a net positive charge, the remaining electron is found to have
the g value [30]

(a) (b)

Fig. 2.10. Defects in (a) crystalline and (b) amorphous silicon having nearly free
electron g values
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g1 = 2.0004 ,
g2 = 2.0020 ,
g3 = 2.0041 .

If the silicon is prepared as an amorphous film, by the decomposition of
silane gas, for example, then the atomic disorder sometimes leaves a silicon
atom with only three other silicon neighbors as illustrated schematically in
Fig. 2.10b. The fourth unpaired electron is referred to as a “dangling” bond.
This electron is found to have the average g value [31]

g = 2.0055 .

Although these g values differ by less than 1% these differences are easily
measured, as we shall discuss in Chap. 5, and provide an extremely important
characterization of the electronic center.

Anisotropy. The second term in (2.109) represents the fine-structure or single-
ion anisotropy. Notice that ∧µν reflects the symmetry of the crystal. The spin
Hamiltonian must also display this symmetry; for example, in a cubic crystal
∧xx = ∧yy = ∧zz. Thus the anisotropy term reduces to a constant. For axial
symmetry ∧xx = ∧yy = ∧⊥ and ∧zz = ∧||. Thus, if we neglect the last term,
the effective axial Hamiltonian is

Heff = g||µBHzSz + g⊥µB(HxSx + HySy) + D[S2
z − 1

3
S(S + 1)]

+
1
3
S(S + 1)

(
2 ∧⊥ +Λ||

)
λ2 , (2.111)

where D = λ2(∧|| −∧⊥). A Hamiltonian of this form based on the symmetry
of the crystal is usually taken as the starting point in describing paramag-
netic systems involving transition-metal ions. Thus such ions in crystals are
characterized by their g,D, etc., parameters.

An important experimental fact is that these crystal-field parameters do
not change appreciably for concentrated versions of the same salt. Hence,
we shall find these paramagnetic states useful when we discuss ferromag-
netism. For example, we can see from the discussion above that the anisotropy
constants depend on the energy levels, which in turn depend on the posi-
tions of the neighboring ions. Thus, if these ions move because of the pres-
ence, say, of phonons, then we have a coupling between this motion and the
spins.

The last term in the Hamiltonian (2.109) will survive the two field deriv-
atives leading to the static susceptibility, resulting in the so-called Van Vleck
susceptibility , which is temperature independent.

As an example of the application of the spin Hamiltonian, let us consider
a spin 3

2 in an axially symmetric system with an external field applied along
the c axis. If we assume that the crystal field is of sufficiently low symmetry



72 2 The Magnetic Hamiltonian

2D

|| B
3g µ H

g
||
µ
BH

|

|

|

| 
3
2

3

1
2

2

1
2

Fig. 2.11. Representation of the effect of the spin-orbit and Zeeman interactions
on an orbital singlet with spin 3

2

to remove any orbital degeneracy of the ground state, then (2.111) applies.
Dropping the constant part, we have

Heff = g||µBHSz + D

[
S2

z − 1
3
S(S + 1)

]
. (2.112)

The matrix of Heff in the basis |32 , MS〉 is

Heff =

∣∣− 3
2

〉 ∣∣− 1
2

〉 ∣∣ 1
2

〉 ∣∣ 3
2

〉
〈
− 3

2

∣∣〈
− 1

2

∣∣〈
1
2

∣∣〈
3
2

∣∣

⎡
⎢⎢⎢⎢⎢⎣

D − 3
2g||µBH 0 0 0

0 −D − 1
2g||µBH 0 0

0 0 −D + 1
2g||µBH 0

0 0 0 D + 3
2g||µBH

⎤
⎥⎥⎥⎥⎥⎦

.

(2.113)

The eigenvalues are shown in Fig. 2.11. We see that there is a zero-field split-
ting of 2D.

Effective Exchange. In our discussion of exchange in the last section we
neglected spin-orbit effects as well as off-diagonal exchange effects. We found
above that the spin-orbit interaction leads to important contributions to the
spin Hamiltonian. It can also modify the form of the exchange interaction. To
illustrate these effects, let us consider the exchange between a Mn2+ impurity
and a neighboring Co2+ ion in CoCl2·2H2O [32]. Co2+ has seven d electrons
which correspond to three holes in the d shell. These holes behave just as
electrons would. Therefore we find that the intraatomic Coulomb interaction
leads to a 4F ground state with a spin of 3

2 . The crystal field in CoCl2·2H2O
is predominantly cubic, with a small tetragonal distortion. The cubic part
splits the 4F into three states, the lowest being 4T1, which has a threefold
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orbital degeneracy. As mentioned above, crystal-field effects on the transition-
metal ions are rather large. Therefore, in so far as we are concerned only with
magnetic properties, we may restrict our considerations to this 4T1 ground
state.

We now investigate how the tetragonal crystal-field component and the
spin-orbit interaction affect this level. Any threefold orbitally degenerate state
behaves as though it had an effective quantum number L = 1. We saw earlier
that if we restrict ourselves to a manifold of states in which, say, L is a good
quantum number, then we may express the crystal-field Hamiltonian in powers
of Lx, Ly, and Lz. The same argument applies even if L is only a good effective
quantum number. Thus the effect of a tetragonal crystal field upon our 4T1

ground state may be described by the Hamiltonian

Htetra = −δ

(
L2

z −
3
2

)
, (2.114)

where δ is a phenomenological crystal-field parameter and L = 1. The spin-
orbit interaction may also be expressed in terms of the effective orbital angular
momentum,

Hsp−orb = λ′L · SCo , (2.115)

where λ′ is an effective spin-orbit parameter. The operators L+ and L− are the
raising and lowering operators for the components of the 4T1, just as the corre-
sponding real operators would connect the components of a real P state. This
technique of writing Hamiltonians in terms of effective-angular-momentum
operators is an extremely useful tool for understanding the qualitative features
of the electromagnetic absorption spectra of magnetic systems.

The basis functions for our 4T1 state have the form |ML,MS〉, where
ML = −1, 0, or +1, and MS = ± 1

2 or ± 3
2 . The effect of Htetra + Hsp−orb

is to split the 4T1 into six doublets. Again, for magnetic considerations, we
consider the lowest of these. The eigenfunctions have the form

ψ± = a

∣∣∣∣∓1,±3
2

〉
+ b

∣∣∣∣0,±1
2

〉
+ c

∣∣∣∣±1,∓1
2

〉
, (2.116)

where a, b, and c are certain mixing coefficients which may, in general, be
complex. We now inquire how the exchange with the neighboring Mn2+ affects
this doublet. Since it is a doublet, the exchange should be expressible as an
effective spin of 1

2 interacting with the Mn2+ spin. The purpose of this example
is to show that when the exchange is in fact expressed in terms of an effective
spin of 1

2 , it does not have the simple isotropic form we have so far been using.
The first thing we must do is establish an expression for the exchange which

we know to be correct. Recall the the 4T1 state has a threefold orbital degen-
eracy, and that the three d holes can be treated just as electrons. Therefore
we have a situation in which there is only one state of maximum multiplic-
ity, which means that the total spin is a good quantum number. Also, since
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the ground state of Mn2+ is an S state, the total spin of this ion is a good
quantum number. Therefore the exchange interaction may be written as

Hex = −
∑

MLM ′
L

J(ML,M ′
L)SMn · SCo . (2.117)

Notice that we are explicitly including the possibility of off-diagonal exchange.
Thus, in terms of actual electron interchange, the exchange integral J(ML,M ′

L)
would characterize the interchange in which an electron from a Co2+ in the
state ML jumps over to the Mn2+, while an electron from the Mn2+ jumps
back to the Co2+ and in so doing changes it to the M ′

L state. These off-
diagonal exchange integrals may be complex. As long as the orbital states so
connected lie within the 4T1 manifold, the scalar spin product may be used
even to describe this off-diagonal exchange.

We now wish to know what form this exchange takes when expressed in
terms of the effective spin 1

2 of the Co2+ ground state. The most general
interaction has the form

Heff = −Seff · J · SMn , (2.118)

where J is an exchange dyadic. If we evaluate the matrix elements of (2.117)
in the basis |ψ±,MS〉, where MS is the Mn2+ spin quantum number (S = 5

2 ),
and compare them with the matrix elements of (2.118) evaluated in the basis
| ± 1

2 ,MS〉, we find that all the elements of Jµν are nonzero. For example,

Jxy = −2c2Im{J(1,−1)} . (2.119)

The general matrix Jµν may be separated into a symmetric and an antisym-
metric part. The antisymmetric exchange may be written as

D · Seff × SMn , (2.120)

where the vector coupling coefficient D is related to Jµν . This exchange is also
referred to as the Dzialoshinski–Moriya exchange [33]. If the elements of the
symmetric exchange are different, we speak of this as anisotropic exchange.
There are two limiting forms that are popularly used: the Ising model

HIsing = −2J
∑
i,δ

Sz
i Sz

i+δ ,

and the XY model

HXY = −2J
∑
i,δ

(Sx
i , Sx

i+δ + Sy
i Sy

i+δ) .

Here δ refers to a nearest neighbor. Thus we see that when the exchange
interaction is expressed in terms of the effective spin of the ground state, it
may have a very general form owing to the presence of orbital effects.
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Table 2.5. Configurations of the rare-earth ions

Ce3+ 4f15s2p6 2F5/2

Pr3+ 4f25s2p6 3H4

Nd3+ 4f35s2p6 4I9/2

Pm3+ 4f45s2p6 6I4

Sm3+ 4f55s2p6 6H5/2

Eu3+ 4f65s2p6 7F0

Gd3+ 4f75s2p6 8S7/2

Tb3+ 4f85s2p6 7F6

Dy3+ 4f95s2p6 6H15/2

Ho3+ 4f105s2p6 5I8

Er3+ 4f115s2p6 4I15/2

Tm3+ 4f125s2p6 3H6

Yb3+ 4f135s2p6 2F7/2

f n

2

4

6

0
0

2 4 6 8 10 12 14

L or S

S

2.3.2 Rare-Earth Ions

The electronic configurations of the rare-earth ions are listed in Table 2.5.
For these ions we see that the unpaired electrons lie inside the 5s2p6 shells.
Consequently they are not very strongly affected by crystal fields, and we
might expect the Hamiltonian to consist of the following terms, in order of
descending strength:

H = Hintraatomic Coulomb + Hspin−orbit + Hcrystal field + HZeeman . (2.121)

The intraatomic Coulomb interaction produces states characterized by L, ML,
S, and MS . When the spin-orbit interaction is added, only the total angular
momentum J = L + S is conserved. Therefore the states have the form
|J,MJ ; L, S〉.

Let us consider, for the moment, the effect of the Zeeman term in the
absence of any crystal field,

HZ = µB(L + 2S) · H . (2.122)

Since the states are characterized by the eigenvalues of J , we rewrite this as

HZeeman = gJµBJ · H , (2.123)

where gJ is the Landé g value, defined by gJJ = L + 2S. This has the value
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gJ = 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
. (2.124)

Thus the state |J,MJ 〉 is split into 2J + 1 equally spaced states with the
separation gJµBH. For Ce3+, for example, gJ = 6

7 .
In the presence of a crystal field the splitting of the state |J,MJ 〉 is easily
determined by expressing the crystal field in operator equivalents of J . Thus
for a crystal field of D2 symmetry we have

Hcryst = B0
2O0

2 + B2
2O2

2 + B0
4O0

4 + B2
4O2

4 + B4
4O4

4

+B0
6O0

6 + B2
6O2

6 + B4
6O4

6 + B6
6O6

6 . (2.125)

where the operators 0m
n were defined in (2.52).

The matrix of Hcryst in the basis |J,MJ ;L, S〉 is easily constructed from
tables in [12]. The result for Ce3+ is∣∣ 5

2

〉 ∣∣ 1
2

〉 ∣∣− 3
2

〉 ∣∣− 5
2

〉 ∣∣− 1
2

〉 ∣∣ 3
2

〉
〈

5
2

∣∣
〈

1
2

∣∣
〈
− 3

2

∣∣
〈
− 5

2

∣∣
〈
− 1

2

∣∣
〈

3
2

∣∣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B 0

0 B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.126)

where

B ≡

⎡
⎢⎢⎣

10B0
2 + 60B

4

√
10B2

2 + 9
√

10B2
4 12

√
5B4

4
√

10B2
2 + 9

√
10B2

4 −8B0
2 + 120B0

4 3
√

2B2
2 − 15

√
2B2

4

12
√

5B4
4 3

√
2B2

2 − 15
√

2B2
4 −2B0

2 − 180B0
4

⎤
⎥⎥⎦ .

This gives three doublets which have the form

ψ+
n = an

∣∣∣∣52
〉

+ bn

∣∣∣∣12
〉

+ cn

∣∣∣∣−3
2

〉
, (2.127a)

ψ−
n = an

∣∣∣∣−5
2

〉
+ bn

∣∣∣∣−1
2

〉
+ cn

∣∣∣∣32
〉

. (2.127b)
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In terms of the states |mlmz〉, these may be written as

ψ+
n = ϕ1α + ϕ2β , (2.128a)

ψ−
n = ϕ∗

2α − ϕ∗
1β , (2.128b)

where ϕ∗
1 = ϕ1 and ϕ∗

2 = −ϕ2. Under the time-reversal operator T = iKσy,
where K is the conjugation operator, these states are related by

Tψ+
n = ψ−

n , (2.129a)

Tψ−
n = −ψ+

n . (2.129b)

Such a pair of states is said to form a Kramers doublet . The states (2.116)
also formed a Kramers doublet.

Let us now consider the behavior of the lowest Kramers doublet in an
external magnetic field. The Hamiltonian is

HZ = µB(l + 2s) · H . (2.130)

Since we are within a manifold where J is a good quantum number, this may
be written as

HZ = gJµBJzH . (2.131)

The Zeeman matrix for the lowest doublet is[
gJµBH

(
5
2a2

1 + 1
2b2

1 − 3
2c2

1

)
0

0 −gJµBH
(

5
2a2

1 + 1
2b2

1 − 3
2c2

1

)
]

. (2.132)

Therefore the doublet splits linearly in the field. An effective g value is often
introduced by defining the splitting of two levels in a field as geffµBH. In this
case the effective g value would be

geff = gJ

(
5a2

1 + b2
1 − 3c2

1

)
. (2.133)

Notice that the g value depends directly on the coefficients in the wave func-
tion (2.127). For this reason measurements of the g value provide a sensitive
test of the ground-state wave function.

2.3.3 Semiconductors

It is interesting to carry out the calculation for the g value of an electron
moving in the periodic potential, V (r), of a crystal lattice. The Hamiltonian is

H = Hkinetic + Hcrystal + Hspin−orbit + HZeeman . (2.134)
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The eigenfunctions of an electron moving in a periodic potential have the
Bloch form unk(r) exp(ik · r) which give rise to energy bands characterized
by band indices n and wave vector k. In the absence of the Zeeman term the
function unk(r) satisfies

[
1

2m
(p + �k)2 + V (r) +

�

4m2c2
σ ×∇V (r) · (p + �k)

]
unk(r) = εnkunk(r) .

(2.135)

In the case of the “three-five” semiconductors, which are composed of elements
from the third and fifth columns of the period table (e.g., GaAs, InSb) the
valence band is p-like while the conduction band is s-like. The band structure
in the vicinity of k = 0 is illustrated in Fig. 2.12. The labels Γ6, etc., indicate
the irreducible representations according to which the wave functions at k = 0
transform. The first feature to note is that the spin-orbit interaction has split
the threefold degeneracy of the p-like valence band. Secondly, the curvatures
of these bands are different. This curvature is a measure of the effective mass
of the electron. We may obtain an estimate of this mass by treating the term
(�/m)k · p in (2.135) as a perturbation.

Calculating the second-order correction to the energy of the conduction
band leads to the effective mass tensor [34a],( m

m∗

)
µν

= δµν +
2
m

∑
Γ

〈Γ6|pµ|Γ 〉〈Γ |pν |Γ6〉
εΓ6 − εΓ

. (2.136)
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Fig. 2.12. Energy bands near k = 0 for zinc-blende crystals



2.3 The Spin Hamiltonian 79

The valence band wave functions are linear combinations of the usual x, y,
and z components of the p state. Since the III–V compounds have the cubic
zinc-blende structure, if we restrict our consideration only to the bands shown
in Fig. 2.12 then there is only one parameter,

2
m
〈Γ, µ|pµ|s〉|2 ≡ P 2 ,

and the effective mass becomes
m

m∗ = 1 +
P 2

3
3Eg + 2∆

Eg(Eg + ∆)
. (2.137)

Let us now consider the orbital moment associated with an electron at the
bottom of the conduction band,

〈Γ6|Lz|Γ6〉 =
∑
Γ

[〈Γ6|x|Γ 〉〈Γ |py|Γ6〉 − 〈Γ6|y|Γ 〉〈Γ |px|Γ6〉] . (2.138)

This may be rewritten by noting that

[x,H] =
i

m
px +

i�

4m2c2
(σ ×∇V )x . (2.139)

Neglecting the spin-orbit contribution, which can be shown to be small, the
matrix elements of (2.139) satisfy

〈Γ |x|Γ6〉 =
1
m

〈Γ |px|Γ6〉
εΓ6 − εΓ

. (2.140)

This enables us to convert the orbital angular-momentum matrix element
into a form similar to the effective mass. In particular, eliminating the
linear-momentum matrix element between these two expressions leads to the
relation [34b]

g∗ =
µ∗

µB
= 1 + 〈Γ6|Lz|Γ6〉 = 2

[
1 − ∆

3Eg + 2∆

( m

m∗ − 1
)]

. (2.141)

In general, one must include additional bands, in which case the relationship
between the effective g value and the effective mass is not as simple. Never-
theless, when the effective mass is very small the g value can become quite
large. In InSb, for example, m∗/m = −0.014 and g∗ = −51.4. Herring [35] has
shown that the angular momentum (2.138) may be spatially decomposed into
intraatomic and interatomic contributions. The large g values were shown
to be associated with the latter, corresponding to interatomic circulating
currents.

In this chapter we have seen the origins of various terms in the Hamiltonian
that may influence the magnetic response of a system. In the remaining chap-
ters we shall investigate how these terms manifest themselves when the system
is excited with a space-and/or time-varying magnetic field.
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Problems

2.1. While the discussion in Sect. 2.2.2 dealt mainly with the effect of the
nuclear charge on the electron, the electron also affects the nucleus. Co57, for
example, is radio-active with a half-life of 270 days. It captures an electron to
form Fe57 which decays by γ-radiation to an excited state with I = 3/2 which
quickly (1.4 × 10−7 s) decays to the ground state with I = 1/2.

Ordinarily when the nucleus emits a γ-ray it recoils. However in 1958, R.L.
Mossbauer discovered that nuclei embedded in solids can emit and absorb
γ-rays without transferring recoil energy to the lattice. The basic experimen-
tal arrangement for measuring the γ-ray energy consists of a moving source,
an absorber, and a detector placed beyond the absorber. The transmitted
intensity is plotted as a function of velocity. The 14.4 KeV γ-ray has a natural
linewidth of 5 × 10−9 eV which corresponds to a Doppler velocity of 1 mm/s.

(a) In Sect. 2.2.2 we also assumed that there was no electron charge at the
nucleus. But, in fact, s-electrons do have nonzero amplitude, ψ(0), at the
origin. Assuming the electron has a constant charge density, e|ψ(0)|2, and
interacts with the nuclear charge through a Coulomb potential Ze/r, out
to a radius rA for the excited state and rB for the ground state, calculate
the shift in the γ-ray energy due to this electronic charge density.

(b) If the emitter and the absorber have the same electronic structure their
shifts will be the same. Therefore to observe this shift, called the isomer
shift, the electronic charge density at the emitter nucleus, e|ψe(0)|2 must
be different from that at the absorber nucleus, e|ψa(0)|2. Calculate the
observed isomer shift, δ, in terms of these wavefunctions.

(c) Suppose the electronic charge distribution produces an electric field gradi-
ent at the Fe57 nucleus. Using (2.38), sketch the effect of this gradient on
the energy levels in Fig. 2.13. Assuming dipole transition selection rules,
i.e., ∆mI = ±1, sketch the Mossbauer spectrum.

(d) In order to simplify the Mossbauer spectrum, either the source or absorber
should have an unsplit line. Co57 diffused into stainless steel is such a case.
Figure 2.14 shows the absorption of Fe57 in Fe2O3 of γ-rays emitted from a
stainless steel source. What is the effective magnetic field at the nucleus?
Discuss the origin of this field in the context of (2.38).

2.2. As an example of the usefulness of character tables consider an atomic
electron surrounded by an environment that has cubic symmetry. In particu-
lar, suppose it has sixfold coordination as shown in Fig. 2.1a. The symmetry
elements which take this environment into itself are the identity (E), eight
rotations by 2π/3 about the cube body diagonals (C3), three rotations by π
about the cube axis(C2), six rotations by π/2 about these same axes (C4)
and six rotations by π about axes through the origin parallel to face diag-
onals (C2). These operations constitute a group, generally labelled O. The
number of elements of the group, denoted by h, is 24 in this case. Notice that
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Fig. 2.13. Decay scheme of Co57 and Fe57
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Fig. 2.14. The absorption of Fe57 bound in Fe2O3 of the 14.4 keV gamma ray
emitted in the decay of Fe57 bound in stainless steel as a function of relative source-
absorber velocity

the elements group themselves into classes, Gk, with Nk elements. It can be
shown that the number of irreducible representations is equal to the number of
classes. Thus the character table will always be “square”. The character table
for this group is Table 2.6. An electron simply in a Coulomb potential has
complete spherical symmetry. The set of rotations in three-dimensional space
forms an infinite group. The eigenfunctions are spherical harmonics which
transform into each other under rotation,

UR(α)Y m
l =

∑
Γ (l)(α)mm′Y m′

λ ,

where Γ l(α)mm′ = eimαδm,m′ . Therefore the character is

χl(α) =
sin(l + 1/2)α

sin(α/2)
.
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Notice that the character associated with the identity operation, E, i.e., α =
0, is

χ(l)(0) = lim
α→0

sin(l + 1/2)α
sin(α/2)

= 2l + 1 .

In the presence of the lower cubic symmetry this (2l + 1)-dimensional repre-
sentation is reducible to the irreducible representations of the O group. The
decomposition of the reducible character is given by

χ(R) =
∑

i

aiχ
(l)(R) ,

where χl(R) is the character of the ith representation for the group element
R. The coefficient ai is:

ai = (1/h)
∑

k

NKχ(i)(GK)∗χ(GK) .

Suppose, for example, we have an s-state(1 = 0) electron in a cubic environ-
ment. Then the character χ(l)(R) = 1 for each of the five classes, and the
representation is simply A1:

s

free space
A1

cubic environment
.

Calculate how the 2l + 1 degeneracies of p, d, and f electrons are split in a
cubic environment. Which have the potential for complete quenching?

2.3. Consider the sixfold coordination shown in Fig. 2.1a. If we elongate the
neighbors in the z-direction, this corresponds to a tetragonal distortion and
adds a term to the potential (2.50) proportional to Y 0

2 . In cartesian coordinates
this becomes

C2(3z2 − r2) , C2 = qq′
[

1
a3
1

− 1
a3
2

]

for the sixfold tetragonal coordination we are considering. The corresponding
operator equivalent is

Table 2.6. Character table for the point group O

E 8C3 3C2 = 3C2
4 6C2 6C4

A1 1 1 1 1 1

A2 1 1 1 −1 −1

E 2 −1 2 0 0

T1 3 0 −1 −1 1

T2 3 0 −1 1 −1
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(3z2 − r2) ⇒ αr2[3L2

z − L(L + 1)] ,

where α = ±2/21 for D states, and where the negative sign applies for T2

states and the plus sign for E states.
Calculate the new eigenvalues and eigenfunctions resulting from this dis-

tortion, and plot the resulting splitting of the levels in Fig. 2.1 as a function
of C2αr2.

2.4. The dipole-dipole interaction (2.58) can also give rise to anisotropy.
Assuming all the spins are parallel and are characterized by direction cosines
αx, αy, αz, express the anisotropy energy in terms of these cosines. Show that
in a system with cubic anistropy the dipole interaction does not contribute
to the anisotropy. In what sorts of materials would you expect to find dipolar
anisotropy?

2.5. An alternative set of basis states for calculating the effect of electron-
electron interactions are molecular orbitals. Consider the bonding and anti-
bonding orbitals,

ϕb(r) = 1
√

2(1 + l) [ϕ1(r) + ϕ2(r)]

ϕa(r) = 1/
√

2(1 − l) [ϕ1)(r) − ϕ2(r)] .

Each orbital can hold two electrons. Assume that one electron is in the bond-
ing orbital and the other in the antibonding orbital. Calculate the matrix
analogous to (2.81) and diagonalize to obtain the singlet and the triplet eigen-
values. What is the difference between the singlet and triplet energies? What
is the role of the “exchange” integral J12?

2.6. Using arguments similar to that used for [FeCp∗
2]

+ [TCNE]−, predict the
magnetic order for the salts involving Cr, Mn, Co, and Ni. The spin for these
materials are 3/2, 1, 0 and 1/2, respectively, in accord with their electronic
structures:

Cr : a1g e2
2g

Mn : a1g e3
2g

Co : a2
1g e4

2g

Ni : a2
1g e4

2ge1g .



3

The Static Susceptibility
of Noninteracting Systems

In this chapter we shall investigate the static susceptibility of systems
described by Hamiltonians which may be written as the sum of noninter-
acting terms. Our approach here, and in later discussions, will be to perturb
the system with a magnetic field and then compute the response to this field.
In this chapter we shall discuss the effect of a time-independent field H.

In the literature of magnetism a distinction is often made between insula-
tors and conductors. This distinction is basically an operational one. That is,
insulators are characterized by charge distributions that are reasonably well
localized to unit cells; such systems may be described by localized effective
spins. Metals are characterized by itinerant electrons which require an entirely
different description. Of course, there are materials, such as metals containing
rare-earth ions, in which both types of charge distributions coexist. For the
present, however, we shall follow tradition and discuss the response to local
moments and itinerant systems separately.

3.1 Localized Moments

Let us consider a system of N noninteracting identical ions or molecules each
having h electrons. In the absence of an external field each ion or molecule is
characterized by a Hamiltonian H0

i . We are interested in the response of this
system to a small static magnetic field. Therefore we add a Zeeman term to
the Hamiltonian to give a total Hamiltonian,

H =
∑

i

Hi =
∑

i

(H0
i + HZ

i ) . (3.1)

The magnetization is given by (1.49) as

M(r) = Tr{ρM(r)} , (3.2)
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where

M(r) =
1
2

N∑
i=1

h∑
α=1

[µiαδ(r − riα) + δ(r − riα)µiα] . (3.3)

Here µiα is the magnetic-moment operator associated with the αth electron on
the ith ion. Since the ionic electrons interact with one another, the appropriate
basis in which to evaluate (3.2) consists of the ionic eigenfunctions. Therefore
we make use of the Wigner-Eckhart theorem and replace (3.3) by

M(r) =
N∑

i=1

µiδ(r − ri) . (3.4)

We have assumed that the ionic moments have no spatial extent. As long as
the wavelength of the applied field is larger than an atomic dimension, (3.4)
is valid. However, when we talk about neutron scattering in Chap. 10 this
assumption will have to be modified.

Since we are applying a static field, the density matrix is independent of
time. Therefore [H, ρ] = 0. The equilibrium solution of this equation may be
written as [36]

ρ = exp[β(F −H)] , (3.5)

where F is the free energy

F = −kBT ln Z (3.6)

and Z is the partition function

Z = Tr{exp(−βH)} . (3.7)

The solution (3.5) for the density matrix, known as the canonical distribution,
is the quantum-mechanical generalization of the classical Gibbs distribution.
Using (3.6), (3.7), we may write this as

ρ =
exp(−βH)

Tr{exp(−βH)} , (3.8)

which, because of the form of the Hamiltonian (3.1), may be factored as

ρ =
Π
i

exp(−βHi)

Tr{Π
i

exp(−βHi)}
= Π

i
ρi . (3.9)

Therefore
M(r) =

∑
i

Tr{ρiµiδ(r − ri)} , (3.10)

which defines the ionic moment

M i = Tr{ρiµi} . (3.11)
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In writing (3.10) we have assumed that we may interchange the operations of
taking the trace and summing over the ions. This neglects the possibility that
an electron on one ion may hop over to a neighboring ion. If the electrons
were distinct, as labeled by their positions in the lattice, such hopping would
be forbidden. Therefore our assumption of interchangeability is, in this sense,
equivalent to the assumption that the ionic electrons are distinguishable. The
importance of this assumption will become evident in Sect. 3.2.

So far we have not said anything about the spatial variation of the applied
field. Let us assume that it has the wavelike form

H(r) = H cos(q0 · r) . (3.12)

We shall always assume that the wave vector q0 is one of the discrete wave
vectors lying within the first Brillouin zone associated with the lattice under
consideration. Let us keep in mind that we may have moments at only a few
of the available lattice sites. If the applied field does not vary appreciably over
a unit cell, the ionic eigenvalues will correspond to those of a uniform field
with the value Hi = H cos(q0 · ri). The corresponding moment is

µi =
∂Hi

∂Hi
. (3.13)

If the eigenvalues associated with the ith ion are En, then the ionic moment
in the direction of the applied field is

Mi ≡ Tr{ρiµi} =
∑

n exp(−βEn)(∂En/∂Hi)∑
n exp(−βEn)

. (3.14)

Since the eigenvalues En are functions of the field Hi, let us expand in powers
of the field:

En = E(0)
n + E(1)

n Hi + E(2)
n H2

i + . . . . (3.15)

Since the magnetic field is only a probe, we may make it as small as we like.
In particular, let us assume that the field-dependent corrections to the energy
in (3.15) are smaller than the thermal energy. Then

exp(−βEn) = exp(−βE(0)
n )(1 − βE(1)

n Hi − . . .) , (3.16)

and (3.14) becomes

M i =
∑

n exp(−βE
(0)
n )(1 − βE

(1)
n Hi − . . .)(E(1)

n + 2E
(2)
n Hi + . . .)∑

n exp(−βE
(0)
n )(1 − βE

(1)
n Hi − . . .)

. (3.17)

Assuming that the ion has no moment in the absence of the field and retaining
only those terms linear in the field, we have

M i =
∑

i(βE
(1)2
n − 2E

(2)
n ) exp(−βE

(0)
n )∑

n exp(−βE
(0)
n )

Hi ≡ χiHi , (3.18)
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which defines the quantity χi. Substituting this expression back into (3.10)
and taking the spatial Fourier transform, we obtain

Mz(k) =
∑

i

M i exp(−ik · ri) ,

which may be written as

Mz(k) =
∑

i

[
1
V

∑
i

χi exp[−i(k − q)] · ri

]
H(q) ,

where

H(q) =
HV

2
[∆(q + q0) + ∆(q − q0)] .

Therefore

χ(k, q) =
1
V

∑
i

χi exp[−i(k − q) · ri] .

If there is a moment at each lattice site, then the sum in this expression gives
N∆(k − q), and

χ(q) =
N

V

∑
n(βE

(1)2
n − 2E

(2)
n ) exp(−βE

(0)
n )∑

n exp(−βE
(0)
n )

≡ χ . (3.19)

The fact that this is independent of q is a consequence of our assumption that
the magnetization is everywhere proportional to the local field. Thus it is not
surprising that

χ(r − r′) =
1
V

∑
q

exp[iq · (r − r′)]χ(q) =
N

V
χδ(r − r′) . (3.20)

Let us now consider some specific applications of (3.19).

3.1.1 Diamagnetism

In Sect. 2.2 we found that the Zeeman Hamiltonian for an ionic or molecular
system of electrons was

HZ
i =

∑
α

[
µBlα · Hi +

e2H2
i

8mc2
(x2

α + y2
α) + µBσα · Hi

]
. (3.21)

The effect of this interaction on the eigenvalues may be obtained from per-
turbation theory, with the eigenfunctions of H0

i as the unperturbed states.
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A diamagnetic system is one in which all the matrix elements of the orbital
and spin angular momenta are 0. Therefore the only correction to the energy
arises from the second term in (3.21). If the eigenfunctions of H0

i are written
as |n〉, then

E(2)
n =

e2

8mc2
〈n|
∑
α

(x2
α + y2

α)|n〉 .. (3.22)

Notice that the susceptibility involves the statistical average of∑
α

(x2
α + y2

α) .

This is usually written as 2
3Z times the mean square radius 〈r2〉. Therefore the

diamagnetic contribution to the quantity χ in the generalized susceptibility
(3.19) is

χdiamag = − Ze2

6mc2
〈r2〉 . (3.23)

This negative response is just a manifestation of Lenz’s law, which states that
in the presence of a changing flux a system of charges will develop currents in
such a direction as to oppose the flux change. These currents are the source
of the diamagnetic moment.

In dielectric solids the molar susceptibility is of the order of −10−5 cm3/
mole. This corresponds to an induced moment per atom of 10−8Hi Bohr
magneton, which is very small.

Notice that the diagmagnetic susceptibility appears to depend on the
choice of the origin for computing 〈r2〉. This ambiguity is, unfortunately,
real. Van Vleck has shown that the change in diamagnetic susceptibility
resulting from a change in origin is just compensated for by a correspond-
ing change in the Van Vleck paramagnetic susceptibility, to be discussed in
the next section [37]. For a single atom or ion the origin is usually taken at the
nucleus. In this case the Van Vleck contribution is small, and the diamagnetic
susceptibility is well described by (3.23). However for polyatomic molecules
both contributions to the susceptibility must be considered together.

3.1.2 Paramagnetism of Transition-Metal Ions

In the preceding discussion we assumed that all the matrix elements, both
diagonal and off-diagonal, of the orbital and spin angular moments were 0. The
interesting aspects of magnetism arise, however, when these matrix elements
are nonzero. Let us now examine the response of such ions to a static field.
Since crystal fields have important effects on the orbital angular momentum,
it is convenient to discuss transition-metal ions and rare-earth ions separately.



90 3 The Static Susceptibility of Noninteracting Systems

In Sect. 2.3 we found that a transition-metal ion could be described by a
spin Hamiltonian. Let us consider the particular case where the crystal field
has removed all the orbital degeneracy. The spin Hamiltonian which describes
the lowest orbital state then has the form

Heff = g|| µBHSz − µ2
B ∧|| H2 . (3.24)

If we take the eigenfunctions of Sz as our unperturbed states, then our
orbital singlet splits into the 2S+1 states characterized by the spin-projection
quantum number MS ,

EMS
= E0

MS
+ g|| µBMSH − µ2

B ∧|| H2 . (3.25)

Making the identifications with (3.15) and using (3.14), we find that the
(k = 0, q = 0) susceptibility may be written as the sum of the Langevin
susceptibility and the Van Vleck susceptibility,

χ(0, 0) = χLangevin + χV V , (3.26)

where

χLangevin =
N

V

g2
|| µ

2
B

kBT

∑S
M=−S M2

s

2S + 1
=

N

V

g2
|| µ

2
BS(S + 1)

3kBT
≡ C

T
, (3.27)

which defines the Curie constant C, and

χV V =
N

V
2µ2

B ∧|| . (3.28)

The Van Vleck susceptibility arises from that part of the orbital moment
which has been admixed back into the ground state by the orbital Zeeman
effect. The fact that this contribution is temperature independent is a result
of the assumption that the energy difference between the ground state and
the higher-lying orbital state entering ∧|| is larger than kBT . If this condition
does not hold, then the energy shift of this upper state must be considered,
with the result that the Van Vleck susceptibility will acquire a temperature
dependence.

The inverse temperature dependence of the Langevin susceptibility was
first observed experimentally by Pierre Curie in 1895 and is referred to as

Table 3.1. Effective moments associated with transition-metal ions [38]

Ti3+ V3+ Cr3+ Mn3+ Mn2+, Fe3+ Fe2+ Co2+ Ni2+ Cu2+

2
√

S(S + 1) 1.73 2.83 3.87 4.00 5.92 4.90 3.87 2.83 1.73

µeff(exp) 1.80 2.80 3.80 4.90 5.90 5.40 4.80 3.20 1.90

gJ

√
J(J + 1) 1.55 1.63 0.77 0 5.92 6.70 6.63 5.59 3.55

λ [cm−1] 154 105 91 88 – −103 −178 −325 −829
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Curie’s law . The Curie constant C is used experimentally to determine an
effective moment in units of Bohr magnetons by the relation

µeff =

√
3kBC

(N/V )µ2
B

. (3.29)

If the experimental values of µeff are compared with the spin-only theoretical
values in Table 3.1, we see that the quenching is nearly complete for the first
half of the periodic table. Orbital contributions become more important in
the last half of the row because the spin-orbit coupling constant is becoming
larger.

Because of the availability of high-static magnetic fields and low temper-
atures it is relatively easy to reach the nonlinear region of saturation. To
describe this situation we must use the more general expression for the ionic
moment given by (3.14). The Van Vleck susceptibility is unchanged. However,
the Langevin susceptibility becomes

χLangevin = −
Ng|| µBS

HV

∑S
MS=−S

[
exp(−βg||µBHMS)

]
MS/S∑S

MS=−S exp(−βg|| µBHMS)

=
Ng|| µBS

HV
BS

(
g|| µBSH

kBT

)
, (3.30)

where BS(g|| µBSH/kBT ) defines the Brillouin function,

BS(x) =
2S + 1

2S
coth

(
(2S + 1)x

2S

)
− 1

2S
coth

( x

2S

)
. (3.31)

For S = 1/2, B1/2 = tanh(x).
It is customary for experimentalists to plot the inverse susceptibility

against temperature. In Fig. 3.1 we have plotted 1/χ for a spin of 3
2 in a

field of 30,000 Oe. Since the Curie constant is of the order of unity, the
Van Vleck contribution becomes important only for T > χ−1

V V . Normally,
the Van Vleck susceptibility is of the order of 10−5. However, the larger value
of 10−3 has been chosen in Fig. 3.1 to illustrate its effect.

The only approximation in obtaining (3.17) was that the Zeeman energy
be smaller than the thermal energy. Therefore this expression also applies if
the thermal energy exceeds the crystal-field energy. In this case we must be
careful to use the proper energies En. We shall consider an example of how
to include excited-state effects in the next section.

3.1.3 Paramagnetism of Rare-Earth Ions

The effect of crystal fields on rare-earth ions is generally quite small in com-
parison with the spin-orbit interaction. Let us therefore consider our rare-
earth ion as described by eigenstates characterized by the quantum numbers
J,MJ , L, and S. The perturbing Zeeman Hamiltonian has the form
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HZ = µB(L + 2S) · H , (3.32)

If we restrict ourselves to the lowest J manifold and define the z direction as
the direction of the applied field, then this Hamiltonian becomes

HZ = gJµBHJz . (3.33)

The effect of this interaction is to split the J state into its 2J + 1 Zeeman
components, with energies

EJ,MJ
= gJµBMJH . (3.34)

From (3.15), (3.19) we find

χ(0, 0) =
N

V

g2
Jµ2

BJ(J + 1)
3kBT

, (3.35)

and from (3.29) we obtain the effective moment,

µeff = gJ

√
J(J + 1) . (3.36)

Most of the rare-earth ions exhibit moments in good agreement with (3.36).
However, a notable exception is Eu3+. This has a 4f6 configuration, which
corresponds to a 7F0 ground state. Therefore J = 0, and µeff should also
be 0. Experimentally, however, a moment of 3.4 Bohr magnetons has been
found at room temperature. To account for this difference we note that the
7F1 excited state lies ∆/kB � 350 K above the ground state. Therefore we
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Fig. 3.2. Effect of the Zeeman interaction on the low-lying states of Eu3+

must include the influence of this state on our susceptibility. There are two
effects to be considered, the addition of the terms in (3.19) associated with
the excited state and the shift in the ground-state energy produced by the
Zeeman coupling to the excited state.

From perturbation theory we find that the first-order corrections to the
energies are

E
(1)
J,MJ

H = gJµBH〈J,MJ |Jz|J,MJ 〉 , (3.37)

and the second-order corrections are

E
(2)
J,MJ

H2 = µ2
BH2

∑
J ′,M ′

J′

|〈J,MJ |Lz + 2Sz|J ′,M ′
J ′〉|2

E
(0)
J,MJ

− E
(0)
J ′,M ′

J′

. (3.38)

From the properties of angular momentum [39] we find that the matrix element
in (3.38) is nonvanishing only for J ′ = J ± 1 and M ′

J ′ = MJ . Therefore only
the |0, 0〉 and |1, 0〉 states are coupled in second order. This matrix element is
〈0, 0|Lz + 2Sz|1, 0〉 = 2. The resulting eigenvalues are

E0,0 = −4µ2
BH2

∆
,

E1,−1 = ∆ − g1µBH ,

E1,0 = ∆ +
4µ2

BH2

∆
,

E1,1 = ∆ + g1µBH , (3.39)

where g1 is the Landé g value (2.124) for J = 1. These eigenvalues are indi-
cated in Fig. 3.2. Substituting these results into (3.19) leads to an effective
moment at room temperature of 3.2 Bohr magnetons, in much better agree-
ment with the experimental value.
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In conclusion, we have found that the susceptibility of an insulator
containing noninteracting ionic moments is

χ(T ) = χdiamag + χ(T )Langevin + χV V . (3.40)

The temperature dependence arises primarily from the Langevin or Curie part.

3.2 Metals

We now turn to the response of a nonmagnetic metal to an applied field. The
static response to a uniform field was first investigated by Pauli, who con-
sidered the spin paramagnetism, and by Landau, who considered the orbital
diamagnetism.

3.2.1 Landau Diamagnetism

Let us consider the orbital moment induced in a free-electron metal by a
static applied field. For the time being we shall neglect the spin associated
with the electrons in a metal. As mentioned in Sect. 1.2, the classical approach
to this problem leads to the conclusion that the metal shows no response to
the applied field. Landau was the first to show that a quantum-mechanical
approach indicates that a free-electron system does in fact respond to the
applied field, and that this response is diamagnetic [40]. What he did was to
solve the Schrödinger equation for a single electron in a magnetic field; with
the resulting eigenvalues he was able to compute the free energy, from which
he obtained the magnetization. The corresponding susceptibility was found to
be − 1

3 that obtained by Pauli for the spin contribution. This relationship is
valid for all temperatures in degenerate as well as nondegenerate free-electron
systems.

Peierls extended Landau’s calculation to the case of electrons that are
nearly bound by a periodic lattice potential [41], and Wilson considered nearly
free electrons [42]. It was found that the effect of the lattice was, essentially, to
modify Landau’s result by a factor m/m∗, where m∗ is the electron effective
mass at the Fermi surface.

It is interesting to consider why Miss van Leeuwen’s theorem, which we
mentioned in Sect. 1.2, does not hold in the quantum-mechanical case. The
reason is that those electrons whose orbits are interrupted by the bound-
ary have, in general, high quantum numbers. Therefore, their energy is also
high which makes them thermo-dynamically less important than the “bulk”
electrons. Consequently, the diamagnetic moments now dominate the para-
magnetic moments arising from the “boundary” electrons.

The problem of boundary effects arises when one calculates the susceptibil-
ity by first solving the Schrödinger equation for the energy levels explicitly and
then using them to calculate the partition function. Sondheimer and Wilson
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have pointed out that the whole question of boundary effects may be avoided
by calculating the partition function without explicit knowledge of the energy
levels [43].

We shall now calculate the Landau susceptibility by another method [44]
that is more in keeping with our linear response philosophy. Let us assume
that we have a free-electron system characterized by a spherical Fermi surface.
To this system we apply a static external magnetic field H0(r), which arises
from an external current density j0(r) according to the Maxwell equation

∇× H0(r) =
4π

c
〈j0(r)〉 . (3.41)

This field induces a current density j(r) in the electron system, which in turn
acts as the source for an additional magnetic field. The resulting total local
field, denoted by H(r), is also related to its current sources by the Maxwell
equation

∇× H(r) =
4π

c
〈j0(r) + j(r)〉 . (3.42)

The local field defined in this manner has zero divergence. Therefore it may
be expressed in terms of a vector potential as

H(r) = ∇× A(r) . (3.43)

In the presence of this potential the electron velocity becomes

vi =
1
m

[
pi −

e

c
A(ri)

]
. (3.44)

The induced-current-density operator is related to this velocity by

j(r) =
e

2

∑
i

[viδ(r − ri) + δ(r − ri)vi] . (3.45)

According to (1.8), the average value of this current density determines the
magnetization,

〈j(r)〉 = c∇× M(r) . (3.46)

Using the Fourier transforms of (3.42), (3.43), (3.46) and the definition of the
susceptibility, M(q) = χ(q) · H0q), we obtain

χ(q) =
1
4π

〈j(q)〉
〈j(q)〉 − (cq2/4π)A(q)

. (3.47)

Therefore, if we can compute the average current density to lowest order in
the vector potential, we shall have an expression for the susceptibility.

Introducing the Fourier momentum operator pq, defined by

pq ≡ 1
2

∑
i

[pi exp(−iq · ri) + exp(−iq · ri)pi] , (3.48)
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we find from (3.45) that

〈j(q)〉 =
e

m
〈pq〉 −

Ne2

mcV
A(q) . (3.49)

To obtain the diagonal components of χ we must find the average value of that
component of pq parallel to A(q) to the lowest order in the vector potential.
If n̂ is a unit vector parallel to A(q), then we must compute 〈pq · n̂〉. This we
shall do by perturbation theory.
In the presence of the field the Hamiltonian is

H =
∑

i

1
2m

[
pi −

e

c
A(ri)

]2
. (3.50)

Since the kinetic-energy part gives rise to our unperturbed Fermi sphere, the
perturbation, to lowest order, is

H1 = − e

mc

∑
i

A(ri) · pi . (3.51)

Expanding A(ri) in a Fourier series and making use of (3.48), we obtain

H1 = − e

mcV

∑
k

A(k) · pk . (3.52)

Writing the eigenstate of the perturbed system as |n〉 and that of the unper-
turbed system as |n), we have

|0〉 = |0) +
∑
n�=0

(n|H1|0)
E0 − En

|n) . (3.53)

Therefore

〈pq · n̂〉n̂ =
2e

mcV

∑
n�=0

|(n|pq · n̂|0)|2
En − E0

A(q) . (3.54)

Since the states |n) are many-electron states and the operator pq is a many-
electron operator, it is convenient to second quantize pq:

pq · n̂ =
∑

k

�k · n̂c†k+qck . (3.55)

Therefore the state |n) corresponds to the one in which we have taken an
electron in state k inside the Fermi surface and moved it to the state k + q
outside the Fermi surface. Equation (3.54) becomes

〈pq · n̂〉n̂ =
2e

cV

∑
k < kF

|k + q| > kF

(k · n̂)2

k · q + q2/2
A(q) . (3.56)
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Converting the sum to an integral in (3.56) leads to the susceptibility

χL(q) = χL
3k2

F

2q2

[
1 +

q2

4k2
F

− kF

q

(
1 − q2

4k2
F

)2

ln
∣∣∣∣2kF + q

2kF − q

∣∣∣∣
]

, (3.57)

where

χL = − (N/V )e2

4mc2k2
F

= − e2kF

12π2mc2
. (3.58)

The second expression was arrived at by using N/V = k3
F /3π2, which assumes

that each point in k space has a twofold spin degeneracy. This result for q = 0
was first obtained by Landau, and as we shall see in the next section, it is − 1

3
the Pauli susceptibility. The q dependence of χL(q) is shown in Fig. 3.3.

As we mentioned above, Peierls considered the effect of a periodic potential
upon the orbital susceptibility. His result, which neglects interband effects,
takes the form [41].

χLP = − e2

48π3�2c2

∫ [
∂2ε

∂k2
x

∂2ε

∂k2
y

−
(

∂2ε

∂kx∂ky

)2
]

dS

|∇kε| . (3.59)

If ε(k) = �
2k2/2m∗ we obtain the factor m/m∗ mentioned above.

The general form of the orbital susceptibility of noninteracting Bloch elec-
trons was established in the early 1960s. However, the formulas were quite
complicated. In 1970 Fukayama [45] reformulated these results in a way which
allows calculations to be carried out for realistic energy bands. The suscep-
tibility is found to be a sensitive function of the position of the Fermi level
relative to critical points in the Brillouin zone. This is illustrated by Fig. 3.4
which shows the susceptibility, in units of the Landau susceptibility, for a
simple model which is periodic in the x direction and free-electron-like in the
other directions. The large diamagnetism of bismuth is due to such an in-
terband effect and has the same physical interpretation of large interatomic
circulating currents that give rise to large g values (see p. 79).

In dealing with electrons in bands other than s bands the possibility arises
of a paramagnetic orbital contribution. Such a contribution was first pointed
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out by Kubo and Obata [46] and has the same origin as the Van Vleck sus-
ceptibility in the case of localized electrons. That is, it is a second-order effect
involving the orbital part of the Zeeman interaction. In a metal this takes the
form

χorb =
2µ2

B

(2π)3

∫
dk
∑

m′ �=m

f(εmk) − f(εm′k)
εm′k − εmk

|〈m′k|L|mk〉|2 , (3.60)

where εmk is the energy of an electron in the band m with wave vector k. The
factor 2 in the numerator arises from the two spin states.

Finally, it is worth mentioning that in a superconductor the presence of a
gap in the energy spectrum leads to the result that 〈pq · n̂〉 = 0. Therefore

χ(q)super = − 1
4π

ω2
p/c2

q2 + ω2
p/c2

, (3.61)

where ω2
p = 4πne2/m is the plasma frequency. The corresponding screen-

ing length is the London penetration length (mc2/4πne2)1/2. As q → 0 this
reduces to the susceptibility of a perfect diamagnet, −1/4π.

3.2.2 The de Haas–van Alphen Effect

Just as in the ionic case, when the temperature becomes very low or the field
very large, such that µBH > kBT , nonlinear effects begin to appear. In the
case of metallic diamagnetism this nonlinearity manifests itself as a periodic
variation of the induced moment as a function of 1/H. Such behavior was



3.2 Metals 99

suspected by Landau [40], worked out in detail by Peierls [41], and observed
by de Haas and van Alphen [47]. This de Haas–van Alphen effect, as it is now
known, has become important in determining the nature of Fermi surfaces.

The perturbation approach used to compute the Landau susceptibility is
not sufficient to describe the de Haas-van Alphen effect. Therefore, we shall
compute the susceptibility from the free energy which is, in turn, obtained
from an explicit knowledge of the energy levels. It should be mentioned that
Sondheimer and Wilson [43] have shown that for a degenerate electron sys-
tem the free energy is given by the inverse Laplace transform of the classical
partition function Z(β) where β = 1/kBT is regarded as a complex variable.
The interesting feature of this approach is that Z(β) contains a branch point
at the origin which is responsible for the Landau diamagnetism and a row of
poles on the imaginary axis that lead to the de Haas-van Alphen oscillations.

The Schrödinger equation for an electron in a uniform magnetic field is

1
2m

(
p − e

c
A
)2

ψ = Eψ . (3.62)

Landau noticed that it is particularly convenient to choose the gauge A =
H × ŷ. Equation (3.62) then becomes

∂2ψ

∂x2
+
(

∂

∂y
− i

eH

�c
x

)2

ψ +
∂2ψ

∂z2
+

2mE

�2
ψ = 0 . (3.63)

If we assume a solution of the form

ψ = exp[i(kyy + kzz)]ϕ(x) , (3.64)

then ϕ(x) must satisfy

∂2ϕ

∂x2
+

[
2mE

�2
− k2

z −
(

ky − eH

�c
x

)2
]

ϕ = 0 . (3.65)

But this is just the Schrödinger equation for a one-dimensional harmonc
oscillator centered at x0 = �cky/eH. Therefore we may immediately write
the total eigenfunction as

ψn,ky,kz
=

Nn√
LyLz

exp[i(kyy + kzz)] exp[−(α2/2)(x − x0)2]Hn[α(x − x0)] ,

(3.66)
where Nn is a normalization factor, Hn is a Hermite polynomial, and α =
(mωc/�)1/2, ωc being the cyclotron frequency |e|H/mc. This has the eigen-
value

En,ky,kz
= (n +

1
2
)�ωc +

�
2k2

z

2m
. (3.67)

We could now proceed to compute the moment by means of the partition
function (3.7). However, in computing the trace we must be careful to preserve
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the total number of electrons. This was not a problem with insulators, since
each of the ions or electrons was distinguishable. In a metal, however, we have
no ionic cores on which to “trap” electrons and thereby identify them. Thus
we are left with a system of N truly identical particles. In such a situation
it is convenient to sum over all possible states, irrespective of the number of
particles involved, but to include in the distribution function a factor that
ensures that the total number of particles is conserved. In mathematics such
a factor is called a Lagrange multiplier. In our particular application it is
referred to as the chemical potential . Thus we shall take as the equilibrium
density matrix [36]

ρ = exp[β(Ω −H + λN )] , (3.68)

where Ω is the thermodynamic potential

Ω = −kBT lnQ (3.69)

and Q is the grand partition function

Q = Tr{exp[−βH− λN ]} . (3.70)

Here N is the total number operator and λ is the chemical potential, which
is to be determined by the condition

〈N〉 = N . (3.71)

The trace in (3.70) is taken without any restriction on the total number of
particles. Equation (3.68) is referred to as the grand canonical distribution.

Since the total number of particles is not dependent on the magnetic field,
we generalize (1.22) to

M =
kBT

V

∂

∂H
ln Ω . (3.72)

In computing the trace indicated in (3.70) we shall take as our basis states
those of the form (1.106). Since there is no restriction on the total number
of particles, there will be a state with no particles, |01, 02, . . . , 0i, . . . , 0∞〉;
infinitely many with one particle, |11, 02, . . . , 0i . . .〉; etc. Here i stands for the
set of quantum numbers {n, ky, kz}. Thus Q takes the form

Q = 1 +
∑

i

exp[−β(Ei − λ)] +
∑
i�=j

exp[−β(Ei − λ)] exp[−β(Ej − λ)] + . . .

(3.73)

This may be rewritten as

Q = Π
i
(1 + exp[−β(Ei − λ)]) . (3.74)
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Fig. 3.5. Oscillatory component of the diamagnetic moment in iron (a) with its
frequency spectrum (b) (courtesy of G.G. Lonzarich)

Therefore the thermodynamic potential becomes

Ω = −kBT
∑

i

ln(1 + exp[−β(Ei − λ)]) . (3.75)

In the absence of a magnetic field the states would be characterized by their
wave vector k, and the sum in (3.75) would be converted to an integral over
k space. In the presence of the field, however, we find that the states are
characterized by n, ky, and kz. What has happened is that the original distri-
bution of points in the kxky plane has condensed onto “tubes” parallel to the
kz axis labeled by the quantum number n. Since this total number of states
must remain the same, we find that the number of states along a length dkz

of such a tube is (eHV/2π2
�c)dkz. Therefore the sum over i in (3.75) may be

replaced by a sum over n plus an integral along kz [48],

Ω = kBT

(
eHV

2π2�c

)∫ ∞

−∞
dkz

∞∑
n=0

ln (1 + exp{−β[E(n, kz) − λ]}) . (3.76)
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The resulting thermodynamic potential leads to two contributions to the sus-
ceptibility. The first is just the Landau result we have already obtained. The
second contribution to the thermodynamic potential has the oscillatory form

Ω(2) � kBT

∞∑
s=1

(−1)s

(
eH

2πsc�

)3/2 |A′′
0 |−1/2

sinh(2π2skBT/�ωc)
cos
(

sc�

eH
A0 ±

π

4

)
.

(3.77)
In this expression A0 is the extremal cross-sectional area of the Fermi surface
at some height kz = k0. The expansion of the cross-sectional area about this
point has the form

A = A0 ±
1
2
(kz − k0)2A′′

0 + . . . , (3.78)

which defines A′′
0 . Equation (3.77) implies that the magnetic susceptibility has

a contribution which oscillates as a function of 1/H. Furthermore, the period
of this oscillation directly measures the extremal area of the Fermi surface
perpendicular to the direction of the magnetic field.

In Fig. 3.5a we show the oscillatory component of the magnetization in
iron. Since both the “up” and “down” spins have their own Fermi surfaces,
and since both have a complex topology, there are numerous areas contributing
to the de Haas-van Alphen effect. These are identified by frequency analyzing
the magnetization spectrum as shown in Fig. 3.5b. The cross-sectional area in
atomic units is related to the frequency in megagauss by A = 2.673 · 10−3 F.
Combining such data with band calculations enables one to construct the
Fermi surface.

3.2.3 Quantized Hall Conductance

With the development of thin film growth techniques it is possible to fabricate
devices capable of confining electrons to a region in which one of the dimen-
sions is small compared with the de Broglie wavelength. Under these condi-
tions the electrons behave like a two-dimensional electron gas. If a magnetic
field is applied perpendicular to this two-dimensional gas the energy spectrum
analogous to (3.67) consists of a ladder of discrete Landau levels with energy
gaps between them. This has dramatic consequences that are not found in
3-D, or even 1-D, systems. The equation of motion for an electron in electric
and magnetic fields is

m∗ dv

dt
= e

(
E +

1
c
v × H

)
− m∗v

τ
. (3.79)

In steady state (dv/dt = 0) and in high magnetic fields (ωcτ >> 1), this
equation reduces to

0 = eEx +
eH

c
vy . (3.80)
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Fig. 3.6. Longitudinal and Hall voltages of a silicon MOSFET with a source drain
current of 1 µA as a function of gate voltage in a magnetic field of 18 T. The index
n refers to the Landau level occupied. Structure within a given level is due to spin
and band structure degeneracies [49]

The current density in the y direction is Nevy where N is the density of
electrons. Consequently, the Hall conductivity is

σxy =
jy

Ex
= −Nec

H
. (3.81)

If we assume that all the electrons are describable by the conducting Landau
states and that the Fermi level is somehow pinned between the n and n + 1
Landau levels then the density N is simply the product of the number of filled
Landau levels, n, times the degeneracy of each level, eH/hc, per unit area.
Thus the Hall conductivity becomes

−σxy = n
e2

h
, (3.82)

that is, it is quantized in multiples of e2/h. Furthermore, as long as the Fermi
level lies between the Landau levels, the density of states is zero and σxx = 0.
The fact that σxx = 0 while σxy �= 0 means that the diagonal resistivity

ρxx =
σxx

σ2
xx + σ2

yy

(3.83)
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Fig. 3.7. Density of states showing broadened Landau levels and localized states
(shaded)

also vanishes and the two-dimensional system is in a zero-resistance state!
This two-dimensional behavior has, in fact, been observed by von

Klitzing et al. [49] in the inversion layer of a silicon MOSFET (metal-oxide-
semiconductor field-effect transistor). As one changes the gate voltage on such
a device, the Fermi level is swept through the Landau levels. Figure 3.6 shows
the longitudinal voltage V associated with a constant current as well as the
Hall voltage VHall as functions of the gate voltage. The plateaus in the Hall
voltage correspond to a Hall resistance RH = h/e2n to an accuracy of better
than one part in 105. Tsui and Gossard [50] have also observed this effect in
gallium arsenide heterojunctions as a function of an applied magnetic field.

What is puzzling about these observations is the extraordinary accuracy
with which the plateaus in σxy give e2/h. The fact that the plateaus exist
suggests that there are localized states between the Landau levels through
which the Fermi level can be moved, as illustrated in Fig. 3.7. However, since
such states do not carry current, we might have expected σxy to be reduced
from its ideal value. Prange [51] as well as Tsui and Allen [52], have shown that
even if localized states exist, the remaining nonlocalized states carry an extra
Hall current which exactly compensates for that not carried by the localized
states. Then there are also interaction effects and edge effects to worry about.
Laughlin [53] pointed out that the quantization is more fundamental than
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Fig. 3.8. Electron wavefunction associated with a metal loop in a radial magnetic
field

that suggested above, being the consequence of gauge invariance. Consider a
conducting strip connected in a ring of circumference L, as shown in Fig. 3.8.
Let us assume there is a magnetic field normal to the strip. The electron wave
functions are then plane waves in the x direction, with a harmonic oscillator
envelope in the y direction centered at y0. If we now change the flux ∆φ
which threads the ring, this corresponds to a change in the vector potential
in the direction around the ring; i.e., A → A + ∆A = A + (∆φ/L)x̂. This
gauge change shifts the center of the wave function by an amount ∆A/H0. In
particular, if the flux change is a quantum of flux, hc/e, then the shift moves
each state precisely to an adjacent center. The net effect is to move one state
per Landau level from one edge to the other. Assuming there is a voltage V
across the strip, this corresponds to a total increase in energy of neV , where
n is the number of filled Landau levels. This change in energy ∆U is related
to the current flowing around the strip by the general relation

I =
c∆U

∆φ
=

nec V

(hc/e)
=

ne2V

h
. (3.84)

Thus the Hall conductance I/V has the quantized form found above. Any
localized states present will have their phase shifted by the gauge transfor-
mation but their energy will be unchanged. Thus they will not contribute
to the Hall currents. Furthermore, since the voltage V is by definition the
difference in the Fermi levels at the edge, any edge effects are automatically
incorporated.

If one plots the Hall resistance as a function of magnetic field the 2-D
resistance follows the linear relation, RH = B/Ne, while the quantum Hall
resistance consists of steps along this line with the values (h/e2)(1/n). At a
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field of approximately 10 T in a GaAs/GaAl As heterostructure the level with
n = 1 is reached. This corresponds to all the electrons being in the lowest
Landau level. One might think that the Hall resistance would simply remain
at the value h/e2 for higher fields. Surprisingly, however, the Hall resistance
continues to exhibit plateaus given by

RH = (h/e2)(p/q) (3.85)

where p and q are integers [54]. While the “integer” quantum Hall effect, where
p/q is an integer, depends upon the localized states between the Landau levels
as described above, the “fractional” quantum Hall effect (FQHE) is quite
different. To understand the fractional quantum Hall effect we recall that a
magnetic field consists of discrete flux quanta. The magnitude of the flux
quantum is φ0 = h/e. The plateaus of the FQHE correspond to the system
being in a correlated, many-body state in which flux quanta are bound to
electrons. In the state p/q = 1/3, for example, three flux quanta are bound
to each electron. For more details we refer the reader to [55].

3.2.4 Pauli Paramagnetism

Let us now turn our attention to the spin response of a free-electron system.
As mentioned at the beginning of this chapter, we can construct the response
to an arbitrary static field if we know the response to a single Fourier compo-
nent. Therefore, let us apply an external field of the form H cos(q · r). The
interaction with the electron spins is

H =
∑

i

gµBsi · H cos(q · ri) . (3.86)

According to (1.22), the moment induced by the field may be obtained by
computing the change in the energy of the system that is proportional to the
field. This we shall do by perturbation theory. Notice that if the quantization
axis of our system is chosen to lie along the direction of H, then when q =
0, (3.86) has first-order diagonal matrix elements. Therefore a perturbation
calculation would have to distinguish between q = 0 and q �= 0. In order
to avoid this difficulty we shall assume that the field lies in the x direction,
H = Hx̂. Then

H =
gµBH

4

∑
i

(s+
i + s−i )[exp(iq · ri) + exp(−iq · ri)] . (3.87)

Second quantizing this interaction by the prescription given in Chap. 1 gives

H =
gµBH

4

∑
k

(a†
k+q,↑ak↓ + a†

k+q,↓ak↑ + a†
k−q,↑ak,↓ + a†

k−q,↓ak↑) . (3.88)

We see immediately that there are no first-order diagonal matrix elements.
The second-order correction to the energy is
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∆E =
(

gµBH

4

)2∑
k,σ

|〈a†
k+q,−σakσ〉|2

εkσ − εk+q,−σ
+ (terms involving − q) . (3.89)

The sum over k is restricted to those values of k inside the Fermi sphere such
that k + q lies outside the Fermi sphere. Since the unperturbed energies are
independent of spin, (3.89) reduces to

∆E = −g2µ2
BH2

8

∑
k

[
fk(1 − fk+q)

εk+q + εk
+

fk(1 − fk−q)
εk−q − εk

]
, (3.90)

when the sum now runs over all k and fk is the Fermi function

fk =
1

exp[(εk − εF )/kBT ] + 1
. (3.91)

Since the sum does run over all k, we may write k → k + q in the second
term. The two terms then combine to give

∑
k

fk − fk+q

εk+q − εk
.

Since

∆E = −1
2

∫
dr M(r) · H(r) = −H

2

∫
dr M(r) cos(q · r) , (3.92)

the derivative of −∆E with respect to H gives M(q) directly. Therefore, with
H(q) = HV/2, the susceptibility becomes

χ(q) =
g2µ2

B

V

∑
k

fk − fk+q

εk+q − εk
. (3.93)

The sum in (3.93) may be evaluated by converting it into an integral. At
T = 0 K we obtain

χ(q) =
3g2µ2

B(N/V )
8εF

F

(
q

2kF

)
, (3.94)

where

F

(
q

2kF

)
=

1
2

+
kF

2q

(
1 − q2

4k2
F

)
ln
∣∣∣∣2kF + q

2kF − q

∣∣∣∣ (3.95)

and N is the total number of electrons in the system. Notice that

lim
q→0

F

(
q

2kF

)
= 1 . (3.96)
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Fig. 3.9. Wave-vector dependence of the spin susceptibility in a superconductor

D(E)↑ D(E)
↓

E

Fig. 3.10. Relative splitting of a d band in the presence of an external field

With g = 2 and µB = e�/2mc, (3.85) may be rewritten as

χ(q) = χPauliF

(
q

2kF

)
, (3.97)

where

χPauli =
3(N/V )e2

2kF
. (3.98)

The Pauli susceptibility, given by (3.98), describes the spin response of an
electron system to a uniform field. To see this, note that for a uniform field
H(q) = H∆(q). Therefore

M(r) =
∑

q

eiq·rχ(q)H(q) = χPauliH . (3.99)

The wave-vector dependence of χ(q) is sketched in Fig. 3.3. Notice that this
function has an infinite derivative when q = 2kF . The susceptibility (3.97) was
derived under the assumption that the temperature was small in comparison
with the Fermi temperature. Since Fermi temperatures are typically of the
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Fig. 3.11. The susceptibility of the transition metals at room temperature [56]

order of 10,000 K, this is generally a good approximation. However, there are
situations, as in metals like palladium and in nondegenerate semiconductors,
where the effective Fermi temperature is much lower. It is then possible to
reach temperatures where the electrons behave like Boltzman particles and
exhibit a Curie-like susceptibility.

It is also interesting to consider how the spin susceptibility is changed
if the metal becomes superconducting. In a superconductor electrons with
opposite spin are correlated over a distance ξ0 called the coherence length.
This suppresses the magnetic response of such pairs at wave vectors below
ξ−1
0 . When this effect is combined with the decreasing response beyond 2kF

we obtain a maximum in the susceptibility at q0 = (2πk2
F /ξ0)1/3 as shown in

Fig. 3.9.
As with the orbital susceptibility, the periodicity of the lattice also modifies

the spin susceptibility. However, in the limit of weak spin-orbit coupling one
can talk about spin-up and spin-down bands and the Pauli susceptibility takes
a particularly simple and useful form. Let us consider a metal whose band
structure gives rise to a density of states, i.e., number of states per unit energy
per unit volume, as illustrated in Fig. 3.10. To lowest order, the effect of the
applied field is to shift the relative energy distributions of the up and down
spins. Since the electrons do, in fact, interact with one another, the up- and
down-spin distributions will reach equilibrium in such a manner that their
Fermi levels are the same. Therefore, as we see from Fig. 3.10 there will be
more spins pointing anti-parallel to the field than parallel to it. Since the
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gyromagnetic ratio of an electron is negative, this leads to a net moment in
the direction of the field. To find this moment we need only compute the
difference in the number of up- and down-spin electrons,

M =
1
2
gµB

∫ ∞

−∞

[
D(ε)f

(
ε − 1

2
gµBH

)
−D(ε)f

(
ε +

1
2
gµBH

)]
dε .

(3.100)
We expand the Fermi functions about H = 0 to yield

M � 1
2
g2µ2

B H

∫ ∞

0

(
−∂f

∂ε

)
D(ε)dε . (3.101)

At low temperatures the Fermi function is essentially a step function at the
Fermi level. Therefore its derivative is a delta function. Thus (3.101) leads to
the susceptibility

χPauli =
1
2
g2µ2

BD(εF ) . (3.102)

For a free-electron system

D(εF ) =
mkF

2π2�2
, (3.103)

and (3.102) reduces to our previous result (3.98).
From (3.102) we would expect the Pauli susceptibility to be roughly ten

times larger when the Fermi surface lies within a d band than when it lies
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within an s band since d bands are generally narrower with a higher density of
states. We might also expect this d-band contribution to exhibit a temperature
dependence. The reason for this is that at a temperature T the susceptibility
essentially involves an average of D(εF ) over a region of the order of kBT .
Therefore, if the width of the structure in the d-band density states is of
this order, it will be reflected in the susceptibility. Interactions between the
electrons can also lead to a temperature dependence.

Susceptibilities for the various transition metals are shown in Fig. 3.11.
First, note that the susceptibility of those metals with unfilled d bands is
much larger than for the s-band metals Cu, Ag, and Au. Second, note the
variation in the susceptibility across the periodic table. This might be associ-
ated with variations in d-band density of states. This rigid-band explanation
is consistent with the temperature dependence of these susceptibilities. As
shown in Fig. 3.12, the susceptibility of metals such as Ti, Zr, and Hf, which
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have a relative minimum in Fig. 3.11, increases with temperature, while for
those with a maximum it decreases. Those metals with d1 and d9 configura-
tions are further complicated by interaction effects which we shall discuss in
the next chapter.

In Mn, Fe, Co, and Ni interactions among the electrons are sufficient
to produce an ordered magnetic state. Above their ordering temperature
these metals exhibit a relatively strong temperature dependence as shown in
Figs. 3.13 and 3.14. This behavior is indicative of some sort of local-moment
formation. It is not simply Curie–Weiss, however, for d(χ−1)/dT is not tem-
perature independent.
If band effects may be represented by an effective mass, then

χPauli = g2µ2
B

m∗kF

4π2�2
. (3.104)

Notice that the mass entering the Bohr magneton is unaffected. However, the
Landau–Peierls susceptibility (3.59) becomes

χLP = − e2kF

12π2m∗c2
= −1

3

( m

m∗

)2 e2
�

2m∗kF

m2c24π2�2
. (3.105)

Therefore
χLP = −1

3

( m

m∗

)2

χPauli . (3.106)

Collecting all our results, we may express the total susceptibility of a non-
magnetic metal as

χ(T ) = χcore + χLP + χorb + χ(T )Pauli . (3.107)

The temperature dependence arises primarily from the d-band contribution
to the Pauli susceptibility.

3.3 Measurement of the Susceptibility

At this point it is appropriate to say a little about measuring the suscepti-
bility. A broad class of techniques use the fact that when a sample with a
susceptibility χg per gram is placed in a magnetic field gradient it experiences
a force. In particular, if the field is in the x direction with a gradient in the z
direction, this force is

∆Fz =
(

Hx
dHz

dz

)
χg · m(gr) . (3.108)

If the sample is mounted at the end of a pendulum and suspended at a right
angle to the field gradient, there will be a torque tending to displace the pen-
dulum. This is the pendulum galvanometer [58]. The torque due to the sample
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(a) (b)

Fig. 3.15. Simplified illustrations of (a) a vibrating-sample magnetometer and (b)
a Faraday susceptibility balance

can be balanced by an opposing torque due to current flowing in a solenoid
surrounding the sample. The measurement of the susceptibility is thus reduced
to measuring the current flow at zero displacement and consequently has a
large dynamic range well suited for ferromagnets and strong paramagnets.

For strongly magnetic materials Foner’s vibrating-sample magnetometer
is particularly convenient (Fig. 3.15a) [59]. In this arrangement the sample is
placed at the end of a rod which vibrates up and down inside a pickup coil. If
the whole assembly is placed between the pole faces of a magnet, a moment
is induced in the sample which, by virtue of its vibration, induces a signal in
the pickup coil that is proportional to the magnetization of the sample.

For weakly magnetic materials it is convenient to measure the force directly
with an electrobalance. The most popular balance technique today is the
Faraday balance (Fig. 3.15b). For this method the pole pieces of the magnet are
carefully machined to produce a fairly large region over which HxdHx/dz is
constant. Samples small with respect to this region are suspended in the region
and the force measured. The quantity HxdHx/dz is determined by calibrating
the system with a standard such as platinum. A typical microbalance can
resolve 5 micrograms. In a related technique, known as the Gouy method, one
employes a long uniform sample, frequently a liquid, which extends over the
entire field region. Thus the force is the integral of (3.108).

Another way of measuring the susceptibility of small or magnetically weak
samples is by a mutual-inductance technique [60]. The sample is mounted
inside a pair of secondary coils on top of which is wound a primary coil.
Measurement of the mutual inductance of this coil system with and without
the sample yields an absolute determination of the susceptibility of the sample.

A very different method for obtaining the static susceptibility makes use
of the KramersKronig relation
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χ(0) =
2
π

∫ ∞

0

χ′′(ω)dω

ω
, (3.109)

where χ(0) is measured in relation to χ(∞). If the imaginary part of the
susceptibility is strongly peaked around a particular frequency ω0, then

χ(0) � 2
πω0

∫ ∞

0

χ′′(ω)dω . (3.110)

If, as in most cases, the experiment entails varying the magnetic field at a
fixed frequency, this becomes

χ(0) =
gµB

π�ω

∫ ∞

0

χ′′(H)dH . (3.111)

Therefore the static susceptibility is simply given by the area under the mag-
netic resonance. Since this entails an absolute intensity measurement, it is
rather difficult. However, Schumacher and Slichter [61], in determining the
spin susceptibility of lithium and sodium, neatly solved this problem by com-
paring spin resonances with the nuclear resonance in the same sample. The
nuclear susceptibility χn may be computed from the Langevin susceptibility
(3.27). The spin susceptibility is determined by measuring the area under
the conduction-electron spin resonance Ae and the area under the nuclear
resonance An and using the relation

χe = χn
µBAe

µnAn
. (3.112)

There is another technique involving nuclear magnetic resonance which is very
helpful in determining the various contributions to the total susceptibility in
a metal. As we saw in Sect. 2.2, s-like conduction electrons produce a contact
hyperfine field at the nuclei of a metal. Thus, if the conduction electrons are
polarized by an external field, they will, in turn, shift the nuclear magnetic
resonance frequency from what it would be in a diamagnetic environment.
This is known as the Knight shift . Since the ability of the conduction electrons
to be polarized is determined by their Pauli susceptibility, the resulting Knight
shift K will be proportional to this susceptibility. In particular,

K =
(

8π

3

)
χP Ω〈|ψS(0)|2〉F , (3.113)

where χP is the Pauli susceptibility per unit volume, Ω is the volume of the
unit cell, and 〈|ψS(0)2|〉F is the average value of the s-electron probability
density at the nucleus for electrons near the Fermi surface.

As was also pointed out in Sect. 2.2, d-like electrons do not contribute
to the contact hyperfine field. However, their presence can lead to a slight
polarization of the otherwise paired core s electrons. This core polarization
depends on the d-band polarization and will therefore contribute a term to
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Fig. 3.16. Windings of a Bitter magnet

the Knight shift that is proportional to the d-band susceptibility. It turns
out that the core polarization generally leads to a negative Knight shift. Fur-
thermore, since χP is temperature dependent, the resulting Knight shift will
also be temperature dependent. Thus the Knight shift, together with direct
susceptibility measurements, enables us to unravel the various contributions
to the total susceptibility given by (3.98). A beautiful example of this is the
work of Clogston et al. on metallic platinum [62].

In some cases, we are interested in the magnetic response of a system at
very high fields, such as in de Haas-van Alphen studies or studies of mag-
netic impurity levels in semiconductors. The production of such high fields
has become a specialty practiced only within the world’s few high-field labo-
ratories, such as the National High Magnetic Field Laboratory in Tallahassee
or the joint German-French high-field laboratory in Grenoble.

The classical approach to generating large continuous magnetic fields is to
use water-cooled coils. In the late 1930s, Francis Bitter pioneered the design
of such high-field magnets. A typical Bitter magnet is illustrated in Fig. 3.16.
In order to produce 15 T in a 5-cm bore, five megawatts of power are required.
If the coil is not stress limited, the central field is proportional to the square
root of the power dissipated. As a result, the practical limit for such resistive
magnets is about 20 T. If one tries to increase the field by reducing the inner
diameter, the Lorentz force on the conductor may exceed its tensile strength.

3.4 Local Moments in Metals

When a potentially magnetic atom such as iron is dissolved in a nonmetallic
host, the electronic states are localized at the impurity site. The magnetic
character of this state is then determined by the intraatomic Coulomb inter-
action (Hund’s rules). If the crystalline fields become large, the magnetic state
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may be affected. Fe2+, for example, in an octahedral environment can have
either a high-spin 5F2(t2g

4e2
g) state or a low-spin 1Aa(t62g) state. But the low-

temperature susceptibility is readily calculated by the formalism described in
the earlier sections of this chapter.

In a metallic host, the situation is much more complex because the elec-
tronic states associated with the impurity are often not localized. Even when
the impurity appears to contain an integral number of electrons, the fact that
they are coupled to a Fermi sea, no matter how weak the coupling, can lead
to a correlated nonmagnetic ground state.

3.4.1 Virtual Bound States

If we consider the conduction electrons as plane waves, then a convenient
formalism for describing the effect of a single impurity is scattering theory.
If the impurity is represented by a real spherical potential (i.e., we neglect
inelastic scattering), then the problem has symmetry about the axis de-
fined by the incident wave vector k, so the wave function, call it uk(r, θ),
may be expanded as a sum of products of radial functions and Legendre
polynomials,

uk(r, θ) =
∞∑

l=0

(2l + 1)ilRl(k, r)Pl(cos θ) . (3.114)

The Legendre polynomials are related to the spherical harmonics of
Table 2.1 by

Pl(cos θ) =

√
4π

2l + 1
Y 0

l (θ, ϕ)

The coefficient Rl(k, r) is called the partial wave amplitude. This is an im-
portant quantity for, when the energy variable k is regarded as a complex
number, the poles of Rl(k, r) along the positive imaginary axis correspond to
bound states. Far from the impurity, this wave function has the form

lim
r→∞

uk(r, θ) = eik·r + f(k, θ)(eikr/r) , (3.115)

where f(k, θ) is called the scattering amplitude and is a function of the scat-
tering phase shift δl,

f(k, θ) = (1/k)
∑

l

[4π(2l + 1)]1/2 exp(iδl)(sin δl)Y 0
l (θ) . (3.116)



3.4 Local Moments in Metals 117

Substituting (3.116) into (3.115) shows that Rl(kr) has the asymptotic form

Rl(kr) −→
r→∞

1
kr

exp(iδl) sin
(

kr − 1
2
lπ + δl

)
. (3.117)

The phase shift, δl depends upon the energy of the scattering particle and
on the details of the impurity potential. If the potential is a delta function of
strength V0, then there is only s-wave scattering and

δ0(E) = tan−1{πV0N(E)/[1 − V0I(E)]} (3.118)

where N(E) is the host density of states and

I(E) = P
∫

dE′N(E′)/(E′ − E) , (3.119)

where P means that we take the principal part of the integral. If we define E0

as the value of E where V0I(E0) = 1 and expand V0I(E) about E = E0, then

δ0(E) = tan−1 ∆

E − E0
, (3.120)

where ∆ is proportional to N(E0). Notice that when the phase shift goes
through π/2, the scattering amplitude goes through a maximum. This is refer-
red to as a resonance or virtual bound state.

Suppose we surround the impurity by a sphere of radius R. If we require
that the wavefunction go to zero on the boundary, then, from (3.117)

kR − 1
2
lπ + δl = nπ , (3.121)

where n is an integer. In the absence of scattering δl = 0 As the scattering
potential is “turned on” δl becomes nonzero. If the potential is attractive δl is
positive and δl/π is the number of extra nodes introduced within the sphere.
Each of these nodes corresponds to a state that can accomodate 2(2l + 1)
electrons. Therefore, if z is the charge differential between the impurity and
the host

∑
l

2(2l + 1)
δl

π
= z . (3.122)

This is known as the Friedel sum rule. The density of states associated with
these extra states is

η(E) =
dz

dE
=
∑

l

2(2l + 1)
π

dδl

dE
. (3.123)
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Fig. 3.17. Residual resistivities of transitional impurities in aluminum

For the phase shift given by (3.122) this virtual bound state is characterized
by the Lorentzian form

η(E) =
1
π

∆

(E − E0)2 + ∆2
. (3.124)

The differential scattering cross section σ(θ) is given by the square of the
scattering amplitude, i.e., σ(θ) = |f(θ)|2. The effective average cross section
σ (not to be confused with conductivity) that governs the resistivity is the
angular average of σ(θ) weighted by (1 − cos θ), which measures the relative
change in the component of the electron’s velocity along its initial direction
of motion:

σ = 2π

∫ π

−π

dθ sin θσ(θ)(1 − cos θ) . (3.125)

The mean free path is Λ = 1/xσ, where x is the atomic concentration of
impurities. The integral over the cos θ term in (3.125) is facilitated by the
relation

Y 0
l cos θ =

l + 1√
(2l + 1)(2l + 3)

Y 0
l+1 +

l√
(2l + 1)(2l − 1)

Y 0
l−1

and then using the orthogonality of the spherical harmonics. The resistivity
associated with the impurities is then

∆ρ =
4πx

ne2kF

∞∑
l=0

(l + 1) sin2[δl(EF ) − δl+1(EF )] , (3.126)

where n is the density of conduction electrons. Thus, again if we only consider
s-wave scattering (l = 0), the resistivity will show a peak when the Fermi
level and the center of the virtual bound state coincide. There is evidence for
such behavior in aluminum as shown in Fig. 3.17. This phase shift description
has been successfully applied to many alloys, particularly by Friedel [63] and
his collaborators. The problem arises when one begins to consider magnetic
properties. Figure 3.18, for example, shows that iron may or may not exhibit a
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second-row transition metals (except Re which is a 5d element) and alloys as a
function of electron concentration [64]

magnetic moment when it is dissolved in 4d transition metals and alloys. This
behavior attracted the attention of Anderson, who considered how a virtual
bound state develops a moment.

3.4.2 Anderson’s Theory of Moment Formation

The presence of an impurity in a metallic host leads to additional terms in
the Hamiltonian of the system. Since the size or the charge of the impurity
may differ from that of the host, there will be a change V (r) in the crystal
potential. Since this potential is screened by the conduction electrons, it is
essentially confined to the impurity cell. In addition, the Coulomb interac-
tion between electrons within the impurity cell, v, will be different from that
between electrons within host cells. Most of the hosts we shall consider do
not exhibit a significant exchange enhancement, and so we shall neglect the
Coulomb interactions within the host cells, retaining it only for the impurity
cell. Assuming that these are the major effects of the impurity, we write the
total Hamiltonian as

H = H0 +
∑

i

eV (ri) +
∑
i, j

(within
impurity cell)

v(ri − rj) . (3.127)

Here H0 is the Hamiltonian for the pure host.
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The next step is to write this Hamiltonian in its second-quantized form.
The actual form will depend on the states we use to expand the field operator.
For example, suppose we dissolve a transition metal such as manganese into
copper. Since Mn2+ has four fewer electrons than Cu2+, it constitutes a strong
perturbation. Therefore we might expect the localized state to be pushed out
of the d band of the copper host, as shown in Fig. 3.19. Since the d band is
filled, it will not contribute to the properties of the dilute alloy. Therefore
we expand our field operator in terms of the s-band states and a localized
nondegenerate d-like state. The one-electron terms in (3.127) then becomes∑

k,σ

εkc†kσckσ +
∑

σ

ε0c
†
0σc0σ +

∑
k,σ

(V0kc†kσc0σ + V ∗
0kc†0σckσ) . (3.128)

The first term is the s-band energy, the second term is the contribution from
the impurity state, and the last term is the so-called sd mixing term. Notice
that this mixing is a one-electron effect. It corresponds to the hopping of an
electron from the localized d orbital into the conduction band, or vice versa.
The interaction part of (3.127) becomes

Un0↑n0↓ , (3.129)

where U is the intraatomic Coulomb repulsion between opposite spins in the
localized orbital. Equations (3.128), (3.129) constitute what is known as the
Anderson Hamiltonian [65].

To study the implications of this model, Anderson employed the so-called
Hartree–Fock approximation which is a mean field approximation. Namely, the
interaction term Un0↑n0↓ is replaced by U(〈n0↑〉n0↓ + 〈n0↓〉n0↑ −〈n0↑〉〈n0↓〉).
Thus, in the Hartree-Fock approximation the Anderson Hamiltonian for a
spin σ becomes

Hσ
HF =

∑
k

εkc†kσckσ +
∑

σ

ε0σc†0σc0σ +
∑

k

V0k(c†kσc0σ + c†0σckσ) , (3.130)
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where
ε0σ = ε0 + U〈n0,−σ〉 . (3.131)

Solving the Schrodinger equation is equivalent to finding the so-called Green’s
function, defined by

Gσ(E) = lim
s→0

1
E −Hσ + is

. (3.132)

The usefulness of this function lies in its relation to the density of states. In
particular, since the density of states may be represented by a sum of delta
functions at energies given by the exact eigenvalues, i.e.,

η(E) =
∑

n

δ (E − En) (3.133)

then
η(E) = − 1

π
Im [TrG(E)] . (3.134)

Multiplying both sides (3.132) by (ε − Hσ + is) and computing the matrix
elements of the resulting equation between the states |k〉 and |0〉 gives the
following four relations:

(ε − ε0σ + is)Gσ
00(ε) −

∑
k

V0kGσ
k0(ε) = 1 , (3.135)

(ε − εk + is)Gσ
kk′(ε) − Vk0G

σ
0k′(ε) = δkk′ , (3.136)

(ε − εk + is)Gσ
k0(ε) − Vk0G

σ
00(ε) = 0 , (3.137)

(ε − ε0σ + is)Gσ
0k(ε) −

∑
k′

V0k′Gσ
k′k(ε) = 0 . (3.138)

By solving these equations we obtain the various matrix elements of the
Green’s function. We then use (3.134) to compute the local density of states
η0σ(ε). This has the Lorentzian form

η0σ(ε) =
1
π

∆

(ε − ε0 − U〈n0−σ〉 − δε)2 + ∆2
, (3.139)

where
∆ = π

∑
k

|V0k|2δ(ε − εk) . (3.140)

and

δε = P
∑

k

|V0k|2
ε − εk

. (3.141)

From this density of states we can compute the occupation number of the
localized state:

〈n0σ〉 =
∫ εF

−∞
η0σ(ε)dε . (3.142)
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Fig. 3.20. “Phase diagram” corresponding to the Hartree-Fock solution of the
Anderson Hamiltonian

Since η0σ is a function of 〈n0−σ〉, we have a set of coupled equations. These
may have the single nonmagnetic solution 〈n0σ〉 = 〈n0−σ〉, or the two symmet-
rical magnetic solutions 〈n0σ〉 �= 〈n0−σ〉, depending upon the relative values of
the parameters ε0, U , and ∆. These regimes are indicated in Fig. 3.20. Notice
that integrating (3.123) and comparing it with (3.142) gives δσ(εF ) = π〈n0σ〉.
If Z is the total number of localized electrons, then δσ + δ−σ = πZ, which is
a special case of the Friedel sum rule, (3.122).

To determine the boundary between the magnetic and nonmagnetic regions
let us introduce the number of localized electrons n0 and the localized
moment m0 by

n0 =
1
2
(〈n0↑〉 + 〈n0↓〉) , (3.143)

m0 =
1
2
(〈n0↑〉 − 〈n0↓〉) . (3.144)

Then

m0 =
1
2
f(εF ; ε0 + Un0 − Um0) −

1
2
f(εF ; ε0 + Un0 + Um0) , (3.145)

where f is the cot−1 function obtained from integrating the Lorentzian density
of states.

In the limit of large m0 the right-hand side goes to 0. Therefore, if there
is a nonzero solution, the right-hand side must have a slope greater than 1 at
m0 = 0. Since

∂f(εF ; ε0 + Un0 ∓ Um0)
∂m0

∣∣∣∣
m0=0

= ∓U
∂f(εF ; ε0 + Un0)

∂(ε0 + Un0)
(3.146)
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the condition for the appearance of the localized moment is

−U
∂f(εF ; ε0 + Un0)

∂(ε0 + Un0)
> 1 . (3.147)

If the localized state lies close to the Fermi surface, then ∆ and δε may be
approximated by their values at the Fermi surface. Then

∂f(εF ; ε0 + Un0)
∂(ε0 + Un0)

=
∫ εF

−∞
dε

∂η0σ(ε)
∂(ε0 + Un0)

= −η0σ(εF ) . (3.148)

The condition (3.147) then becomes

Uη0σ(εF ) > 1 . (3.149)

From (3.139) we see that a localized spin moment appears when U is suf-
ficiently large in comparison with the width ∆ of the resonant level. Since
∆ = πV 2η(εF ) a small density of states for the conduction band and a small
covalent admixture favor the formation of a moment. Thus we expect to find
moments when 3d atoms are dissolved in noble metals but not in aluminum,
as is the case.

One of the consequences of Anderson’s Hartree-Fock solution is that in the
magnetic regime the density of states is characterized by two Lorentzians sepa-
rated by an energy U(〈n0↑〉−〈n0↓〉). If we again look to the residual resistivity
for evidence of such behavior, we do indeed find two peaks for transition-metal
impurities dissolved in Cu as shown in Fig. 3.21. More microscopic probes,
however, indicate that these solutes behave more atomically than the itiner-
ant Anderson model would suggest. An extensive study of the moments of
Fe in various hosts have been carried out by Riegel et al. [66] using time-
differential perturbed angular γ-ray distribution. In this technique a scan-
dium (45Sc) target is bombarded by carbon ions which produce 54Fe ions

Ca Se Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As

∆ρ
(µΩ cm /%)

5

10

Fig. 3.21. Residual resistivities of transitional impurities in copper
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(together with a proton and two neutrons) which recoil and imbed them-
selves in an adjacent film of the host to be studied. The 54Fe then decays
with the emission of two γ-rays. The second γ-ray emitted has an asymmetric
distribution with respect to the first. If a field H0 is applied perpendicular
to the plane of the two γ-rays the asymmetric distribution rotates in space
with a Larmour frequency ωL(T ) = �

−1µNgN (H0 + Hi) where Hi is the
hyperfine field (2.47). According to the Wigner–Eckart theorem the electronic
matrix element of (2.47) is proportional to < Jz >. In the high-temperature
limit < Jz >= gJµBJ(J + 1)H0/3kBT . Therefore H0 + Hi may be written
as β(T )H0 where β − 1 may be thought of as a “local” susceptibility. These
studies show that the behavior of Fe in the third-row transition metals has
the same form as that shown in Fig. 3.18, i.e., Fe is nonmagnetic in Ta, Re,
and Os, while it is magnetic in Mo, Ir, Pt, and Au with non-half-integral
moments. However, in non-d-state hosts such as K, Rb, and Cs iron shows
an ionic moment appropriate to a 3d6 configuration. This suggests that mo-
ment formation in the noble- and transition-metal hosts involves the d-states
of the host. This is particularly true in Pd and Pt where iron polarizes its
host to produce a “giant” moment. Wolff [67] has developed a theory of local
moments similar to Anderson’s but obtains the local moment as a virtual
bound state thereby explicitly involving the host.

3.4.3 The Kondo Effect

Much more dramatic is the behavior associated with the breakdown of
the Hartree–Fock approximation itself, as manifest in the Kondo effect.
Figure 3.22 shows the general behavior observed in “local-moment” systems
such as those illustrated in Fig. 3.21 with decreasing temperature. The resis-
tivity increases logarithmically and eventually saturates. When this increas-
ing impurity contribution is combined with the decreasing phonon contri-
bution, one obtains a minimum in the resistivity, a phenomenon that was
known but not understood for many years. At the same time, the magnetic
moment, as measured by the susceptibility, decreases, and the specific heat
shows a peak corresponding to an entropy change of approximately kB ln 2.
Although this transition is gradual, it is possible to assign a temperature,
called the Kondo temperature, below which these anomalous properties ap-
pear. Figure 3.23 shows how this Kondo temperature varies for 3d transition
metals dissolved in copper.

It is now known that these properties, which are collectively referred to
as the “Kondo effect”, are associated with the behavior of a single localized
electron spin interacting with a degenerate electron system. This seemingly
simple problem has required an enormous effort to bring us to the point where
we think that we understand what is going on. We shall not cover all this
development (see for example [68a] or the reviews [68b]), but merely indicate
a few aspects that will give the reader a “feel” for the Kondo effect.
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Let us begin by assuming we are in the magnetic regime of the Anderson
model, that is U � ∆. In this case Schrieffer and Wolff showed that one could
perform a canonical transformation which eliminates V0k to first order [69].
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They found that the resulting Hamiltonian contains a contribution of the form

Hsd =
∑
k,k′

Jk′kψ†
k′sψk · ψ†

0Sψ0 , (3.150)

where

ψk =
[

ck↑
ck↓

]
and ψ0 =

[
c0↑
c0↓

]
. (3.151)

This has the form of an sd exchange interaction. For wave vectors near the
Fermi surface the exchange parameter becomes

JkF kF
= 2 |V0kF

|2 U

ε0(ε0 + U)
. (3.152)

In this expression ε0 is measured in relation to the Fermi surface, which makes
JkF kF

negative, corresponding to antiferromagnetic coupling.
As we mentioned above, those alloys possessing local moments are also the

ones which show a minimum in their resistivity as a function of temperature.
This motivated Kondo [70] to calculate the spin-flip scattering amplitude of
a conduction electron using the s–d interaction (3.150). Let us outline this
calculation. We shall characterize the impurity spin by its spin-projection
quantum numbers MS and add an extra electron in the state (k, σ) to the
Fermi sea. The state of the system at time t = −∞ may then be written
c†kσ|FS;M ′

S〉. In the absence of an external field the unperturbed Hamiltonian
is just

H0 =
∑

εkc†kσckσ .

We now adiabetically turn on the interaction H1 and examine the amplitude
for scattering into the state c†k′σ′ |FS; MS〉. This amplitude is

〈k′σ′;M ′
S |φ(∞)〉 = δ(k − k′)δσ,σ′δMS ·M ′

S

−2πi

〈
k′σ′;M ′

S

∣∣∣∣H1 + H1
1

εk −H0
H1 + . . .

∣∣∣∣k, σ;MS

〉

×δ(εk − εk′) . (3.153)

Suppose H1 corresponded to ordinary potential scattering; then it would have
the form

∑
c†l′σVl′lclσ. The interesting term in (3.153) is the one involving H1

twice. There are two distinct ways in which the scattering k − k′ can occur
through this term. These are illustrated in Fig. 3.24. The matrix element for
process (a) is 〈

FS

∣∣∣∣ck′c†k′Vk′lcl
1

εk −H0
c†l Vlkckc†k

∣∣∣∣FS

〉
, (3.154)



3.4 Local Moments in Metals 127

Vk 1

V1k

(a) (b)

Vk 1

V1k

k

k

k

k

1

1

Fig. 3.24. Contributions to the second-order scattering amplitude associated with
a spin-independent potential

which reduces to

Vk′l
1 − f(εl)
εk − εl

Vlk . (3.155)

Process (b) becomes〈
FS

∣∣∣∣ck′Vlkck
1

εk −H0
c†k′Vk′lclc

†
k

∣∣∣∣FS

〉
, (3.156)

which contracts to

−Vlk
f(εl)

εk − (εk − εl + εk′)
Vk′l = Vlk

f(εl)
εk′ − εl

Vk′l . (3.157)

When these two processes are added together, the Fermi function cancels out.
Thus, the exclusion principle does not enter into ordinary potential scattering.
This is not the case, however, for a spin-dependent potential. The Hamiltonian
(3.150) becomes

H1 = −JS ·
∑
l,l′

∑
σ,σ′

c†lσsσσ′cl′σ′ . (3.158)

The two second-order processes arising from this interaction are illustrated in
Fig. 3.25. Process (a) gives

J2

〈
FS;M ′

S

∣∣∣∣SνSµck′σ′c†k′σ′s
ν
σ′σ′′clσ′′

1
εk −H0

c†lσ′′s
µ
σ′′σckσc†kσ

∣∣∣∣FS;MS

〉
,

(3.159)
which reduces to

J2 1 − f(εl)
εk − εl

〈M ′
S |SνSµsν

σ′σ′′s
µ
σ′′σckσc†kσ|MS〉 . (3.160)
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Fig. 3.25. Contributions to the second-order scattering amplitude associated with
the s − d interaction

Process (b) gives

J2 f(εl)
εk − εl

〈M ′
S |SνSµsν

σ′′σsµ
σ′σ′′ |MS〉 . (3.161)

When these are added together, we obtain

J2

εk − εl

[
1
4
S(S + 1) − 〈M ′

S , σ′|S · s|MS , σ〉
]

+
J2f(εl)
εk − εl

〈M ′
S , σ′|S · s|MS , σ〉 .

(3.162)
The second term in (3.162) arises from the fact that the spin operators may not
be interchanged. Therefore we obtain a contribution to the scattering which
does depend on the exclusion principle. Summing over the intermediate states
introduces the factor ∑

l

f(εl)
εk − εl

.

Introducing the conduction-electron density states of N(ε), this sum may be
written ∫

N(ε′)
f(ε′)
ε − ε′

dε′ . (3.163)

Assuming a simple rectangular band,

N(ε) =

{
N(0) −D < ε < D

0 otherwise ,
(3.164)

the integral for ε = 0 gives

−N(0) ln
kBT

D
+ const. (3.165)
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Since the resistivity involves the square of the scattering amplitude, the cross
term between the first-order term and this second-order term gives a contri-
bution proportional to J3 ln T .

For antiferromagnetic exchange (J < 0) the resistivity increases with
decreasing temperature as shown in Fig. 3.22. The divergence as T → 0,
however, indicates that the perturbation theory is not valid in this regime.
This remarkable result initiated intense activity. Experimental studies estab-
lished the systematics of this phenomenon while theoretical work explored the
properties of the s-d Hamiltonian as well as the Anderson Hamiltonian.

The first attempts to improve on Kondo’s calculation led to a scattering
amplitude that diverged at a finite temperature

TK = D exp [1/2JN(EF )] , (3.166)

which provides a quantitative expression for the Kondo temperature. Although
the divergence indicated that the problem was still not being treated prop-
erly, it did indicate the formation of a resonance in the scattering amplitude
at the Fermi level. That is, the Kondo effect is basically an impurity-induced
Fermi surface instability. A great deal of effort has gone into identifying the
nature of the ground state. From the very beginning it was suspected that it
must be a singlet. However, it was only the exact diagonalization of the s–d
Hamiltonian by Andrei [71] and Wiegmann [72] that this singlet nature was
confirmed. Yosida and collaborators [73] have shown that if one assumes a
singlet wave function of the form

ψKondo =
1√
2

(χ↑ψ↑ − χ↓ψ↓) , (3.167)

where χσ is the wave function of the impurity spin, then the conduction-
electron component ψ↑ consists of half an electron with down spin and half a
hole with up spin bound, to the impurity. This is illustrated schematically in
Fig. 3.26.

Anderson [74] also considered the implications of a singlet ground state
on the conduction-electron phase shifts. In the Hartree–Fock approximation
discussed above, in the case of a well-localized moment δ↑ = π and δ↓ = 0.
However, if we do have a singlet ground state there is rotational invariance
and the phase shift must be independent of σ. Anderson postulated that in the
vicinity of the Fermi level the phase shifts readjust as indicated in Fig. 3.26.
The appearance of π/2 phase shifts at the Fermi level implies a resonance at
the Fermi level. This “Abrikosov–Suhl” resonance, as it is sometimes called,
is also shown in Fig. 3.26. Such a peak in the density of states has also been
derived [75] directly from the Anderson Hamiltonian. This result shows that
the peak has a width kBTK and disappears at the Kondo temperature. If only
electrons within a characteristic energy kBTK of the Fermi level are involved,
this implies a spatial extent of

ξK =
vF

kBTK
. (3.168)



130 Problems (Chapter 3)

E0+U

E0

 

EF

dN /dEdN /dE

δ  (E)

δ  (E)

 π

π/2

E0 EF

E

δσ(E)

η(E)

E0
EF

TK

E

1

2π∆

1

 π∆

↓

↓

↓

↓
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Problems

3.1. Show that the sum of χdiamag defined by (3.23) and χV V defined by (3.28)
is invariant under a change in origin.

Hint: Use the relation

〈α|pµ|β〉 =
iEαβ

�
〈α|µ|β〉 ,

where µ = x, y, or z.
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3.2.
(a) Compute the partition function, Z, for a collection of N spin-J particles

in a field H.
(b) Using the thermodynamic relation for the entropy,

S = −∂(kBT ln Z)
∂T

compute the entropy for the collection of spin-J particles.
(c) Let us assume that the sample can be thermally insulated so that the

entropy remains constant. Then if we reduce the field from some initial
value, Hi, to some final value Hf , the temperature will change from its
initial value, Ti, to a new final value, Tf . Calculate Tf . This is the principle
of magnetic cooling.

3.3. Assume that the saturation magnetization (magnetic moment per unit
volume) for iron arises only from the ionic moments associated with the
electronic configuration Fe2+(3d6). Calculate the saturation magnetization
for a body-centered cubic structure with a lattice parameter a = 2.87 Å. How
does this compare with the experimental value for iron?

3.4. Calculate the de Haas-van Alphen period ∆(1/H) expected for copper
assuming a free electron model with a Fermi wave vector of kF = 1.36 ×
108 cm−1.

3.5. Consider a two-dimensional electron gas (2 DEG) of density n (electrons/
cm2) in which the electrons have an effective g-factor g∗ and an effective
mass m∗.

(a) Show that the spin susceptibility is proportional to g∗m∗.
(b) Calculate the field, Bp, at which the system would exhibit total spin

polarization.

3.6. Consider a dimer consisting of two Cu2+(3d9) ions. Assume that the 3d
holes interact through an antiferromagnetic exchange, H = Js1 . s2. Using
(3.19) derive the susceptibility of this isolated dimer.



4

The Static Susceptibility
of Interacting Systems: Local Moments

In this chapter we shall turn our attention to the static response of systems in
which interactions among localized moments may lead to long-range order. A
thorough treatment of such interactions and the resulting phase transition is
an extremely complicated subject. Although very sophisticated techniques
have been developed to treat these problems, there are still gaps in our
understanding. However, except for the region very close to the critical point,
an effective field theory works quite well. Therefore we shall employ this
approximation throughout most of this chapter.

In Sect. 2.2 we found that the Coulomb interaction between the valence
electrons on different ions could be expressed as an effective interaction
between the individual electron spins. We also found that under certain con-
ditions this interaction could be expressed in terms of the total ionic spin or,
in some cases, the effective spin of the ground-state multiplet. Let us consider
a system whose interactions may, in fact, be described by the Heisenberg
exchange Hamiltonian

Hex = −
∑

i

∑
j �=i

JijSi · Sj , (4.1)

where Jij is a function of the relative separation Ri − Rj .
Although many systems do not satisfy our conditions for writing the

interaction in this form, it is often found that such systems may, nevertheless,
be described surprisingly well by it. However, as we shall see, the treatment of
this interaction entails certain approximations. Hence our success may result
more from our methods than from the interaction with which we start. Since
the exchange interaction is often large in comparison with other interactions,
such as the magnetic-dipole-dipole interaction, the gross features of such a
system may be described by (4.1) alone.

Let us now see how such a system responds to a static applied field. Since
(4.1) is rotationally invariant, the direction of this applied field may be taken
to define the z-axis. Just as in the preceding chapter, we apply a field of the
form
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H(r) = Hẑ cos(q · r) , (4.2)

where q corresponds to some point within the first Brillouin zone of the lattice.
If the g value associated with the effective spin is g, then the total Hamiltonian
becomes

H = −
∑

i

∑
j �=i

JijSi · Sj + gµBH
∑

i

Sz
i cos(q · Ri) . (4.3)

As in most cases involving coupling between lattice sites, it is convenient to
express the Hamiltonian in Fourier components. Since

S(q′) =
∫

dreiq′·rS(r) =
∑

i

∫
dreiq′·rSiδ(r − Ri) =

∑
i

eiq′·riSi , (4.4)

we may write (4.3) as

H = −
∑
q′

J(−q′)S(q′) · S(−q′) +
1
2
gµBH [Sz(q) + Sz(−q)] , (4.5)

where
J(−q′) ≡ 1

N

∑
i�=j

J(Ri − Rj)eiq′·(ri−rj) . (4.6)

Notice that if the crystal has inversion symmetry, J(−q) = J(q). The analysis
of the Hamiltonian (4.5) is very difficult and has been the subject of much
work. The simplest approach is to consider one of the spins in (4.1) and replace
its interaction with the other spins by an effective field [76]. This is referred
to as the mean-field approximation. The concept appears to have first been
applied by van der Waals in 1873 to develop the liquid-gas equation of state.
Its application to ferromagnetism was made by P. Weiss in 1907. The same
approximation was employed by Bragg and Williams in 1934 to describe order-
disorder transitions such as occur in β-brass when the copper and zinc atoms,
through diffusion, order themselves with the copper at the center and the zinc
at the corners of the body-centered-cubic lattice. The physics of such order-
disorder transitions is identical to that of an Ising magnet. In 1937 Landau
developed a generalized mean-field theory applicable to all second-order phase
transitions. We shall return to Landau’s theory later in this chapter.

Since we have been emphasizing the usefullness of working with Fourier
components it is appropriate to apply a variation of the mean-field approx-
imation in which each of the Fourier components in (4.5) is assumed to be
independent. This if referred to as the random-phase approximation. In this
approximation the exchange interaction becomes

Hex = −
∑
q′

J(−q′)S(q′) · 〈S(−q′)〉 . (4.7)
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4.1 High Temperatures

If the temperature is higher than that at which long-range order sets in, we
may assume that the only components with nonzero average values are those
driven by the applied field. Thus 〈S(−q′)〉 is replaced by 〈Sz(−q′)〉ẑ∆(q−q′).
The total Hamiltonian in the random-phase approximations becomes

HRPA = − [J(q)〈Sz(−q)〉Sz(q) + J(q)〈Sz(q)〉Sz(−q)]

+
1
2
gµBH [Sz(q) + Sz(−q)] , (4.8)

which defines the total effective field seen by the qth component as

H(−q)eff =
J(−q)V

gµB
〈Sz(−q)〉ẑ +

1
2
HV ẑ . (4.9)

In discussing noninteracting systems we found that the response of the qth
component of the spin at high temperatures was determined by

χ0(q) =
C

T
≡ χ0 , (4.10)

where

C =
N

V
g2µ2

B

S(S + 1)
3kB

.

Therefore, employing our definition of the susceptibility, we have

Mz(q) = −gµB〈Sz(q)〉 = χ0(q)Hz(q)eff

= −J(q)χ0(q)V
gµB

〈Sz(q)〉 +
1
2
HV χ0(q) . (4.11)

Solving for 〈Sz(q)〉 and using (4.10) gives us the susceptibility of the interact-
ing system at high temperatures,

χ(q) =
χ0

1 − χ0
J(q)V
g2µ2

B

=
C/Tc

(T − Tc)/Tc + [1 − J(q)/J(q)]
. (4.12)

We notice immediately that as the temperature decreases a divergence appears
at a critical temperature

Tc =
J(q)CV

g2µ2
B

, (4.13)

where q is the wave vector for which J(q) is a maximum. The fact that the
susceptibility diverges for this particular wave vector means that the compo-
nent of the magnetization with that wave vector would remain nonzero even if
the probing field were to go to 0. Thus we have a spontaneous magnetization.
The wave vector q for which this transition occurs depends on the nature of
J(q). Let us consider four possible cases.
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Ferromagnetism. Suppose that the exchange Jij is positive and extends only
to nearest neighbors. Then

J(q) =
J

N

∑
δ

exp(−iq · δ) , (4.14)

where δ is a vector to the nearest neighbor. In particular, if we have a simple
cubic lattice with a lattice parameter a, then

J(q) =
2J

N
(cos qxa + cos qya + cos qza) . (4.15)

Figure 4.1 shows 1/χ(q) plotted as a function of temperature for various values
of q. We see immediately that as the temperature decreases the first divergence
appears at q = 0.

This instability results in a uniformly magnetized system, a ferromagnet.
The temperature associated with this transition is the Curie temperature,
which, for our simple cubic example, is

Tc =
J(0)CV

g2µ2
B

=
6JS(S + 1)

3kB
. (4.16)

The uniform susceptibility is

χ(0)ferro =
C

T − Tc
. (4.17)

In fact, ferromagnetism is not compatible with cubic symmetry. This has to
do with time reversal. In the ferromagnetically ordered state time reversal by
itself is not a symmetry operation, but only occurs in conjunction with some
other symmetry operator. Consider, for example, a body-centered-cubic (bcc)
system. In the paramagnetic state the symmetry operations which transform
this structure into itself constitute the octahedral group denoted Oh or m3m.
If, in the ordered state, the spins at each site all point in the z-direction then
those operations of Oh which involve rotations about the x- or y-axes must
be combined with time reversal to preserve the direction of the spins. The
resulting allowed operations constitute the so-called magnetic point group,
which, in this case, is denoted 4/mm m. The important feature of this group is
that it is tetragonal. When a material develops a spontaneous magnetization,
it also generally develops a strain proportional to the magnetization. This
magnetostrictive effect, as it is known, reflects the symmetry of the system.
Thus, iron, which is bcc above its Curie temperature, develops a tetragonal
distortion in the ferromagnetic state. However, since this distortion is very
small one often finds ferromagnetic iron characterized as bcc.

Another general result which is obscured by the above mean field ap-
proximation has to do with the dimensionality of the system. Landau and
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Fig. 4.1. Temperature dependence of the inverse susceptibility 1/χ(q) of a ferro-
magnet for various values of q

Lifshitz [77a] pointed out that one cannot have long-range order in one di-
mension at a finite temperature. Consider, for example, a chain of spins. The
long-range order is destroyed by simply “flipping” one spin. Although this
costs exchange energy, the entropy gained is proportional to the logarithm of
the number of ways this can be done. For an infinitely long chain this en-
tropy term will always dominate the free energy, resulting in disorder. Lieb
and Mattis have shown [77b] that at T = 0 the ground state of a system
of N electrons in 1-dimension subject to an arbitrary symmetric potential is
unmagnetized. While it is not possible to realize a truely 1-dimensional sys-
tem, it is possible to fabricate GaAs-AlGaAs heterojunctions that behave as
quantum wires. The quantization of conductance in integer multiples of 2e2/�

is the signature of 1-D transport. Recent results suggest that under such con-
ditions the transport electrons are spin polarized [77c]. This is a subject of
current interest.

In two dimensions the situation depends upon the details of the interac-
tion – a Heisenberg system, for example, does not exhibit ferromagnetism,
while an Ising system does.

Antiferromagnetism. From Fig. 4.1 it is obvious that if the exchange constant
between nearest neighbors is negative, then the first divergence appears for
q = (π/a)(x̂ + ŷ + ẑ) or one of the other similar wave vectors in a body-
diagonal direction. This means that the phase of the magnetization changes
by π from one plane of atoms to the next as we proceed along the direction
of q. Thus we have an antiferromagnetic system. The temperature at which
χ(q) diverges is the Néel temperature,

TN =
6|J |S(S + 1)

3kB
. (4.18)
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Fig. 4.2. Possible types of antiferromagnetic order in body-centered and face-
centered cubic lattices. The symbols ⊕ and � refer to “up” and “down” magnetic
moments, respectively

The uniform susceptibility is given by

χ(0)antiferro =
C

T + TN
, (4.19)

which is well behaved at the Néel temperature.
In general the exchange interaction will extend beyond just the nearest

neighbors. This can lead to a variety of antiferromagnetic configurations.
Antiferromagnetism is compatible with cubic symmetry, and several “types”
of antiferromagnetic orderings in cubic lattices are illustrated in Fig. 4.2. The
oxides MnO, FeO, and NiO are examples of the fcc type II order.
Helimagnetism. In Chap. 9 we shall discuss the RKKY exchange interaction,
an indirect exchange between localized moments which arises through the
presence of conduction electrons. For our present purposes it is sufficient to
note that this interaction is long range and oscillatory. To see what effect such
an exchange may have on our spin configuration, let us consider our simple
cubic lattice and take

Jij =
{

J1

−J2

for the six nearest neighbors.
for the twelve next-nearest neighbors.
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Fig. 4.3. Magnetic properties of the rare-earth metals. Data assembled from [78]

Then

J(q) =
2J1

N
(cos qxa + cos qya + cos qza) (4.20)

−4J2

N
[(cos qxa)(cos qya) + (cos qya)(cos qza) + (cos qza)(cos qxa)] .

This exchange has an extremum when aq = cos−1(J1/4J2)(x̂ + ŷ + ẑ).
If J1 < 4J2, it will lead to a spin configuration whose wavelength is incom-
mensurate with the lattice spacing. An example of such a system is the rare-
earth metal thulium (Tm) at temperatures between 40 and 56 K. The spin
configuration of Tm in this region is illustrated in Fig. 4.3. This particular
configuration is sometimes referred to as a longitudinal wave.

The general situation is actually more complicated. So far our probing
field has had a sinusoidally varying amplitude but has been fixed in direction.
In principle, we could also imagine a field whose direction also varies in space.
Should the response to such a peculiar field diverge, a correspondingly peculiar
spin configuration would occur. Such spin configurations are, in fact, found in
the heavy rare-earth metals as indicated in Fig. 4.3. The insert illustrates var-
ious spin configurations. Such systems are referred to as helimagnets. Dealing
with the generalized susceptibility is not a very practical way of determining
the existence of such spin configurations. A better method is to minimize
the exchange energy. This is, in fact, the way these configurations were first
obtained [79]. For our longitudinal-wave helimagnet, J(q) = 3J2

1/4NJ2 and

Tc =
S(S + 1)J2

1

4kBJ2
. (4.21)
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Therefore the uniform susceptibility is

χ(0)heli =
C

T − [8J2(J1 − 2J2)/J2
1 ]Tc

. (4.22)

Since J1 < 4J2, the coefficient of Tc in the denominator is always less than 1.
Thus the uniform susceptibility will be finite at the transition temperature.
However, its high-temperature behavior will resemble that of a ferromagnet
if J1 > 2J2 and that of an antiferromagnet if J1 < 2J2.

Ferrimagnetism. In the preceding three cases we have assumed that the spins
and their environments were all identical. If some spins or some environments
are different, then we have an impurity or alloy problem. However, if there
are two different sites, each of which is translationally equivalent, i.e., two
sublattices, then we can have what Néel called a ferrimagnet. As an example
of such a system, let us consider an NaCl-like structure with spins S1, say,
at the Na-like sites and S2 at the Cl-like sites. Thus we have a basis of two
spins, just as NaCl has a basis of two ions. The Bravais lattice is face-centered
cubic.

If we denote the spin in the ith cell with the basis vector b as Sib

and assume a nearest-neighbor exchange interaction, then the exchange
Hamiltonian is

Hex = −J
∑
i,j

∑
b,b′

Sib · Sjb′ . (4.23)

where the sums involve only nearest-neighbor spins. The reciprocal lattice
associated with our system is that appropriate to the face-centered-cubic
Bravais lattice. Therefore the Fourier expansion of the spins will involve wave
vectors whose components are multiples of 2π/L up to π/2a, where L is the
crystal dimension and a is the ionic spacing. Applying an external field with
a spatial variation characterized by one of these wave vectors gives a Zeeman
Hamiltonian of the form

HZ = gµBH
∑
i,b

Sz
ib cos(q · Ri + q · b) . (4.24)

In Fourier components, the total Hamiltonian is

H = −
∑
q′

∑
b�=b′

J(−q′)Sb(q′) · Sb′(−q′) +
1
2
gµBH

×
∑

b

[
Sz

b(q)e−iq·b + Sz
b(−q)eiq·b], (4.25)
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where

J(−q) =
J

N

′∑
δ

e−iq·δ . (4.26)

The prime indicates that δ is restricted to 0 and five vectors to nearest neigh-
bors, which depend on the definition of the basis. If we take b = ax̂, then

J(−q) =
2J

N
(cos qxa + cos qya + cos qza) exp(−iqxa) . (4.27)

The effective field seen by the spin Sb is

Hb(−q)eff = −J(−q)V
gµB

〈Sz
b′(−q)〉ẑ +

1
2
HV e−iq·bẑ . (4.28)

Making use of (4.10), we have

〈Sz
b(q)〉 = −χ0(q)

gµB
Hb(q)eff =

CbJ(q)V
g2µ2

BT
〈Sz

q′(q)〉 − CbHV

2gµBT
e−iq·b (4.29)

with a similar equation for 〈Sz
b′(q)〉. Solving these two equations gives

〈Sz
b(q)〉 = − HV

2gµBT

Cbe
iq·b + [CbCb′J(q)V/g2µ2

BT ]eiq·b′

1 − CbCb′J(q)2V 2/g4µ4
BT 2

. (4.30)

Since

Mz(q) = −gµB

∫
dreiq·r

∑
i,b

〈Sz
ib〉δ(r − Ri − b) ,

= −gµB

∑
b

〈Sb(q)〉e−iq·b , (4.31)

we obtain for the susceptibility of our ferrimagnetic system,

χ(q) =
(C1 + C2)T + 2C1C2J(q) cos(qxa)V/g2µ2

B

T 2 − C1C2J(q)2V 2/g4µ4
B

. (4.32)

Fig. 4.4. Two possible basis configurations for a ferrimagnet
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Fig. 4.5. General behavior of the high-temperature inverse susceptibility associated
with various systems

From the nature of J(q), this susceptibility diverges for q = 0. Furthermore,
this divergence is independent of whether J is positive or negative. If it is
positive, the two spins within the basis are parallel; if it is negative, they
are antiparallel. These two possible configurations are shown in Fig. 4.4. The
uniform susceptibility of this ferrimagnetic system is

χ(0)ferri =
(C1 + C2)T + 2

√
C1C2Tc

T 2 − T 2
c

, (4.33)

where the transition temperature is

Tc =
6J
√

S1S2(S1 + 1)(S2 + 1)
3kB

. (4.34)

The high-temperature susceptibilities associated with the various types of
magnetic order are shown in Fig. 4.5. The rare-earth iron garnets, RE3Fe5O12,
are typical examples of ferrimagnets.

Although our preceeding discussion has focused on lattices, the existence
of such atomic long-range order is not required for magnetic long-range order.
There are a large number of materials that can be prepared in the amorphous
state which show magnetic order. In particular, amorphous films of rare-earth
and transition metals, such as Gd-Co and Tb-Fe, are ferrimagnetic.

Below the ferromagnetic transistion temperature the system is charac-
terized by a spontaneous uniform magnetization. In most ferromagnets the
magnetization develops smoothly from zero, identifying such transitions as
second order. A typical magnetization curve is shown in Fig. 4.6.
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The garnets have three inequivalent magnetic sublattices. The “a” ions are arranged
on a bcc lattice in octahedral sites; the “c” and “d” ions sit in dodecahedral and
tetrahedral sites, respectively. The dominant exchange interaction is an antiferro-
magnetic coupling between the a and d sites. The calculated contributions to the
magnetization from these sublattices is shown in (b) [81]

Themagnetization curve for a ferrimagnet ismore complex. Figure 4.7 shows
the net magnetization associated with a two-component, antiferromagnetically
coupled ferrimagnet. Because the temperature dependences of the individual
components are different, the net magnetization may go to zero at a point called
the compensation temperature. This temperature is very important in certain
applications involving the switching of the magnetization.

Spin Glasses. In a metal the exchange between local moments can be positive
(ferromagnetic) or negative (antiferromagnetic) (see Sect. 9.2.1). This means
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Fig. 4.8. Simple example of frustration. The signs refer to the exchange. Thus, if
the three spins are aligned as indicated, the fourth will be frustrated

that some spins may find themselves in configurations where it is not possi-
ble to satisfy all the exchange interactions. Such a situation is illustrated in
Fig. 4.8 and is referred to as “frustration”. The first model of a spin system
incorporating frustration was suggested by Edwards and Anderson [82]. Their
model consists of spins on every site of a regular lattice interacting with z
neighbors through an exchange Jij , which is random and governed by a prob-
ability distribution P (Jij). To see the qualitative implications of this model,
consider the mean-field equation (4.35) for the thermal average of a spin 1

2 ,

〈Si〉 = tanh

⎛
⎝∑

j

Jij〈Sj〉/kBT

⎞
⎠ . (4.35)

Linearizing gives
〈Si〉 =

∑
j

Jij〈Sj〉/kBT . (4.36)

Averaging over Jij = 0 leads to the result that 〈Si〉 = 0. However, if we square
(4.36) and again average over the exchange values, we obtain

〈Si〉2 =
z

(kBT )2
J2

ij 〈Sj〉2 . (4.37)

This means that 〈Si〉2 becomes nonzero at a critical temperature Tf =
zJ2

ij/kB and is identified as the order parameter q. The fact that 〈Si〉2 �= 0,
while 〈Si〉 = 0, implies a spin configuration in which each spin is frozen in some
specific direction, but this direction varies randomly throughout the alloy. This
is generally what is meant by a “spin glass”. The mean-field solution to the
Edwards-Anderson model gives a cusp in the low-field ac susceptibility as
observed experimentally (Fig. 4.9). However, the theory also predicts a cusp
in the specific heat at Tf which is not observed.

A difficulty in comparing experimental results with random exchange mod-
els is that the data seem to suggest that the actual systems may be more
complex. The ac susceptibility, for example, is slightly frequency dependent,
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Fig. 4.9. ac susceptibility as a function of temperature for Cu:Mn [83]

Fig. 4.10. dc susceptibility of Ag:Mn [84]

as shown in the insert in Fig. 4.9. The dc susceptibility is also marked by time-
dependent and irreversible behavior. Figure 4.10 shows the dc susceptibility
of Mn in Ag. If the sample is cooled in zero magnetic field (which involves
cancellation of the earth’s field) and then the susceptibility measured with
increasing temperature, one obtains the solid curve. On the other hand, if one
cools the sample in the presence of the field which is used to measure sus-
ceptibility, then one obtains the larger values indicated by the dashed lines.
These field-cooled susceptibilities are reversible whereas the zero-field-cooled
curve is not. Furthermore, if one sits at a given temperature T < Tf on the
zero-field-cooled curve, the magnetization increases logarithmically with time,
eventually approaching the field-cooled value. This behavior is believed to be
associated with the existence of a large number of low-lying states connected
by energy barriers. These barriers restrict the phase space available to the sys-
tem and the low temperature magnetic properties are governed by the shape
of these wells.
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4.2 Low Temperatures

Let us now turn briefly to the question of how the systems we have just
discussed respond to a static field when they are below their ordering tem-
perature. In the treatment above we considered only an isotropic exchange
interaction. If this were the only contribution to the Hamiltonian, then the
Hamiltonian, as well as its eigenstates, would be invariant under rotations.
This would mean that the isotropic exchange interaction itself could not lead
to a macroscopically ordered state. There are, in fact, additional interactions
which favor certain crystallographic directions. Nickel, for example, prefers to
magnetize along its [1 1 1] direction while iron prefers the [1 0 0] direction.
Such magnetic anisotropy has its origin in the spin-orbit interaction as we
discussed in Sect. 2.3.1. In metals this interaction leads to shifts in the energy
bands as the magnetization direction is varied. Such shifts are accompanied
by an electron redistribution among the bands with a corresponding change
in the total electronic energy.

Macroscopically, the magnetic anisotropy is characterized by an energy
which is a function of the direction cosines of the magnetization relative to the
crystallographic axes. A uniaxial anistropy, for example, would be represented
by K1 sin2 θ. Microscopically, at least for an ionic solid, the anisotropy appears
as terms in the Hamiltonian involving products of the components of the spin.
In particular, for a uniaxial system,

Haniso = −D
∑

i

(Sz
i )2 , (4.38)

where D is the anisotropy constant. The total effective field acting on the ith
spin in the molecular field approximation is therefore

Hi,eff = − 1
gµB

∑
j �=i

Jij〈Sj〉 −
D

gµB
〈Sz

i 〉ẑ + H cos(q · Ri) . (4.39)

Because there is now an inherent direction in the system, the response to an
applied field will depend upon the direction of such a field. Let us first consider
the case in which the applied field is parallel to the anisotropy axis. Then

〈Sj〉 = 〈Sz
i 〉0 cos[Q · (Rj − Ri)]ẑ + δSz

j ẑ , (4.40)

where 〈Sz
i 〉0 is the average value of Sz

i in the absence of the applied field
and Q characterizes the order. Since the exchange energy exceeds the thermal
energy in the ordered state, this is given by the Brillouin function as

〈Sz
i 〉0 = −SBS

(
− [NSJ(Q) + DS]〈Sz

i 〉0
kBT

)
. (4.41)

The term δSz
j in (4.40) is that part of 〈Sz

j 〉 which is induced by the applied
field. This response is what defines the susceptibility. The average value of Sz

i
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in the presence of the field is given by an expression similar to (4.41), with
the applied field added to the argument of the Brillouin function as well as
terms involving δSz

i . However, if all these additional terms are small, we may
expand the Brillouin function in powers of these terms. To lowest order, we
obtain

〈Sz
i 〉 = 〈Sz

i 〉0 +
NS2B′

S

kBT

1
N

∑
j �=i

JijδS
z
j

+
DS2B′

S

kBT
δSz

i − gµBS2HB′
S

kBT
cos(Q · Ri) , (4.42)

where B′
S is the derivative of the Brillouin function with respect to its argu-

ment, evaluated at zero field. If we take the Fourier transform of (4.39), the
susceptibility is found to be

χ||(q) =
3SCB′

S/(S + 1)
T − [3SB′

S/(S + 1)][NJ(q) + D]S(S + 1)/3kB
. (4.43)

By similar arguments, the response to a field applied perpendicular to the
z-axis is characterized by

χ⊥(q) =
g2µ2

BN/V

N [J(Q) − J(q)] + D
. (4.44)

From these expressions we find that the perpendicular susceptibility is inde-
pendent of temperature, while the parallel susceptibility decreases to 0 as the
temperature does. This leads to a rather interesting phenomenon in antifer-
romagnets. At zero temperature the application of a parallel field produces
no polarization. Thus there is no Zeeman energy associated with this state.
A perpendicular field, however, produces a small canting of the spins which
does lead to a polarization. The Zeeman energy associated with this state is
essentially −M · H. Thus, if there were no anisotropy energy, the spins in a
parallel field would all “flop” over into the lower-energy perpendicular config-
uration. Because of the anisotropy energy there is a minimum field at which
this “spin-flop” transition occurs. By equating the energies in the two states
we find, for nearest-neighbor interactions,

Hcrit =
S

gµB

√
4zD|J | , (4.45)

which is the geometrical mean of the exchange field and the anistropy field.
This will not happen in a ferromagnet, even though the parallel response
function does go to 0, because of the large dipolar energy associated with the
aligned state. Figure 4.11 shows the phase diagram for an antiferromagnet.
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Metamagnetism. In a material with strong anistropy the spin-flop state is
suppressed and below a certain temperature the system goes directly into the
paramagnetic state via a first-order transition. Such systems are called meta-
magnets. Classic examples are FeCl2 and DyPO4. A schematic phase diagram
is shown in Fig. 4.12a. The point at which the line of second-order transitions
changes into a line of first-order transitions is called the tricritical point. In
an antiferromagnet the field conjugate to the staggered magnetization is the
staggered field H(q) ≡ Hs. Griffiths [85] has pointed out that in the Hi −
Hs − T phase diagram for a metamagnet there exist two first-order surfaces
extending like wings out into the Hs �= 0 region as shown in Fig. 4.12a. Notice
that these wings are bounded by two lines of second-order transitions. Thus
the tricritical point is also the meeting of three critical lines. In finite samples
the internal field Hi and the applied field H0 differ due to demagnetizing
effects. For an elliptical sample characterized by a demagnetizing factor N ,
the internal field is given by Hi = H0 − 4πNM . Since the magnetization
increases discontinuously as we cross the line of first-order transitions, the
internal field is discontinuously reduced to a value below that required for the
transition. The material resolves this contradiction by breaking into domains
of two phases. This mixed phase is analogous to the so-called intermediate
state in superconductivity.
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4.3 Temperatures Near Tc

Let us now turn to the interesting region of the critical point itself. The object
of any critical-point theory is to predict accurately the behavior of various
physical quantities as the temperature or some other variable approaches its
critical-point value. Generally this approach is represented by a power law
such as (T − Tc)λ. Figure 4.6, for example, shows that the magnetization of
EuO vanishes as (T − Tc)0.37. A successful theory must correctly predict the
value of λ, as well as any relationship, if it exists, between the exponents
associated with different physical quantities.

There are two basic steps in this problem. First a model must be selected that
adequatelyrepresentstheactualsystembutisstillmathematicallytractable.Our
discussions so farhavebeenbasedontheHeisenbergHamiltonian,−

∑
JijSi ·Sj .

Wehavealsomentionedthe Isingmodel,−
∑

JijS
z
i Sz

j .Althoughsomematerials,
such as dysprosium aluminum garnet, may actually be described by this model,
its main attraction is that it is much easier to deal with than the Heisenberg
model. In fact, the thermodynamic quantities associatedwith a two-dimensional
Ising model may be computed exactly [86].

Since even the relatively simple Ising model has not yet been solved exactly
in three dimensions, we are forced to make certain approximations. Therefore
the second step in the critical-point problem is the development of mathe-
matical techniques that enable us to calculate physical properties near the
phase transition of our model system. In Sect. 4.1, we employed the mean-
field approximation for low temperatures where each spin was assumed to
be statistically independent; that is, 〈Sz

i Sz
j 〉0 = 〈Sz

i 〉0〈Sz
j 〉0, where the sub-

script indicates that this average is to be taken in zero field. In the high-
temperature region we employed the random-phase approximation, in which
only the Fourier components were assumed independent. Notice that use of
the molecular field approximation in this region would have implied that the
energy of the system, which involves 〈Sz

i Sz
j 〉0, was 0 above Tc. Thus the spe-

cific heat would also have been 0. In actual fact, however, as Tc is approached
from above the spins begin to correlate with one another. That is, 〈Sz

i Sz
j 〉

is not 0 for spins that are relatively close together. We speak of this as the
appearance of short-range order. Owing to the existence of this short-range
order, the energy, and consequently the specific heat, are not 0 above the point
where the spontaneous magnetization vanishes.

The determinations of the correlation function 〈Sz
i Sz

j 〉0 provides us with
a nice application of the fluctuation-dissipation theorem. Introducing Fourier
components and requiring that this correlation function depend only upon the
relative coordinates of the spins gives

〈Sz
i Sz

j 〉0 =
1

N2

∑
q

〈S(q)zS(−q)z〉0 exp[iq · (Ri − Rj)] . (4.46)
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Since Mη(q) = −gµBSη(q), the fluctuation-dissipation theorem (1.88) gives

〈S(q, t)zS(−q)z〉0 =
∫

dω

2π

�V

g2µ2
B

coth(β�ω/2)χ′′
zz(qω)e−iωt . (4.47)

Setting t = 0 and assuming that kB T/� is larger than any relevant frequencies
(we shall discuss the validity of this assumption in Chap. 6), we find

〈S(q)zS(−q)z〉0 =
kBTV

πg2µ2
B

∫
χ′′

zz(q, ω)s

ω
dω . (4.48)

By the Kramers-Kronig relation (1.64), the frequency integral is just π times
the static susceptibility χzz(q, 0). Therefore we obtain

〈Sz
i Sz

j 〉0 =
kBTV

N2g2µ2
B

∑
q

χzz(q) exp[iq · (Ri − Rj)] . (4.49)

Notice that since 〈(Sz
i )2〉 = S(S + 1)/3, (4.49) leads to what we refer to as a

sum rule

1
N

∑
q

χ(q) = χ0 , (4.50)

where χ0 was defined in (4.10).
If we use the random-phase result for χzz(q) (4.12) and assume a simple

cubic lattice, then in the long-wavelength limit (4.49) becomes

〈Sz
i Sz

j 〉0 =
6S(S + 1)

3Na2

T

Tc

∑
q

exp[iq · (Ri − Rj)]
κ2 + q2

, (4.51)

where

κ−1 = a

√
Tc

6(T − Tc)
(4.52)

is referred to as the correlation length. Notice that as T becomes very large
in comparison with Tc, the correlation length becomes very small and

〈Sz
i Sz

j 〉0 −→
T>Tc

1
3
S(S + 1)∆(Ri − Rj) . (4.53)

As T approaches Tc the correlation function takes the so-called Yukawa-like
form

〈Sz
i Sz

j 〉0 =
S(S + 1)

16π4(N/V )a2

T

Tc

exp(−κ|Ri − Rj |)
|Ri − Rj |

. (4.54)
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Fig. 4.13. The effect of various approximations on the susceptibility and the specific
heat of a Heisenberg ferromagnet: (a) molecular field, (b) random phase, and (c)
typical experimental behavior

Thus as T approaches Tc each spin exerts a polarizing influence on those spins
within a sphere of radius κ−1. At T = Tc this sphere encompasses the whole
sample, and we say that long-range order has set in.

The specific heat associated with this ordering may also be computed
from (4.49). The behavior of the susceptibility and the specific heat in the
mean-field and random phase approximations are compared schematically
with typical experimental data in Fig. 4.13. The most notable discrepancy is
the fact that the actual transition occurs below the value predicted by these
theories. This is the consequence of an inadequate treatment of short-range
order.

We can obtain a better approximation for χ(q) by explicitly taking short-
range order in account. The basic idea is that the spins surrounding any given
spin will be correlated to the motion of that spin and will, therefore, not
contribute to the mean field seen by that spin. This is incorporated into the
theory by subtracting a term from the mean field which is proportional to
〈Sz

i 〉 itself,

Heff
i = −

∑
j

Jij

gµB
〈Sz

j 〉 +
∑

j

λijJij

gµB
〈Sz

i 〉 . (4.55)
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The parameters λij are assumed to be temperature dependent and charac-
terize this so-called Onsager reaction field. Proceeding as in the derivation of
(4.12) we obtain

χ(q) =
χ0

1 − χ0V
g2µ2

B

[J(q) − λ]
, (4.56)

where λ = (1/N)
∑

j λijJij . This parameter is obtained by requiring that the
susceptibility (4.53) satisfies the sum rule (4.50). The result is

λij =
〈Sz

i Sz
j 〉0

S(S + 1)/3
. (4.57)

Thus, (4.46) now becomes a self-consistent equation for the correlation function
〈Sz

i Sz
j 〉0.

This improved treatment of short-range order also renormalizes the tran-
sition temperature relative to the mean-field value Tc. If we sum (4.53) over
q and again use the sum rule we obtain the relation

G(S) = Tc/T , (4.58)

where S = T/Tc + λ/J(q) and the sum

G(S) =
1
N

∑
q

1
S − J(q)/J(q)

(4.59)

is called the lattice Green’s function. From (4.53) we see that χ(q) diverges
at a temperature which corresponds to S = 1. Therefore,

T ∗
c = Tc/G(1) . (4.60)

For simple cubic, body-centered-cubic, and face-centered-cubic lattices the
values of G(1) are 1.517, 1.393, and 1.345, respectively. Thus we see that
incorporating the Onsager reaction field predicts a lower transition tempera-
ture as we observed in Fig. 4.13.

Just below Tc the quantity of thermodynamic interest is the spontaneous
magnetization. As Tc is approached from below, 〈Sz

i 〉0 becomes very small,
which enables us to expand the Brillouin function in (4.41). The resulting
magnetization in this molecular field approximation is found to vanish as
(Tc − T )1/2.

At very low temperatures the molecular field expression (4.41) predicts
that the magnetization decreases with increasing temperature as e−2Tc/(S+1)T .
The decrease is found experimentally to be much less rapid. The reason for
this has to do with the existence of spin-wave modes, which we shall discuss
in Chap. 8.
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4.4 Landau Theory of Second-Order Transitions

This idea of treating the magnetization as an expansion parameter is a funda-
mental aspect of Landau’s theory of second-order phase transitions. Landau
associated second-order phase transitions with transitions in which there is a
“broken symmetry”. That is, the new ground state of the sytem does not pos-
sess the total symmetry of the Hamiltonian. In the case of ferromagnetism the
rotational invariance of the Heisenberg Hamiltonian is broken by the appear-
ance of the spontaneous magnetization M . Landau identified the parameter
whose value becomes nonzero in the unsymmetrical state as the order para-
meter. In this case it is obviously the magnetization. The order parameter
represents an additional variable that must now be used to specify the state
of the system. For the Heisenberg model the order parameter is a vector.
We therefore speak of it having the dimensionality n = 3. Since an Ising
model involves only the z-component of the spin, the order parameter has the
dimensionality n = 1.

If the order parameter, call it M , is to grow from zero above Tc to a finite
value below Tc then the Landau theory argues that near Tc the free energy
has the form

F = a(T − Tc)M2 + BM4 . (4.61)

where a and B are constants. Minimizing this energy with respect to M tells
us that M ∼ (Tc − T )1/2 as we found above. If we add an applied field term,
−MH, then it can be shown that the susceptibility diverges as χ ∼ (T−Tc)−1.
Similarly, if we assume that the magnetization varies slowly in space, then
there will be an additional term in the free energy. Since it costs virtually
no energy to rotate the magnetization uniformly, we expect that the energy
associated with a gradual variation may be expressed in terms of derivatives
of M . In order to satisfy time reversal, this must be a quadratic expression.
There are several such possibilities. In an isotropic medium, for example, there
are three: |∇M |2 = |∇Mx|2 + |∇My|2 + |∇Mz|2, (∇ · M)2, and |∇ × M |2.
If we assume that all those terms reflecting the spatial symmetry are taken
into account through an anisotropy energy, then the exchange energy must
be invariant with respect to rotations in spin space. For example, a rotation
of π about the z-axis in spin space takes Mx → −Mx and My → −My, but
leaves x and y unchanged. Thus, the exchange energy in a cubic crystal must
have the form

δE

V
=

A

M2
0

|∇M |2 , (4.62)

where A is referred to as the exchange stiffness. This contribution introduces a
characteristic length, the correlation length, which varies as ξ ∼ (Tc−T )−1/2,
as we have already found. These critical exponents,
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β =
1
2

for the magnetization,

λ = 1 for the susceptibility, and

η =
1
2

for the correlation length,

do not agree with those observed experimentally. This is not too surprising
for the theory itself predicts that as T → Tc fluctuations in the order para-
meter become larger than the order parameter itself. Careful measurements
of these and other critical exponents in the 1960s stimulated much theoreti-
cal activity. It was particularly intriguing that particular critical exponents in
different systems seemed to have nearly the same values. Furthermore, certain
combinations of exponents seemed to be related.

4.5 Critical Phenomena

The first major assault on this problem was Widom’s hypothesis that the
critical part of free energy, G, was a homogeneous function of its independent
variables. We say that a function G(ε,H) is homogeneous if it can be written
in the form

G(λxε, λyH) = λG(ε,H) , (4.63)

where ε = (T−Tc)/Tc, x and y are two critical indices, and λ was subsequently
shown by Kadanoff to correspond to a scaling length. With this “scaling”
hypothesis all the critical exponents now become combinations of x and y.
In 1971 K. Wilson introduced the renormalization group which clarified the
nonanalytic nature of the phase transition and provided the basis for scaling.
Various methods have been developed for performing renormalization-group
calculations for the critical exponents themselves. Such calculations show that
the critical exponents are only functions of the dimensionality of space and the
dimensionality of the order parameter, a situation referred to as universality
(see [87]).

It is difficult to make accurate comparisons with experiment. First of
all, impurities and strains tend to smear out the transition, making it dif-
ficult to measure close to the transition. And also, weak anisotropies become
important near the transition and can lead to “crossover” from one universality
class to another. These difficulties are illustrated in Fig. 4.14, where we have
plotted the critical exponent β for four representative materials among the
constant β contours in the n, d-plane obtained from a renormalization-group
calculation [88]. Dysprosium aluminum garnet (DAG) is considered to be a
three-dimensional Ising system, K2NiF4 a two-dimensional Heisenberg system,
and GdCl3 a three-dimensional Heisenberg system but one in which long-range
dipolar interactions are important.
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Table 4.1. The critical exponent β for selected materials

Material β Tc−T
Tc

Refs.

GdCl3 β = 0.43 0.002 ≤ ε ≤ 0.07 [90]

DAG β = 0.26 0.001 ≤ ε ≤ −.056 [91]

K2NiF4 β = 0.138 0.0003 ≤ ε ≤ 0.2 [92]

MnF2 β = 0.333 0.00006 ≤ ε ≤ 0.08 [93]

4.5.1 Order in 2D

Notice that the theoretical curves shown in Fig. 4.14 do not extend to d = 2.
In two dimensions, the nature of the long-range order depends critically on
the dimensionality of the order parameter. Mermin and Wagner [89] have
shown that two-dimensional systems with a continuous suymmetry, such as a
Heisenberg system, will not exhibit conventional long-range order as
characterized, for example, by a spontaneous magnetization or a sublattice
magnetization.

A good example of 2-dimensional behavior is found in the undoped high-
temperature superconductor La2CuO4 [94]. This compound has the layered
perovskite structure shown in Fig. 4.15. Since La has the oxidation state +3
and oxygen is −2, this suggests that the copper is in a +2 oxidation state
corresponding to a 3d9 electronic configuration. With one hole per copper
atom one would expect La2CuO4 to be a metal. However, it is an anti-
ferromagnetic insulator. This is presumably the result of electron-electron
correlations as originally suggested by Mott.

Fig. 4.14. Variation of the critical exponent β (associated with the magnetization)
with the dimensionality of space (d) and order parameter (n). The experimental
values for several materials are indicated (see Table 4.1 for references)
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La2−xBaxCuO4

La (Ba)

Cu

O O

c

b

Fig. 4.15. Layered perovskite structure (Figure to right shows spin configuration
of La2CuO4)

The spin 1/2 holes in the copper layers describe a spin 1/2 2D square
lattice quantum Heisenberg system. Chakravarty et al. [95] have shown that
the correlation length of such a system varies as

ξ

a
= 0.493e1.15J/kBT ,

which implies that ordering only occurs at T = 0 K. The fact that La2CuO4

has a relatively high Neél temperature at TN = 325 K is due to anisotropy in
the exchange as well as interlayer exchange. The Hamiltonian for La2CuO4

has been found [94] to have the form

= H = J

⎡
⎣∑

i,δ||

Si · Si+δ|| + αxy

∑
i,δ||

Sc
i S

c
i+δ||

+
∑
i,δ⊥j

α⊥jSi · Si+δ⊥j + αDM

∑
i,δ||

(−1)ib̂ · Si × Si+δ||

⎤
⎦ ,

where αxy, α⊥j , and αDM represent the x–y anisotropy, the interlayer cou-
pling, and the Dzyaloshinski–Moriya interaction, respectively. The index j
refers to the two different out-of-plane neighbors, and the notation “c”
indicates the component of the spin in the c-direction. Including the anisotropy
term and the interlayer term, the Neél temperature is given by

kBTN =
(

ξ

a

)2

J
(
z||αxy + z⊥α⊥

)
,

where z|| and z⊥ are the in-plane and out-of-plane coordination numbers,
respectively. The magnetic order is shown in the insert in Fig. 4.15. The
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Fig. 4.16. Phase diagram for La2−xSrxCuO4 summarizing structural, magnetic,
and transport properties. The narrow dashed line (dR/dT = 0) separates the region
of metallic linear resistance from that of logarithmically increasing resistance. The
conductance in the Néel state is strongly localized. From Keimer, Belk et al. [96]

Dzyaloshinski–Moriya term causes the spins to cant out of the plane by about
0.17◦. The interlayer coupling in turn causes these small moments to orient
ferromagnetically from layer to layer.

When La2CuO4 is doped with Sr or Ba one obtains many different phases,
including the phase exhibiting superconductivity. The phase diagram is shown
in Fig. 4.16. Notice the precipitous drop in the Neel temperature with Sr
doping. This is due to the fact that the Sr doping introduces holes in the
oxygen which reduces the superexchange.

The Mermin–Wagner Theorem mentioned above does not exclude the pos-
sibility of a phase transition associated with more complex spin dynamics.
The two-dimensional XY model is the classic example. Berezinskii [97] has
calculated the spin-spin correlation function 〈SiSj〉 for this model using a
low-temperature expansion, and found a power-law behavior

〈SiSj〉 ∼
(
|Ri − Rj |

R0

)−kBT/4πJ

.
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Fig. 4.17. Spin Vortex

This implies that the susceptibility is infinite, i.e., that the system is
undergoing large fluctuations which destroy any long-range order. Kosterlitz
and Thouless [98], however, have pointed out that, in addition to the long-
wavelength spin fluctuations responsible for this power-law behavior, there
also exist local “topological defects” in the order parameters which, in this
case, correspond to vortices as illustrated in Fig. 4.17. Other examples of
“defects” in order parameters include dislocations in crystalling solids and
vortices in superfluid helium. To calculate the energy of an isolated vortex,
we write the XY Hamiltonian as

HXY = −2J
∑
i>j

(Sx
i Sx

j + Sy
i Sy

j ) = −2J
∑
i>j

cos(ϕi − ϕj) , (4.64)

where ϕi is the angle the ith spin makes with some arbitrary axis. Expanding
the cosine,

E − Eo ≈ J
∑

r

[∆ϕ(r)]2 , (4.65)

where ∆ denotes the first difference operator. For a vortex as shown in
Fig. 4.17, ∆ϕ(r) = 2π/2πr. Therefore,

E − E0 = 2πJ ln(R/a) , (4.66)

where R is the radius of the system and a the nearest-neighbor distance. Since
this vortex could be centered on any one of the πR2/a2 sites, the entropy is

S = 2kB ln(R/a) . (4.67)

The free energy is E − E0 − TS. Since both the energy and entropy depend
upon the size of the system in the same logarithmic way, the energy term
will dominate the free energy at low temperatures, and the probability of a
vortex appearing is vanishingly small. However, when the temperature exceeds
πJ/kB , the entropy dominates and free vortices are likely to appear. If one
now includes interactions between vortices, the critical temperature is given
by the solution of [98]
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πJ

kBTKT
− 1 = 2π exp(−π2J/kBTKT ) . (4.68)

Below the Kosterlitz–Thouless temperature, TKT , the vortices are bound in
pairs of zero total vorticity. This is referred to as topological long-range order.
The spin-spin correlation function still has a power-law behavior indicating an
infinite susceptibility. However, above TKT , the vortices give the correlation
function an exponential form with a susceptibility given by

χ(T ) ∼ exp(2.625t−1/2) , (4.69)

where t = (T − TKT )/TKT .

4.6 Stoner-Wohlfarth Model

The usefulness of magnetic materials generally depends upon the existence of
a net magnetization at room temperature. That is, magnetic materials of prac-
tical interest are either ferromagnets or ferrimagnets with Curie temperatures
above room temperature. Their electrical conductivity ranges from metallic
to insulating.

The susceptibilities given by (4.17) or (4.33) are the “small signal”
responses of these systems. If one applies a large enough field opposite to
the direction of the magnetization it is possible to reverse the magnetization.
As one cycles the magnetic field, positive and negative, the magnetization
follows a “hysteresis loop” as shown in Fig. 4.18.

The shapes of hysteresis loops depend upon many extrinsic factors such as
crystallographic microstructure and the role of magnetic domains. The mag-
netic response characterized by a hyperesis loop is refered to as the “technical”
magnetization. This subject is beyond the scope of this text. However, there
is a very simple model that provides a connection between the hysteresis loop
and our microscopic concepts.

This model, due to Stoner and Wohlfarth [99], considers the response of
an array of noninteracting magnetic particles. Let us assume these particles
are ellipsoidal in shape and are uniformly magnetized as shown in Fig. 4.19.
To determine the direction of the magnetization in the presence of an applied
field, H0, we must minimize the energy of the system. Let us consider a single
particle. In addition to the Zeeman energy density, −M · H0, there is a
magnetostatic energy density associated with the magnetization itself given
by − 1

2M ·HD, where HD is the “demagnetization” field. To solve for HD we
combine the Maxwell equation ∇ · B = 0 with the definition B = H + 4πM
to obtain

∇ · HD = −4π∇ · M . (4.70)

Since there are no “free” currents in this problem, ∇×HD = 0. Therefore HD

may be expressed in terms of a magnetic scalar potential, ϕ, as HD = −∇ϕ.
Therefore (4.70) becomes
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Fig. 4.18. Typical “hysteresis loop” of a ferromagnet

Fig. 4.19. Coordinate system used to describe an ellipsoidal particle

∇2ϕ = 4π∇ · M . (4.71)

This has the solution

HD(r) = −
∫ ∇′ · M ′(r − r′)

|r − r′|3 d3r′ . (4.72)

If the magnetization is assumed to remain uniform, ∇ ·M is nonzero only at
the surface of the particle. This “magnetic charge” produces a “demagnetiza-
tion” field inside given by

HD = −N
∼

· M , (4.73)

where

N
∼

=

⎛
⎝Na 0 0

0 Nb 0
0 0 Nc

⎞
⎠ . (4.74)
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Fig. 4.20. Hysteresis loop for fields parallel (a) and perpendicular (b) to the axis
of an ellipsoidal particle

It can be shown that the demagnetization factors Ni satisfy

3∑
i=1

Ni = 4π . (4.75)

The fact that the demagnetization field is uniform inside the particle is due to
its ellipsoidal shape. The demagnetization field inside a uniformly magnetized
bar, for example, is not uniform.

Since the particle has axial symmetry we may assume that the magneti-
zation and the applied field lie in the a–b-plane. If the magnetization makes
an angle θ with the b-axis then the total energy density of the system is

E = −M · H0 −
1
2
M · HD (4.76)

= −MHa sin θ − MHb cos θ +
1
2
(Na − Nb)M2 sin2 θ +

1
2
NbM

2 .

In the absence of the applied field the direction of M depends upon the demag-
netization factors. Let us assume Na > Nb. The magnetization will then point
along the b-direction. Suppose we now apply a field along the b-direction
opposite to M . The energy density is then given by (ignoring the constant
term)

E = M |Hb| cos θ +
1
2
(Na − Nb)M2 sin2 θ . (4.77)

For small Hb this energy density has minima at θ = 0 and θ = π. When Hb

exceeds HK ≡ 2Ku/M , where Ku ≡ 1
2 (Na − Nb)M2, the minimum at θ = 0

vanishes leaving only the minimum at θ = π. At this point M switches to the
negative b-direction (Fig. 4.20a).
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If the field is applied along the a-direction then the energy density becomes

E = −MHa sin θ +
1
2
(Na − Nb)M2 sin2 θ . (4.78)

In this case the minimum shifts continuously from θ = 0 to θ = π/2 and the
magnetization rotates smoothly into the a-direction (Fig. 4.20b).

If we now assume that we have an array of identical particles, but that
they are randomly oriented with respect to the applied field, and if we neglect
the dipolar fields among the particles, then Stoner and Wohlfarth [99] showed
that the magnetization of the array has a form similar to Fig. 4.18 with a
coercivity Hc = HK/2 and a remanence Mr = M/2. In this case the coerciv-
ity is governed by the shape anisotropy of the particles. If the particles also
possess crystalline anisotropy arising from the spin-orbit interaction described
in Sect. 2.3.1, this energy must be added to (4.74). Cobalt, for example, has
an electronic structure that generally produces a large crystalling anisotropy.
Consequently, one often finds cobalt as the main constituent in high coercivity
materials.

Coercitivities can range from a fraction of an oersted, such as in permalloy,
an alloy of iron and nickel, to tens of thousands of oersteds, as in transition
metal-rare earth alloys. Materials having low coercivities are referred to as
magnetically “soft”, while those with large coercivities are “hard”.

4.7 Dynamic Coercivity

Let us now consider the consequences of incorporating temperature in the
Stoner–Wohlfarth model. Suppose we start in the fully saturated state and
suddenly reverse the applied field to the point A on the hysteresis loop shown
below. The sum of the anisotropy energy and the Zeeman energy as a function

Ms

H

A

M

of the angle the magnetization makes with the easy axis is shown in Fig. 4.21.
Until H reaches −HK there is still a local energy minimum at θ = 0. The
energy difference between this minimum and the maximum between θ = 0
and θ = π is

∆E = KuV (1 − H/HK)2 , (4.79)
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Fig. 4.22. Phonon-assisted magnetization reversal

where V is the “switching volume” which might be a magnetic particle or a
grain in a film or just a semi-isolated spin cluster. If temperature is included
then there is a probability that this volume may be excited over the barrier into
the local minimum at θ = π. Physically this reversal occurs through coupling
between the spins of the magnetic system and the thermal vibrations of the
lattice. As the lattice vibrates it modulates the exchange (exchangestriction)
and the magnetostatic energy (magnetostriction). To lowest order these cou-
pling energies are proportional to the amplitude of the lattice displacement,
∆x. The displacement ∆x may be expanded in terms of quantized lattice
vibration, or phonon, amplitudes bq, b

†
q. The coupling energy then has the

form gSµSν(bq + b†q) where g characterizes the strength of the coupling. Sec-
ond order perturbation theory gives the rate at which a phonon is absorbed
by the magnetic system, exciting it to an energy ∆E, and then reemitting a
phonon and dropping into the lower minimum as illustrated in Fig. 4.22,

1
τ

=
2π

�2

∑
q,q′

|g|2nq(nq + 1)δ(∆E − �ωq) , (4.80)
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Fig. 4.23. Dynamic coercivity as a function of the time taken to do the measure-
ment. The very short times are measurements taken with a pulsed field. The cluster
of longer times are magnetometer measurements [101]

where

nq = 〈b†qbq〉 =
1

e�ωq/kBT − 1
. (4.81)

Since �ωq = ∆E which is, in general, larger than kBT ,

1
τ

= f0e
−∆E/kBT . (4.82)

f0 is often referred to as an “attempt” frequency. In this model it is propor-
tional to the spin-phonon coupling. This process corresponds to “thermally
assisted” reversal of the magnetization, or superparamagnetism.

Equation (4.82) implies that the probability that a cluster of spins reverses
by hopping over the barrier is 1− e−t/τ . Then the magnetization will reverse
according to

M(t) = Ms(2e−t/τ − 1) . (4.83)

The magnetization will pass through zero at a time t0 = −(ln 1
2 )τ . If we define

the field at which this occurs as the coercivity Hc(t0), then

Hc(to) = HK

[
1 − kBT

KuV
ln
(

f0t0
0.693

)]
, (4.84)

where t0 is identified as the “measurement time”. Thus, (4.85) says that the
coercivity depends upon the measurement time. Equation (4.85) is called
Sharrock’s law after M. Sharrock who applied it to particulate media [100].
The coercivity is plotted as a function of the measurement time in Fig. 4.23.
The dashed line is (4.85). We see that this does not describe the data at very
short times. We shall see what is happening at short times in Chap. 6.
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4.8 Magnetic Viscosity

Since the barrier discussed in the previous section is proportional to the vol-
ume of the spin cluster, we expect, in general, to have a distribution of barrier
heights. Let us define N(E) as the density of spin clusters with barrier height
E. As a result of thermal activation the rate of change of the number of
clusters, N(E)dE, with barriers between E and E + dE, is given by

d

dt
N(E)dE = −f0e

−E/kBT N(E)dE . (4.85)

This has the solution

N(E) = N0(E)e−tf0 exp(−E/kBT ) , (4.86)

where N0(E) is the initial density distribution. Suppose, for example, that the
initial distribution has a square shape with the value N0 up to Emax, i.e.,

N0(E) = N0 , 0 ≤ E ≤ Emax .

As time evolves after application of a reversing field those clusters with small
barriers will reverse, depleting the low energy end of the distribution as shown
in Fig. 4.24. The reverse magnetization is given by the area of this “hole”.
Since this is an exponential process the curve will sweep out equal areas in
equal logarithmic increases in time. That is, the two shaded areas in the figure
are the same. This means that the magnetization decays logarithmically with
time,

M(t) = M(0) − S ln t . (4.87)

The coefficient S is known as the viscosity parameter [102].
Since the thermal fluctuations lead to a change in the magnetization char-

acterized by the viscosity S, one may describe this by an effective fluctuation
field Hf which is related to S by an “irreversible” susceptibility,

S = χirrHf .

et 1

t = 0

t e
N(E)
N 0

1 2t 1

E E

T

max

Bk

/ kBT

Fig. 4.24. Distribution of barrier heights for different times after a reversal field
has been applied
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This susceptibility may be obtained from the reverse remanence curve. That
is, we initially saturate the sample and then apply a reverse field for some
time τ . At the end of this time the remanent moment is measured enabling us
to construct a remanence curve as shown in Fig. 4.25. The irreversible suscep-
tibility χirr is defined as the maximum slope, which occurs at the remanent
coercivity.

Problems

4.1. Consider an impurity spin S′ which couples to its nearest neighbors
through an exchange interaction J ′. In the molecular field approximationg
this impurity represents an effective field Hz

eff = 2(J ′S′−JS)/gµB . Using the
concept of the generalized susceptibility calculate the moment induced around
the impurity as the temperature approaches Tc from above.

4.2. Add an anisotropy energy of the form −D
∑

i(S
z
i )2 to a ferromagnet and

(a) determine how this affects Tc;
(b) calculate χ⊥(0).

4.3. Entropy is given by the temperature derivative of the free energy,
S = −∂F/∂T .

(a) How does the entropy vary below the transition according to Landau
Theory.
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(b) What does Landau Theory predict for the specific heat at Tc.

4.4. Differentiate (4.63) with respect to H and use the definition

∂G(ε,H)/∂H = −M

to derive a relation between x, y, and β, where β is defined by M(ε, 0) ∼
(−ε)β . Similarly, derive a relation between x, y, and δ, where δ is defined
by M(0,H) ∼ H1/δ. Now differentiate twice with respect to H and use
the definition of the isothermal susceptibility, χT = −(∂2G/∂H2)T and,
χT (ε, 0) ∼ (−ε)−γ′

to derive a relation between γ′, β, and δ. This is know
as the Widom equality.

4.5. Compute χ⊥(0) for the Stoner–Wohlfarth model and thereby obtain a
relationship between the microscopic anisotropy constant, D in Problem 4.2,
and the macroscopic anisotropy constant, K1.



5

The Static Susceptibility
of Interacting Systems: Metals

The long-range magnetic order in metals is very similar to that observed in in-
sulators as illustrated by the magnetization curve of nickel shown in Fig. 5.1.
However, the electrons participating in this magnetic state are itinerant as
determined by the existence of a Fermi surface; that is, they also have transla-
tional degrees of freedom. How such a system of interacting electrons responds
to a magnetic field is a many-body problem with all its attendant difficulties.

The many-body corrections to the Landau susceptibility and the Pauli
susceptibility must be treated separately. Kanazawa and Matsudaira [104]
found that the many-body corrections to the Landau susceptibility are small
(less than one per cent) for high electron densities.

We shall approach the effect of electron-electron interactions on the spin
susceptibility in two ways. The first, Fermi liquid theory, is a phenomeno-
logical approach. It involves parameters completely analogous to the para-
meters entering the spin Hamiltonian. These parameters may be determined
experimentally or they may be obtained from the second approach which is to
assume a specific microscopic model from which various physical properties
can be calculated.

5.1 Fermi Liquid Theory

The phenomenological theory of an interacting fermion system was developed
by Landau in 1956 [106]. Although Landau was mainly interested in the prop-
erties of liquid He3, his theory may also be applied to metals. Modifications
of this theory in terms of the introduction of a magnetic field have been made
by Silin [107].

Let us begin by considering the ground state of a system of N electrons.
For a noninteracting system the ground state corresponds to a well-defined
Fermi sphere. Landau assumed that as the interaction between the electrons
is gradually “turned on” the new ground state evolves smoothly out of the
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Fig. 5.1. Magnetization of nickel as a function of temperature. The original data
of Weiss and Forrer [105] taken at constant pressure has been corrected to constant
volume to eliminate the effects of thermal expansion

original Fermi sphere; if |0〉 is this new ground state, it is related to the original
Fermi sphere |FS〉 by a unitary transformation,

|0〉 = U |FS〉 . (5.1)

Let us denote the energy associated with |0〉 as E0.
Landau also applied this assumption to the excitations of the interacting

system. For example, suppose we add one electron, with momentum �k, to
the non-interacting system. This state has the form a†

kσ|FS〉, where a†
kσ is

the creation operator for an electron. If the interactions are gradually turned
on, let us approximate the new state as

|kσ〉 = Ua†
kσ|FS〉 . (5.2)

Because the electron possesses spin, this wave function is a spinor.
Let us define the difference between the energy of |kσ〉 and |0〉 as ε0(k,σ).

Since the wave function is a spinor, this energy will be a 2 × 2 matrix. If the
system is isotropic, and in particular if there is no external magnetic field,
then this energy is independent of the spin,

ε0(k,σ)αβ = ε0(k)δαβ .

Because the whole Fermi sphere has readjusted itself as a result of the inter-
actions, the energy ε0(k) will be quite different from the energy of a free
particle. As we do not know this energy, we shall assume that k is close to kF

and expand in powers of k − kF . Thus we obtain

ε0(k) = µ +
�

2kF

m∗ (k − kF ) + . . . , (5.3)
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where
�

2kF

m∗ ≡ ∂ε0(k)
∂k

∣∣∣∣
k=kF

. (5.4)

This electron, “dressed” by all the other electrons, is called a quasiparticle.
Notice that the energy required to create a quasiparticle at the Fermi surface
is µ, the chemical potential. Its increase in energy as it moves away from the
Fermi surface is characterized by its effective mass m∗. We restrict ourselves
to the region close to the Fermi surface because it is only in this region that
quasiparticle lifetimes are long enough to make their description meaningful.

We could just as well have removed an electron from some point within the
Fermi sphere. This would have created a “hole”, which the interactions would
convert into a quasi-hole. The energy associated with a hole is the energy
required to remove an electron at the Fermi surface, −µ, plus the energy
it takes to move the electron at k up to the surface, (�2kF /m∗)(kF − k).
However, if we define the total energy of the system containing a quasi-hole
as E0 − ε0(k), then

ε0(k) = µ +
�

2kF

m∗ |k − kF | .

Thus the excitation spectrum associated with our Fermi liquid has the form
shown in Fig. 5.2.

Suppose that other quasiparticles are now introduced into the system. This
could occur, for example, as a result of an external field producing electron-
hole pairs. Since the energy of a quasiparticle depends on the distribution of
all the other quasiparticles, any change in distribution will lead to a change
in the quasiparticle energy. Let us denote the change in the distribution by
δn(k,σ).

The quasiparticle distribution is essentially the density matrix associ-
ated with the quasiparticle. In particular, it is a 2 × 2 matrix. For example,
δn(k,σ)11 gives the probability of finding an electron of momentum �k with

Quasi
part

icl
es

Fk
k

Quasi-holes

Excitation
energy

Fig. 5.2. Single-particle excitation spectrum of a Fermi liquid
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spin up. Therefore the quasiparticle energy may be written in phenomenolog-
ical terms as

ε(k,σ) = ε0(k,σ) +
1
V

Tr
σ′

{∑
k′

f(k,σ;k′,σ′)δn(k′,σ′)
}

. (5.5)

The quantity f(k,σ;k′,σ′) is a product of 2×2 matrices analogous to a dyadic
vector product. Again, if the system is isotropic, the most general form this
quantity can have is

f(k,σ;k′,σ′) = ϕ(k,k′)11′ + ψ(k,k′)σ · σ′ , (5.6)

where 1 is the 2 × 2 unit matrix. Furthermore, since this theory is valid only
near the Fermi surface, we may take |k′| � |k| = kF . Then ϕ and ψ depend
only upon the angle θ between k′ and k, and we may expand ϕ and ψ in
Legendre polynomials:

ϕ(k,k′) =
π2

�
2

m∗kF
A(k̂ · k̂′

) =
π2

�
2

m∗kF
[A0 + A1P1(cos θ) + . . .] , (5.7)

ψ(k,k′) =
π2

�
2

m∗kF
B(k̂ · k̂′

) =
π2

�
2

m∗kF
[B0 + B1P1(cos θ) + . . .] . (5.8)

If we know the quasiparticle distribution function, then we can compute, just
as for the electron gas, all the relevant physical quantities. These will involve
the parameters An and Bn. The beauty of this theory is that some of the same
parameters enter different physical quantities. Therefore by measuring certain
quantities we can predict others. The difficulty, of course, is in determining
the distribution function δn(k,σ). For static situations this is relatively easy.
However, for dynamic situations, as we shall see in the following chapters, we
have to solve a Boltzmann-like equation.

Since the k dependence of the quasiparticle energy is a result of interac-
tions, there should be a relation between m∗ and the parameters An and Bn.
To obtain this relation let us consider the situation at T = 0 in which we have
one quasiparticle at k with spin up, as illustrated in Fig. 5.3a. Now, suppose
the momentum of this system is increased by �q, giving us the situation in

Fermi

Sphere q

k k + q

-1) = ,

(b)(a)

δn(k σ

δ +1σ, ) = n(k

Fig. 5.3. Effect of a uniform translation in momentum space on a state containing
one extra particle
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Fig. 5.3b. This corresponds to placing the whole system on a train moving
with a velocity �q/m. To an observer at rest with respect to the train it will
appear that the quasiparticle has acquired an additional energy

δε(k,σ)11 = �
2k · q/m (5.9)

for small q. However, the quasiparticle itself experiences a change in energy
associated with its own motion in momentum space, which, from (5.3), is just
�

2k · q/m∗. In addition, it sees the redistribution of quasiparticles indicated
in Fig. 5.3b. Since this momentum displacement does not produce any spin
flipping, δn(k,σ)αβ will have the form δn(k)δαβ , where δn(k) is +1 for the
quasiparticles and −1 for the quasi-holes. This gives a contribution of

2
V

∑
k′

ϕ(k,k′)δn(k′)

to the 1,1 component of the energy, where the factor 2 arises from the spin
trace. Equating these two changes in energy, which is what is meant by
Galilean invariance, and converting the sum over k′ to an integral leads to
our desired relation,

m∗ = m

(
1 +

A1

3

)
. (5.10)

It can be shown that the specific heat of a Fermi liquid has the same form as
that for an ideal Fermi gas, with m replaced by m∗. Thus by measuring the
specific heat we can determine the Fermi liquid parameter A1.

Exchange Enhancement of the Pauli Susceptibility. We are now ready to con-
sider our original question of the response of a Fermi liquid to a magnetic
field. In the presence of a magnetic field the noninteracting quasiparticle
energy ε0(k,σ) is no longer independent of the spin, but contains a Zeeman
contribution,

ε0(k,σ) = ε0(k)1 + µBHσz . (5.11)

We shall assume that any field-induced contributions to the interaction term
are small. Therefore the total quasiparticle energy is

ε(k,σ) = ε0(k)1 + µBHσz +
1
V

Tr
σ′

{∑
k′

f(k,σ;k′,σ′)δn(k′σ′)

}
. (5.12)

It is energetically more favorable for the quasiparticles to align themselves
opposite to the field, since their gyromagnetic ratio is negative. However, each
time a quasiparticle flips over it changes the distribution, thereby bringing in
contributions from the last term in (5.12). Thus, if we start with two equal spin
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Fig. 5.4. Effect of a dc magnetic field on the spin-up and the spin-down Fermi
spheres

distributions, as shown in Fig. 5.4a, an equilibrium situation will eventually be
reached, as illustrated in Fig. 5.4b, in which the energy of a quasiparticle on
the up-spin Fermi surface is equal to that of a quasiparticle on the down-spin
surface; that is,

ε(kF + δkF ,σ)22 = ε(kF − δkF ,σ)11 . (5.13)

From (5.3), (5.12) this condition becomes

�
2kF

m∗ δkF − µBH +
1
V

Tr
σ′

{∑
k′

[
ϕ(k̂ · k̂′

)1′ − ψ(k̂ · k̂′
)σ′

z

]
δn(k′,σ′)

}

= −�
2kF

m∗ δkF + µBH +
1
V

Tr
σ′

{∑
k′

[
ϕ(k̂ · k̂′

)1′ + ψ(k̂ · k̂′
)σ′

z

]
δn(k′,σ′)

}
.

(5.14)

The change in quasiparticle distribution shown in Fig. 5.4b is characterized by

δn(k,σ) =

⎧⎪⎪⎨
⎪⎪⎩

[
0 0
0 1

]
kF < |k| < kF + δkF[

−1 0
0 0

]
kF − δkF < |k| < kF .

(5.15)

Therefore

Tr
σ′

{∑
k′

ϕ(k̂ · k̂′
)1δn (k′, σ′)

}
= 0 , (5.16)

while

Tr
σ′

{∑
k′

ψ(k̂ · k̂′
)σ′

zδn(k′,σ)

}
= − 4πV

(2π)3
k2

F δkF

∫ +1

−1

d(cos θ)ψ(k̂·k̂′
) . (5.17)

Equation (5.14) then reduces to

2�
2kF

m∗ δkF − 2µBH +
2�

2kF δkF

m∗ B0 = 0 . (5.18)



5.1 Fermi Liquid Theory 175

Since the magnetization is

Mz = −µB

V
Tr
σ

{∑
k

σzδn(k,σ)

}
= 2µB

πk2
F δkF

(2π)3
. (5.19)

the uniform susceptibility of a Fermi liquid at T = 0 is

χ(0) =
1 + 1

3A1

1 + B0
χPauli . (5.20)

Thus we find that in addition to the appearance of the effective mass in place
of the bare mass, the susceptibility is also modified by the factor (1 + B0)−1.
In the Hartree–Fock approximation

B0 = − me2

π�2kF
= −0.166rs (5.21)

and we speak of the susceptibility as being exchange enhanced. As the electron
density decreases and rs → 6.03 the susceptibility diverges. This is usually
taken to imply that such a material will be ferrogmagnetic. There has been
a great deal of discussion [108] about the magnetic state of an interacting
electron system, and it is generally agreed that such a system will not become
ferromagnetic at any electron density. That is, the Hartree-Fock approxim-
ation favors ferromagnetism. The reason is that in this approximation par-
allel spins are kept apart by the exclusion principle while antiparallel spins
are spatially uncorrelated. Thus the antiparallel spins have a relatively large
Coulomb energy to gain by becoming parallel. In an exact treatment one would
expect the antiparallel spins to be somewhat correlated, thereby reducing the
Coulomb difference. The differences between the exact properties of an inter-
acting electron system and those obtained in the Hartree-Fock approximation
are referred to as correlation effects. Estimates of these correlation corrections
indicate that the nonmagnetic ground state of the electron gas has a lower
energy than the ferromagnetic one.

The predictions of Fermi-liquid theory, namely that the low temperature
heat capcity varies as γT and that the resistivity varies as T 2 are found to
describe most metals. During the last decade, however, non-Fermi-liquid
behavior has been observed in a number of systems. One of the most studied
is the high-temperature superconductor, Laz−x SrxCuO4. The phase diagram
for this system is shown in Fig. 4.16. The “normal” region above the super-
conducting region shows anamolous features. Anderson, for example, argues
that the absence of a residual resistivity in the ab plane invalidates a Fermi-
liquid description. It is known that a Fermi-liquid approach certainly fails
in one dimension, for in one dimension the Fermi “surface” consists of only
two points at k = ±kF . Any interaction with momentum transfer q = 2kF

leads to an instability that produces a gap in the energy spectrum. In 1963
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Luttinger introduced a model of 1D interacting Fermions. His solution does
not give quasiparticles, but rather spin and charge excitations that propagate
independently. Whether the 2D CuO2 planes in La2−xSrxCuO4 can be de-
scribed by such a “Luttinger liquid” is a subject of debate. Other materials
exhibiting non-Fermi-liquid behavior are the so-called heavy Fermions.

5.2 Heavy Fermion Systems

At low temperatures the electrons in a “normal” metal contribute a term
to the specific heat that is linear in the temperature, i.e., C = γT as we
mentioned above. Simple theoretical considerations give γ = 2

3π2k2
BN(EF ).

In particular, for a free electron metal the density of states is given by
N(EF ) = (2m/�

2)3/2E
1/2
F which gives a value of γ of the order of one

mJ/K−2mol−1. There exist, however, metallic systems with low tempera-
ture heat capacity coefficients of the order of 1000 mJ/K−2 mol−1. Examples
include CeCu2Si2, UBe13, and UPt3. Almost all the examples involve rare
earths, such as Ce, or actinides, such as U. These elements have their fn and
fn±1 electronic configurations close enough in energy to allow valence fluctu-
ations with hybridization. This can lead to Kondo behavior (see Sect. 3.4.3)
and is why some refer to heavy Fermion systems as “Kondo lattices”. In this
description the large electronic mass is associated with a large density of states
at the Fermi level that derives from the many-body resonance we found in our
treatment of the Kondo impurity. When d-electron ions are used to create a
Kondo lattice their large spatial extent results in too strong a hybridization
to show heavy Fermion behavior. LiV2O4 appears to be an exception.

Once one has a heavy Fermion system it is subject to the same sorts
of Fermi surface instabilities found in more normal metals. In particular,
CeCu2Si2 shows both a spin density wave and superconductivity as one
changes the 4f-conduction electron coupling by substituting Ge for the Si.

The Kondo lattice is not the only mechanism that may lead to heavy
Fermions. When Nd2CuO4 is doped with electrons by introducing Ce for Nd,
i.e., Nd2−xCexCuO4, the linear specific heat coefficient is γ = 4 J/K−2 mol−1.
The conduction occurs through hopping among the Cu sites. As a result of
the double exchange we described in Sect. 2.2.10, these hopping electrons see
an effective antiferromagnetic field. The conduction electron Hamiltonian is
therefore taken to be

−t
∑
i,j,σ

(a†
iσajσ + h.c.) + h

∑
iσ

σeiQ·Ria†
iσaiσ ,

where Q is a reciprocal lattice vector (π/a, π/a) and h is the effective field that
accounts for the antiferromagnetic correlations. The 4f electrons are described
by the term

εf

∑
iσ

f†
iσfiσ .
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Fig. 5.5. Schematic plot of the quasiparticle bands of Ndz−xCexCuO4 for x �= 0.
The Fermi energy is indicated by a dotted line. Solid lines: f -like excitations, and
dashed lines: d-like excitations [109]

Finally, we add a hybridization

V
∑
iσ

(a†
iσfiσ + h.c.) .

This is a very simplified model since it only considers one 4f orbital instead of
seven. Nevertheless, when this Hamiltonian is diagonalized [109] one obtains
the four bands shown in Fig. 5.5. The Fermi level in the doped case sits in the
narrow f -band giving rise to a large electronic mass.

5.3 Itinerant Magnetism

The appearance of ferromagnetism in real metals is related to the presence of
the ionic cores which tend to localize the intinerant electrons and introduce
structure in the electronic density of states. We shall now consider two models
that incorporate these features.

5.3.1 The Stoner Model

In the 1930s both Slater [110] and Stoner [111] combined Fermi statistics
with the molecular field concept to explain itinerant ferromagnetism. This
one-electron approach is now generally referred to as the Stoner model. It
bears similarities to Landau’s Fermi liquid theory in that the effect of the
electron-electron interactions is to produce a spin-dependent potential that
simply shifts the original Bloch states.

Stoner’s result is contained within the generalized susceptibility χ(q) of an
interacting electron system. As a model Hamiltonian we take a form similar
to (1.139) where εk now refers to the Bloch band energy. Since the Coulomb
interaction in a metal is screened, let us take a delta-function interaction of
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the form Iδ(ri−rj). In this case one need not add a compensating background
charge density and (1.139) becomes

H0 =
∑
kσ

εka†
kσakσ +

I

V

∑
k

∑
k

∑
k′

∑
q

∑
σ

a†
k−q,σa†

k′+q,−σak,σak′σ′ . (5.22)

If we now add a spatially varying field Hẑ cos(q ·r), the Zeeman Hamiltonian
becomes

HZ = −H

2
[Mz(q) + Mz(−q)] , (5.23)

where

Mz(q) =
1
2
gµB

∑
k

(
a†

k−q,↑ak↑ − a†
k−q,↓ak↓

)
. (5.24)

Susceptibility. The susceptibility is obtained by calculating the average value
of Mz(q) to lowest order in H. In particular, we must calculate the average of

mk,q ≡ a†
k−q,↑ak,↑ − a†

k−q,↓ak,↓ .

Following Wolff [112] we shall do this by writing the equation of motion for
mk,q and using the fact that in equilibrium ∂〈mk,q〉∂t = 0. Thus,

〈[mk,q,H0 + HZ ]〉 = 0 . (5.25)

This commutator involves a variety of twofold and fourfold products of elec-
tron operators. These are simplified by making a random-phase approxima-
tion in which we retain only those pairs which are diagonal or have the forms
appearing in mk,q itself. Furthermore, the diagonal pairs are replaced by their
average in the noninteracting ground state. This is equivalent to a Hartree-
Fock approximation. The result is

(εk−εk+q)〈mk,q〉−
2I

V
(nk+q−nk)

∑
k′

〈mk′,q〉−gµBH(nk+q−nk) = 0 . (5.26)

Dividing by (εk+q − εk) and summing over k gives

∑
k

〈mk,q〉 =
gµBH

∑
k

nk − nk+q

εk+q − εk

1 − 2I

V

∑
k

nk − nk+q

εk+q − εk

. (5.27)

Since the equilibrium occupation number nk is just the Fermi function fk,
we recognize the sum appearing in this expression as the same as that which
appears in the noninteracting susceptibility (3.93), which we shall denote as
χ0(q). Thus,
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χ(q) =
χ0(q)

1 − 2I
g2µ2

B

χ0(q)
. (5.28)

We could also have calculated 〈mk,q〉 directly by the formulation indicated in
(1.81). However, the appearance of the interaction term in the exponentials
which enter mk,q(t) requires many-body perturbation techniques which are
beyond the scope of this monograph. We shall use the diagrams introduced
in Chap. 1 to make the results of such a treatment plausible. The interaction
term in (5.22) has the diagramatic form

In calculating average values such as the energy or the magnetization the
electron and hole lines must be closed.

There are two ways one can close the electron and hole lines:

In (a) the vertices indicated by the small squares involve a momentum change
q but no spin flip. This longitudinal spin fluctuation represents the first-order
correction to χzz. The susceptibility (5.28) corresponds to the summation of
all such diagrams:

In diagram (b) the vertices also involve a spin flip. This diagram is the first-
order correction to the transverse susceptibility χ−+(q) whose noninteracting
form is given by (3.97). Summing all such transverse spin fluctuations gives
the transverse susceptibility.
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In the paramagnetic state rotational invariance requires χ−+(q) = 2χzz(q).
Returning to (5.28), since limq→0 χ0(q) = 1

3g2µ2
BD(εF ), we see that

χ(0) =
χ0(0)

1 − ID(εF )
. (5.29)

This has the same form as our Fermi liquid result (5.20). Thus we have an
expression, at least in the random-phase approximation, for the Fermi liquid
parameter B0 in terms of the intraatomic exchange integral I and the density
of states.

Notice that the criterion for the appearance of ferromagnetism is that
ID(εF ) ≥ 1. This is referred to as the Stoner criterion.

One might wonder how ferromagnetism can occur with only an intraatomic
Coulomb interaction. To see the physical origin of this, suppose we have a
spin up at some site α. If the spin on a neighboring site α′ is also up, it
is forbidden by the exclusion principle from hopping onto site α. Therefore
the two electrons do not interact, and we might define the energy of such a
configuration as 0. However, if the spin of site α′ is down, it has a nonzero
probability of hopping onto site α. Thus the energy of this configuration is
higher than that of the “ferromagnetic” one. However, hopping around can
lower the kinetic energy of the electrons. This is reflected in the appearance of
the density of states in the Stoner criterion. The occurrence of ferromagnetism
depends, therefore, on the relative values of the Coulomb interaction and the
kinetic energy.

Equation (5.29) has interesting consequences for metals which are para-
magnetic but have a large enhancement factor. For example, an impurity spin
placed in such a host produces a large polarization of the conduction elec-
trons in its vicinity. Such giant moments have been observed in palladium
and certain of its alloys. This seems reasonable, since palladium falls just
below nickel in the periodic table and has similar electronic properties. Thus
we might suspect that although palladium is not ferromagnetic like nickel, it
at least possesses a large exchange enhancement.

Spin-Density Waves. Just as in the case of localized moments, a divergence
of χ(q) for q �= 0 would imply a transition to a state of nonuniform magn-
etization. In fact, Overhauser [113] has shown that the χ(q) associated with
an unscreened Coulomb interaction in the Hartree-Fock approximation does
diverge as q → 2kF , as shown in Fig. 5.6. This would lead to a ground state
characterized by a period spin density, called a spin-density wave. The effects
of screening and electron correlations, however, tend to suppress this diver-
gence. Consequently, a spin-density wave can form only under rather spe-
cial conditions. We get some feeling for these conditions by considering the
behavior of the non-interacting susceptibility χ0(q) in one and two dimensions
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Fig. 5.6. Effect of electron-electron interactions on the susceptibility (3 dimensions)

Fig. 5.7. Effect of dimensionality on the free electron susceptibility

as shown in Fig. 5.7. We see that lower dimensional systems are more likely
to become unstable with respect to spin-density wave formation.

The reason for this has to do with the fact that in a state characterized
by a wave vector q electrons with wave vectors which differ by q become
correlated. This effectively removes them from the Fermi sea. This is often
described as a “nesting” of the corresponding states. In one and two dimen-
sions Fermi surfaces are geometrically simpler, which means that nesting will
have more dramatic effects. These same considerations, however, also apply
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to charge-density instabilities. And, in fact, most of the materials which do
show such Fermi-surfaced-related instabilities show charge-density waves.

To date, chromium and its alloys are the best examples of materials pos-
sessing a spin-density-wave ground state. The reason for this has to do with
the band structure of chromium.

If the susceptibility does not actually diverge at some nonzero wave vector,
but nevertheless becomes very large, the system may be said to exhibit anti-
ferromagnetic exchange enhancement. Experiments on dilute alloys of Sc:Gd
indicate that scandium metal may be an example of such a type [114].

Exchange Splitting. If the system is ferromagnetic, then 〈mk,q=0〉 = (nk↑ −
nk↓) �= 0 even in the absence of an applied field. In this case the Hamil-
tonian may be written in a particularly revealing form by considering only
the diagonal terms in (5.22):

1
2
nk′↓a

†
k↑ak↑ +

1
2
nk′↑a

†
k↓ak↓ . (5.30)

Since
M =

gµB

2V

∑
k

(nk↑ − nk↓) , (5.31)

the Hamiltonian becomes

H′
0 = E0 +

∑
k,σ

εkσa†
kσakσ , (5.32)

where
εkσ = εk +

NI

4V
− IM

2gµB
σ . (5.33)

Thus the spin-up and spin-down energy bands are split by an amount pro-
portional to the magnetization. This was the basic idea in Stoner’s original
theory of ferromagnetism. More generally, this splitting arises from the differ-
ence between the spin-up and spin-down exchange-correlation potentials seen
by the electrons. Since the Stoner model was first proposed there has been a
great deal of progress in specifying these potentials.

In 1951 Slater [115] suggested that we approximate the effect of exchange
by the potential

Vx(r) = −6[(3/8π)ρ(r)]1/3 .

This approximation form has been used extensively both in atomic and solid-
state calculations. Physically, this density to the one-third power arises from
the fact that in the Hartree-Fock approximation parallel spins are kept farther
apart than antiparallel spins. Therefore, there is an “exchange hole” around
any particular spin associated with a deficiency of similar spins. The radius
of this hole must be such that (3

4 )πr3ρ = 1. Since the potential associated
with this deficiency is proportional to 1/r, we obtain an exchange potential
proportional to ρ1/3.
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In 1965 Kohn and Sham [116] rederived the exchange potential by a differ-
ent method and obtained a value two thirds that of Slater’s. This led workers
to multiply Vx(r) by an adjustable constant, α, which can be determined for
each atom by requiring that the so-called Xα energy be equal to the Hartree-
Fock energy for that atom. An interesting application of the Xα method has
been made by Hattox et al. [117]. They calculated the magnetic moment of
bcc vanadium as a function of lattice spacing. The result is shown in Fig. 5.8.
We see that the moment falls suddenly to zero at a spacing 20% larger than
the actual observed spacing. This decrease is due to the broadening of the
3d band as the lattice spacing decreases. This is consistent with the fact that
bcc vanadium, where the vanadium-vanadium distance is

√
3 a0/2 = 2.49 Å,

is observed to be nonmagnetic. In Au4 V, however, the vanadium-vanadium
distance has increased to 3.78 Å and the vanadium has a moment near one
Bohr magneton.

If one uses this approach to find α for the magnetic transition metals one
finds that the resulting magnetic moments are not in agreement with those
observed.

This is not surprising when we consider that we have replaced a nonlocal
potential (the Hartree-Fock potential) by a local potential (the Slater ρ1/3).
Furthermore, the fact that these are different means that the Slater potential
must, by definition, include some correlation. However, we do not know if it
is in the right direction.

The arbitrariness inherent in the Xα method may be avoided by using the
“spin-density functional” formalism. This essentially enables one to utilize
the results of many-body calculations for the homogeneous electron gas in
determining the exchange and correlation potentials in transition metals. This

Fig. 5.8. Calculated magnetic moment of vanadium metal as a function of lattice
parameter. The two points for a = 3.5 Å correspond to two distinct self-consistent
solutions associated with different starting potentials. These two solutions are the
result of a double minimum in the total energy versus magnetization curve. At 4.25 Å
and 3.15 Å the calculations converged to unique values [117]



184 5 The Static Susceptibility of Interacting Systems

approach is based on a theorem by Hohenberg and Kohn [118] which states
that the ground-state energy of an inhomogeneous electron gas is a functional
of the electron density ρ(r) and the spin density m(r). The effective potential,
for example, is given by

Veff = v(r) + e2

∫
ρ(r′)dr′

|r − r′| +
δExc{ρ}
δρ(r)

, (5.34)

where v(r) is the one-electron potential, the second term is the Hartree term,
and Exc{ρ} is the exchange and correlation energy. The importance of this
theorem is that it reduces the many-body problem to a set of one-body prob-
lems for the one-electron wave functions φkσ(r) which make up the density,

ρ(r) =
∑
k,σ

φ∗
kσ(r)φkσ(r) . (5.35)

The local density approximation consists of replacing the unknown functional
Exc{ρ} by

∫
d3rρ(r)εh

xc[ρ(r)] where εh
xc[ρ(r)] is the exchange and correlation

contribution to the energy of a homogeneous interacting electron gas of density
ρ(r). Although one might question the use of such an approximation in transi-
tion metals where there are rapid variations in the charge density, the fact that
it is only the spherical average of the exchange-correlation hole which enters
the calculation makes Exc{ρ} fairly insensitive to the details of this hole.

The density functional approach leads to a set of self-consistent Hartree
equations. It is tempting to identify the eigenvalues as effective single particle
energies. However, detailed studies of the energy bands indicate that this iden-
tification may not be appropriate in certain cases. Photoemission has become a
powerful technique for probing the electronic states of solids. In this technique,
light (actually ultraviolet or X-rays) is absorbed by a solid. Those electrons ex-
cited above the vacuum level leave the solid and are collected. Initially, all the
electrons emitted were collected and analyzed. However, with the availability
of high-intensity synchrotron X-ray sources, it became possible to resolve the
direction of the emitted electrons. This enables one to reconstruct the energy-
momentum relation of the electrons in the solid. Figure 5.9a compares the re-
sults of such an experiment on copper [119] with the calculated band structure.
The agreement is remarkable. This technique has now been extended to deter-
mine the spin polarization of the photoemitted electrons. This extension was
pioneered by H.C. Siegmann in Zürich. The photoemitted electrons are accel-
erated to relativistic velocities and then scattered from a gold foil. Any initial
spin polarization is reflected in asymmetric, or Mott, scattering. Figure 5.9b
shows the results of such measurements on Ni [120]. Although the overall fea-
tures are described by the theory, the detailed fit is not nearly as good as in Cu.

Despite this problem with the identification of single-particle energies, one
can calculate ground-state properties such as the bulk modulus and the mag-
netic moment. The results are in very good agreement with the experimental
values. What makes this agreement all the more impressive is that the only
input to such calculations are the atomic numbers and the crystal structures.
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Fig. 5.9. Comparison of angle-resolved photoemission data with calculated band
structures for (a) copper and (b) nickel (open data points correspond to spin up,
solid points to spin down). The triangles are de Haas van Alphen data
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Fig. 5.10. Saturation magnetization as a function of electron concentration

Alloys. A band description also works well for alloys. Fig. 5.10 shows the mag-
netic moments for various transition metal alloys. This curve is known as the
Slater-Pauling curve. Slater [121] noted that the magnetic properties of 3d
solid solutions, particularly their moments, could be averaged over the periodic
table and plotted as a function of the filling of the d-band. If the pairs of atoms
have too much charge contrast, then the electronic states tend to become
localized and the simple averaging fails as indicated by the lines branching off
the main trend. The Slater–Pauling curve may be understood by considering
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the d-electron bands to be exchange split as shown for Ni in Fig. 5.9b. In the
“rigid-band” approximation, one assumes that the only effect of alloying is to
shift the Fermi level. The majority spin band in nickel is completely full (in
recognition of which it is sometimes referred to as “strong” meaning further
splitting cannot increase the magnetism). The maximum moment between
cobalt and iron in the Slater–Pauling curve reflects the composition where
the majority band is just completely full. Further removal of electrons as one
moves across the compositional axis towards iron results in depletion of both
majority and minority bands. Pauling [122] offered an alternative explanation
based on the idea that 2.56 d-orbitals hybridize with s- and p-orbitals to form
nonmagnetic bonding orbitals. The remaining 2.44 d-orbitals fill according to
Hund’s rule to give the magnetic moments.

There is no doubt that the magnetic electrons partake in the transport
properties of the transition metal ferromagnets, i.e., that they are itiner-
ant. Nevertheless, there are some physical properties where a localized model
is a reasonable and tractable approximation. The situation that pertains is,
of course, somewhere between completely localized and free. Using neutron
diffraction, which is discussed in Chap. 10, Mook [123] has apportioned the
moment, in µB , in nickel as follows:

3d spin (n↑ − n↓) = +0.656
3d orbital = +0.055
4s polarization = −0.105

+0.606

The moment density is quite asymmetric about the lattice sites. About 80% of
the 3d magnetic electrons occupy t2g orbitals. For hexagonal cobalt Moon [124]
finds:

3d spin (n↑ − n↓) = +1.86
3d orbital = +0.13
4s polarization = −0.28

+1.71

In this case, the magnetic moment looks like an almost spherical distribution
of positive moment localized around each atomic site decreasing to a negative
level in the region between atoms.

Although the Stoner theory works reasonably well for magnetic properties
at T = 0, it fails when applied to finite temperature properties. For example,
the only place that temperature enters the susceptibility (5.28) is in the argu-
ments of the Fermi functions. The Curie temperature is calculated from the
relation

M =
gµB

2V

∑
k

(fk↑ − fk↓) , (5.36)

where fkσ is the Fermi function with εkσ = εk +NI/4V − (IM/2gµB)σ. Since
at Tc M is very small, the Fermi functions may be expanded about M = 0.
The condition for Tc then becomes
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0 < T < T c

T = 0

T > Tc

STONER MODEL MORE LIKELY

Fig. 5.11. Pictorial comparison of the exchange fields seen by an electron in the
Stoner model and what is more likely the case

I

∫
dε

∂f(Tc)
∂ε

D(ε) + 1 = 0 . (5.37)

Using the values of I that give the correct moments at T = 0 for Fe, Co, and
Ni, we obtain Tc’s from (5.37) that are about 5 times larger than the observed
values.

The problem with this application of the Stoner model is that the intro-
duction of “up” and “down” spin directions destroys the rotational symmetry.
That is, at nonzero temperatures the direction of the effective field arising from
the electron–electron interactions as well as its magnitude will vary from site
to site as illustrated in Fig. 5.11. Independent calculations by Hubbard [125]
and Heine and collaborators [126] show that the energy associated with such
local changes in the direction of the magnetization is much less than that
associated with changes in the magnitude of the magnetization. That is, the
exchange stiffness which characterizes the directional variation is less than the
Stoner parameter I. The problem remains, however, to relate this observation
to the thermodynamic properties.

5.3.2 The Hubbard Model

The one-electron Stoner model described above is expected to apply to systems
with fairly broad bands. As the bands become narrower intraionic correlation
effects become more important. In this case it is convenient to work in the
Wannier representation which emphasizes the atomic aspect of the problem.
In this representation the one-electron terms becomes∑

αα′σ

tαα′a†
α′σaασ , (5.38)

where

tαα′ =
1
V

∑
k

εk exp[ik · (Rα − Rα′)] (5.39)
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describes the hopping of an electron from site α to site α′. The interaction
terms are given by (2.89). Since we are now dealing with an itinerant situation,
we shall assume that screening effects restrict the interaction to one site. If
there is a single nondegenerate orbital ϕ0(r − Rα) associated with each site,
then the interaction becomes ∑

α,σ

U0nασnα,−σ , (5.40)

where

U0 = 〈00|V |00〉 =
∫∫

dr dr′ϕ∗
0(r − Rα)ϕ∗

0(r
′ − Rα)V (r − r′)

×ϕ0(r′ − Rα)ϕ0(r − Rα) . (5.41)

Because of the screening, which we can think of as s–d correlation effects, the
value of U0 is of the order of several eV.

Equations (5.38), (5.40) constitute the Hubbard Hamiltonian. It contains
the same physics as the Stoner model. In fact, it gives the same susceptibility
(5.28) in the mean-field approximation with U0 in place of I. In a series of
papers Hubbard [127] investigated the effects of correlation within this model.
He found, for example, that for large correlation the electronic band is split
into two subbands separated by U0. The transition-metal oxides such as NiO
and CoO are generally cited as examples of materials where such correlation
effects are responsible for their insulating properties.

In order to understand the variation in magnetic properties as one moves
across the transition-metal series, it is necessary to generalize the model above
to include orbital degeneracy. This obviously introduces many more Coulomb
and exchange integrals. The first simplification is to neglect interactions
involving more than two orbitals. One then assumes that all the off-diagonal
Coulomb and exchange integrals are the same, i.e.,

〈mm′|V |mm′〉 = U

〈mm′|V |m′m〉 = J

}
m′ �= m. (5.42)

The exchange integral J is smaller than U . We also take all the diagonal
integrals to have the same value. If we require that our model Hamiltonian
preserve the rotational invariance of the original Hamiltonian, then the diag-
onal integral is related to the off-diagonal integrals by

〈mm|V |mm〉 = U + J . (5.43)

The resulting generalized Hubbard Hamiltonian becomes

H′ =
1
2
(U + J)

∑
α,m,σ

nαmσnαm,−σ +
1
2

∑
α,m,m′σ

(1 − δmm′) (5.44)

×[Unαmσnαm′,−σ + (U − J)nαmσnαm′σ − Ja†
αmσaαm−σa†

αm′−σaαm′σ] .
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By making use of the spin representation (2.85)–(2.87) the last term may be
written

(U − 1
2
J)

∑
α,m<m′,σ,σ′

nαmσnαm′σ′ − 2J
∑

α,m<m′

Sαm · Sαm′ , (5.45)

which clearly reveals the Hund’s rule exchange coupling. Let us now consider
how these exchange interactions modify the generalized susceptibility. As in
the derivation (5.28) we shall employ the Hartree–Fock approximation. This
amounts to writing

nαmσ = 〈nαmσ〉 + (nαmσ − 〈nαmσ〉) (5.46)

and assuming the term in parentheses is small. Thus,

nαmσnαm′σ′ = 〈nαmσ〉nαm′σ′ + 〈nαm′σ′〉nαmσ − 〈nαmσ〉〈nαm′σ′〉 , (5.47)

and the Hartree–Fock Hamiltonian becomes

HHF =
∑

α,α′m,σ

tαα′a†
αmσaα′mσ + (U + J)

∑
α,mσ

〈nαmσ〉nαm,−σ

+U
∑

α,α′m,σ

(〈nαmσ〉nαmσ,−σ + 〈nαm′,−σ〉nαmσ)

+(U − J)
∑

α,m<m′,σ

(〈nαmσ〉nαm′σ + 〈nαm′σ〉nαmσ) . (5.48)

The magnetic moment per ion is

mα = −gµB

2

∑
m

(〈nαm↑〉 − 〈nαm↓〉) . (5.49)

If the average number of electrons per ion is n, then

n =
∑
m

(〈nαm↑〉 + 〈nαm↓〉) . (5.50)

If we take the case of a transition metal where m = 1, . . . 5, then

〈nαm↑〉 =
1
10

(
n − 2mα

gµB

)
,

〈nαm↓〉 =
1
10

(
n +

2mα

gµB

)
, (5.51)

and the Hartree–Fock Hamiltonian becomes

HHF =
∑

α,α′m,σ

tαα′a†
αmσaα′mσ +

1
10

N(9U − 3J)n2

+
U + 5J

gµB

∑
α,m

mα(nαm↑ − nαm↓) . (5.52)
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In the presence of an external field H cos(q · r)ẑ the Zeeman interaction has
the form

HZ =
gµBH

2

∑
α,m

(nαm↑ − nαm↓) cos q · Rα . (5.53)

If we assume that the induced moments mα have the same spatial variation
as the applied field, i.e.,

mα = m cos(q · Rα) ,

then by comparing the last term in (5.52) with (5.53) we see that the effect
of the interactions is to give an effective field

H(r)eff =
2m

gµB
(U + 5J) cos(q · r) . (5.54)

Taking the Fourier transform of the total effective field and using the fact that

M(q) = χ0(q)H(q)eff , (5.55)

where χ0(q) is the susceptibility of the noninteracting electron system, we
find for the susceptibility of this Hubbard model

χ(q) =
χ0(q)

1 − 2(U+5J)
g2µ2

B

χ0(q)
. (5.56)

This has the same form as the Stoner susceptibility with an effective Stoner
parameter Ieff = U + 5J . The corresponding Stoner criterion becomes
IeffD(εF ) > 1. Thus the presence of intraatomic exchange favors ferro-
magnetism. However, again, we expect correlation effects to be very important.
There have been many calculations of correlation effects within the Hubbard
model but their description is beyond the scope of the monograph. The gen-
eral result of including correlation is to reduce the region of parameter space
where ferromagnetism, or antiferromagnetism, is expected.

Problems

5.1. To obtain some familiarity with the Fermi liquid formalism, this problem
asks you to determine the particle current associated with a quasiparticle of
momentum k. From the definition of the particle current,

jk = vk −
∑
k′

fkk′
∂nk

∂ε′k
vF .
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show that

jk = vk +
(

m∗

m
− 1
)

vF .

The last term on the right is a “drag” term associated with the flow of the
other quasiparticles.

5.2. Evaluate (5.28) for 1-dimension at T = 0K.

5.3. Considering the exchange split bands having the form

E

Ns 

(E)

2E0

15/4E0

N↑(ε) =
15
4ε0

[
1 −
(

ε − ε0

ε0

)2
]

.

Compute the magnetic moment as a function of εF for ε0 < εF < 4ε0 for the
two exchange splittings ∆ = ε0 and ∆ = 3ε0/2.

5.4. For the band structure shown in Problem 5.3, calculate the total energy
as a function of the number of electrons per atom, n. Find the value of ∆
which minimizes the total energy and plot ∆(n).
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The Dynamic Susceptibility
of Weakly Interacting Systems:
Local Moments

We now turn to the response of magnetic systems to time-dependent
excitations. In this chapter we shall restrict our consideration to systems
in which the interactions among the constituents are not strong enough to
produce a spontaneous magnetization. The study of the frequency response
of such systems is essentially the study of paramagnetic resonance and relax-
ation phenomena. This is obviously an enormous subject, and we shall not be
able to go into it in great detail. However, we shall examine some of the basic
ideas within the framework of our generalized susceptibility.

6.1 Equation of Motion

Let us begin by considering a system of identical localized spins characterized
by a noninteracting Hamiltonian H0. In Sect. 3.1 we found that in the presence
of a uniform static field H0ẑ such a system develops a magnetization, which
we shall denote by M0ẑ. Let us now apply an additional time-dependent field
H1 cos ωt and investigate the response to this field.

Since the applied field is uniform, we shall drop explicit reference to spatial
considerations. Thus we may write the magnetization as

M =
1
V

Tr{ρM} . (6.1)

The presence of the volume in this relation and not in (1.49) is due to our
definition of the space-dependent operator in (1.48). Because the Zeeman
Hamiltonian is time dependent, the density matrix, and hence the magnet-
ization, will be time dependent. Differentiating (6.1) with respect to time and
making use of (1.47), which implies dρ/dt = 0, we obtain

dM

dt
= − i

�V
Tr{ρ[M,H]} . (6.2)
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For the present let us assume that the Hamiltonian consists of a part which
commutes with M plus a Zeeman part

HZ = −M · H . (6.3)

Equation (6.2) then becomes

dM

dt
= −γM × H , (6.4)

where γ� = gµB . The minus sign arises because we are explicitly dealing with
electrons which have a negative gyromagnetic ratio.

If the dynamic field H1(t) = H1 cos ωt is applied in the z direction, then,
according to (6.4), it exerts no torque on the equilibrium magnetization M0ẑ.
Therefore the response to such a field is 0. This raises an interesting point.
If the frequency ω goes to 0, (6.4) tells us that there is no response to such
a static field. But in Chap. 3 we found that the magnetization does respond
to a static field, with the resulting magnetization given by Curie’s law. The
answer to this paradox lies in the fact that in Chap. 3 we assumed that the
spin system was always in equilibrium. This implies that there is a coupling
between the individual spins and their environment which enables them to
reach equilibrium. The time it might take the spin system to do this is not
important in the static case, since we can always keep the field on until equi-
librium has been achieved. In the dynamic case, however, this assumption is
not valid, since we may want the response at a frequency that is much faster
than this relaxation frequency. In fact, this is generally the experimental sit-
uation. In the dynamic case we must actually solve for the nonequilibrium
density matrix. We shall see later that the only way to get a response in the
z direction is to introduce a relaxation mechanism (see Problem 6.1).

Let us now consider a system which has come to equilibrium in an applied
dc-field, H0, and ask what the response will be to a time-varying transverse
field H1. In particular, let H1(t) = H1(t)x̂. If we write the magnetization as

M = mxx̂ + myŷ + (M0 − mz)ẑ . (6.5)

(6.4) becomes, in component form,

dmx

dt
= −γH0my , (6.6a)

dmy

dt
= −γH1(t)(M0 − mz) + γH0mx , (6.6b)

dmz

dt
= −γH1(t)my . (6.6c)

These equations are nonlinear. As a consequence, magnetic systems exhibit a
number of interesting features, such as “spin echoes”, which we shall discuss
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later. For the present, let us linearize (6.6) by neglecting terms which are
quadratic in H1 or the components of m. The result is

dmx

dt
= −ω0my , (6.7a)

dmy

dt
= −γH1(t)M0 + ω0mx , (6.7b)

dmz

dt
= 0 , (6.7c)

where ω0 ≡ γH0.
We see from (6.7c) than mz is a constant. Since [M · M,M · H] = 0,

this means that the magnitude of the magnetization is a conserved quantity.
Therefore once mx and my are known, mz may be obtained from the condition
that

M · M = M2
0 . (6.8)

The components mx and my may be determined from (6.7a,b). Differentiating
(6.7a) with respect to time and using (6.7b), we obtain the equation for mx,

d2mx

dt2
+ ω2

0mx = γH1ω0M0 cos ωt . (6.9)

To find the susceptibility we must solve this differential equation. We may
write it in a more general form as

Lmx(t) = F (t) , (6.10)

where L is the differential operator, in this case d2/dt2 + ω2
0 . The solution is

then given symbolically by

mx(t) = L−1F (t) , (6.11)

where L−1 is the operator inverse of L, provided that is exists. It is customary
to rewrite this as

mx(t) =
∫ ∞

−∞
dt′L−1F (t′)δ(t − t′) =

∫ ∞

−∞
dt′G(t, t′)F (t′) , (6.12)

where G(t, t′) is the Green’s function of the differential operator L, defined as
L−1 operating on the delta function.

A very important relationship between the Green’s function and the
susceptibility is easily obtained from (6.12). Taking the Fourier transform,
we have

mx(ω) =
∫ ∞

−∞
dt

∫ ∞

−∞
dt′G(t, t′)F (t′)eiωt . (6.13)

If the medium is stationary, it can be shown that the Green’s function depends
only on the relative time t − t′. Inserting the factor exp(−iωt′) exp(iωt′) in
(6.13), we obtain
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mx(ω) =
∫ ∞

−∞
dt

∫ ∞

−∞
dt′G(t − t′)eiω(t−t′)F (t′)eiωt′ . (6.14)

Converting the integral over t into the integral over τ ≡ t − t′ and recalling
our definition of the susceptibility (1.58), we obtain

χxx(ω) = γM0ω0G(ω) . (6.15)

The factor γM0ω0 arises because the forcing function F (t) differs from the
applied field by this quantity. The important result is that the Fourier trans-
form of the Green’s function is, essentially, the frequency-dependent suscepti-
bility. Notice that if the so-called double-time Green’s function defined on page
18 is introduced into equation (1.81), we obtain (6.15) directly, aside from the
proportionality factor. This should not be surprising, for both Green’s func-
tions represent the linear response to a time-dependent magnetic field.

Let us now evaluate the Green’s function. This is easily done by using the
integral representation for the delta function.

δ(t − t′) =
1
2π

∫ ∞

−∞
dωe−iω(t−t′) .

Thus

G(t − t′) = L−1δ(t − t′) =
1
2π

∫ ∞

−∞
dω

eiω(t−t′)

−ω2 + ω2
0

. (6.16)

This integral is not defined until we specify how to treat the singularity at ω =
ω0. To resolve this difficulty we invoke causality and require that G(t− t′) = 0
for t < t′. This enables us to evaluate (6.16) unambiguously. The result is

G(t − t′) =
sin ω0(t − t′)

ω0
θ(t − t′) , (6.17)

where θ(t− t′) is 0 for t < t′ and 1 for t > t′. Taking the Fourier transform of
(6.17) and multiplying the result by γM0ω0, we finally obtain

χxx(ω) =
γM0ω0

ω2
0 − ω2

+ i
πγM0

2
[δ(ω − ω0) − δ(ω + ω0)] . (6.18)

It is interesting to note that the real part of this susceptibility comes from
the particular solution to (6.9), while the imaginary part, which is necessary
to satisfy causality, comes from the solutions of the homogeneous version
of (6.9). It is easily demonstrated that (6.18) satisfies the Kramers-Kronig
relations (1.64), (1.65).
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Fig. 6.1. The excitation spectrum of a system of uncoupled spins

The power absorbed by the magnetic system from this time-varying source
is given by

P = −M · dH1(t)
dt

, (6.19)

where the bar indicates a time average. From (1.55),

Mx(t) = H1[χ′
xx(ω) cos ωt + χ′′

xx(ω) sin ωt] , (6.20)

and so (6.19) becomes

P =
1
2
ωH2

1χ′′
xx(ω) . (6.21)

From (6.18) we see that the power absorption of our noninteracting magnetic
system occurs only at the frequency ω0 = γH0. Furthermore, this response
will be infinite. In reality, of course, interactions within the system make
this response finite and spread it over a distribution of frequencies. It is the
determination of this response function to which we now address ourselves.

The poles in the complex response function define the excitation spectrum
associated with the system. The real part of the pole gives the frequency of
the excitation, and the imaginary part gives its damping. If the poles move too
far from the real axis, the concept of an excitation is less well defined. Since
we are dealing here with noninteracting localized moments, these poles are
independent of wave vector. Therefore the excitation spectrum is as indicated
in Fig. 6.1.

6.2 The Bloch Equations

If the magnetization is excited to a nonequilibrium value under the influence
of an external field, when the field is suddenly removed the magnetization will
relax back to its equilibrium value. The details of the relaxation depend on
the nature of the interactions in the system. However, if we assume that this
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relaxation, whatever its origin, has an exponential form, then we can develop a
phenomenological description of the response function. In general, the longitu-
dinal and transverse components of the magnetization may relax with different
rates. The equations of motion, called the Bloch equations, are [128]

dmz

dt
= −γ(M × H)z − mz

T1
. (6.22a)

dmx,y

dt
= −γ(M × H)x,y − mx,y

T2
. (6.22b)

If we again assume a driving field of the form H1(t) = H1 cos(ωt)x̂, the
linearized equation for mx is

d2mx

dt2
+

2
T2

dmx

dt
+
(

ω2
0 +

1
T 2

2

)
mx = γH1ω0M0 cos ωt . (6.23)

By assuming that mν relaxes to 0 we have essentially incorporated causality
into our solution, for the poles which enter the expression for the Green’s
function associated with this system, analogous to (6.16), are now displaced
off the real axis, as shown in Fig. 6.2. Thus we speak of the susceptibility as
being analytic in the upper half of the complex plane. The Green’s function
is then

G(t − t′) =
sinω0(t − t′)

ω0
e−(t−t′)/T2θ(t − t′) . (6.24)

Taking the Fourier transform leads us to

χxx(ω) = χ′
xx(ω) + iχ′′

xx(ω) , (6.25)

where

χ′
xx(ω) =

1
2
γM0

[
ω0 − ω

(ω0 − ω)2 + (1/T2)2
+

ω + ω0

(ω + ω0)2 + (1/T2)2

]
(6.26)

and

χ′′
xx(ω) =

γM0

2T2

[
1

(ω0 − ω)2 + (1/T2)2
− 1

(ω0 + ω)2 + (1/T2)2

]
. (6.27)

As 1/T2 becomes very small the functions in (6.27) become higher and nar-
rower in such a way as to maintain their area. Therefore, in the limit 1/T2 → 0,
they may be considered as representations of delta functions; that is,

lim
ε→0

ε

x2 + ε2
= πδ(x) (6.28)
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Fig. 6.2. Location of the poles in the imaginary part of the susceptibility
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Fig. 6.3. Plot of the real and imaginary parts of the susceptibility, χxx(ω)

and (6.26), (6.27) reduce to our previous result (6.18). The real and imaginary
part of the susceptibility are shown in Fig. 6.3.

Let us keep in mind that we are dealing with the response to a linearly
polarized driving field. Some experiments employ a circularly polarized field.
In such cases the response involves the other components of the susceptibility.
For example, consider the circularly polarized field

H1(t) = H1 cos(ωt)x̂ + H1 sin(ωt)ŷ .

When ω is positive this corresponds to counter-clockwise rotation. This is the
direction M precesses in the presence of the dc field H0ẑ. From (1.55), the
responses in the x and y directions to such a field may be written as

mx(t) = 2πH1[(χ′
xx(ω) − χ′′

xy(ω)) cos ωt + (χ′′
xx(ω) + χ′

xy(ω)) sin ωt] ,

my(t) = 2πH1[(χ′
yx(ω) − χ′′

yy(ω)) cos ωt + (χ′′
yx(ω) + χ′

yy(ω)) sin ωt] .

Solving (6.22a,b) for my leads to the results

χ′
yx(ω) = −γM0

2T2

[
1

(ω0 − ω)2 + (1/T2)2
+

1
(ω + ω0)2 + (1/T2)2

]
,

χ′′
yx(ω) =

γM0

2

[
ω0 − ω

(ω0 − ω)2 + (1/T2)2
− ω0 + ω

(ω + ω0)2 + (1/T2)2

]
.
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If a field is applied in the y direction, the equation for my is identical to (6.23).
Therefore χyy = χxx. However, χxy = −χyx. Combining these results, we find
that the rotational component m+ = mx + imy has the solution

m+(t) = (χ′
+(ω) + iχ′′

+(ω))H1e
iωt ,

where

χ′
+(ω) = γM0

ω0 − ω

(ω − ω0)2 + (1/T2)2
and (6.29a)

χ′′
+(ω) = −γM0

T2

1
(ω − ω0)2 + (1/T2)2

≡ −πγM0fL(ω) . (6.29b)

Figure 6.4 shows the power absorbed as predicted by the Bloch equation for
a circularly polarized field. While the Bloch equations offer a nice descrip-
tion of resonance the form given in (6.22a,b) has an interesting unphysical
consequence. Namely, if we drive the system in the clockwise (anti-Larmor)
direction the power absorption becomes negative! The reason for this is that
in (6.22a,b) the magnetization relaxes to the z-direction, i.e., the transverse
components relax to zero. But, in reality, the magnetization should relax to
the direction of the instantaneous field H0 + H1(t).

The line shape fL(ω) defined by (6.29b) is the familiar Lorentzian curve.
This shape reflects the fact that it is the lifetime of the quantum states par-
ticipating in the transition, in this case the Zeeman levels, that govern the
profile. It is often found experimentally that the shape of the absorption more
nearly resembles the Gaussian function

fG(ω) =
1

∆
√

2π
e−(ω−ω0)

2/2∆2
, (6.30)

Fig. 6.4. Frequency response to a circularly polarized field (H1 = 0.0141ω0/γ)
(Courtesy of Jian-gang Zhu)
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Fig. 6.5. Coordinate system rotating at a rate ω showing that the dc field is reduced
by ω/γ

where ∆ characterizes the width of the Gaussian. The appearance of such
a shape is the result of inhomogeneous broadening. That is, the moments
find themselves in different fields which give rise to a distribution of resonant
frequencies. In general, the absorption may have some arbitrary shape f(ω).
This shape tells us a great deal about the dynamics of the magnetic system.
Adiabatic Rapid Passage. This discussion of susceptibility has been based on
linearized equations which result in mz being constant. The Bloch equations
(6.22a,b), however, contain a rich variety of solutions. For example, in the
expressions above we have assumed that the frequency of the driving field
is fixed. Experimentally, however, one generally studies the resonance in a
magnetic system by sweeping the value of the frequency or, equivalently, the
dc field H0. This raises the question as to the relationship between the sweep
rate and the relaxation times in the Bloch equations. Suppose, for example, we
wish to reverse the magnetization by using resonance. We apply a circularly-
polarized field and sweep through the resonance. This is most conveniently
described by using the rotating coordinate system shown in Fig. 6.5. In this
frame the total field is

Ht =
(

H0 −
ω

γ

)
+ H1 .

Suppose we start at a frequency ω 
 γH0. Then Ht is largely aligned with
H0. As we increase ω, Ht rotates out away from H0. The magnetization
M will process around Ht at a rate γHt. If we want M to follow Ht in a
tight spiral, then the sweep rate, dθ/dt, must be slow compared to γHt. The
smallest value of γHt occurs at resonance (i.e., Ht = H1). Therefore this
condition becomes

1
H1

dH0

dt

 γH1 .
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When this condition holds we say that the motion is adiabatic. On the other
hand, the sweep rate must be faster than the time it takes for the magnetiza-
tion to relax back to its equilibrium direction along H0, T1, i.e.

1
H1

dH0

dt
� 1

T1
.

These conditions define “adiabatic rapid passage”, the technique used by
Bloch, Hansen, and Packard [129a] in their historic demonstration of nuclear
induction.

Precessional Switching. The value of T1 for the nuclear spins associated with
the protons in water is approximately 3 seconds. Therefore it is relatively
easy to reverse the nuclear magnetization by sweeping the field H0 in the
presence of an rf field. Bloembergen [129b] pointed out that Bloch’s equa-
tions, which Bloch developed with nuclear moments in mind, apply equally
well to electronic moments, particularly those in a ferromagnet where they are
exchange-coupled together to form a macroscopic magnetization, M. For elec-
tron spins, however, T1 is very short, making it much more difficult to satisfy
the adiabatic rapid passage conditions. It is, nevertheless, possible to exploit
the gyromagnetic nature of the Bloch equations to reverse the magnetization
of a ferromagnet. This is done by applying a dc field, Hpulse, at right angles to
the magnetization for a time equal to half a precessional cycle. Consider a thin
magnetic film initially magnetized in the plane of the film. The field Hpulse

applied in the plane of the film at a right angle to the magnetization causes
the magnetization to tip up out of the plane. This produces a relatively large
demagnetization field which causes the magnetization to precess in a conical
path. Such a “quasiballistic” magnetization reversal has been observed in a
film of CoFe (4πM = 10,800 oe) with a pulse having an amplitude of 81 oe
and a duration of 175 psec [129c].

6.3 Resonance Line Shape

The shape of the resonance contains information about the interactions which
govern the time dependence of the system. There are two approaches that have
been very fruitful in understanding the nature of the magnetic-resonance line
shape. One is the method of moments, which was employed so successfully
by Van Vleck [130]. The other is what we might call the relaxation-function
method, developed by Kubo and Tomito [131]. These approaches enable us to
relate the phenomenological description given in the previous section to the
microscopic physics.

6.3.1 The Method of Moments

If the resonance curve is described by a normalized shape function f(ω) cen-
tered at ω0, then the nth moment with respect to ω0 is defined by
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Mn =
∫ ∞

−∞
(ω − ω0)nf(ω)dω . (6.31)

If the function f(ω) is symmetric about ω0, it is convenient to introduce the
function F (Ω) = f(ω0 + Ω). In terms of this function, the nth moment is

Mn =
∫ ∞

−∞
(Ω)nF (Ω)dΩ . (6.32)

If Γ (t) is the Fourier transform of F (Ω),

Γ (t) =
∫ ∞

−∞
F (Ω)e−iΩtdΩ = 2

∫ ∞

0

F (Ω) cos(Ωt)dΩ , (6.33)

then the 2nth moment may be written as

M2n = (−1)n d2nΓ (t)
dt2n

∣∣∣∣
t=0

. (6.34)

In order to obtain an explicit expression for the 2nth moment let us as-
sume that the width of the absorption at ω0 is much less than ω0 itself. We
may then approximate the shape function by χ′′(ω)/ω. Let us also make the
high-temperature approximation gµBH 
 kBT . With this approximation the
correlation function introduced in Sect. 1.3.2 becomes [132]

〈Mx(t)Mx〉 →
Tr{Mx(t)Mx}

Tr{1} ≡ G(t) . (6.35)

Under these conditions the fluctuation-dissipation theorem (1.87) reduces to

〈Mx(t)Mx〉 =
kBT

π

∫ ∞

−∞
dω

χ′′
xx(ω)
ω

e−iωt . (6.36)

Therefore, since χ′′(ω)/ω is proportioned to the lineshape f(ω),

G(t) = C

∫ ∞

0

dωf(ω) cos ωt , (6.37)

where C is the coefficient of proportionality. This may be rewritten as

G(t) = C

∫ ∞

−ω0

dΩF (Ω) cos(ω0 + Ω)t . (6.38)

If F (Ω) falls to 0 by the time Ω reaches −ω0, so that the lower limit may be
extended to −∞, then

G(t) =
[
2C

∫ ∞

0

dΩF (Ω) cos Ωt

]
cos ω0t = G1(t) cos ω0t . (6.39)
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Therefore

M2n =
(−1)n

G1(0)
d2nG1(t)

dt2n

∣∣∣∣
t=0

. (6.40)

Differentiating (6.35), (6.39), we obtain the explicit expressions for the second
and fourth moments,

M2 = −Tr{[H,Mx]2}
�2Tr{M2

x}
, (6.41)

M4 =
Tr{[H, [H,Mx]2}

�4Tr{M2
x}

− 6ω2
0M2 − ω4

0 . (6.42)

Let us consider what these moments would be for Lorentizian and Gaussian
lines. Consider first the normalized Gaussian given by (6.30). From definition
(6.31) we find

M2 = ∆2 and M4 = 3∆4 . (6.43)

The halfwidth ∆ω, as defined by fG(ω0 + ∆ω) = 1
2fG(ω0), is

∆ω =
√

2 ln 2∆ = 1.18∆. (6.44)

Therefore the square root of the second moment gives a good approximation
to the width of a Gaussian line.

Now consider the normalized Lorentzian,

fL(ω) =
1

πT2

1
(ω − ω0)2 + (1/T2)2

. (6.45)

The integrals for the second and higher moments diverge for this function.
Therefore a cutoff is usually introduced at |ω − ω0| = ωm. The moments are
then given by

M2 =
2ωm

πT2
and M4 =

2ω3
m

3πT2
. (6.46)

Notice that

M4

M2
2

=

⎧⎨
⎩

3 for a Gaussian
πωmT2

6
for a cutoff Lorentzian.

(6.47)

If we compute this ratio using (6.41) and (6.42) for some relaxation process
defined by H and find that the result is very large, we suspect the line shape
will be Lorentzian, whereas if the result is near 3, the line shape will be closer
to a Gaussian.

The problem to which Van Vleck addressed himself was that of a system of
magnetic moments located in an external field and interacting weakly through
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both the dipole–dipole interaction (2.50) and the exchange interaction (2.89).
Thus the system is characterized by the Hamiltonian

H = HZ + Hdip + Hex . (6.48)

Notice that the last three terms in (2.50) have matrix elements between states
of the system in which the total magnetic quantum number is changed by ±1
and ±2. These terms lead to transitions which are separated from the main
resonance by multiples of gµBH0 and appear as sidebands on the main Zeeman
line at gµBH0. As long as the sidebands do not overlap our main line, we may
neglect the last three terms in (2.50), in so far as we are concerned only with
the main line. The truncated Hamiltonian is thus

H = HZ + H′
dip + Hex , (6.49)

where

H′
dip = g2µ2

B

∑
i,j �=i

[
−3 cos2 θij − 1

r3
ij

Sz
i Sz

j +
3 cos2 θij − 1

4r3
ij

(S+
i S−

j + S−
i S+

j )

]
.

(6.50)

Since

Mx = −gµB

∑
i

Sx
i and HZ = gµBH

∑
i

Sz
i ,

we find that
[HZ ,Mx] = i�ω0My . (6.51)

It is also easy to show that [Hex,Mx] = 0. Therefore the second moment
reduces to

M2 = −
Tr{[H′

dip,Mx]2}
�2Tr{M2

x}
. (6.52)

To evaluate the traces Van Vleck used the fact that the trace is independent
of the basis. Therefore, even though this is truly a many-body system, we may
use a basis consisting of products of individual spin states, |MS1 ,MS2 , . . .〉.
We can then readily carry out the traces and find that

M2 =
3
4

g4µ4
B

�2
S(S + 1)

∑
i

(1 − 3 cos2 θij)2

r6
ij

. (6.53)

If the sample consists of randomly oriented crystallites, then the angular part
of (6.53) averages to 4

5 . Furthermore, if we have a moment at every site in a
simple cubic lattice with a lattice parameter a, then

∑
i

1
r6
ij

=
8.32
a6

and M2 =
5µ4S(S + 1)

�2a6
.
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For nuclear moments separated by, say 3 Å, the corresponding line width
∆H =

√
M2γN is about 6 gauss, which is in reasonable agreement with

observations in nuclear magnetic-resonance experiments. For electronic mo-
ments, however, this line width is about 5 kG. This is enormous. But when we
have electronic moments as close as 3◦ Å, the exchange interaction becomes
very important, and the second moment, which does not contain exchange
effects, is not sufficient to describe the situation. In particular, for a Lorentzian
line (6.46) gives

1
T2

=
πM2

2

√
M2

3M4
. (6.54)

To study the effects of exchange Van Vleck also computed the fourth moment.
What he found was that when the exchange interaction exceeds the dipole–
dipole interaction, the fourth moment exceeds the square of the second moment.
Equation (6.47) then tells us that as the exchange interaction increases, the
shape of the absorption line changes from Gaussian to Lorentzian. Furthermore,
if the fourthmoment increaseswhile the secondmoment remains unchanged, the
intensity in the wings of the absorption curve increases. If the total integrated
intensity is to remain the same, there must be a decrease in intensity closer
to the center of the line. This results in what is called exchange narrowing,
illustrated in Fig. 6.6. The origin of this narrowing may be better understood
by considering the effective field acting on a particular spin. In the absence of
any exchange, this spin experiences not only the applied field H0, but also a
dipolar field arising from the other spins in its environment. Since each spin
experiences a slightly different environment, this leads to a distribution of
resonant frequencies which manifests itself as an inhomogeneously broadened
absorption. The effect of the exchange interaction is to modulate the dipolar
field. As this modulation increases the average dipolar field decreases, with
the result that the distribution of resonant frequencies peaks more strongly
near ω0.

6.3.2 The Relaxation-Function Method

Guided by this interpretation of the results of the moment calculations, let
us now outline the relaxation-function approach to obtain the detailed shape
of the resonance curve. Our discussion follows that of Abragam [133]. Since
we are assuming that the absorption spectrum is proportional to χ′′(ω)/ω, we
must compute the high-temperature correlation function introduced in (6.35),

G(t) =
Tr{Mx(t)Mx}

Tr{1} . (6.55)
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ω0

ω

f (ω)

Fig. 6.6. Schematic represenation of exchange narrowing. The arrows indicate the
transfer of intensity

We shall not include the exchange interaction explicitly, but shall merely
assume that it leads to a time-dependent dipolar interaction. The total
Hamiltonian is then H = HZ + Hdip. The dipole–dipole interaction is
assumed to be small in comparison with the Zeeman interaction. Therefore
we look for a solution to Mx(t) which is an expansion in powers of the dipole–
dipole interaction. This is very much different from the method of moments,
which is essentially an expansion of G(t) in powers of t.

In order to develop an expansion of Mx(t) in the dipole interaction it is
convenient to remove the Zeeman interaction by the transformation

∼
Mx ≡ exp

(
−iHZt

�

)
Mx(t) exp

(
iHZt

�

)
. (6.56)

The equation of motion for this operator is

−i�
d

∼
Mx

dt
=
[
exp
(
−HZt

�

)
Hdip exp

(
iHZt

�

)
,

∼
Mx

]
. (6.57)

The corresponding equation for the matrix element of
∼
Mx between eigenstates

of HZ is

−i�
d

dt
(

∼
Mx)nn′ =

∑
n′′

{
(Hdip)nn′′(

∼
Mx)n′′n′ exp[i(En′′ − En)t/�]

−(
∼
Mx)nn′′(Hdip)n′′n′ exp[−i(En′′ − En′)t/�]

}
. (6.58)

Since the transformation (6.56) has removed the rapid Zeeman precession

from
∼
Mx, we may assume that remaining time dependence is relatively slow.

Then, since En′′ − En and En′′ − En′ are multiples of �ω0, those terms in
(6.58) for which these differences are not 0 oscillate rapidly, giving a very
small contribution which we shall neglect. This leaves us with matrix elements
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of the form (Hdip)nn′′ between degenerate states. We shall assume that these
states are chosen such that these matrix elements vanish unless n′′ = n. Thus
(6.58) reduces to

−i�
d

dt
(
∼
Mx)nn′ = �∆ω(t)nn′(

∼
Mx)nn′ , (6.59)

where
�∆ω(t)nn′ ≡ (Hdip)nn − (Hdip)n′n′ . (6.60)

The time dependence of this quantity reflects the exchange modulation.
That is, the exchange interaction causes the spin system to fluctuate among
the degenerate states within |n〉 giving rise to different values of (Hdip)nn.
Equation (6.59) has the solution

(
∼
Mx)nn′ = (

∼
Mx)0nn′ exp

[
i

∫ t

0

∆ω(t′)nn′dt′
]

. (6.61)

If we invert (6.56) and use the solution (6.61), the correlation function becomes

G(t) =
∑
n,n′

exp [i (En − En′) t/�] |〈n|Mx|n′〉|2 exp
[
i

∫ t

0

∆ω(t′)nn′dt′
]

.

(6.62)
Let us consider only the main absorption line, for which En−En′ = �ω0. This
restricts the sum over n and n′ to those pairs whose eigenvalues differ by �ω0.
If we define ∫ t

0

∆ω(t′)nn′dt′ ≡ x(t) , (6.63)

then for those states n and n′ which give a particular x(t) we also have a
corresponding value for |〈n|Mx|n′〉|2, which we write as P [x(t)]. Thus the
correlation function may be thought of as the average of exp[ix(t)] using the
probability distribution P [x(t)]; that is,

G(t) = eiω0t

∫ ∞

−∞
dxP (x)eix = eiω0t〈eix〉 , (6.64)

where P (x) includes a normalizing factor as well as the matrix element
appearing in (6.62).

The assumption is now made that ∆ω(t′)nn′ is a Gaussian function of
time, with a mean value given by the second moment M2, which we computed
earlier. Thus we take

〈∆ω(t)nn′∆ω(t + τ)nn′〉 = M2ψ(τ) , (6.65)

where ψ(τ) characterizes the fluctuations in the local dipolar field as it is
randomly modulated by the exchange interaction. There is a theorem, called
the central-limit theorem, which says, in effect, that if ∆ω(t′)nn′ is a Gaussian
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function, then x(t), as defined by (6.63), is also a Gaussian function. This
means that P [x(t)] has the Gaussian form

P [x(t)] =
1√

2π〈x2〉
exp
(
−x2/2〈x2〉

)
. (6.66)

Thus

〈eix〉 = e−〈x2〉/2 ,

where

〈x2〉 =
〈∫ t

0

dt′
∫ t

0

dt′′∆ω(t′)nn′∆ω(t′′)nn′

〉
= 2M2

∫
0

dτ(t− τ)ψ(τ) . (6.67)

Therefore we finally obtain the result that the correlation function whose
Fourier transform gives the lineshape is given by

G(t) = eiω0tϕ(t) , (6.68)

where the relaxation function, ϕ(t), is

ϕ(t) = exp
[
−M2

∫ t

0

(t − τ)ψ(τ)dτ

]
. (6.69)

The narrowing process may be seen from this expression. If the correlation
time that characterizes ψ(τ) is long, then ψ(τ) � 1 over the range of the
integral in (6.69) and

ϕ(t) → exp
(
−M2t

2/2
)

. (6.70)

This leads to a Gaussian line with the Van Vleck second moment. If, on the
other hand, ψ(τ) decays before we reach the upper limit of the integral, then

M2

∫ t

0

(t − τ)ψ(τ)dτ � M2t

∫ ∞

0

ψ(τ)dτ ≡ M2t/ωex (6.71)

and
ϕ(t) → exp (−M2t/ωex) . (6.72)

This leads to a Lorentzian line with a halfwidth proportional of M2/ωex. Thus
as the exchange increases, the dipolar broadened line changes from Gaussian
to narrow Lorentzian.

An analytic form for ψ(τ) which contains both the Gaussian and Lorentzian
limits is

ψ(τ) = exp
(
−πω2

exτ
2/4
)

. (6.73)
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6.3.3 Spin Diffusion

Detailed comparison with measured correlation functions shows that ψ(τ)
actually decays more slowly than a Gaussian. To obtain a better description of
the relaxation at long times we recognize that if we perturb the spin system at
some point r this perturbation will propagate away by means of the exchange
interaction. At long times this process will involve many spins and may be
described by a diffusion process. This means that the fluctuations described
by ψ(t) will also be spatially dependent, i.e., ψ(r, t) and will obey the diffusion
equation,

Λ∇2ψ =
∂ψ

∂t
, (6.74)

where the diffusion coefficient Λ is related to the correlation time ω−1
ex . The

difference between Gaussian behavior and diffusive behavior is illustrated in
Fig. 6.7.

It is interesting to note from the diffusion equation that ψ(τ) must vary as
τ−d/2 where d is the dimensionality. Thus, in one dimension the correlation
time ω−1

ex defined by (6.71) diverges and we expect an anomalous line shape.
(CH3)4NMnCl3, abbreviated TMMC, is a system in which the Mn2+ spins
are exchange coupled only along chains approximating a one-dimensional spin
system. Magnetic resonance studies indeed show [134] that the line shape is
the Fourier transform of exp(−At3/2), intermediate between a Gaussian and
a Lorentzian.

Although we have considered here the case of exchange-narrowed dipolar-
broadened lines, the relaxation-function approach may also be applied in a
variety of other situations, such as exchange-narrowed hyperfine-broadened
nuclear magnetic resonance lines [135] or motionally narrowed, dipolar-
broadened nuclear resonance lines [136].

Fig. 6.7. Comparison of the Gaussian and diffusion approximations to the correla-
tion function ψ(τ). The time is in units of (1/τ0)

2 = 2z(J/�)2S(S + 1)/3 where z is
the number of of neighbors and J is the exchange
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6.4 Spin Echoes

6.4.1 Measurement of T1

Notice that the longitudinal relaxation time T1 does not enter the linear
response function (6.27). Had we included the nonlinear contributions to this
response function, the additional term γ2H2

1T1T2 would have appeared in
the denominator. As a consequence, when the amplitude of the driving field
becomes comparable to (γ2T1T2)−1/2 the resonance begins to saturate. The
onset of this saturation provides a measure of T1.

The same nonlinearity is also employed to produce spin echoes [137]. This
phenomenon is easily understood with the help of Fig. 6.8. A circularily po-
larized field H1 at frequency ω0 is applied transverse to the dc field H0. We
know from the Bloch equations that in a coordinate system rotating about
the z-axis, at a rate ω0, the magnetization will precess away from the z-axis as
illustrated in Fig. 6.8a. If the driving field is turned off just as the magnetiza-
tion reaches the xy-plane, a 90◦ pulse is produced. Leaving the driving field on
for twice as long results in a 180◦ pulse, which just inverts the magnetization.

Suppose that at time t = 0 we apply a 90◦ pulse. After this pulse is
turned off the spins process at their own resonant frequencies, which, because
of the dipolar field, are distributed about ω0. After some dephasing time T ∗

2

the spins produce a “pancake” in the rotating system, as shown in Fig. 6.8b.
A 180◦ pulse applied at some time τ to the system in this configuration will
cause this pancake to rotate 180◦ about the x′ axis, as shown in Fig. 6.8c.

(a) (b)

(d)
(c)

Fig. 6.8. Description of the origin of a spin echo in a coordinate frame rotating
about the z axis with the Zeeman frequency
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Now, as the spins precess they begin to rephase and at a time τ after the
180◦ pulse they again become coherent, producing an “echo”. If we continue
to apply 180◦ pulses at times 3τ , 5τ , etc., we shall observe echoes at times 4τ ,
6τ , etc. If there were no transverse relaxation, these echoes would all have the
same height. However, because of this relaxation the height of the nth echo
decreases as exp(−2nτ/T2), providing us with a measure of T2. This scheme
is shown in Fig. 6.9.

If T1 � T2, then the longitudinal relaxation time T1 may be obtained as
follows. First we apply a 90◦ pulse, which takes Mz to zero. After a time τ ,
Mz has returned to M0[1−exp(−τ/T1)]. If we now apply a 90◦ pulse followed
by a 180◦ pulse, the height of the resulting echo will be proportional to Mz(τ).
By repeating this sequence we can follow Mz back to M0.

Let us consider briefly still another way of determining T1. This consists of
measuring the response of the system to a low-frequency longitudinal driving
field. In general, the magnetization relaxes toward the instantaneous field.
Therefore the Bloch equation (6.22a) for a field H = H0ẑ+H1 cos ωtẑ should
be written as

dmz

dt
= γ(M × H)z +

χ0H1 cos ωt − mz

T1
. (6.75)

This is only an approximation, in the sense that we have used the static
susceptibility χ0. Solving (6.75) leads directly to the response functions

χ′
zz(ω) =

χ0

1 + ω2T 2
1

, (6.76a)

χ′′
zz(ω) =

χ0ωT1

1 + ω2T 2
1

. (6.76b)

These functions are plotted in Fig. 6.10. For electronic spins this broad longi-
tudinal absorption is in the radio-frequency part of the spectrum. This is far
below the transverse resonance, which is in the microwave region. Microwave
sources were unavailable until World War II, and consequently the relaxation
time T1 was investigated much earlier than T2. In fact, the response func-
tion (6.76b) was derived from thermodynamic considerations long before the
development of Bloch’s equations.

Fig. 6.9. Spin echo scheme for measuring T2
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Fig. 6.10. Longitudinal susceptibility of a weakly interacting spin system

6.4.2 Calculation of T1

Let us now derive an expression for the phenomenological relaxation time T1.
According to the Bloch equation (6.22a), if the z component of the magnet-
ization is reduced from its equilibrium value M0, it will return to this value
according to

Mz = M0

(
1 − et/T1

)
. (6.77)

To obtain an explicit expression for T1 let us compute Mz for a simple two-
level spin system that has been displaced from equilibrium. If the number of
spins in the state | − 1

2 〉 is N− and the number in |+ 1
2 〉 is N+, then the total

magnetization is

Mz =
1
2gµB(N− − N+)

V
=

1
2
gµBn . (6.78)

Thus, since the z component of the magnetization depends on the relative
population of the Zeeman states, any change in this population will result in
a change in Mz.

Let us define W (− → +) as the probability per unit time that a spin in the
state |− 1

2 〉 is “flipped” to the state |+ 1
2 〉. Then the change in the populations

may be described by the rate equations

dN+

dt
= N−W (− → +) − N+W (+ → −) , (6.79a)

dN−
dt

= N+W (+ → −) − N−W (− → +) . (6.79b)

In equilibrium,
N0

−W (− → +) − N0
+W (+ → −) = 0 . (6.80)
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Therefore, if the levels are separated by gµBH and we define W (+ → −) ≡ W ,
then

W (− → +) = W exp(−gµBH/kBT ) . (6.81)

The equation for n becomes

dn

dt
=

2N+W

V
=

2N−W exp(−gµBH/kBT )
V

. (6.82)

In the high-temperature limit, valid for most experimental situations, the
exponential in (6.82) may be expanded. If we replace the occupation num-
bers in (6.78) by their equilibrium values, we see that n0 is approximately
(N−/V )(gµBH/kBT ) and

dn

dt
= −2W (n − n0) . (6.83)

Solving this equation and using (6.78), we obtain

Mz = M0

(
1 − e−2Wt

)
. (6.84)

Comparing this with (6.77), we have the result

1
T1

= 2W . (6.85)

There are various mechanisms that might contribute to the transition prob-
ability W . For example, in a paramagnet the spins may be coupled to the
lattice vibrations. In this case the spin flips are accompanied by the emission
or absorption of phonons. The resulting T1 is called the spin-lattice relaxation
time.

Another example is that of nuclear spins in a ferromagnet. In this case
the nuclear spins are coupled to the electron spins by the hyperfine interac-
tion. Fluctuations in the electron-spin system can then flip the nuclear spins,
leading to a nuclear-spin relaxation time T1. Let us consider this particular
mechanism as an example of the calculation of T1.

Suppose our unperturbed system is a single nuclear spin of 1
2 plus the

exchange-coupled electron system. Thus

H0 = HN + Hel , (6.86)

where HN = −gNµNHIz and Hel is the electronic Hamiltonian. The eigen-
functions of H0 have the form |mI , n〉, where n characterizes the state of the
electron system. The perturbing Hamiltonian is the hyperfine interaction

H1 = AI · S , (6.87)
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where S is the spin of the electron associated with the particular nucleus we
are considering. If, at time t = 0, the system is in the state |m1, n〉, then
we want to know the probability of finding the system in the state |m′

I , n
′〉

at some later time t. To find this probability we must solve the Schrödinger
equation

i�
∂ψ

∂t
= (H0 + H1) ψ . (6.88)

We shall see in a moment that it is convenient to introduce

ψ = exp
(
−iH0t

�

)
φ , (6.89)

where φ satisfies

i�
∂φ

∂t
= H1(t)φ (6.90)

and

H1(t) ≡ exp
(

iH0t

�

)
H1 exp

(
−iH0t

�

)
. (6.91)

Integrating this equation with the condition that φ(t = 0) = |mI , n〉, we
obtain

φ = exp
[
− i

�

∫ t

0

dt′H1(t′)
]
|mI , n〉 . (6.92)

The reason for introducing φ is that (6.92) may be expanded in powers of the
perturbation H1,

φ = |mI , n〉 −
i

�

∫ t

0

dt′H1(t′)|mI , n〉 + . . . . (6.93)

Therefore the probability of finding the system in the state |m′
I , n

′〉 is

|〈m′
I , n

′|ψ〉|2 =
1
�2

∫ t

0

dt′
∫ t

0

dt′′〈mI , n|H1(t′|)|m′
1, n

′〉

×〈m′
1, n

′|H1(t′′)|mI , n〉 + . . . . (6.94)

The total probability per unit time that the system will make a transition
is obtained by dividing (6.94) by t and letting t → ∞. To find W we set
mI = − 1

2 and m′
I = + 1

2 . We also average over all the electronic degrees of
freedom. That is, we multiply (6.94) by the probability that the electronic
system will be in the initial state n and then we sum over n as well as over
all the final states n′. The sum over n′ gives unity by closure, leaving us with
just the thermal average of H1(t′)H1(t′′), which we denote by 〈. . .〉. This is
not to be confused with the bras and kets above. Thus

W = lim
t→∞

A2

4�2t

∫ t

0

dt′′ exp [iωN (t′ − t′′)]
〈
S−(t′)S+(t′′)

〉
. (6.95)
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Fig. 6.11. Variation of T1 with the correlation time τ according to the BPP model

where ωN = gNµNH is the nuclear magnetic resonance frequency. Changing
variables leads to the result

1
T1

=
A2

2�2

∫ ∞

−∞
dt
〈
S−(t)S+

〉
exp(iωN t) . (6.96)

Thus we see that the longitudinal relaxation frequency in this case is the
Fourier component at the nuclear magnetic resonance frequency of the electron-
spin correlation function. If the correlation function relaxes exponentially, i.e.,

〈S−(t)S+〉 =
〈
S2
⊥
〉
e−t/τ ,

then
1
T1

=
A2〈S2

⊥〉
�2

τ

1 + ω2
Nτ2

. (6.97)

The variation of T1 with τ is shown in Fig. 6.11. Thus as τ varies, due to
a variation in temperature for example, T1 goes through a minimum when
ωNτ ∼ 1. This characteristic behavior was first derived by Bloembergen,
Purcell, and Pound [138] and is often simply referred to as the BPP result.

Problems

6.1. Consider a moment M initially pointing along the +z direction. If we
apply a dc field H in the −z-direction describe the behavior of Mx,My,Mz

according to the Bloch equations.

6.2. Show that the real and imaginary parts of the susceptibility (6.26) and
(6.3) satisfy the Kramers–Kronig relations (1.64) and (1.65).

6.3. Calculate the second and fourth moments (i.e., (6.43)) of the Gaussian
function (6.30)
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6.4. Show that [Hex,Mx] = 0. What does this imply about the torque on the
magnetization from exchange?

6.5. Would a single-ion anisotropy of the form

HK =
∑

i

K (Sz
i )2

contribute to the broadening of the resonance?

6.6. Solve the linearized Bloch equations,

ṁx = − 1
T2

mx − γHymy + γhy(t)

ṁy = − 1
T2

my + γHxmx − γhx(t) ,

where Hx,y are called the Kittel “stiffness” fields, to obtain χαβ(ω). Use the
fluctuation-dissipation theorem to find the correlation functions 〈mα(τ)mβ(0)〉
(α, β = x, y). The “noise power” is given by setting τ = 0. Use the result
to calculate the energy 〈ε〉 = MsV Hx〈m2

x〉. What is the meaning of this
result? [139]



7

The Dynamic Susceptibility
of Weakly Interacting Systems: Metals

Let us now investigate the response of a metal to a time-dependent magnetic
field. Experimentally, such investigations are very difficult because of prob-
lems associated with the fact that the driving field penetrates only a short
distance into the metal. The first resonance experiments involving conduction-
electron spins were carried out in the early 1950s. These experiments entailed
measuring the surface impedance of samples located in a microwave cavity.

In 1964 electron spin resonance was observed in transmission. The analysis
of both resonance techniques requires a knowledge of the nonlocal suscepti-
bility function χ(z, z′, ω). This may be obtained from the generalized suscep-
tibility χ(q, ω) along with a boundary condition on M . If we assume that the
boundaries do not relax the magnetization then the magnetization current
∇ × M must be conserved at the boundary. Let us now consider the gener-
alized susceptibility. One approach that is particularly instructive makes use
of the fluctuation-dissipation theorem. As we saw earlier, the presence of a
time-dependent field leads to a coupling between the x and y components of
the magnetization. Consequently, it is more convenient to work with the rota-
tional components M±(q, ω). In terms of these components, the susceptibility
χ′′

xx+χ′′
yy is proportional to the correlation function 〈M−(q, t)M+(−q)〉. This

is just the susceptibility χ−+(q, ω) we have already encountered.
The magnetization operator associated with the spin of a system of

itinerant electrons is

M(r) =
∑

i

µBσiδ(r − ri) . (7.1)

Second quantizing this operator in terms of the plane-waves states (1.130)
gives

M(r) =
µB

V

∑
k,q

∑
α,β

σαβeiq·ra†
k−q,αak,β . (7.2)

Therefore
M+(−q) = −2µB

∑
k

a†
k+q,↑ak↓ (7.3)
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and
M−(q) = −2µB

∑
k

a†
k−q,↓ak↑ . (7.4)

The desired correlation function is then

〈M−(q, t)M+(−q)〉 = 4µ2
B

∑
k

∑
k′

(7.5)

×
〈

exp
(

iHt

�

)
a†

k′−q,↓ak′↑ exp
(
−iHt

�

)
a†

k+q,↑ak↓

〉
,

where
H =

∑
k

∑
σ

εkσa†
kσakσ . (7.6)

The eigenvalue εkσ is �
2k2/2m + muBH0σ, where σ is +1 for an up spin and

−1 for a down spin.
At T = 0 K the ground state consists of up- and down-spin Fermi spheres.

As in our calculation of the static susceptibility in Chap. 3, the wave vector k
is restricted to those values within the down-spin Fermi sphere such that k+q
lies outside the up-spin Fermi sphere. The correlation function at T = 0 K is
then

〈M−(q, t)M+(−q)〉 = 4µ2
B

∑
k

fk↓ (1 − fk+q,↑) exp
−i(εk+q,↑ − εk↓)t

�
.

(7.7)
Taking the Fourier transform and applying (1.88) at T = 0 K leads to the
susceptibility,

χ′′
−+(q, ω)s =

8πµ2
B

V

∑
k

fk↓(1 − fk+q,↑)δ(�ω − εk+q,↑ + εk↓) . (7.8)

The real part of the susceptibility is obtained from the Kramers–Kronig
relation (1.65),

χ′
−+(q, ω)s =

8µ2
B

V

∑
k

fk↓(1 − fk+q,↑)
εk+q,↑ − εk↓ − �ω

. (7.9)

Notice that χ−+ involves different spin indices whereas χzz, as given in
(3.84), for example, involves the same spin indices. In zero field εk↑ = εk↓ = εk,
and in the limit ω → 0 (7.9) correctly reduces to twice the static result.

The single-particle energies entering the delta function of (7.8) have the
value

εk+q,↑ − εk↑ = 2µBH0 +
�

2

m
k · q +

�
2

2m
q2 . (7.10)
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Fig. 7.1. The magnetic-excitation spectrum of a noninteracting electron gas

Therefore the excitation spectrum has the form shown in Fig. 7.1. The q = 0
mode is the conduction-electron spin resonance at ω = ωs = gµBH0.

7.1 Paramagnons

Let us now consider how the susceptibility is modified by the introduction
of interactions among the electrons. The result for χ−+(q, ω) in the presence
of the delta-function interaction introduced in (4.81) is readily obtained by
the equation-of-motion approach used in that section. In order to calculate
χ−+(q, ω), as opposed to χzz(q, ω), we must determine the response

M+(q) = −2µB

∑
k

〈a†
k−q,↑ak↓〉 (7.11)

to a transverse field H[cos(ωt)x̂ + sin(ωt)ŷ] cos(q · r). The corresponding
Zeeman interaction is

HZ = −1
4
H
{
[M−(q) + M−(−q)]eiωt + [M+(q) + M+(−q)]eiωt

}
. (7.12)

Adding this interaction to (4.81) the equation of motion for 〈a†
k−q,↑ak↓〉 in

the random-phase approximation becomes

i�
d

dt
〈a†

k−q,↑ak↓〉 = (εk − εk−q)〈a†
k−q,↑ak↓〉

+
2I

V

∑
k′

(nk′↑ − nk′↓)〈a†
k−q,↑ak↓〉

−2I

V
(nk−q,↑ − nk↓)

∑
q′

〈a†
k−q′−q,↑ak−q′,↓〉

+
1
2
µBH(nk−q,↑ − nk↓)eiωt . (7.13)



222 7 The Dynamic Susceptibility of Weakly Interacting Systems

We see that the “spin fluctuation” 〈a†
k−q,↑ak↓〉 is coupled to many other fluc-

tuations through the third term on the right-hand side. If we assume that
these spin fluctuations all have a time dependence of the form exp(iωt), then

〈a†
k−q,↑ak↓〉 =

(2I/V )(nk−q,↑ − nk↓)
∑

q′〈a†
k−q′−q,↑ak−q′,↓〉

�ω − (
∼
εk−q,↑ −

∼
εk↓)

−
1
2µBH(nk−q,↑ − nk↓)

�ω − (
∼
εk−q,↑ −

∼
εk↓)

, (7.14)

where
∼
εk

∼
σ = εk +

I

2V

∑
k′

nk′σ . (7.15)

Since we’re interested in the magnetization, (7.11), we must sum (7.14) over k.
The index q′ then becomes a dummy index, which enables us to solve for the
magnetization. From definition (1.55) of the susceptibility we obtain for the
real part

χ′
−+(q, ω) =

(2µ2
B/V )Γ (q, ω)

1 − (2/V )Γ (q, ω)
, (7.16)

where
Γ (q, ω) =

∑
k

nk−q,↑ − nk↓

�ω − (
∼
εk−q,↑ −

∼
εk↓)

. (7.17)

In zero field and in the paramagnetic state εk↑ = εk↓. In this case we can
evaluate the real and imaginary parts of the susceptibility for simple parabolic
bands. The imaginary part is shown in Fig. 7.2. When the interaction I = 0, we
obtain a broad response. However, as I increases toward the Stoner critical
value, the response develops a sharp peak at low frequency whose position
varies linearly with the wave vector q. The presence of this low-frequency
peak, or paramagnon, enhances the effective mass m∗. In particular, it is
found [141] that the mass contains a contribution which varies as the logarithm
of the Stoner enhancement factor.

The above treatment does not include the interactions between the elec-
trons and their host lattice. These interactions are primarily responsible for
the resistivity and are characterized by a relaxation time τ . If this relax-
ation time is much smaller than the inverse cyclotron frequency ωc, i.e.,
ωcτ 
 1, then the electron’s flight between collisions is approximately a
straight line. The electron’s overall motion will then be that of a random
walk with a diffusion constant D = 1

3v2
F τ . We shall see below that this behav-

ior, while not shifting the conduction-electron spin resonance frequency, has a
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Fig. 7.2. Frequency response of the imaginary part of the susceptibility, showing
the paramagnon peak [140]

dramatic effect on the line shape. It is possible to incorporate collision effects
into the susceptibility (7.9) in analogy with Mermin’s [142] treatment of the
Lindhard dielectric function. We shall, however, do this within the framework
of Fermi liquid theory.

7.2 Fermi Liquid Theory

As we saw in Sect. 4.2, the important quantity in the Fermi liquid approach
is the distribution of quasiparticles n(k,σ). Since we shall eventually be in-
terested in the response to space-varying excitations, let us consider a region
of space which is small in comparison with the wavelength of such excitations
but large enough to contain many quasiparticles. Then n(k,σ) becomes a
function of position n(r,k,σ). In Chap. 4 we were able to guess correctly how
the distribution function was changed by a constant velocity displacement or
by the presence of a uniform magnetic field. In the case of a time-dependent
perturbation, however, it is not obvious what the resulting change will be.

In the absence of any magnetic fields the quasiparticle energy is ε0(k)1.
When magnetic fields are applied the energy changes for two reasons. First,
there are orbital and spin Zeeman terms. Second, these Zeeman terms alter
the distribution of quasiparticles, thereby bringing interaction terms into the
energy. If we write the change in the quasiparticle distribution in the general
form

δn(r,k,σ) = n1(r,k)1 + n2(r,k) · σ , (7.18)

then the change in the quasiparticle energy may be written as

δε(r,k,σ) = ε1(r,k)1 + ε2(r,k) · σ , (7.19)
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where

ε1(r,k) = − e�

2m∗c
k × H0 · r +

2
V

∑
k′

ϕ(k̂ · k̂′
)n1(r,k′) (7.20)

and

ε2(r,k) = µBH0ẑ + µBH1(r, t) +
2
V

∑
k′

ψ(k̂ · k̂′
)n2(r,k′) , (7.21)

where H1(r, t) is the probing magnetic field and the quantities ϕ and ψ were
defined in (4.66). The first term in ε1(r,k) is the orbital Zeeman contribution.

The magnetization at r arising from the quasiparticles in state k is

m(r,k) = −µB

V
Tr
σ
{[n(r,k,σ)σ]} = −2µB

V
n2(r,k) . (7.22)

To determine the magnetization we must therefore determine the spin-
dependent part of the change in the quasiparticle distribution function. This
may be found by solving the equation of motion associated with n(r,k,σ).

To set up this equation we ask for the different ways in which n(r,k,σ)
may change with time. First of all, it might depend explicitly on time. This
rate of change has the form ∂n/∂t. Second, quasiparticles may drift into and
out of the region in real space defined by r. The rate of change of n(r,k,σ)
associated with this process is

1
2�

(
∂n

∂r

∂ε

∂k
+

∂ε

∂k

∂n

∂r

)
. (7.23)

Since ε(r,k,σ) and n(r,k,σ) are matrices, this is written in the symmetrized
form. A third way in which the quasiparticle distribution might change is for
quasiparticles to change their momentum �k. Using Hamiltonian’s equation
∂p/∂t = −∂ε/∂r, we have for this contribution

1
2�

(
∂n

∂k

∂ε

∂r
+

∂ε

∂r

∂n

∂k

)
. (7.24)

Another way for n(k, r,σ) to change is for the quasiparticle to change its
spin state. This change is determined by the commutator [ε, n]. Finally, the
interaction with the lattice will also produce a change in the distribution.
Therefore the total equation of motion becomes

∂n

∂t
+

1
�

{
∂n

∂r

∂ε

∂k

}
+

1
�

{
∂n

∂k

∂ε

∂r

}
− i

�
[ε, n] =

∂n

∂t

∣∣∣∣
collisions

, (7.25)

where the braces indicate the symmetrized product. Notice that the second
and third terms have been written as a symmetrized Poisson bracket.

The equation of motion for the magnetization is obtained by multiplying
(7.25) by −(µB/V )σ and taking the spin trace. Let us consider the second
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term. Since the unperturbed distribution function is spatially independent,
the spatial derivative becomes

∂n

∂r
=

∂n1

∂r
+

∂

∂r
(n2 · σ) . (7.26)

The derivative of the energy with respect to the wave vector is

∂ε

∂k
=

∂ε0

∂k
+

∂ε1
∂k

+
∂

∂k
(ε2 · σ) = �v +

∂

∂k
(ε2 · σ) . (7.27)

Since Tr{σ} = 0, Tr{(A · σ)σ} = 2A, and Tr{(A · σ)(B · σ)σ} = 2iA × B,
we obtain

−µB

V
Tr
{

∂n

∂r

∂ε

∂k

}
σ = −2µB

V

(
∂n1

∂r

∂

∂k

)
ε2 + �(v · ∇)m . (7.28)

But
∂n1

∂r
=

∂n0

∂ε0
∂ε1
∂r

= −∂n0

∂ε0

(
e�

2m∗c

)
k × H0 . (7.29)

Therefore

−µB

�V
Tr
{

∂n

∂r

∂ε

∂k

}
σ =

µB

V

∂n0

∂ε0
e

m∗c

[
(k × H0) ·

∂

∂k

]
ε2 +�(v ·∇)m . (7.30)

The third term in (7.25) is evaluated in the same manner, giving

µB

�V
Tr
{

∂n

∂k

∂ε

∂r

}
σ =

2µB

V

∂n0

∂ε0
(v · ∇)ε2 +

e

2m∗c

[
(k × H0) ·

∂

∂k

]
m . (7.31)

Notice that the terms in (7.30, 7.31) which do not explicitly involve m con-
tain the factor ∂n0/∂ε0. This implies that m is proportional to ∂n0/∂ε0. Since
∂n0/∂ε0 is essentially nonzero only at the Fermi surface, the magnetization
arises only from those quasiparticles at the Fermi surface. This, together with
the fact that we are interested in the transverse response of the system, sug-
gests that we introduce the quantity g(r,k), defined by

m+(r,k) = mx + imy = −∂n0

∂ε0
g(r,k) . (7.32)

Since k � kF k̂, the dependence of g(r,k) upon k involves only the polar
angles of k with respect to the z-axis.

The contribution to the equation of motion for m+ from the fourth term
involving the commutator is

i
µB

�V
Tr{[ε, n]σ+} = i

[(
µBH0

�
+

V

2�µB
Gz

)
m+ +

V

2�µB
mzG − µB

�
mzH+

]
,

(7.33)
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where
G(r,k) =

2
V

∑
k′

ψ(k̂ · k̂′
)m+(r,k′) (7.34)

and Gz involves mz in place of m+. To proceed further with this expression
we must determine mz(r,k). In Chap. 5 we found that the magnetization
resulting from a uniform field arises from a spherically symmetric shell of
states at the Fermi surface. Therefore we take

mz(r,k) = −∂n0

∂ε0
g(r)z . (7.35)

To find g(r)z we note that the magnetization at r, which is given by

mz(r) =
∑

k

mz(r,k) , (7.36)

is also related to the static susceptibility by

mz(r) =
1
V

∑
q

χ(q)H(q) = χ(0)H0 . (7.37)

We use the fact that

∂n0

∂ε0
= −δ(µ − ε0(k)) = − m∗

�2kF
δ(k − kF ) (7.38)

along with our result (4.80) for the static susceptibility, which may be writ-
ten as

χ(0) =
µ2

Bm∗kF

π2�2(1 + B0)
. (7.39)

We then obtain

mz(r,k) = −∂n0

∂ε0
2µ2

BH0

V (1 + B0)
. (7.40)

The collision term on the right-hand side of (7.25) is handled by assuming that
the distribution function n(r,k,σ) relaxes to its local average value n(r,σ),
defined by

n(r,σ) =
1

4
3πk2

F

∫
dkn(r,k,σ) . (7.41)

If this relaxation is characterized by a time τ , then

∂g

∂t

∣∣∣∣
collisions

= −1
τ

(
g − 1

4π

∫
dΩg

)
. (7.42)
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Combining all these results in the equation of motion for g(r,k) yields

∂g

∂t
+
[
v · ∇ +

e

m∗c
(k × H0) ·

∂

∂k
+ iΩ0

]
(g + G)

= −1
τ

(
g − 1

4π

∫
dΩg

)
+

2µ2
B

V
(v · ∇ + iΩ0)H+ , (7.43)

where
Ω0 =

2µBH0

�(1 + B0)
. (7.44)

Equation (7.43) is a linear integral equation that is difficult to solve in general.
Therefore certain simplifying approximations are made. For example, Silin has
considered the spatially uniform normal modes of a collisionless system [143].
This corresponds to solving (7.43) without the v · ∇ term on the left and
with the right side set to 0. The resulting solutions for g(θ, ϕ) are spherical
harmonics, Y m

n (θ, ϕ), with the corresponding eigenfrequencies.

ωnm = (Ω0 + mωc)
(

1 +
Bn

2n + 1

)
, (7.45)

where ωc = eH0/m∗c is the cyclotron frequency. The mode ω00 ≡ ωs ≡
2µBH0/� is the conduction-electron spin resonance. We see that as a result
of the interactions there are also modes involving combined spin and orbital
excitations.

Platzman and Wolff have investigated the q dependence of the ω00 mode
[144]. However, they also retained the collision term characterized by a relax-
ation time τ . Their result for the susceptibility, including also a spin-relaxation
term T2 is1

χ(q, ω) =
m∗

m

χPauli

1 + B0

ωs

ωs − ω − iD∗q2 − i/T 2

, (7.46)

where

iD∗ =
1
3
v2

F (1 + B0) (1 + B1) (ωs − Ω0)

×
[

sin2 ∆

ω2
c − (ωs − Ω0)2

− cos2 ∆

(ωs − Ω0)2

]
. (7.47)

1 Feher and Kip [145] denote the spin relaxation time as T1. In a metal the rapid
orbital relaxation (τ) results in T1 ≈ T2.
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Here ∆ is the angle that q makes with the z axis, and

ωs = ωs +
i

τ
(1 + B1) , (7.48)

ωc =
eH0

m∗c
(1 + B1) , (7.49)

Ω0 = Ω0(1 + B1) , (7.50)

T 2 = T2(1 + B0)−1 .

Notice that as ω and q → 0 and τ → ∞, (7.46) reduces to the result we
obtained in Chap. 4.

7.3 Conduction-Electron Spin Resonance

An interesting limit is when there are no quasiparticle interactions, that is,
B0 = B1 = 0. In this case ωs −Ω0 = i

τ and D∗ is a real number. The suscep-
tibility (7.46) then contains a pole at the conduction-electron spin resonance
(CESR) frequence ωs. The fact that the lifetime of this mode is partially gov-
erned by the diffusion term has an interesting consequence for the resonance
spectrum. The point is that in a metal the electromagnetic field that excites
the resonance is not uniform across the sample. To find the field distribution
we must solve Maxwell’s equations with the appropriate boundary conditions.

Let us consider the geometry shown in Fig. 7.3 where the electromagnetic
wave is incident from the left on a metal with conductivity σ. Assuming the

*TD
Z

Z

H

M

Z

H

H

x

y

δ

metal

2

Fig. 7.3. Geometry and field distributions associated with conduction-electron spin
resonance
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fields vary only along the z-direction, the two Maxwell equations, together
with j = σE, reduce to

∇× E =
1
c

∂B

∂t

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Ex

∂z
= −1

c

(
∂Hy

∂t
+ 4π

∂My

∂t

)
∂Ey

∂z
=

1
c

(
∂Hx

∂t
+ 4π

∂Mz

∂t

)
,

(7.51)

∇× H =
4π

c
j

⎧⎪⎪⎨
⎪⎪⎩

∂Ex

∂z
=

4π

c
jy =

4π

c
σEy

∂Hy

∂z
= −4π

c
jx = −4π

c
σEx ,

(7.52)

Introducing the circular components M+ = Mx + iMy,H+ = Hx + iHy, and
assuming solutions of the form

M+ = meiωt−κz ,

H+ = heiωt−κz , (7.53)

we obtain
m

h
= χ = − 1

4π
(1 +

1
2
iδ2κ2) , (7.54)

where δ = c/
√

2πσω is the skin depth. Self-consistency between the suscepti-
bility (7.46) derived from the equation of motion for the magnetization and
that derived above from Maxwell’s equations gives a quadratic equation for the
parameter κ. This has two roots, one of the order of δ, the other of the order of√

D∗T2. The latter characterizes how far a spin diffuses before relaxing. The
amplitudes of the fields associated with these solutions are determined from
the boundary conditions. The results are sketched in Fig. 7.3. The magnetic
field falls off in a distance of the order of the skin depth. The magnetization,
however, penetrates a distance

√
D∗T2 which may be much larger than δ.

In the standard reflection-type resonance experiment the metal is placed
at one end of a microwave cavity. The power absorbed by the cavity, which is
easily calculated from the above results, is shown in Fig. 7.4.

We immediately notice the asymmetric nature of the absorption. This is
associated with the fact that although an electron may only spend a time
of the order of TD = δ2/2D∗ in the skin depth, it returns to the skin depth
many times before its spin “memory” is destroyed. Thus it experiences a set of
microwave pulses whose intervals are random but whose phases are coherent.
This can lead to destructive as well as constructive interference with the result
that the power absorbed at some values of the dc field may be less than that
ordinarily absorbed in zero field. Since Dyson [145] was the first to derive this
characteristic shape, such lines are referred to as Dysonian. The asymmetry
may be quantified by the ratio A/B which depends upon the ratio of TD to
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Fig. 7.4. Power absorption (a) and its derivative (b) due to electron spin resonance
in a metal for a ratio of TD/T2 � 0.1
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Fig. 7.5. Dependence of the asymmetry ratio A/B on the ratio of the spin diffusion
time TD to the spin relaxation time T2

T2 as shown in Fig. 7.5. The fact that the width of the line is proporitional to
1/T2 is also due to the fact that the electron returns to the skin depth many
times.

The fact that the magnetization penetrates much farther into the metal
than the driving magnetic field is the basis of the transmission technique. In
this technique the sample takes the form of a thin film whose thickness is
large compared with δ but smaller than

√
D∗T2. This film is placed between

two microwave cavities. Off resonance no power reaches the second cavity. At
resonance, however, the precessing spins diffuse across the film and radiate into
the second cavity. The intensity of the magnetization excited depends upon the
susceptibility within the skin depth. Thus it has been found that the sensitivity
of the transmission technique can be greatly enhanced by depositing a thin
ferromagnetic film on the front surface of the film being studied.

7.4 Spin Waves

Let us now return to the susceptibility (7.46) and consider the effect of the
electron-electron interactions. In particular, if
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1 + B0

∣∣∣∣� 1 ,

then
∼
ωs−Ω0 becomes real and D∗ becomes pure imaginary and modes appear

at ω = ωs − D∗k2. Thus, the interactions convert the transport of the mag-
netization from diffusive to propagating. These modes are referred to as spin
waves, although they bear only a qualitative resemblance to the spin waves we
shall discuss in the next chapter. In a slab of thickness L the wave vector takes
on values which are multiples of π/L. The modes then appear as sidebands
of the main conduction-spin resonance line. Such spinwave sidebands have
been observed in various metals [146]. The transmission spectrum for sodium
is shown in Fig. 7.6. From careful measurements of the angular dependence
of the spin-wave positions the Fermi liquid parameters can be deduced. For
sodium B0 = −0.18 and B1 = 0.05.

Notice that D∗ may be positive or negative, depending on the direction of
q with respect to the dc field. In the next chapter we shall find that the spin-
wave spectrum in a ferromagnetic insulator always curves upward. The fact
that the spectrum may curve downward in the metal is due to the “repulsion”
of these spin-wave modes by the higher-lying orbital modes, whose q = 0
frequencies we have derived in (7.45).

Since the Platzmann-Wolff solution (7.46) is valid only for small q near ωs,
it does not include the single-particle excitations illustrated in Fig. 7.1. In the
presence of interactions these modes are shifted upward by a self-energy that
is proportional to N↓ − N↑. Therefore the spectrum has the form shown in
Fig. 7.7. When the spin waves enter the single-particle band, they can decay
into single-particle excitations. In this region they become critically damped.

7.5 Local Moments in Metals

It is interesting to consider the case when a “potentially” magnetic ion is
dissolved in a metal. We say “potentially” because in some cases the magnetic
response of the impurity is destroyed by the conduction electrons, a situation
referred to as the Kondo effect which was discussed in Chap. 3. For our present
purposes we shall assume that the local moment exists and that its coupling
to the conduction electrons may be described by the exchange interaction

H = −JS · s . (7.55)

As a result of this interaction the magnetization associated with the local
impurity will relax with a rate

1
Tie

=
π

�
J2N(εF )2kBT . (7.56)

(This result is analogous to the relaxation of nuclear spins in a metal through
their hyperfine coupling with conduction electrons. In that case J is replaced



232 7 The Dynamic Susceptibility of Weakly Interacting Systems

50 gauss

10 gauss

(a)

Theoretical points

(b)

n = 3n = 4 n = 2 n = 1 n = 0

H0

H0

S
ig

n
a
l 

(a
rb

it
ra

ry
 u

n
it

s)
S

ig
n
a
l 

(a
rb

it
ra

ry
 u

n
it

s)

Sodium 1.4 K

∆ = 908

L = 0.0236 cm  

n = 1 n = 0 (ESR)

Fig. 7.6. Typical spin wave signals as a function of applied dc magnetic field (H0 ≈
3, 250G). (a) The n = 0 mode (usual conduction-electron spin resonance) and the
n = 1 mode are clearly shown. (b) The gain and field sweep have been increased
to display the first four spinwave modes beyond the CESR. The theoretical points
have been obtained from the susceptibility in (7.46) [146]

by the hyperfine constant A, and we refer to the result as the Korringa relax-
ation rate.) The impurity spins also relax the conduction-electron magnetiza-
tion with the rate

1
Tei

=
2π

�
J2N(εF )

S(S + 1)
3

c , (7.57)
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Fig. 7.7. Magnetic excitation spectrum of an interacting electron system
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Fig. 7.8. Schematic representation of the energy resevoirs associated with a localized
spin impurity in a metal

where c is the impurity concentration. Notice that

Tie

Tei
=

χi

χe
, (7.58)

where χi is the Curie susceptibility and χe the Pauli susceptibility. This rela-
tion is actually very general, being a consequence of the principle of detailed
balance. Considering that both spin systems can also relax directly to the
lattice we have the situation illustrated in Fig. 7.8. The magnetizations are
described by a pair of coupled Bloch-like equations [147],

dM e

dt
= γeM e × (H + λM i) −

M e

Tei
+

M i

Tie
− (M e − M0

e)
Tel

,

dM i

dt
= γiM i × (H + λMe) −

M i

Tie
+

M e

Tei
− (M i − M0

i )
Til

. (7.59)

Here λ is an effective field parameter which is proportional to the exchange
J . For transition-metal impurities, such as Mn in Cu the relaxation rates
1/Tei and 1/Tie are much larger than the relaxation rate to the lattice. This
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corresponds to a “bottleneck” condition. If the coupling J is strong, then
the two magnetizations remain parallel to one another and the transverse
components of (7.59) become

d

dt

(
M+

e

M+
i

)
=

(
−iγeH − 1

Tei

1
Tie

1
Tei

−iγiH − 1
Tie

)(
M+

e

M+
i

)
. (7.60)

Diagonalizing this equation we find that the effective g value for the strongly
coupled case is

geff =
giχi + geχe

χi + χe
. (7.61)

At low impurity concentrations or high temperatures χi is small and the
observed g value should be closed to that of the pure metal. As one increases
the impurity concentration or goes to lower temperatures, geff should shift
towards a value characteristic of the impurity. The transmission electron spin
resonance data [148] on Cu Mn shown in Fig. 7.9 has these features.
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Fig. 7.9. Plot of the g value obtained from transmission resonance versus tempera-
ture for three Cu Mn samples. The theoretical curves were obtained from (7.61) using
gCu = 2.033 and gMn = 2.013 and the susceptibility ratios shown. A susceptibility
ratio of 3 corresponds to 13 ppm of Mn in Cu [148]
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7.6 Faraday Effect

The Faraday effect refers to the rotation of the plane of polarization of a lin-
early polarized electromagnetic wave as it propagates through a magnetic or
magnetized material. Assuming for the moment that the propagation through
such a medium is adequately characterized by the susceptibility (or perme-
ability) tensor, Maxwell’s equations tell us that the rotation per unit length
of the medium is given by

∆θ

∆z
=

2πω

η
χ′′

xy .

In the case of a Kramers ground state we found that when ω � ω0, χ′′
xy

decreases as 1/ω and ∆θ/∆z reduces to

∆θ

∆z
=

ωM

2c/n

where n is the real part of the complex index of refraction in the absence
of a static magnetization and ωM = 4πγM . For a magnetic material with a
saturation magnetization of 4πM = 2000 G and a dielectric constant of 13,
this gives a rotation of approximately 140◦/cm. Such rotation forms the basis
for various nonreciprocal microwave devices.

As one goes beyond microwave frequencies, one must also consider the
time-varying electric field which accompanies the “probing” magnetic field and
brings the dielectric, or conductivity, tensor into play. The Faraday rotation
associated with this “polarization” response is

∆θ

∆z
= −2π

cn
σ′

xy =
2πω

cn
ε′′xy .

Symmetry arguments, similar to those used in deriving the Onsager relation
(1.89), tell us that ε′′xy is a linear function of Mz. Physically, this dependence
of the dielectric function on the magnetization arises through the spin-orbit
interaction. The important point, however, is that the polarization-induced
rotation increases with frequency while the magnetic contribution is indepen-
dent of frequency. Thus there will be a frequency beyond which the polariza-
tion contribution dominates. This typically occurs in the near infrared. For
this reason, one generally finds magnetooptical phenomena described entirely
in terms of the conductivity. Pershan [149], in fact, has argued that so long
as the electromagnetic wavelength is less that the sample dimensions, one can
always describe the wave properties in terms of an effective dielectric func-
tion, setting the magnetic susceptibility to zero. However, as Pershan has also
noted, one must pay careful attention to the boundary conditions when ap-
plying such a decription. On the other hand, there may be situations in which
the microscopic behavior of the Faraday rotation may be more conveniently
understood, or calculated, in terms of magnetic dipole matrix elements.
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Problems

7.1. The transmission resonances described in this chapter offer a good ex-
ample of the nonlocal susceptibility introduced in Sect. 1.3. Suppose we wish
to calculate the magnetic field at the back face of a metal film excited by
a field at the front face (see figure on page 236). It can be shown that the
magnetic field just outside the back face is proportional to the magnetization
at the back surface, i.e., h+(L+) ∼ m+(L−). The proportionality involves the
surface impedance. Use (1.58) and (1.59) to determine m+(L−, ω). Assume
χ(q, ω) has the form (7.46) in the noninteracting limit, i.e., Bn = 0, and that
h+(z′, ω) is a delta function i.e., h+(z′, ω) ∼ δ(z′). Since qz = nπ/L the sum
in (1.59) can be written as a sum over n. Using the identity

m+(L−)

∞∑
n=−∞

(−1)n

A2 − π2n2
=

cot A/2 − cot A

A

obtain an expression for m+(L−, ω) and, hence, h+(L+, ω). Plot h+(L+, ω)
versus (ωs − ω)/ωs for

√
DT2/L = 6 and 1.4.

7.2. Using the Fermi “Golden Rule” calculate the relaxation rates (7.56) and
(7.57).



8

The Dynamic Susceptibility
of Strongly Interacting Systems

In the previous chapter we have seen that in nonferromagnetic metals the
presence of interactions leads to magnetic excitations of a wavelike nature
called spin waves. In this chapter we shall investigate these excitations in
magnetically ordered systems.

8.1 Broken Symmetry

At one time spin waves were only thought to be associated with local moment
systems. But they have a far more fundamental basis. In the paramagnetic
state the system is rotationally invariant. In the ferromagnetically ordered
state this symmetry is broken-there is a uniform magnetization M in a par-
ticular direction. In principle, this direction is arbitrary, but in practice it is
determined by anisotropy. In Chap. 4 we argued that the energy associated
with a gradual variation in the magnetization has the form

δE

V
=

A

M2
0

|∇M |2 .

This energy implies that the magnetization in any macroscopically small
region is acted on by an exchange torque coming from an effective field

Heff = − 2A

M2
0

∇2M .

M responds to this effective field just as it does to a real magnetic field.
Therefore,

dM

dt
= −γM × Heff . (8.1)

Thus, a transverse fluctuation in the magnetization with a wave vector q has
a frequency
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ωq = γ
2A

M0
q2 .

Such modes are a direct consequence of having broken the continuous rota-
tional symmetry and are referred to as “Goldstone modes”. A system charac-
terized by an Ising Hamiltonian does not possess such a continuous symmetry
and, indeed, there are no spin-wave-like excitations in the ordered state. The
behavior of these modes at shorter wavelengths and the form of the exchange
stiffness parameter depend upon the microscopic details which we shall con-
sider in this chapter.

8.2 Insulators

Let us begin by considering a lattice of spins whose interactions may be de-
scribed by the Heisenberg exchange interaction (2.89). Suppose we apply a
uniform static field which serves to define a z-axis. We now wish to de-
termine how this system responds to the time- and space-dependent field
H1 cos(q · r) cos ωt. If this field is in the x direction, the total Hamiltonian
becomes

H = −
∑

i

∑
j �=i

JijSi · Sj + gµBH0

∑
i

Sz
i + gµBH1

∑
i

Sx
i cos(q · Ri) cos ωt .

(8.2)
Introducing the Fourier components defined by (4.4), we obtain

H = −
∑
q′

J(−q′)S(q′) · S(−q′) + gµBH0Sz(0) +
1
2
gµBH1

× [Sx(q) + Sx(−q)] cos ωt . (8.3)

Since this Hamiltonian is space dependent as well as time dependent, the
appropriate equation of motion, analogous to (5.4), is

dM(q)
dt

= − i

�V
〈[M(q),H]〉 . (8.4)

Since we are expressing the spin in units of �, the commutation relations have
the form

[Sx(q), Sy(q′)] = iSz(q + q′) . (8.5)

The commutator involving the x component of the spin with the Hamiltonian
then becomes

[Sx(q),H] = −i
∑
q′

J(q′)[Sz(q + q′)Sy(−q′) + Sy(q′)Sz(q − q′) (8.6)

−Sy(q + q′)Sz(−q′) − Sz(q′)Sy(q − q′)] − igµBH0Sy(q) .
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In the random-phase approximation each Fourier component is assumed to be
independent. This implies that 〈Sz(q + q′)Sy(−q′)〉 = 〈Sz(q + q′)〉〈Sy(−q′)〉.
Furthermore, in the low-temperature region we may linearize (8.4) by making
the approximation

〈Sz(q′)〉 = NS∆(q′) . (8.7)

With these approximations, (8.4) becomes

dMx(q)
dt

= −
{

γH0 +
2NS

�
[J(0) − J(q)]

}
My(q) , (8.8)

where γ = gµb/� is the gyromagnetic ratio, which we take as positive for
electrons. This equation is analogous to (6.7a), and the equation for My(q) is
analogous to (6.7b). Therefore all the arguments leading to the susceptibility
(6.18) also apply in this case. Thus we find that the imaginary part of the
susceptibility of a ferromagnet at low temperatures has the form

χ′′
xx(q, ω) =

πg2µ2
BNS

2�
{δ[ω − ω(q)] − δ[ω + ω(q)]} , (8.9)

where

ω(q) = γH0 +
2NS

�
[J(0) − J(q)] . (8.10)

These are the spin-wave modes. Classically, these excitations correspond to a
precession of the spin system in which the phase of one spin relative to another
is determined by the wave vector q. An example of these modes is shown in
Fig. 8.1. The q = 0, or uniform-precession, mode corresponds to ferromag-
netic resonance. Quantum mechanically, a spin wave consists of a single spin
flip propagating throughout the lattice. Since the spins are quantized, these
excitations are also quantized. Consequently, they are often referred to as
magnons. Because these modes are collective, in the sense that they involve

q

(a) (b)

q H

Fig. 8.1. Schematic representations of a spin wave (a) propagating parallel to the
applied magnetic field, and (b) propagating perpendicular to this field
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all the spins in the lattice, the excitation energy varies continuously from
γ�H0 up to the exchange energy. If the only excitations were single-particle
excitations, the energy required to produce a spin deviation would be of the
order of the exchange energy.

For a simple cubic lattice with lattice parameter a, and a nearest-neighbor
exchange J , the long wavelength limit of J(0) − J(q) is Ja2q2/N . Therefore
the exchange stiffness introduced at the beginning of this chapter is

A = S2a2J/v ,

where v is the atomic volume, V/N .
Combining (4.16), (8.10), we see that the ratio of the maximum spin-

wave frequency to kBTC/� for a simple cubic lattice is 6/(S + 1). Therefore
the high-temperature approximation used in writing (4.48) is valid only for
T/TC > 6/(S + 1).

8.2.1 Spin-Wave Theory

Our low-temperature approximation (8.7) has led to a set of modes that,
it turns out, behave just like a system of independent harmonic oscillators.
In 1940 Holstein and Primakoff introduced a very useful technique which
formalizes this harmonic-oscillator behavior. Their approach was based on
the expansion of spin operators in terms of the creation and annihilation
operators of the harmonic oscillator. For example, consider the effect of S−

i

acting on the spin state |S,MS〉

S−
i |S,MS〉 =

√
(S + MS)(S − MS + 1)|S,MS − 1〉 . (8.11)

If we introduce the spin-deviation operator n̂i = S − Sz
i , with the quantum

numbers ni = S − MS , this relation becomes

S−
i |ni〉 =

√
2S

√
ni + 1

√
1 − ni

2S
|ni + 1〉 . (8.12)

The harmonic-oscillator operator a† has the property (as a consequence of its
commutation relations) that

a†|n〉 =
√

n + 1|n + 1〉 . (8.13)

Therefore Holstein and Primakoff made the associations

S−
i =

√
2Sa†

ifi(S) ,

S+
i =

√
2Sfi(S)ai ,

Sz
i = −S + a†

iai , (8.14)
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where fi(S) ≡
√

1 − (a†
iai/2S). Notice that this factor makes the transfor-

mation nonlinear. The point is that the eigenvalues of a spin system consist
of a finite number (2S + 1) of equally spaced values while those of the har-
monic oscillator consist of an infinite number of equally spaced levels. It is
an easy matter to show that the representations (8.14) satisfy the required
commutation relations.

As we have seen, in dealing with coupled systems it is convenient to
introduce Fourier components. This suggests that we expand the spin-deviation
operators according to

ai =
1√
N

∑
k

eik·riak , (8.15)

a†
i =

1√
N

∑
k

eik·ria†
k . (8.16)

We shall refer to ak and a†
k as magnon annihilation and magnon creation

operators, respectively. The spin operators may be written in terms of these
operators as

S+
i =

√
2S

N

∑
k

eik·Riak

− 1
N
√

8NS

∑
k,k′,k′′

e−i(k+k′−k′′)·ria†
kak′ak′′ + . . . , (8.17)

S−
i =

√
2S

N

∑
k

e−ik·Ria†
k

− 1
N
√

8NS

∑
k,k′,k′′

e−i(k+k′−k′′)·Ria†
ka†

k′ak′′ + . . . , (8.18)

Sz
i = −S +

1
N

∑
k,k′

e−i(k−k′)·Ria†
kak′ . (8.19)

The Hamiltonian for a system of independent harmonic oscillators has the
form

∑
�ωka†

kak. Therefore the objective of the Holstein–Primakoff approach
is to determine the quadratic part of the Hamiltonian resulting from sub-
stitutions (8.17)–(8.19). Let us consider this procedure for a ferromagnet
(other systems are treated in [150]).

The Zeeman and exchange interactions were considered above. Let us add
to these the dipole-dipole interaction (2.50). The total Hamiltonian is then

H = HZ + Hex + Hdip . (8.20)

The low-temperature or spin-wave approximation (8.7) corresponds to taking
fi(S) = 1. This is because at very low temperatures the number of spin waves
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excited is much less than the total number of spins. Therefore the average
spin deviation ni is much less than 1. In terms of the magnon operators, the
Zeeman interaction becomes

Hz = γH0

∑
i

Sz
i = −γH0

∑
i

⎛
⎝S − 1

N

∑
k,k′

e−i(k−k′)·Ria†
kak′

⎞
⎠ . (8.21)

If the lattice has translational invariance, then

∑
i

e−i(k−k′)·ri = N∆(k − k′) . (8.22)

Therefore (8.21) reduces to

HZ = −γH0NS + γH0

∑
k

a†
kak . (8.23)

Similarly, if the exchange coupling between an ion i and those ions at positions
δ relative to i has the value J , then the exchange interaction is

Hex = −J
∑
i,δ

[
1
2
S+

i S−
i+δ +

1
2
S−

i S+
i+δ + Sz

i Sz
i+δ

]
, (8.24)

Hex = −J
∑
i,δ

⎡
⎣ S

N

∑
k,k′

eik′·(ri+δ)aka†
k′

+
S

N

∑
k,k′

e−ik·rieik′·(r+δ)a†
kak′

+

⎛
⎝S − 1

N

∑
k,k′

e−i(k−k′)·Ria†
kak′

⎞
⎠

×

⎛
⎝S − 1

N

∑
k,k′

e−i(k−k′)·(Ri+δ)a†
kak′

⎞
⎠
⎤
⎦ . (8.25)

In keeping with our spirit of setting fi(S) = 1, we also neglect the fourth-order
terms in this expansion. Thus, if z is the number of interacting neighbors,

Hex = −JS
∑

k

∑
δ

e−ik·δaka†
k − JS

∑
k

∑
δ

eik·δa†
kak

−NzJS2 + 2zJS
∑

k

a†
kak . (8.26)
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We define

γk =
1
z

∑
δ

eik·δ .

For example, with nearest-neighbor interactions in a simple cubic crystal
having a lattice parameter a,

γk =
1
3
(cos kxa + cos kya + cos kza) .

Notice that ∑
k

γk = 0 .

Thus
Hex = −NzJS2 + 2zJS

∑
k

(1 − γk)a†
kak . (8.27)

Let us now consider the dipole-dipole interaction, whose treatment is more
tedious.

Hdip =
1
2
g2µ2

B

∑
i,j

[
Si · Sj

r3
ij

− 3(Si · rij)(Sj · rij)
r5
ij

]
, (8.28)

Hdip =
1
2
g2µ2

B

∑
i,j

{
S+

i S−
j

2r3
ij

+
S−

i S+
j

2r3
ij

+
Sz

i Sz
j

r3
ij

(8.29)

− 3
r5
ij

[(
1
2
S+

i r−ij +
1
2
S−

i r+
ij + Sz

i zij

)(
1
2
S+

j r−ij +
1
2
S−

j r+
ij + Sz

j zij

)]}
,

Hdip ≈ 1
2
g2µ2

B

∑
i,j

[
S+

i S−
j

1
2r3

ij

(
1 − 3

2
r+
ijr

−
ij

r2
ij

)
+ S−

i S+
j

1
2r3

ij

(
1 − 3

2
r+
ijr

−
ij

r2
ij

)

+Sz
i Sz

j

1
r3
ij

(
1 − 3

z2
ij

r2
ij

)
− 3

4
S+

i S+
j

(r−ij)
2

r5
ij

− 3
4
S−

i S−
j

(r+
ij)

2

r5
ij

]
, (8.30)

where r±ij = xij ± iyij .
The approximation symbol in (8.30) indicates that we have kept only those

terms which will lead to quadratic magnon terms. In addition to neglect-
ing three- and four-magnon terms, we have also neglected linear terms. The
presence of such terms is an indication that our assumed ground-state spin
configuration is not correct. To find the correct configuration we assume that
the ground-state spin orientation at site i has some direction, characterized by
the angles θi and ϕi with respect to the crystallographic axes. Setting the co-
efficients of the one-magnon terms to 0 determines these angles. In the dipolar
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case this is a small effect, and we shall neglect it. However, in certain canted
spin systems care must be exercised in choosing the proper configuration.
Introducing the magnon operators, we obtain

Hdip =
1
2
g2µ2

B

∑
k,k′

∑
i,j

[
S

Nr3
ij

(
1 − 3

2
r+
ijr

−
ij

r2
ij

)
a†

kak′eik·rij ei(k−k′)·Rj

+
S

Nr3
ij

(
1 − 3

2
r+
ijr

−
ij

r2
ij

)
a†

kak′e−ik·rij e−i(k−k′)·Rj +
S2

r3
ij

(
1 − 3

z2
ij

r2
ij

)

− 2S

Nr3
ij

(
1 − 3

z2
ij

r2
ij

)
a†

kak′e−i(k−k′)·Rj

− 3S

2N

(r−ij)
2

r5
ij

akak′eik·rij ei(k+k′)·Rj

− 3S

2N

(r+
ij)

2

r5
ij

a†
ka†

k′e
−ik·rij e−i(k+k′)·Rj

]
. (8.31)

To evaluate the spatial sums we neglect boundary effects, so that the sums
may be carried out independently; that is,∑

Rj

∑
Ri

→
∑
Rj

∑
r=Ri−Rj

. (8.32)

The dipole Hamiltonian then reduces to

Hdip =
1
2
g2µ2

B

{
N2S2

∑
r

1
r3

(
1 − 3z2

r2

)
+ S

∑
r

eik·r 1
r3

(
1 − 3

2
r+r−

r2

)

−
[
2S
∑

r

1
r3

(
1 − 3z2

r2

)
− 2S

∑
r

eik·r 1
r3

(
1 − 3

2
r+r−

r2

)]
a†

kak

−
[

3
2
S
∑

r

eik·r (r−)2

r5

]
aka−k −

[
3
2
S
∑

r

e−ik·r (r+)2

r5

]
a†

ka†
−k

}
.

(8.33)

We now break up the sum over r into a sum within a sphere of radius a plus
an integral over the rest of the sample,

∑
r

=
′∑

+
N

V

∫
dr . (8.34)

The reason for doing this is that if a 
 2π/k, the magnon wavelength, then
the sum for a cubic crystal is 0.
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Now consider the remaining integral associated with the first term in the
Hamiltonian,

N

V

∫ (
1 − 3z2

r2

)
dr =

N

V

∫
∇ ·
( z

r3

)
dr

=
N

V

∫
sphere

z · ds

r3
− N

V

∫
sample
surface

z · dS

r3

=
N

V

(
4π

3
− 4πNz

)
, (8.35)

where the demagnetization factor

Nz ≡ 1
4π

∫
sample
surface

z · dS

r3

gives rise to the demagnetization field and the term 4π/3 gives rise to the
Lorentz field. Now consider the integral

N

V

∫
eik·r 1

r3

(
1 − 3z2

r2

)
dr , (8.36)

which involves a plane-wave factor. Expanding the plane wave in spherical
harmonics and recognizing that 1− 3(z2/r2) is a spherical harmonic, we have

−N

V

∫ ∑
l,m

4π(i)ljl(kr)Y m∗
l (Ω)Y m

l (Ω′)
2
r3

√
4π

5
Y 0

2 (Ω)r2dr dΩ

= −N

V
4π

[
jl(kr)

kr

]surface

a

(3 cos2 θk − 1) , (8.37)

where θk is the angle that k makes with the z-axis. If the sample dimension
d is large, then kd � 1 and jl(kd)/dk → 0. If ka 
 1, then jl(ka)/ka → 1

3 .
Therefore (8.36) becomes

N

V

(
8π

3
− 4π sin2 θk

)
. (8.38)

The condition kd � 1 gives a zero result because the magnetization on the
surface of the sample alternates rapidly, averaging to 0. This condition does
not hold for small wave vectors. In particular, let us consider the k = 0 mode.
We shall return later to a discussion of the nonzero, but small, wave vectors.
For the case k = 0 we treat those terms involving r± as we did those involving
z2. This leads to transverse demagnetizing factors Nx and Ny. After we have
carried out all the integrals, the dipole-dipole Hamiltonian becomes
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Hdip =
∑

k

⎡
⎢⎣1

2
MV

(
4πNzM − 4π

3
M

)
+

⎧⎪⎨
⎪⎩

1
2
ωM (Nx + Ny) − NzωM

1
2
ωM sin2 θk − NzωM

⎫⎪⎬
⎪⎭ a†

kak

+

⎧⎪⎨
⎪⎩

1
4
ωM (Nx − Ny)

1
4
ωM sin2 θk exp(−2ϕk)

⎫⎪⎬
⎪⎭ aka−k

+

⎧⎪⎨
⎪⎩

1
4
ωM (Nx − Ny)

1
4
ωMsin2θk exp(i2ϕk)

⎫⎪⎬
⎪⎭ a†

ka†
−k

⎤
⎥⎦ , (8.39)

where M = NgµBS/V and ωM = 4πγM . The upper terms in the braces
apply to the k = 0 mode and the lower terms apply to the k �= 0 modes. The
total Hamiltonian may now be written as

H = E0 +
∑

k

(
Aka†

kak + Bkaka−k + B∗
ka†

ka†
−k

)
, (8.40)

where Ak and Bk are determined from (8.23), (8.27), and (8.39).
This is not yet the desired form, since the dipole-dipole interaction has

produced a coupling between the +k and −k spin waves. This means that the
plane waves are not the correct normal modes. To find the correct modes we
must diagonalize H. Since the Hamiltonian (8.40) is the product of operators,
its diagonalization is slightly different from that of a product of c-numbers.
In particular, suppose we write the Hamiltonian as

H = x†Hx , (8.41)

where x is a column vector whose components are the operators entering the
Hamiltonian and H is a c-number matrix. For example, if we neglect the
zero-point term, we may write the Hamiltonian (8.40) as

H =
1
2

∑
k

x†
kHkxk , (8.42)

where

xk =

[
ak

a†
−k

]
and Hk =

[
Ak 2B∗

k

2Bk A−k

]
. (8.43)

The operator nature of x may be specified by the commutator[
x, x†] ≡ x

(
x∗T
)
−
(
x∗xT

)T ≡ g . (8.44)

Note that when the elements of matrices are operators, the transpose of a
product of such matrices is not equal to the product of the transposes in
reverse order.
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It is generally desired that the new modes that diagonalize the Hamiltonian
have the same commutation relations as the original modes; that is, the trans-
formation must be canonical. If the new modes are written as

x = Sx′ (8.45)

then the condition that the transformation S diagonalizes the Hamiltonian
and also preserves the commutations relations is [151]

HS = g−1SgΩH , (8.46)

where ΩH is the eigenvalue matrix. Solving this eigenvalue problem for our
case leads to the so called Bogolubov transformation[

ak

a†
−k

]
=

[
uk v∗

k

vk uk

][
αk

α†
−k

]
. (8.47)

where

uk =
√

Ak + ωk

2ωk
,

vk =
√

Ak − ωk

2ωk
exp(iϕk) .

In terms of these new modes, the Hamiltonian has the desired form

H =
∑

k

�ωkα†
kαk , (8.48)

where

ωk =
√

A2
k − 4|Bk|2 ,

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
(γHi + NxωN ) (γHi + NyωM ) k = 0 ,

(8.49a)√
[γHi + 2zJS (1 − γk)]

[
γHi + 2zJS (1 − γk) + ωM sin2 θk

]
, k �= 0 ,

(8.49b)

and Hi is the internal field H0−4πNzM . These modes are plotted in Fig. 8.2 as
a function of wave vector. Notice that as a result of the demagnetization fields
the ferromagnetic resonance frequency depends on the shape of the sample.
This result was first derived by Kittel [152].

The precession associated with the modes ak is circular and that associated
with the αk is, in general, elliptical. Owing to the nature of the coefficient
Bk, the uniform precession is elliptical when the transverse demagnetization
factors are different. We also find that the ellipticity associated with a spin-
wave mode depends on the direction of propagation with respect to the dc
field. The most elliptical spin waves are those which propagate at right angles
to the dc field.
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8.2.2 Coherent Magnon State

The reader might notice that since the representations for S+
i and S−

i involve
odd powers of the magnon creation and annihilation operators, then Sx

i and
Sy

i will have zero expectation value in a pure magnon state, i.e.,

〈nk|Sµ
i (t)|nk〉 = 0 .

How does this relate to the classical picture shown, for example, in Fig. 8.1?
This situation is analogous to that in optics where the number of photons
and the phase are conjugate variables. If a state is characterized by a given
number of photons the phase is undetermined. In our magnetic case, to obtain
the classical picutre where the phase is well-defined, we need a superposition
of magnon states. In particular, the “coherent” magnon state, |ck〉, is defined
as the eigenstate of the magnon annihilation operator, i.e.,

αk|ck〉 = ck|ck〉 , (8.50)

where ck is a complex number having a phase βk and an amplitude given by
the average number of magnons in the state |ck〉,

|ck|2 = 〈ck|nk|ck〉 .

By analogy with the photon case, the coherent state is given by [153]

|ck〉 = e−
1
2 |ck|2

∞∑
nk=0

(ck)nk

(nk!)1/2
|nk〉 . (8.51)

The average spin components in this state are

〈ck|Sx
i (t)|ck〉 = Sk cos(k · ri − ωkt + βk) (8.52a)

〈ck|Sy
i (t)|ck〉 = εkSk sin(k · ri − ωkt + βk) , (8.52b)
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where

Sk =
(

2S

N

)1/2

(uk − vk) |ck| (8.53)

and
εk =

uk + vk

uk − vk
(8.54)

is the ellipticity. Equations (8.52a+b) are the familiar spin precession
solutions.

8.2.3 Magnetostatic Modes

Let us now consider those modes which, although not uniform, have a spatial
variation comparable to the sample dimensions. We use the fact that at such
wavelengths the exchange interaction is negligible. Therefore the problem is
a classical one. Furthermore, since kc � ω, these modes are essentially static.
Thus they are described by the magnetostatic Maxwell equations

∇ × H = 0 , (8.55)

∇ · H = −4π∇ · M , (8.56)

plus the constitutive torque equation

dM

dt
= −γM × H . (8.57)

The solution to (8.57) under the assumption of small transverse fields is

B =

⎡
⎢⎣

µ −iκ 0
iκ µ 0
0 0 1

⎤
⎥⎦H , (8.58)

where

µ = 1 +
4πγ2M0Hi

γ2H2
i − ω2

(8.59)

and
κ =

4πγM0ω

γ2H2
i − ω2

. (8.60)

If we introduce a magnetic scalar potential φ, defined by H = ∇φ, Maxwell’s
equations become

µ

(
∂2φ

∂x2
+

∂2φ

∂y2

)
+

∂2φ

∂z2
= 0 (inside) ,

∇2φ = 0 (outside) . (8.61)
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Fig. 8.3. The (4, 3, 0) Walker mode of a sphere showing the instantaneous posi-
tions of the radio-frequency magnetization vectors in the places transverse to the dc
magnetic field. This illustrates the indexing scheme and the concept of nonuniform
precession [154]

Solving these equations for an ellipsoidal sample gives the so-called magneto-
static, or Walker, modes [154]. These modes are described by a set of indices
(n,m, r) instead of (kx, ky, kz). For example, the (4, 3, 0) mode is shown in
Fig. 8.3. Since these modes have an inhomogeneous magnetization, they may
be excited by an inhomogenous microwave field. In fact, if the sample is very
large or if it is mounted on a dielectric post, the resulting inhomogeneity in the
field may be enough to excite magnetostatic modes. These modes were discov-
ered in this way [155]. A typical absorption spectrum is shown in Fig. 8.4. An
interesting feature of Fig. 8.4a is that the magnetostatic resonances are not
broadened by the inhomogeneous magnetic field. In a paramagnet such a field
produces an inhomogeneously broadened line whose width is approximately
equal to the field variation. In the ferromagnetic case, however, the magneto-
static modes are the eigensolutions to (8.61). Thus, even if µ given by (8.59),
has a spatial dependence through Hi the modes may not be as symmetrical
as shown in Fig. 8.3 but will still be infinitely narrow. We might describe this
as “dipolar narrowing”.

8.2.4 Solitons

The theory of magnetostatic modes for ferromagnetic thin films was developed
by Damon and Eshbach [157]. For the coordinate system shown in Figs. 8.5 and
8.6 they found that the modes for an unbounded film consisted of propagating
waves of the form

mx,y(z) ∼ e−i(k·r−ωt) , (8.62)

where the wavevector k lies in the plane of the film. They found that for
angles of propagation, ϕ, less than a critical angle given by
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Fig. 8.6. Coordinate system used to define the spinwave modes of a thin film

ϕc = tan−1

√
H0

4πMs
(8.63)

the frequencies, ω, of these modes falls within the band of bulk spinwave
frequencies, i.e., between ω = γH0 and ω = γ

√
H0(H0 + 4πMs). When ϕ

exceeds ϕc then surface waves exist with frequencies above the bulk spinwave
manifold. These modes are indicated in Fig. 8.7. The terminology “forward”
or “backward” volume wave indicates the sign of the group velocity, vg =
∂ωk/∂k. A magnetostatic backward volume wave (MSBVW) has a negative
group velocity. This means that as a wave packet of sinusoidal waves moves
forward the sinusoidal wave moves backward. (Much like the stroboscopic
effect that makes the stagecoach wheels in Western movies appear to rotate
backwards!)

The surface waves are “nonreciprocal” in the sense that when ϕ has one
sign the mode is localized on one surface. When ϕ has the opposite sign the
localization is on the other surface. Also, the exponential decay away from
the surface scales with the propagation wave vector k. Thus, as k increases
the response becomes more and more localized at the surface.

The existence of surface waves is of interest because of the possible applica-
tion for signal processing. These waves may be excited by exposing the surface
of a magnetic film to pulses of microwave radiation generated, for example, by
a transmission line. Such a transducer generates a wave packet. This packet
is described by an envelope function u(z, t), i.e., the signal is given by

my(z, t) = MSu(z, t)e−i(kz−ωt) . (8.64)

The equation of motion for the envelope function can be obtained from the
magnetostatic equations which take the form [158]

i

[
∂u

∂t
+ vg

∂u

∂z
+ ηu

]
+

1
2
ω′′

k

∂2u

∂z2
− N |u|2u = 0 . (8.65)

vg is the group velocity; η is a damping parameter; ω′′
k = ∂2ωk/∂k2 and rep-

resents dispersion; N represents the effect of nonlinearity, N = ∂ωk/∂|u|2.
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Fig. 8.7. Dispersion diagrams of magnetostatic wave frequency ωk vs wave number
k for the three basic thin-film magnetostatic wave configurations, (a) magnetostatic
surface waves (MSSW), (b) magnetostatic-backward-volume waves (MSBVW), and
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horizontal dashed lines and the frequencies ωS , ωB , and ωH denote band limits for the
different configurations. The curves are actual calculated curves from magnetostatic
wave theory for a 7.2-µm-thick yttrium iron garnet film with H = 1407 Oe [158]

Dispersion tends to broaden the packet while nonlinearity tends to steepen it.
If Nω′′

k < 0 there are solutions to this equation corresponding to propagation
of pulses that preserve their shape. Such a pulse is called a soliton. The con-
ditions for the observation of solitons are rather restrictive. However, solitons
have been observed in films of yttrium iron garnet (YIG) [158]. The film was
excited with a microwave pulse having a width of several ns and detected by a
stripline antenna a few mm away. As the input power (of the order of a watt)
is increased the nonlinear term in (8.65) increases and when the condition for
soliton formation is reached the output power increases rapidly and may also
show several pulses corresponding to multi-soliton generation.

8.2.5 Thermal Magnon Effects

Fortunately the density of spin-wave modes is much greater than that of the
magnetostatic modes, so that most of the properties of magnetic materials
may be understood by considering only the simpler spin-waves modes. The
importance of spin waves in determining the low-temperature properties of
ferromagnets was first recognized by Bloch [159]. Let us first consider the
saturation magnetization. In the spin-wave region this is given by
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M(T ) = −gµB

V

∑
i

〈Sz
i 〉 =

gµB

V

∑
i

(S − 〈ni〉) = M(0) − gµB

V

∑
k

〈nk〉 .

(8.66)
In principle, there is no limit to the number of magnons that may be in any
given mode as long as the system does not become “saturated” as described
by the factor fi(S) in (8.14). Their thermal occupation number is given by
the Bose–Einstein distribution as

〈nk〉 = 1/ [exp (�ωk/kBT ) − 1] . (8.67)

Since most of the modes lie in the exchange region of the spectrum, we shall
neglect dipolar effects. Thus ak is the correct mode, and we do not have to
transform to αk. If we also use the small k expansion of (8.27) and neglect
the external field, then

�ωk = Dk2 , (8.68)

where, for example, D is 2JSa2 for a simple cubic lattice. The sum over k is
now replaced by an integral, and we have

M(0) − M(T ) = −gµB

V

4πV

(2π)3

∫ ∞

0

k2dk

exp(Dk2/kBT ) − 1
. (8.69)

The integral may be written in the dimensionless form

∫ ∞

0

k2dk

exp(Dk2/kBT ) − 1
=

1
2

(
kBT

D

)3/2 ∫ ∞

0

x1/2dx

ex − 1
. (8.70)

The evaluation of this integral is simplified by using the expansion

1
ex − 1

=
∞∑

r=1

e−rx . (8.71)

The resulting magnetization is

M(0) − M(T ) = ζ

(
3
2

)
gµB

M(0)

(
kB

4πD

)3/2

T 3/2 , (8.72)

where ζ is the Riemann zeta function.
This is referred to as the Bloch T 3/2 law. The fact that it accurately de-

scribes the magnetization at low temperatures, as shown in Fig. 8.8, is evidence
of the importance of such collective modes. If we keep those terms of order
k4, k6, etc., in the dispersion relation, they lead to contributions to the mag-
netization that vary as T 5/2, T 7/2, etc. If only single-particle excitations were
important, the low-temperature magnetization would vary exponentially, with
an activation energy of the order of the exchange energy.
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The spin-wave contribution to the specific heat is given by

CV =
∂

∂T

∑
k

�ωk〈nk〉 . (8.73)

With the same approximations employed in obtaining the magnetization,
(8.73) gives

CV =
15
4

ζ

(
5
2

)
kB

(
kB

4πD

)3/2

T 3/2 . (8.74)

8.2.6 Nonlinear Processes

So far our treatment has been entirely linear. That is, we have restricted
ourselves to those terms in the Hamiltonian that involve quadratic prod-
ucts of magnon operators and may therefore be transformed into a set of
non-interacting harmonic oscillators. The presence of higher-order terms cor-
responds to coupling between these oscillators. This coupling has important
consequences for many properties of ordered systems.
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Renormalization. The lowest-order nonlinear terms arising from the isotropic
exchange interaction are the four-magnon terms

H(4)
ex =

1
2

∑
k,k′,k′′

[J(k) + J(k + k′ − k′′) − 2J(k − k′′)] a†
ka†

k′ak′′ak+k′+k′′ .

(8.75)
The effect of such spin-wave interactions on the magnetization was first
analyzed by Dyson [161], who found that, in addition to the terms discussed
above, there is a contribution to M(0) − M(T ) which is proportional to T 4.
Although it is experimentally difficult to distinguish this contribution from
T 3/2 and T 5/2, it has important theoretical consequences in that any alter-
native approach to computing M(T ) must reproduce Dyson’s result at low
temperatures.

A quantity that is more directly affected by the nonlinear terms of (8.75)
is the magnon frequency itself. Let us consider only the exchange interac-
tion. In the linear approximation the magnon frequency as given by (8.49) is
independent of temperature. Applying the random-phase approximation and
considering only nearest-neighbor interactions, we may write (8.75) as

−(2zJS2N)−1
∑

k

ωk〈nk〉
∑
k′

ωk′〈nk′〉 . (8.76)

If we add this expression to the linear part
∑

ωk〈nk〉 and minimize the free
energy with respect to 〈nk〉, we obtain the same form as (8.67), but with the
renormalized frequency

ωk(T ) = ωk

[
1 − (zJS2N)−1

∑
k′

ωk′〈nk′〉
]

. (8.77)

We recognize the sum in this expression as the total energy in the spin-wave
system. As the temperature increases this energy also increases, causing a
decrease in the spin-wave frequencies. This decrease has been observed by
neutron scattering, which we shall discuss in Chap. 10.

Relaxation. Nonlinearity also plays an imporant role in spin-wave relaxation
phenomena. Consider, for example, the lowest-order nonlinear terms arising
from the dipolar interaction. These are the three-magnon terms

H(3)
dip =

∑
k,k′

k �=0

(gkαkαk′α†
k+k′ + g∗kα†

kα†
k′αk+k′) , (8.78)

where
gk = −4π

V

√
2NSg2µ2

B cos θk sin θk exp(iφk) . (8.79)

Since α†
k corresponds to the creation of a magnon with wave vector k and

αk corresponds to the annihilation of a magnon with wave vector k, the
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Fig. 8.9. Representation of (a) three-magnon confluence process and (b) three-
magnon splitting process

processes involved in (8.78) may be represented schematically as shown in
Fig. 8.9. Figure 8.9a shows the confluence of a magnon k with a magnon k′ to
produce a third magnon k + k′. This type of process constitutes a relaxation
channel for the magnon k (or k′).

Since we are dealing with a ferromagnet, the exchange-narrowing effect,
which was discussed in Chap. 5, with be quite pronounced. The origin of this
narrowing has to do with the fact that when the frequency spectrum of the
effective field is very broad, only a narrow band of nearly degenerate modes in-
fluences the relaxation. Under this condition the relaxation frequency may be
calculated by time-dependent perturbation theory. This is a particularly con-
venient way of computing magnon relaxation frequencies. As an illustration of
this approach consider the three-magnon process of Fig. 8.9. The assumption
that the magnon occupation number, if disturbed, relaxes exponentially to its
equilibrium value 〈nk〉 enables us to define a relaxation frequency ηk by the
rate equation

dnk

dt
= −ηk(nk − 〈nk〉) . (8.80)

The rate of change of the number of magnons in mode k is also given by

dnk

dt
= Wnk→nk+1 − Wnk→nk−1 , (8.81)

where W is the transition probability per unit time. For the three-magnon
interaction (8.68), this is given by [162]

Wnk→nk+1 =
2π

�2

∑
k′

|g∗k + g∗k′ |2 (nk + 1) (nk′ + 1)

×nk+k′δ (ωk + ωk′ − ωk+k′) . (8.82)

The result is that this three-magnon confluence process gives a relaxation fre-
quency which, for small wave vectors, is proportional to the magnitude of the
wave vector and is linear in temperature. These features, as well as the order
of magnitude, are found to agree well with experimental measurements of ηk

in the ferromagnetic insulator yttrium-iron garnet. This process is not found
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to describe the relaxation of the k = 0, or ferromagnetic resonance, mode.
It appears that surface and volume inhomogeneities provide the dominant
relaxation channel for this mode [163].

Parametric Excitation

Suhl Instabilities. Since the k �= 0 magnons have such short wavelengths, they
cannot be directly excited by an electromagnetic field. However, there are a
number of mechanisms by which they may be indirectly excited. Some of these
mechanisms involve the nonlinearities discussed above. For example, consider
the three-magnon terms in (8.68), in which k′ = −k, that is,∑

k

(gkαkα−kα†
0 + g∗kα†

kα†
−kα0) .

These terms describe the relaxation of the k = 0, or uniform-precession,
mode by decay into two magnons with equal and opposite wave vectors. Since
energy must be conserved in this process, the resultant magnons will each
have a frequency of ω0/2, as illustrated in Fig. 8.10.

The essential feature of this relaxation process is that it is nonlinear. That
is, the rate at which the uniform-precession mode decays in this fashion de-
pends on the occupation number 〈nk〉 of the final-state magnons, as seen for
example in (8.82). This occupation number, however, depends on the magnon
relaxation rate ηk, as well as on the amplitude of the uniform precession 〈n0〉
which is driving it. There is a critical value of 〈n0〉 at which the rate of increase
in the number of magnons in mode k exceeds their rate of decrease through
relaxation. At this point the number of magnons 〈nk〉 increases abruptly,
producing a corresponding increase in the relaxation rate of the uniform pre-
cession. Since the amplitude of the uniform precession 〈n0〉 is proportional
to the amplitude of the driving microwave field H1, this process appears as
a saturation phenomenon. It turns out, however, that the field at which this

,
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Fig. 8.10. Representation of the first-order Suhl instability in which uniform
precession magnons split into (k,−k) pairs
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saturation happens is lower than that associated with the longitudinal relax-
ation time T1 (see Sect. 6.4.1). The observation of this “premature” saturation
in ferrites by Bloembergen and Damon in 1952 opened an era of exploration
of nonlinear phenomena in microwave ferrites [164]. The explanation of this
saturation was given by Suhl and is referred to as the first-order Suhl instabil-
ity [165]. There is also a second-order Suhl instability which arises from terms
in (8.65) of the form α†

kα†
−kα0α0, in which two uniform precession magnons

decay into a (k,−k) magnon pair.

Parallel Pumping. Since all these processes involve the magnon relaxation
rate ηk, they serve to measure this quantity. However, the onset of these
processes is sometimes difficult to determine experimentally. A more accurate
determination of ηk is obtained by means of the so-called parallel-pumping
instability. In parallel pumping, as the name implies, a microwave magnetic
field H1 cos ωt is applied parallel to the dc magnetic field. From (8.19) we find
that the interaction Hamiltonian is

H1 = −gµBH1 cos ωt
∑

k

a†
kak . (8.83)

We saw that because of the dipolar interaction the ak are not the
normal modes. When (8.47) is used to express the interaction in terms of
the normal modes αk we obtain terms of the form

gµBH1 cos ωt
∑

k

|Bk|
ωk

exp(i2ϕk)α†
kα†

−k . (8.84)

These terms correspond to the creation of (k,−k) magnon pairs. Again, since
this is a nonlinear process, the rate at which energy flows into these magnons
depends on their occupation number 〈nk〉. This, in turn, depends upon the
amplitude of the driving field, as well as on the relaxation rate ηk. When
the driving rate exceeds the relaxation rate, the magnon occupation number
becomes very large. This results in an increased in absorption. The threshold
for this process is given by

(H1)crit = min
(

2ωηk

γωM sin2 θk

)
, (8.85)

where min means that we use that value of k giving the minimum.
Notice that those magnons which propagate perpendicular to the dc field,

and hence have the greatest ellipticity, are the first to become unstable. Since
there is essentially no absorption below this threshold, its onset provides us
with an accurate means of determining the spin-wave relaxation frequency ηk.

8.2.7 Chaos

If the driving fields in the first- or second-order Suhl instabilities or in the
parallel-pumping instability are increased beyond their critical values a variety
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of time dependent phenomena appear. Consider, for example, the second-
order Suhl process in which the ferromagnetic resonance is excited to a large
amplitude. When the microwave field H1 reaches the critical value

(H1)crit =
η0

γ

(
2ηk

ωM

)1/2

(8.86)

the amplitude of the spinwave mode with frequency ωk = ω and θk = 0
begins to grow. This results in the “premature” saturation of the amplitude of
the uniform precession. Unexplained so-called auto-oscillations had also been
reported at high power levels. To study these phenomena Gibson and Jeffries
[166] used the experimental arrangement shown in Fig. 8.11 in which a pickup
coil monitors changes in the transverse magnetization of a Ga-YIG sample
that is being excited by an rf field H1 at a frequency of 1.3 GHz. When the rf
field reaches a value several times (H1)crit the voltage across the pickup coil
develops auto-oscillations at a frequency of 16 kHz. As H1 is increased further
sucessive period doublings occur as shown in Fig. 8.12. These results are part
of a broad range of phenomena referred to as “chaos”. Virtually all physical
systems show chaotic behavior, and a large body of literature exists on chaotic
dynamics. Nonlinearity is an essential part of chaos. Thus the description of
a system showing chaotic behavior is generally based on a set of differential
equations containing nonlinearity. For example, in 1963 Lorenz developed a set
of three differential equations to describe thermal convection. The variables
are related to the flow velocity and the temperature. The solution consists of

Ho

Vrf

Vs

H1eiωpt

Fig. 8.11. Experimental arrangements used by Gibson and Jeffries to study auto-
oscillations and chaos in the second-order Suhl processes showing a Ga-YIG sphere
subjected to an rf field h1 at fp = 1.3 GHz and a dc field Hdc ≈ 460Oe. A pickup
coil generates a signal Vs proportional to the time derivative of the transverse mag-
netization of the sample [166]
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Fig. 8.12. Real-time signals, Vs(t), for auto-oscillations: (a) auto-oscillation fre-
quency fo ≈ 16 kHz; (b) at higher h, bifurcation of fo/2; (c) bifurcation to fo/4;
(d) chaos [166]

knowing how these variables behave with time and how they vary relative to
one another. What Lorenz found was that there is a rich variety of solutions
depending upon the parameters that enter the differential equations. In some
cases a variable may relax to a stationary value, or “fixed point”. For other
parameters the solution may jump between stationary values. If one plots the
solutions in a space whose coordinates are the variables themselves then the
allowed solutions will, in general, map out a trajectory as a function of time
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called the “attractor”. In some cases the attractor spans a continuum in this
phase space and we call it a “strange attractor”. In this case the motion is
chaotic.

In our magnetic case the nonlinearity arises from the higher-order terms
in the Hamiltonian of the form (8.75) and (8.78). Since the Gibson–Jeffries
experiment involves the second-order Suhl process the appropriate nonlinear
terms are the 4-magnon terms

H(4)′ = �

∑
k

1
2
S0kα†

0α
†
0αkα−k + c.c. (8.87)

Removing the high frequency part of the magnon amplitude with the trans-
formation,

ãk = 〈αk〉eiχkei(ω/2)t , (8.88)

where χk is a real phase, the equations for these amplitudes become

dα̃0

dt
= − (η0 + i∆ω0) α̃0 − i

⎛
⎝S00α̃

2
0 +
∑
k �=0

Sk0α̃
2
k

⎞
⎠ α̃∗

0

−iγ
∑
k �=0

Tk0 |α̃k|2 α̃k − iγ

(
SN

2

) 1
2

h ,

dα̃k

dt
= −(ηk + i∆ωk)α̃k − i(Sk0α̃

2
0 + Skα̃2

k)α̃∗
k − i2Tk0|α̃0|2α̃k . (8.89)

Rezende et al. [167] have analyzed these equations assuming the θk = 0
magnon provides the dominant contribution. Figure 8.13 shows the magnon
populations n0 and nk for this “two-mode” approximation. This figure clearly
shows the successive period doubling bifurcations.

8.2.8 Optical Processes

Infrared Absorption. There are other mechanisms for exciting magnons which
do not involve nonlinearities [168]. For example, consider the antiferromagnet
MnF2. The ground state of the Mn2+ ion is an orbital singlet. However, since
S = 5

2 , there are six spin states, which in the magnetically ordered crystal
are split by the exchange interaction. Those ions which occupy, say, the A
sublattice have MS = − 5

2 as their ground state, while the ground state for
those ions on the B sublattice is MS = + 5

2 . A (k,−k) magnon pair may
be excited by the process illustrated in Fig. 8.14. First, the applied radiation
induces an electric dipole transition to a high-lying state of one of the Mn2+

ions. Since this is a virtual process, it need not conserve energy. However, it
must conserve parity, which means that the high-lying state must be opposite
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Fig. 8.13. Limit cycles projected onto the n0 − nk plane for different values of
R = h/hc where hc is the critical value for the mode with the lowest threshold [167]
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Fig. 8.14. Representation of the mechanism for the excitation to two magnons

in parity from the ground state. Then, as a result of the Coulomb interaction
between this ion and a neighboring ion on the opposite sublattice, the excited
ion drops down to its first excited spin state (MS = − 3

2 ), while the second
ion is simultaneously excited up to its first excited spin state (MS = + 3

2 ).
Thus we end up with two spin deviations. Since any pair of ions may be
excited, the final state will be a linear combination of such pair excitations.
This results in the excitation of two magnons. The absorption coefficient for
this process is proportional to the density of final states. Therefore, since
the magnon density of states is largest at the Brillouin zone boundary, the
absorption is strongest at a frequency approximately twice that of a Brillouin
zone magnon, corresponding to an infrared frequency. However, the detailed
shape of the absorption is complicated by the interaction between the two
output magnons.

Spin-wave Sidebands. In addition to this infrared two-magnon absorption,
there is an optical exciton-magnon absorption [169]. In this process the ion on
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sublattice A in Fig. 8.14 ends up in its first excited orbital state rather than
its first excited spin state. This orbital excitation then propagates throughout
the lattice, forming what is known as a Frenkel exciton. The absorption fre-
quency for this process is approximately that of the exciton plus a magnon.
In MnF2 the first excited orbital state lies in the green part of the optical
spectrum. The absorption of a single Mn2+ ion into this state appears as
a very weak magnetic-dipole transition. The exciton-magnon absorption ap-
pears as a stronger electric-dipole sideband on the high-frequency side of this
“no-magnon” line.

Light Scattering. Magnons may also be excited as the result of light scat-
tering [170]. One mechanism for such scattering is illustrated in Fig. 8.15.
The incident photon is virtually absorbed in an electric dipole process. The
spin-orbit interaction then produces a spin flip in the excited state and a
second photon is virtually emitted leaving the system with a spin excitation.
Macroscopically this gives rise to a dielectric function which depends upon
the magnetization or spin density,

εαβ = ε0δαβ + δεαβ(S(r, t)) , (8.90)

where α, β = (x, y, z). The spin-dependent part may be expanded in powers
of the spin density

δεαβ =
∑

γ

KαβγSγ(r, t) + . . . , (8.91)

for a cubic material Kαβγ = ±K if all the indices are different, and zero
otherwise. For the mechanism described in Fig. 8.15 K would be propor-
tional to

λ〈0∗|β|2〉〈2|Lγ |1〉〈1|α|0〉
(E1 − E0)(E2 − E0)

. (8.92)
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Fig. 8.15. Schematic representation of a perturbation process contributing to
magnon scattering. The electric dipole transitions are “virtual” in the sense that
they do not conserve energy, i.e., E1 − E0 �= hω0
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The static contributions to δε lead to magnetooptic effects while the fluctu-
ating contributions are responsible for the light scattering. Thus, in a cubic
material, at least, magnetooptical effects and light scattering are governed by
the same parameter K.

To see how the intensity of the scattered light depends upon the magnetic
fluctuations consider an incident wave

Eα
inc(r, t) = Eα

0 exp[i(k0 · r − ω0t)] . (8.93)

Inside the medium the total electric field will consist of this incident wave
plus the scattered wave,

Eα(r, t) = Eα
inc(r, t) + Eα

scat(r, t) . (8.94)

which is related to the displacement vector by

Dα(r, t) = εαβEβ(r, t) . (8.95)

Assuming δεαβ and Eα
scat are small, a linearization of Maxwell’s equations

leads to a driven wave equation for Eα
scat where the driving, or source, term

involves the product δεαβ(r, t)Eβ
inc(r, t). The field at the detector is obtained

by multiplying this source term by the so-called Green’s function for the
wave equation, a function that describes how a disturbance propagates, and
integrating over the sample volume and over all time,

Eα
scat(r, t) ∼

(ω0

c

)2
∫

dr′
∫

dtGαβ(r, r′; t, t′)δεβγ(r′, t′)Eγ
inc(r

′, t′) . (8.96)

The scattered intensity is found by squaring this field and then performing an
ensemble average 〈. . .〉 over the fluctuations in δε. This results in the correla-
tion function

〈δεβ′γ′
(r, t)δεβγ(r′, t′)〉 . (8.97)

For a bulk geometry this is a function only of r − r′ and t − t′. Introduc-
ing the time and spatial dependencies in G and Einc one finds, for example,
that the intensity of light scattered with a polarization z, when the incident
polarization is x, is∫

dr

∫
dt ei(q·r−Ωt)〈Sy(r, t)Sy(0, 0)〉 , (8.98)

where q is the momentum transfer, q = ks−k0, and Ω is the excitation energy
Ω = ωs − ω0. The maximum momentum transfer occurs for back scattering,

qmax = 2 |k0| =
2nω0

c
, (8.99)

which, for typical optical frequencies is of the order of 3 × 105 cm−1. This is
to be compared with the Brillouin zone wave vector, qBZ ∼ 3 × 108 cm−1.
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Fig. 8.16. Brillouin spectrum of light scattered from magnons in iron

Thus light scattering probes only the very long-wavelength excitations. If the
frequencies exceed 1 cm−1 we speak of Raman scattering, while scattering at
smaller frequencies is referred to as Brillouin scattering, the distinction being
largely based on experimental technique.

If we expand the correlation function 〈Sy(r, t)Sy(0, 0)〉 in terms of the
spin-wave amplitudes introduced above, we obtain two terms: 〈aqa†

q〉 = nq +1
and 〈a†

qaq〉 = nq. The first corresponds to the creation of a spin wave. The
scattered light appears at a frequency ω0 −Ωq with an intensity proportional
to nq + 1 and is referred to as the Stokes line. The second term gives an
anti-Stokes line at the frequency ω0 + ωq

∼
.

In Fig. 8.16 we show the result for light scattering from iron. Since the skin
depth is relatively small, the intensity of the surface mode is relatively strong.
Notice that it only appears on one side (anti-Stokes side in this case) of the
exciting frequency. This is a direct consequence of the nonreciprocal nature
of surface magnons which we pointed out above.

8.3 High Temperatures

We have seen how effectively the spin-wave concept describes the low-tem-
perature properties of magnetically ordered systems. However, near the tran-
sition temperature, and particularly above it, the lifetime of the spin waves
becomes too short for them to be a useful concept. At very high temperatures
the relaxation-function approach developed in Chap. 5 is applicable. There we
found that a strong exchange modulation of the magnetic dipolar field led to
a long-time spin-spin correlation function which has the form

〈Mx(t)Mx〉T→∞ =
1
3
NS(S + 1)g2µ2

B exp(iω0t) exp[−(2M2/ωex)t] , (8.100)

where M2 is the Van Vleck second moment and ωex characterizes the rate at
which the exchange interaction modulates the dipolar field. This result was
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derived under the assumption that the exchange energy was small in compar-
ison with the Zeeman energy. When the exchange energy is very large, as in
the case we are now considering, the off-diagonal elements of the dipole-dipole
interaction become important, with the result that the exponent 2M2/ωex in
(8.100) is larger by a factor of about 10

3 (the factor is exactly 10
3 for a poly-

crystalline sample with cubic symmetry).
The theory of relaxation phenomena at finite temperatures is a complex

subject. Consequently, we shall restrict ourselves to a few qualitative remarks
that give some indication of the problems involved (most of this discussion is
based on [171]). Let us begin by considering the temperature dependence of
the second moment. In the finite-temperature region this is

M2 = −
〈[H′

dip,Mx]2〉
�2〈M2

x〉
, (8.101)

where H′
dip is given by (5.48). After computing this commutator and squaring

the result, we are left with a numerator involving terms such as 〈Sz
i Sy

j Sz
mSy

n〉.
Making the random-phase approximation and using the high-temperature
form of the fluctuation-dissipation theorem,

〈M2
x〉 = 2πkBTχ(q = 0, ω = 0) ,

we obtain

M2 =
9g2µ2

B

∑
q |F (q)|2 〈Sz(q)Sz(−q)〉2

2π�2kBTχ
, (8.102)

where

F (q) = Ng2µ2
B

∑
r

3 cos2 θ − 1
r3

eiq·r . (8.103)

From (4.45) we have

〈Sz(q)Sz(−q)〉 =
kBTV

g2µ2
B

χ(q, ω = 0) . (8.104)

Converting the sum over q in (8.102) into an integral, we find that for a
ferromagnet the second moment varies as (T − Tc)1/2. If the linewidth were
described by the second moment alone, this would indicate that the paramag-
netic resonance line should narrow as the temperature approaches the Curie
point. For an antiferromagnet, however, the uniform static susceptibility does
not diverge, with the result that the second moment increases as (T −TN )−1/2

where TN is the Neél temperature.
This is not the complete story, for the exchange frequency is also temper-

ature dependent. The exchange frequency was defined in (6.71) as

〈∆ω(τ)∆ω〉 = M2(1 − ω2
exτ

2) . (8.105)
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With the same approximations used in obtaining (8.102), this may also be
written as

〈∆ω(τ)∆ω〉 =
∑

q

|F (q)|2 〈Sz(q, τ)Sz(−q)〉2 . (8.106)

Therefore the exchange frequency is given by

ω2
ex = − 1

M2

∑
q

|F (q)|2〈Sz(q)Sz(−q)〉 d2

dτ2
〈Sz(q, τ)Sz(−q)〉 . (8.107)

We see that this expression involves the second derivative of the correlation
function. Without evaluating this quantity it is possible to say something very
important about (8.107), namely, that its numerator does not diverge or go
to 0 as the temperature approaches the critical temperature.

To see this let us rewrite the derivative of the correlation function in terms
of individual spins as

〈(d2/dτ2)Sz
i (τ)Sz

j 〉eiq·rij .

We now apply a thermodynamic result derived by Kubo [172] which says that
this derivative is proportional to 〈[[H0, S

z
i ], Sz

j ]〉. The consequence of these
commutators is that the derivative of the correlation function is nonzero only
for spins very close to one another. This, in turn, implies that the correlation
function in the numerator of (8.107) involving the second derivative shows
no drastic temperature dependence as the critical temperature is approached,
since only short-range static correlations are involved, and these do not change
suddenly near the critical point. These considerations lead us to the result that
the square of the exchange frequency also goes to 0 as (T −Tc)1/2. Therefore,
if we assume that the method of moments provides an adequate description of
a ferromagnet in its paramagnetic region, we are led to the conclusion that the
resonance linewidth remains exchange narrowed as the temperature decreases
toward the Curie point, decreasing as (T − Tc)1/4. Evidence of such behavior
is indicated for the ferromagnet CrBr3 in Fig. 8.17.

The above arguments assume zero applied field. In a finite field the diver-
gences are masked, and the simple power-law dependencies are not expected to
hold in the immediate vicinity of Tc. Since resonance linewidths are measured
in finite fields of appreciable magnitude, we may expect considerable depar-
ture from these simple relations. In particular, the ferromagnetic-resonance
linewidth does not go to 0 at the critical temperature but in typical situations
decreases by only about an order of magnitude from its high-temperature value
(explicit calculations of the moments, taking the finite field into account, are
reported in [173]). In an antiferromagnet the concept of exchange narrowing
breaks down. Our simple ideas predict that the linewidth should diverage as
(T −TN )1/4. The experimental data on MnF2, shown in Fig. 8.18 indicate that
the zero-field linewidth does, in fact, increase as (T − TN )−3/8.
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8.4 Micromagnetics

The magnetostatic modes discussed above have spatial variations that are
large compared with interatomic spacings. Therefore, we did not include ex-
change. On the other hand, spinwaves are capable of describing very short
wavelength excitations in which exchange plays an important role. However,
these modes are small amplitude excitations relative to the saturated fer-
romagnetic (or antiferromagnetic) state. How do we describe large changes
in the magnetization, such as a complete magnetic reversal? Micromagnetic
modelling is particularly useful for such cases. The principles of micromag-
netics were first formulated by Landau and Lifshitz [175] and later developed
into a self-consistent theory by Brown [176]. This theory has been applied to
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many situations, particularly by Zhu [177]. In this theory the magnetic system
is described by the magnetization at a position i by the vector M i = MSmi

where MS is the saturation magnetization. The dynamics of the magnetiza-
tion are governed by equations of the form (8.1) at every point i. Since the
fields Hi arise from all the other points this leads to coupled, nonlinear differ-
ential equations for the magnetization at every point in the system. In general,
analytic solutions do not exist. Early work was confined to one-dimensional
models and was often based on linear approximations. The introduction of
modern computers have made it possible to numerically solve realistic micro-
magnetic problems.

The first step in setting up a micromagnetic calculation is to discretize the
magnetic system with a three-dimensional mesh. The energy density is then
calculated for each discrete point. The exchange energy density, for example,
has the continuum form introduced at the beginning of this chapter,

Eex(r) = 2A

[(
∂m

∂x

)2

+
(

∂m

∂y

)2

+
(

∂m

∂z

)2
]

. (8.108)

In discrete form this becomes

Eex(ri) = − 2A

M2
Sa2

M i ·
∑
nn

M j , (8.109)

where a is the distance between neighboring sites in the mesh. Energy densities
for the dipole-dipole (magnetostatic) interaction, anisotropy, and the Zeeman
interaction are similarly introduced giving a total energy density, Etot(ri).
The effective magnetic field acting on the magnetization at the ith site is

Hi = −∂Etot(ri)
∂M i

. (8.110)

Introducing reduced units τ = γMSt and hi = Hi/MS the Landau–Lifshitz
equation takes the form

dmi

dt
= −γmi × hi . (8.111)

Not only did modern computers make micromagnetic calculations practical,
but the development of the magnetic force microscope (MFM) made it possible
to validate this theoretical approach. This instrument is described in the next
section.

8.4.1 Magnetic Force Microscope

In 1986 Binning, Quate, and Gerber [178] showed how the scanning tunnel-
ing microscope could be employed to measure extremely small forces. It was
quickly realized that this “atomic force microscope” (AFM) could be modified
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to image magnetostatic fields emanating from a magnetic sample. The mag-
netic force microscope consists of a miniature cantilever beam clamped at one
end that acts as a force-sensing spring (Fig. 8.19). A tip is integrated into the
single-crystal silicon cantilever by etching techniques and then coated with a
magnetic material. The deflection or frequency of the cantilever is monitored
by reflecting a laser beam off the back of the cantilever and sensing the beam
with a split photodiode detector. The tip is scanned across the sample by
means of a piezoelectric scanner.

Row A of Fig. 8.20 shows an MFM image of a 30 nm thick permalloy film.
This film was prepared by sputtering permalloy onto a NiO substrate and then
patterning it into a 20×10 nm rectangle by lithography. The antiferromagnetic
NiO produces exchange coupling which stabilizes the domain structure during
the MFM measurement.

Fig. 8.19. Microphotograph of cantilevered probe tip used in a magnetic force
microscope (C.F. Quate)

A

B

C

1 2 3 4 5 6 7 8

Fig. 8.20. The magnetization switching process of a permalloy thin film. Row A is
the magnetic force microscope images. Row B is the calculated magnetic charge
density from micromagnetic simulation. Row C is the simulated magnetization
patterns [179]
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The external magnetic field is initially applied downward along the long
axis of the rectangular film. Under this applied field, the thin film is in a quasi-
single domain state, as shown in state A1 in Fig. 8.20. There are small curved
edge domains at both ends of the film because the applied field is not strong
enough to drive them completely out of the film. The existence of these curved
edge domains also help to minimize the magnetostatic energy that would
otherwise arise from the magnetic poles on the film surfaces. The applied field
is then gradually reduced to zero and then increased in the opposite direction
to reverse the magnetization of the thin film. The state A8 in Fig. 8.20 shows
the fully reversed state. The domain configuration in this state is symmetric
to the initial state around the center line of the film (along the short axis).
The states A2 to A8 in Fig. 8.20 show the subsequent domain images observed
along the reversal process between state A1 and A8. In A2 and A3, the curved
domain walls that extend from the two ends to the center of the thin film move
towards the center and close to each other. In A4, a diamond shaped domain
is formed at the center of the film, resulting in a flux-closure multi-domain
structure in the permalloy thin film. With further change of the external field,
the domains that are parallel to the direction of the applied field expand at
the expense of the domains that are antiparallel to the applied field. This is
clearly seen in the states A5, A6 and A7 in Fig. 8.20. As a result, the diamond
shaped domain in the center narrows. The two edges of this center domain
eventually cross each other, move away from the center of the thin film and
away from each other, and reaches the final reversed state A8.

States B1 to B8 in Fig. 8.20 are the domain images obtained from the
micromagnetic simulation. These are gray scale images which map the mag-
netic charge density calculated from the simulated magnetization distribution
of the permalloy thin film. Since the MFM detects the magnetic field gradient
which results from the magnetic charges on the permalloy thin film, the MFM
images closely resemble the magnetic charge density distribution. Comparing
the MFM images (A1 to A8) and the simulated domain configurations (B1 to
B8) in Fig. 8.20, we can clearly see that excellent agreement between them.
This strongly validates the ability of the micromagnetic model to simulate the
domain configurations during the magnetic reversal process.

The vector plots C1 to C8 in Fig. 8.20 show the corresponding magnetiza-
tion distribution of the thin film, obtained directly from the micromagnetic
simulation. The cell size is 10×10×12.5 nm. The arrows in these plots indicate
the directions of the magnetization. The ability to give direct information on
the magnetization distribution is one of the powerful features of micromag-
netic simulation. This enables us to better understand the reversal process.
As we can see from C1, the two edge domains observed in the initial state
are two vortices. The center part of the thin film is uniformly magnetized
downward. The two vortices are formed at the two ends in order to reduce
the free magnetic charges otherwise would occur at the two end surfaces.
As the applied field changes, the top vortex moves toward the left, while the
bottom vortex moves towards the right. As a result, the net magnetization in
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the downwards direction decreases. This is clearly seen from C1 to C4. In C4
a near-perfect flux closure structure is formed, with very little net magneti-
zation in the downwards direction. Further increase of the applied field in the
upward direction continues to drive the motions of the two vortices. In C5 the
net magnetization has been reversed to the upward direction. This is followed
by C6 and C7 where the vortices are driven further to the side. Eventually
the center part of the magnetization is reversed completely to the upwards
direction, and the thin film reaches the reversed state C8.

8.4.2 Phenomenological Damping

In our preface to this section we said one of the features of micromagnetic
modeling was its applicability to time-dependent phenomena. Figure 8.21
shows the micromagnetic response based on (8.111) of a permalloy film
to a field of 250 Oe suddenly applied in the reverse direction. At t = 0
the Zeeman energy density is MSH. At 1.5 ns the magnetization has pre-
dominantly reversed, giving a Zeeman energy density −MSH. The varia-
tions in the magnetization shown in Fig. 8.21b indicate that this change
in Zeeman energy density has gone into exchange energy density. That
is, the energy has spread throughout the spin-wave spectrum shown in
Fig. 8.2.

Since (8.111) describes a precession of the magnetization mi about the
local field hi the spins in Fig. 8.21b are precessing about their local fields.
However, we know that the magnetization eventually relaxes into the direction
of hi. It does this by transferring energy to the lattice. This relaxation effect
is incorporated by adding a phenomenological damping term. Landau and
Lifshitz did this by introducing a term that can be written in the form [175]

(a) (b)

Fig. 8.21. Micromagnetic description of the magnetization reversal in a permalloy
film including only precessional terms [180]
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Fig. 8.22. Micromagnetic description of the magnetization reversal in a permalloy
film including phenomenological damping [180]

− λ

M2
M × M × H ,

which is perpendicular to the plane of M × H. In 1955 Gilbert developed a
damping term based on a variational approach [181] which has the form

− α

M
M × ∂M

∂t
.

The Landau–Lifshitz damping term may be shown to be identical to Gilbert’s
if one modifies the gyromagnetic term in the Landau–Lifshitz equation to have
the coefficient γ/(1 + α2). That is, in order to describe Gilbert’s damping in
terms of a triple cross-product the gyromagnetic ratio must become a function
of the damping. The resulting Landau–Lifshitz–Gilbert equation becomes

dmi

dτ
= γ∗mi × hi − αmi × (mi × hi) , (8.112)

where γ∗ = γ/(1 + α2). If the micromagnetic calculation for the permalloy
rectangle is now carried out using (8.112) with a damping parameter α = 0.005
we obtain the results in Fig. 8.22. We see that the exchange energy eventually
decreases to zero. The “total” energy is not conserved because it does not
include the energy that has been transferred to the lattice.

8.5 Metals

Let us now consider the response of a ferromagnetic metal to a time-dependent
field. The Fermi liquid formulation, which we used in the last chapter to study
the response of nonmagnetic metals, is not rigorous inthis case. This is because
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Fermi liquid theory rests on the assumption that the quasiparticle excitation
spectrum lies close to the Fermi surface. In a ferromagnet this may not be
the case. For example, when the spin of a quasiparticle at the Fermi surface
is reversed, the resulting quasiparticle state will not, in general, lie close to
the Fermi surface and will therefore have a finite decay time. Therefore, we
shall consider the microscopic model discussed in Chaps. 4 and 5 which was
characterized by the delta-function interaction. In Chap. 5 we obtained the
generalized susceptibility,

χ−+(q, ω) =
2µ2

BΓ (q, ω)
1 − 2IΓ (q, ω)

, (8.113)

where
Γ (q, ω) =

1
V

∑
k

nk↑ − nk+q↓
�ω − (ε̃k↑ − ε̃k+q↓)

. (8.114)

Adding the constant I to the energy does not change the energy difference in
Γ (q, ω) and enables us to write

ε̃ = εk +
nI

2
− σ

nI

2
ζ , (8.115)

where ζ = (n↑−n↓)/n is the relative magnetization and σ = ±1. For parabolic
energy bands Γ (q, ω) may be evaluated exactly for T = 0:

Γ (q, ω) = −N(εF )
4q̃

{
A(q̃ − ω̃/q̃) +

1
2
[A2 + (q̃ − ω̃/q̃)2] ln

q̃ − ω̃/q̃ + A

q̃ − ω̃/q̃ − A

+B(q̃ + ω̃/q̃) +
1
2
[B2 − (q̃ + ω̃/q̃)2] ln

q̃ + ω̃/q̃ + B

q̃ + ω̃/q̃ − B

}
. (8.116)

where

q̃ = a/2qF , ω̃ = (ω − nIζ)/4εF ,

A = (1 + ζ)1/3 , B = (1 − ζ)1/3 .

Since ln z = ln r + iθ where z = reiθ, the appearance of the logarithms in
(8.116) gives rise for ζ < 1 to four regions in the ω − q plane. Three of these
are characterized by Γ ′′(q, ω) �= 0 corresponding to single-particle spin-flip,
or “Stoner”, excitations. These three regions are indicated by the shaded por-
tions of Fig. 8.23. In the fourth region Γ ′′(q, ω) = 0. Therefore, since

χ′′
−+(q, 0ω) =

2µ2
BΓ ′′(q, ω)

[1 − 2IΓ ′(q, ω)]2 + 4I2Γ ′′(q, ω)2
(8.117)

in the limit Γ ′′(q, ω) → 0,

χ′′(q, ω) → µ2
B

I
δ [1 − 2IΓ ′(q, ω] . (8.118)
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From the property of the delta function,

δ[f(ω)] = δ(ω − ωq)|∂f/∂ω|−1
ωq

,

where ωq is defined by f(ωq) = 0, we see that the imaginary part of the suscep-
tibility contains poles at ω = ωq. These correspond to collective excitations,
or spin waves.

To find the dispersion relation for these spin waves we expand Γ ′(q, ω) for
small q and ω and set the result equal to 1/2I. The result is [182]

�ω(q) =
1

N↑ − N↓
(8.119)

×
∑

k

[
1
2
(nk↑ + nk↓)

(
q · ∂

∂k

)2

εk − N (nk↑ − nk↓)
I (N↑ − N↓)

(
q · ∂εk

∂k

)2
]

.

This has the same quadratic dependence upon q that we found for the spin-
wave spectrum of a ferromagnetic insulator. The first term in (8.119) cor-
responds to the additional kinetic energy that the electrons develop as they
change their spin directions to keep up with the change in the macroscopic
spin direction of the spin wave. It can be shown [183] that this is always posi-
tive and vanishes for a filled band. The second term corresponds to a reduction
in this kinetic energy due to a tilting of the electron spin out of the plane in
which the macroscopic magnetization varies.

From Fig. 8.23 we see that for wave vectors for which undamped spin
waves exist there will be contributions to χ′′(q, ω) from the nonzero values of
Γ ′′(q, ω) corresponding to virtual Stoner excitations. If we imagine a vertical
cut through the ω − q plane at increasingly larger wave vectors, the suscep-
tibility behaves [184] as shown in Fig. 8.24. The spin waves becomes heavily
damped as they approach and merge into the Stoner excitation region. This
limits their experimental identification to relatively small wave vectors.

εF

N (ε) N (ε)

Ω

= ∆Ω

ωq

q
1

q

Stoner
Excitations

Fig. 8.23. Regions of Ω − q space showing Stoner excitations and spin waves. Here
Ω = ω/4εF and ∆ = nIζ/4εF is the Stoner gap



8.5 Metals 277

χ

ω

χ

Increasing q

χ

ω

χ

ω

ω

Fig. 8.24. Behavior of the spectral function χ′′(q, ω) as q increases toward q1, in
Fig. 8.23

In most ferromagnetic metals the low-temperature magnetization is found
to follow the Bloch T 3/2 law. This is usually taken as evidence of the impor-
tance of the spin-wave modes. However, in weak itinerant ferromagnets, such
as ZrZn2, the Stoner excitations may dominate, producing a T 2 contribution
to the magnetization.

The first direct evidence of spin waves in metals was made by Lowde,
who observed the inelastic scattering of neutrons from iron [185]. Figure 8.25
shows the spin-wave dispersion relations for iron and nickel. In addition to
confirming the quadratic dependence on q, these results show an interest-
ing aspect of these spin waves, namely, their existence well above the Curie
temperature.

The existence of spin waves above Tc has been confirmed by large scale
computer simulation [188]. These simulations indicate that the spin waves
will be propagating, as opposed to dissipative, when their wavelengths are
smaller than the correlation length which measures the short range order.
For iron at T = 1.1Tc the correlation length is approximately twice the bcc
lattice parameter, i.e., 2a. Therefore we only have propagating spin waves for
wavevectors k ≥ 0.77 Å.
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Fig. 8.25. Spin-wave dispersion relations in iron [186] and nickel [187]. The iron
sample was alloyed with silicon to bring the Curie temperature down to a convenient
value

Seavey and Tannenwald observed the microwave excitation of standing
spin waves in thin films of permalloy [189], and light scattering has also proven
useful in studying spin waves in metals [190].

Problems

8.1.
(a) Express |M | and Mz in terms of the number of magnons, nk. How many

magnons are involved in changes of these quantities?
(b) Which of the following magnon scattering processes (Fig. 8.26) represent

microscopic mechanisms for the phenomenological damping parameter α?

Fig. 8.26. Relaxation processes that may, or may not, be described by “α”
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8.2. Consider 1-magnon scattering described by the Hamiltonian

H =
∑

k

g0k

(
a+

k a0 + a+
0 ak

)
.

Using perturbation theory calculate the relaxation rate of the uniform preces-
sion mode and determine the frequency dependence of the FMR linewidth.

8.3. From the kinetic theory of gases the thermal conductivity is given by

κ =
1
3
CηΛ ,

where C is the heat capacity per unit volume, v is the particle velocity, and
Λ the mean free path. Calculate the thermal conductivity of a “magnon gas”
where C(k) = ∂

∂T (nkεk), v is the group velocity v = ∂εk

∂k
, and Λ is independent

of k. Use the same approximations in obtaining the heat capacity (8.74).
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Thin Film Systems

The development of thin film deposition systems, such as molecular beam
epitaxy and sputtering during the 1970s and 1980s and pulsed laser deposition
in the 1990s made it possible to synthesize novel materials systems which
exhibited new phenomena. Quantum wells, for example, led to the quantum
Hall effect.

Similarly, thin magnetic films led to the giant magnetoresistance (GMR)
effect. In this chapter we shall explore the concepts associated with magnetic
multilayer structures. We shall begin with a single interface and then consider
magnetic layers separated by thin conducting and insulating layers.

9.1 Interfaces

9.1.1 Exchange Bias

Just as there is exchange between the sublattices of an antiferromagnet or
ferrimagnet, we expect there to be exchange across the interface between two
dissimilar magnetic materials. Consider, for example, the interface between
the [111] plane of antiferromagnetic CoO and Co metal. The [111] plane of
CoO corresponds to one of the sublattices. Therefore, in the antiferromagnetic
state the spins on this plane are all parallel. Suppose this antiferromagnet is
in proximity with a ferromagnet at a temperature T such that TN < T < Tc

and is then cooled below TN . This aligns the spins on the surfaces of the
antiferromagnet with the ferromagnet. Below TN the anisotropy of the anti-
ferromagnet “locks in” the spin configuration. The ferromagnet now “sees” a
unidirectional exchange from the antiferromagnet. Figure 9.1 shows the hys-
teresis loop of Co particles coated with CoO. The loop is shifted by 2 Oe. This
is referred to as exchange bias. This is a very important phenomenon because
it may be used to bias ferromagnetic films for a variety of applications.

To describe this effect let us assume that the exchange across the interface
between the antiferromagnetic spins and the ferromagnetic spins may be ex-
pressed in terms of an exchange energy density (per unit area) as J cos(α−β),
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Fig. 9.1. Hysteresis loops of fine oxide-coated particles of cobalt taken at 77◦ K.
The dashed lines show the hysteresis loop when the material is cooled in the absence
of a magnetic field. The solid lines show the hysteresis loop when the material is
cooled in a saturating magnetic field [191]

θ

β

FMAFM

J

M

H α

Fig. 9.2. Definition of angles used in describing the coupling between an antiferro-
magnet (AFM) and a ferromagnet (FM)

where the angle α is the direction of the magnetization and the angle β is
the direction of the antiferromagnetic axis (see Fig. 9.2). If an external field
H is applied at an angle θ the Zeeman energy density is −HMtF cos(θ −
α), where tF is the thickness of the ferromagnet. If we add an anisotropy
term to the ferromagnet then the problem of determining the direction of the
magnetization of the ferromagnet is identical to the Stoner-Wohlfarth model
discussed in Sect. 4.6, except the hysteresis loop is now shifted by an amount
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HE =
J

MtF
. (9.1)

While this simple model seems to describe this effect, there are quantitative
discrepancies. First of all, we would expect the interface exchange to be com-
parable to the exchange in the materials on either side. However, the observed
values of HE lead to values of J which are several orders of magnitude too
small. Secondly, HE is found to depend upon the thickness of the antiferro-
magnet, tAF . In particular, HE vanishes for antiferromagnetic thicknesses less
than a critical value.

The second observation suggests that perhaps the assumption that the
antiferromagnetic spin structure remains rigid is not valid. Antiferromagnets
do exhibit domains. These domains are separated by walls very similar to those
found in ferromagnets. The energy per unit wall area of an antiferromagnetic
wall is given by

σw =
√

AAF KAF , (9.2)

where AAF and KAF are the exchange and anisotropy parameters in the
antiferromagnet, respectively. Let us assume that as the magnetization of the
ferromagnet is pulled around in the plane of the film by an external field
this induces a twist in the antiferromagnetic through an angle β. The energy
density is then σw(1 − cos β). The total energy density is now

ε = −HMtF cos(θ − α) + J cos(β − α) + σw(1 − cos β) . (9.3)

The equilibrium equations are

∂ε

∂α
= 0 ,

∂ε

∂β
= 0 .

In a reverse field (θ = π) where the magnetization has rotated half way around(
α = π

2

)
these equations become

−HMtF + J cos β = 0 , (9.4)

−J cos β + σw sin β = 0 . (9.5)

Solving for cos β gives

cos β =

√
σ2

w

J2 + σ2
w

. (9.6)

The value of the exchange deduced from a hysteresis loop in this case is

Jh� = MtF He , (9.7)

where He is the field required to drive the magnetization to zero,

He =
J

MtF
cos β . (9.8)
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AFM
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f f f f

a b a b

Fig. 9.3. Exchange interactions at the interface between an antiferromagnetic
(AFM) and a ferromagnet (FM)

Therefore
Jh� =

Jσw√
J2 + σ2

w

. (9.9)

Thus, if the antiferromagnet is allowed to twist, the exchange deduced from a
hysteresis loop measurement is renormalized by the wall energy. In particular,
the loop can never be shifted by more than σw, no matter how large the direct
exchange J . There are other mechanisms that can lead to a reduced exchange
bias. Malozemoff [192], for example, has pointed out that interface roughness
will produce a random magnetic field which, according to Imry and Ma [193],
will lead to domains in the antiferromagnet at the interface.

There is independent evidence for the role of interface roughness in
exchange bias. Namely, the linewidth of the ferromagnetic resonance (FMR)
associated with a ferromagnetic/antiferromagnetic (FM/AFM) bilayer is an
order of magnitude larger than the linewidth without exchange bias and
increases with decreasing thickness of the FM film. Rezende et al. [194] argue
that this is due to two-magnon scattering in which the uniform mode (the
FMR) is scattered into a k �= 0 mode by the fluctuations in the exchange at
the FM/AFM interface. This is analogous to the origin of the FMR linewidth
in a YIG sphere due to magnon scattering induced by the dipole fields pro-
duced by surface roughness [163] (see, also Problem 8.2).

9.1.2 Biquadratic Exchange

Neutron scattering studies of superlattices composed of antiferromagnetic
CoO and ferrimagnetic Fe3O4 show that when the Fe3O4 is magnetized
the CoO spins align in domains with spins perpendicular to the net Fe3O4

moment. This is attributed to an exchange energy proportional to cos2 θ,
where θ is the angle between the Fe3O4 moment and the AFM sublattice.

To understand the origin of this phenomenon let us consider a FM/AFM
interface as shown in Fig. 9.3. Due to the surface roughness both compen-
sated and uncompensated interfaces will have a surface energy consisting of
exchange coupling between the FM spins, f̃ , and the two AFM sublattice
spins a and b, i.e., a · f . Let Ja and Jb be the exchange between a FM spin
and an AFM spin at sublattice a or b, respectively. The interface energy then
becomes

Hint = −Jaa · f − Jbb · f . (9.10)
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θ

a a

b

a

b

Fig. 9.4. Interface between a FM and AFM in which the AFM has fluctuated into
its spin-flop state

It is convenient to introduce the sum and difference vectors,

� = a + b , t = a − b .

The interface energy then becomes

Hint = −
(

Ja + Jb

2

)
� · f −

(
Ja − Jb

2

)
t · f . (9.11)

If the interface is uncompensated; for example if b = −a (i.e., � = 0) but
Ja �= Jb, then

Hint = − (Ja − Jb) a · f . (9.12)

If the interface is compensated, i.e., b = −a and Ja = Jb, then Hint = 0.
However, the AFM may fluctuate into the spin-flop state (Fig. 9.4).

This “twist” penetrates into the AFM and has an energy associated with
it equal to the wall energy, σw. Now b′ �= −a′ and the change in energy
according to second order perturbation theory is

(
Ja+Jb

2

)2
(�′ · f)2

σw
=

(Ja + Jb)
2
θ2

σw
(a · f)2 , (9.13)

where θ is the canting angle. Thus, if the AFM surface is compensated, one
of the “sublattices will be frustrated”, i.e., points in a direction opposite to
that preferred by the neighboring FM. This leads to the biquadratic exchange
favoring a perpendicular alignment.

9.2 Trilayers

Very interesting behavior is found in magnetic systems consisting of two
magnetic films separated by a nonmagnetic layer. In anticipation of fabricat-
ing magnetic multilayers theoretical analyses predicted a variety of magnetic
structures. Majkrzek et al. [195] and Grunberg et al. [196] independently
demonstrated exchange coupling between magnetic films separated by non-
magnetic spacers. Majkrzek et al. studied GdnYm superlattices using neutron
diffraction while Grunberg et al. studied light scattering from spinwaves in
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Fig. 9.5. Magnetostatic coupling across a nonmagnetic spacer layer associated with
magnetic poles generated by surface roughness. (This is referred to as “orange peel”
coupling after the texture of the surface of an orange)

Fe–Cr–Fe and Fe–Au–Fe trilayers. Both groups observed antiferromagnetic
coupling at certain spacer thicknesses.

There are several mechanisms for coupling to occur across the spacer layer.
If the spacer is too thin the most obvious coupling is through “pin holes”, or
regions in which the magnetic material connect through the spacer. This can
be avoided by growing high quality films.

Néel also pointed out that surface roughness will develop magnetic poles
that lead to magnetostatic coupling across the spacer (see Fig. 9.5). Since the
roughness tends to propogate through the structure, the topology on both
sides of the spacer will generally have the same “phase”. This leads to ferro-
magnetic coupling. The observed antiferromagnetic coupling is believed to be
intrinsically associated with the metallic spacer. In the next two sections we
shall describe two models that give antiferromagnetic coupling.

9.2.1 The RKKY Ineraction

As we saw in Sect. 2.2, there is a contact hyperfine interaction between
s-state electrons and nuclear moments. Fröhlich and Nabarro were the first
to suggest that this interaction could lead to a polarization of the nuclear
moments [197]. The actual form of this interaction, however, was obtained
by Ruderman and Kittel [198]. In analogy with this nuclear coupling, the
exchange interaction between conduction electrons and localized electrons
can also lead to indirect coupling between localized electronic moments.
Zener [199] proposed that this was the origin of ferromagnetism in transi-
tion metals. Kasuya investigated this interaction in more detail, particularly
with respect to its effect on spin waves and electrical resistivity [200]. Yosida
also employed this interaction to explain the magnetic properties of Cu–Mn
alloys [201]. As a result of these developments, the indirect coupling of mag-
netic moments by condution electrons is referred to as the Ruderman–Kittel–
Kasuya–Yosida (RKKY) interaction.

The form of the RKKY interaction is easily obtained within the framework
of our generalized susceptibility. Let us assume that the interaction between
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a localized spin Sα located at r = 0 and the conduction spins si has the form

−J
∑

i

Sα · si(r) .

Each conduction spin therefore experiences an effective field given by

Heff(r) = − J

gµB
Sαδ(r) . (9.14)

The response of an electron gas to such a field is determined by its suscepti-
bility χ(q). Since the Fourier transform of this field is

Heff(q) = − J

gµB
Sα . (9.15)

the spin density at r is

s(r) =
J

g2µ2
BV

∑
q

χ(q)eiq·rSα . (9.16)

For a free-electron gas χ(q) is given by (3.97). The sum over q is evaluated
by converting it into an integral. This integral is easily evaluated by using the
integral representation [H. Levine, private communication].

ln
∣∣∣∣2kF + q

2kF − q

∣∣∣∣ = 2
∫ ∞

0

dx sin(2kF x) sin(qx)
x

. (9.17)

The result is

1
V

∑
q

χ(q)eiq·r =
3g2µ2

B(N/V )
3εF

1
2π2r

∫
dq qF

(
q

2kF

)
sin qr (9.18)

=
3g2µ2

B(N/V )
8εF

k3
F

16π

[
sin 2kF r − 2kF r cos 2kF r

(kF r)4

]
.

The part of this expression within the brackets is plotted in Fig. 9.6.
Thus we see that when a localized moment is introduced into a metal,

the conduction spins develop an oscillating polarization in the vicinity of this
moment. These spin-density oscillations have the same form as the Friedel
charge-density oscillations that result when an electron gas screens out a
charge impurity.

The most direct evidence for the oscillatory nature of this interaction
comes from NMR studies. In CuFe, for example, the nuclear resonance spec-
trum consists of the strong Knight-shifted Cu63 line found in pure Cu plus
various satellites corresponding to Cu nuclei which lie within the RKKY
oscillations around an Fe impurity. These Cu nuclei feel a contact hyper-
fine field



288 9 Thin Film Systems

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

1 2 3 4 5
�r [A]

−0.02 −0.002

−0.004

0.004

0.006 0.0006

0.0004

0.0002

−0.0002

−0.0004

−0.006

Fig. 9.6. Plot of the conduction-electron spin density produced by an impurity spin
in a metallic host

δH(r, T ) = −8
3
πgµBσ(r, T ) ,

where

σ(r, T ) = χimp(T )Hf(r) .

Here χimp(T ) is the susceptibility of a single Fe impurity and f(r) character-
izes the RKKY spatial dependence. An external field polarizes the impurity
which in turn increases σ(r, T ). Thus the satellites should move away from the
main line with increasing field with a slope that depends upon f(r). Figure 9.7
shows the field dependence of five such satellites [202]. The appearance of both
positive and negative slopes results from the oscillatory nature of f(r).

If there is another localized spin Sβ at r, it interacts with this induced
spin density, leading to an effective interaction between the localized spins of
the form

HRKKY = − J2

g2µ2
BV

∑
q

χ(q)eiq·rSα · Sβ . (9.19)

This interaction manifests itself in many ways. Ruderman and Kittel [198]
showed that it leads to a broadening of the nuclear magnetic resonance
absorption. This interaction is also the origin of the exchange coupling between
the localized moments in the rare-earth metals. As we saw in Chap. 4, its
oscillatory nature leads to helimagnetism in these materials.
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Fig. 9.7. Magnetic field dependance of satellite separations from the main Cu63

resonance at 300K in CuFe [202]

9.2.2 Quantum Well Model

When the moments being coupled are itinerant, such as in an Fe/Cu/Fe tri-
layer, it is appropriate to describe the whole trilayer in a band picture. An
electron moving in a ferromagnet will experience an exchange potential. We
represent this by a difference in the potentials for spin up and spin down. Thus,
the trilayer potential for a spin up when the two ferromagnets are antiparallel
is shown in Fig. 9.8a. The objective is to calculate the energy levels associated
with each of these potentials and then determine the total energy when these

D

spin

spin
spin

spin

M

M M
M

M M M

M

(a) (b)

(d)(c)

Fig. 9.8. Squarewell potentials seen by an electron moving in a trilayer consisting
of two ferromagnets separated by a nonmagnetic, but conducting, spacer
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levels are filled up to the Fermi level [205]. Since we are dealing with a large
number of particles it is convenient to work with the grand thermodynamic
potential, Ω, we introduced in our discussion of the deHaas–Van Alphen effect,
(3.75):

Ω = kBT
∑

i

ln (1 + exp [−β (Ei − EF )])

= −kBT

∫ ∞

−∞
ln
[
1 + exp

(
εF − ε

kBT

)]
n(ε)dε , (9.20)

where n(ε) is the density of states. Integrating by parts gives

Ω = −
∫ ∞

−∞
N(ε)f(ε)dε ,

where N(ε) is the integrated density of states,

N(ε) =
∫ ε

−∞
n(ε′)dε′

and f(ε) is the Fermi function. At T = 0

Ω → −
∫ εF

−∞
N(ε)dε .

Thus, our problem reduces to calculating the density of states associated with
the potentials in Fig. 9.8. Since we are interested in how the density of states
changes with the thickness of the spacer layer we focus our attention on this
layer. When an electron in the spacer layer moving to the right with momen-
tum k+ is incident on the ferromagnetic layer its wave function is reflected
and transmitted. Let us denote the reflection coefficient for a spin up striking
the B ferromagnet when its moment is also “up” as R↑

B. The electron then
moves back to the A ferromagnet where it is reflected with a coefficient R↑

A if
the A moment is also “up”. Bruno [203] has shown that this confinement of
up-spin electrons in the spacer bound by ferromagnetically aligned moments
produces a change in the integrated density of states equal to

∆N(ε) = − 2
π

Im ln
(
1 − R↑

AR↑
BeiqD

)
, (9.21)

where q = k+−k−. The change in the thermodynamic potential Ω, associated
with this change in the integrated density of states gives the change in energy

∆E↑
F =

2
π

Im

∫ ∞

−∞
ln
(
1 − R↑

AR↑
BeiqD

)
dε . (9.22)

Considering the other three configurations and generalizing to three-
dimensions we obtain
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Fig. 9.9. Fermi surface of gold showing the two spanning vectors that govern the
coupling between magnetic films placed on either side of the gold
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Fig. 9.10. Magnetization in the plane of an Fe film separated from an Fe whisker by
a gold wedge showing that the coupling varies with the thickness of the wedge [204]

∆EF − ∆EAF =
1

4π3
Im

∫
d2k‖

∫ +∞

−∞
f(ε) (9.23)

× ln

⎡
⎣
(
1 − R↑

AR↑
Beiq⊥D

)(
1 − R↓

AR↓
Beiq⊥D

)
(
1 − R↑

AR↓
Beiq⊥D

)(
1 − R↓

AR↑
Beiq⊥D

)
⎤
⎦ dε .

In the limit of weak confinement this may be written

EF − EAF = − 1
π3

Im

∫
d2k‖

∫ ∞

−∞
f(ε)∆RA∆RBeiq⊥Ddε , (9.24)
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Table 9.1. Exchange Oscillation Periods for Fe/Au/Fe (100)

SEMPA 2.48 ± 0.05 8.6 ± 0.3

dHvA 2.51 8.60

where ∆R = R↑ − R↓. The factor exp (iq⊥D) describes the propagation
through this spacer. Since q⊥ = 2kF this predicts that the coupling oscillates
as a function of spacer thickness with a period given by 2kF . When 2kF con-
nects regions of the Fermi surfaces that are relatively flat the integral over
k‖ will weight these contributions more heavily. We refer to these particular
vectors as the spanning vectors of the Fermi surface. Figure 9.9 shows the
Fermi surfaces of gold in the extended zone scheme. For a spacer oriented
in the (100) direction there are two spanning vectors. This would suggest
that the coupling between two magnetic films separated by gold with a (100)
orientation should show a variation with thickness that is the superposition
of a long and a short period. Such behavior has been observed in a very nice
experiment on Fe/Au/Fe by Unquris, et al. [204]. As shown in Fig. 9.10, they
deposit a thin iron layer on top of a gold wedge-shaped spacer which is in turn
deposited on top of an iron whisker with two magnetic domains. The direc-
tion of the magnetization in the top layer is measured by Scanning Electron
Microscopy with Polarization Analysis (SEMPA). The periods deduced from
the SEMPA measurement are compared with those obtained from deHaas-van
Alphen measurements in Table 9.1 [204].

9.2.3 Giant Magnetoresistance (GMR)

When current flows through a magnetic film, as shown in Fig. 9.11 the re-
sistivity depends upon the angle the current makes with the magnetization
according to

ρ = ρ0 + ∆ρ cos2 θ . (9.25)

This is called the anisotropic magnetoresistance (AMR) and is due to the scat-
tering of the conduction electrons from the d-moments of the magnetization.

j

M

 T

Fig. 9.11. Geometry for the AMR effect
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(a) (b)

Fig. 9.12. Geometry of the Current-In-Plane (CIP) GMR effect. (a) high resistance;
(b) low resistance

The largest effect has been found in permalloy where ∆ρ/ρ0 = 2%. With
the development of thin film deposition techniques, it was natural to measure
the magnetoresistance of magnetic multilayers. The surprising result was that
the magnetoresistance of an Fe/Cr/Fe trilayer was 200% (at 4.2 K) [206].
However, in the case of the trilayer, the resistance depends upon the relative
orientation of the magnetizations in the magnetic layers.

If the metallic inner layer provides an antiferromagnetic coupling, the mag-
netizations in zero field will be antiparallel as shown in Fig. 9.12a. In the
presence of a strong enough field, the moments become parallel as shown in
Fig. 9.12b. The resistance is always found to be larger in the antiparallel con-
figuration. This effect is also independent of the relative orientation of the
magnetizations and the bias current. However, the magnitude of the effect is
larger when the current flows perpendicular to the plane of the magnetization
(CPP) as opposed to the current being in the plane (CIP) – as is the case in
Fig. 9.12. Thus, the resistivity of this “giant magnetoresistance” (GMR) effect
may be expressed as

ρ = ρ0 + ∆ρ cos (θ1 − θ2) . (9.26)

For a summary of experimental aspects of GMR see [207]. The microscopic
explanation of the GMR effect may be understood by first considering the
scattering of electrons in a ferromagnet. As we saw in Sect. 5.3, the spin-up
and spin-down d-bands are exchange split, the s-bands less so as illustrated
in Fig. 9.13. The current is largely carried by the s-electrons. However, when
they scatter, from impurities or lattice irregularities, for example, the prob-
ability of scattering into a d-state is large because the density of d-states
is larger.

Since the probability of spin flip scattering is smaller, we shall not include
this process. Now, let us consider how this scattering affects the transport in a
Co/Cr/Co trilayer. Consider the down-spin 1© (relative to the direction of the
magnetization) in Fig. 9.14a. When this electron reaches the Cr interface it
scatters back into the Co with a probability that is proportional to the Co
d-electron down-spin density, Nd↓. The up-spin 2© successfully transverses the
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Fig. 9.13. Simplified band structure of a ferromagnet showing s-electrons being
scattered into d-states

(a) (b)

Fig. 9.14. Most likely scattering processes in a trilayer whose magnetic layers have
a band structure like that shown in Fig. 9.13

Co–Cr interface because the majority spin d-band density of states for the
bands shown in Fig. 9.13 is smaller. However, when this electron reaches the in-
terface with the top magnetic layer there are two possibilities depending upon
whether the magnetization of this layer is parallel or antiparallel to the bottom
layer. If it is parallel (Fig. 9.14b), the probability is again small and the elec-
tron continues on its way. If the magnetization is antiparallel (Fig. 9.14a), then
the up-spin electron finds itself in an environmment in which it is effectively
a “down-spin” and therefore, scatters more strongly. This argument suggests
that the average mean free path in the case of parallel magnetizations is larger
than that of antiparallel magnetizations, giving the parallel configuration a
smaller resistivity.

The GMR serves as the basis for very sensitive detection of magnetic fields.
In this application one of the magnetic layers is “pinned”, generally by placing
it in contact with an antiferromagnet and utilizing the exchange bias.1 The

1 In real devices the design is slightly more complex. The pinned layer has mag-
netic charge at its edges which produces a demagnetization field which can affect
this free layer. To minimize this effet a third magnetic layer is placed next to
the pinned layer with a nonmagnetic spacer having a thickness that gives an
antiferromagnetic coupling. This third layer is, in turn, pinned by the antiferro-
magnet. The two antiferromagnetically coupled ferromagnetic layers are called a
“synthetic antiferromagnet” (SAF).
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other layer is designed to have a very small coercivity, so it is free to be
oriented by the field one is sensing. This configuration is called a spin valve.

In order to maximize the GMR one needs a theory that incorporates the
physics necessary to predict the GMR behavior.

Kubo Formula. In keeping with the linear response approach adopted in this
text one can apply the same formalism to calculate the electrical conductivity
σαβ , that we used to calculate the susceptibility. We apply a perturbing elec-
tric field and calculate the current response. Since the applied field produces
currents which, in turn, produce electric fields, the conductivity is defined by
the current response to the total electric field, E(r, t),

Jα(r, t) =
∫

d3r′
∫

dt′σαβ (r − r′, t − t′) Eβ (r′, t′) . (9.27)

The current density at r is given by averaging the velocity of the particles
over volume Ω,

Jα(r, t) = e

〈∑
i

viαδ(r − ri)

〉
. (9.28)

The velocity is given by

vi =
1
m

[
pi −

e

c
a(ri)

]
. (9.29)

Therefore

Jα(r, t) =
e

mΩ

∑
i

〈piα〉 −
e2

mc

∑
i

〈Aα(ri)〉 . (9.30)

Since the momentum is related to the current by ii = e
mpi,

Jα(r, t) =
1
Ω

∑
i

〈iiα〉 −
e2

mc

∑
i

〈Aα(ri)〉 . (9.31)

The vector potential is related to the electric field by Aα(ri) = −i c
ωEα(ri).

The number of particles in the sum over i is nΩ where n is the particle density.
This sum gives the macroscopic average,

Jα(r, t) = 〈jα(r, t)〉 + i
ne2

mω
Eα(r, t) . (9.32)

To obtain σαβ we must calculate 〈jα(r, t)〉 to lowest order in Eα(r, t). The
result is [208].

σαβ(q, ω) =
1

ωΩ

∫ ∞

0

dteiωt〈ψ
∣∣j†α(q, t), jβ(q, 0)

∣∣ψ〉 + i
ne2

mω
δαβ . (9.33)
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Thus, the conductivity is given by the average value of the current-current
correlation function where the wavefunction |ψ > is the ground state of the
many body system. Equation (9.33) is known as the Kubo formula. The prob-
lem with this approach is that one does not always know the ground state |ψ >.
Butler and his colleagues, for example, have employed the local spin density
approximation to the density functional theory we discussed on page 177 to
calculate the transport properties of multilayers [209].

Boltzmann Equation. An alternative approach to describing the GMR effect
which relates more directly to the physical picture we gave at the beginning of
this section is the semiclassical approach based on the Boltzmann equation. In
this approach the electron is described by a distribution function, fσ(r,k, t),
which gives the probability of finding an electron with spin σ at r with a
momentum �k. Conceptually, this is the basis for the Fermi liquid approach
we introduced in Chap. 7. This probability will change over time due to forces
acting on the electron, and also simply due to the fact that the electron is
moving through space. The total time rate of change is given by

df

dt
=

∂f

∂t
+ ṙ · ∇rf + k̇ · ∇kf +

∂f

∂t

∣∣∣∣
scat

, (9.34)

where the last term is the change due to scattering. In equilibrium the total
time derivative is zero. Therefore

∂f

∂t
= −ṙ · ∇rf − k̇ · ∇kf − ∂f

∂t

∣∣∣∣
scat

. (9.35)

k̇ is given by the forces,

�k̇ = −|e|E − |e|v × B . (9.36)

The term involving the magnetic field is generally small and, therefore,
neglected. Let us also restrict our consideration to the dc conductivity so
that f is not a function of time.

Let Pk,k′ be the probability that an electron scatters from state k to
k′. We shall neglect spin-flip scattering since its probability is small. The
scattering may, however, be different for the two spin directions giving rise to
spin-dependent scattering. We shall suppress the spin index, keeping in mind
that there are two spin channels. Then the scattering term may be written.

∂f

∂t

∣∣∣∣
scat

=
∑
k′

Pkk′ [1 − f(r,k)] f(r,k′)

−Pk′k [1 − f(r,k′)] f(r,k) . (9.37)

Microscopic reversibility requires Pk′k = Pkk′ . Therefore

∂f

∂t

∣∣∣∣
scat

=
∑
k′

Pkk′ [f(r,k′) − f(r,k)] . (9.38)
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In equilibrium, in the absence of an applied field, the distribution function is
the Fermi–Dirac function

f0(k) =
1

1 + e[E(k)−EF ]/kBT
.

Again, in the spirit of linear response theory, we assume f(r,k) may be written
as f0(k) plus a small deviation g(r,k), i.e.,

f(r,k) = f0(k) + g(r,k) . (9.39)

The equation for g(r,k) then becomes

v(k) · ∇rg(r,k) − |e|E · v(k)
∂f0(k)
∂E(k)

=
∑
k′

Pkk′ [g(r,k′) − g(r,k)] . (9.40)

To simplify the scattering term we assume that g(r,k′) is proportional to
g(r,k) where the coefficient of proportionality depends upon k and k′, i.e.,

g(r,k′) = c(k,k′)g(r,k) .

The scattering term then reduces to g(r,k)
τ(k) where

1
τ(k)

=
∑
k′

Pkk′ [c(k,k′) − 1] .

It turns out that c(k,k′)−1 varies as 1− cos θ where θ is the angle between k
and k′. That is, large angle scattering is weighted more heavily in determining
τ(k). Equation (9.40) becomes

v(k) · ∇rg(r,k) − |e|E · v(k)
∂f0(k)
∂E(k)

=
g(r,k)
τ(k)

. (9.41)

This simplication of the scattering term is referred to as the relaxation time
approximation.

Before considering the multilayer geometry it is of interest to consider
a homogeneous system where ∇rg(r,k) = 0. Then the solution to (9.41)
becomes

g(k) = |e|τ(k)
∂f0(k)
∂E(k)

· v(k) · E .

The current density is

j(r) =
|e|
Ω

∑
k

v(k)g(k) . (9.42)



298 9 Thin Film Systems

Therefore the conductivity is

σαβ =
|e|2
Ω

∑
k

vα(k)vβ(k)τ(k)
∂f0(k)
∂E(k)

. (9.43)

While (9.43) can be derived from the Kubo formula (9.33), the derivation is
not trivial (see [208], Sect. 8.1.2).

Let us now consider a trilayer structure consisting of two magnetic layers
(e.g., Fe or Co.) separated by a thin conductor (e.g., Cu or Cr) [210]. Assume
the electric field is applied in the plane of the trilayer (x-direction) and that
the normal to the sandwich defines the z-direction. Then (9.41) reduces to

∂g(z,k)
∂z

− g(z,k)
vz(k)τ(k)

− |e|Evx(k)
vz(k)

∂f0(k)
∂E(k)

= 0 . (9.44)

We shall solve this equation piecewise for the different layers. Furthermore,
the solution for vz(k) > 0 is different than that for vz(k) < 0. Denoting those
solutions by ±, we obtain for a given layer

g±(z,k) = eτ(k)Evx(k)
∂f0(k)
∂E(k)

[
1 + A±(k)e∓z/τ(k)|vz(k)|

]
. (9.45)

The coefficients A±(k) are obtained from boundary conditions. For example,
consider the following boundary:

The electron moving away from the boundary on the left could come from the
reflection of the electron incident on the boundary from the left or from the
transmission of the electron incident on the boundary from the right, i.e.,

gL− = RgL+ + TgR− ,

where R and T are the reflection and transmission coefficients, respectively.
The spin dependence arising from the spin-dependent scattering enters

through the relative orientation, θ, of the magnetizations in the two layers.
Camley and Barnaś dealt with this by introducing an artificial interface in the
middle of the conducting spacer where the spin quantization axis is rotated
by θ. Based on our discussion of the change of the spin wavefunction with
quantization direction in Sect. 2.2.10, the probabilities gσ have the following
relationships:
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Fig. 9.15. Magnetoresistance versus ferromagnetic layer thickness in
(FM/NM)NFM multilayers for bulk (the solid lines) and interface (the dashed line)
scattering as calculated using the semiclassical free-electron model. λNM = 20 nm
and diffuse outer boundary scattering are assumed in the calculation. The other
parameters are set as follows: λ↑

FM = 12 nm, λ↓
FM = 0.6 nm, T ↑ = T ↓ = 0.1 for

interface spin-dependent scattering. After Dieny [214]

g−σ
L+−−−−→

−−−−→
gσ

R+ = cos2
θ

2
gσ

L+ + sin2 θ

2
g−σ

L+

−−−−→
gσ

L+

and, similarly,

gσ
L− = cos2

θ

2
gσ

R− + sin2 θ

2
g−σ

R− .

In principle, the reflection and transmission coefficients, R and T , may be
calculated. However, they were regarded as parameters by Camley and Barnaś.
In fact, they assumed that when the magnetic layers and the conducting spacer
are transition metals, like Fe/Cr/Fe, the reflection coefficient is zero. Since
this does not account for scattering at the Fe/Cr interface they introduced a
diffusive scattering parameter, D, by setting T = 1−D. In a subsequent paper,
Johnson and Camley [211], replaced the concept of diffusive scattering at
the internal interfaces by introducing “mixed” regions between the magnetic
layers and the conducting layer. This gives six regions, each having their own
coefficients A±

σ (k) in (9.45). There are 24 boundary conditions to determine
these 24 coefficients which are solved numerically [212]. Once one knows gσ

±
for all the regions the current density in each region can be calculated from
(9.42). The total current is obtained by integrating jx(z) over z.

It turns out, [213], that the introduction of mixed regions is necessary to
obtain an equivalence between the Kubo formalism and the Boltzmann formal-
ism. Nevertheless, the use of a diffusive scattering parameter is convenient for
obtaining qualitative understanding of the GMR effect. For example, suppose
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we wish to understand how a multilayer, (FM/NM)NFM, behaves relative to
a simple trilayer, FM/NM/FM. If we assume that the spin dependance arises
from scattering within the ferromagnetic layers, then the scattering time, τσ,
or, equivalently, the mean free path, λσ, is taken to be different for spin up
and spin down, while the transmission coefficients, Tσ, are both taken to be 1.
On the other hand, if the spin dependence arises from scattering at the inter-
face, then we set λ↑ = λ↓. Figure 9.15 shows the magnetoresistance obtained
from the Boltzmann equation as a function of the thickness of the ferromag-
net for various multilayer configurations [214]. The solid lines assume the
scattering within the ferromagnets is spin-dependent while the dashed line is
for spin-dependent interface scattering. There are several observations. One
is that the GMR for multilayers is larger than that of a trilayer (spin valve).
This is due to the fact that in calculating the magnetoresistance in Fig. 9.15
it was assumed that the electrons are diffusely scattered at the outer bound-
aries. Therefore, for bulk spin-dependent scattering, the GMR will increase
with multilayer thickness until this thickness becomes comparable to the mean
free path, λ↑. Once the multilayer thickness exceeds λ↑ the role of the diffuse
scattering decreases and further increase in the thickness simply provides a
shunting path which reduces the GMR.

This argument suggests that the magnetoresistance is very sensitive to the
outer boundary. As we mentioned above, one of the magnetic layers in a spin
valve is pinned by placing it next to an antiferromagnet. The popular choice,
FeMn, is generally believed to produce diffuse scattering. The GMR can be
enhanced by using NiO as the pinning antiferromagnet. This enhancement is
due to the fact that NiO is an insulator and reflects back the electrons, i.e.,
increases the specular scattering. A layer of Cu at the back of the magnetic
layers also enhances the GMR. This is a “spin filtering” effect due to the fact
that for Co/Cu, for example, the Fermi surface of the Co majority (↑) spins
is very similar to that of Cu whereas that of the Co minority (↓) spins is very
different. Therefore, the majority spins pass through the interface more easily.

9.2.4 Tunneling

Another trilayer structure that has enormous practical applications is that
in which the intermediate layer, between the two metal electrodes, is a thin
insulator. When a voltage is applied across this structure a small current
is observed. This current occurs because the insulator represents a finite
potential barrier of the order of the bandgap of the insulator as illustrated
in Fig. 9.16. The bandgap of Al2O3, for example, is 6.6 eV. This means the
wave function for an electron with an energy below the barrier height is an
evanescent wave and an electron in the left electrode will therefore have a
finite probability of tunneling into the right electrode.

There are a variety of approaches to calculating the tunneling conduc-
tance. One of these, introduced by Bardeen [215], is based on a tunneling
Hamiltonian. If cqσ destroys an electron with momentum q and spin σ on one
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Fig. 9.16. Wavefunction associated with tunnel barrier

side of the junction and c†kσ creates one with momentum k and spin σ on the
other side the tunneling may be represented by a Hamiltonian of the form

HT =
∑
k,q

(
T σ

kqc†kσcqσ + T σ
qkc†qσckσ

)
. (9.46)

The total probability that an electron tunnels from one side, say 1, to the
other, 2, is

W1→2 =
2π

�

∑
l

|〈l |HT | 0〉|2 δ (El − E0) , (9.47)

where |0〉 and |l〉 are products of the eigenstates of the Hamiltonians appro-
priate for each side. If one now writes

δ (εqσ + eV − εkσ) =
∫ ∞

−∞
dEδ (εqσ − E) δ (εkσ − eV − E) (9.48)

and converts the sums over q and k into integrals over εq and εk one finds
that the tunneling current associated with spin σ is

Iσ =
2πe

�

∫ ∞

−∞
dE〈
∣∣T σ

kq

∣∣2〉N1σ (E + eV ) N2σ(E) [f(E + eV ) − f(E)] ,

(9.49)
where 〈|T |2〉 is the average of the tunneling probability. If we assume that
the densities of states, N1σ and N2σ, are not strong functions of energy they
may be replaced by their values at the Fermi energy and taken outside the
integral. The tunneling conductance Gσ = dIσ/dV then becomes

Gσ =
2πe2

�
〈
∣∣T σ

kq

∣∣2〉N1σ(EF )N2σ(EF ) . (9.50)

If the two magnetic electrodes have their magnetizations parallel (see Fig. 9.17)
then the tunneling takes place between the majority (M) spin bands and mi-
nority (m) spin bands. Therefore, the conductance is given by

G↑↑ = G↑ + G↓ ∼ NM1NM2 + Nm1Nm2 .
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(a)

(b)

Fig. 9.17. Tunneling processes for parallel (a) and antiparallel (b) electrodes

If the magnetic electrodes are magnetized antiparallel, then

G↑↓ = G↑ + G↓ ∼ NM1Nm2 + Nm1NM2 .

The tunneling magnetoresistance (TMR) is defined by

TMR =
G↑↑ − G↑↓

G↑↓
. (9.51)

When we have exchange-split bands, the densities of states at the Fermi level
for the different spin directions are different. These differences define the spin
polarization, i.e.,

P1 =
NM1(EF ) − Nm1(EF )
NM1(EF ) + Nm1(EF )

. (9.52)

The TMR may then be expressed in terms of the spin polarizations of the two
electrodes as

TMR =
2P1P2

1 − P1P2
. (9.53)

This expression was first derived by Julliere [216] to explain his tunneling
results in films of Fe/Ge/Co.

In order to test the simple relation (9.53) we need to know the polarizations
of the electrode materials. There are three techniques used to measure the spin
polarizations – tunneling in which one of the electrodes is a superconductor,
Andreev reflection using a superconducting point contact, and spin-resolved
photoemission.
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Fig. 9.18. Density of states for an Al–Al2O3–Ni junction in which the Al is super-
conducting

Fig. 9.19. Experimental results for the normalized conductance as a function of
applied voltage for an Al–Al2O3–Ni tunneling junction for different values of the
applied field H (kOe). After Meservey and Tedrow [217]

Spin-Dependent Tunneling. When one of the electrodes of a tunnel junction
is a superconductor in its superconducting state the electrons are bound in
(k ↑,−k ↓) pairs. When the pairs are excited they form quasiparticles with
energies

Ekσ =
(
ε2

k + ∆2
) 1

2 − σµBH ,

where ∆ is the superconducting energy gap. The resulting density of states is
shown on the left side of Fig. 9.18. The splitting in the magnetic field manifests
itself in the tunneling conductance as shown in Fig. 9.19. The two peaks or
shoulders in the conductance curve are the results of the superposition of tun-
neling from/into the two spin bands of the ferromagnet and provide a direct
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Table 9.2. Measured spin polarization values for various magnetic materials

Materials Ni80Fe20 Ni Co Fe Co50Fe50 La0.7Sr0.3CrO3 Fe3O4

Spin polarization
measured by using
Andreev reflection
method [218]

37% 43% 43% 45% – 78% –

Spin polarization
measured on
FM/AlOx/Al
Tunnel junction [219]

48% 33% 42% 45% 55% – −48%

Spin polarization
measured by using
spin-resolved
photoemission [220]

– – – – – 100% −80%

measurement of the ratio of their densities of states, that is, the polariza-
tion. In Table 9.2 we list the polarizations obtained in this manner for several
magnetic materials.

Andreev Reflection. In this technique a superconducting tip is placed in con-
tact with the magnetic sample. Current in the superconductor is carried by
electron pairs. Therefore, if a spin up electron from the ferromagnet enters the
superconductor it must do so by pairing with a spin down electron created
at the interface. This leaves a spin up hole which is reflected back into the
ferromagnet. These “Andreev reflected” holes provide a parallel conduction
channel. When the sample is unpolarized the conductance of the contact is
twice that when the superconductor is normal. As the polization increases
the current at zero bias decreases, becoming zero for a 100% spin polarized
ferromagnet. Spin polarizations obtained by this technique are also listed in
Table 9.2.

We notice that the polarizations deduced from the different techniques
are different. Part of this difference has to do with the fact that the spin
polarization is weighted differently in the different techniques. The quality
of the tunneling barrier and the point contact are also important. The point
contact transport, for example, may vary from being ballistic to diffusive.

Even if we had accurate values for the spin polarizations the Julliere
expression (9.53) does not capture all the features experimentally observed
in magnetic tunnel junctions. For example, the TMR shows a strong decrease
with bias voltage. In the tunneling Hamiltonian approach described above
we treated the tunneling matrix elements as constants as functions of energy.
This ignores the details of the barrier. To incorporate the details of the barrier
we must solve the tunneling problem.

The contribution of an electron in state k with spin σ to the tunneling
current density, Jσ, is given by its probability of getting through the barrier,
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T (k), times the frequency with which it hits the barrier νkσ. Thus the current
per unit area is

Jσ =
∑

k

e

A
T (k)νk,σfkσ , (9.54)

where fkσ is the Fermi function and A is the area of the junction. The fre-
quency of striking the barrier is vz/2L where L is the thickness of the electrode.
Converting the sum over k into an integral according to

∑
k

AL

(2π)3

∫∫
dkzdk2

|| →
V

(2π)3

∫
dE/ (dE/dkz)

∫
dk2

|| (9.55)

the current density becomes

Jσ =
AL

(2π)3
e

AL

1
2�

∫
dE

dE/dkz

∫
dk2

||T
(
k||, E

) dE

dkz
fkσ . (9.56)

If we assume that the temperature is zero and that the energy dependence of
T (k||, E) over the energy range eV is not large, then the integral over E just
gives eV, and

Jσ =
e2V

(2π)3
1
2�

∫
dk2

||T
(
k||
)

.

The transmission probability T (k||) is obtained by solving the 1D Schrödinger
equation. For a simple rectangular barrier as shown in Fig. 9.16 the transmis-
sion probability is given by

T
(
k||
)

=
16k1κ

2k2e
−2dκ

κ2(k1 + k2)2 + (κ2 − k1k2)2
, (9.57)

where

k1 =
√

(2m/�2)(EF − V1) − k2
|| ,

k2 =
√

2m/�2(EF − V2) − k2
|| ,

κ =
√

(2m/�2)(Vb − EF ) + k2
|| .

In the case of a magnetic tunnel junction we have four different spin orienta-
tions analogous to Fig. 9.8. These are shown in Fig. 9.20. Slonezewski [221]
applied the free-electron results above to this situation and obtained
an expression for the tunneling magnetoresistance of the same form as
Julliere’s, i.e.,

TMR =
2P 2

eff

1 − P 2
eff

(9.58)
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Fig. 9.20. Squarewell potentials seen by an electron moving in a trilayer consisting
of two ferromagnets separated by a nonmagnetic insulating barrier

but with an effective polarization

Peff = P
κ2

0 − k↑k↓
κ2

0 + k↑k↓
, (9.59)

where k↑ and k↓ are evaluated at k|| = 0, and κ0 at Vb = 0. This simple free
electron model illustrates how sensitive the tunneling magnetoresistance is to
the details of the barrier. In Fig. 9.21 we show the voltage dependence of the
TMR. Such a strong voltage dependence is a characteristic of magnetic tunnel
junctions.

Neither Julliere’s model nor the free-electron model can treat realistic
electrode and barrier materials. To do this, one must employ a Kubo formal-
ism that incorporates first-principles calculations of the electronic states. One
of the great successes of such calculations was the prediction that a barrier
consisting of MgO should give a high TMR [222]. Such large TMR’s were
subsequently observed [223].

9.2.5 Spin Transfer

In addition to the giant magnetoresistance that occurs in a trilayer structure
when the current flows perpendicular to the plane (CPP) of the structure there
is another interesting phenomenon. Namely, since the conduction elections in
a ferromagnet are partially spin polarized by the d-electrons they can transfer
spin angular momentum from one magnetic layer to the other. This can have
the result of exciting spinwaves in the “receiving” layer or even completely
reversing the magnetization of this layer. These possibilities were first pre-
dicted independently by Slonczewski [224] and Berger [225] and subsequently
observed by various groups [226–228].

Let us begin by considering a single ferromagnetic layer embedded between
two semi-infinite Cu leads. We shall assume this layer is relatively thick and
the magnetization fixed. This situation may be analyzed by the Boltzmann
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Fig. 9.21. Voltage dependence of TMR associated with shape of the barrier [Chando
Park]

Fig. 9.22. Spin polarization in Cu leads attached to a ferromagnetic film based on
a Boltzmann equation calculation [229]

equation approach we used in describing the GMR effect. Suppose we consider
current flowing from right to left (which we define as a “negative” current)
so that electrons are moving left to right. And suppose that the reflection
coefficients are such that R↑ 
 R↓. We also incorporate spin-flip scattering
in the Cu by introducing a spin-flip mean free path, λ↑↓ = vF τ↑↓ (for Cu
this is estimated to be 2000 nm). If λ is the mean free path, then the spin
diffusion length is given by

√
λλ↑↓. The result is that there is an imbalance

in the number of up and down spins in the vicinity of the FM/Cu interface
as shown in Fig. 9.22. We refer to this as spin accumulation.

Suppose we now add a second magnetic layer (free layer) with thickness
d2 separated from the first (reference layer) by a distance less than the spin
diffusion length (Fig. 9.23). We now have spin-polarized electrons entering the
second magnetic layer. These electrons interact with the magnetization in this
layer through the s–d exchange interaction, −2Jsds · S(r). This interaction
gives rise to a large effective field, of the order of 1000 T, acting on the the
“incoming” conduction electrons. This causes the spins of these electrons to
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Fig. 9.23. Origin of the torque (τ ) on a free layer due to spin accumulation from
a reference layer

precess rapidly around the direction of S(r). Slonczewski has shown [224]
that the transverse component of the spin, after the electron has traveled a
distance L0 in the free layer of the order of π/(k↑ − k↓), where k↑ and k↓ are
the spin-up and spin-down wavevectors, is zero. For Co L0 is approximately
9.5 nm. By conservation of angular momentum this spin angular momentum
is transferred to S(r). Each spin therefore contributes an angular momen
(�/2) sin θ where θ is the angle between s and S. The number of conduction
electrons flowing through a cross sectional area in unit time is j/e, where j is
the current density. Therefore, the amount of angular momentum transferred
to the volume (unit area) d2 in unit time, i.e., the torque, is (�/2ed2)j sin θ.
We shall also introduce a spin polarization factor

P =
n↑ − n↓
n↑ + n↓

to account for any loss in polarization as the electrons traverse the nonmag-
netic separator. If we identify the direction of s with the magnetization of the
reference layer, M1, and note that M̂1 × M̂2 = sin θ, then the direction of
the torque may be written as M̂2 × (M̂1 × M̂2). Since the magnetization is
related to the angular momentum per unit volume through the gyromagnetic
ratio γ we have

dM2

dt
=

�γPj

2ed2
M̂2 × (M̂1 × M̂2) . (9.60)

The implications of this torque on the dynamics of the magnetization may
be studied by adding this term to the Landau–Lifshitz–Gilbert equation we
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Fig. 9.24. The precession of magnetization under the influence of a spin current.
Uniaxial anisotropy alone. (a) Time dependence of Mz. (b) Time dependence of Mx.
(c) A 3D portrait of the spiral motion of the tip of M [230] hs is the spin current
amplitude in dimensionless units

described in Sect. 8.4 This torque term adds a great deal of richness to the
solutions. First of all, note that this term can be positive or negative. Consider,
for example, Fig. 9.23a in which the two magnetic layers are initially parallel
and the current is negative, i.e., electrons flow from the thick layer to the thin
layer. In this case, (9.60) gives a torque that adds to the damping. In Fig. 9.23b
the current is positive and the torque tends to pull the magnetization M2 away
from the parallel state. Sun [230] has numerically solved the LLG equation
including the spin transfer term. A solution showing switching behavior is
shown in Fig. 9.24.

In the presence of a large applied magnetic field complete reversal of the
magnetization is inhibited. In this case spinwaves are excited. The threshold
for this excitation is readily obtained by expanding the magnetization M2 in
(9.60) in terms of spinwave amplitudes according to (8.14) and adding this
term to the linearized spinwave amplitude equation of motion. The result
is [231]

dαk

dt
= −iωkαk − (ηk − βj) αk , (9.61)

where β = �γP/2ed2M2 and ωk is the frequency of the spinwave with wavevec-
tor k and ηk is the spinwave relaxation rate. The solution of this equation is

αk(t) = αk(0)eiωkte−(ηk−βj)t . (9.62)

We see that the spinwave amplitude will grow exponentially when the current
density exceeds the critical value
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− −−

Fig. 9.25. The point contact dV/dI(V ) spectra for a series of magnetic fields
(2,3,5,6,7, and 8 T) revealing an upward step and a corresponding peak in dV/dI
at a certain negative bias voltage V ∗(H). The inset shows that V ∗(H) increases
linearly with the applied magnetic field H [226]

jc =
2ed2M2ηk

�γP
. (9.63)

This “pumping” of spinwaves by a spin-polarized current is analogous to the
Suhl instabilities we discussed in Sect. 8.2.6. In particular, this pumping can
lead to chaotic phenomena as well [232].

The first observations of spin-polarized current-driven excitations in a
magnetic multilayer were made by Tsoi, et al. [226]. Figure 9.25 shows the
differential resistance of a Co/Cu multilayer stack excited by current injected
through a point contact. We immediately see the asymmetry with current di-
rection predicted above. The peaks scale linearly with field. In this experiment
the magnetic field is applied perpendicular to the plane of the layers. In this
configuration the frequency of the k = 0 spinwave, or ferromagnetic resonance
(FMR) mode is ωk=0 = γ(H − 4πMs). Therefore, Fig. 9.25 is evidence for the
current-driven excitation of k = 0 spinwaves.

9.2.6 Spin Hall Effect

Spin accumulation can also occur in the direction transverse to the current
flow in a single conducting film. There are, in fact, two mechanisms by which
this can occur. The most direct (Fig. 9.26) is the spin polarization that results
from the response of the metal to the magnetic field produced by the current
itself through ∇ × H = 4πj/c. This response is proportional to the Pauli
susceptibility and is very small. A larger effect occurs through spin-orbit scat-
tering, (Fig. 9.27), which is also the origin of the “anomalous” Hall effect in
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Fig. 9.26. Spin Polarization across film due to field of current

Fig. 9.27. Spin polarization at edges of film due to spin-dependent scattering

ferromagnets. These two mechanisms are quite different. In the case of “the
Pauli polarization” the Fermi levels of the up- and down-spins are equal but
vary across the film. In the case of spin-orbit scattering the Fermi levels of the
up- and down-spins are not equal and are maintained in this nonequilibrium
state by the current flow.

Let us consider the scattering process. When an electron is incident on a
spinless scattering center the potential it sees is given by

V (r) = Vc(r) + Vs(r)σ · L , (9.64)

where Vc(r) is the Coulomb potential and Vs(r) is the spin-orbit scattering
potential. As a result of the Vs(r) term, up- and down-spin electrons will be
scattered differently toward the left and right.

There are two effects of this spin-orbit scattering. In one, the amplitude of
the scattered electron wave as it propagates away from the scattering center
is different for spin-up and spin-down. This is called “skew scattering”. In
the other, the apparent center from which the scattered wave propagates is
different for spin-up and spin-down. This is called “side jump”. The side jump
may also be understood as arising from an “anomalous” velocity. In particular,
the velocity operator is obtained from the Hamiltonian by v = (1/�)∂H/∂k.
If H = p2/2m we obtain the usual velocity operator v = �k/m. But when the
spin-orbit potential (9.64) is included we obtain an additional “anomalous”
contribution (�α/τσ)k × σ, where α is the spin-orbit coupling constant and
τσ is the non-slip-flip relaxation time [233].

The sign and magnitude of the spin accumulation depends upon Vs(r). If
the current is polarized, as in an itinerant ferromagnet, then there will also
be an imbalance of charge created. This is the anomalous Hall effect. The
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Fig. 9.28. Change in electron distribution function due to shift of Fermi sphere

Fig. 9.29. Change in electron distribution due to change in Fermi radius

resistivity (Ey/jx) is written

ρH = R0B + 4πRsM . (9.65)

Therefore the experimental anomalous Hall coefficient Rs provides a measure
of the spin Hall voltage. In particular, for a current of up spins M = n↑µB

and the Hall voltage associated with (9.65) is

VH = 4πRswjxn↑µB . (9.66)

For down spins there will be an equal (with n↓) but opposite voltage. Thus,
since n↑ = n↓ = n/2 in a paramagnet there will not be a charge buildup, but
there will be a spin accumulation. We may therefore describe this as a spin
Hall voltage [234],

VSH = 2πRswjxnµB . (9.67)

The spin accumulation will vary across the film. One approach to determin-
ing this spatial variation is to solve the Boltzmann equation introduced in
(9.34) for the electron distribution function fσ(r,k). In the case of GMR the
change in the distribution function arises from a displacement of the Fermi
surface (Fig. 9.28). In the case of spin accumulation we must also allow for a
difference in the radii of the spin-up and spin-down Fermi surfaces (Fig. 9.29).
Therefore, we describe the distribution function by two nonequilibrium terms,

fσ(r,k) = f0(k) + [gσ(r,k) + eµσ(r)]
(
− ∂f0

∂εF

)
. (9.68)

We have explicitly recognized that this is a Fermi surface phenomenon by
introducing the factor (−∂f0/∂εF ), and we have written the k-independent
part as a voltage. When this assumed form for fσ(r,k) is substituted into the
Boltzmann equation, and a spin-flip relaxation term is included, we obtain
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k · ∇gσ(r,k) + eεσ(r) · k = −gσ(r,k)/τσ +
eµσ(r) − eµ−σ(r)

τ↑↓
, (9.69)

where Eσ(r) = E − ∇µσ(r), showing that µσ(r) plays the role of a spin-
dependent chemical potential. If we assume τ↑↓ is very long relative to τσ and
that gσ(r,k) is slowly varying in space we find

gσ(r,k) = −eτσEσ(r) · k (9.70)

and that µσ(r) satisfies the diffusion equation

∇2
[
µσ(r) − µ−σ(r)

]
=

µσ(r) − µ−σ(r)
D2

, (9.71)

where the spin diffusion coefficient is given by 1
D2 = 1

D2
↑

+ 1
D2

↓
and Dσ =

�kσ
F

m

√
τστ↑↓/3. This equation has the solution

µ↑(y) − µ↓(y) = Aey/D + Be−y/D , (9.72)

where the coefficients A and B are determined by the boundary conditions on
the spin current density, jσ

y (y). In particular, for the geometry shown above,
j↑y(y) + j↓y(y) = 0.

The current-density is given by the average of the current operator. When
the spin-orbit interaction is included in the Hamiltonian the current operator
is �k/m plus the anomalous contribution introduced above, (�α/τσ)k × σ.
Using (9.68) to calculate the current density analogous to (9.42) gives [235]

jσ(r) = cσEσ(r) + cσ
HEσ(r) × σ , (9.73)

where

cσ =
e2τσ(kσ

F )3

6π2m

cσ
H =

e2α(kσ
F )3

6π2
.

Notice that µσ(r) enters the current density through Eσ(r). Taking the gradi-
ent of (9.72) the boundary condition enables us to determine the coefficients
A and B. For a paramagnetic metal where c↑ = c↓ and c↑H = c↓H ,

µ↑(y) − µ↓(y) =
cH

2c2
wj × 2D

w

sinh(y/D)
cosh(w/2D)

.

Figure 9.30 shows (µ↑ − µ↓)/(cHwjx/2c2) as a function of the distance across
the film. From (9.65) εy/jx = 4πRsM . Also, since εy/jx = σxy/σ2

xx = cH/c2,
the value of µ↑(±w/2) − µ↓(±w/2) is the same as Hirch’s VSH (9.67) when
w 
 D.

Kato et al. [234] have used Kerr rotation microscopy to image the spin
polarization across a semiconductor channel and observed a dependence very
much like curve (c) in Fig. 9.30.
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Fig. 9.30. Predicted dependence of spin accumulation as a function of distance
across a semiconductor channel

Problems

9.1. Can the presence of a localized spin in a metal induce a uniform magne-
tization? (Hint: determine how the average spin density, s(r), averaged over
the range 0 < q < 1

r varies with r.)

9.2. Discuss how you would expect the RKKY interraction to be modified by
(a) exchange enhancement and (b) a finite electron mean free path (see [237]).

9.3. What value of GMR would be expected for magnetic layers having the
following density of states:

9.4. Solve the Boltzmann equation for a single layer of Cu bounded by
insulating magnetic layers which completely spin polarize the Cu electrons
when they are reflected from the interface. What is the GMR?
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Neutron Scattering

The scattering of neutrons provides us with an exceedingly powerful probe
for studying condensed matter. This usefulness arises from the fact that ther-
mal (300 K) neutrons have a wavelength λ � 1.6 Å. This means that their
energy and wavelength are comparable to those of the excitations in solids.
In fact, neutron scattering has become almost the last word in determining
spin orderings, spin-density distributions, and spin-wave dispersion relations.
A detailed discussion of the experimental techniques employed in neutron
scattering, with reference to the original papers, may be found in [238].

There are two sources of neutrons for scattering. One is a nuclear reactor
in which a fissile nucleus, generally 239U or 239Pu, captures a neutron and
splits into two nearly equal-mass fragments together with approximately 2.5
neutrons, each having an average energy of 2 MeV. The second source of neu-
trons is spallation, in which high energy particles from an accelerator, such
as 1 GeV protons, collide with a heavy nucleus, such as uranium or lead. The
excited nucleus decays by evaporating neutrons. The spallation process pro-
duces approximately 20 neutrons, with average energies of 2 MeV, for each
colliding proton. Most spallation sources operate in a pulsed mode with pulse
widths less than one microsecond and pulse rates between 10 Hz and 60 Hz.
The MeV neutrons must be slowed down to thermal velocities (∼ 30 meV), or
even colder, by passing them through moderators consisting of beryllium or
heavy water (D2O).

10.1 Neutron Scattering Cross Section

Let us consider sending a collimated beam of monochromatic neutrons into a
sample and measuring the energy spectrum of the neutrons scattered in some
direction. This is the differential scattering cross section. For the rest of this
section we shall be concerned with how the scattering cross section depends
on the state of the crystal [239,240].
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If the neutrons interact with the scatterer through some interaction V (r),
then the probability that the neutron will be scattered from an initial state
(k,ms) into a final state (k′,m′

s) while the system goes from state α to α′ is,
in the Born approximation,

2π

�

∣∣∣∣〈α′,m′
s|

1
L3

∫
dr eiκ·rV (r)|α,ms〉

∣∣∣∣
2

δ

(
�

2k′2

2m0
+ Eα′ − �

2k2

2m0
− Eα

)
,

(10.1)
where κ ≡ k−k′, L3 is the volume of the sample, and m0 is the neutron mass.
The number of neutrons scattered into the solid angle dΩ′ in the direction k′

with momentum between �k′ and �(k′+dk′) is obtained by multiplying (10.1)
by the number of states in this incremental volume of phase space, which is

k′2dk′dΩ′

(2π/L)3
. (10.2)

Since the neutron energy and momentum are related by E′ = �
2k′2/2m0, this

becomes
m0L

3k′

8π3�2
dΩ′dE′ . (10.3)

The differential scattering cross section is defined as the scattering intensity
per unit solid angle per unit incident flux. The incident flux associated with
a beam of neutrons with velocity v is

v

L3
=

�k

m0L3
. (10.4)

Therefore the differential scattering cross section becomes

d2σ

dΩ′dE′

∣∣∣∣
α,ms→α′,m′

s

=
k′

k

( m0

2π�2

)2

|〈α′m′
s|V (−κ)|α,ms〉|2

×δ

(
�

2k′2

2m0
+ Eα′ − �

2k2

2m0
− Eα

)
. (10.5)

We must now sum over the final states α′ and m′
s as well as average over the

initial states α and ms, using a probability factor Pα. This factor might have
the Boltzmann form

Pα =
exp(−Eα/kBT )∑
α exp(−Eα/kBT )

(10.6)

or some other form such as the Bose-Einstein form in the case of phonons.
Thus

d2σ

dΩ′dE′ =
∑

α,ms
PαPms

∑
α′m′

s

k′

k

(
m0

2π�2

)2 |〈α′,m′
s|V (−κ)|α,ms〉|2

×δ
(

�
2k′2

2m0
+ Eα′ − �

2k2

2m0
− Eα

)
.

⎫⎪⎬
⎪⎭
(10.7)
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This is the general result which forms the basis of our discussion of neutron
scattering.

The neutron interacts with the crystal in two ways: through the nuclear
interaction and through the magnetic dipole-dipole interaction.

10.2 Nuclear Scattering

Although our main interest will be in magnetic scattering, we shall briefly
consider the nuclear contribution to see how it complicates the experimental
results. Let us begin by considering the nuclear scattering from a single fixed
zero-spin nucleus located at R. Since the interaction has such a short range,
the scattering will be isotropic at these neutron energies. This is because at
short distances from the nucleus the neutron’s angular momentum is very
small. Hence we have only s-wave scattering. The only form of V (r) which
gives isotropic scattering in the Born approximation is a delta function.

Thus we set

V (r) =
2π�

2

m0
bδ(r − R) , (10.8)

where b is called the scattering length. It represents a phenomenological
description of the nuclear scattering process which is very difficult to com-
pute directly. Equation (10.8) is called the Fermi pseudopotential and gives a
total cross section

σ = 4πb2 . (10.9)

The scattering length is taken to be a constant, independent of the neutron
energy. This is valid at the low neutron energies used.

Now consider scattering from many fixed nuclei situated at lattice sites
n. If we have a compound or if there are isotopes present, the scattering
amplitudes of the different nuclei may be different. In this case the total
pseudopotential is

V (r) =
2π�

2

m0

∑
n

bnσ(r − n) . (10.10)

This leads to the differential cross section

d2σ

dΩ′dE′ =
∑
α,ms

PαPms

∑
α′,m′

s

k′

k

∣∣∣∣∣〈α′,m′
s|
∑
n

bneiκ·n|α,ms〉
∣∣∣∣∣
2

δ (energy) .

(10.11)

Here, α refers to all the quantum numbers necessary to describe the crystal.
In particular, α and α′ might refer to the isotope distribution and the nuclear-
spin orientations. To a good approximation the energy is independent of these
quantities. Thus,
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dσ

dΩ′ =
∑
α,ms

PαPms

∑
n

,m exp [iκ · (n − m)] 〈α,ms|b∗mbn|α,ms〉

=
∑
n,m

exp[iκ · (n − m)]〈b∗mbn〉 . (10.12)

Since there is no correlation between bn and b∗m for n �= m,

〈b∗mbn〉 = 〈b∗m〉〈bn〉 = |〈b〉|2 .

Therefore we write

〈b∗mbn〉 = |〈b〉|2 +
(
〈|b|2〉 − |〈b〉|2

)
∆(n − m) . (10.13)

This enables us to separate the cross section into two parts,

dσ

dΩ′ =
(

dσ

dΩ′

)
coh

+
(

dσ

dΩ′

)
incoh

, (10.14)

where the coherent cross section is

(
dσ

dΩ′

)
coh

= |〈b〉|2
∣∣∣∣∣
∑

n

eiκ·n

∣∣∣∣∣
2

(10.15)

and the incoherent cross section is(
dσ

dΩ′

)
incoh

= N
(
〈|b|2〉 − |〈b〉|2

)
. (10.16)

We see that only the mean scattering potential 〈b〉 gives rise to interference
effects and coherent scattering, while the incoherent scattering is proportional
to the mean-square deviation 〈|b − 〈b〉|2〉. If the nucleus possesses a nonzero
spin, then the nuclear scattering amplitude will depend upon the relative
orientation of this spin with the neutron spin. Since these nuclear spins are
disordered, they lead to a large incoherent scattering. This is beautifully ill-
ustrated in Fig. 10.1, where the cross section for thorium hydride is compared
with that of thorium deuteride. The large incoherent scattering observed in
the ThH2 is associated with incoherent nuclear spin scattering.

10.2.1 Bragg Scattering

The coherent elastic scattering from a rigid lattice is also referred to as Bragg
scattering. This involves the quantity.∑

n

eiκ·n ,

which contains N terms. It can be shown that
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Fig. 10.1. Neutron diffraction patterns for polycrystalline ThH2 and ThD2 [241]

∣∣∣∣∣
∑
n

eiκ·n

∣∣∣∣∣
2

=
(2π)2N

V0

∑
G

δ(κ − G) , (10.17)

where V0 is the volume of the unit cell and G is a reciprocal lattice vector. This
is an important result which we shall encounter many times. The coherent, or
Bragg, cross section then becomes(

dσ

dΩ′

)
coh

= |〈b〉|2 (2π)3N
V0

∑
G

δ(κ − G) , (10.18)

If the lattice has more than one atom per unit cell, say r atoms at ρ1, ρ2, . . . ,
relative to some reference point in the unit cell, then(

dσ

dΩ′

)
coh

=
(2π)3N

V0

∑
G

|F (G)|2 δ(κ − G) , (10.19)

where

F (G) =
r∑

i=1

〈bi〉 exp(iG · ρi)

is the unit cell structure factor. The important point is that there is no
coherent scattering unless

κ = k − k′ = G . (10.20)

By squaring this relation and making use of the fact that the magnitude of
the reciprocal lattice vector in some direction hkl is equal to some multiple of
2π times the inverse spacing of the planes in that direction, d(hkl), we obtain
the familiar Bragg law

sin θ =
nλ

2d(hkl)
(10.21)

for the angle 2θ between the indicent beam and the diffracted beam.
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Fig. 10.2. Time-of-flight diffraction pattern

Time-of-flight differaction provides a convenient technique for measuring
the lattice parameters d(hkl). In a pulsed neutron source the neutrons have a
broad energy spectrum similar to the spectrum of fission neutrons. But since
they are all created at the same time, time-of-flight techniques may be used
to separate neutrons with different energies. In particular, combining the de
Broglie relation λ = h/mv with Bragg’s law, λ = 2d sin θ, the d-spacing in Å
at a given scattering angle is

d = t/252.8L 2 sin θ ,

where t is the time of flight in µ sec and L is the flight path in m. Thus a time-
of-flight diffraction pattern will look like the one in Fig. 10.2. One advantage
of a time-of-flight measurement is that the resolution, ∆d/d, is constant over
the whole pattern.

10.2.2 Scattering of Phonons

Let us now consider the cross section when we allow the ions to deviate from
their rigid lattice position n by an amount un. The general position is then

Rn = n + un , (10.22)

and the cross section becomes
d2σ

dΩ′dE′ =
∑
a,ms

PaPms′

∑ k′

k
(10.23)

×
∣∣∣∣∣〈α′,m′

s

∣∣∣∣∣
∑

n

bn exp(iκ · n) exp(iκ · un)

∣∣∣∣∣α,ms〉
∣∣∣∣∣
2

δ (energy) .

The system coordinates a and a′ now refer to phonon states as well as to the
nuclear spin projections mI and m′

I . Writing out the latter explicitly, we have
for the matrix element above∑

n

〈m′
s,m

′
I |bn|ms,mI〉 exp(iκ · n)〈α′ |exp(iκ · un)|α〉 . (10.24)

The ionic displacement un may be expanded in boson operators corresponding
to the creation and annihilation of phonons as [242].
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un =
∑
q,s

√
�

2NMωqs

[
aqse

iq·nε̂qs + a†
qse

−iq·nε̂qs

]
. (10.25)

ε̂qs is the unit polarization vector associated with the phonon wave vector q
and polarization s. The phonon coordinates α in the matrix element above
may now be explicitly written as the number of phonons in each mode. Thus
the factor involving un becomes〈

n′
q1s1

, n′
q2,s2,...

∣∣
× exp

[
i
∑
q,s

√
�

2NMωqs

(
aqse

iq·nε̂qs · κ + a†
qse

−iq·nε̂qs · κ
)]

×
∣∣nq1s1 , nq2,s2 , . . .

〉
. (10.26)

Using the relation
eA+B = eAeBe−(1/2)[A,B] , (10.27)

where A and B are noncommuting operators, and expanding the exponentials
involving the phonon amplitudes, the cross section may be written as the sum
of multiphonon processes,

d2σ

dΩ′dE′ =
∞∑

n=−∞

d2σn

dΩ′dE′ , (10.28)

where n is the net number of phonons created.
Elastic Scattering. Let us consider the case where the net number of phonons
created is 0. This corresponds to elastic scattering, but at a finite temperature.
With n′

qs = nqs, the matrix element n = 0 in (10.28) becomes, to order 1/N ,
∏
qs

[
1 − �

2NMωqs

(
nqs +

1
2

)
|κ · ε̂q,s|2

]
. (10.29)

If this is substituted into the expression for d2σ0/dΩ′dE′, the sum over α,
which is the number of phons in each mode, converts nqs into its thermal
equilibrium value nqs. In the limit N → ∞ this may be written as

exp

[
−
∑
q,s

�

2NMωqs

(
nqs +

1
2

)
|κ · ε̂qs|2

]
. (10.30)

Using this along with (10.24,10.24) results in a total elastic cross section,

d2σ0

dΩ′dE′ =
∑

mI ,ms

Pms
PmI

∑
m′

I
,m′

s

k′

k

∑
n,m

〈ms,mI |b∗m|m′
s,m

′
I〉

×〈m′
s,m

′
I |bn|ms,mI〉 exp [iκ · (n − m)] (10.31)

× exp

[
−
∑
q,s

�

NMωqs

(
nqs +

1
2

)
|κ · ε̂qs|2

]
δ (energy) .
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Removing the sum over (m′
s,m

′
I) by closure and integrating over energy, we

obtain
dσ0

dΩ′ =
∑
n,m

exp [iκ · (n − m)] 〈b∗mbn〉 exp(−2W ) , (10.32)

where

W =
∑
q,s

�

2NMωqs

(
nqs +

1
2

)
|κ · ε̂qs|2 (10.33)

is called the Debye–Waller factor. Comparison of (10.32) and (10.12) shows
that the coherent and incoherent cross sections are the same as those we
obtained for the rigid lattice case except for the factor exp(−2W ). Notice
that this is nonzero even at T = 0 owing to zero-point vibrations.

One-Phonon Scattering. We now turn to inelastic processes involving one
phonon. In particular, let us consider those processes in which the number
of phonons annihilated exceeds by 1 the number of phonons created. The
contribution to the matrix element given by (10.26) for these processes is

∑
n

〈m′
s,m

′
I |bn|ms,mI〉eiκ·ni

√
�

2NMωqs

√
nqse

iq·nκ · ε̂qs

∑
q′,s′

[
1 − �

2NMωq′s′

(
nq′s′ +

1
2

)
|κ · ε̂qs|2

]
, (10.34)

In the computation of the corresponding cross section the sum over the dis-
tribution of occupation numbers again introduces the thermal averages of the
nqs. Thus we obtain

d2σ−1

dΩ′dE′ =
∑
q,s

〈b∗mbn〉 exp [i(κ + q) · (n − m)]

× �

2NMωqs
nqs |κ · ε̂qs|2 e−2W δ

[
�

2

2m0
(k2 − k′2) − �ωq

]
.

(10.35)

From (10.10), (10.13), (10.15), (10.16) we may write

〈b∗mbn〉 =
σcoh

4π
+

σincoh

4π
∆(m − n) , (10.36)

where σcoh = 4π|〈b〉|2 and σincoh = 4π{〈|b|2〉 − |〈b〉|2}, so that the coherent
part of the cross section becomes(

d2σ−1

dΩ′dE′

)
coh

=
(2π)3N

V0

σcoh

4π

∑
q,s

k′

k

∑
G

δ(κ + q − G)

× �

2NMωqs
nqs |κ · ε̂qs|2 e−2W δ (energy) . (10.37)
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Fig. 10.3. Schematic diagram of a triple-axis spectrometer

Similarly, the incoherent part becomes(
d2σ−1

dΩ′dE′

)
incoh

=
Nσincoh

4π

∑
q,s

k′

k

�

2NMωqs
nqs |κ · ε̂qs|2 e−2W δ (energy) .

(10.38)
We can obtain similar expressions for one-phonon creation processes. For more
details we refer the reader to [239].

In summary, a typical neutron diffraction pattern will consist of Bragg
peaks plus a diffuse background. The Bragg peaks enable us to determine
the crystal structure. The diffuse background arises from three sources: inco-
herent elastic scattering, coherent inelastic scattering, and incoherent inelastic
scattering. By using certain experimental techniques we may separate the
coherent inelastic scattering contribution and thereby determine the phonon
dispersion relation. If we can also separate the incoherent inelastic scattering,
this leads directly to the phonon density of states. In the next section we shall
see how magnetic scattering contributes to this spectrum.

A triple-axis spectrometer (Fig. 10.3) is often used to measure the energy
and momentum transfer associated with the inelastic scattering of neutrons
from a reactor source [243]. The high-energy neutrons are moderated down
to thermal energies and emerge from the reactor with a Maxwellian distribu-
tion of energies. A single energy is selected by Bragg reflection from the first
monochromator crystal in Fig. 10.3. This monoenergetic beam is incident on
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the sample with the wave vector k. The scattered beam k′ is Bragg reflected
by the analyzer crystal into the detector.

10.3 Magnetic Scattering

We now turn our attention to the interaction between the magnetic moment
of the neutron and those of the crystal. The vector potential at re produced
by a neutron’s magnetic moment µ at r is

A =
µ × (re − r)
|re − r|3 . (10.39)

As we saw in Sect. 2.2, the magnetic interaction between a vector potential A
and an electron with momentum p is given by

V (x) = − e

2mc
[p · A(x) + A(x) · p] − e�

2mc
σ · ∇x × A(x) , (10.40)

where x ≡ re−r and p operates on re. In the Born approximation we consider
the matrix element of this interaction between the initial and final states. For
the neutron these are just exp(ik · r) and exp(ik′ · r), respectively. Therefore,
if we integrate over the neutron coordinates, we have

〈k′ |V (x)|k〉 = − e

2mc

∫
dr e−ik′·r [p · A(x) + A(x) · p] eik·r

− e�

2mc
σ ·
∫

dreik′·r∇x × A(x) e−ik·r . (10.41)

The Born approximation is valid in this case because the average interaction
energy µeµN/x3 � 10−3 K, which is very small compared with the kinetic
energy of the neutron. If we write r = re − x and κ = k − k′, the partial
matrix element (10.41) becomes

− e

2mc

∫
dx exp(−iκ · x) exp(−iκ · re) [p · A(x) + A(x) · p]

− e�

2mc
σ ·
∫

dx exp(−iκ · x) exp(iκ · re)∇x × A(x) . (10.42)

From the explicit form of A(x) we have that ∇x · A(x) = 0, as well as∫
dxeiκ·xA(x) =

4πi

κ2
(µ × κ) (10.43)

and∫
dxeiκ·x [∇x × A(x)] =

4π

κ2
κ × (µ × κ) = 4π [µ − (κ̂ · µ)κ̂] . (10.44)
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Therefore (10.41) reduces to

i
4πe

mc

1
κ2

(µ × κ) · exp(iκ · re)p − 4πe�

2mc
[σ · µ − (σ · κ̂)(µ · κ̂)] exp(iκ · re) .

(10.45)
The first term represents the interaction between the neutron’s moment and
the orbital current, and the second term is the spin-spin interaction.

It is interesting to consider what happens when κ → 0, that is, the case
of forward scattering. We rewrite the first term as

i
4πe

mc
µ ·
[
exp(iκ · re)

κ2
κ × p

]
. (10.46)

Expanding the exponential, we have

i
4πe

mc
µ · κ × p

κ2
− 4πe

mc
µ ·
(κ · re

κ2
κ × p

)
+ . . . . (10.47)

We take the mean value of the limit as κ → 0. In this limit the first term of
(10.47) vanishes and the second term becomes

−4πe

mc
µ · 1

3
(re × p) =

8π

3
µBµ · l . (10.48)

The spin term of (10.45) becomes

4πµB

[
σ · µ − 1

3
σ · µ

]
=

8π

3
µBµ · σ . (10.49)

Thus the partial matrix element is

8π

3
µBµ · (l + 2s) . (10.50)

This shows that the forward-scattering cross section is proportional to the
total magnetic moment of the electron.

Let us return now to the case κ �= 0. In many materials the orbital momen-
tum is quenched. Therefore let us consider only the spin term. The matrix
element entering (10.1), which is essentially the magnetic scattering ampli-
tude, is

4πµB〈α′,m′
s

∣∣∣∣∣
∑

i

[σi · µ − (σi · κ̂) (µ · κ̂)] exp (iκ · ri)

∣∣∣∣∣α,ms〉 , (10.51)

where the sum over i includes all the electrons in the sample. The factor
σi exp(iκ ·ri) may be written as

∫
drσiδ(r−ri) exp(iκ ·r). By analogy with

(1.48), ∑
i

σiδ (r − ri)
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is the spin density at r, which we shall write as 2S(r). Therefore, the total
scattering amplitude is proporitional to the Fourier transform of the spin
density. The neutron’s magnetic moment is related to its spin by

µ = −1.91
e�

m0c
s

and the scattering amplitude becomes

−1.91
4πe2

�
2

mm0c2
〈a′,m′

s |S(−κ) · s − [s · κ̂] [S(−κ) · κ̂]| a,ms〉 . (10.52)

The cross section is given by

d2σ

dΩ′dE′ = 4
(

1.91e2

mc2

)2 ∑
α,ms

∑
α′,m′

s

PαPms

k′

k
(10.53)

× |〈α′,m′
s |s · S(κ) − [s · κ̂] [S(κ) · κ̂]|α,ms〉|2 δ , (energy) .

Since the energy of the system does not depend on the neutron polarization,
we may sum over m′

s to obtain

d2σ

dΩ′dE′ = 4
(

1.91e2

mc2

)2∑
α,α′

Pα
k′

k

×
∑
µ,η

〈α |Sν(κ) − κ̂ν [S(κ) · κ̂]|α′〉〈α′ |Sµ(−κ) − κ̂µ [S(−κ) · κ̂]|α〉

×
∑
ms

Pms
〈ms |sνsµ|ms〉δ (energy) . (10.54)

Since ∑
ms

Pms
〈ms |sνsµ|ms〉 =

1
4
δνµ ,

this becomes

d2σ

dΩ′dE′ =
(

1.91e2

mc2

)∑
µ,ν

(δνµ − κ̂ν κ̂µ)

×
∑
α,α′

Pα
k′

k
〈α |Sν(κ)| a′〉〈α′ |Sµ(−κ)|α〉δ (energy) . (10.55)

Finally, we may incorporate the energy conservation into the matrix elements
themselves by writing the delta function as

δ (energy) =
1
2π

∫ ∞

−∞
dt exp [i (ω − Eα′ + Eα) t] , (10.56)
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where ω ≡ �
2(k2 − k′2)/2m0. Then

d2σ

dΩ′dE′ =
(

1.91e2

mc2

)2∑
µ,ν

(δνµ − κ̂νκµ)
k′

k

1
2π

∫
dt eiωt

×
∑
α,α′

Pα〈α |exp(iHt)Sν(κ) exp (−iHt)|α′〉〈α′ |Sµ(−κ)|α〉.

(10.57)

The sum over a′ may now be removed by closure. Furthermore, the sum over
α is just what we mean by the thermal average. Therefore we have

d2σ

dΩ′dE′ =
(

1.91e2

mc2

)2
k′

k

∑
µ,ν

(δνµ − κ̂ν κ̂µ)
1
2π

∫
dteiωt〈Sν(κ, t)Sµ(−κ)〉 .

(10.58)

It is convenient to separate the cross section into a Bragg part and a diffuse
part:(

d2σ

dΩ′dE′

)
Bragg

=
(

1.91e2

mc2

)2∑
µ,ν

(δνµ − κ̂ν κ̂µ) δ(ω)〈Sν(κ)〉〈Sµ(−κ)〉 .

(10.59)

(
d2σ

dΩ′dE′

)
diffuse

=
(

1.91e2

mc2

)2
k′

k

∑
µ,ν

(δνµ − κ̂ν κ̂µ)
1
2π

∫
dt eiωt

× [〈Sν(κ, t)Sµ(−κ)〉 − 〈Sν(κ)〉〈Sµ(−κ)〉] . (10.60)

The operators Sν(κ) entering the cross section are the Fourier transform of
the spin density of the entire sample:

S(κ) =
∑

i

exp(iκ · Ri)si . (10.61)

The unpaired electrons on a given site will form a total spin Sn according to
Hund’s rule. The Wigner–Eckart theorem tells us that a matrix element of
the form 〈α′|si|α〉 is proportional to 〈α′|Sn|α〉. Thus

〈a′ |S(κ)| a〉 =
∑
site n

e−iκ·nf(κ)〈α′ |Sn|α〉 . (10.62)

The coefficient of proportionality f(κ) is the Fourier transform of the nor-
malized spin density associated with the nth site and is referred to as the
magnetic form factor.
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In the paramagnetic state the magnetic Bragg contribution vanishes, leav-
ing only the diffuse scattering:(

d2σ

dΩ′dE′

)
diffuse

=
(

1.91e2

mc2

)2

|f(κ)|2 k

k′

∑
µ,ν

(δµν − κ̂µκ̂ν) (10.63)

∑
n,m

exp [iκ · (n − m)]
1
2π

∫
dt exp(iωt)〈Sn,ν(t)Sm,µ〉 .

In a paramagnet without exchange, we can integrate over the energy with the
result that the diffuse peak becomes an elastic peak with a cross section(

dσ

dΩ′

)
diffuse

= N

(
1.91e2

mc2

)2

|f(κ)|2 2
3
S(S + 1) . (10.64)

The angular dependence of this cross section enables us to determine the
magnetic form factor.

Let us now consider the cross sections in ordered magnetic systems.

10.3.1 Bragg Scattering

Let us assume that in the ordered state, the moments are aligned along the
z-axis,

〈Sm,ν〉 = 〈Sz〉δνz .

The cross section then becomes

dσ

dΩ′ =
(

1.91e2

mc2

)2

|f(κ)|2
(
1 − κ̂2

z

)
〈Sz〉2

∑
n,m

exp [iκ · (n − m)] . (10.65)

Or, from (10.17),

(
dσ

dΩ′

)
Bragg

=
(2π)3N

V0

(
1.91e2

mc2

)2

〈Sz〉2
∑
G

|f(G)|2 (1 − G2
z)δ(κ − G) ,

(10.66)

where G is a vector in the magnetic reciprocal lattice. Thus we see that
this cross section consists of peaks at positions determined by the magnetic
structure. Furthermore, the amplitudes of these peaks are proportional to the
magnetic form factor.

As an example of Bragg scattering let us consider the spin arrangements
in MnF2. Chemically, this crystal has the body-centered tetragonal lattice
shown in Fig. 2.2. The unit cell has six ions at the following locations:
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Mn:

(0, 0, 0)
(a

2
,
a

2
,
c

2

)
F:

(au, au, 0) (a − au, a − au, 0)(a

2
+ au,

a

2
− au,

c

2

) (a

2
− au,

a

2
+ au,

c

2

)
.

The reciprocal lattice vectors are given by

G = 2π

(
l

a
,
m

a
,
n

c

)
, (10.67)

where l,m, and n are integers, and u = 0.31. The unit cell structure factor
for nuclear scattering is

F(G) =
r∑

i=1

〈bi〉 exp(iG · ρi) , (10.68)

=

{
2〈b〉Mn + 4〈b〉F cos(2πul) cos(2πum) l + m + n = even
−4〈b〉F sin(2πul) sin(2πum) l + m + n = odd .

The experimental scattering intensity at a temperature above the magnetic
ordering temperature is shown in Fig. 10.4b. Notice that there are no peaks
corresponding to [100] and [001], in accordance with (10.69). Figure 10.4a
shows that the scattering intensity in the magnetically ordered state. We
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Fig. 10.4. Neutron diffraction pattern for MnF2 in (a) the antiferromagnetic state
(23 K) and (b) the paramagnetic state (300 K) [244]
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immediately notice the presence of additional peaks. These are magnetic
peaks. Since they can be indexed in the same way as the nuclear peaks, the
magnetic unit cell is the same as the chemical unit cell. By their mere exis-
tence these peaks tell us that the spin density is different from the electronic
charge density; this is, the spin arrangement is not ferromagnetic. Since there
are two magnetic ions in the unit cell, we try an antiferromagnetic arrange-
ment. This introduces a sign change into the magnetic form factor. If the up
spins are on the corners of the unit cell and the down spins are at the centers,
the magnetic structure factor is

FM (G) =
∑

i

(±)i exp(iG · ρi) = 1 − eiπ(l+m+n) =

{
0 l + m + n = even
2 l + m + n = odd .

(10.69)
We see that a peak is expected at [100], as observed in Fig. 10.4a. However,
we also expect one at [001]. The fact that this is not observed indicates that
the spins are oriented in this direction since the factor 1 − κ̂2

z then vanishes.
Izuyama et al. [245] have shown that in a metal the Bragg scattering cross

section is essentially the same as that give by (10.66), except that 〈Sz〉2 is
replaced by (N↑−N↓)2, where Nσ is the total number of electrons with spin σ.

Neutron scattering is also particularly useful in studying structures which
are not commensurate with the crystal lattice. The rare-earth metals listed in
Fig. 4.3, for example, exhibit a variety of incommensurate structures. These
were all determined by neutron scattering.

An interesting study of incommensurate structures is found in MnP. This
orthorhombic material is ferromagnetic below 291 K, with an additional mag-
netic phase transition at 50 K. The lower temperature phase is characterized
by a spiral spin structure with a wave vector along the α-axis. Application
of a magnetic field along the b-axis produces a fan structure with a period-
icity governed by q = 2π(δ/a)A. Figure 10.5 shows the phase diagram of
MnP [246].

The point at which the three phases meet was recognized as a possible
Lifshitz point. This particular multicritical point is characterized by three
features: (1) it is the meeting point of three phases: a paramagnetic phase,
an ordered phase whose order parameter has a fixed wave vector (zero in the
ferromagnetic case), and an ordered phase (the fan phase) whose wave vector
varies continuously with the thermodynamic variables; (2) the transitions from
the paramagnetic phase to both ordered phases must be second order; and
(3) the wave vector in the fan phase must approach zero continuously as the
Lifshitz point is approached.

Neutron scattering was essential in verifying the last condition. Figure 10.6
shows a triple-axis scan through the (200) position of MnP, indicating the
magnetic satellites due to the fan structure. The smooth decrease of δ to
zero as shown in the insert in Fig. 10.5 confirms that this is indeed a Lifshitz
point [247].
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From the amplitudes of the Bragg peaks we obtain the magnetic form
factor f(κ). The experimental values for f(κ) for metallic iron are shown in
Fig. 10.7. The arrows indicate pairs of reflections for which the scattering angle
is the same for the pair. Since the experimental errors are indicated by the
size of the circles, these pairs tell us that the form factor, and hence the spin
density, is not spherically symmetric. The curves are the theoretical results
of a Hartree–Fock calculation which includes exchange effects by Watson and
Freeman. The deviations from these spherical calculations are also apparent.
By Fourier transforming such data it is possible to construct a spin-density
“contour map” of the unit cell. This is illustrated for iron in Fig. 10.8.

Thus we find that from the Bragg scattering we can obtain information
about the static magnetic state of the crystal–the spin configuration and the
spin-density distribution as well as temperature and field dependence of the
magnetic moment. Let us now turn to the diffuse-scattering contribution.
We shall find that this contains information about the dynamic properties of
the system–spin waves and critical fluctuations.
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Fig. 10.8. Model of the magnetization distribution in the body-centered-cubic unit
cell of iron. The concentration of the very large positive 3d-shell magnetization
along the cube edges is overemphasized to show its relationship to the negative
magnetization ring [249]

10.3.2 Spin Dynamics

Let us consider the diffuse-scattering cross section (10.60). The sum over ν
and µ enables us to replace 〈Sν(κ, t)Sµ(−κ)〉 by the correlation function
〈{Sν(κ, t)Sµ(−κ)}〉. In deriving the fluctuation-dissipation theorem, (1.87),
we neglected long-range order. When this is included, the correlation function
in (1.87) is identical to the quantity in brackets in (10.60). Therefore,

(
d2σ

dΩ′dE′

)
diffuse

=
(

1.91e2

mc2

)2
k′

k

∑
µ,ν

(δνµ − κ̂ν κ̂µ)

×
(
1/πg2µ2

B

)
�V coth (β�ω/2) χ′′

νµ(κ, ω)s. (10.70)

The importance of the generalized susceptibility has been emphasized through-
out this text. Now we see that the diffuse scattering of neutrons provides us
with a direct measure of this quantity. This is why neutron scattering plays
such an important role in magnetism.

The susceptibility appearing in (10.70) is the susceptibility associated with
the total spin density of the system. In deriving explicit expressions from
this quantity we have assumed throughout that the spin density was either
localized or completely itinerant. This gave us what we might call a reduced
susceptibility. In order to apply these results, we must relate this reduced
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susceptibility to the total susceptibility. From (10.62) it readily follows that
for localized spins

χ(q, ω)total = |f(q)|2 χ(q, ω)reduced , (10.71)

where f(q) is the atomic magnetic form factor.
The corresponding relation for an itinerant system is essentially the same.

To see this, let us second quantize the magnetic-moment operator in terms of
Bloch states. The field operator (1.115) then becomes

ψ(r) =
1√
V

∑
k,σ

eik·ruk(r)ησckσ . (10.72)

The Bloch function may be expanded in terms of the Wannier functins intro-
duced in (2.78) as

eik·ruk(r) =
∑
α

eikRαφ(r − Rα) . (10.73)

In terms of these functions the field operator may be written

ψ(r) =
1√
V

∑
k,σ

∑
α

eik·Rαφ(r − Rα)ησckσ . (10.74)

The magnetization operator is

M(r) = −µBψ†(r)σψ(r) . (10.75)

Using (10.74) and taking the Fourier transform we obtain, for example,

M+(q) = −2µB

∑
k

F (q,k)c†k−q,↑ck↓ , (10.76)

where
F (q,k) ≡ N

V

∑
l

e−k·l
∫

dr e−iq·rφ∗(r)φ(r + l) . (10.77)

Here l is the vector connecting lattice sites, that is, l = Rα − Rα′ . Since
the Wannier function φ(r − Rα) is strongly peaked around the site Rα, the
dominant contribution to (10.72) arises from the l = 0 term. The function
F (q,k) is then independent of k. By comparing M+(q) in this case to the
free-electron expression, we again obtain the relation (10.71).

Spin-Wave Scattering. There are several applications of diffuse scattering
which are particularly interesting. One is the very low temperature region
where one has inelastic spin-wave scattering. As we saw in Chap. 8, the sus-
ceptibilities of both localized spin systems and metals contain poles which
correspond to spin-wave excitations. Therefore at low temperatures the dif-
ferential diffuse-scattering cross section is proportional to |f(q)|2δ(ω − ωq).
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Propagation in a 〈001〉 direction
Propagation in a 〈100〉 direction

100

50

0
0.5

Sp
in

 w
av

e 
en

er
gy

 K

1.0

Wave vector q/qmax

Fig. 10.9. Antiferromagnetic spin-wave dispersion in MnF2 at 4.2 K observed by
neutron inelastic scattering. The solid lines are obtained from spin-wave theory,
with the parameters J1 = 0.32 K (ferromagnetic), J2 = −1.76 K (antiferromagnetic),
J3 = 0K, and an anisotropy field HA = 1.06 K (at zero wave vector) [250]

By measuring the energy loss of those neutrons scattered at direction q with
respect to the incident beam we can thus obtain the spin-wave spectrum.
The spin-wave spectrum of the antiferromagnet MnF2 obtained in this way is
shown in Fig. 10.9. An example of a metallic spin-wave spectrum which also
reveals the presence of phonons is that of the rate earth terbium, shown in
Fig. 10.10. We saw in Sect. 7.1 that the exchange interaction between local-
ized moments in rare-earth metals arises through the conduction electrons and
therefore depends upon the band structure. Thus from a spin-wave spectrum
such as that shown in Fig. 10.10 we can obtain information about the band
structure.

Critical Scattering. Diffuse scattering is also interesting in the vicinity of the
magnetic phase transition. At the Curie point the Bragg peak transforms to a
sharply peaked diffuse intensity, and then when the temperature in increased
this diffuse intensity spreads out to approach the paramagnetic limit. The
temperature dependence of diffuse scattering at a fixed angle is dramatically
illustrated in Fig. 10.11. This is what is referred to as critical scattering.

The origin of this critical scattering in a localized spin system is contained
in our result (4.12). The quantity measured is dσ/dΩ′, obtained by integrating
(10.70) over ω. If we assume that the major frequency response occurs for
frequencies below kBT/�, then dσ/dΩ′ is proportional, by the Kramers-Kronig
relation (1.64), to the static susceptibility χ(q). In the vicinity of a Bragg
peak momentum transfer is very small. In the limit q → 0 the susceptibility
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(4.12), and hence the cross section, varies as (κ2 + q2)−1, where κ is given
by (4.49). Therefore the critical scattering should increase, in the mean field
approximation, as (T −Tc)−1. The correlation-range parameter κ2 is found to
diverge more like (T−Tc)−4/3, which is in agreement with a more sophisticated
theoretical treatment of the correlation function.

In principle, we can measure χ(q, ω) for every point in Fourier space and
for all temperatures. An example of this is the work of Lowde and coworkers
on nickel [253]. Such results enable us to study the complete evolution of the
magnetic state.

Diffuse Elastic Scattering. Finally, let us mention the use of diffuse scattering
to study binary alloys. Shull and Wilkinson [254] were among the first to
employ neutrons in the fashion. Consider an alloy containing N1 = cN atoms
of type 1 and N2 = (1 − c)N atoms of type 2. If we assume that all atoms of
type 1 have a moment µ1, independent of their environment, while all atoms
of type 2 have a moment µ2, then the elastic diffuse cross section becomes(

dσ

dΩ′

)
diffuse

=
N

4

(
1.91e2

mc2

)2

(1− κ2
z)c(1− c) [f1(κ)µ1 − f2(κ)µ2] , (10.78)

Marshall [255] extended this formula to include environmental effects. From
an analysis of the elastic diffuse scattering one can obtain the moments and
their form factors. In Ni–Cu alloys, for example, Medina and Cable [256] found
that the reduction in the net moment of the alloy is associated with a negative
polarization of the Ni sites, and that there is no polarization of the Cu atoms.

10.4 Example: Manganese Oxides

Neutron scattering has proven particularly useful in illuminating the mag-
netic properties of the manganese oxides, or “manganites”, AMnO3 where
A = La, Ca, Ba, Sr, Pb, Nd, or Pr. In LaMnO3 the manganese is trivalent,
Mn3+, with a d4 configuration. In a cubic crystal field the energy levels have
the form shown on the left in Fig. 10.12. An orthorhombic distortion splits
these states as shown on the right. If the resulting gain in electronic energy
exceeds the elastic energy system will spontaneously distort. This is known
as a coopertative Jahn-Teller distortion. LaMnO3 is indeed an orthorhombic
insulating antiferromagnet with a Néel temperature TN = 140 K. In CaMnO3

the manganese is tetravalent, Mn4+. CaMnO3 has the cubic perovskite struc-
ture and is also an antiferromagnetic insulator.

What makes the manganites so interesting is when A consists of a mixture
of trivalent and divalent ions, such as La3+ and Ca2+. This results in the
presence of both Mn3+ and Mn4+ with very interesting electrical properties.
Figure 10.13, for example shows the resistivity as a function of temperture
for La0.67Ca0.33MnO3. We see that there is a metal-insulator transition as a
function of temperature and a large magnetoresistance. These materials are
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Fig. 10.12. Splitting of the eg and tzg orbitals as the result of a Jahn–Teller
distortion. (After [257])

Fig. 10.13. Resistivity of La0.67Ca0.33MnO3 thin film as a function of tempera-
ture [258]

referred to as “colossal” magnetoresistance oxides. Magnetization measure-
ments indicate that La0.67Ca0.33MnO3 is ferromagnetic below Tc = 257 K.

What makes this system so interesting and, at the same time, so challeng-
ing, is the interplay among the charge, the magnetic, and the lattice (orbital)
degrees of freedom. J.W. Lynn and his colleagues have made extensive neu-
tron measurements using a triple-axis spectrometer on La0.7Ca0.3MnO3 and
related materials in an effort to understand their properties [259].

Figure 10.14 shows the diffuse magnetic scattering as a function of energy
at a momentum transfer of q = (0.09, 0, 0) (the nuclear incoherent scattering
has been subtracted out). This magnetic fluctuation spectrum shows spin-
wave peaks at ±2 meV as well as a quasielastic peak centered at E = 0. What
makes this peak unusual is that if one fits the intensity of this peak to a
Lorentzian shape, I ∼ (q2 + κ2)−1 the correlation length ξ(= 1

κ ) does not
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Fig. 10.14. Constant-Q scan taken at T = 240 K, well below Curie temperature of
Tc = 257 K, at a reduced wave vector of (0.09, 0, 0)

Fig. 10.15. Temperature dependence of the central peak in Fig. 10.14 and the
satellite peaks compared with the resistivity. The data has been scaled so the peak
heights match

diverge as one approaches Tc from above as it would for a conventional ferro-
magnet. Another interesting revelation from the neutron measurements is the
development of nuclear peaks above Tc at the non-Bragg locations (1

4 , 1
4 , 0).

The intensities of these satellite lines as well as the central peak in the mag-
netic spectrum have the same temperature dependence as the resistivity as
shown in Fig. 10.15.

These neutron results, combined with the electrical and magnetic measure-
ments [260] lead to the following picture. At low temperatures the material
is a ferromagnetic metal. The “extra” electron on a Mn3+ hops freely to a
neighboring Mn4+. This gives rise to the ferromagnetism through the double
exchange mechanism discussed in Sects. 2.2.10. At high temperatures there is
a Jahn–Teller distortion that traps the eg electron forming a “small polaron”.
This gives a hopping conductivity with an activation energy of the order of
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Fig. 10.16. Orbital ordering

Fig. 10.17. Field dependence of the intensity of the satellite peaks associated with
the polaron-polaron correlations

1000 KB [258]. At a Ca concentration of the order of 1
3 the polarons inter-

act with each other through the Coulomb interaction which leads to ordering
of both the Mn3+, i.e., charge ordering, as well as ordering of the direction
of the eg orbitals, i.e., orbital ordering. It is this ordering that gives rise to
the ( 1

4 , 1
4 , 0) peaks. An illustration of the sort of ordering that might occur

is shown in Fig. 10.16. Notice that this ordering produces charge stripes run-
ning along the (1, 1, 0) diagonal. The intensity of the (1

4 , 1
4 , 0) satellite peaks

decreases with magnetic field as shown in Fig. 10.17. The alignment of the
spins makes it easier for the eg electrons to hop onto neighboring Mn4+ sites
destroying the order. This also reduces the resistivity giving rise to the colossal
magnetoresistance.



10.5 Example: Quantum Phase Transitions 341

10.5 Example: Quantum Phase Transitions

Another example where neutron scattering plays a critical role is that of iden-
tifying the mechanism responsible for magnetic field-induced transitions in
certain magnetic insulators.

The magnetic phase transitions we described in Sect. 4.5 were character-
ized by a coherence length ξ which diverged as one approaches the transition
temperature from above. As these “islands” of long range order grow the spins
within them will remain ordered longer and longer. That is, their fluctuation
frequency, ωf will become smaller and smaller. This is referred to as “critical
slowing down”. If the transition occurs at a finite temperature, Tc, then there
will always come a point at which these characteristic fluctuations �ωf become
less than the thermal fluctuations, kBTc. In such case the critical behavior
is always governed by the thermal fluctuations and we refer to these transi-
tions as “classical”. At T = 0, on the other hand, it is possible to envision
a situation where one can induce a transition by varying some parameter of
the system, such as the strength of the exchange interaction. In such a transi-
tion the zero-point, or quantum, fluctuations dominate and we refer to these
as quantum phase transitions. It turns out that a vestige of such transitions
extends into the finite temperature regime where they can be studied.

A good example of a quantum phase transition is found in TlCuCl3. The
phase diagram for this material is shown in Fig. 10.18. At low magnetic fields
the material is magnetically not ordered. Some refer to this as a quantum spin
liquid. Above a critical field the material has a uniform magnetization parallel
to the field as well as antiferromagnetic ordering perpendicular to the field.
What is happening as one increases the field at T � 0?

The crystal structure of TlCuCl3 consists of coupled two-leg ladders with
rungs formed by pairs of Cu2+ ions. The S = 1

2 spins of these ions are cou-
pled by an antiferromagnetic exchange along the rungs leading to dimers with
singlet ground states and triplet excited states. The singlet wavefunction has

Fig. 10.18. The phase diagram of TlCuCl3 [261]
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the form (| ↑↓〉 − | ↓↑〉)/
√

2, i.e. S = 0. There are weaker exchange couplings
along the legs of the ladders and between ladders, but the quantum fluctua-
tions inherent in the singlet state of the dimer prevent long range magnetic
order even at T= 0. The additional exchange interactions lead to propagation
of the S = 1 triplet states among the dimers with dispersion as shown in
Fig. 10.19. When a magnetic field is applied the triplet states split as shown
by the neutron data in Fig. 10.20. The lowest component at Q = (0, 0, 2π)
“goes soft” at Hc = 5.6T. When one of these triplet “magnons” is excited
it creates magnetization in the transverse direction. This is different from
the magnons described in Chap. 8 which decrease the magnetization. Because
these magnons are bosons, and because the transverse magnetization above
Hc is macroscopic this has led some to suggest that the transition at Hc is a
Bose-Einstein condensation (BEC) [265,266].

One piece of evidence that the field-induced transition is associated with
Bose condensation comes from the shape of the phase boundary in Fig. 10.18.
Since, in our case, we cannot have more than one triplet on a site, we have a
Bose system with hard core interactions. It is this feature that limits the num-
ber of triplet bosons and makes it possible to introduce a chemical potential,

Fig. 10.19. Zero-field triplet dispersion relations for TlCuCl3 at T = 1.5 K [262]

3

20

−0

00 20 40 60 80 100
2

1

0
0 2 4 6

Ec+

Ec

EcEy

Egn

Eg+

H[T]

E
g[
m

eV
]

8 10 12

Fig. 10.20. Field dependence of the energy gap of the three magnon modes in
TlCuCl3. Points are data from the neutron experiment of [267] and [269], and solid
lines the results of thoery [264]. Inset : field dependence at high fields



10.5 Example: Quantum Phase Transitions 343

µ = gµB(H − Hc). Ordinary magnons, like photons and phonons, have zero
chemical potential [268]. It can be shown that the value of the chemical poten-
tial at which Bose condensation occurs for such a system varies with temper-
ature as T

3
2 . This implies that Hc(T )−H(0) ∼ T

3
2 . In Fig. 10.18 we see that

the boundary varies as T2.2. A later analysis of the experimental data down
to lower temperatures shows that the critical exponent is consistent with the
predicted value of 3/2 [263]. In our discussion of classical phase transitions
we mentioned that different systems may be characterized by the same crit-
ical exponents, defining a “universality class”. Thus, proponents of the BEC
model would say that TlCuCl3 belongs to the Bose-Einstein condensation
universality class.

Neutron scattering provides additional evidence for the existence of Bose
condensation. As mentioned above, the theory of the field-induced conden-
sate [264] predicts a transverse staggered magnetization. If the low field phase
has rotational symmetry, i.e., 0(z), then the transition involves breaking this
symmetry. As we described in Sect. 4.5, one of the consequences of a bro-
ken symmetry is the appearance of modes associated with variations in the
order parameter, Goldstone modes. In the case of TlCuCl3 this Goldstone
mode is predicted to be a phase mode with zero energy gap and a linear
wavevector dependence, i.e., a rotation of the ordered moment in the plane
perpendicular to the field. Figure 10.21 shows the inelastic neutron scattering
results around the Bragg point (0, 4, 0). Rüegg et al. [269] suggest that ω → 0
as k → 0, consistent with a Goldstone mode. However, the data does not
extend below 0.2 meV. Glazkov et al. [270] have carried out magnetic reso-
nance measurements in the range 9–80 GHz and found a gap of 0.08 meV for
this field geometry. This indicates that the system has an anisotropy of the
order of 1% of the exchange and is not completely rotationally symmetric.
This would argue against a BEC. There are other dimeric copper systems

Fig. 10.21. Energy dispersion of low-lying magnetic excitations in TlCuCl3 [269]
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that exhibit signature of a magnon BEC. In particular, BaCuSiO6 [273] and
Cs2CuCl4 [274] are other good candidates.

This quantum phase transition can also be induced by pressure. In this
case the full 0(3) symmetry is broken with the result that one expects two
degenerate Goldstone modes and a characteristic amplitude mode related to
the condensate [271]. Evidence for such modes have been reported by Rüegg
et al. [272] in inelastic neutron scattering performed on a triple-axis spectro-
meter at the Swiss spallation neutron source.
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197. H. Fröhlich, F.R.N. Nabarro, Proc. R. Soc. London A175, 382 (1940)
198. M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954)
199. C. Zener, Phys. Rev. 81, 440 (1951)
200. T. Kasuya, Prog. Theor. Phys. 16, 45, 58 (1956)
201. K. Yosida, Phys. Rev. 106, 893 (1957)
202. J.B. Boyce, C.P. Slichter, Phys. Rev. B B3, 379 (1976)
203. P. Bruno, Phys. Rev. 52, 411 (1995)
204. J. Unquris, R. Celotta, D. Pierce, J. Appl. Phys. 75, 6437 (1994); Phys. Rev.

Lett 67, 140 (1991)



352 References

205. M. Stiles, Phys. Rev. B 48, 7238 (1993)
206. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne,

P. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)
207. E.Y. Tsymbal, D.G. Pettifor, Solid State Physics 56, 113 (2001)
208. G. Mahan: “Many-Particle Physics”, 3rd Edn. (Kluwer Academic/Plenum,

New York 2000) pp. 163–165
209. W.H. Butler, X.-G. Zhang, D.M.C. Nicholson, J.M. MacLaren, Phys. Rev. B

52, 13399 (1995)
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Landau–Lifshitz–Gilbert equation, 308
Langevin susceptibility, 90
Lifshitz point, 330
ligand field theory, 44
light scattering, 264
lithium, 114
LiV2O4, 176
local density approximation, 184
London penetration length, 98
Lorentz field, 245
Lorentzian, 204
Lorentzian lineshape, 200
Luttinger liquid, 176

magnetic cooling, 131
magnetic energy, 5

magnetic force microscope, 270
magnetic form factor, 327
magnetic moment, 1, 2, 4, 9
magnetic point group, 136
magnetic susceptibility, 1
magnetic viscosity, 165
magnetization, 1, 7
magnetostatic modes, 249
magnetostriction, 163
magnetostrictive effect, 136
magnons, 239
mean-field approximation, 134
metamagnetism, 148
method of moments, 202
MgO, 306
microcanonical ensemble, 11
micromagnetics, 269
Miss van Leeuwen’s theorem, 9, 94
Mn, 112
MnF2, 58, 262, 269, 329, 335
MnO, 138
MnP, 331
Mo, 124
molecular magnets, 62
Mossbauer effect, 80

Néel temperature, 137
Nd2CuO4, 176
Ni80Fe20, 304
nickel(Ni), 111, 112, 146, 170, 185, 186,

278, 304
NiO, 138, 300
noble metals, 123
noise power, 217
Nyquist theorem, 20

Onsager reaction field, 152
Onsager relation, 20
operator equivalent, 37, 45
orange peel coupling, 286
order parameter, 153
Os, 124

palladium, 109, 180
parallel pumping, 259
paramagnons, 221
partition function, 8
Pauli susceptibility, 108, 310
Pd, 124



358 Index

Peierls susceplitiy, 97
pendulum galvanometer, 112
permalloy, 271, 278
perovskites, 61
phonons, 320
plasma frequency, 98
platinum(Pt), 115, 124
polaron, 339
precessional switching, 202

quadrupole term, 37
quantized Hall conductance, 102
quantum phase transitions, 341
quasiparticle, 171
quenching, 49

Raman scattering, 266
random-phase approximation,

134, 239
rare-earth, 139
Rb, 124
Re, 124
relaxation function, 202, 209
relaxation-function method, 206
response function, 18
RKKY interaction, 286, 314

s-d exchange interaction, 67, 307
scaling, 154
scattering amplitude, 116
scattering length, 317
second quantization, 21
second-order phase transitions, 153
SEMPA, 292
Sharrock’s law, 164
short-range order, 149
side jump, 311
silicon, 70, 104
skew scattering, 311
sodium, 114, 231
solitons, 250
spallation, 315
spherical harmonics, 37
spin accumulation, 307, 312
spin diffusion, 210
spin echoes, 211
spin filtering effect, 300
spin fluctuation, 179, 222

spin glasses, 143

spin Hall effect, 310

spin Hamiltonian, 67

spin polarization, 304

spin transfer, 306

spin valve, 295

spin-density functional, 183

spin-density waves, 180

spin-dependent tunneling, 303

spin-lattice relaxation, 214

spin-orbit, 34

spin-wave, 239

spin-wave sidebands, 263

spinor, 38

Stokes line, 266

Stoner criterion, 180

Stoner excitations, 275

Stoner model, 177

Stoner-Wohlfarth model, 159

strange attractor, 262

structure factor, 319

Suhl instabilities, 258

superconductor, 98, 108

superexchange, 58

superparamagnetism, 164

synthetic antiferromagnet, 294

Ta, 124

Tb-Fe, 142

thermal conductivity, 279

ThH2, 318

Ti, 111

Time-of-flight diffraction, 320

TlCuCl3, 341, 343

topological defects, 158

transition metals, 109, 110

transition-metal ions, 90

triple-axis spectrometer, 323

tunneling, 300

tunneling Hamiltonian, 300

UBe13, 176

universality, 154

UPt3, 176

Van Vleck susceptibility, 71, 89

vanadium, 183
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vibrating-sample magnetometer, 113
vortex, 158

Walker modes, 250
Wannier functions, 56
Wigner–Eckhart theorem, 39, 86

yttrium iron garnet(YIG), 253,
257, 284

Zr, 111

ZrZn2, 277
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