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Foreword

Man will occasionally stumble over the truth, but most of the time he will
pick himself up and continue on.

— Winston Churchill

Einstein, Podolsky, and Rosen suggested the possibility of nonlocality of
entangled electrons in 1935; Bell proved a critical theorem in 1964 and
Aspect et al provided experimental evidence in 1982. Feynman proved non-
locality of free electrons in 1941 by proving that an electron goes from
point A to point B by all possible paths. In this book we provide circum-
stantial evidence for nonlocality of individual eigenstate electrons.

One of Webster’s definitions of pragmatism is “a practical treatment of
things.” In this sense one group of the founders of quantum theory, includ-
ing Bohr, Heisenberg, and Pauli, were pragmatists. To explain atomic-level
events, as they became known, they discarded those classical concepts that
seemed to contradict, and introduced new postulates as required. On such a
base they constructed a consistent explanation of observations on an atomic
level of dimensions. Now, nearly a century later, it is indisputable that
the mathematics of quantum theory coupled with this historic, pragmatic
interpretation adequately account for most observed atomic-scaled physi-
cal phenomena. It is also indisputable that, in contrast with other physical
disciplines, their interpretation requires special, rather quixotic, quantum
theory axioms. For example, under certain circumstances, results precede
their cause and there is an intrinsic uncertainty of physical events: The sta-
tus of observable physical phenomena at any instant does not completely
specify its status an instant later. Such inherent uncertainty belies all other
natural philosophy. The axioms needed also require rejection of selected
portions of classical electromagnetism within atoms and retention of the
rest, and they supply no information about the field structure accompany-
ing photon exchanges by atoms. With this pragmatic explanation radiating
atoms are far less understood, for example, than antennas. Nonetheless

vii
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it is accepted because, prior to this work, only this viewpoint adequately
explained quantum mechanics as a consistent and logical discipline.

One of Webster’s definitions of idealism is “the practice of forming ideals
or living under their influence.” If we interpret ideal to mean scientific logic
separate from the pragmatic view of quantum theory, another group of
founders, including Einstein, Schrödinger, and de Broglie, were idealists.
They believed that quantum theory should be explained by the same basic
scientific logic that enables the classical sciences. With due respect to the
work of pragmatists, at least in principle, it is easier to explain new and
unexpected phenomena by introducing new postulates than it is to derive
complete idealistic results.

In our view, the early twentieth century knowledge of the classical sci-
ences was insufficient for an understanding of the connection between the
classical and quantum sciences. Critical physical effects that were discov-
ered only after the interpretation of quantum theory was complete include
(i) the standing energy that accompanies and encompasses active, elec-
trically small volumes, (ii) the power-frequency relationships in nonlinear
systems, and (iii) the possible directivity of superimposed modal fields.
Neither was the model of extended eigenstate electrons seriously addressed
until (iv) nonlocality was recognized in the late 20th century. How could
it be that such significant and basic physical phenomena would not impor-
tantly affect the dynamic interaction between interacting charged bodies?

The present technical knowledge of electromagnetic theory and electrons
include these four items. We ask if this additional knowledge affects the his-
torical interpretation of quantum theory, and, if so, how? We find combining
items (i) and (iv) yields Schrödinger’s equation as an energy conservation
law. However, since general laws are derivable from quite disparate physical
models the derivation is a necessary but insufficient condition for any pro-
posed model. Using (i), (iii), and (iv) the full set of electromagnetic fields
within a source-free region is derivable. Quite differently from energy conser-
vation, electromagnetic fields are a unique result of sources within a region
and on its boundaries, and vice versa. Consider concentric spheres: the inner
with a small radius that just circumscribes a radiating atom and the outer
of infinite radius. Imposing the measured kinematic properties of atomic
radiation as a boundary condition gives the fields on the inner sphere.
Viewing the outer shell as an ideal absorber from which no fields return,
the result is an expression for the full set of electromagnetic photon fields
at a finite radius. Postulate (iv) is that electrons are distributed entities.
An electron somehow retains its individual identity while distributing itself,
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Foreword ix

with no time delay, over the full physical extent of a trapping eigenstate.
Results include that an electron traveling from point A to point B goes by
all possible routes and, when combined with electrodynamic forces, provides
atomic stability.

With these postulates the interpretation of quantum theory developed
here preserves the full applicability of electromagnetic field theory within
atoms and, in turn, permits the construction of a new understanding
of quantum theory. Both the magnitude and the consequences of phase
quadrature, radiation reaction forces have been ignored. Yet these forces,
as we show, and (iv) are responsible both for the inherent stability of iso-
lated atoms and for a nonlinear, regenerative drive of transitions between
eigenstates, that is, quantum jumps. The nonlinearity forces the Ritz
power-frequency relationship between eigenstates and (ii) bans radiation of
other frequencies, including transients. The radiation reaction forces require
energy reception to occur at only a single frequency.

Once absorbed, the electron spreads over all available states in what
might be called a wave function expansion. Since only one frequency has an
available radiation path, if the same energy is later emitted the expanded
wave function must collapse to the emitting-absorbing pair of eigenstates
to which the frequency applies. With this view, wave function expansion
after absorption and collapse before emission obey the classical rules of
statistical mechanics. The radiation field, not the electron, requires the
seeming difference between quantum and classical effects, i.e. wave function
collapse upon measurement.

Since we reproduce the quantum theory equations, is our argument sci-
ence or philosophy? For some, a result becomes a science, only if a critical
experiment is found and only if it survives the test. But by that argument
astronomy is and remains a philosophy. With astronomy, however, if the
philosophy consistently matches enough observations with enough variety
and contradicts none of them it becomes an accepted science. In our view
quantum theory is, in many ways, also an observational science. A philoso-
phy becomes a science only after it consistently matches many observations
made under a large enough variety of circumstances. Our view survives
this test.

Our interpretation differs dramatically from the historical one; our pos-
tulates are fewer in number and consistent with classical physics. With our
postulates events precede their causes and, if all knowledge were available,
would be predictable. By our interpretation of quantum theory, however,
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there is no obvious way all knowledge could become available since our
ability to characterize eigenstate electrons is simply too limited.

Webster’s dictionary defines the Law of Parsimony as an “economy
of assumption in reasoning,” which is also the connotation of “Ockham’s
razor.” Since the number of postulates necessary with this interpretation
of quantum theory are both fewer in number and more consistent with the
classical sciences by the Law of Parsimony the view presented in this book
should be accepted.

Dale M. Grimes
Craig A. Grimes

University Park, PA, USA
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Prologue

A radiating antenna sits in a standing energy field of its own making. Even
at the shortest wavelengths for which antennas have been made, if the
length-to-wavelength ratio is too small the amount of standing field energy
is so large it essentially shuts off energy exchange. Yet an atom in the act
of exchanging such energy may be scaled as an electrically short antenna,
and standing energy is ignored by conventional quantum theory seemingly
without consequence. Why, in one case, is standing energy dominant and,
in the other, of no consequence? The framers of the historic interpretation
of quantum theory could not have accounted for standing energy since an
analysis of it was first formulated some twenty years after the interpretation
was accomplished. Similar statements apply to the power-frequency rela-
tionships of nonlinear systems and to the possible unidirectional radiation of
superimposed electromagnetic modes. Similarly, a significant and essential
feature of eigenstate electrons is a time average charge distributed through-
out the state. Is the calculated charge density distribution stationary or is
it the time average value of a moving “point” charge? In this book we
form a simplified and deterministic interpretation of quantum theory that
accounts for standing energy in the radiation field, field directivity, and the
power-frequency relationships using an extended electron model. It is not
necessary for us to stipulate details of an extended electron. A model that
expands throughout the volume of an eigenstate, one that occupies enough
of an eigenstate to be stable and traverses the rest, or a nonlocal elec-
tron model are all satisfactory. By nonlocal we imply that if one entangled,
nonlocal electron adapts instantaneously to changes in the other, similar
intra-electron events may also occur.

We find that all the above play integral and essential roles in atomic
stability and energy exchanges. Together they form a complete electromag-
netic field solution of quantum mechanical exchanges of electromagnetic
energy without the separate axioms of the historic interpretation.

xv
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xvi The Electromagnetic Origin of Quantum Theory and Light

Stable atoms occupy space measured on the picometer scale of dimen-
sions and exchange energy during periods measured on the picosecond scale
of time. Since this dimensional combination precludes direct observation, it
is necessary to infer active atomic events from observations over much larger
distances and times. When detailed atomic behavior first became available
theoreticians attempting to understand the results separated themselves
into two seemingly disparate groups, groups we refer to as scientific prag-
matists and scientific idealists. The pragmatists proposed new axioms as
necessary to explain the new information. The idealists sought to integrate
the new information into the existing laws of theoretical physics. Since the
pragmatists could successfully explain most atomic level phenomena and
idealists could not, most physicists came to accept the views of the prag-
matists, in spite of conceptual difficulties. Even with rejection of the other
physics, however, the pragmatists could not explain a thought experiment
proposed by Einstein, Podolsky and Rosen. That experiment led to the
following conclusion: The behavior of two entangled particles shows that
either quantum theory is incomplete or events occurring at one particle
affects the other with no time delay and independently of the physical sep-
aration between them.

Acceptance of the pragmatic viewpoint also required dramatic changes
both to physical and philosophical thought. For example, they concluded
that equations of classical electromagnetism partially, but not fully, apply
on an atomic scale of dimensions. Yet, the theory of electromagnetism shows
no inherent distance or time-scale limitations. A primary purpose of this
book is to derive an expression for the full set of fields present during photon
emission and absorption.

Although this book is primarily a monograph, early versions were used
as a text for topical courses in electromagnetic theory in the Electrical Engi-
neering Departments of the University of Michigan and the Pennsylvania
State University. A later version served as a text for a topical course in
theoretical physics in the Department of Physics and Astronomy of the
University of Kentucky; it was after the latter course that we began sys-
tematic work on this book. Throughout the book the theorems used were
carefully reexamined and the emphasis made that best met the needs of the
book. For the same purpose we extract freely and without prejudice from
accepted works of electrical engineering, on the one hand, and physics, on
the other; too often there is imperfect communication between the two
groups. The result is an innovative way of viewing scattering phenomena,
radiation exchanges, and energy transfer by electromagnetic fields.
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The equations of classical electromagnetism are derived and developed
in Chapter 1. The overwhelming characteristic of classical electromag-
netism, in stark contrast with the pragmatic view of quantum theory, is the
simplicity of the underlying postulates from which it follows. In Chapter 2
the equations developed in Chapter 1 are applied to a series of increas-
ingly complex boundary value problems. The choice of solved problems is
based on two criteria: First, the solution form is a general one that, when
the modal coefficients are properly chosen, applies to any electromagnetic
problem, and hence to atomic radiation. Second, each solution is electro-
magnetically complete, even though it is in the form of an infinite series
of constant coefficients times products of radial and harmonic functions.
Completeness is required to assure that no solutions have been overlooked.
To illustrate the importance of completeness, note, for example, that his-
torically the character of receiving current modes on antennas was not
correctly estimated. The inherently and magnificently structured symme-
try of the current modes was not and could not have been appreciated until
the complete biconical receiving antenna solution became available in 1982.
That is to say, the technological culture of the mid to late twentieth cen-
tury, with ubiquitous antennas, did not understand the modal structure of
the simplest of receiving antennas until a complete mathematical solution
became available in 1982. Similarly, we cannot be sure we fully understand
a radiating atom without a complete solution.

Chapter 3 deals with local standing energy fields associated with electro-
magnetic energy exchanges. To analyze them, it is necessary to re-examine
complex power and energy in radiation fields. The use of complex power is
nearly universal in the analysis of electric fields. Although complex circuit
analysis provides the correct power at any terminal pair, expressions for
complex power in a radiation field suppress a radius-dependent phase fac-
tor. No equation that depends upon the phase of field power versus radius
can be solved using only complex power. There are many ways to avoid
the difficulty; our solution is to obtain a time domain description of the
fields then use it to calculate modal field energies. From them, we calcu-
late the ratio of source-associated field energy to the average energy per
radian radiated permanently away from the antenna. We confirm earlier
work showing that for most antennas the ratio increases so rapidly with
decreasing electrical size that antennas are subject to severe operational
limitations. Nearly all-modal combinations are subject to such limitations.
We also derive the multimodal combination to which such limitations do
not apply.
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Chapter 4 contains a brief review of quantum theory that is conventional
in most ways, but unconventional in the treatment of atomic stability. We
show that the standing energy of a dipole field generated by an oscillat-
ing point electron creates an expansive radiation reaction pressure on the
electron. That pressure is the same order of magnitude as the trapping
Coulomb pressure and is three orders of magnitude larger than the pres-
sure of the commonly accepted radiation reaction force. We suggest that
it forces an eigenstate electron to extend into charge and current densi-
ties distributed throughout the eigenstate, analogous to an oil drop spreads
across a pond of water. A nonlocal electron is a satisfactory operational
model for our purposes. The extended electron is not small compared with
atomic dimensions and, under the influence of radiation reaction forces,
forms a non-radiating array of charge and current densities. Such arrays
are inherently stable and interaction between the intrinsic and orbital mag-
netic moments produces a continuous torque and assures continuous motion
of the parts. This model and energy conservation forms an adequate basis
upon which to build Schrödinger’s time-independent wave equation; his
time-dependent equation follows if the system remains in near-equilibrium.
In this way, Schrödinger’s equations are the equivalent of ensemble energy
expressions in classical thermodynamics. In both places, general results are
obtained without detailed knowledge of the ensemble.

Schrödinger’s time-dependent wave equation treats state transitions by
describing the initial and final states. Although answers are unquestion-
ably correct, the approach gives no information about the electromagnetic
fields present during emission and absorption processes, yet electromagnetic
theory shows that near fields must exist. It is abundantly clear with this
analysis that the existing interpretation of quantum theory is not a suffi-
cient foundation upon which to build the full set of photon fields; with it
there is and can be no counterpart to the full equation sets of Chapter 2.

Chapter 4 contains the conclusion that molecules, described as harmonic
oscillators, possess a minimum level of kinetic energy even at absolute zero
temperature. Chapter 5 begins with equilibrium between electromagnetic
radiation and matter, i.e. the Planck radiation field, and shows there is a
minimum, zero point, intensity of radiation that permeates all space. The
theory shows that a requirement of equilibrium is reciprocity between the
emission and absorption processes; that is, a simple time reversal switches
between energy absorption and emission. It was shown in Chapter 2 that
with linear systems the exchanged energy-to-momentum ratio is greater or
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equal to c for emission and less than or equal to c for absorption. Equilib-
rium conditions, therefore, can only be met with equalities. This require-
ment, in turn, requires absorption without a scattered field and emission
in one direction only, i.e. the emitted field has no angular spread for at
least the far field energy travels in a single direction. Next we show that
the Manley Rowe equations, which are meaningful only with nonlinear sys-
tems, correctly describe the Ritz power-frequency relationships of photons;
yet the Schrödinger and Dirac equations are linear. We then impose full
directivity as a boundary condition on a general, multimodal field expan-
sion as developed in Chapter 1. The resulting modal fields are members of
the set of resonant modes discussed in Chapter 3: The set with spherical
Bessel functions describes a plane wave and with spherical Hankel func-
tions is resonant. The standing energy limitations otherwise applicable to
electrically small radiators do not apply. General properties of such modes
are determined and discussed.

In Chapter 6 these results are combined and used to determine all radi-
ated fields, near and far, during the inherently nonlinear eigenstate tran-
sitions, i.e. during photon exchanges. First we use a multipolar expansion
about the field source to detail as much as possible the electromagnetic
characteristics of photon fields, including internal pressure and shear on
sources or sinks. We next use the method of self-consistent fields to express
the photon fields in an expansion from infinite radius inward. This expan-
sion permits the evaluation of the radiation reaction force of a photon field
on its generating electron as a function of radius. We find that the radiation
reaction pressure on the surface of a spherical, radiating atom is at least
many thousands of times larger than the Coulomb attractive pressure. The
reaction pressure is properly directed and phased to drive the extended elec-
tron nonlinearly and regeneratively to a rapid buildup of exchanged power.
Therefore radiation in accordance with the Manley Rowe power frequency
relations occurs and continues until all available energy is exchanged. The
result is a physically simple, electromagnetically complete, deterministic
interpretation of quantum theory.

The material is reviewed and summarized in Chapter 7, the Epilogue.
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CHAPTER 1

Classical Electrodynamics

There are two quite disparate approaches to electromagnetic field theory.
One is a deductive approach that begins with a single relativistic source
potential and deduces from it the full slate of classical equations of elec-
tromagnetism. The other is an inductive approach that begins with the
experimentally determined force laws and induces from them, incorporat-
ing new facts as needed, until the Maxwell equations are obtained. Although
the theory was developed using the inductive approach, it is the deductive
method that shows the majestic simplicity of electromagnetism.

The inductive approach is commonly used in textbooks at all levels.
Coulomb’s law is the usual starting point, with other effects included as
needed until the full slate of measurable quantities are obtained. From this
viewpoint, the potentials are but mathematical artifices that simplify force
field calculations. They simplify the calculation necessary to solve for the
force fields but are without intrinsic significance. The deductive approach
begins with a limited axiomatic base and develops a potential theory from
which, in turn, follow the force fields. In 1959 Aharonov and Bohm, using
the premise that potential has a special significance, predicted an effect that
was confirmed in 1960, the Aharonov–Bohm effect: Magnetic field quanti-
zation is affected by a static magnetic potential even in a region void of
force fields. We conclude that the magnetic potential has a physical signif-
icance in its own right and has meaning in a way that extends beyond the
calculation of force fields. There is physical significance contained in the
deductive approach that is not present in the inductive one.

1.1. Introductory Comments

To begin the deductive approach, consider that the universe is totally empty
of condensed matter but does contain light. What is the speed of the light?
Since there is no reference frame by which to measure it, the question is
moot. Therefore, introduce an asteroid large enough to support an observer

1



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap01

2 The Electromagnetic Origin of Quantum Theory and Light

and his equipment, which determines the speed of light passing him to be
vA. Since there is nothing else in the universe, a question about the speed
of the asteroid is moot. Next, introduce a second asteroid, identical to the
first but separated far enough to be independent by any means of which
we are currently aware. An observer on the second asteroid determines the
speed of light passing him to be vB. Will the measured values be the same?
By the cosmological principle, an experiment run in one local four-space
yields the same results as an identical experiment run in a different local
four-space. Therefore we expect that vA = vB = c.

Next, bring the asteroids into the same local region. Either the speeds
depend upon the magnitude of the local masses or they do not, and if
they do not, there is no change in speed. However, in the local region, a
relative speed between identical asteroids A and B may be determined.
Since there is no way one asteroid can be preferred over the other in an
otherwise empty universe, the two observers continue to measure the same
speed. This condition requires that the speed of light be independent of
the relative speed of the system on which it is measured. Next, bring in
other material, bit by bit, until the universe is in its present form, and the
conclusion remains the same. The speed of light is independent of the speed
of the object on which it is measured, independently of the speed of other
objects.

1.2. Space and Time Dependence upon Speed

Let a pulse of light be emitted from an origin in reference frame F and
observed in reference frame F′. If the speed of light is the same in all
reference frames, if the two frames are in relative motion, and if the origins
coincide at the time the light is emitted, the light positions as measured in
the two frames are:

x2 + y2 + z2 − c2t2 = x′2 + y′2 + z′2 − c′2t′2 (1.2.1)

If the relative speed is such that F′ is moving at speed ν in the z-direction
with respect to F, then at low speeds:

x′ = x; y′ = y; z′ = (z − vt); t′ = t (1.2.2)

Since Eq. (1.2.1) is not satisfied by Eq. (1.2.2), it follows that Eq. (1.2.2)
does not extend to speeds that are a significantly large fraction of c. To
obtain a transition that is linear in the independent variables, and that goes
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to Eq. (1.2.2) in the low speed limit, consider the linear transformation of
the form:

x′ = x; y′ = y; z′ = γ(z − vt); t′ = At + Bz (1.2.3)

Parameters γ, A and B are undetermined but independent of both position
and time. Since Eq. (1.2.3) approaches Eq. (1.2.2) in the limit of velocity ν

much less than c, in that limit:

γ = 1; A = 1; B = 0 (1.2.4)

Since the coordinates are independent variables, combining Eqs. (1.2.1) and
(1.2.3) and solving shows that:

z2(γ2 − 1 − c2B2) = 0; t2(c2 + γ2v2 − c2A2) = 0;

zt(vγ2 + ABc2) = 0
(1.2.5)

Solving Eq. (1.2.5) yields:

A = γ = (1 − v2/c2)−1/2; B = −(γv/c2) (1.2.6)

Combining yields the Lorentz transformation equations:

x′ = x; y′ = y; z′ = γ(z − vt); t′ = γ(t − (vz/c2)) (1.2.7)

This transformation preserves the speed of light in inertial frames.
Equation (1.2.7) forms a sufficient basis upon which to determine results

if events in one frame of reference are observed in another one. Let the
observer be in the unprimed frame. A stick of length L0 as determined in
the moving frame, in which it is stationary, lies along the z-axis. It moves
at speed v past the observer in the z-direction. A flash of light illuminates
the region, during which time the observer determines the positions of the
ends of the moving stick, z1 and z2. It follows from Eq. (1.2.7) that the
measured positions are:

z′
1 = γ(z1 − vt0) and z′

2 = γ(z2 − vt0) (1.2.8)

The length as measured in the stationary frame is:

L = (z2 − z1) = (z′
2 − z′

1)/γ = L0/γ (1.2.9)

It follows that:

L = L0(1 − v2/c2)1/2 ≤ L0 (1.2.10)

The observed length of the stick is less than that measured in the rest
frame; this fractional contraction is the Lorentz contraction.
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Next, pulses of light are issued at times t′2 and t′1, again in the moving
frame. When does a stationary observer see them, and what is the time
interval between them? Using Eq. (1.2.7) gives:

t′2 = γ(t2 − vz2/c2) and t′1 = γ(t1 − vz1/c2) (1.2.11)

From Eq. (1.2.11) the time difference in the frame at which the two sources
are stationary is:

T0 = t′2 − t′1 = γ[(t2 − t1) − v(z2 − z1)/c2] = γT(1 − v2/c2) (1.2.12)

T is the time measured in the stationary frame. Solving for T gives:

T = γT0 =
T0

(1 − v2/c2)1/2 ≥ T0 (1.2.13)

The observer measures the time duration between pulses to be more
than that measured in the rest frame; this time expansion is time dilatation.

1.3. Four-Dimensional Space Time

The equality of the speed of light in all inertial frames is the basis for a
system of 4-vectors. Let x1, x2, x3 represent the three spatial axes x, y, z

of three dimensions and x4 = ict where i =
√−1. The four space-time

dimensions are:

(x1, x2, x3, x4) (1.3.1)

Since three of the axes determine lengths and one determines time, a
three-dimensional rotation represents a change in spatial orientation and a
four-dimensional rotation includes a change in time. Such four-dimensional
rotations are Lorentz transformations. These transformations are usually
simple and contain a high degree of symmetry. Such transformations are
covariant with respect to changes in coordinate systems; that is, an equation
that represents reality in one reference frame has the same form in all other
inertial frames.

The imaginary property of the fourth dimension represents an essential
difference from spatial ones: the squares of the space coefficients and time
coefficients have different signs. For notational purposes we use Roman or
Greek subscripts to indicate, respectively, three- or four-dimensional ten-
sors. For example, the rotation matrix element in four dimensions is cµν
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where, for velocities v directed along the x1-axis:

cµν =




γ 0 0 i γv/c

0 1 0 0
0 0 1 0

−i γv/c 0 0 γ


 (1.3.2)

Four-dimensional and three-dimensional direction cosines follow similar
laws:

cµν = cνµ; cµνcµρ = δνρ; det |cµν | = 1 (1.3.3)

The Lorentz direction cosines cµν are:

x′
µ = cµνxν (1.3.4)

The proper time interval, ∆τ , between two events with space-time coordi-
nates spaced ∆xα apart is defined to be:

(∆τ)2 = − 1
c2 ∆xα∆xα (1.3.5)

Using three-dimensional notation, the proper time difference is

(∆τ)2 = (∆t)2 − (∆r)2

c2 (1.3.6)

Since (∆τ)2 can be zero, positive, or negative, ∆τ may be zero, real, or
imaginary. Since the speed of light is the same in all reference frames, by
Eq. (1.2.1) the proper time is also the same in all reference frames. If it is
real, it is “time-like” and if imaginary, it is “space-like”. If time-like, the
proper time is the time separation of the two events in the same frame. If
space-like, there is a frame in which c times the proper time is the spatial
separation of the two events that are simultaneous in that frame.

With τ as proper time, consider the 4-vector defined by the expression:

Uµ =
dxµ

dτ
(1.3.7)

Since both xµ and τ are independent of details of the particular inertial
frame in which it is measured, so is Uµ; Uµ is therefore a 4-vector with the
four components:

U1 =
dx

dτ
=

dx

dt

dt

dτ
= γvx; U2 =

dy

dτ
=

dy

dt

dt

dτ
= γvy

U3 =
dz

dτ
=

dz

dt

dt

dτ
= γvz; U4 =

d(ict)
dτ

= γic

(1.3.8)

The three-dimensional velocity components are vi and the 4-velocity com-
ponents are Uµ.
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A particle of mass m0 with 4-velocity Uµ has 4-momentum given by:

Pµ = m0Uµ (1.3.9)

Combining shows the momentum components to be:

p = γm0v; p4 = γm0ic = iW/c; W = γm0c
2 (1.3.10)

The quantity W , defined by Eq. (1.3.10), is the energy associated with the
moving mass.

The binomial expansion is:

(1 ± a)n = 1 ± na +
n
2!

(n − 1)a2 ± · · · (1.3.11)

This equation combines with the definition of γ, see Eq. (1.2.6), to show
that:

γ = 1 +
v2

2c2 +
3v4

8c4 + · · · (1.3.12)

Combining Eqs. (1.3.10) and (1.3.12) shows the total energy of the particle:

W = m0c
2
[
1 +

v2

2c2 +
3v4

8c4 + · · ·
]

(1.3.13)

In the rest frame m0 is the rest mass. The particle energy is:

W0 = m0c
2 (1.3.14)

By Eq. (1.3.14), the first term of Eq. (1.3.13) is the self-energy of the mass.
The second term is the kinetic energy at low speeds and the higher order
terms complete the evaluation of the kinetic energy of the mass at any
speed.

1.4. Newton’s Laws

The Minkowski force is defined to be:

Fµ =
d
dτ

Pµ (1.4.1)

This force is a 4-vector with the x-directed component:

F1 =
d
dτ

(m0U1) = γ
∂

∂t
(γm0vx) (1.4.2)

The corresponding three-dimensional force component is:

Fx =
∂

∂t
(γm0νx) (1.4.3)

The factor γ in Eq. (1.4.3) was known before the full relativistic effect was
understood. Although relativity makes it abundantly clear that the result
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is a space-time effect, it was historically interpreted as an increase in mass
whereby the effective mass m is a function of speed:

m = γm0 (1.4.4)

Even with relativity, the nomenclature remains and by definition the effec-
tive mass of a moving particle is equal to Eq. (1.4.4). Since the 4-momentum
is a 4-vector, it is conserved between Lorentz frames. That is,

W 2
0 = W 2 − p2c2 (1.4.5)

The energy is related to momentum, in any given frame, as:

W 2 = m2
0c

4 + p2c2 (1.4.6)

Since W is second order in v/c, three-momentum is constant in low speed
inertial frames. Energy is also nearly conserved. However, in high-energy
systems neither energy nor momentum is conserved, only the combination.
This example illustrates a general characteristic of 4-tensors that at low
speeds the real and imaginary parts are separately conserved but at high
speeds only the combined magnitude is conserved.

1.5. Electrodynamics

The three scalars defined so far are speed, c, time interval between events in
a rest frame, τ , and mass, m0. A fourth is electric charge, q; electric charge
can have either sign. Just as an intrinsic part of any mass is the associated
gravitational field, G, an intrinsic part of charge is the associated 4-vector
potential field Aµ. Consider that the individual charges are much smaller
than other dimensions and that there are many of them. For this case choose
a differential volume, with dimensions (x1, x2, x3), in which each dimension
is much less than any macroscopic dimension of interest but contains large
numbers of charges. If both conditions are met, the tools of calculus apply.
Charge density ρ is defined to be the charge per unit volume at a point.
Charge density ρ0 is defined in a frame in which the time-average position
is at rest. Observers in fixed and moving frames see the same total charge
but, because of the Lorentz contraction, the moving observer determines
the volume containing it to be smaller by a factor of γ. Therefore, the
charge density in a moving frame is increased by the factor:

ρ = γρ0 (1.5.1)
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If the charge density moves with 4-velocity Uµ in a way similar to three
dimensions, the 4-current density is defined to be:

Jµ = ρ0Uµ = {γρ0v, γicρ0} = {J, icρ} (1.5.2)

The vector terms within the curly brackets, identified by bold font, indi-
cate the first three dimensions, and the scalar term represents the fourth
dimension. The 4-divergence of the current density is:

∂Jµ

∂Xµ
= ∇ · J +

∂ρ

∂t
= 0 (1.5.3)

The first equality of Eq. (1.5.3) follows from definition of terms and the
second is true if and only if net charge is neither created nor destroyed.
Pair production or annihilation may occur but there is no change in the
total charge. The zero 4-divergence shows that the net change in the four-
current is always equal to zero. Physically a net change in the total charge
does not occur and charges are created and destroyed only in canceling
pairs.

The 4-vector potential field Aµ(Xγ) is defined to be the potential that
satisfies the differential equation:

∂2Aν

∂Xβ∂Xβ
= −µJν (1.5.4)

Constant µ is defined to be the permeability of free space; it is a dimension-
determining constant and defined to equal 4π/107 Henrys/meter.

Taking the 4-divergence of Eq. (1.5.4) then combining with Eq. (1.5.3)
gives:

∂

∂Xν

∂2

∂Xβ∂Xβ
Aν =

∂2

∂Xβ∂Xβ

∂Aν

∂Xν
= −µ

∂Jν

∂Xν
= 0

Combining, it follows that:

∂Aν/∂Xν = 0 (1.5.5)

Equation (1.5.5) shows that the divergence of Aν is zero, from which it
follows that, like charge, the total amount of 4-potential does not change. If
transitions are made between different reference frames changes occur in the
components of the potential but not in the sum over all four components.

The four-dimensional Laplacian of Eq. (1.5.4) may be integrated over
all space to obtain an expression for the potential itself. By Eq. (A.6.2) the
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potential of a moving charge is:

Aα(Xγ) =
µ

4π

∫∫∫
Jα(r′, t′ − R/c)
(R − R · (v/c))

dV ′ (1.5.6)

The integral is over all source-bearing regions, dV ′ is differential volume,
Xγ are the 4-coordinates of the field point, X′

γ are the 4-coordinates at the
source point, R is the vector from the source point to the field point. At
low speeds Eq. (1.5.6) simplifies to:

Aα(Xγ) =
µ

4π

∫∫∫
Jα(r′, t′ − R/c)

R(Xγ , X′
γ)

dV ′ (1.5.7)

Substituting in the three-dimensional values of Jα results in the three-
dimensional potentials:

A(r, t) =
µ

4π

∫∫∫
J(r′, t′ − R/c)
R(r − r′, t′)

dV ′

Φ(r, t) = −icA4(r, t) =
1

4πε

∫∫∫
ρ(r′, t′ − R/c)
R(r − r′, t′)

dV ′
(1.5.8)

The constant ε is defined to be the permittivity of free space; it is a
dimension determining constant and defined to be exactly equal to 1/(µc2)
Farads/meter.

For a point charge, instead of a charge distribution, the corresponding
4-potential is:

Aα(Xγ) =
µq

4π

Uα(r′, t′ − R/c)
(R − R · v/c)

(1.5.9)

The three-dimensional potentials are:

A(r, t) =
µ

4π

qv(r′, t′ − R/c)
(R − R · v/c)

Φ(r, t) =
µ

4π

q(r′, t′ − R/c)
(R − R · v/c)

(1.5.10)

If the charge moves at a speed much less than c Eq. (1.5.10) is the usual
three-dimensional vector and scalar potential field of individual charges.

It is apparent from Eq. (1.5.10) that a charge moving towards or away
from a field point generates potentials with magnitudes respectively larger
or smaller than the low speed value.
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1.6. The Field Equations

If ρ0 is the charge density in an inertial reference frame in which the average
speed of the charges is zero, then ρ = γρ0 is the charge density in a moving
frame. The charge density and the three-dimensional current density Ji

were extended to form the 4-current density, as shown by Eq. (1.5.2), from
which the Laplacian of the 4-potential was defined by Eq. (1.5.4). Other
useful 4-tensors follow from four-dimensional operations on the 4-potential
Aα(Xγ); some especially important ones follow.

A second rank antisymmetric tensor of interest follows from the poten-
tial by the equation:

fαβ =
∂Aβ

∂Xα
− ∂Aα

∂Xβ
(1.6.1)

Antisymmetric 4-tensors are spatial arrays of six numbers and, in common
with all antisymmetric tensors, the trace is zero:

fαα = 0 (1.6.2)

Writing out the six values that appear in the upper right portion of the
4-tensor, and using the result to define the function Φ, gives:

f12 =
∂A2

∂X1
− ∂A1

∂X2
=

∂Ay

∂x
− ∂Ax

∂y
= Bz

f23 =
∂A3

∂X2
− ∂A2

∂X3
=

∂Ay

∂z
− ∂Az

∂y
= Bx

f31 =
∂A1

∂X3
− ∂A3

∂X1
=

∂Ax

∂z
− ∂Az

∂x
= By

f14 =
∂A4

∂X1
− ∂A1

∂X4
=

i

c

∂Φ
∂x

− ∂Ax

ic∂t
= − i

c
Ex

f24 =
i

c

∂Φ
∂y

− ∂Ay

ic∂t
= − i

c
Ey

f34 =
i

c

∂Φ
∂z

− ∂Az

ic∂t
= − i

c
Ez

(1.6.3)

With the deductive approach to electromagnetism Eq. (1.6.3) are the defin-
ing terms for field vectors E and B. The result written in tensor form is:

(f) =




0 Bz −By −iEx/c

−Bz 0 Bx −iEy/c

By −Bx 0 −iEz/c

iEx/c iEy/c i Ez/c 0


 (1.6.4)
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Differentiating fαβ with respect to Xβ results in the equality chain:

∂fαβ

∂Xβ
=

∂

∂Xβ

(
∂Aβ

∂Xα
− ∂Aα

∂Xβ

)
=

∂2Aβ

∂Xβ∂Xα
− ∂2Aα

∂Xβ∂Xβ
= µJα (1.6.5)

Combining terms gives:

∂fαβ

∂Xβ
= µJα (1.6.6)

Evaluation of Eq. (1.6.6) gives:

∂f1β

∂Xβ
=

∂Bz

∂y
− ∂By

∂z
− 1

c2

∂Ex

∂t
= µJx

∂f2β

∂Xβ
=

∂Bx

∂z
− ∂Bz

∂x
− 1

c2

∂Ey

∂t
= µJy

∂f3β

∂Xβ
=

∂By

∂x
− ∂Bx

∂y
− 1

c2

∂Ez

∂t
= µJz

c

i

∂f4β

∂Xβ
=

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
=

ρ

ε

(1.6.7)

These are the nonhomogeneous Maxwell equations and relate fields to
sources. In three-dimensional notation:

∇ × B − 1
c2

∂E
∂t

= µJ; ε∇ · E = ρ (1.6.8)

The nonhomogeneous Maxwell equations relate force field intensities E
and B to sources ρ and J. The first order terms of E and B are, respec-
tively, independent of and proportional to the first power of the speed of
the charge.

It follows from the definition of fαβ that:

∂fνσ

∂Xα
+

∂fσα

∂Xν
+

∂fαν

∂Xσ
= 0 (1.6.9)

Evaluation of Eq. (1.6.9) for each tensor component gives:

∂f12
∂X3

+
∂f23
∂X1

+
∂f31
∂X2

=
∂Bz

∂z
+

∂Bx

∂x
+

∂By

∂y
= 0

∂f24
∂X1

+
∂f41
∂X2

+
∂f12
∂X4

=
1
ic

(
∂Ey

∂x
− ∂Ex

∂y
+

∂Bz

∂t

)
= 0

∂f34
∂X2

+
∂f42
∂X3

+
∂f23
∂X4

=
1
ic

(
∂Ez

∂y
− ∂Ey

∂z
+

∂Bx

∂t

)
= 0

∂f14
∂X3

+
∂f43
∂X1

+
∂f31
∂X4

=
1
ic

(
∂Ex

∂z
− ∂Ez

∂x
+

∂By

∂t

)
= 0

(1.6.10)
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These are the homogeneous Maxwell equations and relate force field vec-
tors E and B. In three-dimensional notation:

∇ × E − ∂B
∂t

= 0; ∇ · B = 0 (1.6.11)

Another useful 4-vector is the force intensity, defined by the equation:

F v
α = fαβJβ (1.6.12)

Evaluation of each component of Eq. (1.6.12) gives:

F v
1 = F v

x = JyBz − JzBy + ρEx

F v
2 = F v

y = JzBx − JxBz + ρEy

F v
3 = F v

z = JxBy − JyBx + ρEz

F v
4 =

i

c
(ExJx + EyJy + EzJz)

(1.6.13)

These equations relate force and power to the interaction of the charges
and the fields. In three-dimensional notation:

F v = ρE + J × B; −icF v
4 = E · J (1.6.14)

To assist in the interpretation of Eq. (1.6.12), consider the 4-scalar
formed by taking the scalar product:

F v
αJα = fαβJαJβ = 0 (1.6.15)

The second equality of Eq. (1.6.15) follows from the antisymmetric charac-
ter of fαβ and shows that the 4-vector F v

α is perpendicular to the 4-current
density. Since the 4-current density is proportional to the 4-velocity, it fol-
lows that F v

α is also perpendicular to the 4-velocity. Consider the differential
with respect to proper time of the square of the 4-velocity:

d
dτ

(UαUα) = 2Uα
dUα

dτ
=

d
dτ

(−c2) = 0 (1.6.16)

Therefore both the 4-acceleration and F v
α are perpendicular to the

4-velocity. This is a necessary but insufficient requirement for F v
α to be

the force density.
This approach to the Maxwell equations is based upon the original

axiom relating a charge to its accompanying potential. The form of the
source shows that only charges produce a 4-curvature of the 4-potential
field. The technique is a neat way both to package the electromagnetic
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equations and to show that they take the same form in all inertial coordi-
nate systems. The relationship between fields E and B and the potentials
follows from Eq. (1.6.3). By direct comparison:

∂Aj

∂xi
− ∂Ai

∂xj
= Bk ⇒ ∇ × A = B

− ∂Φ
∂xi

− ∂Ai

∂t
= Ei ⇒ −

(
∇Φ +

∂A
∂t

)
= E

(1.6.17)

1.7. Accelerating Charges

The potentials surrounding electric charges in uniform motion are given by
Eq. (1.5.10) and the force fields are related to the potential by Eq. (1.6.3).
The partial derivative operations of Eq. (1.6.3) take place at the field posi-
tion and time, (r, t). The position and time at the source, (r′, t′), do not
enter into the operations. To carry out the operations it is convenient to
define S by the equation:

S =
(

R − R · v

c

)
(1.7.1)

Operating upon the potential while keeping terms involving charge
accelerations gives:

E =
q

4πε

{
1

γ2S3

(
R − R

v

c

)
+

1
c2S3 R ×

[(
R − R

v

c

)
× ∂

∂t
v

]}

B =
1

Rc
R × E

(1.7.2)

Keeping only first order terms in powers of v/c leads to:

E =
q

4πεR3

{(
R − R

v

c

)
+

1
c2 R ×

(
R × ∂

∂t
v

)}

B = − µq

4πR3 R ×
(

v +
R
c

∂

∂t
v

) (1.7.3)

The equations show that: A stationary charge produces an electric field
intensity that varies as the inverse square of the radius, but there is no
magnetic field. If the charge is moving, both electric and magnetic field
intensities exist that are proportional to the speed of the charge and varying
as the inverse square of the radius. If the charge is accelerating, both electric
and magnetic field intensities exist in proportion to the acceleration of the
charge and the inverse radius. Where charge distributions are applicable
Eq. (1.7.3) take the form of spatial integrals over charge bearing regions.
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1.8. The Electromagnetic Stress Tensor

Another result of four-dimensional field analysis is the electromagnetic
stress tensor. It is defined as the symmetric, second rank 4-tensor Tαβ :

µTαβ = fακfκβ +
1
4
δαβfνσfνσ (1.8.1)

A symmetric 4-tensor consists of an array of ten independent numbers.
It may be shown, after some algebra, that the force density 4-vector of
Eq. (1.6.12) is related to the electromagnetic stress tensor as:

F v
α = ∂Tαβ/∂Xβ (1.8.2)

The independent components of Tαβ follow from Eqs. (1.6.7) and (1.8.1).
The result is:

T11 =
ε

2
(E2

x − E2
y − E2

z) +
1
2µ

(B2
x − B2

y − B2
z)

T12 = εExEy +
1
µ

BxBy

T22 =
ε

2
(E2

y − E2
z − E2

x) +
1
2µ

(B2
y − B2

z − B2
x)

T23 = εEyEz +
1
µ

ByBz

T33 =
ε

2
(E2

z − E2
x − E2

y) +
1
2µ

(B2
z − B2

x − B2
y)

T31 = εEzEx +
1
µ

BzBx

T44 =
ε

2
(E2

x + E2
y + E2

z) +
1
2µ

(B2
x + B2

y + B2
z)

T14 =
1

icµ
(EyBz − EzBy)

T24 =
1

icµ
(EzBx − ExBz)

T34 =
1

icµ
(ExBy − EyBx)

(1.8.3)

The tensor may be written in the form:

(T) =

(
Tij − i

cN

− i
cN w

)
(1.8.4)
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By definition w = T44 is equal to:

T44 =
ε

2
E2 +

1
2µ

B2 (1.8.5)

Tij is the three-dimensional electromagnetic stress tensor:

(T) =




ε

2
[E2

x − E2
y − E2

x] εExEy +
1
µ

BxBy εExEz +
1
µ

BxBz

+
1
2µ

[B2
x − B2

y − B2
x]

εEyEx +
1
µ

ByBx
ε

2
[E2

y − E2
z − E2

x] εEyEz +
1
µ

ByBz

+
1
2µ

[B2
y − B2

z − B2
x]

εEzEx +
1
µ

BzBx εEzEy +
1
µ

BzBy
ε

2
[E2

z − E2
x − E2

y]

+
1
2µ

[B2
z − B2

x − B2
y]




(1.8.6)

N is the three-dimensional Poynting vector:

N = (E × B)/µ (1.8.7)

Symmetric tensors of rank two in three dimensions reduce from six to three
components by transforming to the principal axes and aligning one axis
with the source field intensity. For example, if there is no magnetic field
and if the electric field intensity is directed along the x-axis the tensor
reduces to:

(T) =
ε

2


E2 0 0

0 −E2 0
0 0 −E2


 (1.8.8)

To interpret the stress tensor, consider the four-dimensional spatial integral
of Eq. (1.8.2). The equation may be written:∫∫∫∫

c′
σαF ′v

α dX′
1dX′

2dX′
3dX′

4 =
∫∫∫∫

c′
σα

∂T′
αβ

∂X′
β

dX′
1dX′

2dX′
3dX′

4

(1.8.9)

Working with the left side:∫∫∫∫
c′
σαF ′v

σ dX′
1dX′

2dX′
3dX′

4 =
∫∫∫∫

F v
σ dX′

1dX′
2dX′

3dX′
4

=
∫∫∫∫

F v
σ dX1dX2dX3dX4
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Working with the right side:

∫∫∫∫
c′
σα

∂T′
αβ

∂X′
β

dX′
1dX′

2dX′
3dX′

4 =
∫∫∫∫

∂(c′
σαT′

αβ)
∂X′

β

dX′
1dX′

2dX′
3dX′

4

=
∫∫∫∫

c′
σαT′

α4dX′
1dX′

2dX′
3

The last equality results since the integral at the limits of the spatial inte-
grals vanish. Working with the last integral, note that:

c′
αβTσα = c′

λβc′
σαc′

λγT′
αγ (1.8.10)

Since c′
λβc′

λγ = δβγ it follows that c′
αβTσα = c′

σαT′
αβ from which

c′
σαT′

α4 = c′
α4Tσα. This leaves the equality:∫∫∫∫

F ′v
σ dX′

1dX′
2dX′

3dX′
4 =

∫∫∫
c′
α4TσαdX′

1dX′
2dX′

3 (1.8.11)

Since c′
α4 = Uα/ic this may be written:∫∫∫∫

F ′v
σ dX′

1dX′
2dX′

3dX′
4 =

1
ic

∫∫∫
TσαUαdX1dX2dX3 (1.8.12)

To change the 4-integral into a three-dimensional one, differentiate by (ict)
to obtain:∫∫∫

F ′v
σ dX′

1dX′
2dX′

3 = Fσ = − 1
c2

∂

∂t

∫∫∫
TσαUαdX1dX2dX3 (1.8.13)

Since all time integrals are zero at time t = −∞, time integration has a
value only at present time, t.

To examine results of these equations, consider a charge moving with
low speed in the z-direction. With the axis in the direction of motion, the
sum TσαUα takes the form:

T3αUα =
ε

2
E2v (1.8.14)

Combining gives:

F =
∫

F vdV =
d
dt

{
v

c2

∫ (ε

2
E2
)

dV

}
(1.8.15)

The sign was changed to represent reaction of the field on its source, rather
than vice versa. For a low speed particle undergoing differential acceleration
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Eq. (1.8.15) takes the form:

F =
d
dt

(mv) =
dp

dt
(1.8.16)

The mass is calculated as:

m =
1
c2

∫ (ε

2
E2
)

dV (1.8.17)

The interpretation accorded these equations is that Eq. (1.8.17) is
Newton’s law for electromagnetic mass, confirming that F is a force. The
expression for the mass shows that (εE2/2) is the energy density of an
electric field.

1.9. Kinematic Properties of Fields

To further analyze the kinematic properties of fields, begin with the four-
dimensional force equation, Eq. (1.6.14):

F v = ρE + J × B; −icF v
4 = E · J (1.9.1)

To express this equality in a way that depends upon the fields only, it is nec-
essary to substitute for ρ and J from the nonhomogeneous electromagnetic
equations, Eq. (1.6.8):

F v = εE(∇ · E) − B ×
(

1
µ

∇ × B − ε
∂E
∂t

)

−icF v
4 = E ·

(
1
µ

∇ × B − ε
∂E
∂t

) (1.9.2)

It is helpful to add zero to each equation in the form of terms proportional
to the homogeneous Maxwell equations, Eq. (1.6.11). The added terms are:

1
µ
B(∇ · B) − εE ×

(
∇ × E +

∂B
∂t

)
and

−B ·
(

∇ × E +
∂B
∂t

) (1.9.3)

Combining gives:

F v = ε{E(∇ · E) − E × (∇ × E)}
+

1
µ

{B(∇ · B) − B × (∇ × B)} − 1
c2

∂N
∂t

icF v
4 =

∂

∂t

(
ε

2
E2 +

1
2µ

B2
)

+ ∇ · N

(1.9.4)



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap01

18 The Electromagnetic Origin of Quantum Theory and Light

Writing the first of Eq. (1.9.4) in tensor form gives:

F v
i =

∂

∂xj

{
ε

(
EiEj − 1

2
δijEkEk

)
+

1
µ

(
BiBj − 1

2
δijBkBk

)}
− 1

c2

∂

∂t
Ni

(1.9.5)
Integrating over a closed three-dimensional volume gives:

∮ {
ε

(
EiEj − 1

2
δijEkEk

)
+

1
µ

(
BiBj − 1

2
δijBkBk

)}
dSj

=
∫ (

1
c2

∂Ni

∂t
+ F v

i

)
dV (1.9.6)

By Eq. (1.8.16) the last term on the right is the rate of change of momentum
of all charges contained within the volume, pcharge. Therefore, the first term
on the right is the rate of change of field momentum, pfield. It follows that
the left side of the equation is equal to the force on the charges and fields
within the volume of integration. The results may be written as:

pfield =
1
c2

∫
NdV ; F v = ρE + J × B =

d
dt

pcharge (1.9.7)

Since F v is a force density, it follows from Eq. (1.9.7) that the electric field
intensity is a force per unit charge. Since a wave travels at speed c, by the
first of Eq. (1.9.7) the momentum passing through a planar surface is:

pfield =
1
c

∫
N · dS (1.9.8)

By definition dS is a differential vector area normally outward from the
surface.

Integrating the second of Eqs. (1.9.1) and (1.9.4) over a three-
dimensional volume gives:

∫
(E · J)dV =

d
dt

∫ (
ε

2
E2 +

1
2µ

B2
)

dV +
∮

N · dS (1.9.9)

Since the field intensity is a force per unit charge it follows that the left side
of Eq. (1.9.9) is the rate at which energy enters the volume of integration.
Therefore the volume integral on the right side must be the rate at which
energy increases in the interior, and the surface integral must be the rate
at which energy exits through the surface. It follows that the energy in the
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electromagnetic fields is equal to:

W =
∫ (

ε

2
E2 +

1
2µ

B2
)

dV (1.9.10)

It also follows that the rate at which energy exits the volume through
the surface is:

P =
∮

N · dS (1.9.11)

A different formulation of Eq. (1.9.10) that is sometimes useful is
by rewriting it in terms of the potentials. Combining Eq. (1.9.10) with
Eqs. (1.6.8) and (1.6.17) results in:

W =
∫

[ρΦ + J · A]dV +
∮ [

−ε(φE) +
1
µ

(A × B)
]

· dS

+ ε

∫ [
−E · ∂A

∂t
+ A · ∂E

∂t

]
dV (1.9.12)

For a charge moving at a constant speed, or if the charge acceleration is
small enough so the energy escaping into the far field is negligible, only the
first term of Eq. (1.9.12) is significant. For that case the total field energy
may also be expressed as:

W =
∫

[ρΦ + J · A]dV (1.9.13)

1.10. A Lemma for Calculation of Electromagnetic Fields

A lemma is needed to assist in the unrestricted and systematic calculation
of electromagnetic fields about known sources. To obtain it, begin with the
general form for fields in a source-free region containing time-dependent
fields:

∇ × B − εµ
∂E
∂t

= 0 = ∇ × E + εµ
∂B
∂t

(1.10.1)

Taking the curl of Eq. (1.10.1) and then substituting back and forth as
needed gives:

∇ × (∇ × B) + εµ
∂2B
∂t2

= 0 = ∇ × (∇ × E) + εµ
∂2E
∂t2

(1.10.2)

This shows that, away from sources, E and B satisfy the same partial
differential equation.

∇2Ψ − εµ
∂2Ψ
∂t2

= 0 (1.10.3)
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This is useful because of an associated lemma that begins with the vector
field F(r, t), defined by

F = ∇ × (r Ψ) (1.10.4)

The lemma is that if Ψ satisfies Eq. (1.10.3) then F satisfies the differential
equation:

∇ × (∇ × F) + εµ
∂2F
∂t2

= 0 (1.10.5)

To verify that Eq. (1.10.5) is correct, multiply Eq. (1.10.3) by (−r), then
take the curl:

−∇ × (r∇2Ψ) + εµ
∂2

∂t2
[∇ × (r Ψ)] = 0 (1.10.6)

Comparing Eqs. (1.10.4) through (1.10.6) shows that Eq. (1.10.5) is
satisfied if:

∇ × {∇ × [∇ × (r Ψ)]} = −∇ × (r∇2Ψ) (1.10.7)

To confirm Eq. (1.10.7), begin with the identity for the curl of a scalar-
vector product:

∇ × (r Ψ) ≡ Ψ(∇ × r) − r × ∇Ψ (1.10.8)

Since ∇ × r ≡ 0, it follows that:

∇ × [∇ × (r Ψ)] = −∇ × (r × ∇Ψ) (1.10.9)

Combining Eqs. (1.10.7) and (1.10.9) gives:

∇ × [∇ × (r × ∇Ψ)] − ∇ × (r ∇2Ψ) = 0 (1.10.10)

Two identities from vector analysis are:

∇(A · B) ≡ A × (∇ × B) + B × (∇ × A) + (B · ∇)A + (A · ∇)B

∇ × (A × B) ≡ A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B
(1.10.11)

Putting A = r and B = ∇Ψ:

∇(r · ∇Ψ) ≡ (r · ∇)∇Ψ + (∇Ψ · ∇)r = (r · ∇)∇Ψ + ∇Ψ

∇ × (v × ∇Ψ) ≡ r ∇2Ψ − 2∇Ψ + (r · ∇)∇Ψ
(1.10.12)

Combining Eqs. (1.10.10) and (1.10.12):

∇ × (r × ∇Ψ) − r ∇2Ψ + ∇Ψ + ∇(r · ∇Ψ) = 0 (1.10.13)

Since the curl of the gradient vanishes, taking the curl of Eq. (1.10.13)
yields Eq. (1.10.10) and completes the proof.
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1.11. The Scalar Differential Equation

To solve Eq. (1.10.3) it is useful to remove the time-dependent portion. For
that purpose use the Fourier integral expansion:

Ψ(r, t) =
∫ ∞

−∞
ψ(r, ω)eiωtdω (1.11.1)

Substituting Eq. (1.11.1) into Eq. (1.10.3) leads to:

∫ ∞

−∞
(∇2ψ + k2ψ)eiωtdω = 0 (1.11.2)

By definition k2 = ω2εµ. For this equation to be zero for all values of ω,
the integrand of Eq. (1.11.2) must equal zero:

∇2ψ + k2ψ = 0 (1.11.3)

This is the Helmholtz equation, solutions of which combine with
Eqs. (1.10.3) to (1.10.5) to obtain the full solution for vector fields.

Certain differential vector operations in spherical coordinates are listed
in Table 1.11.1. Using spherical coordinates with θ the polar angle from the
z-axis, φ the azimuth angle from the x-axis, and r the radial distance from

Table 1.11.1. Differential vector operations, spherical coordinates.

Orthogonal line elements: dr, r dθ, r sin θ dφ

Gradient
{

(∇ψ)r =
∂ψ

∂r
(∇ψ)θ =

1
r

∂ψ

∂θ
(∇ψ)φ =

1
r sin θ

∂ψ

∂φ

}

Divergence of vector A:
1
r2

∂

∂r
(r2Ar) +

1
r sin θ

∂

∂θ
(sin θAθ) +

1
r sin θ

∂

∂φ
Aφ

Components of curl A: 


(∇ × A)r =
1

r sin θ

[
∂(sin θAφ)

∂θ
− ∂Aθ

∂φ

]

(∇ × A)θ =
1

r sin θ

∂Ar

∂φ
− 1

r

∂(rAφ)
∂r

(∇ × A)φ =
1
r

[
∂(rAθ)

∂r
− ∂Ar

∂θ

]




Laplacian of Ψ = ∇2Ψ:
{

1
r

∂

∂r

(
r2 ∂Ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Ψ
∂θ

)
+

1
r2 sin2 θ

∂2Ψ
∂φ2

}
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the origin, by Table 1.11.1 the Helmholtz equation is given by:

1
r2 sin θ

[
sin θ

∂ψ

∂θ

]
+

1
r2 sin2 θ

∂2ψ

∂φ2 +
1
r2

∂

∂r

[
r2 ∂ψ

∂r

]
+ k2ψ = 0 (1.11.4)

Dividing the equation by k2 shows that the radial dependence of the solu-
tion is a function only of the product σ = kr, and therefore ψ may be written
as ψ(σ, θ, φ). A theorem applicable to problems using spherical coordinates
is that the complete solution of Eq. (1.11.4) is obtained by summing over
all possible functions ψ(σ, θ, φ) where:

ψ(r, θ, φ) = R(σ)Θ(θ)Φ(φ) (1.11.5)

To obtain ψ(σ, θ, φ), it is necessary to begin by solving for the solutions
of Eq. (1.11.5) that involve only one independent variable. After obtaining
the functional forms, all possible products are formed and weighted by a
constant multiplying coefficient. The coefficient is determined by matching
boundary conditions. Finally, all individual product functions with appro-
priate coefficients are summed.

Substituting Eq. (1.11.5) into Eq. (1.11.4) and multiplying by
r2/Ψ(r, θ, φ) gives:

1
Θ sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
Φ

d2Φ
dφ2 +

1
R

d
dσ

(
σ2 dR

dσ

)
+ σ2 = 0 (1.11.6)

The first two terms are independent of the radius and the last two terms
are independent of the angles, yet the two sets equal each other’s negative,
requiring both sets to be constant. The constant is known as the separation
constant. A convenient choice of separation constant is for the radial terms
to equal ν(ν + 1) and the angular terms −ν(ν + 1), and results in the
separated, complete differential equations:

1
σ2

d
dσ

(
σ2 dR

dσ

)
+
(

1 − ν(ν + 1)
σ2

)
R = 0 (1.11.7)

Φ
sin θ

d
dθ

[
sin θ

dΘ
dθ

]
+

Θ
sin2 θ

d2Φ
dφ2 + ν(ν + 1)ΘΦ = 0 (1.11.8)

The radial equation is a differential equation with one independent variable.
The angular equation may be written as:

sin θ

Θ
d
dθ

[
sin θ

dΘ
dθ

]
+ ν(ν + 1) sin2 θ +

1
Φ

d2Φ
dφ2 = 0 (1.11.9)

The first two terms of Eq. (1.11.9) are functions of θ only and the third
is a function of φ only, yet the terms equal each other’s negative. Again,
both sets are constant. Putting the first two terms equal to m2, where m
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is the second separation constant, results in two separated equations, each
involving only one independent variable:

1
sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+
(

ν(ν + 1) − m2

sin2 θ

)
Θ = 0 (1.11.10)

d2Φ
dφ2 + m2Φ = 0 (1.11.11)

Solutions of the separated differential equations and tabulated functions
are in the Appendix.

Solutions of the radial equation are spherical Bessel, Neumann, and
Hankel functions, respectively, jν(σ), yν(σ), and hν(σ). A particularly
important linear combination is Hankel functions of the second kind and
integer order: h
(σ) where “�” represents any integer value of “ν”. Solu-
tions of the zenith angle equation are associated Legendre functions; solu-
tions are, in some instances, of integer order and in others of noninteger
order. In all cases, the orders of the radial and zenith angle solutions are
the same. Trigonometric functions form the solutions of the azimuth angle
equation: sinφ, cos φ, and exp(±imφ). Since all solutions to be considered
extend over the full range of azimuth angle, zero through 2π, only integer
values of degree m, are present. With exponential notation, the exponent
may have either sign. With symbol zν(σ) representing a linear combination
of possible radial solution forms, rather than writing the solution as two
separate sums it is written as:

ψm
ν (r, θ, φ) = zν(σ)Θm

ν (θ)e−imφ (1.11.12)

With this notation, completeness requires m to include the full set of posi-
tive and negative integers, however the degree of the Legendre function is
always positive.

1.12. Radiation Fields in Spherical Coordinates

Replacing B by µH more closely matches common usage. For what lies
ahead we are concerned only with free space and there µ is merely a unit-
determining parameter that measures the magnetic field in amperes per
meter instead of webers per square meter.

The field calculation procedure is due to Hansen, and begins with the
vector theorem that a field with zero divergence is completely specified by
its curl. It is, therefore, helpful to introduce the two independent field sets:

ηH1 = r × ∇Ψ1 and E2 = r × ∇Ψ2 (1.12.1)

Symbol η =
√

µ/ε indicates the wave impedance.
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Since the free space divergences of both vectors are zero, solutions of
Eq. (1.12.1) provide the complete set of possible values for vectors H1

and E2. The remaining field solutions, H2 and E1, may be obtained from
Eq. (1.12.1) using the Maxwell curl equations. The total fields, (E1 + E2)
and (H1 +H2), are then complete. If the boundary conditions are matched,
the fields are also unique.

In what follows we use the notation that time dependence is exp(iωt)
and azimuth angle dependence is exp(−jmφ), where i2 = j2 = −1. The
reasons for separate notation are that it permits separation of polarization
and time dependencies and it permits restriction of separation constant m

to the field of positive integers, without loss of generality. With Hansen’s
method the defining terms for phasor fields are, see Eq. (1.10.4):

ηH̃1 = r × ∇ψ1 and Ẽ2 = r × ∇ψ2 (1.12.2)

A tilde over a vector indicates that it is a phasor. It is required that the
scalar functions satisfy the Helmholtz equation, Eq. (1.11.3). For integer
modes, the results are solutions in the form of Eq. (1.11.12):

ψ1 = F(�, m)z
(σ)Θm

 e−jmφ

ψ2 = j G(�, m)z
(σ)Θm

 e−jmφ

(1.12.3)

The order is not restricted to integer values and the radial function z
(σ)
may be any linear combination of spherical Bessel and Neumann functions.
The zenith angle function may be any linear combination of associated
Legendre functions. Both the applicable functions and the constant mul-
tiplying coefficients F(�, m) and G(�, m) are determined by the boundary
conditions.

Applying the operation of Eq. (1.12.2) to Eq. (1.12.3) gives the result:

r × ∇ψ = − θ̂

sin θ

∂ψ

∂φ
+ φ̂

∂ψ

∂θ
(1.12.4)

Combining gives:

ηH̃1 = F(�, m)z
(σ)
[
jθ̂

mΘm



sin θ
+ φ̂

dΘm



dθ

]
e−jmφ

Ẽ2 = jG(�, m)z
(σ)
[
jθ̂

mΘm



sin θ
+ φ̂

dΘm



dθ

]
e−jmφ

(1.12.5)
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Taking the curl of the second of Eq. (1.12.5) and then applying the
Maxwell curl equation leads to:

ηH̃2 = −iG(�, m)e−jmφ

{
j�(� + 1)

z


σ
Θm


 r̂ + z•



(
j
dΘm




dθ
θ̂ +

mΘm



sin θ
φ̂

)}
(1.12.6)

The carat indicates a unit vector and a dot superscript indicates:

z•

(σ) =

1
σ

d
dσ

[σz
(σ)] (1.12.7)

Taking the curl of the first of Eq. (1.12.5) and then applying the Maxwell
curl equation leads to:

Ẽ1 = iF(�, m)e−jmφ

{
�(� + 1)

z


σ
Θm


 r̂ + z•



(
dΘm




dθ
θ̂ − j

mΘm



sin θ
φ̂

)}
(1.12.8)

The total fields are the sum of Eqs. (1.12.5), (1.12.6) and (1.12.8). They
may be written as:

Ẽr = i

∞∑

=0


∑
m=0

i−
F(�, m)�(� + 1)
z
(σ)

σ
Θm


 (cos θ)e−jmφ

ηH̃r = −ij

∞∑

=0


∑
m=0

i−
G(�, m)�(� + 1)
z
(σ)

σ
Θm


 (cos θ)e−jmφ

Ẽθ =
∞∑


=0


∑
m=0

i−


[
iF (�, m)z•




dΘm



dθ
− G(�, m)z


m Θm



sin θ

]
e−jmφ

ηH̃φ =
∞∑


=0


∑
m=0

i−


[
F(�, m)z


dΘm



dθ
− iG(�, m)z•




m Θm



sin θ

]
e−jmφ

Ẽφ = −j

∞∑

=0


∑
m=0

i−


[
iF(�, m)z•




m Θm



sin θ
− G(�, m)z


dΘm



dθ

]
e−jmφ

ηH̃θ = j
∞∑


=0


∑
m=0

i−


[
F(�, m)z


m Θm



sin θ
− iG(�, m)z•




dΘm



dθ

]
e−jmφ

(1.12.9)

Without loss of generality, the phases of constants F(�, m) and G(�, m) and
multiplying factor i−
 have been picked for later convenience. Coefficients
F(�, m) multiply the radial component of the electric field terms and are
TM (transverse magnetic) fields and modes, where “T” indicates transverse
to the radial direction. Coefficients G(�, m) multiply the radial component
of the magnetic field and are TE (transverse electric) fields and modes.
Terms with � = m = 0 have no radial fields and are the TEM (transverse
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electric and magnetic) fields and mode. This result is valid for all possible
electromagnetic field solutions.

Keeping only the real or only the imaginary part with respect to “j”
provides, respectively, x or y polarization of the electric field intensity. The
fields are right or left circularly polarized, respectively, with j = i or j = −i.
Since this result applies to all time-dependent outgoing waves, it follows
that it also applies when the rate of change is arbitrarily small. Hence, it
describes fields in the limit as the frequency goes to zero, a static charge
distribution. Because of this general result, it is helpful to obtain a physical
view of what constitutes field sources. The sources of coefficients F(�, m)
and G(�, m) for static fields are discussed in the appendix, Secs. A.28
and A.29.

Consider a few special cases of Eq. (1.12.9). If the described fields are
contained within a source-free region of space, and if that space is loss
free, solutions have positive, integer values of orders and integer values of
degrees. Spherical Bessel functions, which have no singularities, form the
radial portion of the solution; spherical Neumann functions, which have
singularities, are not present.

Associated Legendre functions of the first kind, and of integer order,
which have no singularities, form the angular portion of the solution; frac-
tional order associated Legendre functions and those of the second kind,
which have singularities, are not present.

In the main, if the fields originate at a point and support an outward
flow of energy from that point, the radial portion of the solution consists of
spherical Hankel functions of the second kind. A solution within an enclosed
space that excludes the z-axis, but has rotational symmetry, is described
by associated Legendre functions of both the first and second kind, with
noninteger, positive-real orders and integer degrees.

In all cases, if the medium in which the fields exist is “lossy”, the sep-
aration constants are complex numbers with a positive real part. Since all
cases of interest in this book concern lossless media and a full 2π spatial
rotation about the z-axis, both the order and degree are real and degrees
have only integer values.

1.13. Electromagnetic Fields in a Box

It is helpful for the analysis of radiation problems that follow to know the
possible modes in a rectangular cavity, the energy associated with the dif-
ferent modes, and the number of independent modes that can exist. To that
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end consider all possible electric field modes that can exist inside an other-
wise empty, rectangular cavity that is confined by walls of infinite conduc-
tivity. From Eqs. (1.11.2) and (1.11.3) the wave number k is, by definition:

k = ω/c (1.13.1)

Whatever time dependence a set of fields may have, it is most easily
analyzed at a single frequency only. For each frequency, see Eqs. (1.6.8)
and (1.6.11), the Maxwell equations in an empty hollow chamber are:

ηH̃ =
i

k
∇ × Ẽ; Ẽ = − i

k
∇ × (ηH̃)

∇ · H̃ = 0; ∇ · Ẽ = 0
(1.13.2)

Let the cavity be a rectangular box that extends from 0 to a along the
x-axis, 0 to b along the y-axis, and 0 to d along the z-axis. Boundary
conditions applied to perfectly conducting walls require all parallel electric
field components to be zero at the surface. Since by Eq. (A.7.3) the fields
are also spatial sinusoids the most general forms of possible electric field
components are:

Ex = E1 cos(kxx) sin(kyy) sin(kzz)eiωt

Ey = E2 sin(kxx) cos(kyy) sin(kzz)eiωt

Ez = E3 sin(kxx) sin(kyy) cos(kzz)eiωt

(1.13.3)

Constants E1, E2, and E3 are specific to each particular problem. Since
k satisfies Eq. (A.5.17) it is also a vector, and since by Eq. (1.13.2) the
divergence is equal to zero, it follows that:

k · Ẽ = 0 = kxE1 + kyE2 + kzE3 (1.13.4)

Applying this condition shows that two of the field constants can be
expressed as functions of the other. The electric field set is equal to:

Ex = − kxkz

k2
x + k2

y
E3 cos(kxx) sin(kyy) sin(kzz) cos ωt

Ey = − kykz

k2
x + k2

y
E3 sin(kxx) cos(kyy) sin(kzz) cos ωt

Ez = E3 sin(kxx) sin(kyy) cos(kzz) cos ωt

(1.13.5)

This leaves Eq. (1.13.5) with only one unknown field coefficient. Operat-
ing on Eq. (1.13.3) with the first curl equation of Eq. (1.13.2) gives the
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accompanying set of magnetic field components:

ηHx =
i

k
[kyE3 − kzE2] sin(kxx) cos(kyy) cos(kzz)eiωt

ηHy =
i

k
[kzE1 − kxE3] cos(kxx) sin(kyy) cos(kzz)eiωt

ηHz =
i

k
[kxE2 − kyE1] cos(kxx) cos(kyy) sin(kzz)eiωt

(1.13.6)

Substituting the field coefficients of Eq. (1.13.5) into (1.13.6) shows that
Hz = 0 and the other field components are:

ηHx = iE3

(
kyk

k2
x + k2

y

)
sin(kxx) cos(kyy) cos(kzz)eiωt

ηHy = iE3

(
kxk

k2
x + k2

y

)
cos(kxx) sin(kyy) cos(vzz)eiωt

(1.13.7)

Comparing Eqs. (1.13.5) and (1.13.7) shows that the electric and magnetic
fields are out of time phase. Since the ideal cavity is lossless, the energy
is constant and the total electric and magnetic energy is constant. That
energy is, therefore, twice the magnetic energy. Integrating over the volume,
V = abd, gives the total energy:

W =
ε

16
E2

3

(
1 +

k2
z

k2
x + k2

y

)
V (1.13.8)

With �, m, n equal to integers, the conducting boundary condition is:

kx =
�π

a
; ky =

mπ

b
; kz =

nπ

d
(1.13.9)

Combining and introducing w as the energy per unit volume gives:

kx =
�π

a
; ky =

mπ

b
; kz =

nπ

d
(1.13.10)

w =
ε

16
E2

3

(
1 +

(n + d)2

(�/a)2 + (m/b)2

)
(1.13.11)

The dual solution follows by starting with all possible magnetic field com-
ponents then put Ez = 0. The two polarizations are independent and give
dual results.

A related problem is to find the number of possible solutions within
volume V . For this case let the cavity be cubic, from which a = b = d. The
number of available states is equal to the number of spatial points in the
positive quadrant of k-space. For integers �, m, n much greater than one
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the number of points is nearly equal to the volume of that quadrant and,
in k-space, the unit length is π/a. The total number of points is therefore
1/4 the volume in phase space:

N =
1
8

( a

π

)3
∫ 2π

0
dφ

∫ π

0
sin θ dθ

∫ k

0
k2 dk =

k3V

6π2 (1.13.12)

The above argument follows from possible values of the electric field
intensity inside the regions then obtaining the magnetic field and the con-
dition Hz = 0 from it. The argument is equally valid starting with magnetic
field intensity then obtaining the electric field, and the condition Ez = 0
from it, and gives an equal number of solutions. Therefore the total number
of possible solutions is:

N =
k3V

3π2 (1.13.13)

The two solution types represent the two possible field polarizations.
The number of states between frequencies ω and ω + dω follows:

1
V

dN =
ω2

π2c3 dω (1.13.14)

This expression may be used to evaluate the number of energy states avail-
able in free space by imagining all space to be in an enclosed system then
letting the dimensions of the system become infinite.

1.14. From Energy to Electric Fields

The energy associated with an electric field is given by integral equations
Eq. (1.9.10). Using it, it is commonly considered that the local energy den-
sity at each point in the field is

w(r, t) = εE(r, t) · E∗(r, t)/4 (1.14.1)

It is often convenient to express this energy in terms of wave number k.
Since k is a vector it may be used as a basis for dimensions, that is, in
k-space. For this purpose it is convenient to express the field in coordinate
space as an integral over all constituent parts in k-space:

E(r, t) =
1

(2π)2

∫ ∞

−∞
Eω(k, ω)ei(ωt−k·r)dk dω (1.14.2)
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To evaluate the k-space field, Eω(k, ω), consider the integral expression
drawn from Eq. (1.14.2):∫ ∞

−∞
E(r, t)e−i(ω′t−k′·r)dr dt

=
∫ ∞

−∞
dk dω

∫ ∞

−∞
Eω(k, ω)ei([ω−ω′]t−[k−k′]·r)dr dt

= (2π)2
∫ ∞

−∞
dk dωEω(k, ω)δ(ω − ω′)δ(k − k′) = (2π)2Eω(k′, ω′)

It follows that:

Eω(k, ω) =
1

(2π)2

∫ ∞

−∞
E(r, t)e−i(ωt−k·r)dr dt (1.14.3)

The two forms of electric field intensity, therefore, form a Fourier integral
transform pair. It follows that the electric field energy in k-space is:

w(k, ω) = εE(k, ω) · E∗(k, ω)/4 (1.14.4)

It follows from Eqs. (1.14.1) and (1.14.4) that in both coordinate systems
the field intensities are proportional to the square root of the energy density.
Since only the scalar product between the field intensities is known, three-
dimensional vectors are not completely specified by this argument. It is,
however, complete for one-dimensional cases such as, for example, scalar
fields.
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CHAPTER 2

Selected Boundary Value Problems

The analyses in this chapter characterize the radiation properties of pas-
sive, linear systems and provide a benchmark for later comparison with the
regenerative absorption and emission processes of Chapters 5 and 6.

Interactions between objects and electromagnetic fields can be most
easily analyzed if, over the spatial dimensions of interest, the electric and
magnetic field magnitudes are constant, in phase, and the direction of wave
propagation is perpendicular to both fields. Necessary flux closures occur
outside the region of interest. By definition, a plane wave has such char-
acteristics over all space with flux closure occurring at infinite distances.
It is, therefore, convenient to solve problems of interest by imagining plane
waves, even though they do not exist. Spherical waves, after all, do exist
and, if the radius of the sphere is much larger than other dimensions of
interest, a plane wave analysis is justified. The criterion is simply that the
radius of the sphere be much larger than any other spatial dimension of
interest to the problem.

In this chapter, after obtaining appropriate mathematical expressions
for plane waves, scattering of such a wave by a sphere of ideally conducting
material is analyzed, followed by an analysis of a biconical transmitting
antenna in otherwise free space. Appropriately capped biconical antennas
are of especial importance since they are the only antenna embodiment
that approximate linear dipole antennas and for which exact expressions
can be obtained. For an antenna with perfectly conducting arms and caps,
expressions are obtained both for the input impedance and for the full set
of electric and magnetic fields everywhere in space. From that field set
follows surface currents, pattern directivity, field power density, etc. Next
a biconical receiving antenna in otherwise empty space is analyzed as a
special scattering object. As in the transmitting case, the full set of fields
throughout all space is obtained. The solution includes surface currents on
the antenna and both the energy and the linear momentum transferred from
the wave to the antenna as a function of antenna size and load impedance.

31
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Although exact expressions are obtained as problem solutions, the
expressions are in the form of infinite sums over products of associated
Legendre functions and spherical Bessel and Neumann functions. These
functions can be readily evaluated at all orders in the far field and at orders
less than about thirty in the near field.

2.1. Traveling Waves

The electric and magnetic fields of a unit magnitude, x-polarized, z-directed
plane wave expressed in rectangular coordinates are:

Ẽ = x̂ e−ikz and ηH̃ = ŷ e−ikz (2.1.1)

The same fields expressed in spherical coordinates are:

Ẽ = e−iσ cos θ{sin θ cos φr̂ + cos θ cos φθ̂ − sin φφ̂}
ηH̃ = e−iσ cos θ{sin θ sin φr̂ + sin θ sin φθ̂ + cos φφ̂}

(2.1.2)

The fields of Eq. (1.12.9) may, of course, be used to describe plane waves;
it is only necessary to obtain appropriate values for the field coefficients
F(�, m) and G(�, m), and to evaluate the different mathematical functions.
To do so it is most convenient to work with the radial field components
only. Referring back to Eq. (1.12.9) and working with the TM modes, the
radial component of the electric field is:

Ẽr = i

∞∑

=0


∑
m=0

i−
F(�, m)�(� + 1)
z
(σ)

σ
Θm


 (cos θ)e−jmφ (2.1.3)

Since a plane wave has no singularities neither does the radial func-
tion of Eq. (2.1.3); it follows that only spherical Bessel functions form
part of the solution, with z
(σ) replaced by j
(σ). Since the wave occu-
pies all values of azimuth angles φ, degree m must be an integer. Since
the z-axes are included in the solution only integer order, associated
Legendre functions of the first kind, Pm


 (cos θ), are present. Applying
these conditions and equating Eq. (2.1.3) with the radial component of
Eq. (2.1.2) gives:

sin θ cos φ e−iσ cos θ

= i

∞∑

=0


∑
m=0

i−
F(�, m)�(� + 1)
j
(σ)

σ
Pm


 (cos θ)e−jmφ (2.1.4)

The azimuth dependence of Eq. (2.1.4) shows that only coefficients of degree
one, F(�, 1), are different from zero, as are all imaginary parts with respect
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to “j”. This leaves the equality:

e−iσ cos θ =
i

σ

∞∑

=1

i−
F(�, 1)�(� + 1)j
(σ)
P1


(cos θ)
sin θ

(2.1.5)

Another expansion for the exponential is listed in Table A.27.1.2:

e−iσ cos θ =
i

σ

∞∑

=1

i−
(2� + 1)j
(σ)
P1


(cos θ)
sin θ

(2.1.6)

Equating the two expressions shows that the coefficient is:

F(�, 1) =
(2� + 1)
�(� + 1)

(2.1.7)

Entering these results into Eq. (2.1.3) gives:

Ẽr = i

∞∑

=1

i−
(2� + 1)
j
(σ)

σ
P1


(cos θ) cos φ (2.1.8)

Working with TE modes in a similar way results in the equalities:

G(�, 1) = − (2� + 1)
�(� + 1)

(2.1.9)

ηH̃r = i

∞∑

=1

i−
(2� + 1)
j
(σ)

σ
P1


(cos θ) sin φ (2.1.10)

The angular field components follow from the radial components and the
form of Eq. (1.12.9)

Ẽθ =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

[
i j•


(σ)
dP1


(cos θ)
dθ

+ j
(σ)
P1


(cos θ)
sin θ

]
cos φ

ηH̃φ =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

[
j
(σ)

dP1

(cos θ)
dθ

+ i j•

(σ)

P1

(cos θ)
sin θ

]
cos φ

Ẽφ = −
∞∑


=1

i−
 (2� + 1)
�(� + 1)

[
j
(σ)

dP1

(cos θ)
dθ

+ i j•

(σ)

P1

(cos θ)
sin θ

]
sin φ

ηH̃θ =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

[
i j•


(σ)
dP1


(cos θ)
dθ

+ j
(σ)
P1


(cos θ)
sin θ

]
sin φ

(2.1.11)
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Equations (2.1.8), (2.1.10), and (2.1.11) are the electric and magnetic
fields of a unit magnitude, x-polarized, z-directed plane wave expressed in
spherical coordinates using spherical functions.

2.2. Scattering of a Plane Wave by a Sphere

A spherical object of radius a is immersed in the plane wave described
by Eqs. (2.1.8), (2.1.10), and (2.1.11). A step-wise procedure is used to
analyze the interaction between a sphere and a plane wave. In the first
step energy and momentum is extracted from the wave and applied to the
sphere; these are extinction values of energy and momentum. In the second
step the extinction values separate into parts. The scatterer permanently
retains the absorbed energy and the scattered energy goes back into space.
To determine the scattered fields everywhere, note that all possible fields are
expressible in the form of Eq. (1.12.9). Problem solution is simplified if three
characteristics of the scattered field are noted. First, since scattered fields
exist on the z-axis and since only associated Legendre polynomials of integer
order converge on that axis the zenith angle dependence varies as associated
Legendre polynomials of integer order. Second, the total scattered power is
constant in the limit of infinite radius and constant power requires outgoing
fields to vary with distance as e−iσ/σ. Only spherical Hankel functions of
the second kind have the needed limiting form and satisfy the spherical
Bessel differential equation. Third, the scattered field possesses only the
symmetries of the scatterer and the input field. Therefore, only fields of
degree one are present.

To solve for the magnitudes and phases of the scattered modes it is
convenient to multiply each set of modes by sets of complex scattering
coefficients: α
 for TE modes and β
 for TM modes. With this definition
the radial components of the scattered fields are:

Ẽr = i

∞∑

=1

i−
(2� + 1)
β
h
(σ)

σ
P1


(cos θ) cos φ

ηH̃r = i

∞∑

=1

i−
(2� + 1)
α
h
(σ)

σ
P1


(cos θ) sin φ

(2.2.1)

Problem solution requires evaluation of each value of α
 and β
. With
symbol “•” defined by Eq. (1.12.7), the sum of the incident plane wave and
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the scattered fields is:

σẼr = i

∞∑

=1

i−
(2� + 1)(j
 + β
h
)P1

(cos θ) cos φ

σηH̃r = i
∞∑


=1

i−
(2� + 1)(j
 + α
h
)P1

(cos θ) sin φ

Ẽθ =
∞∑


=1

i−
 2� + 1
�(� + 1)

[
i(j•


 + β
h•

)

dP1



dθ
+ (j
 + α
h
)

P1



sin θ

]
cos φ

ηH̃φ =
∞∑


=1

i−
 2� + 1
�(� + 1)

[
(j
 + β
h
)

dP1



dθ
+ i(j•


 + α
h•

)

P1



sin θ

]
cos φ

Ẽφ = −
∞∑


=1

i−
 2� + 1
�(� + 1)

[
(j
 + α
h
)

dP1



dθ
+ i(j•


 + β
h•

)

P1



sin θ

]
sin φ

ηH̃θ =
∞∑


=1

i−
 2� + 1
�(� + 1)

[
i(j•


 + α
h•

)

dP1



dθ
+ (j
 + β
h
)

P1



sin θ

]
sin φ

(2.2.2)

By Poynting’s theorem the time-average power, Pav, on a spherical, virtual
surface of radius σ/k circumscribing the scatterer is equal to the real part
of the surface integral of the radial component of complex Poynting vector,
see Eq. (A.11.6)

Pav =
σ2

ηk2

∫ 2π

0
dφ

∫ π

0
sin θ dθ Re(Ncr) (2.2.3)

Using Eq. (2.2.2) to evaluate the radial component, and “∗” indicating
complex conjugate, the complex Poynting vector is:

Ncr = Re
σ2

2ηk2

∞∑

=1

∞∑
n=1

in−


(
(2� + 1)
�(� + 1)

)(
(2n + 1)
n(n + 1)

)

×
{

i

[
(jn + β∗

nh∗
n)(j•


 + β
h•

)
(

dP1



dθ

dP1
n

dθ
cos2 φ +

P1

P

1
n

sin2 θ
sin2 φ

)

− (j
 + α
h
)(j•
n + α∗

nh•∗
n )
(

dP1



dθ

dP1
n

dθ
sin2 φ +

P1

P

1
n

sin2 θ
cos2 φ

)]

+
[
(j
 + α
h
)(jn + β∗

nh∗
n)
(

dP1



dθ

P1
n

sin θ
sin2 φ +

P1



sin θ

dP1
n

dθ
cos2 φ

)

+ (j•
n + α∗

nh•∗
n )(j•


 + β
h•

)
(

dP1



dθ

P1
n

sin θ
cos2 φ +

P1



sin θ

dP1
n

dθ
sin2 φ

)]}
(2.2.4)
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Inserting Eq. (2.2.4) into the integral of Eq. (2.2.3) and integrating over
the azimuth angle gives:

Pav =
∫ π

0
sin θ dθ

{
Re

πσ2

2ηk2

∞∑

=1

∞∑
n=1

in−


(
(2� + 1)
�(� + 1)

)(
(2n + 1)
n(n + 1)

)

×
{
i
[
(jn + β∗

nh∗
n)(j•


 + β
h•

) − (j
 + α
h
)(j•

n + α∗
nh•∗

n )
]

×
[
dP1




dθ

dP1
n

dθ
+

P1

P

1
n

sin2 θ

]
+
[
(j•


 + β
h•

)(j

•
n + α∗

nh•∗
n )

+ (j
 + α
h
)(jn + β∗
nh∗

n)
][ 1

sin θ

d(P1
nP1


)
dθ

]}}
(2.2.5)

Using integrals in Tables A.22.1.3 and A.22.1.6 to evaluate the integrals of
Eq. (2.2.5) gives:

Pav =
πσ2

ηk2 Re
∞∑


=1

i(2� + 1)[(j
 + β∗

 h∗


 )(j
•

 + β
h•


)

− (j
 + α
h
)(j•

 + α∗


h
•∗

 )] (2.2.6)

In the limit as the radius becomes many times larger than either radius a

or wavelength λ, Eq. (2.2.6) simplifies to:

Pav =
π

ηk2

∞∑

=1

(2� + 1)[Re(α
 + β
) + (α
α
∗

 + β
β

∗

 )] (2.2.7)

Energy and momentum are carried in by the plane wave; both are trans-
ferred to the scatterer. The input power is equal to the term proportional
to Re(α
 + β
). The total power first extracted from the beam is defined as
extinction power, and is always positive. Changing the sign to conform to
this usage, the extinction power is:

PEX = − π

ηk2Re
∞∑


=1

(2� + 1)(α
 + β
) (2.2.8)

The power scattered back into the field is equal to:

PSC =
π

ηk2

∞∑

=1

(2� + 1)(α
α
∗

 + β
β

∗

 ) (2.2.9)

Absorbed power, the negative of Eq. (2.2.7), does not reappear in the
field but may be calculated by subtracting the scattered power from the
extinction power. Lossless scatterers have no absorbed power and, therefore,
for them Eq. (2.2.7) is equal to zero.
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The critical scattering parameters are commonly normalized to a value
that is independent of the magnitude of the incoming plane wave. Define
scattering cross section, CSC, to equal the scattered power-to-incoming
power density ratio. With a unit magnitude electric field intensity the
incoming power density is 1/(2η), see Eqs. (2.1.1) and (A.11.5). Values
are sometimes also normalized with respect to the geometric cross section.
Cross section has the dimensions of an area, and normalization with respect
to the geometric cross sectional area gives a measure of size the scatterer
appears to be versus the size it would appear with zero wavelength optics.
Define geometric cross section, CGE, to be the area the scatterer presents
to the plane wave. For example, the geometric cross sectional area of a
spherical scatterer of radius a is CGE = πa2.

Combining the definition with Eqs. (2.1.11) and (2.2.9) shows the
scattering-to-geometric cross section ratio to be:

CSC

CGE
=

2
k2a2

∞∑

=1

(2� + 1)[α
α
∗

 + β
β

∗

 ] (2.2.10)

Similarly, the extinction cross section, CEX, is defined to equal the
extinction power-to-incoming power density ratio. Combining the defini-
tion with Eqs. (2.1.11) and (2.2.8) shows the extinction-to-geometric cross
section ratio to be:

CEX

CGE
= − 2

k2a2

∞∑

=1

(2� + 1) Re(α
 + β
) (2.2.11)

A third cross section that is often of interest is radar cross section.
Define the radar cross section, CRCS, to equal the quotient of the power
that would be scattered if the power density were everywhere equal to its
value at θ = π divided by the incoming power density. It is a measure
of the power returned towards a single interrogating radar antenna. By
definition, the power scattered in direction θ = π is the back-scattered
power. To determine the radar cross section, evaluate Eq. (2.2.4) at θ = π.
The angular functions at that angle are equal to:

dP1



dθ
= − P1




sin θ
=

1
2
�(� + 1)(−1)
 (2.2.12)

Carrying out the calculation and then normalizing by both the incoming
power density and the geometric cross section results in the normalized
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radar cross section:

CRCS

CGE
=

1
k2a2

∞∑

=1


∑
n=1

(2� + 1)(2n + 1)

× (−1)
+nU(� − n)[(α
 − β
)(α∗
n − β∗

n)] (2.2.13)

Function U(� − n) is the step function:

U(� − n) =

∣∣∣∣∣∣∣
1 � > n

1/2 � = n

0 � < n

(2.2.14)

As shown by Eq. (1.9.8) the fields carry momentum as well as energy,
and momentum transfer from the field to the scatterer constitutes an
applied force. The momentum transferred to the scatterer by the extinc-
tion energy is in the direction of the incoming wave and, by Eq. (1.9.8), is
equal to the energy divided by c. The scattered power transfers momen-
tum in proportion to the cosine of the angle between the incident and
scattering directions. The back-scattered and forward-scattered portions of
the power produce momentum respectively into or away from the direction
of the beam. The sign of the total transferred momentum depends upon
which type dominates, and that depends upon details of the specific scat-
terer. Although the resulting force is too small to be significant in most
macro-scale applications, nonetheless it exists and affects all scatterers and
receiving antennas.

It is also possible to calculate the force on a scatterer because of the
scattered field, FSC. The physical origin of the force is that the surface
currents move, at least partially in phase with the incident field, and in the
x-direction. The incident magnetic field intensity is y-directed. It interacts
with the x-directed current density to form a z-directed force. However, this
is not the way to calculate the force. For purposes of calculation, note that
the momentum density is directly proportional to the power density; they
differ only by a factor of c. The force is calculated using the z-component
of the scattered power. It, in turn, is equal to the integral of the product
of the Poynting vector and the cosine of the scattering angle. With the
help of Eq. (1.9.7) the expression for the force in the direction of the plane
wave is:

FSC = − σ2

2ck2

∫ 2π

0

∫ π

0
sin θ cos θ dθ Re(Nr) (2.2.15)
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Substituting the scattered fields of Eq. (2.2.1) into Eq. (2.2.15) and inte-
grating gives

FSC = −
∫ π

0
sin θ dθ

{
πεσ2

2k2 Re
∞∑


=1

∞∑
n=1

in−


(
(2� + 1)
�(� + 1)

)(
(2n + 1)
n(n + 1)

)

×
{
i[β
β

∗
nh∗

nh•

 − α
α

∗
nh
h•∗

n ]
[
dP1




dθ

dP1
n

dθ
+

P1

P

1
n

sin2 θ

]
cos θ

+ [α
β
∗
nh
h∗

n + α∗
nβ
h•


h
•∗
n ]
[

1
sin θ

d(P1
nP1


)
dθ

]
cos θ

}}
(2.2.16)

Inserting the integrals of Tables A.22.1.4 and A.22.1.7 into Eq. (2.2.16)
gives:

FSC =

{
πεσ2

k2 Re
∞∑


=1

(
�(� + 2)
(� + 1)

)
[α
α

∗

+1h

∗

+1h

•

 − β
β

∗

+1h
h•∗


+1]

− πεσ2

k2 Re
∞∑


=1

(
(� − 1)(� + 1)

�

)
[β
β

∗

−1h

∗

−1h

•

 − α
α

∗

−1h
h•∗


−1]

− πεσ2

k2 Re
∞∑


=1

(
(2� + 1)
�(� + 1)

)
[α
β

∗

 h•


h
•∗

 + α∗


β
h
h∗

 ]

}
(2.2.17)

In the far field Eq. (2.2.17) goes to:

FSC = −επ

k2

∞∑

=1

{
�(� + 2)
(� + 1)

(α
α
∗

+1 + α∗


α
+1 + β
β
∗

+1 + β∗


 β
+1)

+
(2� + 1)
�(� + 1)

(α
β
∗

 + α∗


β
)
}

(2.2.18)

Using Eq. (2.2.11), the force due to reception of the extinction power, the
extinction force, FEX is in the direction of the incoming field. Normalizing
FEX by the incoming power density determines the normalized force, fEX.
Normalizing it by the geometric cross section gives:

fEX

CGE
= − 2

ck2a2

∞∑

=1

(2� + 1)Re(α
 + β
) (2.2.19)
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Summing up Eqs. (2.2.18) and (2.2.19) gives the normalized total force on
the scatterer:

(fSC + fEX)
CGE

= − 2
ck2a2

∞∑

=1

{
(2� + 1)Re(α
 + β
) +

�(� + 2)
(� + 1)

× (α
α
∗

+1 + α∗


α
+1 + β
β
∗

+1 + β∗


 β
+1)

+
(2� + 1)
�(� + 1)

(α
β
∗

 + α∗


β
)
}

(2.2.20)

Although the energy absorbed by a lossless scatterer is zero the momentum
transferred is not. Even lossless scatterers are accelerated in the direction
of an incoming plane wave. Although the effect is small enough so that the
effect of sunlight on atmospheric molecules is less significant than normal
thermal unbalance, in other cases it can be significant. For example, the
impulse electromagnetic wave produced by a nuclear blast results in forces
of major significance.

2.3. Lossless Spherical Scatterers

The form of electromagnetic fields produced by a spherical scatterer
immersed in a plane wave and the scattering coefficients αn and βn depend
upon its electromagnetic characteristics. The special case of a perfectly con-
ducting sphere is important since it approximates many natural objects, it
is convenient to analyze, and yet it demonstrates a full range of solution
characteristics. The solution procedure is to apply the boundary condition
that the tangential component of the total field intensities are equal on
either side of the r = a boundary, see Sec. A.12. On the exterior this is the
sum of the incident plane and scattered waves; with an ideally conducting
scatterer the tangential component of the interior field is zero. Therefore,
the following sums are equal to zero:

∞∑
n=1

(
Eθ(a, θ, φ)

cos φ

dP1
n

dθ
− Eφ(a, θ, φ)

sin φ

P1
n

sin θ

)
= 0

∞∑
n=1

(
Eθ(a, θ, φ)

cos φ

P1
n

sin θ
− Eφ(a, θ, φ)

sin φ

dP1
n

dθ

)
= 0

(2.3.1)
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Inserting Eq. (2.2.2) into Eq. (2.3.1) gives:

∞∑

=1

i−
 (2� + 1)
�(� + 1)

{
i[j•


(ka) + β
h•

(ka)]

[
dP1




dθ

dP1
n

dθ
+

P1

P

1
n

sin2 θ

]

+ [j
(ka) + α
h
(ka)]
[

1
sin θ

d(P1

P

1
n)

dθ

]}
= 0 (2.3.2)

∞∑

=1

i−
 (2� + 1)
�(� + 1)

{
[j
(ka) + α
h
(ka)]

[
dP1




dθ

dP1
n

dθ
+

P1

P

1
n

sin2 θ

]

+ i[j•

(ka) + β
h•


(ka)]
[

1
sin θ

d(P1

P

1
n)

dθ

]}
= 0 (2.3.3)

Next, form the integrals:

∫ π

0
sin θ dθ

∞∑
n=1

(
Eθ(a, θ, φ)

cos φ

dP1
n

dθ
− Eφ(a, θ, φ)

sin φ

P1
n

sin θ

)
= 0

∫ π

0
sin θ dθ

∞∑
n=1

(
Eθ(a, θ, φ)

cos φ

P1
n

sin θ
− Eφ(a, θ, φ)

sin φ

dP1
n

dθ

)
= 0

(2.3.4)

Inserting the needed integral forms from Table A.22.1 into Eq. (2.3.4) gives,
after simplifying:

j•

(ka) + β
h•


(ka) = 0

j
(ka) + α
h
(ka) = 0
(2.3.5)

Solving for the coefficients gives:

α
(ka) = − j
(ka)
h
(ka)

and β
(ka) = − j•

(ka)

h•

(ka)

(2.3.6)

Dual results follow if the scatterer is an ideal insulator, with the conduc-
tivity and permittivity equal to zero. For that case no current flows in the
sphere and the boundary condition is that the magnetic field intensity at
the surface is zero. This boundary condition combines with Eq. (2.2.2) to
obtain:

∞∑
n=1

(
Hφ(a, θ, φ)

cos φ

dP1
n

dθ
+

Hθ(a, θ, φ)
sin φ

P1
n

sin θ

)
= 0

∞∑
n=1

(
Hφ(a, θ, φ)

cos φ

P1
n

sin θ
+

Hθ(a, θ, φ)
sin φ

dP1
n

dθ

)
= 0

(2.3.7)



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap02

42 The Electromagnetic Origin of Quantum Theory and Light

Gathering terms gives:

∞∑

=1

i−
 2� + 1
�(� + 1)

{
i(j•


 + α
h•

)
[
dP1




dθ

dP1
n

dθ
+

P1

P

1
n

sin2 θ

]

+ (j
 + β
h
)
1

sin θ

d
dθ

(P1

P

1
n)
}

= 0

∞∑

=1

i−
 2� + 1
�(� + 1)

{
(j
 + β
h
)

[
dP1




dθ

dP1
n

dθ
+

P1

P

1
n

sin2 θ

]

+ i(j•

 + α
h•


)
1

sin θ

d
dθ

(P1

P

1
n)
}

= 0

(2.3.8)

Integrating Eq. (2.3.8) over the surface of a surrounding, virtual sphere
gives:

(j•

 + α
h•


) = 0 (j
 + β
h
) = 0 (2.3.9)

It follows that the coefficients are:

α
(ka) = − j•

(ka)

h•

(ka)

and β
(ka) = − j
(ka)
h
(ka)

(2.3.10)

An important special case is a scatterer with a small radius-to-
wavelength ratio; for this case incorporating the values of the spherical
Bessel functions in the limit as ka → 0 gives:

Limit as ka becomes vanishingly small:

Ideal Conductor

α1(ka) =
i(ka)3

3
and β1(ka) = −2i(ka)3

3

Ideal Insulator

α1(ka) = −2i(ka)3

3
and β1(ka) =

i(ka)3

3

(2.3.11)

In both cases the cross sections and normalized forces defined in
Sec. 2.2 are:

CEX

CGE
=

CSC

CGE
=

cfEX

CGE
=

10(ka)4

3
CRCS

CGE
= 9(ka)4;

cfSC

CGE
=

4(ka)4

3

(2.3.12)
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Figure 2.3.1 shows the normalized extinction cross-section for a conduct-
ing scatterer as a function of ka, for scatterers of any physical size. Since
power in a plane wave is fully directed, Fig. 2.3.1 also shows the momentum
transferred to the scatterer; Eq. (2.3.8) shows that for small scatterers it
varies as (ka)4. The largest normalized extinction cross section occurs at
ka ∼= 1.2, and is equal to 2.28. For larger values of ka the total cross section
oscillates towards a limit of twice the geometric cross section, in the limit
of infinite radius.

In the lossless case the extinction and scattering cross sections are equal
and the total force on the illuminated sphere is the extinction plus scattered
forces, (FEX+FSC). The force on the scatterer because of the scattered field
is shown in Fig. 2.3.2. Electrically small objects scatter predominantly back
into the direction from which the wave came, increasing the thrust in the
direction of the wave. Electrically large objects scatter predominantly in
the direction of the incoming wave, decreasing the thrust on the scatterer.
The sign of the scattering force changes at about ka ∼= 1.38. The largest
forward magnitude is about 0.257 and occurs at ka ∼= 1.12.

The extinction momentum is in the direction of the incoming wave.
All interacting energy forms part of the extinction momentum but, upon
re-radiation, it may either add or subtract momentum from the scatterer.
Since the subtracted momentum cannot exceed the extinction momentum
it follows that:

Absorbed Energy
Absorbed Momentum

≤ c (2.3.13)

2.5

2

1.5

1

0.5

0

CEX
CGE

0 1 2 3 4 5

Fig. 2.3.1. Ratio of extinction-to-geometric cross-sections versus ka for a conducting
sphere of radius a.
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Fig. 2.3.2. Ratio of scattering force-to-geometric cross-section versus ka for a conduct-
ing sphere of radius a.

4

3.5

3

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5

CRCS
CGE

Fig. 2.3.3. Ratio of radar-to-geometric cross-sections versus ka for a conducting sphere
of radius a.

Scatterers are commonly divided into groupings that depend upon the
radius-to-wavelength ratio. The Rayleigh region is over frequencies for
which ka � 1, the Mie region is over frequencies for which ka is on the
order of one, and the optical region is over frequencies for which ka � 1.

The normalized radar cross section is shown in Fig. 2.3.3. As a point
of interest, since conducting spheres that are the right size to be held in
a person’s hand have radar cross sections that are convenient to measure,
the curve of Fig. 2.3.3 is often used as a laboratory calibration standard.
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Optical scattering results determine the optical properties of the sky.
A clear atmosphere of gaseous nitrogen and oxygen, without suspended
particulate matter, scatters a portion of the light that passes through it.
Since the molecules are much smaller than a wavelength of visible light,
the scattering process selectively acts more on the shorter wavelengths
than longer ones and more blue than red light is scattered. When the
sun is directly overhead the sky away from the directly incoming beam
is illuminated by scattered light, which is dominantly blue. Some of that
dominantly blue light is scattered to the earth, giving the sky its characteris-
tically blue color. The removal of selected wavelengths makes the sun appear
yellow.

At sunrise and sunset the sun’s light travels farther through the atmo-
sphere than it does at noon and more light is scattered. The remaining
direct sunlight, therefore, is dominantly red. If particulate matter, such
as dust, about the size of an optical wavelength is present, scattering is
insensitive to the wavelength and the sky appears to be dark.

2.4. Biconical Transmitting Antennas, General Comments

A biconical antenna is illustrated in Fig. 2.4.1. The input power is applied
across a sphere of radius b, centered at the apices of the cones. The cones
extend from radius b to radius a, the length of the cones, at angle ψ as

z-axis ψ

a

b

Fig. 2.4.1. Schematic illustration of a biconical antenna. The antenna arms are conical
sections that extend between b and a, expansion half-angles ψ are measured from the
z-axis, and the outer termination of the cone is capped by a spherical segment of radius a.



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap02

46 The Electromagnetic Origin of Quantum Theory and Light

measured from the z-axis. All surfaces are ideal conductors. Source radius
b is much smaller than either cone length a or wavelength λ.

Biconical antennas are unique in that they are amenable to a rigor-
ous and complete electromagnetic analysis and are shaped similarly to
many practical antennas. Any solution with fields that satisfy the Maxwell
equations and for which the fields match the boundary conditions is both
a unique solution, see Sec. A.13, and a complete solution. Completeness
assures that all solution terms are present, in contrast with numerical solu-
tions that begin with an assumed symmetry and obtain an iterative answer.
For those cases, the output solution contains only symmetries present in the
initial input and hence the solution is only as complete as the initial input.

Transmitting antennas include an energy source that applies a sinusoidal
steady state voltage, or current, to source region b. The two cones, although
oppositely directed, act as a transmission line and direct the energy through
the inner region, radius b to radius a, as a TEM mode. The energy then
passes through the open aperture at r = a and enters the outer region.
All radiation has rotational symmetry about the antenna axis and many
wavelengths from the antenna the electric field intensity is linearly polar-
ized in the direction of the conical axis. The impedance that the antenna
presents to the source is determined by details of the antenna structure:
cone angles, cone length, and the wavelength of the radiation. The outgo-
ing waves undergo a discontinuity in the wave admittance (impedance) at
the open aperture that results in infinite sets of TM modes in both the
interior and exterior regions. Both inner and outer modes support standing
energy and a steady state outward energy flow. Solution of the transmitting
antenna problem requires solving for the input admittance, the coefficients
of each of the infinite sets of interior and exterior TM modes as well as the
TEM mode, and the radiation pattern.

Analysis is simplified by dividing space in the following way:

Source Region

r < b; 0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π (2.4.1)

Interior Region
Arms:

b < r < a; 0 ≤ θ < ψ and π − ψ < θ ≤ π; 0 ≤ φ ≤ 2π (2.4.2)

Space:

b < r < a; ψ < θ < π − ψ; 0 ≤ φ ≤ 2π (2.4.3)
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Exterior Region
Space:

r > a; 0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π (2.4.4)

Aperture:

r = a; ψ ≤ θ ≤ π − ψ; 0 ≤ φ ≤ 2π (2.4.5)

Arms:

r = a; 0 ≤ θ < ψ and π − ψ < θ ≤ π; 0 ≤ φ ≤ 2π (2.4.6)

2.5. Fields

The first objective is to obtain an expression for all fields. The procedure
begins with the general expansion, Eq. (1.12.9), and imposes boundary con-
ditions specific to the biconical structure of Fig. 2.4.1. As was the case for
the analysis of scatterers, field determination is greatly simplified by incor-
porating general field properties before matching the boundary conditions.
General field properties are: (1) Since the antenna has rotational symmetry
about the z-axis there is no dependence upon azimuth angle φ and only
functions with degree m equal to zero form part of the solution. All coeffi-
cients F(ν, m) and G(ν, m) are equal to zero for m greater than zero. This
changes the sums over orders and degrees of Eq. (1.12.9) to a sum over
orders only. (2) The source drives straight currents that produce no current
loops. Since TE coefficients are generated by current loops all coefficients
G(ν, 0) are equal to zero. (3) A source located evenly between the two
cones drives surface current density with the symmetry I(r, ψ) = I(r, π−ψ)
and surface charge density with the symmetry ρ(r, ψ) = −ρ(r, π − ψ). By
Eq. (1.12.9), and with ν = � an integer, Eθ is proportional to dP
(cos θ)/dθ.
It is shown in Sec. A.18 that Legendre functions have either even or odd
symmetry as � is even or odd. Consider a Legendre function of order �

containing terms with the symmetry of cos
 θ. For that term:

If P
(cos θ) ≈ cos
 θ then Eθ ≈ dP
(cos θ)
dθ

≈ � cos
−1 θ sin θ

� odd: Eθ(σ, θ) = Eθ(σ, π − θ) and � even: Eθ(σ, θ) = −Eθ(σ, π − θ)
(2.5.1)

Since the source drives only even symmetry electric fields, it follows that
only odd symmetry Legendre functions appear in the field solution. There-
fore, the coefficients of all even order Legendre functions are equal to zero.
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The exterior region: (4) Since the z-axis is included in the field region
all terms have null coefficients except Legendre functions of the first kind.
(5) In the limit as the radius approaches infinity, energy conservation
requires the radial dependence to be exp[i(ωt−σ)]/σ which, in turn, requires
the coefficients of all radial functions except Hankel functions of the second
kind to be zero.

After incorporating the five constraints into Eq. (1.12.9) and making
the notational shift, we obtain:

F
 = i1−
F(�, 0)

The most general possible set of exterior field components is:

σEr =
∞∑


=1;o

�(� + 1)F
h
(σ)P
(cos θ)

Eθ =
∞∑


=1;o

F
h•

(σ)

dP
(cos θ)
dθ

(2.5.2)

ηHφ = −i

∞∑

=1;o

F
h
(σ)
dP
(cos θ)

dθ

The symbol � = 1; o indicates the sum begins with � = 1 and is over odd
integers only. The constants F
 form an infinite set of unknown but constant
field coefficients. Complete problem solution requires obtaining a solution
for each of them.

The interior region: (6) Since the cones exclude fields from the z-axis
modal orders need not be integers. Since symmetry requirement (3) requires
null coefficients for even functions by Eq. (A.17.26) the coefficients of the
even parity portion of Legendre functions, Lν(cos θ), are equal to zero. This
restricts solutions to odd parity Legendre functions, Mν(cos θ). It follows
in the same way that the zero order Legendre function, P0(cos θ), has a
null coefficient but, by Eqs. (A.18.14) and (A.18.15), zero order Legendre
function of the second kind, Q0(cos θ), does not; the derivative of the zero
order Legendre function of the second kind remains finite on cone surfaces.
(7) Both the source voltage and the source current are finite. The voltage
and current are, respectively, proportional to σ times the electric and mag-
netic field intensity and the radial functions approach zero as jν(σ) → σν

and yν(σ) → σ−(ν+1), see Eqs. (A.24.7) and (A.24.11). Therefore the input
voltage and current values remain finite only if the coefficients of all spher-
ical Neumann functions except ν = � = 0 are equal to zero.

Incorporating these constraints into Eq. (1.12.9) and separately denot-
ing the zero order TEM mode shows that the general forms of the interior
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field components are:

Er =
∞∑

ν>0

Γνν(ν + 1)
jν(σ)

σ
Mν(cos θ)

Eθ =
∞∑

ν>0

Γν j•
ν

dMν

dθ
+ i[c0j•

0(σ) + d0y•
0(σ)]

dQ0(cos θ)
dθ

(2.5.3)

ηHφ = −i

∞∑
ν>0

Γν jν
dMν

dθ
+ [c0j0(σ) + d0y0(σ)]

dQ0(cos θ)
dθ

Coefficients of noninteger order modes, F(ν, 0) of Eq. (1.12.9), are
denoted by Γν and coefficients of zero order spherical Bessel and Neumann
functions respectively by the constants c0 and d0.

2.6. TEM Mode

The TEM mode may be reformulated in terms of measurable antenna
parameters. Consider properties of Q0(cos θ), see Sec. A.18:

Q0(cos θ) = ln
[
cot
(

θ

2

)]
=

1
2

[
ln
(

1 + cos θ

1 − cos θ

)]
(2.6.1)

Differentiating gives:

dQ0

dθ
= − 1

sin θ
(2.6.2)

The zero order spherical Bessel, Neumann and related functions are:

j0(σ) =
sin σ

σ
; y0(σ) = −cos σ

σ
; j•

0(σ) =
cos σ

σ
; y•

0(σ) =
sin σ

σ
(2.6.3)

Substituting ν = 0 and Eqs. (2.6.2) and (2.6.3) into Eq. (1.12.9) gives:

Er = 0

σEθ =
1

i sin θ
(c0 cos σ + d0 sin σ) (2.6.4)

σηHφ =
1

sin θ
(d0 cos σ − c0 sin σ)

The voltage difference between equal radii positions on the two antenna
arms is a measurable quantity. It may be calculated from knowledge of the
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antenna structure and the electric field intensity using Eq. (2.6.3):

V(r) =
σ

k

∫ π−ψ

ψ

Eθ dθ =
1
i k

(c0 cos σ + d0 sin σ)
∫ π−ψ

ψ

dθ

sin θ
(2.6.5)

Integrating Eq. (2.6.2) shows that:

∫ π−ψ

ψ

dθ

sin θ
= 2 ln

[
cot
(

ψ

2

)]

It is useful in what lies ahead to define the line admittance of the transmis-
sion line formed by the two antenna arms to be G(ψ) where:

G(ψ) =
π

η ln
[
cot
(

ψ

2

)] (2.6.6)

Combining Eqs. (2.6.5) and (2.6.6) shows voltage V(r) to be:

V(r) =
2π

i kηG(ψ)
(c0 cos σ + d0 sin σ) (2.6.7)

Substituting Eq. (2.6.7) into the TEM component of the electric field inten-
sity, Eq. (2.5.3), shows the zero order electric field intensity to be:

Eθ =
ηkV(r)G(ψ)

2πσ sin θ
(2.6.8)

Since the magnetic field intensity is directed around the cone arms, the
current on the antenna arms is radially directed. The use of Eq. (2.6.3)
gives the relationship:

I(r) =
σ

k
sin θ

∫ 2π

0
Hφ dφ =

2π

ηk
(d0 cos σ − c0 sin σ) (2.6.9)

Substituting Eq. (2.6.9) into the TEM component of the magnetic field
intensity term of Eq. (2.5.3) shows the zero order magnetic field intensity
to be:

Hφ =
kI(r)

2πσ sin θ
(2.6.10)
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Defining position r = a to be the terminus, the voltage and current there
follow from Eqs. (2.6.7) and (2.6.10):

V(a) =
2π

ηGik
{c0 cos(ka) + d0 sin(ka)}

I(a) =
2π

ηk
{d0 cos(ka) − c0 sin(ka)}

(2.6.11)

Inverting Eq. (2.6.11) to obtain the field coefficients in terms of voltage and
current at the antenna terminals gives:

c0 =
ηk

2π
{i GV(a) cos(ka) − I(a) sin(ka)}

d0 =
ηk

2π
{I(a) cos(ka) + i GV(a) sin(ka)}

(2.6.12)

Next, define Y(a) to be the terminator admittance:

Y(a) =
I(a)
V(a)

Rearranging gives the voltage between, and the current on, the cone arms
as a function of Y(a):

V(r) =
V(a)
G

{G cos [k(a − r)] + i Y(a) sin[k(a − r)]}

I(r) = V(a){Y(a) cos[k(a − r)] + i G sin[k(a − r)]}
(2.6.13)

In terms of the terminator and line admittances, the admittance at each
radius along the cones is:

Y(r) = G
Y(a) cos[k(a − r)] + i G sin[k(a − r)]
G cos[k(a − r)] + i Y(a) sin[k(a − r)]

(2.6.14)

Use Eq. (2.6.14) to define the antenna input admittance Y(0) and then put
it equal to Y0, the admittance at r = b in the limit as b approaches zero.
Also, define the input voltage, V(0), and current, I(0), to be:

V(0) = Lim
b→0

V(b); I(0) = Lim
b→0

I(b) (2.6.15)

The input admittance is:

Y0 = G
{

Y(a) cos(ka) + i G sin(ka)
G cos(ka) + i Y(a) sin ka

}
(2.6.16)
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The radial dependence of the admittance as a function of the input and
line admittances is:

Y(σ) = G
{

Y0 cos σ − i G sinσ

G cos σ − i Y0 sin σ

}
(2.6.17)

The line admittance equations have the exact form of admittance transfer
along a TEM transmission line and show that the cone arms jointly act as
a constant admittance line guiding the TEM mode from the source to the
terminus. Quite differently from a parallel wire transmission line in which
the guiding conductors remain equally spaced along the length of the line,
here the guiding conductors are oppositely directed on either side of the
source. Like many transmission lines the line impedance is constant, see
Eq. (2.6.6). Voltage is measured between equal radius points on the cone
arms and the current is measured along each arm.

2.7. Boundary Conditions

Packaging the TEM results of Sec. 2.6 into the interior field equations shows
that the general form of the interior fields is:

Er =
∞∑

ν>0

Γνν(ν + 1)
jν(σ)

σ
Mν(cos θ)

Eθ =
∞∑

ν>0

Γν j•
ν

dMν(cos θ)
dθ

+
ηkGV(σ)
2πσ sin θ

(2.7.1)

ηHφ = −i

∞∑
ν>0

Γν jν
dMν(cos θ)

dθ
+

kI(σ)
2πσ sin θ

The infinite set of multiplying coefficients Γν and the input admittance
Y(0) are unknown and to be determined.

Since the magnetic field is entirely φ-directed, all currents on the cones
are directed along the length of the cones. The total current consists of
the sum of currents associated with the TM modes and the TEM mode.
Define the TM modal current I′(σ) to be the complementary current and
the TEM modal current I(σ) to be the principal current. The total current
is the sum:

IT(σ) = I′(σ) + I(σ) (2.7.2)
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The first term in the expression for Hφ shows that the complementary
current, in amperes, is:

I′(σ, ψ) =
2πσ

i ηk

∞∑
ν>0

Γν jν(σ)
dMν(cos θ)

dθ

∣∣∣∣
θ=ψ

(2.7.3)

Since jν(σ) varies as σν for small radii, where ν > 0, it follows that the
complementary current vanishes in that limit:

Lim
σ→0

Γ(σ) = 0 (2.7.4)

The principal current at the origin follows from Eqs. (2.6.9) and (2.6.12),
and is:

Lim
σ→0

I(σ) = I(a) cos(ka) + i GV(a) sin(ka) (2.7.5)

Since only the principal current exists at the source, only it can support
the energy flow away from the source. Since the time-average power sup-
ported by the TEM mode does not depend upon the radius, it follows
that the time-average power is guided through the region by the principal
current.

Application of the conducting boundary conditions to the exterior fields
of Eq. (2.5.2) shows that the field intensities on the caps are related to the
surface charges and currents as:

0 ≤ θ < ψ and π − ψ < θ ≤ π;

εEr(ka, θ, φ) =
ε

σ

∞∑

=1;o

�(� + 1)F
h
(ka)P
(cos θ) = ρ(ka, θ, φ)

Eθ(ka, θ, φ) =
∞∑


=1;o

F
h•

(ka)

dP
(cos θ)
dθ

= 0 (2.7.6)

Hφ(ka, θ, φ) = − i

η

∞∑

=1;o

F
h
(ka)
dP
(cos θ)

dθ
= −Iθ(ka, θ, φ)

Symbol ρ(ka, θ, φ) indicates the surface charge density on the caps in
coulombs per square meter and symbol Iθ(ka, θ, φ) indicates surface current
density on the caps in amperes per meter. Application of the conducting
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boundary conditions to the interior field components of Eq. (2.7.1)
shows that the interior field intensities on the arms are subject to the
constraints:

kb ≤ σ ≤ ka

Er(σ, ψ, φ) =
∞∑
ν

ν(ν + 1)Fν
jν(σ)

σ
Mν(cos ψ) = 0

εEθ(σ, ψ, φ) =
ηkGV(σ)
2πσ sin ψ

+ ε
∞∑

ν>0

Γν j•
ν

dMν(cos θ)
dθ

∣∣∣∣
θ=ψ

= ρ(σ, ψ, φ) + ρ′(σ, ψ, φ)

ηHφ(σ, ψ, φ) = −i

∞∑
ν>0

Γν jν
dMν(cos θ)

dθ

∣∣∣∣
θ=ψ

+
kI(σ)

2πσ sin θ

= Ir(σ, ψ, φ) + I′r(σ, ψ, φ)

(2.7.7)

Symbols with and without the primes indicate, respectively, principal and
complimentary surface charge and current densities on the cone arms.

The null value of the radial field component at the conical surfaces is
only satisfied by a nontrivial solution if for every value of ν:

Mν(cos ψ) = 0 (2.7.8)

Equation (2.7.8) determines an infinite and unique set of positive-real
eigenvalues of ν. Plots of ν versus angle ψ for which Eq. (2.7.8) is sat-
isfied are shown in Fig. 2.7.1 for the first through the fifth sequence of
roots. Function Mν(cos θ) is plotted versus ν in Fig. 2.7.2, showing the first
23 zeros. Plots of Mν(cos θ) versus θ at the first two roots of Mν [cos(5◦)]
are illustrated by Fig. 2.7.3.

On the aperture, virtual boundary conditions apply, see Eqs. (A.12.6),
and all field components are continuous through the boundary. Imposing
these conditions on Eqs. (2.5.2) and (2.7.1) give the constraining equations:

ψ < θ < π − ψ; σEr(ka, θ, φ) =
∞∑


=1;o

�(� + 1)F
h•

(ka)P
(cos θ)

=
∞∑

ν>0

ν(ν + 1)Γν j•
ν(ka)Mν(cos θ) (2.7.9)
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ψ < θ < π − ψ; Eθ(ka, θ, φ) =
∞∑


=1;o

F
h•

(ka)

dP
(cos θ)
dθ

=
∞∑
ν

Γν j•
ν(ka)

dMν(cos θ)
dθ

+
ηkGV(a)
2πσ sin θ

(2.7.10)

ψ < θ < π − ψ; ηHφ(ka, θ, φ) = −i

∞∑

=1;o

F
h
(ka)
dP
(cos θ)

dθ

= −i

∞∑
ν

Γν jν(ka)
dMν(cos θ)

dθ
+

kV(a)
2πσ sin θ

(2.7.11)

These are the field values on the interface between interior and exterior
regions. This completes the discussion of the field equations at a point as
boundary conditions.

Fig. 2.7.1. Root values, noninteger Legendre functions. Plot showing values of ν for
which the three functions Mν(cos ψ), M1

ν(cos ψ), and dL1
ν(cos θ)/dθ at θ = ψ, are equal

to zero versus cone angle ψ. Cardinal numbers indicate root order.
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Fig. 2.7.2. The function Mν [cos(5◦)] plotted versus ν.

Fig. 2.7.3. Two lowest order functions Mν(cos θ) versus θ; Mν [cos(5◦)] = 0.

2.8. The Defining Integral Equations

In the preceding sections, the general forms of the boundary conditions are
obtained as infinite sums over radial and harmonic functions. The exact
form of the functions and the relationships between them is specified. In
each case what remains are sums over an infinite set of modal orders and
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it remains to separate out the coefficients, one by one. In all but one case
this is accomplished using the orthogonality of the Legendre functions. Sets
of orthogonal integrals are formed and evaluated that change the equalities
involving Legendre functions of the preceding sections into linear algebraic
equations. The algebraic equations are used to solve for the coefficients.

The first algebraic equation is obtained without using orthogonality.
Operating on Eq. (2.7.11) to evaluate the line integrals of the expression
for Hφ around the periphery of the antenna arm on both sides of the r = a

boundary gives:∫ π−ψ

ψ

aHφ dφ = −i
a

η

∞∑

=1

F
h
(ka)P
(cos θ)
∣∣∣∣
π−ψ

ψ

= −i
a

η

∞∑
ν

Γν jν(ka)Mν(cos θ)
∣∣∣∣
π−ψ

ψ

+
I(a)
ηG

(2.8.1)

The condition that Mν(cos ψ) = 0 removes the sum over ν. Collecting the
remaining terms and making the substitution that I(a) = Y(a)V(a) gives
the interior line admittance at the terminus as a function of the exterior
coefficients:

Y(a) =
2ia

V(a)

∞∑

o;1

F
h
(ka)P
(cos ψ) (2.8.2)

Under the summation sign of Eq. (2.8.2), symbol �o; 1 indicates that �

represents the range of odd integers with the lowest value of one. This
equation, the first of the algebraic equations, equates the applied voltage
and the admittance to a sum over odd order, exterior modes.

The next algebraic equation is obtained using the orthogonal-
ity of integer order Legendre functions. Multiplying Eq. (2.7.10) by
sin θ dθ dPn(cos θ)/dθ and integrating over the aperture gives:∫ π

0
sin θ dθ

dPn

dθ

∞∑

o;1

F
h•

(ka)

dP


dθ

=
∫ π−ψ

ψ

sin θ dθ
dPn

dθ

{ ∞∑
ν>0

Γν j•
ν(ka)

dMν

dθ
+

ηGV(a)
2πa sin θ

}
(2.8.3)

Although with the problem as stated the limits on both integrals are from ψ

to π−ψ, it follows from Eq. (2.7.6) that the sum on the left side of Eq. (2.8.3)
is equal to zero over the caps. Therefore, the range of integration of the left
side may be extended to the full range 0 to π without affecting the value
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of the integral. Use the extended angular range and use the definitions of
Tables A.22.1 and A.23.1 that:

I

 =
2

2� + 1
and I
ν =

∫ π−ψ

ψ

P
(cos θ)Mν(cos θ) sin θ dθ (2.8.4)

Symbol ‘I’ with two subscripts indicates an integral and with one sub-
script indicates current. Evaluating Eq. (2.8.3) by incorporating Eq. (2.8.4),
Tables A.22.1.6, and A.23.1.1 gives:

�(� + 1)F
h•

(ka)I

 = �(� + 1)

∞∑
ν>0

Γν j•
ν(ka)I
ν

− ηGV(a)
πa

P
(cos ψ) (2.8.5)

Equation (2.8.5) is the second algebraic expression that equates individual
exterior modal coefficients to a sum over interior modal coefficients.

The third algebraic equation uses the orthogonality of fractional order
Legendre functions. Begin by multiplying Eq. (2.7.11) by sin θ dθ dMµ

(cos θ)/dθ and integrating over the aperture:

∫ π−ψ

ψ

sin θ dθ

∞∑

o;1

F
h
(ka)
dP


dθ

dMµ

dθ

=
∫ π−ψ

ψ

sin θ dθ
dMµ

dθ

{ ∞∑
ν

Γν jν(ka)
dMν

dθ
+

ηGV(a)
2πa sin θ

}
(2.8.6)

Evaluating the integrals of Eq. (2.8.6) using integral (A.23.1.5) with
(A.23.1.1) and integral (A.23.1.7) with (A.23.1.6) gives:

µ(µ + 1)IµµΓµjµ(ka) =
∞∑


o;1

�(� + 1)F
h
(ka)I
µ (2.8.7)

Equation (2.8.7) is an algebraic expression that equates individual interior
modal coefficients to a sum over exterior modes.

2.9. Solution of the Biconical Antenna Problem

The result of applying the orthogonality of Legendre functions to
point equations is an expression for individual exterior or interior
modal magnitudes as sums over interior or exterior modes, respectively.
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The equations are:

F
h•

(ka) = −V(a)

a

ηG
π

P
(cos ψ)
�(� + 1)I



+
∞∑

ν>0

Γν j•
ν(ka)

I
ν
I



(2.9.1)

Γν jν(ka) =
1

ν(ν + 1)

∞∑

o;1

F
h
(ka)�(� + 1)
I
ν
Iνν

(2.9.2)

Each equation contains an infinite number of linear algebraic equations.
The zero order interior mode satisfies the equation:

Y(a) =
2ia

V(a)

∞∑

o;1

F
h
(ka)P
(cos ψ) (2.9.3)

It remains to solve the three equations for the individual coefficients.
After some manipulation, including multiplying through by h
(σ)/h•


(σ),
Eqs. (2.9.1) and (2.9.2) combine to form the equality:

F
h
(ka) −
∞∑

n=1

Fnhn(ka)
∞∑

ν>0

n(n + 1)
ν(ν + 1)

I
νInν

I

Iνν

j•
ν(ka)h
(ka)
jν(ka)h•


(ka)

= −ηG
π

V(a)
a

P
(cos ψ)
�(� + 1)I



h
(ka)
h•


(ka)
(2.9.4)

Equation (2.9.4) represents an infinite set of linear equations, one for each
coefficient F
, and has the form:

x
 +
∞∑

n=1

N
nxn = B
 (2.9.5)

Because the magnitudes of coefficients F
 decrease rapidly with increas-
ing modal number, and to keep the magnitude within available computer
range, it is helpful to solve the problem with the initial variable x
 equal to
F
h
(ka). After solving for x
 and knowing h
(ka), solve for F
.

Although an equation of the form of Eq. (2.9.5) may be readily solved
using matrix techniques, doing so requires the series to be truncated and
truncation produces errors. The solution procedure is to: (1) pick an arbi-
trary but specific value for the ratio V(a)/a, our choice was one, (2) use the
matrix solution to solve for the product F
h
(ka), (3) divide by h
(ka) to
obtain F
. The procedure determines as many of the previously unknown
exterior coefficients as needed, and is limited only by the capability of avail-
able computers. This completes the calculation of the exterior coefficients.
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Knowing F
h
(ka), Eq. (2.9.2) may be truncated and solved for Fν , and
Eq. (2.9.3) may be truncated and solved for the admittance Y(a):

Y(a) =
2iG

V(a)/a

∞∑

=1

F
h
(ka) (2.9.6)

All quantities on the right side are known. Since for each mode F
h
(ka) is
proportional to V(a)/a, the magnitudes in the numerator and denominator
of Eq. (2.9.6) cancel and the value of Y(a) are correct for any applied
voltage.

To change the field normalization to the more conveniently determined
value V(0)/a = 1, enter the value into the first of Eq. (2.6.13) to obtain:

V(a)
a

=
G

G cos(ka) + iY(a) sin(ka)
(2.9.7)

Use of Eq. (2.9.7) to re-normalize F
 completes the numerical analysis of
biconical transmitting antennas.

Badii, Tomiyama, and Grimes used The Pennsylvania State University
main frame computer, programmed for quadrupole precision, to do numer-
ical analyses of several biconical antennas through 12-place accuracy. The
analyses included series truncation with 17 external (maximum modal num-
ber of 33) and 16 internal modes. Table 2.9.1 lists, with six place accuracy,
values of F
h
(ka) and Γν jν(ka) for an antenna with ψ = 5◦ and ka = 2,
external modes one through 17 and internal modes 1.444 through 16.391.

Table 2.9.2 lists the first six figures of F
 and Γν for the same antenna.
The table values illustrate that the magnitudes of F
 and Γν respectively
decrease and increase rapidly with increasing modal number. The coeffi-
cients and Eq. (2.9.7) determine the terminal admittance, Y(a). Y(a) and
Eq. (2.6.14) determine the antenna’s input impedance Y(0).

Table 2.9.1. Constants for ψ = 5◦, ka = 2.

� F�h�(ka) ν Γν jν(ka)

1 (1.50924 − i2.40989)D−01 0
3 (5.42697 − i1.70419)D−02 1.4444840 (4.33823 − i17.5963)D−02
5 (21.9562 − i6.98844)D−03 3.6094475 (3.68170 − i2.37137)D−02
7 (12.5283 − i3.81076)D−03 5.7548721 (2.23379 − i1.17634)D−02
9 (8.18028 − i2.93358)D−03 7.8873272 (2.59971 − i1.27571)D−02

11 (5.72681 − i2.11622)D−03 10.016937 (−10.8348 + i5.10427)D−02
13 (4.17152 − i1.57614)D−03 12.143571 (−8.89611 + i4.07774)D−03
15 (3.10771 − i1.19513)D−03 14.268228 (−3.57476 + i1.60594)D−03
17 (23.4057 − i9.13644)D−04 16.391498 (−19.5095 + i8.62755)D−04
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Table 2.9.2. Constants for ψ = 5◦, ka = 2.

� F� ν Γν

1 (−6.00998 − i50.5094)D−02 0
3 (−9.96861 − i36.9686)D−03 1.444484 (1.32836 − i5.387966)D−01
5 (−3.75732 − i11.8104)D−04 3.609448 (14.3649 − i9.25205)D−01
7 (−6.96510 − i20.3034)D−06 5.754872 (3.36507 − i1.77209)D+01
9 (−7.74256 − i21.5902)D−08 7.887327 (3.04273 − i1.49310)D+03

11 (−5.7288 − i15.5031)D−10 10.01694 (−16.5306 + i7.78756)D+05
13 (−3.01440 − i7.97810)D−12 12.14357 (−2.67294 + i1.22520)D+07
15 (−1.18075 − i3.07030)D−14 14.26823 (−2.98297 + i1.34009)D+09
17 (−1.22586 − i9.11817)D−18 16.39150 (−6.07222 + i2.68528)D+11
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Fig. 2.9.1. Input impedance of a biconical antenna, with ψ = 5◦, as a function of arm
length. Zero reactance values are at ka = 1.11, 2.59, 4.06, 5.51, 7.14. The first mark is at
ka = 0.5, each succeeding mark increases ka by 0.5.

Figure 2.9.1 shows the input resistance and reactance as a function of
arm length for 5◦ cones. The mark at about −i450 ohms shows the input
impedance of an antenna with ka = 0.5; succeeding marks are spaced at
intervals of cones made longer by ∆(ka) = 0.5. Figure 2.9.2 shows the input
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Fig. 2.9.2. Output power versus ka for a 5◦, biconical, transmitting antenna. Antenna
with 5◦ cone angles and a constant input voltage, showing radiated power peaks at
ka = 1.11, 4.06, 7.14.

impedance of an antenna with ψ = 5◦ as a function of arm length. Note
that the initial resonance is much sharper than succeeding ones; peaks are
centered at about ka ∼= 1.11, 4.06, and 7.14.

By Eq. (2.7.6), each modal contribution to the total magnetic field inten-
sity at the aperture is equal to F
h
(ka)dP
 cos(θ)/dθ; the magnitude of
F
h
(ka) is listed in Table 2.9.1. From the theory of Legendre polynomials,
see Table A.18.1:

d
dθ

P
 cos(θ)
∣∣∣∣
π/2

= (−1)(
−1)/2 (�)!!
(� − 1)!!

(2.9.8)

The ratios of the modal contribution to Hφ to that of the exterior dipole
mode at φ = π/2 are listed in Table 2.9.3. At the aperture, the modal mag-
nitudes decrease so slowly with increasing modal number that a reasonably
accurate description of interface affects requires a large number of modes.
In the far field, on the other hand, only the first few modes determine the
fields.
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Table 2.9.3. Magnetic field modal magnitudes.

� Aperture Far Field ν Factorial Interior
Ratio Ratio Ratio Ratio

1 1 1
3 2.0005D−01 7.5275D−02 1.4444840 3.2498 2.0713
5 8.1033D−02 2.4366D−03 3.6094475 3.6529 5.6258D−01
7 4.6052D−02 4.2199D−05 5.7548721 3.8350 3.4050D−01
9 3.0563D−02 4.5092D−07 7.8873272 3.9504 4.0232D−01

11 2.1471D−02 3.2493D−09 10.016937 6.8083D−02 2.8677D−02
13 1.5682D−02 1.6767D−11 12.143571 3.8859D−01 1.1845D−03
15 1.1710D−02 6.4671D−14 14.268228 9.6692D−01 1.8995D−04
17 8.8363D−03 1.8087D−17 16.391498 1.6152 3.4457D−03

Note: All ratios are normalized by the magnitude of the exterior dipole mode. The first
three columns refer to exterior fields: the first is modal number, the second the modal-to-
dipole field ratio at the aperture and the third the modal-to-dipole field ratio at far field.
The next three columns refer to interior fields: the first is modal number, the second the
magnitude of Eq. (2.9.9), and the third modal-to-aperture field ratio.

In the interior region, modal magnitudes of Hφ(ka, π/2) at φ = π/2 are
equal to:

Γν jν(ka)
(ν)!!

(ν − 1)!!
(2.9.9)

The ratio of factorials and the ratio-magnitude product for each mode
are listed in Table 2.9.3. The ratio is a measure of the rate of conver-
gence of the field expressions with increasing order. Although the exter-
nal modes are monotone decreasing with increasing modal number, the
internal modes are not; the interior modes decrease but not monotonically
with increasing modal number. The difference is because interior-to-exterior
modal coupling depends upon the numerical difference between the interior
modal orders and odd integers, as well as the magnitudes of the modes.

Field values determine the charge and current densities on the antenna
surfaces. Results are summarized as:

Cap: σ = ka; 0 ≤ θ < ψ; π − ψ < θ ≤ π

ρ(ka, θ) = ε

∞∑

o;1

�(� + 1)F

h
(ka)

ka
P
(cos θ)

coulombs
meter2

(2.9.10)

Iθ(ka, θ) =
i

η

∞∑

o;1

F
h
(ka)
dP
(cos θ)

dθ

amperes
meter
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Cones: b < r < a; θ = ψ

ρ(σ, ψ) =

{
ε

∞∑
ν>0

Γν j•
ν(σ)

dMν(cos θ)
dθ

∣∣∣∣
θ=ψ

+
kGV(r)

2πcσ sin ψ

}
coulombs
meter2

Ir(σ, ψ) + I′r(r, ψ)

=

{
− kI(r)

2πσ sin ψ
+

i

η

∞∑
ν>0

Γν jν(σ)
dMν(cos θ)

dθ

∣∣∣∣
θ=ψ

}
amperes
meter

(2.9.11)

On the cones the surface current density is radially directed and on the caps
it is zenith angle directed. The two currents have quite different dependen-
cies upon radius and zenith angle and therefore the current is not contin-
uous through the cone-cap junction. A loop of charge accumulates at the
junction with a sign and magnitude that depends upon antenna structural
details and the radiated wavelength. The resulting ring charge is:

Q(ka, ψ) =
2πa

iω

( ∞∑

o;1

β
h
(ka)
dP
(cos ψ)

dψ

+
∞∑

ν>0

Γν jν(ka)
dMν(cos ψ)

dψ

)
+

iI(a)
ω sin ψ

(2.9.12)

Similarly, charge densities on the cap and cone have quite different
dependencies upon radius and zenith angle. The electric field intensity on
the cone and cap are, respectively θ and r directed, and just off an ideal
90◦ junction the field is directed at an angle of 45◦ as measured from both
the cone and cap.

2.10. Power

For a transmitting antenna, the time-average power in the interior and exte-
rior regions follow by use of the fields of Eqs. (2.7.1) and (2.5.2), respectively.
In the interior region, the time-average real power satisfies the transmis-
sion line rules between radii b and a. The input impedance and the radiated
power are strong functions of the physical location of the standing energy
wave, and it depends upon the antenna arm length.

The time-average power produced by an antenna is equal to the integral
of the real part of the radial component of the complex Poynting vector
at the surface of a virtual sphere, which for ease in calculation is made
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concentric with the antenna. The fields of Eq. (2.5.2) show that the time-
average output power is:

Pav =
σ2

2ηk2 Re

{∫ 2π

0
dφ

∫ π

0
sin θ dθ

×
∞∑


=1

∞∑
n=1

F
F∗
nih•


(σ)h∗
n(σ)

dP


dθ

dPn

dθ

}
(2.10.1)

Replacing the Hankel functions by their far field values and evaluating the
integral gives:

Pav =
1

ηk2

∞∑

=1

�(� + 1)
(2� + 1)

[F
F∗

 ] (2.10.2)

Since all terms on the right side are known, Eq. (2.10.2) is sufficient to
evaluate the output power.

The time-average power input, Pin, to the antenna is:

Pin =
1
2
Re[V(0)I∗(0)] (2.10.3)

By Eq. (2.6.13) the TEM voltage and current in the interior region are:

V(r) =
V(a)
G
{
G cos[k(a − r)] + iY(a) sin[k(a − r)]

}
I(r) = V(a)

{
Y(a) cos[k(a − r)] + iG sin[k(a − r)]

} (2.10.4)

Combining Eqs. (2.10.3) and (2.10.4) gives:

Pin =
1
2
Re[V(a) V∗(a)]Y∗(a) (2.10.5)

Since V(a) and Y(a) are known, Eq. (2.10.5) is sufficient to evaluate the
input power.

In a lossless antenna:

Pin = Pav (2.10.6)

The equality serves as a check on all procedures.
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The complex power, Pc, on a concentric sphere of normalized radius σ is:

kb < σ < ka; Pc(σ) =
∫ π

0
sin θ dθ

{
iπ

2

∑
ν

ΓνΓ∗
ν j•

ν j∗ν

(
dMν

dθ

)2

+
ηk2G

2πσ2 sin2 θ
V(r)I∗(r)

}

σ > ka; Pc(σ) =
iπσ2

ηk2

∫ π

0

(
dP


dθ

)2

sin θ dθ

∞∑

=1

F
F∗

h

•

(σ)h∗


 (σ)

(2.10.7)

With biconical antennas, the electric field intensity just off the surface
of the caps has only a radial component. Therefore there is no normally
directed Poynting vector and no energy is exchanged between the cap and
the field. Since all aperture fields are continuous through the aperture, the
total complex power is a continuous function of radius between positions
a − δ and a + δ, where δ is a differential radial length. Since all fields are
continuous through the aperture, so is the energy density. Adjacent to the
caps, the radial component of the electric field intensity and the azimuth
component of the magnetic field intensity are not equal to zero. Therefore
the energy per unit length as a function of radius is discontinuous between
positions a−δ and a+δ. The magnitude of the discontinuity increases with
increasing cone angle.

Figures 2.10.1–2.10.3 describe the complex powers about three anten-
nas with normalized arms lengths of ka = 0.70, 1.28, and 2.00; all have
cone angles of one degree. The antennas are, respectively, electrically short,
resonant, and electrically long. In all cases the real power, Preal, is constant.

The normalized complex power about an electrically short antenna,
ka = 0.7, is shown in Fig. 2.10.1; the real power is small and the ter-
minal impedance is capacitive. The peak reactive power is capacitive and
occurs at approximately kr = 0.1. From there, the power decreases slowly
with decreasing radius until reaching the terminals, kr = 0. For increasing
radius it decreases more rapidly until reaching kr = ka, where it drops
abruptly, then decreases slowly to zero with increasing radius for kr > ka.

The normalized complex power about a resonant antenna, ka = 1.28 is
shown in Fig. 2.10.2; the real power is large and the terminal impedance
is resistive. The capacitively phased reactive power peak of Fig. 2.10.1 has
moved outward to about kr = 0.8. From there it decreases slowly with
decreasing radius to zero at the terminals. For increasing radius it behaves
very similarly to Fig. 2.10.1.
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Fig. 2.10.1. Normalized real and reactive powers versus kr for a biconical transmitting
antenna; applied voltage V (0) = a, cone angle ψ = 1◦, and ka = 0.70.

The normalized complex power about an electrically long antenna,
ka = 2.00, is shown in Fig. 2.10.3; the real power is less than that of
Fig. 2.10.2 and the terminal impedance is inductive. The capacitively
phased reactive power peak has moved outward to about kr = 1.6. From
there it decreases slowly with decreasing radius, passes through zero and
becomes inductively phased at the terminals. For increasing radius it
behaves very similarly to Figs. 2.10.1 and 2.10.2.

2.11. Biconical Receiving Antennas

For a receiving antenna to function it is necessary that a component of the
electric field intensity be aligned parallel with the antenna axis; optimum
operation is with full alignment. With plane waves, the directions of polar-
ization and propagation are perpendicular and, in the analysis of scattering
from a sphere, the incoming plane wave propagated in the z-direction. To
analyze scattering from a receiving antenna it is convenient for the antenna
axis to lie along the z-axis. It is necessary, therefore, to analyze a z-polarized
plane wave and, with z-polarization, it must propagate somewhere in the
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Fig. 2.10.2. Real and reactive powers versus kr for a biconical transmitting antenna;
applied voltage V (0) = a, cone angle ψ = 1◦, and ka = 1.28.

Fig. 2.10.3. Real and reactive powers versus kr for a biconical transmitting antenna;
applied voltage V (0) = a, cone angle ψ = 1◦, and ka = 2.00.
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xy-plane. We make the arbitrary choice that the plane wave propagates
in the y-direction. It is, therefore, necessary to expand a y-directed wave
in spherical coordinates. Such an expansion is done in a way similar to
the way it was done for a z-directed plane wave, see Sec. 2.1. The desired
exponential is:

ei(ωt−ky) = ei(ωt−σ sin θ sin φ) (2.11.1)

Since Eq. (2.11.1) has no singularities, the spherical coordinate expansion
can contain no spherical Neumann functions, no fractional order Legendre
functions, and no Legendre functions of the second kind. Only spherical
Bessel functions and associated Legendre polynomials remain. The most
general form for the expansion is:

e−iσ sin θ sin φ =
∞∑


=0


∑
m=0

[cGm

 cos mφ − i sGm


 sin mφ]

× �(� + 1)
m

j
(σ)Pm

 (cos θ) (2.11.2)

To complete the description it is necessary to evaluate both infinite
sets of coefficients cGm


 and sGm

 . The reverse superscripts “c” and “s”

indicate coefficients of cosine and sine, respectively, and the multiplying
factor �(�+1)/m is chosen for later convenience. As written Eq. (2.11.2) is in
the form of two sums over infinite sets of coefficients. In order to evaluate the
coefficients it is necessary to reformulate the equation as a doubly infinite
number of separate algebraic equations, each of which provides a definite
value for one coefficient.

From the theory of spherical Bessel functions, Eq. (A.24.9):

j
(σ) =
σ


(2� + 1)!!
+ higher order terms (2.11.3)

Substitute Eq. (2.11.3) into the right side of Eq. (2.11.2); take � differentials
of both sides with respect to σ, then go to the limit as σ goes to zero. The
result is the equality:

(−i)
 sin
 θ sin
 φ =
∞∑


=0


∑
m=0

[cGm

 cos mφ − i sGm


 sin mφ]

× �(� + 1)
m

�!
(2� + 1)!!

Pm

 (cos θ) (2.11.4)
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The left side of Eq. (2.11.4) involves powers of trigonometric functions.
Identities that convert powers to multiples of the angles are:

n even:

sinn φ =
2
2n




n/2−1∑
k=0

(−1)n/2−k (n)!
(n − k)!k!

cos[(n − 2k)φ] +
(n)!

(n/2)!2




n odd:

sinn φ =
2
2n




(n−1)/2∑
k=0

(−1)(n−1)/2−k (n)!
(n − k)!k!

sin[(n − 2k)φ]




(2.11.5)

Substitute Eq. (2.11.5) into Eq. (2.11.4) and then multiply by cos(qφ),
where q is an integer, and integrate over the azimuth angle. Next, multiply
by sin(qφ) and repeat the procedure. The results, where the δ represents
Kronecker delta functions and s represents an integer, are:

cGq



q
�(� + 1)
(2� + 1)!!

Pq

 (cos θ) =

(−i)(
−q)δ(q, 2s)
(q/2)![(� − q)/2]!

sin
 θ

sGq



q
�(� + 1)
(2� + 1)!

Pq

 (cos θ) =

(−i)(
−q)δ(q, 2s + 1)
(q/2)![(� − q)/2]!

sin
 θ

(2.11.6)

By Eq. (2.11.6), cGq

 is equal to zero if q is odd and sGq


 is equal to zero if
q is even. This reduces the total number of nonzero coefficients by half.

Next, multiply the top of Eq. (2.11.6) by Pq

 (cos θ) and integrate over

the zenith angle. Integral forms are Eqs. (1) and (10) of Table A.22.1:

q even:

2
+1�!(� + q)!
(q/2)![(� − q)/2]!(2� + 1)!

δ(� + q, 2s) =
cGq




q
�(� + 1)
(2� + 1)!!

2
(2� + 1)

(� + q)!
(� − q)!

(2.11.7)

By Eq. (2.11.7), cGq

 is equal to zero if � + q is odd. Since q is even, it

follows that � is also even. Conducting the same operation on the second
of Eq. (2.11.6) shows that sGq


 is also equal to zero if � + q is odd. Since,
for this case, q is odd, it follows that � is also odd. Therefore the two
groups of coefficients form non-overlapping sets and the distinction may
be dropped: Gq


 represents both sets of functions. This reduces the set of
non-zero coefficients to one-fourth of the original number in Eq. (2.11.2).
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Simplifying results gives:

Gm

 =

2m(2� + 1)(� − m)!δ(� + m, 2q)

2
�(� + 1)
(

� + m

2

)
!
(

� − m

2

)
!

=
2m(2� + 1)(� − m)!δ(� + m, 2q)

�(� + 1)(� + m)!!(� − m)!!
(2.11.8)

This equation is correct for all modal combinations. Combining
Eqs. (2.11.2) and (2.11.8) shows that the spherical coordinate expansion
for a y-directed, z-polarized plane wave is:

e−iσ sin θ sin φ =

{ ∞∑

=0;e


∑
me

cos(mφ) − i

∞∑

=1;o


∑
mo

sin(mφ)

}

× �(� + 1)
m

Gm

 j
(σ)Pm


 (cos θ) (2.11.9)

2.12. Incoming TE Fields

To find the expression for the radial magnetic field component, Hr, of a
y-directed plane wave with the electric field intensity z-directed, begin by
noting that:

ηHr = sin θ cos φ e−iσ sin θ sin φ

=
i

σ

∂

∂φ
e−iσ sin θ sin φ (2.12.1)

The first equality in Eq. (2.12.1) is by definition. Using the derivative oper-
ation of Eq. (2.12.1) on the spherical coordinate expression for the expo-
nential form of Eq. (2.11.9) gives:

ηHr =


 ∞∑


=1;o


∑
mo

cos(mφ) − i

∞∑

=2;e


∑
me

sin(mφ)


 �(� + 1)Gm




j
(σ)
σ

Pm

 (cos θ)

(2.12.2)

Combining Eq. (2.12.2) with the same field component of Eq. (1.12.9)
determines the constant field coefficients. Knowledge of the constant field
coefficients and the component forms of Eq. (1.12.9) are sufficient to obtain
the full set of TE modes.

2.13. Incoming TM Fields

A longer procedure is necessary to obtain the coefficients for TM modes.
It is convenient to define Er in a way analogous with Eq. (2.12.2), using
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Eq. (2.13.1) to define coefficients cFm

 and sFm


 , then solve for the constants.
The general form for the field is:

Er =
∞∑


=0


∑
m=0

[cFm

 cos(nφ) − isFm


 sin(nφ)]�(� + 1)
j
(σ)

σ
Pm


 (cos θ) (2.13.1)

The radial component of the y-directed plane wave is:

Er = cos θ e−iσ sin θ sin φ

=
i

σ sin φ

∂

∂θ
e−iσ sin θ sin φ (2.13.2)

Using the derivative operation of Eq. (2.13.2) on the spherical coordinate
expression for the exponential form of Eq. (2.11.9) gives:

Er =
i

sin φ


 ∞∑


e;0


∑
me

cos(mφ) − i

∞∑

o;1


∑
mo

sin(mφ)




× �(� + 1)
m

Gm



j
(σ)
σ

dPm

 (cos θ)
dθ

(2.13.3)

Symbols �e; 0 and �o; 1 indicate sums respectively over even integers
starting at zero, and over odd integers starting at one. Symbols me and
mo indicate sums respectively over even and odd integers. A trigonometric
identity that puts Eq. (2.13.3) in a more useful form is:

1
sin φ

≡ 2
∞∑
s=0

sin[(2s + 1)φ] (2.13.4)

Combining Eqs. (2.13.3) and (2.13.4) results in:

Er = 2
∞∑
s=0


i

∞∑

e;0


∑
me

cos mφ +
∞∑


o;1


∑
mo

sin mφ


sin[(2s + 1)φ]

× �(� + 1)
m

Gm



j
(σ)
σ

dPm

 (cos θ)
dθ

(2.13.5)

Other useful trigonometric identities are:

2 sin mφ sin(2s + 1)φ ≡ cos[(m − 2s − 1)φ] − cos[(m + 2s + 1)φ]
2 cos mφ sin(2s + 1)φ ≡ sin[(m + 2s + 1)φ] − sin[(m − 2s − 1)φ]

(2.13.6)
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The procedure is to substitute Eq. (2.13.6) into Eq. (2.13.5), equate
Eqs. (2.13.1) and (2.13.5), differentiate both (� − 1) times by σ, then go to
the limit as σ goes to zero. The result, for � odd, is:

∞∑
s=0

[

∑

mo

{cos[(m − 2s − 1)φ] − cos[(m + 2s + 1)φ]}
]

Gm



m

dPm

 (cos θ)
dθ

=

∑

n=0

[cFn

 cos(mφ) − isFn


 sin(mφ)]Pn

 (cos θ) (2.13.7)

Next multiply Eq. (2.13.7) by cos(qφ), where q is an integer, and inte-
grate over the full range φ = 0 to 2π. This shows that sFn


 is equal to zero
for odd values of �; it follows in a similar way that cFn


 is equal to zero for
even values of �. Therefore the coefficients form non-overlapping sets and,
again, the notation may be simplified by dropping the reverse superscript,
with Fn


 representing both sets of coefficients. This reduces the set of non-
zero coefficients to one-fourth of the original number in Eq. (2.13.1). The
resulting equality is


∑
n=0

δ(q, n)Fn

 Pn


 (cos θ)

=
∞∑
s=0


∑
me

{δ(q, |m − 2s − 1|) − δ(q, m + 2s + 1)}Gm



m

dPm

 (cos θ)
dθ

(2.13.8)

Evaluating the delta functions and collecting terms gives, after some algebra
and with U(q) representing a step function of q:

Fq

P

q

 (cos θ) = 2U(q)

(
−q−1)/2∑
s=0

Gq+2s+1



q + 2s + 1
dPq+2s+1


 (cos θ)
dθ

(2.13.9)

With the aid of Table A.21.1.1, Eq. (2.13.9) may be rewritten as:

Fq

P

q

 (cos θ) = U(q)

(
−q−1)/2∑
s=0

Gq+2s+1



q + 2s + 1

× [(� + q + 2s + 1)(� − q − 2s)Pq+2s

 − Pq+2s+2


 ] (2.13.10)
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Multiply Eq. (2.13.10) by Pq

 (cos θ) and integrate over θ using the integrals

of Table A.22.1.2. After simplifying, the result is:

Fq

 = 2�(� − q)!

(
−q−1)/2∑
s=0

Gq+2s+1



(q + 2s + 1)
(−1)sU(q)

(� − q − 2s − 1)!
(2.13.11)

Combining Eqs. (2.11.9) and (2.13.11), with n equal to any of the full set
of positive integers, gives:

Fq

 =

4(2� + 1)
(� + 1)

(� − q)!
(
−q−1)/2∑

s=0

(−1)sU(q)δ(� + q, 2n + 1)
(� − q − 2s − 1)!!(� + q + 2s + 1)!!

(2.13.12)

The sum of Eq. (2.13.12) is listed in Table A.15.1.8. Incorporating the sum,
replacing q by m to give the same dummy index as Eq. (2.11.9), and letting
n denote any of the full set of possible integers, the two coefficient sets Fm




and Gm

 are equal to:

Fm

 =

2(2� + 1)
�(� + 1)

U(m)(� − m)!δ(� + m, 2n + 1)
(� + m − 1)!!(� − m − 1)!!

Gm

 ≡ 2(2� + 1)

�(� + 1)
m(� − m)!δ(� + m, 2n)

(� + m)!!(� − m)!!

(2.13.13)

Coefficients Fm

 and Gm


 have opposite parity in that Fm

 is other than zero

only if � + m is odd and Gm

 is other than zero only if � + m is even. At

degree m = 0 coefficients Fm

 have the maximum value and coefficients

Gm

 are equal to zero. Values through the first five orders are listed in

Table 2.13.1.

Table 2.13.1. Values of field coefficients for a y-directed, z-polarized plane wave.

F0
1 =

3
2

G1
1 =

3
2

F1
2 =

5
6

G2
2 =

5
12

F0
3 =

7
8

G1
3 =

7
72

F2
3 =

7
48

G3
3 =

7
96

F1
4 =

9
160

G2
4 =

3
160

F3
4 =

3
160

G4
4 =

3
320

F0
5 =

11
16

G1
5 =

11
240

F2
5 =

11
240

G3
5 =

11
1920

F4
5 =

11
5760

G5
5 =

11
11520
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2.14. Exterior Fields, Powers, and Forces

The radial field components of a y-directed, z-polarized plane wave are
given by the combination of Eqs. (2.12.2), (2.13.1), and (2.13.13):

Er =




∞∑

o;1


−1∑
me

cos(mφ) − i

∞∑

e;2


−1∑
mo

sin(mφ)


 �(� + 1)Fm




j
(σ)
σ

Pm

 (cos θ)

ηHr =




∞∑

o;1


∑
mo

cos(mφ) − i

∞∑

e;2


∑
me

sin(mφ)


 �(� + 1)Gm




j
(σ)
σ

Pm

 (cos θ)

(2.14.1)

The angularly directed field components follow from Eq. (2.14.1).
One of the two differences between the field forms of the incoming plane

wave and the scattered waves is that in the limit of infinite radius the scat-
tered wave varies with distance as exp[i(ωt − σ)]/σ. This functional form
requires the radial dependent functions to be spherical Hankel functions of
the second kind. It is, therefore, necessary to replace the spherical Bessel
functions by spherical Hankel functions. Similar to a spherical scatterer,
different modes scatter with different magnitudes and different phases. To
account for these changes introduce two new infinite sets of field constants,
αm


 and βm

 as part of the scattered fields. Let αm


 be the coefficient of TE
modes and βm


 be the coefficient of TM modes. Incorporating these results
into the radial components of the scattered field gives:

Er =


 ∞∑


o;1


−1∑
me

cos(mφ) − i

∞∑

e;2


−1∑
mo

sin(mφ)




×�(� + 1)βm

 Fm




h
(σ)
σ

Pm

 (cos θ)

ηHr =


 ∞∑


o;1


∑
mo

cos(mφ) − i

∞∑

e;2


∑
me

sin(mφ)




×�(� + 1)αm

 Gm




h
(σ)
σ

Pm

 (cos θ)

(2.14.2)

Problem solution requires evaluation of the full parameter sets αm



and βm

 . As with the spherical scatterer, the total field is the sum of the

incoming plane wave fields and the outwardly directed scattered fields. Sum-
ming the radial field components of Eqs. (2.14.1) and (2.14.2) gives the total
radial field components. The angular field components follow directly from
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the radial ones, see Eq. (1.12.9), and are:

Eθ =


 ∞∑


o;1


−1∑
me

cos(mφ) − i
∞∑


e;2


−1∑
mo

sin(mφ)


Fm


 (j•

 + βm


 h•

)

dPm



dθ

−

 ∞∑


e;2


∑
me

cos(mφ) − i

∞∑

o;1


∑
mo

sin(mφ)


Gm


 (j
 + αm

 h
)

mPm



sin θ

ηHφ = −i


 ∞∑


o;1


−1∑
me

cos(mφ) − i

∞∑

e;2


−1∑
mo

sin(mφ)


Fm


 (j
 + βm

 h
)

dPm



dθ

− i


 ∞∑


e;2


∑
me

cos(mφ) − i

∞∑

o;1


∑
mo

sin(mφ)


Gm


 (j•

 + αm


 h•

)

mPm



sin θ

−Eφ = i


 ∞∑


e;2


−1∑
mo

cos(mφ) − i

∞∑

o;3


−1∑
me

sin(mφ)


Fm


 (j•

 + βm


 h•

)

mPm



sin θ

− i


 ∞∑


o;1


∑
mo

cos(mφ) − i

∞∑

e;2


∑
me

sin(mφ)


Gm


 (j
 + αm

 h
)

dPm



dθ

ηHθ =


 ∞∑


e;2


−1∑
mo

cos(mφ) − i

∞∑

o;3


−1∑
me

sin(mφ)


Fm


 (j
 + βm

 h
)

mPm



sin θ

+


 ∞∑


o;1


∑
mo

cos(mφ) − i

∞∑

e;2


∑
me

sin(mφ)


Gm


 (j•

 + αm


 h•

)

dPm



dθ

(2.14.3)

Power on a circumscribing virtual sphere of radius greater than a is obtained
from the radial component of the complex Poynting vector. Substituting
Eq. (2.14.3) into Eq. (2.2.3) and breaking the resulting vector into four
parts gives:

Nr11 =
Re
2η

{(∞∑

o


−1∑
me

cos(mφ) − i

∞∑

e


−1∑
mo

sin(mφ)

)

×
( ∞∑

no

n−1∑
pe

cos(pφ) + i

∞∑
ne

n−1∑
po

sin(pφ)

)

× i Fm

 Fp

n(j•

 + βm


 h•

)(jn + βp∗

n h∗
n)
(

dPm



dθ

dPp
n

dθ

)
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×
( ∞∑


e


−1∑
mo

cos(mφ) − i

∞∑

o


−1∑
me

sin(mφ)

)

×
( ∞∑

ne

n−1∑
po

cos(pφ) + i

∞∑
no

n−1∑
pe

sin(pφ)

)

× i Fm

 Fp

n(j•

 + βm


 h•

)(jn + βp∗

n h∗
n)
(

mPm



sin θ

pPp
n

sin θ

)}
(2.14.4)

Nr12 = −Re
2η

{( ∞∑

o


∑
mo

cos(mφ) − i

∞∑

e


∑
me

sin(mφ)

)

×
( ∞∑

no

n∑
po

cos(pφ) + i

∞∑
ne

n∑
pe

sin(pφ)

)

× i Gm

 Gp

n(j
 + αm

 h
)(j•

n + αp∗
n h•∗

n )
(

dPm



dθ

dPp
n

dθ

)

×
( ∞∑


e


∑
me

cos(mφ) − i

∞∑

o


∑
mo

sin(mφ)

)

×
( ∞∑

ne

n∑
pe

cos(pφ) + i

∞∑
no

n∑
po

sin(pφ)

)

× i Gm

 Gp

n(j
 + αm

 h
)(j•

n + αp∗
n h•∗

n )
(

mPm



sin θ

pPp
n

sin θ

)}
(2.14.5)

Nr21 =
Re
2η

{( ∞∑

o


−1∑
me

cos(mφ) − i

∞∑

e


−1∑
mo

sin(mφ)

)

×
( ∞∑

ne

n∑
pe

cos(pφ) + i

∞∑
no

n∑
po

sin(pφ)

)

× i Fm

 Gp

n(j•

 + βm


 h•

)(j

•
n + αp∗

n h•∗
n )
(

pPp
n

sin θ

dPm



dθ

)

+

( ∞∑

e


−1∑
mo

cos(mφ) − i

∞∑

o


−1∑
me

sin(mφ)

)
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×
( ∞∑

no

n∑
po

cos(pφ) + i

∞∑
ne

n∑
pe

sin(pφ)

)

× i Fm

 Gp

n(j•

 + βm


 h•

)(j

•
n + αp∗

n h•∗
n )
(

mPm



sin θ

dPp
n

dθ

)}
(2.14.6)

Nr22 = −Re
2η

{( ∞∑

e


∑
me

cos(mφ) − i

∞∑

o


∑
mo

sin(mφ)

)

×
( ∞∑

no

n−1∑
pe

cos(pφ) + i

∞∑
ne

n−1∑
po

sin(pφ)

)

× i Fm

 Gp

n(j
 + αm

 h
)(jn + βp∗

n h
∗
n)
(

mPm



sin θ

dPp
n

dθ

)

+

( ∞∑

o


∑
mo

cos(mφ) − i

∞∑

e


∑
me

sin(mφ)

)

×
( ∞∑

ne

n−1∑
po

cos(pφ) + i
∞∑
no

n−1∑
pe

sin(pφ)

)

× i Fm

 Gp

n(j
 + αm

 h
)(jn + βp∗

n h
∗
n)
(

pPp
n

sin θ

dPm



dθ

)}
(2.14.7)

The total surface power is equal to the surface integral of Eqs. (2.14.4)
to (2.14.7). Integrating over the azimuth angle gives a Kronecker delta
function of m and p, decreasing the number of sums by one. Results are
shown in Eqs. (2.14.8) and (2.14.9):∫ 2π

0
dφ(Nr11 + Nr12)

= Re

[(∑

o

∑
no

∑
me

+
∑

e

∑
ne

∑
mo

)
iFm


 Fm
n (j•


 + βm

 h•


)(jn + βm∗
n h∗

n)

−
(∑


o

∑
no

∑
mo

+
∑

e

∑
ne

∑
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(2.14.8)
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∫ 2π

0
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n ) (2.14.9)

To complete the evaluation it is necessary to integrate Eqs. (2.14.8) and
(2.14.9) over the zenith angle. The integral of Eq. (2.14.9) gives a null
result. Evaluating the integral of Eq. (2.14.8) and replacing the coefficients
by the values of Eq. (2.13.13) gives:
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(2.14.10)

In the limit of infinite radius, Eq. (2.14.10) goes to:
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(2.14.11)



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap02

80 The Electromagnetic Origin of Quantum Theory and Light

The terms are interpreted similarly to those of Eq. (2.2.7) for scattering
from a sphere: terms proportional to both αm

n αm∗
n and βm

n βm∗
n describe

time-average power scattered away from the antenna; each term is posi-
tive. Terms proportional to Re αm

n and Reβm
n are negative and describe

inwardly directed power; the time integral of Eq. (2.14.11) is the negative
of the extinction (absorbed plus scattered) energy. For an ideal antenna
with shorted terminals, the two sets of terms have equal magnitude and
opposite sign and sum to zero.

2.15. The Cross-Sections

The purpose of this section is to compare and contrast the scattering prop-
erties of spheres with those of a biconical receiving antenna. One view of
a receiving antenna is as a “lossy” scatterer. Cross-sections were defined
in Sec. 2.2. Analogously with Eq. (2.2.10), the scattering cross section CSC

is defined to equal the ratio of scattered power to the input power den-
sity. The geometric cross section is equal to the cross sectional area of
the scatterer. Using Eq. (2.14.11) to determine the scattered power, for
a spherical scatterer of radius a the scattering-to-geometric cross section
ratio is:
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}
(2.15.1)

The normalized extinction cross-section CEX is equal to the ratio of the
total power extracted from the incoming plane wave to the geometric cross
sectional area of the scatterer. For a spherical scatterer of radius a and
using Eq. (2.14.11) to determine the total power extracted from the wave,
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the extinction-to-geometric cross-section ratio is:
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= − 4
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}
(2.15.2)

The absorption cross-section, CAB, is equal to the absorbed power-to-cross
sectional area of the scatterer ratio. Using Eq. (2.14.11), the value is:
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(2.15.3)

The thrust on the antenna from the total power absorbed is c times the
value of extinction power, Eq. (2.15.2). The thrust on the antenna from the
scattered power is equal to the component of scattered wave in the direction
of the incoming field integrated over a virtual surface:

FySC = − σ2

2ηk2

∫ 2π

0
sin φ dφ

∫ π

0
sin2 θ dθ Re(Nr) (2.15.4)
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Inserting the scattered field terms of Eq. (2.14.3) into Eq. (2.15.4) gives:∫ 2π

0
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(2.15.5)

Next, integrate Eq. (2.15.4) to find the directed power through a virtual
circumscribing sphere, with the aid of Tables A.22.1.8, 22.1.9, 22.1.11, and
22.1.12. In the limit where the scattered waves extend to infinite radius,
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the normalized y-directed force due to the scattered field is:
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(2.15.6)

The normalized force due to the extinction power is:
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(2.15.7)

To compare results obtained using y- and z-directed incoming plane waves,
consider scattering by an ideally conducting sphere. For a z-directed
wave, the coefficients are given by Eqs. (2.3.5) and (2.3.6) for a y-directed
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wave, the boundary conditions follow from Eq. (2.15.3), and are:

j•

(ka) + βm


 h•

(ka) = 0 j
(ka) + αm


 h
(ka) = 0 (2.15.8)

These lead to:

βm

 (ka) = − j•


(ka)
h•


(ka)
αm


 (ka) = − j
(ka)
h
(ka)

(2.15.9)

These equations show that the coefficients are independent of degree. For
the case where the scatterer radius is much less than a wavelength the
dipole coefficients are:

β0
1(ka) = − 2/3

2/3 − i/(ka)3
∼= 2(ka)3

3i

α1
1(ka) = − (ka)/3

(ka)/3 + i/(ka)2
∼= i(ka)3

3

(2.15.10)

The cross sections and normalized forces are:
CEX

CGE
=

CSC

CGE
=

cfEX

CGE
=

10(ka)4

3
(2.15.11)

These results are equal to those of Eqs. (2.3.11) and (2.3.12).

2.16. General Comments

Biconical receiving antennas are of special significance for the same reasons
biconical transmitting antennas are: only biconical and ellipsoidal shapes
closely represent practical antennas and only for them do mathematically
complete solutions exist. The list of practical antennas that biconical shapes
approach is longer than the list for ellipsoidal ones. The receiving antenna
problem is a scattering problem. The antenna is immersed in an other-
wise steady state plane wave. Some of the incoming energy, the extinction
energy, is transferred to the scatterer and the rest continues unperturbed;
part of the extinction energy is absorbed and the rest is radiated away as a
scattered field. The objective is to analyze a biconical receiving antenna
of arbitrary cone length and half angle and with an arbitrary value of
impedance attached to the terminals. A full analysis requires knowing all
fields at all points in space. This is obtained by matching the full sets of
possible field forms in the external and internal regions, see Fig. 2.4.1,
to conducting boundary conditions at the antenna surfaces and to vir-
tual boundary conditions in the open aperture. The extinction energy and
momentum, the scattered energy and momentum, and the surface charge
and current densities may be evaluated once the fields are known. The
absorbed power and the impedance at the antenna terminals follow from
the surface currents and the interior fields.
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For transmission, either voltage V(0) from a constant voltage source or
current I(0) from a constant current source is applied between the terminals
of the cones at r = b. There are no incident fields. For reception, the power
sink at r < b is a passive, isotropic energy absorber. Extinction power is
extracted from an incident, y-directed plane wave; some is scattered and
some is absorbed. It is convenient to break space into regions similar to
those of transmitting antennas. The regions are:

Sink Region

r < b; 0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π (2.16.1)

Interior Region:
Arms:

b < r < a; 0 ≤ θ < ψ and π − ψ < θ ≤ π; 0 ≤ φ ≤ 2π (2.16.2)

Space:

b < r < a; ψ < θ < π − ψ; 0 ≤ φ ≤ 2π (2.16.3)

Exterior Region:
Space:

r > a; 0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π (2.16.4)

Aperture:

r = a; ψ ≤ θ ≤ π − ψ; 0 ≤ φ ≤ 2π (2.16.5)

Arms:

r = a; 0 ≤ θ < ψ and π − ψ < θ ≤ π; 0 ≤ φ ≤ 2π (2.16.6)

The spherical coordinate expansion for a y-directed plane wave,
Eqs. (2.14.1)–(2.14.3) contain products of trigonometric functions, har-
monic spherical functions, and spherical Bessel functions of integer order,
with orders ranging from one to infinity. Although exterior and interior
modal products of different degrees are orthogonal, exterior and interior
modes of different orders are not. Each exterior order contributes to all inte-
rior orders of the same degree. Interior modes are associated with surface
current and charge densities on the cones. All driven antenna modes absorb
energy and momentum from the plane wave, some of each is absorbed
and some of each is scattered away. The zero degree plane wave modes
excite TM scattering modes and TM and TEM interior modes similar to
the transmitter modes; modes known as transmitter modes. Higher degree
exterior modes excite both TM and TE scattered and interior modes. With
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these modes the extinction and scattered energies are equal and result in
the absorption of momentum but not energy from the wave; these are the
receiver modes.

As an example of receiver modes, at low enough frequencies a surface
current flows along the illuminated face of the antenna; it is largest near the
caps. (Detailed sketches are shown in Fig. 2.21.1.) Going toward the conical
apices at each differential length some of the current terminates on local
electric charge densities, until it disappears entirely at the terminals. At
the cone-cap junction, some charge is stored and some passes through onto
the cap. Since the currents into and out of the cone-cap junctions are not
necessarily equal, an oscillating ring of charge resides there. A similar cur-
rent distribution is repeated, but oppositely directed, on the shadowed side
of the antenna. The current pattern generates a magnetic dipole moment;
the cross sectional area of the dipole is the geometrical cross section of the
cones perpendicular both to the incoming wave and to the antenna axis, in
this case the x-direction. By Lenz’s law, the phase of the generated mag-
netic moment is opposite that of the incoming magnetic field and results in
a scattered wave.

Just as for transmission, the charge and current densities on the cones
are functions of the interior fields and those on the caps are functions of the
exterior fields. The signs of adjacent arm and cap surface and line charge
densities may or may not be the same. The current that flows from the cone
to the cone-cap junction is not necessarily equal to the current that flows
from the junction to the cap and, as noted, differences result in a ring of
charge at the junction.

2.17. Fields of Receiving Antennas

Combining Eqs. (2.13.13) and (2.14.3) shows the TM and TE modes
respectively to be proportional δ(� + m, 2n + 1) and δ(� + m, 2n), and
expresses the condition that the associated Legendre polynomials satisfy
the symmetry conditions:

TM modes Pm

 (cos θ) = −Pm


 (− cos θ)
TE modes Pm


 (cos θ) = Pm

 (cos θ)

(2.17.1)

The total exterior field, the modal fields of the plane and scattered waves,
are equal to the sum of Eqs. (2.14.1)–(2.14.3). A complete field evaluation
requires evaluation of the scattering field coefficients.

The interior modal structure of a receiving antenna depends upon the
symmetries both of the driving field and the antenna. For the antenna
axis parallel with the direction of polarization, the antenna implementation
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retains the symmetry of the external fields in the internal region. As was the
case for a transmitting antenna, finite interior fields require the multiplying
coefficient of all functions yν(σ) to be equal to zero for ν > 0. Coefficients of
the jν(σ) functions are nonzero for both TM and TE modes. The symmetry
of the interior TM and TE modes remains the same as the exterior symme-
try, with undetermined coefficients respectively defined to be Γm

ν and Λm
ν .

A full solution requires evaluation of the functional relationships between
internal coefficients Γm

ν and Λm
ν and the scattering coefficients αm


 and βm

 .

Combining all the above for the interior fields, the zero degree terms
have the same form as the transmitter terms, Eq. (2.7.1), and combine with
the higher degree terms requirements to provide the expanded equation set:
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(2.17.2)
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As was the case for transmission, in the limit as b goes to zero the
only nonzero terms just off the r = b surface are the TEM components
of Eθ and Hφ. The TEM fields guide the energy through the interior
region. Repeating the procedure of Eq. (2.9.6), evaluate the integral using
Eq. (2.17.2): ∫ ψ

−ψ

dθHφ

∣∣
m=0

The result is the algebraic equation:

V(a)
a

=
2iG

YR(a)

∑



D0

(j
 + β0


 h
) (2.17.3)

2.18. Boundary Conditions

Several boundary conditions have been built into field Eqs. (2.14.2) and
(2.14.3): Rotational symmetry requires m to be an integer and regularity of
the zenith angle functions on the exterior axes, r > a, requires integer order
Legendre functions of the first kind. The limiting condition as the radius
becomes infinite requires spherical Hankel functions of the second kind. In
the interior, regularity of the functions at r = b requires the coefficients of
all negative order Bessel functions to be zero. The boundary conditions still
to be applied are:

Interior region, b < r < a, θ = ψ and θ = π − ψ: On the cone arms
the tangential components of the electric field intensity, Er and Eφ, and the
normal component of the magnetic field intensity, Hθ, are zero.

Exterior region, r = a, θ < ψ and θ > π−ψ: The tangential components
of the electric field intensity, Eθ and Eφ, and the normal component of the
magnetic field intensity, Hr, are zero.

Boundary, r = a, ψ < θ < π − ψ: All fields are continuous through the
virtual interface between internal and external regions.

To satisfy the first boundary condition, note that the tangential com-
ponent of the electric field and the normal component of the magnetic field
are equal to zero at the surface of the cone. From Eq. (2.17.2), the sums
are equal to zero for all interior radii only if:

Mm
ν (cos ψ) = 0 and dLm

ν (cos θ)/dθ
∣∣
θ=ψ

= 0 (2.18.1)

For each degree, an infinite number of orders satisfy Eq. (2.18.1).
Figure 2.7.1 includes plots of the first few values of ν and ψ for func-
tions with m = 1 that satisfy these boundary conditions. In the limit as
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ψ approaches zero the first solutions for the odd and even functions occur
respectively at ν = 2 and 3.

To satisfy the second boundary condition from Eq. (2.14.3) it is neces-
sary that:

θ < ψ and θ > π − ψ

Eθ(ka, θ, φ) = 0 and Eφ(ka, θ, φ) = 0 (2.18.2)

To satisfy the third boundary condition, with δ a vanishingly small positive
number, it is necessary that:

ψ < θ < π − ψ

E(ka − δ, θ, φ) = E(ka + δ, θ, φ)

H(ka − δ, θ, φ) = H(ka + δ, θ, φ)

(2.18.3)

The fields on the left side of Eq. (2.18.3) are those of Eq. (2.17.2). The
fields on the right side of Eq. (2.18.3) are the sum of Eqs. (2.14.1)–(2.14.3).
Desired algebraic equations are most easily obtained using the second
and third boundary conditions to construct the four integral equalities of
Eqs. (2.18.4) through (2.18.7). In addition to these four equalities, the pro-
cess is to be repeated with a similar set of integral equations after replacing
sin(mφ) by cos(mφ) and cos(mφ) by − sin(mφ). Although the zenith angle
limits on both integrals would be ψ to π−ψ the second boundary condition
permits changing the limits to (0 to π) for the electric field components.

∫ π−ψ

ψ

sin θ dθ

∫ 2π

0
dφ

{
Eθ

dPm



dθ
cos(mφ) − Eφ

mPm



sin θ
sin(mφ)

}
σ=ka−δ

=
∫ π

0
sin θ dθ

∫ 2π

0
dφ

{
Eθ

dPm



dθ
cos(mφ) − Eφ

mPm



sin θ
sin(mφ)

}
σ=ka+δ

(2.18.4)

∫ π−ψ

ψ

sin θ dθ

∫ 2π

0
dφ

{
Hφ

dMm
ν

dθ
cos(mφ) + Hθ

mMm
ν

sin θ
sin(mφ)

}
σ=ka−δ

=
∫ π−ψ

ψ

sin θ dθ

∫ 2π

0
dφ

{
Hφ

dMm
ν

dθ
cos(mφ) + Hθ

mMm
ν

sin θ
sin(mφ)

}
σ=ka+δ

(2.18.5)
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∫ π−ψ

ψ

sin θ dθ

∫ 2π

0
dφ

{
Eθ

mPm



sin θ
cos(mφ) − Eφ

dPm



dθ
sin mφ

}
σ=ka−δ

=
∫ π

0
sin θ dθ

∫ 2π

0
dφ

{
Eθ

mPm



sin θ
cos(mφ) − Eφ

dPm



dθ
sin mφ

}
σ=ka+δ

(2.18.6)

∫ π−ψ

ψ

sin θ dθ

∫ 2π

0
dθ

{
Hφ

mLm
ν

sin θ
cos(mφ) + Hθ

dLm
ν

dθ
sin(mφ)

}
σ=ka−δ

=
∫ π−ψ

ψ

sin θ dθ

∫ 2π

0
dθ

{
Hφ

mLm
ν

sin θ
cos(mφ) + Hθ

dLm
ν

dθ
sin(mφ)

}
σ=ka+δ

(2.18.7)

Carrying out the integral operations of Eqs. (2.18.4) through (2.18.7)
with the similar set obtained by replacing sin(mφ) by cos(mφ) and cos(mφ)
by − sin(mφ) results in the four linear equations:

�(� + 1)j•

F

m

 I

 + �(� + 1)βm


 h•

F

m

 I



= �(� + 1)
∞∑
vo

Γm
ν j•

νK
ν − ηGV(a)
πa

P
δ(m, 0) + 2mPm



∞∑
ρ

Λm
ρ jρLm

ρ

(2.18.8)

ν(ν + 1)Γm
ν jνKνν =

∞∑
n

n(n + 1)Fm
n jnKnν +

∞∑
n

n(n + 1)Fm
n βm

n hnKnν

(2.18.9)

�(� + 1)Gm

 j
I

 + �(� + 1)Gm


 αm

 h
I

 =

∞∑
ρ

ρ(ρ + 1)Λm
ρ jρI
ρ (2.18.10)

ρ(ρ + 1)Λm
ρ j•

ρIρρ = ρ(ρ + 1)
∞∑
r

Gm
r j•

rIrρ + ρ(ρ + 1)
∞∑
r

Gm
r αm

r h•
rIrρ

− 2mLm
ρ

∞∑
n

Fm
n jnPm

n − 2mLm
ρ

∞∑
n

Fm
n βm

n hnPm
n

(2.18.11)

All but five terms are known in Eqs. (2.18.8)–(2.18.11): V(a), αm

 , βm


 ,

Λm
ρ , and Γm

ν . Problem solution requires evaluation of each of them. With
transmission there were but three unknowns: YT(a), β
, and Γν .
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2.19. Zero Degree Solution

Since only the zero degree modes carry absorbed power, as discussed in
Sec. 2.7 it is convenient to analyze them first. Equation (2.17.3) and the
m = 0 portion of Eqs. (2.18.8) through (2.18.11) are:

V(a)
a

=
2iG

YR(a)

∞∑
no

F0
n(jn + β0

nhn)

�(� + 1)F0

β

0

 h•


I

 = −�(� + 1)F0

 j

•

I

 − ηGV(a)

πa
P
 + �(� + 1)

∞∑
ν

Γν j•
νK
ν

ν(ν + 1)Γν jνKνν =
∞∑
no

n(n + 1)F0
njnKnν +

∞∑
no

n(n + 1)F0
nβ0

nhnKnν

(2.19.1)

The transmitter coefficients β
 and the receiver products F0

β

0

 play similar

roles: both sets of coefficients multiply TM fields that emanate from the
antenna. Although Eq. (2.19.1) and Eqs. (2.9.1) to (2.9.3) are similar in
form, a different approach to problem solution is helpful.

A case of special interest is an equated load. For this case, the
receiver antenna load impedance equals the input impedance the trans-
mitter antenna applies to incoming power. To analyze this case, adjust the
driving field so that V(0) = a. The antenna parameters given in Eq. (2.19.1)
are then the same as those of the transmitter case of Eqs. (2.9.1) to (2.9.3).
Since identical equations give identical solutions:

β
h


F0



= j
 + β0

 h
 (2.19.2)

Equation (2.19.2) shows that the relative phases and magnitudes of the
transmitted and scattered fields per mode, �, are not the same. Several
coefficient values are tabulated in Table 2.19.3. Values are calculated using
the numerical results of Table 2.19.1 and Eq. (2.19.2) for the special case
YR(a) = YT(a), ka = 2, ψ = 5◦, and V(0) = a.

Comparison of the transmitting and receiving equations shows that:

Γ0
ν = Γν (2.19.3)

That is, the internal field coefficients for the two cases are the same.
Equations (2.19.2) and (2.19.3) contrast the relationships between the
transmission and reception coefficients. Comparing Eqs. (2.9.6) and (2.19.1)
shows that the termination admittances Y(a) for the two cases are identi-
cal. Equation (2.6.16) translates the admittance Y(r) to the terminals and
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Table 2.19.1. Values of β0
� for the special case of an equated

load, ka = 2, ψ = 5◦, and V(0) = a.

� Real Part, β0
� Imaginary Part, β0

� × Order of
Magnitude

1 −1.0073 +0.15175 1
3 −1.3064 −0.14110 10−2

5 −5.4652 −1.5762 10−3

7 −1.1887 −3.4642 10−5

confirms that the terminal impedances of the antenna as a transmitter and
as a receiver are identical.

YR(0) = YT(0) (2.19.4)

For an arbitrary but known load impedance, the solution procedure is
to use Eq. (2.6.17) to solve for Y(a) and then combine with Eqs. (2.19.1)
to (2.19.3) to obtain the linear equation:

β0

 h
 =

h


F0

h

•

I



{
−F0


 j
•

I

 − 2ηiG2P


π�(� + 1)YR(a)

∞∑
no

F0
njn

+
∞∑
ν

∞∑
no

F0
n
n(n + 1)j•

ν jnK
νKnν

ν(ν + 1)jνKνν
− 2ηiG2P


π�(� + 1)YR(a)

∞∑
no

F0
nβ0

nhn

+
∞∑
ν

∞∑
no

F0
n
n(n + 1)j•

νK
νKnν

ν(ν + 1)jνKνν
β0

nhn

}
(2.19.5)

Symbols I

 and K
ν and others represent integrals listed in Tables A.22.1
and A.23.1. The equation form is the same as Eq. (2.9.5), and the solution
technique is the same. Since all terms in Eq. (2.19.5) are known except β0




it may be solved first for β0

 h
 and then for β0


 . Once the β0

 are known,

Eq. (2.19.1) may be used to solve for V(a). The value of Γ0
ν may be obtained

using Eq. (2.19.3). The zero degree solution is then complete.

2.20. Non-Zero Degree Solutions

To find the solution for m > 0, solve for the exterior field parameters αm



and βm

 using Eqs. (2.18.8) through (2.18.11). Rewriting them in the forms
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that most easily does this:

(βm

 h
) =

h


�(� + 1)h•

F

m

 I



{
−�(� + 1)Fm


 j•

I



+ �(� + 1)
∞∑
ν

∞∑
n

Fm
n

n(n + 1)jnj•
νKnνK1ν

ν(ν + 1)jνKνν

× 2mPm



∞∑
ρ

∞∑
r

Gm
r

jρj•
rL

m
ρ Irρ

j•
ρIρρ

− 4m2Pm



∞∑
ρ

∞∑
n

Fm
n

jρjn(Lm
ρ )2Pm

n

ρ(ρ + 1)j•
ρIρρ

+ 2mPm



∞∑
ρ

∞∑
r

Gm
r

jρh•
rL

m
ρ Irρ

j•
ρhrIρρ

(αm
r hr)

− 4m2Pm



∞∑
ρ

∞∑
n

Fm
n

jρ(Lm
ρ )2Pm

n

ρ(ρ + 1)j•
ρIρρ

(βm
n hn)

+ �(� + 1)
∞∑
ν

∞∑
n

Fm
n

n(n + 1)j•
νKnνK
ν

ν(ν + 1)jνKνν
(βm

n hn)

}
(2.20.1)

(αm

 h
) =

1
�(� + 1)Gm


 I



{
− �(� + 1)Gm


 j
I



+
∞∑
ρ

∞∑
r

Gm
r

ρ(ρ + 1)jρj•
rIrρI
ρ

j•
ρIρρ

− 2m

∞∑
ρ

∞∑
n

Fm
n

jρjnI
ρLm
ρ Pm

n

j•
ρIρρ

×
∞∑
ρ

∞∑
r

Gm
r

ρ(ρ + 1)jρh•
rIrρI
ρ

j•
ρhrIρρ

(αm
r hr)

− 2m
∞∑
ρ

∞∑
n

Fm
n

jρI
ρLm
ρ Pm

n

j•
ρIρρ

(βm
n hn)

}
(2.20.2)

Equations (2.20.1) and (2.20.2) have the general algebraic form:

x
 +
∞∑
n

N
nxn +
∞∑
r

M
ryr = B


y
 +
∞∑
n

S
nxn +
∞∑
r

R
ryr+ = A


(2.20.3)

All needed integrals are listed in Tables A.22.1 and A.23.1 and all other
parameters are known. The sums of Eqs. (2.20.1) and (2.20.2) may be
truncated and solved concurrently for coefficients αm


 and βm

 , from which



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap02

94 The Electromagnetic Origin of Quantum Theory and Light

Γm
ν and Λm

ν follow directly. Knowledge of these four parameters provides
the total solution of the fields around a receiving antenna.

Although the integral of products of Legendre functions of integer and
noninteger orders, Mν(cos θ)P
(cos θ) for example, are largest if ν is nearly
equal to �, none of them vanish. Therefore cross coupling exists between all
modes of the same degree, m. Coupling between αm


 and βm

 terms shows

that all modes, even and odd, of the same degree are coupled. That is, each
TM mode and each TE mode interacts with all other modes, both TM and
TE. Each value of βm


 and αm

 depends both upon all values of βm

λ and αm
λ ,

but are independent of βp

 and αp


 for m �= p.
Since for m = 0 and ψ approaching zero the order approaches an integer

value quite slowly, the integrals of cross modal terms remain significantly
large, and therefore, coupling is significantly large even for ψ near zero.

2.21. Surface Current Densities

A conducting boundary condition is that the surface current density, Ĩ, in
amperes per meter is related to the magnetic field adjacent to it by the
vector-phasor relationship

Ĩ = n × H̃ (2.21.1)

Unit vector n is normal to and outbound from the conductor. Knowl-
edge of the field coefficients permits the calculation of all antenna currents.
Figure 2.21.1 illustrates surface current patterns for the lowest order exte-
rior modes, (�, m) = (1, 0) and (1,1) and the three lowest order interior
ones, modes (ν, m) = (0, 0), (1 + δ, 0), and (2 + δ, 1), where δ is a van-
ishingly small positive number. The exact interior modal number depends
upon the value of ψ: with 5◦ cones the modal numbers 1 + δ and 2 + δ are
respectively 1.444 484 and 2.022 029. The figure depicts current patterns
for a small antenna, a < π/4. A plane wave is incident from the left, with
a z-directed electric field intensity. In the interior the TEM mode fields,
see Eq. (2.7.1), are largest at r = b. The current of mode (1 + δ, 0) has
rotational symmetry around the cones. The current of mode (2 + δ, 1) is in
phase with mode (1 + δ, 0) on the front face and out of phase on the back
face; it is equal to zero in between. Both are TM driven modes, both are
zero at the origin, both are large near r = a, and both are zero at the sink.
The current of mode (1+δ, 0) produces a z-directed electric dipole moment.
The current of mode (2+δ, 1) produces a y-directed magnetic dipole mode,
with a magnetic field phased according to Lenz’s law. In the exterior, the
currents of the two lowest modes, (1, 0) and (1, 1), produce respectively
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(0,0) (1+,0) (2+,1)

(1,1) Cap
currents

Interior
currents

(1,0)

Fig. 2.21.1. Receiving modal surface currents, wave incoming from left. In the interior
region the (0, 0) current is maximum and the (1+, 0) and (2+, 1) currents are zero at
r = 0. The (1+, 0) current is unidirectional and rotationally symmetric around the arms.
The (2+, 1) current is bi-directional, creating a magnetic moment directed in accordance
with Lenz’s law. In the exterior, the (1, 0) cap currents are θ-directed, rotationally sym-
metric and zero at the midpoint. The (1, 1) currents are x-directed with a maximum at
the midpoints.

TM and TE fields. The cap current density of mode (1, 0) is θ-directed and
zero at the center, and the current density of mode (1, 1) is x-directed and
maximum at the center.

2.22. Power

The time-average power on the surface of a virtual surface of radius σ/k

that circumscribes the antenna is

P =
σ2

k2

∫ 2π

0
dφ

∫ π

0
sin θ dθ Re(Nr) (2.22.1)

For receiving antennas, the time-average received power is equal to the
negative of the real part of Eq. (2.22.1), after inserting the coefficients
evaluated in Secs. 2.19 and 2.20. The power and the cross sections were
calculated in Secs. 2.14 and 2.15. The normalized absorption cross section
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CAB/CGE, see Eq. (2.15.3), is:

CAB

CGE
= − 4

k2a2

{[ ∞∑

o


−1∑
me

+
∞∑

e


−1∑
mo

]

× (2� + 1)(� − m)!!(� + m)!!
�(� + 1)(� − m − 1)!!(� + m − 1)!!

[Re(βm

 ) + βm


 βm∗

 ]

}

− 8
k2a2

{[ ∞∑

o


∑
mo

+
∞∑

e


∑
me

]

× m2(2� + 1)(� − m − 1)!!(� + m − 1)!!
�(� + 1)(� − m)!!(� + m)!!

[Re(αm

 ) + αm


 αm∗

 ]

}

(2.22.2)

As was shown for a sphere, Secs. 2.2 and 2.3, the portion of Eq. (2.22.2)
proportional to the real part of the coefficients represents the extinction
power extracted from the wave, and the portion proportional to sum of the
square of the coefficients represents power scattered away from the antenna.
The sum, expressed by Eq. (2.22.2), is the power absorbed by the antenna.

The incoming wave transfers both momentum and energy to the
antenna. Since the incoming plane wave is y-directed, linear momentum
is transferred to the antenna in that direction. The force on the scatterer
is related to the momentum transferred as:

Fy =
d
dt

(linear momentum) (2.22.3)

The net force applied to the antenna follows from the rate of momentum
absorption and scattering, and is equal to:

Fy =
σ2

ck2

∫ 2π

0
sin φ dφ

∫ π

0
Nr sin2 θ dθ (2.22.4)

By Eq. (2.15.7) the normalized force, fy, due to the extinction power is:

cfyEX

CGE

= − 8ε

k2a2

{[ ∞∑

o


−1∑
me

+
∞∑

e


−1∑
mo

]
U(m)(2� + 1)(� − m)!!(� + m)!!

�(� + 1)(� − m − 1)!!(� + m − 1)!!
Re(βm


 )

+

[ ∞∑

o


∑
mo

+
∞∑

e


∑
me

]
m2(2� + 1)(� − m − 1)!!(� + m − 1)!!

�(� + 1)(� − m)!!(� + m)!!
Re(αm


 )

}

(2.22.5)
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By Eq. (2.15.6) the normalized scattering force is:

cfySC

CGE
= − 4

k2a2

{(∑

o

∑
me

+
∑

e

∑
mo

)

×
(

(βm

 βm+1∗


+1 + βm∗

 βm+1


+1 )
U(m)(� − m)!!(� + m + 2)!!

(� + 1)2(� − m − 1)!!(� + m − 1)!!

+ (βm

 βm+1∗


−1 + βm∗

 βm+1


−1 )
U(m)(� − m)!!(� + m)!!

�2(� − m − 3)!!(� + m − 1)!!

)

+

(∑

o

∑
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∑

e

∑
me

)(
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 αm+1∗

+1 + αm∗


 αm+1

+1 )
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 αm+1∗
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 αm+1
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∑
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 βm

 + αm+1


 βm∗
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×
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(m + 1)(2� + 1)(� − m)!!(� + m)!!
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 βm+1∗
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×
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)}
(2.22.6)

For the special case m = 0, the scattering cross-section and normalized
force terms are:

CSC

CGE
=

4
k2a2

∞∑

o

(2� + 1)�!!2

�(� + 1)[(� − 1)!!]2
β0


 β0∗

 (2.22.7)

cfySC

CGE
= − 2

k2a2
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(β0


 β1∗

+1 + β0∗


 β1

+1)

�!!(� + 2)!!
(� + 1)2[(� − 1)!!]2
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 β1∗


−1 + β0∗

 β1
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�!!2

�2(� − 3)!!(� − 1)!!

+ (α1∗

 β0


 + α1

β
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2(2� + 1)�!!2

�2(� + 1)2[(� − 1)!!]2

}
(2.22.8)
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If the antenna is electrically small and only the dipole terms are significantly
large, Eq. (2.22.8) shows that:

cfySC

CGE
= − 3

k2a2 (α1∗
1 β0

1 + α1
1β

0∗
1 ) (2.22.9)

Although the energy density-to-linear momentum density in the incom-
ing plane wave is c, as discussed in Sec. 2.3 the received energy-
to-momentum ratio satisfies the relationship:

Received Energy
Received Momentum

≤ c (2.22.10)

This is in contrast with a transmitting antenna. When transmitting power
is radiated over a spread of angles and the average value of the cosine of
the angle can never be greater than one. Therefore, the transmitted energy-
to-momentum ratio obeys the relationship:

Transmitted Energy
Transmitted Momentum

≥ c (2.22.11)
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CHAPTER 3

Antenna Q

It is commonplace to use complex notation when analyzing electromagnetic
fields and their properties. The primary reason is with variables expressed in
terms of exponentials of imaginary arguments the operations of differential
and integral calculus become simple arithmetic ones. This changes a real
vector field to a phasor vector field. Although it simplifies analytical oper-
ations it introduces complications. Phasor notation begins with a physical
quantity expressed using real trigonometric functions and to that adds the
imaginary term necessary to change the trigonometric function to an expo-
nential term with an imaginary argument and the same real part. Doing a
linear operation on the exponential function is in many cases much easier
than operating directly on the trigonometric function, and discarding the
imaginary part leaves the same real part. However a disadvantage becomes
apparent during multiplication. For example, taking the product of two
trigonometric functions gives the desired real value. Taking the product of
two phasor exponentials returns that value and the product of imaginary
parts. It is necessary to construct special rules of multiplication to obtain
the correct answer.

There is also another and more subtle difficulty with complex notation.
Given an electric voltage and dependent current expressed in trigonometric
forms, the product of the two is a time varying power. Part is in time phase
with the input voltage and part is in phase quadrature. This time varying
power can, without loss of generality, be expressed using complex variables.
It is not a phasor since both real and imaginary parts have physical sig-
nificance. It is a complete description of physical reality and ‘i’ indicates a
time operation. Such complex powers when referenced to the same phase
add by simple addition. However, since the phasing of the power is refer-
enced to the phase of the voltage if another voltage-current pair is brought
into the system to combine the powers it is necessary to use the same phase
as a reference. An important and common example is the power and energy
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fields about a radiating electric dipole. For this case the reference phase at
any point is a function of the radial distance from the dipole. A breakdown
into in- and out-of-phase powers varies with distance. Since the phasing is
generally determined at the specific radius of interest in many cases this
is not a significant issue. It does imply, however, that certain theorems of
complex variables do not apply to complex radiation power fields since the
theorems are based upon a constant background phase.

3.1. Instantaneous and Complex Power in Circuits

To make a critical examination of power and energy in radiation fields
using complex numbers, and since one-dimensional electrical circuits are
simpler systems than three-dimensional electromagnetic fields, we begin
with electrical circuits. Consider the time-varying power and energy of an
electrical circuit that is driven by a sinusoidal, steady state source. With
χ and ζ representing circuit-dependent phase constants, the input voltage
and current to an electrical circuit are:

v(t) = V0 cos(ωt − χ) and i(t) = I0 cos(ωt − ζ) (3.1.1)

With this notation, either V0 or I0 can be the independent variable with
the other being the dependent variable. Both are real, time-independent
quantities. The power at the terminals follows from the force laws, and is
the simple product:

p(t) = v(t)i(t)

=
1
2
V0I0{cos(ζ − χ) + cos(ζ + χ) cos(2ωt)

+ sin(ζ + χ) sin(2ωt)} (3.1.2)

Trigonometric identities may be used to transform Eq. (3.1.2) into the more
useful form:

p(t) =
1
2
V0I0{cos(ζ − χ)[1 + cos(2ωt − 2ξ)]

+ sin(ζ − χ) sin(2ωt − 2ξ)} (3.1.3)

Although either a plus or minus sign could be placed in front of the sin(ζ−χ)
term, a positive sign is convenient and leads to no loss of generality.

It follows from Eq. (3.1.3) that the three numbers needed to charac-
terize the power are the product V0I0, the phase difference (ζ − χ), and
the phase angle ξ. The equation also shows that the term proportional to
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cos(ζ − χ)[1 + cos(2ωt − 2ξ)] is zero twice each field cycle, it is never neg-
ative, and it describes the time-average energy flow into the circuit. The
term proportional to sin(ζ −χ) sin(2ωt−2ξ) is in time-quadrature with the
first term and changes sign twice each power cycle; it describes the lossless,
oscillatory energy flow between the circuit and the energy source and is not
associated with a time-average energy flow. In many cases, instantaneous
phase ξ is irrelevant and appears only as unwanted clutter. For such cases,
the quantities ζ − χ and V0I0 determine the important properties of the
power and no other information is either needed or desired. For such cases,
phase factor ξ is suppressed and real power, pr(t), and reactive power, pX(t),
are defined by the equations:

pr(t) =
1
2
V0I0 cos(ζ − χ)[1 + cos(2ωt)]

pX(t) =
1
2
V0I0 sin(ζ − χ) sin(2ωt)

(3.1.4)

Since only two pieces of information are included and since complex
numbers have two places available to carry information, this power may be
conveniently described by complex numbers.

To restate the same physical situation using complex numbers, write
the input voltage and current in phasor form:

V(t) = V0 ei(ωt−χ) I(t) = I0 ei(ωt−ζ) (3.1.5)

Equation (3.1.5) differs from Eq. (3.1.1) in that virtual terms, the imagi-
nary parts of Eq. (3.1.5), have been added to the phase of each variable.
The real parts of Eq. (3.1.5) are equal to the actual values of Eq. (3.1.1).
Equation (3.1.5) is used to form the product:

Pc =
1
2
V(t)I(t)∗ (3.1.6)

The real part, Pr, and imaginary part, Pi, of Eq. (3.1.6) are:

Pc = Pr + i Pi =
1
2
V0I0 ei(ζ−χ)

=
1
2
V0I0[cos(ζ − χ) + i sin(ζ − χ)] (3.1.7)

Comparison of Eq. (3.1.3) with Eq. (3.1.7) shows that the latter contains
all information except the suppressed phase factor. The real part is equal
to the magnitude of the time-average input power and the imaginary part
is equal to the magnitude of the oscillating power. In this case, both real
and imaginary parts of the power represent actual quantities. The phase-
quadrature difference between real and reactive powers is indicated by an
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“i” in Eq. (3.1.7). Equations (3.1.4) and (3.1.7) are but different notations
for the same physics. Neither contains information about phase angle ξ.

By definition the Thévenin circuit input impedance elements are

R =
V0

I0
cos(ζ − χ) and X =

V0

I0
sin(ζ − χ) (3.1.8)

Combining Eqs. (3.1.7) and (3.1.8) shows that the complex power may be
expressed as:

Pc =
1
2
I0I∗0(R + i X) (3.1.9)

With Eq. (3.1.9), I0 has been modified to a complex number that includes
factor exp(−iζ).

Consider next the case of two isolated electrical circuits. It is easy to
show that the total power is the simple sum of the power in each circuit,
as described by Eq. (3.1.2). The sum is:

p(t) =
2∑

k=1

vk(t)ik(t)

=
1
2

2∑
k=1

VkIk{cos(ζk − χk) + cos(ζk + χk) cos(2ωt)

+ sin(ζk + χk) sin(2ωt)} (3.1.10)

To learn how to express the information contained in Eq. (3.1.10) using com-
plex notation begin by rewriting it in a form similar to that of Eq. (3.1.3):

p(t) =
1
2

2∑
k=1

[VkIk cos(ζk − χk)][1 + cos(2ωt − ξ)]

+ K12 sin(2ωt − ξ) (3.1.11)

Insisting that Eqs. (3.1.10) and (3.1.11) be identical and solving for K12

results in the equality:

K2
12 = V2

1I
2
1 sin2(ζ1 − χ1) + V2

2I
2
2 sin2(ζ2 − χ2)

+ 2V1V2[− sin(χ1 − χ2) sin(ζ1 − ζ2)

+ sin(ζ1 − χ2) sin(ζ2 − χ1)] (3.1.12)

Consider the special case where one of the two equalities apply:

ζ1 = ζ2 or χ1 = χ2 (3.1.13)

For either case, Eq. (3.1.12) simplifies to:

K12 = V1I1 sin(ζ1 − χ1) + V2I2 sin(ζ2 − χ2) (3.1.14)
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Combining Eq. (3.1.14) with Eq. (3.1.11) shows that:

p(t) =
1
2

2∑
k=1

VkIk{cos(ζk − χk)[1 + cos(2ωt − ξ)]

+ sin(ζk − χk) sin(2ωt − ξ)} (3.1.15)

According to Eq. (3.1.15) if either of the two conditions of Eq. (3.1.13) are
met the two circuit’s powers combine by simple addition. Within intercon-
nected electric circuits, the Kirchhoff circuit laws assure that one of the
conditions of Eq. (3.1.13) is met, either between circuit nodes or along cir-
cuit branches. For these special cases, the complex power is the simple sum
over the power of the different circuit elements:

Pc =
1
2

∑
k

VkIk ei(ζk−χk) (3.1.16)

As we shall see, different modes of multimodal radiation fields do not meet
the conditions of Eq. (3.1.13) and therefore Eq. (3.1.16) does not apply.

3.2. Instantaneous and Complex Power in Fields

To analyze power and energy about an antenna it is enough to consider only
antennas with rotational symmetry about the z-axis. With this choice the
field solutions are of degree zero and there is no dependence on the azimuth
angle. Since, as will be shown, the essential points of interest depend only
upon the radial field functions, and since the radial field functions are
independent of degree, results are general and apply to a full multipolar
expansion. Written in phasor form, but keeping the retarded time phase
dependence, in terms of the letter functions of Appendix A.26, the general
form of the field expansion terms, Eq. (1.12.9), is:

σ2Ẽr =
∞∑


=1

F
�(� + 1)[B
(σ) + i A
(σ)]P
(cos θ) e−iσ

σ2ηH̃r = −
∞∑


=1

G
�(� + 1)[B
(σ) + i A
(σ)]P
(cos θ) e−iσ

σÊθ =
∞∑


=1

F
[D
(σ) + i C
(σ)]
dP
(cos θ)

dθ
e−iσ
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σηĤφ =
∞∑


=1

F
[A
(σ) − i B
(σ)]
dP
(cos θ)

dθ
e−iσ

σẼφ =
∞∑


=1

G
[A
(σ) − i B
(σ)]
dP
(cos θ)

dθ
e−iσ

σηH̃θ = −
∞∑


=1

G
[D
(σ) + i C
(σ)]
dP
(cos θ)

dθ
e−iσ (3.2.1)

Every radiating antenna field with rotational symmetry about the z-axis
may be fully described by picking appropriate choices of multiplying coef-
ficients F
 and G
.

After making use of Eq. (3.2.1) and Table A.22.1.6, the surface integral
of the complex Poynting vector evaluated on a circumscribing, spherical
surface of radius σ/k is:

Pc(σ) =
∮

Nc · dS

=
π

ηk2

∞∑

=1

�(� + 1)
(2� + 1)

{
(F
F∗


 + G
G∗

 )[A
(σ)D
(σ) − B
(σ)C
(σ)]

+ i(F
F∗

 − G
G∗


 )[A
(σ)C
(σ) + B
(σ)D
(σ)]
}

(3.2.2)

The absence of cross product terms between TM and TE modes shows that
the two modal types act independently. The sign of the imaginary term
depends upon whether the field is TE or TM; if both are present and of
equal magnitude the net is zero. Since each modal coefficient is multiplied
by its own complex conjugate, a phase difference between sources has no
affect and all modal phase factors are suppressed.

Examination of Eq. (3.2.2) shows that the two numbers needed to
evaluate the modal power are weighted sums over (A
D
 − B
C
) and
(A
C
 + B
D
). By Table A.26.2.8, (A
D
 − B
C
) is equal to one for all
orders. The second term is defined to be:

γ
(σ) = A
(σ)C
(σ) + B
(σ)D
(σ) (3.2.3)

Values of γ
(σ) are listed in Table 3.2.1.
Table 3.2.1 shows that the magnitude of γ
(σ) increases precipitously

with small and decreasing values of σ and with increasing modal number �.
All signs in Table 3.2.1 are the same and γ
(σ) is a monotone decreasing
function of σ. Taking γ
(σ) as a measure of reactive power, the surface reac-
tance has the same sign for all radii: capacitive for TM modes and inductive
for TE modes. This is in marked contrast with the numerical analysis of
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Table 3.2.1. Radial dependence of γ�(σ).

γ1(σ) = − 1
σ3

γ2(σ) = − 18
σ5

− 3
σ3

γ3(σ) = −675
σ7

− 90
σ5

− 6
σ3

γ4(σ) = −44100
σ9

− 4725
σ7

− 270
σ5

− 10
σ3

γ5(σ) = −4465125
σ11

− 396900
σ9

− 18900
σ7

− 630
σ5

− 15
σ3

γ6(σ) = −648,336,150
σ13

− 49,116,375
σ11

− 1984500
σ9

− 56700
σ7

− 1260
σ5

− 21
σ3

center-driven biconical antennas where the sign of the reactance of a TM
antenna at the input terminals is primarily a function of normalized cone
length. This emphasizes, see Fig. 2.9.1, that changes in the sign of the input
reactance versus antenna radius for TM sources are due to the transmis-
sion line character of the antenna arms and not to intrinsic properties of
the radiating surface.

3.3. Time Varying Power in Actual Radiation Fields

The actual fields, from which the phasor fields of Eq. (3.2.1) follow, are
listed in Eq. (3.3.1). The driving source varies with time as cos(ωt). If the
constant coefficients of Eq. (3.2.1) are entirely real or entirely imaginary,
respectively the upper or lower set of terms within the square brackets in
each field component of Eq. (3.3.1) applies. Although the absolute phases of
the elements are not important to our results, the phase differences between
modes are. Since by proper adjustment of the time origin all phase rela-
tionships are expressible as sums over the upper and lower terms, results
of analyzing this set of field equations are general.

σ2Er =
∞∑


=1

F
�(� + 1)
[

B
 cos(ωtR) − A
 sin(ωtR)
A
 cos(ωtR) + B
 sin(ωtR)

]
P
(cos θ)

σ2ηHr = −
∞∑


=1

G
�(� + 1)
[

B
 cos(ωtR) − A
 sin(ωtR)
A
 cos(ωtR) + B
 sin(ωtR)

]
P
(cos θ)
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σEθ =
∞∑


=1

F


[
D
 cos(ωtR) − C
 sin(ωtR)
C
 cos(ωtR) + D
 sin(ωtR)

]
dP
(cos θ)

dθ

σηHφ =
∞∑


=1

F


[
A
 cos(ωtR) + B
 sin(ωtR)

−B
 cos(ωtR) + A
 sin(ωtR)

]
dP
(cos θ)

dθ

σEφ =
∞∑


=1

G


[
A
 cos(ωtR) + B
 sin(ωtR)

−B
 cos(ωtR) + A
 sin(ωtR)

]
dP
(cos θ)

dθ

σηHθ =
∞∑


=1

G


[−D
 cos(ωtR) + C
 sin(ωtR)
−C
 cos(ωtR) − D
 sin(ωtR)

]
dP
(cos θ)

dθ
(3.3.1)

Using Eq. (3.3.1) to evaluate the radial component of the time-dependent
Poynting vector then integrating over a constant radius surface centered at
the origin gives the surface power:

p(σ, tR) =
∮

N · dS

=
π

ηk2

∞∑

=1

�(� + 1)
(2� + 1)

[
F2


 + G2



]{
A
D
[1 ± cos(2ωtR)]

− B
C
[1 ∓ cos(2ωtR)] ∓ (A
C
 − B
D
) sin(2ωtR)
}

(3.3.2)

The upper or lower signs respectively apply to the upper or lower terms
in the square brackets of Eq. (3.3.1). The sign choice depends upon the
phase of the modes but does not depend upon the TM or TE character
of the modes. Hence, in contrast with results obtained using phasor fields,
Eq. (3.3.2) depends upon the relative phases of the driving modes.

Examination of Eq. (3.3.2) shows that it contains three separate param-
eters: weighted sums over A
D
, B
C
, and A
C
−B
D
. For what follows it
is necessary to work with functions with a zero asymptotic limit at infinity.
For that purpose, define α
(σ) and β
(σ) to be:

α
(σ) = (A
D
 + B
C
)− (−1)


β
(σ) = (A
C
 − B
D
)
(3.3.3)

Combining Eq. (3.3.2) with Eq. (3.3.3) shows that:

p(σ, tR) =
π

ηk2

∞∑

=1

�(� + 1)
(2� + 1)

[
F2


 + G2



]{
[1 ± (−1)
 cos(2ωtR)]

± [α
(σ) cos(2ωtR) − β
(σ) sin(2ωtR)]
}

(3.3.4)

Within the curly brackets of Eq. (3.3.4), the envelope of the first term
is independent of distance from the antenna. Functions α
(σ) and β
(σ)
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are represented by alternating series and oscillating functions of distance.
Functional values of α
(σ) and β
(σ) are listed in Tables 3.3.1 and 3.3.2 for
� = 1 through 6.

The first term in Eq. (3.3.4) is the real power pr(σ, tR) where:

pr(σ, tR) =
π

ηk2

∞∑

=1

�(� + 1)
(2� + 1)

[
F2


 + G2



]
[1 ± (−1)
 cos(2ωtR)] (3.3.5)

This equation describes power that travels ever outward at speed c in
the form of periodic, trigonometric pulses. There is no time-independent,

Table 3.3.1. Radial dependence of α�(σ).

α1(σ) =
2
σ2

α2(σ) =
36
σ4

− 18
σ2

α3(σ) =
1350
σ6

− 720
σ4

+
72
σ2

α4(σ) =
88200

σ8
− 49350

σ6
+

6000
σ4

− 200
σ2

α5(σ) =
8,930,250

σ10
− 5,159,700

σ8
+

699300
σ6

− 31500
σ4

+
450
σ2

α6(σ) =
1,296,672,300

σ12
− 766,215,450

σ10
+

111,370,140
σ8

− 5,900,580
σ6

+
123480

σ4
− 882

σ2

Table 3.3.2. Radial dependence of β�(σ).

β1(σ) = − 1
σ3

+
2
σ

β2(σ) = − 18
σ5

+
33
σ3

− 6
σ

β3(σ) = −675
σ7

1250
σ5

− 276
σ3

+
12
σ

β4(σ) = −44100
σ9

+
83475

σ7
− 20220

σ5
+

1300
σ3

− 20
σ

β5(σ) = −4, 465, 125
σ11

+
8,533,350

σ9
− 2,201,850

σ7
+

169470
σ5

− 4425
σ3

+
30
σ

β6(σ) = −648,336,150
σ13

+
1,247,555,935

σ11
− 335,975,850

σ9
+

28,797,930
σ7

− 961380
σ5

+
12201

σ3
− 42

σ
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radius-dependent phase term and the magnitude does not approach a limit
at infinite radius.

The distance dependent power terms in Eq. (3.3.4) are given by pi(σ, tR)
where:

pi(σ, tR) = ± π

ηk2

∞∑

=1

�(� + 1)
(2� + 1)

[F2

 + G2


 ]

× [α
(σ) cos(2ωtR) − β
(σ) sin(2ωtR)] (3.3.6)

As may be seen from Tables 3.3.1 and 3.3.2, the maximum of the envelope
for each term occurs at the antenna surface and it goes asymptotically to
zero at infinite radius.

3.4. Comparison of Complex and Instantaneous Powers

In the discussion to follow only TM modes are analyzed. The result carries
over in the same form with TE modes, only the sign of the imaginary part
changes. With electric circuits, the complex power form of Eq. (3.1.4) is
determined by Eq. (3.1.3) and, conversely, Eq. (3.1.3) is partially deter-
mined by Eq. (3.1.4). In a similar way, the time-dependent field power of
Eq. (3.3.2) leads to the complex power of Eq. (3.2.2). Equation (3.3.2) may
be put in the form:

Pc(σ, tR) =
π

ηk2

∞∑

=1

�(� + 1)
(2� + 1)

F2



{
[1 ± cos(2ωtR − 2ξ)]

+ γ
(σ) sin(2ωtR − 2ξ)
}

(3.4.1)

The instantaneous power expression for the identical set of electromagnetic
fields is given by Eq. (3.3.4), and repeated here for TM modes only:

p(σ, tR) =
π

ηk2

∞∑

=1

�(� + 1)
(2� + 1)

F2



{
[1 ± (−1)
 cos(2ωtR)]

± [α
(σ) cos(2ωtR) − β
(σ) sin(2ωtR)]
}

(3.4.2)

Equations (3.4.1) and (3.4.2) are descriptions of the same energy flow and
the curly brackets of the equations are multiplied by identical factors but
contain, respectively, two and three time-dependent terms.

The first term of Eq. (3.4.1) is the real part of the complex power. It does
not go to a limit at infinite radius, it is equal to zero twice each field cycle,
and it is never negative; it describes a unidirectional energy flow away from
the source. The gamma power term of Eq. (3.4.1) is in phase quadrature
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with the real power and, by definition, is the reactive part of the complex
power. It goes to zero in the limit of infinite radius; at each point it oscillates
between equal negative and positive values and hence describes radially
directed, alternating power. The time-dependent terms contain identical
mode- or radius-dependent, time-independent phase factors.

The first term of Eq. (3.4.2) is the real power. Like its counterpart in
Eq. (3.4.1), it does not go to a limit at infinite radius, it is equal to zero twice
each field cycle, and it is never negative. It, too, describes a unidirectional
energy flow away from the source. The real power and α
(σ) power are
in time phase, and both are in time quadrature with β
(σ) power. Both
α
(σ) and β
(σ) powers go to zero in the limit of infinite radius; at each
point both oscillate between equal negative and positive parts and hence
both describe radially-directed, alternating power. There are no mode- or
radius-dependent, time-independent phase factors.

The phases of the real part of the complex power and the real power
differ by a radius-dependent phase factor. Since the instantaneous power
represents an actual physical entity, it follows that the real part of the
complex power does not. A quantitative expression for phase angle ξ
(σ)
may be obtained by equating Eqs. (3.4.1) and (3.4.2). The result is:

tan(2ξ
) =
A
B


A2

 − B2




(3.4.3)

It follows from Eq. (3.4.1) that the group velocity of the real part of the
complex power is:

νgp =
c

1 + dξ
/dσ
(3.4.4)

It may be verified using Table A.26.2.20 that:

d
dσ

(
A
B


A2

 − B2




)
≤ 0 (3.4.5)

Combining Eqs. (3.4.3) and (3.4.5) with functional properties of the tangent
gives:

dξ
/dσ ≤ 0 (3.4.6)

Combining Eqs. (3.4.4) and (3.4.6) shows that the real part of the complex
power, Eq. (3.4.1), propagates faster than the speed of light. A basic tenet of
physics is that the speed of electromagnetic energy is never greater than c.
This suggests that the complex power is not a physical entity and it does
not describe an actual energy flow. In contrast, the first term of Eq. (3.4.2)
does travel at the speed of light and does describe actual energy flow.
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Table 3.4.1. Radius for which selected values
of phase angle occur, three lowest modes.

ξ�(σ) � = 1 � = 2 � = 3

0 0 0 0
−π/2 0.618 0.777 0.785
−π 1 1.414 1.566
−3π/2 1.618 1.882 2.221
−2π ∞ 2.449 2.739
−5π/2 4.104 3.289
−3π ∞ 4.310
−7π/2 7.852
−4π ∞

It follows from Eq. (3.4.1) that if the calculus operations of differen-
tiating or integrating complex power with respect to the radius is done,
the calculation must include operations on the function ξ
(σ). Yet with com-
plex power, knowledge of ξ
(σ) is suppressed and unavailable. Therefore,
it is not possible to carry out such operations from knowledge of only com-
plex power.

If suppressed phase angle ξ
(σ) of mode � is assigned a value of zero at a
vanishingly small radius, the value decreases with increasing radius to equal
−(�+1)π at infinite radius. Table 3.4.1 lists values of σ for which the phase
angle reaches selected values as a function of radius and modal number.

Since the use of complex power is uncompromised in electric circuits,
the complex power expression of Eq. (3.4.1), re-expressed as Eq. (3.4.7),
applies to the driving circuitry, including the input side of the radiating
surface, σ = ka:

Pc(σ, tR) =
π

ηk2

∞∑

=1

�(� + 1)
(2� + 1)

F2

{[A
D
 − B
C
][1 ± cos(2ωtR − 2ξ
)]

∓ [A
C
 + B
D
] sin(2ωtR − 2ξ
)} (3.4.7)

The time-dependent power expression of Eq. (3.4.2), re-expressed as
Eq. (3.4.8), applies to the external region, including the output side of
the radiating surface σ = ka:

p(σ, tR) =
π

ηk2

∞∑

=1

�(� + 1)
(2� + 1)

F2

{[A
D
 − B
C
] ± [A
D
 + B
C
] cos(2ωtR)

∓ [A
C
 − B
D
] sin(2ωtR)} (3.4.8)
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The mean square value of the time varying portions are respectively
given by:

[A
D
 − B
C
]2 + [A
C
 + B
D
]2

= [A
D
 + B
C
]2 + [A
C
 − B
D
]2 (3.4.9)

It follows by inspection that Eq. (3.4.9) is an identity. Therefore, the total
power is continuous through the interface. The left side terms are the
magnitudes of the real plus imaginary parts of the input complex power
on the source side. On the right side, the first term applies to the time
variation of the real power and the in-phase oscillatory power. The second
term represents the out-of-phase oscillatory power.

The first two terms inside the curly brackets of Eq. (3.4.8) may be
written as:

[A
D
 − B
C
] ± [A
D
 + B
C
] cos(2ωtR)

= [A
D
 − B
C
] [1 ± (−1)
 cos(2ωtR)]

± [A
D
 + B
C
 − (−1)
] cos(2ωtR) (3.4.10)

Comparison of Eqs. (3.4.7) and (3.4.8) as modified by Eq. (3.4.10) at σ = ka

shows that the real power undergoes a phase discontinuity of 2ξ
 as it passes
through the antenna. The absolute phase is determined by the phase of the
source and the antenna circuit impedances.

In summary, although the total time-dependent power is continuous
through the interface between the source and field regions, the separation
of that power into constituent parts is different. On the source side, the
power separates into real and reactive parts the time varying portions of
which are in time quadrature. Power that is in phase with the input power
represents power loss from the system. On the field side, power that is in
phase with the real power does not represent power loss; some oscillatory
power is in phase with the real power and some is in phase quadrature.

At the surface of a radiating sphere, it is correct to write the complex
power in the form of Eq. (3.2.2) as:

Pc(ka) =
∮

Nc · dS

=
π

ηk2

∞∑

=1

�(� + 1)
(2� + 1)

{(F
F∗

 + G
G∗


 )[A
(ka)D
(ka) − B
(ka)C
(ka)]

+ i(F
F∗

 − G
G∗


 )[A
(ka)C
(ka) + B
(ka)D
(ka)]} (3.4.11)

The equation is correct only at radius a and the imaginary part equality
does not extend to larger radii. The equality also shows another important
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mathematical feature of electromagnetic radiation: The upper and lower
terms, respectively (A
D
 − B
C
) and (A
C
 + B
D
), relate to the Bessel
and Neumann functions as:

(A
D
 − B
C
) = (j
y
•

 − y
j

•

)

(A
C
 + B
D
) = (j
j
•

 + y
y

•

)

(3.4.12)

The upper part of Eq. (3.4.12), a quantity proportional to the real out-
put power, consists of the products of terms proportional to products of
one spherical Bessel functions versus one spherical Neumann function. We
conclude that electromagnetic energy can only be radiated away from a
source if fields proportional to both functions are present. The lower part
of Eq. (3.4.12), a quantity proportional to the imaginary part of the surface
power, consists of products of terms proportional to Bessel functions plus
those proportional to Neumann functions. This term, therefore, is present
with all fields.

Since outward modal speeds differ, consider complex power notation for
radiation emitted from radius a. At radius b > a the intermodal phase
differences differ from the emitted ones and wave reconstruction does not
accurately reproduce the emitted one.

3.5. Radiation Q

Most expressions for Q are based upon the solution forms of Appendix 25,
not Appendix 24. Although the equations of Appendix 25 are adequate
so long as Eq. (A.24.6) accurately represents Eq. (A.25.1), if the modal
numbers increase without limit it is necessary to use the equations of
Appendix 24. Therefore, the proofs may not apply in the limit of large
modal numbers.

An informative and convenient measure of anything that oscillates is
its Q. In many instances Q is a measure both of how rapidly an undriven
oscillator decays and of the bandwidth over which it effectively responds to
a driving source. Consider as an example a series electric circuit consisting of
all three passive circuit elements: inductance, capacitance, and resistance.
Let the circuit be driven by time-dependent voltage v(t) that produces
current flow i(t). The integro-differential equation the circuit satisfies is:

L
di(t)
dt

+ Ri(t) +
1
C

∫
i(t) dt = v(t) (3.5.1)
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The homogeneous equation has the form of the harmonic oscillator
equation:

d2i(t)
dt2

+
R
L

di(t)
dt

+
1

LC
i(t) = 0 (3.5.2)

The current as a function of time is equal to:

i(t) = I0 est (3.5.3)

Substituting Eq. (3.5.3) into Eq. (3.5.2) shows that:

s = − R
2L

±
√

R2

4L2 − 1
LC

(3.5.4)

Introduce the notation:

α =
R
2L

and ω0 =
1√
LC

(3.5.5)

Combining shows the homogeneous current to be:

i(t) = I0 e−αt e±t
√

α2−ω2
0 (3.5.6)

The character of the solution depends upon the relative sizes of α and ω0.
Consider first the special case where:

ω0 > α (3.5.7)

Combining Eqs. (3.5.7) and (3.5.6) gives:

i(t) = I0 e−αt e±it
√

ω2
0−α2

(3.5.8)

The energy of the system is proportional to:

W (t) ≈ i(t)i∗(t) = I0I∗0 e−2αt (3.5.9)

The power out, that is the rate of energy decay, is:

P(t) ≈ d
dt

[i(t)i∗(t)] = −2αI0I∗0 e−2αt (3.5.10)

A dimensionless quantity that measures the quality of an oscillating system,
see Eq. (A.9.11), is:

Q =
∣∣∣∣ωWpk(t)

Pav(t)

∣∣∣∣→ ω

2α
(3.5.11)

Q, the quality factor of the oscillating system, measures the rate of the
decay of the envelope of the available energy W (t), which is equal to the
peak value Wpk(t). P(t) is the time-average rate of energy dissipation.
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With this circuit bandwidth is inversely proportional to Q; this may be
shown by noting that the input impedance of the RLC circuit is:

Z(ω) = R + i ωL
(

1 − ω2
0

ω2

)
(3.5.12)

The bandwidth of any system is defined to be the frequency difference
between half-power points. In this case the lowest impedance occurs for
frequency ω = ω0, at which frequency the impedance is purely resistive and
equal to R. Half-power points occur when the magnitude of the impedance
is equal to the square root of two times R. This happens when the real
and reactive parts are equal. If ω1 is the frequency at a half power point,
it follows that:

R = ω1L
(

1 − ω2
0

ω2
1

)
(3.5.13)

Expanding the equation shows that:

(ω1 − ω0)(ω1 + ω0) =
ω1R
L

(3.5.14)

Bandwidth is particularly useful if it is reasonably small, and if it is small,
Eq. (3.5.14) is approximately equal to:

δω =
R
2L

The substitution has been made that δω = ±(ω1 − ω0), the frequency
difference between one of the half-power points and the resonance frequency.
Using the definitions of Eqs. (3.5.5) and (3.5.11), the total bandwidth, B,
normalized to the actual frequency is:

B =
δω

ω0
=

1
Q

(3.5.15)

It follows that in a low-loss, series resonant system Q is a direct measure
of and inversely proportional to the bandwidth, see also Eq. (A.10.6).

A special case is that of a lossy inductor. Although Q follows from
Eq. (3.5.11), because of the importance of the case consider another view-
point. The steady state input impedance for a lossy inductor driven at
frequency ω is:

Z = R + i ωL (3.5.16)
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If the current is I0 cos(ωt), the energy stored in the inductance and the
power loss in the resistance are:

W (t) =
1
4
LI20[1 + cos(2ωt)]

P(t) =
1
2
RI20[1 + cos(2ωt)]

(3.5.17)

Combining the definition of Eq. (3.5.11) with Eq. (3.5.17) shows that:

Q =
ωL
R

= tan ζ (3.5.18)

Angle ζ is the phase angle of the impedance. A similar expression holds
for lossy capacitors. This is a convenient measure of Q when operating far
from the resonant frequency.

Radiation Q is important with antennas since it is often necessary to
radiate a certain amount of time-average power at a given frequency. It
follows that the peak standing energy that must be present in the local
fields about an antenna is:

Wpk =
Pav
ω

Q (3.5.19)

The larger the standing energy the larger will be the antenna surface
currents, the ohmic loss, and the amount of energy that returns to the source
twice each field cycle. If Q is large enough, the magnitude of standing energy
required may be more than the source can supply.

Although antenna Q is important, calculation is made difficult because
the energy radiated permanently away from the antenna is not absorbed.
With circuits, energy once absorbed is no longer a factor. With fields, all
energy remains. In the steady state the source has, ideally, been active
since time t = −∞ and there is an infinite amount of field energy. From the
viewpoint of the antenna, energy that permanently leaves it is the equivalent
to energy dissipation in a resistor. Since only energy that returns to the
source affects it, the critical question in Q calculations is how to separate
energy that returns to the source upon modulation changes from energy
that does not.

3.6. Chu’s Q Analysis, TM Fields

Although circuits are closed systems and as such amenable to a direct
calculation of Q, antennas by their very nature are open systems. From
the viewpoint of the antenna, energy that permanently leaves it is the
equivalent to energy dissipation in a resistor. However, an energy field that
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is infinite in extent surrounds every steady state oscillator that has been
radiating since time t = −∞, and the total amount of radiated energy
is infinite. Substituting infinite energy into the numerator of Eq. (3.5.11)
would show that the Q of any antenna operating in the steady state is
infinite and the bandwidth is zero. However events at the antenna cannot
be affected by energy that has permanently left the system. Therefore the
critical question is: As modulation changes occur how much energy returns
to source, thereby affecting it?

Chu was the first to quantify the relationship between Q and the elec-
tric size of certain antennas. With his method he was able to sidestep the
problem of evaluating the returned energy. He considered TM modes with
rotational symmetry about the z-axis that were generated by sources on the
surface of a radiating shell of radius a. He then used conventional circuit
techniques to find modal Qs of zero degree, phasor field equations with TM
sources. The phasor field components are:

σ2Ẽr =
∞∑


=1

�(� + 1)F
(B
 + i A
)P
(cos θ) e−iσ

σẼθ =
∞∑


=1

F
(D
 + i C
)
d
dθ

P
(cos θ) e−iσ

σηH̃φ =
∞∑


=1

F
(A
 − i B
)
d
dθ

P
(cos θ) e−iσ

(3.6.1)

To separate the analysis from a specific antenna he constructed the smallest
virtual sphere that just circumscribed the antenna and replaced the actual
antenna with the virtual surface sources that produce identical external
fields, see Sec. A.7. He analyzed only the field energy external to the sphere.
Since he ignored interior energies, the calculated Q is the least possible
value for any antenna that can fit inside the virtual sphere. That is, with
an antenna of length 2a Chu’s results are based upon exterior fields only.
Interior field energy will add an undetermined amount to Q.

The complex power on the surface of the virtual sphere follows from the
complex Poynting theorem:

Pc =
2π

ηk2

∞∑

=1

F
F∗



�(� + 1)
(2� + 1)

(A
 + i B
)(D
 + i C
) (3.6.2)

Chu next introduced voltage V
 and current I
, respectively proportional
to Eθ and Hφ, as a generalized force and flow. The complex surface power
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for each mode of Eq. (3.6.2) may be written as:

Pc
 =
2π

ηk2 F
F∗



�(� + 1)
(2� + 1)

(A + i B)(D + i C) =
V
I∗


2
(3.6.3)

Since, for each mode, the angular electric-to-magnetic field ratio does not
depend upon either zenith or azimuth angle, defining modal impedance
Z
(σ) to equal the ratio Eθ
/Hφ
 gives the result:

Z
(σ) =
Eθ


Hφ

=

V


I

= η

[
D
(σ) + i C
(σ)
A
(σ) − i B
(σ)

]
(3.6.4)

Equations (3.6.3) and (3.6.4) are both satisfied if:

V
 =
F


k

√
4π�(� + 1)
3(2� + 1)

(D
 + i C
) e−iσ

I
 =
F


ηk

√
4π�(� + 1)
3(2� + 1)

(A
 − iB
)e−iσ

(3.6.5)

The modal impedance of Eq. (3.6.4) may be used to synthesize equivalent
circuits that simulate the affect of the antenna upon its source. To do so
break the quotient into partial fractions. For the dipole case, � = 1, the
impedance has the form:

Z1E(σ) =
η/i σ2 + η/σ + i η

1/σ + i
= η/i σ +

1
1/i η σ + 1/η

(3.6.6)

To evaluate the impedance at the spherical surface r = a, replace k by ω/c

and simplify:

Z1E(ka) =
i

ωεa
+

1
1/η + i/ωµa

(3.6.7)

The circuit with the impedance characteristics of Eq. (3.6.7) consists of
a capacitor of (εa) farads in series with a shunt configuration of an inductor
of (µa) henries and a resistor of η ohms. For small values of ka, the input
impedance is large and dominated by the capacitive reactance. Power to
the far field is represented by power dissipated in the resistor.

The quotient of Eq. (3.6.4) using partial fractions is valid for each value
of �. The resulting circuit is shown in Fig. 3.6.1. The circuit is a reactive
ladder network with a single terminating resistor. Each additional modal
number adds an additional L-C pair to the circuit ladder. Power in the
ladder network represents power flows made necessary by the changing
geometry of the field as the radius increases. For electrically small anten-
nas the input impedance is dominated by the first capacitor in series with
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C =C = aε aε
� (2� – 3)

L
a

=
µ

(2� – 1)
L

a
=

µ
(2� – 5) R=η

Fig. 3.6.1. TM multipolar equivalent circuit.

the first inductor. The input reactance is dominantly capacitive so long as
�(2� − 1) � k2a2.

Turning to field properties, the impedance of a virtual shell of arbitrary
radius, r = σ/k, may be expressed as:

Z
E(σ) = R
(σ) + i X
(σ) (3.6.8)

Inserting the letter functions of the spherical Bessel and Neumann functions
shows that:

R
(σ) = η

[
A
(σ)D
(σ) − B
(σ)C
(σ)

A
(σ)2 + B
(σ)2

]

X
(σ) = η

[
A
(σ)C
(σ) + B
(σ)D
(σ)

A
(σ)2 + B
(σ)2

] (3.6.9)

Values of both numerators and the denominator are listed in Table 3.6.1
for several modes; there are no resonances and the reactance is negative for
all values of σ. No resonances are expected since, as illustrated by bicon-
ical antennas, resonance occurs when the combination of antenna arms,
acting as transmission lines, and the surface impedance resonates. Reso-
nance does not occur because of impedance changes on the spherical surface.
Rather than evaluate Q separately for each modal equivalent circuit, Chu
stated that the work involved would be “tedious” and sought approximate
values that were easier to calculate. Since he was interested in electrically
small antennas, he approximated the equivalent circuit as a series circuit
then added a lossless inductor needed to make the system resonant. There-
fore his resonance arises quite differently from one dependent upon antenna
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Table 3.6.1. Table of functions needed for equivalent impedances.

� A�C� + B�D� A2
� + B2

�

1 − 1
σ3

1 +
1
σ2

2 − 3
σ3

− 18
σ5

1 +
3
σ2

+
9
σ4

3 − 6
σ3

− 75
σ5

− 675
σ7

1 +
6
σ2

+
45
σ4

+
225
σ6

4 − 10
σ3

− 220
σ5

− 4725
σ7

− 44100
σ9

1 +
10
σ2

+
135
σ4

+
1575
σ6

+
11025

σ8

5 − 15
σ3

− 630
σ5

− 18900
σ7

1 +
15
σ2

+
305
σ4

+
6300
σ6

− 396900
σ9

− 4465125
σ11

+
99285
σ10

+
893025

σ10

arm length. This circuit has the same input impedance as a spherical shell
of radius a radiating an electric multipole mode of order �.

Since at resonance the time-average values of electric and magnetic
energy are equal, Chu took the peak value of the stored energy to be
twice the time-average stored electric energy. With a series RLC circuit,
the relationships between the input reactance and reactive elements L
 and
C
 are:

X
 =
(

ωL
 − 1
ωC


)
and

dX


dω
=

1
ω

(
ωL
 +

1
ωC


)
(3.6.10)

Solving for the values of the elements as a function of the reactance gives:

C
 =
2
ω2

(
dX


dω
− X


ω

)−1

; L
 =
1
2

(
dX


dω
+

X


ω

)
(3.6.11)

Chu put the time-average radiated power equal to that dissipated in the
resistor. Combining the above shows that:

P
 =
1
2
R
I
I∗
 =

η

2
(
A2


 + B2



) I
I∗
 (3.6.12)

Using Eqs. (3.6.8) and (3.6.11), the time-average stored electric energy is:

W
 =
1

4ω2C

I
I∗
 =

I
I∗

8

(
dX


dω
− X


ω

)
(3.6.13)

Using Eq. (3.6.7), the calculated modal value of Q is:

Q
E =
ω

2η

(
dX


dω
− X


ω

)(
A2


 + B2



)
(3.6.14)
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This general solution for the special case � = 1 reduces to:

A2
1 + B2

1 =
1 + (ka)2

(ka)2
and X1 = − η

(ka)[1 + (ka)2]
(3.6.15)

Q1E =
1

(ka)3

[
1 + 2(ka)2

1 + (ka)2

]
(3.6.16)

In the limit of electrically small antennas:

Lim
ka→0

Q1E =
1

(ka)3
+

1
(ka)

(3.6.17)

Chu stated that this approximate result is adequate for practical antennas.

3.7. Chu’s Q Analysis, Exact for TM Fields

Although Chu’s technique for approximating the value of Q for each equiv-
alent circuit is adequate for practical purposes, a more exact analysis is
needed if critical comparisons with other analytical techniques are to be
made. For this purpose we make an exact analysis of the dipole circuit of
Fig. 3.6.1, � = 1, and from the analysis obtain an exact value of antenna Q.

Let i1(t) and i2(t) be the currents respectively through the capacitor
and the inductor of Fig. 3.6.1 for � = 1; the current through the resistor is
i1(t) − i2(t):

Ri1(t) = L
di2(t)

dt
+ Ri2(t) (3.7.1)

The instantaneous energies stored in the capacitor and inductor are:

wC(t) =
q2
1(t)
2C

and wL(t) =
Li22(t)

2
(3.7.2)

The power dissipated in the resistor is:

p(t) = R[i1(t) − i2(t)]2 (3.7.3)

For sinusoidal steady state operation, introduce:

i2(t) = I2 cos(ωt) (3.7.4)

Combining shows the charge on the capacitor to be:

q1(t) =
∫

i1(t) dt =
I2
ω

[
sin(ωt) +

ωL
R

cos(ωt)
]

(3.7.5)
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Resulting energies and power are:

wC(t) =
I22
4ω

{(
1

ωC
+

ωL2

CR2

)
−
(

1
ωC

− ωL2

CR2

)
cos(2ωt)

+
2L
CR

sin(2ω)
}

(3.7.6)

wL(t) =
I22
4ω

ωL[1 + cos(2ωt)] (3.7.7)

p(t) =
ω2L2

2R
I22[1 − cos(2ωt)] (3.7.8)

Use of component values from Fig. 3.6.1 in Eqs. (3.7.6)–(3.7.8) gives:

wC(t) =
ηI22
4ω

{(
1

(ka)
+ (ka)

)
−
(

1
(ka)

− (ka)
)

cos(2ωt)

+ 2 sin(2ωt)
}

(3.7.9)

wL(t) = ηI22
(ka)
4ω

[1 + cos(2ωt)] (3.7.10)

p(t) = ηI22
(ka)2

2
[1 − cos(2ωt)] (3.7.11)

The total reactive energy is the sum of Eqs. (3.7.9) and (3.7.10):

wX(t) =
ηI22
4ω

{(
1

(ka)
+ 2(ka)

)
−
(

1
(ka)

− 2(ka)
)

cos(2ωt)

+ 2 sin(2ωt)
}

(3.7.12)

The cyclical peak of stored energy is:

Wpk =
ηI22
4ω

{(
1

(ka)
+ 2(ka)

)
+

1
(ka)

√
1 + 4(ka)4

}
(3.7.13)

The time-average output power is:

Pav = ηI22
(ka)2

2
(3.7.14)

Combining gives:

Q =
ωWpk

Pav
≥ 1

2(ka)3
(
1 +
√

1 + 4(ka)4
)

+
1

(ka)
(3.7.15)

This is the exact expression for the Q of the circuit of Fig. 3.6.1 for the
special case � = 1. In the limit as ka goes to zero Eq. (3.7.15) is equal to
Eq. (3.6.17).
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3.8. Chu’s Q Analysis, TE Field

The fields about a z-directed magnetic multipole follow from Eq. (3.2.1):

σ2ηHr = −
∞∑


=1

�(� + 1)G
[B
(σ) + i A
(σ)]P
(cos θ)

σηHθ = −
∞∑


=1

G
[D
(σ) + i C
(σ)]
d
dθ

P
(cos θ)

σEφ =
∞∑


=1

G
[A
(σ) − i B
(σ)]
d
dθ

P
(cos θ)

(3.8.1)

Following the procedure used for TM modes, for the TE modes introduce a
generalized force and flow as a voltage and a current, this time proportional
respectively to Eφ and −Hθ. Each mode then satisfies the power equation:

Pc =
2π

ηk2 G
G∗



�(� + 1)
(2� + 1)

[A
(σ) − i B
][D
(σ) − i C
] =
1
2
V
I∗
 (3.8.2)

Like TM modes, for each TE mode the angular electric-to-magnetic field
ratio depends upon radius, not angle. Defining modal admittance Y
 to
equal the ratio Hθ
/Eφ
, it follows that:

Y
M(σ) = −Hθ


Eφ

=

I

V


=
1
η

[
D
(σ) + i C
(σ)
A
(σ) − i B
(σ)

]
(3.8.3)

Both Eqs. (3.8.2) and (3.8.3) are satisfied if:

V
 =
G


k

√
4π�(� + 1)
3(2� + 1)

[A
(σ) − i B
(σ)] e−iσ

I
 =
G


ηk

√
4π�(� + 1)
3(2� + 1)

[D
(σ) + i C
(σ)] e−iσ

(3.8.4)

Comparison of Eqs. (3.6.4) and (3.8.4) shows that:

Y
M(σ) =
1
η2 Z
E(σ) (3.8.5)

Repeating the procedure used to evaluate the TM equivalent circuits gives
the equivalent circuits for TE modes. The resulting circuit is shown in
Fig. 3.8.1; it is the dual of Fig. 3.6.1.

Since the circuits are exact duals, each power and energy of Sec. 3.6 has
an exact counterpart in Sec. 3.8, though what is capacitive becomes induc-
tive, and vice versa. For example, the input impedance of electrically small
electric dipoles is equal to the large input admittance of electrically small
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C = aε
(2� – 5)

�
L

a
=

µ

C = aε
(2� – 1)

L
a

=
µ

(2� – 3)
R=η

Fig. 3.8.1. TE multipolar equivalent circuit.

magnetic dipoles. If the circuit used to calculate Q is a parallel capacitor,
inductor, and resistor the magnitudes of energies are unchanged, though
the forms are reversed. Q therefore is the same. This circuit for the two
structures has the same input impedance as a spherical shell of radius a

radiating magnetic multipole mode of order �.

Q1M ≥ 1
2(ka)3

(
1 +
√

1 + 4(ka)4
)

+
1
ka

(3.8.6)

In the limit of electrically small antennas:

Lim
ka→0

Q1M ≥ 1
(ka)3

+
1

(ka)
(3.8.7)

3.9. Chu’s Q Analysis, Collocated TM and TE Modes

In addition to analyzing individual moments, Chu also analyzed parallel,
superimposed TE + TM modes of the same order, phased to produce circu-
lar polarization. A basic difficulty is that to add modal powers it is necessary
to account for phase differences, yet phase information is not contained in
the complex power expressions. There are, however, other ways to account
for the phase difference; Chu did this by requiring circular polarization.
With both modes present and the field circularly polarized, the standing
energy oscillates between the radiation fields of the two dipoles. The average
standing electric energy in the TM mode is the capacitive energy obtained
using Eq. (3.6.10). Since the TE mode is its exact dual, the magnetic energy
stored in the TE mode is equal to the electric energy in the TM mode.
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Therefore the total standing electric energy is:

W
(σ) =
1

4ω2C

I
I∗
 +

L


4
I
I∗
 =

1
4
I
I∗


dX


dω
(3.9.1)

The time-average radiated power is twice that of Eq. (3.6.12):

P
 = R
I
I∗
 = ηI
I∗
 (ka)2/[1 + (ka)2] (3.9.2)

The reactance is given by Eq. (3.6.10). For radiating dipoles the
derivative is:

dX


dω
=

(ka)
ω

dX


d(ka)
=

η

ω

[1 + 3(ka)2]
(ka)[1 + (ka)2]2

Combining the above gives the dipole Q:

Q ≥ 1 + 3(ka)2

2(ka)3[1 + (ka)2]
∼= 1

2(ka)3
+

1
ka

(3.9.3)

For electrically small antennas, this Q is approximately half that of either
dipole acting alone. The interpretation is that since the standing energy
simply moves back and forth between reactive elements the total value is
nearly the same as for either dipole acting alone and the radiated energy
is twice that of a single dipole. Therefore, Q is reduced by an approximate
factor of two.

3.10. Q the Easy Way, Electrically Small Antennas

It is possible to solve for Q from the impedance most easily by use of
Chu’s equivalent circuits. For antennas electrically small enough so that
�(2� − 1) � k2a2, the input reactance is dominated by the first reactive
element, a capacitor for TM modes and an inductor for TE modes, and Q
is very nearly equal to:

Q
 = tan[ζ
(σ)] (3.10.1)

Combining Eq. (3.10.1), Chu’s equivalent circuits, and the impedance
results of Sec. 3.2 shows that the modal Qs of electrically small antennas
are, very nearly:

Q
 ≥ |γ
| (3.10.2)

Values of γ
 are listed in Table 3.2.1. Keeping only the lead term gives:

Q ≥ �[(2� − 1)!!]2

(ka)2
+1 (3.10.3)
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3.11. Q on the Basis of Time-Dependent Field Theory

The analytical works that follow are based upon the analysis of an ide-
alized radiating sphere. Experimental or numerical confirmation, however,
requires actual or numerical embodiments and, in the main, embodiments
are made of straight wires and wire loops, not spheres. The analyses to
come assume no source coupling between modes and therefore the desired
modes, and only those modes, exist.

With this analysis, as with Chu’s, only fields at a radius greater than
the radius of the virtual, source-containing sphere of radius a are consid-
ered. Ignoring fields at smaller radii has the great advantage that results
are not specific to a particular antenna. However, although the interior vol-
ume for an electrically small antenna is small, for a fixed moment the field
magnitude increases rapidly enough with decreasing radius so the interior
energy remains a significant portion of the total standing energy. For the
spherical shell dipole analyzed in Sec. A.14 the interior energy is half that
of the exterior energy. For biconical transmitting antennas, see Eq. (2.7.1),
the TEM mode and an infinite number of TM modes are included. For
biconical receiving antennas, see Eq. (2.17.2), the TEM mode and infinite
numbers both of TM and TE modes are included. Nonetheless, to keep the
results general and solvable it is necessary to ignore interior fields when
calculating Q.

To calculate the Q of a multiport antenna, an antenna driven by more
than one terminal pair, it is necessary to account for suppressed phase
angles. Since phase angles are an integral part of actual fields, we begin
with a general multipolar expansion for phasor fields and then transform
phasor fields into actual fields. The phasor form of the multipolar field
expansion is:

Ẽr = i

∞∑

=0


∑
m=0

i−
F(�, m)�(� + 1)
h
(σ)

σ
Pm


 (cos θ) e−jmφ

ηH̃r = −ij

∞∑

=0


∑
m=0

i−
G(�, m)�(� + 1)
h
(σ)

σ
Pm


 (cos θ) e−jmφ

Ẽθ =
∞∑


=0


∑
m=0

i−


[
i F(�, m)h•


(σ)
d
dθ

Pm

 (cos θ)

− G(�, m)h
(σ)
m

sin θ
Pm


 (cos θ)
]

e−jmφ
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ηH̃φ =
∞∑


=0


∑
m=0

i−


[
F(�, m)h
(σ)

d
dθ

Pm

 (cos θ)

− i G(�, m)h•

(σ)

m

sin θ
Pm


 (cos θ)
]
e−jmφ

Ẽφ = −j

∞∑

=0


∑
m=0

i−


[
i F(�, m)h•


(σ)
m

sin θ
Pm


 (cos θ)

− G(�, m)h
(σ)
d
dθ

Pm

 (cos θ)

]
e−jmφ

ηH̃θ = j

∞∑

=0


∑
m=0

i−


[
F(�, m)h
(σ)

m

sin θ
Pm


 (cos θ)

− i G(�, m)h•

(σ)

d
dθ

Pm

 (cos θ)

]
e−jmφ (3.11.1)

We examine the Q of different modes and modal combinations by con-
sidering a series of examples. The first example is the set of TM modes
of degree zero. For this case, Chu’s “omnidirectional” case, all coefficients
except F(�, 0) are equal to zero and, for simplicity in notation, is put equal
to i
−1. After replacing Hankel functions by equivalent letter functions,
see Appendix A.26, and accounting for the suppressed dependence upon
retarded time, tR, the actual field terms are:

σ2Er =
∞∑


=1

�(� + 1)[B
(σ) cos(ωtR) − A
(σ) sin(ωtR)]P
(cos θ)

σEθ =
∞∑


=1

[D
(σ) cos(ωtR) − C
(σ) sin(ωtR)]
d
dθ

P
(cos θ) (3.11.2)

σηHφ =
∞∑


=1

[A
(σ) cos(ωtR) + B
(σ) sin(ωtR)]
d
dθ

P
(cos θ)

The total energy density, wT, at each point in the field is:

wT =
ε

2
E · E +

µ

2
H · H (3.11.3)
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Substituting the field forms of Eq. (3.11.2) into the energy density expres-
sion shows that for each mode:

wT =
ε

4

{
�2(� + 1)2

σ4

× [(A2

 + B2


) − (A2

 − B2


) cos(2ωtR) − 2A
B
 sin(2ωtR)
]
[P
(cos θ)]2

+
1
σ2

[
(A2


 + B2

 + C2


 + D2

) + (A2


 − B2

 − C2


 + D2

) cos(2ωtR)

+ 2(A
B
 − C
D
) sin(2ωtR)
][dP
(cos θ)

dθ

]2}
(3.11.4)

For brevity, the dependence of the letter functions upon σ is suppressed.
The right side, top row of Eq. (3.11.4) is the energy of the radial component
of the electric field intensity. The remaining terms are the combined energies
of the angular field components. The first and second lines have different
parity with respect to the zenith angle.

The modal components of the Poynting vector are:

Nr =
1

2ησ2

{
(A
D
 − B
C
) + (A
D
 + B
C
) cos(2ωtR)

− (A
C
 − B
D
) sin(2ωtR)
}(dP
(cos θ)

dθ

)2

Nθ = −�(� + 1)
2ησ3

{
2A
B
 cos(2ωtR) − (A2


 − B2

)

× sin(2ωtR)
}
P
(cos θ)

dP
(cos θ)
dθ

Nφ = 0

(3.11.5)

The continuity equation describes energy conservation in the field, and is:

∇ · N +
∂wT

∂t
= 0 (3.11.6)

The equality of Eq. (3.11.6) is readily verified by substituting Eqs. (3.11.4)
and (3.11.5) into it and then taking the time integral.

We seek to separate the total energy density into a part that travels
with the wave on its outbound journey and a part that separates from the
wave, remaining within the local region of the antenna. Separated power
may be calculated by riding with the wave and determining, at each point,
the rate at which energy departs from it. For this purpose note that the
divergence of the power at constant retarded time is equal to the negative
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rate at which energy per unit volume separates from the wave:

∇R · N = −∂wS

∂tR
(3.11.7)

Symbol wS indicates the energy density at each point that separates
from the outbound wave and oscillates over a distance of λ/2; we define it
to be standing energy density. Symbol ∇R operates at constant retarded
time. The divergence operation of Eq. (3.11.7) is aided by values obtained
by taking the derivatives of Tables A.26.2.13 and A.26.2.14. The results are:

∇R · Nθ =
k�(� + 1)

2ησ4

[
2A
B
 cos(2ωtR) − (A2


 − B2

) sin(2ωtR)

]
×
{
�(� + 1)[P
(cos θ)]2 −

[
d
dθ

P
(cos θ)
]2}

∇R · Nr =
k

2ησ2

[
d
dθ

P
(cos θ)
]2

×
{[

2
�(� + 1)

σ2 A
B
 − 2(A
 − D
)(B
 + C
)
]

cos(2ωtR)

−
[
�(� + 1)

σ2 (A2

 − B2


) − (A2

 − B2


 − C2

 − D2


)

+ 2(A
D
 + B
C
)
]

sin(2ωtR)
}

(3.11.8)

Summing the components of Eq. (3.11.8) and then taking the indefinite
integral with respect to retarded time gives:

wS =
εK
4

+
ε

4

{
− �2(� + 1)2

σ4

{
(A2


 − B2

) cos(2ωtR)

+ 2A
B
 sin(2ωtR)
}
[P
(cos θ)]2

+
1
σ2

{[
(A
 − D
)2 − (B
 + C
)2

]
cos(2ωtR)

+ 2(A
 − D
)(B
 + C
) sin(2ωtR)
}[dP
(cos θ)

dθ

]2}
(3.11.9)

K is a constant of integration, with dimensions chosen for later conve-
nience. There are two requirements on K: Since it is an energy density it
can never be negative and it must appear in the wT expression. This is the
equivalent of requiring that both zenith angle parities in Eq. (3.11.9) be
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everywhere greater than or equal to zero. Evaluating K and entering it into
Eq. (3.11.9) gives:

wS =
ε

4

{
�2(� + 1)2

σ4

{
(A2


 + B2

) − (A2


 − B2

) cos(2ωtR) − 2A
B
 sin(2ωtR)

}
× [P
(cos θ)]2 +

1
σ2

{[
(A
 − D
)2 + (B
 + C
)2

]
+
[
(A
 − D
)2 − (B
 + C
)2

]
cos(2ωtR)

+ 2(A
 − D
)(B
 + C
) sin(2ωtR)
}[

dP
(cos θ)
dθ

]2}
(3.11.10)

This is the source-associated energy density. It is separate from the traveling
wave and oscillates about a fixed position in the field. The top row of
Eq. (3.11.4) is the energy density of the radial field component and the other
terms are the energy densities of the angular field components. Comparison
of Eqs. (3.11.4) with (3.11.10) shows that the top lines are identical: all
energy of the radial field component remains attached to the source. Some
energy of the angular field components remains attached to the source and
the rest does not.

Subtracting wS from wT gives the energy that remains part of the trav-
eling wave: the field-associated energy density wδ.

wδ =
ε

2σ2

[
(A
D
 − B
C
) + (A
D
 + B
C
) cos(2ωtR)

− (A
C
 − B
D
) sin(2ωtR)
][dP
(cos θ)

dθ

]2
(3.11.11)

The expressions for Nr and wδ differ by a multiplicative factor equal to
the speed of light, c. A characteristic of traveling energy is that power is
equal to the product of the energy density and the speed of travel. The
movement of wδ produces the radially directed power density. Its value at
the generating surface r = a determines the antenna input impedance. Both
wT and wS are positive real, physical entities, but wδ connotes power and
hence can be negative.

For single modes, an alternative and simpler derivation of the standing
energy is to divide the radial component of the Poynting vector by c and
subtract the result, Eq. (3.11.11), from the total energy density expres-
sion, Eq. (3.11.4). The result repeats the source associated energy density,
Eq. (3.11.10). Although the technique is arguably correct for single modes,
the process does not generalize to multi-modal situations.
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Consider what happens if the source is suddenly disconnected. Since
nothing travels outward faster than the speed of light, the originally out-
bound portion of the field continues without change, and energy Wδ is
transported on out into free space. Energy WS is fixed in position. As the
fields at radius less than r collapse, the energy density exterior to that
radius becomes larger than those nearer, producing an inward pressure. We
presume, therefore, that energy WS returns to the source.

During steady state operation, it is helpful to determine energies at the
time a given wave is emitted. In a form of the ergodic theorem this is equal
to the spatial integral of the energy in its outward journey. In such terms
the total standing energy is equal to the volume integral of wS:

WS =
1
k3

∫ ∞

ka

σ2 dσ

∫ 2π

0
dφ

∫ π

0
sin θ dθ wS(σ, tR) (3.11.12)

Substituting Eq. (3.11.10) into Eq. (3.11.12) and integrating over the full
solid angle leaves:

WS =
πε

k3

�(� + 1)
(2� + 1)

∫ ∞

ka

dσ

{
4A
(A
 − D
)

+
d
dσ

(A
C
 + B
D
 + 2A
B
)

− d
dσ

(A
C
 − B
D
) cos(2ωtR)

− d
dσ

(A
D
 + B
C
 − (−1)
) sin(2ωtR)
}

(3.11.13)

The radial integrals can be done with the assistance of Tables A.26.2.11
through A.26.2.14. Doing the integrals shows the standing energy to be:

WS =
πε

k3

�(� + 1)
(2� + 1)

{
−(A
C
 + B
D
 + 2A
B
)

+ 4
∫ ka

∞
dσ A
(A
 − D
) + (A
C
 − B
D
) cos(2ωtR)

+ (A
D
 + B
C
 − (−1)
) sin(2ωtR)
}

(3.11.14)

In Eq. (3.11.14), the letter functions are evaluated at r = a. The peak
energy value is:

WSpk =
πε

k3

�(� + 1)
(2� + 1)

{
−(A
C
 + B
D
 + 2A
B
) + 4

∫ ka

∞
dσ A
(A
 − D
)

+
√

(A2

 + B2


)(C
2

 + D2


) − 2(−1)
(A
D
 + B
C
) + 1
}

(3.11.15)
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The total output power on the antenna surface is obtained by taking the
surface integral of Nr:

P =
σ2

k2

∫ 2π

0
dφ

∫ π

0
sin θ dθ Nr(σ, tR)

=
�(� + 1)

ηk2(2� + 1)
{
1 + (A
D
 + B
C
)cos(2ωtR)

− (A
C
 − B
D
) sin(2ωtR)
}

(3.11.16)

By Eq. (3.5.11), the ratio of the peak of Eq. (3.11.15) to the time-average
of Eq. (3.11.16) determines Q:

Q ≥
ωWS

∣∣
peak

P
∣∣
average

(3.11.17)

Combining Eq. (3.11.15) with the values of Eqs. (3.11.16) and (3.11.17) to
give an expression for the Q of arbitrary mode � of radiation:

Q
 ≥ 1
2

{
−(A
C
 + B
D
 + 2A
B
) + 4

∫ ka

∞
dσ A
(A
 − D
)

+
√

(A2

 + B2


)(C
2

 + D2


) − 2(−1)
(A
D
 + B
C
) + 1

}
(3.11.18)

3.12. Q of a Radiating Electric Dipole

The actual fields of a time-varying, z-directed electric dipole follow from
Eq. (3.11.1). With coefficient F(1,0) equal to one and with all others equal
to zero the fields are:

σ2Er = −2
[
cos(ωtR) +

1
σ

sin(ωtR)
]

cos θ

σEθ =
[
− 1

σ
cos(ωtR) +

(
1 − 1

σ2

)
sin(ωtR)

]
sin θ (3.12.1)

σηHφ =
[
− 1

σ
cos(ωtR) + sin(ωtR)

]
sin θ
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The energy densities follow from Eqs. (3.11.4), (3.11.10) and (3.11.11):

wT =
ε

4

{{
4
σ4 [1+ cos(2ωtR)] +

8
σ5 sin(2ωtR) +

4
σ6 [1− cos(2ωtR)]

}
cos2 θ

+
{(

2
σ2 +

1
σ6

)
[1 − cos(2ωtR)] +

4
σ4 cos(2ωtR)

−
(

4
σ3 − 2

σ5

)
sin(2ωtR)

}
sin2 θ

}
(3.12.2)

wS =
ε

4

{{
4
σ4 [1+ cos(2ωtR)]+

8
σ5 sin(2ωtR)θ+

4
σ6 [1− cos(2ωtR)]

}
cos2 θ

+
1
σ6 [1 − cos(2ωtR)] sin2 θ

}
(3.12.3)

wδ(tR) =
ε

2

{
1
σ2 [1 − cos(2ωtR)] +

2
σ4 cos(2ωtR)θ

−
(

2
σ3 − 1

σ5

)
sin(2ωtR)

}
sin2 θ (3.12.4)

The energy density described by the first lines of Eqs. (3.12.2) and (3.12.3) is
centered on the antenna axis and is the energy of the radially directed com-
ponent of the electric field intensity. The predominant portion of wS is due
to the radial field component and wδ energy is entirely due to the radial field
components. The second lines are centered at θ = π/2; in Eq. (3.12.2), it is
the energy of the angularly directed field components and, in Eq. (3.12.3), it
is the energy of the nearest angular field term. Plots of wS at four different
times are shown in Fig. 3.12.1 for ka = 0.1; note the changes of scale.

The components of the Poynting vector follow from Eq. (3.11.5):

Nr =
1
2η

{
1
σ2 [1 − cos(2ωtR)] +

2
σ4 cos(2ωtR)

−
(

2
σ3 − 1

σ5

)
sin(2ωtR)

}
sin2 θ (3.12.5)

Nθ =
1
2η

{
− 4

σ4 cos(2ωtR) +
(

2
σ3 − 2

σ5

)
sin(2ωtR)

}
sin θ cos θ (3.12.6)

Substituting values of the letter functions into Eq. (3.11.14) gives:

WS =
2πε

3k3

{
2

(ka)
[1 + cos(2ωtR)] +

2
(ka)2

sin(2ωtR)

+
1

(ka)3
[1 − cos(2ωtR)]

}
(3.12.7)
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Fig. 3.12.1. Standing energy density of Eq. (3.12.7), a z-directed electric dipole. Plots
are shown at the four times 2ωtR = 0, π/2, π, and 3π/2 at the range ka = 0.1. The
standing energy density is centered on the z-axis.

Similarly evaluating Eq. (3.11.16) gives:

p =
4π

3ηk2

{
[1 − cos(2ωtR)] +

2
(ka)2

cos(2ωtR)

−
(

2
(ka)

− 1
(ka)3

)
sin(2ωtR)

}
(3.12.8)

To relate Eq. (3.12.8) to the input impedance, rewrite it in the form of
time-dependent complex power:

Pc =
4π

3ηk2

{
[1 − cos(2ωtR − 2ξ(σ))] +

1
(ka)3

sin(2ωtR − 2ξ(σ))
}

(3.12.9)

Since the radius of the generating surface is fixed and there is but a single
mode, the value of ξ(σ) is unimportant. The complex power follows from
Eq. (3.12.9) and is:

Pc(σ) =
4π

3ηk2

[
1 +

i

(ka)3

]
(3.12.10)

The antenna input impedance follows from Eq. (3.12.10).
Substituting values of the letter functions into Eq. (3.11.18) gives:

Q ≥ 1
2(ka)3

[
1 +

√
1 + 4(ka)4

]
+

1
(ka)

(3.12.11)
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Table 3.12.1. Radiating, z-directed electric dipole.

wT(tR) =
ε

4

{{
4
σ6

[1 − cos(2ωtR)] +
8
σ5

sin(2ωtR) +
4
σ4

[1 + cos(2ωtR)]
}

cos2 θ

+
{(

2
σ2

+
1
σ6

)
[1 − cos(2ωtR)] +

4
σ4

cos(2ωtR)

−
(

4
σ3

− 2
σ5

)
sin(2ωtR)

}
sin2 θ

}

wS(tR) =
ε

4

{{
4
σ6

[1 − cos(2ωtR)] +
8
σ5

sin(2ωtR) +
4
σ4

[1 + cos(2ωtR)]
}

cos2 θ

+
{

1
σ6

[1 − cos(2ωtR)]
}

sin2 θ

}

wδ(tR) =
ε

2

{
1
σ2

[1 − cos(2ωtR)] −
(

2
σ3

− 1
σ5

)
sin(2ωtR) +

2
σ4

cos(2ωtR)
}

sin2 θ

Nr(tR) =
1
2η

{
1
σ2

[1 − cos(2ωtR)] −
(

2
σ3

− 1
σ5

)
sin(2ωtR) +

2
σ4

cos(2ωtR)
}

sin2 θ

Nθ(tR) =
1
2η

[
− 4

σ4
cos(2ωtR) +

(
2
σ3

− 2
σ5

)
sin(2ωtR)

]
sin θ cos θ

Nφ(tR) = 0

WS =
2πε

3k3

{
1

(ka)3
[1 − cos(2ωtR)] +

2
(ka)2

sin(2ωtR) +
2

(ka)
[1 + cos(2ωtR)]

}

p =
4π

3ηk2

{
[1 − cos(2ωtR)] −

(
2

(ka)
− 1

(ka)3

)
sin(2ωtR) +

2
(ka)2

cos(2ωtR)
}

Q ≥ 1
2(ka)3

(
1 +

√
1 + 4(ka)4

)
+

1
(ka)

Gain =
3
2

This is the same value obtained using the exact analysis of Chu’s equivalent
circuit, Eq. (3.7.15). In the electrically small limit Q goes to:

Q ≥ 1
(ka)3

+
1

(ka)
(3.12.12)

Analytical results are summarized in Table 3.12.1.
To examine the effect of coordinate rotation, rotate the dipole from the

z- to the x-direction. This illustrates the role of antenna rotations that
appear in the more complicated modal structures. The force fields of an
x-directed electric dipole follow from Eq. (3.11.1) with F (1, 1) = 1, all other
coefficients equal zero, and keeping only the real part with respect to j, are
given by Eq. (3.12.13). Analytical results are summarized in Table 3.12.2.
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Table 3.12.2. Summary of results, x-directed electric dipole.

wT(tR) =
ε

4

{
4
[

1
σ6

[1 − cos(2ωtR)] +
2
σ5

sin(2ωtR) +
1
σ4

[1 + cos(2ωtR)]
]

sin2 θ cos2 φ

+
[(

2
σ2

+
1
σ6

)
[1 − cos(2ωtR)] +

4
σ4

cos(2ωtR) −
(

4
σ3

− 2
σ5

)
sin(2ωtR)

]

× (cos2 θ cos2 φ + sin2 φ)
}

wS(tR) =
ε

4

{
4
[

1
σ6

[1 − cos(2ωtR)] +
2
σ5

sin(2ωtR) +
1
σ4

[1 + cos(2ωtR)]
]

sin2 θ cos2 φ

+
1
σ6

[1 − cos(2ωtR)](cos2 θ cos2 φ + sin2 φ)
}

wδ(tR) =
ε

2

[
1
σ2

[1 − cos(2ωtR)] −
(

2
σ3

− 1
σ5

)
sin(2ωtR) +

2
σ4

cos(2ωtR)
]

× (cos2 θ cos2 φ + sin2 θ)

Nr(tR) =
1
2η

[
1
σ2

[1 − cos(2ωtR)] −
(

2
σ3

− 1
σ5

)
sin(2ωtR) +

2
σ4

cos(2ωtR)
]

× (cos2 θ cos2 φ + sin2 θ)

Nθ(tR) =
1
2η

{
− 4

σ4
cos(2ωtR) +

(
2
σ3

− 2
σ5

)
sin(2ωtR)

}
sin θ cos θ cos2 φ

Nφ(tR) =
1
2η

{
− 4

σ4
cos(2ωtR) +

(
2
σ3

− 2
σ5

)
sin(2ωtR)

}
sin θ sin φ cos φ

WS =
2πε

3k2

{
1

(ka)3
[1 − cos(2ωtR)] +

2
(ka)2

sin(2ωtR) +
2

(ka)
cos(2ωtR)

}

p =
4π

3ηk2

{
[1 − cos(2ωtR)] −

(
2

(ka)
− 1

(ka)3

)
sin(2ωtR) +

2
(ka)2

cos(2ωtR)
}

Q ≥ 1
2(ka)3

(
1 +

√
1 + 4(ka)4

)
+

1
(ka)

Power maximum occurs at θ = π/2.

σ2Er = 2[B cos(ωtR) − A sin(ωtR)] sin θ cos φ

σEθ = [D cos(ωtR) − C sin(ωtR)] cos θ cos φ

σηHφ = [A cos(ωtR) + B sin(ωtR)] cos θ cos φ

σEφ = −[D cos(ωtR) − C sin(ωtR)] sin φ

σηHφ = [A cos(ωtR) + B sin(ωtR)] sin φ

(3.12.13)
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The force fields of Table 3.12.1 result if F (1, 1) = 1, all other coefficients
are equal to zero, and only the real part with respect to j is retained.

3.13. Q of Radiating Magnetic Dipoles

Although the electric and magnetic dipole fields are simply duals, the
sources are physically quite different. Sources of TM and TE fields, see
Secs. A.28 and A.29, are respectively linear currents and current loops and
for which intrinsic symmetry differences exist. An ideal biconical antenna, a
TM field source, driven by an ideal terminal set located at the conical apices
results in fields with rotational symmetry about the antenna axis. If the
lengths of the cones are equal and much less than a wavelength replacing
the cones by equivalent sources, see Appendix A.7, on the surface of a cir-
cumscribing sphere centered at the conical apices produces a dipolar source
directed along the antenna axis. As the ratio of cone length to wavelength
increases higher order modes are excited but the symmetry remains; all
driven modes have degree zero. As shown in Chapter 2 resonance is a prop-
erty of the antenna arms and occurs when the cone lengths are about λ/4.

Things are not so simple with TE field sources, of which magnetic
dipoles are the simplest example. Consider the current loop to lie in the
xy-plane at z = 0. Driving the loop requires it to be broken at some point
and the driving terminals inserted. If the diameter of the loop is small
enough the current is uniform around the loop and the displacement of the
center of the loop from the terminals, equal to the loop radius, is not signif-
icant. The actual loop may be replaced by a virtual surface centered on the
center of the loop and supporting a magnetic dipole. As the ratio of loop
diameter to wavelength increases, see Fig. 3.13.1, the displacement of the
center of the virtual sphere from the terminals increases and the current
varies with position on the loop. Current at a point away from the terminals

--
---

p

++

+++

Fig. 3.13.1. Actual wire loop, current is not uniform around the loop.
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may be quite different from that at the terminals: rotational symmetry is
broken. This lack of rotational symmetry is an intrinsic characteristic of
loop-generated magnetic moments, and is inconsistent with assumptions
necessary to derive results of superimposed electric and magnetic multipo-
lar moments. Nonetheless we examine the properties of idealized magnetic
multipoles.

Consider zero degree TE modes. To obtain the fields, put all coeffi-
cients of Eq. (3.11.1) except G(�, 0) equal to zero and, for simplicity in
notation, make the arbitrary choice that G(�, 0)i
−1 = −1. After putting
j = i, replacing Hankel functions by letter functions, and accounting for
the suppressed time dependence the actual values of the remaining field
terms are:

σ2ηHr =
∞∑


=1

�(� + 1)[A
(σ) cos(ωtR) + B
(σ) sin(ωtR)]P
(cos θ)

σEφ = −
∞∑


=1

[B
(σ) cos(ωtR) − A
(σ) sin(ωtR)]
d
dθ

P
(cos θ) (3.13.1)

σηHθ = −
∞∑


=1

[C
(σ) cos(ωtR) + D
(σ) sin(ωtR)]
d
dθ

P
(cos θ)

Results of a radiating, z-directed magnetic dipole are tabulated in
Table 3.13.1; magnitudes are identical with the electric dipole case and
only the phases of the time-dependent terms differ. The force fields of this
table result from Eq. (3.13.1) for case � = 1.

3.14. Q of Collocated Electric and Magnetic Dipole Pair

Since the TE and TM field components of z-directed antennas do not over-
lap, when evaluating the energy densities it is necessary to determine the
integration constants for each solution before summing over the vector fields.
The vector field equations for F(1, 0) = −G(1, 0) = 1, all other coefficients
are equal to zero, and j = i are shown in Eq. (3.14.1).

σ2Er = −2
[
cos(ωtR) +

1
σ

sin(ωtR)
]

cos θ

σ2ηHr = 2
[
− 1

σ
cos(ωtR) + sin(ωtR)

]
cos θ
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Table 3.13.1. Radiating, z-directed magnetic dipole.

wT(tR) =
ε

4

{{
4
σ6

[1 + cos(2ωtR)] − 8
σ5

sin(2ωtR) +
4
σ4

[1 − cos(2ωtR)]
}

cos2 θ

+
{(

2
σ2

+
1
σ6

)
[1 + cos(2ωtR)] − 4

σ4
cos(2ωtR)

+
(

4
σ3

− 2
σ5

)
sin(2ωtR)

}
sin2 θ

}

wS(tR) =
ε

4

{{
4
σ6

[1 + cos(2ωtR)] − 8
σ5

sin(2ωtR) +
4
σ4

[1 − cos(2ωtR)]
}

cos2 θ

+
{

1
σ6

[1 + cos(2ωtR)]
}

sin2 θ

}

wδ(tR) =
ε

2

{
1
σ2

[1 + cos(2ωtR)] +
(

2
σ3

− 1
σ5

)
sin(2ωtR) − 2

σ4
cos(2ωtR)

}
sin2 θ

Nr(tR) =
1
2η

{
1
σ2

[1 + cos(2ωtR)] +
(

2
σ3

− 1
σ5

)
sin(2ωtR) − 2

σ4
cos(2ωtR)

}
sin2 θ

Nθ(tR) =
1
2η

{
− 4

σ4
cos(2ωtR) +

(
2
σ3

− 2
σ5

)
sin(2ωtR)

}
sin θ cos θ

− 1
η

{
1
σ6

[1 − cos(2ωtR)] +
2
σ4

cos(2ωtR) −
(

1
σ3

− 2
σ5

)
sin(2ωtR)

}
sin θ

Nφ(tR) = 0

WS =
2πε

3k3

{
1

(ka)3
[1 + cos(2ωtR)] − 2

(ka)2
sin(2ωtR) +

2
(ka)

[1 − cos(2ωtR)]
}

p =
4π

3ηk3

{
[1 + cos(2ωtR)] +

(
2

(ka)
− 1

(ka)3

)
sin(2ωtR) − 2

(ka)2
cos(2ωtR)

}

Q ≥ 1
2(ka)3

(
1 +

√
1 + 4(ka)4

)
+

1
(ka)

Gain =
3
2

σEθ =
[
− 1

σ
cos(ωtR) +

(
1 − 1

σ2

)
sin(ωtR)

]
sin θ

σηHφ =
[
− 1

σ
cos(ωtR) + sin(ωtR)

]
sin θ

σEφ = −
[
cos(ωtR) +

1
σ

sin(ωtR)
]

sin θ

σηHθ =
[(

1 − 1
σ2

)
cos(ωtR) +

1
σ

sin(ωtR)
]

sin θ (3.14.1)
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Table 3.14.1. Collocated, radiating z-directed electric and magnetic
dipoles producing circularly polarized fields.

wT =
ε

2

{(
4
σ6

+
4
σ4

)
cos2 θ +

(
2
σ2

+
1
σ6

)
sin2 θ

}

wS =
ε

2

{(
4
σ6

+
4
σ4

)
cos2 θ +

1
σ6

sin2 θ

}
; wδ =

ε

σ2
sin2 θ

Nr(tR) =
1

ησ2
sin2 θ; Nθ(tR) = 0; Nφ(tR) = − 2

ησ3
sin θ cos θ

WS =
8πε

3k3

[
1

2(ka)3
+

1
(ka)

]
; p =

8π

3ηk2

Q ≥ 1
2(ka)3

+
1

(ka)
Gain =

3
2

The far field is circularly polarized. A table of dynamic values similar to
those of Tables 3.12.1 and 3.13.1 is given in Table 3.14.1. The three energy
densities and the radial component of the Poynting vector are all time-
independent. Since there are two sources, each of which produces the same
average output power as listed in Tables 12.1 and 13.1, the time-average
value for this case is double that of the previous cases. The zenith and
azimuth components of the Poynting vector respectively are and are not
equal to zero. The gain and pattern are the same as for individual dipoles.
Since the total standing energy of both dipoles is nearly equal to the peak
value of either, Q is about half that of an isolated dipole.

If the phase of the magnetic dipole of Table 3.14.1 is shifted by π/2 so
G(1, 0) = −i the TM modal terms are the same as listed in Eq. (3.12.1)
and the TE modal terms are given by Eq. (3.14.2):

σ2ηHr = 2
[
cos(ωtR) +

1
σ

sin(ωtR)
]

cos θ

σEφ = −
[

1
σ

cos(ωtR) − sin(ωtR)
]

sin θ

σηHθ =
[

1
σ

cos(ωtR) −
(

1 − 1
σ2

)
sin(ωtR)

]
sin θ

(3.14.2)

The powers and energies produced by the electric and magnetic
moments are in phase. Time-dependent powers sum to twice the values of
Table 3.12.1. Both gain and Q are equal to those of Table 3.12.1. Although
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the integration constant is introduced quite differently in collocated parallel
and crossed moments, the calculated Q is the same.

Next consider collocated x-directed electric dipole and y-directed mag-
netic dipole sources. For this configuration the fields strongly overlap and
the integration constant is determined after summing over the vector fields.
Fields with F(1, 1) = 1, G(1, 1) = −i, all other coefficients are equal to zero,
and j = i are listed in Eq. (3.14.3):

σ2Er = −2
[
cos(ωtR) +

1
σ

sin(ωtR)
]

sin θ cos φ

σ2ηHr = −2
[
cos(ωtR) +

1
σ

sin(ωtR)
]

sin θ sin φ

σEθ =
{[

1
σ

cos(ωtR) − sin(ωtR)
]

+
[

1
σ

cos(ωtR) −
(

1 − 1
σ2

)
sin(ωtR)

]
cos θ

}
cos φ

σEφ = −
{[

1
σ

cos(ωtR) − sin(ωtR)
]

cos θ

+
[

1
σ

cos(ωtR) −
(

1 − 1
σ2

)
sin(ωtR)

]}
sin φ

ηHφ = −Eφ cot φ; ηHθ = Eφ tan φ

(3.14.3)

Far fields are linearly polarized. Dynamic values are listed in Table 3.14.2.
As in the case of Eq. (3.14.2) the energy and power terms are in phase, the
energy and power terms are doubled, and Q is equal to that of either dipole
radiating in isolation. The radial and zenith portions of the Poynting vector
contain factors that are proportional, respectively, to cos θ and sin θ. The
terms are suppressed in the table since they do not affect the total energies.

3.15. Q of Collocated Pairs of Dipoles

We seek to generalize Chu’s field-induced limitations on mixed TE + TM
radiation emitted from a confined region. Since Chu confined his TE + TM
analysis to a case where the two sources had no overlapping parallel field
components it was not necessary to consider mutual coupling, and since
he confined his attention to near-resonance effects it was not necessary to
account for the different input impedances of different modes. We seek to
analyze general conditions that require accounting for both things. Doing so
shows the properties of particular modal combinations to be desirable, but
we do not address the design and construction of such sources. In Chapter 6



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap03

Antenna Q 141

Table 3.14.2. Collocated, radiating z-directed electric and magnetic dipoles producing
linearly polarized fields.

wT(tR) =
ε

4

{{
4
σ6

[1 − cos(2ωtR)] +
8
σ5

sin(2ωtR) +
4
σ4

[1 + cos(2ωtR)]
}

sin2 θ

+
{ (

2
σ2

+
1
σ6

)
[1 − cos(2ωtR)]

+
4
σ4

cos(2ωtR) −
(

4
σ3

− 2
σ5

)
sin(2ωtR)

}
(1 + cos2 θ)

}

wS(tR) =
ε

4

{{
4
σ6

[1 − cos(2ωtR)] +
8
σ5

sin(2ωtR) +
4
σ4

[1 + cos(2ωtR)]
}

sin2 θ

+
{

1
σ6

[1 − cos(2ωtR)]
}

(1 + cos2 θ)
}

wδ(tR) =
ε

2

{
1
σ2

[1 − cos(2ωtR)] +
2
σ4

cos(2ωtR) −
(

2
σ3

− 1
σ5

)
sin(2ωtR)

}
(1 + cos2 θ)

Nr(tR) =
1
2η

{
1
σ2

[1 − cos(2ωtR)] +
2
σ4

cos(2ωtR) −
(

2
σ3

− 1
σ5

)
sin(2ωtR)

}
(1 + cos θ)2

Nθ(tR) =
1
η

[
2
σ4

cos(2ωtR) −
(

1
σ3

− 1
σ5

)
sin(2ωtR)

]
sin θ cos θ; Nφ(tR) = 0

WS(t) =
4πε

3k3

{
1

(ka)3
[1 − cos(2ωtR)] +

2
(ka)2

sin(2ωtR) +
2

(ka)
[1 + cos(2ωtR)]

}

p =
8π

3ηκ3

{
[1 − cos(2ωtR)] −

(
2

(ka)
− 1

(ka)3

)
sin(2ωtR) +

2
(ka)2

cos(2ωtR)
}

Q ≥ 1
2(ka)3

(
1 +

√
1 + 4(ka)4

)
+

1
(ka)

Gain = 3

we also show that such combinations are common in nature, and govern the
emission and absorption of photons.

The output powers of superimposed modes with overlapping, parallel
fields are orthogonal and, for that reason, independent. Quite differently,
if there are positions of overlapping, parallel modal fields the local energy
at each field point depends upon details of the overlap. The position and
magnitudes of the energies, in turn, determine both pattern directivity and
radiation Q. An equivalent circuit that describes the properties of a multi-
modal ensemble must necessarily account for individual modal properties,
mutual couplings, and different input impedances. At the time of writing
no such equivalent circuit has been proposed and there is no suggestion
that it is possible to construct one. Furthermore, see Sec. 3.4, power fields
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cannot be fully described using complex numbers and circuits support com-
plex power. Yet the conclusion of Sec. 3.5, that Qs defined by Eqs. (3.5.11)
and (3.5.15) are equal, applies only to equivalent circuits. We conclude,
therefore, there is no proof that in such an ensemble bandwidth can be
deduced from the stored energy of the multimodal fields. If Qs are needed
to determine both energy and bandwidth it is necessary to obtain them
separately: field energies using Eq. (3.5.11) and bandwidth from the input
impedance.

For the generalizations to follow it is necessary to make detailed defi-
nitions of resonance and bandwidth. Resonance occurs in a center-driven
dipole, see Fig. 2.9.2, if there is no reactance at the input terminals, and
occurs because of the phase delay in the antenna arms. A condition for
resonance of a radiating surface is the absence of surface reactive power;
this definition implies the radiating surface is fed by a distributed source.
Surface modes have no intrinsic resonance; surfaces can be made resonant
only by reactive power cancellation by equal magnitude, out of phase sim-
ilar modes, TE or TM, or equal magnitude, in-phase dissimilar modes, TE
and TM.

A more restrictive resonance condition, and the condition used in this
book, is the absence of net reactive power at all points on the radiating
surface. This condition is met only by in-phase TE and TM modes of the
same order, degree, and magnitude. By this definition, the frequency of res-
onance depends both upon the electric size of the radiating spherical shell
and upon the relative magnitudes of the drives. Changing relative source
magnitudes changes the center frequency of the resonance band. Since mag-
nitudes may be varied independently of the frequency the operational range
of the radiator is limited only by limitations on possible drive magnitudes
and there are no inherent, field determined limitations on the operational
frequency range. In that sense the bandwidth is infinite.

To examine the affect of phasing on pairs of dipoles with overlapping,
parallel fields, consider the superposition of an x-directed electric dipole
and a y-directed magnetic dipole. If the relative phasing of the dipoles is
F(1, 1) = 1, G(1, 1) = −1, all other coefficients are equal to zero, and j = i

the fields of Eq. (3.15.1) result:

σ2Er = 2[B cos(ωtR) − A sin(ωtR)] sin θ cos φ

σ2ηHr = 2[A cos(ωtR) + B sin(ωtR)] sin θ sin φ

σEθ = {[D cos(ωtR) − C sin(ωtR)] cos θ

− [B cos(ωtR) − A sin(ωtR)]} cos φ



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap03

Antenna Q 143

ησHφ = {[A cos(ωtR) + B sin(ωtR)] cos θ

+ [C cos(ωtR) + D sin(ωtR)]} cos φ

σEφ = −{[D cos(ωtR) − C sin(ωtR)]

− [B cos(ωtR) − A sin(ωtR)] cos θ} sin φ

ησHθ = {[A cos(ωtR) + B sin(ωtR)]

+ [C cos(ωtR) + D sin(ωtR)] cos θ} sin φ (3.15.1)

Output power is centered on the positive z-axis and is equal to zero on
the negative z-axis. The far field is circularly polarized. Dynamic values are
listed in Table 3.15.1 where again power and energy terms proportional to
cos θ are ignored. Q is reduced below that of Table 3.14.1. This is because
some of the energy that is source-associated with parallel radiating elements
becomes field-associated with orthogonal elements.

A second possible pairing of dipoles is two collocated, perpendicularly
directed electric dipoles driven π/2 out of phase. The fields of Eq. (3.15.2)
result if coefficient F(1, 1) = 1, all others are zero, and j = i. Output power
is centered at θ = π/2 and circularly polarized. As with the perpendicular
electric and magnetic dipoles of Table 3.14.2, since the field components
strongly overlap energy densities are combined before the integration con-
stant is evaluated. The result is similar to in-phase electric and magnetic
moments in that the standing energy of the two dipoles peak out of phase,
and the peak standing energy is about equal to that of a single dipole. Since
the output power is twice that of a single dipole, Q is reduced by about a
factor of two. This is similar to, and for the same reason as, the reduction
in Q shown in Table 3.14.1.

σ2Er = 2[B1 cos(ωtR − φ) − A1 sin(ωtR − φ)] sin θ

σEθ = [D1 cos(ωtR − φ) − C1 sin(ωtR − φ)] cos θ

σηHφ = [A1 cos(ωtR − φ) + B1 sin(ωtR − φ)] cos θ

σEφ = [C1 cos(ωtR − φ) + D1 sin(ωtR − φ)]

σηHθ = [B1 cos(ωtR − φ) − A1 sin(ωtR − φ)]

(3.15.2)

The azimuth energy flow produces a z-directed angular momentum. Results
are listed in Table 3.15.2. Different from the previous electric dipole
cases, but like the counterpart of Table 3.15.1, a term proportional to
σ−6 appears as part of the outgoing energy. It forms part of the stand-
ing energy in other special cases; among the results is that the wδ/Nr

ratio is no longer equal to c. The energy shifts position from standing to
traveling energy and results in Q being further reduced, to the value of
Table 3.15.1.
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Table 3.15.1. Collocated, radiating x- and y-directed electric and magnetic dipoles,
circular polarization.

wT(tR) =
ε

2

{ (
2

σ4
+

2
σ6

)
sin2

θ +
[(

2
σ4

− 2
σ6

)
cos(2ωtR) +

4
σ5

sin(2ωtR)
]

sin2
θ cos(2φ)

+
(

1
σ2

+
1

2σ6

)
(1 + cos2 θ) +

〈(
1

σ2
− 2

σ4
+

1
2σ6

)
cos(2ωtR)

+
(

2
σ3

− 1
σ5

)
sin(2ωtR)

〉
sin2 θ cos(2φ)

}

wS(tR) =
ε

2

{(
2

σ4
+

2
σ6

)
sin2

θ +
〈(

2
σ4

− 3
2σ6

)
cos(2ωtR) +

4
σ5

sin(2ωtR)
〉

× sin2 θ cos(2φ)
}

wδ(tR) =
ε

2

{(
1

σ2
+

1
2σ6

)
(1 + cos2 θ) +

〈(
1

σ2
− 2

σ4

)
cos(2ωtR)

+
(

2
σ3

− 1
σ5

)
sin(2ωtR)

〉
sin2 θ cos(2φ)

}

Nr =
1
2η

{
1

σ2
(1 + cos2 θ) +

[(
1

σ2
− 2

σ4

)
cos(2ωt) +

(
2

σ3
− 1

σ5

)
sin(2ωt)

]

× sin2 θ cos(2φ)
}

Nθ =
1
η

{
2

σ4
cos(2ωtR) −

(
1

σ3
− 1

σ5

)
sin(2ωtR)

}
sin θ cos θ cos(2φ)

Nφ =
1
η

{
− 1

σ3
cos θ +

〈
− 2

σ4
cos(2ωtR) +

(
1

σ3
− 1

σ5

)
sin(2ωtR)

〉}
sin θ sin(2φ)

WS =
8πε

3k3

[
1

3(ka)3
+

1
(ka)

]
; p =

8π

3ηk2

Q ≥ 1
3(ka)3

+
1

(ka)

3.16. Four Collocated Electric and Magnetic Multipoles

Dipoles: Table 3.16.1 tabulates results of four collocated electric and
magnetic dipoles generating equal time-average output powers. The elec-
tric dipoles have the same orientation and phasing as the example of
Table 3.15.2. The magnetic dipoles have the same orientation and phasing
as the electric ones, and produce the dual results of Table 3.15.2. Elec-
tric and magnetic dipole pairs lie along both the x- and y-axes. Two pairs
of electric and magnetic dipoles are formed into two units and driven in
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Table 3.15.2. Collocated radiating x- and y-directed electric dipoles, circular
polarization.

wT(tR) =
ε

4

〈{
4
σ6

[1 − cos(2ωtR − 2φ)] +
8
σ5

sin(2ωtR − 2φ)

+
4
σ4

[1 + cos(2ωtR − 2φ)]
}

sin2 θ +
{(

2
σ2

+
1
σ6

)
(1 + cos2 θ)

+
[(

2
σ2

− 4
σ4

+
1
σ6

)
cos(2ωtR − 2φ)

+
(

4
σ3

− 2
σ5

)
sin(2ωtR − 2φ)

]
sin2 θ

}〉

wS(tR) =
ε

4

{
1
σ6

[4 − 3 cos(2ωtR − 2φ)] +
8
σ5

sin(2ωtR − 2φ)

+
4
σ4

[1 + cos(2ωtR − 2φ)]
}

sin2 θ

wδ(tR) =
ε

2

{(
1
σ2

+
1

2σ6

)
(1 + cos2 θ) +

[(
1
σ2

− 2
σ4

)
cos(2ωtR − 2φ)

+
(

2
σ3

− 1
σ5

)
sin(2ωtR − 2φ)

]
sin2 θ

}

Nr(tR) =
1
2η

{
1
σ2

(1 + cos2 θ) +
[(

1
σ2

− 2
σ4

)
cos(2ωtR − 2φ)

+
(

2
σ3

− 1
σ5

)
sin(2ωtR − 2φ)

]
sin2 θ

}

Nθ(tR) =
1
η

{
2
σ4

cos(2ωtR − 2φ) −
(

1
σ3

− 1
σ5

)
sin(2ωtR − 2φ)

}
sin θ cos θ

Nφ(tR) =
1
η

{(
1
σ3

+
1
σ5

)
+
(

1
σ3

− 1
σ5

)
cos(2ωtR − 2φ) +

2
σ4

sin(2ωtR − 2φ)
}

sin θ

WS =
8πε

3k3

[
1

3(ka)3
+

1
(ka)

]
p =

8π

3ηk2

Q ≥
[

1
3(ka)3

+
1

(ka)

]
Gain =

3
2

phase quadrature. Since the resulting circularly polarized field components
overlap, the energy densities are combined before the integration constant
is evaluated. Since no net energy leaves the traveling wave in its journey
from the antenna surface to infinity, there is no source associated standing
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Table 3.16.1. Four superimposed x- and y-oriented electric and
magnetic dipoles, circular polarization.

wT =
ε

2

{(
4
σ4

+
4
σ6

)
sin2 θ +

(
2
σ2

+
1
σ6

)(
1 + cos2 θ

)
+

4
σ2

cos θ

}

wS = 0

wδ =
ε

2

{(
4
σ4

+
4
σ6

)
sin2 θ +

(
2
σ2

+
1
σ6

)
(1 + cos2 θ) +

4
σ2

cos θ

}

Nr =
1

ησ2

{
(1 + cos2 θ) +

(
2 +

1
σ4

)
cos θ

}

Nθ =
2

ησ6
sin θ

Nφ =
2
η

[
1
σ3

cos θ +
(

1
σ3

+
1
σ5

)]
sin θ

WS = 0 p =
16π

3ηk2

Q ≥ 0 Gain = 3

energy. The vector fields are:

σ2Er = 2[B1 cos(ωtR − φ) − A1 sin(ωtR − φ)] sin θ

σ2ηHr = −2[A1 cos(ωtR − φ) + B1 sin(ωtR − φ)] sin θ

σEθ = {[D1 cos(ωtR − φ) − C1 sin(ωtR − φ)] cos θ

+ [A1 cos(ωtR − φ) + B1 sin(ωtR − φ)]}
σηHφ = {[A1 cos(ωtR − φ) + B1 sin(ωtR − φ)] cos θ

+ [D1 cos(ωtR − φ) − C1 sin(ωtR − φ)]}
σEφ = {−[B1 cos(ωtR − φ) − A1 sin(ωtR − φ)] cos θ

+ [C1 cos(ωtR − φ) + D1 sin(ωtR − φ)]}
σηHθ = {−[C1 cos(ωtR − φ) + D1 sin(ωtR − φ)] cos θ

+ [B1 cos(ωtR − φ) − A1 sin(ωtR − φ)]}

(3.16.1)

Resonance requires the equality F(1, 1) = −G(1, 1). If that criterion is met
and j = i the input equivalent circuit is a simple resistance and Q can only
be said to be greater than or equal to zero.
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To examine the significance of a possible zero Q, note the peak value of
standing energy about any radiator is equal to:

Wpk =
QPav

ω
(3.16.2)

This energy returns to the antenna when, for example, a shift in fre-
quency or source shutdown occurs. No matter how large the amount of
energy available and no matter how small the acceptable time-average
power, there is a minimum acceptable value of Q. Applications that appear
to be impractical for dipole antennas because of the magnitude of required
energy include radiative decay of atomic states and very low frequency
communication. Quite differently, the lower limit on Q, as tabulated in
Table 3.16.1, is zero. This implies that the full amount of energy that enters
the field continues on to the far field and there is no lower limit on the pos-
sible antenna diameter-to-wavelength ratio. This does not imply, during
steady state operation, that the local energy is zero; it implies only that all
standing energy ultimately travels outward to the far field.

Multipoles: A similar but expanded antenna is obtained by replacing the
dipoles of Table 3.16.1 by omnidirectional modes of arbitrary order. The
modes are located, oriented, and phased similarly to those of Table 3.16.1.
With coefficients F(�, 1) = 1, G(�, 1) = −1, all others equal to zero, and
j = i, the vector fields are:

σ2Er = �(� + 1) [B
 cos(ωtR − φ) − A
 sin(ωtR − φ)] S
 sin θ

σ2ηHr = −�(� + 1)[A
 cos(ωtR − φ) + B
 sin(ωtR − φ)]S
 sin θ

σEθ =
{
[D
 cos(ωtR − φ) − C
 sin(ωtR − φ)]T


+ [A
 cos(ωtR − φ) + B
 sin(ωtR − φ)]S


}
σηHφ =

{
[A
 cos(ωtR − φ) + B
 sin(ωtR − φ)]T


+ [D
 cos(ωtR − φ) − C
 sin(ωtR − φ)]S


}
σEφ =

{−[B
 cos(ωtR − φ) − A
 sin(ωtR − φ)]T


+ [C
 cos(ωtR − φ) + D
 sin(ωtR − φ)]S


}
σηHθ =

{−[C
 cos(ωtR − φ) + D
 sin(ωtR − φ)]T


+ [B
 cos(ωtR − φ) − A
 sin(ωtR − φ)]S


}

(3.16.3)

where

S
 = P1

(cos θ)/ sin θ and T
 = dP1


(cos θ)/dθ (3.16.4)

Resonance is assured by the equality F(1, 1) = −G(1, 1), the input
impedance is purely resistive, Q is equal to or greater than zero, and gain
increases as the fourth power of the modal number.
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Table 3.16.2. Four superimposed x- and y-oriented electric and mag-
netic multipoles. The power and energy results show that the zero-Q
aspect extends through all modal orders.

wΓ =
ε

2

{
�(� + 1)

σ4
(A2

� + B2
� )S2

� sin2 θ

+
1
σ2

(A2
� + B2

� + C2
� + D2

� )(S2
� + T2

� ) +
4
σ2

S�T�(A�D� − B�C�)
}

wS = 0

wδ =
ε

2

{
�(� + 1)

σ4
(A2

� + B2
� )S2

� sin2 θ

+
1
σ2

(A2
� + B2

� + C2
� + D2

� )(S2
� + T2

� ) +
4
σ2

S�T�(A�D� − B�C�)
}

Nr =
1

ησ2
{(A�D� − B�C�)(S2

� + T2
� ) + (A2

� + B2
� + C2

� + D2
� )S�T�}

Nθ = − �(� + 1)
ησ3

(A�C� + B�D�)S2
� sin θ

Nφ =
�(� + 1)

ησ3
[(A�D� − B�C�)S�T� + (A2

� + B2
� )S2

� ] sin θ

WS = 0 p =
4π

ηk2

�2(� + 1)2

(2� + 1)

Q ≥ 0

Table 3.16.2 confirms that the zero-Q aspect extends through all orders.
Since modes of different orders operate independently, the minimum Q of
any combination of such modes is zero.

3.17. Q of Multipolar Combinations

Several authors suggest proofs of the Q of multimodal fields using meth-
ods other than those discussed in Secs. 3.6–3.16. Their analyses fall into
two categories: One finds the standing energy then uses Eq. (3.5.15) to
determine the bandwidth; the other applies theorems of complex variables
to complex power fields. We find that although these techniques are ade-
quate for many common radiators, they are insufficient for more complex
radiating systems.

Power Field Analyses: It is shown in Sec. 3.4 that three numbers are nec-
essary at each point to fully describe a power field. Since complex variables
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have but two it is not possible to describe all such fields using complex
variables. In earlier published analyses we attempted to retain both phasor
fields and complex power by modifying formulas as needed and, in doing
so, made a significant error. Our discussions in Grimes and Grimes (1995)
and (1997), therefore, are in error.

Several others have authored papers that represent complex power using
complex variables then use theorems of complex variables to derive limits
on Q. These cases depend upon power being fully described by a complex
number field: the mathematics is correct but the physics is not. Although
the papers are in error they seem not to have significantly effected profes-
sional opinions. Therefore details are left to other discussions, Grimes and
Grimes (2001).

Standing Energy Analyses: A method of calculating Q that has signifi-
cantly affected professional opinions began with a satisfactory analysis by
Collin and Rothschild (1964). Their paper begins with the smallest pos-
sible circumscribing, virtual sphere, radius a, that circumscribes a radi-
ator. Actual sources are replaced by virtual sources on the surface of
that sphere. The procedure applies to phasor radiation fields of degree
zero. The technique applied to TM multipolar phasor fields follow from
Eq. (1.12.9):

σ2Ẽr =
∞∑


=1

�(� + 1)F
(B
 + iA
)P
(cos θ)e−iσ

σẼθ =
∞∑


=1

F
(D
 + iC
)
d
dθ

P
(cos θ)e−iσ

σηH̃φ =
∞∑


=1

F
(A
 − iB
)
d
dθ

P
(cos θ)e−iσ

(3.17.1)

The surface integral of the complex Poynting vector over a closed vol-
ume, see Appendix 11, satisfies the equality:

∮
Nc · dS = Prc + 2iω(WE − WM) (3.17.2)

Prc is the time-average output power, WE and WM are the time-average
energies of the electric and magnetic fields.
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Substituting Eq. (3.17.1) into Eq. (3.17.2) gives:∮
Nc · dS = 2π

F
F∗
n

2ηk2

∫ π

0
[1 + i(AnC
 + BnD
)]

dPn

dθ

dP


dθ
sin θ dθ

=
2πF
F∗




ηk2

�(� + 1)
(2� + 1)

[1 + i(A
C
 + B
D
)]

Combining shows that:

Prc =
2πF
F∗




ηk2

�(� + 1)
(2� + 1)

(WM − WE) =
πεF
F∗




k3

�(� + 1)
(2� + 1)

(A
C
 + B
D
)
(3.17.3)

Values of (A
C
 + B
D
) are shown in Table 3.2.1.
The total, time-average energy density at each point outside the source

region follows from the field expressions:

w = wE + wM =
ε

4

[
1
σ4 �(� + 1)n(n + 1)F
F∗

n(A
An + B
Bn)P
Pn

+
1
σ2 F
F∗

n(A
An + B
Bn + C
Cn + D
Dn)
dP


dθ

dPn

dθ

]

(3.17.4)

Integrating the energy density over a volume between spherical shells of
radius ka and kR, where R is larger than a, gives:

WE + WM =
πε

2k3

2�(� + 1)
(2� + 1)

F
F∗



×
∫ kR

ka

[
1
σ2 �(� + 1)(A2


 + B2

) + (A2


 + B2

 + C2


 + D2

)
]
dσ

(3.17.5)

Values of the integrand for the three lowest modes are:
2
σ2 (A2

1 + B2
1) + (A2

1 + B2
1 + C2

1 + D2
1) = 2 +

2
σ2 +

3
σ4

6
σ2 (A2

2 + B2
2) + (A2

2 + B2
2 + C2

2 + D2
2) = 2 +

6
σ2 +

27
σ4 +

90
σ6

12
σ2 (A2

3 + B2
3) + (A2

3 + B2
3 + C2

3 + D2
3) = 2 +

12
σ2 +

18
σ4 − 180

σ6 +
4725
σ8

(3.17.6)

When integrated over exterior space the additive term “2” on the right
sides of Eq. (3.17.6) is singular. However, since the source is affected only
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by energy that returns to it upon modulation changes, and since far field
terms do not return, that energy should not be entered into the numerator
of Eq. (3.11.17). The far field terms support real power, and the energy
density associated with real output power is Nr/c. Collin and Rothschild,
therefore, subtracted this real energy term from the total energy density.
With subscript “S” indicating only the standing energy portion of the field
energy they obtained the equalities:

WE + WM − Prc

c
= WES + WMS

WES + WMS =
πε

2k3

2�(� + 1)
(2� + 1)

F
F∗



∫ ∞

ka

[
1
σ2 �(� + 1)(A
An + B
Bn)

+ (A2

 + B2


 + C2

 + D2


) − 2
]
dσ (3.17.7)

They also note that since the time-average electric and magnetic energies
in a plane wave are equal:

WE − WM = WES − WMS (3.17.8)

(WMS − WES) =
πεF
F∗




k3

�(� + 1)
(2� + 1)

(A
C
 + B
D
) (3.17.9)

The dipole case, for example, is:

WES + WMS =
2πε

3k3 F1F∗
1

[
2

(ka)
+

1
(ka)3

]

WES − WMS =
2πε

3k3 F1F∗
1

1
(ka)3

(3.17.10)

Combining Eqs. (3.17.9) and (3.17.10) gives:

WES =
2πεF1F∗

1

3k3

(
1

(ka)3
+

1
(ka)

)
(3.17.11)

This leads to the expression for Q:

Q =
2ωWES

Pr
→
(

1
(ka)3

+
1

(ka)

)
(3.17.12)

This is the same as the value obtained by Chu using the approximate
method he described as being adequate.

For TM or TE modes Collin puts the magnitude of the average electric
and magnetic energies equal at resonance, instead of the out-of-phase ener-
gies of the Thévenin equivalent RLC circuit. That is, the problem is treated
as if all reactive elements are driven in phase. A glance at the multipolar
equivalent circuits of Secs. 3.6 and 3.8 shows this not to be the case. Since
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the Thévenin equivalent circuits are not a simple series connection of capac-
itors and inductors the appropriate energies are neither all electric nor all
magnetic. Although the resulting error is small for electrically small dipoles,
differences between calculated and actual values increase with increasing
modal number and leaves a qualitative difference between Eqs. (3.17.12)
and (3.6.17) even for dipoles. Although Chu chose his less accurate answer,
Eq. (3.6.17), as a mathematical convenience Eq. (3.17.12) is Collin’s (1964)
best answer.

Although Fante (1969) correctly questioned the ultimate applicability
of Collin’s technique for mixed TE and TM modes, he applied it to them.
The technique is supported by Collin (1998), who cites the orthogonality
of TE and TM modal energies as justification for extending the technique
to mixed TE and TM modes. In our view although both the modal energy
and power are orthogonal the standing and traveling parts of the energy
are not separately orthogonal.

Numerical analyses and experimental measurements designed to test
Collin’s argument are presented in the following three sections. It is shown
that the amount of energy returned to the source upon modulation changes
depends upon the relative phasing of mixed TE and TM modes: the modes
are not independent. For this reason, and since he leaves unstated and
unsupported postulates that (1) all standing energy should be entered in
the numerator in Eq. (3.5.11), and (2) an equality exists between the Qs of
Eqs. (3.5.11) and (3.5.15), we find the technique to be unacceptable.

However, neither do we prove the calculated values of Q, as described
in Secs. 3.10–3.16, are correct; it is only that Q can be no less than the
calculated values. Actual values of Q require knowledge of the transient
fields during modulation changes and such transient field solutions are not
available. For example, using the technique of Sec. 3.11 the lowest provable
limit on Q is zero in one particularly interesting case. This does not mean
Q is absolutely equal to zero, only there is no proof it is not. The work
appears to describe reality, however, because (1) the analysis is logically self-
consistent, (2) the predictions agree with the numerical and experimental
results of the next three sections, and (3) the results are consistent with
results calculated in Chapter 6 for naturally occurring photon radiation.

3.18. Numerical Characterization of Antennas

In an effort to confirm the Q model presented within this chapter, the
radiation properties of a radiating spherical surface have been numerically
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modeled using finite difference time domain, FDTD. Accurate numerical
modeling requires the properties of the radiating sphere to be retained,
while eliminating properties of the driving network, a network which for the
multi-dipole source includes power splitters, cables, and possibly multiple
phase shifters. Source Q is based upon Eq. (3.5.11):

Q =
ωWpk

P
(3.18.1)

This equation is applicable to any antenna design, independently of its
complexity.

The technique makes possible determination of the energy that returns
from the standing energy field back to the antenna. The measurement
begins by driving the antenna to steady state. Time-average output power
P is numerically obtained by integrating over a virtual sphere that cir-
cumscribes the source. After steady state operation has been reached, the
voltage source is turned off, after which the local standing energy field
collapses. The source-associated portion of the standing energy returns to
the antenna from which, in turn, it is either reflected back into space or
absorbed by the antenna. In the numerical model, the antenna is driven by
a 50 Ω source that absorbs returning energy. The absorbed and reflected
energies are summed to obtain Wpk.

The time domain technique avoids spurious errors due to unwanted
power reflections within the feed network. For example, when a single gen-
erator, through a power splitter and a feed network in which one arm has a
π/2 voltage phase shift, the waves reflected from the antennas back to the
generator drives two antennas are π out of phase and cancel. No reflected
power is measured. This null result does not mean that the Q of the antenna
is zero, or that the antenna input impedance is purely real. Rather it indi-
cates that techniques for determining Q are required that separate trans-
mission line effects from antenna performance.

The analytical techniques used to determine the radiation Q of a source
necessarily solve for the steady state fields external to a virtual sphere
enclosing the radiation source. Doing so ignores standing energy at radii
less than the length of the antenna arms, hence the analytic expressions
for the standing energy are inherently too small. In contrast, the numerical
technique accounts for all standing energy in the near field. It forms a check
on analytic techniques and a guide for experimental implementation. The
total energy returned to the antenna is a simple sum over the energies
returned and reflected by each element.
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The numerical method for determining Q begins by determining the
power that passes through a large radius, circumscribing sphere. That power
is put equal to P in Eq. (3.18.1). After source turn-off the voltage across
the source resistor, Vin, is determined and used to calculate the source
current, Iin. These values are combined and integrated over time to obtain
the returned energy:

Wreturned =
∫

Iin(t)Vin(t)dt =
∫

[Iin(t)]2RS dt (3.18.2)

RS is the 50 Ω resistance of the source. Iin is the current that flows through
the resistor and Vin is the voltage across the antenna terminals. Both volt-
age and current are determined using FDTD, then the time integral of
Eq. (3.18.2) is evaluated and entered as the energy portion of the numera-
tor of Eq. (3.18.1). The portion of the original (at source turn-off) standing
energy that escapes outward is obtained by calculating the instantaneous
power on the surface of an encompassing virtual sphere of radius R at times
t > R/c, integrating over both the surface and time. Details of the finite
difference time domain FDTD code used in this work are given in the two
references by Liu et al.

For certain antennas the standing energy varies with time, hence use
of Eq. (3.18.1) to determine Q requires repeating the calculation process
over a range of turn-off phase angles to obtain the peak value WSpk. How-
ever for other antennas, such as a turnstile antenna with the two dipoles
driven in phase quadrature, the source-associated standing energy is time
independent.

Biconical Dipole Antennas: A field-based analysis of a single electric
dipole is given in Sec. 3.12; Q is listed in Table 3.12.1. A terminal-based
analysis of the same antenna is shown in Sec. 3.7 and listed in Eq. (3.7.15).
Results are identical and equal to:

Q =
1

2(ka)3
[
1 +
√

1 + 4(ka)4
]

+
1

(ka)
(3.18.3)

A 5◦-arm angle, biconical antenna was the basis for a numerical analysis.
The dipole was divided into 13 discrete radial segments; for ka = 6 each
radial segment length is 0.073 λ. To ensure steady state operation the dipole
was driven for eleven time-periods before the source voltage was turned-
off. During steady state operation power on a spherical surface of radius
R about the source was determined and entered as the denominator of
Eq. (3.18.1). For the first standing energy measurement, turn-off was done
at the most negative value of input power, point A of Fig. 3.18.1. At each
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Fig. 3.18.1. Time analysis of a single biconical TM dipole.

field point for time t > R/c the fields collapsed. Some of what was stand-
ing energy moves outward away from the antenna and some moves inward
toward it. Some of the collapsing power is dissipated in the source resis-
tor and some is reflected back into space. The returned energy is measured
then the process is repeated with a different cyclical turn-off phase until the
maximum returned energy is obtained. The maximum energy is substituted
into the numerator of Eq. (3.18.1).

The instantaneous power at the antenna terminals, Pin, is calculated and
plotted as the dashed curve of Fig. 3.18.1, where outwardly and inwardly
directed power is respectively positive and negative. It has the form:

p(σ, t) = P[1 + γ(σ) cos(2ωtR)] (3.18.4)

The steady state portion of the curve is dominated by the reactive term.
For the first iteration the source is turned off at time t = A, at which
time there is a maximum rate of reactive energy return to the antenna.
After turn-off the terminal power drops abruptly, then takes what appears
to be an exponentially damped, oscillatory form. Oscillations occur at a
wavelength less than that of the driven field.

The instantaneous power at the surface of an encompassing, virtual
sphere one wavelength in radius is also calculated and plotted as the solid
curve of Fig. 3.18.1. In the steady state regime since magnitude γ(σ) = 1/σ3

is a monotone, rapidly decreasing function of radius the peak-to-peak mag-
nitude is much less at the field point than it is at the terminals.



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap03

156 The Electromagnetic Origin of Quantum Theory and Light

Pin is the instantaneous power at the antenna terminals and Pout is the
power on the surface of the encompassing, virtual sphere one wavelength
in diameter, shown at the same retarded time. Source turn-off occurs at
the most negative value of Pin, time t = A. Some standing energy travels
inward and is absorbed by the input resistor and some travels outward.
At time B the field collapse reaches radius R surrounding the antenna.

After source turn-off the output power remains continuous, then
becomes increasingly positive until reaching a positive value larger than
the maximum steady state value, then decays to zero. The figure verifies
that there is continued emission of energy after the source has been discon-
tinued, and such energy can come only from what was once standing energy.

Since the source-associated standing energy of a single dipole is time
dependent, the measured Q depends upon the phase at which the source
is turned off. The numerically determined variation in source-associated
standing energy of a biconical TM dipole of electrical size ka = 0.6 is
shown in Fig. 3.18.2 with t = 0 defined to be when Pin is at its most
negative point.

Comparative values of Q calculated using Eq. (3.18.1) and obtained
numerically using the described technique are shown in Fig. 3.18.3.
As expected, in all cases the numerically calculated values are slightly
larger: the analytic expressions do not consider the standing energy
contained at radii less than the antenna arm length and the numerical calcu-
lations do. Furthermore for ka > 1.1 octupole moment radiation becomes
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Fig. 3.18.2. Source-associated standing energy for a biconical TM dipole.
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Fig. 3.18.3. Numerically (open dots) and theoretically (solid dots) determined radiation
Q of a biconical antenna versus electrical length ka.

important. Such effects are accounted for in the numerical analyses but
not in the analytical curves. The octupolar moment introduces oscilla-
tions in the powers and energies and result in the oscillatory Q behavior of
Fig. 3.18.3.

Turnstile Antennas: A turnstile antenna consists of two collocated and
spatially orthogonal electrical dipoles. A turnstile antenna is the simplest
multi-element antenna for which theory shows that Q is dependent upon
inter-element phasing. When the two dipoles are driven in phase the far
field is linearly polarized and Q is the same as for a single electric dipole,
Eq. (3.12.11). However when the dipoles are driven in phase-quadrature,
see Sec. 3.15, the fields are circularly polarized and Q is given by:

Q =
1

3(ka)3
+

1
(ka)

(3.18.5)

The dipole is of electrical length ka = 0.6 and the plot is a function of
source turn-off point. The time reference zero point is the minimum value
of Pin.

In the electrically small limit, the relative phasing of the dipoles pro-
duces a factor of three difference in Q. The difference serves as an important
test case for the different models.

To make a comparative numerical analysis each biconical electric dipole
making up the turnstile antenna was divided into 13 discrete radial seg-
ments; when ka = 6, each radial segment is equivalent to about 0.073 λ.
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Fig. 3.18.4. Numerical and analytical values of radiation Q versus ka for a turnstile
antenna, when phased to support linear polarization and when phased to support circular
polarization.

Plots of numerically determined Q versus relative electrical size, ka, for a
turnstile antenna when the dipoles are in phase and out of phase are shown
in Fig. 3.18.4. The data show that the relative phasing between the two
dipoles affects Q. Since the analytic solutions do not account for stand-
ing energy within the inner region of the antenna, calculated Q values are
expected to be larger than the theoretical predictions; Fig. 3.18.4 shows
that to be the case. Also as expected the largest fractional reduction in Q
occurs with a phase difference of 90◦. As with a single biconical antenna
when the turnstile antenna supports linear polarization the standing energy
is time varying. It is, therefore, necessary to determine the source turn-off
point that produces the largest calculated Q. This point was determined
to be the same point it was for a single biconical antenna. A plot of Q
reduction in switching from in-phase to phase quadrature as a function of
ka is shown in Fig. 3.18.5.

The figures show that the relative phasing between the dipoles affects
the radiation Q of turnstile antennas. This change in Q is due to a change
in field structure that, in turn, affects the fraction of the standing energy
that returns to the radiating source.

3.19. Experimental Characterization of Antennas

Biconical Dipole Antennas: A technique similar to the numerical one may
be used to experimentally determine antenna Q. The block diagram of
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Fig. 3.19.1. Experimental set-up for determining the radiation Q of a single antenna.

the experimental system for a single port antenna is shown in Fig. 3.19.1.
A wave generator drives a circulator that in turn drives the antenna. The
return from the antenna passes back to the circulator and from it to an inte-
grating oscilloscope; the portion of the power reflected from the antenna
back into space is unknown. The experimental procedure is to obtain steady
state operation, determine the real power P using a network analyzer,
then switch off the generator. Energy returned from the antenna after
source turn-off is directed by the circulator to the transient-capturing oscil-
loscope, put equal to the source-associated standing energy and entered
in the numerator of Eq. (3.18.1). The Q measurement technique isolates
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antenna performance from the feed network and enables characterization
of the antenna itself.

As detailed in the C. A. Grimes et al. references, a Tektronix 500 MHz
arbitrary waveform generator (AWG610), which is able to terminate the
waveform virtually without a measurable transient, was used as the source
generator. The antenna was suspended in an anechoic chamber, driven from
the AWG610 through a circulator, with the reflected waveform captured
with an oscilloscope through the other circulator port. A HP 54845 A oscil-
loscope with a sampling rate of 8 G samples/second and an advanced trig-
gering option that capture waveforms up to 1.5 GHz was used to capture
the transient signal returning from the antenna after source turn-off. All
components in the experimental setup were 50 Ω devices. The generator
output power in steady state was determined from the measured voltage
and found to be about 7.1 mW (8.5 dBm). The circulator effectively divided
the input and reflected signals so the generator always saw the network as
a 50Ω load and delivered the same power.

Using the programming capabilities of the AWG610, a waveform of fre-
quency 450 MHz was generated and delivered to the antenna. The dura-
tion of the source signal was pre-selected, the antenna was driven until it
reached the steady state, and then switched off. There was no detectable
transient response. It was found that signals of 25 ns duration, about 12
periods at 450 MHz, were enough to reach steady state. After the wave-
form was turned off the power returned from the antenna to the oscillo-
scope was measured and time integrated to obtain the source-associated
energy. A typical reflected power waveform for a wire dipole of length 0.2 λ

is shown in Fig. 3.19.2. All oscillations after turn-off are due to returned
power.

The time-average power radiated by the antenna was measured indi-
rectly. The scattering parameters of the three port network of Fig. 3.19.1
without the generator, oscilloscope, and antenna were measured with a
HP8753D network analyzer. The antenna was then connected to the sys-
tem and the network analyzer was used to determine the input impedance.
This was sufficient to permit calculation of the voltage and currents at the
terminals of each port when the generator produces its measured voltage,
the antenna presents its measured impedance, and the oscilloscope sup-
plies a fifty-ohm load. The calculated real power at the antenna terminals
is equal to the radiated power. The power reflected and captured with the
oscilloscope was also calculated. Calculated and measured values of reflected
power were the same.
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Fig. 3.19.3. Experimentally determined Q versus electrical length of thin-wire electric
dipoles.

Turnstile Antennas: The radiation Q of the turnstile antenna is mea-
sured in a way that is similar to antennas with a single input port. The
network needed to characterize a turnstile antenna is shown in Fig. 3.19.4.
A hybrid 3 dB-splitter forwards equal power to each dipole, a phase shifter
adjusts the phase difference between the dipole drives, an attenuator com-
pensates for the loss in the phase shifter, and circulators separate incoming
from reflected signals. The antenna is a two-port system, the scattering
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Fig. 3.19.4. Experimental set-up for measuring Q of the turnstile antenna.

parameters of which are measured by the network analyzer. The scatter-
ing parameters of a five-port network (six with the hybrid port connected
to a 50 Ω resistor) were measured. Then using network theory the power
radiated by the turnstile antenna was determined. This approach accounts
for parasitic coupling between the two dipoles. The oscilloscope captured
the reflected waveforms and the reflected powers were determined from
them. The source-associated standing energy of the turnstile antenna was
determined by summing the time integrals of reflected powers from the two
dipoles.

A turnstile antenna was implemented using thin wire, equal length
dipoles and measured using the setup described in Fig. 3.19.4. Q was deter-
mined with both the drives in phase (linear polarization) and the drives in
phase quadrature (circular polarization.) Measured values of Q versus the
electrical length of the lines are plotted in Fig. 3.19.5. Results confirm that
the radiation Q of this antenna is a function of the difference of driving
phase between the two dipoles.

3.20. Q of Collocated Electric and Magnetic Dipoles:
Numerical and Experimental Characterizations

The antenna discussed in Sec. 3.16 consists of four collocated dipoles; an
electric and magnetic dipole pair radiating equal powers is oriented parallel
with the x-axis and an identical pair is oriented along the y-axis. The con-
figuration is depicted in Fig. 3.20.1. The electric moments are implemented
as straight wires and the magnetic moments as rectangular loops. The mag-
netic loops are positioned to the side of the electric dipoles in a way that
produces strong coupling between the x-directed electric moment and the
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Fig. 3.19.5. Q of a thin-wire, turnstile antenna versus electrical length of the dipoles,
for in-phase drives and phase quadrature drives.
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Fig. 3.20.1. Implementation sketch of antenna comprised of two dipole-pair elements,
each element provides equal TE and TM power. Lines of different thickness differentiate
the two sets of dipole-pair elements.

y-directed magnetic moment, and symmetrically between the other pair.
By the analysis of Sec. 3.16 if driven with the proper phases the lower limit
on radiation Q is equal to or greater than zero.

Early attempts to characterize this antenna design used separate feeds
for each dipole and were unsuccessful due to unwanted and interfering
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power transfer between dipole feeds. This implementation uses two sepa-
rate dipole-pair elements, with equal power from the electric and magnetic
moments. With this design rather than interfering, the coupling appears to
contribute to the desired outputs. The radiation Q of the antenna system
is determined using the numerical and experimental techniques detailed in
Sec. 3.19. Q values were measured as functions of the phasing between the
dipole pairs and the relative electrical size, ka.

Two things determine the relative phasing of the different radiators: the
driving phase and local coupling. Similarly directed dipoles are driven by
the same set of terminals and by the strong local field interaction between
the x-directed electric moment and y-directed magnetic moment, as well as
between the other two of elements. It is found that if the two driving ports
are in phase the radiation is similar to that of Table 3.14.2 and Q is given
by Eq. (3.18.3). With the driving ports in phase quadrature, the generated
radiation is similar to that of Table 3.16.1, for which Q has no analytical
lower limit.

The single dipole pair embodiment is shown in Fig. 3.20.2. A Method
of Moments (MoM) analysis was done to ensure that the elements radiate
equal TE and TM power. The fields on the surface of the smallest vir-
tual sphere that circumscribes the radiating elements were computed using
NEC4 MoM. Using the technique described in Sec. 3.18 the calculated fields
were equated to the equivalent terms in a multipolar field expansion to

x

z

y

a

�/2

Fig. 3.20.2. A Single electric and magnetic dipole pair.
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Fig. 3.20.3. The TE/TM power ratio versus frequency from the single dipole-pair ele-
ment pair shown in Fig. 3.20.2, with dimensions a = �/2 = 12 cm.

determine the TM dipole field coefficient F and the TE dipole field coeffi-
cient G, see Eq. (3.11.1). Figure 3.20.3 shows the calculated TE/TM power
ratio plot for the structure of Fig. 3.20.2 with loop sides a = �/2 = 12 cm.
As shown in Fig. 3.20.3 for these dimensions the element radiates equal TE
and TM power at 166.67 MHz. Since the dimensions scale linearly with fre-
quency for loop side a = �/2 = 4 cm the equal power frequency is 500 MHz.

The four-dipole source was modeled numerically. Since straight-wire ele-
ments were used for the antenna implementation, FDTD computations were
made using a rectangular, three-dimensional computer code based on the
Yee cell. The problem space was chosen as 120 × 120 × 120 cells, with cell
dimension ∆x = ∆y = ∆z = 5 mm; a perfectly matched absorbing bound-
ary layer was used to terminate the computational space. Each radiating
element consisted of a square loop and a straight-wire electric dipole. For the
numerical computations, the dimensions of the antenna were held constant
at loop side length 12 cm and electric dipole length 24 cm. The operational
frequency was varied above and below 166.67 MHz, the frequency at which
the TE and TM time-average powers were equal. For experimental charac-
terization a thin-wire antenna of loop side a = �/2 = 4 cm was built and
tested in an anechoic chamber.

The FDTD-determined radiation Q of the antenna for which ka = 0.42
versus the source turn-off point is shown in Fig. 3.20.4, relative to the
minimum input power point. Theory indicates that the source-associated
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Fig. 3.20.4. Numerically determined Q as a function of source-turn off point. Referenced
to the input power minimum, for dipole-pair elements in phase and phased to support
circular polarization; ka = 0.42.

standing energy is time varying for all relative phases except 90◦, when the
dipole pairs support circular polarization. As seen in Fig. 3.20.4, Q is inde-
pendent of source turn-off point when circular polarization is maintained.
However for other relative phases, Q varies with source turn-off point; the
correct value of Q is the largest value that is determined when the source-
associated standing energy is a maximum.

The numerically and experimentally determined radiation Q of the
antenna at ka = 0.42 versus phase difference between elements is shown in
Fig. 3.20.5. In agreement with theory, the radiation Q is dependent upon
relative phasing between the antenna elements. When driven in phase Q
is approximately that of an electric dipole of the same size. When driven
out of phase antenna Q is reduced by an approximate factor of 4.5 from
the in-phase results. For this relative electrical size, the measured Q value
is approximately a factor of three below the minimum Q value determined
by Chu for an antenna of the same electrical size.

The sensitivity of Q to distance along the z-axis between the elements
is shown in Fig. 3.20.6. Using antennas for which ka = 0.42 the antennas
were displaced in steps of 5 mm for the numerical model with dimensions
of a = �/2 = 12 cm. Steps of 1.67 mm were taken for the experimental work
with dimensions of a = �/2 = 4 cm. With 90◦ relative phasing between the
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dipole-pair elements the radiation Q is respectively small and large when
the displacement is small and large. In contrast, when the four dipoles are
in phase the radiation Q is approximately that of an electric dipole of the
same ka independently of the spacing. Experiments moving the dipole-pairs
relative to each other in the other two dimensions showed similar results;
the Q of 90◦ phased dipole-pair is sensitive to relative location, i.e. modal
coupling, and the Q of the in-phase dipole pairs is not.

The numerically determined Q versus the relative electrical size of the
antenna is shown for in-phase drives and for phase quadrature drives in
Fig. 3.20.7. The trends shown by the numerical work were confirmed exper-
imentally over the more limited range of ka = 0.37 to ka = 0.42; the circuit
devices, not the antenna, determined the frequency limits. The circula-
tors imposed the low frequency limit and the Tektronix Arbitrary Wave
Generator AWG610 imposed the high frequency limit.

At ka = 0.23 the Q of the circularly polarized antenna is more than a
factor of 20 below Chu’s limit. The oscillations seen in the in-phase Q results
are due to higher order modes that cause variations in the outbound real
power. The in-phase results show the familiar 1/(ka)3dependence of Q as
the antenna becomes electrically small. In contrast, with the two dipole-pair
elements phased to support circular polarization Q is relatively insensitive
to frequency. The frequency response seen in Fig. 3.20.7 is indicative that
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the current and charge distributions on the dipole-pair elements self-adjust
to support radiation fields that minimize source-associated standing energy
and hence Q.

We conclude that the numerical and experimental results support the
analytical Q results within the limits imposed by our irreducible differences
between analytical, numerical, and experimental embodiments.
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CHAPTER 4

Quantum Theory

Chapter 2 contains an analysis of scattering from idealized spheres and
biconical antennas. Both structures respond linearly to imposed fields.
Results show that independently of the antenna impedance a significant
portion of the incoming energy is scattered. For an electrically small scat-
terer of decreasing size, it is shown in Chapter 3 that the amount of energy
affected by the scatterer becomes ever smaller. The radiation Q of the
absorbing field becomes limitlessly large, and effectively stops radiative
energy exchanges by mechanically rigid, electrically small objects.

Chapter 3 also contains a discussion of real and reactive powers on the
surface of a circumscribing surface, virtual or real, about a radiating source.
The solution includes a set of fields for which the surface is resonant and to
which the accepted proof of the large radiation Q of electrically small radi-
ating objects does not apply. Energy is permanently radiated away from
the region by this modal field set and, as we will show, carries with it
the kinematic properties of photons. These field properties are dramati-
cally different from those of low-order modal radiation fields produced by
electrically small radiators of fixed dimensions.

Although the next logical step is to analyze scattering from an electri-
cally small, active region, before doing so it is necessary to examine certain
properties special to such regions. The remainder of this chapter is dedi-
cated to such an analysis. It is, in many ways, a conventional review of the
quantum theory of atoms, but is dramatically different in certain key con-
cepts. For example, it has been known for nearly a century that electrons
exhibit both particle and wave properties. Although wave-particle duality
has been discussed in depth by conventional quantum theory, the affect of an
extensive electron, such as a cloud of charge extended throughout an eigen-
state, has not. In this work extended electrons form an integral part of the
theory. We show that the full applicability of the classical electromagnetic
equations within atoms is retained if eigenstate electrons are extended.

170
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A critical factor of historic importance is that the accepted radiation
reaction force on a radiating point charge arises only from energy that per-
manently leaves the charge. The resulting reaction force acts only to retard
the motion of the charge and is several orders of magnitude smaller than
the Coulomb force. It is not so commonly understood that an oscillating
point charge is also enmeshed in a standing electromagnetic energy field of
its own making; the reactive radiation reaction force from this local, oscil-
lating dipolar energy field is (1/ka)3 times larger. It does not brake the
charge but acts to distort and expand it. Although this force has the same
magnitude as the attracting Coulomb force, conventional quantum theory
ignores it.

Consider the scenario as an empty eigenstate captures an electron.
As a point-electron approaches a trapping potential it loses energy by
bremsstrahlung until confined. Once confined it is acted on by Coulomb,
centrifugal, tidal, and electrodynamic forces as well as self-binding ones.
By the classical laws a point electron with an appropriate value of angular
momentum will form a temporarily elliptical orbit with the nucleus at one
of the foci. This produces two results on the orbit: First, the intrinsic and
orbital magnetic moments interact in a way that produces a continuous
torque, and thus a rotation of the orbit. Second, orbiting objects acceler-
ate and, by the laws of classical electromagnetism, Eq. (1.7.3), accelerating
charges radiate. By this effect a point charge will lose energy until it spi-
rals into the nucleus. Eigenstate electrons, however, are intrinsically stable.
Dirac emphasized there is a “remarkable stability of atoms and molecules.”

Whatever structure a confined electron might have a theorem of classical
electromagnetism states that replacing its radiating structure with equiva-
lent sources on the surface of a circumscribing sphere, virtual or real, leaves
the external fields unchanged. After so doing, we note that standing electro-
magnetic energy produces both pressure and shears on the radiating shell.
Before assessing the “remarkable stability” note that reactive energy plays
a dominant role in determining the properties of electrically small anten-
nas and although the atomic diameter-to-optical wavelength ratio is much
smaller, on the order of 1/1000, conventional quantum theory ignores it.

In another dramatic difference with antenna theory, quantum theory
supplies no details about the near electromagnetic fields during energy
exchanges; there is no equivalent to the full field sets of Chapter 2 developed
for scatterers and for antennas: the quantum theory description of radia-
tion exchange is incomplete. The remaining chapters of this book contain an
examination of quantum radiation that includes effects of reactive energy.
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On this physical basis, we describe the complete steady state radiation field
of photons.

An ideal electron embodiment for our purpose is a nonlocal electron,
with its nonlocality characteristic present both with and without the entan-
glement of other electrons, but which somehow retains its individual iden-
tity. The arguments of this book are based upon such an embodiment. The
model violates neither physical laws nor experimental facts yet it permits
the development of quantum physics based upon classical electrodynamics
and the conservation of energy. With the model an eigenstate electron may
be described as a charged cloud in a state of confined, nonradiating motion.
On the basis of this model the uncertainty principle results from necessar-
ily incomplete information about the system and the exclusion principle
results since the cloud is granular on a string scale of dimensions. The units
of which the electron is composed are necessarily minute compared with
the total electron and remain always in dynamic equilibrium. Although the
mathematical results are the same as those of historically accepted quantum
theory the philosophical implications are quite different. Such differences
are discussed in subsequent parts of the book.

4.1. Electrons

An isolated, static array of point electric charges cannot be held in equi-
librium by electrostatic forces alone. Since opposite charges collapse upon
themselves and like charges repel, a charge distribution is only stable if
something other than electrostatic forces are involved. Since an electron
contains at least a dominantly negative charge and since it is stable it fol-
lows that something other than electrostatic forces are involved.

An electron’s physical extent has important repercussions. An early
attempt to determine the size of an electron equated the electrostatic energy
to its mass using Eq. (1.3.14), W = m0c

2. By classical electrostatics the
energy of a virtual shell of radius RL carrying charge e is:

W =
e2

4πεRL
(4.1.1)

The energy relationship results in radius RL:

RL =
(

e2

m0

)
× 10−7 ∼= 2.82 × 10−15 m (4.1.2)
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This is the Lorentz radius of an electron; it is the radius an electron would
have if only electrostatic energies were present.

There have been many experimental and theoretical attempts to deter-
mine electron size. One method is based upon accurately determining the
ratio between intrinsic values of magnetic moment and angular momentum:
g-factor data. Such measurements show that the electron diameter is not
more than about 10−22 m. Scattering experiments show that electrons have
no internal structure on the smallest scale of dimensions at which measure-
ments are possible, about 10−18 m. Theoretical quantum electrodynamic
arguments point to a structureless particle with a vanishingly small radius.
String theory modifies the quantum electrodynamic results to show a diam-
eter on the order of 10−35 m. Since atoms are typically about 10−10 m in
diameter, apparently all would agree that electrons are much smaller than
atoms.

It is indisputable that according to the classical equations accelerating
point charges lose energy. It is also indisputable that atoms are stable. It is
therefore widely accepted that classical electromagnetic theory is inconsis-
tent with atomic stability. But do electrons, as described above, become
extended when trapped in an eigenstate? A primary motive of the rest of
this book is to show that extended eigenstate electrons are sufficient for the
classical laws to predict atomic stability and to show that only radiation
changes with the kinematic properties of photons can exist.

4.2. Dipole Radiation Reaction Force

This section contains the major arguments in support of our postulate that
radiation-induced forces render eigenstate electrons into extended ones and
extended ones into a dynamic, evolving ensemble of charge and current
densities. The smallest eddy size is determined by how finely the electron
charge is subdivided and internal forces require the ensemble to remain in
continual motion. Several studies show that there are an infinite number
of possible stable arrays, see Kim and Wolf. For purposes of analysis we
break the ensemble into spherical shells, of vanishingly small thickness,
centered on the nucleus. Although a shell in isolation would have the
characteristics calculated in what follows they, of course, are not isolated.
Available solutions are valid only in charge-free regions. We presume, how-
ever, relative magnitudes and symmetries are retained in charge-bearing
regions. The analysis is qualitatively important and guides us to expected
results.
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Impedance: To examine the fields produced by an accelerating, point
electron of charge e spiraling towards an atomic nucleus, consider the fields
of Eq. (1.7.3). For simplicity let the electron velocity v remain much less
than the speed of light and let it be located distance r from the origin. For
that case the radiation fields are:

E =
µe

4πr

[
r̂ ×

(
r̂ × ∂v

∂t

)]
H =

e

4πcr

(
∂v

∂t
× r̂

)
(4.2.1)

To simplify the algebra, although the acceleration is radially directed con-
sider it to be ± z-directed; a more realistic radial acceleration model com-
plicates matters and adds nothing essential. With ± z-directed acceleration
the generated force fields are:

E =
µe θ̂

4πr

∂v

∂t
sin θ H =

eφ̂

4πcr

∂v

∂t
sin θ (4.2.2)

The radial component of the Poynting vector is:

Nr =
µ

c

[
e

4πR

∂v

∂t

]2
sin2 θ (4.2.3)

It follows that the radiated power is:

P =
µe2

6cπ

[
∂v

∂t

]2
(4.2.4)

Energy conservation requires the time-average radiated and generated
power to be equal. This in turn requires a radiation reaction braking force,
FRR, acting on the electron to satisfy the condition:∫ τ

0
F RR · v dt +

µe2

6πc

∫ τ

0

[
∂v

∂t

]2
dt = 0 (4.2.5)

Time τ is the period required for an integer number of rotations of the
electron about the nucleus. Doing the integral by parts leads to:∫ τ

0

(
F RR − µe2

6πc

∂2v

∂t2

)
· v dt =

µe2

6πc

∂v

∂t
· v (4.2.6)

With oscillatory motion, such as an electron orbiting an atomic nucleus,
the right side is equal to zero, leaving the integral equal to zero. With p
equal to the dipole moment and the integrand is equal to zero:

F RR|real =
µe2

6πc

∂2v

∂t2
=

µe

6πc

∂3p
∂t3

=
µe ω3

6πc
p (4.2.7)

Equation (4.2.7) expresses the time-average value of the radiation reaction
force on the electron due to dipole-radiated energy as it permanently leaves
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the system. This radiation reaction force is a braking force that acts on the
entire charge but has no affect on the shape of the electron.

Results from Chapter 3 include that a dipole radiating from within
an electrically small region of radius a supports a reactive power that is
larger than the real power by a factor of about 1/(ka)3. In the mid-optical
frequency range and with an atom of radius 0.1 nm the factor is on the order
of 1/(ka)3 ∼= 109. It follows that the reactive radiation reaction force is 109

times larger than the braking force of Eq. (4.2.7). Multiplying Eq. (4.2.7) by
1/(ka)3 shows that the radiation reaction force due to the reactive energy is:

F reactive =
e

6πεa3 p (4.2.8)

Equation (4.2.8), the time-average value of the reactive radiation reaction
force on the electron, is the same order of magnitude as the Coulomb attrac-
tive force. Yet this force is ignored by the historic interpretation of quantum
theory.

A more formal derivation of the reactive radiation reaction force of
Eq. (4.2.8) follows by viewing a radiating electron as an electric dipole
and using the radiation impedance of Eq. (3.6.4). After substituting for
the letter functions and doing the long division, we may write the input
impedance of Eq. (3.6.4) on a virtual sphere of radius r = σ/k as follows:

Z = η
D1 + iC1

A1 − iB1
=

η/σ2 + iη/σ − η

i/σ − 1
= η/iσ + iησ + ησ2 − iησ3 − ησ4 + iησ5 + · · · (4.2.9)

Defining a generalized voltage and current leads directly from Eq. (4.2.9)
to the voltage-current relationship:

V1 = (η/iσ + iησ + ησ2 − iησ3 − ησ4 + iησ5 + · · · )I1
Replacing σ by (ka) gives, on the radiating surface:

V1 = µ

(
c2

iωa
+ iωa + ω2 a2

c
− iω3 a3

c2 − ω4 a4

c3 + iω5 a5

c4 + · · ·
)

I1 (4.2.10)

After the second term, each succeeding term is (ka) times the previous
one. Therefore the magnitude of each succeeding term is down by a factor
of about 1000 in the mid-optical frequency range and the series converges
rapidly. Odd and even powers of (ka) respectively describe oscillatory and
outgoing energy. In this model of generalized force and flow the voltage
is proportional to the driving force and the current is proportional to the
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magnitude of the dipole moment. To go from generalized parameters to
specific ones, introduce unknown constant K by the relationship:

V1 = KF1 and I1 = i ωp1 (4.2.11)

By definition, F1 is the total, dipolar, radiation reaction force and p1 is
the electric dipole moment. Combining Eqs. (4.2.10) and (4.2.11), then
switching to time notation by replacing iω with a time derivative shows:

F1(t) =
µ

K

(
c2

a
p1(t) + a

d2

dt2
p1(t) − a2

c

d3

dt3
p1(t)

+
a3

c2

d4

dt4
p1(t) − a4

c3

d5

dt5
p1(t) + · · ·

)
(4.2.12)

The third term within the round brackets of Eq. (4.2.12) is the first term
that contributes to energy loss from the oscillator; it is equivalent to
Eq. (4.2.7). Making the equality shows that:

K =
6πa2

e

Substituting K back into Eq. (4.2.12) gives:

F1(t) =
ep1(t)
6πεa3 +

e

6πεac2

d2

dt2
p1(t) − e

6πεc3

d3

dt3
p1(t)

+
ea

6πεc4

d4

dt4
p1(t) − · · · (4.2.13)

Equation (4.2.13) is the complete expression for the electric dipolar, radia-
tion reaction force with steady state radiation. Terms with an even or odd
number of time derivatives, respectively, represent reactive energy exchange
or resistive energy loss. The first term is a restoring force due to the local
standing energy field. The second term is the effective mass of the standing
energy field. The third term is the first term that leads to an energy loss
from the system, etc.

The lead term of Eq. (4.2.13) is not small compared with other forces.
To evaluate it, note that p1 is a product of e times a geometric factor,
solvable using Eq. (A.28.7). The value is p1 = 2ea if the radiating system
is a point electron oscillating between points at z = ±a; it is p1 = 2ea/3
if the charge is distributed proportional to cos θ over sphere of radius a.,
see Eq. (A.14.2). We arbitrarily pick p1 = ea. Inserting this value into
Eq. (4.2.13) and taking the ratio to a similar expression for Coulomb’s law
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gives the dipolar-to-Coulomb’s law force ratio of:

Fdi/FC ≈ 2/3 (4.2.14)

This shows the average expansive force is the same order of magnitude as
the attractive force itself. It acts to extend the radiating surface to an ever-
larger size and vanishes only if the charge is restructured to be nonradiating.

This leads to the following scenario: As a point charge approaches a
trapping potential it loses energy by bremsstrahlung until confined. Once
confined it starts to form into an elliptical orbit with the charge at one
of the foci and generates electric dipole radiation. The reactive force, with
primary magnitudes nearly equal the Coulomb attractive force, acts both
to extend the shell and to create stable current eddies.

Electromagnetic Stress Tensor : All radiation fields carry with them the
kinematic properties of energy, momentum, and angular momentum, and
these kinematic properties produce both pressure and, in some cases, shears
on radiating surfaces. This section contains mechanistic electromagnetic
stress tensor results of dipole radiation reaction pressure and shear on a
radiating shell generating an electric dipolar field. The argument can be
extended to any mode and, by superposition of fields, to any combination
of modes. This section uses the three spatial dimensions of Eq. (1.8.2). For
a resting sphere, the equation is:

F v
i = ∂Tij/∂xj (4.2.15)

F v, the force per unit volume, is given by Eq. (1.6.14) and the electromag-
netic stress tensor, Tij, is given by Eq. (1.8.6). Changing from rectangular
to spherical coordinates may be done directly or by extension and gives:

(Tij)

=




(
ε
2 [E2

r − E2
θ − E2

φ] (εErEθ + µHrHθ) (εErEφ + µHrHφ)

+µ
2 [H2

r − H2
θ − H2

φ]
)

(εEθEr + µHθHr)
(

ε
2 [E2

θ − E2
φ − E2

r ] (εEθEφ + µHθHφ)

+µ
2 [H2

θ − H2
φ − H2

r ]
)

(εEφEr + µHφHr) (εEφEθ + µHφHθ)
(

ε
2 [E2

φ − E2
r − E2

θ]

+µ
2 [H2

φ − H2
r − H2

θ]
)




(4.2.16)

On a spherical surface centered at the origin, diagonal matrix element
Trr(tR) describes surface pressure and off-diagonal matrix elements Srθ(tR)
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and Srφ(tR) describe surface shears. The forms of the equations apply both
to exterior and interior surface fields.

The generating source is a virtual sphere of radius a that supports
surface charge and current densities that, in turn, generate stress tensor
components:

Trr(tR) =
ε

2
[
E2

r − E2
θ − E2

φ

]
+

µ

2
[
H2

r − H2
θ − H2

φ

]
Srθ(tR) = εErEθ + µHrHθ Srφ(tR) = εErEφ + µHrHφ

(4.2.17)

The fields are evaluated just off the surface in question, interior or exterior.
Coulomb’s law forms an important example. Charge q at the center of

the virtual sphere produces, just off either surface of a virtual shell the field
and the tensor components:

Er =
q

4πεa2 Trr =
q

32π2εa4 = p Srθ = 0 (4.2.18)

Trr gives the net pressure, p, on the shell. At that surface the inner and outer
fields have equal magnitudes and the pressures are oppositely directed.

Consider the z-directed, phasor, electric dipolar fields, both exterior
and interior, produced by a spherical shell supporting the charge density
of Eq. (A.14.1). The field forms are given by Eqs. (A.14.7) and (A.14.8).
With subscripts “e” and “i” representing respectively exterior and interior
regions and for the special case ka � 1:

Ee =
3
2

( q
4πεa2

)
(ka)3

×
{

2r̂

(
1
σ3 +

i

σ2

)
cos θ + θ̂

(
1
σ3 +

i

σ2 − 1
σ

)
sin θ

}
eiωtR (4.2.19)

ηHe =
3
2

(
3q

4πεa2

)
(ka)3φ̂

(
i

σ2 − 1
σ

)
sin θ eiωtR

Ei =
( q

4πεa2

){
r̂ cos θ − θ̂ sin θ

}
eiωt

(4.2.20)
ηHi = i

( q
8πεa2

)
φ̂σ sin θ eiωt

Since the magnetic field has no radial component, shear arises from only
the electric field. Also, since the magnetic field strength is less than the
electric by a factor of (ka) we solve for the pressure due to only the elec-
tric field. Under these conditions for the unbalanced surface pressure, exte-
rior minus interior values, normalized by the Coulomb surface pressure of
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Eq. (4.2.18), is:

pN =
[
2 cos2 θ − 5

16
sin2 θ

]
[1 + cos(2ωtR)] (4.2.21)

This equation shows the pressure to be expansive at angles less than
about 68.5◦ and greater than 111.5◦ and compressive in between. Since
the average magnitude ratio is about one, it follows that the dipole and
monopole effects are about equal. Since the pressure is expansive on the
z-axis and compressive in the xy-plane, the pressure tends to distort the
original sphere into a radiating bicone with extended caps. Integrating
the net pressure over the surface to obtain the ratio of radiation expan-
sion force to the Coulomb attraction force gives:

Expansive dipole force
Attractive Coulomb force

=
11
6

[1 + cos(2ωtR)] (4.2.22)

A plot of Eq. (4.2.21) is shown in Fig. 4.2.1. note the expansive pressure at
the poles is four times the Coulomb compression.

Fig. 4.2.1. Normalized surface pressure pN on a spherical shell radiating as a z-directed
electric dipole versus zenith angle θ of radius ka = 1 at 2ωtR = 0, π/4, π/2, 3π/4, and π.
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The normalized exterior and interior surface shears calculated using
Eqs. (4.2.17), (4.2.19), and (4.2.20) are:

SeN =
9
2

sin θ cos θ[1 + cos(2ωtR)]
(4.2.23)

SiN = −sinθ cos θ[1 + cos(2ωtR)]

The shears have identical time and angular dependence but are oppositely
directed; the directional opposition acts to form θ-directed eddy currents.
Like pressure, the magnitudes of the eddy-producing surface shears are
approximately equal to the binding Coulomb force.

4.3. The Time-Independent Schrödinger Equation

The science of statistical mechanics consists of analyzing large numbers of
identical, interacting particles taken as a single ensemble. The state of the
ensemble is specified by the positions and velocities of the particles, and is
sufficient to determine the kinetic and potential energies of the system. With
particles modeled as realistically as possible, there is little or no difficulty
interpreting an experiment that measures the ensemble-average of a kine-
matic variable. The state of an isolated ensemble at any instant determines
its future values. Since large ensembles contain too many degrees of free-
dom to detail, no attempt is made to obtain precise, detailed calculations.
Instead, most probable values averaged over all particles are calculated and
assigned as ensemble-average values.

A single electron trapped by the Coulomb force of a positive nucleus
accelerates. Section 4.2 shows both pressure and shear on trapped electrons
acting to transform them into ensembles of charge and current densities.
Since our present knowledge does not permit solving for the exact array, in
common with statistical mechanics it is necessary to consider such eigen-
state electrons on a statistical basis. Physical properties are calculated by
imposing conservation laws. A primary result of imposing energy conser-
vation on such an ensemble is the Schrödinger equation. First published in
1926, it is a mathematical description of the quantum character of electrons.
Schrödinger discovered the usefulness of the differential equation that bears
his name:

− �
2

2m
∇2U(r) + Λ(r)U(r) = WU(r) (4.3.1)

In this equation 2π� is Planck’s constant, Λ(r) is the electrostatic potential,
and U(r) is the wave function. The time average value of electric charge
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density at each point in space is:

ρ(r) = eU∗(r)U(r) (4.3.2)

Although Schrödinger discovered that solutions of his equation correctly
described the actions of electrons, he was not led to the result by first
principles. The equation is invaluable for describing atomic level phenomena
but solutions are statistical in character and there is no way to determine
a unique physical basis for the equation. For example, the equation itself
is no help in determining whether eU(r)U∗(r) represents an actual static
charge density, the fraction of the time a point electron occupies a particular
differential volume, or something in between. It is only known that solving
Eq. (4.3.1) for U(r) then evaluating eU(r)U∗(r) gives the correct time-
average spatial charge distribution for many electron systems.

Since Schrödinger first presented the equation, it has been shown that
many different postulate sets yield it as a derived result. Since the inter-
pretation depends upon the nature of the model used to derive it no
single result is a sufficient basis for deciding if a particular model is cor-
rect. This section derives the Schrödinger equation using a thermodynamic
approach and results are interpreted accordingly. A precise description of
an extended, moving, bound charge density trapped by an electrostatic
force and coupled to its own magnetic field is beyond our capability; we
simply do not know enough about electrons. Therefore, in a way similar
to thermodynamics we seek an energy function from which follows gen-
eral ensemble properties without detailed knowledge of the ensemble. The
approach is adequate to obtain time-average values of kinematic properties,
i.e. expectation values.

The approach begins by noting that a dynamic charge distribution sup-
ports time-average values of charge and current densities, respectively ρ(r)
and ρ(p), within the spatial range r and r+dr and the momentum range p

and p + dp. Momentum densities are directly proportional to current den-
sities. Let an electron occupy a single eigenstate and let the charge density
be everywhere the same sign. The constraint is expressed by introducing
complex functions U(r) and Γ(p), defined by the relationships:

eU∗(r)U(r) = ρ(r) and eΓ∗(p)Γ(p) = ρ(p) (4.3.3)

U(r) and Γ(p) are complex functions and, by definition, wave functions. It
follows that ∫

U∗(r)U(r)dV = 1 =
∫

Γ∗(p)Γ(p)dVp (4.3.4)
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Differentials dV and dVp represent, respectively, differential volume in space
and momentum coordinates.

Since U(r) and Γ(p) describe the same dynamic charge distribution,
they are relatable. Each position in coordinate space receives contributions
from the full range of momenta in proportion to the value of Γ(p) at each
velocity, and vice versa. Therefore we seek a linear transformation between
the two coordinate systems that satisfies the conditions:

U(r) = L{Γ(p)} and Γ(p) = L−1{U(r)} (4.3.5)

L is a linear operator and L−1 is its inverse. A general linear function that
meets these requirements is the Fourier integral transform pair:

U(r) =
[

1
2π�

]3/2 ∫
Γ(p) exp

(
ir · p

�

)
dVp

(4.3.6)

Γ(p) =
[

1
2π�

]3/2 ∫
U(r) exp

(
r · p

i�

)
dV

The constant � is a dimension-determining constant; its magnitude must
be determined by experiment. Dropping to one dimension for simplicity,
Eq. (4.3.6) takes the form:

U(x) =
[

1
2π�

]1/2 ∫
Γ(p) exp

(
ixp

�

)
dp

(4.3.7)

Γ(p) =
[

1
2π�

]1/2 ∫
U(x) exp

(xp

i�

)
dx

This procedure for going from charge density to wave functions and the
Fourier transforms of Eq. (4.3.6) parallels the method of going from elec-
tric energy density to electric field intensity, see Sec. 1.14. The significant
difference is that the electric field intensity forms a vector field and the
wave functions form a scalar field.

The expectation value of momentum, 〈p〉 follows from the above, and is
given by the equation:

〈p〉 =
∫

pΓ∗(p)Γ(p)dp (4.3.8)

The same value may be calculated using U(x). To do so, substitute Γ(p)
from the second part of Eq. (4.3.7) into Eq. (4.3.8). The result is:

〈p〉 =
(

1
2π�

)1/2 ∫ ∞

−∞
pΓ∗(p)

∫ ∞

−∞
U(x) exp

(xp

i�

)
dx (4.3.9)
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Integrating the second integral by parts gives:

〈p〉 =
(

1
2π�

)1/2 ∫ ∞

−∞
Γ∗(p)

{
i�U(x)

∣∣∞
−∞ − i�

∫ ∞

−∞

∂U(x)
∂x

exp
(xp

i�

)
dx

}

Since an acceptable wave function is equal to zero at infinity, the first term
within the brackets vanishes. Substituting the complex conjugate of the first
of Eq. (4.3.7) into the second term and reversing the order of integration
gives:

〈p〉 = −
∫ ∞

−∞
U∗(x)

[
�

i

∂U(x)
∂x

]
dx (4.3.10)

Equation (4.3.10) is an example of the general case: A dynamic variable in
momentum space may be replaced by an operation in dimensional space,
and vice versa. Letting O indicate that the variable is written in operator
form, in three dimensions the momentum operator is:

O(p) =
�

i
∇ (4.3.11)

It is understood that the operator acts on wave function U(r). Repeating
the above procedure for pn shows, after n partial integrations, that the
result generalizes to:

O(pn) =
(

�

i

)n

∇n (4.3.12)

With this result, it is not necessary to solve for both U(r) and Γ(p) to solve
a kinematic problem. It is only necessary to work with one functional type,
typically U(r), and express conjugate variables in operator form.

A conservation law of primary importance is the low speed energy of an
electron with total energy W . The sum of kinetic plus potential energies is:

W =
1

2m

∫
dVp
[
p2Γ∗(p)Γ(p)

]
+
∫

dV
[
Λ(r)U∗(r)U(r)

]
(4.3.13)

An arbitrary constant, such as the self-energy of the electron, may be added
without affecting results to follow. Applying Eq. (4.3.12) to Eq. (4.3.13)
gives the result:∫

dV U∗(r)
{

− �
2

2m
∇2U(r) + [Λ(r) − W ]U(r)

}
= 0 (4.3.14)

Although it is only necessary for the integral to equal zero the more strin-
gent condition that the integrand equal zero at all points within the region
may also be applied. Doing so returns Eq. (4.3.1), the time-independent
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Schrödinger wave equation. Function U(r) is a wave function that provides
the time average charge density of the electron of interest at each point.

The above development shows that the Schrödinger equation is a state-
ment of energy conservation in which Planck’s constant appears as a phase-
determining normalization constant in the scalar product between velocity
and position vectors, see Eq. (4.3.6). The Schrödinger equation is correct
only at electron speeds much less than c and it does not account for electron
spin; it is necessary to add electron spin separately to the wave equation.
In contrast, Dirac’s equations apply in all inertial systems and spin is an
integral part of the whole. Although Dirac’s work is of singular importance
to quantum theory, it does not assist in resolving basic issues of photon
exchanges considered here. Therefore, it is not discussed in this work.

4.4. The Uncertainty Principle

By the uncertainty principle, it is not possible to determine simultaneously
the exact value of conjugate variables, for example position and momen-
tum. The more accurately the position of a point electron is known the less
accurately the momentum can be known, and vice versa. As a simple exam-
ple, consider the case of an electron described by a Gaussian wave function.
That is, U(x) is proportional to exp(−x2/B), where B is undetermined but
constrained to be positive:

0 < B < ∞ (4.4.1)

The electron is confined to position zero only if B increases without limit
and the smaller the value of B the larger the physical extent of the charge
distribution. The system is normalized if the probability density at each
point is:

U∗(x)U(x) =

√
2

πB
exp
(

−2x2

B

)
(4.4.2)

The expectation value of x2 may be calculated using the integrals of
Table 4.4.1:

〈x2〉 =

√
2

πB

∫ ∞

−∞
exp
(

−2x2

B

)
x2dx =

B
4

(4.4.3)

Substituting U(x) into the second of Eq. (4.3.7) results in the momentum
space form of the wave function:

Γ(p) =
(

B
2π�2

)1/4

exp
(

− B
4�2 p2

)
(4.4.4)
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Table 4.4.1. Short list of Gaussian integrals.

∫ ∞

0
exp(−a2x2)dx =

√
π

2a∫ ∞

0
x2 exp(−x2)dx =

√
π

4∫ ∞

0
exp(−a2x2) cos(bx)dx =

√
π

2a
exp

(
− b2

4a2

)

Using Eq. (4.4.4) to calculate the mean-square value of momentum gives:

〈p2〉 =
(

B
2π�2

)1/2 ∫ ∞

−∞
exp
(

−Bp2

2�2

)
p2dp =

�
2

B
(4.4.5)

Recalculating 〈p2〉 in coordinate space using operator notation gives, after
some calculation:

〈p2〉 = −�
2
(

2
πB

)1/2 ∫ ∞

−∞
exp
(

−x2

B

)
d2

dx2

[
exp
(

−x2

B

)]
dx =

�
2

B
(4.4.6)

By inspection the r.m.s. values of position and momentum satisfy the
parabolic relationship:

√
〈x2〉〈p2〉 =

�

2
(4.4.7)

By Eq. (4.4.7) it is not possible to know position and momentum more
accurately than ∆x∆p ≈ �, where ∆x and ∆p are, respectively, uncer-
tainty in the measurement of position and momentum. This is a quantita-
tive statement of the uncertainty principle. It results from the properties of
the Fourier integral transform relationships relating the wave functions in
momentum and coordinate space. The same is true for all conjugate pairs,
i.e. pairs related by Fourier transforms; they satisfy the parabolic uncer-
tainty relationship of Eq. (4.4.7). It may be shown that a Gaussian wave
function provides the least possible uncertainty; all other wave functions
provide a greater uncertainty than that of Eq. (4.4.7).

By the electron model of Sec. 4.2 and the development of Sec. 4.3,
the uncertainty is due to incomplete information about the intra-electron
ensemble. If the structure of an electron and its binding were known, in
principle at least, an exact solution would permit calculation of the full
physical result.
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4.5. The Time-Dependent Schrödinger Equation

Solutions of the time-independent Schrödinger equation describe time-
average values of the kinematic parameters and, of course, time-average
values are constant. However, the time-averages are taken over time inter-
vals that are long only when compared with changes in the electron con-
figuration within the state. Time variations over such periods that are
short compared with the time scales of macroscopic events are often of
interest. In this section, we examine changes during times that are longer
than needed for electron configuration changes but short compared with
macroscopic times. The result determines the initial variation of expectation
values away from equilibrium positions by calculating changes that occur
slowly enough so ensemble averages always remain in near-equilibrium con-
ditions. If the potential changes too rapidly, or if the potential change is too
large, the near-equilibrium condition is violated and the Schrödinger equa-
tion ceases to apply. In summary, the Schrödinger time-dependent equation
applies only if the ensemble remains in a near-equilibrium condition.

To find the time behavior of the expectation values, begin by defining
the time dependent function:

ψ(r, t) = U(r)eiωt (4.5.1)

Use of the exponential time function places no restrictions on well-behaved
functions since the time variation can be constructed by integrating appro-
priately weighted exponentials. Using this notation time dependence of the
charge density in coordinate space is, see Eq. (4.3.2):

ρ(r, t) = eψ∗(r, t)ψ(r, t) (4.5.2)

The momentum density is shown in Eq. (4.3.10). If charge and mass density
are evenly distributed throughout the eigenstate:

J(r, t) =
e

m
p(r, t) (4.5.3)

Combining Eqs. (4.3.10) and (4.5.3) and requiring the current density to
be real gives the current density expression:

J(r, t) =
�e

2im

[
ψ∗(r, t)∇ψ(r, t) − ψ(r, t)∇ψ∗(r, t)

]
(4.5.4)

It is shown in Sec. 4.3 that the time-independent Schrödinger equation is a
statement of the conservation of energy. The time-dependent Schrödinger
equation follows from the time-independent one after combining it with the
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conversation of charge. The continuity equation is a statement of charge
conservation, and given by:

∇ · J(r, t) +
∂ρ(r, t)

∂t
= 0 (4.5.5)

Development of the time-dependent equation begins with these equations.
The rate of change of charge density is:

∂ρ(r, t)
∂t

= e

[
ψ∗(r, t)

∂

∂t
ψ(r, t) + ψ(r, t)

∂

∂t
ψ∗(r, t)

]
(4.5.6)

The divergence of the current density is:

∇ · J(r, t) =
�e

2im

[
ψ∗(r, t)∇2ψ(r, t) − ψ(r, t)∇2ψ∗(r, t)

]
(4.5.7)

Substituting Eqs. (4.5.5) and (4.5.6) into Eq. (4.5.7), multiplying by (�/ie),
and adding and subtracting potential Λ(r) gives:

ψ∗(r, t)
[
− �

2

2m
∇2ψ(r, t) + Λ(r)ψ(r, t) +

�

i

∂

∂t
ψ(r, t)

]

− ψ(r, t)
[
− �

2

2m
∇2ψ∗(r, t) + Λ(r)ψ∗(r, t) − �

i

∂

∂t
ψ∗(r, t)

]
= 0 (4.5.8)

To connect with the time-independent equation, we seek wave function
ψ(r, t) that, as the time dependence becomes vanishingly slow, goes to:

U∗(r)
[
− �

2

2m
∇2U(r) + ΛU(r) − WU(r)

]

− U(r)
[
− �

2

2m
∇2U∗(r) + ΛU∗(r) − WU∗(r)

]
= 0 (4.5.9)

Since each line of Eq. (4.5.9) is equal to zero, so are the two lines of
Eq. (4.5.8) in the low speed limit, and since the equation holds for all
nonrelativistic speeds, the time-dependent wave equation is:∫

ψ∗(r, t)
[
− �

2

2m
∇2ψ(r, t) + Λ(r)ψ(r, t) +

�

i

∂

∂t
ψ(r, t)

]
dV = 0

(4.5.10)

Insisting that not just the integral but also the integrand equal zero results
in the Schrödinger time-dependent equation:

−�

i

∂

∂t
ψ(r, t) = Hψ(r, t) = Wψ(r, t) (4.5.11)
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The Hamiltonian operator, H, is defined to be the operator that acts on
the wave function to produce the time dependence and state energy of
Eq. (4.5.11). From the first equality:

Hψ(r, t) = − �
2

2m
∇2ψ(r, t) + Λ(r)ψ(r, t) (4.5.12)

From the second equality:

ψ(r, t) = ψ(r, t0) exp
(

iW

�
t

)
(4.5.13)

The initial value of the wave function is the equilibrium value:

ψ(r, t0) = U(r) (4.5.14)

An important result of Eq. (4.5.13) is that the frequency of an eigenstate
is related to the energy as:

ω = W/� (4.5.15)

This equation is the basis for the experimental determination of �.
The time-independent Schrödinger equation combines conservation of

energy and charge. It is thermodynamic-like in that only time-average
averages over times long compared with the periods of possible intra-state
movements are described. Therefore although Eq. (4.5.11) provides correct
time-average values it does not imply a time-line of actual events. Also, it
describes only linear phenomena and therefore applies only to incremental
changes that occur at the onset of atomic instability, not to a full transition.

4.6. Quantum Operator Properties

An extension of the logic that supported the use of operators to calculate
momentum generalizes to include functions of momentum. To make the
generalization consider the integral:

I =
∫ ∞

−∞

[
Γ∗

R(p)pΓS(p)
]
dV p (4.6.1)

ΓR(p) and ΓS(p) represent eigenfunction solutions of the same differential
equation. For each function ΓR(p), there exists a Fourier integral transform
function in coordinate space, UR(r). To rewrite the integral of Eq. (4.6.1)
using spatial functions, repeat the procedure used going from Eq. (4.3.8)
to Eq. (4.3.10). Taking the gradient in the direction of the momentum and
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working with the “S” functions, the integral of Eq. (4.6.1) becomes:

I =
∫ ∞

−∞
U∗

R(r)
[

�

i
∇US(r)

]
dV (4.6.2)

Similarly, working with the “R” functions gives:

I =
∫ ∞

−∞
US(r)

[
�

i
∇UR(r)

]∗
dV (4.6.3)

Since all physical results are real, Eq. (4.6.3) is equal to its own complex
conjugate:

∫ ∞

−∞
U∗

S(r)
[

�

i
∇UR(r)

]
dV =

∫ ∞

−∞
US(r)

[
−�

i
∇U∗

R(r)
]
dV (4.6.4)

Combining Eqs. (4.6.2) and (4.6.4) gives:

∫ ∞

−∞
U∗

R(r)
[

�

i
∇US(r)

]
dV =

∫ ∞

−∞
US(r)

[
�

i
∇UR(r)

]∗
dV (4.6.5)

The result generalizes to:

∫ ∞

−∞
U∗

R(r)O[US(r)]dV =
∫ ∞

−∞
US(r)〈O[US(r)]〉∗dV (4.6.6)

The symbol “O” indicates any quantum mechanical operator. An operator
that satisfies Eq. (4.6.6) is, by definition, a Hermitian operator.

4.7. Orthogonality

To examine the orthogonality properties of wave function ψ(r, t), let O
be a quantum theory operator, let ψR(r, t) and ψS(r, t) be time-dependent
eigenfunctions, and let IR and IS be the corresponding state values. That is:

OψR(r, t) = IRψR(r, t) and OψS(r, t) = ISψS(r, t) (4.7.1)

All functions ψR(r, t) that satisfies this equation are eigenfunctions and
constants IR are state values. Multiplying the left equation by ψ∗

S(r, t), the
right equation by ψ∗

R(r, t), subtracting one from the other, and integrating
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over the volume gives:∫ [
ψ∗

RISψS − ψ∗
SIRψR

]
dV =

∫ [
ψ∗

ROψS − ψS(OψR)∗]dV

= (IS − IR)
∫

ψ∗
RψS dV (4.7.2)

It follows from Eq. (4.6.6) that:∫ [
ψ∗

R(OψS) − ψS(OψR)∗]dV = 0 (4.7.3)

Combining Eqs. (4.7.2) and (4.7.3) gives:

(IS − IR)
∫

ψ∗
RψS dV = 0 (4.7.4)

If a system has more than one eigenfunction with the same state energy
the system is degenerate; the number of solutions that produce the same
state energy is the degree of degeneracy. A conclusion from Eq. (4.7.4) is
that if the states are not degenerate the functions are orthogonal; if the
state energies are equal the functions are degenerate and may or may not
be orthogonal.

Wherever solutions of a single operator result in many eigenfunctions,
ψS(r, t), the physical result is a sum, weighted by constants aS, over all
possible eigenfunctions:

Ψ(r, t) =
∞∑

S=1

aSψS(r, t) (4.7.5)

ψS(r, t) are normalized wave functions. Requiring that the total wave func-
tion be normalized gives:∫

Ψ∗Ψ dV =
∞∑

R=1

∞∑
S=1

aRa∗
S

∫
ψRψ∗

S dV =
∞∑

R=1

aRa∗
R = 1 (4.7.6)

Equation (4.7.6) shows that the sum over the magnitudes of all coefficients
is one. This leads to the conclusion that:

〈O〉 =
∫

ψ∗Oψ dV =
∞∑

R=1

∞∑
S=1

aRa∗
S

∫
ψ∗

SOψR dV =
∞∑

R=1

IRaRa∗
R (4.7.7)

In words, the expectation value of any dynamic function “O” is the sum over
the probabilities that the electron occupies a particular state multiplied by
the state value. For any particular measurement, the use of operator 〈O〉
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produces only a particular value aRaR
∗. With a linear system, a single elec-

tron enters into a statistically weighted fraction of all available eigenstates.
The initial rate of change of an expectation value follows. Differentiating

the first equality of Eq. (4.7.7) with respect to time gives:

d
dt

〈O〉 =
∫ (

∂ψ∗

∂t
Oψ + ψ∗O

∂ψ

∂t

)
dV (4.7.8)

Using Eq. (4.5.11), this may be written as:

d
dt

〈O〉 = − i

�

∫
(ψ∗O(Hψ) − (Hψ)∗(Oψ)) dV (4.7.9)

Incorporating Eq. (4.6.6):

d
dt

〈O〉 = − i

�

∫
ψ∗(OH − HO)ψ dV (4.7.10)

For the special case where O = r:

〈p〉 = m
d
dt

〈r〉 =
im
�

(Hr − rH) (4.7.11)

The bracket on the right side of Eq. (4.7.11) is defined to be the commuta-
tor of the indicated variable. This particular bracket is the commutator of
position.

4.8. Harmonic Oscillators

Harmonic oscillators appear in different forms throughout all of physics.
Examples include RC circuits, the displacement of violin strings, and the
oscillations of two atoms bound together as a molecule. Consider the latter
case as an example of a one-dimensional problem. To make a quantum
mechanical analysis of a harmonic oscillator, let the total energy H be the
sum of kinetic and potential parts:

H =
p2

2m
+

1
2
αx2 (4.8.1)

In this case α is a constant specific to a particular molecule.
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The applicable Schrödinger equations are:

∫
U∗(x)

(
− �

2

2m + 1
2αx2

)
U(x)dx = W

(4.8.2)
Wψ(x, t) = −�

i

∂ψ(x, t)
∂t

Since W is constant, it follows from the second part of Eq. (4.8.2) that:

ψ(x, t) = U(x)eiW/kT (4.8.3)

The first part of Eq. (4.8.2) is satisfied if:

− �
2

2m
d2U(x)

dx2 +
(

1
2
αx2 − W

)
U(x) = 0 (4.8.4)

The equation is most easily solved after using the substitution:

ρ = ξx (4.8.5)

Combining Eqs. (4.8.4) and (4.8.5) gives:

d2U(ρ)
dρ2 +

(
2Wm
�2ξ2 − αm

�2ξ4 ρ2
)

U(ρ) = 0 (4.8.6)

It is convenient to make the substitutions:

γ4 =
mα

�2 and λ =
2W

�
√

α/m
(4.8.7)

With these substitutions the differential equation is:

U′′(ρ) + (λ − ρ2)U(ρ) = 0 (4.8.8)

Primes indicate derivatives with respect to ρ. In the limit as ρ becomes large
the term λU(ρ) becomes negligibly small. The equation and its solution take
the forms:

U′′(ρ) − ρ2U(ρ) = 0
(4.8.9)

U(ρ) ≈ e±ρ2/2

Since the positive sign is inconsistent with a localized charge physical reality,
the negative sign is used in the exponential. With H(ρ) as a slowly varying
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function of ρ at large radii Eq. (4.8.6) may be written:

U(ρ) = AH(ρ)e−ρ2/2 (4.8.10)

Substituting Eq. (4.8.10) into Eq. (4.8.8) gives:

H′′(ρ) − 2ρH′(ρ) + (λ − 1)H(ρ) = 0 (4.8.11)

The solution is most conveniently found using a series expansion:

H(ρ) =
∞∑
s=0

asρ
s (4.8.12)

Substituting Eq. (4.8.12) into Eq. (4.8.11) gives:

as+2

as
=

2s − (λ − 1)
(s + 2)(s + 1)

(4.8.13)

In the limit as “s” becomes indefinitely large, the ratio of Eq. (4.8.13)
goes to:

as+2

as
→ 2

s
(4.8.14)

The value of Eq. (4.8.14) is also equal to the ratio of the equivalent terms
in the expansion of exp(ρ2). Combining it with Eq. (4.8.10) gives the unac-
ceptable result that it becomes infinite with ρ. Therefore an acceptable
function is obtained only if the numerator of Eq. (4.8.13) vanishes. This
occurs if, with n an integer:

λ = 2n + 1 (4.8.15)

This terminates the series and makes functions Hn(ρ) polynomials of
largest power λ. Although the resulting polynomials, Hermite polynomials,
follow from this recursion relationship we have no need for them. Combining
Eqs. (4.8.13) and (4.8.7) shows the energy to be:

Wn = (2n + 1)�ω0/2 where ω0 =
√

α/m (4.8.16)

The eigenstate energies shown by Eq. (4.8.16) are equally spaced and sepa-
rated by energy �ω0. Therefore energy changes occur in energy units of mag-
nitude �ω0. The equation also shows the lowest possible eigenstate energy
is �ω/2. That is, even at an absolute temperature of zero the eigenstate
electron energy density remains equal to �ω/2.
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4.9. Electron Angular Momentum, Central Force Fields

By definition, the angular momentum, l, in kinematic and operator forms is:

l ≡ r × p =
�

i
r × ∇ (4.9.1)

The first equality follows from classical mechanics and the second from
quantum theory operator notation. By Eq. (4.9.1) the operator form of the
angular momentum components about each of the three axes is:

lx =
�

i

(
y

∂

∂z
− z

∂

∂y

)
= −�

i

(
sin φ

∂

∂θ
+ cot θ cos φ

∂

∂φ

)

ly =
�

i

(
z

∂

∂x
− x

∂

∂z

)
=

�

i

(
cos φ

∂

∂θ
− cot θ sin φ

∂

∂φ

)
(4.9.2)

lz =
�

i

(
x

∂

∂y
− y

∂

∂x

)
=

�

i

(
∂

∂φ

)

The first set of equalities in Eq. (4.9.2) follows directly from Eq. (4.9.1) and
the second follows after changing to spherical coordinates.

Another quantity of interest is the magnitude of the angular momentum.
The operator form of the square of the angular momentum follows from
Eq. (4.9.2); evaluation gives:

l2x + l2y = −�
2
(

∂2

∂θ2 + cot2 θ
∂2

∂φ2 + cot θ
∂

∂θ

)
l2z = −�

2
(

∂2

∂φ2

)

The sum is:

l2 = l2x + l2y + l2z = −�
2
(

1
sin θ

∂

∂θ

[
sin θ

∂

∂θ

]
+

1
sin2 θ

∂2

∂φ2

)
(4.9.3)

The electrostatic force fields about atomic nuclei have spherical sym-
metry. With spherical symmetry the potential is a function only of the
magnitude of the radius and there is no angular dependence. For this case
the Schrödinger equation has the form:

− �
2

2m
∇2U(r) + Λ(r)U(r) = WU(r) (4.9.4)

Introducing the Laplacian operator in spherical coordinates and rearranging
terms gives:

1
sin θ

∂

∂θ

[
sin θ

∂U(r, θ, φ)
∂θ

]
+

1
sin2 θ

[
∂2U(r, θ, φ)

∂φ2

]

= − ∂

∂r

[
r2 ∂U(r, θ, φ)

∂r

]
+

2m

�2 [W + Λ(r)]r2U(r, θ, φ) (4.9.5)
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To solve the Laplacian, break function U(r, θ, φ) into functions of a single
variable; that is, put U(r, θ, φ) equal to product function R(r)Θ(θ)Φ(φ)
then sum over all possible solutions:

U(r, θ, φ) =
∑

R(r)Θ(θ)Φ(φ) (4.9.6)

Substituting the single function product form into Eq. (4.9.5) then multi-
plying by the inverse results in the equality:

1
Θ sin θ

d
dθ

(
sin θ

dΘ
dθ

)
+

1
Φ sin2 θ

(
d2Φ
dφ2

)

= − d
Rdr

(
r2 dR

dr

)
+

2m

�2 [W + Λ(r)]r2 (4.9.7)

Since the left side of the equation is only a function of angles and the right
side is only a function of radius, each side is constant. It is most convenient
to put the separation constant equal to −�(� + 1). In a similar way, with
separation constant m, the terms on the left side of Eq. (4.9.7) break into
functions of θ alone and φ alone. The result is two complete differential
equations:

d2Φ
dφ2 + m2Φ = 0

(4.9.8)
1

sin θ

d
dθ

[
sin θ

dΘ
dθ

]
+
[
�(� + 1) − m2

sin2 θ

]
Θ = 0

The φ solutions may be written either as

Φ(φ) = Am cos(mφ) + Bm sin(mφ) or Cmeimφ + Dme−imφ (4.9.9)

Since solutions that describe physical reality cannot be multivalued, m must
be an integer. If the solution is proportional to either Am or Bm, by the
third part of Eq. (4.9.2) the z-component of angular momentum is zero;
if the solution is proportional to Cm or Dm the z-component of angular
momentum, lz, is:

lz = ±m� (4.9.10)

Combining Eq. (4.9.3) with the θ-dependent part of Eq. (4.9.8) shows that
the angular momentum satisfies the equation:

l2 = �(� + 1)�2 (4.9.11)

The θ-equation provides a physically real solution only if � is an integer and
solutions with integer values of � are associated Legendre functions.
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The two separation constants, � and m, are both integers and in the
equations of quantum theory are called quantum numbers. The ranges in
which such solutions exist are:

0 ≤ � < ∞ and −� ≤ m ≤ � (4.9.12)

Comparison of the above shows that under all circumstances:

l2 > l2z (4.9.13)

Therefore angular momentum is never entirely about a single axis. This
point supports electron configurational aspects discussed in later sections.

4.10. The Coulomb Potential Source

Let a point charge of magnitude +Ze attract an electron of charge −e. The
resulting potential energy is:

Λ(r) = − Ze2

4πεr
(4.10.1)

Combining Eq. (4.10.1) and the radial portion of Eq. (4.9.7) results in:

− �
2

2m

1
r2

d
dr

(
r2 dR

dr

)
− Ze2

4πεr
R +

�(� + 1)�2

2mr2 R = WR (4.10.2)

The total energy W is less than or greater than zero respectively for bound
or free electrons. This equation is most easily solved by introducing the
parameter α and variable ρ where, by definition:

ρ = αr (4.10.3)

It is helpful to introduce the additional definitions:

α2 =
8m|W |

�2 and n =
Ze2

4πε�

√
m

2|W | =
Ze2m

2πεα�2 (4.10.4)

If the electron energy is negative, substituting ρ back into Eq. (4.10.2) and
using Eq. (4.10.4) gives:

1
ρ2

d
dρ

(
ρ2 dR

dρ

)
− �(� + 1)

ρ2 R +
nR
ρ

− R
4

= 0 (4.10.5)

To solve Eq. (4.10.5), begin with the asymptotic limit at infinity. As ρ

increases without limit the asymptotic differential equation is:

d2R
dσ2 − R

4
= 0 (4.10.6)
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The solution of Eq. (4.10.6) is:

R(ρ) = F (ρ)e−ρ/2 + G(ρ)eρ/2 (4.10.7)

The conditions on Eq. (4.10.6) are that, in the asymptotic limit of large
radius, F (ρ) and G(ρ) must change much more slowly with ρ than the
exponential terms and, since the total charge is finite, function R(ρ) must
vanish at infinity. It follows that since a non-zero value of function G(ρ)
does not represent physical reality it is multiplied by zero. Substituting
the remaining form F (ρ)e−ρ/2 into Eq. (4.10.5) results in the differential
equation:

d2F

dρ2 +
(

2
ρ

− 1
)

dF

dρ
+
(

n − 1
ρ

− �(� + 1)
ρ2

)
F = 0 (4.10.8)

A convenient solution method for Eq. (4.10.8) is a power series expansion.
The solution procedure begins by forming the summation:

F (ρ) = ρs
∞∑
j=0

ajρ
j (4.10.9)

Solution requires that a0 �= 0 and aj ≥ 0. Substituting Eq. (4.10.9) into
Eq. (4.10.8) results in the sum:

[s(s + 1) − �(� + 1)]ρ−2 +
∞∑
j=0

{[(s + j + 1)(s + j + 2) − �(� + 1)]aj+1

− (s + j + 1 − n)aj}ρj−1 = 0 (4.10.10)

Since a0 is not equal to zero, the first term of Eq. (4.10.10) requires that
either s = � or s = −(� + 1). Since the latter is singular at the origin,
it cannot represent physical reality. Substituting s = � into Eq. (4.10.10)
results in the coefficient ratio:

aj+1

aj
=

j + 1 + � − n
(j + 1)(j + 2� + 2)

(4.10.11)

As index ‘j’ increases without limit Eq. (4.10.11) goes asymptotically to
the index of the expansion for eρ. Combining this with Eq. (4.10.7) shows
that the radial function is proportional to eρ/2 in the limit of very large ρ,
a physically unacceptable result. Hence a nontrivial solution of F (ρ) exists
if and only if the series terminates, and the series terminates only if n is an
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integer. For that case, Eq. (4.10.4) shows that state energy Wn is equal to:

Wn = − mZ2e4

32π2ε2n2�2 (4.10.12)

This result shows that an infinite number of energy state values exist, that
the energy is independent of quantum numbers � and m, and that the state
energy varies as the inverse square of quantum number n.

It is helpful to define radius r0 as:

r0 =
2Z
nα

hence r0 =
4πε�

2

me2 (4.10.13)

Evaluating Eq. (4.10.13) shows that:

r0 = 5.29172 × 10−11 m (4.10.14)

By definition, r0 is the Bohr radius. The electrostatic energy may also be
written as:

Wn =
Ze2

8πε
〈1/r〉 (4.10.15)

Combining Eqs. (4.10.12), (4.10.13), and (4.10.15) shows that:

〈1/r〉 = Z/(n2r0) (4.10.16)

In the limit of large values of n, the energy goes to zero and the expectation
value of the radius of the electron state becomes infinite: the electron is
distributed over all space.

To solve for the radial function, rewrite Eq. (4.10.11) as:

aj+1 =
(j + � + 1 − n)

(j + 2� + 2)(j + 1)
aj (4.10.17)

From Eq. (4.10.17), each coefficient gives:

aj = (−1)j
(

(n − � − 1)!(2� + 1)!
(n − j − � − 1)!j!(2� + j + 1)!

)
a0

To put this notation in agreement with common usage, define a0 to be:

a0 = − (n + �)!2

(n − � − 1)!(2� + 1)!

Combining gives:

aj = (−1)j+1
{

(n + �)!2

(n − j − � − 1)!j!(2� + j + 1)!

}
(4.10.18)
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Table 4.10.1. Values of R�
n(σ) for n = 1–4.

n = 1 n = 2 n = 3 n = 4

R0
n(σ) −e−ρ/2 −(2)!(2 − ρ)e−ρ/2 −3(6 − 6ρ + ρ2)e−ρ/2 −24(4 − 6ρ + 2ρ2 − ρ3)e−ρ/2

R1
n(σ) −(3)!ρe−ρ/2 −(4)!(4 − ρ)ρe−ρ/2 −60(20 − 10ρ + 3ρ2)ρe−ρ/2

R2
n(σ) −(5)!ρ2e−ρ/2 −(6)!(6 − ρ)ρ2e−ρ/2

R3
n(σ) −(7)!ρ3e−ρ/2

It follows that:

� < n (4.10.19)

Combining all results shows that R(ρ) depends upon both quantum num-
bers n and �, and is equal to:

R

n(ρ) = ρ
e−ρ/2

n−
−1∑
j=0

(−1)j+1 (n + �)!2ρ j

(n − j − � − 1)!j!(2� + j + 1)!
(4.10.20)

Functional values for n = 1 through 4 are listed in Table 4.10.1.
Wave function normalization follows from Eq. (4.10.20), and the integral

result:

I
n =
∫ ∞

0
ρ2 dρ R


n(ρ)R

q(ρ) =

2n(n + �)!3

(n − � − 1)!
δ(n, q) (4.10.21)

The first row of Table 4.10.1 shows that the largest value of the function
occurs at the origin. Including the origin, there are a total of � maxima as
a function of radius. The remaining rows show that the radius raised to
power � multiplies each function. Therefore the value is equal to zero at the
origin for all except � = 0 and the radius of the region with a negligibly
small value of charge increases with increasing values of �.

4.11. Hydrogen Atom Eigenfunctions

The full expression for an eigenfunction of a trapping spherical potential
has the form:

Un
m(r, θ, φ) = An
mR

n(αnr)Pm


 (cos θ)e−imφ (4.11.1)

It is shown in Secs. 4.9 and 4.10 that both quantum numbers n and � are
integers. A separate requirement that � and m be integers follows from
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the requirement that the full range of solid angle be available for angular
solutions. Also since the full range of angles are available the coefficients
of Legendre functions of the second kind are all equal to zero. From the
theory of Legendre polynomials:∫ π

0
sin θ dθ[Pm


 (cos θ)]2 =
4π

2� + 1
(� + m)!
(� − m)!

(4.11.2)

Using Eqs. (4.10.21) and (4.11.2) to solve for the total probability of each
state, then normalizing that value to unity, permits solving for the constant
coefficients of Eq. (4.11.1). The result is:

|An
m| =
{

α3
n

4πn
(n − � − 1)!
(n + �)!3

(2� + 1)(� − m)!
(� + m)!

}0.5

(4.11.3)

Each wave function has (n − �) zeros, including infinity, and undergoes
(n− �) nodes (functional maxima) as a function of radius. Several complete
eigenfunctions are listed in Table 4.11.1.

The energy levels of Eq. (4.10.12) show that the energy depends upon
quantum number n but not upon quantum numbers � and m. In common
with other boundary value problems only eigenfunction solutions can exist.
Parameter r0 of Eq. (4.10.13) is a normalizing radial factor that shows
atomic radii to be of the order of 0.1 nm.

Since wave functions with m = 0 have spherical symmetry the charge
density associated with them produce monopole electrostatic fields. There
is a charge density node at the origin and (n−1) others at increasing values
of radius. Wave functions with m = 1 have bilateral symmetry. There is a
null in the charge density at the origin and (n − 1) nodes. Wave functions
with m = 2 have quadrilateral symmetry. There is a charge density null at
the origin and (n − 2) nodes, etc.

For n = 1, both � and m are equal to zero and there is but one eigenfunc-
tion. There is no degeneracy. For n = 2 there are two types of solutions: one
is � = 1 with an accompanying triplet of state values of m: m = −1, 0, +1.
The other is the singlet � = 0 with an accompanying singlet state value
of m : m = 0. Since the energy depends only upon n, and since for each
value of � there are (2� + 1) values of m, the result is a (2� + 1) fold energy
degeneracy. For each value of n there are n − 1 values of �. Hence the total
energy degeneracy is:

n−1∑

=1

(2� + 1) = n2 (4.11.4)

That is, there are n2 possible solutions for each value of energy.
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Table 4.11.1. Hydrogen atom eigenfunctions for n = 1 through 3, (1/〈r〉)
depends upon quantum number n only.

U100 =

√
1
π

(
Z
r0

)3/2
e−Zr/r0

1
〈1/r〉 =

r0

Z

U200 =
1√
32π

(
Z
r0

)3/2(
2 − Zr

r0

)
e−Zr/2r0

1
〈1/r〉 =

4r0

Z

U210 =
1√
32π

(
Z
r0

)3/2(Zr

r0

)
e−Zr/2r0 cos θ

U21±1 =
1

8
√

π

(
Z
r0

)3/2(Zr

r0

)
e−Zr/2r0 sin θ e±iφ

U300 =
1

81
√

3π

(
Z
r0

)3/2 (
27 − 18

Zr

r0
+ 2

Z2r2

r20

)
e−Zr/3r0

1
〈1/r〉 =

9r0

Z

U310 =

√
2

81
√

π

(
Z
r0

)3/2 (
6 − Zr

r0

)(
Zr

r0

)
e−Zr/3r0 cos θ

U31±1 =
1

81
√

π

(
Z
r0

)3/2(
6 − Zr

r0

)(
Zr

r0

)
e−Zr/3r0 sin θ e±iφ

U320 =
1

81
√

6π

(
Z
r0

)3/2 (Z2r2

r2
0

)
e−Zr/3r0

(
3 cos2 θ − 1

)

U32±1 =
1

81
√

π

(
Z
r0

)3/2(Z2r2

r2
0

)
e−Zr/3r0 sin θ cos θ e±iφ

U32±2 =
1

162
√

π

(
Z
r0

)3/2 (Z2r2

r2
0

)
e−Zr/3r0 sin2 θ e±i2φ

The degeneracy is lifted if the electron system is immersed in a static
electric or magnetic field. The m = 0 states are more closely tied to the
nucleus than are the m = ±1 states, which extend further outward from the
nucleus. Therefore a static electric field affects the different states differently
and removes the degeneracy. This is the Stark effect. The m = 0 state
supports no angular momentum and produce no net magnetic moment. The
m = ±1 states do support angular momentum and do produce a magnetic
moment. Hence, the states respond differently to an applied static magnetic
field. The different response removes the energy degeneracy and the result
is the Zeeman effect.
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4.12. Perturbation Analysis

Consider an atom immersed in an external force field. So long as the applied
field and its gradient are much less than those of the trapping potential
the wave functions retain their original character and solutions entail a
re-scrambling of the occupied states. As an example, consider the special
case of an atom immersed in static, externally applied electric field with
magnitude small compared with the Coulomb field. Modifications result in
a change of occupational probability of the original eigenfunctions.

To show that this is true, let the Hamiltonian operator H0 characterize
the energy of an isolated electron system. The resulting total eigenfunction
is a sum over wave functions that are solutions of the Schrödinger equa-
tion with operator H0. Let one possible eigenfunction be Un0. The possible
eigenfunctions and the corresponding energies Wn0 are known and each
satisfies the relationship:∫

(U∗
n0H0Un0)dV = Wn0

∫
U∗

n0Un0 dV (4.12.1)

A small external force field is applied that modifies the Hamiltonian to the
operational form:

H = H0 + H1 (4.12.2)

Since the external field is controllable by external means, for example the
intensity of an applied laser beam, the actual operational form may be
written as:

H = H0 + αH1 (4.12.3)

An experimenter may control the value of α from zero to one. The
eigenfunctions and energies are functions of α. If the applied force is small
enough a power series in powers of α will converge, with the result that:

Un = Un0 + αUn1 + α2Un2 + · · · =
∑

r

αrUnr

Wn = Wn0 + αWn1 + α2Wn2 + · · · =
∑

s

αrWnr

(4.12.4)

The “0” subscripts form the total solution in the absence of the external
field, the “1” subscripts describe the first order correction, the “2” sub-
scripts describe the second order correction, etc. For small fields, only the
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correction terms that are first order in α are large enough to be of interest
and terms proportional to α2 may be ignored. The first order terms are:∫

{(U∗
n0 + αU∗

n1)(H0 + αH1)(Un0 + αUn1)}dV

=
∫

{(U∗
n0 + αU∗

n1)(Wn0 + αWn1)(Un0 + αUn1)}dV

∼=
∫

{U∗
n0H0Un0 + α[U∗

n1H0Un0 + U∗
n0H1Un0 + U∗

n0H0Un1]}dV

=
∫

{Wn0U∗
n0Un0 + α[Wn0U∗

n1Un0 + Wn1U∗
n0Un0 + Wn0U∗

n0Un1]}dV

(4.12.5)

Confining attention to the last equality of Eq. (4.12.5), the first terms of the
first and last integrals are equal and may be subtracted out. The procedure
may be repeated for the first terms within the square brackets. Applying
the Hermitian property of quantum operators to the last terms within the
square brackets shows that they too are equal and they, too, may be sub-
tracted out of the equation. Eliminating these three terms leaves the center
terms within the square brackets:∫

U∗
n0H1Un0 dV = Wn1

∫
U∗

n0Un0 dV = Wn1 (4.12.6)

This is the first order correction term. Equation (4.12.6) shows that it
is not necessary to know the corrected wave function to calculate first order
energy changes. It is only necessary to know how the first order Hamiltonian
correction affects unperturbed eigenfunctions.

4.13. Non-Ionizing Transitions

If the Hamiltonian operator H0, eigenfunctions ψn, and energies Wn apply
to an electron in an unperturbed atom, Schrödinger’s equation is:

H0ψn(r1, t) = Wnψn(r1, t) (4.13.1)

The total wave function is a weighed sum over all possible wave functions:

Ψ(r1, t) =
∑
n

anψn(r1, t) (4.13.2)

Next, let a second electron be attached to the same atom, affected by the
same Hamiltonian operator, and have the same set of eigenfunctions and
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energies but a different set of coefficients:

Ψ(r2, t) =
∑
n

bnψn(r2, t) (4.13.3)

Make the definitions:

ψmn(r,t) = ψm(r1,t)ψn(r2,t)

Umn(r) = um(r1)un(r2)

Wmn = Wm + Wn

The equation that describes both electrons is:

Ψ(r, t) =
∑
m

∑
n

cmnψmn(r, t)

=
∑
m

∑
n

ambnUmn(r1, r2)exp
(

iWmnt

�

)
(4.13.4)

If a perturbing field is applied that changes the Hamiltonian operator from
H0 to H0 + H1, the wave functions remain unaltered and the probability
coefficients, cmn, become time dependent. To show this, write Eq. (4.13.4)
in the form:

(H0 + H1)
∑
m

∑
n

cmn(t)ψmn(r, t) =
�

i

∂

∂t

∑
m

∑
n

cmn(t)ψmn(r, t)

(4.13.5)

Writing out the equation term by term gives:∑
m

∑
n

[cmn(t)H0ψmn + cmn(t)H1ψmn]

=
∑
m

∑
n

[
�

i
cmn(t)

∂ψmn(t)
∂t

+
�

i

∂cmn(t)
∂t

ψmn

]
(4.13.6)

The first terms on either side are equal; subtracting them leaves the
equality:∑

m

∑
n

cmn(t)H1ψmn(r, t) =
�

i

∑
m

∑
n

∂cmn(t)
∂t

ψmn(r, t) (4.13.7)

Multiplying through by ψpq(r, t) and integrating over all space gives:
d
dt

cpq(t) =
i

�

∑
m

∑
n

cmn(t)
∫

ψ∗
pqH1ψmn dV (4.13.8)

The integral is over the volume occupied by both electrons. Make the
definition:

〈pq|H1|mn〉 =
∫

U∗
pqH1Umn dV (4.13.9)
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The terms of Eq. (4.13.9) are, by definition, the matrix elements of
interaction potential H1. With the aid of Eq. (4.5.13), Eq. (4.13.8) may be
written in the form:

dcpq(t)
dt

=
i

�

∑
m

∑
n

cmn〈pq|H1|mn〉exp
[
i(Wm + Wn − Wp − Wq)t

�

]

(4.13.10)

As a special case suppose that at time t = 0 the electrons are in states m
and n and find the probability, as a function of time, that they will occupy
states p and q. The initial condition is that

dcpq(t)
dt

=
i

�
〈pq|H1|mn〉exp

[
i(Wp + Wq − Wm − Wn)t

�

]
(4.13.11)

Coefficient cmn is equal to one at time t = 0, when all other coefficients are
equal to zero. Make the definition that:

∆W = Wp + Wq − Wm − Wn

Restricting analyses to times short enough so that cmn remains nearly equal
to one, the integral over time shows the initial time dependence of the
coefficient to be:

cpq(t) = 〈pq|H1|mn〉exp(i∆Wt/�) − 1
∆W

(4.13.12)

The probability of state (p, q) being occupied is:

c∗
pqcpq = 4〈pq|H1|mn〉2 sin2(∆Wt/2�)

(∆W )2
(4.13.13)

Equation (4.13.13) shows that the probability that a particular transition
will occur is proportional to the square of the matrix element. The magni-
tude of the matrix element depends upon both sets of quantum numbers, pq
and mn. Transitions are “forbidden” if the matrix element is equal to zero.
Since the ratio sin2(x)/x2 has maximum magnitude at x = 0, it follows that
energy conservation requires that the most probable value of ∆W be zero.

4.14. Absorption and Emission of Radiation

The purpose of this section is to describe the absorption and emission, i.e.
reception and transmission, of radiation by an atom with a full compliment
of electrons. The atom is immersed within an externally applied plane wave
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of radian frequency ω where the wavelength is much greater than the initial
size of an atom.

The calculation begins with the relationships between the Hamilto-
nian, H, the state energy written in operator form, and the time depen-
dence of the applied field as described by the time-dependent Schrödinger
equation. The relationships are, see Eq. (4.5.11):

�

i

∂

∂t
ψn(r, t) = Hψn(r, t) = Wnψn(r, t) (4.14.1)

It follows from Eqs. (4.5.13) and (4.5.14) that the time-dependent eigen-
functions are related to the time-independent ones as:

ψn(r, t)= Un(r)eiWnt/� (4.14.2)

The complete wave function Ψ(r, t) is a weighted sum over all possible
eigenfunctions:

Ψ(r, t) =
∑
n

cn(t)Un(r)eiωnt (4.14.3)

As in Sec. 4.13, it is possible that the probability coefficients are time
dependent. Substituting the first order perturbation equation, Eq. (4.12.6),
into Eqs. (4.14.1) and (4.14.3) gives the differential equation that describes
the rate of change of the coefficients as a function of the coefficients them-
selves:

�

i

∑
n

∂c(t)
∂t

Un(r)eiωnt =
∑
n

cn(t)H1Un(r)eiωnt (4.14.4)

Symbol H1 represents the operator form of the modification to the
Hamiltonian due to the perturbation. This equation shows that the primary
affect of the applied field is to make the state coefficients time dependent.

The electric field intensity in the perturbing plane wave is E(r, t) and
it varies with time as cos(ωt). Although E(r, t) is a real function, it is
convenient to rewrite it in complex terms as the sum of complex conjugate
functions:

E(r,t) = E0ei(ωt−k·r) + c.c. (4.14.5)

For atoms of diameter much less than a wavelength, the perturbing energy
is approximately equal to:

H1 = −eE(t) · r(t) (4.14.6)
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Combining Eq. (4.14.6) with Eq. (4.14.4) gives:∑
n

∂cn(t)
∂t

eiωntUn(r)

= − ie

�

∑
n

{
ei(ωnt+ωt−k·r) + ei(ωnt−ωt+k·r)}cn(t)E0 · rUn(r) (4.14.7)

To determine the effect of interaction between states n and k, multiply
Eq. (4.14.7) through by Uk(r) and integrate over all space. The result is:

∂ck(t)
∂t

= − ie

�

∑
n

cn(t)
{
eik·ri(ωn−ωk−ω)t

+ e−ik·rei(ωn−ωk+ω)t}E0 · 〈Uk|r|Un〉 (4.14.8)

Symbol 〈Uk|r|Un〉 is defined in Eq. (4.13.9). To simplify the problem con-
sider as a boundary condition that at initial time t = 0 only the single
state ‘n’ is occupied by an electron. Therefore only cn is different from zero
and it is equal to one. Doing the time integral of Eq. (4.14.8) under these
circumstances gives the initial solution:

ck(t) = − ie

�

{
eik·r

[
ei(ωn−ωk−ω)t − 1
(ωn − ωk − ω)

]
+ e−ik·r

[
ei(ωn−ωk+ω)t − 1
(ωn − ωk + ω)

]}
×E0 · 〈Uk|r|Un〉 (4.14.9)

The exponential phase factor may be expanded as [e−ik·r ≈ 1− ik ·r+ · · · ].
The first order value, one, is sufficient since atomic sizes are much less
than a wavelength. Making the replacement shows that the square of the
magnitude of Eq. (4.14.9) may be written as:

|ck(t)|2 = (2eE0)
2 〈Uk |r| Un〉2

{
sin2[ 1

2�
(Wn − Wk ± �ω) t

]
(Wn − Wk ± �ω)2

}
(4.14.10)

The term within the curly brackets of Eq. (4.14.10) is significantly different
from zero only if the argument of the sine is equal to zero. This requires
that:

ωk = ωn ± ω (4.14.11)

Multiplying Eq. (4.14.11) through by � shows that (Wk − Wn) = ±�ω.
If (Wk > Wn) energy �ω is added to the system and the transition is associ-
ated with energy absorption. If (Wk < Wn) energy � ω is removed from the
system and the transition is associated with energy emission. Therefore, it
seems reasonable to ascribe the upper or lower sign of Eq. (4.14.11) respec-
tively to energy absorption or emission by the electron. Equation (4.14.11)
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also shows that the transition probabilities for emission and absorption are
the same. Equation (4.14.10) is valid only over times so small that cn(t)
remains nearly equal to one and all other ck(t) remain much less than one.
For simplicity, the development is carried out with this restriction.

If the radius of the atom is equal to the first Bohr orbit, see Eq. (4.10.14),
and the wavelength is at the center of the optical band, 500 nm:

2kr = 6.65 × 10−4(n2/Z) (4.14.12)

If n is small enough so the magnitude of Eq. (4.14.12) is much less than one,
the perturbation expansion of Eq. (4.12.4) converges rapidly and calculated
results may be limited to the first correction term only.

4.15. Electric Dipole Selection Rules
for One Electron Atoms

To obtain the probability of an energy exchange by absorption or emission
of radiation it is necessary to evaluate the matrix element. For an atom
with only one electron, the wave functions are given by Eq. (4.11.1) and
in Table 4.11.1. The components of the matrix elements directed along the
three rectangular coordinate axes are:

X =
∫ ∞

0
r2 dr

∫ π

0
sin θ dθ

∫ 2π

0
U∗

n′
′m′Un
mr sin θ cos φ dφ

Y =
∫ ∞

0
r2 dr

∫ π

0
sin θ dθ

∫ 2π

0
U∗

n′
′m′Un
mr sin θ sin φ dφ

Z =
∫ ∞

0
r2 dr

∫ π

0
sin θ dθ

∫ 2π

0
U∗

n′
′m′Un
mr cos θ dφ

(4.15.1)

The total wave function is related to the individual functions as:

Un
m (r, θ, φ) = An
mR

n (αnr) Pm


 (cos θ) e−imφ (4.15.2)

Combining the first of Eq. (4.15.1) with Eq. (4.15.2) gives:

X = A∗
n′
′m′An
m

∫ ∞

0
R
′

n′R

nr3 dr

∫ π

0
Pm′


′ Pm

 sin2 θ dθ

×
∫ 2π

0
ei(m′−m)φ cos φ dφ (4.15.3)

Evaluation of the azimuth angle integral gives:∫ 2π

0
dφ cos φ

[
cos(m′ − m)φ + i sin(m′ − m)φ

]
= πδ(m′, m ± 1) (4.15.4)
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Incorporating Eq. (4.15.4) then using the identity of Table A.21.1.7, gives:

sin2 θ Pm+1

′ Pm


 =
1

2� + 1
sin θ (Pm+1


+1 − Pm+1

−1 )Pm+1


′

sin2 θ Pm−1

′ Pm


 =
1

2�′ + 1
sin θ (Pm


′+1 − Pm

′−1)P

m



(4.15.5)

Combining Eqs. (4.15.3) and (4.15.5) shows that for both values of m the
zenith angle integral of Eq. (4.15.3) has the form:

1
2� + 1

∫ π

0
sin θ(Pm+1


+1 − Pm+1

−1 )Pm+1


′ dθ

Consider the integral:

∫ π

0
Pm′


′ Pm

 sin2 θ dθ

∫ 2π

0
cos φ ei(m′−m)φ dφ

=
2πδ(m′, m ± 1)

(2� + 1)

{
1

(2� + 3)
(� + m + 2)!

(� − m)!
δ(�′, � + 1)

− 1
(2� − 1)

(� + m)!
(� − m − 2)!

δ(�′, � − 1)
}

(4.15.6)

The integral is different from zero only if:

�′ = � ± 1 (4.15.7)

Combining the second of Eq. (4.15.1) with Eq. (4.15.2) gives similar results
and combining the last of Eq. (4.15.1) with Eq. (4.15.2) gives:

Z = A∗
n′
′m′An
m

∫ ∞

0
R
′

n′R

nr3dr

∫ π

0
Pm′


′ Pm

 sin θ cos θ dθ

∫ 2π

0
ei(m′−m)φ dφ

(4.15.8)
Table A.21.1.4, shows that:

sin θ cos θ Pm

′ Pm


 =
1

2� + 1
sin θ

[
(� − m + 1)Pm


+1 − (� + m)Pm

−1
]
Pm


′

(4.15.9)

Combining with the zenith angle integral of Eq. (4.15.7) leaves the form:

1
2� + 1

∫ π

0
sin θ

[
(� − m + 1)Pm


+1 − (� + m)Pm

−1
]
Pm


′ dθ (4.15.10)
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Consider the integrals:

1
(2� + 1)

∫ π

0
sin θ

[
(� − m + 1)Pm


+1 − (� + m)Pm

−1
]
Pm


′ dθ

∫ 2π

0
dφ ei(m′−m)φ

=
4πδ(m′, 0)
(2� + 1)

{
(� − m + 1)

(� + m + 1)!
(� − m + 1)

δ(�′, � + 1)

− (� + m)
(� + m − 1)!
(� − m − 1)

δ(�′, � − 1)
}

(4.15.11)

Like Eqs. (4.15.6), (4.15.11) is different from zero only if Eq. (4.15.7) is sat-
isfied. Since the radial integer provides no restrictions on n, electric dipole
transitions occur only if:

∆� = ±1 and ∆m = ±1 or 0 (4.15.12)

The interpretation of Eqs. (4.9.10) and (4.15.12) is that the z-component
of radiated angular momentum is equal to zero or to �. Since the angular
momentum of the source changes by that amount, it must be carried by
the radiation.

4.16. Electron Spin

It was known before Schrödinger’s equation was known that a complete
description of electronic events requires four quantum numbers. An integral
part of Dirac’s equations is that electron characteristics include more than
charge and mass: there is a permanent angular momentum and a permanent
magnetic dipole moment.

The angular momentum of a particle in terms of its mass and velocity is:

l = m r × v (4.16.1)

By definition l is the angular momentum, r the radius about a fixed point,
and v the velocity of the point mass. If the mass also supports charge q,
the magnetic moment is:

Ω = qr × v/2 (4.16.2)

Comparison of Eqs. (4.16.1) and (4.16.2) shows that

Ω = ql/2m (4.16.3)

Thus the expected relationship between an electron’s magnetic and mechan-
ical moments, Eq. (4.16.3), is equal to:

Ω = −el/2m (4.16.4)



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap04

Quantum Theory 211

However, the proportionality between spin magnetic moment and angular
momentum is twice as large as the ratio of the intrinsic magnetic moment
and angular momentum.

It is found that the intrinsic angular momentum obeys rules similar
to those of orbital motion about a central force field, Eqs. (4.9.10) and
(4.9.11), except that with spin the only allowed quantum numbers are plus
and minus one half. That is, the total angular momentum is:

s · s = s(s + 1)�2 (4.16.5)

The component along a particular axis is:

sz = ms� (4.16.6)

Quantum numbers ms are equal to either ±1/2. Combining terms shows
that the magnetic moment can have either of the two values:

Ωz = ±e�/2m (4.16.7)

The absolute value of the moment is called the Bohr magneton, and of
value:

Ωz = 9.274 × 10−24 J/T (4.16.8)

These relationships may be put in appropriate quantum theory terms by
considering S to be an eigenfunction, and writing in the form of an operator:

ŝzS = ±�S/2 (4.16.9)

The total spin wave function combines the functions with coefficients as:

S(sz) = c+S+(sz) + c−S−(sz) (4.16.10)

The wave functions are orthogonal and normalized.

4.17. Many-Electron Problems

To examine a multi-electron atom note that the Hamiltonian operator of
a system of n electrons may depend in a complicated way on the internal
structure of each electron. Regardless of what the complications may be,
a property of critical importance is that electrons are physically indistin-
guishable: all results are invariant upon interchange of electrons. That is, all
energies, including both electron-nucleus and electron-electron interactions,
are symmetrical with respect to an interchange of electrons.

Since the energy of an electron is proportional to the square of its wave
function, symmetric energies occur with both symmetric and antisymmetric
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wave functions. To examine the symmetry of a wave function break it into
the sum of symmetric and antisymmetric parts, respectively:

ψSy(r, t) = ψSy(−r, t) and ψAs(r, t) = −ψAs(−r, t) (4.17.1)

Any physically real function of time can be expressed as the sum of sym-
metric and antisymmetric functions of time. For the case of wave functions:

ψ(r, t) = ψSy(r, t) + ψAs(r, t) (4.17.2)

The energy density is proportional to the probability density and it is
equal to:

ψ(r, t)∗ψ(r, t) =
[
ψSy∗

(r, t)ψSy(r, t) + ψAs∗
(r, t)ψAs(r, t)

]
+
[
ψSy∗

(r, t) ψAs(r, t) + ψAs∗
(r, t)ψSy(r, t)

]
(4.17.3)

The first term of Eq. (4.17.3) is invariant with respect to the interchange
of electrons and the second term is not. It follows that the second term
is equal to zero. Therefore the wave function may be either symmetric or
antisymmetric but it cannot be a mixture.

The simplest possible multi-electron system has two electrons, say elec-
tron “a” and electron “b”. Let Pab be a permutation operator that inter-
changes the electrons. It follows that:

Pabψ(a, b) = ψ(b, a) and PabPabψ(a, b) = ψ(a, b) (4.17.4)

In turn, it follows from Eq. (4.17.4) that:

PabPab = 1 and Pab = ±1 (4.17.5)

It follows that

Pabψ
As(r, t) = −ψAs(r, t) Pabψ

Sy(r, t) = ψSy(r, t) (4.17.6)

Since taking operations with respect to time in quantum theory does not
affect positional symmetry, time does not affect symmetry: A state that is
initially symmetric or antisymmetric before a quantum mechanical opera-
tion has the same symmetry after the operation. Whatever symmetry the
wave function has at time t = 0, it keeps that symmetry for all time. This
argument generalizes to include an arbitrary number of electrons. The con-
clusion is that either there is but one type of symmetry in nature, with all
wave functions of the other symmetry everywhere equal to zero, or there are
two separate types of physical reality. If two types of reality exist, one type
of reality would be constructed of electrons with symmetric wave functions
and the other would be constructed of electrons with antisymmetric wave
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functions. Consider a two-electron atom for which the total and individual
wave functions satisfy the relationships:

ψ(r′, r′′) = ψa(r′)ψb(r′′)

=
1
2
[
ψa(r′)ψb(r′′) + ψb(r′)ψa(r′′)

]
+

1
2
[
ψa(r′)ψb(r′′) − ψb(r′)ψa(r′′)

]
(4.17.7)

The first and second terms are, respectively, symmetric and antisymmetric.
Introduce the notation that:

Γab(r′, r′′) =
[
ψa(r′)ψb(r′′) + ψb(r′)ψa(r′′)

]
Ψab(r′, r′′) =

[
ψa(r′)ψb(r′′) − ψb(r′)ψa(r′′)

] (4.17.8)

Since both electrons occupy all points, examine conditions for r′ = r′′:

Γab(r′, r′) = 2ψa(r′)ψb(r′)

Ψab(r′, r′′) = 0
(4.17.9)

The electrostatic interaction energy between the two electrons is:

Wab =
e2

4πε

∫ (
1

|r′ − r′′|
)

ψab(r′, r′′)ψ∗
ab(r′, r′′)dV (4.17.10)

If the electron charge density is a continuous function of position,
Eq. (4.17.10) gives a physically acceptable result with either electron sym-
metry. As expected from Eq. (4.17.9), the energy with symmetric functions
is larger than that with antisymmetric functions. However, the definite inte-
gral of Eq. (4.17.10) correctly represents the system energy if and only if the
wave functions are continuous functions of position. If there is a dimensional
scale below which the charge density is granular, on that scale of dimensions
it is necessary to replace the integration by a sum over interaction energies.
With symmetric wave functions, by Eq. (4.17.9) the granular charges are
adjacent or overlapping and the sum is singular; there is no parallel with
antisymmetric wave functions since the overlapping densities vanish. It fol-
lows that if there is a dimensional scale below which the charge density is
granular only antisymmetric wave functions exist. The Exclusion Principle,
first formulated by Pauli, states that only antisymmetric wave functions
exist. On the basis of the above argument, it also suggests that, on an
appropriate dimensional scale, electron charge distributions are granular.
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4.18. Measurement Discussion

In Chapter 2 the field intensity versus scattering angle is calculated by
applying Maxwell equations to scattering of a plane wave by a sphere or a
biconical antenna. The calculated intensity represents, at each point, actual
outgoing power. Quite differently, the scattered wave function versus scat-
tering angle, as calculated by applying Schrödinger’s equation to electron
scattering from an object, does not describe a physical quantity. Instead it
describes the probability that a physical event will occur; it is the probabil-
ity that the scattered electron will exit at any particular angle. The actual
exit angle for a particular electron is both unknown and incalculable from
quantum theory. It can become known only by making a measurement.
If enough electrons are scattered the fraction scattered in each direction
is equal to the calculated wave function, but for an individual electron
Schrödinger’s equation gives only the probability of occurrence. The mea-
surement produces a “collapse” of the wave function from a value over all
angles to a specific exit angle.

Wave function collapse is the inverse of the spreading of a trapped
electron over available eigenstates, see Eq. (4.7.5) for example. With the
extended electron model the inability to predict a particular scattering angle
for a particular electron is because established quantum theory contains
no information about detailed intra-electron charge and current densities.
Without detailed incoming information there can be no detailed outgoing
information and the only recourse is a statistical analysis. On the other
hand, if intra-electron charge and current densities were available, in prin-
ciple at least detailed results would be calculable.
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CHAPTER 5

Radiative Energy Exchanges

The quantum theory of radiation incorporates Planck’s radiation law.
Both that law and Hertz’ discovery of the photoelectric effect were explained
by Einstein in a pragmatic way. His pragmatism, however, was simply an
expedient to help understand the onrush of experimental data about atomic
phenomena. It seems certain he expected the pragmatism would later yield
to a more general theory consistent with existing thought. This type of
pragmatism is quite different from the pragmatic development of quantum
theory a few decades later. The later pragmatists considered their quantum
theory explanations to be complete and that a deeper understanding of the
relationship between classical and quantum theories was not possible.

This chapter begins with several sections about Planck’s radiation law
and its implications. The law is then used to derive the zero-point field, that
is the minimum level of background electromagnetic radiation. The photo-
electric effect is introduced and an explanation for it is obtained using
continuous electromagnetic fields. The Manley Rowe power-frequency rela-
tionships in nonlinear fields are derived. A match is made between prop-
erties of the final field set of Chapter 3 and radiation properties that are
otherwise believed to be inconsistent with classical field theory.

5.1. Blackbody Radiation, Rayleigh–Jeans Formula

All materials, including both humans and the walls of an evacuated cav-
ity, consist of atoms and electrons undergoing thermal oscillations. The
higher the temperature the more the oscillations. Associated with the
oscillations are accelerations of the contained charges which, in turn and
dependent upon the relative phases, result in absorption and emission of
electromagnetic energy. In general the higher the temperature T the greater
the amount of absorption and emission. We seek to use conservation laws
to obtain a thermodynamically quantitative understanding of the general
properties of such phenomena. That is, we seek to achieve maximum field

216
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characterization with minimum reliance upon details of specific emission
and absorption processes.

An isolated cavity in equilibrium contains an associated, trapped elec-
tromagnetic energy field. That field exchanges an equilibrated amount of
electromagnetic energy and momentum with the containing walls. Let the
energy density of this radiation field be represented by w(ω, T) and given by:

w(ω, T) =
1
2
(εE2 + µH2) (5.1.1)

Since the energy density is a function of frequency ω, let wω(ω, T)dω

represent the energy density existent between frequencies ω and ω + dω.
It follows that:

w(ω) =
∫ ∞

0
wω(ω) dω (5.1.2)

Next consider two separate objects, A and B, composed of different
materials. The objects wholly contain cavities in which the energy densities
are wωA and wωB. The objects are placed in thermal contact and achieve
equilibrium at temperature T. Next thermally isolate the objects and con-
struct an optical system that exchanges radiation between them; the system
contains an optical filter that passes only radiation between frequencies ω

and ω+dω. If placing the optical system into position produces a net energy
exchange, the cavities each will achieve a new equilibrium with the temper-
ature of one cavity increased and the other decreased. That temperature
difference can be used to run a heat engine. Since this violates the second
law of thermodynamics, it follows that there is no net energy exchange
between the chambers at any frequency and that the equilibrium energy
density is independent of the material of which the cavities are formed.
Since this is true for all materials, it is independent of the color of the
walls, the fraction of the incident radiation the walls reflect or absorb, or
any other wall or cavity parameter. Kirchhoff first pointed out this remark-
able result in 1859; it is expressed by the equation:

wωA(ω, T) = wωB(ω, T) (5.1.3)

The result is exact for a cavity with a negligibly small aperture. The cavity
contained radiation field is, by definition, the isothermal cavity radiation
field. Next suppose that one cavity wall is ideally black. Since ideally black
objects absorb all incident radiation, this energy field is also that of an
ideal black object. Hence the radiation field is also called the blackbody
radiation field.
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Since the equilibrium electromagnetic energy density is not a function
of the bounding material, without loss of generality we can construct the
enclosure of whatever material is most convenient to analyze and, on that
basis, apply the result to all materials. The enclosure of choice has walls
of harmonic oscillators. Radiation is reflected or absorbed and re-emitted
by the walls, thereby maintaining temperature T. The number of available
frequency states per unit volume available is given by Eq. (1.13.14) and
repeated here:

1
V

dN =
ω2

π2c3 dω (5.1.4)

By the equipartition theorem of statistical mechanics each oscillator
supports energy kT/2 per degree of freedom, where k is the Boltzman
constant. Therefore, since the walls are two-dimensional, each oscillator
supports energy kT per mode. Substituting this into Eq. (5.1.4) gives:

wω(ω, T) =
ω2

π2c3 kT (5.1.5)

This equation is the long wavelength limit for the contained radiation field.
It is the Rayleigh–Jeans formula for blackbody radiation and is valid for
low enough frequencies or high enough temperatures so �ω � kT.

5.2. Planck’s Radiation Law, Energy

In 1917 Einstein issued a significant paper on the absorption and emission
of radiation by eigenstate electrons. It is based upon the conservation laws
of energy and linear momentum and relativistic transformations between
moving systems, see Sec. 1.3.2. The paper was a major step in the under-
standing of the processes of absorption and emission by confined electrons.
This and the following section are drawn from that paper.

Let a cavity in thermal equilibrium at temperature T contain N identi-
cal and large gas molecules, where N is a very large number. Each molecule
supports two non-degenerate energy levels, states Zn and Zs. The eigen-
state energies of the levels are, respectively, Wn and Ws with Wn > Ws.
The molecular mass is large enough so that all molecular speeds are much
less than the speed of light. Einstein postulated that Maxwell statistics
apply for large molecules in equilibrium. Therefore the number of large
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molecules in state Zs is Ns where:

Ns =
N exp(−Ws/kT)

exp(−Wn/kT) + exp(−Ws/kT)
(5.2.1)

In conformance with the theory of photoelectricity and with ωs
n equal to the

frequency, he required that molecules emit and absorb radiation in energy
units:

�ωs
n = Wn − Ws (5.2.2)

Since harmonic oscillators satisfy this condition, see Eq. (4.8.16), walls made
of harmonic oscillators satisfy the requirement. He also required that the
Rayleigh–Jeans formula, Eq. (5.1.5), apply in the limit of low frequencies.
Although that equation is based upon classical electrodynamics with con-
tinuous energy changes, in the low frequency limit the energy differences
are vanishingly small and the Rayleigh–Jeans limit is satisfied.

Let the transition rate dΓ/dt from state Zn to state Zs, with an accom-
panying emission of energy �ω, be:

dΓs
n

dt
= Nn

[
As

n + Bs
nw(ωs

n)
]

(5.2.3)

This transition rate is the sum of two parts: Spontaneous emission As
n

is due to internal processes within the molecules and independent of the
radiation field. Induced emission Bs

n is due to the radiation field and directly
proportional to its field intensity. In the absence of spontaneous absorption
the complete transition rate from state Zs to Zn is:

dΓn
s

dt
= NsBn

s w(ωs
n) (5.2.4)

Equal rates of absorption and emission are required at equilibrium. Equat-
ing them and collecting terms gives:

w(ωs
n) =

As
n

Bs
n exp(�ω/kT) − Bn

s
(5.2.5)

In the limit of small values of the exponential, Eq. (5.2.5) goes to:

w(ωs
n) =

As
n

Bs
n − Bn

s − Bs
n(�ω/kT)

(5.2.6)

Equating Eqs. (5.1.5) and (5.2.6) gives:

Bs
n = Bn

s and As
n =

(ωs
n)2

π2c3 (�ωs
n)Bs

n (5.2.7)
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Combining Eqs. (5.2.5) and (5.2.7) yields Planck’s blackbody radiation
law:

w(ω, T) =
ω2

π2c3

(
�ω

exp(�ω/kT) − 1

)
(5.2.8)

This law describes the energy density in an equilibrated electromagnetic
radiation field as a function of frequency and the temperature of its sur-
roundings. In the low frequency limit it satisfies the Rayleigh–Jeans formula
and in the high frequency limit it obeys the Wien formula, a form of the
Maxwell distribution law:

w(ω) =
�ω3

π2c3 exp(−�ω/kT) (5.2.9)

Actual values of As
n and Bs

n can be calculated using Eq. (4.14.10) for
molecules with known eigenstates.

5.3. Planck’s Radiation Law, Momentum

In the second part of his 1917 paper Einstein explained that thermodynamic
problems are typically analyzed using energy exchanges, with momentum
exchanges, which are less by a factor of c, ignored. For theoretical consid-
erations, however, energy and momentum are on a par. A theory is only
correct if the momentum transferred during energy exchanges leads to the
same statistical results as energy considerations.

He then presented a development of Planck’s radiation equation using
momentum exchanges. He found that Planck’s equation results only if the
radiation is highly directed. That is, as a molecule emits or absorbs energy
�ω the exchange is accompanied by an exchange of linear momentum �ω/c:
the molecule undergoes a push at least very nearly equal to �ω/c. Although
laser beams may meet this condition, in the case of atomic radiation the
diameter of the emitter may be less than a hundredth of an optical wave-
length. Einstein viewed absorption from a plane wave as containing the
energy and momentum in the same ratio as the wave. A cursory examination
of the analyses of scattering problems, see Chapter 2, shows that this can
occur only if there is no scattering. He viewed emission as being carried by
spherical Hertzian waves, i.e. a multimodal expansion, with rotational sym-
metry about the radiation axis. For such waves the source suffers compres-
sion but not a push. This argument led Einstein to intuitively conclude that
a quantum theory of radiation is almost unavoidable. He also explained that
his theory has two weaknesses: it does nothing to illuminate the connection
between quantized energy exchanges and Maxwell’s wave theory and it
leaves the time and direction of elementary processes to chance.
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Following Einstein, we imagine a cavity containing molecular gas in
thermal equilibrium at temperature T, but no radiation. The mass M of
the molecules is large enough so molecular speeds are much less than c

and relativistic speed corrections are not needed. Next introduce electro-
magnetic radiation as an isotropic distribution of plane waves that interact
with the molecules in a way that retains the original temperature, T. Also,
as in Sec. 5.1, only eigenstates Zs and Zn undergo energy exchanges.

Since at equilibrium the average molecular speed is zero, on the average
all radiation-molecule interactions occur on stationary molecules. During
events both energy and impulse are exchanged and produce an acquired
molecular speed v. Although on the average a pre-event molecule sits in a
uniform radiation field, a post-event one does not: For moving molecules
the radiation field is not isotropic. There is a net field unbalance in the
direction of motion and a change of frequency. This unbalance produces
an altered event rate that, in turn, damps the molecular motion. Let each
event transfer momentum ∆ between the field and the molecule. Molecular
damping is denoted as Rv where R is a field-dependent constant to be
determined and acts in the direction opposite to the motion. Equilibrium
requires, on the average, the speed to return to zero before the next event.
It follows that during the period between events the momentum of the
molecule is:

Mv − Rvτ + ∆

τ is time since the last event and M � Rτ .
For a system to remain in equilibrium the average velocity v at the time

of an event remains equal to zero. This may be stated as:

〈(Mv − Rvτ + ∆)2〉 = 〈(Mv)2〉 (5.3.1)

Combining all the above gives:

〈∆2〉 = 2RτM〈v2〉 (5.3.2)

A system analysis using momentum exchanges can be correct only if
Eq. (5.3.2) is satisfied.

The mean-square velocity may be expressed in terms of temperature
using Boltzman’s one-dimensional law:

1
2
M〈v2〉 =

1
2
kT (5.3.3)

Damping Product Rv : To examine if Eq. (5.3.2) is satisfied by Sec. 5.2 we
calculate the rate of momentum transfer from a moving molecule to an oth-
erwise uniform radiation field made unbalanced by the motion. Although in
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principle the problem is simple enough it is rather lengthy. Let the molecule
be moving along z-axis with speed v in stationary coordinate system K. To
calculate radiation damping we analyze conditions in coordinate system K′

in which the molecule is at rest. Since radiation in system K is isotropic
the field intensity and the radiation energy within differential solid angle
dκ and frequency range dω is:

w(ω) dω
dκ

4π
(5.3.4)

The frequencies in K and K′ differ by the Doppler frequency; in K′ the
intensity is a function of angle with respect to the z-axis:

w(ω′, θ′) dω′ dκ′

4π
(5.3.5)

The relationship between Eqs. (5.3.4) and (5.3.5) follows by substituting
the fields of Eq. (5.3.4), arrayed in the form of Eq. (1.6.4), into Eq. (1.3.2).
For v/c much less than one the energy density, frequency, and angle with
the z-axis transform as:

w(ω′, θ′) = w(ω)
dω

dω′
dκ

dκ′
(
1 − 2

v

c
cos θ

)
(5.3.6)

ω′ = ω
(
1 − v

c
cos θ

)
(5.3.7)

cos θ′ = cos θ − v

c
(1 − cos2 θ) (5.3.8)

Since v � c it follows from Eqs. (5.3.7) and (5.3.8) that:

ω = ω′
(
1 +

v

c
cos θ′

)
(5.3.9)

w(ω) = w
(
ω′ +

v

c
ω′ cos θ′

) ∼= w(ω′) +
(v

c
ω′ cos θ′

) ∂w(ω)
∂ω

∣∣∣∣
ω=ω′

(5.3.10)

From Eq. (5.3.9):

dω

dω′ =
(
1 +

v

c
cos θ′

)
(5.3.11)

Combining the definitions of dκ and dκ′ with Eq. (5.3.8) gives:

dκ

dκ′ =
sin θ dθ

sin θ′ dθ′ =
d(cos θ)
d(cos θ′)

= 1 − 2
v

c
cos θ′ (5.3.12)

The radiation intensity in system K′ follows by combining all the above
and gives, through first order:

w(ω′, θ′) =
[
w(ω′) +

v

c
ω′ cos θ′ ∂w(ω)

∂ω

∣∣∣∣
ω=ω′

](
1 − 3

v

c
cos θ′

)
(5.3.13)
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For systems in equilibrium the rate of absorption events is:

Bn
s w(ω′, θ′) dω′ dκ′

4π
(5.3.14)

Since this transfer rate is correct for a system in equilibrium, for a
moving molecule it is also the rate at which momentum transfers would
occur if the subsequent decay was instantaneous. The moving molecule,
however, is not in equilibrium. By the ergodic theorem of statistics, for
a constraint-free system in equilibrium the spatial average population of
states is equal to the fraction of the time an individual molecule spends in
each state. For this case the average fraction of equilibrated molecules in
state Zs, see Eq. (5.2.1), is equal to the fraction of time a specific molecule
spends in that state. Therefore multiplying Eq. (5.3.14) by the fraction of
the time the molecule spends in that state, Eq. (5.2.1), gives the number
of absorption transitions due to radiation within differential solid angle dκ′

per second:

e−Ws/kT

e−Wn/kT + e−Ws/kT Bn
s w(ω′, θ′)

dκ′

4π
(5.3.15)

Next make the basic postulate that all radiation events are fully directed
in that for either absorption or emission each event transfers momentum ∆
to the molecule where:

∆ = ±Wn − Ws

c
cos θ′ (5.3.16)

Applying the above arguments to emission, combining the absorption and
emission results, and incorporating the first part of Eq. (5.2.8) gives the
net momentum transferred from the molecule to the radiation:(

exp(−Ws/kT) − exp(−Wn/kT)
exp(−Ws/kT) + exp(−Wn/kT)

)
�ω

4πc
Bn

s

∫
w(ω′, θ′) cos θ′ dκ′ (5.3.17)

Substituting Eq. (5.3.13) into Eq. (5.3.17) and integrating over solid angle
gives the momentum transferred from the molecules to the radiation:

−�ω

c2 Bn
s

(
exp(−Ws/kT) − exp(−Wn/kT)
exp(−Ws/kT) + exp(−Wn/kT)

)

×
(

w(ω′) − 1
3
ω′ ∂w(ω)

∂ω

∣∣∣∣
ω=ω′

)
v (5.3.18)
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For v much less than c the difference between frequencies ω and ω′ is small.
Putting them equal and equating the expression to R gives:

R =
�ω

c2 Bn
s

(
exp(−Ws/kT)

exp(−Ws/kT) + exp(−Wn/kT)

)

× (1 − e−�ω/kT)
(

w(ω) − 1
3
ω

∂w(ω)
∂ω

)
(5.3.19)

It follows from Planck’s radiation law that:(
w(ω) − 1

3
ω

∂w(ω)
∂ω

)
(1 − e−�ω/kT) =

�ω

3kT
w(ω) (5.3.20)

Combining:

R =
�

2ω2

c2

(
exp(−Ws/kT)

exp(−Ws/kT) + exp(−Wn/kT)

)
NBn

s
w(ω)
3kT

(5.3.21)

Since spontaneous emission is postulated to be both fully directed and ran-
domly oriented it does not affect the exchanged momentum and therefore
is not considered here.

Momentum Transfer 〈∆2〉 The effect of random processes on the
mechanical behavior of molecules is much easier to derive. Let z-directed
linear momentum λ be transferred to a molecule with each energy exchange
and let it be of varying magnitude and direction. The average value,
however, is along the z-axis and is equal to zero. If the mean value of
the momentum changes is zero and if l is the number of such events, it
follows that:

〈∆2〉 = 〈lλ2〉 (5.3.22)

With each energy exchange, and consistent with the radiation results, the
momentum transferred to the molecule is:

λ = ±�ω

c
cos θ (5.3.23)

With this notation the limits on angle θ are −π/2 to π/2, from which it
follows that:

〈λ2〉 =
1
3

(
�ω

c

)2

(5.3.24)

The number of events that occur in time τ is just twice the number of
absorption processes:

l =
(

2 exp(−Ws/kT)
exp(−Ws/kT) + exp(−Wn/kT)

)
Bn

s w(ω)τ (5.3.25)
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Combining Eqs. (5.3.22), (5.3.24), and (5.3.25) gives:

〈∆2〉
τ

=
2
3

(
�ω

c

)2( exp(−Ws/kT)
exp(−Ws/kT) + exp(−Wn/kT)

)
Bn

s w(ω) (5.3.26)

Comparing Eqs. (5.3.26) and (5.3.20) after including Eq. (5.3.3) gives:

〈∆2〉
τ

= 2RkT (5.3.27)

This result confirms that Einstein’s model of fully directed radiation
exchanges is a sufficient base upon which to derive Planck’s radiation law.
If this equation is exact, it is only fully consistent with the results of classical
electromagnetism, Eqs. (2.22.10) and (2.22.11), if the absorbed and emitted
energy-to-momentum ratios are equal, that is if both ratios are equal to c.
Since there were several approximations involved the proof is that the linear
momentum exchanged during absorption and emission processes is nearly
the same.

5.4. The Zero Point Field

According to the equipartition theorem of statistical mechanics the energy
per degree of freedom in a statistical system of equilibrated particles is:

Energy
Degree of freedom

= kT/2 (5.4.1)

Within an equilibrated electromagnetic energy field and at high temper-
atures the energy density at frequency ω is given by Planck’s equation,
Eq. (5.2.9). In the limit as the temperature goes to absolute zero that
expression is also expressed as Eq. (5.2.9). The limiting value at very large
temperatures is also of interest. For that case Eq. (5.2.8) goes to:

Lim
T→∞

wω(ω) =
ω2

π2c3

(
�ω

�ω/kT + (�ω/kT)2/2

)
≈ ω2

π2c3

(
kT − �ω

2

)
(5.4.2)

It follows from Eq. (1.13.13) that the spatial density of available energy
states is:

N =
ω2

π2c3 (5.4.3)

Combining Eqs. (5.4.2) and (5.4.3) shows that the energy per state is:

kT − �ω

2
(5.4.4)
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Since Eqs. (5.4.1) and (5.4.4) are inconsistent, it follows that the Planck
expression should be amended to:

wω =
ω2

π2c3

(
�ω

e�ω/kT − 1
+

�ω

2

)
(5.4.5)

It follows that in the limit as T approaches zero Planck’s original radi-
ant energy distribution term vanishes leaving only the zero point energy.
That energy, in turn is in equilibrium with the zero-point energy of which
the enclosing cavity walls are composed, see Eq. (4.8.16). Therefore even at
absolute zero temperature both the harmonic oscillators and the radiation
field maintain an irreducible energy density.

5.5. The Photoelectric Effect

In 1887 Hertz discovered that a spark jumps a small gap between conductors
more easily when the conductors are illuminated than when in the dark.
He found that the effect becomes more pronounced as the light spectrum
goes from blue to ultraviolet, is most pronounced with clean and smooth
terminals, and cathodes are more active than anodes. The result is a pho-
tocurrent due to the forcible ejection of electrons from the cathode. This
analysis shows that the photoelectric effect may result from an interaction
between a classical radiation field and a quantized electron.

Experimentally determined characteristics of photocurrents include the
existence of stopping potential V0, the voltage difference between the two
plates that just causes the current to cease. The electron stream continues
so long as the electrons have sufficient energy to make the transit. It must
be, therefore, that the actual voltage V satisfies the condition:

V > V0 (5.5.1)

Each type of metal has a characteristic frequency, ω0. A photocurrent exists
only with light of that or a higher frequency ω. That is if:

ω > ω0 (5.5.2)

The magnitude of the photocurrent is proportional to the light intensity.
If the symbol E0 indicates the electric field intensity of the light:

I = I(E2
0) (5.5.3)

Photocurrent magnitude is independent of frequency for frequencies
greater than the characteristic frequency, and onset occurs without a mea-
surable time delay after onset of illumination. Expressed in terms of the
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above symbols, the maximum kinetic energy per electron is:

W = �(ω − ω0) (5.5.4)

Einstein analyzed the photocurrent problem by treating light as if it
consisted of particles. In 1905 he postulated that when light interacts with
matter it behaves as though it consists of light quanta of energy �ω which
can only be emitted or absorbed in those units. Electrons would absorb
this energy and many of them would recoil with maximum energy equal
(�ω less the work function of the metal). This pragmatic argument was suf-
ficiently convincing for most readers to accept it as the correct explanation.
The analysis earned Einstein the 1921 Nobel Prize in Physics.

Although the light-as-a-particle explanation is sufficient, it is not nec-
essary. In 1969 Lamb and Scully analyzed the effect using the interaction
between electrons in quantized energy states and an engulfing plane wave.
Their argument begins by letting the source metal be sized much larger than
atomic dimensions and inside the metal electrons are trapped in quantized
energy states. Since the skin depth of a good conductor in the mid-optical
range is on the order of 10 nm, light penetrates the metal deeply enough to
interact with the conducting band electrons. Let an electron in eigenstate
“n” with energy Wn interact with an applied plane wave of frequency ω.
Define the work function of the metal, W0, to be the additional energy an
electron must have to exit the metal:

W0 = �ω (5.5.5)

It follows from Sec. 1.13 that there are electromagnetic cavity solutions
of energy Wk within the containing box. As the size of the box, L, becomes
large, the possible energy levels form a quasi-continuum. The transition
equations of Eq. (4.14.10) are repeated here:

|ck(t)|2 = (2eE0)2〈Uk|r|Un〉2
{

sin2[ 1
2�

(Wn − Wk ± �ω)t
]

(Wn − Wk ± �ω)2

}
(5.5.6)

Let Φ be the energy of the first state of the quasi-continuous spec-
trum. Photoelectron emission occurs because of a transition from state n
to state k. Let the kinetic energy of the ejected electron be Tk. The rela-
tionship between the energies follows and is equal to:

Wk − Wn = Φ + Tk (5.5.7)

Rearranging and rewriting in terms of frequencies:

Tk = �(ω − ω0) (5.5.8)



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap05

228 The Electromagnetic Origin of Quantum Theory and Light

The voltage required to stop all emission follows from the above and is
equal to:

V0 =
�

e
(ω − ω0) (5.5.9)

Combining Eq. (5.5.6) with Eqs. (5.5.7) and (5.5.8) gives an expression
for the coefficient magnitude as a function of the electron kinetic energy
and the applied frequency:

|ck(t)|2 = (2eE0)2〈Uk|r|Un〉2
{

sin2[ 1
2�

(Tk − �ω)t
]

(Tk − �ω)2

}
(5.5.10)

To determine the rate of electron ejection it is necessary to integrate
Eq. (5.5.10) over the full range of kinetic energies which, in turn, requires
summing over the quasi-continuum states. Since it is a quasi-continuum,
replace the summation with the integral shown:

P(t) =
∑
k

|ck(t)|2 ⇒ (2eE0)2〈Uk|r|Un〉2
∫ ∞

0

{
sin2[ 1

2�
(T − �ω)t

]
(T − �ω)2

}
dT

(5.5.11)
P(t) is the probability that emission has occurred. The integral may be
rewritten as a Dirac delta function using the relationship:{

sin2[ 1
2�

(T − �ω)t
]

(
t

2�

)2(T − �ω)2
d
(

tT
2�

)}
= δ(x − x0) dx (5.5.12)

Combining Eq. (5.5.11) with Eq. (5.5.12) and integrating over all possible
kinetic energies gives:

P(t) =
2e2E2

0

�
〈Uk|r|Un〉2t (5.5.13)

This probability of emission, Eq. (5.5.13), is directly proportional to
time and, therefore, with a constant light intensity electrons are ejected
at a constant rate. There is no time delay between onset of the light and
the onset of electron emission and the rate of electron ejection is propor-
tional to the intensity of the illuminating field atomic states. The analysis
of Secs. 4.13 and 4.14 contained the approximation that cn(t) remained con-
stant, a result that served as a preliminary to generalized cases with cn(t) a
variable. In this case, since the active electrons lie initially near the Fermi
level and the conduction band is part of a quasi-continuum, the constancy
is a reality.
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5.6. Power-Frequency Relationships

Before continuing the discussion of quantized radiation, it is necessary to
address possible power-frequency relationships in closed systems. Consider
an equilibrated, charged system that supports an internal electromagnetic
oscillation at frequency ωs. The system is immersed in and perturbed by a
plane wave of frequency ω. If the system is linear, in the sense that doubling
an applied force doubles the system response, only the two frequencies ω and
ωs will exist inside the system. If the system response is not linear, there are
additional responses at difference and sum frequencies. The system response
may be written as:

S(t) = [A cos(ωst) + B cos(ωt)]p (5.6.1)

A, B, and p are constant, system-specific parameters. The system response
may be expanded as a polynomial of trigonometric functions. An especially
important example of a nonlinear response is the case of p = 2, for which:

S(t) =
A2 + B2

2
+ AB{cos[(ωs − ω)t] + cos[(ωs + ω)t]}

+
1
2
{A2 cos(2ωst) + B2 cos(2ωt)} (5.6.2)

The constant term is unimportant for present purposes. The generated
frequencies, [(ωs ±ω), 2ωs, 2ω], remain within the system and, being part of
it, also drive it and thereby produce additional frequencies. The ultimate
series of generated frequencies continues and includes all frequencies of the
form (mω + nωs), where m and n are integers. The result is true for all
values of p greater than one.

Energy is conserved in lossless systems independently of the degree
of nonlinearity. Let Pm,n represent the time average power out of a sys-
tem at frequency (mω + nωs). For lossless systems, energy conservation
requires that:

∞∑
m=−∞

∞∑
n=−∞

Pm,n = 0 (5.6.3)

It is helpful for what lies ahead to rewrite Eq. (5.6.3) as:

ω

∞∑
m=−∞

∞∑
n=−∞

mPm,n

mω + nωs
+ ωs

∞∑
m=−∞

∞∑
n=−∞

nPm,n

mω + nωs
= 0 (5.6.4)

Equation (5.6.4) contains redundant information since with integer pair
(m0, n0) the sums are identical to the sums obtained using (−m0, −n0).



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap05

230 The Electromagnetic Origin of Quantum Theory and Light

The redundancy is removed yet all information retained by writing the
sums as:

ω

∞∑
m=0

∞∑
n=−∞

mPm,n

mω + nωs
+ ωs

∞∑
m=−∞

∞∑
n=0

nPm,n

mω + nωs
= 0 (5.6.5)

For example, an ideal, nonlinear capacitor is an example of a lossless, reac-
tive system; other reactive systems may be analyzed in a parallel way.
The charge on the capacitor may be expressed as:

q(t) =
1
2

∞∑
m=−∞

∞∑
n=−∞

Qm,n exp[i(mω + nωs)t] (5.6.6)

The value of Qm,n depends upon such parameters as the capacitor size,
shape, permittivity and the supported voltage but does not depend upon
frequency of operation. Since q(t) is real, the condition Q−m,−n

∗ = Qm,n

follows. Similarly the voltage, v(t), across the capacitor is:

v(t) =
1
2

∞∑
m=−∞

∞∑
n=−∞

Vm,n exp[i(mω + nωs)t] (5.6.7)

Like Qm,n, Vm,n depends upon the capacitor parameters of size, shape,
permittivity, and the contained charge but not frequency. The capacitive
current i(t) is equal to the rate of change of charge, and may be written:

i(t) =
1
2

∞∑
m=−∞

∞∑
n=−∞

Im,n exp[i(mω + nωs)t]

=
i

2

∞∑
m=−∞

∞∑
n=−∞

(mω + nωs)Qm,n exp[i(mω + nωs)t] (5.6.8)

The second equality follows by differentiation of Eq. (5.6.6) with respect
to time and shows that, differently from either the charge or voltage, current
Im,n does depend upon the frequency. The time average power into the
capacitor is:

−Pm,n = −1
2

Re(Vm,nIm,n
∗) =

1
2
(mω + nωs) Re(i Vm,nQm,n

∗) (5.6.9)

Combining gives:

Pm,n

(mω + nωs)
= −1

2
Re(i Vm,nQm,n

∗) (5.6.10)

Since the right side of Eq. (5.6.10) depends upon the product of Qm,n

and Vm,n, which are frequency independent, the right side is frequency
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independent. It follows that the left side is also frequency independent.
The parallel argument follows if the roles of m and n are reversed. Hence,
Eq. (5.6.5) has the general algebraic form:

c1ω + c2ωs = 0 (5.6.11)

Coefficients c1 and c2 are independent of frequency. Therefore the two fre-
quencies are independent variables and both c1 and c2 are equal to zero.

Applying this result to Eq. (5.6.5) shows that the sums are separately
equal to zero:

∞∑
m=0

∞∑
n=−∞

mPm,n

mω + nωm
= 0

∞∑
m=−∞

∞∑
n=0

nPm,n

mω + nωs
= 0

(5.6.12)

To illustrate the use of this equation, consider a system in which one of
two possible atomic states is occupied by an electron. The state frequen-
cies are ωinitial and ωfinal, for initially occupied and initially empty states.
The ensemble is then enmeshed in a plane wave of frequency ω where the
frequency of the applied wave satisfies the relationship

ω = |ωinitial − ωfinal| (5.6.13)

Only the driven frequency, ω, and the system frequency, ωinitial,
are present in linear systems. With nonlinear systems, all frequencies
(mωinitial + nω) are driven and are potentially present. If the system is
restricted to support only ωinitial and ωfinal only the three frequencies ω,
ωinitial, and ωfinal are present. Consider the case of a nonlinear system that
supports only frequencies ωinitial and ωfinal and is driven at frequency ω.

For that case, if ωinitial > ω and ωinitial > ωfinal, Eq. (5.6.12) is satisfied
for integer pairs (m = 1, n = 0) and (m = 1, n = –1); if ωinitial > ω and
ωinitial < ωfinal, Eq. (5.6.12) is satisfied for integer pairs (m = 0, ±n = 1) and
(m = –1, ±n = 1). Changing the power subscripts to match the frequency
ones, for these special cases Eq. (5.6.12) go to:

Pinitial

ωinitial
+

Pfinal

ωfinal
= 0 and

Pinitial

ωinitial
± P

ω
= 0 (5.6.14)

In the second equation, the sign is respectively positive or negative if ωinitial

is greater or less than ωfinal. The energy flows are illustrated in Fig. 5.6.1.
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ATOM

Initial state Nonlinear
interaction

Final state

Emission Absorption

REMOTE
FIELD

Fig. 5.6.1. Diagram illustrating power flows in a nonlinear source. Initial and remote
field energies interact nonlinearly resulting in an energy flow from the initial state to the
final state and either into or from the remote field.

By definition the energy that goes into the final state is:

Wfinal =
∫

Pfinal dt (5.6.15)

Combining Eqs. (5.6.14) and (5.6.15) gives:∣∣∣∣Winitial

ωinitial

∣∣∣∣ =
∣∣∣∣Wfinal

ωfinal

∣∣∣∣ =
∣∣∣∣Wω
∣∣∣∣ (5.6.16)

Wfinal is the energy that goes into the final state and W is the energy
exchanged between the remote field and the electron as it undergoes a
change of state. The energy-frequency ratio of Eq. (5.6.16) is independent
of system parameters, therefore of system details and, consequently, the
ratio is constant. For eigenstates that constant is Planck’s constant, �, and
where the upper sign applies if ωinitial > ωfinal, and vice versa:

Wfinal = −�ωfinal Winitial = �ωinitial W = ±�ω (5.6.17)

The Manley Rowe results show that if the energy in the initial eigenstate is
quantized into energy units proportional to frequency the energy exchanged
among the radiation field and the initial and final energy eigenstates all have
the same energy-to-frequency ratio.

Although Eqs. (5.6.1) through (5.6.14) apply both to linear and non-
linear systems, the magnitude of the energy flow at the sum or dif-
ference frequencies is zero for linear systems. Therefore Eqs. (5.6.15)
through (5.6.17) are significant only for nonlinear systems. We conclude
that the power-frequency relationships accompanying electron transitions
are unique to nonlinear transitions, not to quantum effects.
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5.7. Length of the Wave Train and Radiation Q

An important property of any radiation field is the length of the coher-
ent wave train. The purpose of this section is to estimate that length for
optical frequency photons. We begin by expressing the time varying elec-
tromagnetic power in a plane wave as a function of the magnitude and
the frequency dependence of fields. For this purpose, let the electric and
magnetic field intensities of a plane wave be expressed as integrals over all
possible frequencies:

E(t) =
∫ ∞

−∞
Ẽ(ω) eiωt dω and H(t) =

∫ ∞

−∞
H̃(ω) eiωt dω (5.7.1)

The rate at which energy passes through a unit area of surface follows
from the Poynting theorem. With both fields perpendicular to the surface
normal:

∫ ∞

−∞
N(t)dt =

1
2
Re
∫ ∞

−∞
Ẽ(ω)dω

∫ ∞

−∞
H̃(ω′)∗dω′

∫ ∞

−∞
ei(ω−ω′)t dt

= πRe
∫ ∞

−∞
Ẽ(ω)dω

∫ ∞

−∞
H̃(ω′)∗dω′δ(ω, ω′)

= 2πRe
∫ ∞

0
Ẽ(ω)H̃∗(ω) dω (5.7.2)

The electric and magnetic frequency dependencies are related by:

η|H(ω)| = |E(ω)| (5.7.3)

Combining shows that the power through the surface is:

∫ ∞

−∞
N(t)dt =

2π

η

∫ ∞

0
|Ẽ(ω)|2 dω (5.7.4)

If the plane wave is turned on at time t = 0 and terminated at time
t = τ , the result is a wave train of length l = τc. The relationship between
the length of a wave train and the measured width of the frequency spec-
trum follows in a way similar to that used to demonstrate the uncertainty
principle. Consider the special case where frequency ω′ is turned on at time
−τ/2 and off at time τ/2, and let |ω−ω′| = ∆ω. The resulting electric field
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intensity is:

E(t) = Ẽ0 eiω′t |t| ≤ |τ/2|
= 0 |t| ≥ |τ/2| (5.7.5)

Ẽ(ω) =
Ẽ0

2π

∫ τ/2

−τ/2
ei(ω′−ω)tdt =

τẼ0

2π

[
sin
(

∆ωτ

2

)/(
∆ωτ

2

)]
(5.7.6)

The first zero of Eq. (5.7.6), half the width of the frequency pulse, occurs
when the argument of the sine term is π. For that case:

τ∆ω = 2π (5.7.7)

Substituting the length of the pulse train, l = cτ , into Eq.(5.7.7) gives:
l

λ
= n =

ω

∆ω
= Q (5.7.8)

By definition n is the number of wavelengths in the wave train and the
ratio ∆ω/ω is the fractional bandwidth. With λ equal to the wavelength
and for a fixed value of Q the minimum duration of a pulse is:

τ =
2πQ
ω

=
Qλ

c
(5.7.9)

Feynman’s estimate of the Q of a photon begins with the definition of
Eq. (3.5.11), and is repeated here:

Q =
ωW

Pav
(5.7.10)

Let a point electron oscillate between positions at ±z0, thereby producing
electric dipole radiation. When oscillating at frequency ω the maximum
energy of the electron is:

W =
1
2
mω2z2

0 (5.7.11)

The power output of an electric dipole radiator is listed in Table 3.12.1,
with unit normalization. The normalization factor, −k3ez0/4πε, follows by
comparing the radial component of the electric field intensity with that
listed in the table. Substituting in the actual values shows that:

Pav =
e2ω4z2

0

12πεc3 (5.7.12)

Combining shows the calculated Q, using Eq. (5.7.10), is approximately:

1
Q

=
e2ω

6πεmc3 =
(

4π

3λ

)(
e2

4πεmc2

)
(5.7.13)

The last bracket in Eq. (5.7.13) is the Lorentz radius of the electron,
2.82 × 10−15 m. At the center of the optical spectrum the wavelength is on
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the order of λ = 530 nm, corresponding to a frequency of about 5.7×1014 Hz
and a period of about 1.75 fs. Substituting these values into Eq. (5.7.13)
gives:

Q ≈ 4.5 × 107 (5.7.14)

Such an oscillator must radiate some 4.5× 107 radians, or 7 × 106 oscil-
lations, before dropping to 1/e of its original intensity. With a resulting
decay time of about 10 ns, it follows that the wave train is about 3 m long.
Certainly with wave trains of this length transient effects would not be
significant.

It was shown earlier that the field energy also contributes to Q. For an
electrically small dipole the calculated Q due to only the field energy is
approximately:

Q ∼= 1/(ka)3 (5.7.15)

At the radius of the first Bohr orbit 5.29 × 10−11 m, and at the frequency
used in Eq. (5.7.14):

ka ∼= 6.27 × 10−4 (5.7.16)

Combining Eq. (5.7.15) with Eq. (5.7.16):

Q ≈ 4.0 × 109 (5.7.17)

The Q of the dipole field energy is approximately 100 times larger than Q
calculated using the kinetic energy of a point electron generating a dipole
mode. Since the calculated radiation Q of atomic radiation gives an unac-
ceptably long estimated wave train length of nearly 300 m it follows that
there is a fundamental error in the underlying assumptions upon which the
argument is based. We will return to this result in Chapter 6.

5.8. The Extended Plane Wave Radiation Field

The phasor equation set that describes a circularly polarized, z-directed
plane wave is given by extension of Eq. (2.1.2):

Ẽ = e−iσ cos θ[r̂ sin θ + θ̂ cos θ − jφ̂]e−jφ

ηH = jẼ
(5.8.1)
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The phasor equation set that describes the same plane wave follows by
extension of Eqs. (2.1.8), (2.1.10), and (2.1.11):

Ẽ =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

{
i�(� + 1)

j
(σ)
σ

P1

(cos θ)r̂

+
[
j
(σ)

P1

(cos θ)
sin θ

+ ij•

(σ)

dP1

(cos θ)
dθ

]
θ̂

− j

[
j
(σ)

dP1

(cos θ)
dθ

+ ij•

(σ)

P1

(cos θ)
sin θ

]
φ̂

}
exp(−jφ)

ηH̃ = jẼ

(5.8.2)

Equations (5.8.1) and (5.8.2) are identical.
Table 3.16.1 shows the radiation fields produced by four radiating, collo-

cated electric and magnetic dipoles of degree one with one electric and one
magnetic dipole oriented along the x-axis and an identical pair oriented
along the y-axis. Although these dipole fields are proportional to spheri-
cal Hankel functions the relative phasing is the same as for the spherical
Bessel functions in the plane wave of Eq. (5.8.1). These are the fields of
Table 3.16.1, for which the radiating surface is resonant and for which the
calculated source-associated standing energy is zero. Indeed, for all modal
orders that meet the phase and orientation conditions the radiating surface
is resonant and the source-associated standing energy is zero. The set of
fields that meets the conditions of Table 3.16.2 is obtained by replacing the
spherical Bessel functions of Eq. (5.8.2) with spherical Hankel functions and
the modal coefficients by the real number F
:

Ẽ =
∞∑


=1

i−
F


{
i�(� + 1)

h
(σ)
σ

P1

(cos θ)r̂

+
[
h
(σ)

P1

(cos θ)
sin θ

+ ih•

(σ)

dP1

(cos θ)
dθ

]
θ̂

− j

[
h
(σ)

dP1

(cos θ)
dθ

+ ih•

(σ)

P1

(cos θ)
sin θ

]
φ̂

}
exp(−jφ)

ηH̃ = jẼ

(5.8.3)

In accordance with the requirements of Table 3.16.2, but quite differently
from Eq. (2.2.1), the magnitudes of the TM and TE modes are equal.
The far field expressions for spherical Bessel and Neumann functions,
Eq. (A.24.13), show they are identical except π/2 out of phase. Construct-
ing a spherical Hankel function of the second kind by combining terms
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makes the total field just twice the value of the spherical Bessel function
acting alone.

The question we address here is how the fields of Eqs. (5.8.1) and (5.8.2)
interact with a metastable source within a circumscribed sphere to produce
the fields of Eq. (5.8.3). To find an answer, the first step is to examine the
relative phases of the different field components. On the positive z-axis the
angular functions, see Table A.18.1, are:

P1

(1) = 0

P1

(cos θ)
sin θ

∣∣∣∣
θ=0

=
dP1


(cos θ)
dθ

∣∣∣∣
θ=0

=
�(� + 1)

2

P1

(−1) = 0

P1

(cos θ)
sin θ

∣∣∣∣
θ=0

= −dP1

(cos θ)
dθ

∣∣∣∣
θ=π

= (−1)
+1 �(� + 1)
2

(5.8.4)

From Eqs. (A.24.9) and (A.24.13) the expressions for the radial spherical
and related functions are:

j
(σ) =
∞∑
s=0

(−1)sσ
+2s

(2s)!!(2� + 2s + 1)!!

j•

(σ) =

∞∑
s=0

(−1)sσ
+2s−1

(2s)!!(2� + 2s − 1)!!

y
(σ) = −

−1∑
s=0

(2� − 2s − 1)!!
(2s)!!σ
+1−2s −

∞∑
s=0

(−1)s

(2s − 1)!!
σ
−1+2s

(2� + 2s)!!

y•

(σ) =


−1∑
s=0

(2� − 2s − 1)!!
(2s)!!σ
+2−2s (� − 2s) −

∞∑
s=0

(−1)s

(2s − 1)!!
σ
−2+2s

(2� + 2s)!!
(� + 2s)

(5.8.5)

Combining Eqs. (5.8.3) through (5.8.5) shows the relative modal phases.
With terms in square brackets indicating phase only and using the zenith
angle electric field component as an example, on the positive z-axis:

Eθ ≈ i−
{[h
(σ)] + i[h•

(σ)]}

= i−
[j
(σ) + y•

(σ)] − i1−
[y
(σ) − j•


(σ)] (5.8.6)

The first term in each of the square brackets of Eq. (5.8.6) is due to TM
modes. The phase of the first term on the right side of Eq. (5.8.6) may be
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written as:

i−
[j
(σ) + y•

(σ)] = i−
(−1)sσ
+2s − i−
(−1)sσ
+2s−2 + i−
σ−
−2+2s

� odd

� = 1;≈ {−i[σ] + i[σ3] − i[σ5] + i[σ7] . . .}
+ {i[σ−1] − i[σ] + i[σ3] − i[σ5] + i[σ7] . . .} − iσ−3

� = 3;≈ {i[σ3] − i[σ5] + i[σ7] . . .} + {−i[σ] + i[σ3] − i[σ5] + i[σ7] . . .}
+ i{[σ−5] + [σ−3] + [σ−1]}

� even

� = 2;≈ {−[σ2] + [σ4] − [σ6] + [σ8] . . .}
+ {[1]− [σ2] + [σ4] − [σ6] + [σ8] . . .} − {[σ−4] + [σ−2]}

� = 4;≈ {[σ4] − [σ6] + [σ8] . . .} + {−[σ2] + [σ4] − [σ6] + [σ8] . . .}
+ {[σ−6] + [σ−4] + [σ−2] + [1]} (5.8.7)

The results contained in Eq. (5.8.7) show that for powers of σ greater
than or equal to zero the phase of each power of the radius is the same for all
moments. Therefore along the positive z-axis, and in the near field, driving
one dipole moment drives the corresponding far-field radial components of
all odd, higher order modes. Quite differently for powers of σ less than zero
higher order terms have opposite signs and act to cancel the total near-field
radial field component.

The second term on the right side of Eq. (5.8.6) is due to TE modes
and may be written as:

i−
[y
(σ) − j•

(σ)] = 2i1−
(−1)sσ
−1+2s + i1−
σ−
−1+2s

� odd

� = 1;≈ 2{[1] − [σ2] + [σ4] − [σ6] . . .} + [σ−2]

� = 3;≈ 2{−[σ2] + [σ4] − [σ6] . . .} − {[σ−4] + [σ−2] + [1]}
� even

� = 2;≈ 2 i{−[σ] + [σ3] − [σ5] + [σ7] . . .} − i{[σ−3] + [σ−1]}
� = 4;≈ 2 i{[σ3] − [σ5] + [σ7] . . .} + i{[σ−5] + [σ−3] + [σ−1] + [σ]}

(5.8.8)

Since the results of Eq. (5.8.8) are the same as those of Eq. (5.8.7),
driving the magnetic dipole moments also drives the corresponding far-
field radial components of all odd, higher order modes. For negative powers
of σ the terms have opposite signs and act to cancel the total near-field
radial field component. The relative phases of the two equations show that
the dipole far-field terms of Eq. (5.8.7) produce the same phase, even order
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terms as does Eq. (5.8.8), and the dipole far-field terms of Eq. (5.8.8) pro-
duce the same phase odd order terms as does Eq. (5.8.7). In this way, the
system is phased so the dipole terms drive all higher order terms.

On the negative z-axis both TM and TE modes contain alternate signs
of the expansion modes, with canceling phases and no field buildup.

We conclude that a buildup of a term proportional to σn, where n ≥ 0,
by any mode builds the magnitudes of the far-fields for all modes for z > 0
and, at the same time, reduces the magnitudes of the near-fields. This
condition lends itself to a regenerative buildup of field magnitudes.

5.9. Gain and Radiation Pattern

Both Einstein and Planck referred to the “spherical symmetry” of radiation
modes. It was surely his conception that the fields had spherical symmetry
that was the basis for Einstein’s comment that the full directivity of quan-
tized radiation made a quantum theory of radiation “almost unavoidable.”
Even though modes of the type mentioned by Einstein have circular sym-
metry about the radiation axis, appropriate sets of such modes do carry
a net linear momentum. In antenna theory this is referred to as antenna
gain. Harrington, in 1960, published an expression for the maximum possi-
ble gain under such circumstances, about four decades after both Einstein’s
1917 paper on directivity and Planck’s 1920 Nobel prize paper addressed
the same issue.

The gain of an antenna is a dimensionless power density ratio; it is
the ratio of the maximum power density on the surface of a virtual, cir-
cumscribing sphere to the average surface power density. In mathematical
terms:

G(σ) = Lim
σ→∞

4πσ2

k2

[Nr]max

Pav
(5.9.1)

Consider the gain of fields described by Eq. (5.8.3) after making the equality
i = j. For this case the maximum value of Nr(σ, θ, φ) occurs at angle θ = 0.
Making this substitution and using Table A.18.1 gives the fields:

E(σ, 0) =
1
2

∞∑

=1

i−
F
�(� + 1)[h
(σ) + i h•

(σ)]{θ̂ − i φ̂} e−iφ

ηH(σ, 0) =
1
2

∞∑

=1

i1−
F
�(� + 1)[h
(σ) + i h•

(σ)]{θ̂ − iφ̂} e−iφ

(5.9.2)
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The radial component of the Poynting vector is:

ηNr(σ, 0) =
1
2

∞∑

=1

i−
F
�(� + 1)[h
(σ) + i h•

(σ)]

×
∞∑

n=1

inFnn(n + 1)[hn(σ) + i h•
n(σ)]∗ (5.9.3)

Limiting forms of spherical Hankel functions are given in Eqs. (A.25.17)
and (A.26.4). Substituting them into Eq. (5.9.3) gives the maximum value
of the radial component of the Poynting vector:

Nr(σ, 0) =
1

ησ2

[ ∞∑

=1

F
�(� + 1)

]2

(5.9.4)

Using the fields of Eq. (5.8.3), the output power on a virtual sphere of
indefinitely large radius is:

Pav =
σ2

2ηk2

∞∑

=1

∫ 2π

0
dφ

∫ π

0
sin θ dθ i−
[F
]2

{
ei(
+1)

σ

[
P1




sin θ
+

dP1



dθ

]
[θ̂ − i φ̂]

}

× i

{

e−i(
+1)

σ

[
P1




sin θ
+

dP1



dθ

]
[θ̂ + i φ̂]

}
(5.9.5)

Evaluation gives:

Pav =
4π

ηk2

∞∑

=1

F2



(
�2(� + 1)2

2� + 1

)
(5.9.6)

Substituting Eqs. (5.9.4) and (5.9.6) into Eq. (5.9.1) gives:

G(σ) =

[ ∞∑

=1

F
�(� + 1)

]2/ ∞∑

=1

F2



�2(� + 1)2

2� + 1
(5.9.7)

A particularly interesting special case occurs if the modal coefficients
satisfy the relationship:

F
 =
(2� + 1)
�(� + 1)

(5.9.8)

For this special case the gain is:

G =
∞∑


=1

(2� + 1) (5.9.9)



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap05

Radiative Energy Exchanges 241

This expression for gain, first published by Harrington in 1960, vividly
demonstrates that the radiation of spherical modes can be arranged to
support power with a net gain: it does not possess circular symmetry.
In many cases, including those of interest here, radiation with a gain other
than unity produces a net transfer of linear momentum.

5.10. Kinematic Values of the Radiation

Radiation from electrically small sources is dominated, in the main, by
the moment with the lowest power of ka. A primary reason is that the
Qs of electrically small antennas producing single modes increase rapidly
with increasing order, i.e. as |γ(σ)| of Table 3.2.1. However it was shown
in Sec. 3.16 that a multimodal source generating the fields of Eq. (5.8.3)
does not necessarily extract a returnable standing energy from the source.
By Eqs. (A.28.12) and (A.29.18) the magnitudes of electric and mag-
netic multipolar fields of order � are respectively proportional to (ka)


and (ka)
+1. The magnitude of fields scattered by a passive, electrically
small object will, therefore, decrease rapidly with increasing modal order,
see Eq. (2.3.10). For the case of interest here, however, the scatterer is
not a passive object but an excited, eigenstate electron. The host atom is
immersed within a z-directed, circularly polarized plane wave that somehow
connects to a nonlinear, radiating transition to a lower energy eigenstate;
the radiated fields are expected to be dramatically different from those of
passive scatterers. We seek details.

With pz and lz representing respectively linear and angular momentum,
the kinematic properties of atomic radiation are:

W/pz = c W/lz = ω pz/lz = k (5.10.1)

To examine results of the field set shown by Eq. (5.8.3) consider the rate
at which energy, linear momentum, and angular momentum exit through
the surface of a sphere of radius σ/k circumscribing the active region.

The rate at which energy is radiated follows by use of Eq. (1.9.11).
The rate of energy loss through a spherical shell is:

dW

dt
=

σ2

k2

∫ 2π

0
dφ

∫ π

0
Re[Nr] sin θ dθ (5.10.2)

Since the momentum contained within a volume is equal to 1/c2 times
the volume integral of the Poynting vector, see Eq. (1.9.7), the rate of
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momentum loss through a spherical shell is

p =
1

c2k3

∫
σ2 dσ

∫ 2π

0
dφ

∫ π

0
Re[N] sin θ dθ (5.10.3)

Since the equality holds for every volume in space the rate at which the
z-component of momentum exits a closed volume is equal to c times the
surface integral of the z-component of momentum:

dpz

dt
=

σ2

ck2

∫ 2π

0
dφ

∫ π

0
Re[Nr cos θ − Nθ sin θ] sin θ dθ (5.10.4)

Angular momentum is related to linear momentum by Eq. (4.9.1); it
follows that the rate at which z-directed angular momentum exits a closed
volume is:

dlz
dt

=
σ3

ck3

∫ 2π

0
dφ

∫ π

0
Re[Nφ] sin2 θ dθ (5.10.5)

The Poynting vector components follow from the fields of Eq. (5.8.3)
with coefficients F
 as unknowns. Putting j = i gives the Poynting vector:

Nr =
Re
2η

∞∑

=1

∞∑
n=1

F
F∗
n in−


{
(h
h∗

n + h•

h

•∗
n )
(

P1



sin θ

dP1
n

dθ
+

P1
n

sin θ

dP1



dθ

)

− i(h
h•∗
n − h∗

nh•

)
(

P1



sin θ

P1
n

sin θ
+

dP1



dθ

dP1
n

dθ

)}
(5.10.6)

Nθ = − Re
2ση

∞∑

=1

∞∑
n=1

F
F∗
nin−
[n(n + 1)h∗

nh•

 + �(� + 1)h
h•∗

n ]
P1


P
1
n

sin θ
(5.10.7)

Nφ =
Re
2ση

∞∑

=1

∞∑
n=1

F
F∗
nin−


{(
n(n + 1)h∗

nh•

P

1
n
dP1




dθ
− �(� + 1)h
h•∗

n P1



dP1
n

dθ

)

− i

(
[�(� + 1) + n(n + 1)]h
h∗

n
P1


P
1
n

sin θ

)}
(5.10.8)

Substituting these values into Eqs. (5.10.2), (5.10.4), and (5.10.5), evalu-
ating the integrals using Table A.22.1, and replacing the spherical radial
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functions by letter functions gives:

dW
dt

=
4π

ηk2

∞∑

=1

�2(� + 1)2

(2� + 1)
F
F∗


 (5.10.9)

dpz

dt
=

2π

ηck2

∞∑

=1

Re
{

F
F∗



�(� + 1)
(2� + 1)

(A2

 + B2


 + C2

 + D2


)

− F
F∗



2�2(� + 1)2

σ(2� + 1)
(A
C
 + B
D
)

+ F
F∗

+1

�2(� + 1)(� + 2)2

(2� + 1)(2� + 3)
(A
C
+1 − A
+1C
 + B
D
+1 − B
+1D
)

− 2F
F∗

+1

2�2(� + 1)2(� + 2)2

(2� + 1)(2� + 3)σ
(A
C
+1 + B
D
+1)

+ F
F∗

−1

(� − 1)2�(� + 1)2

(2� + 1)(2� − 1)
(A
−1C
 − A
C
−1 + B
−1D
 − B
D
−1)

− 2F
F∗

−1

2(� − 1)2�2(� + 1)2

(2� + 1)(2� − 1)σ
(A
C
−1 + B
D
−1)

}
(5.10.10)

dlz
dt

=
4π

ηωk2

∞∑

=1

Re
{

F
F∗



�2(� + 1)2

(2� + 1)
(A2


 + B2

)

− (F
F∗

−1 − F
−1F∗


 )
(� − 1)2�2(� + 1)2

2(2� + 1)(2� − 1)

× [(A
C
−1 + B
D
−1) − i (A
D
−1 − B
C
−1)]

− (F
+1F∗

 − F
F∗


+1)
�2(� + 1)2(� + 2)2

2(2� + 1)(2� + 3)

× [(A
C
+1 + B
D
+1) − i (A
D
+1 − B
C
+1)]
}

(5.10.11)

As the radius becomes limitlessly large these values go to:

dW
dt

=
4π

ηk2

∞∑

=1

F
F∗



�2(� + 1)2

(2� + 1)

dpz

dt
=

4π

ηck2

∞∑

=1

�(� + 1)
(2� + 1)

{
F
F∗


 + F
F∗

+1

�(� + 2)2

(2� + 3)
+ F
F∗


 − 1
(� − 1)2(� + 1)

(2� − 1)

}

dlz
dt

=
4π

ηωk2

∞∑

=1

F
F∗



�2(� + 1)2

(2� + 1)

(5.10.12)
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Equation (5.10.12) shows that both the energy-to-angular momentum
ratio and the energy-to-linear momentum ratio depend upon the magnitude
of recursion relation F
. Before solving for F
, it is necessary to consider
some additional factors.

A field described by Eq. (5.8.3) can be put in closed form for only a very
large or a very small radius. For a very large radius, from Eq. (A.24.13),
the limiting values of the radial functions are:

Lim
σ→∞ j
(σ) =

1
σ

cos
[
σ − π

2
(� + 1)

]
Lim
σ→∞ y
(σ) =

1
σ

sin
[
σ − π

2
(� + 1)

]
=

1
σ

cos
[
σ − π

2
(� + 2)�

] (5.10.13)

The two functions differ in phase by π/2. Next, multiply the Neumann
functions by (±i), as is necessary to form spherical Hankel functions. This
changes the phase by another π/2 and causes the Bessel and Neumann
functions either to be in phase or π out of phase, depending upon whether
the phase shift adds or subtracts. The result is that in the limit of infinite
radius changing spherical Bessel functions to spherical Hankel functions
results in the far field sum of Bessel and Neumann parts either to double
or to sum to zero.

In the limit of small radius, the two functions are equal to:

Lim
σ→0

j
(σ) =
σ


(2� + 1)!!
and Lim

σ→0
y
(σ) = − (2� − 1)!!

σ
+1 (5.10.14)

Spherical Bessel function solutions are continuous through all orders at
the origin and spherical Neumann function solutions undergo an (� + 1)-
order singularity. Spherical Neumann functions therefore are essential for
the description of generated or absorbed fields but not for scattered ones.

In a step which we support in Chapter 6 we assert that the correct
recursion relationship of the field coefficients is:

F
 =
(2� + 1)
�(� + 1)

F (5.10.15)

F is real and independent of �. Substituting the relationship back into
field Eq. (5.8.3) repeats Eq. (5.8.2) except for the radial functions and
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the limiting values obtained using Eqs. (5.10.13) and (5.10.14) apply.

Ẽ =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

{
i �(� + 1)

h
(σ)
σ

P1

(cos θ)r̂

+
[
h
(σ)

P1

(cos θ)
sin θ

+ i h•

(σ)

dP1

(cos θ)
dθ

]
θ̂

− i

[
h
(σ)

dP1

(cos θ)
dθ

+ i h•

(σ)

P1

(cos θ)
sin θ

]
φ̂

}
exp(−iφ)

ηH̃ = iẼ

(5.10.16)

The combined functional forms of Legendre functions that appear in
Eq. (5.8.3), with axial values detailed in Eq. (5.8.4), add in phase along the
positive z-axis and out of phase along the negative z-axis. Modifications
of this axial result extend over the full range of solid angles and result in
the gain calculated by Harrington, Eq. (5.9.8). Both Einstein and Planck
missed this mechanism for circularly symmetric modal sources to transfer
linear momentum.

The rate at which the kinematic parameters are carried away from a
source producing the fields of Eq. (5.10.16) may be calculated by substitut-
ing Eq. (5.10.16) into Eq. (5.10.12). Values are:

Lim
σ→∞

dW

dt
=

4πF2

ηk2

∞∑

=1

(2� + 1)

Lim
σ→∞

dpz

dt
=

4πF2

ηck2

∞∑

=1

(2� + 1)

Lim
σ→∞

dlz
dt

=
4πF2

ηωk2

∞∑

=1

(2� + 1)

(5.10.17)

It follows from Eq. (5.10.17) that:

Lim
σ→∞

dW

dt

/
dpz

dt
= c

Lim
σ→∞

dW

dt

/
dlz
dt

= ω

Lim
σ→∞

dpz

dt

/
dlz
dt

= k

(5.10.18)
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Since the time-variations of the three kinematic properties are identi-
cal, Eq. (5.10.18) leads directly to Eq. (5.10.1). The conclusions are: (1) the
kinematic properties of this radiation are the same as the kinematic proper-
ties of photons, (2) there is no dichotomy between the kinematic properties
of photons and classical field theory, and (3) all three parameters are pro-
portional to the gain, see Eq. (5.9.9).

It is shown in Sec. 3.16 that any field set that satisfies Eq. (5.8.2) is
resonant and no net energy returns to the source. Additionally, as discussed
in Sec. 5.8, the phases of recursion relationship Eq. (5.10.15) uniquely define
fields for which equal powers of σ have equal phases in all modal orders.
This creates cross coupling amongst all orders and thereby a regenerative
far field drive. To examine magnitude effects of Eq. (5.10.15) it is necessary
to consider details of field set Eq. (5.10.16).
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CHAPTER 6

Photons

This chapter calculates details of the fields produced by an electron as it
transitions between eigenstates. Chapter 4 shows that Schrödinger’s equa-
tion applies during periods of electron equilibrium and near-equilibrium,
but not during transitions. A derivation of Schrödinger’s equation is a nec-
essary but insufficient condition for explaining quantum theory. It is insuffi-
cient because it is an energy conservation law and, as such, quite disparate
atomic-level models can lead to it as a macroscopic result. Different models
differ in that they support quite different physical interpretations of elec-
tronic reality. Surely the model that best satisfies the Law of Parsimony
is desired; we believe the model presented in this book, extendable elec-
trons and classical physics, meets the conditions of that law. Chapter 5
shows that the model and classical electromagnetic theory predict radia-
tion exchanges where the radiation supports the kinematic properties of
photons. A primary purpose of this chapter is to show that the model is
sufficiently general to explain characteristics of electrically small regions
during periods of energy exchanges, including all electromagnetic fields,
near and far.

Quite differently from the kinematic conservation laws, electromagnetic
fields are the unique result of specific charge and current distributions.
The inverse is also true: a specific set of fields determines a unique set of
charge and current distributions (with the exception of replacing sources
by a circumscribing boundary). For these reasons the principal argument
supporting this model of physical reality is the development of the photon
solution, not Schrödinger’s equation.

Consider the following question: if there are time hiatuses during which
the Schrödinger equation does not apply, what does describe a transition-
ing electron? We show a uniquely arrayed and properly phased resonant set
of dipolar TE and TM modal electromagnetic fields that are necessary for
transition onset. Once begun the dipole modes drive the source in a way

247
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that generates all higher-order modes of the same degree. The higher order
modes, in turn, contribute to the driving force. The new driving force is
nonlinear and the combination is regenerative; it drives the active region
until all eigenstate energy is fully emitted or absorbed. Since the regener-
ation is at a particular frequency and phase, neither multiple frequencies
nor combined absorption and emission are possible from a single-frequency
regenerative drive.

An analysis of photon radiation fields is similar to an analysis of any
other problem in electromagnetics. Chapter 2 contains several examples:
The radiation kinematics of photons acts as boundary conditions on the
multimodal field expansion of Eq. (1.12.9) and determine the full coeffi-
cient set. From that field set we learn that the near field radiation reaction
pressure during transition processes dominates all other local forces, it is
many orders of magnitude larger than the Coulomb trapping pressure, and
it is directed and phased to regeneratively drive energy exchanges.

6.1. Telefields and Far Fields

The field intensities of a circularly polarized, z-directed plane wave are
expressed in spherical coordinates by Eq. (5.8.1) and in terms of a multi-
polar expansion by Eq. (5.8.2.) The uniqueness theorem requires them to
be identical. If a source or sink for the wave is included the applicable field
set is expressed by the multipolar field expansion of Eq. (5.10.16). This
field set is in the category of fields described in Sec. 3.16: it is resonant in
the sense that a circumscribing sphere supports only exchanged energy and
there is no source-associated standing energy at any point on the surface.
A computational difficulty with such waves is that large modal orders are
physically significant but difficult to mathematically evaluate. We there-
fore seek a spherical coordinate expression as similar as possible to that of
Eq. (5.8.1) describing the fields of Eq. (5.10.16).

Since the magnitudes of the field terms of Eq. (5.8.1) are independent
of distance, we define them to be telefield terms. For comparison, far field
terms are proportional to 1/σ, inverse square terms are proportional to
1/σ2, and near field terms are proportional to 1/σn where n > 2. After
putting j = i, the electric and magnetic field intensities are related as

ηH̃ = iẼ (6.1.1)

It is, therefore, sufficient to solve for the electric field only.
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We begin by defining the following sums over the spherical functions:

S1(σ, θ) =
∞∑


=1

i1−
(2� + 1)h
(σ)P1

(cos θ) = S11(σ, θ) − iS12(σ, θ)

S2(σ, θ) =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

h
(σ)
dP1


(cos θ)
dθ

= S21(σ, θ) − iS22(σ, θ)

S3(σ, θ) =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

h
(σ)
P1


(cos θ)
sin θ

= S31(σ, θ) − iS32(σ, θ)

(6.1.2)

The radial dependent portions of Sn1 and Sn2 are respectively spherical
Bessel and Neumann functions. To complete the field sums, it is also nec-
essary to evaluate the modified sums:

$2(σ, θ) =
i

σ

∂

∂σ
[σS2(σ, θ)] and $3(σ, θ) =

i

σ

∂

∂σ
[σS3(σ, θ)] (6.1.3)

Combining Eqs. (6.1.2), (6.1.3) and (5.10.16) gives:

σEr = S1(σ, θ)e−iφ

Eθ = [S3(σ, θ) + $2(σ, θ)]e−iφ

Eφ = −i[S2(σ, θ) + $3(σ, θ)]e−iφ

(6.1.4)

It follows from Eqs. (6.1.2) and (6.1.3) that:

S2(σ, θ) =
∂

∂θ
[sin θ S3(σ, θ)] and $2(σ, θ) =

∂

∂θ
[sin θ $3(σ, θ)] (6.1.5)

Equating the radial field components of Eqs. (5.8.1) and (5.8.2) gives:

S11 = σ sin θ e−iσ cos θ (6.1.6)

Equating the angular field components of Eqs. (5.8.1) and (5.8.2) gives:

cos θ e−iσ cos θ =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

[
j
(σ)

P1

(cos θ)
sin θ

+ i j•

(σ)

dP1

(cos θ)
dθ

]

e−iσ cos θ =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

[
j
(σ)

dP1

(cos θ)
dθ

+ i j•

(σ)

P1

(cos θ)
sin θ

]
(6.1.7)
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To obtain an explicit functional form for the angular field, begin with the
identities of Tables (A.21.1.1) and (A.21.1.5):

d
dθ

P1

(cos θ) =

1
2
[
�(� + 1)P
 − P2




]
P1


(cos θ)
sin θ

=
1

2 cos θ

[
�(� + 1)P
 + P2




] (6.1.8)

Substituting these identities into Eq. (6.1.7) gives:

cos θ e−iσ cos θ =
1
2

{ ∞∑

=1

i−
(2� + 1)
[
j
(σ)

P
(cos θ)
cos θ

+ i j•

(σ)P
(cos θ)

]

+
∞∑


=1

i−
 (2� + 1)
�(� + 1)

[
j
(σ)

P2

(cos θ)
cos θ

− i j•

(σ)P2


(cos θ)
]}

(6.1.9)

e−iσ cos θ =
1
2

{ ∞∑

=1

i−
(2� + 1)
[
j
(σ)P
(cos θ) + i j•


(σ)
P
(cos θ)

cos θ

]

−
∞∑


=1

i−
 (2� + 1)
�(� + 1)

[
j
(σ)P2


(cos θ) + i j•

(σ)

P2

(cos θ)
cos θ

]}

(6.1.10)

The sums on the upper lines of Eqs. (6.1.9) and (6.1.10), derivable from
Eq. (A.27.6), are in the form of linear, algebraic equations with the sums
on the bottom lines as unknowns. Writing “x” and “y” for unknowns the
equations have the general form:

f1(σ, cos θ) =
1
2

( x
cos θ

− iy
)

f2(σ, cos θ) = −1
2

(
x +

iy
cos θ

)
(6.1.11)

Solving Eq. (6.1.11) gives the equality:

∞∑

=1

i−
 (2� + 1)
�(� + 1)

j
P2

(cos θ) = −

(
e−iσ cos θ +

sin σ

σ

)
− 2i

σ sin2 θ

× [e−iσ cos θ cos θ − (cos σ cos θ − i sin σ)]
(6.1.12)

Multiply each part of Eq. (6.1.8) on the left by the operator:

O ⇒
∞∑


=1

i−
 (2� + 1)
�(� + 1)

j
(σ) (6.1.13)
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This gives the equality set:

∞∑

=1

i−
 (2� + 1)
�(� + 1)

d
dθ

P1

(cos θ)

=
1
2

[ ∞∑

=1

i−
(2� + 1)P
(cos θ) −
∞∑


=1

i−
 (2� + 1)
�(� + 1)

P2

(cos θ)

]

∞∑

=1

i−
 (2� + 1)
�(� + 1)

P1

(cos θ)
sin θ

=
1

2 cos θ

[ ∞∑

=1

i−
(2� + 1)P
(cos θ) +
∞∑


=1

i−
 (2� + 1)
�(� + 1)

P2

(cos θ)

]
(6.1.14)

The sums on the right follow from Eqs. (A.27.6) and (6.1.12) and give exact
values for angular sums:

S31 = − i

σ sin2 θ
[e−iσ cos θ − (cos σ − i sin σ cos θ)]

S21 = e−iσ cos θ +
i

σ sin2 θ
[e−iσ cos θ cos θ − (cos σ cos θ − i sin σ)]

(6.1.15)

Since these equation forms recur often in the ensuing discussion it is
helpful to define the optical source functions U(σ, θ) and V(σ, θ):

U(σ, θ) =
1

σ sin2 θ
[e−iσ cos θ − (cos σ − i sin σ cos θ)]

V(σ, θ) =
1

σ sin2 θ
[e−iσ cos θ cos θ − (cos σ cos θ − i sin σ)]

(6.1.16)

In terms of U(σ, θ) and V(σ, θ), S21 and S31 are:

S31 = −iU(σ, θ) S21 = e−iσ cos θ + iV(σ, θ) (6.1.17)

It follows from Eqs. (6.1.17) and (6.1.3) that:

$31 = −iV(σ, θ) $21 = e−iσ cos θ cos θ + iU(σ, θ) (6.1.18)
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For what follows it is necessary to separate Eq. (5.10.16) into TM and
TE parts; after doing so the TM are TE portions are:

ẼTM =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

{
i�(� + 1)

h
(σ)
σ

P1

(cos θ)r̂

+ ih•

(σ)

dP1

(cos θ)
dθ

θ̂ − h•

(σ)

P1

(cos θ)
sin θ

φ̂

}
e−iφ

ηH̃TM =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

{
h
(σ)

P1

(cos θ)
sin θ

θ̂ − ih
(σ)
dP1


(cos θ)
dθ

φ̂

}
e−iφ

(6.1.19)

ηH̃TE =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

{
�(� + 1)

h
(σ)
σ

P1

(cos θ)r̂

− h•

(σ)

dP1

(cos θ)
dθ

θ̂ − ih•

(σ)

P1

(cos θ)
sin θ

φ̂

}
e−iφ

ẼTE =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

{
ih
(σ)

P1

(cos θ)
sin θ

θ̂ + h
(σ)
dP1


(cos θ)
dθ

φ̂

}
e−iφ

(6.1.20)

Similarly the fields as expressed by Eq. (6.1.4) break into TM and TE
parts as:

ẼTM = [S1r̂/σ + $2θ̂ − i$3φ̂]e−iφ ηH̃TM = [iS3θ̂ + S2φ̂]e−iφ

ẼTE = [S3θ̂ − iS2φ̂]e−iφ ηH̃TE = [iS1r̂/σ + i$2θ̂ + $3φ̂]e−iφ

(6.1.21)

Substituting Eqs. (6.1.6), (6.1.17), and (6.1.18) into Eq. (6.1.21) gives
the exact expression for the spherical Bessel functions portion of the TM
fields:

ẼTM =
{
sin θ e−iσ cos θ r̂ +

(
cos θ e−iσ cos θ + iU(σ, θ)

)
θ̂ − V(σ, θ)φ̂

}
e−iφ

ηH̃TM =
{
U(σ, θ)θ̂ +

(
e−iσ cos θ + iV(σ, θ)

)
φ̂
}
e−iφ

(6.1.22)

Exact values of the sums over spherical Bessel functions are listed in
Table 6.1.1. Values on the positive and negative z-axes and in the equatorial
plane are listed in Table 6.1.2.
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Table 6.1.1. Closed form solutions for the field sums defined in
Eqs. (6.1.2) and (6.1.3), over spherical Bessel functions.

S11(σ, θ) = σ sin θ e−iσ cos θ

S21(σ, θ) = e−iσ cos θ +
i

σ sin2 θ
[e−iσ cos θ cos θ − (cos σ cos θ − i sin σ)]

S31(σ, θ) = − i

σ sin2 θ
[e−iσ cos θ − (cos σ − i sin σ cos θ)]

$21(σ, θ) = cos θ e−iσ cos θ +
i

σ sin2 θ
[e−iσ cos θ − (cos σ − i sin σ cos θ)]

$31(σ, θ) = − i

σ sin2 θ
[e−iσ cos θ cos θ − (cos σ cos θ − i sin σ)]

Table 6.1.2. Sums of Table 6.1.1 on the coordinate axes.

1. S11(σ, 0) = S11(σ, π) = 0 S11(σ, π/2) = σ

2. S21(σ, 0) =
1
2

[
e−iσ − sin σ

σ

]
S21(σ, π) =

1
2

[
eiσ − sin σ

σ

]

S21(σ, π/2) =
[
1 − sin σ

σ

]

3. S31(σ, 0) =
1
2

[
e−iσ − sin σ

σ

]
S31(σ, π) = −1

2

[
eiσ − sin σ

σ

]

S31(σ, π/2) = − i
σ

[1 − cos σ]

4. $21(σ, 0) =
1
2

[
e−iσ +

sin σ

σ

]
$21(σ, π) = −1

2

[
eiσ +

sin σ

σ

]

$21(σ, π/2) = i
σ

[1 − cos σ]

5. $31(σ, 0) =
1
2

[
e−iσ +

sin σ

σ

]
$31(σ, π) =

1
2

[
eiσ +

sin σ

σ

]

$31(σ, π/2) =
sin σ

σ

6.2. Evaluation of Sum S12 on the Axes

Evaluation of the desired sums over spherical Neumann functions is possible
only on the coordinate axes. That portion of sum S12, see Eq. (6.1.2), is:

S12(σ, θ) =
∞∑


=1

i1−
(2� + 1)y
(σ)P1

(cos θ) (6.2.1)
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Since the associated Legendre polynomial is proportional to sin θ the sum
is equal to zero on both the positive and negative z-axes:

S12(σ, 0) = S12(σ, π) = 0 (6.2.2)

It remains to evaluate the sum in the equatorial plane, θ = π/2. The
series form of the associated Legendre polynomial at θ = π/2 is given
in Table A.18.1 and repeated here:

P1

(0) = (−1)(
−1) (�)!!

(� − 1)!!
δ(�, 2q + 1) (6.2.3)

The Kronecker delta function, with q representing an integer equal to or
greater than zero, shows that the function vanishes for even numbered
modes. The series forms of the spherical Neumann functions are given by
Eq. (A.24.10) and repeated here:

y
(σ) = −

−1∑
s=0

(2� − 2s − 1)!!
(2s)!!

σ−
−1+2s−
∞∑
s=0

(−1)s

(2s − 1)!!
σ
−1+2s

(2� + 2s)!!
(6.2.4)

Substituting Eqs. (6.2.3) and (6.2.4) into Eq. (6.2.1) gives:

S12

(
σ,

π

2

)
= −

∞∑

o;1

(2� + 1)
(�)!!

(� − 1)!!

{

−1∑
s=0

(2� − 2s − 1)!!
(2s)!!

σ−
−1+2s

+
∞∑
s=0

(−1)s

(2s − 1)!!
σ
−1+2s

(2� + 2s)!!

}
(6.2.5)

Lower limit ‘�o; 1’ indicates the sum is over only odd values of � and the
series begins with � = 1. Since only odd modal orders contribute to the
sum, it follows from Eq. (6.2.5) that only even powers of σ are present. It is
of the form:

S12(σ, π/2) =
∞∑

ne;−(
+1)

Anσn (6.2.6)

Lower limit ‘ne; −(� + 1)’ indicates the series contains only even values of
n and begins with n = −(� + 1).
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Combining Eqs. (6.2.5) and (6.2.6) to obtain coefficient An gives:

An =


−(−1)n/2

n+1∑

o;1

(2� + 1)(�)!!(−1)(
−1)/2

(� − 1)!!(� + n + 1)!!(n − �)!!

−
(

Lim
L→∞

) L∑

o;n+3

(2� + 1)(�)!!(� − n − 2)!!
(� − 1)!!(� + n + 1)!!


 (6.2.7)

L is the largest modal number present. Consider the special case of n greater
than zero and, in particular, n = 2. For this case the sum for A2 obtained
from Eq. (6.2.7) is:

{
3
8

− 7
32

− 55
1024

− 105
4096

− 1995
131078

− 5313
524288

− 243243
33554452

− · · ·
}

= 0

(6.2.8)

The first two terms come from the first sum of Eq. (6.2.7) and the rest
from the second sum. Although the equality is correct only in the limit of
infinitely large L, the series converges rapidly. With L large but finite the
limiting value is zero.

The coefficients of all other positive powers of σ follow in a similar way,
and all of them are equal to zero. Although no individual term is equal
to zero each modal order contributes the proper magnitude and phase for
the sum to equal zero. Since the total field is equal to zero so is the field
energy on the axis. Note that if the magnitude or the phase of coefficients
for all values of � is changed in a way that preserves recursion relationship
Eq. (5.10.15) the field remains equal to zero. On the other hand, if the
coefficient of any single mode differs from the value of Eq. (5.10.15) the
field of that mode would support an additional energy field. When such
variations occur the generalized gradient of the added energy describes a
forcing function that drives the mode to restore Eq. (5.10.15); this is a
unique characteristic of recursion relationship Eq. (5.10.15).

For negative powers of σ, the series diverges and, therefore, must ter-
minate. With the coefficients of all modes of order greater than L equal to
zero, the series is equal to:

S12(σ, π/2) = −
L∑


o;n−1

(2� + 1)
(�)!!

(� − 1)!!
(� + n − 2)!!

(� − n + 1)!!σn (6.2.9)
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For the special case n = 0 the series of Eq. (6.2.9) is:

−
(

3
2

+
21
16

+
165
128

+
2625
2048

+ · · ·
)

= −(1.5 + 1.3125 + 1.2891 + 1.2817 + · · · ) = −A0 (6.2.10)

The terms approach unity as the modal number increases and A0 is
proportional to L. For L much larger than one this gives the approximate
value:

A0 ∼= 5L/8 (6.2.11)

For the special case n = −2, the series is equal to:

−
(

3 +
63
4

+
2475
64

+
165,375
2304

+
16,967,475
147,456

+ · · ·
)

= −A2 (6.2.12)

A2 is proportional to L3. Since a term-by-term expansion shows that
An ≈ Ln+1, the sum, evaluated at the equator, is equal to:

S12(σ, π/2) = −
∞∑

n=0;e

An

σn

An = −
L∑


o;n−1

(2� + 1)�!!
(� − 1)!!

(� + n − 2)!!
(� − n + 1)!!

≈ Ln+1

(6.2.13)

Each coefficient An contains contributions from all modal orders. It
follows from Eqs. (6.1.4), (6.1.6), and (6.2.13) that the radial component of
the electric field intensity in the equatorial plane is:

Er =

{
1 + i

∞∑
ne;0

An

σn+1

}
e−iφ (6.2.14)

In summary, only negative powers of σ are present in the field expres-
sion and energy of the radial field component is localized to the source
region.
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6.3. Evaluation of Sums S22 and S32 on the Polar Axes

The spherical Neumann portion of sum S22 as defined by Eq. (6.1.2) is:

S22(σ, θ) =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

y
(σ)
dP1


(cos θ)
dθ

(6.3.1)

The series forms of the associated Legendre polynomial at θ = 0 and π are
shown in Table A.18.1 and repeated here, see also Eq. (5.8.4):

dP1

(cos θ)
dθ

∣∣∣∣
θ=0

=
�(� + 1)

2
,

dP1

(cos θ)
dθ

∣∣∣∣
θ=π

= (−1)
 �(� + 1)
2

(6.3.2)

The spherical Neumann portion of sum S32 as defined by Eq. (6.1.2) is:

S32(σ, θ) =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

y
(σ)
P1


(cos θ)
sin θ

(6.3.3)

The series forms of the associated Legendre polynomial at θ = 0 and π are
shown in Table A.18.1 and repeated here:

P1

(cos θ)
sin θ

∣∣∣∣
θ=0

=
�(� + 1)

2
,

P1

(cos θ)
sin θ

∣∣∣∣
θ=π

= (−1)
+1 �(� + 1)
2

(6.3.4)

Comparing axial values of the two sums shows that:

S22(σ, 0) = S32(σ, 0), S22(σ, π) = −S32(σ, π) (6.3.5)

Because of these equalities, it is only necessary to evaluate one sum on
the z-axes. Substituting Eq. (6.3.4) and the expansion for the spherical
Neumann function, Eq. (6.2.4), into Eq. (6.3.3) gives the series expansion:

S32(σ, 0) =
1
2

∞∑

=1

i−
(2� + 1)y
(σ) =
1
2

∞∑

=0

i−
(2� + 1)y
(σ) − 1
2
y0(σ)

Inserting the expression for spherical Neumann functions gives:

S32(σ, 0) = −1
2

∞∑

=0

i−
(2� + 1)

{ ∞∑
s=0

(−1)s

(2s − 1)!!
σ
−1+2s

(2� + 2s)!!

+

−1∑
s=0

(2� − 2s − 1)!!
(2s)!!

σ−
−1+2s

}
+

cos σ

2σ
(6.3.6)
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Although the desired sum is over values of � ranging from one to infinity,
it is convenient to retain the � = 0 term in the expansion and subtract it in
a separate operation. Both even and odd numbered modes are present; even
values of � produce odd powers of σ and vice versa. Within the curly brack-
ets of Eq. (6.3.6) the first term contains only positive powers of σ, (� − 1)
to ∞, and the second term contains both positive and negative powers,
(−� + 1) to (� − 3).

Next, let n be a positive integer and determine the coefficient of σn. It
is convenient to separate Eq. (6.3.6) into sets of different parity:

S32 =


i

(−1)n/2

2

n+1∑

o;1

(2� + 1)σn

(n − �)!!(n + � + 1)!!

+
i

2

∞∑

o;n+3

(−1)(
−1)/2(2� + 1)(� − n − 2)!!σn

(� + n + 1)!!




±

 (−1)(n−1)/2

2

n+1∑

e;0

(2� + 1)σn

(n − �)!!(n + � + 1)!!

− 1
2

∞∑

e;n+3

(−1)
/2(2� + 1)(� − n − 2)!!σn

(� + n + 1)!!
+

cos σ

2σ


 (6.3.7)

The upper ± sign is to be used at θ = 0 and the lower at θ = π. Defining
S′

32 to equal the top row of Eq. (6.3.7) and expanding the series gives:

n even, � odd.

S′
32 =

i(−1)n/2

2

{{
3

(n − 1)!!(n + 2)!!
+

7
(n − 3)!!(n + 4)!!

+ · · · +
(2n + 3)
(2n + 2)!!

}

−
{

(2n + 7)(1)!!
(2n + 4)!!

− (2n + 11)(3)!!
(2n + 6)!!

+
(2n + 15)(5)!!

(2n + 8)!!
− · · ·

}}
(6.3.8)

The bottom row of Eq. (6.3.8) may be evaluated by writing (2� + 1) =
(� + n + 1) + (� − n) and regrouping the terms as:

{
(2n + 4)

(1)!!
(2n + 4)!!

+
(1)!!

(2n + 4)!!

(
3 − (2n + 6)

3
(2n + 6)

)

− (3)!!
(2n + 6)!!

(
5 − (2n + 8)

5
(2n + 8)

)
+ · · ·

}
=

1
(2n + 2)!!

(6.3.9)
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Inserting Eq. (6.3.9) back into Eq. (6.3.8) gives:

n even, � odd.

S′
32 =

i(−1)n/2

2

{
3

(n − 1)!!(n + 2)!!
+

7
(n − 3)!!(n + 4)!!

+ · · · +
(2n + 3)
(2n + 2)!!

− 1
(2n + 2)!!

}
(6.3.10)

Evaluating Eq. (6.3.10) for the special case of n = 0 gives:

i

2

(
3
2

− 1
2

)
=

i

2
Repeating the process for the special case of n = 2 results in:

− i

2

(
3
8

+
7
48

− 1
48

)
= − i

4
Repeating the process for all even, positive values of n equal zero or more
then summing results in:

n even, � odd.

S32 =
i

2
cos σ (6.3.11)

Repeating the process for the opposite parity results in:

n odd, � even.

S32 = ±1
2

sin σ (6.3.12)

Combining results for non-negative values of n gives:

Positive powers of σ.

S32(σ, 0) =
1
2

(
ie−iσ +

cos σ

σ

)
, S32(σ, π) =

1
2

(
ieiσ − cos σ

σ

)
S22(σ, 0) =

1
2

(
ie−iσ +

cos σ

σ

)
, S22(σ, π) = −1

2

(
ieiσ − cos σ

σ

) (6.3.13)

The related sums are obtained by operating on Eq. (6.3.13) using
Eq. (6.1.3):

Positive powers of σ.

$32(σ, 0) =
1
2

(
ie−iσ − cos σ

σ

)
, $32(σ, π) = −1

2

(
ieiσ +

cos σ

σ

)
$22(σ, 0) =

1
2

(
ie−iσ − cos σ

σ

)
, $22(σ, π) =

1
2

(
ieiσ +

cos σ

σ

) (6.3.14)

The magnitude and phase of each mode is the exact value needed for the
sum to equal the transcendental functions of Eqs. (6.3.11) and (6.3.12); this
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is a new type of wave that supports energy and momentum propagating
away from the source. Although it is necessary to terminate the series at
some highest modal number, L, it converges rapidly with increasing modal
number and results are quite accurate for relatively small values of L. As
with the spherical Bessel function terms, the magnitude of the first term in
each sum is independent of σ. These characteristics are unique properties
of recursion relationship Eq. (5.10.15).

The coefficients of negative powers of σ appear only in the second sum
of Eq. (6.3.6). Writing negative powers of σ as positive values of n gives
the sum:

−1
2

L+1∑

=n−1

i−
 (2� + 1)(� + n − 2)!!
(� − n + 1)!!σn δ(� + n, 2q + 1)

The sum is most easily evaluated by grouping the terms as (2� + 1) =
(� − n + 1) + (� + n) then expanding and regrouping. The result is:

− i1−n

2σn

{
(2n − 3)!!

(0)!!

(
(2n − 1) − (2)

(2n − 1)
(2)

)

− (2n − 1)!!
(2)!!

(
(2n + 1) − (4)

(2n + 1)
(4)

)

+
(2n + 1)!!

(4)!!

(
(2n + 3) − (6)

(2n + 3)
(6)

)
+ · · · +

i−L+n−2(L + n)!!
(L − n − 1)!!

}

All except the last term are equal to zero. This leaves the series
remainder:

− i−L−1

2σn

(L + n)!!
(L − n + 1)!!

The full set of solutions for negative powers of σ are the remainders:

S32(σ, 0) = − i−L−1

2

L+1∑
n=1

(L + n)!!
(L − n + 1)!!σn

S32(σ, π) = − iL−1

2

L+1∑
n=1

(L + n)!!
(L − n + 1)!!σn

$32(σ, 0) =
i−L

2

L+1∑
n=2

(n − 1)(L + n)!!
(L − n + 1)!!σn+1

$32(σ, π) =
iL

2

L+1∑
n=2

(n − 1)(L + n)!!
(L − n + 1)!!σn+1

(6.3.15)
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Table 6.3.1. Field sums over spherical Neumann functions on both the
positive and negative z-axes.

S22(σ, 0) = S32(σ, 0) =
1
2

(
ie−iσ +

cos σ

σ

)
− i−L−1

2

L+1∑
n=1

(L + n)!!
(L − n + 1)!!σn

$22(σ, 0) = $32(σ, 0) =
1
2

(
ie−iσ − cos σ

σ

)
+

i−L

2

L+1∑
n=2

(n − 1)(L + n)!!
(L − n + 1)!!σn+1

S22(σ, π) = −S32(σ, π) = −1
2

(
ieiσ − cos σ

σ

)
+

iL−1

2

L+1∑
n=1

(L + n)!!
(L − n + 1)!!σn

$22(σ, π) = −$32(σ, π) =
1
2

(
ieiσ +

cos σ

σ

)
+

iL

2

L+1∑
n=2

(n − 1)(L + n)!!
(L − n + 1)!!σn+1

Although the magnitude of the modal terms increases with increas-
ing modal number, only the remainder is left and it is part of the
highest order mode only. Therefore individual modes contribute nothing
to the field and are not affected by them, so long as the relationship
of Eq. (5.10.15) is maintained. If the relationship is disturbed the dis-
turbed mode will create a radiation reaction force in a direction that
reduces the field, thereby minimizing the field energy and maintaining
Eq. (5.10.15).

Tabulated results are shown in Table 6.3.1.

6.4. Evaluation of Sum S32 in the Equatorial Plane

The spherical Neumann portion of sum S32 as defined by Eq. (6.1.2) is:

S32(σ, θ) =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

y
(σ)
P1


(cos θ)
sin θ

(6.4.1)

We seek simpler expressions on the coordinate axes. At θ = π/2, the value
of the Legendre function is, see Table A.18.1:

P1

(0) = i1−
 (�)!!

(� − 1)!!
δ(�, 2q + 1) (6.4.2)
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Substituting Eq. (6.4.2) and the spherical Neumann function, Eq. (6.2.4),
into Eq. (6.4.1) gives the expression for the sum at the equator:

S32(σ, π/2) = i

∞∑

o;1

(2� + 1)(� − 2)!!
(� + 1)!!

{

−1∑
s=0

(2� − 2s − 1)!!
(2s)!!

σ−
−1+2s

+
∞∑
s=0

(−1)s

(2s − 1)!!
σ
−1+2s

(2� + 2s)!!

}
(6.4.3)

Since there are only odd values of �, only even powers of σ are present and
the sum over the positive powers of σ has the form:

S32

(
σ,

π

2

)
= i

∞∑
ne

B′′
nσn (6.4.4)

Combining Eqs. (6.4.3) and (6.4.4) gives:

B′′
n =


(−1)n/2

n+1∑

o;1

(2� + 1)(� − 2)!!(−1)(
−1)/2

(� + 1)!!(n − �)!!(�+n + 1)!!

+ i

∞∑

o;n+3

(2� + 1)(� − 2)!!(� − n − 2)!!
(� + 1)!!(�+n + 1)!!


 (6.4.5)

Consider coefficients B′′
0 and B′′

2 as special cases. Writing out Eq. (6.4.5)
term by term for these cases gives:

B′′
0 =

(
3

2 × 2
+

7
4!! × 4!!

+
11 × 32

6!! × 6!!
+ · · ·

)
= 1

B′′
2 =

(
− 3

2 × 4!!
+

7
4!! × 6!!

+
11 × 32

6!! × 8!!
+ · · ·

)
= −1

6

(6.4.6)

Extending the evaluation to all positive values of n, then summing gives:

S32(σ, π/2)n≥0 = i
sin σ

σ
(6.4.7)

To evaluate the coefficients of negative powers of σ, define a new set of
coefficients Bn and write the expansion as:

S32(σ, π/2)n<0 = i
Bn

σn (6.4.8)

Combining Eqs. (6.4.5) and (6.4.8) gives:

Bn =
L∑


o;n+1

(2� + 1)(� − 2)!!
(� + 1)!!

(� + n − 2)!!
(� − n + 1)!!

(6.4.9)
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The coefficients of the first two terms are:

B2 = i(1.3125 + 1.28906 + 1.28174 + 1.27853 + · · ·) ≈ L/2.

B4 = i(36.09375 + 69.21387 + 106.58936 + 165.99072 + · · ·) ≈ L3 (6.4.10)

With each succeeding increase in n the power of L increases by two.
Combining equatorial values for both positive and negative powers of σ

gives:

S32(σ, π/2) =
i

σ
sin σ + i

L∑
ne;2

Bn

σn (6.4.11)

The related sum follows by operating on Eq. (6.4.11) using Eq. (6.1.5):

$32(σ, π/2) = − 1
σ

cos σ +
L∑

ne;2

(n − 1)Bn

σn+1 (6.4.12)

Each mode contributes the exact amount required for the positive pow-
ers of σ to equal the transcendental functions of Eqs. (6.4.11) and (6.4.12);
this is a unique property of recursion relationship Eq. (5.10.15).

6.5. Evaluation of Sum S22 in the Equatorial Plane

The spherical Neumann portion of sum S22 as defined by Eq. (6.1.2) is:

S22(σ, θ) =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

y
(σ)
dP1


(cos θ)
dθ

(6.5.1)

We seek to find a simpler expression for the sum. At θ = π/2, the value of
the Legendre function is, see Table A.18.1:

dP1

(0)
dθ

= i

(� + 1)!!
(� − 2)!!

δ(�, 2q) (6.5.2)

Since the derivatives of odd order Legendre functions with respect to
θ vanish at the equator, only even values of � appear in the summation.
Substituting the spherical Neumann function, in the form of Eqs. (6.2.4),
and (6.5.2) into Eq. (6.5.1) gives the expression for the sum at the equator:

S22

(
σ,

π

2

)
= −

∞∑

e;0

(2� + 1)(� − 1)!!
(�)!!

{

−1∑
s=0

(2� − 2s − 1)!!
(2s)!!

σ−
−1+2s

+
∞∑
s=0

(−1)s

(2s − 1)!!
σ
−1+2s

(2� + 2s)!!

}
+

cos σ

σ
(6.5.3)
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For convenience in evaluating the sum, the � = 0 term is added and sub-
tracted. Since only even orders of � are present only odd powers of σ appear
in the sum. The result is:

S22

(
σ,

π

2

)
=

∞∑
no;1

C ′′
nσn +

cos σ

σ
(6.5.4)

Comparing Eqs. (6.5.4) and (6.5.3) gives:

C ′′
n =


(−1)(n−1)/2

n+1∑

e;0

(2� + 1)(� − 1)!!
(�)!!

(−1)
/2

(n − �)!!(� + n + 1)!!

−
∞∑


e;n+3

(2� + 1)(� − 1)!!
(�)!!

(� − n − 2)!!
(� + n + 1)!!


 (6.5.5)

Evaluation of the special cases n = 1 and n = 3 gives:

C ′′
1 = −

{
−1

2
+

5
2!! × 4!!

+
9 × 3!! × 1!!

4!! × 6!!
+ · · ·

}
= 0

C ′′
3 = −

{
1

3!! × 4!!
− 5 × 1!!

2!! × 6!!
+

9 × 3!!
4!! × 8!!

+
13 × 5!! × 1!!

6!! × 10!!
+ · · ·

}
= 0

(6.5.6)

Extending the evaluation to all positive values of ‘n’ followed by summing
gives, for � equal to or greater than zero and positive powers of σ

S22

(
σ,

π

2

)
=

cos σ

σ
(6.5.7)

The reduction of Eq. (6.5.3) to this simple form is a unique property of
Eq. (5.10.15).

To examine the coefficients for negative powers of σ, define the new
coefficients:

S22(σ, π/2)n<0 =
L∑

no;1

Cn

σn (6.5.8)

Combining Eq. (6.5.8) with Eq. (6.5.3) shows that:

Cn = −
L∑


e;n−1

(2� + 1)(� − 1)!!
(�)!!

(� + n − 2)!!
(� − n + 1)!!

(6.5.9)

Evaluation of the n = 1 term gives:

C1 = 1 + 1.25 + 1.256 + · · · ∼= 5L/8 (6.5.10)
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The lower limit on � is zero since that term is included in Eq. (6.5.7) and
is subtracted out in Eq. (6.5.10). With each succeeding increase in n the
power of L in the approximate equality increases by two.

The total value of the sum is equal to the sum of Eqs. (6.5.8) and (6.5.9)

S22

(
σ,

π

2

)
=

cos σ

σ
−

∞∑
no;1

Cn

σn and

(6.5.11)
$22

(
σ,

π

2

)
= −i

sin σ

σ
+ i

∞∑
no;1

(n − 1)Cn

σn+1

6.6. Summary of the Axial Fields

Sums of spherical Hankel functions on the +z-axis follow from the values
for spherical Bessel functions of Table 6.1.2 and the spherical Neumann
functions from Secs. 6.2 through 6.5. The associated sums follow from the
regular sums and Eq. (6.1.5):

S1(σ, 0) = 0

S2(σ, 0) = e−iσ

(
1 − i

2σ

)
− i−L−1

2

L+1∑
n=1

(L + n)!!
(L − n + 1)!!σn

S3(σ, 0) = S2(σ, 0)

$2(σ, 0) = e−iσ

(
1 +

i

2σ

)
+

i−L

2

L+1∑
n=2

(n − 1)(L + n)!!
(L − n + 1)!!σn+1

$3(σ, 0) = S2(σ, 0)

(6.6.1)

The remainders arise from the highest order mode only, and are valid if
the recursion relationship of Eq. (5.10.15) holds through order L and all
higher order have zero magnitude. Putting these sums into the field forms
of Eq. (6.1.4) and ignoring the remainder gives the electric field intensity
on the positive z-axis:

Er = 0

Eθ = 2e−iσe−iφ

Eφ = −i2e−iσe−iφ

(6.6.2)

The field is circularly polarized and the magnitude is independent of dis-
tance from the source. The time average Poynting vector is:

N =
1
2
Re(Ẽ × H̃∗) = − 1

2η
Re(iẼ × Ẽ∗)

N = ẑNz =
4
η
ẑ

(6.6.3)
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The axial power density is independent of distance from the source and
totally directed in the positive z-direction.

The remainders in the equatorial plane are quite different from those on
the z-axes; each mode contributes a proportionate share to the whole and
fields exist throughout the region. The sums are:

S1(σ, π/2) = σ + i

L∑
ne;0

An

σn

S2(σ, π/2) =
[
1 − i

σ
e−iσ

]
+ i

L∑
no;1

Cn

σn

S3(σ, π/2) = − i

σ

[
1 − e−iσ

]
+

L∑
ne;2

Bn

σn

S2(σ, π/2) =
i

σ

[
1 − e−iσ

]
+

L∑
no;3

(n − 1)Cn

σn+1

S3(σ, π/2) =
i

σ
e−iσ − i

L∑
ne;2

(n − 1)Bn

σn+1

(6.6.4)

The letter functions representing the remainders are:

An =
L∑


o;n−1

(2� + 1)�!!
(� − 1)!!

(� + n − 2)!!
(� − n + 1)!!

Bn =
L∑


o;n+1

(2� + 1)(� − 2)!!
(� + 1)!!

(� + n − 2)!!
(� − n + 1)!!

Cn =
L∑


e;n−1

(2� + 1)(� − 1)!!
(�)!!

(� + n − 2)!!
(� − n + 1)!!

(6.6.5)

Substituting these results into the field forms gives the field:

Ẽ(σ, π/2) =

[
1 − i

∞∑
ne;0

An

σn+1

]
e−iφr̂ +

{ ∞∑
ne;2

Bn

σn +
∞∑

no;3

(n − 1)Cn

σn+1

}
e−iφθ̂

− i

{
1 + i

∞∑
no;1

Cn

σn − i

∞∑
ne;2

(n − 1)Bn

σn+1

}
e−iφφ̂ (6.6.6)

With O representing order, these fields produce the Poynting vector:

N(σ, π/2) =
1
η

{
O
(

1
σ2

)
r̂ +
[
−1 + O

(
1
σ2

)]
θ̂ + O

(
1
σ2

)
φ̂

}
(6.6.7)
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The radial term is an outbound power density proportional to B2/σ2. The
zenith angle term is a power density of magnitude independent of distance
and directed in the positive z-direction. It describes an energy flow from
the lower to the upper hemisphere.

On the negative z-axis, as it was on the positive one, the remainder is
from the highest order mode only and it does not contain contributions
from each mode. The other terms are equal to:

S2(σ, π) = − i

2σ
e−iσ S3(σ, π) =

i

2σ
e−iσ

S2(σ, π) = − i

2σ
e−iσ S3(σ, π) =

i

2σ
e−iσ

(6.6.8)

Putting these sums into the field forms of Eq. (6.1.4) shows that the electric
field intensity and the Poynting vector on the negative z-axis are equal to
zero:

Ẽ(σ, π) = 0 (6.6.9)

So long as the recursion relationship of Eq. (5.10.15) holds, any field
that exists on the negative z-axis arises from the remainder of the highest
order moment.

These results show that positive powers of the radial terms result in
a normalized power density of 4/η along the positive z-axis, z-directed
uniform power density of 1/η in the equator, and no power at all along
the negative z-axis. The first order, negative power terms show radially
outbound power in the equatorial plane. This result combines with energy
conservation to require energy that exits the generating source in the lower
hemisphere to pass upward through the equator. By Eq. (6.6.3), all energy
ultimately becomes positive z-directed.

6.7. Radiation Pattern at Infinite Radius

To go from axial field expressions to expressions over the full range of coor-
dinates begin by noting in the limit of very large radius the spherical Bessel,
Neumann, and Hankel functions satisfy the equalities, see Eq. (A.24.13):

Lim
σ→∞ y
(σ) = −dj
(σ)/dσ

Lim
σ→∞ h
(σ) =

[
1 + i

d
dσ

]
j
(σ)

(6.7.1)

Equation (6.7.1) gives the complete expression for spherical Hankel func-
tions at all coordinate angles but only at infinite radius. The field solutions
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with Hankel functions follow from the Bessel function field solutions of
Eqs. (6.1.21) and (6.7.1):

Lim
σ→∞ Ẽ(σ, θ, φ) =

(
1 + i

∂

∂σ

){[
S11r̂/σ + (S21 + S31)θ̂

− i(S21 + S31)φ̂
]
e−iφ

}
(6.7.2)

Carrying out the indicated operations on sums S11 and S31 gives:

Lim
σ→∞ S1 = σ sin θ

(
1 + cos θ +

i

σ

)
e−iσ cos θ

Lim
σ→∞ S3 = −i

(
U + V − i

σ
U
) (6.7.3)

Using Eqs. (6.1.3) and (6.1.5) to operate on Eq. (6.7.3) gives:

Lim
σ→∞ S2 = i

(
U + V − i

σ
V
)

+
(

1 + cos θ − i

σ

)
e−iσ cos θ

Lim
σ→∞ $3 = −i

(
U + V − i

σ
V − 1

σ2 U

)
+

i

σ
e−iσ cos θ

Lim
σ→∞ $2 = i

(
U + V − i

σ
U − 1

σ2 V
)

+
(

cos θ(1 + cos θ) − 1
σ2

)
e−iσ cos θ

(6.7.4)

Values of the infinite radius sums are listed in Table 6.7.1.

Table 6.7.1. Large-radius solutions of sums over spherical Hankel functions.

S0
1(σ, θ) = σ sin θ

(
1 + cos θ +

i

σ

)
e−iσ cos θ

S0
2(σ, θ) =

(
1 + cos θ − i

σ

)
e−iσ cos θ + i [U(σ, θ) + V(σ, θ)] +

V(σ, θ)
σ

S0
3(σ, θ) = −i [U(σ, θ) + V(σ, θ)] − U(σ, θ)

σ

$0
2(σ, θ) =

[
cos θ(1 + cos θ) − 1

σ2

]
e−iσ cos θ + i[U(σ, θ) + V(σ, θ)] +

U(σ, θ)
σ

− iV(σ, θ)
σ2

$0
3(σ, θ) =

i

σ
e−iσ cos θ − i [U(σ, θ) + V(σ, θ)] − V(σ, θ)

σ
+

iU(σ, θ)
σ2
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Combining the fields of Eq. (6.1.4) with Eqs. (6.7.3) and (6.7.4) gives:

Lim
σ→∞ Ẽ =

{
r̂ sin θ

(
1 + cos θ +

i

σ

)
e−iσ cos θ

+ θ̂

[(
cos θ(1 + cos θ) − 1

σ2

)
e−iσ cos θ − i

σ2 V
]

− iφ̂

[
(1 + cos θ)e−iσ cos θ +

i

σ2 U
]}

e−iφ (6.7.5)

ηH̃ = iẼ

These fields may also be used to construct the phasor fields that apply for
energy absorption, since the complex conjugate of any electromagnetic pha-
sor field is another electromagnetic phasor field. Keeping only the teledis-
tant fields gives:

Energy emission

Ê(σ, θ, φ) = e−iσ cos θ

{
r̂ sin θ(1 + cos θ)

+ (θ̂ cos θ − iφ̂)(1 + cos θ)

}
e−iφ (6.7.6)

Energy absorption

Ê(σ, θ, φ) = eiσ cos θ

{
r̂ sin θ(1 + cos θ)

+ (θ̂ cos θ + iφ̂)(1 + cos θ)

}
eiφ

The fields are circularly polarized. The emission equations describe a wave
that exits its source at z = 0 and forms a fully z-directed plane wave
that travels to z = +∞. The absorption equations describe an oppositely
directed plane wave at z = ∞ that travels to a sink at z = 0. The Poynting
vectors are equal to:

Nc = ±1
η
(1 + cos θ)2ẑ (6.7.7)

The upper and lower signs of Eq. (6.7.7) apply respectively to emission
and absorption. A type of radiation pattern is shown in Fig. 6.7.2. The
figure is similar to conventional radiation patterns in that the magnitude
of the power density at each angle is proportional to the distance from the
origin. Unlike other patterns, all energy flows in the direction of the pat-
tern maximum. The result is fully directed, z-oriented power of magnitude
independent of distance from the source. It remains to be determined how
such a condition is consistent with energy conservation.

The absorption and emission discussions of Chapter 2 involve struc-
tures with ideally conducting surfaces and for which, except for a biconical
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Fig. 6.7.2. Radiation pattern for fully directed radiation. Source is located at the mid-
point on the bottom of the curve. Similar to other radiation patterns field values at
a particular angle are proportional to indicated distance from the origin. Unlike other
field patterns, all power flows in the direction of the pattern maximum and, at a specific
angle, power density is independent of radius.

receiving antenna, the absorbed power is zero. They respond linearly to
the incoming plane wave fields of Eq. (2.1.11), and the powers are given
by Eqs. (2.2.7) and (2.14.11). The extinction power is proportional to the
first power of the scattering coefficients, α
 and β
, and the scattered power
is proportional to the square of the coefficients. The response of a nonlin-
ear sink is quite different. An active region somehow generates the near
fields that extract energy from the perturbing field, in just the inverse of
an emission process. After the absorption process has begun, the exterior
fields at the source are those of Eq. (5.10.16), not Eq. (2.1.11). Changing
from emission fields to absorption fields is the equivalent of changing the
sign of the time independent parts.

6.8. Multipolar Moments

The purpose of this section is to discuss the symmetry and anticipated mag-
nitudes of high-order modes generated within a charged cloud. The magni-
tudes of the high-order field components of a plane wave are far too small
to produce the coefficients needed to produce the fields of Eq. (5.10.16).
They do possess charge arrays with the needed symmetry. Once formed,
other forces with the necessary magnitudes drive such arrays.

When a passive, perfectly conducting sphere is immersed in a plane
wave, at the surface of the scatterer the magnitudes of the scattered and
incident waves are the same, see Eq. (2.3.1). The equality requires the ratio
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of field coefficients to be:

Incident field magnitude
Scattered field magnitude

=
(ka)2
+1

(2� + 1)!!(2� − 1)!!
(6.8.1)

With (ka) � 1 the ratio of Eq. (6.8.1) is so small and decreases so rapidly
with increasing modal number � that the lowest order terms dominate all
others during the scattering process.

When an atom in a high-energy state is immersed in a plane wave,
at the surface of the emitter the magnitude of the emitted wave is much
larger than that of the incident wave. For the incident wave coefficients of
Eq. (5.8.2) to produce the emitted wave coefficients of Eq. (5.10.16) requires
the ratio of field coefficients to be:

Incident field magnitude
Scattered field magnitude

=
(2� + 1)!!(2� − 1)!!

(ka)2
+1 (6.8.2)

With (ka) � 1 the ratio of Eq. (6.8.2) is so large and increases so rapidly
with increasing � that the highest order terms dominate all others during
emission process.

Modifying the coefficients Eq. (5.8.2) to those of Eq. (5.10.16) is possi-
ble only because electron-generated radiation does not involve scattering.
The process involves equilibrated metastable atomic states. An instability
produces radiation onset that, in turn, produces radiation reaction forces
of the appropriate symmetry whose magnitude far exceeds those of a per-
turbing wave. To examine a possible source of the driving fields consider an
occupied metastable state with time-average current and charge densities
at all points within the region. By Eqs. (4.5.2) and (4.5.4), the time-average
values of charge and current densities are respectively

eψ∗(r, t)ψ(r, t) and
�e

2im
[ψ∗(r, t)∇ψ(r, t) − ψ(r)∇ψ∗(r)]

By Lenz’s law, see Sec. 2.16, with biconical receiving antennas the
time changing magnetic field induces currents that generate an opposing
field. Quite differently, an intrinsic magnetic moment interacts with the
applied magnetic field to generate a field in the direction of the incoming
magnetic field.

Consider a spherical cloud of charge to which the continuity equation
applies. In Fig. 6.8.1, an applied field drives a dipole mode, as illustrated by
the center arrow. The smaller arrows illustrate two electric current options.
Some terminate on the edge of the source, leaving a net charge density that
generates an electric octupole field. The interior charge structure drives
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Fig. 6.8.1. Source modes resulting from an electric dipole formed within an electric
charge distribution. Arrows indicate current densities. Current {1} creates a dipole
source, Currents {1} and {2} together create an electric octupole source, and Currents
{3} create a magnetic quadrupole source. By continuation, this creates all odd numbered
TM field sources and all even number TE field sources. With a dual source of a magnetic
charge distribution, the result is creation of all even numbered TM field sources and all
odd numbered TE field sources.

– +

+ –

Large Current

Small Current

Fig. 6.8.2. Magnetic dipole source with accompanying electric quadrupole. Arrows indi-
cate current direction and magnitude. Currents at the sides are larger than on the top
and bottom. Result is charge buildups as indicated. These, in turn, generate an electric
quadrupole field.

continuous current loops that generate a magnetic quadrupole field. So long
as source constraints permit the charge density to be further subdivided in
this way, each current path produces a similar set of higher order modes.
The result is that an oscillating electric dipole moment drives all odd-order
electric multipolar moments, TM fields, of the same degree and all even-
order magnetic multipolar moments, TE fields, of the same degree.
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Similarly using magnetic circuit techniques and an effective magnetic
current density, an analysis shows the dual effect of an oscillating magnetic
dipole moment that drives all even-order TM fields, and all odd-order TE
fields of the same degree.

Appendices 28 and 29 contain respectively analyses of electric and mag-
netic multipolar sources. For the special case of electrically small systems
for which ka � 1 the field coefficients are the multipolar coefficients listed
in Tables A.28 and A.29. As shown by the multipolar field coefficients for
quantized radiation, the field coefficients of the expansion terms needed for
a plane wave expansion are proportional to the generating charge times ka

raised to an integer power. The electric and magnetic multipolar moments
of order � are respectively proportional to

(ka)
 and (ka)
+1

Electric moments therefore dominate over magnetic moments of the same
order.

Each multipole is constructed from an array of charges distributed in
a way that contributes to the primary multipolar moment and to higher
order moments of the same parity, but not either to lower order moments
or higher order ones of the opposite parity. Column 1 of Table 6.8.1 shows
the order. Column 2 shows the charge distribution needed on the surface of
a sphere of radius a to produce primary z-directed electric moments with
primary orders one through seven. Column 3 shows the electric multipolar
moment needed to produce the same primary field in the limit as the ratio
of sphere size to wave length becomes vanishingly small, and Column 4
shows the number of separate charges necessary to produce each static
multimoment.

In Column 3, the even order moments are equal to:

p
 =
(�)!

(2� + 1)!!
qa
 ∼= q(a/2)
 (6.8.3)

� even

The odd orders are similar in magnitude, and both decrease rapidly
with increasing order.

Column 4 shows that 2
 charges are necessary to support a linear source.
If a continuous charge distribution exists, changing from individual charges
to charge density permits changing calculation techniques from sums over
individual charges to volume integrals over charge distributions. So long as
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Table 6.8.1. Surface charge distributions on a sphere of radius a that produce the
electric moments of column three. Column 4 lists the least possible number of static
charges necessary to produce each moment.

Charge Density Electric Moment #

1 a cos θ(cos θ) p1 =
1
3
qa2 2

2 a2 cos2 θ

(
−3

2
sin2 θ + 1

)
p2 =

2
15

qa2 4

3 a3 cos3 θ

(
−5

3
cos3 θ + cos θ

)
p3 = − 4

105
qa3 8

4 a4 cos4 θ

(
35
8

sin4 θ − 5 sin2 θ + 1
)

p4 =
8

315
qa4 16

5 a5 cos5 θ

(
21
5

cos5θ − 14
3

cos3 θ + cos θ)
)

p5 =
64

10,395
qa5 32

6 a6 cos6 θ

(
−231

16
sin6 θ +

189
8

sin4 θ − 21
2

sin2 θ + 1
)

p6 =
16

3003
qa6 64

7 a7 cos7 θ

(
−429

35
cos7 θ +

99
5

cos5θ − 315
35

cos3 θ + cos θ

)
p7 = −

(
256

225,225

)
qa7 128

the charge density is continuous ever-larger orders will be driven. It ceases
only when the dimensional scale is so small that granules of charge appear
as a three-dimensional mosaic. That is, electric charge density is a valid
concept if and only if the charge density is continuous in the neighborhood
of a source point, see Sec. 1.5. Maximum modal number, L, is determined
by the lower limit on the granularity of the electron charge distribution and
for example a fixed array with L = 200 requires 2L units, i.e. 1.6 × 1060.
Arguments in support of a classical photon require a source capable of such
a distribution. There is every reason to believe this lies within the scope of
nonlocal electrons.

If the radiating sphere is not electrically small results are quite different.
This is most easily seen by reference to Appendix 14. By Eq. (A.14.7)
the external electric field intensity is proportional to the inverse of the
Hankel function at the surface of the sphere; if the radius is electrically
small it is proportional to (ka)−
+2 but if the radius is not electrically small
the number is much smaller. Therefore the estimated electric multipolar
moment is a strong function of radius and the atomic radius during emission
is unknown. It is only known that a large expansive force is present that
dominates other local forces.
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6.9. Multipolar Photon-Field Stress and Shear

Dipoles: Consider as an example the dipolar portion of the fields of
Eq. (5.10.16), two electric and two magnetic dipoles oriented along the
x- and y-axes. The fields are detailed in Eq. (6.9.1). The pressure follows
similarly to the example of Sec. 4.2 and the radial field component of the
stress tensor follows from the expression for wT(tR) of Table 3.16.1. Since
all fields are continuous across virtual boundaries the pressure gradient is
equal to the spatial directional derivative of the pressure. The surface shears
follow from Eq. (4.2.17) and the field expressions of Eq. (5.10.16). Values
are listed in Eq. (6.9.2). Although the total surface pressure is independent
of time, the shears are not and act to produce continuous eddies within the
charged region. Field values are:

Er = 3
[
− 1

σ2 +
i

σ3

]
sin θ e−iσe−iφ

Eθ =
3
2

[
i

σ
(1 + cos θ) +

1
σ2 (1 + cos θ) − i

σ3 cos θ

]
e−iσ e−iφ

Eφ =
3
2

[
1
σ

(1 + cos θ) − i

σ2 (1 + cos θ) − 1
σ3

]
e−iσe−iφ

(6.9.1)

The shears are time dependent with both static and dynamic parts.
Values are listed in Eq. (6.9.2).

Srθ = −9ε

4

{[
1
σ6 +

(
2
σ4 − 1

σ6

)
cos(2ωtR) −

(
1
σ3 − 2

σ5

)
sin(2ωtR)

]
cos θ

+
[
− 2

σ4 cos(2ωtR) +
(

1
σ3 − 1

σ5

)
sin(2ωtR)

]}
sin θ

Srφ = −9ε

4

{[(
1
σ3 +

1
σ5

)
+
(

1
σ3 − 1

σ5

)
cos(2ωtR) +

2
σ4 sin(2ωtR)

]
cos θ

+
[

1
σ3 +

(
1
σ3 − 2

σ5

)
cos(2ωtR) − 1

σ6 sin(2ωtR)
]}

sin θ (6.9.2)

The energy density and Trr are both time-independent. Trr and the static
portions of the shears are listed in Eq. (6.9.3):

Trr =
9ε

16

{(
4
σ4 +

4
σ6

)
sin2 θ −

(
2
σ2 +

1
σ6

)
(1 + cos2 θ) − 4

σ2 cos θ

}

〈Srθ〉 = − 9ε

4σ6 sin θ cos θ

〈Srφ〉 = −9ε

4

{(
1
σ3 +

1
σ5

)
cos θ +

1
σ3

}
sin θ

(6.9.3)
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Values of Eq. (6.9.3) are plotted in Figs. 6.9.1 and show the radiation
reaction pressure and the time-average shears on radiating spheres of radius
ka = 5, 1, and 0.1, if all fields at smaller radii are zero.

The far field, ka = 5, pressure and shears of Figs. 6.9.1 show the pres-
sure magnitude is small, maximum value −0.18, compressive, and occurs
at θ = 0. It decreases monotonically with increasing angle to approxi-
mately zero at θ = π. This far field pressure is compressive and produces a
net momentum transfer between the field and the source, pushing them in

–0.2

–0.15

–0.1

–0.05

0

0.05

π/4 3π/4π/2 π0

θ (Radians)

Trr

Srφ

Srθ

Trr

Fig. 6.9.1(a). Four dipole radiation reaction pressure Trr and shears Srθ and Srφ on a
virtual sphere of electrical radius ka = 5.0 if all interior fields are zero, see Eq. (6.9.3),
and L = 1.

–6

–4

–2

0

2

4

0 π/4 ππ/2 3π/4

θ (Radians)

Trr

Srθ

SrφTrr

Fig. 6.9.1(b). Four dipole radiation reaction pressure Trr and shears Srθ and Srφ on a
virtual sphere of electrical radius ka = 1.0 if all interior fields are zero, see Eq. (6.9.3)
and L = 1.
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0 π/4 π/2 3π/4 π
θ (Radians)

Trr

S rφ

Sr θ

Trr

Fig. 6.9.1(c). Four dipole radiation reaction pressure Trr and shears Srθ and Srφ on a
virtual sphere of electrical radius ka = 0.1 if all interior fields are zero, see Eq. (6.9.3),
and L = 1.

Fig. 6.9.2(a). Plot for L = 2, electric field radiation pressure Trr versus zenith angle
θ at phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized radius
ka = 5.0. Figs. 6.9.1–6.9.4 have the same normalization; Φ = 2(ωt − φ).

opposite directions. This is part of the mechanism for the transfer of linear
momentum, the rest coming from the zenith-directed shear.

Near field pressure at range ka = 0.1 is shown in Fig. 6.9.1(c); it is com-
pressive on the z-axis, about −106, and expansive in the xy-plane, about
+1.6×106. The positive force acts to expand an originally spherical radiator
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Fig. 6.9.2(b). Plot for L = 2, electric field radiation shear Srθ versus zenith angle θ at
phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized radius ka = 5.0.
Figures 6.9.1–6.9.4 have the same normalization; Φ = 2(ωt − φ).

Fig. 6.9.2(c). Plot for L = 2, electric field shear Srφ versus zenith angle θ at phases
Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized radius ka = 5.0.
Figures 6.9.1–6.9.4 have the same normalization; Φ = 2(ωt − φ).
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Fig. 6.9.3(a). Plot for L = 2, electric field radiation pressure Trr versus zenith angle
θ at phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized radius
ka = 1.0. Figures 6.9.1–6.9.4 have the same normalization; Φ = 2(ωt − φ).

Fig. 6.9.3(b). Plot for L = 2, electric field radiation shear Srθ versus zenith angle θ at
phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized radius ka = 1.0.
Figures 6.9.1–6.9.4 have the same normalization; Φ = 2(ωt − φ).

to a disc whose normal is in the direction of the outbound radiation. The
maximum azimuth-directed surface shear is about 106, it is time dependent,
see Eq. (6.9.1), and acts to produce azimuth-directed eddy currents. Zenith-
directed shear is about a factor of ten smaller than the azimuth value.
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Fig. 6.9.3(c). Plot for L = 2, electric field shear Srφ versus zenith angle θ at phases
Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized radius ka = 1.0.
Figures 6.9.1–6.9.4 have the same normalization; Φ = 2(ωt − φ).

Intermediate range, ka = 1, field pressure is shown in Fig. 6.9.1(b).
The magnitude is on the order of five; it is expansive in the xy-plane and
compressive on the z-axis but by a lesser amount on the negative axis
than the positive axis. Both zenith and azimuth shears are significantly
large. The forces act to extend an originally spherical radiator to an oblate
ellipsoid with maximum radius of approximately ka = 2, independently of
the original size of the system. That is, with this model, independently of
the size of the original radiator, dipole forces act to alter a radiating source
from a sphere to an oblate ellipsoid with approximate radius ka = 2.

Although the sum of the electric and magnetic field terms, i.e. the total
pressure, is constant individual field pressures are not. The radial tensor
components due to the electric and magnetic fields are:

ε

2
E2

r =
ε

(ka)4

{(
1 +

1
(ka)2

)
+
(

1 +
1

(ka)2

)
cos(2ωtR) +

2
(ka)

sin(2ωtR)
}

µ

2
H2

r =
ε

(ka)4

{(
1 +

1
(ka)2

)
−
(

1 +
1

(ka)2

)
cos(2ωtR) − 2

(ka)
sin(2ωtR)

}
(6.9.4)

The electric field acts only on electric charge densities and the magnetic field
acts only on the current densities. Although the difference is not significant
on a rigid surface it is on a surface sufficiently flexible to respond separately
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to the different pressures; such differences are expected to produce source
turbulence.

Dipoles plus Quadrupoles: Consider as a second example superim-
posed dipoles and quadrupoles with the relative magnitudes and phases
of Eq. (5.10.16). The pressure and shears follow in the same manner as for
dipoles alone. Electric field values are listed in Eq. (6.9.5). Again, although
the total surface pressure is independent of time, the shears are not; they are
time dependent and act to produce continuous eddies within the charged
region.

Er =
{

− 1
σ2 (3 + 15 cos θ) +

i

σ3 (3 + 45 cos θ) +
1
σ4 45 cos θ

}
sin θ e−iσ e−iφ

Eθ =
{

− i

σ
(1 − 4 cos θ − 5 cos2 θ) − 1

σ2 (6 − 9 cos θ + 15 cos2 θ)

+
i

σ3 (15 − 9 cos θ − 30 cos2 θ) +
1
σ4 (15 − 30 cos2 θ)

}
e−iσ e−iφ

Eφ =
{

+
1
σ

(−1 + 4 cos θ + 5 cos2 θ) +
i

σ2 (6 − 9 cos θ − 15 cos2 θ)

+
1
σ3

(
15
2

− 33
2

cos θ − 15 cos2 θ

)
+

15i

σ4 cos θ

}
e−iσ e−iφ

(6.9.5)

Figures 6.9.2(a)–6.9.2(c) show normalized values of pressure and shear at
ka = 5.0, 1.0, and 0.1 at phases 2(ωt − φ) =: 0, π/2, π, and 3π/2 and the
time-average value.

Figure 6.9.2(a) shows that the time-average radiation pressure is com-
pressive except in the vicinity of θ = 7π/16, where it is always posi-
tive and nearly constant. On the positive and negative z-axes the surface
pressure varies respectively between −0.3 and −2.0 and between 0 and −0.8.
Although the structure of atomic electrons may not permit significant com-
pression, it is much more likely to permit extension of the original radiating
sphere to a radiating plate, bent slightly into the direction of the output
radiation beam. The dominantly negative pressure results in a transfer of
linear momentum between the field and the source.

Figure 6.9.2(b) shows that the zenith angle shear, though time varying,
is dominantly positive and negative respectively in the upper and lower half
planes. The time-average value contributes to linear momentum transfer
between the radiator and the field and the time-varying part acts to drive
zenith-directed eddy currents on the radiating surface.



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap06

282 The Electromagnetic Origin of Quantum Theory and Light

Figure 6.9.2(c) shows that the azimuth angle shear is time varying
and dominantly negative. The average value results in angular momentum
transfer between the radiator and the field and the time-varying part acts
to drive azimuth-directed eddy currents on the radiating surface.

Figure 6.9.3(a) shows the time-average radiation pressure is compres-
sive except in the vicinity of θ = π/2, where it is always positive. On the
z-axis the surface pressure varies between about zero and −106. Presum-
ably the structure of atomic electrons does not permit extensive electron
compression but does permit extension of the original radiating sphere in
the equatorial region.

Figure 6.9.3(c) shows that the azimuth angle shear is time varying, and
acts to drive azimuth-directed eddy currents on the radiating surface.

Figure 6.9.4(a) shows that the radiation pressure is extensive between
π/8 and 3π/8 and between 5π/8 and 7π/8 and compressive elsewhere. The
maximum time-average extensive pressure is about 1010 and acts to extend
a radiating sphere in two separate parts. The time variation acts to produce
radial oscillations of the radiating surface.

Figure 6.9.4(b) shows that the zenith angle shear is time varying with
maximum value of about 1010; the time variation acts to drive zenith-
directed eddy currents on the radiating surface.

Figure 6.9.4(c) shows a negative, time-average azimuth shear, with max-
imum value of about 5 × 109 at θ = 3π/8. The average value transfers

Fig. 6.9.4(a). Plot for L = 2, electric field radiation pressure Trr versus zenith angle
θ at phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized radius
ka = 0.1. Figures 6.9.1–6.9.4 have the same normalization; Φ = 2(ωt − φ).
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Fig. 6.9.4(b). Plot for L = 2, electric field radiation shear Srθ versus zenith angle θ at
phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized radius ka = 0.1.
Figures 6.9.1–6.9.4 have the same normalization; Φ = 2(ωt − φ).

Fig. 6.9.4(c). Plot for L = 2, electric field shear Srφ versus zenith angle θ at phases
Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized radius ka = 0.1.
Figures 6.9.1–6.9.4 have the same normalization; Φ = 2(ωt − φ).

angular momentum between the source and the field and the time varying
value acts to drive azimuth-directed eddy currents on the radiating surface.

Lth-order Modal Sources: The equatorial values of the electric field com-
ponents were summed exactly and are given by the axial fields summarized
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in Eq. (6.6.5):

Ẽ
(
σ,

π

2
, φ
)

=

[
1 + i

∞∑
ne;0

An

σn+1

]
e−iφr̂ +

[ ∞∑
ne;2

Bn

σn +
∞∑

no;3

(n − 1)Cn

σn+1

]
e−iφθ̂

− i

[
1 + i

∞∑
no;1

Cn

σn − i

∞∑
ne;2

(n − 1)Bn

σn+1

]
e−iφφ̂ (6.9.8)

The radial component contains a constant term and odd-modal-order terms
with odd, negative powers of sigma; the angular components contain odd-
modal-order terms with even, negative powers of σ and even-modal-order
terms with odd, negative powers of σ. The relative magnitudes of A0 and
C1, by Eqs. (6.2.13) and (6.5.9), are:

A0 =
L∑


o;1

(2� + 1)�!!
(� − 1)!!

(� − 2)!!
(� + 1)!!

∼= 0.65 L (6.9.9)

C1 =
L∑


e;0

(2� + 1)(� − 1)!!2

(�)!!2
∼= 0.64 L (6.9.10)

For the special cases L = 59 and 99, A0 is equal to 39.746 and 65.179. For
the special cases L = 60 and 100, C1 is equal to 39.153 and 64.618. It follows
that the two magnitudes are approximately related as:

A0 ∼= C1 + 1 (6.9.11)

Combining Eqs. (6.9.8) and (6.9.11) shows the far field portion of the
electric field intensity is:

Ẽ
(
σ,

π

2
, φ
)

=
{

r̂

[
1 +

i

σ
(1 + C1)

]
− iφ̂

[
1 +

i

σ
C1

]}
e−iφ (6.9.12)

The Poynting vector is:

Nc = −θ̂

[
1 +

C1

σ2 (1 + C1)
]

(6.9.13)

This equation shows that energy flows up through the equator. The first
term is independent of the radius and the second term decreases as
the inverse square of the distance. The stress tensor components due to
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Eq. (6.12.12) are:

Trr

(
σ,

π

2
, φ
)

=
ε

4

{
1
σ2 (1 + 2C1) +

(
2 − 1

σ2 (2C2
1 + 2C1 + 1)

)

× cos 2(ωt − σ − φ) − 2
(

1
σ

(2C1 + 1)
)

sin 2(ωt − σ − φ)
}

Srφ

(
σ,

π

2
, φ
)

=
ε

2

{
− 1

σ
+

(1 + 2C1)
σ

cos 2(ωt − σ − φ)

+
[
1 − 1

σ2 C1(1 + C1)
]

sin 2(ωt − σ − φ)
}

(6.9.14)

In the far field limit a small, positive force is present on the equatorial
zone of the radiating surface. This expansive, inverse square radial pressure
affects the outer reaches of a radiating electron. The odd numbered modes
are expansive and the even numbered modes are compressive. That is not
to say, however, that the even modes are everywhere compressive. For the
special case L = 2, as shown in Fig. 6.9.4(a) the pressure is compressive at
θ = π/2 but expansive at θ = π/4 and 3π/4. Such pressures act to change
an originally spherical radiating region to a greatly expanded region in the
general shape of a biconical antenna rotated about an axis at the conical
points and perpendicular to the antenna axis.

The constant portion of the azimuth-directed shear contributes to the
exchange of angular momentum between the source and the field. There
are also time-varying parts with different radius dependencies that act to
force the source charge into oscillations.

6.10. Self-Consistent Fields

The sums of Table 6.1.1 are over products of spherical Bessel functions and
associated Legendre polynomials of degree one. Since energy transfer within
localized regions is described by sums over spherical Hankel functions, see
Eq. (3.4.11), a description of photons can only exist if sums over spherical
Neumann functions are included. Although the sums of Eq. (6.1.4) are com-
plete, and as such contain all needed information, evaluation of the sums is
realistic only for modal orders less than about 30, as discussed in Chapter 2.
We therefore seek more tractable field expressions. For this purpose we
begin with spherical Bessel function solutions, known at all coordinates,
and use that result to construct the full Neumann function solutions, oth-
erwise known only on the coordinate axes. The first step towards expanding
the solution is to use the relationship between teledistant spherical Bessel
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and Neumann functions to obtain the full field set valid at all angles and
limitlessly large radii.

The next step is to apply the Maxwell curl equations iteratively; this
is the method of self-consistent fields. It is a powerful analytical tool that
bears the same relationship to electromagnetic fields Taylor series do to
other mathematical functions. If the fields are continuous through all orders
and if the solution is known exactly at any point, self-consistent fields may
be used to construct the fields at any other point. The result is a field
expression valid at all angles and radii r > 0.

The starting sums over spherical Bessel function sums were obtained in
Sec. 6.1:

S31 = −iU(σ, θ) S21 = e−iσ cos θ + iV(σ, θ)

S11 = σ sin θe−iσ cos θ

$31 = −iV(σ, θ) $21 = e−iσ cos θ cos θ + iU(σ, θ)

(6.10.1)

When the sums are combined to form the field vectors, see Eq. (5.8.1), only
teledistant terms remain.

It is shown in Sec. 6.1 that the TM portion of the field is:

ẼTM = [S1r̂/σ + $2θ̂ − i$3φ̂]e−iφ, ηH̃TM = [iS3θ̂ + S2φ̂]e−iφ (6.10.2)

The starting fields are those of Table 6.7.1. Superscripts indicate the
order of the iteration. Italicized or non-italicized terms indicate the term
arises respectively from spherical Bessel or spherical Neumann functions.
The sum U + V contains both radial and unidirectional exponential func-
tions, and presumably describes both z-directed and radially outbound
power.

(U + V) =
1

σ(1 − cos θ)
[
e−iσ cos θ − e−iσ

]
(6.10.3)

The method of self-consistent fields uses iterative applications of the
Maxwell curl equations:

ηH̃ =
i

k
∇ × Ẽ Ẽ =

iη

k
∇ × H̃ (6.10.4)

If the full starting field expression is available, the solution extends to a
smaller radius with each iteration. Although labor intensive, the process
may be continued as many times as desired to obtain a satisfactory solution.
There are inherent difficulties with the technique if the starting fields are
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inexact: only those symmetries present in the starting function are present
in the ultimate result and iterative errors quickly accumulate.

Combining the electric field portion of Eq. (6.10.2) with Eq. (6.10.4)
gives the relationship:

ηH̃ =
{

r̂

σ sin θ

[
∂ (sin θ $3)

∂θ
− $2

]
+ θ̂

[
S1

σ2 sin θ
− 1

σ

∂(σ$3)
∂σ

]

+ φ̂

[
i

σ

∂(σ$2)
∂σ

− i

σ2

∂S1

∂θ

]}
e−iφ (6.10.5)

Equating the magnetic field portion of Eq. (6.10.2) with Eq. (6.10.5) and
combining gives:

0 =
[
∂(sin θ $3)

∂θ
− $2

]
S3 =

[
i

σ

∂(σ $3)
∂σ

− i
S1

σ2 sin θ

]

S2 =
[

i

σ

∂(σ$2)
∂σ

− i

σ2

∂S1

∂θ

]
(6.10.6)

Combining the magnetic field portion of Eq. (6.10.2) with Eq. (6.10.4) gives
the relationship:

Ẽ =

{
ir̂

σ sin θ

[
S3 − ∂(sin θ S2)

∂θ

]
+ i

θ̂

σ

∂(σS2)
∂σ

− i
φ̂

σ

∂(σS3)
∂σ

}
e−iφ (6.10.7)

Equating Eq. (6.10.7) and the electric field portion of Eq. (6.10.2) gives:

S1 =
i

sin θ

[
S3 − ∂(sin θ S2)

∂θ

]
, $2 =

i

σ

∂(σS2)
∂σ

, $3 =
i

σ

∂(σS3)
∂σ

(6.10.8)

The procedure for obtaining the full field set begins with the expressions
of Table 6.7.1. Iterations are obtained by substitution into Steps 5 and 6
of Table 6.10.1 then following the chart. The circular process is repeated
as many times as desired. All sums follow from S3; its values through six
iterations are listed in Table A.30.1.
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Table 6.10.1. Flow chart for evaluating field sums.

1. Use S�
3 to find $�

3 =
i

σ

∂

∂σ

[
σS�

3

]

2. Use S�
2 to find $�

2 =
i

σ

∂

∂σ

[
σS�

2

]

3. Check $�
2 =

∂

∂θ

(
sin θ$�

2
)

4. Use S�
3 and S�

2 to find S�
1 =

i

sin θ

[
S�
3 − ∂

(
sin θS�

2
)
/∂θ

]

5. Use $�
3 and S�

1 to find S�+1
3 =

i

σ

[
∂
(
σ$�

3
)
/∂σ − S�

1

σ sin θ

]

6. Use $�
2 and S�

1 to find S�+1
2 =

i

σ

[
∂
(
σ$�

2
)
/∂σ − ∂S�

1

σ∂θ

]

7. Check S�+1
2 =

∂

∂θ

(
sin θS�+1

3
)

8. Redefine � + 1 → �

9. Return to Step 1 and follow the chart steps

6.11. Energy Exchanges

To obtain the power and energy supported by self-consistent fields, begin
with the complex Poynting vector. With the fields of Eq. (5.10.16), it may
be written:

Nc =
1
2
Re(Ẽ × H̃∗) =

1
2η

Re[Ẽ × (iẼ)∗] (6.11.1)

The surface power on a circumscribing sphere surrounding the source
follows from the angular field components, shown in Tables A.30.3
and A.30.4.

Quite differently from individual multipolar fields, the energy trans-
ferred by the fields of Eq. (5.10.16) changes its direction of travel as dis-
tance from the source increases. This may be seen by writing Eq. (6.1.16),
which appears in both angular field terms, in the form:

U(σ, θ) =
1

σ sin2 θ

[
e−iσ cos θ − 1

2
(e−iσ(1 + cos θ) + eiσ(1 − cos θ))

]

V(σ, θ) =
1

σ sin2 θ

[
e−iσ cos θ cos θ − 1

2
(e−iσ(1 + cos θ) + eiσ(1 − cos θ))

]
(6.11.2)
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Tables A.30.2–A.30.4 show all field terms that do not include U(σ, θ) and
V(σ θ) travel in the +z direction and vary with radius at powers rang-
ing from zero to −(2N + 1), where N is the number of iterations. Terms
involving U(σ, θ) and V(σ, θ) vary with radius at powers ranging from −3
to −(2N + 3). It follows that energy flow at very large radii is +z directed
and at very small radii is both axially and radially directed.

In common with the output powers analyzed in Chapters 2 and 3,
only products of one spherical Bessel and one spherical Neumann func-
tion integrate to a real power over an enclosing surface. In this case since
all pertinent sums over spherical Bessel function terms are teledistant, each
surface power term is the product of at least one teledistant field term.
The fields of Eq. (5.10.16) without the spherical Bessel terms describe
standing energy. A plane wave impressed on such a field that supplies
the leading terms produces an energy exchange. The power on a spher-
ical surface of radius ka circumscribing the radiator follows by applying
Eq. (6.11.1) to the fields of Tables A.30.3 and A.30.4 and taking the sur-
face integral.

As an example consider the third iteration fields; the electric compo-
nents are listed in Eqs. (6.11.3)–(6.11.5).

3Er = sin θ

{
(1 + cos θ) +

i

σ
(1 + 6 sin2 θ) +

1
σ2 (54 − 36 cos2 θ) cos θ

− i

σ3 (114 − 84 sin2 θ − 120 sin4 θ) − 1
σ4 (192 − 840 sin2 θ) cos θ

− i

σ5 (864 − 1080 sin2 θ)
}

e−iσ cos θ e−iφ (6.11.3)

3Eθ =
[
cos θ(1 + cos θ) +

i

σ
6 sin2 θ cos θ +

1
σ2 (5 + 36 cos2 θ − 36 cos4 θ)

− i

σ3 (18 + 144 cos2 θ − 120 cos4 θ) cos θ +
1
σ4 (124 − 252 cos2 θ)

− i

σ5 (684 − 600 cos2 θ) cos θ − 1
σ6 (480 + 840 cos2 θ)

+
(7)!i
2σ7 cos θ +

(7)!
σ8

]
e−iσ cos θ e−iφ

− (6)!
[
i

(
1

(6)!σ2 − 3
(4)!σ4 +

5
(2)!σ6 − 7

σ8

)
V

+
(

2
(5)!σ3 − 4

(3)!σ5 +
6
σ7

)
U
]
e−iφ (6.11.4)
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3Eφ = −i

{
(1 + cos θ) +

i

σ
6 sin2 θ +

1
σ2 (6 + 36 cos2 θ) cos θ

+
i

σ3 (42 − 216 cos2 θ + 120 cos4 θ) +
1
σ4 (144 − 360 cos2 θ) cos θ

+
i

σ5 (36 + 360 cos2 θ) +
480
σ6 cos θ − i

σ7 1800
}

e−iσ cos θ e−iφ

− i(6)!
[
i

(
1

(6)!σ2 − 3
(4)!σ4 +

5
(2)!σ6 − 7

σ8

)
U

+
(

2
(5)!σ3 − 4

(3)!σ5 +
6
σ7

)
V
]

e−iφ (6.11.5)

Values of output power as functions of radius calculated using the fields of
Tables A.30.3 and A.30.4 are listed in Table 6.11.1.

In Chapters 2 and 3, the time-average surface power is supported by the
product of field terms, each of which is proportional to 1/σ, for example
Eqs. (3.3.1) and (3.3.2). Since the area increases as σ2, the product of
far field power density and area is independent of distance. The radiation

Table 6.11.1. Calculated output power by number of iterations, N.

0Pr =
2πσ2

ηk2

{
4
3

− 2
σ2

+
1
σ4

− 1
σ4

cos(2σ)
}

1Pr =
2πσ2

ηk2

{[
4
3

+
10
3σ2

+
5
σ4

− 6
σ6

]
− 1

σ4

[(
1 − 6

σ2

)
cos(2σ) − 4

σ
sin(2σ)

]}

2Pr =
2πσ2

ηk2

{[
4
3

+
102
5σ2

+
9
σ4

− 84
σ6

+
120
σ8

]
− 1

σ4

[(
1 − 36

σ2
+

120
σ4

)
cos(2σ)

−
(

8
σ

− 96
σ3

)
sin(2σ)

]}

3Pr =
2πσ2

ηk2

{[
4
3

+
38
σ2

+
9
σ4

− 330
σ6

+
3240
σ8

− 5040
σ10

]
− 1

σ4

[(
1 − 90

σ2
+

1800
σ4

− 5040
σ6

)

× cos(2σ) −
(

12
σ

− 480
σ3

+
4320
σ5

)
sin(2σ)

]}

4Pr =
2πσ2

ηk2

{
4
3

+
866
5σ2

+
1
σ4

− 1320
σ6

+
21,840

σ8
− 221,760

σ10
+

362,880
σ12

− 1
σ4

[(
1 − 168

σ2
+

8400
σ4

− 141,120
σ6

+
362,880

σ8

)
cos(2σ)

−
(

16
σ

− 1344
σ3

+
40,320

σ5
− 322,560

σ7

)
sin(2σ)

]}
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analyzed here is dramatically different. The power from the first terms
listed in Table 6.11.1 increase with distance as σ2, the second terms are
independent of σ, the third terms decreases as 1/σ2, etc. through higher
powers. Yet, energy conservation requires the total value to be independent
of distance. This, in turn, requires the energies carried by the higher order
terms to transfer to lower order terms as the energy travels outward from
the source. The calculated output power remains finite only because of the
finite length of the wave train.

6.12. Self-Consistent Photon-Field Stress and Shear

We seek to evaluate the pressure and shear on a radiating sphere as it
generates the self-consistent fields calculated in Sec. 6.10. First note from
Tables A.30.2–A.30.4 that the far field and telefield electric field terms after
N iterations are:

Ẽ(σ, θ, φ) =
{
r̂ sin θ

[
(1 + cos θ) +

i

σ
(1 + 2N sin2 θ)

]

+ θ̂ cos θ

[
(1 + cos θ) +

i

σ
2N sin2 θ

]

− iφ̂

[
(1 + cos θ) +

i

σ
2N sin2 θ

]}
e−iσ cos θ e−iφ (6.12.1)

For the special case θ = π/2, the field is:

Ẽ
(
σ,

π

2
, φ
)

=
{
r̂
[
1 +

i

σ
(1 + 2N)

]
− iφ̂

[
1 +

i

σ
2N
]}

e−iφ (6.12.2)

Comparison with Eq. (6.9.12) shows that the results are the same as those
obtained by direct summation of axial values if:

C1 ∼= 0.64 L = 2N or N ∼= L/3 (6.12.3)

If both N and L are large N is equivalent to about L/3. The surface pressure
follows by noting from Eq. (5.10.16) that the magnitudes of the electric
and magnetic fields are the same, from Eq. (4.2.17) the proper form for the
pressure, then combining with Eqs. (6.12.1) and (6.12.3) to obtain:

Trr =
εL

3(ka)2
(6.12.4)

Therefore, regardless of the radius of the radiating region, a positive pres-
sure exists that acts to extend it to ever-larger values.
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For the general case, pressure and shears on the radiating surface fol-
low from the fields. The field set of Eqs. (6.11.3)–(6.11.5), i.e. N = 3, has
the structure of Eq. (3.16.3), where the electric and magnetic fields are
equal magnitude and out of the phase. The field pressure, therefore, is
constant. However since the electric and magnetic fields affect different
entities, charge and current densities, we track only the electric values.
Figures 6.12.1–6.12.3 show such normalized values of pressure and shear
at ka = 5.0, 1.0, and 0.1 and at time phases 2(ωt − φ) equal: 0, π/2, π,
and 3π/2.

The time average value of Fig. 6.12.1(a) shows that the average value is
extensive from about θ = 3π/8 to 5π/8, reaching a maximum value of about
0.5 in the upper half plane. Extreme values of about −4 and −0.5 occur
respectively on the positive and negative z-axes. Tracing the time dependent
curves shows alternately compressive and extensive traveling waves start at
the negative z-axis and travel to the positive one, reaching a maximum mag-
nitude in the upper equatorial region. These travelling, peristaltic, pressure
waves travel along the spherical surface. They act to produce radial oscil-
lations of the surface, alternately expanding and contracting the equatorial
zone of the radiating sphere, and compress the z-axis region of the surface.

Fig. 6.12.1(a). Self-consistent field, N =3, electric field radiation pressure Trr versus
zenith angle θ at phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized
radius ka = 5.0. Figures 6.9.1–6.9.4, 6.12.1–6.12.3 all have the same normalization;
Φ = 2(ωt − φ).
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Fig. 6.12.1(b). Self-consistent field, N = 3, electric field radiation shear Srθ versus zenith
angle θ at phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized
radius ka = 5.0. Figures 6.9.1–6.9.4, 6.12.1–6.12.3 all have the same normalization;
Φ = 2(ωt − φ).

Fig. 6.12.1(c). Self-consistent field, N = 3, electric field radiation shear Srφ versus zenith
angle θ at phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized
radius ka = 5.0. Figures 6.9.1–6.9.4, 6.12.1–6.12.3 all have the same normalization;
Φ = 2(ωt − φ).
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Fig. 6.12.2(a). Self-consistent field, N = 3, electric field radiation pressure Trr versus
zenith angle θ at phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized
radius ka = 1.0. Figures 6.9.1–6.9.4, 6.12.1–6.12.3 all have the same normalization;
Φ = 2(ωt − φ).

Fig. 6.12.2(b). Self-consistent field, N = 3, electric field shear Srθ versus zenith
angle θ at phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normal-
ized radius ka = 1.0. Figures 6.9.1–6.9.4, 6.12.1–6.12.3 all have the same normalization;
Φ = 2(ωt − φ).
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Fig. 6.12.2(c). Self-consistent field, N = 3, electric field shera Srφ versus zenith
angle θ at phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normal-
ized radius ka = 1.0. Figures 6.9.1–6.9.4, 6.12.1–6.12.3 all have the same normalization;
Φ = 2(ωt − φ).

Fig. 6.12.3(a). Self-consistent field, N = 3, electric field radiation pressure Trr versus
zenith angle θ at phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normalized
radius ka = 0.1. Figures 6.9.1–6.9.4, 6.12.1–6.12.3 all have the same normalization;
Φ = 2(ωt − φ).
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Fig. 6.12.3(b). Self-consistent field, N = 3, electric field shear Srθ versus zenith
angle θ at phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normal-
ized radius ka = 1.0. Figures 6.9.1–6.9.4, 6.12.1–6.12.3 all have the same normalization;
Φ = 2(ωt − φ).

Fig. 6.12.3(c). Self-consistent field, N = 3, electric field shear Srφ versus zenith
angle θ at phases Φ = 0, π/2, π, 3π/2 and the time average value, all at normal-
ized radius ka = 1.0. Figures 6.9.1–6.9.4, 6.12.1–6.12.3 all have the same normalization;
Φ = 2(ωt − φ).
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Shear Srθ is dominantly positive with a maximum value of 2.5 in the
upper half plane and negative maximum value of −0.5 in the lower half
plane. Like the compressional waves, the shear waves travel from the nega-
tive to positive z-axes. These waves play the dual role of (1) driving zenith-
directed current eddies that, in turn, act as field sources and (2) combine
with the compressional waves to change the radial thrust of the pressure
wave to a downward one. The downward thrust is responsible for the linear
momentum exchange between the source and field. The combined motion
is, perhaps, analogous to the propulsion system used by squids to propel
themselves through the sea.

The time-average shear Srφ is nearly constant in the upper half plane
and negative with a maximum value of −0.5 in the lower half plane. Like
the θ-directed counterpart, these φ-directed waves go from the negative
to positive z-axes, act to drive azimuth-directed current eddies that, in
turn, act as field sources, and the average value acts to spin the source
electron.

The forces acting on a radiator with ka = 1 are much larger than those
acting on a radiator with ka = 5. Comparing Figs. 6.12.1(a) and 6.12.2(a)
shows the ka = 1 surface area is less by a factor of 25 and the pressure is
more by a factor of about 105. The pressure waves that typified the surface
at larger radii are essentially nonexistent here. Figure 6.12.2(a) shows that
the pressure is small and positive near θ = π/2 and negative elsewhere.
At Φ = π/2 the pressure on the positive z-axis is about −106 and on the
negative axis about −104; magnitudes are reversed at Φ = 3π/2.

At radius ka = 1.0 the upper and lower half planes of Srθ are respectively
dominantly positive and negative. The value averaged over both time and
zenith angle is nearly zero. Like the pressure counterpart, the traveling wave
aspect is essentially gone, leaving oscillating values of shear at each angle.
Maximum values are about 90,000, as contrasted with 2.5 for the larger
radius. The oscillations act to drive zenith-directed current eddies that, in
turn, act as field sources.

The average shear Srφ at ka = 1.0, taken over both time and zenith
angle, is nearly zero, and, like the compression and zenith shear counter-
parts, the traveling wave aspect is essentially gone. Maximum oscillatory
values are about 8000, as contrasted with 2.5 at the larger radius, and act
to drive azimuth-directed current eddies that, in turn, act as field sources.

The forces acting on a radiator with ka = 0.1 are much larger than
those acting on a radiator with ka = 1.0. Comparison of Figs. 6.12.2(a) and
6.12.3(a) shows that the pressure is larger by a factor of about 1012. It is
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small and positive near θ = π/2 and negative elsewhere. At Φ = 0 pressure
values on both the positive and negative z-axes are about −1.4 × 1018 and
average values are about half that amount.

At radius ka = 0.1 the time average value of Srθ is much less than the
time varying part. The maximum time average values of about 1014 are at
about θ = 5π/16 and 11π/16; the former is positive and the latter negative.
Maximum oscillatory difference of about 1016 occurs at about θ = 3π/16
and 13π/16π, and are in phase. The oscillations act to drive zenith-directed
current eddies that act as field sources.

At ka = 0.1 the average shear Srφ magnitude varies between about
±1012. Maximum oscillatory values are ±1014, and act to drive azimuth-
directed current eddies that, in turn, act as field sources.

Taken together, this set of figures, Figs. 6.12.1–6.12.3, shows that dom-
inating electromagnetic forces exist on the surface of a radiating sphere
at three radii where values were determined. In each case the forces act
to expand the equatorial region, to compress the poles, and support shear
forces that act to drive current eddies. They also exchange linear and angu-
lar momentum between the field and its source or sink. These forces are
the origin of the regenerative drive mechanism that produces the nonlinear
response to a driving field.

To illustrate the magnitude, phasing, and orientation of these radia-
tion reaction forces it was necessary to pick specific sources as examples.
The principles, however, are not radius-specific. The large radiation reac-
tion pressure-to-Coulomb pressure ratios are robust, and similar results are
obtained for any reasonable choice of examples.

6.13. Thermodynamic Reciprocity

The self-consistent field expansion of Sec. 6.12 shows that only the Neumann
portion of the radial functions is affected by the regenerative field buildup.
Although Neumann functions have an � + 1 order singularity at the origin,
it appears only because there is a size below which the descriptive equations
cease to apply and we have not entered an appropriate description of the
source charges and currents. However, since exterior fields may be calcu-
lated from the surface fields, see Appendix A.7, conclusions about exterior
field properties may be drawn without knowledge of the source. Conversely,
detailed internal structure cannot be deduced from the external fields. In
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what follows we examine external field characteristics applicable to multi-
modes of the orders and degree that appear in Eqs. (5.8.3) and (5.10.16).

General differences between Hankel and Neumann field descriptions may
be illustrated by electric dipole radiation. Two possible radial dipole func-
tions, y1(σ) and h1(σ), are:

y1(σ) = − 1
σ

(
1
σ

cos σ + sin σ

)
h1(σ) =

1
σ

(
−1 +

i

σ

)
e−iσ (6.13.1)

To analyze differences between z-directed electric dipoles creating,
respectively, Hankel and Neumann functions consider a unit magnitude
field coefficient for dipolar fields:

σẼr = 2z1(σ) cos θ

Ẽθ = −z•
1(σ) sin θ

ηH̃φ = iz1(σ) sin θ

(6.13.2)

Spherical Hankel function: Replacing z1(σ) with h1(σ) reproduces the
radiation values listed in Table 3.12.1. Since the outgoing wave separates
from the source the standing energy is that which remains after subtract-
ing the outgoing energy from the total. The time average Poynting vec-
tor, Nr, the standing energy density, wT − wN , and the total standing
energy W are:

Nr =
1
2η

{
j1(σ)

dy1(σ)
dσ

− y1(σ)
dj1(σ)
d(σ)

}
sin2 θ =

2
2ησ2 sin2 θ

wT − wN =
ε

4

{
4
σ4

(
1 +

1
σ2

)
cos2 θ +

1
σ6 sin2 θ

}
(6.13.3)

W =
2πε

3k3

{
1

(ka)3
+

2
(ka)

}

The real part of Nr is proportional to the product of spherical Bessel and
Neumann functions. That is, a net output power requires the presence of
both radial functions, equally weighted and π/2 out of phase, i.e. a Hankel
function.

Spherical Neumann function: Replacing z1(σ) with y1(σ) leads to a different
set of parameters: time average Poynting vector, Nr, total energy density,
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wT , and total field energy, W:

Nr =
1
2η

Re ẼθH̃∗
φ = 0

wT =
ε2

4

[
4
(

1
σ4 sin2 σ +

2
σ5 sin σ cos σ +

1
σ6 cos2 σ

)
cos2 θ

+
(

1
σ2 +

1
σ4 sin2 σ +

2
σ5 sin σ cos σ (6.13.4)

−
(

1
σ4 − 1

σ6

)
cos2 σ

)
sin2 θ

]

Lim
R→∞

W ∼=
(

2πε

3k3

)[
1

2(ka)3
+

1
(ka)

+ kR

]

The absence of a real part of Nr shows that no energy permanently
leaves the system; all radiated energy remains attached to the source. The
last term in the energy expression is proportional to the radius, R, of the
outer limit of the radiation; it increases without limit as the source continues
to radiate. This effect has not been considered in the theory of radiation
exchanges by atoms.

At the smallest possible circumscribing surface about an electrically
small radiating source the difference between the Neumann- and Hankel-
described fields is quite small. The leading real and imaginary Hankel
function terms are:

Lim
ka→0

h1(ka) =
ka

3
+

i

(ka)2
(6.13.5)

With a Neumann source the real part is equal to zero. With a Han-
kel function source the Bessel-to-Neumann ratio is (ka)3/3, a very small
number if ka itself is much less than one. Hence, although its effect on
standing energy is enormous the difference between Neumann and Hankel
function descriptions at the source is vanishingly small. Since, in this way, a
slight source perturbation greatly reduces the standing energy a Neumann
source is in unstable equilibrium. Thermal noise within a conducting wire
is sufficient to assure a Hankel function description. With the eigenstate
source of Sec. 6.12, however, thermal noise is not a factor; it applies to each
atom en toto, not to electronic effects internal to atoms. There is no feed-
back path from the field to the source and, therefore, fields described by
Neumann functions remain in metastable equilibrium. Although this dis-
cussion is confined to electric dipole radiation, it applies to all modes that
form part of the positive feedback described in Sec. 6.12.
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Reciprocity: Thermodynamics requires reciprocity between absorption and
emission. Although the condition can be met mathematically by a simple
time reversal in Eq. (5.10.16), the physics of the situation is more diffi-
cult. How can an electrically small region extract enough energy from a
low intensity field to initiate the regenerative process? We next describe a
scenario that appears to satisfy all constraints.

As a Lorentz-like electron enters an eigenstate it accelerates and, by
virtue of the acceleration, produces a radiation field. That field, in turn,
produces both pressure and shears on the source of the same order of mag-
nitude as the trapping Coulomb force, see Secs. 4.2 and 4.3. The primary
postulatory base of Chapter 4 is that the radiation pressure and shears com-
bine to transfigure the electron from an entity much smaller than an atom
to an ensemble of charge and current densities that occupies the volume of
the eigenstate. An acceptable model is the intra-eigenstate electron ensem-
ble that constitutes a nonlocal electron. Whatever the model, the physical
significance of eU∗(r)U(r) within an equilibrated eigenstate more closely
resembles a time-average charge density than a probability. Intrinsic and
local forces assure that the electron structure continuously evolves.

Let a single electron be trapped by a potential well with at least two non-
degenerate eigenstates of the same parity. Eventually the electron structure
evolves to produce the sources of Sec. 3.16, after which the state is regener-
atively driven. Terms in the field equations proportional to spherical Bessel
and Neumann functions have opposite parity. Since the radiation source is
low-Q, resonantly generated energy would dissociate itself from the source
except, as shown in Sec. 6.12 and Appendix 30, the parity of the regenera-
tive process drives only the spherical Neumann functions. The regenerative
buildup described in Sec. 6.12 produces the radiation field:

Ẽ =
∞∑


=1

i−
 (2� + 1)
�(� + 1)

{
�(� + 1)

y
(σ)
σ

P1

(cos θ)r̂

−i

[
y
(σ)

P1

(cos θ)
sin θ

+ iy•

 (σ)

dP1

(cos θ)
dθ

]
θ̂

(6.13.6)

−
[
y
(σ)

dP1

(cos θ)
dθ

+ iy•

 (σ)

P1

(cos θ)
sin θ

]
φ̂

}
exp(−jφ)

ηH̃ = iẼ

Spontaneous emission: A regeneratively driven electron is configured as an
antenna for radiation described by Neumann functions, but not by Bessel
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functions. There is no exterior outbound traveling wave and the field energy
remains attached to the source. Source attachment is broken by the addition
of Bessel function terms supplied by one of two ways: continued evolution of
the electron picostructure or the Planck thermal radiation field. Depending
upon the phase with which it develops the result is either re-absorption
of the standing energy to the state from which it came or the spontaneous
emission of eigenstate energy � ω. Since eigenstate configurational evolution
is not instantaneous a time delay is expected between the application of an
external field and before an initially nascent atom becomes an active one.
The duration of the delay depends upon the initial ensemble picostructure
and, hence, the evolutionary changes required before the transition process
begins. In this way the occurrence of energy exchanges is statistical in
nature. This meets Einstein’s objection that a system should be either
stable or unstable and, in one case, begins the decay process without delay
and, in the other, remain stable.

Induced emission: The regenerative field buildup is triggered from the out-
side by an applied field. An incoming plane wave field contains all necessary
triggering field phases. Whether it produces absorption or emission depends
upon whether the triggered electron is in a high or low energy state. Absorp-
tion and emission regenerative processes are alike and equality fulfills the
reciprocity requirement. Although electromagnetic field theory is capable
of describing the full event, it is not capable of determining the immediate
energy source for absorption from a weak field; that lies beyond the reach
of electromagnetic field theory. Suggestions based upon the electron mod-
els are (1) that an energy absorbing, nonlocal electron could, with no time
delay, capture energy from a broad region, or (2) that the energy could
come temporarily from a vacuum state.

Miscellaneous: Full directivity follows from appropriately combined field
modes; the relationships between the output energy and momenta may be
seen from Eq. (5.10.12). Both the output energy and the far field angular
momentum are described by sums over products of modes of equal order.
Quite differently, the linear momentum consists of three separate sums, two
of which are products of a modal order with modal orders that differ by one.
That is, although modal interactions affect neither the amount of energy
radiated nor its far field rotation, they do affect the direction in which the
energy travels.

Plots of radiation reaction pressure and shears that affect electric charge
densities on a radiating sphere of radius a are shown in Sec. 6.12. Since
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the regenerative drive is nonlinear the Manley Rowe equations apply and
Eqs. (5.6.14) and (5.6.17) correctly predict the observed power-frequency
relationships. The nonlinearity voids any possibility of describing the pro-
cess using equilibrium equations, such as the Schrödinger time-independent
equation, Eq. (4.3.14), or the Dirac equations; no linear equation can
describe such nonlinear events. The time-dependent Schrödinger equa-
tion, Eq. (4.5.10), describes near-equilibrium characteristics applicable over
times long compared with changes in the electron ensemble. It describes
events leading up to the transition and it describes events after the transi-
tion but it does not describe transitions.

With appropriate energy and stability constraints, each electron may
be statistically distributed over the full array of available eigenstates. Since
the proposed radiation description shows that, in the main, the regenerative
buildup supports only one frequency, phase, and polarization. It is, there-
fore, the radiation properties of the regenerative system that results in but
one transition observed per measurement; imposition of currently accepted
special quantum mechanical postulates about the behavior of eigenstate
electrons are not needed.

An experimental indication that all absorbed energy does not come
from the same emitted energy packet comes from photons passing through
optical fibers. For example, as a photon enters an optical fiber it may be
separated from the outer reaches of its fields. Since the energy in a coherent
beam is decreased by incomplete internal reflection in sharply bent fibers, a
purely wave-like phenomenon, an exiting photon will carry less energy than
it did when it entered. The probability of photon-induced transitions seems
to depend only upon the intensity and frequency of the fields at the active
region, not on the history of the photons of which it is composed. Neither is
there an entry in the quantum theory of transition probability accounting
for the history of transition-inducing photons. This combination of observa-
tions implies that, under certain circumstances, an incoming photon need
only trigger radiation onset, with the remaining energy supplied by other
sources. The emitted energy can, in turn, drive absorption or emission by
other atoms.

6.14. Atomic Radiation

As noted in Chapter 2, although an externally applied plane wave sup-
ports the space and time symmetries required for photon radiation, the
magnitudes of the high-order modes are far too small to produce the
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required multipolar coefficients. The physical origin of the pressure and
the shears discussed in Sec. 6.12 is the local standing energy fields. The
radiation reaction pressure and shears of such fields also support the space
and time symmetries required for photon radiation, and are of the needed
order of magnitude.

Although the resonant array of change and current densities driven in
this way permits energy to exit (enter) the source (sink), only steady state
fields operating since time t = −∞ were analyzed. The wave train, there-
fore, was infinitely long. Since sources start and stop actual wave trains, of
course, have a finite length and calculated kinematic results are meaningful
only within a circumscribing sphere of radius equal to the length of the wave
train. For a wave train of length cτ , let W be the total radiated energy and
F0(t) be the normalizing field constant. It follows from the powers listed in
Table 6.11.1 that W is approximately equal to:

W ∼= 8π(kcτ)2

3ηk2

∫ τ

0

[
F0(t)

]2dt (6.14.1)

A separate expression for the total output energy follows from Eq. (5.10.17):

W =
4π

ηk2

L∑

=1

(2� + 1)
∫ τ

0

[
F0(t)

]2dt ∼= 4πL2

ηk2

∫ τ

0

[
F0(t)

]2dt (6.14.2)

To estimate F0(t), note the exchanged energy is also equal to �ω. Making
the equality and, to form a definite model, letting F0(t) be a constant during
the time period between 0 and τ and zero at all other times:

F0 =
√

3µ�
/
(4λτ3) (6.14.3)

Energy passing through the equator between the limit of the active
region, a, and the extent of the radiation, cτ , may be obtained by integrating
the Poynting vector of Eq. (6.9.13) over that equatorial surface. Keeping
only the dominant term shows the energy that moves upward through the
equatorial plane is approximately equal to:

Wz ∼= 2π

ηk2 F 2
0

∫ τ

0
(k2c2t2dt) = �ω/4 (6.14.4)

Approximately one-fourth of the emitted energy exits the source in the
lower hemisphere then passes upward through the equator. Linear momen-
tum Eq. (5.10.10) confirms that as the radius increases the energy veers
towards the z-direction.
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If the exiting energy went directly from the source to infinity, equating
Eqs. (6.14.1) and (6.14.2) would establish a link between the length of the
wave train and the maximum modal number:

L2 ∼= 2
3
(kcτ)2 (6.14.5)

For example, if L were equal to 20 or 200 the wave train would respectively
be equal to about:

cτ ∼= 3.9λ or 39λ (6.14.6)

Combining Eqs. (5.7.8) and (6.14.5) gives a radiation bandwidth respec-
tively of about 1/3.9 or 1/39: both numbers are much larger than observed
from the bandwidth of certain optical absorption and emission lines. We
suggest that although the electrical size of the radiator during energy
exchange is unknown, it is surely many times larger than the nascent value,
see Eq. (6.12.4). Therefore, the electrical size of the radiator, due to its
ability to respond (deform) in response to applied forces, is relatively large
and a much lower value of Q is expected.
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CHAPTER 7

Epilogue

7.1. Historical Background

Particles have played a critical role in the analysis of physical events at least
since Newton examined them in the latter part of the seventeenth century.
For the next several centuries, studies involving combinations of elastic
spheres dominated physics. Perhaps as a result, electrical problems were
first interpreted by analyzing the behavior of charged particles; Maxwell
used the force between “two very small bodies” to discuss implications
of Coulomb’s law. Although Maxwell’s equations showed that fields are
essential to explain occurrences that particles alone cannot, still the lore of
particles permeated physics at the end of the nineteenth century. Therefore,
after Thompson discovered and measured particle-like free electrons, the
idea of electrons as particles was widely accepted, along with the Lorentz
particle-electron and, later, the Bohr atomic model. The finely honed and
widespread skills of classical mechanics were carried over to quantum effects;
even the name “quantum mechanics” is indicative of such an origin.

Thirty years later Bell proved a theorem about two entangled electrons,
and another twenty years later the idea was subject to a definitive test
by Aspect et al. The conclusion was and is that entangled electrons are
nonlocal entities over arbitrarily large distances.

Building upon his earlier work with particles, Newton compared the
propagation of light with that of projectiles. According to him, luminous
bodies eject light-making projectiles that continue in flight until acted upon
by other objects. Quite differently, Huygens compared the propagation
of light with the propagation of sound through air and waves on water.
According to him, light was not a thing but a disturbance that propagated
through space. Light is emitted over a spread of angles by a luminous object.
It bounces off objects and the total of all bounces off all objects that is inter-
cepted by an observer forms his field of view. After Huygens, more than a
century passed before Young in England and, in an arguably unparalleled

306
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technical outpouring, Fresnel in France confirmed that light is propagated
as a wave with transverse vibrations and, therefore, two polarizations.

The modern theoretical basis for the wave theory of light began with
Maxwell. Hertz, who had earlier discovered the photoelectric effect by
showing that ultraviolet light increases current emission from a cathode,
was the first to construct a transmitting-receiving pair of electric dipoles.
With them, he confirmed that electromagnetic waves transport energy
through space. His dipole radiation has rotational symmetry about its axis,
a symmetry that Einstein later referred to as “spherical” symmetry.

In 1900 Planck showed that quantizing electromagnetic energy in units
of W = �ω accounts for otherwise significant discrepancies between observa-
tions and calculated laws that describe equilibrium conditions between radi-
ation and matter. He wrote that a most suitable body for energy exchange
seemed to be Hertz’s dipole with its “spherical” waves. A few years later,
1916, Planck showed that his 1900 expression for radiation density was
consistent with thermodynamic reciprocity only if he added a zero-point
energy term. That term is temperature independent and exists throughout
all space.

Einstein used field energy quantization to explain the photoelectric
effect. He later extended and simplified Planck’s derivation of the radiation
law, and he showed that the laws of statistical mechanics require quan-
tized radiant energy exchanges to be accompanied by quantized momen-
tum exchanges of equal value upon emission or absorption. This, in turn,
is satisfied if all of each unit of radiated energy travels in the same direc-
tion. Einstein wrote: “. . . (Atomic) emission in spherical waves does not
occur, the molecule suffers a recoil of magnitude �ω/c. This seems to make
a quantum theory of radiation almost unavoidable.”

These events seemed to rather conclusively show that electromagnetic
energy is exchanged between atoms and radiation fields in quantized units,
and this result, in turn, led to a fundamental difficulty. Einstein wrote that
quite differently from results of the Maxwell wave equation “monochromatic
radiation . . . behaves in thermodynamic theoretical relationships as though
it consists of distinct independent energy quanta of magnitude W = �ω.”

Planck wrote, “There is one particular question the answer to which will,
in my opinion, lead to an extensive elucidation of the entire problem. What
happens to the energy of a light-quantum after its emission? Does it pass
outwards in all directions, according to Huygens’ wave theory, continually
increasing in volume and tending towards infinite dilution? Alternatively,
does it, as in Newton’s emanation theory fly like a projectile in one direction
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only? In the former case the quantum would never again be in a position
to concentrate its energy at a spot strongly enough to detach an electron
from its atom.”

These were the first and still are the primary reasons why it is commonly
accepted that light propagates as if it consists solely of waves and exchanges
energy as if it consists solely of particles.

Only a few years after Einstein’s “quantized momentum” paper, elec-
trons were shown to support an intrinsic magnetic moment. There was
an immediate problem with the result: If the moment arises because the
electron charge spins about an axis at a distance equal to the Lorentz elec-
tron radius, the necessary circumferential speed is many times the speed
of light. Then Schrödinger published the equation that bears his name,
followed a few years later by Dirac’s equations. Both the Schrödinger and
the Dirac equations correctly describe the behavior of electrons in equi-
librium. The Schrödinger equation is correct at non-relativistic electron
speeds and the Dirac equations at all speeds; electron spin is inherent to
the Dirac equations but must be added in an ad hoc way to the Schrödinger
equation. Both equations yield the probability that an electron will enter
a transition. When it does, the input and output energies and the cor-
rect power-frequency relationships result. Both equations treat electrons as
waves. Therefore, like light, an electron has historically been thought to
have both wave and particle natures.

Schrödinger developed his equation by combining the de Broglie wave-
length and an analogy with a known relationship between classical mechan-
ics and geometric optics. According to Mehra, Dirac in the search for his
equations, “started playing with equations rather than trying to introduce
the right physical idea. A great deal of (the) work is just playing with
the equations and seeing what they give.” Physically, it is the model used
to derive an equation that determines the interpretation ascribed to it.
Since both Schrödinger’s and Dirac’s equations came without a model nei-
ther came with an inherent or obvious physical interpretation of the results.
Therefore, although both equations give correct time-average values of mea-
surable quantities, the question of how to interpret them remains.

One difficulty with combining quantum and classical theories is that by
classical theory accelerating charged particles produce far field radiation
and far field radiation supports an output power. Eliminating such radiation
requires the source to assume the form of closed current loops, a spherically
symmetric region of charge that pulsates radially, or some combination
thereof. Yet the Bohr orbit is some 20,000 larger than Lorentz’s estimated
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electron size, point electrons must accelerate to maintain an orbital position,
and atoms are stable. Neither Schrödinger’s nor Dirac’s equation addresses
this issue.

Schrödinger had severe reservations about the interpretation accorded
his equation; he preferred to explain electron stability by ascribing physical
significance to electron waves. For this reason he rejected the idea that wave
functions represent a probability of occupation by a point electron and pre-
ferred a mass density created by standing electron waves. He was deeply
interested in how electrons transition between eigenstates. The electromag-
netic equations require a transient solution, transient solutions support a
continuous spectrum of emitted radiation, and yet a continuous spectrum
is not observed. His linear equations do not describe energy jumps, and yet
such jumps occur. Schrödinger commented to Bohr “If we have to put up
with these damned jumps I’m sorry I got involved.” Bohr answered that
although Schrödinger’s arguments were correct, since quantum jumps occur
it must be that the pictorial concepts of classical physics used to describe
such events are insufficient. Schrödinger’s reaction is evidenced by later
comments about the “quaint basic assumption” of a discontinuity between
states.

Both Dirac and Schrödinger were concerned about the frequencies of
eigenstate radiation. Dirac wrote, “One would expect to be able to include
the various frequencies in a scheme comprising certain fundamental fre-
quencies and their harmonics. This is not observed to be the case. Instead,
there is observed a new and unexpected connexion between the frequen-
cies.” He went on to say that this result is “quite unintelligible from the
classical standpoint.”

In stark contrast with quantum theory, electromagnetic field theory rests
on only a few, very general axioms. Quantum theory requires that classi-
cal electromagnetic laws apply partially but not fully apply within atoms.
To some, it seems incongruous that nature should require such disparate
and seemingly conflicting bases for such strongly overlapping sciences. To
this end, Einstein wrote that: “I am, in fact, firmly convinced that the
essentially statistical character of contemporary quantum theory is solely
to be ascribed to the fact that this theory operates with an incomplete
description of physical systems.” He also said he had devoted more time to
thinking about this subject than any other. Although he believed that the
mathematics of quantum theory is uniquely correct, he was bothered by
the statistical nature of radiation onset from an atom that is initially in a
high-energy state. He argued that either an atom is stable or it is unstable.



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap07

310 The Electromagnetic Origin of Quantum Theory and Light

If it is stable it will not spontaneously decay, and if it is unstable it will
begin the decay process without a time delay. Yet an atom is stable until
it spontaneously undergoes a discontinuous energy drop and emits a pulse
of radiation. He concluded that the wave function description of this event
is incomplete. In a 1935 thought experiment that the pragmatic school
was never able to fully counter, Einstein, Podolsky, and Rosen began with
two paired electrons described by a single wave function, separated them
an arbitrary distance, then measured one of them. A measurement per-
mits exact knowledge of the other without measuring it, in violation of the
constraints of conventional quantum theory. They concluded that either
the quantum equations are incomplete as they stand or information passes
between the two electrons with no time delay; that is, electrons are nonlocal
entities. Einstein wrote: “Assuming the success of efforts to accomplish a
complete physics description, the statistical quantum theory would, within
the frame-work of future physics, take an approximately analogous position
to statistical mechanics within the framework of classical mechanics. I am
rather firmly convinced that the development of theoretical physics will be
of this type; but the path will be lengthy and difficult.”

Currently many theoretical physicists believe the linear differential
equations of Schrödinger and Dirac are complete and describe all that
can be known about quantum mechanical events. This viewpoint is not
consistent with our Chapters 4 through 6, where we show the Schrödinger
equation is based upon applying the conservation laws for energy and charge
to an eigenstate electron in the form of a statistical ensemble of charge
and current density elements. Measurement results are unpredictable only
because of the lack of detailed knowledge of the ensemble.

While attention was focused on discussions of quantum theory, advances
in electromagnetism of ultimate consequence to quantum theory were being
made. Mie used the classical wave theory of light and spherical func-
tions to analyze scattering of light by electrically small metallic particles.
Forty years later Chu showed that emission of electromagnetic energy is
necessarily accompanied by a source-associated standing energy. As the
size-to-wavelength ratio decreases the standing energy of radiated mode
� increases as the inverse size-to-wavelength ratio raised to the �(� + 1)
power. Harrington showed that the maximum possible gain of a single radi-
ated mode is (2� + 1); the value increases without limit as the modal order
increases. For atoms of diameter 0.1 nm immersed in light of 500 nm wave-
length, the standing energy, by Chu’s calculations, necessary to support a
maximum modal number that, by Harrington’s calculations, is necessary
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to obtain an apparently infinite gain is so large that, when compared with
current antenna technology, the idea of fully directed energy emission seems
untenable.

During the next decade, Manley and Rowe derived the power-frequency
relationships in nonlinear systems. Their result would satisfactorily explain
atomic power-frequency relationships if the atomic response was a nonlinear
function of the driving force, but the quantum theory equations are linear.

7.2. Overview

Because standing energy about an antenna was first analyzed in 1948,
the interpreters of modern quantum theory could not have understood its
overriding importance to radiation properties. That the pragmatic school of
theoretical physicists constructed a logically coherent and complete inter-
pretation of quantum mechanics without it is moot testimony to the inge-
nuity of the individuals. The conceptual framework, however, comes at
a significant cost: It requires rejection of causality in the sense that the
dynamical structure of the universe at a given instant does not uniquely
determine the dynamical structure at the next instant. We suggest that at
least some of the non-causal interpretation of quantum theory was required
because standing energy and its effects are ignored in their analysis of
atomic processes.

The axioms upon which electromagnetic theory is based show no depen-
dence upon the velocity of an observer. A conclusion is that the speed of
light in free space is the same in all inertial frames of reference. In free
space, the same axioms show no dependence upon the size of an observer;
the conclusion appears to be that the equations apply equally well to all
sizes. Experimental evidence shows that the axioms upon which electro-
magnetic theory are based apply equally well from the nanometer scale of
electronic devices at least through the scale of galaxies. Yet it is widely
believed that selected parts of electromagnetic field theory partially break
down on the picometer scale of atoms. We suggest that the equations apply
through the picometer scale of dimensions, without restrictions. Belief to
the contrary is caused, in large part, by an insufficient accounting of the
affects of standing electromagnetic energy.

It has been recognized for more than eighty years that, in some cir-
cumstances, electrons act as a wave and, in other circumstances, as a
particle. Although a detailed characterization of an eigenstate electron
is unknown, surely understanding eigenstate electrons requires a detailed
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analysis of its internal dynamics. Before addressing the problem, note that
there is a tendency to think that upon going from the macroscopic to the
atomic scale of dimensions things will simplify. The notion has no logi-
cal or experimental basis. There is no theoretical or experimental reason
to believe an electron is a simple object but there are many reasons to
believe it is not. Certainly all of chemistry is based on entangled pairs and
entangled pairs were shown to demonstrate nonlocality. But does nonlocal-
ity require multiple electrons, or is it a fundamental electron characteris-
tic the demonstration of which requires a pair? Single nonlocal electrons
that occupy the full range of eigenstates satisfy our stability and source
requirements.

Consider the following scenario. As a point-electron enters an eigenstate
it accelerates and radiates by bremsstrahlung. While being trapped it starts
to generate an electric dipole radiation field, the power and energy of which
are shown in Fig. 7.2.1. The figure is an extension of Fig. 3.12.1 and shows
the relative magnitudes and phases of the surface power and energy densi-
ties, values of which are time dependent and out of phase. Time variations

Fig. 7.2.1. Normalized power and energy density on a spherical surface circumscribing a
generator of z-directed electric dipole radiation. Plots are at radius ka = 1. To aid direct
comparison all powers were divided by c and all plots made to the same scale. Frames
a,b,c,d are respectively at phases 0, π/2, π, 3π/2. Only in frame (a) are both energy and
power noticeable. Frames (b) and (c) contain only energy and frame (d) only power.
Both energy and power densities are strongly time dependent.
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are due to the large surface reactance and require a strongly time varying
source. The time dependence keeps the interior charge and current density
distributions in continual motion.

Pressure and shear on a dipole source are shown in Fig. 4.2.1. Over a
spread of angles centered on the z-axis the dipole extensive pressure is larger
than the compressive pressure of the trapping Coulomb field. That is, as
an electron begins to generate dipole radiation, that radiation produces a
dominating, reactive radiation reaction force that leads to our basic postu-
late: Source mutations of the string-cloud comprising the electron continue
to occur until all radiation is squelched. That is, the radiation pressure and
shear transform the trapped electron from a single entity much smaller than
an atom to a stable ensemble of charge and current densities distributed
throughout the eigenstate. Intrinsic and local forces assure that the struc-
tures continuously evolve. For example, interactions between the electron
and orbital magnetic moments result in a continuous torque on what might
otherwise be a fixed orbit. Analyses based upon classical electromagnetism
show that there are possible arrays of stable, dynamic charge and current
density combinations that generate no far fields. Based upon this model and
using the classical thermodynamics approach of combining energy conser-
vation with a dynamic ensemble yields the Schrödinger wave equation as a
statistical descriptor of events. A requirement is for the ensemble to be in or
near equilibrium. That is, the linear Schrödinger equation applies to eigen-
state electrons if and only if the electron is in or near a state of equilibrium.

Although the laws of electrodynamics, see Eq. (1.7.2), assure that an
accelerating charge radiates, they are mute about the fate of the radiation.
The radiation must obey the electromagnetic laws, and hence are described
by a multipolar expansion, but the critical unanswered question is whether
spherical Neumann or Hankel functions describe the radial portion. Bessel
functions cannot be complete since they vanish at the origin, but both
Neumann and Hankel functions are singular and, therefore, form acceptable
sources. With Neumann sources all radiated energy remains attached to
the source, with Hankel functions all but the source-associated energy of
Sec. 3.16 exits the system. This difference in stored energy causes Hankel
function radiation to be in steady state equilibrium and Neumann function
radiation to be in metastable steady state equilibrium. Sources subject to
random fluctuation, such as thermal agitation, generate Hankel function
radiation.

Multipolar radiation by a point charge is limited to low-order radiation
fields. Generally speaking a dynamic, steady state, multipolar field of order
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L requires 2L−1 separate units of charge. Therefore high order, multipolar
radiation requires an extended ensemble as a source. A distributed electron,
for example an electron composed of strings, is adequate for the purpose.
If such an ensemble generates electric dipole radiation, that radiation pro-
duces a force that drives higher order radiation of the parity E(θ) = E(−θ):
electric dipole radiation leads to magnetic quadrupole radiation that leads
to electric octupole radiation, etc. Similarly, if an ensemble structure gen-
erates magnetic dipole radiation, that radiation produces a force driving
higher order radiation of parity E(θ) = −E(−θ): magnetic dipole radiation
leads to electric quadrupole radiation which leads to magnetic octupole
radiation, etc. Neither set of parities, acting alone, is resonant.

Quite differently, if the structure drives both parities, properly phased
and oriented, the system is resonant in the sense that there is no reactive
power on the radiating surface. In that case, instead of squelching the radi-
ation it regeneratively increases it. The reaction force due to this radiation
becomes many orders of magnitude larger than the Coulomb binding force
and dominates all other local forces. One result is a rapid energy tran-
sition between eigenstates: that is, an energy jump. Another is that the
Manley Rowe power-frequency relationships apply during the steady state
portion of the nonlinear process and correctly predict the observed Ritz
power-frequency relationships.

The basis set of elements used to produce photon radiation consists
of four radiating elements that produce equal output powers. The four
elements consist of two sets of elements, one each TM source and TE source.
Each �-order element set has one displacement in the z-direction and � − 1
displacements in the orthogonal direction. The sets are spatially orthogonal
and phased in time-quadrature. With such an embodiment capacitive and
inductive effects cancel and a circumscribing surface is resonant in the sense
that the reactive powers sum to zero at all surface points at all times. For
the dipole case surface power and energy densities are shown in Fig. 7.2.2.
Dramatically differently from the single dipole case of Fig. 7.2.1 values
are time independent. Stability results in a stable source that produces an
inter-modal regenerative driving force on all higher order modes. Gain of
the radiation pattern increases with modal number as (2� + 1).

With this model full photon directivity is achieved with spherical radi-
ation field modes that originate within the electron ensemble. Since the
regenerative extensive pressure is many times larger than the Coulomb
pressure it is expected to dominate actions. The nonlinearity voids any
possibility of describing the process using equilibrium equations, that is,
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Fig. 7.2.2. Normalized power and energy densities on the spherical surface ka = 1
circumscribing the generating source of Sec. 3.16. The energy and power densities have
circular symmetry about the z-axis and, although full time dependence is included in
the plot, do not vary with time! The net power is outbound; power density is outbound
in the upper and part of the lower hemispheres, but inbound, as indicated, near the
negative z-axis. To aid magnitude comparisons the power density is divided by c.

Schrödinger’s or Dirac’s equations; as emphasized by Schrödinger a lin-
ear equation cannot describe such nonlinear events. Schrödinger’s time-
dependent equation describes near-equilibrium characteristics that lead to
the transition and events after the transition, but it does not describe events
during the transition. In other words transitions occur during a hiatus
between equilibrium periods.

Let an atom in thermal equilibrium at temperature T contain a sin-
gle electron and three non-degenerate energy levels, states Zn, Zr, and Zs.
The eigenstate energy levels are, respectively, Wn, Wr, and Ws where
Wn > Wr > Ws and Wr − Ws > Wn − Wr. An electron, within its stability
constraints, is thermally distributed among available eigenstates. When the
system is disturbed possible outcomes are photon exchanges at frequency
ωrs = Wr − Ws or ωnr = Wn − Wr. The radiation reaction forces support
whichever frequency and phase starts and quenches all others, including
possible transient frequencies. Regenerative drives can occur at a single
frequency and phase and do not support simultaneous radiation at other
frequencies.
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We suggest the following sequence of events during electromagnetic
energy exchanges: A single electron exists in the presence of two avail-
able eigenstates with matching symmetry, and is in dynamic equilibrium
between the two states. As part of its continuing evolution through all possi-
ble stable distributions, eventually the dipolar structure occurs that is nec-
essary to begin the regenerative buildup of the field structure described in
Sec. 3.16, see Table 3.16.1, and Sec. 6.9. The modes consist entirely of terms
for which the radial part is a spherical Neumann function. This construc-
tion is independent of whether the electron is initially in the upper or lower
eigenstate. There is therefore no exterior, outbound traveling wave and the
field energy remains attached to its source until one of two things happens.
First, continued eigenstate evolution supplies the electron picostructure
that produces the Bessel function portion of the field. Depending upon the
phase of that field the result is either re-absorption of the Neumann energy
field or its spontaneous emission. Second, an external, incoming field sup-
plies the required Bessel field terms. Depending upon the relative phases the
field interactions produce either absorption or emission. Since the phases
of the standing and incoming fields are independently determined, there is
equal probability of the two events.

7.3. The Radiation Scenario

Classical statistical mechanics analyzes an ensemble of identical particles.
The particles are modeled as realistically as possible and there is little
or no difficulty interpreting ensemble-averaged results. The positions and
velocities of the component parts specify the state of the ensemble and
are sufficient to determine the system energy. With statistical mechanics,
studies of complicated systems are accomplished with no knowledge of the
precise state of individual particles. The actual state is assumed the most
probable state, and if there is full knowledge of an ensemble at a particular
instant its value at the next instant is predictable.

A question fundamental to quantum theory is why an individual eigen-
state electron acts as a statistical ensemble. The radiation reaction forces,
see Eq. (4.2.13), provides at least a partial answer; it is an extensive force
of magnitude greater than the attractive Coulomb force. With an eigen-
state ensemble as the physical entity to be described, the Fourier inte-
gral transforms of Eq. (4.3.7) provide a general mathematical description
of the unknown physical realities. To match known results, it is neces-
sary for the eigenstate electrons to contain a definite, though unknown,



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and Lightchap07

Epilogue 317

distribution of charge and current densities; the smallest unit is deter-
mined by the discreteness of the charge distribution and occupies a vol-
ume much smaller than physical extent of the state. The uncertainty of
calculated results, Eq. (4.4.7), arises because of the absence of informa-
tion about detailed charge and current distributions, not because of inher-
ent properties of the distributions. Causality applies in the sense that the
detailed structures and kinematics of all charge and current densities at
one instant uniquely determine the values at the next instant. Although
this difference does not affect expectation values, it has a profound effect
upon the interpretational philosophy and the characterization of mea-
surable quantities. Causality also retains Einstein’s deterministic view
of atoms.

A set of resonant, regeneratively driven electromagnetic field modes is
shown in Sec. 3.16; this modal set and certain of its properties are listed in
Table 3.16.1. Section 5.10 shows that using this modal set as the basis set
and imposing the kinematic properties of photons as a boundary condition
yields a unique field set. The fields are resonant and they are not subject
to Chu’s proof of limitations on electrically small radiators. Therefore large
magnitudes of large order radiation modes are expected.

The solution includes a complete expression for all fields, near and far,
during the transition process. In this sense, the analysis is as complete as the
fields of biconical antennas, see Chapter 2. The electromagnetic background
necessary to understand this aspect of the physics was simply not available
when the phenomena was originally studied. No linear source can both
generate this electromagnetic radiation field and satisfy thermodynamic
reversibility. The linear equations of quantum theory describe only the equi-
librated states before and after transitions, Secs. 4.3 and 4.5, and the dipole
moment of interaction between states that, in turn, determines the prob-
ability of a transition. There is no way Einstein could have been aware of
these results or of the properties of Eq. (5.10.16) when he wrote that full
directivity makes “a quantum theory of radiation almost unavoidable.”

Equilibrium periods during which the linear quantum theory equations
apply are separated by time hiatuses during which energy exchanges occur.
As shown in Chapter 5, the initial radiation produces a radiation reaction
force on the source that drives it regeneratively and produces more radia-
tion. The process continues until all available energy is gone and the electron
has entered a new energy state. Because the process is nonlinear the Manley
Rowe equations apply to the radiation. As with statistical mechanics, the
ensemble is expected to cycle through all possible states.
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There is no way Dirac could know of time hiatuses during which lin-
ear equations do not apply when he wrote: “there is observed a new
and unexpected connexion between the frequencies.” There is no way
Schrödinger could have known of the Manley Rowe equations when he tried
to understand the same unexpected connection between frequencies. Since
Schrödinger could not have known his equations were applicable only dur-
ing quasiequilibrium conditions, he was unaware of time hiatuses when his
equation does not apply. This was the reason for his problem with quan-
tum jumps. Bohr explained that new physical phenomena were required to
explain them; we concur and believe those phenomena to be the combi-
nation of extended eigenstate electrons and the electromagnetic radiation
processes described herein.

An ensemble of charge and current densities has many degrees of free-
dom. Interactions between separate charge and current densities produce a
continuous torque on the ensemble, and thereby a dynamic configuration.
The turbulence of its constituent parts is subject only to the constraints
imposed by the symmetry, energy, momentum, and angular momentum
of the state. As in statistical mechanics we presume an evolving system
sequentially occupies all possible configurations within the limitations of the
conservation laws, eventually and in turn occupying each of them. When a
radiating configuration occurs with charge and current density arrays that
support the Neumann portion of four dipoles, two electric and two magnetic
ones, with equal output power, the proper phase differences and alignment,
see Table 3.16.1, there is an exodus of the energy from the eigenstate. That
energy forms a standing energy field centered on the emitter. The standing
energy remains in existence until a companion Bessel function field is some-
how superimposed. If the Bessel field comes from the continued evolution of
the eigenstate, depending upon its phase the energy is either re-absorbed,
with no exchange of either energy or momentum, or there is spontaneous
emission. If the Bessel field is applied from outside the system depending
upon its phase either induced absorption or emission results.

Generally speaking, the radiation, including transients, emitted by
an electron transitioning between different pairs of states is expected to
produce a spread of frequencies. However, since regenerative forces are
monochromatic even though a transient followed by steady state fields
might characterize radiation onset, all except the single frequency are
squelched.

An electron simultaneously and statistically occupies the full array of
states available to it until a measurement is made. Since only one frequency
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achieves regeneration, it is radiation limitations that force the wave func-
tion to collapse to a single transition between a single pair of states. This
“measurement problem”, the collapse of the wave function, is therefore a
property of the regenerative radiation field not of the electron itself.

Were the length of the emitted wave train and the upper modal limit of
the source fields both infinite, the field would be fully directed and it would
retain its original shape and size over arbitrarily large values of time and
distance. However, since both are finite the size of the calculated steady
state wave packet presumably increases with increasing distance from the
source. Although flux closures must occur, it is unknown if closures pro-
duce a fully directed wave packet; that is, it is unknown if the energy packet
arriving from a distant star has the same physical extent it had when emit-
ted or is extended over a larger volume. We know only that the total energy
in the coherent wave packet remains constant as it travels through lossless
space.

The descriptive transcendental terms in the field equations of Secs. 6.2
through 6.5 come, bit-by-bit, from each mode and are approached only
if the maximum modal number L is large. An important question is why
the recursion formula of Eq. (5.9.8), the recursion relationship of spherical
Bessel function terms in a plane wave, is uniquely correct for quantized radi-
ation. The reasons appear to be that only this particular recursion formula
produces a set of z-axis transcendental fields that support energy flow to or
from the source, and only it produces a null in the source-associated stand-
ing energy. As may be seen from Secs. 6.1 through 6.5, a greater or lesser
dependence of modal coefficients upon modal number would result in fields
that depended upon all modes, not just the highest numbered ones. For such
a case, reactive energy that does not contribute to the regenerative drive
would be present and the radiation reaction force of Eq. (4.2.8) would apply,
braking power emission. The recursion relationship of Eq. (5.9.8) uniquely
accomplishes two things: it avoids the radiation reaction of Eq. (4.2.8) and
it meets the requirements of Sec. 3.16. Only with Eq. (5.9.8) do the radia-
tion reaction forces on an electron reduce to that caused by energy escaping
from the system, Eq. (4.2.7).

Spherical Bessel functions give rise only to half the teledistant terms of
Eqs. (6.11.3) through (6.11.5), the other half and all other terms come from
spherical Neumann functions. Yet, all Poynting vector terms that describe
unidirectional energy flow are products of a spherical Bessel term and a
spherical Neumann function term. A possible radiation scenario is that the
picostructure of an eigenstate evolves to produce the Neumann function
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terms of Tables A.30.2 through A.30.4; the parity is wrong for a regenerative
drive to also produce the spherical Bessel function term. With this field the
source is immersed in its own standing energy field without an energy loss
from the atom. An incoming wave, be it part of the equilibrium thermal
radiation field or an externally applied one, is described using only spherical
Bessel function terms. When the two fields are superimposed and are of the
appropriate frequency, phase, and orientation, all field forms are present
that are needed for radiation to occur and the external field needs supply
only a minor part of the energy output. Absorption occurs when an emitted
photon encounters a like atom in the lower energy eigenstate; the photon has
the necessary array of phases and magnitudes to drive absorption. Planck
could not have been aware of this when he wrote of extended photons “a
quantum would never again be in a position to concentrate its energy at a
spot strongly enough to detach an electron from its atom.”

As described herein, the primary historical obstacle to understanding
atomic-level phenomena was that the persons involved lacked the tools nec-
essary to account for the radiation reaction force of the generated fields,
and they modeled an electron as a point charge. Reasoning on this basis
they were forced to conclude that electromagnetic field theory is not totally
applicable within atoms. We show that consistent application of electromag-
netic field theory within atoms, without restrictions, leads to self-consistent
results and to quantum theory itself.

A question fundamental to all of quantum theory is why an individual
eigenstate electron acts as a statistical ensemble. We note with interest
that one of several possible satisfactory models is an electron composed of
string-sized objects which, when free, form into a droplet sized on the order
of the Lorentz electron but, when under the influence of radiation reaction
forces, expand to fill the full eigenstate. A primary supporting argument
for this model is the development of Schrödinger’s equation, a necessary
but insufficient result. The principal argument is the hitherto unavailable
full field solution of the full photon problem.

The authors suggest that within this book the parsimonious use of sep-
arate postulates and the totality of the results, taken together, are strong
circumstantial evidence for extended, nonlocal electrons and the full appli-
cability of electromagnetic theory within atoms.
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Appendices

1. Introduction to Tensors

The application of field concepts to classical physics is made easier by the
use of tensors. Tensor notation simplifies what would otherwise be tedious
notational bookkeeping. The simplest and lowest rank tensor is a scalar,
the next higher ranking tensor is a vector, and higher order tensors are
referred to simply as tensors:

Table A.1.1. Properties
of Tensors.

Rank

r = 0 Scalar
r = 1 Vector
r = 2 Tensor

The number of numbers that it takes to construct a tensor, N0, depends
upon the rank of the tensor and the number of dimensions. If N and r
are, respectively, the number of dimensions and the rank, the number of
numbers is:

N0 = Nr (A.1.1)

Independently of the number of dimensions, a scalar is fully described by a
single number. Examples are the speed of light, c, and electron charge, q.
Scalars have the same value in all inertial frames.

It takes as many numbers as there are dimensions to describe a vec-
tor. Examples of vectors are electric field intensity, velocity, and position.
Let vector, A, be known in three dimensions. The three numbers rep-
resent components along each of the three orthogonal coordinate axes,
(x1, x2, x3). If the same vector is determined using a set of axes rotated
to new coordinate positions (x′

1, x
′
2, x

′
3) the result is the new vector

323
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components:

A′
1 = A1 cos(x′

1, x1) + A2 cos(x′
2, x1) + A3 cos(x′

3, x1)
A′

2 = A1 cos(x′
1, x2) + A2 cos(x′

2, x2) + A3 cos(x′
3, x2)

A′
3 = A1 cos(x′

1, x3) + A2 cos(x′
2, x3) + A3 cos(x′

3, x3)
(A.1.2)

The directional cosine of the angle between axis “i” in the prime coordinates
and axis “j” in the unprimed coordinates is signified by cos(x′

i, xj). With
the definition that the direction cosine cik = cos(x′

j, xj), Eq. (A.1.2) may
take the more compact form:

A′
j =

3∑
k=1

cikAk (A.1.3)

It follows that:

Ar =
3∑

k=1

ckrA′
k (A.1.4)

An example of a second rank tensor is the stress tensor in crystals. Such
a tensor transforms between coordinate systems as:

T′
rs =

3∑
i=1

3∑
j=1

cricsjTij (A.1.5)

The number of direction cosines for a transformation between coordinates
systems is the same as the rank of the tensor.

Like all other vectors, a position vector transforms between coordinate
frames as:

x′
1 = c11x1 + c12x2 + c13x3

x′
2 = c21x1 + c22x2 + c23x3

x′
3 = c31x1 + c32x2 + c33x3

(A.1.6)

By definition the rotation matrix is:

(cij) =


c11 c12 c13

c21 c22 c23

c31 c32 c33


 (A.1.7)

The length of a differential vector in three dimensions is:

(∆r)2 ≡ (∆x′
1)

2+(∆x′
2)

2+(∆x′
3)

2 ≡ (∆x1)2+(∆x2)2+(∆x3)2 (A.1.8)
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The transformation equalities derived from Eq. (A.1.8) are:

c2
11 + c2

21 + c2
31 = 1 = c2

12 + c2
22 + c2

32 = c2
13 + c2

23 + c2
33 (A.1.9)

This may be written as

3∑
i=1

cijcij = 1 and
3∑

i=1

cijcik = 0; j �= k

The Kronecker delta function is defined by the relationship:

δjk = 1 if j = k; δjk = 0 if j �= k (A.1.10)

Using this definition, the condition on directional cosines may be written
more compactly as:

3∑
i=1

cijcik = δjk (A.1.11)

A useful exercise is to show the determinant is normalized:

det|cij| = 1 (A.1.12)

Solution: Let the volume of cube x1x2x3 equal one. The volume in the
transformed coordinates is unchanged by describing it in another frame, so
it too is equal to one. The volume is given by:

V = x ′
1 · (x ′

2 × x ′
3) = 1

Writing out cross products in terms of directional cosines gives:

x ′
2 × x ′

3 = x1(c22c33 − c23c32) + x2(c33c11 − c31c13) + x3(c11c22 − c12c21)

From which it follows that:

x ′
1 · (x ′

2 × x ′
3) = [c11(c22c33 − c23c32) + c12(c23c31 − c21c33)

+ c13(c21c32 − c22c31)]

The determinant of cij is:

|cij| = c11(c22c33 − c23c32) + c12(c23c31 − c21c33) + c13(c21c32 − c22c31)

Comparing the above equations gives:

|cij| = 1
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2. Tensor Operations

A common summation convention that reduces the number of symbols that
would otherwise be required is that if an index occurs twice a summation
over all possible values is required. That is:

cijcik = δjk (A.2.1)

Consider some arithmetic operations on tensor fields. Tensor addition is
defined only for tensors of equal rank; for example, addition of a scalar and
a vector is not defined. Addition of tensors of equal rank is by:

Cij = Aij + Bij (A.2.2)

Proof consists of showing that the sum obeys the coordinate rotation prop-
erties of a second rank tensor. In Eq. (A.2.2) indices “i” and “j” appear only
once in each term and, therefore, are running indices. Equation (A.2.2) con-
sists of nine separate summations.

Subtraction is accomplished by multiplying Bij by minus one and
adding; multiplication is defined between tensors of arbitrary rank. By
definition,

Ci..jr..s = Ai..jBr..s (A.2.3)

The rank of C is the sum of the ranks of A and B. For example the product
of vector Ai and scalar a is aAi, another vector. The product between
two vectors is a second rank tensor, for example the product of Ai and
Bj is Cij = AiBj, where indices “i” and “j” are both running indices; Cij

represents nine numbers.
Division by tensors other than rank zero is not defined.
In addition to these scalar-like arithmetic operations there are opera-

tions confined to tensors. Tensor contraction is accomplished by equating
two indices. Equal indices signify a summation and summation results in a
tensor reduced in rank by two from the initial one. The process is, therefore,
restricted to tensors of rank r ≥ 2. As an example:

A′
rstu = cricsjctkcu
Aijk
 (A.2.4)

After equating “s” and “t” and summing:

A′
rssu = cricsjcskcu
Aijkl (A.2.5)

Since:

csjcsk = δjk and A′
rssu = cricu
Aijj
 (A.2.6)

This is a tensor of rank two less than the starting one.
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A common example is the scalar product between two vectors, Ai and
Bi. To evaluate, begin with the product:

Cij = AiBj (A.2.7)

Equating indices “i” and “j” and summing over the indices gives:

Cii = AiBi = D (A.2.8)

The product forms scalar D.

3. Tensor Symmetry

Physically real tensors are either symmetric or antisymmetric. Terms of
different symmetry are defined as:

Symmetric tensor Arstu = Artsu

Antisymmetric tensor Arstu = −Artsu
(A.3.1)

Symmetric and antisymmetric tensors have, respectively, N(N + 1)/2 and
N(N − 1)/2 terms.

An important special case is a three dimensional tensor of rank two, say
Tij. Such tensors transform as:

T′
ij = circjsTrs (A.3.2)

Equation (A.3.2) is short hand notation for the nine terms of T′
ij, each of

which contains nine separate numbers. For example:

T′
12 = c1rc2sTrs = [c11c21T11 + c11c22T12 + c11c23T13

+ c12c21T21 + c12c22T22 + c12c23T23

+ c13c21T31 + c13c22T32 + c13c23T33] (A.3.3)

If Tij is antisymmetric, Tij = −Tji and the transformation simplifies to:

T′
23 = c11T23 + c12T31 + c13T12

T′
31 = c21T23 + c22T31 + c23T12

T′
12 = c31T23 + c32T31 + c33T12

(A.3.4)

The proof of Eq. (A.3.4) follows by writing out the terms in the form:

T′
12 = [0 + c11c22T12 − c11c23T31 − c12c21T12 + 0 + c12c23T23

+ c13c21T31 − c13c22T23 + 0]
= (c11c22 − c12c21)T12 + (c12c23 − c13c22)T23 + (c13c21 − c11c23)T31
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Similarly:

T′
23 = (c21c32 − c22c31)T12 + (c22c33 − c23c32)T23 + (c23c31 − c21c33)T31

From the determinant:

c11(c22c33 − c23c32) + c12(c23c31 − c21c33) + c13(c21c32 − c22c31) = 1

Combining this result with cijcik = δjk results in:

c11c11 + c12c12 + c13c13 = 1

The latter two equations combine to show that:

c11 = (c22c33 − c23c32); c12 = (c23c31 − c21c33); c13 = (c21c32 − c22c31)

Substitution of this result back into the expansion results in Eq. (A.3.4.)
This result shows that an antisymmetric second rank tensor, Tij, trans-

forms like a vector. It is tempting to call it a vector, but if the coordinate
system is switched from a right hand system to a left-hand system the
components change sign. It is therefore a pseudovector.

4. Differential Operations on Tensor Fields

The gradient operation increases the rank of a tensor by one. As an example,
let σ(r) represent a scalar field. Taking the partial derivative:

∂σ(r)
∂xi

= Vi (A.4.1)

Make the equality:

∂σ(r)
∂xi

=
∂x′

j

∂xi

∂σ(r)
∂x′

j
= c′

ijVi

Combining gives:

Vi = c′
ijV

′
j (A.4.2)

Since Vi transforms as a vector, it is a vector, and the divergence opera-
tion decreases the rank of a tensor by one. The gradient and divergence
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operations may be conducted on tensors of any rank. For example:

Tij..kl =
∂Rij..k

∂x

(A.4.3)

σ(r) =
∂Vi

∂x

(A.4.4)

To show that σ(r) is a scalar, write it as:

σ(r) =
∂x′

k

∂xi

∂(c′
ijV

′
j)

∂x′
k

= c′
ijc

′
ik

∂V′
j

∂x′
k

=
∂V′

j

∂x′
j

= σ′(r) (A.4.5)

The divergence operation may be conducted on tensors of any rank:

Ti..j =
∂Ri..jk

∂xk
(A.4.6)

Proof follows in the same way as for Eq. (A.4.4.)
The curl operation begins with the vector differential operation:

Ti..j..kn =
∂Ri..j..k

∂xn
− ∂Ri..n..k

∂xj
(A.4.7)

This increases the rank by one. A particularly useful special case is for
vectors. Let:

Tin =
∂Ri

∂xn
− ∂Rn

∂xi
(A.4.8)

Note that since Tij is antisymmetric it has N(N − 1)/2 independent
numbers. In three dimensions, it has three, the same as a vector and we
already saw that antisymmetric second rank tensors transform like vectors.

Table A.4.1. Table of vector properties.

1 A × (B × C) = B(A · C) − C(A · B)

2 grad(φψ) = ∇(φψ) = φ∇ψ + ψ∇φ

3 div(φA) = ∇ · (φA) = φ∇ · A + ∇φ · A
4 curl(φA) = ∇ × (φA) = φ∇ × A + ∇φ × A

5 ∇ · (A × B) = B · (∇ × A) − A · (∇ × B)

6 ∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B

7 ∇(A · B) = A × (∇ × B) + B × (∇ × A) + (B · ∇)A + (A · ∇)B

8 ∇2(1/r) = 0, if r > 0

9 ∇2A = ∇(∇ · A) − ∇ × (∇ × A)
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Table A.4.2. Integrals over
closed surfaces.

10
∮

A · dS =
∫

(∇ · A)dV

11
∮

φ dS =
∫

(∇φ)dV

12
∮

A × dS = −
∫

(∇ × A)dV

Table A.4.3. Integrals over
open surfaces.

13
∮

φ d� =
∫

dS × ∇φ

14
∮

A · d� =
∫

(∇ × A) · dS

Therefore, the curl of a vector changes the vector to an antisymmetric
second rank tensor that is pseudovector. The pseudovector acts like a vector
in any given coordinate system but changes sign if the systems are changed
from a left to right hand system.

5. Green’s Function

The 4-Laplacian of the electromagnetic potential is defined by Eq. (1.5.4),
and repeated here:

∂2Aν

∂Xβ∂Xβ
= −µJν (A.5.1)

We seek to integrate that differential equation in order to obtain a general
expression for the electromagnetic potential itself. For this purpose, it is
helpful to define a similar but simpler function, to integrate that function,
then to use the integral to obtain an expression for the electromagnetic
potential. The function is Green’s function G(Xα, X′

α). By definition it is:

∂2G(Xα, X′
α)

∂Xβ∂Xβ
= −[δ(Xα − X′

α)]4 (A.5.2)

In Eq. (A.5.2), the four-dimensional delta function indicates the Dirac delta.
By definition the one dimensional Dirac delta function satisfies the integral
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relationship: ∫
f(x)d(x − x′)dx =

{
f(x′)
0

(A.5.3)

The upper or lower solution applies if the range of integration respectively
does or does not include x′. The integrand magnitude of a Dirac delta
function increases without limit and the width ∆x decreases without limit
in a way that retains a product value of one.

Construct the equation:∫
d[g(x) − g(x′)]dx =

∫ (
d[g(x) − g(x′)]

dg(x)/dx

)
dg(x)

It follows from the definition of the delta function that:∫
f(x)d[g(x) − g(x′)]dx =

f(x)
dg(x)/dx

∣∣∣∣
x=x′

(A.5.4)

The method used to integrate Eq. (A.5.1) is a four-dimensional extension
of a common three-dimensional technique. The procedure begins with the
quadruple integral:∫∫∫∫ {

Aα
∂2G

∂Xβ∂Xβ
− G

∂2A
∂Xβ∂Xβ

}
dX1 dX2 dX3 dX4 = 0 (A.5.5)

The equality results since all integrals are evaluated at ±∞ and the inte-
grand decreases with distance rapidly enough so the integral is zero at the
infinite limits. Substituting Eq. (A.5.2) into the first term in the integrand
and substituting Eq. (A.5.1) into the second gives:

Aα(Xβ) = µ

∫∫∫∫
Jα(X′

γ)G(X′
γ , Xγ)dX1 dX2 dX3 dX4 (A.5.6)

Since Jα(X′
γ) is known but G(X′

γ , Xγ) is not, it is necessary to solve for
G(X′

γ , Xγ) using Eq. (A.5.6) before, in turn, solving for Aα(Xβ). For this
purpose, consider an aside on the four dimensional Fourier transform pair:

F(Xγ) =
(

1
2π

)2 ∫∫∫∫
H(Kγ)e−iXγKγ dK1 dK2 dK3 dK4

H(Kγ) =
(

1
2π

)2 ∫∫∫∫
F(Xγ)eiXγKγ dX1 dX2 dX3 dX4

(A.5.7)

Kγ and Xγ are unknown conjugate variables that are to be determined.
Making the definition that:

F(Xγ) = [δ(Xγ − X′
γ)]4 (A.5.8)



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and LightAppendices

332 The Electromagnetic Origin of Quantum Theory and Light

Combining Eqs. (A.5.7) and (A.5.8) results in:

[δ(Xγ − X′
γ)]4 =

(
1
2π

)2 ∫∫∫∫
e−iKγ(Xγ−X′

γ)dK1 dK2 dK3 dK4

H(Kγ) =
(

1
2π

)2

eiKγK′
γ

(A.5.9)

It is convenient to introduce an additional function, g(Kγ), defined by the
equation:

G(Xγ , X′
γ) =

∫∫∫∫
g(Kα)e−iKγ(Xγ−X′

γ)dK1dK2dK3dK4 (A.5.10)

To solve for the function g(Kγ) consider, as an example, the conjugate pair
x and kx to be a single dimension of Eqs. (A.5.2) and (A.5.9) with the
equalities:

∂2G(x − x′)
∂x2 = −δ(x − x′)

δ(x − x′) =
(

1
2π

)

G(x, x′) =
∫

g(kx)e−ikx(x−x′)dkx

(A.5.11)

Differentiating G(x, x′) twice with respect to x gives:

δ(x − x′) = k2
x

∫
g(kx)e−ikx(x−x′)dkx (A.5.12)

Combining gives:

k2
xg(kx) =

1
2π

(A.5.13)

Extension to four dimensions gives:

g(Kγ) =
(

1
2π

)2 1
KαKα

(A.5.14)

Substituting Eq. (A.5.14) back into Eq. (A.5.10) results in:

G(Xγ , X′
γ) =

(
1
2π

)4 ∫∫∫∫ e−iKγ(Xγ−X′
γ)

KαKα
dK1 dK2 dK3 dK4 (A.5.15)

It is convenient to use three-dimensional notation to evaluate
Eq. (A.5.15). For this purpose note that the four variable set (x,y,z,ict)
is complex and, if the exponentials are to remain oscillating functions, it is
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necessary that the conjugate variable set Kα also be complex. Writing it as
(kx, ky, kz, iω/c) and substituting into Eq. (A.5.15) gives:

G(Xγ , X′
γ) =

i

c

(
1
2π

)4 ∫∫∫∫ e−iKγ(Xγ−X′
γ)

k2 − ω2 dk dω (A.5.16)

where

k2 = k2
x + k2

y + k2
z ; dk = dkx dky dkz (A.5.17)

Equation (A.5.16) is the sum of two Cauchy integrals, integrals that may
be evaluated by use of the Cauchy integral identity:

2πi f(z′) =
∮

f(z)
z − z′ dz (A.5.18)

Introducing p as a small, real, positive number used as a construc-
tion tool whose value is eventually put equal to zero, Eq. (A.5.16) may
be written as:

G(Xγ , X′
γ) =

i c

(2π)4

∫∫∫
dk
∮

dω e−iKγ(Xγ−X′
γ)

(ω − ck − i p)(ω + ck + i p)

Moving the space portion of the exponential out from under the time-
dependent integral results in:

G(Xγ , X′
γ) =

i c

(2π)4

∫∫∫
dk e−ik ·r

∮
dω e−iω(t−t′)

(ω − ck − i p)(ω + ck + i p)
(A.5.19)

Restated, the problem is that given an electric charge at (r ′, t′) to find
the function G(Xγ , X′

γ). The field is zero before the charge is introduced.
That is, with t′′ = t – t′ all fields are zero for t′′ < 0. The last integral of
Eq. (A.5.19) may be evaluated first along the real axis and then back around
an infinite, complex ω path. For t′′ < 0 the return path encompasses the
lower half-plane, where no poles are enclosed. For t′′ > 0 the return path is
around the upper half of the complex plane, where two poles are enclosed.
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Evaluation of the integral gives:

∮
dω e−iωt′′

(ω − ck − i p)(ω + ck + i p)
= 2π i

[
e−it′′(ck+ip)

2ck
− e−it′′(−ck+ip)

2ck

]

=
2π

ck
sin(ckt′′) (A.5.20)

Combining Eqs. (A.5.20) and (A.5.21) gives:

G(Xγ , X′
γ) =

i

(2π)3

∫∫∫
1
k

dk e−ik ·r sin(ckt′′) (A.5.21)

Next let R be the space vector from source point r ′ to field point r ,
and choose it to be in the z-direction. Then k · r = kR cos θ where θ is the
polar angle. Also, replace dk with k2 dk sin θ dθ dφ:

G(Xγ , X′
γ) =

i

(2π)3

∫∫∫
k dk sin θ dθ dφ e−ikR cos θ sin(ckt′′) (A.5.22)

Evaluating the angular integrals over an enclosing sphere gives:

G(Xγ , X′
γ) =

2 i

(2π)2

∫ ∞

0

dk

R
sin(kR) sin(ckt′′) (A.5.23)

Since the integral of Eq. (A.5.23) is an even function of k, it may, without
changing the value of the integral, be replaced by the equation:

G(Xγ , X′
γ) =

i

8π2R

∫ ∞

−∞
dk[e−i(ωt′′−kR) − ei(ωt′′+kR)] (A.5.24)

Equation (A.5.10) shows that Eq. (A.5.24) is the sum of two Dirac delta
functions. The second one is evaluated at advanced time t′′ < 0 when
there are no charges, and if causality applies all results from it are equal to
zero. Working with the retarded time t′′ > 0 when there are charges, using
Eq. (A.5.3) it follows that:

δ(R − ct′′) = −1
c
δ(t′′ − R/c) (A.5.25)

Combining with the first term in the integrand of Eq. (A.5.24) gives:

G(Xγ , X′
γ) =

1
4i πRc

δ(t′′ − R/c) (A.5.26)

This completes the derivation of G(Xγ , X′
γ).
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6. The Potentials

To obtain potential Aν of a moving charge density, substitute Eq. (A.5.26)
into Eq. (A.5.5). The result is:

Aν(Xγ) =
µ

4π

∫∫∫
dV ′

∫
dt

Jν(X′
α)

R(Xγ , X′
γ)

δ(t′′ − R/c) (A.6.1)

Distance R(Xγ , X′
γ) is the distance between the source and field points.

Using Eq. (A.5.3) to evaluate Eq. (A.6.1) gives:

A(r , t) =
µ

4π

∫∫∫
J(r ′, t)

(R − R · v/c)
dV ′

Φ(r , t) =
µ

4π

∫∫∫
ρ(r ′, t)

(R − R · v/c)
dV ′

(A.6.2)

Equation (A.6.2) is the final form for the electromagnetic 4-potential of a
moving charge. Distance from the point of field emission to the field point
when the radiation is received. These are the Liénard–Wiechert potentials.

To obtain the potential Aν of an oscillating charge density, note that
Eq. (A.6.2) remains applicable except, for this case, the average velocity of
the oscillating charge is zero. The resulting equation is:

A0ν(r) eiωt =
µ

4π

∫
dV ′

∫
dt′

J0ν(r ′, t′)
R(r , r ′)

δ(t′, t − R/c) (A.6.3)

Subscripts “0” indicate the value is independent of time. Applying
Eq. (A.6.3) to a differential volume in space gives shows that in three dimen-
sions the potentials at position r due to a current density are given by:

A(r) eiωt =
µ

4π

∫
J(r ′) eiω(t−R/c)

R(r , r ′)
dV ′

Φ(r) eiωt =
1

4πε

∫
ρ(r ′) eiω(t−R/c)

R(r , r ′)
dV ′

(A.6.4)

These are the retarded potentials.

7. Equivalent Sources

It is shown in Sec. 1.10 that the force fields satisfy the partial differential
equations:

∇ × (∇ × E) + εµ
∂2E
∂t2

= 0 and ∇ × (∇ × B) + εµ
∂2B
∂t2

= 0 (A.7.1)
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Other helpful relationships are:

∇ × (∇ × E) = ∇(∇ · E) − ∇2E and εµ
∂2E
∂t2

= −k2E (A.7.2)

Combining the two equations shows that:

∇2E + k2E = 0 and ∇2B + k2B = 0 (A.7.3)

These are the Helmholtz equations for the field intensities. In rectangu-
lar coordinates the form of the vector and scalar Laplacian operators are
identical.

The objective is to obtain expressions for the field vectors at any field
point, r(x, y, z), external to a field-generating volume as a function of field
values on the surface of the volume. The development requires three vector
integral equations, the divergence theorem and two related ones. Let dS

represent a scalar differential area on the surface of the volume and n be a
unit vector directed normal to the surface at the same point. At the surface,
fields F and φ have the continuity properties of electromagnetic fields: they
are continuous with continuous first derivatives.∮

dS · F =
∫

∇ · FdV ;
∮

dS × F =
∫

∇ × FdV ;
∮

φ dS =
∫

∇φ dV

(A.7.4)

Next let φ and ψ each represent scalar fields and construct the func-
tion φ∇ψ. Substituting the new function into the divergence equation gives:∮

φ∇ψ · dS ≡
∫

∇ · (φ∇ψ) dV =
∫

[∇φ · ∇ψ + φ∇2ψ] dV (A.7.5)

Reversing the roles of φ and ψ and subtracting the result from Eq. (A.7.5)
gives ∮

[φ∇ψ − ψ∇φ] · dS =
∫

[φ∇2ψ − ψ∇2φ] dV (A.7.6)

For the special case of an oscillating charge, the defining equation for
Green’s function, Eq. (A.5.1), in three-dimensional form satisfies an equa-
tion similar to that of the Helmholtz wave equation. With point r ′(x′, y′, z′)
representing the source position:

∇2G(r , r ′) + k2G(r , r ′) = −δ(r , r ′) (A.7.7)

In free space, the solution is:

G(r , r ′) = −e−ik ·(r−r ′)

R(r , r ′)
(A.7.8)

The objective is to construct a virtual sphere about a source then to
calculate the fields at an arbitrary field point, r(x, y, z), in terms of the fields
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that exist on the surface of the virtual sphere. In this way, the fields can be
obtained without knowledge of the source itself. For this purpose, begin by
substituting into Eq. (A.7.6) that φ = G and ψ is equal to one component of
the electric field intensity. Then repeat twice with ψ representing the other
electric field components and sum over the three equations. The result is
the vector form of Eq. (A.7.6):∮

{E(r ′)[n′ · ∇′G(r , r ′)] − G(r , r ′)[n′ · ∇′]E(r ′)} dS′

=
∫

[E(r ′)∇2G(r , r ′) − G(r , r ′)∇2E(r ′)] dV ′ (A.7.9)

Next, let the field point be in the vicinity of the source and construct a
virtual sphere with a radius just large enough to contain both source and
field points. Substituting Eqs. (A.7.3) and (A.7.7) into the volume integrals
of Eq. (A.7.9) results in:∫

E(r ′)δ(r , r ′) dV ′ = E(r) (A.7.10)

The second term in the surface integral of Eq. (A.7.9) may be written:

G(n′ · ∇′)E = n′ · ∇′(GE) − E(n′ · ∇′G) (A.7.11)

Combining shows that:

E(r) =
∮

{2E(r ′)[n′ · ∇′G(r , r ′)] − [n′ · ∇′][G(r , r ′)E(r ′)]} dS′

(A.7.12)

This equation expresses the field intensity at the field point in terms of field
values on the surface of a virtual sphere surrounding both the source and
the field. Although Eq. (A.7.12) expresses the electric field intensity at the
field point in terms of values on the surface of an external virtual sphere,
it is not satisfactory since the divergence operation contains derivatives of
the electric field intensity.

Next, consider the field point to be outside the virtual sphere and, for
completeness construct a second virtual sphere. It is concentric with the first
one and of radius large enough to contain both source and field positions,
and it contains no other sources. With no sources, the volume integral of
Eq. (A.7.9) is equal to zero. The integral similar to Eq. (A.7.12), for this
case, is equal to zero:∮

{2E(r ′)[n′ · ∇′G(r , r ′)] − [n′ · ∇′][G(r , r ′)E(r ′)]} dS′ = 0 (A.7.13)
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The integral is taken over both the inner and outer spherical surfaces, with
the normal direction always extending outward from the field containing
volume. Next, let the radius of the outer surface increase without limit,
in which case, as discussed below, the integral over the exterior surface is
equal to zero. Comparing Eqs. (A.7.12) and (A.7.13) then shows that the
surface integral over the inner surface is equal to −E(r).

To restate Eq. (A.7.12) in a way that involves field vectors only note
that the last term of Eq. (A.7.13) may be written as a volume integral:∮

n′ · ∇′(GE) dS =
∫

∇′2(GE) dV

Substitute vector (GE) into the vector identity:

∇2(GE) = ∇[∇ · (GE)] − ∇ × [∇ × (GE)]

After combining and using the second and third integrals of Eq. (A.7.4) to
return to surface integrals, Eq. (A.7.13) goes to:∮

{2E(n′ · ∇′G) − n′[∇′ · (GE)] + n′ × [∇′ × (GE)]} dS = 0 (A.7.14)

Completing both the divergence and curl operations and using the Maxwell
equations to substitute for vector operations results in:∮

{2E(n′ · ∇G) − n′(E · ∇G) − i ωn′ × B + n′ × (∇′G × E)} dS = 0

(A.7.15)

Substituting for the triple product and simplifying results in:∮
{−i ω(n′ × B)G + (n′ · E)∇′G + (n′ × E) × ∇′G} dS = 0 (A.7.16)

By Eq. (A.7.13), the value of the surface integral is equal to −E(r).
However, as defined above the normal is from the field-containing region to
the source-containing region. Reversing the direction so the normal extends
outward gives:

E(r) =
∮

{−i ω[n′ × B(r ′)]G(r , r ′) + [n′ · E(r ′)]∇′G(r , r ′)

+ [n′ × E(r ′)] × ∇′G(r , r ′)} dS (A.7.17)

The requirements are that the field point is external to the contained region
and the source is fully contained by it.

This equation, when combined with Eq. (A.7.8), is the exact expres-
sion for the exterior electric field intensity in terms of the surface fields
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on a source-containing region. It is not necessary to know anything about
the source other than that it created the surface fields. Although both the
external electric field intensity and the fields on the surface are unique, the
inverse is not true: the source necessary to produce E(r) is not unique.

The corresponding expression for the magnetic flux density follows in a
similar way. Carrying out the calculation gives:

B(r) =
∮

{i ωµε[n′ × E(r ′)]G(r , r ′) + [n′ · B(r ′)]∇′G(r , r ′)

− [n′ × B(r ′)] × ∇′G(r , r ′)} dS (A.7.18)

With static sources Green’s function decreases as the inverse of the
radius, the electric field intensity decreases as the inverse square of the
radius, and the surface area increases as the square of the radius. Therefore
in the limit as the radius becomes infinite the contribution to field intensities
E(r) and B(r) due to the outer surface goes to zero. On the other hand,
for dynamic sources, Green’s function and the electric field intensity both
decrease as the inverse of the radius and the surface area increases as the
square of the radius. From this point of view, contributions of the outer
surface integral to E(r) and B(r) remain constant in the limit of infinite
radius. That the null result remains, however, may be seen by application
of a dynamic boundary condition: The radius of the outer sphere is greater
than the speed of light, c, times whatever time is of interest in the problem.
Even with dynamic sources, the outer surface integral has no influence on
fields E(r) or B(r).

8. A Series Resonant Circuit

An important special case is a series arrangement of inductor L, resistor R,
and capacitor C. The differential equation relating the current and
voltage is:

v(t) = L
di(t)
dt

+ Ri(t) +
1
C

∫
i(t) dt (A.8.1)

To obtain the steady state solution define the current in the circuit to be:

i(t) = I0 cos(ωt) (A.8.2)

Combining Eqs. (A.8.1) and (A.8.2) shows that the voltage across the
circuit is:

v(t) = I0R cos(ωt) − I0

(
ωL − 1

ωC

)
sin(ωt) (A.8.3)



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and LightAppendices

340 The Electromagnetic Origin of Quantum Theory and Light

The power into each element is:

p(t) = vS(t)i(t) (A.8.4)

The voltage across the element in question is vS(t). The power into each
element is:

pL(t) = −ωLI20
2

sin(2ωt) pC(t) =
I20

2ωC
sin(2ωt)

pR(t) =
RI20
2

[1 + cos(2ωt)]
(A.8.5)

The energy stored in each reactive element is:

WL(t) =
LI20
4

[1 + cos(2ωt)]

WC(t) =
I20

4ω2C
[1 − cos(2ωt)]

(A.8.6)

It would be convenient to relate the voltage and current by a multiplicative
constant. Comparing Eqs. (A.8.2) and (A.8.3) shows that this cannot be
done with trigonometric functions. However, adding an imaginary term to
Eq. (A.8.2) gives the exponential function:

i(t) = I0[cos(ωt) + i sin(ωt)] = I0 eiwt (A.8.7)

Equation (A.8.7) is the phasor form of the current. The phasor form of the
circuit voltage is:

v(t) =
[
R + i

(
ωL − 1

ωC

)]
I0 eiωt (A.8.8)

By definition, the input impedance, Z, of the circuit is equal to the complex
voltage-to-complex current ratio at the circuit terminals. For this case:

Z = R + i

(
ωL − 1

ωC

)
(A.8.9)

Using phasor notation the exponential is suppressed and the reader is sup-
posed to know it should be there. Using phasor notation in this case the
current and voltage are:

I = I0 and V = I0

[
R + i

(
ωL − 1

ωC

)]
(A.8.10)

Although phasors provide a constant multiplicative relationship between
the current and voltage, other problems arise. Each variable, i.e. phasor
current and phasor voltage, consists of terms that do and terms that do not
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represent physical reality, the actual and virtual terms. Separating actual
from virtual values in the voltage and current expressions can easily be
done since the actual values appear as real numbers and the virtual values
appear as imaginary ones. However, when products are taken things are not
so simple. Using power as an example, the product of the phasor current
and voltage consists of four types of terms: actual current times actual
voltage, actual current times virtual voltage, virtual current times actual
voltage, and virtual current times virtual voltage. Of these four products,
only the first type represents actuality and only it is desired. The second
and third types are multiplied by “i” and thus may be discarded. The fourth
type, however, is a real, unwanted number. Special multiplication rules are
necessary to eliminate the fourth type of product.

Consider circuit power as an example. From Eq. (A.8.5) the time varying
input power is:

p(t) =
I20
2

{
R[1 + cos(2ωt)] −

[
ωL − 1

ωC

]
sin(2ωt)

}
(A.8.11)

By way of contrast consider the product phasor Pc = VI∗/2:

Pc =
I20
2

{
R + i

[
ωL − 1

ωC

]}
(A.8.12)

The real and reactive powers shown in Eq. (A.8.11) are phased in time
quadrature. The real part of Pc is equal to the time-average power. The
imaginary part of Pc is equal to the magnitude of the reactive power. Since
the instantaneous value of the power is, in many cases, of no interest, the
remaining quantities of interest are both contained in Eq. (A.8.12): the
time-average real power, Pav, and the magnitude of the reactive power,
Pre. Because of these relationships, it is common when dealing with power
in electrical circuits, to work with the complex power:

Pc = Pav + i Pre (A.8.13)

Although the power is complex, it is not a phasor: both real and imaginary
parts represent physical reality and there is no virtual part.

9. Q of Time Varying Systems

Q is a dimensionless ratio that describes the quality of anything that oscil-
lates. Although developed for application to a closed system, such as an
electrical circuit, a bouncing ball, or a swaying bridge, Q is also useful
for dealing with the open system of a radiating antenna. For example,
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antenna Q is important in communication antennas since modulation is
essential, modulation requires a minimum bandwidth, and there is a direct
relationship between Q and bandwidth. For high power antennas, Q is a
measure of how much energy must be stored about an antenna to obtain
the minimum acceptable power output. This is significant in such diverse
applications as the decay of atomic states and electrically small, high power
antennas used to communicate around the surface of the earth. In nearly
all radiation problems, Q is a critical measure of antenna worthiness.

Since only energy within a half wavelength of an antenna can return
to it during steady state operation, only this near field energy affects
an antenna’s input impedance. To the driving terminals of an antenna,
energy radiated permanently away from the system is indistinguishable
from energy absorbed by a resistor; the power loss is therefore measured
as an effective antenna resistance. Since the energy that oscillates to and
from an antenna is indistinguishable from reactive energy, the oscillation
results in an effective radiation reactance. To the driving circuit, this
input!impedance is indistinguishable from the input impedance of a prop-
erly synthesized closed circuit. Hence, from the point of view of the driving
source, an antenna may be replaced by and analyzed as if it were an electric
circuit.

Anything that oscillates can be assigned a value of Q. Defining W (t) as
the energy stored in the system, the magnitude of the Q of any system is
defined to be the dimensionless ratio:

Q =
ωW (t)

dW (t)/dt
(A.9.1)

Q is a measure of how rapidly a system grows or decays. Rewriting
Eq. (A.9.1) for a lossy system gives:

dW (t)
dt

= − ω

Q
W (t) (A.9.2)

The solution of Eq. (A.9.2) is:

W (t) = W0 e−ωt/Q (A.9.3)

W0 is the initial value of energy. As an example, consider a ball bounc-
ing on a smooth, horizontal, surface. In a uniform gravitational field, the
energy is proportional to the height and, at maximum height the energy is
entirely due to gravity. The maximum height reached by the ball follows
the exponential decay of Eq. (A.9.3), and the ratio of heights on successive
bounces is e−ω/Q.
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Inductors require a current path and current paths, generally speaking,
are also resistive. The ratio of inductance, L, to resistance, R, depends upon
the nature of the path (the wire) and its geometrical arrangement. Since
the peak energy per cycle is equal to the total oscillating energy, a definition
derived from Eq. (A.9.1) is the peak cyclic value of stored energy-to-average
energy loss per radian ratio:

Q =
ωW (t)pk

p(t)av
(A.9.4)

The current and voltage in an RL circuit may be written:

i(t) = I0 cos(ωt)

v(t) = I0[R cos(ωt) − ωL sin(ωt)]
(A.9.5)

The power dissipated in the resistor is:

pR(t) =
RI20
2

[1 + cos(2ωt)] (A.9.6)

The energy stored in the inductor is:

WL(t) =
LI20
4

[1 + cos(2ωt)] (A.9.7)

Combining Eqs. (A.9.4), (A.9.6), and (A.9.7) shows that:

Q =
ωL
R

(A.9.8)

For an RLC circuit, the instantaneous energy-to-time average power ratio
is equal to:

LI20
4 [1 + cos(2ωt)] + I20

4C [1 − cos(2ωt)]
RI20
2 [1 + cos(2ωt)]

(A.9.9)

From Eq. (A.9.9) it follows that, if the inductive energy exceeds the capaci-
tive energy, Eq. (A.9.8) gives Q. If the capacitive energy exceeds the induc-
tive energy, Q is:

Q =
1

ωRC
(A.9.10)

At the resonant frequency, where subscript “av” denotes time-average val-
ues, a commonly used formula is:

Q =
2ωWLav

Pav
(A.9.11)

For these simple circuits, values calculated using Eqs. (A.9.9)–(A.9.11) are
equal at resonance. In more complicated circuits where the reactive elements
are driven with different phases, Eq. (A.9.11) is not exact.



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and LightAppendices

344 The Electromagnetic Origin of Quantum Theory and Light

A slightly modified definition that is sometimes used with simple sys-
tems is to equate Q with the tangent of the impedance phase angle. So long
as the system frequency is low enough for capacitive effects to be negligible
the definition reproduces Eq. (A.9.8) for the simple case of an RL circuit.
Using all three definitions, results with lossy capacitors are similar to those
with lossy inductors. By all three definitions, a capacitor C in series with
resistor R simply replaces ωL by 1/ωC.

Q = 1/(ωCR) (A.9.12)

With an antenna radiating in the steady state since time t = −∞ there
is an infinite amount of energy in the field. The difficulty with calculating
Q is separate the finite field that returns to the source upon shutdown
from that which does not. During steady state operation, the magnitudes
of the field intensities decrease with increasing radius. The Maxwell stress
tensor shows that radiation fields exert an expansive self-pressure equal to
the gradient in field energy density. In this way, the tensor describes forces
acting to drive the field energy ever outward. However, upon source turnoff,
shutdown, the inverse is true. If the fields vanish near the source the tensor
describes compressive forces that act to drive the field energy back to the
source; it is the returned energy that forms the numerator of the expression
for Q, see Eq. (A.9.1).

10. Bandwidth

The normalized bandwidth is defined as the ratio of the frequency difference
between the two points at which a resonant circuit drops to half the resonant
power (half power points) divided by the resonant frequency.

By definition, the resonance frequency of a series circuit is that fre-
quency at which the reactive power vanishes. From Eq. (A.8.3) the input
voltage is:

v(t) = I0R cos(ωt) − I0

[
ωL − 1

ωC

]
sin(ωt) (A.10.1)

From Eq. (A.8.11) the input power is:

p(t) =
I20
2

{
R[1 + cos(2ωt)] −

[
ωL − 1

ωC

]
sin(2ωt)

}
(A.10.2)

The resonance frequency, ω0, is the frequency at which the reactive power
vanishes. It is equal to:

ω2
0 =

1
LC

(A.10.3)
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To begin a dimensionless analysis of bandwidth introduce the expressions:

ω1 = ω0(1 + δ) and ω2 = ω0(1 − δ) (A.10.4)

Frequencies ω1 and ω2 are the half power frequencies. With no loss of rigor,
it is convenient to have the circuit be subject to a constant current input.
For that case, the dissipated power drops by half when the real and reactive
voltage magnitudes are equal. This occurs for:

ω0L
R

=
δ(2 + δ)
(1 + δ)

∼= 2δ (A.10.5)

The bandwidth is 2δω0. A result of combining Eqs. (A.10.4) and (A.10.5) is:

Q ∼= 1
2δ

=
ω0

ω1 − ω2
(A.10.6)

For more complicated circuits, the actual circuit may be replaced by
its equivalent Thévenin or Norton circuit and analyzed in a similar way.
For structured circuits in which different passive elements have differently
phased driving currents the inductive and capacitive energies are not in
phase quadrature. The peak value of stored energy contains contributions
from both inductors and capacitors.

11. Instantaneous and Complex Power in Radiation Fields

To compare methods of describing power, for steady-state radiation fields
return to the Maxwell equations using H notation, Eqs. (1.6.8) and (1.6.11):

∇ × E + µ
∂H
∂t

= 0 ∇ · µH = 0

∇ × H − ε
∂E
∂t

= J ∇ · εE = ρ

(A.11.1)

Integrating over any closed volume and using Gauss’s law gives:∮
N · dS +

∫ (
µH · ∂H

∂t
+ εE · ∂E

∂t

)
dV = −

∫
E · JdV (A.11.2)

This is the Poynting theorem, a restatement of Eq. (1.9.9). Vector N is
defined by Eq. (1.8.5). The term on the right side of Eq. (A.11.2), complete
with the sign, is the rate at which energy enters the volume. The volume
integral on the left is the rate at which energy enters the field. Conserva-
tion of energy requires the first term on the left to be the rate at which
energy leaves through the surface. This interpretation is independent of any
particular wave shape.
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When dealing with sinusoidal, steady state radiation it is often conve-
nient to use phasor notation. With exp(i ωt) time dependence the phasor
version of Maxwell’s equations is:

∇ × Ẽ + i ωµH̃ = 0 ∇ · µH̃ = 0

∇ × H̃ − i ωεẼ = J̃ ∇ · εẼ = ρ
(A.11.3)

By definition the complex Poynting vector is:

Nc = Ncr − i Nci = Ẽ × H̃∗/2 (A.11.4)

Taking the divergence gives

∇ · Nc =
1
2
[H̃∗ · (∇ × Ẽ) − Ẽ · (∇ × H̃∗)] (A.11.5)

Integrating Eq. (A.11.5) over the same closed volume as used with
Eq. (3.11.2), substituting from Eq. (A.11.3), and using Gauss’s law gives:∮

Nc · dS = 2iω

∫
1
4
(µH̃ · H̃∗ − εẼ · Ẽ∗)dV − 1

2

∫
Ẽ · J̃∗ dV (A.11.6)

The last term of Eq. (A.11.6), complete with sign, is the average rate at
which energy enters the volume. Since the first term on the right has no real
part, the real part of the left side must be the rate at which energy leaves
the volume. The imaginary part of the left side is equal to 2ω times the
difference between the mean values of electric and magnetic field energy
in the volume plus the imaginary part of the second term and, in most
instances, that term is real. It follows that:

(WM − WE) =
1
2ω

Im
∮

Nc · dS (A.11.7)

As a side remark, note that although the complex Poynting vector is a
complex quantity, it is not a phasor, since both real and imaginary parts
represent actual quantities.

Consider the volume of integration to be spherical, let δ be a vanishingly
small distance, and place the source currents on the sphere. Consider three
volumes: (i) A virtual sphere contains all radii less than a − δ; there are no
sources and all fields are ignored. (ii) Concentric spheres of radii within the
range a ± δ; this region contains all sources. (iii) Exterior region contains
all radii larger than a + δ; there are fields but no sources.

Since the exterior region contains no currents, within that region the
current-containing integral of Eq. (A.11.6) is equal to zero. Since the volume
integral on the left has no real part the sum of the real part of the surface
integral taken at infinity and at a + δ is equal to zero. For finite fields,
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in the limit of infinite radius the imaginary portion of Nc decreases more
rapidly than 1/r2. Therefore, as the radius becomes infinite the imaginary
part of the surface integral is equal to zero and the imaginary part at radius
a+ δ is equal to (ω/2)×{the difference between the time-average magnetic
and electric field energies}:

Im
[∮

Nc · dS
]

a+δ

=
ω

2

∫
{µH̃ · H̃∗ − εẼ · Ẽ∗} dV (A.11.8)

Within the source region, a ± δ, the volume is proportional to 2δ. There
are no singularities in the fields and the first volume integral goes to zero
with δ. This leaves:

Im
[∮

Nc · dS
]

+
1
2
Im
[∫

Ẽ · J̃∗ dV

]
= 0 (A.11.9)

For simplicity consider the special case where radius a � λ, an elec-
trically small antenna. Sources may then be considered as circuit elements
and the current containing integral of Eq. (A.11.6) may be written as:

1
2

∫
Ẽ · J̃∗ dV =

1
2

k∑
j=1

VjI∗j (A.11.10)

With more than one current source, unless the sources meet one of the
phase conditions of Eq. (3.1.13) powers do not combine by simple addition.
Therefore, unless that condition is met Eq. (A.11.10) does not correctly
describe the complex power. If not, the right side of Eq. (A.11.6) is not the
complex power and, if it is not, neither is the surface integral.

12. Conducting Boundary Conditions

Let an electric field intensity exist in the vicinity of a smooth boundary
about a closed volume that is immersed in the field. The volume is arbitrary
in size and shape. Requirements on the volume are that its size be much
less than a wavelength, in all three dimensions, and that it includes regions
on both sides of the boundary. Apply the condition of Eq. (1.6.8), that:

∇ · E = ρ/ε (A.12.1)

Evaluate the integral of Eq. (A.12.1) over the volume in question, with the
result: ∫

∇ · EdV =
∮

E · dS = q/ε (A.12.2)

Symbol “q” indicates all charge within the volume. Next, let the dimension
normal to the boundary become vanishingly small on both sides of the
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boundary so the shape approaches that of a disc. The contribution to the
surface integral due to electric field intensity normal to the disc is thereby
vanishingly small. Thus, only the normal components of the field intensity
are of interest, and Eq. (A.12.2) goes to:∮

E · dS = ρ/ε (A.12.3)

Symbol ρ indicates the charge per unit area at the interface. From
Eq. (A.12.3), since charge density in free space is equal to zero the nor-
mal component of the electric field intensity on any virtual boundary is
continuous.

If an electric field intensity existed inside a nearly ideal conductor, it
would drive a nearly infinite current density that would, in turn, absorb a
nearly infinite amount of power. Therefore an electric field intensity inside
an ideal conductor is zero. In turn, if an electric field intensity is applied
normal to the surface of an ideal conductor, by Eq. (A.12.3) it is equal to
the charge density on the surface normalized by the permittivity of free
space.

For a magnetic field intensity, by Eq. (1.6.11):

∇ × E = −∂B
∂t

(A.12.4)

Consider the surface integral of Eq. (A.12.4) over an open area that, like
the volume of Eq. (A.12.1), extends on either side of a smooth boundary.
The integral is: ∮

E · d� = −
∫

∂B
∂t

· dS (A.12.5)

The symbol d� indicates differential distance along the periphery of the open
area. Next, let the dimension normal to the boundary become vanishingly
small. In this limit, the open area becomes vanishingly small and since B is
finite, the entire right side of the equation is vanishingly small. Therefore,
the line integral of the electric field intensity around the loop is equal to
zero. Since the length of the loop is the same on either side of the boundary,
and since d� is oppositely directed on either side, the tangential component
of the electric field intensity is continuous through virtual boundaries. At
a boundary between free space and a conductor since the electric field
component inside the conductor is equal to zero it is also equal to zero just
off the conducting surface.
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Let n be a unit vector normal to a smooth surface. For a virtual surface,
the boundary separates regions one and two. For a conducting surface, the
field is in the free space region only:

Virtual Surface

n × (E1 − E2) = 0; n · (E1 − E2) = 0
(A.12.6)Conducting Surface

n × E = 0; n · E = ρS/ε

Consider a closed volume that is immersed in a magnetic field. Like the
volume considered for the normal component of the electric field intensity,
it may be arbitrary in size and shape. The requirements are that its size be
much less than a wavelength, in all three dimensions, and that it includes
regions on both sides of the boundary. Apply the condition of Eq. (1.6.11):

∇ · B = 0 (A.12.7)

Take the volume integral of Eq. (A.12.7) over the volume in question, with
the result: ∮

B · dS = 0 (A.12.8)

Since Eq. (A.12.8) applies to a closed volume, let the dimension normal to
the boundary become vanishingly small so the shape approaches that of a
disc. It follows that the normal component of B is continuous through the
boundary. Inside a conductor, B is constant since otherwise Eq. (A.12.5)
shows that it would produce an electric field intensity there. For time vary-
ing radiation fields, the normal component of the magnetic field intensity
is equal to zero.

By Eq. (1.6.8):

∇ × B = µε
∂E
∂t

+ µJ (A.12.9)

Consider the surface integral of Eq. (A.12.9) over an open area that includes
a smooth boundary. The integral is:∮

B · d� = µε

∫
∂E
∂t

· dS + µ

∫
J · dS (A.12.10)

Let the dimension normal to the boundary become vanishingly small.
In this limit, the open area becomes vanishingly small and, since E is finite,
the first term on the right side is vanishingly small, leaving:∮

B · d� = µ

∫
J · dS = µIS (A.12.11)
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Symbol IS represents the total electric current I that flows through the
open area. In free space, there is no current and the line integral of the
magnetic field intensity around the loop is equal to zero. Since surface cur-
rents may exist on conductors, the tangential component of a time varying
magnetic field just off the surface of a conductor is equal in magnitude and
perpendicular in direction to the current per unit length on the surface:

n × B = µIS (A.12.12)

Summarizing boundary conditions:

Virtual Surface

n × (B1 − B2) = 0; n · (B1 − B2) = 0
(A.12.13)

Conducting Surface

n × B = µIS; n · B = 0

Both field vectors are continuous through a virtual surface. On conduct-
ing surfaces the tangential component of the electric field intensity and the
normal component of a time varying magnetic field intensity are both equal
to zero. Just off the conducting surface, the normal component of the elec-
tric field intensity is equal to the surface charge density and the tangential
component of the magnetic field is equal to the surface current density in
amperes per meter.

13. Uniqueness

If, within a given boundary, a potential reduces to the correct value on
the boundary, or to the correct normal derivative of the potential on that
boundary, then that potential is unique. This theorem justifies the use of
arbitrary solution methods so long as the resulting solution obeys Laplace’s
equation in the charge-free regions. No matter how the solution is obtained,
if it satisfies these conditions the solution is unique.

Taking φ∇φ to be a vector field and substituting into the divergence
theorem gives:∫

φ∇φ · dS =
∫

∇ · (φ∇φ) dV =
∫ [

(∇φ)2 + φ∇2φ
]
dV (A.13.1)

Since Laplace’s equation is satisfied, the last term is equal to zero. Sup-
pose φ1 and φ2 are different potentials that have either equal values of
potential or normal derivatives thereof on every conductor in the field:∫

(φ1 − φ2)∇(φ1 − φ2) · dS =
∫

[∇(φ1 − φ2)]
2 dV = 0 (A.13.2)
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Either equality at the conductors requires the surface integral to equal
zero. Since the volume integral is equal to zero it follows that the integrand
is equal to zero everywhere. Therefore the potential and/or the electric field
intensity are equal everywhere in the field and, therefore, the functions are
the same.

For time-dependent solutions, it is only necessary to substitute functions
ψ1 and ψ2 of Sec. 1.12 into the divergence theorem and repeat the above
procedure.

14. Spherical Shell Dipole

Calculations of electromagnetic effects about virtual shells commonly
consider exterior effects but ignore interior ones. To establish the approxi-
mate magnitude of possible error, consider the interior-to-standing exterior
energy ratio for an electric dipole. For this purpose, begin with a spherical
shell of radius a that supports a surface electric charge density:

ρ(θ, t) =
q

2πa2 cos θ ei(ωt−ka) (A.14.1)

This is the static and time varying charge combination that occurs by
driving an originally uniformly charged sphere to its maximum extent as a
dipole. The resulting electric dipole moment, (see Eq. (A.28.7)), is:

pz =
2qa

3
ei(ωt−ka) (A.14.2)

The time dependence of the change is associated with the surface current
density:

Is = −i
qkc

2πa
sin θ ei(ωt−ka)θ̂ (A.14.3)

The time varying charge and current densities create, respectively, electric
and magnetic fields in both interior and exterior regions about the shell.
The field forms follow from Eq. (1.12.9); all coefficients are equal to zero
except those of order one and degree zero. The field components are:

Ere = F
2
σ

h1(σ) cos θ ei(ωt−σ) Eri = G
2
σ

j1(σ) cos θ ei(ωt−σ)

Eθe = −Fh•
1(σ) sin θ ei(ωt−σ) Eθi = −Gj•

1(σ) sin θ ei(ωt−σ)

ηHφe = i Fh1(σ) sin θ ei(ωt−σ) ηHφi = i Gj1(σ) sin θ ei(ωt−σ)

(A.14.4)

F and G are complex field coefficients to be determined. Phase factor
exp(−i ka) is added as a notational convenience.
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Applying the field boundary conditions of Eqs. (A.12.6) and (A.12.13)
gives:

qk

4πεa
ei(ωt−ka) = Fh1(ka) − Gj1(ka)

qk

2πεa
ei(ωt−ka) = Fh1(ka) + Gj1(ka)

(A.14.5)

Solving for the coefficients gives:

F =
3q

8πεa2

(ka)
h1(ka)

ei(ωt−ka) G =
q

8πεa2

(ka)
j1(ka)

ei(ωt−ka) (A.14.6)

Inserting the coefficients into the fields gives:

Exterior:

Ee =
3
2

( q
4πεa2

)( ka

h1(ka)

){
r̂

2
σ

h1(σ) cos θ − θ̂h·
1(σ) sin θ

}
ei(ωt−σ)

ηHe =
3i

2

( q
4πεa2

)( ka

h1(ka)

)
φ̂h1(σ) sin θ ei(ωt−σ)

(A.14.7)

Interior:

Ei =
1
2

( q
4πεa2

)( ka

j1(ka)

){
r̂

2
σ

j1(σ) cos θ − θ̂j•
1(σ) sin θ

}
ei(ωt−σ)

ηHi =
i

2

( q
4πεa2

)( ka

j1(ka)

)
φ̂j1(σ) sin θ ei(ωt−σ)

(A.14.8)

The fields just off the surface of an emitter with ka much less than one are:

Exterior:

Ee =
3
2

( q
4πεa2

)
{2r̂ cos θ + θ̂ sin θ}ei(ωt−ka)

ηHe =
3
2

( q
4πεa2

)
(ka)φ̂ sin θ ei(ωt−ka)

(A.14.9)

Interior:

E =
( q

4πεa2

)
{r̂ cos θ − θ̂ sin θ} ei(ωt−ka)

=
( q

4πεa2

)
ẑ ei(ωt−ka)

ηH =
i

2

( q
4πεa2

)
σφ̂ sin θ ei(ωt−ka)

(A.14.10)
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The time-average, outbound power density follows from Eq. (A.14.8):

Nr =
9
8η

( q
4πεa2

)2
∣∣∣∣ ka

h1(ka)

∣∣∣∣
2

Re(i h•
1(σ)h∗

1(σ)) sin2 θ

∼= 9
8η

( q
4πεa2

)2 (ka)6

σ2 sin2 θ (A.14.11)

The approximate equality is after incorporating ka � 1.
The time-average energy density at each exterior point is:

wT =
9

16ε

( q
4πa2

)2
∣∣∣∣ ka

h1(ka)

∣∣∣∣
2{ 4

σ2 |h1(σ)|2 cos2 θ

+
[|h•

1(σ)|2 + |h1(σ)|2] sin2 θ

}

wT ∼= 9
16ε

( q
4πa2

)2
(ka)6

{[
4
σ6 +

4
σ4

]
cos2 θ

+
[

2
σ2 +

1
σ6

]
sin2 θ

}
(A.14.12)

By Sec. 3.11, in this case the source-associated energy density is equal to
the energy density minus the energy density of the Poynting vector at each
point. Combining Eqs. (A.14.11) and (A.14.12) gives the source-associated
energy density:

wS ∼= 9
16ε

( q
4πa2

)2
(ka)6

{(
4
σ6 +

4
σ4

)
cos2 θ +

1
σ6 sin2 θ

}
(A.14.13)

Integrating over exterior space gives the total source associated standing
energy:

WS =
3q2

32πεa
(1 + 2ka) (A.14.14)

The time-average interior energy density follows from Eq. (A.14.8):

wI =
1
4ε

[ q
8πa2

]2{(
4 − 2σ2

5

)
cos2 θ +

(
4 +

σ2

5

)
sin2 θ

}
(A.14.15)

Integrating over interior space gives:

Wi =
(

q2

48πεa

)[
1 +

(ka)2

10

]
(A.14.16)

Taking the ratio of Eq. (A.14.16) to Eq. (A.14.14) shows the ratio of the
source-associated energies is:

WI/WS ∼= 2/9 (A.14.17)
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For the important case of a radiating dipole shell the often-ignored time-
average interior stored energy is about 22% of the exterior source associated
energy. So long as the region remains small the ratio is independent both
of size and wavelength.

15. Gamma Functions

Products in which successive factors differ by one occur frequently in the
formation of power series. If � is an integer, such products may be expressed
as special products of a certain number of integers, beginning with one. The
factorial of integer � is, by definition:

�! = 1 · 2 · 3 · · · · · � (A.15.1)

This may be written in the compact form:

�! = �(� − 1)! (A.15.2)

The same symbolism is useful for noninteger numbers, ν. A similar equa-
tion is defined:

ν! = ν(ν − 1)! (A.15.3)

Similarly:

ν(ν − 1)(ν − 2) . . . (ν − m + 1) =
ν!

(ν − m)!
(A.15.4)

Let f(ν) be any function that satisfies the condition:

f(ν) = νf(ν − 1) (A.15.5)

Taking the ratio of Eqs. (A.15.5) to (A.15.3) shows that:

φ(ν) =
f(ν)
ν!

=
f(ν − 1)
(ν − 1)!

= φ(ν − 1) (A.15.6)

It follows that φ(ν) is a periodic function of period ν.
Euler proposed that the definition of a noninteger factorial be:

ν! =
∫ ∞

0
tν e−t dt (A.15.7)

Euler’s definition is valid over the range:

−1 < ν ≤ 0 (A.15.8)
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Factorial ν! can be evaluated for any value of ν using Eq. (A.15.3). For
example, if −2 < ν < −1 then ν! can be written

ν! =
(ν + 1)!
ν + 1

=
(ν + 1)!(ν + 2)!
(ν + 1)(ν + 2)

=
(ν + 1)!(ν + 2)! · · · (ν + n)!
(ν + 1)(ν + 2) · · · (ν + n)

(A.15.9)

Equation (A.15.9) shows a simple pole exists for ν equal to a negative
integer. Other results of Eq. (A.15.7) are that:

0! = 1 = 1! (A.15.10)

(−1/2)! =
√

π (A.15.11)

(−ν)!(ν − 1)! =
π

sin(πν)
(A.15.12)

The Stirling formula for the approximate value of ν!, in the limit of large
values of ν, is:

ν! =
(ν

e

)ν √
2πν (A.15.13)

A related and frequently recurring product form is with succeeding
numbers that differ by two:

ν(ν − 2)(ν − 4)(ν − 6) · · ·
The series is denoted by the double factorial:

ν!! = ν(ν − 2)(ν − 4)(ν − 6) · · · (A.15.14)

It follows that for even and odd integers, respectively:

(2�)!! = 2
(�)! and (2� + 1)!! =
(2� + 1)!

(2�)!!
(A.15.15)

The left and right equations of Eq. (A.15.15) for � = 0 show that:

(0)!! = 1 and (1)!! = 1 (A.15.16)

Although Eq. (A.15.15) is in indeterminate form for � = −1, evaluating the
identity:

(�)!
(�)!!

= (� − 1)!! (A.15.17)

For the special case of � = 0, Eq. (A.15.17) gives:

(−1)!! = 1 (A.15.18)

Table A.15.1 contains a listing of useful and selected sums involving
factorials.
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Table A.15.1. A table of sums over factorials.

2
�∑

me;0

(� + m − 1)!(� − m − 1)!!
(� + m)!!(� − m)!!

U(m)δ(� + m, 2q) = 1

�∑
mo;1

(−1)(�−m)/2m(� + m − 1)!!(� − m − 1)!!
(� + m)!!(� − m)!!

δ(� + m, 2q) =
�!!

(� − 1)!!

2
�∑

me;2

(−1)(�−m)/2m2(� + m − 1)!!(� − m − 1)!!
�(� + 1)(� + m)!!(� − m)!!

δ(� + m, 2q) =
(� − 1)!!

�!!

4
�−1∑
m=0

(� + m)!!(� − m)!!
�(� + 1)(� + m − 1)!!(� − m − 1)!!

U(m)δ(� + m, 2q + 1) = 1

4
�∑

m=0

m2(� + m − 1)!!(� − m − 1)!!
�(� + 1)(� + m)!!(� − m)!!

δ(� + m, 2q) = 1

8
�∑

me;0

(−1)(�−m−1)/2(� + m)!!(� − m)!!
�(� + 1)(� + m − 1)!!(� − m − 1)!!

δ(� + m, 2q + 1)U(m) =
�!!

(� − 1)!!

2
�∑

mo;1

(−1)(�−m−1)/2m(� + m)!!(� − m)!!
�(� + 1)(� + m − 1)!!(� − m − 1)!!

δ(� + m, 2q + 1) =
(� − 1)!!

�!!

2
(�−m−1)/2∑

s=0

�(−1)sδ(� + m, 2q + 1)
(� + m + 2s + 1)!!(� − m − 2s − 1)!!

=
1

(� + m − 1)!!(� − m − 1)!!

16. Azimuth Angle Trigonometric Functions

Solutions of Eq. (1.11.11) are trigonometric functions:

Φ(φ) =
∑
m

[Cm cos(mφ) + Dm sin(mφ)] (A.16.1)

An equally satisfactory solution is:

Φ(φ) =
∑
m

[Ĉm ejmφ + D̂m e−jmφ] (A.16.2)

By definition j2 = (−1). For cases of interest here, the azimuth angle occu-
pies the full range of angle from 0 through 2π. This condition requires the
solution to satisfy the relationship:

Φ(φ) = Φ(φ + 2π) (A.16.3)

Equations (A.16.1) through (A.16.3) are jointly satisfied only if m repre-
sents the full range of positive integers, including zero.
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The trigonometric functions form an orthogonal set. Trigonometric
identities show that:∫ 2π

0
cos(mφ) cos(nφ) dφ =

1
2

∫ 2π

0
dφ〈cos[(m − n)φ] + cos[(m + n)φ]〉

(A.16.4)

Evaluating the integral on the right gives:∫ 2π

0
cos(mφ) cos(nφ) dφ =

(
sin[(m − n)φ]

2(m − n)
+

sin[(m + n)φ]
2(m + n)

)∣∣∣∣
2π

0
(A.16.5)

Since both m and n are positive integers, the second term on the right of
Eq. (A.16.5) is always zero; the first term is also positive unless m = n, for
which case the result is indeterminate. Evaluation may be accomplished by
either evaluating the indeterminate or by substituting into the integrand
the identity:

cos2(mφ) ≡ 1
2
[1 + cos(2mφ)] (A.16.6)

Integrating Eq. (A.16.6) gives:∫ 2π

0
dφ cos2(mφ) =

1
2

∫ 2π

0
dφ[1 + cos(2mφ)] = π (A.16.7)

Combining Eqs. (A.16.5) through (A.16.7):∫ 2π

0
cos(mφ) cos(nφ) dφ = πδ(m, n) (A.16.8)

The Kronecker delta function is indicated by δ(m, n). By definition:

δ(m, n) =
{

1 if m = n

0 if m �= n
(A.16.9)

It follows in a similar way that:∫ 2π

0
sin(mφ) sin(nφ) dφ = πδ(m, n) (A.16.10)

∫ 2π

0
sin(mφ) cos(nφ) dφ = 0 (A.16.11)

Combining Eqs. (A.16.8) through (A.16.11) gives:∫ 2π

0
ej(m−n)φ dφ = 2πδ(m, n) (A.16.12)
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For example, Eq. (A.16.12) may be used to evaluate the product
function:∫ 2π

0
ej(m−m′)φ sin φ dφ =

1
2j

∫ 2π

0
(ej(m′−m+1)φ − ej(m′−m−1)φ) dφ

= πj[δ(m′, m + 1) − δ(m′, m − 1)] (A.16.13)

It is often convenient to express functions in terms of the order of trigono-
metric functions. The formulas for going from power to order follow directly
from the geometry; all possible combinations are given by the four sums:

cos2
 φ ≡ 1
22


{

−1∑
k=0

2(2�)!
(2� − k)!k!

cos[2(� − k)φ] +
(2�)!
(�!)2

}
(A.16.14)

sin2
 φ ≡ 1
22


{

−1∑
k=0

(−1)
−k 2(2�)!
(2� − k)!k!

cos[2(� − k)φ] +
(2�)!
(�!)2

}

(A.16.15)

cos2
−1 φ ≡ 4
22


{

−1∑
k=0

(2� − 1)!
(2� − k − 1)!k!

cos[(2� − 2k − 1)φ]

}
(A.16.16)

sin2
−1 φ ≡ 4
22


{

−1∑
k=0

(−1)
−k−1 (2� − 1)!
(2� − k − 1)!k!

sin[(2� − k − 1)φ]

}

(A.16.17)

An expansion for 1/(sin φ) is necessary to accomplish needed calculations.
To form the expansion, note that since 1/(sin φ) is an odd function of φ it
is expressible as:

1
sin φ

=
∞∑
s=1

As sin(2s − 1)φ (A.16.18)

To evaluate coefficients As, multiply Eq. (A.16.18) by sin(2p − 1)φ and
integrate over the full range of the variable. The result is:∫ 2π

0
dφ

sin(2p − 1)φ
sin φ

=
∞∑
s=1

As

∫ 2π

0
dφ sin[(2s − 1)φ] sin[(2p − 1)φ]

= πApδ(p, s) (A.16.19)

The left side of Eq. (A.16.19) is a periodic trigonometric function for all
terms except p = 1 and all periodic terms integrate to zero. This leaves:∫ 2π

0
dφ

sin(2p − 1)φ
sin φ

= 2π (A.16.20)
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Substituting back into Eq. (A.16.18):

1
sin φ

= 2
∞∑
s=1

sin(2s − 1)φ (A.16.21)

The corresponding sum with cosines replacing sines is equal to zero:
∞∑
s=0

cos[(2s − 1)φ] = 0 (A.16.22)

It follows that:

1
sin φ

= 2j

∞∑
s=0

e−j(2s+1)φ (A.16.23)

17. Zenith Angle Legendre Functions

The easiest way to obtain the general solution of Eq. (1.11.10) is to first
solve the special case m = 0, for which case the equation is:

d2Θ
dθ2 + cot θ

dΘ
dθ

+ ν(ν + 1)Θ = 0 (A.17.1)

The character of separation constant ν depends upon the boundary condi-
tions applicable to the region in which the equation is applied. In the case
of spherical waves in free space, for example, ν is an integer, and denoted
by ν = �. For lossless waves in conical structures ν is real and noninteger.
If there is loss, ν is imaginary. In this book since only lossless problems are
considered ν is real in all cases.

Since Eq. (A.17.1) contains a singularity on the polar axes, the character
of the functions Θ(θ) in the region away from the axes are of special interest.
Rather than go directly to a solution, consider first the solution form in the
region of interest. A useful substitution is:

Θ =
1

(sin θ)1/2 Θ̃ (A.17.2)

Differentiating gives:

dΘ
dθ

=
1

(sin θ)1/2

dΘ̃
dθ

− cos θ

2(sin θ)3/2 Θ̃

d2Θ
dθ2 =

1
(sin θ)1/2

d2Θ̃
dθ2 − cos θ

(sin θ)3/2

dΘ̃
dθ

+
[

3 cos2 θ

4(sin θ)5/2 +
1

2(sin θ)1/2

]
Θ̃

(A.17.3)
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Combining Eqs. (A.17.1) through (A.17.3) gives:

d2Θ̃
dθ2 +

{(
ν +

1
2

)2

+
1
4
(1 + cot2 θ)

}
Θ̃ = 0 (A.17.4)

For θ near π/2, cot2 θ is much less than one and Eq. (A.17.4) is nearly
equal to:

d2Θ̃
dθ2 +

{(
ν +

1
2

)2

+
1
4

}
Θ̃ = 0 (A.17.5)

Solutions of Eq. (A.17.5) are:

Θ(θ) =
1

(sin θ)1/2 [Aν cos(κνθ) + Bν sin(κνθ)] (A.17.6)

By definition:

κν =

[(
ν +

1
2

)2

+
1
4

]1/2

(A.17.7)

Near the equator the zenith angle functions are trigonometric functions
of (κνθ) normalized by the square root of sin θ. The interval over which
Eq. (A.17.6) is valid increases with increasing values of ν.

To examine the solution near its singularity, begin near the positive
z-axis, where

cot θ ∼= 1
θ

(A.17.8)

Equation (A.17.1) has the form:

d2Θ
dθ2 +

1
θ

dΘ
dθ

+ ν(ν + 1)Θ = 0 (A.17.9)

Equation (A.17.9) is the cylindrical Bessel equation. To begin the solution
process, make the definition:

β = [ν(ν + 1)]1/2 (A.17.10)

The two independent solutions of Eq. (A.17.9) may be written as:

Θ(θ) = AνJ0(βθ) + BνY0(βθ) (A.17.11)

J0(βθ) and Y0(βθ) represent, respectively, cylindrical Bessel and Neumann
functions of zero order. In the limit as θ goes to zero, J0(βθ) goes to unity
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and Y0(βθ) becomes logarithmically singular:

Θ(0) = ĈνY0(0) (A.17.12)

By symmetry, near the negative z-axis the function takes the same form.
The local solution is:

Θ(π − θ) = ÂνY0(β(π − θ)) + B̂νJ0(β(π − θ)) (A.17.13)

Combining gives:

Θ(π) = D̂νJ0(0) + ĈνY0(0) (A.17.14)

It follows that if one solution of Eq. (A.17.1) is Pν(cos θ), the other is
Pν(−cos θ). The first solution is regular on the positive z-axis and singular
on the negative z-axis and the second solution is singular on the positive
z-axis and regular on the negative z-axis. Both functions are periodic, (see
Eq. (A.17.6)), in the center region. The full solution is:

Θ(θ) = AνPν(cos θ) + BνPν(−cos θ) (A.17.15)

For values of m different from zero it is convenient to rewrite
Eq. (A.17.1) by introducing the variable χ where:

χ =
1
2
(1 − cos θ) = sin2(θ/2) (A.17.16)

Derivatives are:
dΘ
dχ

=
dΘ

d(cos θ)
d(cos θ)

dχ
= −2

dΘ
d(cos θ)

d2Θ
dχ2 =

d2Θ
d(cos θ)2

[
d(cos θ)

dχ

]2
+

dΘ
d(cos θ)

d2(cos θ)
dχ2

(A.17.17)

Combining Eqs. (A.17.16) and (A.17.17) with Eq. (A.17.1) gives:

χ(1 − χ)
d2Θ
dχ2 + (1 − 2χ)

dΘ
dχ

+ ν(ν + 1)Θ = 0 (A.17.18)

A power series expansion results in:

Θ(χ) =
∞∑
j=0

ajχ
j

d
dχ

Θ(χ) =
∞∑
j=0

ajjχj−1 (A.17.19)

d2

dχ2 Θ(χ) =
∞∑
j=0

ajj(j − 1)χj−2
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Combining Eqs. (A.17.18) and (A.17.19) gives:

∞∑
j=0

[(j + 1)2aj+1 − j(j + 1)aj + ν(ν + 1)aj]χj = 0 (A.17.20)

Since Eq. (A.17.20) is an identity in χ, the coefficient of each power of χ

is separately equal to zero. It results in the recursion relationship:

aj+1

aj
=

j(j + 1) − ν(ν + 1)
(j + 1)2

(A.17.21)

If ν is an integer, the numerator of Eq. (A.17.21) is equal to zero at ν = j
and the series terminates. Substituting Eq. (A.17.21) in the first series of
Eq. (A.17.19) results in the solution:

Pν(cos θ) =
∞∑
j=0

(−1)j(ν + j)!
(j)!2(ν − j)!

sin2j
(

θ

2

)
(A.17.22)

Pν(−cos θ) is also a solution; changing the sign in Eq. (A.17.17) gives:

χ =
1
2
(1 + cos θ) = cos2

(
θ

2

)
(A.17.23)

Combining Eqs. (A.17.22) and (A.17.23) gives the second solution:

Pν(−cos θ) =
∞∑
j=0

(−1)j(ν + j)!
(j)!2(ν − j)!

cos2j
(

θ

2

)
(A.17.24)

Neither Eq. (A.17.22) nor (A.17.24) is fully an even or odd function of θ.
Since it is convenient to work with equations of definite parity, it is conve-
nient to define the new functions:

Lν(cos θ) =
1
2
{Pν(cos θ) + Pν(−cos θ)}

Mν(cos θ) =
1
2
{Pν(cos θ) − Pν(−cos θ)}

(A.17.25)

The functional symmetry is:

Lν(cos θ) = Lν(−cos θ); Mν(cos θ) = −Mν(−cos θ) (A.17.26)

Since the regions of convergence for Pν(cos θ) are −1 < cos θ ≤ 1 or
0 ≤ θ < π, the region of convergence for Lν and Mν are 0 < θ < π.
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18. Legendre Polynomials

To solve problems with the z-axis included in the region where a solution is
necessary, all functions must remain bounded at the endpoints: 0 ≤ θ ≤ π.
This happens only if separation constant n is an integer and the series
solution of Eq. (A.17.21) terminates. For that case both Eqs. (A.17.22)
and (A.17.24) remain bounded on both the ±z-axes, but are not indepen-
dent. Since the product �(�+1) is the same for � = n as it is for � = −(n+1),
solutions are the same for the range of integers respectively from 0 to +∞
and from −1 to −∞. Therefore, only positive values of � need be considered.

To characterize Legendre polynomials, it is more convenient to redo
the expansion than to work with the existing solutions. For this purpose,
rewrite Eq. (A.17.1) by replacing noninteger ν by integer � and defining
χ = cos θ, to obtain:

(1 − χ2)
d2Θ
dχ2 − 2χ

dΘ
dχ

+ �(� + 1)Θ = 0 (A.18.1)

The power series expansion is:

Θ(χ) =
∞∑
j=0

ajχ
j

dΘ(χ)
dχ

=
∞∑
j=0

ajjχj−1

d2Θ(χ)
dχ2 =

∞∑
j=0

ajj(j − 1)χj−1

(A.18.2)

Combining Eqs. (A.18.1) and (A.18.2) gives:
∞∑
j=0

[(j + 1)(j + 2)aj−2 − j(j + 1)aj + �(� + 1)aj]χj = 0 (A.18.3)

Since Eq. (A.18.1) is an identity in χ it follows that:

aj+2

aj
=

j(j + 1) − �(� + 1)
(j + 1)(j + 2)

(A.18.4)

Substituting Eq. (A.18.4) the expansion into the first part of Eq. (A.18.2)
gives:

Θ
(χ) = a0

∞∑
j=0

(−1)jχ2j(�)!!(� + 2j − 1)!!
(2j)!(� − 1)!!(� − 2j)!!

(A.18.5)
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Values are:

Θ0(χ) = a0; Θ1(χ) = a0(1 − 3χ2); Θ2(χ) = a0

(
1 − 10χ2 +

35
3

χ4
)

(A.18.6)
a0 is an arbitrary constant and is redefined for each value of � to make
Θ
(0) = 1. With that definition, functions Θ
(χ) are defined to be Legendre
polynomials of the first kind, and indicated by P
(cos θ). Therefore P
(χ)
is given by the series:

P
(χ) =
1
2


[
/2]∑
s=0

(−1)s

s!
(2� − 2s)!

(� − s)!(� − 2s)!
χ
−2s (A.18.7)

The symbol [�/2] indicates the largest integer contained in �/2. From
Eq. (A.18.7), it follows that:

P
(1) = 1; P2
+1(0) = 0; P2
(0) = (−1)
 (2
−1)!!
(2
)!! ;

P
(−χ) = (−1)
P
(χ)

Values of the important functional combinations on the axes are shown in
Table A.18.1.

For even values of �, the expansion may be written:

P
(χ) =
1

2
(�)!
d


dχ



∑
s=0

(−1)s(�)!
(s)!(� − s)!

χ2
−2s (A.18.8)

The binomial expansion is:

(χ2 − 1)
 =

∑

s=0

(−1)s(�)!
(s)!(� − s)!

χ2
−2s (A.18.9)

Table A.18.1. Values of selected functions on the axes.

P�(cos θ) dP1
� (cos θ)
dθ

P1
� (cos θ)
sin θ

θ = 0 1
1
2

�(� + 1)
1
2

�(� + 1)

θ = π (−1)� 1
2

�(� + 1)(−1)(�+1)/2 1
2

�(� + 1)(−1)(�−1)/2

θ =
π

2
i�

(� − 1)!!
�!!

δ(2q, �) i�
(� + 1)!!
(� − 2)!!

δ(2q, �) i�−1 (�)!!
(� − 1)!!

δ(2q + 1, �)
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Combining results gives another expression for Legendre polynomials:

P
(χ) =
1

2
(�)!
d


dχ

(χ2 − 1)
 (A.18.10)

Equation (A.18.10) is the Rodriques formula for Legendre polynomials.
Comparison using Eqs. (A.17.27) and (A.18.9) shows, for integer orders:

L2
(χ) = P2
(χ); M2
+1(χ) = P2
+1(χ) (A.18.11)

The second integer-order solution to Eq. (A.18.1) is commonly defined as:

Qν(χ) =
π

2 sin(νπ)
[Pν(χ) cos(νπ) − Pν(−χ)] (A.18.12)

Qν(χ) is obviously a solution of the Legendre differential equation and,
when ν is equal to integer �; it is in indeterminate form. Differentiating
numerator and denominator then letting ν become an integer:

Q
(χ) = Lim
ν→


1
2 cos(νπ)

[
−π sin(νπ)Pν(χ) + cos(νπ)

dPν(χ)
dν

− dPν(−χ)
dν

]

=
1
2

{
dPν(χ)

dν
− dPν(−χ)

dν

}
ν=


(A.18.13)

Using Eq. (A.18.13), the functions at the lowest three orders are:

Q0(χ) = ln[cot(θ/2)]

Q1(χ) = (cos θ) ln
(

cot
θ

2

)
− 1

Q2(χ) =
1
2
(3 cos2 θ − 1) ln

(
cot

θ

2

)
− 3

2
cos θ

(A.18.14)

Comparison with the noninteger functions, Eq. (A.18.12), shows that:

Q2
(χ) =
∂Mν(χ)

∂ν

∣∣∣∣
ν⇒2


Q2
+1(χ) =
∂Lν(χ)

∂ν

∣∣∣∣
ν⇒2
+1

(A.18.15)

In the remainder of this book we are concerned only with the zero-order
function, Q0(χ).
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19. Associated Legendre Functions

Associated Legendre functions are solutions for the extended case m > 0.
The Legendre differential equation, Eq. (1.11.10), may be rewritten as:

(1 − χ2)
d2Θ
dχ2 − 2χ

dΘ
dχ

+
[
ν(ν + 1) − m2

(1 − χ2)

]
Θ = 0 (A.19.1)

Solutions are most easily obtained by starting with the m = 0 equation and
differentiating m times to obtain:

(1 − χ2)
dm+2Θ
dχm+2 − 2(m + 1)χ

dm+1Θ
dχm+1 + [ν(ν + 1) − m(m + 1)]

dmΘ
dχm

= 0

(A.19.2)

Introducing construction function W(θ) and solving for the first two
derivatives:

Θ(θ) = W(θ) sinm θ

dΘ
dχ

=
dW
dχ

sinm θ − mW sinm−2 θ cos θ

d2Θ
dχ2 =

d2W
dχ2 sinm θ − 2m

dW
dχ

sinm−2 θ cos θ

+ m(m − 2)W sinm−4 θ cos2 θ − mW sinm−2 θ

(A.19.3)

Substituting Eq. (A.19.3) into Eq. (A.19.1) for the special case m = 0
results in:

d2W
dχ2 sin2 θ − 2(m + 1)

dW
dχ

cos θ + [ν(ν + 1) − m(m + 1)]W = 0

(A.19.4)

For the special case where ν = �, an integer, comparison of Eqs. (A.19.2)
and (A.19.4) shows that W is given by:

W
(θ) =
dmP
(cos θ)

dχm
(A.19.5)

Since Eq. (A.19.5) satisfies the associated Legendre differential equation,
the solution of that equation is:

Θ(θ) = Pm

 (cos θ) = sinm θ

dmP
(cos θ)
dχm

(A.19.6)

The equality holds for all integer orders, �, and degrees, m. Combining
Eq. (A.19.6) with the Rodriques formula shows that the corresponding
expression for associated Legendre functions is:

Pm

 (χ) =

1
(2�)!!

(1 − χ2)m/2 d
+m

dχ
+m
(χ2 − 1)
 (A.19.7)
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20. Orthogonality

Integral relationships for products of Legendre polynomials follow directly
from the differential equation, Eq. (A.19.1), for integer orders. Multiplying
the differential equation by another Legendre polynomial of the same degree
but unspecified order gives:∫ 1

−1
Pm

n (χ)
{

d
dχ

[
(1 − χ2)

d2Pm



dχ2

]
+
[
�(� + 1) − m2

(1 − χ2)

]
Pm




}
dχ = 0

(A.20.1)

To evaluate the left side, integrate the first term once by parts. The result is:∫ 1

−1

{
(1 − χ2)

dPm



dχ

dPm
n

dχ
+
[
�(� + 1) − m2

(1 − χ2)

]
Pm


 Pm
n

}
dχ = 0

(A.20.2)

Next exchange positions of � and n, repeat the process, and subtract the
second integral from the first. The result is:

[�(� + 1) − n(n + 1)]
∫ 1

−1
Pm


 (χ)Pm
n (χ) dχ = 0 (A.20.3)

The result shows that the associated Legendre polynomials form an orthog-
onal set.

To evaluate the integral with � = n, put I1 equal to the integral:

I1 =
∫ 1

−1
[Pm


 (χ)]2 dχ (A.20.4)

Combining Eqs. (A.19.7) and (A.20.4):

I1 =
(−1)m

[(2�)!!]2

∫ 1

−1
dχ

d
+m

dχ
+m
(χ2 − 1)


[
(χ2 − 1)m d
+m

dχ
+m
(χ2 − 1)


]
(A.20.5)

Integrating by parts � + m times leaves:

I1 =
1

[(2�)!!]2

∫ 1

−1
dχ

{
(1 − χ2)
 d
+m

dx
+m

[
(χ2 − 1)m d
+m

dx
+m
(χ2 − 1)


]}
(A.20.6)

Only the highest power of χ survives the indicated differentiation
operations:

d
+m

dχ
+m

[
(χ2 − 1)m d
+m

dχ
+m
(χ2 − 1)


]
=

d
+m

dχ
+m

[
χ2m d
+m

dχ
+m
χ2


]

=
(2�)!

(� − m)!
d
+m

dχ
+m
χ
+m =

(2�)!(� + m)!
(� − m)!

(A.20.7)
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Combining Eqs. (A.20.6) and (A.20.7) leaves:

I1 =
(2�)!(� + m)!

[(2�)!!]2(� − m)!

∫ 1

−1
dχ(1 − χ2)
 (A.20.8)

Using the binomial expansion, Eq. (A.18.9), and integrating:

I1 =
2(−1)
(2� − 1)!!(� + m)!

(2�)!!(� − m)!


∑
s=0

(−1)s�!
s!(� − s)!(2� − 2s + 1)

(A.20.9)

The sum may be written in closed form as:

I1 =
2

(2� + 1)
(� + m)!
(� − m)!

(A.20.10)

Combining Eqs. (A.20.3) and (A.20.10) gives the orthogonality relationship
for associated Legendre polynomials:

I1 =
∫ 1

−1
Pm


 (χ)Pm
n (χ)dχ =

2
(2� + 1)

(� + m)!
(� − m)!

δ(�,n) (A.20.11)

A similar integral, the value of which follows after a slight extension of
the above, is:

I2 =
∫ 1

−1
Pm


 (χ)Pm+2s

 (χ)dχ = (−1)s

2
(2� + 1)

(� + m)!
(� − m − 2s)!

(A.20.12)

21. Recursion Relationships

It is helpful to compile a table of identities involving associated Legendre
polynomials. A convenient starting point for determining the recursion rela-
tionships is Eq. (A.18.7). For the case that � is odd the upper limit is
(� − 1)/2. Substituting p = (� − 1 − 2s)/2 into the equation yields:

P
(χ) =
χ(−1)(
−1)/2

2


(
−1)/2∑
p=0

(−1)p(� + 1 + 2p)!
(2p + 1)!

(

−1−2p

2

)
!
(


+1+2p
2

)
!
χ
−2s

(A.21.1)

Rewrite the equation as:

P
(χ) = (−1)(
−1)/2 (�)!!
(� − 1)!!

(
−1)/2∑
s=0

(−1)sχ2s+1(� + 2s)!!(� − 1)!!
(2s + 1)!(�)!!(� − 1 − 2s)!!

(A.21.2)
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For the case of � even, the upper limit is �/2. In a similar way the equation
goes to:

P
(χ) = (−1)
/2 (� − 1)!!
(�)!!


/2∑
s=0

(−1)sχ2s(� − 1 + 2s)!!(�)!!
(2s)!(� − 1)!!(� − 2s)!!

(A.21.3)

With Eq. (A.21.3), replace � by (� + 1) and write out the first few terms,
then repeat with � replaced by (� − 1). The resulting series are:

P
+1(χ) = (−1)(
+1)/2 (�)!!
(� + 1)!!

×
{

1 − χ2

2!
(� + 2)!!

(�)!!
(� + 1)!!
(� − 1)!!

+
χ4

4!
(� + 4)!!

(�)!!
(� + 1)!!
(� − 3)!!

− · · ·
}

P
−1(χ) = (−1)(
−1)/2 (� − 2)!!
(� − 1)!!

×
{

1 − χ2

2!
(�)!!

(� − 2)!!
(� − 1)!!
(� − 3)!!

+
χ4

4!
(� + 2)!!
(� − 2)!!

(� − 1)!!
(� − 5)!!

− · · ·
}

These expressions combine to form the indicated sum:

�P
−1(χ) + (� + 1)P
+1(χ)

= (−1)(
−1)/2 (2� + 1)(�)!!
(� − 1)!!

{
χ2

1!
− χ4

3!
(� + 2)(� − 1) + · · ·

}

= (−1)(
−1)/2 (2� + 1)(�)!!
(� − 1)!!

(
−1)/2∑
s=0

(−1)sχ2s+2(� + 2s)!!(� − 1)!!
(2s + 1)(�)!!(� − 1 − 2s)!!

(A.21.4)

Combining Eqs. (A.21.3) and (A.21.5) results in:

(2� + 1)χP
(χ) = �P
−1(χ) + (� + 1)P
+1(χ) (A.21.5)

Proofs for even values of � follow in a parallel way and give the same result.
Equation (A.21.5) is the first recursion relationship.

The same technique with the indicated operations results in the second
recursion relationship:

(2� + 1)P
(χ) =
dP
+1(χ)

dχ
− dP
−1(χ)

dχ
(A.21.6)

The integral expression of Eq. (A.21.7) follows from Eq. (A.21.6):∫
P
(χ)dχ =

[
P
+1(χ) − P
−1(χ)

(2� + 1)

]
(A.21.7)
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Differentiating Eq. (A.21.5) by χ and adding �× Eq. (A.21.6) gives:

(� + 1)P
(χ) =
dP
+1(χ)

dχ
− χ

dP
(χ)
dχ

(A.21.8)

Differentiating Eq. (A.21.8) m times, multiplying through by sinm+1 θ, and
using Eq. (A.19.7) gives:

Pm+1

+1 (χ) = χPm+1


 (χ) + (� + m + 1) sin θ Pm

 (χ) (A.21.9)

A series of identities follows by mixing and matching. Selected ones are
listed in Table A.21.1.

Associated Legendre functions have even or odd parity, respectively, if
the sum (� + m) is even or odd:

Pm

 (χ) = (−1)
+mPm


 (−χ) (A.21.10)

Table A.21.1. A table of identities for legendre functions.

1
dPm

�

dθ
=

1
2
[(� + m)(� − m + 1)Pm−1

� − Pm+1
� ]

2
mPm

�

sin θ
=

1
2
[(� + m)(� − m + 1)Pm−1

�−1 + Pm+1
�−1 ]

3 sin θ
dPm

�

dθ
=

1
2� + 1

[�(� − m + 1)Pm
�+1 − (� + m)(� + 1)Pm

�−1]

4 cos θ Pm
� =

1
2� + 1

[(� − m + 1)Pm
�+1 + (� + m)Pm

�−1]

5 Pm+1
� = 2m cot θ Pm

� − (� + m)(� − m + 1)Pm−1
�

6 (� − m + 1)Pm
�+1 = (2� + 1) cos θ Pm

� − (� + m)Pm
�−1

7 (2� + 1) sin θ Pm
� = Pm+1

�+1 − Pm+1
�−1

8 Pm+1
�+1 = cos θ Pm+1

� + (� + m + 1) sin θ Pm
�

9 Pm+1
�−1 = cos θ Pm+1

�−1 − (� − m) sin θ Pm
�

10
dPm

�

dθ
= m cot θ Pm

� − Pm+1
�

11
dPm

�

dθ
= −m cot θ Pm

� + (� + m)(� − m + 1)Pm−1
�
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Let delta be a Kronecker delta and let q equal any of the field of positive
integers, including zero. At θ = π/2, the equator, functional values are:

Pm

 (0) = (−1)(
−m)/2 (� + m + 1)!

(� − m)!
δ(2q, � + m) (A.21.11)

dr

dθr
Pm


 (cos θ)
∣∣∣∣

π
2

= Pm+r

 (0) (A.21.12)

In the tables to follow, order is �, degree is m, and χ = cos θ. Polynomials are
even or odd functions of χ as (�+m) is even or odd, respectively; absence of
a superscript indicates degree 0. Normalization is chosen to make P
(1) = 1.

Table A.21.2 contains values of associated Legendre polynomials. Useful
recursion relationships for constructing the table are:

Pm

 (χ) =

1
� − m

[(2� − 1)χPm

−1(χ) − (� − 1 + m)Pm


−2(χ)]

Pm

 (χ) = [2(m − 1) cot θ Pm−1


 (χ) − (� − 1 + m)(� + 2 − m)Pm−2

 (χ)]

P1

(χ) = −dP


dθ

Table A.21.2(a). Table of associated Legendre polynomials, Pm
� (χ).

� m = 0, Values for P�(1) m = 1, Values for P1
� (χ)

0 1

1 χ sin θ

2
1
2
(3χ2 − 1) 3χ sin θ

3
χ

2
(5χ2 − 3)

3
2
(5χ2 − 1) sin θ

4
1
8
(35χ4 − 30χ2 + 3)

5χ

2
(7χ2 − 3) sin θ

5
χ

8
(63χ4 − 70χ2 + 15)

15
8

(21χ4 − 14χ2 + 1) sin θ

6
1
16

(231χ6 − 315χ4 + 105χ2 − 5)
21χ

8
(33χ4 − 30χ2 + 5) sin θ

7
χ

16
(429χ6 − 693χ4 + 315χ2 − 35)

7
16

(429χ6 − 495χ4 + 135χ2 − 5) sin θ

8
1
16

(6435χ8 − 12012χ6 + 6930χ4 9χ

128
(715χ6 − 1001χ4 + 385χ2 − 35) sin θ

−1260χ2 + 35)

9
χ

16
(12155χ8 − 25740χ6 + 18018χ4 45

128
(2431χ8 − 4004χ6 + 2002χ4

− 4620χ2 + 315) − 308χ2 + 7) sin θ
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Table A.21.2(b). Table of associated Legendre polynomials, Pm
� (χ).

� m = 2, Values for P2
� (χ) m = 3, Values for P3

� (χ)

2 3 sin2 θ

3 15χ sin2 θ 15 sin3 θ

4
15
2

(7χ2 − 1) sin2 θ 105χ sin3 θ

5
105χ

2
(3χ2 − 1) sin2 θ

105
2

(9χ2 − 1) sin3 θ

6
105
8

(33χ4 − 18χ2 + 1) sin2 θ
315χ

2
(11χ2 − 3) sin3 θ

7
63χ

8
(143χ4 − 110χ2 + 15) sin2 θ

315
8

(143χ4 − 66χ2 + 3) sin3 θ

8
315
16

(143χ6 − 143χ4 + 33χ2 − 1) sin2 θ
3465χ

8
(39χ4 − 26χ2 + 3) sin3 θ

9
495χ

16
(221χ6 − 273χ4 + 91χ2 − 7) sin2 θ

3465
16

(221χ6 − 195χ4 + 39χ2 − 1) sin3 θ

Table A.21.2(c). Table of associated Legendre polynomials, Pm
� (χ).

� m = 4, Values for P4
� (χ) m = 5, Values for P5

� (χ)

4 105 sin4 θ

5 945χ sin4 θ 945 sin5 θ

6 945(11χ2 − 1) sin4 θ/2 10395χ sin5 θ

7 3465χ(13χ2 − 3) sin4 θ/2 10395(13χ2 − 1) sin5 θ/2

8 10395(65χ4 − 26χ2 + 1) sin4 θ/8 135135χ(5χ2 − 1) sin5 θ/2

9 135135χ(17χ4 − 10χ2 + 1) sin4 θ/8 135135(85χ4 − 30χ2 + 1) sin5 θ/8

Table A.21.2(d). Table of associated Legendre polynomi-
als, Pm

� (χ).

� m = 6, Values for P6
� (χ) m = 7, Values for P7

� (χ)

6 10395 sin6 θ

7 135135χ sin6 θ 135135 sin7 θ

8 135135(15χ2 − 1) sin6 θ/2 2027025χ sin7 θ

9 675675χ(17χ2 − 3) sin6 θ/2 2027025(17χ2 − 1) sin7 θ/2
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Table A.21.2(e). Table of associated Legendre poly-
nomials, Pm

� (χ).

� m = 8, Values for P8
� (χ) m = 9, Values for P9

� (χ)

8 2027025 sin8 θ

9 34459425χ sin8 θ 34459425 sin9 θ

Table A.21.3(a). Table of spherical angular function dPm
� /dθ.

� m = 1, m = 2,
dP1

�/dθ = − cot θ P1
� + �(� + 1)P� dP2

�/dθ = −2 cot θ dP2
� + (� − 1)(� + 2)dP1

�

1 χ

2 3(2χ2 − 1) 6χ sin θ

3
3
2

χ(15χ2 − 11) 15(3χ2 − 1) sin θ

4
5
2
(28χ4 − 27χ2 + 3) 30χ(7χ2 − 4) sin θ

5
15χ

8
(105χ4 − 126χ2 + 29)

105
2

(15χ4 − 12χ2 + 1) sin θ

6
21
8

(198χ6 − 285χ4 + 100χ2 − 5)
105χ

4
(99χ4 − 102χ2 + 19) sin θ

7
7χ

16
(3003χ6 − 5049χ4 + 2385χ2 − 275)

63
8

(1001χ6 − 1265χ4 + 375χ2 − 15) sin θ

8
9
16

(5720χ8 − 11011χ6 + 6545χ4 315χ

8
(286χ6 − 429χ4 + 176χ2 − 17) sin θ

− 1225χ2 + 35)

9
45χ

16
(21879χ8 − 47464χ6 + 34034χ4 495

16
(1989χ8 − 3458χ6 + 1820χ4

− 8932χ2 + 623) − 294χ2 + 7) sin θ

The sum of all coefficients in the expansion for Pm

 (χ) is (
+m)!

2m(m)!(
−m)! . To
normalize, multiply each associated Legendre function by

√
(2� + 1)(� − m)!/2(� + m)!.

Table A.21.3 contains values of spherical angular function dPm

 /dθ,

based upon the relationship:

dPm

 /dθ = −m cot θ Pm


 + (� + m)(� − m + 1)Pm−1

 = m cot θ Pm


 − Pm+1
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Table A.21.3(b). Table of spherical angular function dPm
� /dθ.

� m = 3, m = 4,
dP3

�/dθ = −3 cot θ P3
� + (� − 2)(� + 3)P2

� dP4
�/dθ = −4 cot θ P4

� + (� − 3)(� + 4)P3
�

3 45χ sin2 θ

4 105(4χ2 − 1) sin2 θ 420χ sin3 θ

5
315
2

χ(15χ2 − 7) sin2 θ 945(5χ2 − 1) sin3 θ

6
945
2

(22χ4 − 15χ2 + 1) sin2 θ 945χ(33χ2 − 13) sin3 θ

7
315
8

(1001χ4 − 902χ2 + 141) sin2 θ
3465

2
(91χ4 − 54χ2 + 3) sin3 θ

8
10395

8
(104χ6 − 117χ4 + 30χ2 − 1) sin2 θ

10395
2

(130χ4 − 104χ2 + 14) sin3 θ

9
10395

16
(663χ6 − 897χ4 + 325χ2 135135

8
(153χ6 − 155χ4

− 27) sin2 θ +35χ2 − 1) sin3 θ

Table A.21.3(c). Table of spherical angular function dPm
� /dθ.

� m = 5, m = 6,
dP5

�/dθ = −5 cot θ P5
� + (� − 4)(� + 5)P4

� dP6
�/dθ = −6 cot θ P6

� + (� − 5)(� + 6)P5
�

5 4725χ sin4 θ

6 4725(6χ2 − 1) sin4 θ 62370χ sin5 θ

7 10395χ(91χ2 − 31) sin4 θ 135135(7χ2 − 1) sin5 θ

8 135135(40χ2 − 21χ2 + 1) sin4 θ 810810χ(10χ2 − 3) sin5 θ

9 675675χ(153χ2 − 110χ2 + 13) sin4 θ/8 2027025(51χ2 − 24χ2 + 1) sin5 θ

Table A.21.3(d). Table of spherical angular function dPm
� /dθ.

� m = 7, m = 8, m = 9,
dP7

�/dθ = −7 cot θ P7
� dP8

�/dθ = −8 cot θ P8
� dP9

�/dθ = −9 cot θ P9
�

+(� − 6)(� + 7)P6
� +(� − 7)(� + 8)P7

� +(� − 8)(� + 9)P8
�

7 945945χ sin6 θ

8 2027025(8χ2 − 1) sin6 θ 16216200χ sin7 θ

9 2027025(153χ2 − 41) sin6 θ 34459425(9χ2 − 1) sin7 θ 310134825χ sin8 θ
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22. Integrals of Legendre Functions

Solutions of the problems considered in the text require integrals of several
functional combinations of Legendre polynomials. One is the integral:

I3 = m

∫ π

0

d
dθ

(Pm

 Pm

n )dθ = 0 (A.22.1)

The equality follows since the integrand is a perfect differential and
Pm


 (±1) = 0 for m > 0.
Consider the integral:

I4 =
∫ π

0

{
dPm




dθ

dPm
n

dθ
+

m2Pm

 Pm

n

sin2 θ

}
sin θ dθ (A.22.2)

The first term in the integrand may be written:

dPm



dθ

dPm
n

dθ
=

1
sin θ

d
dθ

[
sin θ Pm




dPm
n

dθ

]
− Pm




sin θ

d
dθ

[
sin θ

dPm
n

dθ

]
The second term in the integrand, after using the differential equation, may
be written:

m2Pm

 Pm

n

sin2 θ
=

Pm



sin θ

d
dθ

[
sin θ

dPm
n

dθ

]
+ n(n + 1)Pm

n Pm



Combining results in:

I4 =
∫ π

0
sin θ dθ

{
1

sin θ

d
dθ

[
sin θ Pm




dPm
n

dθ

]
+ n(n + 1)Pm


 Pm
n

}
(A.22.3)

The first term is an exact differential that integrates to zero, leaving:

I4 = n(n + 1)
∫ π

0
sin θ dθ Pm


 Pm
n =

2�(� + 1)(� + m)!
(2� + 1)(� − m)!

δ(�, n) (A.22.4)

Consider the integral

I5 =
∫ π

0
cos θ sin θ dθ

{
dPm




dθ

dPm
n

dθ
+

m2Pm

 Pm

n

sin2 θ

}
(A.22.5)

The procedure is similar to that for I4. Replace the first term using the
differential equation, sum, and partially integrate once to obtain:

I5 =
∫ π

0
sin θ dθ

{[
sin θ Pm




dPm
n

dθ

]
+ n(n + 1) cos θ Pm


 Pm
n

}
Combining with recursion relationships, Tables A.21.1.3 and A.21.1.4,
shows that:

I5 =
∫ π

0
sin θ dθ Pm




[
n(n − m + 1)(n + 2)

(2n + 1)
Pm

n+1 +
(n + m)(n2 − 1)

(2n + 1)
Pm

n−1

]
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Evaluation using Eq. (A.20.11) gives:

I5 =
[

2n(n + 2)(n + m + 1)!
(2n + 1)(2n + 3)(n − m)!

δ(�, n + 1)

+
(n2 − 1)(n + m)!

(2n − 1)(2n + 1)(n − m − 1)!
δ(�, n − 1)

]
(A.22.6)

The next integral of interest is:

I6 =
∫ π

0
sin2 θ dθ

d
d θ

(Pm

 Pm

n ) (A.22.7)

Expanding the differential and using recursion relationship Table A.21.1.3
results in:

I6 =
∫ π

0
sin θ dθ

{
Pm




[
n(n − m + 1)

(2n + 1)
Pm

n+1 − (n + m)(n − 1)
(2n + 1)

Pm
n−1

]

+ Pm
n

[
(� − m + 1)

(2� + 1)
Pm


+1 − (� + m)(� − 1)
(2� + 1)

Pm

−1

]}

Term-by-term evaluation shows that:

I6 = 0 (A.22.8)

The next integral of interest is:

I7 =
∫ π

0
sin2 θ dθ

[
dPm




dθ

dPm+1
n

dθ
+

m(m + 1)
sin2 θ

Pm

 Pm+1

n

]
(A.22.9)

Substituting the differential equation into the first term, summing, and
taking one partial integration results in:∫ π

0
sin θ dθ Pm+1

n

{
− cos θ

dPm



dθ
+
[
�(� + 1) sin θ +

m

sin θ

]
Pm




}

After using the recursion relationship of Table A.21.1.10 on the first term
then summing the curly bracket becomes:

{[�(� + 1) + m] sin θ Pm

 + cos θ Pm+1


 }

With the use of the recursion relationships of Tables A.21.1.4 and A.21.1.7
the bracket becomes:{

Pm+1

+1

[
�(� + 2)
(2� + 1)

]
− Pm+1


−1

[
(� − 1)(� + 1)

(2� + 1)

]}
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Putting the bracket back under the integral sign and integrating gives:

I7 =
2�(� + 2)(� + m + 2)!

(2� + 1)(2� + 3)(� − m)!
δ(n, � + 1)

− 2(� − 1)(� + 1)(� + m)!
(2� − 1)(2� + 1)(� − m − 2)!

δ(n, � − 1) (A.22.10)

The next integral of interest is:

I8 =
∫ π

0
sin θ dθ

(
(m + 1)Pm+1




dPm
n

dθ
+ mPm

n

dPm+1



dθ

)
(A.22.11)

This may be rewritten as:∫ π

0
dθ

(
sin θ Pm+1




dPm
n

dθ
+ m sin θ

d
dθ

[
Pm

n Pm+1



])

Integrating the perfect differential by parts gives:∫ π

0
sin θ dθ Pm+1




(
dPm

n

dθ
− m cot θ Pm

n

)
= −

∫ π

0
sin θ dθ Pm+1


 Pm+1
n

The second equality is in the proper form to use Table A.21.1.10. The
result is:

I8 = − 2
(2� + 1)

(� + m + 1)!
(� − m − 1)!

δ(�, n) (A.22.12)

Similarly, using Table A.21.1.11, integrals with (m−1) replacing (m+1)
may be evaluated, and are listed in Table A.22.1.

23. Integrals of Fractional Order Legendre Functions

The Legendre differential equation of fractional order is:

1
sin θ

d
dθ

(
sin θ

dΘm
ν (cos θ)
dθ

)
+
(

ν(ν + 1) − m2

sin2 θ

)
Θm

ν = 0 (A.23.1)

Functions Θm
ν (cos θ) represent Lm

ν (cos θ), Mm
ν (cos θ), or any linear combi-

nation thereof. Useful boundary conditions are:

Mm
ν (cos θ)|θ=ψ = 0 and

dLm
ν (cos θ)
dθ

∣∣∣∣
θ=ψ

= 0 (A.23.2)

This evaluation of integrals over noninteger order Legendre functions
includes the boundary conditions of Eq. (A.23.2).
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Table A.22.1. Table of integrals of Legendre polynomials.

1 I�� =
∫ π

0
Pm

� Pm
n sin θ dθ =

2(� + m)!
(2� + 1)(� − m)!

δ(�, n)

2
∫ π

0
Pm

� Pm+2s
� sin θ dθ =

2(−1)s

(2� + 1)
(� + m)!

(� − m − 2s)!

3 m

∫ π

0

d
dθ

(Pm
� Pm

n ) dθ = 0

4 m

∫ π

0

d
dθ

(Pm
� Pm

n ) cos θ dθ =
2m(� + m)!

(2� + 1)(� − m)!
δ(�, n)

5
∫ π

0

d
dθ

(Pm
� Pm

n ) sin2 θ dθ = 0

6
∫ π

0

[
dPm

�

dθ

dPm
n

dθ
+

m2Pm
� Pm

n

sin2 θ

]
sin θ dθ =

2�(� + 1)(� + m)!
(2� + 1)(� − m)!

δ(�, n)

7
∫ π

0

[
dPm

�

dθ

dPm
n

dθ
+

m2Pm
� Pm

n

sin2 θ

]
cos θ sin θ dθ

=
{

2�(� + 2)(� + m + 1)!
(2� + 1)(2� + 3)(� − m)!

δ(n, � + 1) +
2(� − 1)(� + 1)(� + m)!

(2� − 1)(2� + 1)(� − m − 1)!
δ(n, � − 1)

}

8
∫ π

0

[
dPm

�

dθ

dPm+1
n

dθ
+

m(m + 1)Pm
� Pm+1

n

sin2 θ

]
sin2 θ dθ

=
{

2�(� + 2)(� + m + 2)!
(2� + 1)(2� + 3)(� − m)!

δ(n, � + 1) − 2(� − 1)(� + 1)(� + m)!
(2� − 1)(2� + 1)(� − m − 2)!

δ(n, � − 1)
}

9
∫ π

0

[
dPm

�

dθ

dPm−1
n

dθ
+

m(m − 1)Pm
� Pm−1

n

sin2 θ

]
sin2 θ dθ

=
{

− 2�(� + 2)(� + m)!
(2� + 1)(2� + 3)(� − m)!

δ(�, n + 1) +
2(� − 1)(� + 1)(� + m)!
(2� − 1)(2� + 1)(� − m)!

δ(�, n − 1)
}

10
∫ π

0
Pm

� (cos θ) sin�+1 θ dθ = (−1)(�−m)/2 2�+1(�)!(� + m)!
(2� + 1)!

δ(� + m, 2q)

11
∫ π

0

(
(m + 1)Pm+1

�

dPm
n

dθ
+ mPm

n

dPm+1
�

dθ

)
sin θ dθ = − 2

(2� + 1)
(� + m + 1)!
(� − m − 1)!

δ(�, n)

12
∫ π

0

(
(m − 1)Pm−1

�

dPm
n

dθ
+ mPm

n

dPm−1
�

dθ

)
sin θ dθ = − 2

(2� + 1)
(� + m)!
(� − m)!

δ(�, n)
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Consider the integral

I9 =
∫ π−ψ

ψ

sin θ dθ

(
dMm

ν

dθ

dPm
n

dθ
+

m2Mm
ν Pm

n

sin2 θ

)
(A.23.3)

The evaluation procedure is to use the differential equation and rewrite the
first term as:

dMm
ν

dθ

dPm
n

dθ
=

1
sin θ

d
dθ

(
sin θ Mm

ν

dPm
n

dθ

)
− Mm

ν

sin θ

d
dθ

(
sin θ

dPm
n

dθ

)
(A.23.4)

The first term on the right side of Eq. (A.23.4) forms a perfect differential
and, after imposing Eq. (A.23.2), the integral of that differential is equal
to zero. With the differential equation substituted into the remaining term,
the result is:

I9 = n(n + 1)
∫ π−ψ

ψ

Mm
ν Pm

n sin θ dθ (A.23.5)

To evaluate Eq. (A.23.5), since Mm
ν (cos θ) has odd parity and Pm

n (cos θ)
is even or odd as (n + m) is even or odd, the integral vanishes if (n + m)
is even. If (n + m) is odd, repeat the procedure used in Eqs. (A.20.1)
through (A.20.3). The result is:

I9 =
∫ π−ψ

ψ

Mm
ν Pm

n sin θ dθ =




sin θ
[
Pm

n
dMm

ν

dθ − Mm
ν

dPm
n

dθ

]
n(n + 1) − ν(ν + 1)




π−ψ

ψ

After imposing the boundary condition of Eq. (A.23.2):

∫ π−ψ

ψ

Mm
ν Pm

n sin θ dθ = −2 sin ψ

{
Pm

n (cos ψ)dMm
ν (cos ψ)
dθ

n(n + 1) − ν(ν + 1)

}
δ(n, 2q + 1)

(A.23.6)
The integer “q” represents any positive integer, including zero.

The next integral to be evaluated is:

I10 =
∫ π−ψ

ψ

sin θ dθ

(
dLm

µ

dθ

dPm
n

dθ
+

m2Lm
µ Pm

n

sin2 θ

)
(A.23.7)

The same technique that was applied to Eq. (A.23.2) applied to Eq. (A.23.7)
results in:

I10 = µ(µ + 1)
∫ π−ψ

ψ

Lm
µ Pm

n sin θ dθ (A.23.8)



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and LightAppendices

380 The Electromagnetic Origin of Quantum Theory and Light

The same technique applied to Eq. (A.23.4) results in:

I10 =
∫ π−ψ

ψ

Lm
µ Pm

n sin θ dθ = 2 sinψ

{
Lm

µ (cos ψ)dPm
n (cos ψ)

dθ

n(n + 1) − µ(µ + 1)

}
δ(n, 2q)

(A.23.9)

It follows from the parity of the functions that the integral:

I11 =
∫ π−ψ

ψ

sin θ dθ

(
dMm

ν

dθ

dLm
µ

dθ
+

m2Mm
ν Lm

µ

sin2 θ

)
= 0 (A.23.10)

The next integral of interest is:

I12 =
∫ π−ψ

ψ

sin θ dθ

(
dMm

ν

dθ

dMm
µ

dθ
+

m2Mm
ν Mm

µ

sin2 θ

)
(A.23.11)

The technique used to evaluate the previous integrals when applied to
Eq. (A.23.2) gives:

I12 = ν(ν + 1)
∫ π−ψ

ψ

sin θ dθ Mm
ν Mm

µ (A.23.12)

Applying the technique to Eq. (A.23.4) gives:

∫ π−ψ

ψ

Mm
ν Mm

µ sin θ dθ =




sin θ
[
Mm

µ
dMm

ν

dθ − Mm
ν

dMm
µ

dθ

]
µ(µ + 1) − ν(ν + 1)




π−ψ

ψ

The boundary condition shows that the result is zero unless µ(µ + 1) −
ν(ν + 1). For that case, evaluating the indeterminate form gives:

I12 =
∫ π−ψ

ψ

Mm
ν Mm

µ sin θ dθ =
2 sin ψ

2ν + 1

[
∂Mm

ν (cos ψ)
∂ν

∂Mm
ν (cos ψ)
∂θ

]
δ(ν, µ)

(A.23.13)

The delta function indicates a Kronecker delta function with a noninteger
argument.
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Consider the integral

I13 =
∫ π−ψ

ψ

sin θ dθ

(
dLm

ν

dθ

dLm
µ

dθ
+

m2dLm
ν dLm

µ

sin2 θ

)
(A.23.14)

In a way similar to the earlier integrals:

I13 = µ(µ + 1)
∫ π−ψ

ψ

sin θ dθ Lm
ν Lm

µ (A.23.15)

I13 =
∫ π−ψ

ψ

Lm
ν Lm

µ sin θ dθ = − 2 sin ψ

2µ + 1

[
Lm

µ (cos ψ)
∂2Lm

µ (cos ψ)
∂ν ∂θ

]
δ(ν, µ)

(A.23.16)

Values are calculated and tabulted in Table A.23.1.

Table A.23.1. Table of integrals, noninteger order Legendre functions.

1 Iνn =
∫ ψ

−ψ
Mm

ν Pm
n sin θ dθ = −2 sin ψ


Pm

n (cos ψ) ∂Mm
ν (cos ψ)

∂θ

n(n + 1) − ν(ν + 1)


δ(m + n, 2q + 1)

2
∫ ψ

−ψ

(
dMm

ν

dθ

dPm
n

dθ
+

m2Mm
ν Pm

n

sin2 θ

)
sin θ dθ = n(n + 1)Iνn

3 Kµn =
∫ π−ψ

ψ
Lm

µ Pm
n sin θ dθ = 2 sin ψ


Lm

µ (cos ψ) ∂Pm
n (cos ψ)

∂θ

n(n + 1) − µ(µ + 1)


δ(n, 2q)

4
∫ π−ψ

ψ

(
dLm

µ

dθ

dPm
n

dθ
+

m2Lm
µ Pm

n

sin2 θ

)
sin θ dθ = µ(µ + 1)Iµn

5
∫ π−ψ

ψ

(
dMm

ν

dθ

dLm
µ

dθ
+

m2Mm
ν Lm

µ

sin2 θ

)
sin θ dθ = 0

6 Iνν =
∫ π−ψ

ψ
Mm

ν Mm
µ sin θ dθ =

2 sin ψ

2ν + 1

[
∂Mm

ν (cos ψ)
∂ν

∂Mm
ν (cos ψ)
∂θ

]
δ(ν, µ)

7
∫ π−ψ

ψ

(
dMm

ν

dθ

dMm
µ

dθ
+

m2Mm
ν Mm

µ

sin2 θ

)
sin θ dθ = ν(ν + 1)Iνν

8 Kµµ =
∫ π−ψ

ψ
Lm

ν Lm
µ sin θ dθ = − 2 sin ψ

2µ + 1

[
Lm

µ (cos ψ)
∂2Lm

µ (cos ψ)

∂ν ∂θ

]
δ(ν, µ)

9
∫ π−ψ

ψ

(
dLm

ν

dθ

dLm
µ

dθ
+

m2Lm
ν Lm

µ

sin2 θ

)
sin θ dθ = µ(µ + 1)Kµµ
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24. The First Solution Form

Since the radial differential equation, Eq. (1.11.7), is independent of sepa-
ration parameter m, so are the solutions. The spherical Bessel differential
equation with separation parameter ν is:

1
σ2

d
dσ

(
σ2 dR

dσ

)
+
(

1 − ν(ν + 1)
σ2

)
R = 0 (A.24.1)

Solutions valid for all points r > 0 are obtained by using a power series
expansion. The series and its first two derivatives are:

Rν(σ) =
∞∑
s=0

asσ
s+p

dRν(σ)
dσ

=
∞∑
s=0

(s + p)asσ
s+p−1

d2Rν(σ)
dσ2 =

∞∑
s=0

(s + p)(s + p − 1)asσ
s+p−2

(A.24.2)

Substituting Eq. (A.24.2) into Eq. (A.24.1) and solving leads to:

{
[p(p + 1) − ν(ν + 1)]a0σ

p−2 + [(p + 1)(p + 2) − ν(ν + 1)]a1σ
p−1

+
∞∑
s=0

{[(s + p + 2)(s + p + 3) − ν(ν + 1)]as+2 + as}σs+p

}
= 0

(A.24.3)

Since the series of Eq. (A.24.3) is an identity in σ, the coefficient of each
power of ν is separately equal to zero. There are but two nontrivial ways
that the coefficients of σp−2 and σp−1 can both be equal to zero. One is if
a0 is equal to zero and (p + 1)(p + 2) = ν(ν + 1); the other is if a1 is equal
to zero and p(p + 1) = ν(ν + 1). Arbitrarily making the second choice, the
condition that p(p + 1) = ν(ν + 1) is met either of two ways: p = ν or
p = −(ν + 1); the choice determines the two independent solutions.

For the case p = ν the portion of Eq. (A.24.3) in the curly brackets is
zero, and gives the recursion relationship:

as+2

as
= − 1

(s + 2)(2ν + s + 3)
(A.24.4)



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and LightAppendices

Appendices 383

This relationship, after redefining the dummy index, leads to the functional
form of the radial function Rν(σ):

Rν(σ) = a0

∞∑
s=0

(−1)s(2ν + 1)!!
2ss!(2ν + 2s + 1)!!

σν+2s (A.24.5)

Making the definition that a0 = 1/(2ν + 1)!! the result is the function:

jν(σ) =
∞∑
s=0

(−1)s

2ss!(2ν + 2s + 1)!!
σν+2s (A.24.6)

Functions jν(σ) are the spherical Bessel functions of order ν. The func-
tional limit at small values of σ follows from Eq. (A.24.6), and is equal to:

Lim
σ→0

[jν(σ)] =
σν

(2ν + 1)!!
(A.24.7)

For the case p = −(ν + 1), the last term of Eq. (A.24.5) results in the
recursion relationship:

as+2

as
=

1
(s + 2)(2ν − s − 1)

(A.24.8)

This relationship leads directly to the series solution:

yν(σ) =
a0

σν+1

{
1 +

σ2

2(2ν − 1)
+

σ4

2 · 4(2ν − 1)(2ν − 3)
+ · · ·

+
σ2p

(2p)!!(2ν − 1) · · · (2ν − 2p − 1)
+ · · · +

σ2(ν−1)

(2ν − 2)!!(2ν − 1)!!

− σ2ν

1 · (2ν)!!(2ν − 1)!!
+

σ2

3 · (2ν + 2)!!(2ν − 1)!!
− · · ·

}
(A.24.9)

The series is monotone for s less than ν and oscillatory for s greater
than ν. The combination is readily described by separate sums over the
monotone and oscillatory portions. After using the definition a0 = 1/

(2ν + 1)!! and again redefining the dummy index:

yν(σ) = −
[ν]∑
s=0

(2ν − 2s − 1)!!
(2s)!!σν+1−2s −

∞∑
s=0

(−1)s

(2s − 1)!!
σν−1+2s

(2ν + 2s)!!
(A.24.10)

The symbol [ν] indicates the largest integer less than ν. The first sum of
Eq. (A.24.10) describes a monotone power series with inverse powers of ν,
powers that range upward from −(ν + 1) to (ν + 1) and a second sum that
represents an alternating series with positive powers of ν. The sums are
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the spherical Neumann functions; Eq. (A.4.10) shows the functional small
argument limit of jν(σ) to be:

Lim
σ→0

[yν(σ)] = − (2ν − 1)!!
σν+1 (A.24.11)

For integer orders, ν equal integer � and σ � 1, the functions are determined
by Eq. (A.24.6) and the second part of Eq. (A.24.10):

j
(σ) =
∞∑
s=0

(−1)s

(2s)!!(2� + 2s + 1)!!
σ
+2s

y
(σ) ∼= −
∞∑
s=0

(−1)s

(2s − 1)!!(2� + 2s)!!
σ
−1+2s

(A.24.12)

Term-by-term comparison of the series representation of expansions for the
trigonometric functions and Eq. (A.24.12) shows that:

Lim
σ→∞ j
(σ) =

1
σ

cos
[
σ − π

2
(� + 1)

]
Lim
σ→∞ y
(σ) =

1
σ

sin
[
σ − π

2
(� + 1)

] (A.24.13)

Using Eq. (A.24.15), it follows that the Bessel and Neumann functions are
related as:

Lim
σ→∞

{
j
(σ) =

d
dσ

y
(σ)
}

Lim
σ→∞

{
y
(σ) = − d

dσ
j
(σ)

} (A.24.14)

25. The Second Solution Form

If the separation constant is an integer, the spherical Bessel differential
equation, Eq. (1.11.7), is given by:

1
σ2

d
dσ

(
σ2 dR

dσ

)
+
(

1 − �(� + 1)
σ2

)
R = 0 (A.25.1)

Equation (A.25.1) is a second order equation with two independent solu-
tions. Because of a singularity at the origin, solutions are satisfied over the
region 0 < σ ≤ ∞. For the range of solutions in which σ2 � �(� + 1), the
differential equation goes to:

1
σ2

d
dσ

(
σ2 dR(σ)

dσ

)
+ R(σ) = 0 (A.25.2)

If Eq. (A.25.2) were an exact solution the result would be exponential with
constant coefficients. Although Eq. (A.25.2) is not exact, it is helpful to
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write Eq. (A.24.3) in the form:

R
(σ) = F
(σ)e−iσ + G
(σ)eiσ (A.25.3)

A requirement is that at large radii F
(σ) and G
(σ) vary much less rapidly
with increasing radius than do the exponentials. Also since F
(σ) and G
(σ)
are complex conjugates it is only necessary to solve for one of them.

A convenient method of finding F
(σ) is a power series expansion. The
series and the first two derivatives are:

R
(σ) = F
(σ)e−iσ;
dR
(σ)

dσ
=
[
dF
(σ)

dσ
− iF
(σ)

]
e−iσ

d2R
(σ)
dσ2 =

[
d2F
(σ)

dσ2 − 2i
dF
(σ)

dσ
− F
(σ)

]
e−iσ

(A.25.4)

Substituting Eq. (A.25.4) into Eq. (A.25.1) results in the differential
equation:

d2F
(σ)
dσ2 + 2

(
1
σ

− i

)
dF
(σ)

dσ
−
(

2i

σ
+

�(� + 1)
σ2

)
F
(σ) = 0 (A.25.5)

The most convenient method of solving Eq. (A.25.5) is with a power series
expansion. The series and the first two derivatives are:

F
(σ) =
∞∑
s=0

asσ
s+p

dF
(σ)
dσ

=
∞∑
s=0

(s + p)asσ
s+p−1

d2F
(σ)
dσ2 =

∞∑
s=0

(s + p)(s + p − 1)asσ
s+p−2

(A.25.6)

Inserting Eq. (A.25.6) into Eq. (A.25.5) and gathering similar powers of σ

results in:{
p(p + 1) − �(� + 1)

σp−2 +
∞∑
s=0

σs+p+1{as+1[(s + p + 1)(s + p + 2)

− �(� + 1)] − 2ias(s + p + 1)}
}

= 0 (A.25.7)

Since the series is an identity, the coefficient of each power of σ is equal
to zero. It follows from the σp−2 term that either p = � or p = −(� + 1)
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and it follows from the square brackets that:

as+1

as
=

2i(s + p + 1)
(s + p + 1)(s + p + 2) − �(� + 1)

(A.25.8)

With the option p = �, in the limit as σ becomes infinite Eq. (A.25.8)
goes to:

Lim
s→∞

(
as+1

as

)
=

2i

s
(A.25.9)

Equation (A.25.9) is also the limiting form for a series expansion of
exp(2ισ). Therefore, since F
(σ) varies more slowly with σ than exp(−iσ)
the recursion relationship of Eq. (A.25.8) is not an acceptable solution.
Returning to the option that p = −(� + 1), Eq. (A.25.7) goes to:

as+1

as
=

2i(� − s)
(s + 1)(2� − s)

(A.25.10)

Since the progression of Eq. (A.25.10) terminates at s = � the power series
truncates to a polynomial of highest order �. The general term is:

as+1

as
=

(2i)s�!(2� − s)!
s!(2�)!(� − s)!

(A.25.11)

The series results in solution R
(σ) where:

R
(σ) =
e−iσ

σ


∑
s=0

(2i)s�!(2� − s)!
s!(2�)!(� − s)!

a0 (A.25.12)

To characterize the solution substitute p = � − s, rewrite Eq. (A.25.12)
as a sum over p, then change the dummy index back to s. The result is:

R
(σ) = a0
e−iσ

σ

�!(2i)


(2�)!


∑
s=0

(� + s)!
s!(� − s)!

(
1

2iσ

)s

(A.25.13)

With the definition that a0 = i(2� − 1)!!, the full solution is the function
h
(σ) where:

h
(σ) =
i
+1e−iσ

σ


∑
s=0

(� + s)!
s!(� − s)!

(
1

2iσ

)s

(A.25.14)

Function h
(σ) is a spherical Hankel function of the second kind. The real
part is a spherical Bessel function and the negative of the imaginary part
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is a spherical Neumann function. By definition:

h
(σ) = j
(σ) − iy
(σ) (A.25.15)

The complex conjugate of Eq. (A.25.14) is the second independent solu-
tion of the equation. It is a spherical Hankel function of the first kind. In
this work, we shall be concerned primarily with Hankel functions of the
second kind.

For vanishingly small values of σ the dominant term in Eq. (A.25.14) is:

Lim
σ→0

[h
(σ)] =
i(2� + 1)!!

σ
+1 (A.25.16)

As the radius increases without limit, the dominant term is:

Lim
σ→∞ [h
(σ)] =

i
+1

σ
e−iσ (A.25.17)

Equation (A.25.17) shows that as the radius increases without limit the
function [σh
(σ)] does not approach a limit. For those cases where it is
necessary to impose a limit condition, it is necessary to use the solutions of
Sec. A.24. For all other cases, the above form is convenient and applicable.

26. Tables of Spherical Bessel, Neumann,
and Hankel Functions

To evaluate spherical Bessel, Neumann, and Hankel functions, it is helpful
to factor each function into rational and transcendental parts. We intro-
duce rational functions A
(σ) and B
(σ). In these terms the functions of
Eqs. (A.25.14) and (A.25.15) are:

j
(σ) =
1
σ

{B
(σ) cos σ + A
(σ) sin σ}

y
(σ) =
1
σ

{−A
(σ) cos σ + B
(σ) sin σ}

h
(σ) =
1
σ

{B
(σ) + iA
(σ)}e−iσ

(A.26.1)

Comparison of the equations shows, with q equal to any integer, that:

A
(σ) =

∑

s=0

(� + s)!
s!(� − s)!

(
1
2σ

)s

(−1)(
−s)/2δ(� + s, 2q)

B
(σ) =

∑

s=0

(� + s)!
s!(� − s)!

(
1
2σ

)s

(−1)(
−s+1)/2δ(� + s, 2q + 1)

(A.26.2)

Comparison of the equations shows values of the letter functions. The
primary recursion relationship used to develop the table follows from
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Eq. (A.24.6):

j
+2(σ) =
2� + 3

σ
j
+1(σ) − j
(σ) (A.26.3)

Important related functions are obtained by operating on the radial function
to obtain the special function:

h•

(σ) =

1
σ

d
dσ

[σh
(σ)] (A.26.4)

Similarly to Eq. (A.26.1), the related functions factor into rational and
transcendental parts:

j•

(σ) =

1
σ

{D
(σ) cos σ + C
(σ) sin σ}

y•

(σ) =

1
σ

{−C
(σ) cos σ + D
(σ) sin σ}

h•

(σ) =

1
σ

{D
(σ) + iC
(σ)}e−iσ

(A.26.5)

Term-by-term comparison shows that:

dA
(σ)
dσ

= B
(σ) + C
(σ)
dB
(σ)

dσ
= D
(σ) − A
(σ) (A.26.6)

It follows upon combining Eq. (A.26.4) with Eqs. (A.24.9) and (A.24.13)
that in the limit of a vanishingly small radius:

Lim
σ→0

j•

(σ) =

(� + 1)σ
−1

(2� + 1)!!
Lim
σ→0

y•

(σ) =

�(2� − 1)!!
σ
+2 (A.26.7)

It follows similarly upon combining Eq. (A.26.4) with Eq. (A.24.15) that
in the limit of an infinitely large radius:

Lim
σ→∞ j•


(σ) = − 1
σ

sin
[
σ − π

2
(� + 1)

]
Lim
σ→∞ y•


(σ) = − 1
σ

cos
[
σ − π

2
(� + 1)

] (A.26.8)

Table A.26.1. Table of values of the radial letter functions.

� A�(σ) B�(σ) C�(σ) D�(σ)

0 1 0 0 1
1 1/σ −1 −1/σ2 + 1 1/σ

2 3/σ2 − 1 −3/σ −6/σ3 + 3/σ 6/σ2 − 1
3 15/σ3 − 6/σ −15/σ2 + 1 −45/σ4 + 21/σ2 − 1 45/σ3 − 6/σ

4 105/σ4 − 45/σ2 + 1 −105/σ3 + 10/σ −420/σ5 + 195/σ3 − 10/σ 420/σ4 − 55/σ2 + 1
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Table A.26.1. (Continued)

A5 = 945/σ5 − 420/σ3 + 15/σ

B5 = −945/σ4 + 105/σ2 − 1

C5 = −5(9!!)/σ6 + 2205/σ4 − 120/σ2 + 1

D5 = 5(9!!)/σ5 − 630/σ3 + 15/σ

A6 = (11!!)/σ6 − 5(9!!)/σ4 + 210σ2 − 1

B6 = −(11!!)/σ5 + 1260/σ3 − 21/σ

C6 = −6(11!!)/σ7 + 31(9!!)/σ5 − 1680/σ3 + 21/σ

D6 = 6(11!!)/σ6 − 8505/σ4 + 231/σ2 − 1

A7 = (13!!)/σ7 − 6(11!!)/σ5 + 3150/σ3 − 28/σ

B7 = −(13!!)/σ6 + 17,325/σ4 − 378/σ2 + 1

C7 = −7(13!!)/σ8 + 43(11!!)/σ6 − 26,775/σ4 + 406/σ2 − 1

D7 = 7(13!!)/σ7 − 131,670/σ5 + 4662/σ3 − 28/σ

A8 = (15!!)/σ8 − 7(13!!)/σ6 + 5(11!!)/σ4 − 630/σ2 + 1

B8 = −(15!!)/σ7 + 2(13!!)/σ5 − 6930/σ3 + 36/σ

C8 = −8(15!!)/σ9 + 57(13!!)/σ7 − 46(11!!)/σ5 + 8190/σ3 − 36/σ

D8 = 8(15!!)/σ8 − 17(13!!)/σ6 + 7(11!!)/σ4 − 666/σ2 + 1

A9 = (17!!)/σ9 − 8(15!!)/σ7 + 7(13!!)/σ5 − 13,860/σ3 + 45/σ

B9 = −(17!!)/σ8 + 35(13!!)/σ6 − (13!!)/σ4 + 990/σ2 − 1

C9 = −9(17!!)/σ10 + 9(17!!)/σ8 − 70(13!!)/σ6 + 17(11!!)/σ4 − 1035/σ2 + 1

D9 = 9(17!!)/σ9 − 22(15!!)/σ7 + 11(13!!)/σ5 − 15,840/σ3 + 45/σ

Table A.26.2. Radial function identities.

1 dA�/dσ = C� + B� dB�/dσ = D� − A�

2 A�−1 + A�+1 =
2� + 1

σ
A� B�−1 + B�+1 =

2� + 1
σ

B�

3 �A�−1 − (� + 1)A�+1 = (2� + 1)
[

dA�

dσ
− A�

σ
− B�

]

�B�−1 − (� + 1)B�+1 = (2� + 1)
[

dB�

dσ
− B�

σ
+ A�

]

4 dA�/dσ = − �

σ
A� + A�−1 + B� dB�/dσ = − �

σ
B� + B�−1 − A�

5 dA�/dσ =
� + 1

σ
A� − A�+1 + B� dB�/dσ =

� + 1
σ

B� − B�+1 − A�

6 C� = − �

σ
A� + A�−1 =

� + 1
σ

A� − A�+1 D� = − �

σ
B� + B�−1 =

� + 1
σ

B� − B�+1

7 dC�/dσ = −
[
1 − �(� + 1)

σ2

]
A� + D�; dD�/dσ = −

[
1 − �(� + 1)

σ2

]
B� − C�

8 A�D� − B�C� = 1
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Table A.26.2. (Continued)

9 A�B�−1 − A�−1B� = 1 C�D�−1 − C�−1D� = −
(

1 +
�2

σ2

)

A�+1D� − B�+1C� =
� + 1

σ
A�D�+1 − B�C�+1 =

� + 1
σ

10 A�+2B� − A�B�+2 =
2� + 3

σ
C�+2D� − C�D�+2 =

� + 3
σ

(
1 − (� + 1)(� + 2)

σ2

)

11 (A2
� − B2

� − C2
� + D2

� ) =
∫

dσ

{
4(A� − D�)(B� + C�) − 2(A�C� − B�D�)

�(� + 1)
σ2

}

(A2
� + B2

� + C2
� + D2

� ) =
∫

dσ

{
2(A�C� + B�D�)

�(� + 1)
σ2

}

12 (A�B� − C�D�) = −
∫

dσ

{
[(A� − D�)2 + (B� + C�)2] + (A�D� + B�C�)

�(� + 1)
σ2

}

(A�B� + C�D�) =
∫

dσ(−A2
� + B2

� − C2
� + D2

� ) + (A�D� + B�C�)
�(� + 1)

σ2

13 (A�C� − B�D�) =
∫

dσ

{
[−(A� − D�)2 + (B� + C�)2] + (A2

� − B2
� )
(

�(� + 1)
σ2

)}

(A�C� + B�D�) =
∫

dσ

{
(−A2

� − B2
� + C2

� + D2
� ) + (A2

� + B2
� )
(

�(� + 1)
σ2

)}

14 [A�D� + B�C� − (−1)�] =
∫

dσ

{
−2(A� − D�)(B� + C�) + 2A�B�

(
�(� + 1)

σ2

)}

15
d
dσ

(A�An + B�Bn + C�Cn + D�Dn)

=
1
σ2

[�(� + 1)(A�Cn + B�Dn) + n(n + 1)(AnC� + BnD�)]

16
d
dσ

(A�Bn − B�An + C�Dn − D�Cn)

=
1
σ2

[�(� + 1)(A�Dn − B�Cn) − n(n + 1)(AnD� − BnC�)]

17
d
dσ

(A�Cn − C�An + B�Dn − D�Bn)

=
1
σ2

[n(n + 1) − �(� + 1)](A�An + B�Bn)

18
d
dσ

(A�Cn + C�An − B�Dn − D�Bn) =
{

1
σ2

[n(n + 1) − �(� + 1)](A�An + B�Bn)

+ 2(A�Dn + AnD� + B�Cn + BnC�) − 2(A�An − B�Bn − C�Cn + D�Dn)
}

19
d
dσ

(A�Bn + B�An − C�Dn − D�Cn) =
{

1
σ2

[�(� + 1)(A�Dn + B�Cn)

+n(n + 1)(AnD� + BnC�)] + 2(A�Dn + AnD� + B�Cn + BnC�)

− 2(A�An − B�Bn − C�Cn + D�Dn)
}

20
d
dσ

(
A�B�

A2
� − B2

�

)
=

(A2
� + B2

� )
(A2

� − B2
� )2

[1 − (A2
� + B2

� )]
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Table A.26.3. Radial dependence of [A�D� + B�C� − (−1)�].

� [A�D� + B�C� − (−1)�]

1 2/σ2

2 36/σ4 − 18/σ2

3 1350/σ6 − 720/σ4 + 72/σ2

4 88200/σ8 − 49350/σ6 + 6000/σ4 + 200/σ2

5 8930250/σ10 − 5159700/σ8 + 699300/σ6 − 31500/σ4 + 450/σ2

6 1296672300/σ12 − 766215450/σ10 + 111370140/σ8 − 5900580/σ6

+123480/σ4 − 882/σ2

Table A.26.4. Radial dependence of [A�C� − B�D�].

� [A�C� − B�D�]

1 −1/σ3 + 2/σ

2 −18/σ5 + 33/σ3 − 6/σ

3 −675/σ7 + 1250/σ5 − 276/σ3 + 12/σ

4 −44100/σ9 + 83475/σ7 − 20220/σ5 + 1300/σ3 − 20/σ

5 −4465125/σ11 + 8533350/σ9 − 2201850/σ7 + 169470/σ5 − 4425/σ3 + 30/σ

6 −648,336,150/σ13 + 1,247,555,935/σ11 − 335,975,850/σ9

+28,797,930/σ7 − 961,380/σ5 + 12,201/σ3 − 42/σ

Table A.26.5. Radial dependence of [A�C� + B�D�].

� [A�C� + B�D�]

1 −1/σ3

2 −18/σ5 − 3/σ3

3 −675/σ7 − 90/σ5 − 6/σ

4 −44100/σ9 − 4725/σ7 − 270/σ5 − 10/σ3

5 −4465125/σ11 − 396900/σ9 − 18900/σ7 − 630/σ5 − 15/σ3

6 −648336150/σ13 − 49116375/σ11 − 1984500/σ9 − 56700/σ7 − 1260/σ5 − 21/σ3

Table A.26.6. Radial dependence of 2(A� − D�)(B� + C�).

� 2(A� − D�)(B� + C�)

1 0
2 36/σ5

3 2700/σ7 − 360/σ5

4 264000/σ9 − 65100/σ7 + 1800/σ5

5 352711500/σ11 − 11510100/σ9 + 642600/σ7 − 6300/σ5

6 6,483,361,500/σ13 − 2,436,172,200/σ11 + 189,162,540/σ9 − 3,969,000/σ7 + 17,640σ5
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Table A.26.7. Radial dependence of (A� − D�)2 − (B� + C�)2.

� (A� − D�)2 − (B� + C�)2

1 −1/σ4

2 −36/σ6 − 9/σ4

3 −2025/σ8 + 1440/σ6 − 36/σ4

4 −176400/σ10 + 174825/σ8 − 14400/σ6 + 100/σ4

5 −22325625/σ12 + 26195400/σ10 − 3316950/σ8 + 81900/σ6 − 225/σ4

6 −3890016900/σ14 + 5058986625/σ12 − 802531800/σ10

+32345224/σ8 − 335160/σ6 + 44/σ4

Table A.26.8. Radial dependence of (A� − D�)2 + (B� + C�)2.

� (A� − D�)2 + (B� + C�)2

1 1/σ4

2 36/σ6 + 9/σ4

3 2025/σ8 + 360/σ6 + 36/σ4

4 176400/σ10 + 23625/σ8 + 1800/σ6 + 100/σ4

5 22325625/σ12 + 2381400/σ10 + 141750/σ8 + 6300/σ6 + 225/σ4

6 3890016900/σ14 + 343814625/σ12 + 16669800/σ10

+593224/σ8 + 17640/σ6 + 441/σ4

27. Spherical Bessel Function Sums

Any electromagnetic field may be expressed as the product of spherical
Bessel, Neumann, Hankel functions of σ, or linear combinations thereof,
times linear combinations of Legendre functions of θ, times linear combi-
nations of trigonometric functions of azimuth angle φ.

A particularly useful function is a z-directed plane wave: e−ikz =
e−iσ cos θ. It follows that functions with m = 0 are present, and there is
no dependence upon φ. Since the function is regular on the z-axis, only
spherical Bessel functions are present. The result, expressed using spherical
coordinates, is the general solution form expressed as a sum over the single
product:

e−iσ cos θ =
∞∑


=0

a
j
(σ)P
(cos θ) (A.27.1)

The objective is to evaluate each of the infinite number of constants a
.
To do so, multiply both sides by Pn(cos θ) and integrate over the full range
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of zenith angle. The result is:

2j
(σ)
(2� + 1)

a
 =
∫ π

0
sin θ dθ P
(cos θ)e−iσ cos θ (A.27.2)

Differentiating both sides � times with respect to σ then going to the limit
of vanishing small radius, see Eq. (A.24.7), gives:

2a
i



(2� + 1)
�!

(2� + 1)!!
=
∫ π

0
sin θ dθ P
(cos θ) cos
 θ (A.27.3)

The integral is listed in Table A.22.1.10. Doing the integration and solving
for a
 gives:

a
 = i−
(2� + 1) (A.27.4)

Combining Eq. (A.27.1) with Eq. (A.27.4) gives:

e−iσ cos θ =
∞∑


=0

i−
(2� + 1)j
(σ)P
(cos θ) (A.27.5)

Other related sums follow from Eq. (A.27.5). Differentiating both sides
of Eq. (A.27.5) with respect to θ and using Table A.21.1.10 gives:

σe−iσ cos θ =
∞∑


=1

i1−
(2� + 1)j
(σ)
P1


(cos θ)
sin θ

(A.27.6)

Evaluating Eq. (A.27.1) on the positive z-axis gives the three series:

e−iσ =
∞∑


=0

i−
(2� + 1)j
(σ)

sin σ =
∞∑


o;1

(−1)(
−1)/2(2� + 1)j
(σ)

cos σ =
∞∑


e;0

(−1)
/2 (2� + 1)j
(σ)

(A.27.7)

Subscripts “o;1” and “e;0” indicate respectively odd integers beginning with
one and even integer beginning with zero.
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Evaluation of Eqs. (A.27.5) and (A.27.6) at θ = π/2, see Table A.18.1,
gives:

1 =
∞∑


e;0

(2� + 1)
(� − 1)!!
(�!!)2

j
(σ)

σ =
∞∑


o;1

(2� + 1)
(�)!!

(� − 1)!!2
j
(σ)

(A.27.8)

Application of Eq. (A.26.4) to Eq. (A.27.8) gives:

1
σ

=
∞∑


e;0

(2� + 1)
�!!

(�!!)2
j•

(σ)

1 =
∞∑


o;1

(2� + 1)
2

�!!
(� − 1)!!2

j•

(σ)

(A.27.9)

Use of Eq. (A.7.6) to integrate Eq. (A.27.5) over θ gives:[
e−iσ cos θ

σ

]θ2

θ1

=
∞∑


=0

i−
−1j
(σ)[P
+1(cos θ) − P
−1(cos θ)]θ2
θ1

(A.27.10)

Evaluation of Eq. (A.27.10) between limits θ = π and π/2 gives:(
1 − eiσ

σ

)
=

∞∑

=0

i−
−1j
(σ)[P
+1(0) − P
−1(0)] − ij0(σ) (A.27.11)

Evaluation of Eq. (A.27.11) between limits θ = π/2 and 0 gives:(
e−iσ − 1

σ

)
= −ij0(σ) −

∞∑

=0

i−
−1j
(σ)[P
+1(0) − P
−1(0)] (A.27.12)

Subtracting Eq. (A.27.11) from Eq. (A.27.12) gives:

cos σ − 1
σ

=
∞∑


=0

(2� + 1)
(� − 1)!

(� − 1)!!(� + 1)!!
j
(σ) (A.27.13)

The operation of Eq. (A.26.4) results in:

sin σ

σ
=

∞∑

=0

(2� + 1)
(� − 1)!

(� − 1)!!(� + 1)!!
j•

(σ) (A.27.14)

When evaluated on the positive z-axis this gives

σe−iσ =
1
2

∞∑

=1

i1−
(2� + 1)�(� + 1)j
(σ) (A.27.15)
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Table A.27.1. Table of sums over spherical Bessel
functions.

1 e−iσ cos θ =
∞∑

�=0

i−�(2� + 1)j�(σ)P�(cos θ)

2 σ sin θe−iσ cos θ =
∞∑

�=1

i1−�(2� + 1)j�(σ)P1
� (cos θ)

3
1 − cos σ

σ
=

∞∑
�o;1

(2� + 1)
(� − 2)!!
(� + 1)!!

j�(σ)

4
sin σ

σ
=

∞∑
�=o;1

(2� + 1)
(� − 2)!!
(� + 1)!!

j•� (σ)

5 1 =
∞∑

�e;0

(2� + 1)
(� − 1)!!

�!!
j�(σ)

6
1
σ

=
∞∑

�e;0

(2� + 1)
(� − 1)!!

(�)!!
j•� (σ)

7 σ =
∞∑

�o;1

(2� + 1)
(�)!!

(� − 1)!!
j�(σ)

8 1 =
∞∑

�o;1

(2� + 1)
2

(�)!!
(� − 1)!!

j•� (σ)

9 σe−iσ =
1
2

∞∑
�=1

i1−�(2� + 1)�(� + 1)j�(σ)

10 (2 − iσ)e−iσ =
1
2

∞∑
�=1

i1−�(2� + 1)(� + 1)j•� (σ)

The exponential contains the two equations:

σ cos σ =
1
2

∞∑

o;1

(−1)(
−1)/2(2� + 1)�(� + 1)j
(σ)

σ sin σ =
1
2

∞∑

e;2

(−1)
/2(2� + 1)�(� + 1)j
(σ)

(A.27.16)

Table A.27.1 contains a listing of sums over different functions of spherical
Bessel functions.

28. Static Scalar Potentials

To examine physical sources of TM modal coefficients F(�,m), it is conve-
nient to start with the static scalar potential field, Φ(r). By Eq. (1.5.4) the
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differential equation that governs the scalar potential is:

∇2Φ = ρ/ε (A.28.1)

By this equation the scalar potential has a spatial curvature only where
electric charges exist and a field function exists only if the curvature is other
than zero. It follows that static scalar potentials arise only from electric
charges.

To characterize such potentials we establish an origin near or in a region
that contains static electric charges. Based upon that origin, the coordinates
within the charged region are r(x, y, z). The field points at which the poten-
tial is to be evaluated are r(x, y, z). The field point may be either interior
or exterior to the charge-containing region. The distance from the source
to the field point is R where, by definition:

R(r , r) = [(x − x)2 + (y − y)2 + (z − z)2]1/2 (A.28.2)

The potential at an arbitrary field point was previously calculated,
Eq. (1.5.9), and is given by:

Φ(r) =
1

4πε

∫
ρ(r)
R

dV (A.28.3)

It is convenient to work with distance from the origin to field point r, but
the function in the denominator of Eq. (A.28.3) is the distance from the
differential source point to field point R. To replace 1/R by a function of
1/r, use the Taylor series expansion:

1
R

=
{

1
r

+ xi
∂

∂xi

(
1
R

)
r

+
1
2
xixj

∂

∂xi

∂

∂xj

(
1
R

)
r

+
1
6
xixjxk

∂

∂xi

∂

∂xj

∂

∂xk

(
1
R

)
r

+
1
24

xixjxkxm
∂

∂xi

∂

∂xj

∂

∂xk

∂

∂xm

(
1
R

)
r

+ · · ·
}

(A.28.4)

Placing the expansion of Eq. (A.28.4) into Eq. (A.28.3) results in the desired
form:

Φ(r) =
1

4πε

{(
1
r

)∫
ρ(r)dV +

∂

∂xi

(
1
R

)
r

∫
xiρ(r)dV

+
1
2

∂

∂xi

∂

∂xj

(
1
R

)
r

∫
xixjρ(r)dV

+
1
6

∂

∂xi

∂

∂xj

∂

∂xk

(
1
R

)
r

∫
xixjxkρ(r)dV + · · ·

}
(A.28.5)
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The first term of Eq. (A.28.5) has a first order singularity at the origin:

Φ0(r, θ, φ) =
1

4πε

q
r

where q =
∫

ρ(r)dV (A.28.6)

Succeeding terms have successively higher order singularities. Fields associ-
ated with succeeding singularities are generated by equal values of positive
and negative charge, spaced incremental distances apart. The total poten-
tial is the sum of that from each charge and, in the limit as the inter-charge
spacing goes to zero, the mathematical affect on the potential is the same as
obtained by differentiating with respect to xi. For example, for the special
case of charge separation z0 all differentials in Eq. (A.28.5) are z-directed.

Consider the multipolar electric moment of a charge distribution with
� displacements. The moment is of order � and degree m:

pm

 =

∫
ρ(r)xixj · · · xk dV (A.28.7)

Moments are designated by the number of charges involved; moment pm

 ,

where � is the order, is formed by 2
 charges. Charges are arrayed according
to the coefficients of a binomial expansion of the same order. Let a total
of (� − m) displacements be z-directed, let s of them be x-directed, and of
them (m − s) be y-directed.

Easily verified equalities satisfied by the Legendre polynomials are:

P
(cos θ) =
1
�!

∂


∂z


(
1
R

)
r

P1

(cos θ) sin φ =

1
(� − 1)!

∂


∂y ∂z
−1

(
1
R

)
r

(A.28.8)

Consider, as examples, structures that generate the lowest order multipolar
moments. A dipole consists of two discrete charges: charge q at z0/2 and
charge −q at −z0/2; the volume integral, Eq. (A.28.7), over order one is
qz0 and over any even order is zero. A linear quadrupole consists of four
discrete charges: charges q at +z0 and −z0 and charge −2q at the origin;
the volume integral over order two is 2qz2

0 and over any odd order is zero.
A linear octupole consists of eight discrete charges: charge q at 3z0/2, −3q
at z0/2, 3q at −z0/2, −q at −3z0/2. For a source of order three, the volume
integral is qz3

0/4. The same integral over any even order is zero. The volume
integral over order one is zero but the volume integral for odd orders greater
than three is not zero.

In all cases, the volume integral of Eq. (A.28.7) is zero if the charge
distribution and the displacements have opposite parity. It is also equal to
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zero if there are fewer charges than the number of displacements. In all
other cases, the integral is non-zero. Tables A.28.1 and A.28.2 show some
basic features of common multipolar electric moments. In each table col-
umn one shows the order of the source. Column two shows the discrete
charge distribution that generates that order of singularity. Column three
shows the volume integral of Eq. (A.28.7). Column four shows the lowest
non-vanishing order of the potential. With the aid of the static portion
of Eq. (A.28.6), column five shows the radial components of the generated
electric field intensity. Table A.28.1 is for only z-directed displacements and
Table A.28.2 is for one y- and (�−1) z-directed displacements. Table A.28.1
uses scalar charge q as the unit cell and Table A.28.2 uses a y-directed dipole
as the unit cell. For the two cases the multipolar moments are:

p
 = �!qz

0 and p1


 = (� − 1)!qy0z

−1
0

The scalar potential of an arbitrary charge distribution is the simple
sum of values obtained from each moment:

Φ(r, θ, φ) =
1

4πε

∞∑

=0


∑
m=−


pm



r
+1 Pm

 (cos θ)e−jmφ (A.28.9)

Table A.28.1. Electrostatic potentials of a linear array of sources, � charges spaced
distance z0 apart.

� Charge Sites p� 4πεΦ�(r, θ) 4πεEr�(r, θ)

0 +q at 0 q
q
r

q
r2

1 −q at −z0/2 p1 = qz0
p1

r2
P1(cos θ)

2p1

r3
P1(cos θ)

+q at z0/2

2 +q at −z0 p2 = 2p1z0 = 2qz2
0

p2

r3
P2(cos θ)

3p2

r4
P2(cos θ)

−2q at 0
+q at z0

3 −q at −3z0/2; p3 = 3p2z0 = 6qz3
0

p3

r4
P3(cos θ)

4p3

r5
P3(cos θ)

+3q at −z0/2;
−3q at z0/2
+q at 3z0/2

4 +q at −2z0 p4 = 4p3z0 = 24qz4
0

p4

r5
P4(cos θ)

5p4

r6
P4(cos θ)

−4q at −z0
+6q at 0
−4q at z0;
+q at 2z0
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Table A.28.2. Electrostatic source potentials, one y0 and (� − 1)z0 charge spacings.

� Charge and Sites p1
�

4πεΦ1
� (r, θ, φ)
sin φ

4πεEr�(r, θ, φ)
sin φ

1 +q at y0/2 p1
1 = qy0

p1
1

r2
P1

1(cos θ)
2p1

1

r3
P1

1(cos θ)

−q at −y0/2

2 +q at (y0 + z0)/2 p1
2 = p1

1z0
p1
2

r3
P1

2(cos θ)
3p1

2

r4
P1

2(cos θ)

−q at (−y0 + z0)/2
+q at −(y0 + z0)/2
−q at (y0 − z0)/2

3 +q at (y0 ± 2z0)/2 p1
3 = 2p1

2z0
p1
3

r4
P1

3(cos θ)
4p1

3

r5
P1

3(cos θ)

−2q at y0/2
+2q at −y0/2
−q at (−y0 ± 2z0)/2

4 +q at ±(y0 + 3z0)/2 p1
4 = 3p1

3z0
p1
4

r5
P1

4(cos θ)
5p1

4

r6
P1

4(cos θ)

−3q at ±(y0 + z0)/2
−q at ±(y0 − 3z0)/2
3q at ±(y0 − z0)/2

This is the static scalar potential at an arbitrary, exterior field point due to
the charge distribution. The radial component of the electric field intensity
follows from Eq. (A.28.9) with the aid of the static portion of Eq. (1.6.3),
and is equal to:

Er(r, θ, φ) =
1

4πε

∞∑

=0


∑
m=−


(� + 1)pm



r
+2 Pm

 (cos θ)e−jmφ (A.28.10)

This is the radial field on a circumscribing sphere if the radius of that sphere
is vanishingly small. Direct comparison of the coefficients of Eqs. (1.12.9)
and (A.28.10) in the limit as the frequency goes to zero, after combining
with Eq. (A.25.16), gives:

Er(r, θ, φ) = −
∞∑


=0


∑
m=0

i−
F(�, m)�(� + 1)
(2� − 1)!!

σ
+2 Pm

 (cos θ)e−jmφ

(A.28.11)
Comparison of Eqs. (A.28.10) and (A.28.11) gives:

F(�, m) = − 1
4πε

i
k
+2pm



�(2� − 1)!!
(A.28.12)
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For the special case of a z-directed electric dipole of moment p1, it
follows from the third row of Table A.28.1 that:

Φ1 =
p1 cos θ

4πεr2 and Er =
2p1 cos θ

4πεr3 (A.28.13)

29. Static Vector Potentials

To examine physical sources of TE modal coefficients G(�, m), it is conve-
nient to start with the vector scalar potential field, A(r). By Eq. (1.5.4)
the differential equation that governs the vector potential is:

∇2A(r) = µJ(r) (A.29.1)

By this equation the vector potential has a non-zero spatial curvature only
where electric currents exist. Since a field function cannot exist unless,
somewhere, the curvature is not zero, it follows that static vector potentials
arise only from electric currents.

Although the formal descriptions of the scalar and vector potential are
similar, the sources are not. Static scalar potentials arise from stationary
electric charges and vector potentials arise from moving ones. The inte-
grated form of Eq. (A.29.1) follows from Eq. (1.5.8). With J(r) representing
a continuum charge distribution it is:

A(r) =
µ

4π

∮
J(r)

R(r , r)
dV (A.29.2)

Combining the Taylor distance expansion of Eq. (A.28.4) with Eq. (A.29.2)
gives:

A(r) =
µ

4π

{(
1
R

)
r

∫
J(r)dV +

(
∂

∂xi

1
R

)
r

∫
xiJ(r)dV

+
1
2

(
∂

∂xi

∂

∂xj

1
R

)
r

∫
xixjJ(r)dV

+
1
6

(
∂

∂xi

∂

∂xj

∂

∂xk

1
R

)
r

∫
xixjxkJ(r)dV

}
(A.29.3)

Consider a filamentary current of magnitude I that is located in the xy plane
at z = 0. The current at radius a flows in the φ̂ direction. By Eq. (A.29.1),
the potential component in a particular direction is proportional to the cur-
rent in that direction and there is no z-component of the current. Therefore,
there is no z-component of the potential. Since the current has rotational
symmetry about the z-axis there is no loss of generality in placing the field
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point in the xz-plane, say (x0, 0, z0). With the differential source at position
a(x̂ cos φ + ŷ sin φ) = xx̂ + yŷ the source to field distance is

R = [(x0 − x)2 + y2 + z2
0 ]1/2

By Eq. (A.29.2) the zero order vector potential is:

A0(r) =
µI
4πr

∫ 2π

0
a(−x̂ sin φ + ŷ cos φ)dφ = 0 (A.29.4)

To evaluate the first order vector potential of the current loop, note the
partial derivatives:

∂

∂x

(
1
R

)
r

=
1
r2 sin θ;

∂

∂y

(
1
R

)
r

= 0;

The first order vector potential is:

A1(r) =
µ

4π

sin θ

r2

∫ 2π

0
a cos φ · I(−x̂ sin φ + ŷ cos φ) · a dφ =

µIπa2

4π

sin θ

r2 φ̂

(A.29.5)

Since the field point is in the xz-plane, the y-direction of Eq. (A.29.5) gen-
eralizes to the φ direction.

To evaluate the second order vector potential, note the partial deriva-
tives:

∂2

∂x2

(
1
R

)
r

=
1
r3 (3 sin2 θ − 1);

∂2

∂x∂y

(
1
R

)
r

= 0
∂2

∂y2

(
1
R

)
r

= − 3
r3

The second order vector potential is:

A2(r) =
µ

4π

{
1
r3 (3 sin2 θ − 1)

∫ 2π

0
a2 cos2 φ · I(−x̂ sin φ + ŷ cos φ) · a dφ

− 3
r3

∫ 2π

0
a2 sin2 φ · I(−x̂ sin φ + ŷ cos φ) · a dφ

}
= 0 (A.29.6)

Since all integrals vanish, so does the potential of this and all other even
orders.
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To evaluate the third order vector potential, note the partial derivatives:

∂3

∂x3

(
1
R

)
r

=
3
r4 sin θ(5 sin2 θ − 3);

∂3

∂x2 ∂y

(
1
R

)
r

= 0;

∂3

∂x ∂y2

(
1
R

)
r

= −3
sin θ

r4 ;
∂3

∂y3

(
1
R

)
r

= 0

The third order vector potential is:

A3(r) =
µI
24π

{
3
a4

r4 sin θ(5 sin2 θ − 3)
∫ 2π

0
(− sin φ x̂ + cos φ ŷ) cos3 φ dφ

− 9
a4

r4 sin θ

∫ 2π

0
(− sin φ x̂ + cos φ ŷ) cos φ sin2 φ dφ

}
(A.29.7)

Evaluation of the integrals gives:

A3(r) =
3µIπa4φ̂

32πr4 sin θ(5 sin2 θ − 4) (A.29.8)

The radial component of the magnetic field follows by adding
Eqs. (1.2.17), (A.29.5), and (A.29.8):

Br1 =
2µIπa2

4π

cos θ

r3 =
2µIπa2

4π

1
r3 P1(cos θ) (A.29.9)

Br3 =
3µIπa4

8πr5 cos θ(5 cos2 θ − 3) =
3µIπa4

4π

P3(cos θ)
r5 (A.29.10)

The magnetic dipole moment of the loop is, by definition:

m1 = m1ẑ = πa2Iẑ (A.29.11)

For non-circular loops, with S representing the planar area of the closed
current, the definition generalizes to:

m1= IS (A.29.12)

It follows from Eqs. (A.29.5) and (A.29.11) that the dipole potential is
expressible as:

A1(r) =
µ

4π
m1 ×

(
r̂
r2

)
(A.29.13)

For the special case of a z-directed magnetic dipole of moment m1,
combining Eqs. (A.29.9), (A.29.12) and (A.29.13) gives:

A1 =
µm1 sin θ

4πr2 φ̂ and Br =
2µm1 cos θ

4πr3 (A.29.14)

The electric field of Eq. (A.28.13) and the magnetic field of Eq. (A.29.9) are
identical in form. Therefore, field form cannot be used to determine whether
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a magnetic source consists of separated magnetic monopoles or a current
loop. In other words, the role played by a current loop in determining
the vector potential is the same as that played by separated charges in
determining scalar potential.

Extension to higher order moments follows similarly to the dipole case.
An electric quadrupole consists of two superimposed sets of separated elec-
tric charges and a magnetic quadrupole consists of two superimposed sets of
separated current loops. With linear displacements, current loops follow the
same rule as electric moments with one lateral and (� − 1) linear displace-
ments. Results for several orders are compiled in Tables A.29.1 and A.29.2.

Tables A.29.1 and A.29.2 display features of multipolar magnetic
moments. In each case, column one shows the order of the source. Column
two shows the discrete current distributions that generate that order of sin-
gularity. Column three shows the value of the volume integrals that appear
in Eq. (A.29.3). Column four shows the lowest order derived potentials. Col-
umn five shows the radial components of the generated electric field inten-
sity. Table A.29.1 is based upon a z-directed loop and Table A.28.2 is based
upon a y-directed loop. In both cases, all displacements are z-directed.

Equating the field value of Eq. (A.29.10) with the octupole moment of
Table A.29.1 shows that the octupole moment of a circular current loop is:

m3 =
3Iπa4

4
(A.29.15)

The value of odd, higher order moments follow similarly.

Table A.29.1. Magnetostatic vector potentials and radial fields of sources, z-directed
current loops of area S0 with (� − 1)z0 separations.

� Loop Direction, Sites m� 4πAφ�(r, θ)/µ 4πBr�(r, θ)/µ

1 ↑ at 0 m1 = IS0
m1

r2
sin θ

2m1

r3
P1(cos θ)

2 ↓ at −z0/2 m2 = 2m1z0
m2

2r3
3 sin θ cos θ

3m2

r4
P2(cos θ)

↑ at +z0/2

3 ↑ at −z0 m3 = 3m2z0
m3

2r4
sin θ(5 cos2 θ − 1)

4m3

r5
P3(cos θ)

2↓ at 0
↑ at −z0

4 ↓ at −3z0/2 m4 = 4m3z0
5m4

32r5
sin θ(7 cos3 θ − 3 cos θ)

5m4

r6
P4(cos θ)

3↑ at −z0/2
3↓ at z0/2
↑ at 3z0/2

Note: Arrows indicate direction of magnetic dipoles forming the multipole.
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Table A.29.2. Magnetostatic vector potentials and radial fields of sources, y-directed
current loops of area S0, (� − 1)z0 separations.

� Loop Direction, m1
� 4πA�(r, θ, φ)/µ

4πBr�(r, θ, φ)
µ sin φ

Sites

1 → at 0 m1
1 = IS0

µm1
1

4πr2
(θ̂ cos φ − φ̂ cos θ sin φ)

2m1
1

r3
P1

1(cos θ)

2 ← at −z0/2 m1
2 = m1

1z0
m1

2

r3
[(−r̂ sin θ + 2θ̂ cos θ) cos φ

3m1
2

r4
P1

2(cos θ)

→ at + z0/2 − φ̂(3 cos2 θ − 1) sin φ]

3 → at z0/2 m1
3 = 2m1

2z0
3m1

3

8r4
(−2r̂ sin θ cos θ cos φ

4m1
3

r5
P1

3(cos θ)

2 ← at 0 + θ̂(3 cos2 θ − 1) cos φ

→ at z0/2 − φ̂(5 cos2 θ − 3) cos θ sin φ)

4 ← at −3z0/2 m1
4 = 3m1

3z0
m1

4

2r5
(3r̂(1 − 5 cos2 θ) sin θ cos φ

5m1
4

r6
P1

4(cos θ)

3 → at −z0/2 +4θ̂(5 cos2 θ − 3) cos θ cos φ

3 ← at +z0/2 − φ̂(35 cos4 θ − 30 cos2 θ + 3) sin φ)
→ at +3z0/2

Note: Arrows indicate direction of magnetic dipoles forming the multipole.

Contrasting Tables A.28.1, A.28.2, A.29.1 and A.29.2 shows that
Tables A.28.1 and A.29.1 have identical structures, quite different poten-
tials, and identical force fields; the same is true of Tables A.28.2 and A.29.2.
Since there are electric monopoles but not magnetic monopoles, the � = 0
case occurs only in Table A.28.1. For all higher order modes, Tables A.28.1
and A.29.1 have z-directed dipoles as the unit cell. Tables A.28.2 and A.29.2
have y-directed dipoles as the unit cell, with identical structures except the
source structure of Table A.28.1, order �, is the same as that of Table A.29.1,
order (� + 1).

All orders and degrees of any source may be described similarly to those
of the tables. The result is the radial component of the static magnetic field
component of arbitrary order:

Br(r, θ) =
µ

4π

∞∑

=0


∑
m=−


(� + 1)mm



r
+2 Pm

 (cos θ)e−jmφ (A.29.16)

Similarly to the case of the electric field, in the limit as the frequency goes
to zero, the radial component of the magnetic field of Eq. (1.12.7) goes to:

Br =
j

c

∞∑

=0


∑
m=0

i−
G(�, m)�(� + 1)
(2� − 1)!!

σ
+2 Pm

 (cos θ)e−jmφ (A.29.17)
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Combining Eqs. (A.29.15) and (A.29.17) gives:

G(�, m) = − η

4π

i
k
+2mm



�(2� − 1)!!
(A.29.18)

30. Full Field Expansion

The Fields: The photon fields follow from Eqs. (5.8.1) and (5.8.2) for plane
waves and, with the inclusion of a source, becomes Eq. (5.10.16). Computer
methods of evaluation are insufficient. We, therefore, seek other methods
of evaluating the series. Exact values on the coordinate axes, and of sums
over spherical Bessel functions at all angles, are obtained, see Sec. 6.6. The
full solution at limitlessly large radius follows from Eq. (A.30.1):

Plane wave

Ẽ = [sin θ r̂ + cos θ θ̂ − i φ̂]e−iφ

= [S11r̂/σ + (S31 + $21)θ̂ − i(S21 + $31)φ̂]e−iφ

lim
σ→∞{photon wave} =

(
1 + i

d
dσ

)
{plane wave}

(A.30.1)

Solutions are formed by optical source functions U(σ, θ) and V(σ, θ), see
Eq. (6.1.16), where:

U(σ, θ) =
1

σ sin2 θ

[
e−iσ cos θ − (cos σ − i sin σ cos θ)

]
V(σ, θ) =

1
σ sin2 θ

[e−iσ cos θ cos θ − (cos σ cos θ − i sin σ)]
(A.30.2)

These functions are indeterminate on the z-axes where, at θ = 0 and π:

Lim
θ→0,π

U(σ, θ) =
i

2
cos θ

[
e−iσ cos θ − sin σ

σ

]

Lim
θ→0,π

V(σ, θ) =
i

2

[
e−iσ cos θ +

sin σ

σ

] (A.30.3)

With the values of Table 6.7.1 as the starting point and using flow chart
Table 6.8.1 sums are obtained after any desired number of iterations. S3 is
the source of the other sums, and it is tabulated as a function of iteration
numbers one through four in Table A.30.1. Using the values of Table A.30.1
to obtain all other sums then combining to obtain the field components gives
the field values of Tables A.30.2–A.30.4.
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Table A.30.1. Sums S3 for iterations zero through four. Sums S2, S1, $2, and
$3 are calculable from S3.

0S3 = −i[U + V] − U
σ

1S3 =
2
σ2

e−iσ cos θ − i[U + V] −
[(

1
σ

− 2
σ3

)
U + i

2
σ2

V
]

2S3 =
[

4
σ2

− 12i

σ3
cos θ − 12

σ4

]
e−iσ cos θ − i[U + V]

−
[(

1
σ

− 12
σ3

+
224
σ5

)
U − i

(
4
σ2

− 24
σ4

)
V
]

3S3 =
[

6
σ2

− i36
σ3

cos θ − (6)!
(3)!σ4

(
11
10

− sin2 θ

)
+

(6)!i
(3)!σ5

cos θ +
(6)!
2σ6

]
e−iσ cos θ

− i[U + V] − (6)!
[(

1
(6)!σ

− 1
(4)!σ3

+
1

(2)!σ5
− 1

σ7

)
U

− i

(
1

(5)!σ2
− 1

(3)!σ4
+

1
σ6

)
V
]

4S3 =
[

8
σ2

− i

σ3
72 cos θ − 480

σ4

(
57
60

− sin2 θ

)
+

i(8)!
(4)!σ5

(
6
7

− sin2 θ

)
cos θ

+
(8)!

(4)!σ6
(2 − sin2 θ) − i(8)!

(3)!σ7
cos θ − (8)!

2σ8

]
e−iσ cos θ − i[U + V]

− (8)!
[(

1
(8)!σ

− 1
(6)!σ3

+
1

(4)!σ5
− 1

(2)!σ7
+

1
σ9

)
U

− i

(
1

(7)!σ2
− 1

(5)!σ4
+

1
(3)!σ6

− 1
σ8

)
V
]

5S3 =
[

10
σ2

− i

σ3
(192 − 72 sin2 θ) cos θ − 1

σ4
(1080 − 1200 sin2 θ)

+
i

σ5
(6000 − 10,080 sin2 θ + 1680 sin4 θ) cos θ

+
1
σ6

(24,720 − 48,720 sin2 θ + 30,240 sin4 θ) − i(10)!
(5)!σ7

(2 + 2 cos2 θ) cos θ

− (10)!
(4)!σ8

(1 + cos2 θ) +
i(10)!
(3)!σ9

cos θ +
(10)!

(2)!σ10

]
e−iσ cos θ − i[U + V]

−
[
(10)!

(
1

(10)!σ
− 1

(8)!σ3
+

1
(6)!σ5

− 1
(4)!σ7

+
1

(2)!σ9
− 1

σ11

)
U

− i(10)!
(

1
(9)!σ2

− 1
(7)!σ4

+
1

(5)!σ6
− 1

(3)!σ8
+

1
σ10

)
V
]
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Table A.30.1. (Continued)

6S3 =
{

1
σ2

12 − i

σ3
(222 − 42 sin2 θ) cos θ − 1

σ4
(2676 − 3984 sin2 θ + 1008 sin4 θ)

i

σ5
(16,224 − 25,872 sin2 θ + 1680 sin4 θ) cos θ

+
1
σ6

(105,120 − 294,000 sin2 θ + 245,280 sin4 θ − 36,960 sin6 θ)

− i

σ7
(409,920 − 866,880 sin2 θ + 628,320 sin4 θ) cos θ

− (12)!
(6)!σ8

(3 − 3 sin2 θ + sin4 θ) +
(12)!i
(5)!σ9

(1 + cos2 θ) cos θ +
(12)!

(4)!σ10
(1 + cos2 θ)

− i(12)!
(3)!σ11

cos θ − (12)!
σ12

}
e−iσ cos θ − i[U + V]

− (12)!
{[

1
σ

− 1
(10)!σ3

+
1

8!σ2
− 1

6!σ7
+

1
4!σ9

− 1
2!σ11

+
1

σ13

]
U

+ i

[
1 − 1

(11)!σ2
+

1
9!σ4

− 1
7!σ6

+
1

5!σ8
− 1

3!σ10
+

1
σ12

]
V
}

Note: Only the term −iU(σ, θ) arises from spherical Bessel functions. Since the parities
of the spherical Bessel and Neumann are different, buildup of the Neumann terms
cannot include the Bessel term; it must be supplied separately.

A characteristic of optical source functions U(σ, θ) and V(σ, θ) may be
seen by writing them in the form:

U(σ, θ) =
1

σ sin2 θ

[
e−iσ cos θ − 1

2
(e−iσ(1 + cos θ) + eiσ(1 − cos θ))

]

V(σ, θ) =
1

σ sin2 θ

[
e−iσ cos θ cos θ − 1

2
(e−iσ(1 + cos θ) + eiσ(1 − cos θ))

]
(A.30.4)

The three exponentials represent waves traveling in the +z-direction
and the ±r-direction. The radially outbound and inbound waves dominate
respectively in the upper and lower hemispheres. Tables A.30.2–A.30.4 show
that fields vary with radius at powers ranging from zero to (2N+1), where
N is the number of iterations. Terms involving U(σ, θ) and V(σ, θ) vary at
powers ranging from three to (2N + 3). It follows that energy flow at very
large radii is dominated by the former and at very small radii by the latter;
the direction of power flow depends upon the distance from the source.
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Table A.30.2. Radial phasor electric field intensities for iterations one
through four. Only the italicized ‘one’ arises from spherical Bessel
functions.

0Er = sin θ

(
1 + cos θ +

i

σ

)
e−iσ cos θe−iφ

1Er = sin θ

{
(1 + cos θ) +

i

σ
(1 + 2 sin2 θ) +

6
σ2

cos θ +
2i

σ3

}
e−iσ cos θe−iφ

2Er = sin θ

{
(1 + cos θ) +

i

σ
(1 + 4 sin2 θ) +

1
σ2

(24 − 12 cos2 θ) cos θ

− i

σ3
(36 − 60 sin2 θ) +

48
σ4

cos θ

}
e−iσ cos θe−iφ

3Er = sin θ

{
(1 + cos θ) +

i

σ
(1 + 6 sin2 θ) +

1
σ2

(54 − 36 cos2 θ) cos θ

− i

σ3
(114 − 84 sin2 θ − 120 sin4 θ)

− 1
σ4

(192 − 840 sin2 θ) cos θ − i

σ5
(864 − 1080 sin2 θ)

}
e−iσ cos θe−iφ

4Er = sin θ

{
(1 + cos θ) +

i

σ
(1 + 8 sin2 θ) +

1
σ2

96 cos θ

− i

σ3
(232 + 24 sin2 θ − 480 sin4 θ) − 1

σ4
(1056 − 4080 sin2 θ) cos θ

− i

σ5
(12, 960 sin2 θ − 15, 120 sin4 θ)

− 1
σ6

(15, 360 − 26, 880 sin2 θ) cos θ

}
e−iσ cos θe−iφ

Power and energy: The real part of the radial component of the Poynting
vector may be written:

Nr =
1
2
Re(Ẽ × H̃∗)r = −1

2
Im(Ẽ × Ẽ∗)r =

Re
η

(iEφE∗
θ) (A.30.5)

The fields of Tables A.30.3 and A.30.4 have the form:

1Eθ = [cos θ(1 + cos θ) + χ + iδ cos θ]e−iσ cos θ e−iφ − [iAV + BU]e−iφ

1Eφ = −i{(1 + cos θ) + γ cos θ + iκ}e−iσ cos θ e−iφ − i[iAU + BV]e−iφ

(A.30.6)

Net power is described only by product of functions that are sums over
spherical Bessel with those that are sums over spherical Neumann functions.
The product of Bessel times Neumann functions giving the portion of the
radial component of the Poynting vector that does not integrate to zero
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Table A.30.3. Zenith angle phasor electric field intensities for iterations zero through
four. Only the italicized “one” arises from spherical Bessel functions.

0Eθ =
[
cos θ(1 + cos θ) − i

σ
− 1

σ2

]
e−iσ cos θe−iφ − i

V(σ, θ)
σ2

1Eθ =
[
cos θ(1 + cos θ) +

2i

σ
sin2 θ cos θ +

1
σ2

+
3i

σ3
cos θ +

6
σ4

]
e−iσ cos θ e−iφ

−
[
i

(
1
σ2

− 6
σ4

)
V +

4
σ3

U
]

e−iφ

2Eθ =
[

cos θ(1 + cos θ) +
i

σ
4 sin2 θ cos θ +

1
σ2

(3 + 12 cos2 θ − 12 cos4 θ)

− i

σ3
12 cos θ +

1
σ4

(24 − 12 cos2 θ) − (5)!i
2σ5

cos θ − (5)!
σ6

]
e−iσ cos θ e−iφ

− (4)!
[
i

(
1

(4)!σ2
− 3

(2)!σ4
+

5
σ6

)
V +

(
2

(3)!σ3
− 4

σ5

)
U
]
e−iφ

3Eθ =
[

cos θ(1 + cos θ) +
i

σ
6 sin2 θ cos θ +

1
σ2

(5 + 36 cos2 θ − 36 cos4 θ)

− i

σ3
(18 + 144 cos2 θ − 120 cos4 θ) cos θ +

1
σ4

(124 − 252 cos2 θ)

− i

σ5
(684 − 600 cos2 θ) cos θ − 1

σ6
(480 + 840 cos2 θ)

+
(7)!i
2σ7

cos θ +
(7)!
σ8

]
e−iσ cos θ e−iφ − (6)!

[
i

(
1

(6)!σ2
− 3

(4)!σ4
+

5
(2)!σ6

− 7
σ8

)
V

+
(

2
(5)!σ3

− 4
(3)!σ5

+
6
σ7

)
U
]
e−iφ

4Eθ =
[

cos θ(1 + cos θ) +
i

σ
8 sin2 θ cos θ +

1
σ2

(7 + 72 cos2 θ − 72 cos4 θ)

+
i

σ3
(8 − 576 cos2 θ + 480 cos4 θ) cos θ

+
1
σ4

(384 − 216 cos2 θ − 2440 cos4 θ + 1680 cos6 θ)

− i

σ5
(4680 − 6240 cos2 θ) cos θ +

1
σ6

(
960 − 22, 800 cos2 θ + 18, 480 cos4 θ

)
+

i

σ7
(8400 + 15, 120 cos2 θ) cos θ +

1
σ8

(40, 320 + 60, 480 cos2 θ)

− i

σ9
181, 440 cos θ − 1

σ10
362, 880

]
e−iσ cos θ e−iφ

− (8)!
[
i

(
1

(8)!σ2
− 3

(6)!σ4
+

5
(4)!σ6

− 7
(2)!σ8

+
9

σ10

)
V

+
(

2
(7)!σ3

− 4
(5)!σ5

+
6

(3)!σ7
− 8

σ9

)
U
]
e−iφ
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Table A.30.4. Azimuth angle phasor electric field intensities for iterations zero through
four. Only the italicized “one” arises from spherical Bessel functions.

0Eφ = −i

(
1 + cos θ +

i

σ

)
e−iσ cos θe−iφ +

U(σ, θ)
σ2

1Eφ = −i

{
(1 + cos θ) +

i

σ
2 sin2 θ +

2
σ2

cos θ − 2i

σ3

}
e−iσ cos θ e−iφ

− i(2)!
[
i

(
1

(2)!σ2
− 3

σ4

)
U +

2
σ3

V
]

e−iφ

2Eφ = −i

{
(1 + cos θ) +

i

σ
4 sin2 θ +

1
σ2

(16 − 12 cos2 θ) cos θ

+
i

σ3
(4 − 12 cos2 θ) − 24

σ4
cos θ +

36i

σ5

}
e−iσ cos θe−iφ

− i(4)!
[
i

(
1

(4)!σ2
− 3

(2)!σ4
+

5
σ6

)
U +

(
2

(3)!σ3
− 4

σ5

)
V
]

e−iφ

3Eφ = −i

{
(1 + cos θ) +

i

σ
6 sin2 θ +

1
σ2

(6 + 36 cos2 θ) cos θ

+
i

σ3
(42 − 216 cos2 θ + 120 cos4 θ) +

1
σ4

(144 − 360 cos2 θ) cos θ

+
i

σ5
(36 + 360 cos2 θ) +

480
σ6

cos θ − i

σ7
1800

}
e−iσ cos θ e−iφ

− i(6)!
[
i

(
1

(6)!σ2
− 3

(4)!σ4
+

5
(2)!σ6

− 7
σ8

)
U

+
(

2
(5)!σ3

− 4
(3)!σ5

+
6
σ7

)
V
]
e−iφ

4Eφ = −i

{
(1 + cos θ) +

i

σ
8 sin2 θ +

1
σ2

(80 − 72 cos2 θ) cos θ

+
i

σ3
(136 − 720 cos2 θ + 480 cos4 θ)

+
1
σ4

(1440 − 3840 cos2 θ + 1680 cos4 θ) cos θ

+
i

σ5
(504 − 4320 cos2 θ + 6720 cos4 θ)

− 1
σ6

(960 − 6720 cos2 θ) cos θ +
i

σ7
(5040 − 21,840 cos2 θ)

− 1
σ8

40, 320 cos θ +
i

σ9
141, 120

}
e−iσ cos θe−iφ

− i(8)!
[
i

(
1

(8)!σ2
− 3

(6)!σ4
+

5
(4)!σ6

− 7
(2)!σ8

+
9

σ10

)
U(σ, θ)

+
(

2
(7)!σ3

− 4
(5)!σ5

+
6

(3)!σ7
− 8

σ9

)
V(σ, θ)

]
e−iφ



October 15, 2004 13:14 WSPC/SPI-B235: The Electromagnetic Origin of Quantum Theory and LightAppendices

Appendices 411

Table A.30.5. The radial component of the complex Poynting vector that provides an
integrated value.

0 η0Nr = 2 cos2 θ

1 η1Nr = 2 cos2 θ +
1
σ2

(1 + 3 cos2 θ)

2 η2Nr = 2 cos2 θ +
1
σ2

(3 + 28 cos2 θ − 23 cos4 θ) +
1
σ4

(36 − 48 cos2 θ)

3 η3Nr = 2 cos2 θ +
1
σ2

(15 + 111 cos2 θ + 55 cos4 θ) +
1
σ4

(412 − 108 cos2 θ + 30 cos4 θ)

4 η4Nr = 2 cos2 θ +
1
σ2

[42 + 592 cos2 θ + 150 cos4 θ]

− 1
σ4

[8 − 3984 cos2 θ + 10,480 cos4 θ − 3360 cos6 θ]

+
1
σ6

[69,504 + 177,840 cos2 θ + 53,760 cos4 θ]

over the surface of a circumscribing sphere has the form:

ηNr = 2 cos2 θ+γ cos2 θ+χ− B
σ

+
1
σ

[A sinσ+B cos σ] cos(σ cos θ) (A.30.7)

The power on the surface of a circumscribing shell follows:

Pr =
2πσ2

k2

∫ π

0
Nr sin θ dθ

Pr =
2πσ2

ηk2

{∫ π

0
[2 cos2 θ + γ cos2 θ + χ] sin θ dθ

+
[(

A
σ2 − 2B

σ

)
− 1

σ2 [A cos(2σ) − B sin(2σ)]
]} (A.30.8)

The integral forms used includes:

∫ π

0
cos(σ cos θ) sin θ dθ =

2
σ

sin σ (A.30.9)

Using the field parameters listed in Tables A.30.3 and A.30.4 gives the com-
plex Poynting vector listed in Table A.30.5. The integrated output power
obtained from Table A.30.5 is listed in Table 6.11.6.
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absorbed power, 36, 81, 84, 91, 270
accelerating charge, 13
Aharonov–Bohm effect, 1
anechoic chamber, 160, 165
angular momentum, 143, 241, 242,
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blackbody, 216–218, 220
Bohr, 235
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boundary condition, 22, 24, 27, 46,

47, 52–56, 84, 88, 89, 248, 317, 347,
350, 352, 377

bremsstrahlung, 312

cavity, 26–28, 216–218, 221, 226, 227
Chu, 115, 116, 118–120, 122–126, 134,

140, 151, 152, 166, 168, 169, 310, 321
circumscribing sphere, 82, 136, 154,

239, 248, 288, 399, 411

classical
electrodynamics, 247, 305
electromagnetism, 313

Collin, 149, 151, 152, 169
complete, 216, 219, 249, 267, 285,

310, 317, 334, 345, 346
completeness, 46, 48, 69, 79, 84, 86,

92, 99
complex power, 66, 67, 102, 103,

108–112, 116, 123, 133, 142, 148,
149, 341, 345, 347

cone
angles, 46, 62, 66
length, 46, 84, 105, 136

cosmological principle, 2
Coulomb’s law, 1, 306

de Broglie, 308
degenerate, 190
degree of degeneracy, 190
Dirac, 308–310, 321, 330

delta function, 228, 330
directivity, 31, 141, 239, 314, 317
dynamic equilibrium, 172, 316

eddy currents, 279, 281–283
effective mass, 7
eigenfunction, 188–190, 199–203,

206, 211
eigenstate, 218, 220, 221, 227, 232,

241, 247, 248, 309–316, 319, 320
Einstein, 216, 218, 220, 221, 227, 239,

246, 307, 309, 310, 317, 321
electrodynamics, 7
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electromagnetic
mass, 17
stress tensor, 14, 15

electron spin, 308
equipartition theorem, 218, 225
equivalent

circuit, 117, 118, 120, 122, 124,
134, 141, 142, 146, 151

sources, 136, 335
ergodic theorem, 130, 223
exclusion principle, 172, 213
expectation values, 317
exterior region, 47, 75, 88, 346
extinction power, 36, 39, 81, 83, 85,

96, 270

Fante, 152, 169
field

coefficients, 28, 32, 48, 51,
69–71, 74, 86, 92, 94, 271, 273

momentum, 18
fields in a box, 26
fluid, 172
force, 38, 39

density, 12, 14, 18
four-acceleration, 12
four-current density, 8, 10, 12
four-divergence, 8
four-momentum, 6, 7
four-potential, 8, 9
four-scalar, 12
four-tensors, 7, 10
four-vector, 5–8, 12, 14
four-velocity, 5, 6, 8, 12
Fourier integral, 30, 316

expansions, 21

gamma power, 108
Gaussian wave function, 184, 185
geometric cross section, 37, 39, 43, 80
group velocity, 109

Hamiltonian operator, 188, 202, 203
Hankel functions, 23, 26, 34, 48, 65,

75, 88, 126, 137, 236, 240, 244, 265,
267, 268, 285, 386, 387, 392

Hansen, 23, 24
harmonic

functions, 56
oscillator, 113, 191, 218, 219

Harrington, 169, 239, 241, 305,
310, 321

Helmholtz equation, 21, 22, 24, 336
Hermite polynomials, 193
Hertz, 216, 226, 307, 321
Hertzian waves, 220

input
impedance, 31, 60–62, 64, 91,

102, 114, 117, 119, 122, 129,
133, 142, 147, 153, 160,
340, 342

power, 36, 45, 65, 80, 101, 111,
154, 165, 166, 344

interior region, 48, 63–65, 88, 95

kinematic properties, 17, 241, 246,
247, 317

Kirchhoff, 217
circuit laws, 103

Kronecker delta function, 78, 254

Laplacian, 8, 10, 21, 336
Law of Parsimony, 247
Legendre function, 23, 24, 26, 32, 47,

48, 55, 57, 58, 69, 88, 94, 261, 263,
359, 366, 370, 375, 377, 381, 392

Lenz’s law, 86, 94, 95, 271
letter functions, 103, 118, 126, 127,

130, 132, 133, 137, 243, 266,
387, 388

Lorentz
contraction, 3, 7
frames, 7
radius, 234
transformation, 3

magnetic moment, 86, 95, 163, 164,
271, 273, 308, 313, 403

Manley Rowe equations, 317
Maxwell equations, 1, 11, 12, 17, 27,

46, 345
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Mie region, 44
Minkowski force, 6

Neumann, 257, 261, 263, 267, 285,
387, 392, 407

function, 23, 24, 26, 32, 48, 49,
69, 112, 118, 236, 244, 249,
253, 254, 257, 261–263, 265,
285, 286, 289, 319, 360, 384,
387, 408

Newton’s law, 17
non-ionizing transitions, 203
nonlinear systems, 232, 311
nonlocal electron, 310
nonradiating motion, 172

optical
region, 44
source, 251

orthogonality, 57, 58, 152, 367, 368
oscilloscope, 159, 160, 162

Pauli, 213
permeability, 8
permittivity, 9, 230, 348
perturbation, 206, 208

analysis, 202
photoelectric effect, 226, 306
photoelectricity, 219
Planck, 216, 218, 220, 224–226, 232,

239, 307, 320, 322
constant, 180, 184, 232
radiation law, 216, 218, 220,

224, 225
radiation field, 302

plane wave, 31, 32, 34, 36–38, 40, 43,
67, 69, 71, 72, 74, 75, 80, 84, 85, 94,
96, 98, 151, 220, 227, 229, 233, 235,
236, 241, 248, 269–271, 273, 289,
319, 392

potential field, 7, 8
power frequency, 303, 308, 311, 314
Poynting

theorem, 35
vector, 15, 35, 38, 64, 66, 76,

104, 106, 127, 129, 132, 139,

140, 149, 240–242, 265, 267,
284, 288, 319, 346, 353,
408, 411

pragmatism, 216
pressure, 130, 248, 275–277, 279–282,

285, 291, 292, 294, 295, 297, 298,
313, 314

proper time, 5

radar cross section, 37, 38, 44
radiating shell, 116
radiation Q, 112, 115, 141, 153,

157–159, 161–166, 168, 169,
233, 235

radiation reaction, 248, 261, 271, 276,
277, 298, 315, 317, 319, 320

Rayleigh region, 44
Rayleigh–Jeans Formula, 216,

218–220
reaction force, 313, 314, 316, 319
reactive energy, 121, 155, 319
real power, 64, 66, 67, 101, 107, 109,

111, 151, 159, 160, 168,
289, 341

receiving antenna, 31, 67, 80, 84, 86,
94, 270, 271

recursion relationship, 244, 255, 260,
263, 265, 267, 362, 368, 369, 371,
375, 376, 382, 383, 387

rest mass, 6

scalar potential, 9, 395, 396,
400, 403

scatterer, 34–38, 40–43, 75, 80, 81,
84, 96, 241, 270

scattering, 31, 34, 37, 38, 40, 43–45,
67, 80, 83–87, 96, 97, 160, 161, 220,
270, 271, 310

coefficients, 34, 40–42
cross section, 37, 80, 97

Schrödinger, 247, 308–310, 313, 315,
321, 322

selection rules, 208
shear, 275–283, 285, 291–298, 313
skin depth, 227
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spherical
potential, 199
waves, 31, 359

spontaneous emission, 219, 224
standing energy, 46, 64, 115, 123–125,

128–130, 133, 139, 143, 146–148,
151–154, 156, 158, 159, 162, 166,
169, 236, 241, 248, 289, 310, 311,
320, 353

statistical mechanics, 218, 225, 307,
316, 317

step function, 38
string theory, 173, 312
surface

currents, 31, 38, 84, 95, 115
tension, 312

symmetric, 95, 308, 327
tensor, 14, 15, 327

TE modes, 25, 33, 34, 71, 75, 86, 87,
104, 108, 122, 124, 125, 137, 151,
239

telefield terms, 248
TEM mode, 46, 49–53, 65, 87

Thévenin, 345
circuit, 102, 151

time
dilatation, 4
domain, 153, 154

time-independent wave equation, 180,
184, 186, 188

TM modes, 25, 34, 46, 52, 71, 75, 94,
104, 108, 116, 122–126, 142,
152, 237

transmitting antenna, 45, 46
traveling waves, 32
turnstile antenna, 154, 157–159,

161–163

uncertainty principle, 233
uniqueness theorem, 248

wave
admittance, 46
function, 309, 310

expansion, 273
waveform generator, 160
Wien formula, 220
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