Painlevé Equations

N Joshi, University of Sydney, Sydney, NSW,
Australia

© 2006 Elsevier Ltd. All rights reserved.

Introduction

The Painlevé equations Pj-Py; are six classical
second-order ordinary differential equations that
appear widely in modern physical applications.
Their conventional forms (governing y(x) with
derivatives y' = dy/dx, y’ = d*y/dx?) are:
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where «, 3, v, 6 are constants. They were identified
and studied by Painlevé and his school in their
search for ordinary differential equations (in the
class y" =R(x,y,y'), where R is rational in y',y and
analytic in x) that define new transcendental func-
tions. Painlevé focussed his search on equations that

possess what is now known as the Painlevé property:
that all solutions are single-valued around all

movable singularities (a singularity is “movable” if
its location changes with initial conditions).

For the Painlevé equations, all movable singula-
rities are poles. For Py and Py, all solutions are
meromorphic functions. However, the solutions of
each of the remaining equations have other singula-
rities called “fixed” singularities, with locations that
are determined by the singularities of the coefficient
functions of the equation. Py—Py; have a fixed
singularity at x=oc0. Py and Py have additional
fixed singularities at x =0, and Pyj has them at x=0
and 1. Although each solution of Py—Py; is single-
valued around a movable singularity, it may be
multivalued around a fixed singularity.

Painlevé’s school considered canonical classes of
ordinary differential equations equivalent under linear
fractional transformations of y and x. Of the fifty
canonical classes of equations they found, all except
six were found to be solvable in terms of already
known functions. These six lead to the Painlevé
equations P;—Pyy as their canonical representatives.

A resurgence of interest in the Painlevé equations
came about from the observation (due to Ablowitz
and Segur) that they arise as similarity reductions
of well-known integrable partial differential equa-
tions (PDEs), or soliton equations, such as the
Korteweg—de Vries equation, the sine-Gordon equa-
tion, and the self-dual Yang-Mills equations.

As this connection suggests, the Painlevé equations
possess many of the special properties that are
commonly associated with soliton equations. They
have associated linear problems (i.e., Lax pairs) for
which they act as compatibility conditions. There
exist special transformations (called Backlund trans-
formations) mapping a solution of one equation to a
solution of another Painlevé equation (or the same
equation with changed parameters). There exist
Hamiltonian forms that are related to existence of
tau-functions, that are analytic everywhere except at
the fixed singularities. They also possess multilinear
forms (or Hirota forms) that are satisfied by tau-
functions. In the following subsections, for concise-
ness, we give examples of these properties for the first
or second Painlevé equations and briefly indicate
differences, in any, with other Painlevé equations.
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Complex Analytic Structure of Solutions

Consider the two-(complex-)parameter manifold of
solutions of a Painlevé equation. Each solution is
globally determined by two initial values given at a
regular point of the solution. However, the solution
can also be determined by two pieces of data given
at a movable pole. The location xy of such a pole
provides one of the two free parameters. The other
free parameter occurs as a coefficient in the Laurent
expansion of the solution in a domain punctured at
xo. For Py, the Laurent expansion of a solution at a
movable singularity x is
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where ¢ is arbitrary. This second free parameter is
normally called a “resonance parameter.” For Py,
the Laurent expansion of a solution at a movable
singularity x¢ is

+1 Fxo
y(x) :m‘*‘T(x—xO)
:':14705(36—360)2‘#6[1(96—3(?0)3 +- 2]

where ¢y is arbitrary. The symmetric solution of Py
that has a pole at the origin and corresponding
resonance parameter ¢ =0 has a distribution of poles
in the complex x-plane shown in Figure 1. (This figure
was obtained by searching for zeros of truncated
Taylor expansions of the tau-function 7 described in
the section “Backlund and Miura transformations.”
One hundred and sixty numerical zeros are shown.
The two pairs of closely spaced zeros near the
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Figure 1 Poles of a symmetric solution of P, in the complex
x-plane, with a pole at the origin and zero corresponding
resonance parameter, i.e., xo =0, ¢, =0.

imaginary axis (between 8 < +3x < 12) may be
numerical artifacts. We used the command NSolve to
32 digits in MATHEMATICAA4.)

The rays of symmetry evident in Figure 1 reflect
discrete symmetries of Pj. The solutions of Py and Py
are invariant under the respective discrete symmetries,

P: yn(x) :eZ7rin/5y(e47rin/5x)7 n=+1,+2
Py: yn(x) — eﬂin/3y(6277in/3x), o — efﬂina
n==x1,£23

The rays of angle 271/5 for Py and 7n/3 for Py
related to these symmetries play special roles in the
asymptotic behaviors of the corresponding solutions
for |x| — oo.

Linear Problems

The Painlevé equations are regarded as completely
integrable because they can be solved through an
associated system of linear equations (Jimbo and
Miwa 1981).

de

d_C: L(xa C)(P [33]
de
= Mx, Q) 3b]
The compatibility condition, that is,
Le—M¢+[L,M]=0 [4]

is equivalent to the corresponding Painlevé equation.
The matrices L, M for P; and Py are listed below:
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Alternative linear problems also exist for each
equation. For example, for Py, an alternative choice
of L and M is (Flaschka and Newell 1980):

—4i 0\, [0 4y
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The matrix L for each Painlevé equation is
singular at a finite number of points a;(x) in the
¢-plane. For the above choices of L for P; and Py,
the point ( =o0 is clearly a singularity. For Ly, the
origin (=0 is also a singularity. The analytic
continuation of a fundamental matrix of solutions
® around g; gives a new solution ® which must be
related to the original solution: ® =® A. A is called
the monodromy matrix and its trace and determi-
nant are called the monodromy data. In general, the
data will change with x. However, eqn [4] ensures
that the monodromy data remain constant in x. For
this reason, the system [3] is called an isomonodr-
omy problem.

Backlund and Miura Transformations

Bicklund transformations are those that map a
solution of a Painlevé equation with one choice of
parameter to a solution of the same equation with
different parameters. For P; no such transformation
is known. For Py, there is one Biacklund transforma-
tion. Let y=1y(x;«a) denote a solution of Py with
parameter a. Then y=y(x;a — 1), which solves Py
with parameter o — 1, is given by

_1
a—3

Y =y —x/2

If a=1/2, then ¥ =y>+x/2 and y= —y (see the
next section for this case). Combined with the
symmetry y——y,a=—qa, we can write down
another version of this Bicklund transformation
which maps y to y=y(x;a + 1):

§i=—y+ fa£1/2  [9

a+%
Y +y:+x/2
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If we parametrize o by ¢+ #n for arbitrary ¢, and
denote the solution for corresponding parameter as

Yn, We can write a difference equation relating y,_1

and y,.1 (by eliminating y’ from the two transfor-

mations y, y) as
ct+i+n
VYn+1 + Yn

1
C-z—f—?’l

+2y2+x=0
yn—1+yn

This is an example of a discrete Painlevé equation (called
“alternate” dP; in the literature). In such a discrete
Painlevé equation, x is fixed while 7 varies. Another
lesser known Bicklund transformation for Py is

y’—y2—§—6v2=0 7]

V+yv=0 8]

between Pj; with a=1/2 and

v"+6v3+32—611:0
which can be scaled (take v(x)=y(v/2x)/v/V/26) to
the usual form of Py with a=0.

Miura transformations are those that map a solution
of a Painlevé equation to another equation in the 50
canonical types classified by Painlevé’s school. If y is a
solution of Py with parameter o # 1/2, then

1—-uw
20 — Dw =2(y —y* —x/2 =
(2o —Dw =20y =y =x/2), y=—_
maps between Py and
2
//_(w/) _ _ 2 _L
wh=—> Qa—1)w” —xw T

which represents the 34th canonical class in the
Painlevé classification listed in Ince (1927).

The Painlevé equations do not possess contin-
uous symmetries other than Bicklund and Miura
transformations described here. However, they do
possess discrete symmetries described in the section
“Complex analytic structure of solutions.”

Classical Special Solutions

Painlevé showed that there can be no explicit first
integral that is rational in y and y" for his
eponymous equations. It is known that this state-
ment can be extended to say that no such algebraic
first integral exists. But the question whether the
Painlevé equations define new transcendental func-
tions remained open until recently.

Form a class of functions consisting of those
satisfying linear second-order differential equations,
such as the Airy, Bessel, and hypergeometric functions,
as well as rational, algebraic, and exponential func-
tions. Extend this class to include arithmetic opera-
tions, compositions under such functions, and
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solutions of linear equations with these earlier func-
tions as coefficients. Members of this class are called
classical functions. For general values of the constants
a, 3,7, 6, it is now known (Umemura 1990, Umemura
and Watanabe 1997) that the six Painlevé equations
cannot be solved in terms of classical functions.
However, there are special values of the constant
parameters «, (3, 7, 6 for which classical functions do
solve the Painlevé equations. Each Painlevé equation,
except Pp, has special solutions given by classical
functions when the parameters in the Painlevé equa-
tion take on special values. For Py, with a=1/2 we
have the special integral

X

11/253/—3’2—520 9]

which, modulo Py with aw=1/2, satisfies the relation

d
<a+2y>11/2 =0

The Riccati eqn [9] can be linearized via y = —/ /v
to yield

1 f _
Y+ > =0
which gives

b(x) = a Ai(—

for arbitrary constants @ and b, that is, the well-
known Airy function solutions of Py. Iterations of
the Bicklund transformations y and ¥y, [5]-[6] give
further classical solutions in terms of Airy functions
for the case when a=(2N + 1)/2 for integer N.
Similarly, there is a sequence of rational solutions of
the family of equations Py; with o = N, for integer N, if
we iterate the Bicklund transformations y,9 by
starting with the trivial solution y =0 for the case
a=0. For example, for « =1, we have y = —1/x. The
transformations [7]-[8] give a mapping that shows
that this family of rational solutions and the above
family of Airy-type solutions of Py both exist for the
cases when « is half-integer and when it is integer.

2713%) + bBi(—2"3x)

Hamiltonians and Tau-Functions

Each Painlevé equation has a Hamiltonian form. For
P; and Py, these can be found by integrating each
equation after multiplying by y’. These give

y/2 X
Pr: 7:2y3+xy—/ y(€)d¢ + E;
G Ao _1/" 2
Pr: 2—2+2y 3 y(£)"d§ + ay + En

where Ej and Ep are constants. We choose
canonical variables g(¢) =y(x), p1(¢) =y'(x), where
t = x. Furthermore, for P, we take

n0=x  pa0= [ Ty (©)de

and the Hamiltonian

Hy = pl —2q1° — q2q1 + P2

so that the Hamlltoman equations of motion
qi=0H/0p; and p; = —0H/0q; are satisfied. For
Py, we take

a0 =2 pale)= | Ty (erde

and the Hamiltonian

Hy :—%—ﬂ—qqu += Pz—aql

We note that these Hamiltonians govern systems
with two degrees of freedom and each is conserved.
However, no explicit second conserved quantity is
known (see comments on first integrals in the last
section).

Painlevé’s viewpoint of the transcendental solutions
of the Painlevé equations as natural generalizations of
elliptic functions also led him to search for entire
functions that play the role of theta functions in
this new setting. He found that analogous functions
could be defined which have only zeros at the
locations of the movable singularities of the Painlevé
transcendents. These functions are now commonly
known as tau-functions (also denoted 7-functions).
For P; and Py, the corresponding tau-functions are
entire functions (i.e., they are analytic everywhere in
the complex x-plane). However, for the remaining
Painlevé equations, they are singular at the fixed
singularities of the respective equation.

For Py, all movable singularities of P; are double
poles of strength unity (see eqn [1]). Therefore, the
function given by

o o [ rous)

has Taylor expansion with leading term (x — xo).
In other words, 71(x) is analytic at all the poles
of the corresponding solution of P. Since y(x) has
no other singularity (other than at infinity), mi(x)
must be analytic everywhere in the complex x-plane.
Differentiation and substitution of P; shows that
71(x) satisfies the fourth-order equation

P;: TI(4> (x)71(x) = 47'1’(x)TI(3> (x) — 37’1’/(36)2 — X7 (x)2
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Note that this equation is bilinear in 7 and its
derivatives. Such bilinear, or in general, multilinear,
equations are called Hirota-type forms of the Painlevé
equations. The special nature of such equations is
most simply expressed in terms of the Hirota D( = D)
operator, an antisymmetric differential operator defined
here on products of functions of x:

an 8= (85 - 37;)nf(§)g(7l)|5:7,=x
Notice that

2

DZT~T:TT”—T',

D*r 7 =717% — 47/70) 4 3,712

Hence the equation satisfied by 7i(x) can be
rewritten more succinctly as

(D4 +X)T1-T1 =0

For Py, a generic solution y(x) has movable simple
poles of residue +1 (see eqn [2]). Painlevé pointed
out that if we square the function y(x), multiply
by —1 and integrate twice, we obtain a function
with Taylor expansion with leading term (x — xo).
However, the square is not invertible and to
construct an invertible mapping to entire functions,
we need two 7-functions. We denote these by 7(x)
and o(x):

P )= exp(~ [ [ yoranas)
)

on(x) = y(x)mu(

The equations satisfied by these tau-functions are

Py 7 (x)7(x) =7 (x)* — o(x)?

Hierarchies

Each Painlevé equation is associated with at least
one infinite sequence of ordinary differential
equations (ODEs) indexed by order. These
sequences are called hierarchies and arise from
symmetry reductions of PDE hierarchies that are
associated with soliton equations.

Define the operator £,{v(z)} (the Lenard recursion
operator) recursively by

d%ﬁ,m {v}= ((f—; + 4”d% + 2v’> Ln{v}
Li{v}=v
where primes denote z-derivatives. Note that
Lo{vy =0" + 37
L3{v} = v + 100" 4 50 + 100°

This operator is intimately related to the Korteweg—de
Vries equation. (It was first discovered as a method of
generating the infinite number conservation laws
associated with this soliton equation.)

The scaling v(z)=Ay(ux), with A=(-2)"3,
= (—2)7'3, shows that the case #=2 of the
sequence of ODEs defined recursively by

Lv} =z

is P1. Hence this is called the first Painlevé hierarchy.
A second Painlevé hierarchy is given recursively by

(%* Zy)ﬁn{y —Y}=xy+ta, n>1

where «a,, are constants.

Each Painlevé equation may arise as a reduction
of more than one PDE. Since different soliton
equations have different hierarchies, this means
that more than one hierarchy may be associated
with each Painlevé equation.

See also: Backlund Transformations; Integrable Discrete
Systems; Integrable Systems: Overview; Isomonodromic
Deformations; Ordinary Special Functions;
Riemann—Hilbert Methods in Integrable Systems;
Riemann—Hilbert Problem; Solitons and Kac—Moody Lie
Algebras; Two-Dimensional Ising Model; WDVV
Equations and Frobenius Manifolds.
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Introduction

Many physical laws are mathematically expressed
in terms of partial differential equations (PDEs);
this is, for instance, the case in the realm of
classical mechanics and physics of the laws of
conservation of angular momentum, mass, and
energy.

The object of this short article is to provide an
overview and make a few comments on the set of
PDEs appearing in classical mechanics, which is
tremendously rich and diverse. From the mathema-
tical point of view the PDEs appearing in mechanics
range from well-understood PDEs to equations
which are still at the frontier of sciences as far as
their mathematical theory is concerned. The math-
ematical theory of PDEs deals primarily with their
“well-posedness” in the sense of Hadamard. A well-
posed PDE problem is a problem for which
existence and uniqueness of solutions in suitable
function spaces and continuous dependence on the
data have been proved.

For simplicity, let us restrict ourselves to space
dimension 2. Several interesting and important PDEs
are of the form

0’u 0’u ’u
a8x2+b8x8y+cay2_0 1]
Here a, b, ¢ may depend on x and y or they may be
constants, and then eqn [1] is linear: they may also
depend on u, Ou/0x, and Ou/dy, in which case the
equation is nonlinear.
Such an equation is

e clliptic when (where) b* —4ac < 0,
e hyperbolic when (where) b? —4ac > 0,
e parabolic when (where) b* — 4ac=0.

Among the simplest linear equations, we have the
elliptic equation

Au=0 2]

which governs the following phenomena: equation
for the potential or stream function of plane,
incompressible irrotational fluids; equation for
some potential in linear elasticity, or the equation
for the temperature in suitable conditions (sta-
tionary case; see below for the time-dependent
case).

Another eqn of the form [1] is the hyperbolic
equation

o Ox2

which governs, for example, linear acoustics in one
dimension (sound pipes) or the propagation of an
elastic wave along an elastic string.

A third equation of type [1] is the linear parabolic
equation

0 [3]

ou  u

ot ox* 0 4
also called the heat equation, which governs, under
appropriate circumstances, the temperature (u(x, f) =
temperature at x at time ).

All these equations are well understood from the
mathematical viewpoint and many well-posedness
results are available. A fundamental difference
between eqns [2], [3], and [4] is that for [2] and
[4] the solution is as smooth as allowed by the data
(forcing terms, boundary data not mentioned here),
whereas the solutions of [3] usually present some
discontinuities corresponding to the propagation of
a wave or wave front.

A considerable jump of complexity occurs if we
consider the equation of transonic flows in which

a= 1—l %2
N v2 \ Ox
2 Ou Ou

= S
b v Ox dy 5]

Loy
v2 \ dy

where v=uv(x,y) is the local speed of sound. This is
a mixed second-order equation: it is elliptic in the
subsonic region where M < 1, M the Mach number
being the ratio of the velocity

J AN G 1

st = () + (3)

to the local velocity of sound v=wv(x,y); eqn [1]
(with [5]) is hyperbolic in the supersonic region,
where M >1 and parabolic on the sonic line
M=1. Essentially no result of well-posedness is
available for this problem, and it is not even totally
clear what are the boundary conditions that one

should associate to [1]-[5] to obtain a well-posed
problem.

c=1
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Intermediate mathematical situations are encoun-
tered with the Navier-Stokes and Euler equations,
which govern the motion of fluids in the viscous
and inviscid cases, respectively. A number of
mathematical results are available for these equa-
tions (see Compressible Flows: Mathematical The-
ory, Incompressible Euler Equations: Mathematical
Theory, Viscous Incompressible Fluids: Mathema-
tical Theory, Inviscid Flows); but other questions
are still open, including the famous Clay prize
problem, which is: to show that the solutions of the
(viscous, incompressible) Navier-Stokes equations,
in space dimension three, remain smooth for all time,
or to exhibit an example of appearance of singularity.
A prize of US$ 1 million will be awarded by the Clay
Foundation for the solution of this problem.

For compressible fluids, the Navier-Stokes equa-
tions expressing conservation of angular momentum
and mass read

p(%%— (u-V)u)
—pAu+Vp— A+ ) V(V-u)=0 [6]

% 4 Vpu) =0 7
Here u=u(x,t) is the velocity at x at time ¢,
p=p(x,t) the pressure, p the density; A\ pu are
viscosity coefficients, > 0,3\ + 2 > 0. When
uw=XA=0, we obtain the Euler equation (see Com-
pressible Flows: Mathematical Theory). If the fluid
is incompressible and homogeneous, then the den-
sity is constant, p=py and

V-u=0 [8]

so that eqn [8] replaces eqn [7] and eqn [6]
simplifies accordingly.

Finally, let us mention still different nonlinear
PDEs corresponding to nonlinear wave phenomena,
namely the Korteweg-de Vries (see Korteweg—de
Vries Equation and Other Modulation Equations)

6u+u8u Pu )
ot Ox  Oxd

and the nonlinear Schrodinger equation (see Non-
linear Schrodinger Equations)

2
g—;’wﬁ%—:—mmﬁAJraA:o [10]
a,y > 0. These equations are very different from
eqns [1]-[8] and are reasonably well understood
from the mathematical point of view; they produce
and describe the amazing physical wave phenom-
enon known as the soliton (see Solitons and Kac—
Moody Lie Algebras).

This article is based on the Appendix of the book
by Miranville and Temam quoted below, with the
authorization of Cambridge University Press.

See also: Compressible Flows: Mathematical Theory;
Elliptic Differential Equations: Linear Theory; Evolution
Equations: Linear and Nonlinear; Fluid Mechanics:
Numerical Methods; Fractal Dimensions in Dynamics;
Image Processing: Mathematics; Incompressible Euler
Equations: Mathematical Theory; Integrable Systems and
the Inverse Scattering Method; Interfaces and
Multicomponent Fluids; Inviscid Flows; Korteweg—de
Vries Equation and Other Modulation Equations; Leray—
Schauder Theory and Mapping Degree;
Magnetohydrodynamics; Newtonian Fluids and
Thermohydraulics; Nonlinear Schrédinger Equations;
Solitons and Kac-Moody Lie Algebras; Stochastic
Hydrodynamics; Symmetric Hyperbolic Systems and
Shock Waves; Viscous Incompressible Fluids:
Mathematical Theory; Non-Newtonian Fluids.
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Introduction

Let us recall that there are basically two algebraic
infinite-dimensional distribution theories:

® The first one is white-noise analysis (Hida et al.
1993, Berezansky and Kondratiev 1995), and uses
Fock spaces and the algebra of creation and
annihilation operators.

® The second one is the noncommutative differen-
tial geometry of Connes (1988) and uses the entire
cyclic complex.

If we disregard the differential operations, these
two distribution theories are very similar. Let us
recall quickly their background on geometrical
examples. Let V be a compact Riemannian manifold
and E a Hermitian bundle on it. We consider an
elliptic Laplacian A acting on sections w of this
bundle. We consider the Sobolev space Hy, k > 0, of
sections w of E such that:

/v< (AE + 1>w, w> dmy < oo 1]

where dmy is the Riemannian measure on V and (,)
the Hermitian structure on V. H,; is included in
Hj, and the intersection of all Hy is nothing other
than the space of smooth sections of the bundle E,
by the Sobolev embedding theorem.

Let us quickly recall Connes’ distribution theory:
let «(n) be a sequence of real strictly positive
numbers. Let

o= ZU” [2]

where o, belongs to H,” with the Hilbert structure
naturally inherited from the Hilbert structure of H,.
We put, for C > 0,

lolly cae =D C () oull g 3]

The set of o such that [lof|; ¢, < oo is a Banach
space called Coc . The space of Connes functionals
Co_ is the intersection of these Banach spaces for
C > 0 and k > 0 endowed with its natural topology.
Its topological dual Co_,, is the space of distribu-
tions in Connes’ sense.

Remark We do not give the original version of the
space of Connes where tensor products of Banach

algebras appear but we use here the presentation of
Jones and Léandre (1991).

Let us now quickly recall the theory of distribu-
tions in the white-noise sense. The main tools are
Fock spaces. We consider interacting Fock spaces
(Accardi and Bozejko (1998)) constituted of o
written as in [2] such that

loll5.ch = Cra(m)llonllfer <00 [4]

The space of white-noise functionals WN,._ is the
intersection of these interacting Fock spaces Ay, ¢ for
C> 0,k > 0. TIts topological dual WN__, is called
the space of white-noise distributions.

Traditionally, in white-noise analysis, one con-
siders in [2] the case where o, belongs to the
symmetric tensor product of H;, endowed with its
natural Hilbert structure. We get a symmetric Fock
space Ay, and another space of white-noise
distributions WN; _.. The interest in considering
symmetric Fock spaces, instead of interacting Fock
spaces, arises from the characterization theorem of
Potthoff-Streit. For the sake of simplicity, let us
consider the case where a(n)=1. If w if a smooth
section of E, we can consider its exponential
explw] =" n!"'w®", If we consider an element ® of
WNs, —0, (@, explw]) satisfies  two  natural
conditions:

1. D, explw])] < Cexp[CHwHiIk] for some k> 0.
2. z— (P, explw; + zw;]) is entire.

The Potthoff-Streit theorem states the opposite:
a functional which sends a smooth section of V
into a Hilbert space and which satisfies the two
previous requirements defines an element of
WN;, _o with values in this Hilbert space. More-
over, if the functional depends holomorphically on
a complex parameter, then the distribution
depends holomorphically on this complex para-
meter as well.

The Potthoff-Streit theorem allows us to define
flat Feynman path integrals as distributions. It is the
opposite point of view, from the traditional point of
view of physicists, where generally path integrals are
defined by convergence of the finite-dimensional
lattice approximations. Hida-Streit have proposed
replacing the approach of physicists by defining
path integrals as infinite-dimensional distributions,
and by using Wiener chaos. Getzler was the first
who thought of replacing Wiener chaos by other
functionals on path spaces, that is, Chen iterated
integrals. In this article, we review the recent
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developments of path integrals in this framework.
We will mention the following topics:

® infinite-dimensional volume element

e Feynman path integral on a manifold

e Bismut—Chern character and path integrals

e fermionic Brownian motion

The reader who is interested in various rigorous
approaches to path integrals should consult the
review of Albeverio (1996).

Infinite-Dimensional Volume Element

Let us recall that the Lebesgue measure does not
exist generally as a measure in infinite dimensions.
For instance, the Haar measure on a topological
group exists if and only if the topological group is
locally compact. Our purpose in this section is to
define the Lebesgue measure as a distribution.

We consider the set C*°(M; N) of smooth maps x(.)
from a compact Riemannian manifold M into a
compact Riemannian manifold N endowed with its
natural Fréchet topology. S is the generic point of M
and x the generic point of N. We would like to say
that the law of x(S;) for a finite set of » different
points S; under the formal Lebesgue measure dD(x(.))
on C>®(M;N) is the product law of ndmy (This
means that the Lebesgue measure on C*(M;N) is a
cylindrical measure). Let us consider a smooth
function o, from (M x N)” into C. We introduce
the associated functional F(c,)(x(.)) on C>*(M;N):

F(ou)(x(.))
:/nan(Sl,...,Sn,x(Sl),...,x(Sn))den 5]

If we use formally the Fubini formula, we get
[ Fo))dDE()
C*(M;N)
:/ F(Sl,...,Sn,xl,...,xn)deann [6]
M7 xN*

We will interpret this formal remark in the framework
of the distribution theories of the introduction. We
consider V.= M x N and E the trivial complex line
bundle endowed with the trivial metric and a(n)=1.
We can define the associated algebraic spaces Co_
and WN_,, and we can extend to Co,,_ and WN,_
the map F of [5]. F sends elements of Cos_ and
WN,_ into the set of continuous bounded maps of
C>(M; N) where we can extend [6]. We obtain:

Theorem 1 o— fo(M;N) F(o)(x(.))dD(x(.)) defines
an element of Co_., or WN_,.

Feynman Path Integral on a Manifold

Let us introduce the flat Brownian motion s — B(s)
in R? starting from 0. It has formally the Gaussian

law
1
z ! expl— %/o

where dD(B(.)) is the formal Lebesgue measure on
finite-energy paths starting from 0 in R (the
partition function Z is infinite!). Let N be a compact
Riemannian manifold of dimension d endowed with
the Levi-Civita connection. The stochastic parallel
transport on semimartingales for the Levi-Civita
connection exists almost surely (Ikeda and Watanabe
1981). Let us introduce the Laplace-Beltrami opera-
tor Ay on N and the Eells-Elworthy—Malliavin
equation starting from x (Ikeda and Watanabe 1981):

dxs(x) = 75(x)dB(s) [7]

d
&B(S)

2
ds] dD(B(.))

where B(.) is a Brownian motion in T,(M) starting
from 0 and s — 7,(x) is the stochastic parallel transport
associated to the solution. s— x(x) is called the
Brownian motion on N. The heat semigroup asso-
ciated to Ay satisfies exp[ —tAN|f (x) = E[f (x;(x))] for
f continuous on N. Formally, there is a Jacobian which
appears in the transformation of the formal path
integral which governs B(.) into the formal path
integral which governs x (x)

de(1) = Z  expl—I(x (x))/2)dD(x (x))  [8]

It was shown by B DeWitt, in a formal way, that the
action in [8] is not the energy of the path and that
there are some counter-terms in the action where the
scalar curvature K of N appears (see Andersson and
Driver (1999) and Sidorova et al. (2004) for rigorous
results). In order to describe Feynman path integrals,
we perform, as it is classical in physics, analytic
continuation on the semigroup and on the “measure”
duy(1) such that we get a distribution dyy(«) which
depends holomorphically on o, Rea > 0.

In order to return to the formalism of the
introduction, we consider V=N, E the trivial com-
plex line bundle and the symmetric Fock space and
a(n)=1. To 0, /n! belonging to H;*™" we associate
the functional on P(N), the smooth path space on N:

F(ou/n!)(x(.))
= [ o) x(s)dsids, 19
Ay,
where A, is the n-dimensional simplex of [0,1]"
constituted of times 0<s;<---<s,<1 (Léandre

(2003)). We remark that F maps WN; o into the
set of bounded continuous functionals on P(N). We
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introduce an element » of L?>(N). The map which to
w, a smooth function on N, associates exp[a(An +
w)]h(Rea <0) satisfies the requirements (1) and (2)
of the introduction and depends holomorphically on
a. This defines by the Potthoff-Streit theorem a
distribution ®, which depends holomorphically on «,
Rea <0 with values in L*(N). By uniqueness of
analytic continuation, we obtain:

Theorem 2 If P.(N) is the space of smooth paths
starting from x in N, we have

<<I>a,0>{xﬂ/ F(U)h(x(l))dux(a)} [10]
P.(N)

Instead of taking functions, we can consider as
bundle E the space of complex 1-forms on N. We
then consider Chen (1973) iterated integrals:

F(oy,)(x(.))
:/ (on((s1), o 2(50)), dx(s1), . dx(sy)) 1]

such that F maps WNj . into the set of measurable
maps on P(N). These maps are generally not
bounded. Namely,

Flexplel) = exp| [ lx(s)), x| 12

instead of exp[ fol w(x(s))ds] in the previous case. By
using the Cameron—-Martin-Girsanov—Maruyama for-
mula and Kato perturbation theory, we get an analog
of Theorem 2 for Chen iterated integrals, but for
Re a < 0, because we have to deal with a perturbation
of An by a drift when we want to check (1) and (2).
The interest of this formalism is that the parallel
transport belongs in some sense to the domain of the
distribution and that we get the flat Feynman path
integral from the curved one by using an analog of [7].

Bismut-Chern Character
and Path Integrals

Since we are concerned in this part with index theory,
we replace the free path space of N by the free smooth
loop space L(N). We consider the case where V=N is
a compact oriented Riemannian spin manifold and
E=E_®E,. E_ is the bundle of complexified odd
forms and E. is the bundle of complexified even
forms. To o,=n!"Yw +w)) @ @ (W, +w!), we
associate the even Chen (1973) iterated integral

F(crn):/ (wi(dx(s1),.) +widsi)A -

7

A(wn(dx(sy),.) + wids,) [13]

where s — x(s) is a smooth loop in N, w; is of odd
degree and w! is of even degree. Let us recall that
even forms on the free loop space commute. F(o,) is
built from even forms on the free loop space, which
commute. This explains why we have to consider
the symmetric Fock space. Therefore, if o belongs to
WN;, o, then F(o)= Y F*(0), where F*(0) is a
measurable form on L(N) of degree 27 (see Jones
and Léandre (1991) for an analogous statement in
the stochastic context).

Let us explain why the free loop space is
important in this context. Let dv,(1) be the law of
the Brownian bridge on N starting from x and
coming back at x at time 1: this is the law of the
Brownian motion x (x) subject to return in time 1 at
its departure. Let p;(x,y) be the heat kernel
associated with x,(x): the law of x,(x) is namely
pi(x,y)dmn(y) (Ikeda and Watanabe 1981). We
consider the Bismut-Heegh-Krohn measure on the
continuous free loop space Lo(N):

dP = py(x,x)dx ® dux(1) 14]
This satisfies
trlexpl—s1An] i+ fu exp[—(1 — s,)A]]
-/ PRCEVRRACE TN

(We are interested in the trace of the heat semigroup
instead of the heat semigroup itself unlike in the
previous section.)

Since N is spin, we can consider the spin bundle
Sp=Sp, @ Sp_ onit, the Clifford bundle Cl on it with
its natural 7, /27, gradation (Gilkey 1995). Let us recall
that the Clifford algebra acts on the spinors. A form w
can be associated with an element & of the Clifford
bundle (Gilkey 1995). We consider the Brownian loop
x(.) associated to the Bismut—-Hoegh—Krohn measure.
If s < t, we can define the stochastic parallel transport
Ts,t from x(t) to x(s) (we identify a loop to a path from
[0,1] into N with the same end values). We remark
that with the notations of [13]

/ P (@1 (dx(s1)) + Brds) )y, -

n

X For 1o (@n(dx(sn)) + Gpdsy) T = A [16]

is a random almost surely defined even element of the
Clifford bundle over x(0). Acting on Sp(x(0)), it thus
preserves the gradation. We consider its supertrace
tryA =trsp, A — trsp, A. This becomes a random vari-
able on Ly(N). We introduce the scalar curvature K of
the Levi—Civita connection on N, whose introduction
arises from the Lichnerowicz formula given the square
of the Dirac operator in terms of the horizontal
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Laplacian on the spin bundle (Gilkey 1995 ). We
consider the expression [ ,exp[— fo (s)ds/8]
trsA dP. This expression can be extended to \X/NS o
and therefore defines an element Wi of WN; _ called
by Getzler (Léandre 2002) the Witten current.

Bismut has introduced a Hermitian bundle ¢ on M.
He deduces a bundle ., on L(N): the fiber on a loop x(.)
is the space of smooth sections along the loop of £. We
can suppose that ¢ is a sub-bundle given by a projector p
of a trivial bundle. We can suppose that the Hermitian
connection on ¢ is the projection connection A =pdp
such that its curvature is R = pdp A pdp. Bismut (1985,
1987) has introduced the Bismut—Chern character:

Ch(&..) tr( /A (Adx(s1) — Rds) A
A (Adx(s,) — Rdsn)) [17]

Ch(&,) is a collection of even forms equal to F(o(£)),
where o(&) belongs to WNj o—. We obtain:

Theorem 3 Let us consider the index Ind(D¢) of

the Dirac operator on N with auxiliary bundle ¢
(Hida et al. 1993). We have

(Wi,o(€)) = Ind D 18]

The proof arises from the Lichnerowicz formula,
the matricial Feynman-Kac formula, and the decom-
position of the solution of a stochastic linear
equation into the sum of iterated integrals.

By using the Potthoff-Streit theorem, we can do the
analytic continuation of [ 18], as is suggested by the path-
integral interpretation of Atiyah (1985) or Bismut
(1985, 1987) of [18], motivated by the Duistermaat—
Heckman or Berline-Vergne localization formulas on
the free loop space. For this, these authors consider the
Atiyah—Witten even form on the free loop space given by

x(.) = [q |(d/ds)x(s)|*ds + dX, where dX . is the
exterior derivative of the Killing form X, which to a
Vector X( ) on the loop associates (X, X(.))=
Jo (X (s)). We should obtain the heuristic formula

(Wi, o) =271 /L(M) F(o) A exp{—;l(x(.))} [19]

We refer to Léandre (2002) for details.

Let us remark that Bismut (1987) and Léandre
(2003) has continued his formal considerations to
the case of the index theorem for a family of Dirac
operators. We consider a fibration 7:N— B of
compact manifolds. Bismut replaces [19] by an
integral of forms on the set of loops of N which
project to a given loop of B. Bismut remarks that
this integration in the fiber is related to filtering
theory in stochastic analysis.

Fermionic Brownian Motion

Alvarez-Gaumé has given a supersymmetric proof of the
index theorem: the path representation of the index of
the Dirac operator involves infinite-dimensional Berezin
integrals, while in the previous section only integrals of
forms on the free loop space were concerned. Rogers
(1987) has given an interpretation of the work of
Alvarez-Gaumé, which begins with the study of
fermionic Brownian motion. Let us interpret the
considerations of Rogers (1987) in this framework.

We consider C?. H is the space of L2-maps from
[0,1] into C%. We denote such a path by (s )
(G1(5)s- > Gals),  where  6,(s) =qils) +v/—Ipils
pi(s) is the ith momentum and qz( s) the ith posmon
We denote by A(H) the fermionic Fock space associated
with H.

We introduce the bilinear antisymmetric form on H:

/ —p} (s)dg; (s

+pi (5) dg; (s) [20]

and we consider the formal expression exp[Q]=
Yo o n! QM. We define a state on A2(H) by
SO AG) =06, ). We  put  gils) = lj0,q +
V—11j9,q where we take the ith coordinate in C%.
We obtain, if s; < s,

w(di(s1) A gj(s2)) = —V—16;, [21]

where ¢;; is the Kronecker symbol. We change the
sign if s, > s; and we write 0 if s; =s;.

We consider the finite-dimensional space Pol of
fermionic polynomials on C?. Pol is endowed with a
suitable norm, and we consider Pol®” endowed with
the induced norm. We consider a formal series
o=>0,, where o, belongs to Pol®”. In order to
simplify the treatment, we suppose that our fermio-
nic polynomials do not contain constant terms. We
introduce the following Banach norm:

Qo' ¢)

- ol 22]

C}’Z
lole =32

We obtain the notion of Connes space Co._ in this
simpler context: o belongs to Cox_ if ||o]| < oo for
all C. If 0,=P, ®---® P,, we associate

HM=APw®W
AP, (d(sp)) dsq - - - ds,, [23]

F can be extended in an injective continuous map
from Cos_ into A(H). By using [21], we get:

Theorem 4
Connes.

exp|Q] is a distribution in the sense of
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We have only to use the formula [21] and

(exp[Q, ¢! N+ N @™y =Pf{w(¢' A¢)}  [24]

and to estimate the obtained Pfaffians when 7 — oc.
Theorem 4 allows us to give a rigorous interpreta-
tion of the fermionic Feynman—Kac formula of Rogers
(1987). We refer to Roepstorff (1994) for details.
exp[€2] should give a rigorous interpretation to the
Gaussian Berezin integral with formal density

exp [V f; 3 pils) dgi(s)].

See also: Equivariant Cohomology and the Cartan
Model; Feynman Path Integrals; Functional Integration in
Quantum Physics; Hopf Algebras and g-Deformation
Quantum Groups; Index Theorems; Measure on Loop
Spaces; Positive Maps on C*-Algebras; Stationary Phase
Approximation; Stochastic Differential Equations;
Supermanifolds; Supersymmetric Quantum Mechanics.
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are peakon wave fronts in higher dimensions. The
reduction of these singular solutions of CH and EPDiff
to canonical Hamiltonian dynamics on lower-dimen-
sional sets may be understood, by realizing that their
solution ansatz is a momentum map, and momentum
maps are Poisson.

Camassa and Holm (1993) discovered the “peakon”
solitary traveling-wave solution for a shallow-
water wave:

u(x,t) = ce Petl/a 1]

whose fluid velocity # is a function of position x on
the real line and time #. The peakon traveling wave
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moves at a speed equal to its maximum height, at
which it has a sharp peak (jump in derivative).
Peakons are an emergent phenomenon, solving the
initial-value problem for a partial differential equa-
tion (PDE) derived by an asymptotic expansion of
Euler’s equations using the small parameters of
shallow-water dynamics. Peakons are nonanalytic
solitons, which superpose as

u(x,t) = ZN:pa(t)e“x‘%(’W” 2]
a=1

for sets {p} and {q} satisfying canonical Hamiltonian
dynamics. Peakons arise for shallow-water waves in
the limit of zero linear dispersion in one dimension.
Peakons satisfy a PDE arising from Hamilton’s
principle for geodesic motion on the smooth
invertible maps (diffeomorphisms) with respect to
the H' Sobolev norm of the fluid velocity. Peakons
generalize to higher dimensions, as well. We explain
how peakons were derived in the context of
shallow-water asymptotics and describe some of
their remarkable mathematical properties.

Shallow-Water Background for Peakons

Euler’s equations for irrotational incompressible
ideal fluid motion under gravity with a free surface
have an asymptotic expansion for shallow-
water waves that contains two small parameters,
e and 62, with ordering € > 6°. These small para-
meters are e =a/hg (the ratio of wave amplitude to
mean depth) and 6% = (ho/l,)* (the squared ratio of
mean depth to horizontal length, or wavelength).
Euler’s equations are made nondimensional by
introducing x =[x’ for horizontal position, z=hoz’
for vertical position, t = (I,/co)t’ for time, n=an’ for
surface elevation, and ¢ =(gl.a/co)¢’ for velocity
potential, where ¢y =+/gh¢ is the mean wave speed
and g is the constant gravity. The quantity
o=0'/(hopcg) is the dimensionless Bond number,
in which p is the mass density of the fluid and ¢’ is
its surface tension, both of which are taken to be
constants. After dropping primes, this asymptotic
expansion yields the nondimensional Korteweg—de
Vries (KdV) equation for the horizontal velocity
variable u =, (x,) at “linear” order in the small
dimensionless ratios ¢ and &2, as the left-hand side of
2

U+ ty + %uux + % (1 = 30)ttyx = O(e6?)  [3]
Here, partial derivatives are denoted using sub-
scripts, and boundary conditions are #=0 and
u, = 0 at spatial infinity on the real line. The famous

sech?(x — t) traveling-wave solutions (the solitons)
for KdV [3] arise in a balance between its (weakly)
nonlinear steepening and its third-order linear
dispersion, when the quadratic terms in ¢ and &
on its right-hand side are neglected.

In eqn [3], a normal-form transformation due to
Kodama (1985) has been used to remove the other
possible quadratic terms of order O(e?) and O(6%).
The remaining quadratic correction terms in the
KdV equation [3] may be collected at order O(eb?).
These terms may be expressed, after introducing a
“momentum variable,”

M=t — V6 Uy (4]

and neglecting terms of cubic order in ¢ and 62, as

52
my + my +§(umx + bmu,) +Z(1 =30y =0 [5]
In the momentum variable m=u—v6%u., the
parameter v is given by Dullin ez al. (2001):
19 — 300 — 4507
v = (6]
60(1 — 30)

Thus, the effects of 62-dispersion also enter the
nonlinear terms. After restoring dimensions in eqn
[5] and rescaling velocity u# by (b + 1), the following
“b-equation” emerges,

my + comy + umy +bmu, + Ty, =0 [7]

where m =u — a?u,, is the dimensional momentum
variable, and the constants a? and I' /¢y are squares of
length scales. When o — 0, one recovers KdV from
the b-equation [7], up to a rescaling of velocity. Any
value of the parameter b # —1 may be achieved in
eqn [7] by an appropriate Kodama transformation
(Dullin et al. 2001).

As already emphasized, the values of the coeffi-
cients in the asymptotic analysis of shallow-water
waves at quadratic order in their two small para-
meters only hold, modulo the Kodama normal-form
transformations. Hence, these transformations may
be used to advance the analysis and thereby gain
insight, by optimizing the choices of these coeffi-
cients. The freedom introduced by the Kodama
transformations among asymptotically equivalent
equations at quadratic order in ¢ and 6% also helps
to answer the perennial question, “Why are integr-
able equations so ubiquitous when one uses asymp-
totics in modeling?”

Integrable Cases of the b-equation [7]

The cases b=2 and b=3 are special values
for which the b-equation becomes a completely
integrable Hamiltonian system. For b=2, eqn [7]
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specializes to the integrable CH equation of
Camassa and Holm (1993). The case b=3 in [7]
recovers the integrable equation of Degasperis and
Procesi (1999) (henceforth DP equation). These two
cases exhaust the integrable candidates for [7], as
was shown using Painlevé analysis. The b-family of
eqns [7] was also shown in Mikhailov and Novikov
(2002) to admit the symmetry conditions necessary
for integrability, only in the cases b=2 for CH and
b =3 for DP.

The b-equation [7] with b =2 was first derived in
Camassa and Holm (1993) by using asymptotic
expansions directly in the Hamiltonian for Euler’s
equations governing inviscid incompressible flow in
the shallow-water regime. In this analysis, the CH
equation was shown to be bi-Hamiltonian and
thereby was found to be completely integrable by
the inverse-scattering transform (IST) on the real
line. Reviews of IST may be found, for example, in
Ablowitz and Clarkson (1991), Dubrovin (1981),
and Novikov et al. (1984). For discussions of other
related bi-Hamiltonian equations, see Degasperis
and Procesi (1999).

Camassa and Holm (1993) also discovered the
remarkable peaked soliton (peakon) solutions of [1],
[2] for the CH equation on the real line, given by [7]
in the case b=2. The peakons arise as solutions of
[7], when ¢g=0 and I'=0 in the absence of linear
dispersion. Peakons move at a speed equal to their
maximum height, at which they have a sharp peak
(jump in derivative). Unlike the KdV soliton, the
peakon speed is independent of its width («).
Periodic peakon solutions of CH were treated in
Alber et al. (1999). There, the sharp peaks of
periodic peakons were associated with billiards
reflecting at the boundary of an elliptical domain.
These billiard solutions for the periodic peakons
arise from geodesic motion on a triaxial ellipsoid, in
the limit that one of its axes shrinks to zero length.

Before Camassa and Holm (1993) derived their
shallow-water equation, a class of integrable equa-
tions existed, which was later found to contain eqn
[7] with b=2. This class of integrable equations was
derived using hereditary symmetries in Fokas and
Fuchssteiner (1981). However, eqn [7] was not
written explicitly, nor was it derived physically as
a shallow-water equation and its solution properties
for b=2 were not studied before Camassa and
Holm (1993). (See Fuchssteiner (1996) for an
insightful history of how the shallow-water equation
[7] in the integrable case with b =2 relates to the
mathematical theory of hereditary symmetries.)

Equation [7] with b =2 was recently re-derived as a
shallow-water equation by using asymptotic methods
in three different approaches in Dullin et al. (2001), in

Fokas and Liu (1996), and also in Johnson [2002]. All
the three derivations used different variants of the
method of asymptotic expansions for shallow-water
waves in the absence of surface tension. Only the
derivation in Dullin et al. (2001) used the Kodama
normal-form transformations to take advantage of the
nonuniqueness of the asymptotic expansion results at
quadratic order.

The effects of the parameter b on the solutions of
eqn |7] were investigated in Holm and Staley (2003),
where b was treated as a bifurcation parameter, in the
limiting case when the linear dispersion coefficients are
set to ¢g=0 and T'=0. This limiting case allows
several special solutions, including the peakons, in
which the two nonlinear terms in eqn [7] balance each
other in the “absence” of linear dispersion.

Peakons: Singular Solutions without
Linear Dispersion in One Spatial
Dimension

Peakons were first found as singular soliton solutions
of the completely integrable CH equation. This is eqn
[7] with b =2, now rewritten in terms of the velocity as

Uy + cotty + Sttty + Dtyyy

= O‘Z (”xxt + 2ttty + ”uxxx) [8]

Peakons were found in Camassa and Holm (1993)
to arise in the absence of linear dispersion. That is,
they arise when ¢y=0 and I'=0 in CH [8].
Specifically, peakons are the individual terms in the
peaked N-soliton solution of CH [8] for its velocity

u(x, 1) = py(t)e e 9

I

in the absence of linear dispersion. Each term in the
sum is a soliton with a sharp peak at its maximum,
hence the name “peakon.” Expressed using its
momentum, 7= (1 — a?02)u, the peakon velocity
solution [9] of dispersionless CH becomes a sum
over a delta functions, supported on a set of points
moving on the real line. Namely, the peakon
velocity solution [9] implies

N
m(x,1) =20y py(1)6(x — qu(1)) [10]
b=1

because of the relation (1 —a?d2)e™™/*=2a6(x).
These solutions satisfy the b-equation [7] for any
value of b, provided ¢y =0 and T'=0.

Thus, peakons are “singular momentum solu-
tions” of the dispersionless b-equation, although



they are not stable for every value of b. From
numerical simulations (Holm and Staley 2003),
peakons are conjectured to be stable for b > 1. In
the integrable cases b =2 for CH and =3 for DP,
peakons are stable singular soliton solutions. The
spatial velocity profile e ¥1/%/2a of each separate
peakon in [9] is the Green’s function for the
Helmholtz operator on the real line, with vanishing
boundary conditions at spatial infinity. Unlike the
KdV soliton, whose speed and width are related, the
width of the peakon profile is set by its Green’s
function, independently of its speed.

Integrable Peakon Dynamics of CH

Substituting the peakon solution ansatz [9] and [10]
into the dispersionless CH equation

my + umy + 2mue =0, M =t — &Pty [11]

yields Hamilton’s canonical equations for the

dynamics of the discrete set of peakon parameters

q.(t) and p,(z):

_ Obn
Opa

_ Oby
049,

qa(2) and  pu(t) =

[12]
for a=1,2,..., N, with Hamiltonian given by
(Camassa and Holm 1993):

1 N
hN — 5 Z ngbeilq”’*qb‘/a [13]
a, b=1

Thus, one finds that the points x=g%(¢) in the
peakon solution [9] move with the flow of the fluid
velocity u at those points, since u(g?(t),?)=qg%(t).
This means the ¢(¢) are Lagrangian coordinates.
Moreover, the singular momentum solution ansatz
[10] is the Lagrange-to-Euler map for an invariant
manifold of the dispersionless CH equation [11].
On this finite-dimensional invariant manifold for
the PDE [11], the dynamics is canonically
Hamiltonian.

With Hamiltonian [13], the canonical equations
[12] for the 2N canonically conjugate peakon
parameters p,(t) and gq,(t) were interpreted in
Camassa and Holm (1993) as describing “geodesic
motion” on the N-dimensional Riemannian mani-
fold whose co-metric is g¥({g}) =e~|%~4l/*. More-
over, the canonical geodesic equations arising from
Hamiltonian [13] comprise an integrable system for
any number of peakons N. This integrable system
was studied in Camassa and Holm (1993) for
solutions on the real line, and in Alber et al. (1999)
and Mckean and Constantin (1999) and references
therein, for spatially periodic solutions.

R
Soay
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Y
= e

Figure 1 A smooth localized (Gaussian) initial condition for the
CH equation breaks up into an ordered train of peakons as time
evolves (the time direction being vertical). The peakon train
eventually wraps around the periodic domain, thereby allowing
the leading peakons to overtake the slower emergent peakons
from behind in collisions that cause phase shifts as discussed in
Camassa and Holm (1993). Courtesy of Staley M.

Being a completely integrable Hamiltonian soliton
equation, the continuum CH equation [8] has an
associated isospectral eigenvalue problem, discov-
ered in Camassa and Holm (1993) for any values of
its dispersion parameters ¢y and I'. Remarkably,
when ¢y =0 and I'=0, this isospectral eigenvalue
problem has a purely “discrete” spectrum. More-
over, in this case, each discrete eigenvalue corre-
sponds precisely to the time-asymptotic velocity of a
peakon. This discreteness of the CH isospectrum in
the absence of linear dispersion implies that only the
singular peakon solutions [10] emerge asymptoti-
cally in time, in the solution of the initial-value
problem for the dispersionless CH equation [11].
This is borne out in numerical simulations of the
dispersionless CH equation [11], starting from a
smooth initial distribution of velocity (Fringer and
Holm 2001, Holm and Staley 2003).

Figure 1 shows the emergence of peakons from an
initially Gaussian velocity distribution and their
subsequent elastic collisions in a periodic one-
dimensional domain. This figure demonstrates that
singular solutions dominate the initial-value pro-
blem and, thus, that it is imperative to go beyond
smooth solutions for the CH equation; the situation
is similar for the EPDiff equation.

Peakons as Mechanical Systems

Being governed by canonical Hamiltonian equa-
tions, each N-peakon solution can be associated
with a mechanical system of moving particles.
Calogero (1995) further extended the class of
mechanical systems of this type. The r-matrix
approach was applied to the Lax pair formulation
of the N-peakon system for CH by Ragnisco and
Bruschi (1996), who also pointed out the connection
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of this system with the classical Toda lattice. A discrete
version of the Adler—Kostant-Symes factorization
method was used by Suris (1996) to study a discretiza-
tion of the peakon lattice, realized as a discrete
integrable system on a certain Poisson submanifold of
gl(N) equipped with an 7-matrix Poisson bracket. Beals
et al. (1999) used the Stieltjes theorem on continued
fractions and the classical moment problem for study-
ing multipeakon solutions of the CH equation. Gen-
eralized peakon systems are described for any simple
Lie algebra by Alber et al. (1999).

Pulsons: Generalizing the Peakon Solutions of
the Dispersionless b-Equation for Other Green’s
Functions

The Hamiltonian by in eqn [13] depends on
the Green’s function for the relation between
velocity # and momentum . However, the singular
momentum solution ansatz [10] is “independent” of
this Green’s function. Thus, as discovered in Fringer
and Holm (2001), the singular momentum solution
ansatz [10] for the dispersionless equation

my; + um, + 2mu, =0, with u =gxm [14]

provides an invariant manifold on which canonical
Hamiltonian dynamics occurs, for any choice of the
Green’s function g relating velocity # and momen-
tum m by the convolution u =g * m.

The fluid velocity solutions corresponding to the
singular momentum ansatz [10] for eqn [14] are the
“pulsons”. Pulsons are given by the sum over N velocity
profiles determined by the Green’s function g, as

N
u(x,t) = Z Pa(t)g(x, a(2)) [15]

Again for [14], the singular momentum ansatz [10]
results in a finite-dimensional invariant manifold of
solutions, whose dynamics is canonically Hamilto-
nian. The Hamiltonian for the canonical dynamics
of the 2N parameters p,(¢) and g,(¢) in the “pulson”
solutions [15] of eqn [14] is

1 N
hn =§a;1 Paby&(qarqp) [16]

Again, for the pulsons, the canonical equations for the
invariant manifold of singular momentum solutions
provide a phase-space description of geodesic motion,
this time with respect to the co-metric given by the
Green’s function g. Mathematical analysis and numer-
ical results for the dynamics of these pulson solutions
are given in Fringer and Holm (2001). These results
describe how the collisions of pulsons [15] depend
upon their shape.

Compactons in the 1/a? — 0 Limit of CH

As mentioned earlier, in the limit that o — 0, the
CH equation [8] becomes the KdV equation.
In contrast, when 1/@*—0, CH becomes the
Hunter—Zheng equation (Hunter and Zheng 1994):

(ut + MMX)xx - % (u%)x

This equation has “compacton” solutions, whose
collision dynamics was studied numerically and
put into the present context in Fringer and Holm
(2001). The corresponding Green’s function satis-
fies —8,%g(x)=26(x), so it has the triangular
shape, g(x)=1—|x| for |x|] <1, and vanishes
otherwise, for |x| > 1. That is, the Green’s func-
tion in this case has compact support, hence the
name “compactons” for these pulson solutions,
which as a limit of the integrable CH equations
are true solitons, solvable by IST.

Pulson Solutions of the Dispersionless b-Equation

Holm and Staley (2003) give the pulson solutions of
the traveling-wave problem and their elastic colli-
sion properties for the dispersionless b-equation:

my + umy + bmu, =0, withu=gx*m [17]

with any (symmetric) Green’s function g and for
any value of the parameter b. Numerically,
pulsons and peakons are both found to be stable
for b > 1 (Holm and Staley 2003). The reduction
to “noncanonical” Hamiltonian dynamics for the
invariant manifold of singular momentum solu-
tions [10] of the other integrable case b =3 with
peakon Green’s function g(x,y) =e~ */* is found
in Degasperis and Procesi (1999) and Degasperis
et al. (2002).

Euler-Poincaré Theory in More
Dimensions

Generalizing the Peakon Solutions of the CH
Equation to Higher Dimensions

In Holm and Staley (2003), weakly nonlinear analysis
and the assumption of columnar motion in the
variational principle for Euler’s equations are found
to produce the two-dimensional generalization of the
dispersionless CH equation [11]. This generalization is
the EP equation (Holm et al. 1998a, b) for the
Lagrangian consisting of the kinetic energy:

L= %/ [\u|2 + o (div u)z} dxdy [18]
in which the fluid velocity # is a two-dimensional

vector. Evolution generated by kinetic energy in
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Hamilton’s principle results in geodesic motion,
with respect to the velocity norm |ju||, which is
provided by the kinetic-energy Lagrangian. For
ideal incompressible fluids governed by Euler’s
equations, the importance of geodesic flow was
recognized by Arnol’d (1966) for the L?* norm of
the fluid velocity. The EP equation generated by
any choice of kinetic-energy norm without impos-
ing incompressibility is called “EPDiff,” for “Euler—
Poincaré equation for geodesic motion on the
diffeomorphisms.” EPDiff is given by (Holm et al.
1998a):

(gt+u.v)m+vu?m+m(divu) —0 [19]

with momentum density m = 6¢/6u, where {=(1/2)
l|«||* is given by the kinetic energy, which defines a
norm in the fluid velocity ||u]|, yet to be determined.
By design, this equation has no contribution from
either potential energy or pressure. It conserves the
velocity norm ||u|| given by the kinetic energy. Its
evolution describes geodesic motion on the diffeo-
morphisms with respect to this norm (Holm et al.
1998a).

An alternative way of writing the EPDiff equation
[19] in either two or three dimensions is

%m—uxcurlm—l—V(u-m)—l—m(divu):O [20]
This form of EPDiff involves all three differential
operators: curl, gradient, and divergence. For the
kinetic-energy Lagrangian ¢ given in [18], which is a
norm for “irrotational” flow (with curlu=0), we
have the EPDiff equation [19] with momentum
m=060/u=u— o?>V(divu).

EPDiff [19] may also be written intrinsically as

0 ot . Of
Otéu " “6u 21]
where ad” is the L? dual of the ad-operation
(commutator) for vector fields (see Arnol’d and
Khesin (1998) and Marsden and Ratiu (1999) for
additional discussions of the beautiful geometry
underlying this equation).

Reduction to the Dispersionless CH Equation
in One Dimension

In one dimension, the EPDiff equations [19]-[21] with
Lagrangian ¢ given in [18] simplify to the dispersionless
CH equation [11]. The dispersionless limit of the CH
equation appears, because potential energy and pres-
sure have been ignored.

Strengthening the Kinetic-Energy Norm to Allow
for Circulation

The kinetic-energy Lagrangian [18] is a norm for
irrotational flow, with curl # = 0. However, inclusion
of rotational flow requires the kinetic-energy norm to be
strengthened to the H! norm of the velocity, defined as

(= %/ [l + 0*(diva)” + o (curl w)? | dx dy

:%/[|u|2+a2\Vu|2}dxdy:%||qu{i 22]
Here, we assume boundary conditions that give
no contributions upon integrating by parts. The
corresponding EPDiff equation is [19] with m =
60/éu=u — o*Au. This expression involves inver-
sion of the familiar Helmholtz operator in the
(nonlocal) relation between fluid velocity and
momentum density. The H! norm |u||Z: for the
kinetic energy [22] also arises in three dimensions
for turbulence modeling based on Lagrangian aver-
aging and using Taylor’s hypothesis that the
turbulent fluctuations are “frozen” into the Lagran-
gian mean flow (Foias er al. 2001).

Generalizing the CH Peakon Solutions
to n Dimensions

Building on the peakon solutions [9] for the CH
equation and the pulsons [15] for its generalization
to other traveling-wave shapes in Fringer and Holm
(2001), Holm and Staley (2003) introduced the
following measure-valued singular momentum solu-
tion ansatz for the n-dimensional solutions of the
EPDiff equation [19]:

mix.0) =Y / Ps, 1)5(x — O(s,))ds 23]

These singular momentum solutions, called “diffeons,”
are vector density functions supported in R” on a set of
N surfaces (or curves) of codimension (n — k) for s €
R* with k < 7. They may, for example, be supported on
sets of points (vector peakons, k = 0), one-dimensional
filaments (strings, k= 1), or two-dimensional surfaces
(sheets, k = 2) in three dimensions.

Figure 2 shows the results for the EPDiff equation
when a straight peakon segment of finite length is
created initially moving rightward (East). Because of
propagation along the segment in adjusting to the
condition of zero speed at its ends and finite speed in its
interior, the initially straight segment expands outward
as it propagates and curves into a peakon “bubble.”

Figure 3 shows an initially straight segment whose
velocity distribution is exponential in the transverse
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Figure 2 A peakon segment of finite length is initially moving
rightward (east). Because its speed vanishes at its ends and it
has fully two-dimensional spatial dependence, it expands into a
peakon “bubble” as it propagates. (The various shades indicate
different speeds. Any transverse slice will show a wave profile
with a maximum at the center of the wave, which falls
exponentially with distance away from the center.)

direction, but is wider than « for the peakon
solution. This initial-velocity distribution evolves
under EPDiff to separate into a train of curved
peakon “bubbles,” each of width a. This example
illustrates the emergent property of the peakon
solutions in two dimensions. This phenomenon is
observed in nature, for example, as trains of internal
wave fronts in the South China Sea (Liu et al. 1998).

Substitution of the singular momentum solution
ansatz [23] into the EPDiff equation [19] implies the
following integro-partial-differential equations (IPDEs)
for the evolution of the parameters {P} and {Q}:

N
52 en=3 [Pene(es
-0, t)) ds’

%Pa(sa t)=— ;Nl/(P“(s,t) -Pb(s’,t)) [24]

“agnO(@e

- Qs t)) ds’

Importantly for the interpretation of these solutions,
the coordinates s € R turn out to be Lagrangian
coordinates. The velocity field corresponding to the
momentum solution ansatz [23] is given by

u(x,t) =Gx*m

N
_ bS, x — bsl S/
_;/P( ,t)G( o’( ,t))d [25]

Figure 3 An initially straight segment of velocity distribution
whose exponential profile is wider than the width « for the
peakon solution breaks up into a train of curved peakon
“bubbles,” each of width «. This example illustrates the
emergent property of the peakon solutions in two dimensions.

for u € R"”. When evaluated along the curve
x=Q%s, 1), this velocity satisfies

N
W@ 0.0 =" [Ps.)
b=1

x G(Q“(s, 1) — Q°(s, t)) ds’

_0Q(s,1)
== 26]

Consequently, the lower-dimensional support sets
defined on x=Q%s,t) and parametrized by
coordinates s € R¥ move with the fluid velocity.
This means that the s € R* are Lagrangian coordi-
nates. Moreover, eqns [24] for the evolution of these
support sets are canonical Hamiltonian equations:

D ety 0 SHx
ot RO ot 50"

The corresponding Hamiltonian function Hy : (R” x
RN — R is

Hx =%// i <P“(s,t) -Pb(s',t))

a,b=1
X G(Q7(5,1),Q,(, 1)) dsds’ [28]

This is the Hamiltonian for geodesic motion on the
cotangent bundle of a set of curves Q“s,#) with
respect to the metric given by G. This dynamics was
investigated numerically in Holm and Staley (2003)
which can be referred to for more details of the
solution properties. One important result found
“numerically” in Holm and Staley (2003) is that
only codimension-1 singular momentum solutions

P(s,t) = — 27]
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appear to be stable under the evolution of the EPDiff
equation. Thus,

Stability for codimension-1 solutions: the singular
momentum solutions of EPDiff are stable, as points
on the line (peakons), as curves in the plane (filaments,
or wave fronts), or as surfaces in space (sheets).

Proving this stability result analytically remains an
outstanding problem. The stability of peakons on the
real line is proven in Constantin and Strauss (2000).

Reconnections in Oblique Overtaking Collisions
of Peakon Wave Fronts

Figures 4 and 5 show results of oblique wave front
collisions producing reconnections for the EPDiff
equation in two dimensions. Figure 4 shows a single
oblique overtaking collision, as a faster expanding
peakon wave front overtakes a slower one and
reconnects with it at the collision point. Figure 5
shows a series of reconnections involving the
oblique overtaking collisions of two trains of curved
peakon filaments, or wave fronts.

The Peakon Reduction is a Momentum Map

As shown in Holm and Marsden (2004), the singular
solution ansatz [23] is a momentum map from the
cotangent bundle of the smooth embeddings of lower-
dimensional sets R® € R”, to the dual of the Lie algebra
of vector fields defined on these sets. (Momentum maps
for Hamiltonian dynamics are reviewed in Marsden
and Ratiu (1999), for example.) This geometric feature
underlies the remarkable reduction properties of the
EPDiff equation, and it also explains why the reduced
equations must be Hamiltonian on the invariant
manifolds of the singular solutions; namely, because

.

Figure 4 A single collision is shown involving reconnection as the
faster peakon segment initially moving southeast along the diagonal
expands, curves, and obliquely overtakes the slower peakon
segment initially moving rightward (east). This reconnection
illustrates one of the collision rules for the strongly two-dimensional
EPDiff flow.

Figure 5 A series of multiple collisions is shown involving
reconnections as the faster wider peakon segment initially moving
northeast along the diagonal expands, breaks up into a wave train
of peakons, each of which propagates, curves, and obliquely
overtakes the slower wide peakon segment initially moving
rightward (east), which is also breaking up into a train of wave
fronts. In this series of oblique collision, the now-curved peakon
filaments exchange momentum and reconnect several times.

momentum maps are Poisson maps. This geometric
feature also underlies the singular momentum solution
[23] and its associated velocity [25] which generalize
the peakon solutions, both to higher dimensions and to
arbitrary kinetic-energy metrics. The result that the
singular solution ansatz [23] is a momentum map helps
to organize the theory, to explain previous results, and
to suggest new avenues of exploration.
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Introduction

Percolation as a mathematical theory was introduced
by Broadbent and Hammersley (1957), as a stochastic
way of modeling the flow of a fluid or gas through a
porous medium of small channels which may or may
not let gas or fluid pass. It is one of the simplest models
exhibiting a phase transition, and the occurrence of a
critical phenomenon is central to the appeal of
percolation. Having truly applied origins, percolation
has been used to model the fingering and spreading of
oil in water, to estimate whether one can build
nondefective integrated circuits, and to model the
spread of infections and forest fires. From a mathema-
tical point of view, percolation is attractive because it
exhibits relations between probabilistic and algebraic/
topological properties of graphs.

To make the mathematical construction of such a
system of channels, take a graph G (which originally
was taken as Z%), with vertex set V and edge set &£, and
make all the edges independently open (or passable)
with probability p or closed (or blocked) with
probability 1 —p. Write P, for the corresponding
probability measure on the set of configurations of
open and closed edges — that model is called bond
percolation. The collection of open edges thus forms a
random subgraph of G, and the original question stated
by Broadbent was whether the connected component
of the origin in that subgraph is finite or infinite.

A path on G is a sequence vy, v, . . . of vertices of G,
such that for all i > 1,v; and v;, 1 are adjacent on G. A
path is called open if all the edges {v;,v;,1} between
successive vertices are open. The infiniteness of the
cluster of the origin is equivalent to the existence of
an unbounded open path starting from the origin.

There is an analogous model, called “site percola-
tion,” in which all edges are assumed to be passable,
but the vertices are independently open or closed
with probability p or 1 —p, respectively. An open
path is then a path along which all vertices are open.
Site percolation is more general than bond percola-
tion in the sense that the existence of a path for

bond percolation on a graph G is equivalent to the
existence of a path for site percolation on the
covering graph of G. However, site percolation on
a given graph may not be equivalent to bond
percolation on any other graph.

All graphs under consideration will be assumed to
be connected, locally finite and quasitransitive. If
A,B CV, then A< B means that there exists an
open path from some vertex of A to some vertex of
B; by a slight abuse of notation, # < v will stand for
the existence of a path between sites # and v, that is,
the event {u}< {v}. The open cluster C(v) of the
vertex v is the set of all open vertices which are
connected to v by an open path:

Cv)={uecV:u-v}

The central quantity of the percolation theory is the
percolation probability:

0(p) :=Pp{0 = oo} = Pp{|C(0)] = oo}

The most important property of the percolation
model is that it exhibits a phase transition, that is,
there exists a threshold value p. € [0, 1], such that
the global behavior of the system is substantially
different in the two regions p < p. and p > p.. To
make this precise, observe that 6 is a nondecreasing
function. This can be seen using Hammersley’s joint
construction of percolation systems for all p € [0, 1]
on G: let {U(v),v €V} be independent random
variables, uniform in [0,1]. Declare v to be p-open
if U(v)<p, otherwise it is declared p-closed. The
configuration of p-open vertices has the distribution
P, for each p €[0,1]. The collection of p-open
vertices is nondecreasing in p, and therefore 6(p) is
nondecreasing as well. Clearly, 6(0)=0 and 6(1)=1
(Figure 1).

0

Pe 1
Figure 1 The behavior of 6(p) around the critical point
(for bond percolation).
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The critical probability is defined as

Pe:=pc(G) = sup{p: 0(p) =0}

By definition, when p < p., the open cluster of the
origin is Py-a.s. finite; hence, all the clusters are also
finite. On the other hand, for p > p. there is a
strictly positive P,-probability that the cluster of the
origin is infinite. Thus, from Kolmogorov’s zero—one
law it follows that

Py{|C(v)| = oo for some v € V} =1 for p > p

Therefore, if the intervals [0, p.) and (p., 1] are both
nonempty, there is a phase transition at p..

Using a so-called Peierls argument it is easy to see
that p.(G) >0 for any graph G of bounded degree.
On the other hand, Hammersley proved that
pe(Z4) < 1 for bond percolation as soon as d > 2,
and a similar argument works for site percolation
and various periodic graphs as well. But for some
graphs G, it is not so easy to show that p.(G) < 1.
One says that the system is in the subcritical (resp.
supercritical) phase if p < p. (resp. p > pe).

It was one of the most remarkable moments in the
history of percolation when Kesten (1980) proved,
based on results by Harris, Russo, Seymour and
Welsh, that the critical parameter for bond percolation
on 7Z* is equal to 1/2. Nevertheless, the exact value of
pc(G) is known only for a handful of graphs, all of
them periodic and two dimensional — see below.

Percolation in 7¢

The graph on which most of the theory was
originally built is the cubic lattice Z9, and it was
not before the late twentieth century that percola-
tion was seriously considered on other kinds of
graphs (such as Cayley graphs), on which specific
phenomena can appear, such as the coexistence of
multiple infinite clusters for some values of the
parameter p. In this section, the underlying graph is
thus assumed to be Z¢ for d > 2, although most
of the results still hold in the case of a periodic
d-dimensional lattice.

The Subcritical Regime

When p < p., all open clusters are finite almost
surely. One of the greatest challenges in percolation
theory has been to prove that x(p):= E,{|C(v)]} is
finite if p < p. (E, stands for the expectation with
respect to P,). For that one can define another critical
probability as the threshold value for the finiteness of
the expected cluster size of a fixed vertex:

pr(9) := sup{p: x(p) <oo}

It was an important step in the development of the
theory to show that pr(G) =p.(G). The fundamental
estimate in the subcritical regime, which is a much
stronger statement than p1(G) = p.(G), is the following:

Theorem 1 (Aizenman and Barsky, Menshikov).
Assume that G is periodic. Then for p < p. there
exist constants 0 < Cy, Cy < oo, such that

Pp{|C(v)| > n} < Cre "

The last statement can be sharpened to a “local
limit theorem” with the help of a subadditivity
argument: for each p < p., there exists a constant
0 < C3(p) < oo, such that

1
Jim ——log P, {|C(v)| = n} = Cs(p)

The Supercritical Regime

Once an infinite open cluster exists, it is natural to
ask how it looks like, and how many infinite open
clusters exist. It was shown by Newman and Schul-
man that for periodic graphs, for each p, exactly one
of the following three situations prevails: if N €
7.+ U {oo} is the number of infinite open clusters, then
P,(N=0)=1, or P,(N=1)=1, or P,(N =o0)=1.

Aizenman, Kesten, and Newman showed that the
third case is impossible on 7% By now several
proofs exist, perhaps the most elegant of which is
due to Burton and Keane, who prove that indeed
there cannot be infinitely many infinite open clusters
on any amenable graph. However, there are some
graphs, such as regular trees, on which coexistence
of several infinite clusters is possible.

The geometry of the infinite open cluster can be
explored in some depth by studying the behavior of
a random walk on it. When d =2, the random walk
is recurrent, and when d > 3 is a.s. transient. In all
dimensions d > 2, the walk behaves diffusively, and
the “central limit theorem” and the “invariance
principle” were established in both the annealed and
quenched cases.

Waulff droplets In the supercritical regime, aside
from the infinite open cluster, the configuration
contains finite clusters of arbitrary large sizes. These
large finite open clusters can be thought of as droplets
swimming in the areas surrounded by an infinite open
cluster. The presence at a particular location of a large
finite cluster is an event of low probability, namely, on
74,d > 2, for p > p., there exist positive constants
0 < C4(p), Cs(p) < oo, such that

1
Ca(p) < —mlog Pp{|C(v)| = n} < Cs(p)
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for all large 7. This estimate is based on the fact that
the occurrence of a large finite cluster is due to a
surface effect. The typical structure of the large
finite cluster is described by the following theorem:

Theorem 2 Let d > 2, and p > p.. There exists a
bounded, closed, convex subset W of RY containing
the origin, called the normalized Wulff crystal of
the Bernoulli percolation model, such that, under the
conditional probability Pp{- |n? < |C(0)| < oo}, the
random measure

1
E Z 6x/n

xeC(0)

(where 6, denotes a Dirac mass at x) converges
weakly in probability toward the random measure
O(p)lyw(x — M)dx (where M is the rescaled center of
mass of the cluster C(0)). The deviation probabilities
behave as exp{—cni'} (i.e., they exhibit large
deviations of surface order; in dimensions 4 and
more it holds up to re-centering).

This result was proved in dimension 2 by Alexander
et al. (1990), and in dimensions 3 and more by Cerf
(2000).

Percolation Near the Critical Point

Percolation in Slabs The main macroscopic obser-
vable in percolation is 6(p), which is positive above
pe,0 below p., and continuous on [0, 1]\{pc}.
Continuity at p. is an open question in the general
case; it is known to hold in two dimensions
(cf. below) and in high enough dimension (at the
moment d > 19 though the value of the critical
dimension is believed to be 6) using lace expansion
methods. The conjecture that (p.) =0 for 3<d <18
remains one of the major open problems.

Efforts to prove that led to some interesting and
important results. Barsky, Grimmett, and Newman
solved the question in the half-space case, and simulta-
neously showed that the slab percolation and half-space
percolation thresholds coincide. This was complemen-
ted by Grimmett and Marstrand showing that

pe(slab) = pe(Z7)

Critical exponents In the subcritical regime, expo-
nential decay of the correlation indicates that there
is a finite correlation length £(p) associated to the
system, and defined (up to constants) by the relation

io-mwo 5

where ¢ is bounded on the unit sphere (this is known
as Ornstein—Zernike decay). The phase transition can
then also be defined in terms of the divergence of the

correlation length, leading again to the same value for
pe; the behavior at or near the critical point then has no
finite characteristic length, and gives rise to scaling
exponents (conjecturally in most cases).

The most usual critical exponents are defined as
follows, if O(p) is the percolation probability, C the

cluster of the origin, and &(p) the correlation length:
ok _ Ca
8_p3EpHC| Nalp—pel ™

0(p) ~ (p — po)

X (p) == Ep[|Ccjene) & [ — pe|

]
P, [|IC| = n] = n 171/
Py [x € C =[x "
Ep) = p —pel”

]
Ep[IC1* 1 ¢jenc)

|7A
Ep[IC1* 1 ¢jenc)

~ |p — pe

These exponents are all expected to be universal,
that is, to depend only on the dimension of the
lattice, although this is not well understood at the
mathematical level; the following scaling relations
between the exponents are believed to hold:

2—a=7y+28=p(6+1), A=88v=v(2-n)

In addition, in dimensions up to d.=6, two
additional hyperscaling relations involving d are
strongly conjectured to hold:

dp=6+1, dv=2-«a

while above d. the exponents are believed to take
their mean-field value, that is, the ones they have for
percolation on a regular tree:

a=-1,8=1,v=1,6=2
n=0,v=3p=5A=2

Not much is known rigorously on critical expo-
nents in the general case. Hara and Slade (1990)
proved that mean field behavior does happen above
dimension 19, and the proof can likely be extended
to treat the case d > 7. In the two-dimensional case
on the other hand, Kesten (1987) showed that,
assuming that the exponents § and p exist, then so
do B3,7,m, and v, and they satisfy the scaling and
hyperscaling relations where they appear.

The incipient infinite cluster When studying long-
range properties of a critical model, it is useful to
have an object which is infinite at criticality, and
such is not the case for percolation clusters. There
are two ways to condition the cluster of the origin to
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be infinite when p =p.: The first one is to condition
it to have diameter at least # (which happens with
positive probability) and take a limit in distribution
as n goes to infinity; the second one is to consider
the model for parameter p > p., condition the
cluster of 0 to be infinite (which happens with
positive probability) and take a limit in distribution
as p goes to pc. The limit is the same in both cases; it
is known as the incipient infinite cluster.

As in the supercritical regime, the structure of the
cluster can be investigated by studying the behavior
of a random walk on it, as was suggested by de
Gennes; Kesten proved that in two dimensions, the
random walk on the incipient infinite cluster is
subdiffusive, that is, the mean square displacement
after 7 steps behaves as #!~¢ for some £ > 0.

The construction of the incipient infinite cluster
was done by Kesten (1986) in two dimensions, and a
similar construction was performed recently in high
dimension by van der Hofstad and Jarai (2004).

Percolation in Two Dimensions

As is the case for several other models of statistical
physics, percolation exhibits many specific properties
when considered on a two-dimensional lattice: duality
arguments allow for the computation of p. in some
cases, and for the derivation of a priori bounds for the
probability of crossing events at or near the critical
point, leading to the fact that §(p.) =0. On another
front, the scaling limit of critical site percolation on the
two-dimensional triangular lattice can be described in
terms of Stochastic Loewner evolutions (SLE) processes.

Duality, Exact Computations, and RSW Theory

Given a planar lattice £, define two associated
graphs as follows. The dual lattice £ has one vertex
for each face of the original lattice, and an edge
between two vertices if and only if the correspond-
ing faces of £ share an edge. The star graph £ is
obtained by adding to £ an edge between any two
vertices belonging to the same face (£* is not planar
in general; (£,£%) is commonly known as a
matching pair). Then, a result of Kesten is that,
under suitable technical conditions,

[)Eond(ﬁ) + PEOHd(['/) _ piite(‘c) + Piite(ﬁ*) -1

Two cases are of particular importance: the lattice
72 is isomorphic to its dual; the triangular lattice 7°
is its own star graph. It follows that

P (72) =i (T) =}

The only other critical parameters that are known
exactly are p°°"(7)=2sin(7/18) (and hence also

C

pbend for 77, i.e., the hexagonal lattice) and p?° for
the bow-tie lattice which is a root of the equation
p> —6p® + 6p* +p — 1=0. The value of the critical
parameter for site percolation on Z* might, on the
other hand, never be known; it is even possible that
it is “just a number” without any other signification.

Still using duality, one can prove that the
probability, for bond percolation on the square
lattice with parameter p=1/2, that there is a
connected component crossing an (7 + 1) x n rec-
tangle in the longer direction is exactly equal to 1/2.
This and clever arguments involving the symmetry
of the lattice lead to the following result, proved
independently by Russo and by Seymour and Welsh
and known as the RSW theorem:

Theorem 3 (Russo 1978, Seymour and Welsh 1978).
For every a,b > 0 there exist n > 0 and ny > 0 such
that for every n > ny, the probability that there is a
cluster crossing an |na| x |nb| rectangle in the first
direction is greater than .

The most direct consequence of this estimate is that
the probability that there is a cluster going around an
annulus of a given modulus is bounded below
independently of the size of the annulus; in particular,
almost surely there is some annulus around O in
which this happens, and that is what allows to prove
that 6(p.) =0 for bond percolation on Z? (Figure 2).

The Scaling Limit

RSW-type estimates give positive evidence that a
scaling limit of the model should exist; it is indeed
essentially sufficient to show convergence of the
crossing probabilities to a nontrivial limit as 7 goes
to infinity. The limit, which should depend only on
the ratio a/b, was predicted by Cardy using con-
formal field theory methods. A celebrated result of
Smirnov is the proof of Cardy’s formula in the case of
site percolation on the triangular lattice 7

Theorem 4 (Smirnov (2001)). Let Q be a simply
connected domain of the plane with four points a, b,
¢, d (in that order) marked on its boundary. For
every 6> 0, consider a critical site-percolation

Figure 2 Two large critical percolation clusters in a box of the
square lattice (first: bond percolation, second: site percolation).
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model on the intersection of Q with 67T and let
fsab,cd; Q) be the probability that it contains a
cluster connecting the arcs ab and cd. Then:

(i) fs(ab,cd; Q) bas a limit fo(ab,cd; Q) as 6§ — 0;

(ii) the limit is conformally invariant, in the
following sense: if ® is a conformal map from
Q to some other domain Q' =®(02), and maps
a to a',b to blyc to ¢ and d to d, then
folab, cd; Q) =fo(a'b', ' d';QV'); and

(iii) in the particular case when Q) is an equilateral
triangle of side length 1 with vertices a, b and c,
and if d is on (ca) at distance x € (0,1) from c,
then fy(ab, cd; Q) = x.

Point (iii) in particular is essential since it allows
us to compute the limiting crossing probabilities in
any conformal rectangle. In the original work of
Cardy, he made his prediction in the case of a
rectangle, for which the limit involves hypergeo-
metric functions; the remark that the equilateral
triangle gives rise to nicer formulae is originally due
to Carleson.

To precisely state the convergence of percolation
to its scaling limit, define the random curve known
as the percolation exploration path (see Figure 3) as
follows: In the upper half-plane, consider a site-
percolation model on a portion of the triangular
lattice and impose the boundary conditions that on
the negative real half-line all the sites are open,
while on the other half-line the sites are closed. The
exploration curve is then the common boundary of
the open cluster spanning from the negative half-
line, and the closed cluster spanning from the
positive half-line; it is an infinite, self-avoiding
random curve in the upper half-plane.

As the mesh of the lattice goes to 0, the exploration
curve then converges in distribution to the trace of an
SLE process, as introduced by Schramm, with
parameter k=6 — see Figure 4. The limiting curve is
not simple anymore (which corresponds to the

Figure 3 A percolation exploration path. Figure courtesy
Schramm O (2000) Scaling limits of loop-erased random walks
and uniform spanning trees. Israel Journal of Mathematics 118:
221-228.

Figure 4 An SLE process with parameter =6 (infinite time,
with the driving process stopped at time 1).

existence of pivotal sites on large critical percolation
clusters), and it has Hausdorff dimension 7/4. For
more details on SLE processes, see, for example, the
related entry in the present volume.

As an application of this convergence result, one
can prove that the critical exponents described in the
previous section do exist (still in the case of the
triangular lattice), and compute their exact values,
except for «, which is still listed here for
completeness:

2 5 43 91
{az—gyﬂ:%ﬁ:ﬁaé:?

S 4 48 91

n:ﬂayzgap:?7 :%

These exponents are expected to be universal, in the
sense that they should be the same for percolation
on any two-dimensional lattice; but at the time of
this writing, this phenomenon is far from being
understood on a mathematical level.

The rigorous derivation of the critical exponents
for percolation is due to Smirnov and Werner
(2001); the dimension of the limiting curve was
obtained by Beffara (2004).

Other Lattices and Percolative Systems

Some modifications or generalizations of standard
Bernoulli percolation on Z¢ exhibit an interesting
behavior and as such provide some insight into the
original process as well; there are too many
mathematical objects which can be argued to be
percolative in some sense to give a full account of all
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of them, so the following list is somewhat arbitrary
and by no means complete.

Percolation on Nonamenable Graphs

The first modification of the model one can think of
is to modify the underlying graph and move away
from the cubic lattice; phase transition still occurs,
and the main difference is the possibility for
infinitely many infinite clusters to coexist. On a
regular tree, such is the case whenever p € (p., 1),
the first nontrivial example was produced by
Grimmett and Newman as the product of Z by a
tree: there, for some values of p the infinite cluster is
unique, while for others there is coexistence of
infinitely many of them. The corresponding defini-
tion, due to Benjamini and Schramm, is then the
following: if N is as above the number of infinite
open clusters,

po:=inf{p: P,(N=1) =1} > p.

The main question is then to characterize graphs on
which 0 < p. < p, < 1.

A wide class of interesting graphs is that of Cayley
graphs of infinite, finitely generated groups. There,
by a simultaneous result by Higgstrom and Peres
and by Schonmann, for every p € (p¢,pu) there are
Py-a.s. infinitely many infinite cluster, while for
every p € (pu, 1] there is only one — note that this
does not follow from the definition since new
infinite components could appear when p is
increased. It is conjectured that p. < p, for any
Cayley graph of a nonamenable group (and more
generally for any quasitransitive graph with positive
Cheeger constant), and a result by Pak and
Smirnova is that every infinite, finitely generated,
nonamenable group has a Cayley graph on which
pe < pu; this is then expected not to depend on the
choice of generators. In the general case, it was recently
proved by Gaboriau that if the graph G is unimodular,
transitive, locally finite, and supports nonconstant
harmonic Dirichlet functions (i.e., harmonic functions
whose gradient is in £2), then indeed p.(G) < pu(G).

For reference and further reading on the topic,
the reader is advised to refer to the review paper by
Benjamini and Schramm (1996), the lecture notes
of Peres (1999), and the more recent article of
Gaboriau (2005).

Gradient Percolation

Another possible modification of the original model
is to allow the parameter p to depend on the
location; the porous medium may for instance have
been created by some kind of erosion, so that there
will be more open edges on one side of a given

Figure 5 Gradient percolation in a square. In black is the
cluster spanning from the bottom side of the square.

domain than on the other. If p still varies smoothly,
then one expects some regions to look subcritical
and others to look supercritical, with interesting
behavior in the vicinity of the critical level set
{p=pc}. This particular model was introduced by
Sapoval et al. (1978) under the name of gradient
percolation (see Figure 5).

The control of the model away from the critical
zone is essentially the same as for usual Bernoulli
percolation, the main question being how to
estimate the width of the phase transition. The
main idea is then the same as in scaling theory: if the
distance between a point v and the critical level set is
less than the correlation length for parameter p(v),
then v is in the phase transition domain. This of
course makes sense only asymptotically, say in a
large n x n square with p(x,y)=1—1vy/n as is the
case in the figure: the transition then is expected to
have width of order #n? for some exponent a > 0.

First-Passage Percolation

First-passage percolation (also known as Eden or
Richardson model) was introduced by Hammersley
and Welsh (1965) as a time-dependent model for the
passage of fluid through a porous medium. To define
the model, with each edge e € E(Z%) is associated a
random variable T(e), which can be interpreted as
being the time required for fluid to flow along e. The
T(e) are assumed to be independent non-negative
random variables having common distribution F. For
any path ™ we define the passage time T(7) of 7 as

T(m):=» T(e)

ecm
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The first passage time a(x,y) between vertices x and
y is given by

a(x,y) = inf{T(x): w a path from x to y}
and we can define
W(t):={x € Z%: a(0,x) < t}

the set of vertices reached by the liquid by time ¢. It
turns out that W(¢) grows approximately linearly as
time passes, and that there exists a nonrandom limit
set B such that either B is compact and

(1-¢)BC %W(t) C (1 +¢)B, eventually a.s.
for all € > 0, or B=R?, and
{xeR¥:|x| <K} C %W(t), eventually a.s.

for all K>0. Here W(t)={z+[—-1/2,1/2]¢:
z € W(r)}.

Studies of first-passage percolation brought
many fascinating discoveries, including Kingman’s
celebrated subadditive ergodic theorem. In recent
years interest has been focused on study of
fluctuations of the set W(z) for large t. In spite of
huge effort and some partial results achieved, it
still remains a major task to establish rigorously
conjectures predicted by Kardar—Parisi-Zhang the-
ory about shape fluctuations in first passage
percolation.

Contact Processes

Introduced by Harris and conceived with biological
interpretation, the contact process on 74 is a
continuous-time process taking values in the space
of subsets of 7% It is informally described as
follows: particles are distributed in Z? in such a
way that each site is either empty or occupied by
one particle. The evolution is Markovian: each
particle disappears after an exponential time of
parameter 1, independently from the others; at any
time, each particle has a possibility to create a new
particle at any of its empty neighboring sites, and
does so with rate A > 0, independently of everything
else.

The question is then whether, starting from a
finite population, the process will die out in finite
time or whether it will survive forever with positive
probability. The outcome will depend on the value
of A\, and there is a critical value )., such that for
A < A process dies out, while for A > \. indeed
there is survival, and in this case the shape of the
population obeys a shape theorem similar to that of
first-passage percolation.

The analogy with percolation is strong, the
corresponding percolative picture being the follow-
ing: in Z‘fl, each edge is open with probability p €
(0,1), and the question is whether there exists an
infinite oriented path 7 (i.e., a path along which the
sum of the coordinates is increasing), composed of
open edges. Once again, there is a critical parameter
customarily denoted by p., at which no such path
exists (compare this to the open question of the
continuity of the function 6 at p. in dimensions
3 < d < 18). This variation of percolation lies in a
different universality class than the usual Bernoulli
model.

Invasion Percolation

Let X(e):e € & be independent random variables
indexed by the edge set & of 7%, d>2, each
having uniform distribution in [0,1]. One con-
structs a sequence C={C,i>1} of random
connected subgraphs of the lattice in the
following iterative way: the graph Cp contains
only the origin. Having defined C;, one obtains
Ciy1 by adding to C; an edge e¢;.1 (with its outer
lying end-vertex), chosen from the outer edge
boundary of C; so as to minimize X(e;yq). Still
very little is known about the behavior of this
process.

An interesting observation, relating 6(p.) of usual
percolation with the invasion dynamics, comes from
CM Newman:

Op.) =0« P{x e C} - 0 as |x| » o©

Further Remarks

For a much more in-depth review of percolation on
lattices and the mathematical methods involved in
its study, and for the proofs of most of the results we
could only point at, we refer the reader to the
standard book of Grimmett (1999); another excel-
lent general reference, and the only place to find
some of the technical graph-theoretical details
involved, is the book of Kesten (1982). More
information in the case of graphs that are not
lattices can be found in the lecture notes of Peres
(1999).

For curiosity, the reader can refer to the first
mention of a problem close to percolation, in the
problem section of the first volume of the American
Mathematical Monthly (problem 5, June 1894,
submitted by D V Wood).

See also: Determinantal Random Fields; Stochastic
Loewner Evolutions; Two-Dimensional Ising Model; Wulff
Droplets.
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Introduction

There are several equivalent formulations of the
problem of quantizing an interacting field theory.
The list includes canonical quantization, path-

integral (or functional) techniques, stochastic
quantization, “unified” methods such as the
Batalin—Vilkovisky =~ formalism, and techniques

based on the realizations of field theories as low-
energy limits of string theory. The problem of
obtaining an exact nonperturbative description of a
given quantum field theory is most often a very
difficult one. Perturbative techniques, on the other
hand, are abundant, and common to all of the
quantization methods mentioned above is that they
admit particle interpretations in this formalism.

The basic physical quantities that one wishes to
calculate in a relativistic (d + 1)-dimensional quan-
tum field theory are the S-matrix elements

szz = out<wb(t)|¢a(t)>in [1]

between in and out states at large positive time ¢.
The scattering operator S is then defined by writing
[1] in terms of initial free-particle (descriptor) states as

ba = (¥(0)[S1a(0)) 2]

Suppose that the Hamiltonian of the given field
theory can be written as H=Hy + H’, where Hy is
the free part and H’ the interaction Hamiltonian.
The time evolutions of the in and out states are
governed by the total Hamiltonian H. They can be
expressed in terms of descriptor states which evolve
in time with Hp in the interaction picture and
correspond to free-particle states. This leads to the
Dyson formula

S = Texp (—i /_ Z dtHI(t)> 3]

where T denotes time ordering and H;j(f)=
Ik ddmet(x,t) is the interaction Hamiltonian in the
interaction picture, with Hiy(x,?) the interaction
Hamiltonian density, which deals with essentially
free fields. This formula expresses S in terms of
interaction-picture operators acting on free-particle
states in [2] and is the first step towards Feynman
perturbation theory.
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For many analytic investigations, such as those
which arise in renormalization theory, one is
interested instead in the Green’s functions of the
quantum field theory, which measure the response
of the system to an external perturbation. For
definiteness, let us consider a free real scalar field
theory in d+1 dimensions with Lagrangian
density

L =10,00"¢ — Im*¢* + Lin [4]

where L, is the interaction Lagrangian density
which we assume has no derivative terms. The
interaction Hamiltonian density is then given by
Hine = —Line. Introducing a real scalar source J(x),
we define the normalized “partition function”
through the vacuum expectation values,

(018[J110)
Z[]] = 20 5

I = osp)0) .
where |0) is the normalized perturbative vacuum
state of the quantum field theory given by (4)
(defined to be destroyed by all field annihilation

operators), and

Ul = Texp (i [ @™ 'x(Cu +Jx1006)) 16

from the Dyson formula. This partition function is
the generating functional for all Green’s functions
of the quantum field theory, which are obtained
from [5] by taking functional derivatives with
respect to the source and then setting J(x)=0.
Explicitly, in a formal Taylor series expansion in |
one has

2= 1T [ 47 ) 62 17

whose coefficients are the Green’s functions
G<”)(x1, ces ,x,,)
(OfTlexp (i f d*xLine ) 6(x1) - 6(,)][0)

B (0|Texp (i I dde[,im) 10) s

It is customary to work in momentum space by
introducing the Fourier transforms

) = [ dxet ()
G<”>(k1, oo ky) [9]
:H/ddﬂxieik"“"G(")(xl,...,xn)
=1

in terms of which the expansion [7] reads

00 qn 1 dd+lki ~
Z[]] :;al} /W JEk:)
< GO (kr, . k) [10]

The generating functional [10] can be written as a sum
of Feynman diagrams with source insertions. Dia-
grammatically, the Green’s function is an infinite series
of graphs which can be represented symbolically as

le
é(n)(kb .. skn) = ‘\ kl [1”

where the n external lines denote the source
insertions of momenta k; and the bubble denotes
the sum over all Feynman diagrams constructed
from the interaction vertices of Liy..

This procedure is, however, rather formal in the way
that we have presented it, for a variety of reasons. First
of all, by Haag’s theorem, it follows that the interaction
representation of a quantum field theory does not exist
unless a cutoff regularization is introduced into the
interaction term in the Lagrangian density (this
regularization is described explicitly below). The
addition of this term breaks translation covariance.
This problem can be remedied via a different definition
of the regularized Green’s functions, as we discuss
below. Furthermore, the perturbation series of a
quantum field theory is typically divergent. The
expansion into graphs is, at best, an asymptotic series
which is Borel summable. These shortcomings will not
be emphasized any further in this article. Some
mathematically rigorous approaches to perturbative
quantum field theory can be found in the bibliography.

The Green’s functions can also be used to describe
scattering amplitudes, but there are two important
differences between the graphs [11] and those which
appear in scattering theory. In the present case,
external lines carry propagators, that is, the free-
field Green’s functions

Alx —y) = (0] T[p(x) ¢(y)] |0)

(o s )

_ / dd+1p 1 e—iP‘(X—}’) [12}
Qm)Hip? —m? +ie

where € — 0" regulates the mass shell contributions,
and their momenta k; are off-shell in general
(k? #m?). By the LSZ theorem, the S-matrix element
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is then given by the multiple on-shell residue of the
Green’s function in momentum space as

<kq,...,k;\s—1|k1,... k)

/
7 =) Tz (8 =)

AAAAA P i | =
koo k,ﬂmz =t l o
Xé(n+m)<_ ek ke, Ry) [13]

where ic},ic; are the residues of the corresponding
particle poles in the exact two-point Green’s
function.

This article deals with the formal development
and computation of perturbative scattering ampli-
tudes in relativistic quantum field theory, along the
lines outlined above. Initially we deal only with real
scalar field theories of the sort [4] in order to
illustrate the concepts and technical tools in as
simple and concise a fashion as possible. These
techniques are common to most quantum field
theories. Fermions and gauge theories are then
separately treated afterwards, focusing on the
methods which are particular to them.

Diagrammatics

The pinnacle of perturbation theory is the technique
of Feynman diagrams. Here we develop the basic
machinery in a quite general setting and use it to
analyze some generic features of the terms compris-
ing the perturbation series.

Wick’s Theorem

The Green’s functions [8] are defined in terms of
vacuum expectation values of time-ordered products
of the scalar field ¢(x) at different spacetime points.
Wick’s theorem expresses such products in terms of
normal-ordered products, defined by placing each
field creation operator to the right of each field
annihilation operator, and in terms of two-point
Green’s functions [12] of the free-field theory
(propagators). The consequence of this theorem is
the Haffnian formula

(0] T[p(x1) - - - H(x1)]]0)
0
n=2k—-1

_ k

> TT(OIT[@(enaim1) #a20)] [0)

7T€Szk i=1

[14]

The formal Taylor series expansion of the
scattering operator S may now be succinctly
summarized into a diagrammatic notation by
using Wick’s theorem. For each spacetime integra-
tion [d Hx, we introduce a vertex with label i,
and from each vertex there emanate some hnes
corresponding to field insertions at the point x;.
If the operators represented by two lines appear in
a two-point function according to [14], that is, they
are contracted, then these two lines are connected
together. The S operator is then represented as a
sum over all such Wick diagrams, bearing in mind
that topologically equivalent diagrams correspond
to the same term in S. Two diagrams are said to
have the same pattern if they differ only by a
permutation of their vertices. For any diagram ©
with 7#(®) vertices, the number of ways of inter-
changing vertices is 7(®)!. The number of diagrams
per pattern is always less than this number. The
symmetry number §(®) of ® is the number of
permutations of vertices that give the same dia-
gram. The number of diagrams with the pattern of
D is then #(D)!/S(D

In a given pattern, we write the contribution to S
of a single diagram ®© as

1
0(D):
where the combinatorial factor comes from

the Taylor expansion of S, the large colons
denote normal ordering of quantum operators,
and :6(D): contains spacetime integrals over nor-
mal-ordered products of the fields. Then all
diagrams with the pattern of ® contribute :0(D):
/S(D) to S. Only the connected diagrams ®,,r € N
(those in which every vertex is connected to every
other vertex) contribute and we can write the
scattering operator in a simple form which
eliminates contributions from all disconnected dia-

grams as
. (D))
S .exp(r1 S<@r>>' [15]

Feynman Rules

Feynman diagrams in momentum space are
defined from the Wick diagrams above by drop-
ping the labels on vertices (and also the symmetry
factors S(D)™'), and by labeling the external lines
by the momenta of the initial and final particles
that the corresponding field operators annihilate.
In a spacetime interpretation, external lines
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represent on-shell physical particles while internal
lines of the graph represent off-shell virtual
particles (k? # m?). Physical particles interact
via the exchange of virtual particles. An arbitrary
diagram is then calculated via the Feynman rules:

p _/dd+l[) i
)2 p2omP4ie

pn pl [16]
' =ig2m) 1 @V (p - 4 p,)

123

2}

for a monomial interaction L, = (g/n!)¢"

Irreducible Green’s Functions

A one-particle irreducible (1PI) or proper Green’s
function is given by a sum of diagrams in which
each diagram cannot be separated by cutting one
internal line. In momentum space, it is defined
without the overall momentum conservation delta-
function factors and without propagators on exter-
nal lines. For example, the two particle 1PI Green’s
function

k

is called the self-energy. If G(k) is the complete
two-point function in momentum space, then one

has

Glk) = & Q k
_ k . kK @ k
E ok ok
* PP ¥
- i
Ck2-m2-Y(k) [18]

and thus it suffices to calculate only 1PI diagrams.

The 1PI effective action, defined by the Legendre
transformation T'[¢]:= —ilnZ[]] — [d +1x] (x)p(x)
of [5], is the generating functional for proper vertex
functions and it can be represented as a functional of
only the vacuum expectation value of the field ¢,
that is, its classical value. In the semiclassical (WKB)
approximation, the one-loop effective action is
given by

L[4 = S[¢] + %Tr In(1+ AV"[¢]) + O(k?)

< 11 / A A (x; — xi1) V[ (xie1)]

+ O(h?) (19]

where we have denoted S[¢ f d™'x£ and
V[¢] = —Lint, and for each term in the infinite
series we defme X,11:=x1. The first term in [19]
is the classical contribution and it can be
represented in terms of connected tree diagrams.
The second term is the sum of contributions of
one-loop diagrams constructed from 7 propaga-
tors —iA(x —y) and n vertices —iV”’[¢]. The
expansion may be carried out to all orders in
terms of connected Feynman diagrams, and the
result of the above Legendre transformation is to
select only the one-particle irreducible diagrams
and to replace the classical value of ¢ by an
arbitrary argument. All information about the
quantum field theory is encoded in this effective
action.

Parametric Representation

Consider an arbitrary proper Feynman diagram
® with #» internal lines and v vertices. The
number, ¢, of independent loops in the diagram
is the number of independent internal momenta in
® when conservation laws at each vertex have
been taken into account, and it is given by {=n+
1 —v. There is an independent momentum inte-
gration variable k; for each loop, and a propa-
gator for each internal line as in [16]. The
contribution of ® to a proper Green’s function
with 7 incoming external momenta p;, with

S pi=0, is given by

5 rh d+1 :
=YD [

(@ A1 k2 —m? + ie
v
X (zw)d“(sd“ (P, — K)) [20]
j=1
where V(D) contains all contributions from the

interaction vertices of Liy, and P; (resp. K;) is the
sum of incoming external momenta p; (resp.
internal momenta k;) at vertex j with respect to
a fixed chosen orientation of the lines of the
graph. After resolving the delta-functions in terms
of independent internal loop momenta kq,...,k,
and dropping the overall momentum conservation
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delta-function along with the symmetry and vertex
factors in [20], one is left with a set of momentum

space integrals
dd+1k i
S I | e
j=1 /( ,P) + 1€

where a;(k, p) are functions of both the internal and
external momenta.

It is convenient to exponentiate propagators using
the Schwinger parametrization

00
_ = / doz,- ela,(a,+1e) [22]
(1]‘ =+ 1€ 0

and after some straightforward manipulations one
may write the Feynman parametric formula

2 i

k) a/(k,p) + i€

/ da,iD(i k%’;’) 23]

where Dy (ks p):= 3, aylajik, p) +

ally a quadratic form

=(n—

1€] 1s generic-

o(k;a,p) =

Zk Oji(a
+ZL

The positive symmetric matrix Qj;; is independent
of the external momenta p;, invertible, and
has nonzero eigenvalues Qq,... Q/ The vectors
L} are linear combinations of the p}', while A(p )
is a function of only the Lorentz invariants p?.
After some further elementary manipulations,
the loop diagram contribution [21] may be
written as

k—l—)\p) [24]

Is(p)
1 dd+1k'

(n—1)! d, — (11— Q;

H/ =1 O /< )"“( Z)

( Zk2+A ZL

Finally, the integrals over the loop momenta k;
may be performed by Wick-rotating them
to Euclidean space and using the fact that
the combination of ¢ integrations in RY*! has
O((d+1)¢) rotational invariance. The contribu-
tion from the entire Feynman diagram ® thereby

)il (P)) 25]

reduces to the calculation of the parametric
integrals:

T d+1)e 1 ‘ 1
I’i\(p) = ( - (d;l)ézidz) 1:!: o dail} i(a)z
X 6< _ Zi ai) n—(d+1)¢
() - 1S L) 0 ), L)
26]

where T'(s) is the Euler gamma-function.

Regularization

The parametric representation [26] is generically
convergent when 27 — (d + 1)¢ > 0. When diver-
gent, the infinities arise from the lower limits of
integration a; — 0. This is just the parametric
representation of the large-k divergence of the
original Feynman amplitude [20]. Such ultraviolet
divergences plague the very meaning of a quan-
tum field theory and must be dealt with in some
way. We will now quickly tour the standard
methods of ultraviolet regularization for such
loop integrals, which is a prelude to the renor-
malization program that removes the divergences
(in a renormalizable field theory). Here we
consider regularization simply as a means of
justification for the various formal manipulations
that are used in arriving at expressions such

s [26].

Momentum Cutoff

Cutoff regularization introduces a mass scale A
into the quantum field theory and throws away
the Fourier modes of the fields for spatial
momenta k with |k| > A. This regularization
spoils Lorentz invariance. It is also nonlocal. For
example, if we restrict to a hypercube in
momentum space, so that |k;| < A for i=1,...,d,
then

/ dk ek _ ﬁ sin(Ax’)
k|>A (Zw)d mx!

i=1

which is a delta-function in the limit A — co but is
nonlocal for A < co. The regularized field theory is
finite order by order in perturbation theory and
depends on the cutoff A.
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Lattice Regularization

We can replace the spatial continuum by a lattice ¥
of rank d and define a Lagrangian on £ by

Z¢ +] > ¢z¢,+ZV¢, [27]

1€S (ijyeL(£) ieS(L

where S(£) is the set of sites i of the lattice on each
of which is situated a time-dependent function ¢;, and
Lg is the collection of links connecting pairs (7,7) of
nearest-neighbor sites i,j on £. The regularized field
theory is now local, but still has broken Lorentz
invariance. In particular, it suffers from broken rota-
tional symmetry. If £ is hypercubic with lattice spacing
a, that is, £=(Za)%, then the momentum cutoff is
at A=a7!

Pauli-Villars Regularization

We can replace the pr(glpagator i(k* — m? + ie)! by
i(k2 — m? + ie) M2 +1ie)™", where
the masses M, >> m are 1dent1f1ed Wlth the momen-
tum cutoff as min{M;} =A — oo. The mass-depen-
dent coefficients ¢; are chosen to make the modified
propagator decay rapidly as (kz) N1 gt k — o0,
which gives the N equations (m +ZI- c,-(Mf.Z)’:
0,i=0,1,...,N—1. This regularization preserves
Lorentz invariance (and other symmetries that the
field theory may possess) and is local in the
following sense. The modified propagator can be
thought of as arising through the alteration of the
Lagrangian density [4] by N additional scalar fields
@; of masses M; with

LPV :l ;L¢6“¢ - lm2¢2
+ Z( i

where ®:=¢ + . /Gjy;. The contraction of the ®
field thus produces the required propagator.
However, the ¢;’s as computed above are gener-
ically negative numbers and so the Lagrangian
density [28] is not Hermitian (as ® # ®f). It is
possible to make [28] formally Hermitian by
redefining the inner product on the Hilbert
space of physical states, but this produces
negative-norm states. This is no problem at
energy scales E < M; on which the extra particles
decouple and the negative probability states are
invisible.

o — M2 )+cim[q>] 28]

Dimensional Regularization

—r

Consider a Euclidean space integral [ d*k(k? + a?)
arising after Wick rotation from some loop diagram

in (3 + 1)-dimensional scalar field theory. We
replace this integral by its D-dimensional version

Pk AP D
[wrar oo t(-3) @

This integral is absolutely convergent for D < 2r.
We can analytically continue the result of this
integration to the complex plane D € C. As an
analytic function, the only singularities of the Euler
function T'(z) are poles at z=0, —1, —2,.... In
particular, T'(z) has a simple pole at =0 of residue
1. If we write D=4+ ¢ with |¢/—0, then the
integral [29] is proportional to I'(r — 2 — €/2) and €
plays the role of the regulator here. This regulariza-
tion is Lorentz invariant (in D dimensions) and is
distinguished as having a dimensionless regulariza-
tion parameter e. This parameter is related to the
momentum cutoff A by ¢! = In(A/m), so that the
limit € — 0 corresponds to A — oo.

Infrared Divergences

Thus far we have only considered the ultraviolet
behavior of loop amplitudes in quantum field theory.
When dealing with massless particles (m=0 in [4])
one has to further worry about divergences arising
from the k — 0 regions of Feynman integrals. After
Wick rotation to Euclidean momenta, one can show
that no singularities arise in a given Feynman diagram
as some of its internal masses vanish provided that all
vertices have superficial degree of divergence d + 1,
the external momenta are not exceptional (i.e., no
partial sum of the incoming momenta p; vanishes), and
there is at most one soft external momentum. This
result assumes that renormalization has been carried
out at some fixed Euclidean point. The extension of
this property when the external momenta are con-
tinued to physical on-shell values is difficult. The
Kinoshita—Lee-Nauenberg theorem states that, as a
consequence of unitarity, transition probabilities in a
theory involving massless particles are finite when the
sum over all degenerate states (initial and final) is
taken. This is true order by order in perturbation
theory in bare quantities or if minimal subtraction
renormalization is used (to avoid infrared or mass
singularities in the renormalization constants).

Fermion Fields

We will now leave the generalities of our pure scalar
field theory and start considering the extensions of
our previous considerations to other types of
particles. Henceforth we will primarily deal with
the case of (3 + 1)-dimensional spacetime. We begin
by indicating how the rudiments of perturbation
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theory above apply to the case of Dirac fermion
fields. The Lagrangian density is

Lp=1(ip—m)p+ L [30]

where 1) are four-component Dirac fermion fields in
3+ 1 dimensions, ¢:=11" and @=+"9, with
the generators of the Clifford algebra {y#,~"} =2n"".
The Lagrangian density £’ contains couplings of the
Dirac fields to other field theories, such as the scalar
field theories considered previously.

Wick’s theorem for anticommuting Fermi fields
leads to the Pfaffian formula

(OT[3p(1) - - - 4h(n)]|0)

0, n=2k—1
1
P Z sgn()
T TESH [31]
- !

x JTCOIT(m(2i — 1))(w(24)))]0)

-1
n=2"k

where for compactness we have written in the
argument of (/) the spacetime coordinate, the
Dirac index, and a discrete index which distin-
guishes 9 from . The nonvanishing contractions
in [31] are determined by the free-fermion
propagator

Ar(x —y) = (O|T[(x)P(y)]|0)
= <x’(1@ — m)fl ’y>

i/(d4p p+m

—ip-(x—y) 2
2m)* p? — m? +ie© 32|

Perturbation theory now proceeds exactly as
before. Suppose that the coupling Lagrangian
density in [30] is of the form L' =1)(x)V(x)y(x).
Both the Dyson formula [3] and the diagrammatic
formula [15] are formally the same in this instance.
For example, in the formal expansion in powers of
Ik d*x£’, the vacuum-to-vacuum amplitude (the
denominator in [5]) will contain field products of
the form

[T [ 500 ts) Vi) w(a)l0)
i=1

which correspond to fermion loops. Before applying
Wick’s theorem, the fields must be rearranged as

tr H V(i) (xi) b (xi1)
i=1

(with x,,1:=x1), where tr is the 4 x4 trace
over spinor indices. This reordering introduces the
familiar minus sign for a closed fermion loop, and
one has

Vix,) V(x,) }
: = ([T Jd*
Vix,) i=1
n-1
Vix;) X tr H AF(xj—x“l)

j=1

X Vixi,q) Ap(xj,1—%42)
[33]

Feynman rules are now described as follows.
Fermion lines are oriented to distinguish a particle
from its corresponding antiparticle, and carry both
a four-momentum label p as well as a spin
polarization index r =1, 2. Incoming fermions (resp.
antifermions) are described by the wave functions
ug) (resp. ﬁg)), while outgoing fermions (resp.
antifermions) are described by the wave functions
ﬁg) (resp. U;,r)). Here u;)” and U};) are the classical
spinors, that is, the positive and negative-energy
solutions of the Dirac equation (ﬁ—m)ug):(pf—i—
m)v;,’)zo. Matrices are multiplied along a Fermi
line, with the head of the arrow on the left. Closed
fermion loops produce an overall minus sign as in
[33], and the multiplication rule gives the trace of
Dirac matrices along the lines of the loop. Unpolar-
ized scattering amplitudes are summed over the spins
of final particles and averaged over the spins of initial
particles using the completeness relations for spinors

S w8 —pim S oH —pom 4

r=1,2 r=12

leading to basis-independent results. Polarized
amplitudes are computed using the spinor bilinears
ﬁg)'y“u;f) :5;,')7“1/;5) =2pHo™s, ﬁg)u;,s) = - D},”U},S) =2m
&, and ﬁg)véf) =0.

When calculating fermion loop integrals using
dimensional regularization, one utilizes the Dirac
algebra in D dimensions

Y w=mn,=D
Vb= (2~ D)y
V' PRy =4p-k+ (D —-4)pk
VP Rdv.=-24kp— (D—4)pkg [35]
trl =4, trytt - A2t = O trytyY = 4t
try 'y Py =4 —
+0"n"")
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Specific to D=4 dimensions are the trace identities

try’ = try" 4"y’ = 0, 36
try " AP A7y = —4ie”

where 7°:=ivy'92~3. Finally, loop diagrams eval-

uated with the fermion propagator [32] require a
generalization of the momentum space integral [29]
given by

dPk 1
/ 2m)P (B2 +2k - p +a? +ie)
i(—mPPr(r-2) 1
N 2m)P (r — 1)12 (a2 —p2 + ie)r—D/z 37]

From this formula we can extract expressions for
more complicated Feynman integrals which are
tensorial, that is, which contain products of
momentum components k¥ in the numerators of
their integrands, by differentiating [37] with respect
to the external momentum p*.

Gauge Fields

The issues we have dealt with thus far have
interesting difficulties when dealing with gauge
fields. We will now discuss some general aspects of
the perturbation expansion of gauge theories using
as prototypical examples quantum electrodynamics
(QED) and quantum chromodynamics (QCD) in
four spacetime dimensions.

Quantum Electrodynamics

Consider the QED Lagrangian density

- %F/I,I/F#V

+ 3 P ALAY () — ed —m)y [38]

where A, is a U(1) gauge field in 3 + 1 dimensions
and F,, =0,A, — 0,A, is its field strength tensor.
We have added a small mass term p—0 for
the gauge field, which at the end of calculations
should be taken to vanish in order to describe
real photons (as opposed to the soft photons
described by [38]). This is done in order to cure
the infrared divergences generated in scattering
amplitudes due to the masslessness of the photon,
that is, the long-range nature of the electromag-
netic interaction. The Bloch—-Nordsieck theorem
in QED states that infrared divergences cancel
for physical processes, that is, for processes
with an arbitrary number of undetectable soft
photons.

Perturbation theory proceeds in the usual way
via the Dyson formula, Wick’s theorem, and

LqEp =

Feynman diagrams. The gauge field propagator is
given by

(OIT[A,(x)AL(7)]10)

= (x| [0 (O + 122) — 3,0,] ' [y)
pupﬂ
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and is represented by a wavy line. The fermion—
fermion—photon vertex is

g =-ies, [40]

I

An incoming (resp. outgoing) soft photon of
momentum k and polarization 7 is described by the
wave function el'(k) (resp. el(k)"), where the
polarization vectors e (k),r =1, 2, 3 solve the vector

field wave equation ([J-+ pZ)A,,, =9,A"=0 and

obey the orthonormality and completeness
conditions
(k)" - e (k) = —6"
3
7 r * k kl’ [4”
Z eL,) (k)ez(/ ) (k) == N + :,2

r=1

along with k-el”(k)=0. All vector indices are
contracted along the lines of the Feynman graph.
All other Feynman rules are as previously.

Quantum Chromodynamics

Consider nonabelian gauge theory in 3 + 1 dimen-
sions minimally coupled to a set of fermion fields
wA,Azl,...,Nf, each transforming in the funda-
mental representation of the gauge group G whose
generators T“ satisfy the commutation relations
[T?, T?] = f*<T¢. The Lagrangian density is given by

1 , o1 2,4 =
Lacp = =g B " 5 0 (9uA™) +0,m D"

Ny
+3° (D~ maypt [42]
A=1

where F, =8,A% — 0,A% + A’ A¢ and D, =9, +
ieR(T7)AS, with R the pertinent representation of G
(R(T%)p,=f;. for the adjoint representation and
R(T*)=T“ for the fundamental representation).
The first term is the Yang—Mills Lagrangian density,
the second term is the covariant gauge-fixing term,
and the third term contains the Faddeev—Popov
ghost fields 7 which transform in the adjoint
representation of the gauge group.

Feynman rules are straightforward to write
down and are given in Figure 1 where wavy lines
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Figure 1 Feynman rules.

represent gluons and dashed lines represent ghosts.
Feynman rules for the fermions are exactly as
before, except that now the vertex [40] is multi-
plied by the color matrix T?. All color indices are
contracted along the lines of the Feynman graph.
Color factors may be simplified by using the
identities

dim R
TrRRV =
r dmG

R“RbRH:(CAR)—%(h«E>Rb

Cy(R)6%,  R*R* = C»(R)

[43]

where R%:=R(T?) and C,(R) is the quadratic
Casimir invariant of the representation R (with
value C,(G) in the adjoint representation). For
G =SU(N), one has C,(G)=N and C,(N)=(N? —
1)/2N for the fundamental representation.

The cancellation of infrared divergences in loop
amplitudes of QCD is far more delicate than in
QED, as there is no analog of the Bloch-
Nordsieck theorem in this case. The Kinoshita—
Lee-Nauenberg theorem guarantees that, at the
end of any perturbative calculation, these diver-
gences must cancel for any appropriately defined

M T]/\p i UIA)

N\ Top = Npp T],,)\)

+ fead fEbc (Upll =™ Myp T/p,/\)]

physical quantity. However, at a given order of
perturbation theory, a physical quantity typically
involves both virtual and real emission contribu-
tions that are separately infrared divergent.
Already at two-loop level these divergences have
a highly intricate structure. Their precise form is
specified by the Catani color-space factorization
formula, which also provides an efficient way of
organizing amplitudes into divergent parts, which
ultimately drop out of physical quantities, and
finite contributions.

The computation of multigluon amplitudes in
nonabelian gauge theory is rather complicated
when one uses polarization states of vector bosons.
A much more efficient representation of amplitudes
is provided by adopting a helicity (or circular
polarization) basis for external gluons. In the
spinor-helicity formalism, one expresses positive
and negative-helicity polarization vectors in terms
?f massless Weyl spinors [k*):= 1 (1 £ s)u, =
5 (1 £ v5)vy, through

CaAL)

elt(k;q) == \/E<q:F|ki>

[44]
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where ¢ is an arbitrary null reference momentum
which drops out of the final gauge-invariant
amplitudes. The spinor products are crossing sym-
metric, antisymmetric in their arguments, and satisfy
the identities

(k1) (R s )y = 2k -k
(ks |fer) (ki 1) = G iy ) (i 1)
+ (k) (k5 1) 145]

Any amplitude with massless external fermions
and vector bosons can be expressed in terms of
spinor products. Conversely, the spinor products
offer the most compact representation of helicity
amplitudes which can be related to more conven-
tional amplitudes described in terms of Lorentz
invariants. For loop amplitudes, one wuses a
dimensional regularization scheme in which all
helicity states are kept four dimensional and only
internal loop momenta are continued to D=4 +¢
dimensions.

Computing Loop Integrals

At the very heart of perturbative quantum field
theory is the problem of computing Feynman
integrals for multiloop scattering amplitudes. The
integrations typically involve serious technical chal-
lenges and for the most part are intractable by
straightforward analytical means. We will now
survey some of the computational techniques that
have been developed for calculating quantum loop
amplitudes which arise in the field theories consid-
ered previously.

Asymptotic Expansion

In many physical instances one is interested in
scattering amplitudes in certain kinematical limits. In
this case one may perform an asymptotic expansion of
multiloop diagrams whose coefficients are typically
nonanalytic functions of the perturbative expansion
parameter 5. The main simplification which arises
comes from the fact that the expansions are done
before any momentum integrals are evaluated. In the
limits of interest, Taylor series expansions in different
selected regions of each loop momentum can be
interpreted in terms of subgraphs and co-subgraphs
of the original Feynman diagram.

Consider a Feynman diagram © which depends on
a collection {Q;} of large momenta (or masses), and
a collection {m;,q;} of small masses and momenta.
The prescription for the large-momentum

asymptotic expansion of © may be summarized in
the diagrammatic formula

lim ©(O;m,
Jim, (Q;m,q)

=D (®/0)(m,@) * (T 1y )0) (Qi 70, q0)  [46]

[Jaky)

where the sum runs through all subgraphs o of ©
which contain all vertices where a large momentum
enters or leaves the graph and is one-particle irredu-
cible after identifying these vertices. The operator
7T 1y, q) Performs a Taylor series expansion before any
integration is carried out, and the notation (D/0)*
(T ymy, )0) indicates that the subgraph 2C D is
replaced by its Taylor expansion in all masses and
external momenta of d that do not belong to the set
{O;}. The external momenta of ? which become loop
momenta in ® are also considered to be small. The
loop integrations are then performed only after all
these expansions have been carried out. The diagrams
D /0 are called co-subgraphs.

The subgraphs become massless integrals in which
the scales are set by the large momenta. For instance,
in the simplest case of a single large momentum Q one
is left with integrals over propagators. The co-
subgraphs may contain small external momenta and
masses, but the resulting integrals are typically much
simpler than the original one. A similar formula is true
for large-mass expansions, with the vertex conditions
on subdiagrams replace by propagator conditions. For
example, consider the asymptotic expansion of the
two-loop double bubble diagram (Figure 2) in the
region g* < m?, where m is the mass of the inner loop.
The subgraphs (to the right of the stars) are expanded
in all external momenta including q and reinserted into
the fat vertices of the co-subgraphs (to the left of the
stars). Once such asymptotic expansions are carried
out, one may attempt to reconstruct as much informa-
tion as possible about the given scattering amplitude

Figure 2 Asymptotic expansion of the two-loop double bubble
diagram.
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by using the method of Padé approximation which
requires knowledge of only part of the expansion of
the diagram. By construction, the Padé approximation
has the same analytic properties as the exact
amplitude.

Brown-Feynman Reduction

When considering loop diagrams which involve
fermions or gauge bosons, one encounters tensorial
Feynman integrals. When these involve more than
three distinct denominator factors (propagators),
they require more than two Feynman parameters
for their evaluation and become increasingly
complicated. The Brown-Feynman method simpli-
fies such higher-rank integrals and effectively
reduces them to scalar integrals which typically
require fewer Feynman parameters for their
evaluation.

To illustrate the idea behind this method, consider
the one-loop rank-3 tensor Feynman integral

o / dPk
(2m)P
ki RY A

R — ) (g — k)2 (k- ) + 1) (& + 2k - p)

where p and g are external momenta with the mass-
shell conditions p? =(p — g)* =m?. By Lorentz invar-
iance, the general structure of the integral [47] will
be of the form

]p,l/)\ _ a;wp)\ + b;wq)\ _’_C;LSV/\ +CVSM)\ [48]

[47]

where a"”,b" are tensor-valued functions and
¢ a vector-valued function of p and ¢q. The
symmetric tensor s*’ is chosen to project out
components of vectors transverse to both p and g,
ie, pus'=qus"" =0, with the normalization
sy =D — 2. Solving these constraints leads to the
explicit form

2 vy 2ol pV . HpV 4 phg?
g g 744 qupz (p q)(qu p"q") 49]
m*q*—(p-q)

To determine the as yet unknown functions
a',b" and c¢" above, we first contract both sides
of the decomposition [48] with p* and g* to get

2\ =2 2 b
200" = 2p - @) +24°b"

Inside the integrand of [47], we then use the trivial
identities
2k-p=(k*+2k-p) -k

51
2q-k=k+q*— (k—q) >

to write the left-hand sides of [50] as the sum of
rank-2 Feynman integrals which, with the exception
of the one multiplied by g? from [51], have one less
denominator factor. This formally determines the
coefficients a"” and b" in terms of a set of rank-2
integrations. The vector function ¢* is then found
from the contraction

I, =pva" + q,b" + (D = 2)c" [52]

This contraction eliminates the k*> denominator
factor in the integrand of [47] and produces a
vector-valued integral. Solving the system of
algebraic equations [50] and [52] then formally
determines the rank-3 Feynman integral [47] in
terms of rank-1 and rank-2 Feynman integrals. The
rank-2 Feynman integrals thus generated can then
be evaluated in the same way by writing a
decomposition for them analogous to [48] and
solving for them in terms of vector-valued and
scalar-valued Feynman integrals. Finally, the rank-1
integrations can be solved for in terms of a set of
scalar-valued integrals, most of which have fewer
denominator factors in their integrands.

Generally, any one-loop amplitude can be reduced
to a set of basic integrals by using the Passarino—
Veltman reduction technique. For example, in
supersymmetric amplitudes of gluons any tensor
Feynman integral can be reduced to a set of scalar
integrals, that is, Feynman integrals in a scalar field
theory with a massless particle circulating in the
loop, with rational coefficients. In the case of N’ =4
supersymmetric Yang-Mills theory, only scalar box
integrals appear.

Reduction to Master Integrals

While the Brown-Feynman and Passarino—Veltman
reductions are well suited for dealing with one-loop
diagrams, they become rather cumbersome for
higher-loop computations. There are other more
powerful methods for reducing general tensor
integrals into a basis of known integrals called
master integrals. Let us illustrate this technique on a
scalar example. Any scalar massless two-loop Feyn-
man integral can be brought into the form

D Dy, t q
=[5 [SS a0 1 9
(2m) (2m)" i i=1

1

where A, are massless scalar propagators depending
on the loop momenta k,k' and the external
momenta piq,...,P,, and 3; are scalar products of
a loop momentum with an external momentum or
of the two loop momenta. The topology of the
corresponding Feynman diagram is uniquely deter-
mined by specifying the set Aq,..., A, of ¢ distinct
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propagators in the graph, while the integral itself is
specified by the powers /; > 1 of all propagators, by
the selection Xy, ...,%, of g scalar products and by
their powers 7; > 0.

The integrals in a class of diagrams of the same
topology with the same denominator dimension
r=>_;l; and same total scalar product number
s=,n; are related by various identities. One
class follows from the fact that the integral over a
total derivative with respect to any loop momentum
vanishes in dimensional regularization as

dk 9] (k) _
/ Qm)P ke

where J(k) is any tensorial combination of propaga-
tors, scalar products and loop momenta. The
resulting relations are called integration-by-parts
identities and for two-loop integrals can be cast
into the form

D Dy, I
/(d k /d KLk ED)

2m)P ) (@2x)P ok
[ d% APk Of (kK. p)
_/(ZW)D/(ZW)DU ok [54]

where f(k,k',p) is a scalar function containing
propagators and scalar products, and v* is any
internal or external momentum. For a graph with ¢
loops and 7 independent external momenta, this
results in a total of ¢(n + /) relations.

In addition to these identities, one can also exploit
the fact that all Feynman integrals [53] are Lorentz
scalars. Under an infinitesimal Lorentz transformation
p! — p* + op*, with op =p”del), by = — ¢}, one has
the invariance condition I(p + 6p) = I(p), which leads
to the linear homogeneous differential equations

L o L0 )
v 9o )\ 1p) =0 55
Z(p o= 5 ) 10) 53]

This equation can be contracted with all possible
antisymmetric combinations of pj,p; to vyield
linearly independent Lorentz invariance identities
for (53).

Using these two sets of identities, one can either
obtain a reduction of integrals of the type (53)
to those corresponding to a small number of simpler
diagrams of the same topology and diagrams of
simpler topology (fewer denominator factors), or
a complete reduction to diagrams with simpler
topology. The remaining integrals of the topology
under consideration are called irreducible master
integrals. These momentum integrals cannot be
further reduced and have to be computed by different

techniques. For instance, one can apply a Mellin—
Barnes transformation of all propagators given by

1 1 ico d 2
(k? -Hl)l N (I- 1)!/400 Zji(kj)lﬂr(l'i_z)r(_z) [56]

where the contour of integration is chosen to lie to the
right of the poles of the Euler function I'(/ +z) and to
the left of the poles of I'(—z) in the complex z-plane.
Alternatively, one may apply the negative-dimension
method in which D is regarded as a negative integer in
intermediate calculations and the problem of loop
integration is replaced with that of handling infinite
series. When combined with the above methods, it may
be used to derive powerful recursion relations among
scattering amplitudes. Both of these techniques rely on
an explicit integration over the loop momenta of the
graph, their differences occurring mainly in the repre-
sentations used for the propagators.

The procedure outlined above can also be used to
reduce a tensor Feynman integral to scalar integrals, as
in the Brown—Feynman and Passarino—Veltman reduc-
tions. The tensor integrals are expressed as linear
combinations of scalar integrals of either higher
dimension or with propagators raised to higher
powers. The projection onto a tensor basis takes the
form [53] and can thus be reduced to master integrals.

String Theory Methods

The realizations of field theories as the low-energy
limits of string theory provides a number of power-
ful tools for the calculation of multiloop amplitudes.
They may be used to provide sets of diagrammatic
computational rules, and they also work well for
calculations in quantum gravity. In this final part we
shall briefly sketch the insights into perturbative
quantum field theory that are provided by tech-
niques borrowed from string theory.

String Theory Representation

String theory provides an efficient compact repre-
sentation of scattering amplitudes. At each loop
order there is only a single closed string diagram,
which includes within it all Feynman graphs along
with the contributions of the infinite tower of
massive string excitations. Schematically, at one-
loop order, the situation is as shown in Figure 3.
The terms arising from the heavy string modes are
removed by taking the low-energy limit in which all
external momenta lie well below the energy scale set
by the string tension. This limit picks out the regions
of integration in the string diagram corresponding to
particle-like graphs, but with different diagrammatic
rules.



40 Perturbation Theory and Its Techniques
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Figure 3 String theory representation at one-loop order.

Given these rules, one may formulate a purely
field-theoretic framework which reproduces them.
In the case of QCD, a key ingredient is the use of a
special gauge originally derived from the low-energy
limit of tree-level string amplitudes. This is known
as the Gervais—Neveu gauge and it is defined by the
gauge-fixing Lagrangian density

1
2

e
V2

This gauge choice simplifies the color factors that
arise in scattering amplitudes. The string theory
origin of gauge theory amplitudes is then most
closely mimicked by combining this gauge with the
background field gauge, in which one decomposes
the gauge field into a classical background field and
a fluctuating quantum field as A#ZAZl + A", and
imposes the gauge-fixing condition Df}Aq“ﬂ:O,
where Df} is the background field covariant deriva-
tive evaluated in the adjoint representation of the
gauge group. This hybrid gauge is well suited for
computing the effective action, with the quantum
part describing gluons propagating around loops
and the classical part describing gluons emerging
from the loops. The leading loop momentum
behavior of one-particle irreducible graphs with
gluons in the loops is very similar to that of graphs
with scalar fields in the loops.

2
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Supersymmetric Decomposition

String theory also suggests an intimate relationship
with supersymmetry. For example, at tree level,
QCD is effectively supersymmetric because a multi-
gluon tree amplitude contains no fermion loops, and
so the fermions may be taken to lie in the adjoint
representation of the gauge group. Thus, pure gluon
tree amplitudes in QCD are identical to those in
supersymmetric Yang-Mills theory. They are con-
nected by supersymmetric Ward identities to ampli-
tudes with fermions (gluinos) which drastically
simplify computations. In supersymmetric gauge
theory, these identities hold to all orders of
perturbation theory.

At one-loop order and beyond, QCD is not super-
symmetric. However, one can still perform a super-
symmetric decomposition of a QCD amplitude for
which the supersymmetric components of the ampli-
tude obey the supersymmetric Ward identities. Con-
sider, for example, a one-loop multigluon scattering

amplitude. The contribution from a fermion propagat-
ing in the loop can be decomposed into the contribution
of a complex scalar field in the loop plus a contribution
from an N =1 chiral supermultiplet consisting of a
complex scalar field and a Weyl fermion. The
contribution from a gluon circulating in the loop can
be decomposed into contributions of a complex scalar
field, an A'=1 chiral supermultiplet, and an N' =4
vector supermultiplet comprising three complex scalar
fields, four Weyl fermions and one gluon all in the
adjoint representation of the gauge group. This
decomposition assumes the use of a supersymmetry-
preserving regularization.

The supersymmetric components have important
cancellations in their leading loop momentum
behavior. For instance, the leading large loop
momentum power in an n-point 1PI graph is
reduced from |k|” down to |k[" in the N'=1
amplitude. Such a reduction can be extended to any
amplitude in supersymmetric gauge theory and is
related to the improved ultraviolet behavior of
supersymmetric amplitudes. For the AN =4 ampli-
tude, further cancellations reduce the leading power
behavior all the way down to |k|"*. In dimensional
regularization, N'=4 supersymmetric loop ampli-
tudes have a very simple analytic structure owing to
their origins as the low-energy limits of superstring
scattering amplitudes. The supersymmetric Ward
identities in this way can be used to provide
identities among the nonsupersymmetric contribu-
tions. For example, in N'=1 supersymmetric Yang—
Mills theory one can deduce that fermion and gluon
loop contributions are equal and opposite for multi-
gluon amplitudes with maximal helicity violation.

Scattering Amplitudes in Twistor Space

The scattering amplitude in QCD with # incoming
gluons of the same helicity vanishes, as does the
amplitude with # — 1 incoming gluons of one helicity
and one gluon of the opposite helicity for 7 > 3. The
first nonvanishing amplitudes are the maximal helicity
violating (MHV) amplitudes involving 7z — 2 gluons of
one helicity and two gluons of the opposite helicity.
Stripped of the momentum conservation delta-function
and the group theory factor, the tree-level amplitude
for a pair of gluons of negative helicity is given by

Alk) = 2l |5 Tk ki)™ [58]
=1

This amplitude depends only on the holomorphic
(negative chirality) Weyl spinors. The full MHV
amplitude (with the momentum conservation
delta-function) is invariant under the conformal
group SO(4,2) = SU(2,2) of four-dimensional
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Minkowski space. After a Fourier transformation of
the positive-chirality components, the complexifica-
tion SL(4,C) has an obvious four-dimensional repre-
sentation acting on the positive- and negative-chirality
spinor products. This representation space is iso-
morphic to C* and is called twistor space. Its elements
are called twistors.

Wave functions and amplitudes have a known
behavior under the C*-action which rescales twistors,
giving the projective twistor space CP? or RP?
according to whether the twistors are complex valued
or real valued. The Fourier transformation to twistor
space yields (due to momentum conservation) the
localization of an MHV amplitude to a genus-0
holomorphic curve CP! of degree 1 in CP? (or to a
real line RP' ¢ RP?). It is conjectured that, generally,
an (-loop amplitude with p gluons of positive helicity
and g gluons of negative helicity is supported on a
holomorphic curve in twistor space of degree g + ¢ — 1
and genus < /. The natural interpretation of this curve is
as the world sheet of a string. The perturbative gauge
theory may then be described in terms of amplitudes
arising from the couplings of gluons to a string. This
twistor string theory is a topological string theory which
gives the appropriate framework for understanding the
twistor properties of scattering amplitudes. This frame-
work has been used to analyze MHYV tree diagrams and
one-loop N =4 supersymmetric amplitudes of gluons.

See also: Constructive Quantum Field Theory;
Dispersion Relations; Effective Field Theories; Gauge
Theories from Strings; Hopf Algebra Structure of
Renormalizable Quantum Field Theory; Perturbative
Renormalization Theory and BRST; Quantum
Chromodynamics; Renormalization: General Theory;
Scattering, Asymptotic Completeness and Bound States;
Scattering in Relativistic Quantum Field Theory:
Fundamental Concepts and Tools; Stationary Phase
Approximation; Supersymmetric Particle Models.
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Main Problems in the Perturbative
Quantization of Gauge Theories

Gauge theories are field theories in which the basic
fields are not directly observable. Field configurations
yielding the same observables are connected by a

gauge transformation. In the classical theory, the
Cauchy problem is well posed for the observables,
but in general not for the nonobservable gauge-
variant basic fields, due to the existence of time-
dependent gauge transformations.

Attempts to quantize the gauge-invariant objects
directly have not yet been completely satisfactory.
Instead, one modifies the classical action by adding a
gauge-fixing term such that standard techniques of
perturbative quantization can be applied and such
that the dynamics of the gauge-invariant classical
fields is not changed. In perturbation theory, this
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problem shows up already in the quantization of the
free gauge fields (see the section “Quantization of
free gauge fields”). In the final (interacting) theory the
physical quantities should be independent on how the
gauge fixing is done (“gauge independence”).

Traditionally, the quantization of gauge theories
is mostly analyzed in terms of path integrals (e.g., by
Faddeev and Popov), where some parts of the
arguments are only heuristic. In the original treat-
ment of Becchi, Rouet, and Stora (cf. also Tyutin)
(which is called “BRST-quantization”), a restriction
to purely massive theories was necessary; the
generalization to the massless case by Lowenstein’s
method is cumbersome.

The BRST quantization is based on earlier work
of Feynman, Faddeev, and Popov (introduction of
“ghost fields”), and of Slavnov. The basic idea is
that after adding a term to the Lagrangian which
makes the Cauchy problem well posed but which is
not gauge-invariant one enlarges the number of
fields by infinitesimal gauge transformations
(“ghosts”) and their duals (“anti-ghosts”). One
then adds a further term to the Lagrangian which
contains a coupling of the anti-ghosts and ghosts.
The BRST transformation acts as an infinitesimal
gauge transformation on the original fields and on
the gauge transformations themselves and maps the
anti-ghosts to the gauge-fixing terms. This is done
in such a way that the total Lagrangian is invariant
and that the BRST transformation is nilpotent.
The hard problem in the perturbative construction
of gauge theories is to show that BRST symmetry can
be maintained during renormalization (see the section
on perturbative renormalization). By means of the
“quantum action principle” of Lowenstein (1971)
and Lam (1972, 1973) a cohomological classification
of anomalies was worked out (an overview is given,
e.g., in the book of Piguet and Sorella (1995)). For
more details, see BRST Quantization.

The BRST quantization can be carried out in a
transparent way in the framework of algebraic
quantum field theory (AQFT, see Algebraic
Approach to Quantum Field Theory). The advan-
tage of this formulation is that it allows one to
separate the three main problems of perturbative
gauge theories:

1. the elimination of unphysical degrees of freedom,
2. positivity (or “unitarity”), and
3. the problem of infrared divergences.

In AQFT, the procedure is the following: starting
from an algebra of all local fields, including the
unphysical ones, one shows that after perturbative
quantization the algebra admits the BRST transfor-
mation as a graded nilpotent derivation. The

algebra of observables is then defined as the
cohomology of the BRST transformation. To solve
the problem of positivity, one has to show that the
algebra of observables, in contrast to the algebra of
all fields, has a nontrivial representation on a
Hilbert space. Finally, one can attack the infrared
problem by investigating the asymptotic behavior
of states. The latter problem is nontrivial even in
quantum electrodynamics (since an electron is
accompanied by a “cloud of soft photons”) and
may be related to confinement in quantum
chromodynamics.

The method of BRST quantization is by no means
restricted to gauge theories, but applies to general
constrained systems. In particular, massive vector
fields, where the masses are usually generated by the
Higgs mechanism, can alternatively be treated
directly by the BRST formalism, in close analogy
to the massless case (cf. the section on quantization
of free gauge fields).

Local Operator BRST Formalism

In AQFT, the principal object is the family of
operator algebras O — A(O) (where O runs, e.g.,
through all double cones in Minkowski space),
which fulfills the Haag-Kastler axioms (cf. Algebraic
Approach to Quantum Field Theory). To construct
these algebras, one considers the algebras F(O)
generated by all local fields including ghosts # and
anti-ghosts 7. Ghosts and anti-ghosts are scalar
fermionic fields. The algebra gets a Z, grading with
respect to even and odd ghost numbers, where ghosts
get ghost numbers +1 and anti-ghosts ghost number —1.
The BRST transformation s acts on these algebras as a
Zs-graded derivation with s> = 0, s(F(0)) C F(O),
and s(F*) = —(—1)%s(F)*, & denoting the ghost num-
ber of F.

The observables should be s-invariant and may be
identified if they differ by a field in the range of s.
Since the range Ay of s is an ideal in the kernel Ay
of s, the algebra of observables is defined as the
quotient

A= Ao/ Ago 1]

and the local algebras A(O) C A are the images of
Ao N F(O) under the quotient map Ay — A.

To prove that A admits a nontrivial representa-
tion by operators on a Hilbert space, one may use
the BRST operator formalism (Kugo and Ojima
1979, Diitsch and Fredenhagen 1999): one starts
from a representation of F on an inner-product

space (K,(-,-)) such that (F*¢,v) = (¢, Fy)
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and that s is implemented by an operator Q on K,
that is,

s(F) = [Q, F] 2]

with [-, -] denoting the graded commutator, such
that O is symmetric and nilpotent. One may then
construct the space of physical states as the
cohomology of Q, H:= Ko/Koo, where Ky is the
kernel and Ky the range of Q. The algebra of
observables now has a natural representation
on H:

m([A][o] := [Ad] [3]

(where A € Ay, ¢ € Ko, [A]:= A+ Ago, [¢]:= d+
Koo). The crucial question is whether the scalar
product on H inherited from K is positive definite.

In free quantum field theories (K, (-,-)) can be
chosen in such a way that the positivity can directly
be checked by identifying the physical degrees of
freedom (see next section). In interacting theories
(see the section on perturbative construction of
gauge theories), one may argue in terms of scattering
states that the free BRST operator on the asymptotic
fields coincides with the BRST operator of the
interacting theory. This argument, however, is
invalidated by infrared problems in massless gauge
theories. Instead, one may use a stability property of
the construction.

Namely, let F be the algebra of formal power
series with values in F, and let K be the vector space
of formal power series with values in K. K possesses
a natural inner product with values in the ring of
formal power series C[[)]], as well as a representa-
tion of F by operators. One also assumes that the
BRST transformation § is a formal power series
§=5,\'s, of operators s, on F and that the
BRST operator O is a formal power series
O=>, M0, of operators on K. The algebraic
construction can then be done in the same way as
before, yielding a representation 7 of the algebra
of observables A by endomorphisms of a C[[)]]
module H, which has an inner product with values
in C[[A]].

One now assumes that at A = 0 the inner product
is positive, in the sense that

(Positivity)

(1) (¢, ¢) >0 Vo e K with Qpp =0, and

(ii) Qoo =0 A (9, 9) =0 = ¢ € QoK [4]
Then the inner product on M is positive in the

sense that for all ¢ € 'H the inner product with itself,
(¢, ®), is of the form ¢*¢ with some power series

¢ e C[[A]], and & = 0 iff § = 0.

This result guarantees that, within perturbation
theory, the interacting theory satisfies positivity,
provided the unperturbed theory was positive and
BRST symmetry is preserved.

Quantization of Free Gauge Fields

The action of a classical free gauge field A,

So(A) = —%/dx F(x)F,(x)

1 “ * 0 A
-2 / dkA, (k) M (R)A, (k) 3]

(where F*:= OrAY — OVA" and MM (k):= k>gh” —
k*k") is unsuited for quantization because M*” is not
invertible: due to M*k,, = 0, it has an eigenvalue 0.
Therefore, the action is usually modified by adding a
Lorentz-invariant gauge-fixing term: M"” is replaced
by M* (k) + \k* k", where X\ € R\ {0} is an arbitrary
constant. The corresponding Euler-Lagrange equation
reads

A" — (1= X\)9"9,A” =0 6]

For simplicity, let us choose A = 1, which is referred
to as Feynman gauge. Then the algebra of the free
gauge field is the unital *-algebra generated by

elements  A“(f), f € D(R*), which fulfill the
relations:

f—A*(f) is linear [7]

AM(f) =0 (8]

A(f)" = AM(f) 9]

A1), A"(@)) =g [ drdyfID(x - )g) [10)

where D is the massless Pauli-Jordan distribution.

This algebra does not possess Hilbert space
representations which satisfy the microlocal spectrum
condition, a condition which in particular requires
the singularity of the two-point function to be of the
so-called Hadamard form. It possesses, instead,
representations on vector spaces with a nondegene-
rate sequilinear form, for example, the Fock space
over a one-particle space with scalar product

P
3 m(bu(p)wu(mb“:\m

Gupta and Bleuler characterized a subspace of the
Fock space on which the scalar product is semide-
finite; the space of physical states is then obtained

(6, 9) = (2m) [11]
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by dividing out the space of vectors with vanishing
norm.
After adding a mass term

mz
ud / dxA, (x) A" (x)

to the action [5], it seems to be no longer necessary
to add also a gauge-fixing term. The fields then
satisfy the Proca equation

O, F" +m*A” =0 [12]

which is equivalent to the equation ([J + m?)A* = 0
together with the constraint 9,A" = 0. The Cauchy
problem is well posed, and the fields can be
represented in a positive-norm Fock space with
only physical states (corresponding to the three
physical polarizations of A). The problem, however,
is that the corresponding propagator admits no
power-counting renormalizable perturbation series.
The latter problem can be circumvented in the
following way: for the algebra of the free quantum
field, one takes only the equation (O 4+ m?)A* = 0
into account (or, equivalently, one adds the gauge-
fixing term (1/2)(9,A*)* to the Lagrangian) and goes
over from the physical field A* to
o)

B' =AM + =2
m

[13]

where ¢ is a real scalar field, to the same mass m
where the sign of the commutator is reversed
(“bosonic ghost field” or “Stuckelberg field”).
The propagator of B* vyields a power-counting
renormalizable perturbation series; however, B* is
an unphysical field. One obtains four independent
components of B which satisfy the Klein—-Gordon
equation. The constraint 0 = J,A* = 0,B" +m¢ is
required for the expectation values in physical states
only. So, quantization in the case m >0 can be
treated in analogy with [8]-[10] by replacing A* by
B*, the wave operator by the Klein-Gordon operator
(00 + m?) in [8], and D by the corresponding massive
commutator distribution A,, in [10]. Again, the
algebra can be nontrivially represented on a space
with indefinite metric, but not on a Hilbert space.

One can now use the method of BRST quantiza-
tion in the massless as well as in the massive case.
One introduces a pair of fermionic scalar fields
(ghost fields) (u, ). u, i, and (for m > 0) ¢ fulfill the
Klein-Gordon equation to the same mass m > 0 as
the vector field B. The free BRST transformation
reads

so(B*) = i0"u,
so(u) =0,

so(¢) = imu

(@) = ~i(@,B" +mg) Y

(see, e.g., Scharf (2001)). It is implemented by the
free BRST charge

0o = / &0 (x°, ) [15]
x0=const.
where
O = (0,B" + m¢)du — 9,(0,B" + mp)u  [16]

is the free BRST current, which is conserved. (The
interpretation of the integral in [15] requires some
care.) Qo satisfies the assumptions of the (local)
operator BRST formalism, in particular it is nilpotent
and positive [4]. Distinguished representatives of the
equivalence classes [¢] € Ke Qp/Ra Qg are the states
built up only from the three spatial (two transversal
for m =0, respectively) polarizations of A.

Perturbative Renormalization

The starting point for a perturbative construction of
an interacting quantum field theory is Dyson’s
formula for the evolution operator in the interaction
picture. To avoid conflicts with Haag’s theorem on
the nonexistence of the interaction picture in
quantum field theory, one multiplies the interaction
Lagrangian £ with a test function g and studies the
local S-matrix,

S(gL) =1+ i;—n'/dxl oodx,g(or) - - g(xn)
n=1""

X T(L(x1) - L(x))

where T denotes a time-ordering prescription. In the
limit g —1 (adiabatic limit), S(g£) tends to the
scattering matrix. This limit, however, is plagued by
infrared divergences and does not always exist.
Interacting fields Fgr are obtained by the Bogoliubov
formula:

Fgﬁ(x)

[17]

5
= 5h(x) lh-0S(8£) "' S(gL + hF)
The algebraic properties of the interacting fields
within a region O depend only on the inter-
action within a slightly larger region (Brunetti and
Fredenhagen 2000), hence the net of algebras in the
sense of AQFT can be constructed in the adiabatic
limit without the infrared problems (this is called the
“algebraic adiabatic limit”).

The construction of the interacting theory is thus
reduced to a definition of time-ordered products of
fields. This is the program of causal perturbation
theory (CPT), which was developed by Epstein and
Glaser (1973) on the basis of previous work by
Stiickelberg and Petermann (1953) and Bogoliubov

[18]
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and Shirkov (1959). For simplicity, we describe
CPT only for a real scalar field. Let ¢ be a classical
real scalar field which is not restricted by any field
equation. Let P denote the algebra of polynomials
in ¢ and all its partial derivatives &?¢ with multi-
indices a € N§. The time-ordered products (T,),cn
are linear and symmetric maps T,:(P®
DR*)®" — L(D), where L(D) is the space of
operators on a dense invariant domain D in the
Fock space of the scalar free field. One often uses
the informal notation

Tn(glFl & - ®gnFn)
_ / dxy - dey Ty (Fy (1), . Fuo0n))

x g1(%x1) - gnul%n) [19]

where F; € P, g € D(R?).
The sequence (T),) is constructed by induction on
n, starting with the initial condition

T, (H aw(x)> = H Op(x) :

where the right-hand side is a Wick polynomial of
the free field ¢. In the inductive step the requirement
of causality plays the main role, that is, the
condition that

Tu(fi® - ®f) =Te(h @ @ fr)
X Ty k(fer1® - @)

[20]

[21]
if

(supp f1 U~~~ Usupp fr) i
N ((supp frr1 U=~ Usupp f) + Vo) =0

(where V_ is the closed backward light cone). This
condition expresses the composition law for evolu-
tion operators in a relativistically invariant and local
way. Causality determines T, as an operator-valued
distribution on R*” in terms of the inductively known
T;, I <n, outside of the total diagonal A, :=
{(x15...5 x,) | x1= -+ =x,}, that is, on test functions
from DR\ A,,).

Perturbative renormalization is now the exten-
sion of T, to the full test function space D(R*").
Generally, this extension is nonunique. In contrast
to other methods of renormalization, no diver-
gences appear, but the ambiguities correspond to
the finite renormalizations that persist after
removal of divergences by infinite counter terms.
The ambiguities can be reduced by (re-)normal-
ization conditions, which means that one requires
that certain properties which hold by induction on

D(R*\ A,) are maintained in the extension,
namely:

® (NO) a bound on the degree of singularity near
the total diagonal;

® (N1) Poincaré covariance;

e (N2) unitarity of the local S-matrix;

® (N3) a relation to the time-ordered products of
subpolynomials;

® (N4) the field equation for the interacting field
wec [18];

® (AWI) the “action Ward identity” (Stora 2002,
Ditsch and Fredenhagen 2003): 9*T(---Fj(x)---) =
T(---0"Fy(x)---). This condition can be understood
as the requirement that physics depends on the action
only, so total derivatives in the interaction Lagrangian
can be removed; and

e further symmetries, in particular in gauge
theories, Ward identities expressing BRST invar-
iance. A universal formulation of all symmetries
which can be derived from the field equation in
classical field theory is the “master Ward iden-
tity” (which presupposes (N3) and (N4)) (Boas
and Diutsch 2002, Diitsch and Fredenhagen
2003); see next section.

The problem of perturbative renormalization is to
construct a solution of all these normalization
conditions. Epstein and Glaser have constructed the
solutions of (NO)—(N3). Recently, the conditions
(N4) and (AWI) have been included. The master
Ward identity cannot always be fulfilled, the
obstructions being the famous “anomalies” of
perturbative quantum field theory.

Perturbative Construction of Gauge
Theories

In the case of a purely massive theory, the
adiabatic limit S = limg_.; S(g£) exists (Epstein
and Glaser 1976), and one may adopt a formalism
due to Kugo and Ojima (1979), who use the fact
that in these theories the BRST charge O can be
identified with the incoming (free) BRST charge
Qo [15]. For the scattering matrix S to be a well-
defined operator on the physical Hilbert space of
the free theory, H = Ke Qo/Ra Qyg, one then has to
require

lim[On. T(¢6) o, =0 2]
This is the motivation for introducing the condi-
tion of “perturbative gauge invariance” (Diitsch
et al. 1993, 1994); see Scharf (2001)): according
to this condition, there should exist a Lorentz
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vector L] € P associated with the interaction L,
such that

[Qo, Tnnﬁ( L(x4)]

D
=Y R (L)
=1

Ly(xp) - Lxn)) 23]

This is a somewhat stronger condition than [22] but
has the advantage that it can be formulated
independently of the adiabatic limit. The condition
[22] (or perturbative gauge invariance) can be
satisfied for tree diagrams (i.e., the corresponding
requirement in classical field theory can be fulfilled).
In the massive case, this is impossible without a
modification of the model; the inclusion of addi-
tional physical scalar fields (corresponding to Higgs
fields) yields a solution. It is gratifying that,
by making a polynomial ansatz for the interaction
L € P, perturbative gauge invariance [23] for tree
diagrams, renormalizability (i.e., the mass dimension
of £ is <4), and some obvious requirements (e.g.,
the Lorentz invariance) determine £ to a far extent.
In particular, the Lie-algebraic structure needs not to
be put in, as it can be derived in this way (Stora 1997,
unpublished). Including loop diagrams (i.e., quantum
effects), it has been proved that (NO)-(N2) and
perturbative gauge invariance can be fulfilled to all
orders for massless SU(N) Yang-Mills theories.

Unfortunately, in the massless case, it is unlikely that
the adiabatic limit exists and, hence, an S-matrix
formalism is problematic. One should better rely on
the construction of local observables in terms of
couplings with compact support. However, then the
selection of the observables [1] has to be done in terms
of the BRST transformation § of the interacting fields.

For the corresponding BRST charge, one makes
the ansatz

o= /d4x ]gL

where (b,) is a smooth version of the é-function
characterizing a Cauchy surface and ;;L is the
interacting BRST-current [18] (where
]ﬂ > 7/1 VA (f ”) € P) is a formal power series with
7/ given by [ 6]). (Note that there is a volume
divergence in this integral, which can be avoided by a
spatial compactification. This does not change the
abstract algebra F(©).) A crucial requirement is that
;g£ is conserved in a suitable sense. This condition is
essentially equivalent to perturbative gauge invariance
and hence its application to classical field theory
determines the interaction £ in the same way, and in
addition the deformation j° — 7. The latter also
gives the interacting BRST charge and transformation,

O and 3, by [24] and [2]. The so-obtained O is often

bu(x), L= L\

n>1

[24]

nilpotent in classical field theory (and hence this holds
a~lszo for §). However, in QFT conservation of j,, and
Q" =0 requires the validity of additional Ward
identities, beyond the condition of perturbative gauge
invariance [23]. All the necessary identities can be
derived from the master Ward identity

Tn+1(A7F1a"'7Fn)

== Tu(Fy,...,
k=1

where A = 6489 with a derivation §4. The master
Ward identity is closely related to the quantum
action principle which was formulated in the
formalism of generating functionals of Green’s
functions. In the latter framework, the anomalies
have been classified by cohomological methods. The
vanishing of anomalies of the BRST symmetry is a
selection criterion for physically acceptable models.

In the particular case of QED, the Ward identity

6AFka"'7Fn) [25]

AT (y)Fi(x1) -~ Fu(xn))
=iy 6(y—x)
=1
x T(Fi(x1) - (0F)(xj) -+ Fa(xn))  [26]

for the Dirac current j*:= iy, is sufficient for
the construction, where (0F):=i(r —s)F for
F = ¢/Y*By---B; (By,...,B; are nonspinorial fields)
and Fi,...,F, run through all subpolynomials of
L =j"A,, (NO)-(N4) and [26] can be fulfilled to all
orders (Diitsch and Fredenhagen, 1999).

See also: Algebraic Approach to Quantum Field Theory;
Axiomatic Quantum Field Theory; Batalin—Vilkovisky
Quantization; BRST Quantization; Constrained Systems;
Indefinite Metric; Perturbation Theory and its Techniques;
Quantum Chromodynamics; Quantum Field Theory:

A Brief Introduction; Quantum Fields with Indefinite
Metric: Non-Trivial Models; Renormalization: General
Theory; Renormalization: Statistical Mechanics and
Condensed Matter; Standard Model of Particle Physics.
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Introduction

When an external parameter such as the tempera-
ture T is changed, physical systems in a homo-
geneous state often become unstable and tend to
an ordered phase with broken symmetry. The
growth of new order takes place with coarsening
of domains or defect structures on mesoscopic
spatial scales much longer than the microscopic
molecular scale. Such ordering processes are
ubiquitously observed in many systems such as
ferromagnetic (spin) systems, solid alloys, and
fluids. Historically, structural ordering and phase
separation in solid alloys have been one of the
central problems in metallurgy (Cahn 1961). These
are highly nonlinear and far-from-equilibrium
processes and have been studied as challenging
subjects in condensed matter physics, polymer
science, and metallurgy (Gunton et al. 1983,
Binder 1991, Bray 1994, Onuki 2002). Here a
short review on phase ordering is given on the
basis of prototype mathematical models, which
can be a starting point to understand the real
complex problems.
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Phase Ordering in Nonconserved
Systems

Let us consider phase ordering in a system with a
scalar spacetime-dependent variable (r,t). If its
space integral is not conserved in time, it is called
the nonconserved order parameter, representing
magnetization, electric polarization, etc. After
appropriate scaling of time ¢, space r, and 1), the
simplest dynamic equation reads

%w:v%-w-w%hw 1]

The coefficient 7 is related to the temperature by
7=A(T — T.), where A is a constant and T. is the
critical temperature. The constant » is also an
externally controllable parameter, proportional to
the applied magnetic field for the ferromagnetic
case. The last term is the Markovian Gaussian
random noise needed when eqn [1] is treated
as a Langevin (stochastic differential) equation.
In physics its stochastic property is usually
expressed as

O(r,1)0(r', 1)) = 2e6(r — 7)6(t — 1) 2]

where ¢ represents the strength of the noise
(proportional to the temperature before the scaling).
In the presence of 6, the variable v is a random
variable, whose probability distribution P({1}, )
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obeys the Fokker-Planck equation. The equilibrium
(steady) distribution is given by

Peg{th} = const. exp(~F{} /) 3]

where
F:/dr[gwu}wu%wwz—hw 4

is the so-called Ginzburg-Landau free energy. Using
F we rewrite eqn [1] in a standard form of the
Langevin equation,

40 5]

In equilibrium 1 consists of the average 1, and the
deviation 61, where the latter is a Gaussian
fluctuation in the limit of small . If 7> 0 and
h=0, we obtain ,=0. If 7 <0 and h=0, there
are two minima t, = =+|7|"/*. These two states
can coexist in equilibrium with a planar interface
separating them at » =0. If its normal is along the x-
axis, the interface solution is of the form

W(x) = |7|'"* tanh(|7]"2x/v2) (6]

1/2

which tends to £|7| "/~ as x & co and satisfies

8F/8 = (1 + 9 ) — d*p/dx* = 0 7]

It is well known that the fluctuations of 1 are
increasingly enhanced near the critical point. The
renormalization group theory shows how the equili-
brium distribution Peq{?} in eqn [3] depends on the
upper cutoff wave number A of 1), where we suppose
that v consists of the Fourier components 1, with
k < A (Onuki 2002). In our phase-ordering problem
the shortest relevant spatial scale is the interface
width of the order of the thermal correlation length ¢
at the final temperature. Therefore, near criticality,
we may assume that the thermal fluctuations with
wave numbers larger than ¢! have been eliminated
in the model (or A ~ ¢! at the starting point).

Domain Growth

Thermodynamic instability occurs when 7 is
changed from a positive value 71 to a negative
value 7t at t=0. We here assume h=0. We set
7t = —1 using the scaling. At long wavelengths k <
1, small plane wave fluctuations with wave vector k
grow exponentially as

Yr(t) ~ exp[(1 — &%)1] 8]

with the growth rate largest at £ =0. This suggests
that the nonlinear term in eqn [1] becomes crucial
after a transient time. Numerically obtained snap-
shots of the subsequent )(r, t) are shown in Figure 1

Figure 1 Time evolution of ¢ in model [1] in 2D with system
length = 128. The numbers are the times after quenching. Noise
is added, but is not essential for large patterns or in the late
stage. Reproduced with permission from Onuki A (2002) Phase
Transition Dynamics. Cambridge, UK: Cambridge University
Press.

in two dimensions (2D), where we can see the
coarsening of the patterns. The characteristic domain
size ((t) grows algebraically as

() ~ 1 ]

where a=1/2 is known for the model [1]. Scattering
experiments detect the time-dependent correlation

g(r,t) = (6¢(r + 1o, t)0(ro, 1)) [10]

S(k, 1) = / drg(r, t)e*" 1]

where S(k,t) is called the structure factor. We
assume the translational invariance and the spatial
isotropy after the thermal average (---). If 7, > 1,
the quartic term in F is negligible, leading to the
initial structure factor

S(k,0) = ¢/(r; + k?) [12]

which is produced by the thermal fluctuations.
However, when the domain size ¢(¢) much exceeds
the microscopic length (lattice constant), the follow-
ing scaling behavior emerges:

8(r, 1) =G(r/e(t)) [13]

S(k,t)=0(t)* O((t)k) [14]

where d is the space dimensionality and G(x) and O(x)
are the scaling functions of order unity for x ~ 1. The
correlation on the scale of #(¢) in eqn [13] arises
from large-scale domain structures, while eqn [14]
is simply its Fourier transformation. The maxi-
mum of the structure factor grows as £(t)%. When
e < 1, however, there can be a well-defined initial
stage in which S(k,#) grows exponentially at long
wavelengths.
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We may explain the roles of the terms on the
right-hand side of eqn [1] in phase ordering in a
simple manner.

1. The linear term —T7v triggers instability for 7 < 0.

2. The nonlinear term —° gives rise to saturation
of 9 into +1. To see this, we neglect V?1) and 6
to have 0/ot=(1—y*) for 7=—1. This
equation is solved to give

=go/\JU3+ (1 - e [15]

where 19 =1(0) is the initial value. Thus, 9 —1
for 99 > 0 and ¥ — —1 for 1y < 0 as t — oo.

3. The gradient term limits the instability only in
the long wavelength region k < 1 in the initial
stage (see eqn [8]) and creates the interfaces in
the late stage (see eqn [7]).

4. The noise term 6 is relevant only in the early
stage where 1) is still on the order of the initial
thermal fluctuations. The range of the early stage
is of order 1 for € >1, but weakly grows as
In(1/e) for e« 1. The noise term can be
neglected once the fluctuations much exceed the
thermal level.

5. If b is a small positive number, it favors growth
of regions with 1 == 1.

Interface Dynamics

At long times # > 1 domains with typical size £(z)
are separated by sharp interfaces and the thermal
noise is negligible. Allowing the presence of a small
positive b, we may approximate the free energy F as

F=0S(t) — 2hV,.(t) + const. [16]

where o is a constant (surface tension), S(¢) is the
surface area, and V,(¢) is the volume of the
regions with ¢ 2 1. In this stage the interface velocity
Vint = Uine - 7 is given by the Allen—-Cahn formula
(Allen and Cahn 1979):

—K+ (2/o)b 17]

The normal unit vector # is from a region with ¢ 22 1
to a region with ¢ = —1. The K is the sum of the
principal curvatures 1/Ry + 1/R; in 3D. This equa-
tion can be derived from eqn [1]. If the interface
position #, moves to r, + &¢n infinitesimally, the
surface area changes by 6S = [daKé¢, where [da---
denotes the surface integral. Therefore, F in eqn [16]
changes in time as

Vint =

- / da(ok — 2h)vy < 0 [18]

which is non-negative-definite owing to eqn [17].
Furthermore, we may draw three results from eqn [17].

1. If we set vi ~ £(2)/t and K ~ 1/4(t)
a=1/2 in the growth law [9].

2. In phase ordering under very small positive b,
the balance 1/4(t) ~ bh/o yields the crossover
time ¢, ~ h2. For t < t, the effect of b is small,
while for t > t;, the region with 1 =2 1 becomes

, we obtain

predominant.
3. A spherical droplet with ¢ 2 1 evolves as
OR 2 2h
i i 19
o R o 19
from which the critical radius is determined as
R.=a/h [20]

A droplet with R > R¢(R < R.) grows (shrinks).

We mention a statistical theory of interface dynamics
at h=0 by Ohta (1982). There, a smooth subsidiary
field u(r,t) is introduced to represent surfaces by
u = const. The differential geometry is much simplified
in terms of such a field. The two-phase boundaries are
represented by = 0. If all the surfaces follow vy, = — K
in eqn [17] in the whole space, # obeys

—u = [v*- ann,v V| u 21]

where V;=0/0x; and n; =Vu/|Vu|. This equation
becomes a linear diffusion equation if #;#;V,;V; is
replaced by d16;V2. Then u can be expressed in
terms of its initial value and the correlation function
of (r,e)(=u(r,t)/|u(r,t)] in the late stage) is
calculated in the form of eqn [13] with

Glx) = %sirr1 {exp <_ 8(1—11/41)’62)] 2]

which excellently agrees with simulations.

Spinodal Decomposition in Conserved
Systems

The order parameter 1) can be a conserved variable
such as the density or composition in fluids or
alloys. With the same F in eqn [4], a simple dynamic
model in such cases reads
OF
—p=V>— -V~ 23
w 50 j 23]

Here j® is the random current characterized by

(R 05 (1)) =228,08(r = ¥)s(t — ) [24]

which ensures the equilibrium distribution [3] of .
However, the noise jX is negligible in late-stage
phase separation as in the nonconserved case. Note
that 4 in the conserved case is the chemical potential
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conjugate to 1 and, if it is homogeneous, it vanishes
in the dynamic equation [23]. In experiments the
average order parameter

M= () = / dri(r)/V 25]

is used as a control parameter instead of b, where
the integral is within the system with volume V. If
there is no flux from outside, M is constant in time.
Here the instability occurs below the so-called
spinodal M? < 1/3(M? < |7]/3 for general 7 < 0).
In fact, small fluctuations with wave vector k grow
exponentially as

k(1) ~ explk?(1 - 3M? — k)1] [26]

right after the quenching as in eqn [8]. The growth rate
is largest at an intermediate wave number k = k,,, with

ko = [(1 - 3M?)/2]'/? [27]

This behavior and the exponential growth of the
structure factor have been observed in polymer mixtures
where the parameter ¢ in eqn [3] or [12] is expected to be
small (Onuki 2002). In late-stage coarsening the peak
position of S(k, #) decreases in time as

Eo(t) ~ 270/ £() 28]

in terms of the domain size /(¢). The growth
exponent in eqn [9] is given by 1/3 for the simple
model [23] (see eqn [33] below).

Figure 2 shows the patterns after quenching in 2D.
For M=0 the two phases are symmetric and the
patterns are bicontinuous, while for M # 0 the

M=0
¥ ‘a‘.

21\

100 400

(b)

Figure 2 Time evolution of ¢ in model [23] in 2D with system
length =128 without thermal noise: (a) M=0 and (b) M=0.1.
The numbers are the times after quenching. Reproduced with
permission from Onuki A (2002) Phase Transition Dynamics.
Cambridge, UK: Cambridge University Press.

minority phase eventually appears as droplets in the
percolating region of the majority phase.

Interface Dynamics

Interface dynamics in the conserved case is much
more complicated than in the nonconserved case,
because the coarsening can proceed only through
diffusion. Long-distance correlations arise among
the domains and the interface velocity cannot be
written in terms of the local quantities like the
curvature. As a simple example, we give the counter-
part of eqn [19]. In 3D a spherical droplet with ¢ =2 1
appears in a nearly homogeneous matrix with =M
far from the droplet. The droplet radius R is then
governed by (Lifshitz and Slyozov 1961)

0 A 2d
ER_D(E_F) [29]
where A= (M + 1)/2 is called the supersaturation,
while D and dj are constants (equal to 2 and o/8,
respectively, after the scaling). The critical radius is
written as

Re = 2dy/A 30]

The general definition of the supersaturation is
A=(M=yl@) /(s -u@) 31

Here the equilibrium values of ¢ are written as ¢!
and ¥?) and M is supposed to be slightly different
from 2.

Lifshitz and Slyozov (1961) analyzed domain coar-
sening in binary AB alloys when the volume fraction g
of the A-rich domains is small. They noticed that the
supersaturation A around each domain decreases in
time with coarsening. That is, the A component atoms
in the B-rich matrix are slowly absorbed onto the
growing A-rich domains, while a certain fraction of the
A-rich domains disappear. Thus, g(#) and A(z) both
depend on time, but satisfy the conservation law

)+ A =A0) = (M+1)/2  [32]

With this overall constraint, they found the
asymptotic late-stage behavior

0t) ~ A@) " ~ 13 33]

where /() is the average droplet radius. Notice that
this behavior is consistent with the droplet equation
[29], where each term is of order R/t ~ t2/3.

Nucleation

In metastable states the free energy is at a local
minimum but not at the true minimum. Such states
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are stable for infinitesimal fluctuations, but rare
spatially localized fluctuations, called critical nuclei,
can continue to grow, leading to macroscopic phase
ordering (Onuki 2002, Debenedetti 1996). The birth
of a critical droplet is governed by the Boltzmann
factor exp (—F./kgT) at finite temperatures, where
F. is the free energy needed to create a critical
droplet and kpT is the thermal energy with kg being
the Boltzmann constant. In this section we explicitly
write kg T, but we may scale 1) and space such that
7= —1 at the final temperature.

Droplet Free Energy and Experiments

In the nonconserved case we prepare a spin-down state
with 1) = —1 in the time region ¢ < 0 and then apply a
small positive field » at t=0. For ¢ > 0 a spin-up
droplet with radius R requires a free energy change
8

F(R) = 4moR* — {hl@ 34]
The first term is the surface free energy and the
second term is the bulk decrease due to h. The
critical radius R, in eqn [20] gives the maximum of
F(R) given by

_471'

F.= ?aRf [35]
In fact, F(R)=0F(R)/OR is written as
F'(R)=8no(R — R?/R.) [36]

In conserved systems such as fluids or alloys, we
lower the temperature slightly below the coexistence
curve with the average order parameter M held fixed.
We again obtain the droplet free energy [34], but

b = (0/2do)A 37]

in terms of the (initial) supersaturation A= A(0).
Let the equilibrium values 9! and ¥2 in the two
phases be written as +A(T. — T)” with A and 3
being constants (5= 1/3 as T — T¢). For each given
M, we define the coexistence temperature T.. by
M:wg‘) = —A(T. — T)’. In nucleation experi-
ments the final temperature T is slightly below T
and 8T =T — T is a positive temperature incre-
ment. For small 6T we find

B

A =Z6T/(T. - Tey) 38]

Droplet Size Distribution and Nucleation Rate

In a homogeneous metastable matrix, droplets of the
new phase appear as rare thermal fluctuations. We
describe this process by adding a thermal noise term
to the droplet equation [19] or [29]. The droplet size

distribution 7(R,t) then obeys the Fokker—Planck
equation
0 0

8 F(R)
atnzaRL(R)[aR+ kBT}n 39]

Here n(R,t)dR denotes the droplet number density
in the range [R,R + dR]. We determine the kinetic
coefficient £(R) such that

v(R) = —L(R)F'(R)/ksT [40]

is the right-hand side of eqn [19] or [29]. It is
equal to OR/O0t when the thermal noise is
neglected. Thus, £(R) o« R or R for the non-
conserved or conserved case. The second deriva-
tive (3/OR)L(R)(0/OR) in eqn [39] stems from the
thermal noise and is negligible for R — R.>1 in
3D (Onuki 2002). Hence, for R—R.>1, the
droplets follow the deterministic equation [19] or
[29] and n obeys
= (R} 1]
In Figure 3, we plot the solution of eqn [39] for
the conserved case with F./kgT=17.4 (Onuki
2002). The time is measured in units of 1/T,
which is the timescale of a critical droplet defined by

I'e= (3U(R)/3R)R:RC (42]

We notice I'c o< R from eqn [29] so I, is small.
The initial distribution is given by

n(R,0) =n exp(—47oR*/kpT) [43]

-4 IOg1O n(th) 7

RIR,

Figure 3 Time evolution of the droplet size distribution n(R, t)
on a semilogarithmic scale as a solution of egn [39] in the 3D
conserved case. The first 11 curves correspond to the times at
I'ct=0,1,... and 10. The last four curves are those at
T'ct=15,20,25, and 30. Reproduced with permission from
Onuki A (2002) Phase Transition Dynamics. Cambridge, UK:
Cambridge University Press.
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with 7¢ being a constant number density. This form
has been observed in computer simulations as the
droplet size distribution on the coexistence curve
(h=0). Figure 3 indicates that n(R,t) tends to a
steady solution 75(R) which satisfies

e 44

where [ is a constant. Imposing the condition 7g(R) — 0
as R — oo, we integrate the above equation as

e 1 [RR)-F®R)
nS(R)—I/R dR1£(R1)exp[ T } [45]

For R—R.>1 we may replace F(R;)— F(R)
by F(R)(Ry — R) in the integrand of eqn [45] to
obtain

ns(R) = I/v(R) 46)
which also follows from eqn [41]. Thus
ns(R)dR=1I1d¢ (dR=v(R)d?) [47]

This means that I is the nucleation rate of droplets
with radii larger than R, emerging per unit volume
and per unit time. Furthermore, as R—0, we
require 75(R) — 19 =const. in eqn [43] so that

x 1 F(Rl)}
ng=1 dR ex 48
o=t [ R gggen |
where  the integrand becomes maximum
around R.. Using the expansion F(R)=F,+

F"(R.) (R—RC)2/2+~--, we obtain the famous
formula for the nucleation rate

IZIO exp(—FC/kBT) [49]

=1y exp(—Coy/A?) [50]

where the coefficient I is of order 79I'.. The second
line holds in the 3D conserved case. Here, Cy ~ 1073
typically and Iy is a very large number in units of
cm™ 571, say, 103°. Then the exponential factor in I
changes abruptly from a very small to a very large
number with only a slight increase of A at small
A < 1. For example, if Cy/A* =50, I is increased
by exp (1006A/A) with a small increase of A to
A+ 8A. This factor can be of order 10° even for
6A/A=0.05. Unless very close to criticality, simple
metastable fluids become opaque suddenly with
increasing A or 8T at a rather definite cloud point. In

near-critical fluids, however, I itself becomes small
(oc£7°) such that the cloud point considerably depends
on the experimental timescale (observation time).

Remarks

The order parameter can be a scalar, a vector as in
the Heisenberg spin system, a tensor as in liquid
crystals, and a complex number as in superfluids
and superconductors. In phase ordering a crucial
role is played by topological singularities like
interfaces in the scalar case and vortices in the
complex number case. Furthermore, a rich variety of
phase transition dynamics can be explained if the
order parameter is coupled to other relevant
variables in the free energy and/or in the dynamic
equations. We mention couplings to velocity field in
fluids, electrostatic field in charged systems, and
elastic field in solids. Phase ordering can also be
influenced profoundly by external fields such as
electric field or shear flow.

See also: Reflection Positivity and Phase Transitions;
Renormalization: Statistical Mechanics and Condensed
Matter; Statistical Mechanics of Interfaces; Topological
Defects and Their Homotopy Classification.
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Introduction

Many aspects of our everyday life, from weather to
boiling water for a cup of coffee, involve heat
exchanges and variations of pressure and, as a
result, a phase transition. The general theory behind
these phenomena is thermodynamics, which studies
fluids and macroscopic bodies under these and more
general transformations.

In the simple case of a one-component substance,
the behavior under changes of temperature T and
pressure P is described, according to the Gibbs
phase rule, by a phase diagram such as the one in
Figure 1. The curves in the (T, P) plane, distinguish
regions where the substance is in its solid, liquid,
and gas phases. Thus, in an experiment where we
vary the pressure and temperature moving along a
line which crosses a transition curve, we observe an
abrupt and dramatic change at the crossing, when
the system changes phase. As already stated, every-
day life is an active source of examples of such
phenomena.

The picture is “far from innocent”, it states that air,
liquid, and solid are not different elements of nature, as
for long believed, but just different aspects of the same
thing: substances are able to adapt to different external
conditions in dramatically different ways. What
properties of intermolecular forces are responsible for
such astonishing behavior? The question has been
extensively studied and it is the argument of the
present article, where it will be discussed in the
framework of statistical mechanics for continuous
systems. Before entering into the matter, let us mention
two basic motivations.

T
Figure 1 Phase diagram of a one-component substance.

As always, there is a “fundamental theory”
aspect; in the specific case it is the attempt for an
atomistic theory able to describe also macroscopic
phenomena, thus ranging from the angstrom to the
kilometer scales. From an engineering point of view,
the target is, for instance, to understand why and
when a substance is an insulator, or a conductor or,
maybe, a superconductor, and, more importantly,
how should we change its microscopic interactions
to produce such effects: this opens the way to
technologies which are indeed enormously affecting
our life.

Phase Transitions and Statistical
Mechanics

The modern theory of statistical mechanics is based
upon the Gibbs hypothesis. In a classical (i.e., not
quantum) framework, the macroscopic states are
described by probability measures on a particle
configuration phase space. The equilibrium states
are then selected by the Gibbs prescription, which
requires that the probability of observing a config-
uration which has energy E should be proportional
to eF, where B=1/kT, k is the Boltzmann
constant, and T the absolute temperature. These
are the “Gibbs measures” and the purpose of
statistical mechanics is to study their properties. A
prerequisite for the success of the theory is compat-
ibility with the principles of thermodynamics, the
theory should then be able to explain the origin of
the various phase diagrams and in particular to
determine the circumstances under which phase
transitions appear.

The theory, commonly called DLR, after
Dobrushin, Lanford, and Ruelle, who, in the
1960s, contributed greatly to its foundations, has
solid mathematical basis. Its main success is a
rigorous proof of consistency with thermodynamics,
which is derived under the only assumption that
surface effects are negligible, a condition which is
mathematically achieved by studying the system in a
“thermodynamic limit,” where the region containing
the system invades the whole space.

In the thermodynamic limit, the equilibrium states
can no longer be defined by the Gibbs prescription,
because the energy of configurations in the whole
space, being extensive, is typically infinite. The
problem has been solved by first proving conver-
gence of the finite-volume Gibbs measures in the
thermodynamic limit. After defining the limit states,
called “DLR states,” as the equilibrium states of the
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infinite systems, it is proved that the DLR states can
be directly characterized (i.e., without using limit
procedures) as the solutions of a set of equations,
the “DLR equations,” which generalize the finite-
volume Gibbs prescription.

In terms of DLR states, the mathematical meaning
of phase transitions becomes very clear and sharp.
The starting point is the proof that the physical
property that intensive variables in a pure phase
have negligible fluctuations is verified by all the
DLR measures which are in a special class, thus
selected by this property, and which are therefore
interpreted as “pure phases.” All the other DLR
measures are proved to be mixtures, that is, general
convex combinations, of the pure DLR states. Thus,
in the DLR theory, the system is in a single phase
when there is only one DLR state, at the given
values of the thermodynamic parameters (e.g.,
temperature and chemical potential), while the
system is at a phase transition if there are several
distinct DLR states.

While the theory beautifully clarifies the meaning
of phase transitions, it does not say whether the
phenomenon really occurs! This is maybe the main
open problem in equilibrium statistical mechanics. A
general proof of existence of phase diagrams is
needed, which should at least capture the basic
property behind the Gibbs phase rule, namely that in
most of the space (of thermodynamic parameters)
there is a single phase, with rare exceptions where
several phases coexist. A more refined result should
then indicate that coexistence occurs only on regular
surfaces of positive codimension.

There is, however, a general result of existence of
the gaseous phase, with a proof of uniqueness of
DLR measures when temperature is large and
density low. Coexistence of phases is much less
understood at a general level, but results for
particular classes of models exist, for instance, in
lattice systems at low temperatures. The prototype is
the ferromagnetic Ising model in two or more
dimensions, where indeed the full diagram has
been determined, see Figure 2. The transition curve

T, T

Figure 2 Phase diagram of the Ising ferromagnet.

is the segment {0 < T < T.,h=0}, in the (T,h)
plane, b being the magnetic field. In the upper-half
plane, there is a single phase with positive magne-
tization, in the lower one with a negative value; at
h =0, positive and negative magnetization states can
coexist, if the temperature is lower than the critical
value T.. Correspondingly, there are, simulta-
neously, a positive and a distinctly negative DLR
state, which describe the two phases.

An analogous result is missing for systems of
particles in the continuum, but there has been recent
progress on the analysis of the liquid-vapor branch
of the phase diagram, and the issue will be the main
focus of this article.

Sensitive Dependence on Boundary
Conditions

Phase transitions describe exceptional regimes where
the system is in a critical state; this is why they are
so interesting and difficult to study. As in chaotic
systems, criticality corresponds to a “butterfly
effect,” which, in a statistical-mechanics setting
means changing far-away boundary conditions.
Such changes affect the neighbors, which in turn
influence their neighbors, and so on. In general, the
effect decays with the distance but, at phase
transition, it provokes an avalanche which propa-
gates throughout the system reaching all its points.
Its occurrence is not at all obvious, if we remember
the stochastic nature of the theory. The domino
effect described above can in fact, at each step, be
subverted by stochastic fluctuations. The latter, in
the end, may completely hide the effect of changing
the boundary conditions. This is an instance of a
competition between energy and entropy which is
the ruling phenomenon behind phase transitions.
This intuitive picture also explains the relevance
of space dimensionality. In a many-dimensional
space, the influence of the boundary conditions has
clearly many more ways to percolate, in contrast to
the one-dimensional case, where in fact there is a
general result on the uniqueness of DLR measures
and therefore absence of phase transitions, for short-
range interactions. For pair potentials, “short”
means that the interaction energy between two
molecules, respectively at r and 7, decays as
|r — 7|, > 2. There are results on the converse,
namely on the presence of phase transitions when
the above condition is not satisfied, mainly for
lattice systems, but with partial extensions also to
continuous systems. One-dimensional and long-
range cases are not the main focus of this article,
and the issue will not be discussed further here.
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Ising Model

In order to make the previous ideas quantitative, let
us first describe the simple case of the Ising model.
Ising spin configurations are collections {o(x), x €
7% of o(x) € 1) magnetic moments called spins.
In the nearest-neighbor case, the interaction between
two spins is —Jo(x)a(y), ] > 0, if x and y are nearest
neighbors on Z¢, or is vanishing otherwise. There
are, therefore, two ground states, one with all spins
equal to +1 and the other one with all spins equal to
—1. Since the Gibbs probability of higher energies
vanishes as the temperature goes to zero, these are
interpreted as the equilibrium states at temperature
T=0.

If T >0, configurations with larger energy will
appear, even though depressed by the Gibbs factor,
but their occurrence is limited if T is small. In fact,
in the ferromagnetic Ising model at zero magnetic
field, dimensions d > 2, and low enough tempera-
ture, it has been proved that there are two distinct
DLR measures, one called positive and the other
negative. The typical configurations in the positive
measure are mainly made by positive spins and, in
such an “ocean of positive spins” there are rare and
small islands of negative spins. The same situation,
but with the positive and negative spins inter-
changed, occurs in the negative DLR state.

The selection of one of these two states can be
made by choosing the positive or the negative
boundary conditions, which shows how a surface
effect, namely putting the boundary spins equal to 1
or —1, has a volume effect, as most of the spins in the
system follow the value indicated by the boundary
values. Again, this is more and more striking as we
note that each spin is random, yet a strong,
cooperative effect takes over and controls the system.

The original proof due to Peierls exploits the spin-
flip symmetry of the Ising interaction, but it has
subsequently been extended to a wider class of
systems on the lattice, in the general framework of
the “Pirogov—Sinai theory.” This theory studies the
low-temperature perturbations of ground states and
it applies to many lattice systems, proving the
existence of a phase transition and determining the
structure of the phase diagram in the low-
temperature region. The theory, however, does not
cover continuous systems, where the low-temperature
regime is essentially not understood, with the notable
exception of the Widom and Rowlinson model.

Two Competing Species in the Continuum

The simplest version of the Widom and Rowlinson
model has two types of particles, red and black,

which are otherwise identical. Particles are massive
points and the only interaction is a hard-core
interaction among different colors, namely a red and
a black particle cannot be closer than 2Ry, Rg > 0
being the hard-core radius.

The order parameter for the phase transition is the
particle color. For large values of the chemical
potential, and thus large densities, there are two
states, one essentially red, the other black, while, if
the density is low, the colors “are not separated”
and there is a unique state. The proof of the
statement starts by dividing the particles of a
configuration into clusters, each cluster made by a
maximal connected component, where two particles
are called connected when their mutual distance is
<2Ry. Then, in each cluster, all particles have the
same color (because of the hard-core exclusion
between black and red), and the color is either
black or red, with equal probability.

The question of phase transition is then related to
cluster percolation, namely the existence of clusters
which extend to infinity. If this occurs, then the influence
of fixing the color of a particle may propagate infinitely
far away, hence the characteristic “sensitive dependence
phenomenon” of phase transitions. Percolation and
hence phase transitions have been proved to exist in the
positive and negative states, if the density is large and,
respectively, small. The above argument is a more recent
version of the original proof by Ruelle, which goes back
to the 1970s.

The key element for the appearance of the phase
transition is the competition between two different
components, so that the analysis is not useful in
explaining the mechanisms for coexistence in the
case of identical particles, which are considered in
the following.

Coarse Graining Transformations

The Peierls argument in Ising systems does not seem
to extend to the continuum, certainly not in a trivial
way. The ground states, in fact, will not be as simple
as the constant configurations of a lattice system;
they will instead be periodic or quasiperiodic config-
urations with a complicated dependence on the
particle interactions. The typical fluctuations when
we raise the temperature above zero have a much
richer and complex structure and are correspondingly
more difficult to control. Closeness to the ground
states at nonzero temperature, as described in the
Ising model, would prove the spontaneous breaking
of the Euclidean symmetries and the existence of a
crystalline phase. The question is, of course, of great
interest, but it looks far beyond the reach of our
present mathematical techniques.
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The simpler Ising picture should instead reappear
at the liquid-vapor coexistence line. Looking at the
fluid on a proper spatial scale, we should in fact see
a density that is essentially constant, except for
small and rare fluctuations. Its value will differ in
the liquid and in the gaseous states, pgis < piiq-
Therefore, density is an order parameter for the
transition and plays the role of the spin magnetiza-
tion in the Ising picture.

There are general mathematical techniques devel-
oped to translate these ideas into proofs, they involve
“coarse graining,” “block spin transformations,” and
“renormalization group” procedures. The starting
point is to ideally divide the space into cells. Their size
should be chosen to be much larger than the typical
microscopic distance between molecules, to depress
fluctuations of the particle density in a cell. To study
the probability distribution of the latter, we integrate
out all the other degrees of freedom. After such a
coarse graining, we are left with a system of spins on a
lattice, the lattice sites labeling the cells (also called
blocks) and each spin (also called block spin) giving
the value of the density of particles in the correspond-
ing cell. Translated into the language of block spins,
the previous physical analysis of the state of the fluid
suggests that most probably, in each block the density
is approximately equal to either pjiq or pg.s, and the
same in different blocks, except in the case of small
and rare fluctuations. If we represent the probability
distribution of the block spins in terms of a Gibbs
measure (as always possible if the system is in a
bounded region), the previous picture is compatible
with a new Hamiltonian with a single spin (one-body)
potential which favors the two values pjiq and pg,s and
an attractive interaction between spins which sup-
presses changes from one to the other. A new effective
low temperature should finally dampen the
fluctuations.

Thus, after coarse graining, the system should be in
the same universality class as of the low-temperature
Ising model, and we may hope, in this way, to extend
to the liquid-vapor branch of the phase diagram the
Pirogov-Sinai theory of low-temperature lattice
systems. In particular, as in the Ising model, we will
then be able to select the liquid or the vapor phases by
the introduction of suitable boundary conditions.

The conditional tense arises because the computation
of the coarse graining transformation is in general very
difficult, if not impossible, to carry out, but there is a
class of systems where it has been accomplished. These
are systems of identical point particles in R?, d > 2,
which interact with “special” two- and four-body
potentials, having finite range and which can be chosen
to be rotation and translation invariant; their specific
form will be described later. For such systems, the above

coarse graining picture works and it has been proved
that in a “small” region of the temperature—chemical
potential plane, there is a part of the curve where two
distinct phases coexist, while elsewhere in the neighbor-
hood, the phase is unique.

The ideas behind the choice of the Hamiltonian
go back to van der Waals, and the Ginzburg—
Landau theory, which are milestones in the theory
of phase transitions, while the mathematics of
variational problems also enters here in an impor-
tant way. These are briefly discussed in the next
sections.

The van der Waals Liquid-Vapor
Transition

Let us then do a step backwards and recall the
van der Waals theory of the liquid-vapor transition.
As typical intermolecular forces have a strong
repulsive core and a rather long attractive tail, in a
continuum, mesoscopic approximation of the system
will be described by a free-energy functional of the

type

—3 (r,")p()p()drdr 1]

where p={p(r),7 € A} is the particles density and A
the region where the system is confined, which, for
simplicity, is taken here as a torus in RY, consisting
of a cube with periodic boundary conditions. The
term —J(r, 7 )p(r)p(7'), J(r,7') > 0, is the energy due to
the attractive tail of the interaction, which is
periodic in A; fg’/\(p) = {9,0(/’) — Ap is the free-energy
density due to the short, repulsive part of the
interaction, A being the chemical potential.

As noted later, [1] can be rigorously derived by a
coarse graining transformation; it will be used to
build a bridge between the van der Waals theory and
the previous block spin analysis of the liquid-vapor
phase transition. Let us take for the moment [1] as a
primitive notion. By invoking the second principle of
thermodynamics, the equilibrium states can be
found by minimizing the free-energy functional.
Supposing | to be translation invariant, that is,
Jr,/)=](r+a, ¥ +a),r,v,ac RY, and calling
a= []J(r,7)dr the intensity of J, we can rewrite
F(p) as

O RN

t5 [ Jep(r) = p()Pdrdr 2]

4 AxA
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This shows that the minimizer must have p(r)
constant (so that the second integral is minimized)
and equal to any value which minimizes the function
{fg’/\(p) — ap?/2}. By thermodynamic principles, the
free energy f3 ,(p) is convex in p, but, if o is large
enough, the above expression is not convex and, by
properly choosing the value of \, the minimizers are
no longer unique, hence the van der Waals phase
transition.

Kac Potentials

The analogy between the above analysis of [2] and
the previous heuristic study of the fluid based on
coarse graining is striking. As customary in con-
tinuum theory, each mesoscopic point r should be
regarded as representative of a cell containing many
molecules. Then the functional F(p) can be inter-
preted as the effective Hamiltonian after coarse
graining. The role of the one-body term is played in
[2] by the curly bracket, which selects two values of
p (its minimizers, to be identified with pjiq and pgas);
the attractive two-body potential is then related to
the last term in [2], as it suppresses the variations of
p. The analogy clearly suggests a strategy for a
rigorous proof of phase transitions in the conti-
nuum, an approach which has been and still is
actively pursued. It will be discussed briefly in the
sequel.

The first rigorous derivation of the van der Waals
theory in a statistical-mechanics setting goes back to
the 1960s and to Kac, who proposed a model where
the particle pair interaction is

—ay?e 479l 4 hard core, y,a > 0 [3]
The phase diagram of such systems, after the
thermodynamic limit, can be quite explicitly deter-
mined in the limit v — 0, where it has been proved
to converge to the van der Waals phase diagram,
under a proper choice of fg’/\( ) in [1].

The characteristic features of the first term in [3]
are: (1) very long range, which scales as 4!, and (2)
very small intensity, which scales as 7%, so that the
total intensity of the potential, defined as the
integral over the second position, is independent of
~. The additional hard-core term (which imposes
that any two particles cannot get closer than
2Ry, Ry > 0 being the hard-core radius) is to ensure
stability of matter, that is, to avoid collapse of the
whole system on an infinitesimally small region, as it
would happen if only the attractive part of the
interaction were present.

Derivation of the van der Waals theory has been
proved for a general class of Kac potentials, where

the exponential term in [3] is replaced by functions
whose dependence on + has the same scaling
properties as mentioned above (in (1) and (2)),
while the hard core can be replaced by suitably
repulsive interactions.

The proof, in the version proposed by Lebowitz
and Penrose, uses coarse graining and shows that the
effective Hamiltonian is well approximated by the
van der Waals functional [1], when ~ is small, while
the effective temperature scales as 4¢. The approx-
imation becomes exact in the limit v — 0, where it
reduces the computation of the partition function to
the analysis of the minima and the ground states of
an effective Hamiltonian which, in the limit v — 0,
is exactly the van der Waals functional.

A true proof of phase transitions requires instead
to keep v > 0 fixed (instead of letting v — 0) and
thus to control the difference of the effective
Hamiltonian after coarse graining and the van der
Waals functional, which is the effective Hamilto-
nian, but only in the actual limit v — 0. In general,
there is no symmetry between the two ground states,
unlike in the Ising case where they are related by
spin flip, and the Pirogov-Sinai theory thus enters
into play. The framework in fact is exactly similar,
with the lattice Hamiltonian replaced by the func-
tional and low temperatures by small v (recall that
the effective temperature scales as 4?). The extension
of the theory to such a setting, however, presents
difficulties and success has so far been only partial.

A Model for Phase Transitions in the
Continuum

The problem is twofold: to have a good control of
(1) the limit theory and (2) the perturbations
induced by a nonzero value of the Kac parameter
v. The former falls in the category of variational
problems for integral functionals, whose prototype
is the Ginzburg-Landau free energy

Fé(p) = /{W(p) +[Vpl*} dr 4]

which can be regarded as an approximation of [2]
with w equal to the curly bracket in [2] and |
replaced by a é-function. Minimization problems for
this and similar functionals have been widely
analyzed in the context of general variational
problems theory and partial differential equations
(PDEs), and the study of the limit theory can benefit
from a vast literature on the subject. The analysis of
the corrections due to small v is, however, so far
quite limited. To implement the Pirogov—Sinai
strategy, we need, in the case of the interaction [3],
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a very detailed knowledge of the system without the
Kac part of the interaction and with only hard cores.
This, however, is so far not available when the
particle density is near to close-packing (i.e., the
maximal density allowed by the hard-core poten-
tial). Replacing hard cores by other short-range
repulsive interactions does not help either, and this
seems the biggest obstacle to the program.

The difficulty, however, can be avoided by
replacing the hard-core potential by a repulsive
many-body (more than two) Kac potential, which
ensures stability as well. The class of systems
covered by the approach is characterized by Hamil-
tonian of the form

@ = [ er(@ () g

where e)(¢) is a polynomial of the scalar field
variable ¢, a specific example being

e(@) =47 —5 — Ao [6]

This form of the Hamiltonian is familiar from
Euclidean field theories. In these theories, the free
distribution of the field is Gaussian; in our case,
however, the field ¢=¢,(r) is a function of the

particle configurations g=(q;,i=1,...,n):
& (r) = jiy + q(r) ZMT%
[7]
jr(r, ) =iy, ')

where j(r,7) is a translation-invariant, symmetric
transition probability kernel. Thus, ¢,(r) is a non-
negative variable which has the meaning of a local
density at 7, weighted by the Kac kernel j,(r, 7).

Contours and Phase Indicators

The dependence on ~ yields the scaling properties
characteristic of the Kac potentials and [5] may be
regarded as a generalized Kac Hamiltonian, which,
in the polynomial case of [6], involves up to four-
body Kac potentials. The phase diagram of the
model, after taking first the thermodynamic limit
and then the limit v — 0, is determined by the free-
energy functional

Fo) = [{esinory -2 ar

S(p) = —p(logp —1) [9]

where [8] is taken to be defined on a torus (to avoid
convergence problems of the integral), and
j=jny=1

Exploiting the concavity of the entropy S(p), it is
proved that the minimizers of F(-) are constant
functions with the constants minimizing

S(u)

/B )
In the case of [6], to which we restrict in the sequel,
for any (> (3/2)*? there is Ay so that fy, s(u) is
double-well with two minimizers, pg.s < piiq (depen-
dence on 3 is omitted).

To “recognize” the densities pg,s and pjq in a
particle configuration, we use coarse graining and
introduce two partitions of R? into cubes C!*), The
cubes Cl“~) of the first partition have side ¢_,
proportional to y717%, a > 0 suitably small; those of
the second one have length /¢, ., proportional to
4179 they are chosen so that each cube C+) is
union of cubes C~+). Notice that the small cubes
have side much smaller than the interaction range (for
small ), while the opposite is true for the large cubes.

Given a particle configuration g, we say that

a point 7 is in the liquid phase and write
O(r;q) =1, if

frp(u) = ex(u) — u>0 [10]

|g 1 Cl-)|

7 — piiq| <7, a> 0 suitably small [11]
=

for any small cube C!~-) contalned either in C(r£+"") or
in the cubes C!“++) contiguous to cl e, lg 1 Ct-) \ is
referred to as the number of particles of g in C'*-

and C\'"" as the large cube which contains 7.

Thus, O(r;q)=1 if the local particle density is
constantly close to pj, in a large region around 7.
Defining O(r;q) = —1 if the above holds with pg,
instead of pj;q and setting ©(r;q) =0 in all the other
cases, we then have a phase indicator O(r; q), which
identifies, for all particle configurations, which
spatial regions should be attributed to the liquid
and gas phases. The connected components of the
complementary region are called contours and the
definition of O(r;q) has been structured in such a
way that liquid and gas are always separated by a
contour. The liquid phase will then be represented
by a measure which gives large probability to
configurations having mostly © =1, while the gas
phase by configurations with mostly © = —1.

This is quite similar to the Ising picture and, as in
the Ising model, the existence of a phase transition
follows from a Peierls estimate that contours have
small probability. In fact, if there are few contours,
the phase imposed on the boundaries of the region
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where the system is observed percolates inside,
invading most of the space. Thus, boundary condi-
tions select the phase in the whole volume. The
absence of the short-range potential, which was the
hard-core interaction in [3], and hence the absence
of all the difficulties which originate from it, allow
one to carry through successfully the Pirogov-Sinai
program and prove Peierls estimates on contours
and, hence, the existence of a phase transition. In
particular, the statistical weight of a contour is
estimated by first relating the computation to one
involving the functional [8] and then computing its
value on density profiles compatible with the
existence of the given contour. This part of the
problem needs variational analysis for [8], with
constraints and benefits of a vast literature on the
subject.

The phase transition is very sharp, as shown by
the following ideal experiment. Having fixed (>
(3/2)>2, let A vary in a (suitably) small interval
[Ag — 6, A3+ 6],6 > 0, centered around the mean-
field critical value ;3. We consider the system in a
large region with, for instance, boundary conditions
©= —1 (i.e., forcing the gas phase) and fix v small
enough. At A=M\3 — 6, the system has ©= —1 in
most of the domain, and this persists when we
increase A till a critical value, \g, ,, close to, but not
the same as Ag. For A > A3 ,,©=1 in most of the
domain, except for a small layer around the
boundaries. The analogous picture holds if we
choose boundary conditions © =1, and A= \g, is
the only value of the chemical potential where the
system is sensitive to the boundary conditions and
both phases can be produced by the right boundary
conditions. The fact that the actual value A3, differs
from Mg, is characteristic of the Pirogov-Sinai
approach and enlightens the delicate nature of the
proofs.

Some Related Problems

In this concluding section, two important related
problems, which have not been mentioned so far,
are discussed.

A natural question, after proving a phase transi-
tion, is to describe how two phases coexist, once
forced to be simultaneously present in the system.
This can be achieved, for instance, by suitable
boundary conditions (typically positive and negative
on the top and bottom of the spatial domain) or by

imposing a total density (or magnetization in the
case of spins) intermediate between those of the pure
phases. There will then be an interface separating
the two phases with a corresponding surface tension
and the geometry will be determined by the solution
of a variational problem and given by the Wulff
shape.

Can statistical mechanics explain and describe the
phenomenon? Important progress has been made
recently on the subject in the case of lattice systems
at low temperatures. The question has also been
widely studied at the mesoscopic level, in the
context of variational problems for Ginzburg and
Landau and many other functionals. Therefore, all
the ingredients of further development of the theory
in this direction are now present.

We have so far discussed only classical systems;
a few words about extensions to the quantum case
are now in order. In the range of values of
temperatures and densities where the liquid—vapor
transition occurs, the quantum effects are not
expected to be relevant. Referring to the case of
bosons, and away from the Bose condensation
regime (and for system with Boltzmann statistics
as well), the quantum delocalization of particles
caused by the indeterminacy principle should
essentially disappear after macroscopic coarse
graining, and the block-spin variables should
again behave classically, even though their under-
lying constituents are quantal. If this argument
proves correct, then progress along these lines may
be expected in near future.

See also: Cluster Expansion; Ergodic Theory; Finite
Group Symmetry Breaking; Pirogov—Sinai Theory;
Reflection Positivity and Phase Transitions; Statistical
Mechanics and Combinatorial Problems; Statistical
Mechanics of Interfaces; Symmetry Breaking in Field
Theory; Two-Dimensional Ising Model.
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Introduction

Pirogov—Sinai theory is a method developed to
study the phase diagrams of lattice models at low
temperatures. The general claim is that, under
appropriate conditions, the phase diagram of a
lattice model is, at low temperatures, a small
perturbation of the zero-temperature phase dia-
gram designed by ground states. The treatment can
be generalized to cover temperature driven transi-
tions with coexistence of ordered and disordered
phases.

Formulation of the Main Result
Setting

Refraining first from full generality, we formulate
the result for a standard class of lattice models with
finite spin state and finite-range interaction. We will
mention different generalizations later.

We consider classical lattice models on the
d-dimensional hypercubic lattice 7Z¢ with d > 2.
A spin configuration 0 = (0x),_,a is an assignment of
a spm with values in a finite set S to each lattice site
x € 74 the configuration space is Q = §% Foro € Q
and A c 7% we use op€Qy=5" to denote the
restriction oy = {oy;x € A}.

The Hamiltonian is given in terms of a collection of
interaction potentials (®4), where ®4 are real func-
tions on (2, depending only on o, with x € A, and A
runs over all finite subsets of Z¢. We assume that the
potential is periodic with finite range of interactions.
Namely, ®4/(0’) = ®4(c) whenever A and o are related
to A’ and ¢’ by a translation from (a7Z)? for some fixed
integer a and there exists R > 1 such that &, = 0 for
all A with diameter exceeding R.

Without loss of generality (possibly multiplying
the number a by an integer and increasing R), we
may assume that R =a.

The Hamiltonian Hy(o|n) in A with boundary
conditions 1 €  is then given by

Hy(oln) = Z Dp(op VNac) [1
ANAA)

where o5 Ve €Q is the configuration o, extended
by nac on A°. The Gibbs state in A under boundary

conditions n € Q (and with Hamiltonian H) is the
probability p(+|n) on 2, defined by

exp{—BHax(o(n)}

pa({oatn) = Z(An) 2]
with the partition function
Z(Aln) = Zexp{ BH(oln)} 3]

We use G(H) to denote the set of all periodic Gibbs
states with Hamiltonian H defined on Q by means of
the Dobrushin—-Lanford-Ruelle (DLR) equations.

Ground-State Phase Diagram and the Removal
of Degeneracy

A periodic configuration o € Q is called a (periodic)
ground state of a Hamiltonian H = (®,) if

=) (Pa(6) — Pa(0))>0 [4]

A

H(5;0)

for every finite perturbation & # o of o (& differs
from o at a finite number of lattice sites). We use
g(H) to denote the set of all periodic ground states
of H. For every configuration o € g(H), we define
the specific energy e,(H) by

(with V,, denoting a cube consisting of #¢ lattice sites).

To investigate the phase diagram, we will consider
a parametric class of Hamiltonians around a
fixed Hamiltonian H® with a finite set of periodic
ground states g(H'")) = {01, ..., 0,}. Namely, let H®)
HW, ... and H"Y be Hamiltonians determined by
potentials ®©, &M and &1, respectively, and
consider the (r — 1)-parametric set of Hamiltonians
Hy=HO + 37" t,HO with ¢ = (t1,...,t, 1) e R"™L.
Using a shorthand e,,(H) =e¢,,,(H), and introducing
the vectors e(H) = (e (H),...,e,(H)) and h(t)=e(H;)—
min,, em(Ht) we notice that for each t € R”™!, the
vector h(t) € 0Q,, the boundary of the positive octant
in R". A crucial assumption for such a parametriza-
tion H; to yield a meaningful phase diagram is the
condition of removal of degeneracy: we assume that
g(H(O)+H(Z>)§g(H<O)),€:1,...,r—1, and that the
vectorse(H"”),/=1,...,7 — 1, are linearly independent.

In particular, its immediate consequence is that
the mapping R'~!>¢— h(t)€0Q, is a bijection.
This fact has a straightforward interpretation in
terms of ground-state phase diagram. Viewing the
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phase diagram (at zero temperature) as a partition of
the parameter space into regions K, with a given set
g C g(H") of ground states — “coexistence of zero-
temperature phases from g” — the above bijection
means that the region K, is the preimage of the set

Oy ={h € 00;|h,, = 0 for 0,, € g and
by, > 0 otherwise} [6]

The partition of the set 9Q, has a natural
hierarchical structure implied by the fact that Qg N
Oy, = Qg ug, (Qy is the closure of Q). Namely, the
origin {0} = Qg is the intersection of r positive
coordinate axes Q. mtmpm=1,...,r; each of
those half-lines is an intersection of r—1 two-
dimensional quarter-planes with boundaries on posi-
tive coordinate axes, etc., up to (r — 1)-dimensional
planes QOy,,1,m=1,...,r. This hierarchical structure
is thus inherited by the partition of the parameter
space R"! into the regions K,. The phase diagrams
with such regular structure are sometimes said to
satisfy the Gibbs phase rule.

We can thus summarize in a rather trivial conclusion
that the condition of removal of degeneracy implies
that the ground-state phase diagram obeys the Gibbs
phase rule. The task of the Pirogov—Sinai theory is to
provide means for proving that this remains true, at
least in a neighborhood of the origin of parameter
space, also for small nonzero temperatures. To achieve
this, we need an effective control of excitation energies.

Peierls Condition

A crucial assumption for the validity of the Pirogov—
Sinai theory is a lower bound on energy of
excitations of ground states — the Peierls condition.

In spite of the fact that for a study of phase diagram
we consider a parametric set of Hamiltonians whose
set of ground states may differ, it is useful to introduce
the Peierls condition with respect to a single fixed
collection G of reference configurations (eventually, it
will be identified with the ground states of the
Hamiltonian H?)). Let thus a fixed set G of periodic
configurations {oy,...,0,} be given. Again, without
loss of generality, we may assume that the periodicity
of all configurations 7, € G is R.

Before formulating the Peierls condition, we have
to introduce the notion of contours. Consider the set
of all sampling cubes C(x)={y € Z%|y; — x;| < R for
1<i<d},xe 72 A bad cube of a configuration
o € Q is a sampling cube C for which o¢ differs from
o restricted to C for every o, € G. The boundary
B(o) of ¢ is the union of all bad cubes of 0. If 5, € G
and o is its finite perturbation (differing from o, on a
finite set of lattice sites), then, necessarily, B(o) is
finite. A contour of o is a pair yv=(I',or), where T’

(the support of the contour «) is a connected
component of B(o) (and or is the restriction of o on
I"). Here, the connectedness of I' means that it cannot
be split into two parts whose (Euclidean) distance is
larger than 1. We use d(o) to denote the set of all
contours of o, B(o) = U,y I'-

Consider a configuration o7 such that v is its
unique contour. The set Z‘\I' has one infinite
component to be denoted Ext~ and a finite number
of finite components whose union will be denoted
Int~. Observing that the configuration ¢7 coincides
with one of the states 7,, € G on every component of
74\B(0), each of those components can be labeled
by the corresponding 7. Let g be the label of Ext~,
we say that v is a g-contour, and let Int,, v be the
union of all components of Inty labeled by
mom=1,...,7.

Defining the “energy” ¥(v) of a g-contour 7 by
the equation

U(v)=H(0";04) + eq(H)IT|
= (em(H) = eq(H)[Intyy 7| [7]
m=1

the Peierls condition with respect to the set G of
reference configurations is an assumption of the
existence of p > 0 such that

W(7) > (p+ min e, (H))IT| 8]

for any contour of any configuration o that is a
finite perturbation of o, € G.

Notice that if G =g(H), the sum on the right-hand
side of [7] vanishes.

Phase Diagram

The main claim of the Pirogov=Sinai theory provides,
for (3 sufficiently large, a construction of regions K (/3)
of the parameter space characterized by the coex-
istence of phases labeled by configurations o, € g.
This is done similarly as for the ground-state phase
diagram discussed earlier by constructing a home-
omorphism # — a(¢) from a neighborhood of the origin
of the parameter space to a neighborhood of the origin
of 9Q, that provides the phase diagram (actually, the
function a(t) will turn out to be just a perturbation of
h(t) with errors of order e=?).

Before stating the result, however, we have to
clarify what exactly is meant by existence of phase
m for a given Hamiltonian H. Roughly speaking, it
is the existence of a periodic extremal Gibbs state
i € G(H), whose typical configurations do not
differ too much from the ground-state configura-
tion o,,. In more technical terms, the existence
of such a state is provided once we prove a
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suitable bound, for the finite-volume Gibbs state
pa({oa}|os) under the boundary conditions o,,, on
the probability that a fixed point in A is encircled
by a contour from Jo. If this is the case, we say that
the phase m is stable. It turns out that such a bound
is actually an integral part of the construction of
metastable free energies f,,(¢) yielding the home-
omorphism #~ a(¢). In this way, we get the main
claim formulated as follows:

Theorem 1 Consider a parametric set of Hamilto-
nians Hy=H" + 3" t,H" with periodic finite-
range interactions satisfying the condition of
removal of degeneracy as well as the Peierls
condition with respect to the reference set
G=gH"). Let d>2 and let 3 be sufficiently
large. Then there exists a homeomorphism t+— a(t)
of a neighborhood V of the origin of the parameter
space R~ onto a neighborhood Uy of the origin of
00, such that, for any t € Vg, the set of all stable
phases is {m € {1,...,7}|a,.(¢) =0}.

The Peierls condition can be actually assumed
only for the Hamiltonian H'? inferring its validity
for H; on a sufficiently small neighborhood V3.

Notice also that the result can be actually stated
not as a claim about phase diagram in a space of
parameters, but as a statement about stable phases
of a fixed Hamiltonian H. Namely, for a Hamilto-
nian H satisfying Peierls condition with respect to a
reference set G, one can assure the existence of
parameters a,, labeled by elements from G such that
the set of extremal periodic Gibbs states of H
consists of all those m-phases for which a,, =0.

Construction of Metastable Free Energies

An important part of the Pirogov-Sinai theory is

an actual construction of the metastable free

energies — a set of functions f,(t),m=1,...,r,

that provide the homeomorphism a(#) by taking
) = folt) — miniy f(2)

We start with a contour representation of
partition function Z(A|o,). Considering, for each
contributing configuration o, the collection 9(o) of
its contours, we notice that, in addition to the fact
that different contours 7,7 € d(c) have disjoint
supports, ' NIV =), the contours from d(c) have
to satisfy the matching conditions: if C is a
connected component of Zd\U'}E@ I', then the
restrictions of the spin configurations ¢ to C
are the same for all contours ~ € d(o) with
dist(I", C) = 1. In other words, the contours touch-
ing C induce the same label on C. Let us observe
that there is actually one-to-one correspondence
between configurations ¢ that coincide with o, on

A¢ and collections M(A,q) of contours O in A
satisfying the matching condition, and such that the
external among them are g-contours. Here, a contour
~ € 0 is called an external contour in 0 if ' C Ext+/
for all v/ € 0 different from .

With this observation and using A,,(9) to denote
the union of all components of A\ |J,, I' with label

m, we get
S e e tian T e

deEM(A,q) m ~v€Ed

A|Uq

Usefulness of such contour representations stems
from an expectation that, for a stable phase g,
contours should constitute a suppressed excitation
and one should be able to use cluster expansions to
evaluate the behavior of the Gibbs state .
However, the direct use of the cluster expansion on
[9] is trammeled by the presence of the energy terms
e PenHIMON and, more seriously, by the require-
ment that the contour labels match.

Nevertheless, one can rewrite the partition func-
tion in a form that does not involve any matching
condition. Namely, considering first a sum over
mutually external contours 9 and resumming over
collections of contours which are contained in their
interiors without touching the boundary (being thus
prevented to “glue” with external contours), we get

A|O'q Z e—ﬂeq )|[Ext|
(’}ext
X H {e_{ﬂ'(”’)HZdil(Intm'ﬂam)} [10]
yegt m
Here the sum goes over all collections of
compatible external g-contours in A, Ext=
Extp(0%) = (), cpex (ExtyNA), and the partition
function Zd‘l(A|a) is defined by [9] with

M(A, q) replaced by MI(A, g) € M(A, q), the
set of all those collections whose external coun-
tours v are such that dist (T, A) > 1. Multiplying
now each term by

1= H HM [11]

YEPXE m Zdll(Intm P)/|O—q)
we get

Z(A|og)

=3 et

Oext

xH(e

yEPXE

i, ()29 (Ine o) ) [12]

where wy(y) is given by

e~ BY() ofeq(HIT| H - (Int,, v|owm) 13]
Z 1

wq(7) = (Inty 7|0y
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Observing that a similar expression is valid for
Z4(Alo,) (with an appropriate restriction on the
sum over external contours 9°*) and proceeding by
induction, we eventually get the representation

Z(Aog) = e NN 7 TTwg(v)  [14]

0eC(A,q) v€0

where C(A,qg) denotes the set of all collections of
nonoverlapping g-contours in A. Clearly, the sum on
the right-hand side is exactly of the form needed to
apply cluster expansion, provided the contour weights
satisfy the necessary convergence assumptions.

Even though this is not necessarily the case, there
is a way to use this representation. Namely, one can
artificially change the weights to satisfy the needed
bound, for example, by modifying them to the form

w,(y) = min (wq(v),e’ﬂ”) [15]

with a suitable constant 7. The modified partition

function
7deq YA Z Hw [16]

Z'(Aog) =
9€C(A,q) ve€d

can then be controlled by cluster expansion allowing
to define

fa(H) = hm mlogZ (Alog) [17]

This is the metastable free energy corresponding to the
phase g. Applying the cluster expansion to the
logarithm of the sum in [16], we get |f;(H) — e4(H)| <
e /2. The metastable free energy corresponds to
taking the ground state o, and its excitations as long
as they are sufficiently suppressed. Once 1w, () exceeds
the weight eIl (and the contour would have been
actually preferred), we suppress it “by hand.” The
point is that if the phase ¢ is stable, this never happens
and v/ wy(y) for all g- contours ~. This is the idea
behlnc{ii the use of the function f,(H) as an indicator of
the stability of the phase g by taking

ag(t) = fy(Hy) — min f,u(H)) 18]

Of course, the difficult point is to actually prove that
the stability of phase g (i.e., the fact that a,(¢)=0)
indeed implies w; () =wy(7) for all 4. The crucial step
is to prove, by induction on the diameter of A and ~,
the following three claims (with e =2e~7/2):

1. If v is a g-contour with a,(t)diamT < 7/4, then

w;(v) wy(7).
2. Ifay(t) diam A < 7/4, then Z(A|og) = Z/(Alog) # 0
and
|Z(Alog)| > e falHAI=oAl 119]

3. If m € G, then
|Z(A]oy)| < e minafalHDlAlgeloA] 20]

A standard example illuminating the perturbative
construction of the metastable free energies and
showing the role of entropic contributions is the
Blume-capel model. It is defined by the Hamiltonian

:—/Z =) =AY or—hd o [21]

(x,y) xeA xeA

with spins o, € { —1,0,1}. Taking into account only
the lowest-order excitations, we get:

fi(Avh) =

AT h— _efﬁ(zdf)\ih)

B
(sea of pluses or minuses with a single spin flip + — 0)
and

FOub) = _%e—ﬁ(zd—o—)\) (eah n e—ﬁh)

(sea of zeros with a single spin flip either 0 — + or
0——)

Since these functions differ from full metastable free
energies f=(A\,b),fo(\,h) by terms of higher order
(~e~4d=20) " the real phase diagram differs in this
order from the one constructed by equating the
functions fi(\,h) and fo(A,b). It is particularly
interesting to inspect the origin, A=/ =0. It is only
the phase 0 that is stable there at all small
temperatures since

£0(0,0) ~ —%e*&d < £+(0,0) ~ —%e’md [22]

The only reason why the phase 0 is favored at this
point with respect to phases + and — is that there
are two excitations of order e 24 for the phase 0,
while there is only one such excitation for + or —.
The entropy of the lowest-order contribution to
f0(0,0) is overweighting the entropy of the contribu-
tion to f+(0,0) of the same order.

Applications

Several applications, stemming from the Pirogov—
Sinai theory, are based on the fact that, due to the
cluster expansion, we have quite accurate descrip-
tion of the model in finite volume.

One class of applications concerns various
problems featuring interfaces between coexisting
phases. To be able to transform the problem into a
study of the random boundary line separating the
two phases, one needs a precise cluster expansion
formula for partition functions in volumes occupied
by those phases. In the situation with no symmetry
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between the phases, the use of the Pirogov-Sinai
theory is indispensable.

Another interesting class of applications concerns
the behavior of the system with periodic boundary
conditions. It is based on the fact that the partition
function Z7, on a torus Ty consisting of N4 sites
can be, again with the help of the cluster expan-
sions, explicitly and very accurately evaluated in
terms of metastable free energies,

r
Zry = 3 e DN
q=1

< exp{~fminf,(H)N' ~bsN}  [23]

with a fixed constant b. This formula (and its
generalization to the case of complex parameters)
allows us to obtain various results concerning the
behavior of the model in finite volumes.

Finite-Size Effects

Considering as an illustration a perturbation of the
Ising model, so that it does not have the &+ symmetry
any more (and the value h;(3) of external field
at which the phase transition between plus and
minus phase occurs is not known), we can pose a
natural question that has an importance for correct
interpretation of simulation data. Namely, what is
the asymptotic behavior of the magnetization
my (B, h) = pr (VAY ., 0x) on a torus? In the
thermodynamic limit, the magnetization m2(8,h)
displays, as a function of h, a discontinuity at
h=h,(B). For finite N, we get a rounding of the
discontinuity — the jump is smoothed. What is the
shift of a naturally chosen finite-volume transition
point h,(N) with respect to the limiting value b,?
The answer can be obtained with the help of [23]
once sufficient care is taken to use the freedom in
the definition of the metastable free energies f. (h)
and f_(h) to replace them with a sufficiently smooth
version allowing an approximation of the functions
fe(h) around limiting point b, in terms of their
Taylor expansion.

As a result, in spite of the asymmetry of the model,
the finite-volume magnetization m2y;' (3, /) has a uni-
versal behavior in the neighborhood of the transition
point h,. With suitable constants 72 and 71, we have

mls" (8, h) ~mg +mtanh{NGm(b — b,)}  [24]

per

Choosing the inflection point hpy.(N) of my (5, h)
as a natural finite-volume indicator of the occurence
of the transition, one can show that

3
hmax(N):ht+ X

2527713 NiZd + O(Nisd) [25]

Zeros of Partition Functions

The full strength of the formula [23] is revealed
when studying the zeros of the partition function
Zr1,(z) as a polynomial in a complex parameter z
entering the Hamiltonian of the model. To be able
to use the theory in this case, one has to extend the
definitions of the metastable free energies to com-
plex values of z. Indeed, the construction still goes
through, now yielding genuinely complex, contour
models w. with the help of an inductive procedure.
Notice that no analytic continuation is involved. An
analog of [23] is still valid,

Zy (@) = Y e O
m=1
< exp{~fmin Refw(z)N? —bAN}  [26]

Using [26], it is not difficult to convince oneself
that the loci of zeros can be traced down to the
phase coexistence lines. Indeed, on the line of
the coexistence of two phases Ref,, = Ref,, the
partition function Zr,(z) is approximated by
e AN (e=B3mfuN" | e=BSWANT)  The zeros of this
approximation are thus given by the equations

Ref,, = Ref,, < Refy for all £ £ m,n

27
BN (Smf,, — Smf,,) = rmod 27 27

The zeros of the full partition function Zr,(z) can
be proved to be exponentially close, up to a shift
of order O(e "N), to those of the discussed
approximation.

Briefly, the zeros of Zr,(z) asymptotically con-
centrate on the phase coexistence curves with the

density (1/2m)BN|(d/d2)(fs — f,)]-

Bibliographical Remarks
and Generalizations

The original works Pirogov and Sinai (1975, 1976)
and Sinai (1982) introduced an analog of the weights
w,(y) and parameters a,(H) as a fixed point of a
suitable mapping on a Banach space. The inductive
definition used here was introduced in Kotecky and
Preiss (1983) and Zahradnik (1984). The completeness
of phase diagram — the fact that the stable phases
exhaust the set of all periodic extremal Gibbs states
was first proved in Zahradnik (1984). Extension to
complex parameters was first considered in Gawedzki
etal. (1987) and Borgs and Imbrie (1989). For a review
of the standard Pirogov-Sinai theory, see Sinai (1982)
and Slawny (1987).

Application of Pirogov-Sinai theory for finite-size

effects was studied in Borgs and Kotecky (1990) and
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general theory of zeros of partition functions is
presented in Biskup ef al. (2004).

The basic statement of the Pirogov-Sinai theory
yielding the construction of the full phase diagram
has been extended to a large class of models. Let us
mention just few of them (with rather incomplete
references):

1. Continuous spins. The main difficulty in these
models is that one has to deal with contours
immersed in a sea of fluctuating spins (Dobrushin
and Zahradnik 1986, Borgs and Waxler 1989).

2. Poitts model. An example of a system a transi-
tion in temperature with the coexistence of the
low-temperature ordered and the high-tempera-
ture disordered phases. Contour reformulation is
employing contours between ordered and dis-
ordered regions (Bricmont et al. 1985, Kotecky
et al. 1990). The treatment is simplified with help

of Fortuin—Kasteleyn representation (Laanait
et al. 1991).
3. Models with competing interactions. ANNNI

model, microemulsions. Systems with a rich
phase structure (Dinaburg and Sinai 1985).

4. Disordered systems. An example is a proof of
the existence of the phase transition for the three-
dimensional random field Ising model (Bricmont
and Kupiainen 1987, 1988) using a renormaliza-
tion group version of the Pirogov-Sinai theory
first formulated in Gawedzki et al. (1987).

5. Quantum lattice models. A class of quantum
models that can be viewed as a quantum perturba-
tion of a classical model. With the help of Feyn-
man-Kac formula these are rewritten as a (d + 1)-
dimensional classical model that is, in its turn,
treated by the standard Pirogov-Sinai theory (Datta
et al. 1996, Borgs et al. 1996).

6. Continuous systems. Gas of particles in con-
tinuum interacting with a particular potential of
Kac type. Pirogov—Sinai theory is used for a proof
of the existence of the phase transitions after a
suitable discretisation (Lebowitz et al. 1999).

See also: Cluster Expansion; Falicov—Kimball Model;
Phase Transitions in Continuous Systems; Quantum
Spin Systems.
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Introduction

Vortices have a long fascinating history. Descartes

wrote in his Le Monde:
...que tous les mouvements qui se font au Monde sont
en quelque fagon circulaire: c’est a dire que, quand un
corps quitte sa place, il entre toujours en celle d’un
autre, et celui-ci en celle d’un autre, et ainsi de suite
jusques au dernier, qui occupe au méme instant le lieu
délaissé par le premier.

In particular, Descartes thought of vortices to
model the dynamics of the solar system, as reported
by W W R Ball (1940):

Descartes’ physical theory of the universe, embodying
most of the results contained in his earlier and
unpublished Le Monde, is given in his Principia,
1644, ... He assumes that the matter of the universe
must be in motion, and that the motion must result in a
number of vortices. He stated that the sun is the center
of an immense whirlpool of this matter, in which the
planets float and are swept round like straws in a
whirlpool of water.

Descartes’ theory was later on recused by Newton
in his Principia in 1687. Few centuries later,
W Thomson (1867) the later Lord Kelvin, made use
of vortices to formulate his atomic theory: each atom
was assumed to be made up of vortices in a sort of
ideal fluid. In 1878-79 the American physicist A M
Mayer conducted a few experiments with needle
magnets placed on floating pieces of cork in an
applied magnetic field, as toy models for studying
atomic interactions and forms (Mayer 1878, Aref
et al. 2003). In 1883 inspired by Mayer experiments,
J J Thomson combined W Thomson’s atomic theory
with  H von Helmholtz’s point-vortex theory
(Helmholtz 1858): he thought as the electrons were
point vortices inside a positively charged shell (see
Figure 1), the vortices being located at the vertices of
regular parallelograms and investigated about the
stability of such structures (see Thomson (1883,
section 2.1)). The vortex-atomic theory survived for
quite a few years up to Rutherford’s experiments
proved that atoms have quite a different structure!
Before continuing this historical/modeling overview,
let’s address the following question:

what is a vortex and, more specifically, what is a point-

vortex?

Roughly speaking, following Descartes, a vortex
is an entity which makes particles move along
circular-like orbits. Examples are the cyclones and
anticyclones in the atmosphere (see Figure 3).
Mathematically speaking, let #= (u,v,w) € R be a
velocity field, the associated vorticity field w is

defined to be
w=VAu 1]

In this article we are considering exclusively inviscid
flows which are also incompressible, that is,

V-u=0 2]

and have constant density p, which we normalize to
be equal to 1 (p=1). In two dimensions, a point-
vortex field is the simplest of all vorticity fields: it
can be thought as an entity where the vorticity field
is concentrated into a point. In other words, point
vortices are singularities of the vorticity field! Then,
in the plane the vorticity field associated to a system
of N point vortices is

N
w(r) =Y Tub(r—rs) 3]

a=1
+ — & + — 4
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(a) (b)
Figure 1 Thomson atomic model: (a) atom with three
electrons and (b) atom with four electrons. From Thomson JJ
(1883) A Treatise on the Motion of Vortex Rings. New York:

Macmillan and Thomson JJ (1904) Electricity and Matter.
Westmister: Archibald Constable.

Figure 2 Hurricane Jeanne. Reproduced with permission from
the National Oceanic and Atmospheric Administration (NOAA)
(www.noaanews.noaa.gov).
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Figure 3 Cyclones and anticyclones in the atmosphere. Repro-
duced from Boatto S and Cabrel HE, SIAM Journal of Applied
Mathematics 64:216—230 (2003). With the permission of SIAM.

where T'y, a=1,...,N, is a constant and corre-
sponds to the vorticity (or circulation) of the
a-vortex, situated at r,. In fact by definition,
the circulation around a curve C delimiting a region
Y with boundary C,

Fczj{cu-ds://E(V/\u)-ndA://Ew [4]

where we have used Stokes’ theorem to bring in the
vorticity. Then if the region contains only the ath
point vortex, we obtain

rcz//EwdA:ra 5]

by eqn [3]. A positive (resp. negative) sign of T,
indicates that the corresponding point vortex
induces an anticlockwise (resp. clockwise) particle
motion, see Figure 4a)). Is there an analog of a
point-vortex system for a three-dimensional flow?
Yes, and this brings in the analogy between vortex
lines and magnetic field lines that Mayer used in his
experiments with floating magnets. In fact, in three
dimensions, the notion of a point vortex can be
extended to that one of a straight vortex line (see
Figure 4b), where, by definition, a vortex line is a curve
that is tangent to the vorticity vector w at each of its
point. In this context we would like to mention the
beautiful experiments of Yarmchuck—Gordon—Packard
on vortices in superfluid helium. They observed the

particle
T \\
r g >0 o)

lul=c= u
I’2

(@)

>0 0)

formation of stable polygonal configurations of iden-
tical vortices, quite similar to the ones observed by
Mayer with his magnets (see Figures 5 and 1).

One would like to understand how such configura-
tions form and to give a theoretical account about their
stability. In order to answer these questions we have to
first be able to describe the dynamics of a system of
point vortices from a mathematical point of view.

Evolution Equations

Can point vortices be viewed as “discrete” (or
localized) solutions of Euler equation in two dimen-
sions? Let us consider the Euler equation

0
—u+u~Vu:—Vp+f [6]
ot

where p is the pressure, f=—VU is a conservative

force, and restrict our attention to the two-dimensional
setting, for example, vortex dynamics on the plane (or a
sphere). Then it is immediate that by taking the curl of
eqn [6] we obtain the evolution equation of the
vorticity, that s,

%+M-Vw:0, or %:
where the operator D/Dt=0/0t + u - V is called the
material derivative and describes the evolution along
the flow lines. It follows from eqn [7] that in two
dimensions the vorticity is conserved as it is trans-
ported along the flow lines. Then a natural question
arises: supposing the vorticity field w is known, is it
possible to deduce the velocity field # generating w? Or
in other words, is it possible to solve the system of eqns
[1]-[2]? It is immediate to see that in general the
solution is not unique, if some boundary conditions
are not specified (see Marchioro and Pulvirenti
(1993)). Furthermore, as already observed by Kirchh-
off in 1876 (Boatto and Cabral 2003), in two
dimensions we can recast the fluid equations [1]-[2]
into a Hamiltonian formalism. In fact, notice that on
the plane u = (x,y) and eqn [2] is still satisfied if we
represent the velocity components as

0 7]

(b)

Figure 4 (a) Advected by the velocity field of one point vortex, a test particle follows a circular orbit, with a speed proportional to the
absolute value of the vortex circulation and inversely proportional to the square of its distance from the vortex. (b) Straight vortex lines.
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Figure 5 Photographs of vortex configurations in a rotated
sample of superfluid helium with 1,..., 11 vortices. Reprinted
figure with permission from Yarmchuk EJ, Gordon MJV, and
Packard RE (1979) Observation of stationary vortices arrays in
rotating superfluid Helium. Physical Review Letters 43(3): 214—
217. Copyright (1979) by the American Physical Society.

. 0v . ov g
X = ay I y - 8.76' [ ]
that is, by means of W, called the stream function.
Formally, ¥ plays the role of a Hamiltonian for the pair
of conjugate variables (x, y) and it is used to describe the
dynamics of a test particle, located at (x, y) and advected
by the flow. By substituting [8] into [1], we obtain

AV(r) = w(r) 4]

that is, a Poisson equation with w as a source term.
Then, once we specify the vorticity field, by
inverting [9] we obtain the stream function ¥ to be

U(r) = / Glr, ¥ )w(r') d [10]

where G(r,7') is the Green’s function, solution of
the equation AG(x,y) = —6(x,y). The Green’s func-
tion both for the plane and the sphere is (Marchioro
and Pulvirenti 1993)

Glr.r) = —g-logllr =72 [11]

where ||# — r’Hz =(x —x')* 4+ (y —y)%. By [10], once
we specify the vorticity field w(r) we can compute U,
and by replacing it into [8] the velocity field becomes

u(r) = /K(r7 rw(r)dr [12]

where K(r,#)= —(r —#)"/2nx|lr —#||*] and it
represents the velocity field generated by a point
vortex of intensity one, located at #'. Then by
considering the vorticity field generated by point
vortices, eqn [3], together with eqn [11], eqn [10]
becomes

N
U(r) =— %/ log ||r — #'||* (Z L7 — ra)> dr’
a=1

1 N
zfﬂz:FalogHrfraHZ [13]
a=1

Equation [13] describes together with [8], the
dynamics of a test particle at a point 7= (x,y) in
the plane. Analogously, it can be shown that the
dynamics of a systems of point vortices in the plane
is given by the equations

dv, oH, dy, _ H,

& oy v ar T ow, M

where (qasPa) = (Xas TaYa)sa=1,...,N, is a pair of
conjugate variables and H, is the generalization of
the stream function ¥ (eqn [13]):

1 N
— > Tulglogllra —rsl® [15]
a,8=1

ot

H, =

Notice that the vortex Hamiltonian H, (eqn [15]) is
an autonomous Hamiltonian and, as we will discuss
in the first subsection, it provides a good Lyapunov-
like function to study stability properties of some
vortex configurations. Moreover, H, is invariant
with respect to rotations and translations, then by
the Noether theorem there are other first integrals of
motion, that is,

N N
L= Tellxel*  Me=) Tex,
k=1 k=1

N
My = Ty
=1
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expressing, respectively, the conservation of angular
momentum, L, and linear momentum, M=
(My, My), on the plane. We shall denote with M
the magnitude of M (i.e., M= |M]||). Furthermore,
by introducing the Poisson bracket

~(Of 0z Of g
[fv g} - Z <8q(y 8pa B 817(! 36]u)

u;l 1 <6f og  Of 8g>

p Ty \0x, dyo  0y4 0%,

we can construct three integrals in involution out of
the four conserved quantities L, My, My, and H,.
These are L, M; + M} and H,: in fact,

[Hy L]=0,  [Hy, M2 + M2] =0,
[L,Mﬁ +Mﬂ=o

It is then possible to reduce the system of equations
from N to N — 2 degrees of freedom. A Hamiltonian
system with N degrees of freedom is integrable
whenever there are N independent integrals of
motion in involution. It follows that a vortex system
with N < 3 is integrable, whereas the system of
equations of four identical vortices has been shown
by Ziglin to be nonintegrable in the sense that there
are no other first integrals analytically depending on
the coordinates and circulations, and functionally
independent of L,H,, M., M, (see Ziglin (1982)).
The following, however, has been shown:

1. Let K= Zi\[:l k., be the total vorticity,
M= (M,, M,) the total momentum and M= |M]| .
Then, as shown by Aref and Stremler (1999), if K=0
and M =0, N-vortex problem [16] is integrable.

2. A system of four identical vortices (i.e., k, =k
for a=1,...,4) can undergo periodic or quasi-
periodic motion for special initial conditions (see
Khanin (1981) Russian Math. Surveys 36: 231;
Aref and Pomphrey (1982) Proc. R. Soc. Lond. A
380: 359-387). More specifically, the motion of a
system of four identical vortices can be periodic,
quasiperiodic, or chaotic depending on the symme-
try of the initial configuration. In fact, every vortex
configuration that belongs to the subspace of
symmetric configurations — x,= —x,2 and y,=
Yar2,@=1,2 — gives rise to an integrable vortex
motion.

We have that up to two vortices, the motion is
almost always periodic and the orbits are circles; the
only exception being the case for which k; = —ky,
when the circles degenerate into straight lines. Thus,
a configuration of two point vortices is always a
relative equilibrium configuration, that is, there exists

0<Ty<Iy
=T
(a) (b)
T[> T
F17—F2
o e
N\

(c) (d)
Figure 6(a-d) For N=2 the vortex dipole exhibits a synchro-
nous and the orbits are in general circular orbits, with the
exception of the case (d) for which I'y = —T's and the circular
orbit degenerates into a line (or a circle of infinite radius).

a specific reference frame in which the two vortices
are at rest. If the vortices are identical (I'y =T, =T),
the motion is synchronous with frequency Q=T"/m
and the vortices share the same circular orbit (see
Figure 6a). If the vortices are not identical and have
vorticities of different magnitudes (say |I'1| > |I'2|),
their motion is still synchronous and periodic, with
frequency Q= (T'1 +I';)/(27), and the vortices move
on different circular orbits (with 7, <7;) both
centered at the center of vorticity. Note that for
both cases, identical and nonidentical vortices, we
can view the vortex dynamics in a co-rotating frame
where the vortices are simply at rest.

For three vortices we can have periodic and
quasiperiodic motion, depending on the initial
conditions, and for four vortices we can have
periodic, quasiperiodic, or weakly chaotic motion.

Remarks

(i) The nonintegrability of the 4-vortex system was
also proved for configurations of nonidentical vortices.
Koiller and Carvalho (1989) gave an analytical proof
forT'i'= —TyandT'3=T4=¢,0 < € < 1. Moreover,

Castilla et al. (1993) considered the case:
Fl :F2:F3:1 and F4:€.
(i) Due to the translational and rotational

symmetries of H,, there are some analogies between
the N-vortex problem and the N-body problem,
especially for what concerns configurations of
relative equilibria (see Albouy (1996) and Glass
(2000)). A relative equilibrium is a vortex (or mass)
configuration that moves without change of shape
or form, that is, a configuration which is steadily
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Figure 7 Polygonal configuration of vortices: (a) planar
configurations and (b) configurations of vortex rings on a sphere,
with and without polar vortices.

rotating or translating. A few examples are vortex
polygons (see Figure 7) like the ones studied by
Thomson, Mayer, Yarmchuk-Gordon-Packard,
Boatto—Cabral (2003), Cabral-Schmidt (1999/
2000), Dritschel-Polvani (1993), Lim-Montaldi-
Roberts (2001), Sakajo (2004). For an exhaustive
review on relative equilibria of vortices, see the
article by Aref er al. (2003). We shall discuss
stability of polygonal vortex configuration in the
following subsection.

(iii) As shown by Kimura (1999) in a beautiful
geometrical formalism, on the unit sphere (S?) and
on the Hyperbolic plane (H?), the vortex Hamilto-
nians [15] are

H, = “ ZF ['slog(1 —cospas) on S

075[3
hpas — 1
Zr Islo Coshp "~ on H?
Ogéd €osh pap +
where
COS pag = cos f, cos by
4 sin 6, sin 6 cos(p, — p5) on S
cosh p,s = cosh 6, cosh
+ sinh 6, sinh 65 cos(é, — ¢5) on H?

On $2,0, and ¢, are, respectively, the co-latitude
and the longitude of the a-vortex, a=1,...,N. We
can define canonical variables g, and p, on §? and
H?, respectively, as

go =T0c0800,  pa=ca onS$

go =Tocoshb,, po=¢, on H

Montaldi et al. (2002) studied vortex dynamics on
a cylindrical surface, and Souliere and Tokieda
(2002) considered vortex dynamics on surfaces
with symmetries.

(iv) As we shall see in the section on point
vortex motion, it is sometimes useful to employ
the complex analysis formalism. Then the vari-
ables of interest are z, =x, +1ya,a=1,...,N, and
its conjugate Z,, the Hamiltonian [15] takes the
form

H, = — 5 {;F oI'ploglze — 24

and the equations of motions become

. N
o= Py e =% 4 =1,...,N [1¢]

2m i 12a — 2]

(v) Equation [14] can we rewritten in a more
compact form as

dX
@—]VxHy [17]
where
X:(q17~-7qN7P17---7PN)
Ty — <i 9 9 i)
X = aq1>"'aanaapla"'7apN

(5 o0)

I being the N x N identity matrix.

(vi) How close is the point-vortex model to the
original Euler equation? Point-vortex systems repre-
sent discrete solutions of the Euler equation in a
“weak” sense — see both the book and the article by
Marchioro and Pulvirenti (1993, 1994). These
authors proved that the Euler dynamics is “similar”
to the vortex dynamics in which the vortices are
localized in very small regions, and the vortex
intensities are the total vorticities associated to
such small regions. In particular, let us consider a
vorticity field with compact support on a family of
e-balls, that is,

N
_ § €
= w;
=1

with support of wf contained in the ball of center x;
(independent of ¢) and radius e. Furthermore let us

assume that
/ widr =T
[r—ri|<e
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L/

Figure 8 In the limit ¢ — 0, the dynamics of the center of
vorticity of a vortex e-ball is approximated by the dynamics of a
point vortex.

with the ~; independent of €. Then in the limit ¢ — 0
the dynamics of the center of vorticity
B.(t) = [rw.(r,t)dr, of a given e-ball, “converges”
to the motion of a single point vortex (see Figure 8).
This result is important to illustrate as vortex
systems provide both a useful heuristic tool in the
analysis of the general properties of the solutions of
Euler’s equations (Poupaud 2002, Schochet 1995),
and a useful starting point for the construction of
practical algorithms for solving equations in specific
situations. In particular, it provides a theoretical
justification to the vortex method previously intro-
duced by Carnevale et al. (1992). These authors
constructed a numerical algorithm to study turbu-
lence decaying in two dimensions. Their vortex
method greatly simplifies fluid simulations as basi-
cally it relies on a discretization of the fluid into
circular patches. The dynamics of patches is given
by the centers of vorticity, which interact as a point-
vortex system, endowed with a rule dictating how
patches merge (see Figure 9).

Stability of a Vortex Ring

As mentioned in the Introduction section, the study
of vortex relative equilibria has a long history.
Kelvin showed that steadily rotating patterns of
identical vortices arise as solutions of a variational
problem in which the interaction energy (vortex
Hamiltonian) is minimized subject to the constraint
that the angular impulse be maintained (see Aref
(2003). In 1883, while studying and modeling the
atomic structure, J ] Thomson investigated the linear

2a,| @ )
=~ = D) o

Figure 9 In Carnevale et al. (1992) the fluid is modeled by a
dilute vortex gas with density p and typical radius a. The
dynamics is governed by the point-vortex dynamics of the disk
centers, each disk corresponding to a point vortex of intensity
I =néext@?, Where Eqx plays the role of a vorticity density. Two
vortices or radius a; and a, merge when their center-to-center
distance is less or equal to the sum of their radii, a; + a;. Then a
new vortex is created and its radius as is given by
as=(af +af)"".

stability of co-rotating point vortices in the plane. In
particular, his interest was in configurations of
identical vortices equally spaced along the circum-
ference of a circle, that is, located at the vertices of a
regular polygon (see Figure 7). He proved that for
six or fewer vortices the polygonal configurations
are stable, while for seven vortices — the Thomson
heptagon — he erroneously concluded that the
configuration is slightly unstable. It took more
than a century to make some progresses on this
problem. D G Dritschel (1985) succeeded in solving
the heptagon mystery for what concerns its linear
stability analysis, leaving open the nonlinear stabi-
lity question: he proved that the Thomson heptagon
is neutrally stable and that for eight or more vortices
the corresponding polygonal configurations are
linearly unstable. Later on in 1993, Polvani and
Dritschel (1993) generalized the techniques used in
Dritschel (1985) to study the linear stability of a
“latitudinal” ring of point vortices on the sphere, as
a function of the number N of vortices in the ring,
and of the ring’s co-latitude 6 (see Figure 10). They
proved that polygonal configurations are more
unstable on the sphere than in the plane. In
particular, they showed that at the pole, for N < 7
the configuration is stable, for N=7 it is neutrally
stable and for N > 7 it is unstable. By means of the
energy momentum method (Marsden—-Meyer—Weistein
reduction), ] E Marsden and S Pekarsky (1998)
studied the nonlinear stability analysis for the
integrable case of polygonal configurations of
three vortices of arbitrary vorticities (I'y,I'; and
I's) on the sphere, leaving open the stability
analysis for nonintegrable vortex systems (N > 3).
In 1999 H E Cabral and D S Schmidt completed
the linear and nonlinear stability analysis at once
for polygonal configurations in the plane. In 2003
Boatto and Cabral studied the nonlinear stability of
a ring of vortices on the sphere, as a function of the
number of vortices N and the ring colatitude 6.

—

Figure 10 Latitudinal ring of vortices. Reproduced with
permission from Boatto S and Cabral HE SIAM Journal of
Applied Mathematics 64: 216-230 (2003).
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Boatto and Simé (2004) generalized the stability
analysis to the case of a ring with polar vortices
and of multiple rings, the key idea being, as we
shall discuss in this section, the structure of the
Hessian of the Hamiltonian.

How to infer about linear and nonlinear stability
of steadily rotating configurations?

Let us restrict the discussion to a polygonal ring of
identical vortices on a sphere as illustrated in
Figure 7 (Boatto and Cabral 2003, Boatto and
Sim6 2004). The reasoning is easily generalized for
the planar case. The case of multiple rings is
discussed in great detail in Boatto and Simo
(2004). A polygonal ring is a relative equilibrium
of coordinates  X(#) =(q1(¢),...,gn(t), p1(2), ...,
pn(2)), where

qa(t) = ¢a(t) =wt+ ¢oa
pa(t) =po=Tcosb, a=1,....N

w= (N - 1)170/7%3 To =1/ 1- p%/l"Z’ ¢0(y and 90(1' :90
being the initial longitude and co-latitude of the ath
vortex.

Theorem 1 (Spherical case) (Boatto and Simo
2004). The relative equilibrium (18] is (linearly and
nonlinearly) stable if

—4(N—-1)(11 = N) +24(N - 1)r?
+2N*+1+3(-D)N <0 [19]

[18]

and it is unstable if the inequality is reversed.

Remarks

(i) By Theorem 1 a vortex polygon, of N point vortices,
is stable for 0° < 6, < ! and (180° — 6%) < 6, <
180°, where ¢/ = arcsin(r;) and

7—N
1,:2 < 7] for N odd
N2 -8N+38
*2 e f N
ry < AN-1) or N even

where 7} = sin¢.

(i1) Theorem 1 includes at once the results of
Thomson (1883), Dritschel (1985), and Polvani
and Dritschel (1993) (and other authors who
have been working in the area (Aref ez al. 2003)).
We recover the planar case by setting r, =0 in
eqn [19], deducing that stability is guaranteed
for N < 7.

To prove Theorem 1 it is useful to consider the
Hamiltonian equations as in eqn [17]. The first step
is to make a change of reference frame: view the

dynamics in a frame co-rotating with the relative
equilibrium configuration. In the co-rotating refer-
ence system, the Hamiltonian takes the form

H=H+wM

where M is the momentum of the system, and H and
w are, respectively, the Hamiltonian and the rota-
tional frequency of the relative equilibrium in the
original frame of reference. In the new reference
frame, the relative equilibrium becomes an equili-
brium, X*, and the standard techniques can be used
to study its stability.

To study linear stability, the relevant equation is

dAX

7 - JSAX [20]
where X=X*+ AX, and S is the Hessian of H
evaluated at the equilibrium X*. Then linear (or
spectral) stability is deduced by studying the
eigenvalues of the matrix JS (spectral stability). For
nonlinear stability we make use of a sufficient
stability criterion due to Dirichlet (1897) (see G
Lejeune Dirichlet (1897). Werke, vol. 2, Berlin,
pp. 5-8; Boatto and Cabral (2003) and references
therein).

Theorem 2 Let X* be an equilibrium of an
autonomous system of ordinary differential equations

dx

- =/, ac RN 21]
that is, f(X*)=0. If there exists a positive (or
negative) definite integral F of the system [21] in a
neighborhood of the equilibrium X*, then X* is
stable.

In our case the Hamiltonian itself is an integral of
motion. Then by studying definiteness of its Hes-
sian, S, evaluated at X*, we infer minimal stability
intervals in # and N. Details are given in Boatto and
Cabral (2003) and Boatto and Simé6 (2004). The
proof is mainly based on the following
considerations:

1. Since S is a symmetric matrix it is diagonaliz-
able, that is, there exists an orthogonal matrix
C such that CTSC=D, where D is a diagonal
matrix, D =diag(\,...,An). Furthermore, the
matrix C can be chosen to leave invariant the
symplectic form (equivalently J=CTJC). Then
by the canonical change of variables Y=CTX
eqn [20] becomes

dﬁ—ty = JDAY 22]
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Where Y: (él, e ,5]N,[~71, e ,[BN) and (é/‘,[)i),

j=1,...,N, are pairs of conjugate variables.
Equation [22] can be rewritten as

d*Ag; B}

a2 = —NNaNAG,

j=1,...,N

2. When evaluated at the equilibrium X*, the
Hessian S takes the block structure

- (58)

where the matrices Q and P are symmetric circulant
matrices, that is, (N x N) matrices of the form

al ay ... aN
aN a1 ... d4N-1

A= . .o . [23]
a as ... ap

Circulant matrices are of special interest to us
because we can easily compute their eigenvalues
and eigenvectors for all N. In fact, it is immediate
to show that:

Lemma 3 All
eigenvalues

circulant matrices [23] have

N
)\/:Zakrf_]7 ]:177N
k=1

and  corresponding  eigenvectors vi=(1,7j,...,
rfN’l)T,]'zl,...,N, where rj=exp (2n(j — 1)/N)
are solutions of ™ =1.

Passive Tracers in the Velocity Fields of N Point
Vortices: The Restricted (N + 1)-Vortex Problem

The terminology “restricted (N + 1)-vortex prob-
lem” is used in analogy with celestial mechanics
literature, when one of the vorticities is taken to be
zero. The zero-vorticity vortex does not affect the
dynamics of the remaining N-vortices. For this
reason, it is said to be passively advected by the
flow of the remaining N-vortices and in the fluid
mechanics literature the terminology “passive tra-
cer” is also employed. The tracer dynamics is given
by the Hamiltonian equations [8]. Notice that in
general the Hamiltonian ¥ is time dependent,
through the vortex variables 7j,j=1,..., N, that is,

\Il(ra t) = \I/(r;rl(t)a o 'arN(t))

and (g,p) = (x,y) play the role of conjugate canoni-
cal variables. There is an extensive literature on the
subject both from theoretical (see, e.g., Boatto and
Sim6 (2004) and Newton (2001)) and an experi-
mental (van Heijst 1993, Ottino 1990) point of

view. As discussed in the previous section, there are
some vortex configurations, such as the polygonal
ones, for which vortices undergo a periodic circular
motion. Then by viewing the dynamics in a
reference frame co-rotating with the vortices the
tracer Hamiltonian is manifestly time independent
and, therefore, integrable — since it reduces to a
Hamiltonian of one degree of freedom. In such an
occurrence, tracer trajectories form a web of homo-
clinic and heteroclinic orbits. An interesting theo-
retical problem is to study how the tracer transport
properties (i.e., existence of barriers to transport,
diffusion etc.) are affected by perturbing the poly-
gonal vortex configuration, that is, by introducing in
¥ a “genuine” time dependence (periodic, quasi-
periodic, or chaotic) (see, e.g., Boatto and Pierre-
humbert (1999), Rom-Kedar, Leonard and Wiggins
(1990), Kuznetsov and Zaslavsky (2000), and
Newton (2001)). Furthermore, in the lab experi-
ments, color dyes, which monitor the flow velocity
field, are often used as the experimental equivalent
of tracer particles. In this context we would like to
stress the striking resemblance between theoretical
particle trajectories, deduced from point vortex
dynamics, and the actual dye visualizations observed
by van Heijst and Flor for vortex dipoles in a
stratified fluid (see Figures 11 and 12) (van Heijst
1993). Similarly, tripolar structures have been
observed both in lab experiments (see Figure 13)
and in nature (see Figure 14). Recently, the Danish
group of Jansson-Haspang-Jensen—Hersen-Bohr has
observed beautiful rotating polygons, such as
squares and pentagons, on a fluid surface in the
presence of a rotating cylinder (see Figure 15).

Point Vortex Motion with Boundaries

In comparison with the extensive literature on point
vortex motion in unbounded domains, the study of
point vortex motion in the presence of walls is modest.
There is, however, a general theory for such problems,
and some recent new developments in this area have
resulted in a versatile tool for analyzing point vortex
motion with boundaries. Newton (Newton 2001)
contains a chapter on point vortex motion with
boundaries and also features a detailed bibliography.
The reader is referred there for standard treatments;
here, we focus on more recent developments of the
mathematical theory.

The Method of Images

When point vortices move around in bounded
domains, it is clear that the motion is subject to
the constraint that no fluid should penetrate any of
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Figure 11 Test-particle trajectories: on the left, theoretical
trajectories, from the point-vortex model; on the right, a top view
of a laboratory experiment in stratified flows. Reproduced from
van Heijst GJF and Flor JB (1989) Dipole formation and
collisions in a stratified fluid. Nature 340: 212-215, with
permission from Nature Publishing Group.

the boundary walls of the domain. If # denotes the
local normal to the boundary walls, the boundary
condition on the velocity field # is therefore u# - n=0
everywhere on the walls. Another way to say the
same thing is that all the walls must be streamlines
so that the streamfunction, ¢ say, must be constant
on any boundary wall.

A classical approach to bounded vortex motion is
the celebrated method of images — a rather special
technique limited to cases where the domain of
interest has certain geometrical symmetries so that
an appropriate distribution of image vorticity can be
ascertained, essentially by inspection. This image
vorticity is placed in nonphysical regions of the
plane in order to satisfy the boundary conditions
that the walls act as impenetrable barriers for the
flow.

The simplest example is the motion of a single
vortex next to a straight plane wall of infinite
extent. Suppose the wall is along y=0 in an (x,y)-
plane and that the fluid occupies the upper-half
plane. If a circulation-I" vortex is at the complex
position zp=x¢ + iyo, the solution for the stream-
function is

_ I Z—20
:——1 _—
¥(z,2) o8l ——

> [24]

where z=x+1iy. This has a single logarithmic
singularity in the wupper-half plane at z=g2

Figure 12 A frontal collision of two dipoles as observed in a
stratified fluid: after a so called “partner-exchange” two new
dipoles are formed. Reproduced from van Heijst GJF and Flor JB
(1989) Dipole formation and collisions in a stratified fluid. Nature
340: 212-215, with permission from Nature Publishing Group.

Figure 13 A tripolar vortex structure as observed in a rotating
stratified fluid. Reproduced from van Heijst GJF, Kloosterziel
RC, and Wiliams CWM (1991) Laboratory experiments on the
tripolar vortex in a rotating fluid. Journal of Fluid Mechanics 225:
301-331, with permission from Cambridge University Press.
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Figure 14 |Infrared image taken by NOAA11 satellite on
January 4 1990 (0212 UT) shows a tripolar structure in the
Bay of Biscay. The central part of the tripole measures about
50-70 km and rotates clockwise, whereas the two satellite
vortices rotate anticlockwise. The dipoles persisted for a few
days before it fell apart. Reproduced from Pingree RD and Le
Cann B, Anticyclonic Eddy X91 in the Southern Bay of Biscay,
Journal of Geophysical Research, 97: 14353-14362, May 1991
to February 1992. Copyright (1992) American Geophysical
Union. Reproduced/modified by permission of American Geo-
physical Union.

~

Figure 15 The free surface of a rotating fluid will, due to the
centrifugal force, be pressed radially outward. If the flow is driven
by rotating the bottom plate, the axial symmetry can break
spontaneously and the surface can take the shape of a rigidly
rotating polygon. With water Jansson—-Haspang-Jensen—Her-
sen—-Bohr have observed polygons with up to six corners. The
rotation speed of the polygons does not coincide with that of the
plate, but it is often mode-locked, such that the polygon rotates
by one corner for each complete rotation of the plate.
Reproduced from Jansson TRN, Haspang M, Jensen KH,
Hersen P, and Bohr T (2005) Rotating polygons on a fluid
surface. Preprint, with permission from T Bohr.

(corresponding to the point vortex) and it is easily
checked that =0 on y=0. Therefore, no fluid
penetrates the wall. Equation [24] can be written as

r r
Y(2,2) = —ﬂlog |z — 20 +ﬂlog 2 —Zo|  [25]

which is the sum of the streamfunction due to a
point vortex of circulation T' at zp=x0 + 1y and
another, one imagines, of circulation —I' at Zg=
xo — 1yo. In this case, the image vortex distribution is
simple: it is just the second vortex sitting at the
reflected point in the wall. The method of images
can be applied to flows in other regions bounded by
straight line segments (e.g., wedge regions of various
angles (Newton 2001)).

A variant of the method of images is the Milne—
Thomson circle theorem relevant to planar flow
around a circular cylinder. Given a complex
potential w(z) with the required singularities in the
fluid region exterior to the cylinder, but failing to
satisfy the boundary condition that the surface of
the cylinder is a streamline, this theorem says that
the correct potential W(z) is

W(z) = w(z) +@(a*/2) [26]

where a is the cylinder radius and 7(z) is the
conjugate function to w(z). It is easy to verify that
the imaginary part of W(z), that is, the stream-
function, is zero on |z|=a. The second term,
w(a®/z), produces the required distribution of
image vorticity inside the cylinder. A famous
example is the Foppl vortex pair which is the
simplest model of the trailing vortices shed in the
wake of a circular aerofoil traveling at uniform
speed.

Kirchhoff-Routh-Lin Theory

The most important general mathematical tool for
point vortex motion in bounded planar regions is
the Hamiltonian approach associated with the
names of Kirchhoff (1876) and Routh (1881),
who developed the early theory. It is now known
that the problem of N-vortex motion in a simply
connected domain is a Hamiltonian dynamical
system. Moreover, the Hamiltonian has simple
transformation properties when a given flow
domain of interest is mapped conformally to
another — a result originally due to Routh. A
formula for the Hamiltonian can be built from
knowledge of the instantaneous Green’s function
associated with motion of the point vortex in the
simply connected domain D. In fact, [24] is
precisely the relevant Green’s function when D is
the upper-half plane.
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Much later, in 1941, Lin (1941a) extended these
general results to the case of multiply connected
fluid regions. To visualize such a region, think of a
bounded region of the plane containing fluid but
also a finite number of impenetrable islands whose
boundaries act as barriers for the fluid motion. If the
islands are infinitely thin, they can be thought of as
straight wall segments immersed in the flow (see
later examples). Lin (1941b) showed that both the
Hamiltonian structure, and the transformation
properties of the Hamiltonian under conformal
mapping, are preserved in the multiply connected
case.

Lin’s Special Green’s Function

Since Lin’s result subsumes the earlier simply
connected studies, we now outline the key results
as presented in Lin (1941a). Consider a fluid region
D, with outer boundary Cy and M enclosed islands
each having boundaries {Cj|j=1,...,M}. Lin intro-
duced a special Green’s function G(x,y;x0,v0)
satisfying the following properties:

1. the function

1
g(x,y:x0,y0) = —G(x,y;%0,Y0) — Elogro 27]

is harmonic with respect to (x,y) throughout
the region D including at the point (x¢, yo). Here,

ro—\/x—xo + (v = y0)’s
2. if 3G /0n is the normal derivative of G on a curve
then

G(xvy;anyO)_Akv on Ckvkzla"'vM

—ds-
o 871

E=1,....M 28]

where ds denotes an element of arc and {A.} are
constants;
3. G(x7y;x09y0> =0 on CO-

Flucher and Gustafsson (1997) refer to this G as
the hydrodynamic Green’s function. (In fact, it
coincides with the modified Green’s function
arising in abstract potential theory — a function
that is dual to the usual first-type Green’s function
that equals zero on all the domain boundaries.)
On the use of G, Lin established the following two
key results:

Theorem 4 If N wvortices of strengths {T')|k=
1,...,N} are present in an incompressible fluid at
the points {(xp, i)k =1,...,N} in a general multi-
ply connected region D bounded by fixed bound-
aries, the stream function of the fluid motion is
given by

D(x, Y5 Xgs V)

N
= Po(x,9) + > _TuGlx,yixe ) [29]
k=1

where y(x,y) is the streamfunction due to outside

agencies and is independent of the point vortex
positions.

Theorem 5 For the motion of vortices of strengths
{Thlk=1,...,N} in a general region D bounded by
fixed boundaries, there exists a Kirchhoff-Routh
function H({xy,y.}), depending on the point vortex
positions, such that

dx ko OH T dy ko oH

ar T oy Kt T oxg 130

where H({xy,y.}) is given by

Z Letho (ks yi)

1

N
H({xg,ye})
=

+ Z L, Ly G (Xt Vi3 Xy s Vi)

ky k=1
ky>ky

1 N
_zzrig(xkaYbeyk) [31]
k=1

In rescaled coordinates (x,,Tyyp), [30] is a Hamil-
tonian system in canonical form. For historical
reasons, H is often called the Kirchhoff-Routh
path function. Analyzing the separate contributions
to the path function [31] is instructive: the first term
is the contribution from flows imposed from outside
(e.g., background flows and round-island circula-
tions), the second term is the “free-space” contribu-
tion (it is the relevant Hamiltonian when no
boundaries are present) while the third term encodes
the effect of the boundary walls (or, the effect of the
“image vorticity” distribution discussed earlier).

Lin (1941a) went on to show that, with the
Hamiltonian in some D given by H in [31], the
Hamiltonian relevant to vortex motion in another
domain obtained from D by a conformal mapping
z(¢) consists of [31] with some simple extra additive
contributions dependent only on the derivative of
the map z({) evaluated at the point vortex positions.

Flucher and Gustafsson (1997) also introduce
the Robin function R(xo,yo) defined as the regular
part of the above hydrodynamic Green’s function
evaluated at the point vortex. Indeed, R(xo,y0) =
g(x0,903%0,Y0), where g is defined in [27]. An
interesting fact is that, for single-vortex motion in
a simply connected domain, R(xo,yo) satisfies the
quasilinear elliptic Liouville equation everywhere in
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D with the boundary condition that it becomes
infinite everywhere on the boundary of D.

By combining the Kirchhoff-Routh theory with
conformal mapping theory, many interesting prob-
lems can be studied. What happens, for example, if
there is a gap in the wall of Figure 16? In recent
work, Johnson and McDonald (2005) show that if
the vortex starts off, far from the gap, at a distance
of less than half the gap width from the wall, then it
will eventually penetrate the gap. Otherwise, it will
dip towards the gap but not go through it. The
trajectories are shown in Figure 17.

Unfortunately, Lin did not provide any explicit
analytical expressions for G in the multiply con-
nected case. This has limited the applicability of his
theory beyond fluid regions that are anything other
than simply and doubly connected. Recently, how-
ever, Lin’s theory has recently been brought to
implementational fruition by Crowdy and Marshall

Point vortex, circulation T’

JAI
\_/

Wall

)

Image vortex, circulation-I'

Figure 16 The motion of a point vortex near an infinite straight
wall. The vortex moves, at constant speed, maintaining a
constant distance from the wall. Other possible trajectories are
shown; they are all straight lines parallel to the wall. The motion
can be thought of as being induced by an opposite-circulation
“image” vortex at the reflected point in the wall.

Figure 17 Distribution of point vortex trajectories near a wall
with a single gap of length 2. There is a critical trajectory which,
far from the gap, is unit distance from the wall.

(2005a), who, up to conformal mapping, have
derived explicit formulas for the hydrodynamic
Green’s function in multiply connected fluid regions
of arbitrary finite connectivity. Their approach
makes use of elements of classical function theory
dating back to the work of Poincaré, Schottky, and
Klein (among others). This allows new problems
involving bounded vortex motion to be tackled. For
example, the motion of a single vortex around
multiple circular islands has been studied in Crowdy
and Marshall (2005b), thereby extending recent
work on the two-island problem (Johnson and
McDonald 200S5). If the wall in Figure 17 happens
to have two (or more) gaps, then the fluid region is
multiply connected. The two-gap (doubly con-
nected) case was recently solved by Johnson and
McDonald (2005) using Schwarz—Christoffel maps
combined with elements of elliptic function theory
(see Figure 18). Crowdy and Marshall have solved
the problem of an arbitrary number of gaps in a wall
by exploiting the new general theory presented
in Crowdy and Marshall (2005a,b) (and related
works by the authors). The case of a wall with three
gaps represents a triply connected fluid region and
the critical vortex trajectory is plotted in Figure 19.

Point vortex motion in bounded domains on the
surface of a sphere has received scant attention in

-3 -2 -1 0 1 2 3

Figure 18 The critical trajectory when there are two symmetric
gaps in a wall. The fluid region is now doubly connected. This
problem is solved in Johnson and McDonald (2005) and Crowdy
and Marshall (2005).
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-2 L
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Figure 19 The critical vortex trajectories when there are three
gaps in the wall. This time the fluid region is triply connected.
This problem is solved in Crowdy and Marshall (2005) using the
general methods in Crowdy and Marshall (2005).
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the literature, although Kidambi and Newton
(2000) and Newton (2001) have recently made a
contribution. Such paradigms are clearly relevant
to  planetary-scale  oceanographic  flows in
which oceanic eddies interact with topography such
as ridges and land masses and deserve further study.
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Introduction

The Poisson reduction techniques allow the con-
struction of new Poisson structures out of a given
one by combination of two operations: “restriction”
to submanifolds that satisfy certain compatibility
assumptions and passage to a “quotient space”
where certain degeneracies have been eliminated.
For certain kinds of reduction, it is necessary to pass
first to a submanifold and then take a quotient.
Before making this more explicit, we introduce the
notations that will be used in this article. All
manifolds in this article are finite dimensional.

Poisson Manifolds

A “Poisson manifold” is a pair (M, {-, -}), where M is a
manifold and {-, -} is a bilinear operation on C>*(M)
such that (C*(M),{-, -}) is a Lie algebra and {-, -} isa
derivation (i.e., the Leibniz identity holds) in each
argument. The pair (C*(M),{-,}) is also called a
“Poisson algebra.” The functions in the center C(M) of
the Lie algebra (C>*(M),{-,-}) are called “Casimir
functions.” From the natural isomorphism between
derivations on C*°(M) and vector fields on M, it follows
that each h € C*°(M) induces a vector field on M via the
expression X, ={-, b}, called the “Hamiltonian vector
field” associated to the “Hamiltonian function” b.
The triplet (M, {-, -}, b) is called a “Poisson dynami-
cal system.” Any Hamiltonian system on a symplec-
tic manifold is a Poisson dynamical system relative
to the Poisson bracket induced by the symplectic

structure. Given a Poisson dynamical system
(M, {-,-}, b), its “integrals of motion” or “con-
served quantities” are defined as the centralizer of
h in (C*(M),{-,-}) that is, the subalgebra of
(C®(M),{-,-}) consisting of the functions
feC®M) such that {f,h}=0. Note that the
terminology is justified since, by Hamilton’s equa-
tions in Poisson bracket form, we have f =X,,[f]=
{f,h} =0, that is, f is constant on the flow of X,. A
smooth mapping ¢:M; — M,, between the two
Poisson manifolds (My,{-,-};) and (Mp,{-,}5),
is called “canonical” or “Poisson” if for all g,
heC*¥(My) we have ¢*{g,hl,= {p'g¢"gh. If
p: M1 — M, is a smooth map between two Poisson
manifolds (My, {-,-};) and (Ma,{-,-},), then ¢ is a
Poisson map if and only if Ty o X, =X 0 for
any he C>(M;), where Typ:TM;— TM, denotes
the tangent map (or derivative) of ¢.

Let (S, {-, -}%) and (M, {-, -™) be two Poisson mani-
folds such that S € M and the inclusion ig:S— M
is an immersion. The Poisson manifold (S, {-,-}°) is
called a “Poisson submanifold” of (M,{-, M)
if ig is a canonical map. An immersed submanifold
O of M is called a “quasi-Poisson submanifold” of
(M, {-, -} if for any g € O, any open neighborhood
U of g in M, and any feC>(U) we have
X(iolq)) € T4io(T4Q), where ig:Q<—M is the
inclusion and Xy is the Hamiltonian vector field of f
on U with respect to the Poisson bracket of M
restricted to U. If (S,{-, -}%) is a Poisson submanifold
of (M, {-, -1™), then there is no other bracket {-, -} on
S making the inclusion i : § < M into a canonical map.
If QO is a quasi-Poisson submanifold of (M, {-, -}), then
there exists a unique Poisson structure {-, 1€ on O
that makes it into a Poisson submanifold of (M, {-, -})
but this Poisson structure may be different from the
given one on Q. Any Poisson submanifold is quasi-
Poisson but the converse is not true in general.



80 Poisson Reduction

The Poisson Tensor and Symplectic Leaves

The derivation property of the Poisson bracket implies
that for any two functions f,g€ C®(M), the value of
the bracket {f, g}(z) at an arbitrary point z€ M (and
therefore X/(z ) as well) depends on f only through
df(z) which allows us to define a contravariant
antisymmetric 2-tensor B € A*(T*M), called the “Pois-
son tensor,” by B(z)(as, 3;)={f,g}(z), where
df(z)=a,€T;M and dg(z) =/, € T;M. The vector
bundle map B*: T*M — TM over the identity naturally
associated to B is defined by B(z)(ay,8:)=
(o, BY(B,)). Tts range D:=BYT*M) C TM is called
the “characteristic distribution” of (M, {- , -}) since D is
a generalized smooth integrable distribution. Its
maximal integral leaves are called the “symplectic
leaves” of M for they carry a symplectic structure that
makes them into Poisson submanifolds. As integral
leaves of an integrable distribution, the symplectic
leaves £ are “initial submanifolds” of M, that is, the
inclusion i : £ < M is an injective immersion such that
for any smooth manifold P, an arbitrary map g: P — L
is smooth if and only if i 0 g: P — M is smooth.

Poisson Reduction
Canonical Lie Group Actions

Let (M,{-,-}) be a Poisson manifold and let G be a
Lie group acting canonically on M via the map
®:G x M— M. An action is called “canonical” if
for any h € G and f, g € C*(M), one has

{fo®ygo®}={f,g}o®,

If the G-action is free and proper, then the orbit space
M/ G is a smooth regular quotient manifold. Moreover,
it is also a Poisson manifold with the Poisson bracket
{-, ?M/SC uniquely characterized by the relation

{f.g}"C (w(m)) = {f o m,g o w}H(m) 1]

for any me M and where f,g: M/G— R are two
arbitrary smooth functions. This bracket is appro-
priate for the reduction of Hamiltonian dynamics
in the sense that if h€ C*(M)® is a G-invariant
smooth function on M, then the Hamiltonian
flow F; of X, commutes with the G-action, so it
induces a flow F"/¢ on M/G that is Hamiltonian on
(M/G,{-, M G) for the reduced Hamiltonian
functlon [h] € C>°(M/G) defined by [h] o m=h.

If the Poisson manifold (M,{-,-}) is actually
symplectic with form w and the G-action has an
associated momentum map J:M—q*, then the
symplectic leaves of (M / G,{-, - M/C) are given by the
spaces (M, :=G ]*1 /G Wo where J N p)Fisa
connected component ofthe fiber. ] Y() and wo is the
restriction to Mg, of the symplectic form wp, “of the

symplectic orbit reduced space Mo, (see Symmetry
and Symplectic Reduction). If, additionally, G is
compact, M is connected, and the momentum map J
is proper, then Mg, = Mo,.

In the remainder of this section, we characterize
the situations in which new Poisson manifolds can
be obtained out of a given one by a combination of
restriction to a submanifold and passage to the
quotient with respect to an equivalence relation that
encodes the symmetries of the bracket.

Definition 1 Let (M,{-,-}) be a Poisson manifold
and D C TM a smooth distribution on M. The
distribution D is called “Poisson” or “canonical,” if
the condition df|, =dg|, =0, for any f,ge C>*(U)
and any open subset U C P, implies that d{f, g}|,, =0.

Unless strong regularity assumptions are invoked, the
passage to the leaf space of a canonical distribution
destroys the smoothness of the quotient topological
space. In such situations, the Poisson algebra of functions
is too small and the notion of presheaf of Poisson
algebras is needed. See Singularity and Bifurcation
Theory for more information on singularity theory.

Definition 2 Let M be a topological space with a
presheaf F of smooth functions. A presheaf of Poisson
algebras on (M, F) is a map {-, -} that assigns to each
open set U C M a bilinear operation {-, -};;: F(U) x
F(U)— F(U) such that the pair (F(U),{-, }y) is a
Poisson algebra. A presheaf of Poisson algebras is
denoted as a triple (M,F,{-,-}). The presheaf of
Poisson algebras (M, F, {-, -}) is said to be “nondegene-
rate” if the following condition holds: if f € F(U) is such
that {f, g}yny =0, for any g € F(V) and any open set of
V, then fis constant on the connected components of U.

Any Poisson manifold (M,{-,-}) has a natural
presheaf of Poisson algebras on its presheaf of smooth
functions that associates to any open subset U of M
the restriction {-, -}|; of {-, -} to C>(U) x C>(U).

Definition 3 Let P be a topological space and
Z={S;};cs a locally finite partition of P into smooth
manifolds S; C P,i €1, that are locally closed topo-
logical subspaces of P (hence their manifold topol-
ogy is the relative one induced by P). The pair (P, Z)
is called a “decomposition” of P with “pieces” in Z,
or a “decomposed space,” if the following “frontier
condition” holds:

Condition (DS) If R,S € Z are such that RNS # 0,
then R C S. In this case, we write R <S. If, in
addition, R # S we say that R is incident to S or that
it is a boundary piece of § and write R < S.

Definition 4 Let M be a differentiable manifold
and S C M a decomposed subset of M. Let {S;};c;
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be the pieces of this decomposition. The topology
of S is not necessarily the relative topology as a
subset of M. Then D C TM|g is called a “smooth
distribution” on S adapted to the decomposition
{Si}ics, if DNTS; is a smooth distribution on S; for
all i € I. The distribution D is said to be “integrable”
if DN TS; is integrable for each i€ 1.

In the situation described by the previous defini-
tion and if D is integrable, the integrability of the
distributions Ds,:=DNTS; on S; allows us to
partition each S; into the corresponding maximal
integral manifolds. Thus, there is an equivalence
relation on S; whose equivalence classes are precisely
these maximal integral manifolds. Doing this on
each §;, we obtain an equivalence relation Dg on the
whole set S by taking the union of the different
equivalence classes corresponding to all the Dg,.
Define the quotient space S/Dg by

S/Ds := | JSi/Ds,

iel

and let mp,: S — S/Ds be the natural projection.

The Presheaf of Smooth Functions on S/Dgs

Define the presheaf of smooth functions Cgj;, on
§/Dyg as the map that associates to any open subset V
of §/Ds the set of functions Cg7, (V) characterized
by the following property: f € Csins(V) if and only if
for any z€V there exists me FBls(V),Um open
neighborhood of m in M, and F € C*(U,,) such that

fo 7TDs|ﬂ]3;(v)mUm = F|7r5§(V)ﬁU,,, 2]

F is called a “local extension” of f o 7p, at the point
menp,. (V). When the distribution D is trivial, the
presheaf CSip, coincides with the presheaf of
Whitney smooth functions C5°), on S induced by
the smooth functions on M.

The presheaf C§7Ds is said to have the (D, Dyg)-
local extension property when the topology of S is
stronger than the relative topology and, at the same
time, the local extensions of f o mp, defined in [2]
can always be chosen to satisfy

dF(n)|p,y =0 foranyne WB%(V) NU,

Fis called a “local D-invariant extension” of f o 7p, at
the point m € 7r518(V). If S is a smooth embedded
submanifold of M and Dy is a smooth, integrable, and
regular distribution on S, then the presheaf CSipy
coincides with the presheaf of smooth functions on
§/Dgs when considered as a regular quotient manifold.

The following definition spells out what we mean
by obtaining a bracket via reduction.

Definition 5 Let (M,{-,-}) be a Poisson manifold,
S a decomposed subset of M, and D C TM|s a
Poisson-integrable generalized distribution adapted
to the decomposition of S. Assume that CSip,
has the (D, Dg)-local extension property. Then
(M, {-,-},D,S) is said to be “Poisson reducible” if
(S/DS,C§7DS, {-, 1/Ps) is a well-defined presheaf of
Poisson algebras where, for any open set V C §/Dg,
the bracket {-, /™" : C35p, (V) x G5 (V) = G5,
(V) is given by

{f. g (wpy(m)) := {F, G}(m)

for any m GWB{,(V) for local D-invariant extensions
F,G at m of f o mp, and g o mp,, respectively.

Theorem 1 Let (M, {-, -}) be a Poisson manifold with
associated Poisson tensor B € A*(T*M), S a decom-
posed space, and D C TM|gy a Poisson-integrable
generalized distribution adapted to the decomposition
of S (see Definitions 4 and 1). Assume that Cgp,  has
the (D, Ds)-local extension property. Then (Nf, (-,
D, S) is Poisson reducible if for any m € S

B (A,) € [A5,]° [3]

where A,,:={dF(m)|F € C*(Uy,),dF(z)|p, =0, for
all ze U, NS, and for any open neighborbhood U,
of m in M} and A} :={dF(m)eA,|F|y y is
constant for an open neighborhood U, of m in M
and an open neighborbood V,,, of m in S}.

If S is endowed with the relative topology, then
Ay :={dF(m) € A,|F|y, v, is constant for an open
neighborhood U,, of m in M}.

Reduction by Regular Canonical Distributions

Let (M,{-,-}) be a Poisson manifold and S an
embedded submanifold of M. Let D C TM|; be a
sub-bundle of the tangent bundle of M restricted to
S such that Dg:=D N TS is a smooth, integrable,
regular distribution on S and D is canonical.

Theorem 2 With the above hypotheses, (M, {-, -},
D, S) is Poisson reducible if and only if

B(D°)CTS+D [4]

Applications of the Poisson Reduction
Theorem

Reduction of Coisotropic Submanifolds

Let (M,{-,-}) be a Poisson manifold with associated
Poisson tensor B € A*(T*M) and S an immersed
smooth submanifold of M. Denote by (TS)°:={a, €
TiM|{as,v5) =0, for all seS, vseTS} C T*M the
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conormal bundle of the manifold S; it is a vector
sub-bundle of T*M|;. The manifold S is called
“coisotropic” if B(TS)°) C TS. In the physics
literature, coisotropic submanifolds appear some-
times under the name of “first-class constraints.”
The following are equivalent:

1. S is coisotropic;

2. if f € C*(M) satisfies f|g = 0, then X/[g € X(S);

3. for any s €S, any open neighborhood Us of s in
M, and any function ge C>®(U,) such that
Xg(s) € TS, if f e C®(Us) satisfies {f,g}(s) =0, it
follows that X¢(s) € TsS;

4. the subalgebra {f € C*(M) | f|g = 0} is a Poisson
subalgebra of (C*(M),{-, -}).

The following proposition shows how to endow
the coisotropic submanifolds of a Poisson manifold
with a Poisson structure by using the reduction
theorem 1.

Proposition 1 Let (M, {-,-}) be a Poisson manifold
with associated Poisson tensor B € A*(T*M). Let S
be an embedded coisotropic submanifold of M and
D :=BY(TS)°). Then

(i) D=DNTS=Ds is a
distribution on S.

(ii) D is integrable.

(iii) If CSp, has the (D, Ds)-local extension property,
then (M, {-,-},D,S) is Poisson reducible.

smooth  generalized

Coisotropic submanifolds usually appear as the
level sets of integrals in involution. Let (M, {-, -}) be a
Poisson manifold with Poisson tensor B and let
fis--5fr € C*(M) be k smooth functions in involu-
tion, that is, {f;,f;}=0, for any ije{l,...,k}.
Assume that 0 € R¥ is a regular value of the function
F:=(f,....fz): M— R* and let S:=F~1(0). Since for
any s€S, span{dfi(s),...,df.(s)} C (TsS)° and the
dimensions of both sides of this inclusion are equal,
it follows that span{dfi(s),...,dfr(s)}=(TsS)°.
Hence, B¥(s)((T.S)°) =span{Xj,(s),..., X/ (s)} and
B(s) ((TS)°) C TS by the involutivity of the compo-
nents of F. Consequently, S is a coisotropic submani-

fold of (M, {-,-}).

Cosymplectic Submanifolds and Dirac’s
Constraints Formula

The Poisson reduction theorem 2 allows us to define
Poisson structures on certain embedded submani-
folds that are not Poisson submanifolds.

Definition 6 Let (M,{-,-}) be a Poisson manifold
and let B€ A*(T*M) be the corresponding Poisson
tensor. An embedded submanifold S C M is called
cosymplectic if

(i) B¥(TS)°)n TS =({0},
(i) TeS + ToLe=T.M,

for any s€ S and L, the symplectic leaf of (M,{-,})
containing s € S.

The cosymplectic submanifolds of a symplectic mani-
fold (M, w) are its symplectic submanifolds. Cosym-
plectic submanifolds appear in the physics literature
under the name of “second-class constraints.”

Proposition 2 Let (M,{-, -}) be a Poisson manifold,
BcA*(T*M) the corresponding Poisson tensor,
and S a cosymplectic submanifold of M. then, for
any s €S,

(1) TeLs= (TSN TLs) ® BEs)((TSS)°), where L is
the symplectic leaf of (M,{-,-}) that contains
ses.

(ii) (T.S)° N ker B¥(s) = {0}.

(iii) ToM = Bt (s)((T:S)°) & T.S.

(iv) B¥((TS)°) is a sub-bundle of TM|s and hence
TM|s = BY(TS)*) & TS.

(v) The symplectic leaves of (M,{-,-}) intersect S
transversely and hence SNL is an initial
submanifold of S, for any symplectic leaf L of
(M) { 5 })

Theorem 3 (The Poisson structure of a cosymplectic
submanifold). Let (M, {-,-}) be a Poisson manifold,
BcAX(T*M) the corresponding Poisson tensor,

and S a cosymplectic submanifold of M. Let
D:=Bt ((TS)°) C TM|,. Then,

(i) (M,{-,-},D,S) is Poisson reducible.
(il) The corresponding quotient manifold equals S
and the reduced bracket {- -} is given by

{f.g)*(s) = {F.G}(s) [5]

where f, g€ C¥\(V) are arbitrary and F,G €
C>®(U) are local D-invariant extensions of [
and g around s € S, respectively.

(iii) The Hamiltonian vector field Xy of an arbitrary
function f € C3\(V) is given either by

TioXy=Xpoi [6]

where Fe C*(U) is a local D-invariant exten-
sion of fand i:S— M is the inclusion, or by

TioXy=mgoXzoi [7]

where F € C*(U) is an arbitrary local extension
of f and ws:TM|;— TS is the projection
induced by the Whitney sum decomposition
TM|s = B ((TS)°) & TS of TM;.

(iv) The symplectic leaves of (S,{-,-}5) are the
connected components of the intersections SN L,
where L is a symplectic leaf of (M,{-,-}). Any
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symplectic leaf of (S,{-,-}’) is a symplectic
submanifold of the symplectic leaf of (M,{-,-})
that contains it.

(v) Let L; and L3 be the symplectic leaves of
(M, {-,-}) and (S,{- , -}*), respectively, that contain
the point s € S. Let we, and w 5 be the correspond-
ing symplectic forms. Then Bi(s)((TsS)°) is a
symplectic subspace of TsL; and

BH(s)(T.8)°) = (TLf)™" 8]
where (T, ES e denotes the we,(s)-orthogonal
complement of TL3 in T.Ls.

Let Bs € A>(T*S) be the Poisson tensor associated
to (S,{-,-)%). Then

A
<
_

)

Bf = 50 B|go 9]

where 7§5: T*S — T*M|y is the dual of ws: TM|
— T8.

The “Dirac constraints formula” is the expression in
coordinates for the bracket of a cosymplectic
submanifold. Let (M,{-,-}) be an n-dimensional
Poisson manifold and let S be a k-dimensional
cosymplectic submanifold of M. Let zy be an
arbitrary point in § and (U, k) a submanifold chart
around zg such that £= (3, ¥): U — Vi x V,, where
V1 and V; are two open neighborhoods of the origin
in two Euclidean spaces such that %(zo) = (%(z0),
B(z0)) = (0,0) and

R(UNS) =V, x{0} [10]
Let $ =:(%",...,%%) be the components of &
and define 3': =305 P =0 |yns- Extend
$',...,3" to D-invariant functions ¢',..., % on U.
Since the differentials d@'(s),...,d@"(s) are linearly
independent for any se UNS, we can assume (by
shrinking U if necessary) that dy'(z),...,do"(z) are
also linearly independent for any z€U. Conse-
quently, (U,x) with r:=(p",...,0k ', ... 9" %) is
a submanifold chart for M around zp with respect to
S such that, by construction,

do' () g (o) (s
= =d"(s)[pe o

for any seUnNS. This implies that for any
ie{l,...,k},je{l,...,n—k},and s€ S

{9/} (s) = d'(s) (Xyi(s)) = 0
since dv/(s) € (T,S)° by [10] and hence

(1) = 0

Xyi(s) € BF()((T:S)°) [11]

Additionally, since the functions ¢',...,¢* are
D-invariant, by [6], it follows that

le (S) = X;l (S) eTss,... 7X¢7k (S)
= Xk (S) eTSS
[

for any seS. Consequently, {X,i(s),...
Xy (s)y - s Xynr(s)} spans ToLs with

(X (s)s o, X))} C TSN TLL

aX;pk (5)9

and
{le (S), ey
By Proposition 2(i),
span{X:(s),...,

Xyi(s)} C B#(s)((T,S)°)

Xe(s)} = TSN TL,
and

span{Xyi(s), ..., Xyt (s)} = BF(s)((T:S)°)

Since dim(B#(s)((TsS) ))=n—k by Proposition
2(iii), it follows that {Xyi(s),..., Xy «(s)} is a basis
of B#(s)((T.S)°).

Since B#(s)((TsS)°) is a symplectic subspace of
TsLs by Theorem 3(v), there exists some 7€ N such
that # — k=27 and, additionally, the matrix C(s)
with entries

C7(s) = {d/, ¥/} (),

is invertible. Therefore, in the coordinates (¢!,...,
okl k), the matrix associated to the
Poisson tensor B(s) is

59= (" o)

where Bg € A%(T*S) is the Poisson tensor associated
to (S,{-,-}%). Let Cij(s) be the entries of the matrix
Cs) .

ije{l,...,n—k}

Proposition 3 (Dirac formulas). In the coordinate
neighborbood (p',... .08 W', ... " k) constructed
above and for s € S we have, for any f,ge Cgy(V):

X Z{F W U7( ) [12‘}
and
{f.e)°(s) ={F. G}( )
- Z{F V) Ci(){w, GHs)  [13]
ij=1

where F, G € C*(U) are arbitrary local extensions of
f and g, respectively, around s € S.
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Mechanical Examples. Unfolding
Billiard Trajectories

The billiard system inside a polygon P has a very
simple description: a point moves rectilinearly with
the unit speed until it hits a side of P; there it
instantaneously changes its velocity according to the
rule “the angle of incidence equals the angle of
reflection,” and continues the rectilinear motion. If
the point hits a corner, its further motion is not
defined. (see Billiards in Bounded Convex Domains).
From the point of view of the theory of dynamical
systems, polygonal billiards provide an example of
parabolic dynamics in which nearby trajectories
diverge with subexponential rate.

One of the motivations for the study of polygonal
billiards comes from the mechanics of elastic particles in
dimension 1. For example, consider the system of two
point-masses 721 and 171, on the positive half-line x > 0.
The collision between the points is elastic, that is, the
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energy and momentum are conserved. The reflection
off the left endpoint of the half-line is also elastic: if a
point hits the “wall” x =0, its velocity changes sign.
The configuration space of this system is the wedge
0 < x1 < x5. After the rescaling X; = /m;x;, i=1,2,
this system identifies with the billiard inside a wedge
with the angle measure arctan /m1 /m;.

Likewise, the system of two elastic point-masses
on a segment is the billiard system in a right
triangle; a system of a number of elastic point-
masses on the positive half-line or a segment is the
billiard inside a multidimensional polyhedral cone
or a polyhedron, respectively. The system of three
elastic point-masses on a circle has three degrees of
freedom; one can reduce one by assuming that the
center of mass of the system is fixed. The resulting
two-dimensional system is the billiard inside an
acute triangle with the angles

my +my +m .
arctan(mi, /—3), 1=1,2,3
mnim3

For comparison, the more realistic system of
elastic balls identifies with the billiard system in a
domain with nonflat boundary components.
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/

Figure 1 Unfolding a billiard trajectory in a wedge.

A useful elementary method of study is unfolding:
instead of reflecting the billiard trajectory in the
sides of the polygon, reflect the polygon in the
respective side and unfold the billiard trajectory to a
straight line. This method yields an upper bound

chtan \/m /mj

for the number of collisions in the system of two
point-masses 721 and #1; on the positive half-line.
Likewise, the number of collisions for any number
of elastic point-masses on the positive half-line is
bounded above by a constant depending on the
masses only. Similar results are known for systems
of elastic balls (Figure 1).

Similarly, one studies the billiard inside the unit
square. Unfolding the square yields a square grid in
the plane, acted upon by the group of parallel
translations 2Z & 2Z. Factorizing by this group
action yields a torus, and the billiard flow in a
given direction becomes a constant flow on the
torus. If the slope is rational, then all orbits are
periodic, and if the slope is irrational, then all orbits
are dense and the billiard flow is ergodic. Its metric
entropy is equal to zero. Periodic trajectories of the
billiard in a square come in bands of parallel ones.
Let f(£) be the number of such bands of length not
greater than /. Then, f(f) equals the number of
coprime lattice points inside the circle of radius ¢,
that is, f(¢) has quadratic growth in £.

Periodic Trajectories

The simplest example of a periodic orbit in a
polygonal billiard is the 3-periodic Fangano trajec-
tory in an acute triangle: it connects the bases of the
three altitudes of the triangle and has minimal

perimeter among inscribed triangles. The Fagnano
trajectory belongs to a band of 6-periodic ones. It is
not known whether every acute triangle has other
periodic trajectories.

For a right triangle, one has the following result:
almost every (in the sense of the Lebesgue measure)
billiard trajectory that leaves a leg in the perpendicular
direction returns to the same leg in the same direction
and is therefore periodic. A similar existence result
holds for polygons whose sides have only two
directions.

In general, not much is known about the existence
of periodic billiard trajectories in polygons. Con-
jecturally, every polygon has one, but this is not
known even for all obtuse triangles. Recently,
R Schwartz proved that every obtuse triangle with
the angles not exceeding 100° has a periodic billiard
path. This work substantially relies on a computer
program, McBilliards, written by Schwartz and
Hooper.

If an arbitrary small perturbation of the vertices of a
billiard polygon leads to a perturbation of a periodic
billiard trajectory, but not to its destruction, then this
trajectory is called stable. Label the sides of the
polygon 1,2,...,k. Then a periodic trajectory is
coded by the word consisting of the labels of the
consecutively visited sides. An even-periodic trajectory
is stable if and only if the numbers in the respective
word can be partitioned in pairs of equal numbers, so
that the number from each pair appears once at an
even position, and once at an odd one. As a
consequence, if the angles of a polygon are indepen-
dent over the rational numbers, then every periodic
billiard trajectory in it is stable.

Complexity of Billiard Trajectories

The encoding of billiard trajectories by the consecu-
tively visited sides of the billiard polygon provides a
link between billiard and symbolic dynamics. For a
billiard k-gon P, denote by ¥ the set of words in
letters 1,2,...,k corresponding to billiard trajec-
tories in P, and let ¥, be the set of such words of
length 7.

One has a general theorem: the topological
entropy of the billiard flow is zero. This implies
that a number of quantities, associated with a
polygonal billiard, grow slower than exponentially,
as functions of #: the cardinality |X,|, the number of
strips of n-periodic trajectories, the number of
generalized diagonals with # links (i.e., billiard
trajectories that start and end at corners of the
billiard polygon), etc. Conjecturally, all these quan-
tities have polynomial growth in 7.
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The complexity of the billiard in a polygon is
defined as the function p(n)=|%,|. Likewise, one
may consider the billiard trajectories in a given
direction € and define the corresponding complexity
po(n).

In the case of a square, one modifies the encoding
using only two symbols, say, 0 and 1, to indicate
that a trajectory reflects in a horizontal or a vertical
side, respectively. If 6 is a direction with an
irrational slope, then py(n) =7 + 1. This is a classical
result by Hedlund and Morse. The sequences with
complexity p(n)=n+1 are called Sturmian; this
is the smallest complexity of aperiodic sequences.
A generalization for multidimensional cubes and
parallelepipeds, due to Yu Baryshnikov, is known.

For a k-gon P, let N be the least common
denominator of its w-rational angles and s be the
number of its distinct 7-irrational angles. Then,

n N

pa(n) < kNn(1+ Z)

Concerning billiard trajectories in all directions,

one has a lower bound for complexity: p(n) > cn?

for a constant ¢ depending on the polygon. A similar

estimate holds for a d-dimensional polyhedron with
the exponent 2 replaced by d.

Rational Polygons and Flat Surfaces

The only class of polygons for which the billiard
dynamics is well understood are rational one, the
polygons satisfying the property that the angles
between all pairs of sides are rational multiples of .

Let P be a simply connected (without holes)
rational k-gon with angles 7m;/n;, where m; and n;
are coprime integers. The reflections in the sides of P
generate a subgroup of the group of isometries of
the plane. Let G(P) C O(2) consist of the linear
parts of the elements of this group. Then, G(P) is the
dihedral group Dy consisting of 2N elements. When
a billiard trajectory reflects in a side of P, its
direction changes by the action of the group G(P),
and the orbit of a generic direction 6 # kr/N on the
unit circle consists of 2N points.

The phase space of the billiard flow is the unit
tangent bundle P x S'. Let My be the subset of
points whose projection to S' belongs to the orbit of
0 under G(P) = Dy. Then, My is an invariant surface
of the billiard flow in P. The surface My is obtained
from 2N copies of P by gluing their sides according
to the action of Dy. This oriented compact surface
depends only on the polygon P, but not on the
choice of 6, and may be denoted by M. The
directional billiard flows Fy on M in directions 6

Figure 2 The invariant surface for a right triangle with acute
angle 7/8 has genus 2.

are obtained, one from another, by rotations. The
genus of M is given by the formula

N 1
H?(k_z_zﬁ,»)

For example, if P is a right triangle with an acute
angle 7/8, then M is a surface of genus 2 (Figure 2).

The cases when M is a torus are as follows: the
angles of P are all of the form 7/n;, where n; are
equal, up to permutations, to

(3) 37 3)7 (2’4’ 4)7 (27 37 6)7 (27 2”2)2)

and the respective polygons are an equilateral
triangle, an isosceles right triangle, a right triangle
with an acute angle 7/6, and a square. All these
polygons tile the plane.

The billiard flow on the surface M has saddle
singularities at the points obtained from the vertices
of P. The surface M inherits a flat metric from P
with a finite number of cone-type singularities,
corresponding to the vertices of P, with cone angles
multiples of 27 (Figure 3).

A flat surface M is a compact smooth surface with
a distinguished finite set of points ¥. On M \ ¥, one
has coordinate charts v =(x,y) such that the transi-
tion functions on the overlaps are of the form

v—v+c or v— —v+cC

Figure 3 A cone singularity for the flow on an invariant surface.
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In particular, one may talk about directions on a flat
surface.

The group PSL(2,R) acts on the space of flat
structures. From the point of view of complex analysis,
a flat surface is a Riemann surface with a holomorphic
quadratic differential; the set of cone points ¥ corre-
sponds to the zeros of the quadratic differential. Not
every flat surface is associated with a polygonal billiard.

Concerning ergodicity, one has the theorem of
Kerckhoff, Masur, and Smillie: given a flat surface of
genus not less than 2, for almost all directions 6 (in the
sense of the Lebesgue measure), the flow Fy is uniquely
ergodic. Furthermore, the Hausdorff dimension of the
set of angles 6 for which ergodicity fails does not
exceed 1/2, and this bound is sharp. As a consequence,
the billiard flow on the invariant surface is uniquely
ergodic for almost all directions. Another corollary:
there is a dense Gg subset in the space of polygons
consisting of polygons for which the billiard flow is
ergodic. If a billiard polygon admits approximation by
rational polygons at a superexponentially fast rate,
then the billiard flow in it is ergodic.

Concerning periodic orbits, one has the following
theorem due to H Masur: given a flat surface of genus
not less than 2, there exists a dense set of angles 6 such
that Fj has a closed trajectory. As a consequence, for
any rational billiard polygon, there is a dense set of
directions each with a periodic orbit. Furthermore,
periodic points are dense in the phase space of the
billiard flow in a rational polygon.

Similarly to the case of a square, let f(¢) be the
number of strips of periodic trajectories of length not
greater than / in a rational polygon P. By a theorem
of H Masur, there exist constants ¢ and C such that
for sufficiently large ¢ one has: c/?> < f(¢) < C¢?, and
likewise for flat surfaces.

There is a class of flat surfaces, called Veech (or
lattice) surfaces, for which more refined results are
available. The groups of affine transformations of a
flat surface determine a subgroup in SL(2, R). If this
subgroup is a lattice in SL(2, R), then the flat surface
is called a Veech surface. Similarly, one defines a
Veech rational polygon. For example, regular poly-
gons and isosceles triangles with equal angles 7/#
are Veech. All acute Veech triangles are described.

For a Veech surface, one has the following Veech
dichotomy: for any direction 6, either the flow Fjy is
minimal or its every leaf is closed (unless it is a saddle
connection, i.e., a segment connecting cone points).
For a Veech surface (and polygon), the quadratic
bounds for the counting function f(¢) become quad-
ratic asymptotics: £(¢)/¢* has a limit as £ — oo. The
value of this limit is expressed in arithmetical terms.

A generic flat surface also has quadratic asymptotics.
The value of the limit depends only on the stratum of

the Teichmuller space that contains this surface. These
values are known, due to Eskin, Masur, Okunkov, and
Zorich. Since a generic flat surface does not correspond
to a rational polygon, this result does not immediately
apply to polygonal billiards. However, quadratic
asymptotics are established for rectangular billiards
with barriers.

Note, in conclusion, a close relation of billiards in
rational polygons and interval exchange transforma-
tions; the reduction of the former to the latter is a
particular case of the reduction of the billiard flow to
the billiard ball map. On an invariant surface M of the
billiard flow, consider a segment I, perpendicular to
the directional flow. Since “the width of a beam” is an
invariant transversal measure for the constant flow, the
first return map to I is a piecewise orientation preserving
isometry, that is, an interval exchange transformation.
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Introduction

The theme of positive maps on *-algebras and other
ordered vector spaces, dates back to the Perron—
Frobenius theory of matrices with positive entries,
the Shur’s product of matrices, the study of doubly
stochastic matrices describing discrete-time random
walks and the behavior of limits of powers of
positive matrices in ergodic theory.

A long experience proved that far-reaching general-
izations of the above situations have to be considered
in various fields of mathematical physics and that
C*-algebras, their positive cones, and other associated
ordered vector spaces provide a rich unifying frame-
work of functional analysis to treat them.

It is the scope of this note to review some of the
basic aspects both of the general theory and of the
applications.

In the next section we briefly recall the definitions
of C*-algebras and their positive cones. However,
throughout this article we refer to C*-Algebras and
their Classification and von Neumann Algebras:
Introduction, Modular Theory and Classification
Theory as sources of the definitions and general
properties of the objects of these operator algebras.
We then introduce positive maps, illustrate their
general properties, and discuss some relevant classes
of them. The correspondence between states and
representations is described next, as well as the
appearance of vector, normal and non-normal states
in applications. We then illustrate the structure of
completely positive maps and their relevance in
mathematical physics. Finally, we describe the
relevance of the class of completely positive maps
to understand the structure of nuclear C*-algebras.

Positive Cones in C*-Algebras

A C*-algebra A is a complex Banach algebra with a
conjugate-linear involution a — a* such that |la*a| =
la||* for all a € A.

When A has a unit 14, the spectrum Sp(a) of an
element a is the subset of all complex numbers A
such that a — X\ - 14 is not invertible in A. When A is
realized as a subalgebra of some B(H), and this is
always possible, the set Sp(a) coincides with the
spectrum of the bounded operator a on the Hilbert
space H.

The involution determines the self-adjoint part
Aj:={a € A: a=a*} of A, a real subspace such that
A=A, +iA,. A self-adjoint element a of A satisfies
Sp(a) CR and, if k£ > 0, one has ||a|| < k if and only

The involution determines another important
subset of A: A, :={a*a: a € A}. This subset of A, is
closed in the norm topology of A and contains the
sums of its elements as well as their multiples by
positive scalars: in other words, it is a closed convex
cone. From a spectral point of view, one has the
following characterization: a self-adjoint element a
belongs to A, if and only if its spectrum is positive
Sp(a) C [0, +00). It is this property that allows us to
call A, the positive cone of A and its elements
positive. If it exists, a unit 14 in A is always positive
and a Hermitian element 4 is positive if and only if
114 —a/llall | < 1.

The continuous functional calculus in A allows
to write any self-adjoint element of A, as a
difference of elements of A,:A,=A, — A,. More-
over, A, N(—A,)={0} and the decomposition
a=b —c of a self-adjoint element a as difference
of positive elements b and ¢ is unique provided one
requires that bc =cb=0. In this case, it is called the
orthogonal decomposition.

The cone A, determines an underlying structure
of order space on A: for a,b € A one says that a is
less than or equal to b, in symbols a < b, if and only
if b—ae A,. In particular, a > 0 just means that a
1s positive.

Another fundamental characterization of the
positive cone is the following: a self-adjoint element
a=a"* is positive if and only if there exists an
element b in A such that a=b%. Moreover, among
the elements b with this property, there exists one
and only one which is positive, the square root of a.
Some examples of positive cones are provided in the
following.

Example 1 By a fundamental result of I M
Gelfand, a commutative C*-algebra A is isomorphic
to the C*-algebra Cy(X) of all complex continuous
functions vanishing at infinity on a locally compact
Hausdorff topological space X. The algebraic
operations have the usual pointwise meaning and
the norm is the uniform one. The constant function
1 represents the unit precisely when X is compact.
The positive cone Cy(X), coincides with that of the
positive continuous functions in Cy(X).

Example 2 Finite dimensional C*-algebras A are
classified as finite sums M, (C)® M,,(C)®--- @
M, (C) of full matrix algebras M,,(C). An element
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a1 ®ay®---Dag is positive if and only if the
matrices a; have positive eigenvalues.

Example 3 When a C*-algebra A C B(H) is rep-
resented as a self-adjoint closed algebra of operators
on a Hilbert space H, its positive elements are those
which have non-negative spectrum.

Positive Maps on C*-Algebras

Among the various relevant classes of maps between
C*-algebras, we are going to consider the following
ones, whose properties are connected with the
underlying structures of ordered vector spaces.

Definition 1 Given two C*-algebras A and B, a
map ¢:A— B is called positive if ¢(A,)C B,. In
other words, a map is positive if and only if it
transforms the positive elements of A into positive
elements of B:

ac A= ¢(a'a)eB, 1]

If A and B have units, the map is called unital
provided ¢(14)=15.

Morphisms and Jordan Morphisms

A *-morphism between C*-algebras ¢:A—B is
positive; in fact, ¢(a*a) = ¢(a)*¢(a) > 0.

This also the case for Jordan *-morphism, the
linear maps satisfying ¢(a*) =¢(a)" and ¢({a,b}) =
{0(a), #(b)}, where {a,b}=ab + ba denotes the Jor-
dan product. In fact, if a=a* then ¢(a?)=¢(a)* is
positive.

Shur’s Product of Matrices

Let A € M,(C) be a positive matrix and define a
linear map ¢: M,,(C) — M,,(C) through the Shur’s
product of matrices: ¢4(B):= [AijBij]ijl- Since the
Shur’s product of positive matrices is positive too
(i.e., the positive cone of M,(C) is a semigroup
under matrix product), the above map is positive.

Positive-Definite Function on Groups

Positive maps also arise naturally in harmonic
analysis. Let G be a locally compact topological
group with identity e and left Haar’s measure 7. Let
p: G — C be a continuous positive-definite function
on G. This just means that for all # > 1 and all
S1y.-.58, € G, the matrix {P(Sflsj)}z,-:1 belongs to
the positive cone of M, (C): ZZFT p(sits)aie; > 0
for all «ay,...,q,. Such functions are necessarily
bounded with |[|p| . <p(e), so that an operator
¢: LY (G,m) — LY (G,m) is well defined by point-
wise multiplication: ¢(f)(s):= p(s)f(s). This map
extends to a positive map ¢:C*G)— C*(G),

which is unital when p(e)=1, on the full group
C*-algebra C*(G). When G is amenable, this algebra
coincides with reduced C*-algebra C,(G) so that, if
G is also unimodular (as is the case if G is compact),
the positive elements can be approximated by
positive-definite functions in L'(G,m) and the
positivity of ¢ follows exactly as in the previous
example.

Positive Maps in Commutative C*-Algebras

Positive maps ¢: Co(Y) — Co(X) between commu-
tative C*-algebras have the following structure:
Pla)(x) = [y k(x,dy)a(y),a € Co(Y). Here the kernel
x+ k(x, ) is a continuous map from X to the space
of positive Radon measures on Y. In case X and Y
are compact, the map is unital provided k(x, -) is a
probability measure for each x € X. In fact, for a
fixed x € X, the map a+ ¢(a)(x) is a positive linear
functional from Cy(Y) to C and Riesz’s theorem
guarantees that it can be represented by a positive
Radon measure on Y.

In probability theory, one-parameter semigroups
@1 0 s =y of positive maps ¢;: Co(X) — Co(X)
such that ¢;(1) <1 for all £ > 0, are called Markovian
semigroups (conservative, if the maps are unital). They
represent the expectation at time #>0 of Markovian
stochastic processes on X. In this case, the time-
dependent kernel k(z,x, ) represents the distribution
probability at time ¢ of a particle starting in x € X at
time £ =0.

These kinds of maps arise also in potential theory,
where the dependence of the solution ¢(a) of a
Dirichlet problem on a bounded domain €, with
nice boundary 99, upon the continuous boundary
data a € C(09) gives rise to a linear unital map
¢:C(O0N) — C(QUIN), whose positivity and uni-
tality translates the “maximum principle” for har-
monic functions. When € is the unit disk, k is the
familiar Poisson’s kernel.

Continuity and Algebraic Properties
of Positive Maps

Since the order structure of a C*-algebra A is defined
by its positive cone A, positive maps are

1. real: ¢(a*) = ¢(a)" and
2. order preserving: ¢(a) < ¢(b) whenever a < b.

From this follows an important interplay between
positivity and continuity:
a positive map ¢: A— B

between C*-algebras is continuous

In case A has a unit, this follows by the fact that ¢ is
order preserving and that, for self-adjoint a, one has
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—allla < a < +|al|1a, so that Ha[|¢(14) < ¢(a) <
+llall¢(14) and then [|p(a)]| < [[¢(14)]| - [|a]l. In gen-
eral, splitting a = b + ic as a combination of Hermitian
elements b and ¢, as ||b]| < |ja|| and ||c|| < |4, one
obtains

lp(@)]l < lle@)]l + llg()ll
< eaICbIl + fiel)
<2[p(1a)l - llal

The second general result concerning positivity
and continuity is the following:

Let ¢: A— B be a linear map between C*-algebras
with unit such that ¢(14) = 1p; then ¢ is positive if
and only if ||| =1.

The result relies, among other things, on the
generalized Schwarz inequality for unital positive
maps on normal elements,

¢(a*)p(a) < p(a*a), a'a=aa’

These results may be used to reveal the strong
interplay between the algebraic, continuity and
positivity properties of maps:

Let ¢: A— B be an invertible linear map between
unital C*-algebras such that ¢(14)=1p. The
following properties are equivalent:

1. ¢ is Jordan isomorphism,

2. ¢ is an isometry, and

3. ¢ is an order isomorphism (¢ and ¢! are order
preserving).

The above conclusions can be strengthened if,
instead of individual maps, continuous groups of
maps are considered.

Let t+— «; be a strongly continuous, one-parameter
group of maps of a unital C*-algebra A and
assume that «,(14) =14 for all £ € R. The follow-
ing properties are equivalent:

1. «; is a *-automorphism of A for all t € R,
2. |Jay]| <1 for all £ € R, and
3. « is positive for all t € R.

An analogous result holds true for w*-continuous
groups on abelian, or factors, von Neumann algebras.

States on C*-Algebras

A state on a C*-algebra A is a positive functional
¢:A— C of norm 1:

® ¢(a*a) >0 for all a € A, and

° [lof=1.

As C is a C*-algebra, when A is unital, a state on it
is just a unital positive map:

® ¢(a*a) >0 for all a € A, and
® ¢(la)=1.

States for which ¢(ab) = ¢(ba) are called tracial states.

States constitute a distinguished class of positive
maps, both from a mathematical viewpoint and for
application to mathematical physics. We will see below
that states are deeply connected to representations of
C*-algebras (see C*-Algebras and their Classification).

States on Commutative C*-Algebras

Since this is a subcase of positive maps in commutative
C*-algebras we only add a comment. As far as a
Cr*-algebra represents observable quantities of a
physical system, states carry our actual knowledge
about the system itself. The smallest C*-sub-algebra
{f(a): f € Co(R)} of A containing a given self-adjoint
element a € A, representing a certain observable
quantity, is isomorphic to the algebra C(Sp(a)) of
continuous functions on the spectrum of a. A state on
A induces, by restriction, a state on C(Sp(a)), which,
by the Riesz representation theorem, is associated to a
probability measure p, on Sp(a) through the formula

¢(f(a)) = )f (%) pra (dxc)

Sp(a

Since Sp(a) represents the possible values of the
observable associated to a, u, represents the dis-
tribution of these values when the physical state of
the system is represented by ¢.

Vector States and Density Matrices

In case A is acting on a Hilbert space h, A C B(h),
each unit vector £ € b gives rise to a vector state
dela)=(&la&). In the quantum-mechanical descrip-
tion of a finite system, as far as observables with
discrete spectrum are concerned, one can assume A
to be the C*-algebra K(h) of compact operators on
the Hilbert space h. In this case every state is a
convex superposition of vector states, in the sense
that it can be represented by the formula

o(a) = tr(pa) /tr(p),

for a suitable density matrix p, that is, a positive,
compact operator with finite trace. In quantum
statistical mechanics, the grand canonical Gibbs
equilibrium state of a finite system at inverse tempera-
ture  and chemical potential u, with Hamiltonian H
and number operator N, is of the above type

aeK(h)

B1ua) = tr(e”a) ux(e )
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where K=H — pN, and the spectrum of H is assumed
to be discrete and such that e 7K is trace-class. For
infinite systems, A is a quasilocal C*-algebra generated
by a net {A,}, of C*-subalgebras describing observa-
bles referred to finite-volume regions. Infinite-volume
equilibrium states on A can then be obtained as
thermodynamic limits of finite-volume Gibbs equili-
brium states of the above type.

Normal and Singular States

When observables with continuous spectrum have to
be considered and one chooses the algebra B(h) of
all bounded operators, the above formula, although
still meaningful, does not describe all states on B(h)
but only the important subclass of the normal ones.
To this class, which can be considered on any von
Neumann algebra M, belong states ¢ which are
o-weakly continuous functionals. Equivalently, these
are the states such that for all increasing net a, € M
with least upper bound a € M, ¢(a) is least upper
bound of the net ¢(a,).

In general, each state ¢ on a von Neumann
algebra M splits as a sum of a maximal normal
piece and a singular one. Singular traces appear in
noncommutative geometry as very useful tools to get
back local objects from spectral ones via the familiar
principle that local properties of functions depend
on the asymptotics of their Fourier coefficients.

This is best illustrated on a compact, Riemannian
n-manifold M by the formula

/ fdm =c, - 1,(Mf|D|™")
M

which expresses the Riemannian integral of a nice
function fin terms of the Dirac operator D acting on the
Hilbert space of square-integrable spinors, the multi-
plication operator My by f, and the singular Dixmier
tracial state 7, on B(H). Here the compactness of M
implies the compactness of the operator My|D|™" and
7, is a limiting procedure depending only on the
asymptotic behavior of the eigenvalues of M;|D|™".
Similar formulas are valid on self-similar fractals as well
as on quasiconformal manifolds. Local index formulas
represent cyclic cocycles in Connes’ spectral geometry
(see. Noncommutative Geometry and the Standard
Model; Noncommutative Geometry from Strings;
Path-Integrals in Noncommutative Geometry).

States and Representations: The
GNS Construction

A fundamental tool in studying a C*-algebra A
are its representations. These are morphisms of
C*-algebras m: A — B(H) from A to the algebra of
all bounded operators on some Hilbert space H.

There is a symbiotic appearance of states and
representations on C*-algebras. In fact, given a
representation m:A — B(H), one easily constructs
states on A by unit vectors £ € H by

¢e(a) = (§lm(a)é)

In fact, one checks that ¢¢(a*a)=(&|n(a*a)f)=
(&|m(a*)m(a) &) = ||m(a) €|I* > 0 and, at least if a unit
exists, that ¢g(14) =||€]|* =1.

A fundamental construction due to Gelfand,
Naimark, and Segal allows to associate a represen-
tation to each state in such a way that each state is a
vector state for a suitable representation.

“Let w be a state over the C*-algebra A. It follows

that there exists cyclic representation (m, He, &)
of A such that

w(a) = (&ulmu(a)é,)
Moreover, the representation is unique up to

unitary equivalence. It is called the canonical
cyclic representation of A associated with w.”

The positivity property of the state allows to
introduce the positive-semidefinite scalar product
(a|b) =w(a*b) on the vector space A. Moreover, its
kernel Z,={a € A: w(a*a) =0} is a left-ideal of A: in
fact, if a€A and beZ, then w((ba)'(ba)) <
lal|*w(b*b)=0. This allows to define, on the
quotient pre-Hilbert space A/Z,, an action of
the elements a € A: m,(a)(b+Z.,):=ab+7T,. It is
the extension of this action to the Hilbert space
completion H,, of A/Z,, that gives the representation
associated to w. When A has a unit, the cyclic vector
&, with the stated properties is precisely the image of
14 + Z,. By definition, the cyclicity of the represen-
tation amounts to check that 7, (A)&, is dense in H,,.

Completely Positive Maps

In a sense, the order structure of a C*-algebra A
is better understood through the sequence of
C*-algebras A @ M,,(C) = M,,(A), obtained as tensor
products of A and full matrix algebras M,,(C). For
example, C*-algebras are matrix-ordered vector
spaces as a*(M,,(A)), o C (M,(A)), for all matrices
a € men(c)

In this respect, one is naturally led to consider
stronger notion of positivity:

“A map ¢:A—B is called n-positive if its
extension

p®1,: A® M,(C)— B M,(C)
(0@ 1n)aigl;; = [9(aiy)l;;
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is positive and completely positive (CP map for
short) if this happens for all n.”

Equivalently, 7-positive means that > 7. bj¢ x
(ata;)b; > 0 for all ay,...,a, € A and by,...,b, € b.
In particular, if ¢ is n-positive then it is k-positive for
all k < n. Many positive maps we considered are in
fact CP maps:

1. morphisms of C*-algebras are CP maps;

2. positive maps ¢: A — B are automatically CP
maps provided A, B or both are commutative and
states are, in particular, CP maps; and

3. an important class of CP maps is the following.
A norm one projection £:A— B, from a
C*-algebra A onto a C*-subalgebra B, is a
contraction such that ¢(b)=5b for all b € B. It
can be proved that these maps satisfy
e(bac)=be(a)c for all a€ A and b,c € B and
for this reason they are called conditional
expectations. This property then implies that
they are CP maps.

However, the identity map from a C*-algebra A
into its opposite A° is positive but not 2-positive
unless A is commutative, the transposition a+— a’ in
M,,(C) is positive and not 2-positive if # > 2 and, for
all 7, there exist n-positive maps which are not
(n + 1)-positive.

CP Maps in Mathematical Physics

In several fields of application, the transition of a
state of a system into another state can be described
by a completely positive map ¢:A — B between
C*-algebras: for any given state w of B, wo ¢ is then
a state of A.

1. In the theory of quantum communication pro-
cesses (see Channels in Quantum Information
Theory; Optimal Cloning of Quantum States;
Source Coding in Quantum Information Theory;
Capacity for Quantum Information), for exam-
ple, B and A represent the input and output
systems, respectively, w the signal to be trans-
mitted, w o ¢ the received signal, and ¢ the system
of transmission, called the channel.

2. In quantum probability and in the theory of
quantum open systems, continuous semigroups
of CP maps (see Quantum Dynamical Semi-
groups) describe dissipative time evolutions of a
system due to interaction with an external one
(heat bath).

3. In the theory of measurement in quantum
mechanics, an observable can be described by a
positive-operator-valued (POV) measure M which
assigns a positive element m(E) in a C*-algebra A

to each Borel subset E of a topological space X. For
each ae€Cy(X), one can define its integral
#(f):= [y fdE as an element of A. The map
¢: Co(X) — A, called the observation channel, is
then a CP map.

4. Another field of mathematical physics in which CP
maps play a distinguished role is in the construc-
tion and application of the quantum dynamical
entropy, an extension of the Kolmogorov-Sinai
entropy of measure preserving transformations
(see Quantum Entropy). When dealing with
a noncommutative dynamical system (M, a,T)
in which 7 is a normal trace state on a finite
von Neumann algebra M, the Connes-Stermer
entropy b, (a) is defined through the consideration
of an entropy functional H,;(Ny, ..., N;) of finite-
dimensional ~ von  Neumann  subalgebras
Ni,...,N,CcM. To extend the definition to
more general C*-algebras and states on them, one
has to face the fact that C*-algebras may have no
nontrivial C*-subalgebras. To circumvent the
problem A Connes, H Narnhofer, and W Thirring
(CNT) introduced an entropy functional
H(v1,...,7:) associated to a set v;:A;— A of
CP maps (finite channels) from finite-dimensional
C*-algebras A; into A. This led to the CNT entropy
h,(a) of a noncommutative dynamical system
(A, a,w), where w is a state on A and « is an
automorphism or a CP map preserving it:
woa=uw.

CP Maps and Continuity

Since for an element g € A of a unital C*-algebra,
one has ||a|| <1 precisely when

(+ 9)

is positive in M;(A), it follows that
2-positive unital maps are contractive

Unital 2-positive maps satisfy, in particular, the
generalized Schwarz inequality for all a € A,

p(a*)¢(a) < ¢(aa)
In particular,

“CP maps are completely bounded as sup,, ||[¢ ® 1,/|| =
l¢(14)|| and completely contractive if they are
unital. Conversely unital, completely contractive
maps are CP maps.”

CP Maps and Matrix Algebras

When the domain or the target space of a map are
matrix algebras, one has the following equivalences
concerning positivity. Let [e; ;]; ; denote the standard
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matrix units in M,(C) and ¢:M,(C)— B into a
C*-algebra B. The following conditions are
equivalent:

1. ¢ is a CP map,
2. ¢ is n-positive, and
3. [¢(ei;)];,; is positive in M,(B).

Associating to a linear map ¢: A — M, (C), the
linear functional s,:M,(A)— C by s([ai;]):=
> ¢laij)ij, one has the following equivalent
properties:

1. ¢ is a CP map,

2. ¢ is n-positive,

3. s, is positive, and

4. s, is positive on Ay @ M,(C)_.

Stinspring Representation of CP Maps

CP maps are relatively easy to handle, thanks to the
following dilation result due to W F Stinspring. It
describes a CP map as the compression of a
morphism of C*-algebras.

Let A be a unital C*-algebra and ¢:A— B(H) a
linear map. Then ¢ is a CP map if and only if it
has the form

¢(a) = V'm(a)V

for some representation w: A — B(K) on a Hil-
bert space K, and some bounded linear map
V:H— K. If A is a von Neumann algebra and ¢
is normal then 7 can be taken to be normal. When
A=B(H) and H is separable, one has, for some
b, € B(H),

o(a)= i brab,
n=1

The proof of this result is reminiscent of the
GNS construction for states and its extension, by
G Kasparov, to C*-modules is central in bivariant
K-homology theory.

Despite the above satisfactory result, one should
be aware that positive but not CP maps are much
less understood and only for maps on very low
dimensional matrix algebras do we have a definitive
classification. To have an idea of the intricacies of
the matter, one may consult Stermer (1963).

Positive Semigroups on Standard Forms
of von Neumann Algebras and Ground State
for Physical Hamiltonians

The above result allows one to derive the structure
of generators of norm-continuous dynamical semi-
groups in terms of dissipative operators.

Strongly continuous positive semigroups, which
are KMS symmetric with respect to a KMS state w
of a given automorphism group of a C*-algebra A,
can be analyzed as positive semigroups in the
standard representation (M, H,P,]) (see Tomita—
Takesaki Modular Theory) of the von Neumann
algebra M :=7,(A)". A semigroup on A gives rise to
a corresponding w*-continuous positive semigroup
on M and to a strongly continuous positive
semigroup on the ordered Hilbert space (H,P) of
the standard form. In the latter framework, one can
develop an infinite-dimensional, noncommutative
extension of the classical Perron—Frobenius theory
for matrices with positive entries. This applies, in
particular, to semigroups generated by physical
Hamiltonians and has been used to prove existence
and uniqueness of the ground state for bosons and
fermions systems in quantum field theory (one may
consult Gross (1972)).

Nuclear C*-Algebras and Injective
von Neumann Algebras

The nonabelian character of the product in
C*-algebras may prevent the existence of nontrivial
morphisms between them, while one may have an
abundance of CP maps. For example, there are no
nontrivial morphisms from the algebra of compact
operators to C, but there exist sufficiently many
states to separate its elements. A much more well-
behaved category of C*-algebras is obtained by
considering CP maps as morphisms. This is true, in
particular, for nuclear C*-algebras: those for which
any tensor product A ® B with any other C*-algebra
B admits a unique C*-cross norm (see C*-Algebras
and their Classification). The intimate relation
between this class of algebras and CP maps is
illustrated by the following characterization:

1. A is nuclear;

2. the identity map of A is a pointwise limit of CP
maps of finite rank;

3. the identity map of A can be approximately
factorized, lim,(T,o0S8,)a—a for all acA,
through matrix algebras and nets of CP maps
Sa:A— M, (C), T, : M,(C)— A.

A second important relation between nuclear
C*-algebras and CP maps emerges in connection to
the lifting problem.

“Let A be a nuclear C*-algebra and | a closed two-
sided ideal in a C*-algebra B. Then every CP map
¢:A— B/] can be lifted to a CP map ¢': A — B.
In other words, ¢ factors through B by the
quotient map q:B— B/J: ¢=q 0 ¢.”
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This and related results are used to prove that
the Brown-Douglas-Fillmore K-homology invariant
Ext(A) is a group for separable, nuclear C*-algebras.

Our last basic result, due to W Arveson, about CP
maps concerns the extension problem.

“Let A be a unital C*-algebra and N a self-adjoint
closed subspace of A containing the identity. Then
every CP map ¢: N — B(H) from N into a type I factor
B(H) can be extended to a CP map ¢: A — B(H).”

This result can be restated by saying that type I
factors are injective von Neumann algebras. It may
suggest how the notion of a completely positive map
plays a fundamental role along Connes’ proof of one
culminating result of the theory of von Neumann
algebras, namely the fact that the class of injective
von Neumann algebras coincides with the class
of approximately finite-dimensional ones (see von
Neumann Algebras: Introduction, Modular Theory
and Classification Theory).

See also: Capacity for Quantum Information;
C*-Algebras and Their Classification; Channels

in Quantum Information Theory; Noncommutative
Geometry and the Standard Model; Noncommutative
Geometry from Strings; Optimal Cloning of Quantum
States; Path Integrals in Noncommutative Geometry;
Quantum Dynamical Semigroups; Quantum Entropy;
Source Coding in Quantum Information Theory; Tomita—

Takesaki Modular Theory; von Neumann Algebras:
Introduction, Modular Theory, and Classification Theory.
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Nilpotent Lie Groups

While not much had been published on the geometry
of nilpotent Lie groups with a left-invariant
Riemannian metric till around 1990, the situation is
certainly better now; see the references in Eberlein
(2004). However, there is still very little that is
conspicuous about the more general pseudo-
Riemannian case. In particular, the two-step
nilpotent groups are nonabelian and as close as
possible to being abelian, but display a rich variety of
new and interesting geometric phenomena (Cordero
and Parker 1999). As in the Riemannian case, one of
many places where they arise naturally is as groups of
isometries acting on horospheres in certain (pseudo-
Riemannian) symmetric spaces. Another is in the
Iwasawa decomposition G =KAN of semisimple

groups with the Killing metric tensor, which need
not be (positive or negative) definite even on N. Here,
K is compact and A is abelian.

An early motivation for this study was the
observation that there are two nonisometric
pseudo-Riemannian metrics on the Heisenberg
group Hj, one of which is flat. This is a strong
contrast to the Riemannian case in which there is
only one (up to positive homothety) and it is not
flat. This is not an anomaly, as we now well know.

While the idea of more than one timelike
dimension has appeared a few times in the physics
literature, both in string/M-theory and in brane-
world scenarios, essentially all work to date assumes
only one. Thus, all applications so far are of
Lorentzian or definite nilpotent groups. Guediri
and co-workers led the Lorentzian studies, and
most of their results stated near the end of the
section “Lorentzian groups” concern a major,
perennial interest in relativity: the (non)existence of
closed timelike geodesics in compact Lorentzian
manifolds.
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Others have made use of nilpotent Lie groups
with left-invariant (positive or negative) definite
metric tensors, such as Hervig’s (2004) constructions
of black hole spacetimes from solvmanifolds (related
to solvable groups: those with Iwasawa decomposi-
tion G = AN), including the so-called BTZ construc-
tions. Definite groups and their applications, already
having received thorough surveys elsewhere, most
notably those of Eberlein, are not included here.

Although the geometric properties of Lie groups
with left-invariant definite metric tensors have been
studied extensively, the same has not occurred for
indefinite metric tensors. For example, while the
paper of Milnor (1976) has already become a classic
reference, in particular for the classification of
positive-definite (Riemannian) metrics on three-
dimensional Lie groups, a classification of the
left-invariant Lorentzian metric tensors on these
groups became available only in 1997. Similarly,
only a few partial results in the line of Milnor’s
study of definite metrics were previously known for
indefinite metrics. Moreover, in dimension 3, there
are only two types of metric tensors: Riemannian
(definite) and Lorentzian (indefinite). But in higher
dimensions, there are many distinct types of indefi-
nite metrics while there is still essentially only one
type of definite metric. This is another reason why
this area has special interest now.

The list in “Further reading” at the end of this
article consists of general survey articles and a
select few of the more historically important papers.
Precise bibliographical information for references
merely mentioned or alluded to in this article
may be found in those. The main, general reference
on pseudo-Riemannian geometry is O’Neill’s (1983)
book. Eberlein’s (2004) article covers the Rieman-
nian case. At this time, there is no other compre-
hensive survey of the pseudo-Riemannian case. One
may use Cordero and Parker (1999) and Guediri
(2003) and their reference lists to good advantage,
however.

Inner Product and Signature

By an inner product on a vector space V we shall
mean a nondegenerate, symmetric bilinear form on
V, generally denoted by (, ). In particular, we do not
assume that it is positive definite. It has become
customary to refer to an ordered pair of non-
negative integers (p,q) as the signature of the inner
product, where p denotes the number of positive
eigenvalues and g the number of negative eigen-
values. Then nondegeneracy means that p +¢g=
dim V. Note that there is no real geometric
difference between (p,q) and (q, p); indeed, O’Neill

gives handy conversion procedures for this and for
the other major sign variant (e.g., curvature) (see
O’Neill (1983, pp. 92 and 89, respectively)).

A Riemannian inner product has signature (p, 0).
In view of the preceding remark, one might as well
regard signature (0, q) as also being Riemannian, so
that “Riemannian geometry is that of definite metric
tensors.” Similarly, a Lorentzian inner product has
either p=1 or g=1. In this case, both sign
conventions are used in relativistic theories with
the proviso that the “1” axis is always timelike.

If neither p nor g is 1, there is no physical
convention. We shall say that v € V is timelike if
(v,v) > 0, null if (v,v) =0, and spacelike if (v,v) < 0.
(In a Lorentzian example, one may wish to revert to
one’s preferred relativistic convention.) We shall refer
to these collectively as the causal type of a vector (or of
a curve to which a vector is tangent).

Considering indefinite inner products (and metric
tensors) thus greatly expands one’s purview, from
one type of geometry (Riemannian), or possibly two
(Riemannian and Lorentzian), to a total of |(p+
q)/2] + 1 distinctly different types of geometries on
the same underlying differential manifolds.

Rise of 2-Step Groups

Throughout, N will denote a connected (and simply
connected, usually), nilpotent Lie group with Lie
algebra n having center 3. We shall use (,) to denote
either an inner product on n or the induced left-
invariant pseudo-Riemannian (indefinite) metric
tensor on N.

For all nilpotent Lie groups, the exponential map
exp:n— N is surjective. Indeed, it is a diffeomorph-
ism for simply connected Nj in this case, we shall
denote the inverse by log.

One of the earliest papers on the Riemannian
geometry of nilpotent Lie groups was Wolf (1964).
Since then, a few other papers about general nilpotent
Lie groups have appeared, including Karidi (1994)
and Pauls (2001), but the area has not seen a lot of
progress.

However, everything changed with Kaplan’s
(1981) publication. Following this paper and its
successor (Kaplan 1983), almost all subsequent
work on the left-invariant geometry of nilpotent
groups has been on two-step groups.

Briefly, Kaplan defined a new class of nilpotent
Lie groups, calling them of Heisenberg type. This
was soon abbreviated to H-type, and has since been
called also as Heisenberg-like and (unfortunately)
“generalized Heisenberg.” (Unfortunate, because
that term was already in use for another class, not
all of which are of H-type.) What made them so
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compelling was that (almost) everything was expli-
citly calculable, thus making them the next great test
bed after symmetric spaces.

Definition 1 We say that N (or n) is 2-step
nilpotent when [n,n] C 3. Then [[n,n],n]=0 and
the generalization to k-step nilpotent is clear:

[[-~-[[[n,n],n},n]---},n] =0

with k& + 1 copies of n (or k nested brackets, if you
prefer).

It soon became apparent that H-type groups
comprised a subclass of 2-step groups; for a nice,
modern proof see Berndt et al. (1995). By around
1990, they had also attracted the attention of the
spectral geometry community, and Eberlein pro-
duced the seminal survey (with important new
results) from which the modern era began. (It was
published in 1994 (Eberlein 1994), but the preprint
had circulated widely since 1990.) Since then,
activity around 2-step nilpotent Lie groups has
mushroomed; see the references in Eberlein (2004).

Finally, turning to pseudo-Riemannian nilpo-
tent Lie groups, with perhaps one or two
exceptions, all results so far have been obtained
only for 2-step groups. Thus, the remaining
sections of this article will be devoted almost
exclusively to them.

The Baker—-Campbell-Hausdorff formula takes on
a particularly simple form in these groups:

exp(x) exp(y) = exp(x +y +3[x,]) [1]

Proposition 1 In a pseudo-Riemannian 2-step
nilpotent Lie group, the exponential map preserves
causal character. Alternatively, one-parameter sub-
groups are curves of constant causal character.

Of course, one-parameter subgroups need not be
geodesics.

Lattices and Completeness

We shall need some basic facts about lattices in N.
In nilpotent Lie groups, a lattice is a discrete
subgroup T' such that the homogeneous space
M=T\N is compact. Here we follow the conven-
tion that a lattice acts on the left, so that the coset
space consists of left cosets and this is indicated by
the notation. Other subgroups will generally act on
the right, allowing better separation of the effects of
two simultaneous actions.

Lattices do not always exist in nilpotent Lie
groups.

Theorem 1 The simply connected, nilpotent Lie
group N admits a lattice if and only if there exists a

basis of its Lie algebra n for which the structure
constants are rational.

Such a group is said to have a rational structure, or
simply to be rational.

A nilmanifold is a (compact) homogeneous space
of the form T'\N, where N is a connected, simply
connected (rational) nilpotent Lie group and T" is a
lattice in N. An infranilmanifold has a nilmanifold
as a finite covering space. They are commonly
regarded as a noncommutative generalization of
tori, the Klein bottle being the simplest example of
an infranilmanifold that is not a nilmanifold.

We recall the result of Marsden from O’Neill
(1983).

Theorem 2 A compact, homogeneous pseudo-
Riemannian space is geodesically complete.

Thus, if a rational N is provided with a bi-invariant
metric tensor (,), then M becomes a compact,
homogeneous pseudo-Riemannian space which is
therefore complete. It follows that (N, (,)) is itself
complete. In general, however, the metric tensor is
not bi-invariant and N need not be complete.

For 2-step nilpotent Lie groups, things work nicely
as shown by this result first published by Guediri.

Theorem 3 On a 2-step nilpotent Lie group, all
left-invariant pseudo-Riemannian metrics are geode-
sically complete.

No such general result holds for 3- and higher-step
groups, however.

2-Step Groups

In the Riemannian (positive-definite) case, one splits
n=3® v=3® 3", where the superscript denotes the
orthogonal complement with respect to the inner
product (, ). In the general pseudo-Riemannian case,
however, 3 ® 3 #n. The problem is that 3 might be
a degenerate subspace; that is, it might contain a
null subspace 4 for which & C 81+,

It turns out that this possible degeneracy of the
center causes the essential differences between
the Riemannian and pseudo-Riemannian cases. So
far, the only general success in studying groups with
degenerate centers was in Cordero and Parker (1999)
where an adapted Witt decomposition of n was used
together with an involution + exchanging the two null
parts.

Observe that if 3 is degenerate, the null subspace
i is well defined invariantly. We shall use a
decomposition

n=30v=Ud3VaE 2]
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in which 3=4&3 and v=U® ¢ U and U are
complementary null subspaces, and 4= N Y+ =3¢ ¢.
Although the choice of U is not well defined
invariantly, once a U has been chosen then 3 and &
are well defined invariantly. Indeed, 3 is the portion of
the center 3 in 4 N Y+, and € is its orthocomplement
in 4+ N Y+, This is a Witt decomposition of n given 41,
easily seen by noting that (4 @ )" =3 @ ¢, adapted
to the special role of the center in n.

We shall also need to use an involution ¢ that
interchanges 1 and U and which reduces to the
identity on 3 @ € in the Riemannian (positive-definite)
case. (The particular choice of such an involution is
not significant.) It turns out that ¢ is an isometry of n
which does not integrate to an isometry of N. The
adjoint with respect to (,) of the adjoint representa-
tion of the Lie algebra n on itself is denoted by ad'.

Definition 2 The linear mapping
j:d@®3— End(T o€
is given by
jla)x = vad! a

Formulas for the connection and curvatures, and
explicit forms for many examples, may be found in
Cordero and Parker (1999). It turns out there is a
relatively large class of flat spaces, a clear distinction
from the Riemannian case in which there are none.

Let x,y € n. Recall that homaloidal planes are
those for which the numerator (R(x,y)y,x) of the
sectional curvature formula vanishes. This notion is
useful for degenerate planes tangent to spaces that
are not of constant curvature.

Definition 3 A submanifold of a pseudo-Riemannian
manifold is flat if and only if every plane tangent to
the submanifold is homaloidal.

Theorem 4 The center Z of N is flat.

Corollary 1 The only N of constant curvature
are flat.

The degenerate part of the center can have a
profound effect on the geometry of the whole

group.
Theorem 5 If [n,n] C 4 and €={0}, then N is flat.

Among these spaces, those that also have 3={0}
(which condition itself implies [n,n] C ) are funda-
mental, with the more general ones obtained by
making nondegenerate central extensions. It is also
easy to see that the product of any flat group with a
nondegenerate abelian factor is still flat.

This is the best possible result in general. Using
weaker hypotheses in place of &€={0}, such as

[0,0] = {0} =&, €], it is easy to construct examples
which are not flat.

Corollary 2 If dimZ > [n/2], then there exists a
flat metric on N.

Here [r] denotes the least integer greater than or
equal to 7 and 7= dim N.

Before continuing, we pause to collect some facts
about the condition [n,n] C 4l and its consequences.

Remark 1 Since it implies j(z) =0 for all z € 3, this
latter is possible with no pseudo-Euclidean de Rham
factor, unlike the Riemannian case. (On the other
hand, a pseudo-Euclidean de Rham factor is
characterized in terms of the Kaplan-Eberlein map
j whenever the center is nondegenerate.)

Also, it implies j(u) interchanges U and € for all
u € 4 if and only if [0, V] =[¢&, €]={0}. Examples
are the Heisenberg group and the groups H(p, 1) for
p > 2 with null centers.

Finally, we note that it implies that, for every u € 4,
j(1) maps U to U if and only if j(#) maps € to & if and
only if [T, €] ={0}.

Proposition 2 If j(z)=0 for all z €3 and j(u)
interchanges 0 and € for all u € 4, then N is Ricci
flat.

Proposition 3 If j(z)=0 for all z € 3, then N is
scalar flat. In particular, this occurs when [n,n] C 4.

Much like the Riemannian case, we would expect
that (N, (,)) should in some sense be similar to flat
pseudo-Euclidean space. This is seen, for example,
via the existence of totally geodesic subgroups
(Cordero and Parker 1999). (O’Neill (1983, ex. 9,
p. 125) has extended the definition of totally
geodesic to degenerate submanifolds of pseudo-
Riemannian manifolds.)

Example 1 For any x € n the one-parameter sub-
group exp(tx) is a geodesic if and only if x € 3 or
x € @€ This is essentially the same as the
Riemannian case, but with some additional geodesic
one-parameter subgroups coming from $l.

Example 2 Abelian subspaces of U@ ¢ are Lie
subalgebras of n, and give rise to complete, flat,
totally geodesic abelian subgroups of N, just as in
the Riemannian case. Eberlein’s construction is valid
in general, and shows that if dmY & E>1+k+
k dim 3, then every nonzero element of U & € lies in
an abelian subspace of dimension k + 1.

Example 3 The center Z of N is a complete, flat,
totally geodesic submanifold. Moreover, it deter-
mines a foliation of N by its left translates, so each
leaf is flat and totally geodesic, as in the Riemannian
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case. In the pseudo-Riemannian case, this foliation
in turn is the orthogonal direct sum of two foliations
determined by i and 3, and the leaves of the
$-foliation are also null. All these leaves are
complete.

There is also the existence of dimj independent
first integrals, a familiar result in pseudo-Euclidean
space, and the geodesic equations are completely
integrable; in certain cases (mostly when the center
is nondegenerate), one can obtain explicit formulas.
Unlike the Riemannian case, there are flat groups
(nonabelian) which are isometric to pseudo-
Euclidean spaces (abelian).

Theorem 6 If [n,n] CU and E={0}, then N is
geodesically connected. Consequently, so is any
nilmanifold with such a universal covering space.

Thus, these compact nilmanifolds are much like tori.
This is also illustrated by the computation of their
period spectrum.

Isometry Group

The main new feature is that when the center is
degenerate, the isometry group can be strictly larger
in a significant way than when the center is
nondegenerate (which includes the Riemannian case).

Letting Aut(N) denote the automorphism group
of N and I(N) the isometry group of N, set
O(N)=Aut(N)NI(N). In the Riemannian -case,
I(N)=O(N) xN, the semidirect product where N
acts as left translations. We have chosen the
notation O(N) to suggest an analogy with the
pseudo-Euclidean case in which this subgroup is
precisely the (general, including reflections) pseudo-
orthogonal group. According to Wilson (1982), this
analogy is good for any nilmanifold (not necessarily
2-step).

To see what is true about the isometry group in
general, first consider the (left-invariant) splitting of
the tangent bundle TN =3N @ oN.

Definition 4 Denote by I*?'(N) the subgroup of the
isometry group I(N) which preserves the splitting
TN =3N @ oN. Further, let I*(N)=O(N)xN,
where N acts by left translations.

Proposition 4 If N is a simply connected, 2-step
nilpotent Lie group with left-invariant metric tensor,
then I (N) < I*"Y(N).

There are examples to show that IP' <[ js
possible when $f £ {0}.

When the center is degenerate, the relevant group
analogous to a pseudo-orthogonal group may be
larger.

Proposition 5 Let O(N) denote the subgroup of
I(N) which fixes 1 € N. Then I(N)= O(N)xN,
where N acts by left translations.

The proof is obvious from the definition of O.
It is also obvious that O < O. Examples show that
O < O, hence I*" < [, is possible when the center is
degenerate.

Thus, we have three groups of isometries, not
necessarily equal in general: I'"' < J*"t <. When the
center is nondegenerate (4 = {0}), the Ricci transfor-
mation is block-diagonalizable and the rest of
Kaplan’s proof using it now also works.

Corollary 3 If the center is nondegenerate, then
I(N) =I'**(N) whence O(N) =2 O(N).
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In the next few results, we use the phrase “a
subgroup isometric to” a group to mean that the
isometry is also an isomorphism of groups.

Proposition 6 For any N containing a subgroup
isometric to the flat three-dimensional Heisenberg

group,
IPY(N) < IP"*(N) < I(N)

Unfortunately, this class does not include our flat
groups in which [n,n] C 4 and &={0}. However,
it does include many groups that do not satisfy
[n,n] C4U, such as the simplest quaternionic
Heisenberg group.

Remark 2 A direct computation shows that on this
flat H; with null center, the only Killing fields with
geodesic integral curves are the nonzero scalar
multiples of a vector field tangent to the center.

Proposition 7 For any N containing a subgroup
isometric to the flat Hy x R with null center,

IPY(N) < I*"{(N) < I(N)

Many of our flat groups in which [n,n] C & and
¢={0} have such a subgroup isometrically

embedded, as in fact do many others which are not
flat.

Lattices and Periodic Geodesics

In this subsection, we assume that N is rational and
let T be a lattice in N.

Certain tori Tr and Tp provide the model fiber
and the base for a submersion of the coset space I'\ N.
This submersion may not be pseudo-Riemannian in
the usual sense, because the tori may be degenerate.
We began the study of periodic geodesics in these
compact nilmanifolds, and obtained a complete
calculation of the period spectrum for certain flat
spaces.



Pseudo-Riemannian Nilpotent Lie Groups 99

To the compact nilmanifold T\N we may
associate two flat (possibly degenerate) tori.

Definition 5 Let N be a simply connected, two-step
nilpotent Lie group with lattice I' and let 7:n—v
denote the projection. Define

T; =3/(logI'Ny)
T, = v/m(logT)

Observe  that
dimn.

dim T; + dim T, = dim 3 + dimv=

Let m= dimj3 and #n= dimuv. It is a consequence
of a theorem of Palais and Stewart that T\N is a
principal T™”-bundle over T”. The model fiber T”
can be given a geometric structure from its closed
embedding in T'\N; we denote this geometric
m-torus by Tg. Similarly, we wish to provide the
base n-torus with a geometric structure so that the
projection pp:T'\N — Tp is the appropriate general-
ization of a pseudo-Riemannian submersion
(O’Neill 1983) to (possibly) degenerate spaces.
Observe that the splitting n =3 ¢ v induces splittings
TN=3N®uoN and T(I'\N)=3T\N)® o(\N),
and that pp, just mods out 3T'\N). Examining
O’Neill’s definition, we see that the key is to
construct the geometry of Ty by defining

pp 0, (T\N) — Ty, ;) (Tp)

for each n € I'\N is an isometry [3]
and
Vo2 pBey = pp(mVY)
forallx,yco=Ua¢& [4]

where m:1n— v is the projection. Then the rest of the
usual results will continue to hold, provided that
sectional curvature is replaced by the numerator of
the sectional curvature formula at least when
elements of U are involved:

(R, (DB, PB+Y) DY, PBX)
= (Rp\w(x, )y, %) 4+ 2([x, ¥], [x, y]) (5]

Now pp will be a pseudo-Riemannian submersion in
the usual sense if and only if U=V ={0}, as is
always the case for Riemannian spaces.

In the Riemannian case, Eberlein showed that
Tr = T; and T = T,. In general, Tj is flat only if N
has a nondegenerate center or is flat.

Remark 3 Observe that the torus Tp may be
decomposed into a topological product Tk x Ty in
the obvious way. It is easy to check that Tg is flat
and isometric to (logT' N &)\ &, and that Ty has a
linear connection not coming from a metric and not

flat in general. Moreover, the geometry of the
product is “twisted” in a certain way. It would be
interesting to determine which tori could appear as
such a Ty and how.

Theorem 7 Let N be a simply connected, 2-step
nilpotent Lie group with lattice T, a left-invariant
metric tensor, and tori as above. The fibers Ty of
the (generalized) pseudo-Riemannian submersion
I'\N —Tg are isometric to Ty. If in addition the
center Z of N is nondegenerate, then the base Ty is
isometric to Ty.

We recall that elements of N can be identified
with elements of the isometry group I(N): namely,
n € N is identified with the isometry ¢ =L, of left
translation by 7. We shall abbreviate this by writing
¢ € N.

Definition 6 We say that ¢ € N translates the
geodesic v by w if and only if ¢v(t)=~(t + w) for
all #. If ~y is a unit-speed geodesic, we say that w is a
period of ¢.

Recall that wunit speed means that |§|=
1(4,7|"/*=1. Since there is no natural normal-
ization for null geodesics, we do not define periods
for them. In the Riemannian case and in the
timelike Lorentzian case in strongly causal space-
times, unit-speed geodesics are parametrized by
arclength and this period is a translation distance.
If ¢ belongs to a lattice T, it is the length of a closed
geodesic in T\ N.

In general, recall that if v is a geodesic in N and if
pn:N—=T\N denotes the natural projection, then
pN7 is a periodic geodesic in T'\N if and only if
some ¢ € I translates 7. We say periodic rather than
closed here because in pseudo-Riemannian spaces it
is possible for a null geodesic to be closed but not
periodic. If the space is geodesically complete or
Riemannian, however, then this does not occur; the
former is in fact the case for our 2-step nilpotent Lie
groups. Further, recall that free homotopy classes of
closed curves in T'\N correspond bijectively with
conjugacy classes in T'.

Definition 7 Let C denote either a nontrivial, free
homotopy class of closed curves in T'\N or the
corresponding conjugacy class in I'. We define p(C)
to be the set of all periods of periodic unit-speed
geodesics that belong to C.

In the Riemannian case, this is the set of lengths of
closed geodesics in C, frequently denoted by ¢(C).

Definition 8 The period spectrum of T'\N is the set
spec, (I\N) = | Jp(C)
c
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where the union is taken over all nontrivial, free
homotopy classes of closed curves in T'\ N.

In the Riemannian case, this is the length spectrum
spec,(I'\N).

Example 4 Similar to the Riemannian case, we can
compute the period spectrum of a flat torus I'\R™,
where T is a lattice (of maximal rank, isomorphic to
7). Using calculations in an analogous way as for
finding the length spectrum of a Riemannian flat
torus, we easily obtain

spec, (I\R™) = {|g| #0 | g € '}

It is also easy to see that the nonzero d’Alembertian
spectrum is related to the analogous set produced
from the dual lattice T*, multiplied by factors of
+472, almost as in the Riemannian case.

As in this example, simple determinacy of periods
of unit-speed geodesics helps make calculation of the
period spectrum possible purely in terms of
logT" C n.

For the rest of this subsection, we assume that N
is a simply connected, two-step nilpotent Lie group
with left-invariant pseudo-Riemannian metric tensor
(,). Note that non-null geodesics may be taken to be
of unit speed. Most non-identity elements of N
translate some geodesic, but not necessarily one of
unit speed.

For our special class of flat 2-step nilmanifolds,
we can calculate the period spectrum completely.

Theorem 8  If [n,n] C tl and €={0}, then spec (M)
can be completely calculated from logT for any
M=T\N.

Thus, we see again just how much these flat, two-
step nilmanifolds are like tori. All periods can be
calculated purely from log ' C n, although some will
not show up from the tori in the fibration.

Corollary 4 spec (Tg) (respectively, Tr) is Ucy(C)
where the wunion is taken over all those free
homotopy classes C of closed curves in M=T\N
that do not (respectively, do) contain an element in
the center of T = w1(M), except for those periods
arising only from unit-speed geodesics in M that
project to null geodesics in both Ty and Tg.

We note that one might consider using this to assign

periods to some null geodesics in the tori Tp and Tk.
When the center is nondegenerate, we obtain

results similar to Eberlein’s. Here is part of them.

Theorem 9 Assume U={0}. Let ¢ € N and write
log p =2 + e*. Assume ¢ translates the unit-speed
geodesic v by w > 0. Let g’ denote the component of

z* orthogonal to |e*,n] and set w*=|2' + ¢*|. Let
Y0) =20 + eo. Then

(i) le*| < w. In addition, w < w* for timelike (space-
like) geodesics with wzy — 2’ timelike (spacelike),
and w > w* for timelike (spacelike) geodesics
with wzy — 2’ spacelike (timelike);

(i) w=|e*| if and only if v(¢t) = exp(te*/|e*|) for all
t € Ry and
(iti) w=w" if and only if wzy — 7' is null.

Although w* need not be an upper bound for periods
as in the Riemannian case, it nonetheless plays a
special role among all periods, as seen in (iii) above,
and we shall refer to it as the distinguished period
associated with ¢ € N. When the center is definite,
for example, we do have w < w*.

Now the following definitions make sense at least
for N with a nondegenerate center.

Definition 9 Let C denote either a nontrivial, free
homotopy class of closed curves in T\N or the
corresponding conjugacy class in T'. We define p*(C)
to be the distinguished periods of periodic unit-speed
geodesics that belong to C.

Definition 10 The distinguished period spectrum
of I'\N is the set

Dspec, (I\N) = ] ¢'(©)
C

where the union is taken over all nontrivial, free
homotopy classes of closed curves in T\ N.

Then we get this result:

Corollary 5 Assume the center is nondegenerate. If
n is nonsingular, then spec (Tg) (respectively, Tr) is
precisely the period spectrum (respectively, the
distinguished period spectrum) of those free homo-
topy classes C of closed curves in M=T\N that do
not (respectively, do) contain an element in the
center of T =2 71(M), except for those periods arising
only from unit-speed geodesics in M that project to
null geodesics in both Ty and Tk.

Conjugate Loci
This is the only general result on conjugate points.

Proposition 8 Let N be a simply connected, 2-step
nilpotent Lie group with left-invariant metric tensor
(,), and let v be a geodesic with (0)=a €.
If adla=0, then there are no conjugate points
along ~.

In the rest of this subsection, we assume that the
center of N is nondegenerate.

For convenience, we shall use the notation
J.=adlz for any ze€j (Since the center is
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nondegenerate, the involution ¢ may be omitted.)
We follow Ciatti (2000) for this next definition. As
in the Riemannian case, one might as well make
2-step nilpotency part of the definition since it
effectively is so anyway.

Definition 11 N is said to be of pseudoH-type if
and only if
Ji =2l

for any z € 3.

Complete results on conjugate loci have been
obtained only for these groups (Jang et al. 2005).
For example, using standard results from analytic
function theory, one can show that the conjugate
locus is an analytic variety in N. This is probably
true for general two-step groups, but the proof we
know works only for pseudoH-type.

Definition 12 Let v denote a geodesic and assume
that ~(#) is conjugate to (0) along 7. To indicate
that the multiplicity of ~(#) is 7, we shall write
mult., (o) =m. To distinguish the notions clearly,
we shall denote the multiplicity of A as an eigenvalue
of a specified linear transformation by multe,\.

Let v be a geodesic with v(0)=1 and (0)=zo +
X0 € 3@ v, respectively, and let J=],. If v is not
null, we may assume that + is normalized so that
(V7)) = £1. As usual, Z* denotes the set of all
integers with 0 removed.

Theorem 10 Under these assumptions, if N is of
pseudoH-type, then:

(1) if 20=0 and xo # 0, then ~(t) is conjugate to
~¥(0) along ~ if and only if (xg,x¢) < 0 and

in which case multe,(t) = dim 3;
(i) if zo # 0 and xo=0, then ~(t) is conjugate to
~(0) along v if and only if (z0,z0) > 0 and

2
te—WZ*
|20]

in which case mult.,(t) = dimv.

Theorem 11 Let v be such a geodesic in a
pseudoH-type group N with zo # 0 # xo.

(i) If {(z0,20)=a? with a >0, then ~(ty) is con-
jugate to v(0) along ~ if and only if

2
to EgZ*UAlLJAz

where , ,
o (07 ..
Ay = {t € R’(x()?xo)?cot? = (7, 7)}
and
A, = {t € Rlat = __<x°’—x°>sinat}
(-9 + (=0, 20)

when dimj > 2

If tg € (2w/a) 7, then

imo—1
multep (f0) = { 312?1 2
If to & (27/ )7/, then

if (,9) + (20,20) # 0
if {,7) + (z0,20) =0

1 lf tho € A1 — Ay
multe,(fo) = < dimz—1  if to € Ay — Ay
dim 3 if to € A1 NA

—
——
=

—

If (z0,20)= —B3* with 3> 0, then ~(ty) is a
conjugate point along ~ if and only if t) €
By UB, where

By = {t €R <xo,xo>%C0th% = (’%ﬂ}
and
B, = {t e R|ft = <xo’x‘)>sinhﬁt}
(¥, %) + (20, 20)

when dimj > 2

The multiplicity is

1 if to € B — B,
multcp(to) = dlmg -1 if to € By — By
dimg, if to € BiNB,y

-

If (z0,20)=0, then ~(ty) is a conjugate point
along ~ if and only if

(1ii

) 12
to = —
(x0,%0)
and multe,(tg) = dim 3 — 1.

This covers all cases for a pseudoH-type group with
a center of any dimension.

Some results on other two-step groups and
examples (including pictures in dimension 3) may
be found in the references cited in Jang et al. (2005).
When the groups are not pseudoH-type, however,
complete results are available only when the center
is one dimensional. Guediri (2004) has results in the
timelike Lorentzian case.
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Lorentzian Groups

Not too long ago, only a few partial results in the
line of Milnor’s study of definite metrics were
known for indefinite metrics (Barnet 1989, Nomizu
1979), and they were Lorentzian.

Guediri (2003) and others have made special
study of Lorentzian two-step groups, partly because
of their relevance to general relativity, where they
can be used to provide interesting and important
(counter)examples. Special features of Lorentzian
geometry frequently enable them to obtain much
more complete and explicit results than are possible
in general.

For example, Guediri (2003) was able to provide
a complete and explicit integration of the geodesic
equations for Lorentzian 2-step groups. This
includes the case of a degenerate center, which
only required extremely careful handling through a
number of cases. He also paid special attention to
the existence of closed timelike geodesics, reflecting
the relativistic concerns.

As usual, N denotes a connected and simply
connected 2-step nilpotent Lie group. For the rest
of this section, we assume that the left-invariant
metric tensor is Lorentzian. Whenever a lattice is
mentioned, we also assume that the group is
rational.

Proposition 9 If the center is degenerate, then no
timelike geodesic can be translated by a central
element.

Thus, there can be no closed timelike geodesics
parallel to the center in any nilmanifold obtained
from such an N.

Theorem 12 If the center is Lorentzian, then T\N
contains no timelike or null closed geodesics for any
lattice T

To handle degenerate centers, three refined
notions for nonsingular are used: almost, weakly,
and strongly nonsingular. The precise definitions
involve an adapted Witt decomposition (as in the
general pseudo-Riemannian case, but a rather
different one here) and are quite technical, as is
typical. We refer to Guediri (2003) for details.

Theorem 13 If N is weakly nonsingular, then no

timelike geodesic can be translated by an element
of N.

Corollary 6 If N is flat, then no timelike geodesic
can be translated by a non-identity element.

Corollary 7 If N is flat, then T\N contains no
closed timelike geodesics for any lattice T'.

Corollary 8 If N is weakly nonsingular, then T\N
contains no closed timelike geodesic.

Corollary 9 If N = Hy, is a Lorentzian Heisen-
berg group with degenerate center, then T\N
contains no closed timelike geodesic.

Guediri also has the only non-Riemannian results
so far about the phenomenon Eberlein called “in
resonance.” Roughly speaking, this occurs when the
eigenvalues of the map j have rational ratios. (The
Lorentzian case actually requires a slightly more
complicated condition when the center s
degenerate.)

Theorem 14 If N is almost nonsingular, then N is
in resonance if and only if every geodesic of N is
translated by some element of N.

See also: Classical Groups and Homogeneous Spaces;
Einstein Equations: Exact Solutions; Lorentzian
Geometry.
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Introduction

In this article we give a brief introduction to g-special
functions, that is, g-analogs of the classical special
functions. Here g is a deformation parameter, usually
0<qg<1, where g=1 is the classical case. The
deformation is such that the calculus simultaneously
deforms to a g-calculus involving g-derivatives and
g-integrals. The main topics to be treated are
g-hypergeometric series, with some selected evalu-
ation and transformation formulas, and some
g-hypergeometric orthogonal polynomials, most nota-
bly the Askey-Wilson polynomials. In several vari-
ables, we discuss Macdonald polynomials associated
with root systems, with most emphasis on the A, case.
The rather new theory of elliptic hypergeometric series
gets some attention. While much of the theory of
g-special functions keeps g fixed, some of the deeper
aspects with number-theoretic and combinatorial
flavor emphasize expansion in g. Finally, we indicate
applications and interpretations in quantum groups,
Chevalley groups, affine Lie algebras, combinatorics,
and statistical mechanics.

Conventions

q € C\{1} in general, but 0 < g <1 in all infinite
sums and products.

n,m, N will be non-negative integers unless men-
tioned otherwise.

g-Hypergeometric Series
Definitions

For a,q € C the g-shifted factorial (a;q), is defined
as a product of k factors:

(a:9) = (1 —a)(1 —aq)--- (1 —aq""")
(k€ Zs0);  (a59):=1 1]

If |g| <1 this definition remains meaningful for
k =00 as a convergent infinite product:

(@:0), = [[(1 - aq) 2]

j=0

We also write (a1,...,a,;q), for the product of
g-shifted factorials:

(@1, a5q), = (a1;9), - - - (@3 9),
(k € 70 or k = 00) 3]

A g-hypergeometric series is a power series (for the
moment still formal) in one complex variable z with
power series coefficients which depend, apart from g,
on r complex upper parameters ap,...,d, and s
complex lower parameters by, ..., bs as follows:

bl = e anbi, b2

r®s b17...,bs’q7Z =0s(A1,...,44,01,...,05:4,%
::zoc: (al,...,a,;q)k

= (b1 b5 9)1 (439

s—r+1
y ((_1>kq(1/z)k(k—1)) o

(r,s€Zz0)  [4]

Clearly the above expression is symmetric in
ai,...,a, and symmetric in bq,...,bs. On the right-
hand side of [4], we have that

(k + 1)th term

kth term
_ (1- ﬂlqk) (1= aqu)(_qk)sfrﬂz 5
— (1 — b1qk) .. (1 — bsqk)(l — qk+1)

is rational in g*. Conversely, any rational function in
g* can be written in the form of the right-hand side
of [5]. Hence, any series Y, , ¢ with co=1 and
Cri1/cr rational in gf is of the form of a
g-hypergeometric series [4].

In order to avoid singularities in the terms of [4],
we assume that by,...,by #1,9q7',972,.... If, for
some i,a; =q ", then all terms in the series [4] with
k > n will vanish. If none of the a; is equal to g™
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and if |q| < 1, then the radius of convergence of the
power series [4] equals oo if r <s+ 1,1 if r=s+1,
and 0 if r > s+ 1.

We can view the g-shifted factorial as a g-analog
of the shifted factorial (or Pochhammer symbol) by
the limit formula

lim (45 D)k

lim L — @)= ata+ 1)

(a+k—-1) [6]
Hence the g-binomial coefficient

nl (@9, " "
[k]q'(q;q)k(q;q)nk (nk€Zn2k20) 7]

tends to the binomial coefficient for ¢ — 1:

im[],- (%) "

and a suitably renormalized g-hypergeometric series
tends (at least formally) to a hypergeometric series

asq T 1:

lim e Psas

q11 b

q 17"'7qb57d17"’7ds’
at,...,a -1
- rFs ' ) (Cr, ) 2 [9]
bi,...,b, (de —1)
At least formally, there are limit relations between
g-hypergeometric series with neighboring 7, s:

qala"'aqarvcla"',cr’
[ 1q,(q 1)z

(c1—1)---
(di—1)-

hm ;¢s|:a]7”'7zr§q7a£:| :r—1¢s|:a;7;””a;7]7q Z:| [10}

[ I}

. ai,.. ay ar
I ’ el 11
bs‘inoo’(b{bl,...,b 4.b } et [ ,...,bs_l’q“} 1]
A terminating q-hypergeometric series
S _ockk rewritten as "> _,c,pz®  yields

another terminating g-hypergeometric series, for
instance:

p {q”7a1,...7as }
1 4, %
L by, b
(1) g W) (@A),
(=1)"q (b1, beaq),
y 1¢ qfn, qfnJrlblfl’ o ’qfnJrlb;l '
s+1¥s q—n+1a1—1,.”’q7u+1a;1 ’
ntlp. .. b
,u} [12]
a]...asz

Often, in physics and quantum groups related
literature, the following notation is used for

g-number,  g-factorial, and g-Pochhammer
symbol:
(1/2)a _ ,—(1/2)a k
4 9 ._ :
laly = g2 —gq12 (k]! = gmq
k=1
+ilg (k€ Zxo) [13]
=0
For g—1, these symbols tend to their classical

counterparts without the need for renormalization.
They are expressed in terms of the standard notation
[1] as follows:

[14]
- 1/2)k(a—1)q (1/4)k(k-1) \459)p (@*:9)s

(1-q)"

Special Cases

For s=r— 1, formula [4] simplifies to

aty...,dy

(ar,...,a,;9), k
N . 15
Z (b1,...,br1;9), (q:9), o

which has radius of convergence 1 in the nontermi-
nating case. The case r=2 of [15] is the g-analog of
the Gauss hypergeometric series.

g-Binomial series

@Rt (azg),
1(,250(11, 7qaz)*§ (q7q)k = (Z;q)w

(if series is not terminating, then [z| < 1) [16]

g-Exponential series
eq(2):=160(0;

- - (W< 7

—;qu)

E4(z):=00(—;— => a
k=0
= (~2;q) = (eq(~2)) " @e@) [18]

4(2):=101(0; —¢"*;¢"*, =)

_ &= gk i
— (G



g-Special Functions 107

Jackson’s g-Bessel functions

(1) (. ,:(ql'“;(I)oc 13"
I e ): (2:9) <2x>

0,0 1
><2¢1[q,,+1;q,—2x2} (0<x<2) [20]

v+1 v
@) (e ) (@ D) 1 - 1
]u (xvq) . (qu)oo Zx 0¢1 ql,+1 345 4q X

—(~gma) Wema) @0 Py

3) (e 1) o (@5 9) (} )V
=G, 3"
1

0
X 101 {q”*l ;qa4qx2:| (x>0) [22]

See [90] for the orthogonality relation for Ji*)(x; g).

If exp,(z) denotes one of the three g-exponentials
[17]-[19], then (1/2)(equ(ix) —|—equ(—ix)) is a
g-analog of the cosine and —(1/2)i( exp,(ix)
—exp,(—ix)) is a g-analog of the sine. The three
g-cosines are essentially the case v= —1/2 of the
corresponding g-Bessel functions [20]-[22], and the
three g-sines are essentially the case v=1/2 of x
times the corresponding g-Bessel functions.

g-Derivative and g-Integral

The g-derivative of a function f given on a subset of
R or C is defined by

f(x) —f(ax)
(1—q)x
where x and gx should be in the domain of /. By
continuity, we set (D,f)(0):=f'(0), provided f'(0)
exists. If f is differentiable on an open interval

I, then

(Dyf)(x) = (x#0,qg7#1) [23]

lim(Dyf)(x) = f'(x) (x€1) [24]

For a € R\{0} and a function f given on (0,a] or
[a,0), we define the g-integral by

00

=3 flag") (ag* — ag*™) 23]

provided the infinite sum converges absolutely (e.g.,
if f is bounded). If F(a) is given by the left-hand side
of [25], then D F=f. The right-hand side of [25] is
an infinite Riemann sum. For g | 1 it converges, at
least formally, to [; f(x) dx.

For nonzero a,b € R we define

/abf(x) dgx == /Obf(x) dgx —/Oaf(x) dyx  [26]

For a g-integral over (0,00), we have to specify a
g-lattice {ag*} ., for some a >0 (up to multi-
plication by an integer power of q):

[ e =ati-a) 3 fladt)d
k=—00
= lim n f(x)dgx [27]
n—o0 0

The g-Gamma and g-Beta Functions

The g-gamma function is defined by

(4:9).. (1-9)'F

Iy(z):= (#0,-1,-2,...) [28]

(7% 9)
(1-q)"
= [ B aands (>0 29
Then 1— gt
Pyle+1) = 7—Ty(z) (30]
_ (g:9),

Iyn+1)= d—q) [31]
limT,(z) =T'(2) [32]

q11

The g-beta function is defined by
_ a+b.
By(a,b) := Ly(@)Ty(b) _ (1 -4)(d.9"7:q)s

a Fq(“"'b) (qavqh;q)oc
(@,b#0,—1,-2,..) 33]
1 .
/0 (@)
(Rb>0,a#0,—1,-2,...) [34]

The g-Gauss Hypergeometric Series
g-Analog of Euler’s integral representation
201(q%,4%:4%9,2)
_ y(c) /1 -1 (tq;q)
L@l -0 " Gt
TR dt

b>0 1) [35
g dt (R6>0, & < 1) [33]
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By substitution of [25], formula [35] becomes a

transformation formula:

201(a, b ¢;9,2)
. b:
= % % 201(c/b.z:az:q.b)  [36]

Note the mixing of argument z and parameters
a, b, c on the right-hand side.

Evaluation formulas in special points

2¢1 (ﬂ, b7 ¢ q, C/(Clb))
(c/a,c/b;q),

=lecabyg. (/@< (7

201(q7 ", b;¢;9,¢9" /b) = % [38]
2019 ", bie1q,q) = W 39]

Two general transformation formulas

a,b (az;9) a,c/b
R e AR BCD
_ (abz/c;q)

c/a,c/b a_bz}
(% 9)w

°°¢[ 1q,

Transformation formulas in the terminating case

_n,b
201 {q ;q,z}
C

(c/b (¢/b;q), \b2 [ ’”,b,q’”bcflz; ’ ] 42]

(¢ q), g'"bc1,0

1 cb=1,0
— (b a0 T iga) 43
(/b)) yn (g bygzt 2
- (Qq)n 173 1 qlinbcil 7qac [44]

Second order g-difference equation

2(q° — g %) (D) (2)

q
1-q (,1-q" ,1-g""
+<1_q (q i 2 | (Dgu)(2)
1—09%1— b
L . MY [45]

1-qg 1—¢q

Some special solutions of [45] are:

u1(2) = 201(4%, 4" 4% 4.2) [46]

1+b—c

01 (g e g T g

u(z) ==z ~%q,2) |47

a—c+1, a—b+1 —a—b+c+1 -1

u3(2) =2 "2¢1(9",q i q 14,4 z ) [48]

They are related by:
(@*.q9" “.a" " a),
(qc—l7 qa—c+1’ ql—b; q)oo
A el )
(qb—cz qc—b+1z—1;q)oo
_»(ql—c’qa b+17q)
- (ql—b qa—c+1 q)oo
(qa+b CZ qc a—b+1 7175])
(¢P=c=,qc 1271 q)

uq (Z) +

uj (Z)

M3(Z) [49]

Summation and Transformation Formulas
for ,¢,_1 Series

An ,¢,_ series [15] is called “balanced” if by ... b, 1 =
qai ...a, and z =g, and the series is called “very well-
p01sed ifqay =ayb1=a3b,=--- =a,b, 1 and qal 172 _
ay = —aj. The following more compact notation is
used for very well-poised series:

rWr,1(41;44,d5, .. 'aar;qu)
ai,qay*, —qa)* a4, ..., a
) 1 1 G450y
*r¢r 1/2 1/ 7q5% [50]
al 5 aqal/ﬂ%---’qﬂl/ar

Below only a few of the most important identities
are given. See Gasper and Rahman (2004) for many
more. An important tool for obtaining complicated
identities from more simple ones is Bailey’s Lemma,
which can moreover be iterated (Bailey chain), see
Andrews (1986, ch.3).

The g-Saalschiitz sum for a terminating balanced 3¢,

, _ (c¢/a,c/bsq),
-1:9,9 _(c,c/(ab);q)n [51]

a,b,q7"
302 ¢ ql-

"abc

Jackson’s sum for a terminating balanced W~

sW7(a; b, c,d, q""a*/(bed), g " q,q)

_ (9a,9a/(bc), g3/ (bd),qa/(cd):q), s,
(qa/b.qa/c,qa/d,qa/(bed); q),
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Watson’s transformation of a terminating sW> into a
terminating balanced 4¢3

. o qn+2a2
3W7(ﬂ,b,6,d,e,q v q, bcde)
_ (gqa,9a/(de); q),,
(qa/d,qa/e;q),
q",d,e,qa/(bc)
e {qa/b, qaje.qdefa’ T

a| 15

Sears’ transformation of a terminating balanced 4¢3

(b{*”abc }
493 ,,f 14,49

_Claflaa), , 4 g"adfbdlc
(e.f;9), d,q*"afe,q" "a/f "

By iteration and by symmetries in the upper and in
the lower parameters, many other versions of this
identity can be found. An elegant comprehensive
formulation of all these versions is as follows.

Let x1x3x3x4X5x6 =q'". Then the following
expression 1S Symmetric in X1, X2, X3, X4, X5, Xg:

q(l/Z)n(nfl

q} 54

)(x1x2x3x4, X1X2X3X5,X1X2X3%X654),,
n
(x1x2x3)

q ", X2X3,X1X3,X1X2

X 4@53 9,49 [55]
X1X2X3X4,X1X2X3X5,X1X2X3X6

Similar formulations involving symmetry groups can
be given for other transformations, see Van der Jeugt
and Srinivasa Rao (1999).

Bailey’s transformation of a terminating
balanced oWy

10Wo (61; b,c,d, 6’,][, % ) T”% 9, q)
(40,0 (ef), (4)*/(bede), (aa)*/ (bedf )sq),
(qa/e,qa/f,(qa)’*/(bedef), (qa)* [ (bed); q),,

qa* qa qa qa . q"a
XIOW‘)(bcd Cd bd bcve7f7 bcdequ 75] q> [56]

Rogers-Ramanujan Identities

> 1
0¢1(—3059,9) = 57
; @0 (@450 57

k(k+1) 1

kzo(qq T (@)

01(—;0;9,9%)

Mg

Bilateral Series
Definition [1] can be extended by

_ (@4q)y

wha, <P P

(a;:9),,

Define a bilateral g-hypergeometric series by the
Laurent series

w al,...,ay w( b b )
b b :1/ sa""7 r; PR | S; b
b b TF Lo o D2

o (a1,..0a59), k_(1/2)k(k=1)\"""_k
= :Z b b (-1 )
(611,...,4,,[91,...,[957&0,521’) [60}

The Laurent series is convergent if |b1 ... bs/(ay ...a,)| <
|z| and moreover, for s=r, |z| < 1.

Ramanujan’s 11); summation formula

11(b;c;q,2)
_(q,¢/b,bz,q/(b2);:9)
(¢,q/b,z,¢/(b2);q)

This has as a limit case

(le/bl <]z < 1) [61]

(9,2,9/%:9)

1€ q,2) = (Il > |el) ~ [62]

and as a further specialization the Jacobi triple

product identity

o0

Z (_1)k g(/Dkk=1) ok

k=—00

=(9,2,9/%49) s (2#0) [63]

which can be rewritten as a product formula for a
theta function:

baxiq) = D (~1) g™

k=—c0
Tl
k=

1
X (1 — 24" cos(2mx) + q4k72> [64]

g-Hypergeometric Orthogonal
Polynomials

Here we discuss families of orthogonal polyno-
mials {p,(x)} which are expressible as terminating
g-hypergeometric series (0 <g<1) and for
which either (1) P,(x):=p.(x) or (2) P,(x):=p,
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((1/2)(x +x71)) are eigenfunctions of a second-
order g-difference operator, that is,

A(x) Py(gx) + B(x) Py(x) + C(x) Pu(q'x)
= Ay Po(x) 65]

where A(x),B(x), and C(x) are independent of n,
and where the \, are the eigenvalues. The generic
cases are the four-parameter classes of “Askey-
Wilson polynomials” (continuous weight function)
and g-Racah polynomials (discrete weights
on finitely many points). They are of type (2) (quad-
ratic g-lattice). All other cases can be obtained from
the generic cases by specialization or limit transition.
In particular, one thus obtains the generic three-
parameter classes of type (1) (linear g-lattice). These
are the big g-Jacobi polynomials (orthogonality by
g-integral) and the g-Hahn polynomials (discrete
weights on finitely many points).

Askey-Wilson Polynomials
Definition as g-hypergeometric series

pu(cosd)=p,(cosb;a,b,c,d|q)

L (ﬂb,dC,dd; q)n
= 403
q",q" 'abcd, ae ae
X b ad ;g.q|  [66]

This is symmetric in a, b, ¢, d.

Orthogonality relation Assume that a,b,c,d are
four reals, or two reals and one pair of complex
conjugates, or two pairs of complex conjugates.
Also assume that |ab|, |ac|,|ad], |bc|,|bd], |cd| < 1.
Then

1
/ PP (0()
+ an(xk)pm(xk)wk = hn 6n,m [67]
k
where
27 sin 6 w(cos §) = (2 )s ’ [68]
TSI G cos - (aei",bei",ceia,dew;q)m
b — (abcd;q) o,
™ (g,ab,ac,ad, bc,bd, cd: q)..
by _ 1 - abedq"
ho 1 —abcdg? 1
(q.ab,ac,ad,bc,bd, cd;q), 69]

(abed q),

and the x; are the points (1/2)(eq* + e 'g*) with
e any of the a, b, c,d of absolute value >1; the sum
is over the k€7 with |eg®| > 1. The w;, are
certain weights which can be given explicitly. The
sum in [67] does not occur if moreover
al, b1, el |d] < 1.

A more uniform way of writing the orthogonality
relation [67] is by the contour integral

Ll niere)

2 -2,
" (22,275 9)o dz
(az,az71,bz,bz 1 cz,cz 1, dz,dz"1q) =

o0

= 2h6pm [70]

where C is the unit circle traversed in positive
direction with suitable deformations to separate the
sequences of poles converging to zero from the
sequences of poles diverging to co.

The case n=m =0 of [70] or [67] is known as the
Askey-Wiilson integral.

g-Difference equation

A(2)Py(qz) — (A(z) + Az ")) Pu(z) + Az ")Pu(q '2)
=(g " =1)(1—q" 'abcd)P,(z) [71]

where  P,(z)=pa(3(z+z7") and A(z)=(1-az)
(1—bz)(1—cz) (1—dz)/((1—2%)(1—qz?))

Special cases These include the continuous
g-Jacobi polynomials (two parameters), the contin-
uous g-ultraspherical polynomials (symmetric one-
parameter case of continuous g-Jacobi), the
Al-Salam-Chihara polynomials (Askey—Wilson with
c=d=0), and the continuous g-Hermite polyno-
mials (Askey—Wilson with a=b=c=d=0).

Continuous g-Ultraspherical Polynomials

Definitions as finite Fourier series and as special
Askey-Wilson polynomial

Cu(cos0; ] q)

= n M i(n—2k)0 -
TG @ D 72]

— 5 cos 12, 2612, 512,

—q"?8"% | q) 73]
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Orthogonality relation (—1 <3< 1)
1 T ( 216’ q) 2
37 |, Caleosti.a)Cotcosts ) gt as
(8.98:9) 1-8 (54
= = 7 6nAm 74
(B a:a)s 1 = Ba" (q:q), 7

g-Difference equation

A(2)Pu(gz) = (A(2) + A(z™1)) Pu(z) + AR™1)Pulg ')
=(g"-1)(1~-q"F)Pu(2) [75]

where P, (2) =C,(3(z+2~ 1),ﬁ|q) and A(z)=(1— 322

(1-g82%) /(1 —=2*)(1 - q2%)).

Generating function

(661€z ﬂe 19Z q
(@2 e Tz q). ZC (cosb; 8] q)z"

(|z|<1,0§9§7r,—1<ﬁ<1) [76]

Special case: the continuous g-Hermite polynomials

Hu(x|q) = (4;9), Cu(x;0]q) [77]

Special cases: the Chebyshev polynomials

sin((n + 1)0)

Cn(cosqu|q) = Sin6‘

U, (cos@) :=

( )Vl
lim Biq), Cu(cos ;8| q) =

:=cos(nb) (n>0) [79]

T, (cos®)

g-Racah Polynomials

Definition as g-hypergeometric series
(n=0,1,...,N)

R.(q +76¢ v, 3,7, 6] q)

,aBq", g, yog !

19,4
qo, 96,9y

(a,B60r vy =g N7 [80]

n+1

—n

= 4¢3 1

Orthogonality relation

N
> Rulg
y=0

= DO 81]

6@ Ru(g 7Y + 6wy

where wy and b, can be explicitly given.

Big g-Jacobi Polynomials
Definition as g-hypergeometric series
Py(x) =

- ab, x
= 3¢2lq 1 ;6174 [82]
qa,qc

Pn(x;a,b,c;q)

n+1

Orthogonality relation

a (a v, xa),
/qc P,,(x)Pm(x)(xbc—xq)dqx = l’] 6nm7
0O<a<qg'0<b<qglc<0) [83]

where b, can be explicitly given.

g-Difference equation

A(x)P,(qx) — (A(x) + C(x))Py(x) + C(x)Pu(q'x)

=(q7" = 1)(1 —abq""")P,(x) (84]
where A(x)=aq(x — 1)(bx — ¢)/x* and C(x)=(x — qa)
(x —qc) /x*

Limit case: Jacobi polynomials P!* " (x)
lim P, (x;q%,q", —q~'d; q)
q11

n! wg (2x+d—1
() e

Special case: the little g-Jacobi polynomials
_ (_b)—nq—(l/l)n(n—H)

(gb;q),
* (qa; q),

Pn(X; a, b? 61)
P,(qbx;b,a,0;q) [86]

=2¢1(q", 9" ab;qa;q,qx)  [87]

which satisfy orthogonality relation (for 0 < a < ¢~
and b < q™)

xlogq a dqx

1 .
Anwm@mmu%hm#@@£

qbx; q)
_(9,9ab;q),. (1 —q)(qa)" (9,9b;9),
 (qa.qb;q)., Onm 88

1 —abg**! (qa,qab;q),

Limit case: Jackson’s third g-Bessel function (see [22])

(q7 q)oo —v(n+k)

hm —n N+ka b
N—oo pN ( q q) (qy+1; q)oo 1
> ]l(f) (Zq(l/z)(’th)7 q) (l/ > —1) [89}
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by which [88] tends to the orthogonality relation for

T (x5 9):

Z ](f)(261<1/2)("+k )] (Zq (1/2)(m+k). q)qk

k=—00

=bumq " (nymeZ) [90]

g-Hahn Polynomials

Definition as g-hypergeometric series

7n7 n+1a X
Qn(xZOQ@N;CI) = 3¢2 q qZ q—Nﬁ 7q7q:|

(n=0,1,...,N) 91
Orthogonality relation

(g, a7 N5 q),(qaB) ™
ZQ" Onla™) (NG g ),
= Dubum [92]

where b, can be explicitly given.

Stieltjes-Wigert Polynomials

Definition as g-hypergeometric series

Sa(x;9) = 101 [ 0 i —q”“x} 93]

(4:9),

The orthogonality measure is not uniquely determined:

1

Su(q"%x;9)Sm(q"?x; @)w(x) dx = ———— 6,1,
/0 ( ( ) q'(q:9),
where, for instance
q'?
wix) = loglg 1)(q.—q"%x,—q'/2x Tiq).
1/2 log?
d exp| — o8 351 [94]
27 log(g1) 2log(g™")

Rahman-Wilson Biorthogonal Rational Functions

The following functions are rational in their first
argument:

R,(3(z+z7");a,b,c,d,e)
=10Ws(a/e;q/(be),q/(ce),
q/(de),az,a/z,q" 'abed,q7";q,q) [95]
They satisfy the biorthogonality relation
% CR,, (%(z —l—z_l);a,b,c,d,e)
dz

1 -1 q
><Rm<z(z+z );a,b,c,d, bdg)w(z);

= 2hubum [96]

where the contour C is as in [70], and where

w(z)
B (22,272, abcdez, abcde/z; q)
 (az,a/z,bz,b/z,cz,¢/z,dz,d/z, ez, e/2;q)..

[97]

(bede,acde,abde,abce,abcd; q)

l/] =

0 (q,ab,ac,ad,ae,bc,bd,be,cd, ce,de;q) ., o8]
and h,/hy can also be given explicitly. For
ab=qg™N,n,mc{0,1,...,N}, there is a related dis-

crete biorthogonality of the form

ZR( aq +alq )a,b,c,d,e)

X R, (%(aqk +a'q*)a,b,c.d, bZde)
(n + m) 199]

Identities and Functions Associated
with Root Systems

n-Function Identities

Let R be a root system on a Euclidean space of
dimension I. Then Macdonald (1972) generalizes
Weyl’s denominator formula to the case of an affine
root system. The resulting formula can be written as
an explicit expansion in powers of g of

I <<1 —g)' L0~ q"e%)
n=1 a€R

which expansion takes the form of a sum over a
lattice related to the root system. For root system A
this reduces to Jacobi’s triple product identity [63].
Macdonald’s formula implies a similar expansion in
powers of g of n(g)"®l, where n(q) is “Dedekind’s

n-function” 1(q) :=q"/**(q; @)

Constant Term Identities

Let R be a reduced root system, R™ the positive
roots, and k € Z-o. Macdonald conjectured the
second equality in

fT ack+ (€771 q),(qe”; q), dx
Jrdx
_CT<H H 1 1 7& 1 qze(y)>
aeRt =1

- ﬁ[’f"L [100]

=1
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where T is a torus determined by R, CT means the
constant term in the Laurent expansion in ¢®, and
the d; are the degrees of the fundamental invariants
of the Weyl group of R. The conjecture was
extended for real k > 0, for several parameters k
(one for each root length), and for root system BC,,
where Gustafson’s five-parameter n-variable analog
of the Askey-Wilson integral ([70] for n=0)
settles:

/ |A(ei91"'-7ei9”)‘2d€1.7-;19n:Z”n!
[0,27]" (27)
2 -2 gbed-
e e [101]
L1t q,abti Y acti1, . cdti i q),
where
Ag)ye T EEf/%d)s
1<i<j<n (tzizj, 121/ 25 q) o
n 2.
275q)
« (z7:q) 102

L (az), bz), czj, dzj q)

Further extensions were in Macdonald’s conjectures
for the quadratic norms of Macdonald polynomials
associated with root systems (see the subsection
“Macdonald-Koornwinder polynomials”), and finally
proved by Cherednik.

Macdonald Polynomials for Root System A,_;

Let n € Z~o. We work with partitions A= (A, ..., \,)
of length < 7, where \y > --- > )\, > 0 are integers.
On the set of such partitions, we take the partial
order A<pu=XM+--+N=p1+---+p, and
M4 F+N<m+-+p(i=1,...,n—1). Write
A<p iff X<p and X # p. The monomials are
2*=2z{"...2%" (a1,..., 0 € Zxo). For X\ a partition
the symmetrized monomials 1,(z) and the Schur
functions s (z) are defined by:

) :Zz“

(sum over all distinct

permutations « of (A1,...,\,)) [103]
det(z""),
S/\(Z) — ( )17;_1,....11 [104]
det( )z] 1,...n
We integrate a function over the torus T:={z € C"|
|z1]= -+ =lzu| =1} as
1
2)dz = ~
| fdz = s
2 2 ) )
y / / FE, ... é®)doy...do,  [105]
0 0

Definition For ) a partition and for 0 <t < 1, the
(analytically defined) Macdonald polynomial Py(z) =
Py(z;q,1) is of the form

Z uy. #mu

Py(2) =

(M)\«,/l S C)
such that for all p < A

[ 2@ mi@ A e =0
T

Py(z;q,1)

where
(ziz'i 7q)oo
AR)=Aziq.t) = [[ 5=  [106]
i#] (tziz,‘ 7q)oo
Orthogonality relation
1 .
— | Pa(z) Pu(z) A(z) dz
nJr
)\ )\,t/ i q)\ )\+1t1 l’q)
= : - v [107]
g NN g A gy
g-Difference equation
tz; —
i=1 i
[108]

- (z qutw‘) Pz
i=1
where 7, ., is the g-shift operator: 7, ., f(z1,...,2,) :=

f(z1,...,qzZis- . ,2n). See (Macdonald 1995, ch. VI, §3)
for the full system of g-difference equations.

Special value

Py(1,t,..., tn_l; q,1) :Ht(i—l))\i
i=1
g q), -
X H% [109]
i @75a)y

Restriction of number of variables

P)\l,)\z,...,/\n,l,o (zla e 7zn717 07 q7 t)
=Py (21,0,20-13 9, 1) [110]
Homogeneity
Py (2:9,t) =21 2uPr -1, 0,-1(2:9, 1)
(M >0) [111]
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Self-duality Let A, i be partitions.

P)\(qul tnil, qﬂztn727 cee »41“"§ 9, t)
Py(t=1 172 ... 1;q,1)
P#(q)\ltnilﬂq/\ztniza . »6]’\”3‘]»t)

= - 112
P (=12, ... 1;q,t) [112]

Special cases and limit relations
Continuous q-ultraspherical polynomials (see [72]):

Pm,n(reie, 7‘6719; q. t) _ (q7 q)mfn 7,Wth

(9) s
X Cpu_n(cosb;t | q) [113]
Symmetrized monomials (see [103]):
Py(z;9,1) = m\(2) [114]
Schur functions (see [104]):
Pi(z:9,q) = s\(z) [115]

Hall-Littlewood polynomials (see Macdonald (1995),
ch. TI):

Py(2;0,t) = Px(z;1) [116]

Jack polynomials (see Macdonald (1995), §VI.10):

lim Pa(z:.4°) = P/ (2 [117]
q

Algebraic definition of Macdonald polynomials
Macdonald polynomials can also be defined
algebraically. We work now with partitions
A(AM > X >--->0) of arbitrary length /()\), and
with symmetric polynomials in arbitrarily many
variables x1,x2,..., which can be canonically
extended to symmetric functions in infinitely
many variables x1,x;,.... The rth power sum p,
and the symmetric functions p, are formally

defined by

p':thc p)\:p)\lp)\z'“ [118]

i>1
Put
2\ = Him’m,-! where m; = m;()\) is the number of
i>1

parts of \ equal to i. [119]

Define an inner product (,) , on the space of

. , gt
symmetric functions such that

1(\) A
— q 7
(Px D) gt = Oxp2n | I T—v [120]
i=1

For partitions A, u the partial ordering A\ > p
means now that D7 N=3>"_;u and Aj 4+
A > p1+ -+ p; for all i. The Macdonald poly-
nomial P)(x;qg,¢) can now be algebraically defined
as the unique symmetric function P, of the form
P,= E/LSA oW (M)\,H e C, U\ \= 1) such that

(P, Pu>q.t =0 if A#p [121]

If I(\) <n, then the newly defined P,(x) with
Xp41 =Xpio=---=0 coincides with Pj(x;q,?)
defined analytically, and the new inner product is a
constant multiple (depending on 7) of the old inner
product.

Bilinear sum

1
ZWR\(’C;‘I’ t)Px(y;q,1)
A ’ q.t
_ (txiyi; q)oo [122]
ij>1 (xiyi; q)oo

Generalized Kostka numbers The Kostka numbers
K,,, occurring as expansion coefficients in
Sy = Zu K, m, were generalized by Macdonald to
coefficients K} ,(g,?) occurring in connection with
Macdonald polynomials, see Macdonald (1995,
§VL8). Macdonald’s conjecture that K, ,(q,t) is a
polynomial in g and ¢ with coefficients in Zs was
fully proved in Haiman (2001).

Macdonald-Koornwinder Polynomials

Macdonald (2000, 2001) also introduced Macdonald
polynomials associated with an arbitrary root
system. For root system BC, this yields a three-
parameter family which can be extended to the
five-parameter Macdonald-Koornwinder (M-K) poly-
nomials (Koornwinder 1992). They are orthogonal
with respect to the measure occurring in [101] with
A(z) given by [102]. The M-K polynomials are
n-variable analogs of the Askey—Wilson polynomials.
All polynomials just discussed tend, for ¢ 11, to
Jacobi polynomials associated with root systems.
Macdonald conjectured explicit expressions for
the quadratic norms of the Macdonald polynomials
associated with root systems and of the M-K
polynomials. These were proved by Cherednik by
considering these polynomials as Weyl group
symmetrizations of non-invariant polynomials
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which are related to double affine Hecke algebras
(see Macdonald (2003)).

Elliptic Hypergeometric Series

Let p,q € C,|p|,|q] < 1. Define a modified Jacobi
theta function by

0(x;p) = (x,0/%;P) (x # 0) [123]
and the elliptic shifted factorial by
(a9, )y := 0(a; p)0(aq; p) . .. 0(ag" ™" p)
(k € Zo), (a;q,p)y =1 [124]
(@1,...,a:9,0), = (a1:9,0)y, - - - (ar;q,P),  [125]

where a,a1,...,a,#0. For g=¢*"7, p=e>™" (37> 0),
and a € C we have
e(aCZWia(x-ﬁ—U’l); eZﬂiT) -
e(anWi(rx; e27ri7)
e(aelwia(x+7'a’l) : elﬂir)

e(aelwirrx : eZﬂiT)

-1 _—x

[126]

A series Y ;7 cr with ¢py1/c, being an elliptic
(i.e., doubly periodic meromorphic) function of k
considered as a complex variable is called an elliptic
hypergeometric series. In particular, define the ,E,_;
theta hypergeometric series as the formal series

TEi’fl(a17-" 7b1’*1;q7p;z)

00 k

(Mauw%%%ﬁ)k <
_ 127
:O(blwnvbrfl;cbp)k(q;qvp)k [ ]

It has g(k):=cp1/cp with

yar by,

20(a19;p) ... 0(aq*; p)
g p) 0(b1g* ,p) . 0(b,197;p)

By [126], g(x) is an elliptic function with periods o
and 707! ( e2™7 p=e?™7) if the balancing condi-
tion ay . =qby...b,_1 is satisfied.

The ,V,,l very well-poised theta hypergeometric

g(x) = i

series (a special ,E, 1) is defined, in case of
argument 1, as:
+Vi1(ai;as, ... a5 9,p)
:Z (alq 7p) (alaa67'-~aar§q>p)k
e O(ai;p) (qai/as,....qa1/arq,p)y
k
w4 [128]
(%%P)k

The series is called balanced if a2...a> =a;%q"~*.

The series terminates if, for instance, a, =g ".

Elliptic Analog of Jackson’s g/, Summation

10V9(L1; b7 c, da qn+1a2/(b6d)v qin; C]»P)

_ (qa, qa/(bc)v qa/(bd)7 qa/(Cd)§ q, p)n [129}

(qa/b,qa/c,qa/d,qa/(bcd); q,p),

Elliptic Analog of Bailey’s (ol/y Transformation

12V <ﬂ b,c,d,e.f, [:J:;a;q iq, P>
_(qa,qa/(ef),(qa qa)®/(bede),(qa)* /(bedf);q.p),,
(qa/e.qa/f,(qa)’/(bedef),(qa)’/ (bed);q.p),,

qa ﬂ ﬂﬂ qn+2 3
><12‘]11([9 d Cd bd bC’ 7f7 bcdf’q 751 p) [130]

Suitable 1,Vy; functions satisfy a discrete biortho-
gonality relation which is an elliptic analog of [99].

Ruijsenaars’ elliptic gamma function

SIS z71q1+1pk+1
I(z; —_— 131
q,p) /HO g [131]
which is symmetric in p and g. Then
I'(qz;q,p) = 0(z:p)T'(z;:9,p) 132)
I'(q"z:q.p) = (2:4:),I'(z;: 4, P)
Applications

Quantum Groups

A specific quantum group is usually a Hopf algebra
which is a g-deformation of the Hopf algebra of
functions on a specific Lie group or, dually, of a
universal enveloping algebra (viewed as Hopf
algebra) of a Lie algebra. The general philosophy is
that representations of the Lie group or Lie algebra
also deform to representations of the quantum
group, and that special functions associated with
the representations in the classical case deform to
g-special functions associated with the representa-
tions in the quantum case. Sometimes this is
straightforward, but often new subtle phenomena
occur.

The representation-theoretic objects which may
be explicitly written in terms of g-special functions
include matrix elements of representations with
respect to specific bases (in particular spherical
elements), Clebsch-Gordan coefficients and Racah
coefficients. Many one-variable g-hypergeometric
functions have found interpretation in some way
in connection with a quantum analog of a three-
dimensional Lie group (generically the Lie group
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SL(2,C) and its real forms). Classical by now are:
little g-Jacobi polynomials interpreted as matrix
elements of irreducible representations of SU4(2)
with respect to the standard basis; Askey—Wilson
polynomials similarly interpreted with respect to a
certain basis not coming from a quantum subgroup;
Jackson’s third g-Bessel functions as matrix elements
of irreducible representations of E4(2); g-Hahn
polynomials and g-Racah polynomials interpreted
as Clebsch-Gordan coefficients and Racah coeffi-
cients, respectively, for SU4(2).

Further developments include: Macdonald poly-
nomials as spherical elements on quantum analogs
of compact Riemannian symmetric spaces; g-analogs
of Jacobi functions as matrix elements of irreducible
unitary representations of SU,(1,1); Askey—-Wilson
polynomials as matrix elements of representations
of the SU(2) dynamical quantum group; an inter-
pretation of discrete 1, Vi1 biorthogonality relations
on the elliptic U(2) quantum group.

Since the g-deformed Hopf algebras are usually
presented by generators and relations, identities for
g-special functions involving noncommuting vari-
ables satisfying simple relations are important for
further interpretations of g-special functions in
quantum groups, for instance:

g-Binomial formula with g-commuting variables

n

o =[] et =g 133
k=0 q

Functional equations for g-exponentials with xy
=qyx

€q (x+y) = eq(y)eq (x) [134]
Eg(x+y) = E4(x)E4(y)
eq(x +y — yx) = eq(x)eq(y) 135]
Eq(x +y+yx) = Eq(y)Eq(x)
Various Algebraic Settings
Classical groups over finite fields (Chevalley

groups) g-Hahn polynomials and various kinds of
g-Krawtchouk polynomials have interpretations as
spherical and intertwining functions on classical
groups (GL,,SO,,Sp,) over a finite field F, with
respect to suitable subgroups, see Stanton (1984).

Affine Kac-Moody algebras (see Lepowsky
(1982)) The Rogers—-Ramanujan identities [57],
[58] and some of their generalizations were inter-
preted in the context of characters of representations
of the simplest affine Kac—-Moody algebra A(ll).

Macdonald’s generalization of Weyl’s denominator
formula to affine root systems has an interpretation
as an identity for the denominator of the character
of a representation of an affine Kac-Moody
algebra.

Partitions of Positive Integers

Let n be a positive integer, p(n) the number of
partitions of 7, pn(7) the number of partitions of n
into parts <N, pgi:(77) the number of partitions of
n into distinct parts, and pygq(7) the number of
partitions of 7 into odd parts. Then, Euler observed:

o P =Y (g (136
) 00 n=0 ’ n=0
(=4:9) s = ipdm(n)q”
! " [137]
(q: qz)oo = nz:;podd(n)qn
and
(_q;q)oo = M7 pdist(n) = Podd(”) [138]

The Rogers-Ramanujan identity [57] has the
following partition-theoretic interpretation: the
number of partitions of n with parts differing at
least 2 equals the number of partitions of # into
parts congruent to 1 or 4 (mod 5). Similarly, [58]
yields: the number of partitions of # with parts
larger than 1 and differing at least 2 equals the
number of partitions of # into parts congruent to
2 or 3 (mod 5).

The left-hand sides of the Rogers—Ramanujan
identities [57] and [58] have interpretations in
the “hard hexagon model,” see Baxter (1982).
Much further work has been done on Rogers—
Ramanujan-type identities in connection with
more general models in statistical mechanics. The
so-called “fermionic expressions” do occur.

See also: Combinatorics: Overview; Eight Vertex and

Hard Hexagon Models; Hopf Algebras and g-Deformation
Quantum Groups; Integrable Systems: Overview; Ordinary
Special Functions; Solitons and Kac—Moody Lie Algebras.
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Introduction

The idea to derive topological invariants of smooth
manifolds from partition functions of certain action
functionals was suggested by A Schwarz (1978) and
highlighted by E Witten (1988). Witten interpreted
the Jones polynomial of links in the 3-sphere $° as a
partition function of the Chern-Simons field theory.
Witten conjectured the existence of mathematically
defined topological invariants of 3-manifolds, gen-
eralizing the Jones polynomial (or rather its values
in complex roots of unity) to links in arbitrary
closed oriented 3-manifolds. A rigorous construction
of such invariants was given by N Reshetikhin and
V Turaev (1989) using the theory of quantum
groups. The Witten—Reshetikhin—Turaev invariants
of 3-manifolds, also called the “quantum invar-
iants,” extend to a topological quantum field theory
(TQFT) in dimension 3.
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Ribbon and Modular Categories

The Reshetikhin-Turaev approach begins with fixing
suitable algebraic data, which are best described in terms
of monoidal categories. Let C be a monoidal category
(i.e., a category with an associative tensor product and
unit object 1). A “braiding” in C assigns to any objects
V,W € C an invertible morphism cy,w:V® W —
W ® V such that, for any U, V, W € C,

cuvew = (idy ® cyw)(cuv ® idw)
cuev.w = (cuw ®@idy)(idy ® cv.w)
A “twist” in C assigns to any object V €C an

invertible morphism 6y :V — V such that, for any
V,Welcd,

Ovew = cw.v cv.w (v @ Ow)

A “duality” in C assigns to any object V € C a “dual”
object V* €, and evaluation and co-evaluation
morphisms dy:V*@V — 1, by:1 — V& V* such
that

(idv ® dv)(bv ® idv) =idy
(dv & idvx)(idvx ® bv) =idy-
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The category C with duality, braiding, and twist is
ribbon, if for any V € C,

(9\/ ® idv*)bv = (idv ® Qv*)bv

For an endomorphism f: V — V of an object V € C,
its trace “tr(f) € End¢(1)” is defined as

tr(f) = dvey v ((Ovf) @ idy-)by : 1 — 1

This trace shares a number of properties of the
standard trace of matrices, in particular,
tr(fg) = tr(gf) and tr(f ® g) =tr(f)tr(g). For an object
V e, set

dlm(V) = tr(idv) = dVCV,V*(eV & idv*)bv

Ribbon categories nicely fit the theory of knots
and links in $°. A link L C $® is a closed one-
dimensional submanifold of $°. (A manifold is
closed if it is compact and has no boundary.) A
link is oriented (resp. framed) if all its components
are oriented (resp. provided with a homotopy class
of nonsingular normal vector fields). Given a framed
oriented link L € $* whose components are labeled
with objects of a ribbon category C, one defines a
tensor (L) € End¢(1). To compute (L), present L by
a plane diagram with only double transversal cross-
ings such that the framing of L is orthogonal to the
plane. Each double point of the diagram is an
intersection of two branches of L, going over and
under, respectively. Associate with such a crossing
the tensor (cy,w)*! where V, W € C are the labels of
these two branches and +1 is the sign of the crossing
determined by the orientation of L. We also
associate certain tensors with the points of the
diagram where the tangent line is parallel to a fixed
axis on the plane. These tensors are derived from the
evaluation and co-evaluation morphisms and the
twists. Finally, all these tensors are contracted into a
single element (L) € End¢(1). It does not depend on
the intermediate choices and is preserved under
isotopy of L in §3. For the trivial knot O(V) with
framing O and label V €(C, we have (O(V))=
dim (V).

Further constructions need the notion of a tangle.
An (oriented) tangle is a compact (oriented) one-
dimensional submanifold of R? x [0,1] with end-
points on R x 0 x {0, 1}. Near each of its endpoints,
an oriented tangle T is directed either down or up,
and thus acquires a sign +1. One can view T as a
morphism from the sequence of +1’s associated
with its bottom ends to the sequence of +1’s
associated with its top ends. Tangles can be
composed by putting one on top of the other.
This defines a category of tangles 7 whose objects
are finite sequences of +1’s and whose morphisms

are isotopy classes of framed oriented tangles.
Given a ribbon category C, we can consider C-
labeled tangles, that is, (framed oriented) tangles
whose components are labeled with objects of C.
They form a category 7. Links appear here as
tangles without endpoints, that is, as morphisms
) — 0. The link invariant (L) generalizes to a
functor (-): 7, — C.

To define 3-manifold invariants, we need modular
categories (Turaev 1994). Let k be a field. A
monoidal category C is k-additive if its Hom sets
are k-vector spaces, the composition and tensor
product of the morphisms are bilinear, and
Ende(l)=k. An object VeC is simple if
End¢(V)=k. A modular category is a k-additive
ribbon category C with a finite family of simple
objects {V,}, such that (1) for any object V €C
there is a finite expansion idy=),figi for
certain morphisms g;:V—V, f:V, -V and
(2) the S-matrix (S, ,) is invertible over k where
Sxu=tr(cy, v,cv, v,). Note that S, ,=(H(\ p))
where H (), ) is the oriented Hopf link with framing 0,
linking number +1, and labels V, V,,.

Axiom (1) implies that every simple object in C is
isomorphic to exactly one of V. In most interesting
cases (when there is a well-defined direct summa-
tion in C), this axiom may be rephrased by saying
that C is finite semisimple, that is, C has a finite set
of isomorphism classes of simple objects and all
objects of C are direct sums of simple objects. A
weaker version of the axiom (2) yields premodular
categories.

The invariant (-) of links and tangles extends by
linearity to the case where labels are finite linear
combinations of objects of C with coefficients in k.
Such a linear combination Q= )", dim(V,)V, is
called the Kirby color. It has the following sliding
property: for any object V € C, the two tangles in
Figure 1 yield the same morphism V — V. Here, the
dashed line represents an arc on the closed compo-
nent labeled by Q. This arc can be knotted or linked
with other components of the tangle (not shown in
the figure).

\
\ / VN a
~ - V \\// V
N 4

Figure 1 Sliding property.
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Invariants of Closed 3-Manifolds

Given an embedded solid torus g:S! x D? < S3,
where D? is a 2-disk and S' =9D?, a 3-manifold can
be built as follows. Remove from $* the interior of
2(S' x D?) and glue back the solid torus D? x S!
along g|¢ .- This process is known as “surgery.”
The resulting 3-manifold depends only on the
isotopy class of the framed knot represented by g.
More generally, a surgery on a framed link
L=U",L; in § with m components yields a
closed oriented 3-manifold Mj;. A theorem of
W Lickorish and A Wallace asserts that any closed
connected oriented 3-manifold is homeomorphic to
M for some L. R Kirby proved that two framed
links give rise to homeomorphic 3-manifolds if and
only if these links are related by isotopy and a finite
sequence of geometric transformations called Kirby
moves. There are two Kirby moves: adjoining a
distant unknot O°¢ with framing ¢ = £1, and sliding
a link component over another one as in Figure 1.

Let L=U",L;CS be a framed link and let
(bij)ij=1,. m be its linking matrix: for i # j, b;; is
the linking number of L;, L;, and b; ; is the framing
number of L;. Denote by e, (resp. e_) the number of
positive (resp. negative) eigenvalues of this matrix.
The sliding property of modular categories implies
the following theorem. In its statement, a knot K
with label Q is denoted by K(f2).

Theorem 1 Let C be a modular category with
Kirby color Q. Then (O'(2)) # 0,(071(Q)) # 0 and

the expression
7e(Mp)=(0"(2))"“ (071 (Q)) " (L1(), ..., Ln())

is invariant under the Kirby moves on L. This
expression yields, therefore, a well-defined topological
invariant 1¢ of closed connected oriented 3-manifolds.

Several competing normalizations of 7¢ exist in
the literature. Here, the normalization used is such
that 7(8%)=1 and 7(S' x §?)= 3, (dim (V)))%.
The invariant 70 extends to 3-manifolds with a
framed oriented C-labeled link K inside by

7c(Mr, K)
= (0OM(Q) ™ (O (Q) ™ (L1(Q),..., Lu(Q), K)

Three-Dimensional TQFTs

A three-dimensional TQFT V assigns to every closed
oriented surface X a finite-dimensional vector space
V(X) over a field k and assigns to every cobordism
(M,X,Y) a linear map V(M)=V(M, X,Y):V(X) —
V(Y). Here, a “cobordism” (M,X,Y) between
surfaces X and Y is a compact oriented 3-manifold

M with OM = (—=X) I Y (the minus sign indicates the
orientation reversal). A TQFT has to satisfy axioms
which can be expressed by saying that V is a
monoidal functor from the category of surfaces and
cobordisms to the category of vector spaces over k.
Homeomorphisms of surfaces should induce iso-
morphisms of the corresponding vector spaces
compatible with the action of cobordisms. From
the definition, V(@)=k. Every compact oriented
3-manifold M is a cobordism between @) and OM
so that Vyields a “vacuum” vector V(M) € Hom(V (),
V(OM))=V(OM). If OM=(, then this gives a
numerical invariant V(M) € V(0) =k.

Interestingly, TQFTs are often defined for
surfaces and 3-cobordisms with additional struc-
ture. The surfaces X are normally endowed with
Lagrangians, that is, with maximal isotropic
subspaces in H{(X;R). For 3-cobordisms, several
additional structures are considered in the litera-
ture: for example, 2-framings, pi-structures, and
numerical weights. All these choices are equiva-
lent. The TQFTs requiring such additional struc-
tures are said to be “projective” since they provide
projective linear representations of the mapping
class groups of surfaces.

Every modular category C with ground field k
and simple objects {V)}, gives rise to a projective
three-dimensional TQFT V. It depends on the
choice of a square root D of ZA(dim(VA))2 € k.
For a connected surface X of genus g,

V¢(X) = Home (1, P é(vx, ® V;r))

Al,“.,/\g r=1

The dimension of this vector space enters the
Verlinde formula

dimg(Ve(X)) - 1, = D*7 2> " (dim(V,))* >
A

where 1, € k is the unit of the field k. If char(k) =0,
then this formula computes dimy (V¢(X)). For a
closed connected oriented 3-manifold M with
numerical weight zero, V¢(M)=DM~17.(M),
where bi(M) is the first Betti number of M.

The TQFT V¢ extends to a vaster class of surfaces
and cobordisms. Surfaces may be enriched with a
finite set of marked points, each labeled with an
object of C and endowed with a tangent direction.
Cobordisms may be enriched with ribbon (or fat)
graphs whose edges are labeled with objects of C and
whose vertices are labeled with appropriate inter-
twiners. The resulting TQFT, also denoted Vg, is
nondegenerate in the sense that, for any surface X,
the vacuum vectors in V(X) determined by all M
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with OM =X span V(X). A detailed construction
of V¢ is given in Turaev (1994).
The two-dimensional part of V¢ determines a

“modular functor” in the sense of G Segal,
G Moore, and N Seiberg.

Constructions of Modular Categories

The universal enveloping algebra Ug of a (finite-
dimensional complex) simple Lie algebra g admits
a deformation U,g, which is a quasitriangular Hopf
algebra. The representation category Rep(U,q) is
C-linear and ribbon. For generic g € C, this category is
semisimple. (The irreducible representations of g can
be deformed to irreducible representations of U,g.)
For g, an appropriate root of unity, a certain
subquotient of Rep(U,q) is a modular category
with ground field k=C. For g=sl,(C), it was
pointed out by Reshetikhin and Turaev; the general
case involves the theory of tilting modules. The
corresponding 3-manifold invariant 7 is denoted
75. For example, if g =sl;(C) and M is the Poincaré
homology sphere (obtained by surgery on a left-
hand trefoil with framing —1), then (Le 2003)

M) =(1 - ) 3 q" (1 )
n>0

% (1 _qn+2)__.(1 o qln-‘r])

The sum here is finite since g is a root of unity.

There is another construction (Le 2003) of a
modular category associated with a simple Lie
algebra g and certain roots of unity g. The
corresponding quantum invariant of 3-manifolds is
denoted 7P9. (Here, it is normalized so that
7'5 9(8%)=1.) Under mild assumptions on the order
of g, we have 75(M) =7(M)7'(M) for all M, where
7/(M) is a certain Gauss sum determined by g, the
homology group H=H{(M) and the linking form
TorsH x Tors H — Q/Z.

A different construction derives modular categories
from the category of framed oriented tangles 7. Given
a ring K, a bigger category K[7] can be considered
whose morphisms are linear combinations of tangles
with coefficients in K. Both 7 and K[7] have a
natural structure of a ribbon monoidal category.

The skein method builds ribbon categories by
quotienting K[7| using local “skein” relations,
which appear in the theory of knot polynomials
(the Alexander—-Conway polynomial, the Homfly
polynomial, and the Kauffman polynomial). In
order to obtain a semisimple category, one com-
pletes the quotient category with idempotents as
objects (the Karoubi completion). Choosing appro-
priate skein relations, one can recover the modular

o \X

Figure 2 The Homfly relation.

categories derived from quantum groups of series
A, B, C, D. In particular, the categories determined
by the series A arise from the Homfly skein relation
shown in Figure 2 where a,s € K. The categories
determined by the series B, C, D arise from the
Kauffman skein relation.

The quantum invariants of 3-manifolds and the
TQFTs associated with sly can be directly described
in terms of the Homfly skein theory, avoiding the
language of ribbon categories (W Lickorish,
C Blanchet, N Habegger, G Masbaum, P Vogel for
sl, and Y Yokota for all sly).

Unitarity

From both physical and topological viewpoints,
one is mainly interested in Hermitian and unitary
TQFTs (over k=C). A TQFT V is Hermitian if the
vector space V(X) is endowed with a nondegene-
rate Hermitian form (.,.)y:V(X)®c V(X) — C
such that:

1. the form (.,.)y is natural with respect to homeo-
morphisms and multiplicative with respect to
disjoint union and

2. for any cobordism
x € V(X), y € V(Y),

<V(Ma Xv Y)(x)a y>Y = <x7 V(_Mv Ya X)(y)>X

(M, X, Y) and any

If (.,.)x is positive definite for every X, then the
Hermitian TQFT is “unitary.” Note two features of
Hermitian TQFTs. If OM =0, then V(—M)=V(M).
The group of self-homeomorphisms of any X
acts in V(X) preserving the form (.,.)y. For a
unitary TQFT, this gives an action by unitary matrices.
The three-dimensional TQFT derived from a mod-
ular category V is Hermitian (resp. unitary) under
additional assumptions on V which are discussed
briefly. A “conjugation” in V assigns to each morph-
ismf:V — WinV amorphism f: W — V so that

f=f, f+g=f+g foranyfg:V—W
wg=f®g for any morphisms f,g in C
fog=gof for any morphisms

VoW g: WV
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One calls V Hermitian if it is endowed with
conjugation such that

Oy = (0v)"",
by = dveyy-(0y @ 1)
dv = (1y- ® 0" )ey! yby

v = (cvw) !

for any objects V, W of V. A Hermitian modular
category V is unitary if tr(ff) > 0 for any morphism
fin V. The three-dimensional TQFT, derived from a
Hermitian (resp. unitary) modular category, has a
natural structure of a Hermitian (resp. unitary)
TQFT.

The modular category derived from a simple Lie
algebra g and a root of unity g is always Hermitian.
It may be unitary for some g. For simply laced g,
there are always such roots of unity g of any given
sufficiently big order. For non-simply-laced g, this
holds under certain divisibility conditions on the
order of g.

Integral Structures in TQFTs

The quantum invariants of 3-manifolds have one
fundamental property: up to an appropriate res-
caling, they are algebraic integers. This was
first observed by H Murakami, who proved that
TSIZ(M) is an algebraic integer, provided the order of
q is an odd prime and M is a homology sphere. This
extends to an arbitrary closed connected oriented 3-
manifold M and an arbitrary simple Lie algebra g as
follows (Le 2003): for any sufficiently big prime
integer 7 and any primitive rth root of unity g,

'9(M) € Zlg] = Zlexp(27i/r)] 1]

This inclusion allows one to expand ng(M) as
a polynomial in g. A study of its coefficients leads
to the Ohtsuki invariants of rational homology
spheres and further to perturbative invariants of
3-manifolds due to T Le, ] Murakami, and
T Ohtsuki (see Ohtsuki (2002)). Conjecturally, the
inclusion [1] holds for nonprime (sufficiently big)
as well. Connections with the algebraic number
theory (specifically modular forms) were studied by
D Zagier and R Lawrence.

It is important to obtain similar integrality results
for TQFTs. Following P Gilmer, fix a Dedekind
domain D C C and call a TQFT V almost D-integral
if it is nondegenerate and there is d € C such
that dV(M) € D for all M with OM=(. Given
an almost-integral TQFT V and a surface X, we
define S(X) to be the D-submodule of V(X), generated
by all vacuum vectors for X. This module is preserved
under the action of self-homeomorphisms of X.

It turns out that §(X) is a finitely generated
projective  D-module and V(X)=S8(X)®p C.
A cobordism (M, X, Y) is targeted if all its connected
components meet Y along a nonempty set. In
this case, V(M)(S(X)) € S(Y). Thus, applying S to
surfaces and restricting 7 to targetet cobordisms, we
obtain an “integral version” of V. In many interest-
ing cases, the D-module $(X) is free and its basis
may be described explicitly. A simple Lie algebra g
and a primitive rth (in some cases 4rth) root of unity
q with sufficiently big prime 7 give rise to an almost
D-integral TQFT for D =Z][q].

State-Sum Invariants

Another approach to three-dimensional TQFTs is
based on the theory of 6j-symbols and state sums on
triangulations of 3-manifolds. This approach intro-
duced by V Turaev and O Viro is a quantum
deformation of the Ponzano-Regge model for the
three-dimensional lattice gravity. The quantum 6;-
symbols derived from representations of U,(sl,C) are

C-valued rational functions of the variable gy = g'/?
i j ok
/ 151 n 2]

numerated by 6-tuples of non-negative integers i, j,
k, I, m, n. One can think of these integers as labels
sitting on the edges of a tetrahedron (see Figure 3).
The 6j-symbol admits various equivalent normal-
izations and we choose the one which has full
tetrahedral symmetry. Now, let go€ C be a
primitive 2rth root of unity with »> 2. Set
I={0,1,..., —2}. Given a labeled tetrahedron T
as in Figure 3 with 4,7, k,[,m,n € I, the 6j-symbol
[2] can be evaluated at q¢p and we can obtain a
complex number denoted |T|. Consider a closed
three-dimensional manifold M with triangulation z.
(Note that all 3-manifolds can be triangulated.) A
coloring of M is a mapping ¢ from the set Edg(#)
of the edges of ¢ to I. Set

M| = (V2r/(qo— 25" ) > ]

¥ ecEdg(t)

(plen TTIT*|
T

Figure 3 Labeled tetrahedron.



122 Quantum 3-Manifold Invariants

where a is the number of vertices of #, (n)=(—1)"
(q5 — qa”)/(qo —qp') for any integer n, T runs over
all tetrahedra of ¢, and T¥ is T with the labeling
induced by ¢. It is important to note that [M| does
not depend on the choice of t and thus yields a
topological invariant of M.

The invariant |[M| is closely related to the
quantum invariant 78(M) for g=sl;(C). Namely,
|M] is the square of the absolute value of 74 (M), that
is, [M|=|r$(M)|*. This computes |74(M)| inside M
without appeal to surgery. No such computation of
the phase of 7$(M) is known.

These constructions generalize in two directions.
First, they extend to manifolds with boundary. Second,
instead of the representation category of U, (sl C), one
can use an arbitrary modular category C. This yields a
three-dimensional TQFT, which associates to a surface
X a vector space |X|., and to a 3-cobordism (M, X, Y)
a homomorphism [M|;:[X]|, — |Y]|,, (see Turaev
(1994)). When X=Y =0, this homomorphism is
multiplication C — C by a topological invariant
|[M|, € C. The latter is computed as a state sum on a
triangulation of M involving the 6j-symbols associated
with C. In general, these 6j-symbols are not numbers
but tensors so that, instead of their product, one
should use an appropriate contraction of tensors. The
vectors in V(X) are geometrically represented by
trivalent graphs on X such that every edge is labeled
with a simple object of C and every vertex is labeled
with an intertwiner between the three objects labeling
the incident edges. The TQFT |- |, is related to the
TQFT V =V by |M|, = |V(M)|*. Moreover, for any
closed oriented surface X,

Xle =End(V(X)) = V(X) ® (V(X))’
—V(X) @ V(-X)

and for any three-dimensional cobordism (M, X, Y),

M, =V(M)@V(-M): V(X)® V(-X)
- V(Y)®V(-Y)

J Barrett and B Westbury introduced a general-
ization of |[M|, derived from the so-called spherical
monoidal categories (which are assumed to be
semisimple with a finite set of isomorphism classes
of simple objects). This class includes modular
categories and a most interesting family of (unitary
monoidal) categories arising in the theory of sub-
factors (see Evans and Kawahigashi (1998) and
Kodiyalam and Sunder (2001)). Every spherical
category C gives rise to a topological invariant |M]|,
of a closed oriented 3-manifold M. (It seems that this
approach has not yet been extended to cobordisms.)

Every monoidal category C gives rise to a double (or
a center) Z(C), which is a braided monoidal category

(see Majid (1995)). If C is spherical, then Z(C) is
modular. Conjecturally, |M|, =7z¢)(M). In the case
where C arises from a subfactor, this has been recently
proved by Y Kawahigashi, N Sato, and M Wakui.
The state sum invariants above are closely related
to spin networks, spin foam models, and other

models of quantum gravity in dimension 2 + 1 (see
Baez (2000) and Carlip (1998)).

See also: Axiomatic Approach to Topological Quantum
Field Theory; Braided and Modular Tensor Categories;
Chern—-Simons Models: Rigorous Results; Finite-type
Invariants of 3-Manifolds; Large-N and Topological
Strings; Schwarz-Type Topological Quantum Field
Theory; Topological Quantum Field Theory: Overview;
von Neumann Algebras: Subfactor Theory.
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Introduction

Calogero-Moser (C-M) systems are multiparticle
(i.e., finite degrees of freedom) dynamical systems
with long-range interactions. They are integrable
and solvable at both classical and quantum levels.
These systems offer an ideal arena for interplay of
many important concepts in mathematical/theoreti-
cal physics: to name a few, classical and quantum
mechanics, classical and quantum integrability,
exact and quasi-exact solvability, addition of dis-
crete (spin) degrees of freedom, quantum Lax pair
formalism, supersymmetric quantum mechanics,
crystallographic root systems and associated Weyl
groups and Lie algebras, noncrystallographic root
systems, and Coxeter groups or finite reflection
groups. The quantum integrability or solvability of
C-M systems does not depend on such known
solution mechanisms as Yang-Baxter equations,
quantum R-matrix or Bethe ansatz for the quantum
systems. In fact, quantum C-M systems provide a
good material for pondering about quantum
integrability.

Quantum (Liouville) Integrability

The classical Liouville theorem for an integrable
system consists of two parts. Let us consider
Hamiltonian dynamics of finite degrees of freedom
N with coordinates g=(q1,...,gn) and conjugate
momenta p=(p1,...,pn) equipped with Poisson
brackets {gj, pr} = 0> {q)> qr} = {pj> b} = 0. The first
part is the existence of a set of independent and
involutive {Kj,K,}=0 conserved quantities {K;} as
many as the degrees of freedom (j=1,...,N). The
second part asserts that the generating function of the
canonical transformation for the action-angle vari-
ables can be constructed from the conserved quan-
tities via quadrature. In other words, the second part,
that is, the reducibility to the action-angle variables is
the integrability. The quantum counterpart of the
first half is readily formulated: that is, the existence
of a set of independent and mutually commuting
(involutive) [K;, K] =0 conserved quantities {K;} as
many as the degrees of freedom. (This does not
necessary imply, however, that they are well defined
in a proper Hilbert space.) The definition of the
quantum integrability should come as a second part,
which is yet to be formulated. It is clear that the

quantum Liouville integrability does not imply the
complete determination of the eigenvalues and
eigenfunctions. Such systems would be called exactly
solvable. This can be readily understood by consider-
ing any (autonomous) degree-1 Hamiltonian system,
which, by definition, is Liouville integrable at the
classical and quantum levels. However, it is known
that the number of excatly solvable degree-1 Hamil-
tonians are very limited. What would be the quantum
counterpart of the “transformation to action-angle
variables by quadrature”? Could it be better for-
mulated in terms of a path integral? Many questions
remain to be answered. The quantum C-M systems,
an infinite family of exactly solvable multiparticle
Hamiltonians, would shed some light on the problem
of quantum integrability, in addition to their own
beautiful structure explored below.

Throughout this article, the dependence on
Planck’s constant, #, is shown explicitly to distin-
guish the quantum effects.

Simplest Cases (Based on A,_; Root
System)

The simplest example of a C-M system consists of 7
particles of equal mass (normalized to unity) on a
line with pairwise 1/(distance)’ interactions
described by the following Hamiltonian:

W= pitale- Y ——— [
=1

j<k (9 — CIk)Z

in which g is a real positive coupling constant.
Here ¢9=(q1,...,q9,) are the coordinates and
p=(p1,...,p,) are the conjugate canonical momenta
obeying the canonical commutation relations:
[CI;', Pk] = ihé/ka [q/’ qk] = [ph Pk] = 0’ ia k= 1, cees T
The Heisenberg equations of motion are g;=(i/h)
(M, ) =pp» 8= b = /D),y = 28(g — B) Sy 1/
(g; — gr)’. The repulsive 1/(distance)®> potential
cannot be surmounted classically or quantum
mechanically, and the relative position of the
particles on the line is not changed during the time
evolution. Classically, it means that if a motion
starts at a configuration g1 >¢»>--->¢,, then the
inequalities remain valid throughout the time evolu-
tion. At the quantum level, the wave functions
vanish at the boundaries, and the configuration
space can be naturally limited to g1 >¢2>--->¢q,
(the principal Weyl chamber).

Similar  integrable quantum  many-particle
dynamics are obtained by replacing the inverse
square potential in [1] by the trigonometric
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V(gh, 1/¢? q2+1/g2 1/sin?q 1/sinh2q
q q q
Rational Calogero Sutherland Hyperbolic

Figure 1 Four different types of quantum C-M potentials.

(hyperbolic) ~ counterpart  (see  Figure 1)
1/(gj — qi) —>az/sinh2 a(q; — qr), in which a > 0 is
a real parameter. The 1/sin’g potential case
(the Sutherland system) corresponds to the
1/(distance)2 interaction on a circle of radius 1/2a,
see Figure 2. A harmonic confining potential
w*>77_1q7/2 can be added to the rational Hamil-
tonian [1] without breaking the integrability
(the Calogero system, see Figure 1). At the
classical level, the trigonometric (hyperbolic) and
rational C-M systems are obtained from the
elliptic potential systems (with the Weierstrass o
function) as the degenerate limits: p(q1 — q2) —
az/sinh2 alqy — q2) — 1/(q1 — ¢q2)*, namely as one
(two) period(s) of the p function tends to infinity.
It is remarkable that these equations of motion can
be expressed in a matrix form (Lax pair):
i/h[H,L]=dL/dt=LM — ML=|L,M] < Heisenberg
equation of motion, in which I and M are given by

_ig . g
pl q1—q2 q1—4qr
ig ig
q2—q1 PZ q92—4qr
L =
_ig  _ig .,
qr—q1 qr—q2 pr
2
I N
(q1-q2) (q1-49:)
ig ig
(2—a1)’ (@2—a,)
M =
ig ig
— f— PR m
(qr*ql)z (%*42)2 4

7q4 distance(qq, g2) =sina(qy—qo)/a

Figure 2 Sutherland potential is 1/(dis.tanc<-3)2 interaction on a
circle. The large-radius limit, a — 0, gives the rational potential.

The diagonal element m; of M is given by
my=ig i 1/(q; — gr)*. The matrix M has a special
property Z;:l M, = >, Mz =0, which ensures
the quantum conserved quantities as the total sum of
powers of Lax matrix L: [H,K,]=0,K,=
Ts(L") = 0 (L) (1=1,2,3,...), [Kuy K] =0,
It should be stressed that the trace of L” is not
conserved because of the noncommutativity of g and
p. The Hamiltonian is equivalent to Koy, H o< K> +
const. In other words, the Lax matrix L is like a
“square root” of the Hamiltonian. The quantum
equations of motion for the Sutherland and hyper-
bolic potentials are again expressed by Lax pairs if
the following replacements are made: 1/(q; — qx) —
acotha(gi—q;) in L and 1/(gj—qu)* —
az/sinh2 a(qj —qr) in M. The quantum conserved
quantities are obtained in the same manner as above
for the systems with the trigonometric and hyperbolic
interactions.

The main goal here is to find all the eigenvalues
{€} and eigenfunctions {¢(q)} of the Hamiltonians
with the rational, Calogero, Sutherland, and
hyperbolic potentials: Hip(q) = Ey(q). The mome-
ntum operator p; acts as differential operators
pj= —ihd/dq;. For example, for the rational
model Hamiltonian [1], the eigenvalue equation
reads

—h—zia—erg(g— h) i* ¥(q)
2 & 0q; T (- )’
= &¥(q) 3]

which is a second-order Fuchsian differential
equation for each variable {q;} with a regular
singularity at each hyperplane g;=q, whose expo-
nents are g/h,1— g/h. Any solution ¢ of [3] is
regular at all points, except for those on the union
of hyperplanes gj=gqy. Since the structure of the
singularity is the same for the other three types of
potentials, the same assertion for the regularity and
singularity of the solution ¢ holds for these cases,
too. For the trigonometric (Sutherland) case, there
are other singularities at gj — g, =In/a, | € Z, due
to the periodicity of the potential. As is clear from
the shape of the potentials, see Figure 1, the
rational and hyperbolic Hamiltonians have only
continuous spectra, whereas the Calogero and
Sutherland Hamiltonians have only discrete
spectra.

The integrability or more precisely the triangular-
ity of the quantum C-M Hamiltonian was first
discovered by Calogero for particles on a line with
inverse square potential plus a confining harmonic
force and by Sutherland for the particles on a circle
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with the trigonometric potential. Later, classical
integrability of the models in terms of Lax pairs was
proved by Moser. Olshanetsky and Perelomov
showed that these systems were based on A, ;| root
systems, that is, q; — g, =« - q, and « is one of the
root vectors of A,y root system [13]. They also
introduced generalizations of the C-M systems
based on any root system including the noncrystal-
lographic ones.

As shown by Heckman—-Opdam and Sasaki and
collaborators, quantum C-M systems with degen-
erate potentials (i.e., the rational potentials with/
without harmonic force, the hyperbolic, and the
trigonometric potentials), based on any root system
can be formulated and solved universally. To be
more precise, the rational and Calogero systems are
integrable for all root systems, the crystallographic
and noncrystallographic. The hyperbolic and trigo-
nometric (Sutherland) systems are integrable for any
crystallographic root system. The universal formulas
for the Hamiltonians, Lax pairs, ground state wave
functions, conserved quantities, the triangularity, the
discrete spectra for the Calogero and Sutherland
systems, the creation and annihilation operators,
etc., are equally valid for any root system. This will
be shown in the next section. Some rudimentary
facts of the root systems and reflections are
summarized in the appendix.

Universal Formalism

A C-M system is a Hamiltonian dynamical systems
associated with a root system A of rank 7, which is a
set of vectors in R” with its standard inner product.
A brief review of the properties of the root systems
and the associated reflections together with explicit
realizations of all the classical root systems will be
found in the appendix.

Factorized Hamiltonian

The Hamiltonian for the quantum C-M system can
be written in terms of a pre-potential W(g) in a
“factorized form”:

Hea o) ()

The pre-potential is a sum over positive roots:

W(g) = Y galnlw(a-q)|+ (

aEAL

w

) B

The real positive coupling constants g, are
defined on orbits of the corresponding Coxeter

Table 1 Functions appearing in the prepotential and Lax pair
Potential w(u) x(u) y(u)
Rational u 1/u —1/u?
Hyperbolic sinh au a coth au faZ/Sinhz au
Trigonometric sin au a cot au —a?/sin® au

group, that is, they are identical for roots in the
same orbit. That is, for the simple Lie algebra cases,
one coupling constant, g, = g, for all roots in simply
laced models and two independent coupling con-
stants, g, =g for long roots and g, =gs for short
roots, in non-simply laced models. The function
w(u) and the other functions x(#) and y(#) appearing
in the Lax pair [10],[11] are listed in Table 1 for
each type of degenerate potentials. The dynamics of
the prepotentials W(q) (eqn [5]) has been discussed
by Dyson from a different point of view (random-
matrix model). The above factorized Hamiltonian
[4] consists of an operator part H, which is the
Hamiltonian in the usual definition (see the Hamil-
tonians in the previous section, e.g., [1]), and a
constant &y which is the ground-state energy,
H=H —&. The factorized Hamiltonian [4] also
arises within the context of supersymmetric quan-
tum mechanics.

The pre-potential and the Hamiltonian are
invariant under reflection of the phase space
variables in the hyperplane perpendicular to any
root W(Sa(q)) = W(CI), H(SQ(P)aSn(Q)) :H(pa Q),Va €
A, with s, defined by [12]. The above Coxeter
(Weyl) invariance is the only (discrete) symmetry of
the C-M systems. The main problem is, as in the A,_;
case, to find all the eigenvalues {£} and eigenfunctions
{1/(q)} of the above Hamiltonian H)(q) = E(q).

For any root system and for any choice of
potential, the C-M system has a hard repulsive
potential ~1/(c - g)* near the reflection hyperplane
H,={g € R",a-g=0}. The C-M eigenvalue equa-
tion is a second-order Fuchsian differential equation
with regular singularities at each reflection hyper-
plane H, and those arising from the periodicity in
the case of the Sutherland potential. Near the
reflection hyperplane H,, the solution behaves as
follows:

¥~ (a-q)*/"(1 + regular terms), or
P~ (a- q)]fg”/h(l + regular terms)

The former solution is chosen for the square
integrability. Because of the singularities, the con-
figuration space is restricted to the principal Weyl
chamber PW or the principal Weyl alcove PWr
for the trigonometric potential (see Figure 3): PW =
{geR |a-g>0,aell},PWr={geR"|a-q >0,
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(12 O‘h

M
o

Figure 3 Simple roots, the highest root, fundamental weights,
and the principal Weyl alcove (grey) and the principal Weyl
chamber (light grey, extending to infinity) in a two-dimensional
root system.

a €Il ap - q < m/a}, (I: set of simple roots, see the
appendix). Here o, is the highest root.

Ground-State Wave Function and Energy

One straightforward outcome of the factorized
Hamiltonian [4] is the universal ground-state wave
function, which is given by

Do(q) —eVla)/h
= [T lwa- @)/ (xe @27) g

acAy
HDPo(g) =0

The exponential factor e~“/2)4" exists only for the

Calogero systems. The ground-state energy, that is,
the constant part of H=H — &y, has a universal
expression for each potential:

rational

0
50 - { UJ(E}’/Z + ZGGA+ ga) Calogero
[7]
—1  hyperbolic
1 Sutherland

where p=1/2% A goa is called a “deformed
Weyl vector.” Obviously, ®y(q) is square integrable
in the configuration spaces for the Calogero and
Sutherland systems and not square integrable for the
rational and hyperbolic potentials.

Eo = 2a%p* x {

Excited States, Triangularity, and Spectrum

Excited states of the C-M systems can be easily
obtained as eigenfunctions of a differential operator
'H obtained from H by a similarity transformation:

H = e Wiy

B
=5 > (B3 |0} + 2h0W/0q;0/0q;)
j=1

The eigenvalue equation for H, HUg =&V, is then
equivalent to that of the original Hamiltonian,
HUeeW =EUeeW. Since all the singularities of the
Fuchsian differential equation H(q) =EY(q) are

contained in the ground-state wave function eV, W,
must be regular at finite ¢, including all the
reflection boundaries. As for the rational and
hyperbolic potentials, the energy eigenvalues are
only continuous. For the rational case, the eigen-
functions are multivariable generalization of Bessel
functions.

Calogero  systems The  similarity-transformed
Hamiltonian H reads
d B P
H =hwg > 7>
dqg 2 = 04 8]
8a 0
_ b a-—
QGXA; a-q  9q

which maps a Coxeter-invariant polynomial in g of
degree d to another of degree d. Thus, the
Hamiltonian H (8) is lower-triangular in the basis
of Coxeter-invariant polynomials and the diagonal
elements have values as hw x degree, as given by the
first term. Independent Coxeter-invariant polyno-
mials exist at the degrees f; listed in Table 2: fj=1 +
e,j=1,...,r, where {e},j=1,...,r, are the
exponents of A.

The eigenvalues of the Hamiltonian H are hwN
with N a non-negative integer. N can be
expressed as N=37_ nf,n;€Z,, and the
degeneracy of the eigenvalue hwN is the number
of partitions of N. It is remarkable that the
coupling constant dependence appears only in the
ground-state energy &p. This is a deformation of
the isotropic harmonic oscillator confined in the
principal Weyl chamber. The eigenpolynomials
are generalization of multivariable Laguerre
(Hermite) polynomials. One immediate consequence
of this spectrum is the periodicity of the quantum
motion. If a system has a wave function (0) at
t=0, then at t=T =27/w the system has physically
the same wave function as 1(0), that Iis,
W(T) =e €0T/244(0). The same assertion holds at the
classical level, too.

Table 2 The degrees f; in which independent Coxeter-invariant
polynomials exist

A fj:1+ej A fj:1+e,-

A 2,3,4,...,r+1 Eg 2, 8,12, 14, 18, 20, 24, 30
B, 2,4,6,...,2r Fy4 2, 6,8, 12

C, 2,4,6,...,2r Go 2,6

D, 2,4,...,2r—2,r L(m) 2, m

Es 2,5,6,8,9, 12 Hs 2,6, 10

E; 2,6,8,10,12,14,18 H, 2,12, 20, 30
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Sutherland Systems The periodicity of the trigono-
metric potential dictates that the wave function
should be a Bloch factor %7 (where p is a weight)
multiplied by a Fourier series in terms of simple
roots. The basis of the Weyl invariant wave
functions is specified by a dominant weight
A= midy 1 € Lo, $0(Q) =00, €299, where
O, is the orbit of X by the action of the Weyl group:
O ={g\)|g 6 Gal. The set of functions {¢,} has an
order LA > [N]? = ¢r = ¢dy. The similarity-
transformed Hamiltonian H given by

th

H:_T 8q2

—ah Z gacot (aa - q)a 88q [9]

aEAL

is lower-triangular in this basis: Hey =2a*(h* A +
2hp - Ny + Z\/\’K\/\I cx¢y. That is, the eigenvalue is
E=2a2(F*N2 +2bp-A) or E+Ey=2a*h)+ p)’.
Again, the coupling constant dependence comes
solely from the deformed Weyl vector p. This
spectrum is a deformation of the spectrum corre-
sponding to the free motion with momentum 2%a\
in the principal Weyl alcove. The corresponding
eigenfunction is called a generalized Jack polynomial
or Heckman-Opdam’s Jacobi polynomial. For the
rank-2 (r=2) root systems, A, B» = C, and I,(m)
(the dihedral group), the complete set of eigenfunc-
tions are known explicitly.

Quantum Lax Pair and Quantum Conserved
Quantities

The universal Lax pair for C-M systems is given in
terms of the representations of the Coxeter (Weyl)
group in stead of the Lie algebra. The Lax operators
without spectral parameter for the rational, trigono-
metric, and hyperbolic potentials are

L(p,q) =p-H+X(q)
X@) =i Y gala Hxta-qie
acAL
Z gu?y(a @), —1)  [11]
(}EA+

where I is the identity operator and {§,|a € A} are
the reflection operators of the root system. They act
on a set of R” vectors, R={u® e R"|k=1,...,d),
permuting them under the action of the reflection
group. The vectors in R form a basis for the
representation space V of dimension d. The matrix
elements of the operators {S,|a€ A} and
{H,« lj=1,...,71 are defined as follows:
(ga),w - 6/1,,5(1(u) = 6u,su(u)a (Hj)/w - ,uié/wa a €A, p,
v € R. The form of the functions x,y depends on

the chosen potential as given in Table 1. Then the
equations of motion can be expressed in a matrix
form dL/d¢=i/h[H,L]=[L,M]. The operator M
satisfies the relation > o M= 3, cx My =0,
which is essential for deriving quantum conserved
quantities as the total sum (Ts) of all the matrix
elements of L™ K,=Ts(L") = Zu, ver (L) s
[H,K,]=0,[K,;,,K,]=0, n,m=1,... In particular,
the power 2 is universal to all the root systems, and
the quantum Hamiltonian is given by H « K +
const. As in the affine Toda molecule systems, a Lax
pair with a spectral parameter can also be intro-
duced universally for all the above potentials. The
Dunkl operators, or the commuting differential—
difference operators are also used to construct
quantum conserved quantities for some root sys-
tems. This method is essentially equivalent to the
universal Lax operator formalism. As the Lax
operators do not contain the Planck’s constant, the
quantum Lax pair is essentially of the same form as
the classical Lax pair. The difference between the
trace (tr) and the total sum (Ts) vanishes as 5 — 0.

Lax pair for Calogero systems The quantum Lax
pair for the Calogero systems is obtained from the
universal Lax pair [10] by replacement L —
L*¥=L +iwQ, O =g - H, which correspond to the
creation and annihilation operators of a harmonic
oscillator. The equations of motion are rewritten as
dL*/dt=i/h[H,L*]=[L*, M] £ iwL*. Then £*=
L*L7 satisfy the Lax type equation dL*/dt=
i/b[H, L], giving rise to conserved quantities
Ts(£*)", n=1,2,... The Calogero Hamiltonian is
given by H oc Ts(LF).

All the eigenstates of the Calogero Hamiltonian H
with eigenvalues AwN, N = Z _ynifi,nj € Z,, are
simply constructed in terms of "1+ IT-, (B*)”f W,
Here the integers {fj},j=1,...,7, are hsted in
Table 2. The creation operators Bf+ and the
corresponding annihilation operators B are defined
by BﬂE Ts(L*)/,j=1,...,r. They are Hermitian
con]ugate to each other (B}?) B]F with respect to
the standard Hermitian inner product of the states
defined in PW. They satisfy commutation relations
[, By | = % hkwBy, [Bf, B/ 1=[B,B;1=0, k, | €
{fili=1,...,r}. The ground state is annihilated by
all the annihilation operators Bf/ eV=0,j=1,...,r

Further Developments
Rational Potentials: Superintegrability

The systems with the rational potential have a remark-
able property: superintegrability. A rational C-M
system based on a rank-r root system has 2r — 1
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independent conserved quantities. Roughly speaking,
they are of the form K,, =Ts(L"), J,, = Ts(OL™),0 =
g-H, among which only 7 are involutive. At the
classical level, superintegrability can be characterized
as algebraic linearizability. Since a commutator of any
conserved quantities is again a conserved quantity, these
conserved quantities form a nonlinear algebra called a
quadratic algebra. It can be considered as a finite-
dimensional analog of the W-algebra appearing in
certain conformal field theory.

Quantum vs Classical Integrability

In C-M systems, the classical and quantum integr-
ability are very closely related. The quantum discrete
spectra of the Calogero and the Sutherland systems
are, as shown above, expressed in terms of the
coupling constant (w,g) and the exponents or the
weights of the corresponding root systems. Namely,
they are integral multiples of coupling constants. The
corresponding classical systems with the potential
Vig)=(1/2)>7_, (AW (q)/9q;)* share many remark-
able properties. As is clear from Figure 1, they always
have an equilibrium position. The equilibrium posi-
tions (g) are described by the zeros of a classical
orthogonal polynomial; the Hermite polynomial
(A-type Calogero), the Laguerre polynomial (B, C, D-
type Calogero), the Chebyshev polynomial (A-type
Sutherland) and the Jacobi polynomial (B, C, D-type
Sutherland). For the exceptional root systems, the
corresponding polynomials were not known for a long
time. The minimum energy of the classical potential
V(q) at the equilibrium is the quantum ground-state
energy limy,_ & itself. It is also an integral multiple of
coupling constants for both Calogero and Sutherland
cases. Near a classical equilibrium, a multiparticle
dynamical system is always reduced to a system of
coupled harmonic oscillators. For Calogero systems,
the eigenfrequencies of these small oscillations are, in
fact, exactly the same as the quantum eigenfrequen-
cies, wfj=w(l+¢). For Sutherland systems, the
classical eigenfrequencies are the same as the o(h)
part of the quantum spectra corresponding to all
the fundamental weights \;: 2a%); - p. Moreover, the
eigenvalues of various Lax matrices L. and M at the
equilibrium take many “interesting values.” These
results provide ample explicit examples of the general
theorem on the quantum-—classical correspondence
formulated by Loris—Sasaki.

Spin Models

For any root system A and an irreducible represen-
tation R of the Coxeter (Weyl) group Ga, a spin
C-M system can be defined for each of the
potentials: rational, Calogero, hyperbolic and

Sutherland. For each member p of R, to be called
a “site,” a vector space V, is associated whose
element is called a “spin.” The dynamical variables
are those of the particles {gj,p;}] and the spin
exchange operators {P,} (o € A) which exchange
the spins at the sites  and s, (p). For each A and R
a spin exchange model can be defined by “freezing”
the particle degrees of freedom at the equilibrium
point of the corresponding classical potential
{q,p} — {3,0}. These are generalization of Hal-
dane-Shastry model for Sutherland potentials and
that of Polychronakos for the Calogero potentials.
Universal Lax pair operators for both spin C-M
systems and spin exchange models are known and
conserved quantities are constructed.

Integrable Deformations

C-M systems allow various integrable deformations at
the classical and/or quantum levels. One of the well-
known deformations is the so-called “relativistic” C-M
system or the Ruijsenaars—Schneider (R-S) system. For
degenerate potentials, they are integrable both at the
classical and quantum levels. The classical quantities of
the R-S systems at equilibrium exhibit many interesting
properties, too. The equilibrium positions are described
by the zeros of certain deformation of the above-
mentioned classical polynomials. The frequencies of
small oscillations are also related to the exact quantum
spectrum, and they can be expressed as coupling
constant times the (g-) integers.

Inozemtsev models are classically integrable mul-
tiparticle dynamical systems related to C-M systems
based on classical root systems (A,B,C,D) with
additional ¢° (rational) or sin’2g (trigonometric)
potentials. Their quantum versions are not exactly
solvable in contrast to the C-M or R-S systems,
although there is some evidence of their Liouville
integrability (without a proper Hilbert space).
Quantum Inozemtsev systems can be deformed to
be a widest class of quasi-exactly solvable multi-
particle dynamical systems. They possess a form of
higher-order supersymmetry for which the method
of prepotential is also useful.

Appendix: Root Systems

Some rudimentary facts of the root systems and
reflections are recapitulated here. The set of roots A
is invariant under reflections in the hyperplane
perpendicular to each vector in A. In other words,
so(B) € A, Va, 5 € A, where

sa(B) =B~ (@ Bla, a'=2a/laf  [12]
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The set of reflections {s, |« € A} generates a group
Ga, known as a Coxeter group, or finite reflection
group. The orbit of 5 € A is the set of root vectors
resulting from the action of the Coxeter group on
it. The set of positive roots A, may be defined in
terms of a vector U € R’, with o - U # 0,Va € A,
as the roots a € A such that a.- U > 0. Given A,
there is a wunique set of r simple roots
I={a;|j=1,...,7} defined such that they span
the root space and the coefficients {g;} in
B=>7_1a; for Be€ A, are all non-negative.
The highest root «y, for which Z;Zla/ is max-
imal, is then also determined uniquely. The subset
of reflections {s,|a €II} in fact generates the
Coxeter group Ga. The products of s,, with a €
I, are subject solely to the relations
(sasg)™“? =1, a, 8 € II. The interpretation is that
SaSp 1s a rotation in some plane by 27/m(«, 3). The
set of positive integers m(a,[8)  (with
m(a, ) =1,Va € II) uniquely specifies the Coxeter
group. The weight lattice P(A) is defined as the
Z-span of the fundamental weights {\;}, defined by
Ozl-v VES éjk,Va,- eIl

The root systems for finite reflection groups may
be divided into two types: crystallographic and
noncrystallographic. Crystallographic root systems
satisfy the additional condition o" - 3 € Z,Va, 3 € A.
The remaining noncrystallographic root systems are
Hs,H4, whose Coxeter groups are the symmetry
groups of the icosahedron and four-dimensional
600-cell, respectively, and the dihedral group of
order 2m, {I,(m)|m > 4}.

The explicit examples of the classical root
systems, that is, A,B,C, and D are given below.
For the exceptional and noncrystallographic root
systems, the reader is referred to Humphrey’s book.
In all cases, {ej} denotes an orthonormal basis in R”.

1. A,_1: This root system is related with the Lie
algebra su(r).

A= U {*+(eg—en)},

1<j<k<r
r—1

1= U le e}
/:

2. B,: This root system is associated with Lie
algebra  so(2r+1). The long roots have
(length)?> =2 and short roots have (length)*=1:

A= U

1<j<ksr

[1="0 e~ gt ute)

[13]

{:I:e,‘ tey} U;:l {:I:e,-}
[14]

3. C,: This root system is associated with Lie
algebra sp(2r). The long roots have (length)* =4
and short roots have (length)” = 2:

A= U {:I:ei + ek} U;:l {j:Zei}
1<j<k<r

r—1 [15}
II= Ule —eptU{2e)

4. D,: This root system is associated with Lie
algebra so(2r):

A= U {+ete,}

1<j<k<r

r—1 [16}
H - /-gl{ef —ei1tU{e1+e}

See also: Calogero—Moser—Sutherland Systems

of Nonrelativistic and Relativistic Type;

Dynamical Systems in Mathematical Physics:

An lllustration from Water Waves; Functional Equations
and Integrable Systems; Integrable Discrete Systems;
Integrable Systems in Random Matrix Theory; Integrable
Systems: Overview; Isochronous Systems; Toda
Lattices.
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Introduction

Statistical physics deals with systems with many
degrees of freedom and the problems concern finding
procedures for the extraction of relevant physical
quantities for these extremely complex systems. The
idea is to find relevant reduction procedures which
map the complex systems onto simpler, tractable
models at the price of introducing elements of
uncertainty. Therefore, probability theory is a natural
mathematical tool in statistical physics. Since the early
days of statistical physics, in classical (Newtonian)
physical systems, it is natural to model the observables
by a collection of random variables acting on a
probability space. Kolmogorovian probability techni-
ques and results are the main tools in the development
of classical statistical physics. A random variable is
usually considered as a measurable function with
expectation given as its integral with respect to a
probability measure. Alternatively, a random variable
can also be viewed as a multiplication operator by the
associated function. Different random variables com-
mute as multiplication operators, and one speaks of a
commutative probabilistic model.

Now, looking at genuine quantum systems, in
many cases the procedure mentioned above leads to
commutative probabilistic models, but there exist
the realms of physics where quantum noncommuta-
tive probabilistic concepts are unavoidable. Typical
examples of such areas are quantum optics, low-
temperature solid-state physics and ground-state
physics such as quantum field theory. During the
last 50 years physicists have developed more or less
heuristic methods to deal with, for example,
manifestations of fluctuations of typical quantum
nature. In the last 30years, mathematical founda-
tions of such theories were also formulated, and a
notion of quantum probability was launched as a
branch of mathematical physics and mathematics
(Cushen and Hudson 1971, Fannes and Quaegebeur
1983, Quaegebeur 1984, Hudson 1973, Giri and
von Waldenfels 1978).

The aim of this article is to review briefly a few
selected rigorous results concerning noncommuta-
tive limit theorems. This choice is made not only
because of the author’s interest but also for its close
relation to concrete problems in statistical physics
where one aims at understanding the macroscopic

phenomena on the basis of the microscopic struc-
ture. A precise definition or formulation of a
microscopic and a macroscopic system is of prime
importance. The so-called algebraic approach of
dynamical systems (Brattelli and Robinson 1979 and
2002) offers the necessary generality and mathema-
tical framework to deal with classical and quantum,
microscopic and macroscopic, finite and infinite
systems. The observables of any system are assumed
to be elements of an (C*- or von Neumann) algebra
A, and the physical states are given by positive
linear normalized functionals w of A, mapping the
observables on their expectation values.

A common physicist’s belief is that the macro-
scopic behavior of an idealized infinite system is
described by a reduced set of macroscopic quantities
(Sewell 1986). Some examples of these are the
average densities of particles, energy, momentum,
magnetic moment, etc. Analogously as the micro-
scopic quantities, the macroscopic observables
should be elements of an algebra, and macroscopic
states of the system should be states on this algebra.
The main problem is to construct the precise
mathematical procedures to go from a given micro-
SCOpic system to its macroscopic systems.

A well-known macroscopic system is the one
given by the algebra of the observables at infinity
(Lanford and Ruelle 1969) containing the spacial
averages of local micro-observables, that is, for any
local observable A one considers the observable

A, = w_ hm —/ dx 7 A

where V is any finite volume in R” and 7, the
translation over x € R”, and where w_lim is the
weak operator limit in the microstate w. The limits
A, obtained correspond to the law of large numbers
in probability. The algebra generated by these limit
observables A,={A,|A €A} is an abelian algebra
of observables of a macroscopic system. This
algebra can be identified with an algebra with
pointwise product of measurable functions for
SOme measure Or Macroscopic state.

The content of this review is to describe an
analogous mapping from micro to macro but for a
different type of scaling, namely the scaling of
fluctuations. For any local observable A € A, one
considers the limit

V]/Z/ dx (1A — w(1A)) = F(A)

The problem consists in characterizing the F(A) as
an operator on a Hilbert space, called fluctuation
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operator, and to specify the algebraic character of
the set of all of these.

Based on this quantum central-limit theorem, one
notes that not all locally different microscopic
observables always yield different fluctuation opera-
tors. Hence the central-limit theorem realizes a well-
defined procedure of coarse graining or reduction
procedure which is handled by the mathematical
notion of an equivalence relation on the microscopic
observables yielding the same fluctuation operator.

In the following sections we discuss the prelimin-
aries, the basic results about normal and abnormal
fluctuations. Three model-independent applications
are also discussed. In this review, we omit the
properties of the so-called modulated fluctuations.

One should remark that we discuss only fluctua-
tions in space. One can also consider timelike
fluctuations. The theory of fluctuation operators
for these has not been explicitly worked out so far.
However, it is clear that for normal fluctuations the
clustering properties of the time correlation func-
tions will play a crucial role. On the other hand,
typical properties of the structure of this fluctuation
algebra may come up.

Another point which one has to stress is that all
systems, which are treated in this review, are quasilocal
systems. Other systems, for example, fermion systems,
are note treated. But, in particular, fermion systems
share many properties of quasilocality, and many of
the results mentioned hold true also for fermion
systems.

Preliminaries
Quantum Lattice Systems

Although all results we review can be extented to
continuous or more general systems, modulo some
technicalities, we limit ourself to quasilocal quantum
dynamical lattice systems.

We consider the quasilocal algebra built on a
v-dimensional lattice Z”. Let D(Z") be the directed
set of finite subsets of 7" where the direction is the
inclusion. With each point x € Z” we associate an
algebra (C*- or von Neumann algebra) A,, all copies
of an algebra A. For all A € D(Z"), the tensor
product ®,cp Ay is denoted by A,. We take A to be
nuclear, then there exists a unique C*-norm on A,.
Every copy A, is naturally embedded in A,.
The family {Ax}yepz») has the usual relations of
locality and isotony:

[Ap, ALl =0 ifAjNA, =0 1]

-AAl - AAz if AN CA, [2]

Denote by Ap all local observables, that is,
A=A
A

This algebra is naturally equipped with a C*-norm
| - |l and its closure

B= A

is called a quasilocal C*-algebra and considered as the
microscopic algebra of observables of the system.
Typical examples are spin systems where A= M,, is the
n x n complex matrix algebra. In this case, every state
w of B is then locally normal, that is, there exists a
family of density matrices {ps | A € D(Z")} such that

w(A) =trppA forall Ae Ay

An important group of s-automorphisms of B is the
group of space translations {r,,x € Z"}:

Tx Ay €A, = TxAy = Ay €Ay

for all A € A.

Note that the quasilocal algebra B is asymptoti-
cally abelian for space translations: that is, for all
ABelB

lim 4, 7B]|| = 0
|| — o0

A state w of B represents a physical state of the
system, assigning to every observable A its expecta-
tion value w(A). Therefore, this setting can be viewed
as the quantum analog of the classical probabilistic
setting. Sequences of random variables or observables
can be constructed by considering an observable and
its translates, that is, 7(A),c7» IS a noncommutative
random field. If a state w is translation invariant, that
is, wo Ty =w for all x, then all 7(A) are identically
distributed random variables. The mixing property of
the random field is then expressed by the spatial
correlations tending to zero:

w(7(A)7y(B)) — w(7e(A))w(7(B)) =0 [3]

if |x —y| — oo.

One of the basic limit theorems of probability theory
is the weak law of large numbers. In this noncommu-
tative setting the law of large numbers is translated into
the problem of the convergence of space averages of an
observable A € B. A first result was given by the mean
ergodic theorem of von Neumann (1929). In Brattelli
and Robinson (1979, 2002) one finds the following
theorem: if the state w is space translation invariant and
mixing (see [3]) then for all A, B, and Cin B

, 1
Ag%y<ADq<§:aUﬂ>C>:wQKWAB)[ﬂ

xeA
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That is, in the GNS (Gelfand—-Naimark-Segal) repre-
sentation of the state w, the sequence S,(B)=
1/IA| > ,cp 7B converges weakly to a multiple of
the identity: S(B) = w(B)1. This theorem, called the
mean ergodic theorem, characterizes the class of
states yielding a weak law of large numbers. Clearly,
these limits {S(A)|A € B} form a trivial abelian algebra
of macroscopic observables.

Now we go a step further and consider space
fluctuations. Define the local fluctuation of an
observable A in a homogeneous (spatial invariant)
state w by

Fa(A |A|1/2 Z 5]

x€A

The problem is to give a rigorous meaning to
limFy(A) for A tending to 7" in the sense of
extending boxes. When does such a limit exist?
What are the properties of the fluctuations or the
limits F(A)= lim Fy(A), etc.? Again, the F(A) are
macroscopic variables of the microsystem.

Already we remark the following: if A,B are
strictly local elements, A, B € A, then

> (A nBle AL

yez’
and an easy computation yields, by [4],
weak lilgn [FA(A), FA(B)]

= weak hm Al Z Te (Z [A TyxB]>

xeA yeA

= weak llm T Z Tx ( Z [A, @B])

x€eA yeZ”

= Z w([A,TyB])

yez!

=io0(A,B)1

that is, if the F(A) and F(B) limits do exist, then
[F(A),F(B)] = i0(A, B)1 [6]

This property indicates that fluctuations should have
the same commutation relations as boson fields. If
fluctuations can be characterized as macroscopic
observables, they must satisfy the canonical com-
mutation relations (CCRs). Therefore, in the next
section we introduce the essentials on CCR
representations.

CCR Representations

We present the abstract Weyl CCR C*-algebra.
More details can be found in Brattelli and
Robinson (1979, 2002) and in particular in
Manuceau et al. (1973), where the case of a real

test function space (H,o) with a possibly degen-
erate symplectic form o is treated. Hence, H is a
real vector space and o a bilinear, antisymmetric
form on H.

Denote by W(H,o) the complex vector space
generated by the functions W(f), f € H, defined by

W(f):H-C:g—W(f)g
_{Oﬁf#g
1 iff=g¢g
W(H, o) becomes an algebra with unit W(0) for the
product

W()W(g) = W(f +g)e 2V fgeH
and a *-algebra for the involution
W(f)— W(f) = W(-f)

It becomes a C*-algebra C*(H,o) following the
construction of Verbeure and Zagrebnov (1992).
A linear functional w of a C*-algebra C*(H,o) is
called a state if w(I)=1 and w(A*A) >0 for all
A€ C*(H,o) and I = W(0). Every state gives rise to a
representation through the GNS construction
(Brattelli and Robinson 1979, 2002). In particular,
w is a state if for any choice of A= 3", ¢;W(f;) we

have
Z clckw

w(W(O)) —1

—f))e ot > o

A remark about the special case that o is degenerate
is in order. Denote by Hj the kernel of o:

Hy={f€H|o(f,g) =0 for all ge H}

If H=H, ® H; with o1 a nondegenerate symplectic
form on Hy and oy equal to the restriction of o to
H1, we have that C*(H, o) is a tensor product:

C'(H,0) = C"(Ho,0) ® C*(Hy, 01)

Note that C*(Hy,0) is abelian and that each
positive-definite normalized functional ¢,

¢ :heHy— o(W(h))

defines a state w(W(h)) = (W (h)) on C*(Hy,O0).
Let ¢ be any character of the abelian additive
group H, then the map 7,

7 W(F) = €(F) W (f)

extends to a *-automorphism of C*(H, o). Let s be a
positive symmetric bilinear form on H such that for
all f,ge H:

Holf, @) < s(f.f)s(g.8) [7]
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and let w,¢ be the linear functional on C*(H,o)
given by

wse(W(h)) = &(h)e /2100 8]

then it is straightforward (Brattelli and Robinson
1979, 2002) to check that w; ¢ is a state on C*(H, o).
All states of the type [8] are called quasifree states
on the CCR algebra C*(H, o).

A state w of C*(H, o) is called a regular state if, for
all f,g€ H, the map A € R—w(W(\ +g)) is con-
tinuous. The regularity property of a state yields the
existence of a Bose field as follows. Let (H, m, Q) be
the GNS representation (Brattelli and Robinson
1979, 2002) of the state w, then the regularity of
w implies that there exists a real linear map
b:H— L(H) (linear operators on H) such that
VfeH: b(f)"=b(f) and

m(W(f)) = exp(ib(x))

The map b is called the Bose field satisfying the Bose
field commutation relations:

[b(f),b(g)] = i0(f,8) 9]

Note that the Bose fields are state dependent. Note
also already that if £ is a continuous character of H,
then any quasifree state [8] is a regular state
guaranteeing the existence of a Bose field.

Normal Fluctuations

In this section we develop the theory of normal
fluctuations for v-dimensional quantum lattice sys-
tems with a quasilocal structure (see the section
“Quantum lattice systems”) and for technical simpli-
city we assume that the local C*-algebra A,,x € 7,
are copies of the matrix algebra M,(C) of nxn
complex matrices. Most of the results stated can be
extended to the case where A, is a general C*-algebra
(Goderis et al. 1989, 1990, Goderis and Vets 1989).

We consider a physical system (B,w) where w is a
translation-invariant state of B, that is, w o 7, = w for
all x € Z". Later on we extend the situation to a
C*-dynamical system (B,w,q;) and analyze the
properties of the dynamics «; under the central limit.

For any local A we introduced its local fluctuation
in the state w of the system:

Fd) = S o) 110

x€A

The main problem is to give a rigorous mathema-
tical meaning to the limits

lim Fo(A) = F(A)

where the limit is taken for any increasing
7 -absorbing sequence {A}, of finite volumes of
7". The limits F(A) are called the macroscopic
fluctuation operators of the system (B,w).

Already earlier work (Cushen and Hudson 1971,
Sewell 1986) suggested that the fluctuations behave
like bosons. We complete this idea by proving that
one gets a well-defined representation of a CCR C*-
algebra of fluctuations uniquely defined by the
original system (B, w).

Denote by AL, and By, the real vector space of
the self-adjoint elements of A, respectively, 5.

Definition 1 An observable A € By, satisfies the
central-limit theorem if
(i) limw(Fx(A)?) = s.(A, A) exists and is finite, and
.. B 5 2
(ii) h}\n w(etFr(A)) = et/275:(AA) for all t € R.
Clearly, our definition coincides with the notion in
terms of characteristic functions, for classical systems (A
abelian) equivalent with the notion of convergence in
distribution. For quantum systems, there does not exist
a standard notion of “convergence in distribution.”
Only the concept of expectations is relevant. This does
not exclude the notion of central-limit theorem in terms

of the moments, which is the analog of the moment
problem (Giri and von Waldenfels 1978).

Definition 2 The system (B,w) is said to have
normal fluctuations if w is translation invariant and if

(i) VA,B € AL
Z |w(ATB) — w(A)w(B)| < oo

xeZ’
(ii) the central-limit theorem holds for all A € A; s,.

Note that (i) implies that the state w is mixing for
space translations. Also by (i), one can define a
sesquilinear form on Aj:

(A,B), = liI{n w(Fy(A")FA(B))
= Y (@A TB) — w(A")w(B)
and denote

s.(A,B) = Re(A, B),,
0u(A,B) = 2Im(A, B),,

For A,B € A s, one has

0u(A,B) =—i > w([A,7:B]) [11]
xeZ’
su(A,A) = (A A), [12]

Clearly, (Ap s,0,) is a symplectic space and s, a
non-negative symmetric bilinear form on Ap .
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Following the discussion in the section “CCR
representations” we get a natural CCR C*-algebra
C*(AL, sa,0,) defined on this symplectic space. The
following theorem 1is an essential step in the
construction of a macroscopic physical system of
fluctuations of the microsystem (B, w).

has normal
iEA(A))

Theorem 1 If the system (B,w)
fluctuations, then the limits {limw(e
exp ((—1/2)s,(A, A),A € AL} define “a quasifree
state & on the CCR C*-algebra C*( AL sa,0.) by

w(W(A)) = exp(f %Sw(Aa A))

Proof The proof is clear from the definition [8] if
one can prove that the positivity condition [7] holds.
But the latter follows readily from

$lou(A, B)[* = lim [Im w(Ex (A)Fy(B))
< limw(Fa(A)")w(Fa(B)*)
=s,(A,A)s,(B,B)
by Schwarz inequality. O

This theorem indicates that the quantum-mechan-
ical alternative for (classical) Gaussian measures are
quasifree states on CCR algebras. However, the
following basic question arises: is it possible to take
the limits of products of the form

hmw(gFA(A)eiw , )
A
and, if they exist, do they preserve the CCR
structure? Clearly, this is a typical noncommutative
problem.

Using the following general bounds: for C*=C
and D* =D norm-bounded operators one has

Hei(CJrD) . eiC|| S HD”
[, e < NI, Dy

Hei(CvLD) _ eiceiDH < % H[C, D]H

and by the expansion of the exponential function
one proves easily that

li/I\nHeiFA(A)eiFA(B) _ l(FA(A)+Ea(B))

x e~ IDEWBG)| — o [13]

if A and B are one-point observables, that is, if A, B €
Ayo;. For general local elements the proof is some-
what more technical and can be based on a Bernstein-
like argument (for details see Goderis and Vets
(1989)). The property [13] can be seen as a
Baker—Campbell-Hausdorff formula for fluctuations.

From [13], the mean ergodic theorem, and Theorem
1 we get:

Theorem 2 If the system (B,w) has normal

fluctuations then for A,B € Ay s:

lim w (eiF.x (4) iFs (B))
A

- exp{—% su(A+B,A+B)— %O'M(A,B)}
=o(W(A)W(B))

oy
L,sa ) .

with & a quasifree state on the CCR algebra C*(

Theorems 1 and 2 describe completely the
topological and analytical aspects of the quantum
central-limit theorem under the condition of normal
fluctuations (Definition 2). In fact, the quantum
central limit yields, for every microphysical system
(B,w), a macrophysical system (C*(AL ,04),®)
defined by the CCR C*-algebra of fluctuation
observables C*(Ap q,0,) in the representation
defined by the quasifree state . As the state & is a
quasifree state, it is a regular state, that is, the map
A€ R—&(W(MNA + B)) is continuous. From in sec-
tion “CCR representations” we know that this
regularity property yields the existence of a Bose
field, that is, there exists a real linear map

F:Ae AL, — F(A)

where F(A) is a self-adjoint operator on the GNS
representation space H of &, such that for all
A,B S .AL, sas

[F(A), F(B)] = io,,(A, B)

Moreover, if one has a complex structure ] on
(AL sa50,) such that J> = —1 and for all A, B € Ay :

ou(JA,B) = —0,(A,]B)
ou(A,JB) >0

then one defines the boson creation and annihilation
operators

FS(A) = 75 (F(A) FiF(/A)

satisfying the usual boson commutation relations
[F~(A),F'(B)] = 0u(A,]B) +iou(A, B)

Finally, it is straightforward, nevertheless impor-
tant, to remark that Theorems 1 and 2 hold true if
the linear space of local observables A; g, is replaced
by any of its subspaces. Some of them can have
greater physical importance than others. This means
that the quantum central-limit theorems can realize
several macrophysical systems of fluctuations. But
all of them are Bose field systems.
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It is also important to remark that these results
end up in giving a probabilistic canonical basis of
the canonical commutation relations.

Now we analyze the notion of coarse graining due
to the quantum central limit. Consider on Ap the
sesquilinear form (see [11], [12]) again

(A,B), = Y (w(A"1:B) — w(A)w(B))
xeZ’

= s,(A,B) +i0,(A,B) 14]

This form defines a topology on Ap which is not
comparable with the operator topologies induced by
w. In fact, this form is not closable in the weak,
strong, ultraweak, or ultrastrong operator topologies.

We call A and B in Ap equivalent, denoted by
A~B it (A—B,A—B),=0. Clearly, this defines
an equivalence relation on Ap. The property of
coarse graining is mathematically characterized by
the following: for all A, B € A , the relation A ~ B
is equivalent with F(A)=F(B). Suppose first that
F(A) = F(B), then

[W(A), W(B)] =0
hence o,,(A, B) =0. Therefore, from Theorem 1:

1= G(W(A)W(B)') = &(W(A)W(-B))
G(W(A — B) = exp(~ }s.(A — B, A~ B))

and from [12] and [14]: (A—B,A —B)_ =0. The
converse is equally straightforward.

From this property, it follows immediately that, for
example, the action of the translation group is trivial
or that F(r,A)=F(A) for all x € Z". Therefore, the
map F: AL o — C(AL s, 00) is not injective. This
expresses the physical phenomenon of coarse graining
and gives a mathematical signification of the fluctua-
tions being macroscopic observables.

In the above, we have constructed the new
macroscopic physical system of quantum fluctua-
tions for any microsystem with the property of
normal fluctuations (see Definition 2). The main
problem remains: when the microsystem does have
normal fluctuations. We end this section with the
formulation of a general sufficient clustering condi-
tion for the microstate w in order that the micro-
system (B,w) has normal fluctuations.

Let A,A' € D(Z’) and w a translation invariant
state, denote

a’(A,A) = sup

AeAyiAl=1
BeAy|Bl=1

|W(AB) — w(A)w(B)]

The cluster function af;(d) is defined by

a%(d) =sup {a“(A,A): d(A,A') > d and
max(|A[,[A]) < N}

where N,d € R and d(A,A’) is the FEuclidean
distance between A and A’. It is obvious that
ifd>d

if N <N

ay(d) < ax(d)
aX(d) < axe(d)

The clustering condition is expressed by the follow-
ing scaling law:

. . 1/2 w 1/2v-6\ _
36>0:  lim N aN<N )_0 [15]
or, equivalently,

36>0:  lim N""a,,.,(N)=0  [16]

N— o0

Note that this condition implies that

> af(lxl) < oo

xeZ’

that is, that the function o%(-) is an LY(Z")-
function for all N. In fact, this condition corre-
sponds to the uniform mixing condition in the
commutative (classical) central-limit theorem (see,
e.g., Ibragimov and Linnick (1971)). This condition
can also be called the modulus of decoupling.
Product states, for example, equilibrium states of
mean-field systems are uniformly clustering with
a?(d)=0 for d > 0.

The normality of the fluctuations of the micro-
system (B,w) for product states is proved and
extensively studied in Goderis ef al. (1989), and for
states satisfying the condition [15] or [16] in Goderis
and Vets (1989). In the latter case, the proofs are
very technical and based on a generalization of the
well-known Bernstein argument (Ibragimov and
Linnick 1971) of the classical central-limit theorem
to the noncommutative situation. A refinement of
these arguments can be found in Goderis et al.
(1990). For the sake of formal self-consistency we
formulate the theorem:

Theorem 3 (Central-limit theorem) Take the micro-
system (B,w) such that w is lattice translation invariant
and satisfies the clustering condition [15]; then the
system has normal fluctuations for all elements of the
vector space of local observables Ay s,. O

In Goldshtein (1982) a noncommutative central-
limit theorem is derived using similar techniques.
The main difference, however, is its strictly local
character, namely for one local operator separately.
The conditions depend on the spectral properties of
the operator. It excludes a global approach resulting
in a CCR algebra structure.

Even for quantum lattice systems, it is not
straightforward to check whether a state satisfies
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the degree of mixing as expressed in conditions
[15]-[16]. Clearly, one expects the condition to hold
for equilibrium states at high enough temperatures.
For quantum spin chains, a theorem analogous with
Theorem 3 under weaker conditions than [15] is
proved for example, in Matsui (2003).

So far we have reviewed the quantum central-limit
theorem for physical C*-spin systems (B,w) with
normal fluctuations.

Now we extend the physical system to a
C*-dynamical system (B, w, a;) (Brattelli and Robinson
1979, 2002) and we investigate the properties of the
dynamics «; under the central limit. As usual, the
dynamics is supposed to be of the short-range type in
order to guarantee the norm limit:

Ozt(') =n— h/{n eitH\ . e_itHA‘

and space homogeneous a; - 7, =Ty - oy, Vi € R, Vx €
7. We suppose that the state w is both space as
time translation invariant. Moreover, we assume
that the state w satisfies the mixing condition [15]
for normal fluctuations.

In [10] we defined, for every local A € Ay ,, the
local fluctuation Fy(A) and obtained a clear meaning
of F(A) = limy F5(A) from the central-limit theorem.
Now we are interested in the dynamics of the
fluctuations F(A). Clearly, for all A € A; g, and all
finite A:

ayFo(A) = Fa(aA) [17]

and one is tempted to define the dynamics &, of the
fluctuations in the A-limit by the formula

&F(A) = F(cwA) 18]

Note, however, that in general a,A is not a local
element of AL . It is unclear whether the central
limit of elements of the type oA, with A € Ay g,
exists or not and hence whether one can give a
meaning to F(a;A). Moreover, if F(a;A) exists, it
remains to prove that (a,), defines a weakly
continuous group of x-automorphisms on the fluc-
tuation CCR algebra M:C*(AL,Sa,O’w)N (the von
Neumann algebra generated by the &-representation
of C*( AL, sa,0.)). All this needs a proof. In Goderis
et al. (1990), one finds the proof of the following
basic theorem about the dynamics.

Theorem 4 Under the conditions on the dynamics
oy and on the state w expressed above, the limit
F(oA) = limy Fp(azA) exists as a central limit as in
Theorem 2, and the maps &, defined by [18] extend
to a weakly continuous one-parameter group of
s-automorphisms of the von Newmann algebra M.
The quasifree state & is q,-invariant (time invariant).

This theorem yields the existence of a dynamics &,
on the fluctuations algebra and shows that it is of
the quasifree type

&F(A) = F(ozA)

where F(A) is a representation of a Bose field in a
quasifree state w, the noncommutative version of a
Gaussian distribution. In physical terms, it also
means that any microdynamics «a; induces a linear
process on the level of its fluctuations.

We can conclude that on the basis of the
Theorems 3 and 4 the quantum central-limit
theorem realized a map from the microdynamical
system (B,w,®;) to a macrodynamical system
(CH(AL 52 0w), @, &) of the quantum fluctuations.
The latter system is a quasifree Boson system.

Note that, contrary to the central-limit theorem,
the law of large numbers [4] maps local observables
to their averages forming a trivial commutative
algebra of macro-observables. The macrodynamics
is mapped to a trivial dynamics as well. Therefore,
the consideration of law of large numbers does not
allow one to observe genuine quantum phenomena.
On the other hand, on the level of the fluctuations,
macroscopic quantum phenomena are observable.

Abnormal Fluctuations

The results about normal fluctuations in the last
section contain two essential elements. On the one
hand, the central limit has to exist. The condition in
order that this occurs is the validity of the cluster
condition ([15] or [16]) guaranteeing the normality
of the fluctuations. On the other hand, there is the
reconstruction theorem, identifying the CCR algebra
representation of the fluctuation observables or
operators in the quasifree state, which is denoted
by @.

The cluster condition is in general not satisfied for
systems with long-range correlations, for example,
for equilibrium states at low temperatures with
phase transitions. It is a challenging question to also
study in this case the existence of fluctuations
operators and, if they exist, to study their mathe-
matical structure. Here we detect structures other
than the CCR structure, other states or distributions
different from quasifree states, etc.

Progress in the elucidation of all these questions
started with a detailed study of abnormal fluctua-
tions in the harmonic and anharmonic crystal
models (Verbeure and Zagrebnov 1992, Momont
et al. 1997). More general Lie algebras are obtained
than the Heisenberg Lie algebra of the CCR algebra,
and more general states & or quantum distributions
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are computed beyond quasifree states, which is the
case for normal fluctuations.

Abnormal fluctuations turn up, if one has an
ergodic state w with long-range correlations. We
have in mind continuous (second-order) phase
transitions, then typically, for example, the heat
capacity or some more general susceptibilities
diverge at critical points or lines. ThlS means that
normally scaled (with the factor [A|™"/?) fluctuations
of some observables diverge. This is equlvalent with
the divergence of sums of the type

> (W(ArA) — w(A)?)

xeZ’

for some local observable A.

In order to deal with these situations, we rescale
the local fluctuations. One determines a scaling
index 64 € (—1/2,1/2), depending on the observa-
ble A, such that the abnormally scaled local
fluctuations

Y = [A] 7" Fa(A)

with Fy(A) as in [10], yield a nontrivial character-
istic function: V¢ € R,
itFiA(A))

limws (e = ¢alt) [19]
where we limit our discussion to states w, local
Gibbs states. The index 64 is a measure for the
abnormality of the fluctuation of A. Note that
6a=—1/2 yields a triviality and that §4=1/2
would lead to a law of large numbers (theory of
averages). Observe also that in general the char-
acteristic function ¢4 or the corresponding state &
need not be Gaussian or quasifree.

In the physics literature, one describes the long-
range order by means of the asymptotic form of the
connected two-point function in terms of the critical
exponent 7

1
wA(aTxA)—wA(A)Z:O<W>; x| — o0 [20]
X

Our scaling index 64 is related to the critical
exponent 7 by the straightforward relation

n=2—2u,

As stated above, the index 64 is determined by the
existence of the central limit and explicitly com-
puted in several model calculations, for example,
Verbeure and Zagrebnov (1992), and for equili-
brium states. Apart from the strong model depen-
dence, the indices also depend strongly on the
chosen boundary conditions. This fact draws a new
light on the universality of the critical exponents.

Suppose now that the indices §4 are determined
by the existence of the central limit [19]. The next
problem is to find out whether also in these cases a
reconstruction theorem, comparable to, for exam-
ple, Theorem 2, can be proved giving again a
mathematical meaning to the limits

lim F4(A) = F4(A) [21]
as operators, in general unbounded, on a Hilbert space.

Here we develop a proof of the Lie algebra
character of the abnormal fluctuations under the
conditions: (1) the é-indices are determined by the
existence of the variances (second moments), and
(2) the existence of the third moments (for more
details see, e.g., Momont et al. (1997)).

Consider a local algebra, namely an 7-dimensional
vector space G with basis {v;},_;__, and product

vj-vp = v, ) Z Cirle [22]

with structure constants Cjk satisfying
l ‘
Cjk + ij =0

Z( Crlz + Ckcrz + Ckz r;) =0

r

Consider the concrete Lie algebra basis of operators

in .A{o]
{Lo=1il,L4,...,Ly,},

such that Li=-L;j=0,1,...,m and w(L;)=
limywy (L)) = 0 for j > O Clearly, wp(Lg) =i for all
A, and the {L;} satisfy eqn [22]. Because of the
special choices of Ly one has ¢/, =c| =0 and
¢, = —ilimywy([Lj, Lg]). We consider now the
fluctuations of these generators and we are looking
for a characterization of the Lie algebra of the
fluctuations if any.

For a translation-invariant local state wy, A C 7/,
such that w= limy wy is mixing, define the local
fluctuations, for j= 1, S,

m < 00

s
F', A |A|1/2+6 Z 7ely = wa(Ly)) [23]
and for notational convenience, take
Foa =1l

Now we formulate the conditions for our purposes.

Condition A We assume that the parameters §; are
determined by the existence of the finite and
nontrivial variances: for all j=1,...,m,

0 < lim wA((FﬁfA)Z) < 0 24]
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After reordering, take 1/2 > 6 > 6, >
-1/2.

Condition B Assume that all third moments are
finite, that is,

<> 0y >

hm’w,\( IAFé‘a F‘S‘ )‘ < 00

We have in mind, that the w,’s are Gibbs states
for some local Hamiltonians with some specific
boundary conditions. The limit A — 7" may depend
very strongly on these boundary conditions, in the
sense that they are visible in the values of the
indices ¢; (see, e.g., Verbeure and Zagrebnov
(1992)). If for some j > 1, the corresponding 6; =0
then the operator L; has a normal fluctuation
operator

§ 1
F = ll/l;l‘le’/A [25]

where the limit is understood in the sense of
Condition A, namely a finite nontrivial variance. If,
for some j > 1, the corresponding 6; # 0, then the
fluctuation [25] is called an abnormal fluctuation
operator. In order to satisfy Condition A, it happens
sometimes that ¢; has to be chosen negative (see,
e.g., Verbeure and Zagrebnov (1992)). In this case,
it is reasonable to limit our discussion to the
situation that all ¢; > —1/2.

On the basis of Condition A, the limit set
{F;S’},-ZO """ . of fluctuation operators generates a
Hilbert space H with scalar product

(ngﬁ,ik) —hmwA((F )Fék) 26]

On the basis of Condition B, the fluctuation
operators are defined as multiplication operators of
the Hilbert space H. Note that the Conditions A and
B are not sufficient to obtain a characteristic
function. However, they are sufficient to obtain the
notion of fluctuation operator. Now we proceed to
clarify the Lie algebra character of these fluctuation
operators on H.

Consider the Lie product of two local fluctuations
for a finite A, one gets

Fl R = Z NE), 27]

with
k ‘A|1/2+6,+5r(51 ) AR

68 N~ !
e(N) = A7 chwn (FY)
/=0

It is an easy exercise to check that the {c{,(A)} are the
structure coefficients of a Lie algebra G(A). Hence,
by considering local fluctuations, one constructs a
map from the Lie algebra G onto the Lie algebra
G(A) by a nontrivial change of the structure
constants. When the transformed structure constants
approach a well-defined limit, a new nonisomorphic
Lie algebra might appear. The limit algebra G(Z"),
called the contracted one of the original one G is
always nonsemisimple. This contraction is a typical
Inonti-Wigner contraction (In(’jnij and Wigner
1953). About the limit algebra G(Z"), the following
results are obtained (see Momont et al. (1997)):

0 ifl+§+86—-6>0

li[{n cfk(/\) = cfk 1f ............... =0 [28]
0 if.. <0

It is interesting to distinguish a number of special
cases:

1. If all fluctuations are normal, one recovers the
Heisenberg algebra of the canonical commuta-
tion relations with the right symplectic form o,.

2. If 1/2 4 éj + &, — 6¢ > 0 for all j, k, £ one obtains
an abelian Lie algebra of fluctuations.

3. One gets the richest structure if 1/2 + 6; + 6, —
6,=0 for all j,k,¢ or for some of them. One
notes a phenomenon of scale invariance, the
cek(A) are A-independent. Algebras different from

the CCR algebra are observed. A particularly

interesting case turns up if 6= —6;, # 0, that is,
one of the indices is negative, for example 6; <0,
the corresponding fluctuation F/’ shows a prop-
erty of space squeezing, and then &, > 0, the
fluctuation FZ’* expresses the property of space
dilation. These phenomena are observed and
computed in several models (see, e.g., Verbeure
and Zagrebnov (1992)). This yields in particular

a microscopic explanation of the phenomenon of

squeezing (squeezed states and all that) in

quantum optics. We refer also to the section

“Spontaneous symmetry breaking” for this phe-

nomenon as being the basis of the construction of

the Goldstone normal modes of the Goldstone
particle appearing in systems showing sponta-
neous symmetry breakdown.

Some Applications

The notion of fluctuation operator as presented
above, and the mathematical structure of the algebra
of fluctuations have been tested in several soluble
models. Many applications of this theory of quan-
tum fluctuations can be found in the list of
references. Here we are not entering into the details
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of any model, but we limit ourselves to mention
three applications which are of a general nature and
totally model independent.

Conservation of the KMS Property under
the Transition from Micro to Macro

Suppose that we start with a micro-dynamical
system (B, w, ;) with normal fluctuations, that is,
we are in the situation as treated in the section
“Normal fluctuations.” Hence, we know that the
quantum central-limit theorem maps the system
(B,w,c;) onto the macrodynamical system
(C*(AL 525 0), @, &) of quantum fluctuations.

If the microstate w is «,-time invariant (w-a; =w
for all £ € R), then it also follows readily that the
macrostate & is &,-time invariant (see Theorem 4,
ie., & a; =& for all t € R).

A less trivial question to pose is: suppose that the
microstate w is an equilibrium state for the micro-
dynamics oy, is then the macrostate & also an
equilibrium state for the macrodynamics @; of the
fluctuations? In Goderis ef al. (1990) this question is
answered positively in the following more technical
sense: if w is an «,-KMS state of B at inverse
temperature (3, then & is an &,-KMS state at the
same temperature.

This property proves that the notion of equili-
brium is preserved under the operation of coarse
graining induced by the central-limit theorem. This
statement constitutes a proof of one of the
basic assumptions of the phenomenological theory
of Onsager about small oscillations around
equilibrium.

This result also yields a contribution to the
discussion whether or not quantum systems should
be described at a macroscopic level by classical
observables. The result above states that the macro-
scopic fluctuation observables behave classically if
and only if they are time invariant. In other words, it
can only be expected a priori that conserved
quantities behave classically. In principle, other
observables follow a quantum dynamics.

Linear Response Theory

In particular, in the study of equilibrium states
(KMS states) a standard procedure is to perturb the
system and to study the response of the system as a
function of the perturbation. The response eluci-
dates many, if not all, of the properties of the
equilibrium state.

Technically, one considers a perturbation of the
dynamics by adding a term to the Hamiltonian. One
expands the perturbed dynamics in terms of the
perturbation and the unperturbed dynamics. It is

often argued that when the perturbation is small,
one can limit the study of the response to the first-
order term in the perturbation in the corresponding
Dyson expansion. This is the basis of what is called
the “linear response theory of Kubo.”

A long-term debate is going on about the validity
of the linear response theory. The question is how to
understand from a microscopic point of view the
validity of the response theory being linear or not.
One must realize that the linear response theory
actually observed in macroscopic systems seems to
have a significant range of validity beyond the
criticism being expressed about it.

Here we discuss the main result of the paper
(Goderis et al. 1991) in which contours are sketched
for the exactness of the response being linear.

We assume:

1. that the microdynamics «; is the norm-limit of
the local dynamics o =efs . e7Hr | where Hy
contains only standard finite-range interactions
(as in the section “Normal fluctuations”);

2. that the w, are states such that w= limp w, is a
state which is time and space translation invar-
iant; and

3. that w satisfies the cluster condition [15] or [16].

From the time invariance of the state, one has a
Hamiltonian GNS representation of the dynamics:
a, = . e7H On the basis of Theorem 4, one has
the dynamics @&; of the fluctuation algebra
C*( AL, sa, 0,,) in the state &. This GNS representation
yields a Hamiltonian representation for ¢;:
&t — eitH . efitH

Now take any local perturbation P € Ay s, of o,
namely

P _ Git(H+F\(P))

at,A _ —it(H+F(P))

- €

where Fy(P) is the local fluctuation of P in w. Then
one proves the following central-limit theorem
(Goderis et al. 1991): for all A and B in Ay g, one
has the perturbed dynamics

df _ eit(I:H—F(P)) .e—it(I:H—F(P))
of the fluctuation algebra in the sense of [18]:

GIF(A) = lim F(af,(4))

This proves the existence and the explicit form of
the perturbed dynamics lifted to the level of the
fluctuations. In particular, one has

limeoy (f y (FA(A)) ) = S(G] F(A)



140 Quantum Central-Limit Theorems

This is nothing but the existence of the relaxation
function of Kubo but lifted to the level of the
fluctuations and instead of dealing with strictly local
observables here one considers fluctuations.
Assume, furthermore, that the state w is an (ay, 3)-

KMS state; then one derives readily Kubo’s famous
formula of his linear response theory:

d

306 F(A)) = ia([F(P), a,F(A)])
which shows full linearity in the perturbation
observable P. Kubo’s formula arises as the central
limit of the microscopic response to the dynamics
perturbed by a fluctuation observable. We remark
that if w is an equilibrium state, then the right-hand
side of the formula above can be expressed in terms
of the Duhamel two-point function, which is the
common way of doing in linear response theory.

Spontaneous Symmetry Breaking

SSB is one of the basic phenomena accompanying
collective phenomena, such as phase transitions in
statistical mechanics, or specific ground states in
field theory. SSB goes back to the Goldstone
theorem. There are many different situations to
consider, for example, in the case of short-range
interactions, it is typical that SSB yields a
dynamics which remains symmetric, whereas for
long-range interactions SSB also breaks the sym-
metry of the dynamics. However, in all cases the
physics literature predicts the appearance of a
particular particle, namely the Goldstone boson, to
appear as a result of SSB. The theory of fluctua-
tion operators allows the construction of the
canonical coordinates of this particle. The most
general result can be found in Michoel and
Verbeure (2001). We sketch the essentials in two
cases, namely for systems of long-range interac-
tions (mean fields) and for systems with short-
range interactions.

Long-range (mean-field) interactions Here we give
explicitly the example of the strong-coupling BCS
model in one dimension (v=1). The microscopic
algebra of observables is B=®, (M;);, where M, is
the algebra of 2 x2 complex matrices. The local
Hamiltonian of the models is given by

N 1 N
_ + -
Hn=c) o =oN71,2. 7
i=—N ij=—N
O<e< %
where 0%, 0% are the usual 2 x 2 Pauli matrices. In

the thermodynamic limit, the KMS equation has the

following product state solutions: wy= ®; trp,,
where

)

p)\:m, )\ztrp)\afzw)\(of)

hy=ec* — o™ — X~

Note that A=trpyo~ is a nonlinear equation for A
whose solutions determine the density matrix p,.
This equation always has the solution A=0,
describing the so-called normal phase. For 8 > 3.,
with th3.c = 2¢, one has a solution \ # 0, describing
the superconducting phase. Remark that if A is a
solution, then also X\e® for all ¢ is a solution as
well. It is clear that Hy is invariant under the
continuous gauge transformation automorphism
group G={v, | ¢ € [0,27]} of B:

W(U;r) = e_iva;r

Hence G is a symmetry group. On the other hand:
wx(p(07)) = e Pwy(0]) # wa(o}). The gauge group
G is spontaneously broken. Remark also that the
gauge transformations are implemented locally by
the charges

N
On= ) o

=N

; ) i o
ie., y,(0f) = e ¥ g eleON

and 0% is the symmetry generator density. As the
states wy are product states, all fluctuations are
normal (see the section “Normal fluctuations”). One
considers the local operators

|A|2 4 € + N
Q:70 +E()\O' +)\0’)

p=" (Aot —Xo7)
u
where p=(e2 4 |A*)"/2. Note that P is essentially
the order parameter operator, that is, the operator P
is breaking the symmetry:

1/2

%wmm)) £0, w(A)=0

On the other hand, Q is essentially the generator of
the symmetry o° normalized to zero, that is,

wr(O)=0.
Michoel and Verbeure (2001) proved in detail

that the fluctuations F(Q) and F(P) form a
canonical pair
47
FQ)FP) =i

and that they behave, under the time evolution, as
harmonic oscillator coordinates oscillating with a
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frequency equal to 2u. This frequency is called a
plasmon frequency. Moreover, the variances are

_E

12
This means that these coordinates vanish or dis-
appear if A=0. The coordinates F(Q) and F(P) are
the canonical coordinates of a particle appearing
only if there is spontaneous symmetry breakdown.
They are the canonical coordinates of the Goldstone
boson, which arise if SSB occurs.

5y (F(O)?) = \(F(P)?)

Short-range interactions An analogous result, as
for long-range interactions, can be derived for
systems with short-range interactions. However, in
this case we have equilibrium states with poor
cluster properties. We are now in the situation as
described in the “Abnormal Fluctuations” section.
Also in this case we have the phenomenon of SSB,
which shows the appearance of a Goldstone particle.
Also in this case one is able to construct its
canonical coordinates. The details of this construc-
tion can be found in Michoel and Verbeure (2001).
Here we give a heuristic picture of this construction.

Consider again a microsystem (B, w, ;) and let s
be a strongly continuous one-parameter symmetry
group of «, which is locally generated by
Or= > ,cn 9 SSB amounts to find an equilibrium
(KMS) or ground state w which breaks the symme-
try, that is, there exists a local observable A € Ay g,
such that for s# 0 holds: w(ys(A)) # w(A) and
ayvs =Ysay. This is equivalent to

d
Twl(A))

= limw([Q4,A]) =c #0
s=0 A
with ¢ a constant.
Now we turn this equation into a relation for
fluctuations. Using space translation invariance of
the state, one gets
) - C

i 1

im A w
We now use another consequence of the Gold-
stone theorem, namely that SSB implies poor
clustering properties for the order parameter A,
that is, in the line of what is done in the last
section, we assume that the lack of clustering is

expressed by the existence of a positive index 6
such that

2
1
n W (Z(TxA - W(A))>

limw
xeA

Z(qx —w(q)) Z(TxA —w(A))

x€A yeA

is nontrivial and finite. This means that the fluctua-
tion F*(A) exists. Then we get

. 1
hj{nw([m Z(Qx —w(q)),

x€A

1

W ZX(TxA —w(A))
ye

) .
Hence
([F°(q),F(A)])=c

which for equilibrium states w, turns into the
operator equation for fluctuations

[F~(q), F’(A)]= cl

In other words, one obtains a canonical pair
(F~°(q), F*(A)) of normal coordinates of the collec-
tive Goldstone mode.

Note that the long-range correlation of the
order-parameter operator (positive 8) is exactly
compensated by a squeezing, described by the
negative index —¢, for the fluctuation operator of
the local generator of the broken symmetry. This
result can also be expressed as typical for SSB,
namely that the symmetry is not completely
broken, but only partially. More detailed informa-
tion about all this is found in Michoel and
Verbeure (2001).

See also: Algebraic Approach to Quantum Field Theory;
Large Deviations in Equilibrium Statistical Mechanics;
Macroscopic Fluctuations and Thermodynamic
Functionals; Quantum Phase Transitions; Quantum
Spin Systems; Symmetry Breaking in Field Theory;
Tomita—Takesaki Modular Theory.
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The Definition

A numerical measure of the ability of a classical or
quantum information processing system (for definite-
ness, one speaks of a communication channel) to
transmit information expressible as a text message
(called “classical information” as distinct from quan-
tum information). It is equal to the least upper bound
for rates of the asymptotically perfect transmission of
classical information through the system, when the
transmission time tends to infinity, and arbitrary pre-
and post-processing (encoding and decoding) are
allowed at the input and the output of the system.
Typically, for rates exceeding the capacity, not only
the asymptotically perfect transmission is impossible,
but the error probability with arbitrary encoding—
decoding scheme tends to 1, so that the capacity has a
nature of a threshold parameter.

From Classical to Quantum
Information Theory

A central result of the classical information theory is
the Shannon coding theorem, giving an explicit
expression to the capacity in terms of the maximal
mutual information between the input and the
output of the channel. The issue of the information
capacity of quantum communication channels arose

soon after the publication of the pioneering papers
by Shannon and goes back to the classical works of
Gabor, Brillouin, and Gordon, asking for funda-
mental physical limits on the rate and quality of
information transmission. This work laid a physical
foundation and raised the question of consistent
quantum treatment of the problem. Important steps
in this direction were made in the early 1970s when
a quantum probabilistic framework for this type
of problem was created and the conjectured upper
bound for the classical capacity of quantum
channel was proved. A long journey to the quantum
coding theorem culminated in 1996 with the
proof of achievability of the upper bound
(the Holevo—Schumacher—Westmoreland theorem;
see Holevo (1998) for a detailed historical survey).
Moreover, it was realized that quantum channel is
characterized by the whole spectrum of capacities
depending on the nature of the information resources
and the specific protocols used for the transmission.
To a great extent, this progress was stimulated by an
interplay between the quantum communication theory
and quantum information ideas related to more recent
development in quantum computing. This new age of
quantum information science is characterized by
emphasis on the new possibilities (rather than restric-
tions) opened by the quantum nature of the informa-
tion processing agent. On the other hand, the question
of information capacity is important for the theory of
quantum computer, particularly in connection with
quantum error-correcting codes, communication and
algorithmic complexity, and a number of other
important issues.
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The Quantum Coding Theorem

In the simplest and most basic memoryless case, the
information processing system is described by the
sequence of block channels,

" =P -,
|

n

n=1,...

of n parallel and independent uses of a channel @, n
playing the role of transmission time (Holevo 1998).
More generally, one can consider memory channels
given by open dynamical systems with a kind of
ergodic behavior and the limit where the transmission
time goes to infinity (Kretschmann and Werner 2005).

Restricting to the memoryless case, encoding is given
by a mapping of classical messages x from a given
codebook of size N into states (density operators) p{”)
in the input space H{" of the block channel ®*”, and
decoding — by an observable M in the output space
H5", that is, a family {M(y”>} of operators constituting a
resolution of the identity in H5":

O
y

Here y plays the role of outcomes of the whole
decoding procedure involving both the quantum
measurement at the output and the possible classical
information post-processing. Then the diagram for
the classical information transmission is

()
M >0,

(1)
x = " = oy
R

X

input output
state state

The such-described encoding and decoding consti-
tute a quantum block code of length 7 and size N
for the memoryless channel. The conditional prob-
ability of obtaining an outcome y provided the
message x was sent for a chosen block code is given
by the statistical formula

P (ylx) = tr &% [p M)

and the error probability for the code is just
max, (1 — p"(x|x)).

Denoting by p.(17,N) the infimum of the error
probability over all codes of length # and size N, the
classical capacity C(®) of the memoryless channel is
defined as the least upper bound of the rates R for
which lim ,,_, o pe(n,2"R) = 0.

Let ® be a quantum channel from the input to the
output quantum systems, assumed to be finite
dimensional. The coding theorem for the classical
capacity says that

C(®) = lim ~C, (&%) il

n—oo 1l

where

o100
-> nH (‘P[px])} 2]

H(p)=—trplog, p is the binary von Neumann
entropy, and the maximum is taken over all
probability distributions {p,} and collections of
density operators {py} in Hj.

The Variety of Capacities

This basic definition and the formulas [1], [2] generalize
the definition of the Shannon capacity and the coding
theorem for classical memoryless channels. For quantum
channel, there are several different capacities because
one may consider sending different kinds (classical or
quantum) of information, restrict the admissible coding
and decoding operations, and/or allow the use of
additional resources, such as shared entanglement,
forward or backward communication, leading to really
different quantities (Bennett et al. 2004). Few of these
resources (such as feedback) also exist for classical
channels but usually influence the capacity less drama-
tically (at least for memoryless channels). Restricting to
the transmission of classical information with no
additional resources, one can distinguish at least four
capacities (Bennett and Shor 1998), according to
whether, for each block length 7, one is allowed to use
arbitrary entangled quantum operations on the full
block of input (resp. output) systems, or if, for each of the
parallel channels, one has to use a separate quantum
encoding (resp. decoding), and combine these only by
classical pre- (resp. post-) processing:

C....: full
capacity, arbitary
(de)coding
??? >
Ci..=Cy: C..1: quantum
unentangled block

coding, quantum coding, separate
block decoding decoding

> =

C41: one-shot

capacity or accessible
information, separate
quantum (de)coding, block
(de)coding only classical

The full capacity C.. is just the classical capacity
C(®) given by [1]. That Cj, coincides with the
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quantity C,(®) given by [2] is the essential content
of the HSW theorem, from which [1] is obtained
by additional blocking. Since C, is apparently
superadditive, C,(®; ® ®,) > C,(®q) + C,(®;), one
has Cyo > C,. It is still not known whether the
quantity C,(®) is in fact additive for all channels,
which would imply the equalities here. Additivity of
C,(®) would have the important physical conse-
quence — it would mean that using entangled input
states does not increase the classical capacity of
quantum channel. While such a result would be very
much welcome, giving a single-letter expression for
the classical capacity, it would call for a physical
explanation of asymmetry between the effects of
entanglement in encoding and decoding procedures.
Indeed, the inequality in the lower left is known to be
strict sometimes (Holevo 1998), which means that
entangled decodings can increase the classical capa-
city. There is even an intermediate capacity between
C11 and Cj obtained by restricting the quantum
block decodings to adaptive ones (Shor 2002). The
additivity of the quantity C, for all channels is one of
the central open problems in quantum information
theory; it was shown to be equivalent to several other
important open problems, notably (super)additivity
of the entanglement of formation and additivity of
the minimal output entropy (Shor 2004).

For infinite-dimensional quantum processing sys-
tems, one needs to consider the input constraints
such as the power constraint for bosonic Gaussian
channels. The definition of the classical capacity and
the capacity formula are then modified by introduc-
ing the constraint in a way similar to the classical
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Introduction

Quantum chromodynamics, or QCD, as it is normally
called in high-energy physics, is the quantum field
theory that describes the strong interactions. It is the
SU(3) gauge theory of the current standard model for
elementary particles and forces, SU(3) x SU(2); xU(1),
which encompasses the strong, electromagnetic, and
weak interactions. The symmetry group of QCD, with
its eight conserved charges, is referred to as color
SU(3). As is characteristic of quantum field theories,
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each field may be described in terms of quantum waves
or particles.

Because it is a gauge field theory, the fields that
carry the forces of QCD transform as vectors under
the Lorentz group. Corresponding to these vector
fields are the particles called “gluons,” which carry
an intrinsic angular momentum, or spin, of 1 in
units of /4. The strong interactions are understood as
the cumulative effects of gluons, interacting among
themselves and with the quarks, the spin-1/2
particles of the Dirac quark fields.

There are six quark fields of varying masses in
QCD. Of these, three are called “light” quarks, in a
sense to be defined below, and three “heavy.” The
light quarks are the up (#), down (d), and strange (s),
while the heavy quarks are the charm (c), bottom (b),
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and top (#). Their well-known electric charges are
ef=2e/3(u,c,t) and e;=—e/3(d,s,b), with e the
positron charge. The gluons interact with each quark
field in an identical fashion, and the relatively light
masses of three of the quarks provide the theory with
a number of approximate global symmetries that
profoundly influence the manner in which QCD
manifests itself in the standard model.

These quark and gluon fields and their correspond-
ing particles are enumerated with complete confidence
by the community of high-energy physicists. Yet, none
of these particles has ever been observed in isolation,
as one might observe a photon or an electron. Rather,
all known strongly interacting particles are colorless;
most are “mesons,” combinations with the quantum
numbers of a quark g and a antiquark g, or
“baryons” with the quantum numbers of (possibly
distinct) combinations of three quarks gq’q”. This
feature of QCD, that its underlying fields never
appear as asymptotic states, is called “confinement.”
The very existence of confinement required new ways
of thinking about field theory, and only with these
was the discovery and development of QCD possible.

The Background of QCD

The strong interactions have been recognized as a
separate force of nature since the discovery of the
neutron as a constituent of atomic nuclei, along with
the proton. Neutrons and protons (collectively,
nucleons) possess a force, attractive at intermediate
distances and so strong that it overcomes the electric
repulsion of the protons, each with charge e. A sense
of the relative strengths of the electromagnetic and
strong interactions may be inferred from the typical
distance between mutually repulsive electrons in an
atom, ~107% cm, and the typical distance between
protons in a nucleus, of order 1073 cm

The history that led up to the discovery of QCD is a
fascinating one, beginning with Yukawa’s 1935 theory
of pion exchange as the source of the forces that bind
nuclei, still a useful tool for low-energy scattering.
Other turning points include the creation of nonabelian
gauge theories by Yang and Mills in 1954, the discovery
of the quantum number known as strangeness, the
consequent development of the quark model, and then
the proposal of color as a global symmetry. The role of
pointlike constituents in hadrons was foreshadowed by
the identification of electromagnetic and weak currents
and the analysis of their quantum-mechanical algebras.
Finally, the observation of “scaling” in deep-inelastic
scattering, which we will describe below, made QCD,
with color as a local symmetry, the unique explanation
of the strong interactions, through its property of
asymptotic freedom.

The Lagrangian and Its Symmetries
The QCD Lagrangian may be written as

nf

_ 1
£=3"a;(i PIA] = mp)ap — 5 |, (A)]
=1
A 5 _ [6By(A)
-3 AP va e, i
with D[A] =+ -0 + igsy - A the covariant derivative in

QCD. The 4" are the Dirac matrices, satisfying the
anticommutation relations, [v*, "], =2g"". The SU(3)
gluon fields are A*= S"%_ AAT,, where T, are the
generators of SU(3) in the fundamental representation.
The field strengths F,,,[A] = 0, A, — 0,A,, +igs[A,, A, ]
specify the three- and four-point gluon couplings of
nonabelian gauge theory. In QCD, there are n,r—6
flavors of quark fields, ars with conjugate g = q 7.

The first two terms in the expression [1] make up
the classical Lagrangian, followed by the gauge-fixing
term, specified by a (usually, but not necessarily
linear) function B,(A), and the ghost Lagrangian. The
ghost (anti-ghost) fields ¢,(¢,) carry the same adjoint
index as the gauge fields.

The classical QCD Lagrangian before gauge fixing
is invariant under the local gauge transformations

Al (x) —gisc?ufl@c)ﬂ1 (x) + Qx) A (x)Q " (x)
=Au(x )*3;150%( x)
+ 1gS [5a )] +.

lgs(SOl( )111/}7( )+

x)= 28: by (x)T,
a=1

The full QCD action including gauge-fixing and
ghost terms is also invariant under the Bechi, Rouet,
Stora, Tyutin (BRST) transformations with &£ an
anticommuting variable.

5A;z,a = (6abau + gAucfabc)Cbéf
7%gcabc cpccdf, ¢ = ABgb6¢ [3]
oY; = ig[Tb]i;‘ cpy

with f,,. the SU(3) structure constants. The Jacobian
of these transformations is unity.

In addition, neglecting masses of the light quarks,
u, d, and s, the QCD Lagranian has a class of global
flavor and chiral symmetries, the latter connecting
left- and right-handed components of the quark

fields, ¥ r = (1/2)(1 F 7s)1,
¥ (x) = €% (),

oc, =

P=0,1 [4]
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Here, power P =0 describes phase, and P =1 chiral,
transformations. Both transformations can be
extended to transformations among the light flavors,
by letting ¢ become a vector, and « an element in
the Lie algebra of SU(M), with M =2 if we take only
the # and d quarks, and M =3 if we include the
somewhat heavier strange quark. These symmetries,
not to be confused with the local symmetries of the
standard model, are strong isospin and its extension
to the “eightfold way,” which evolved into the
(3-)quark model of Gell-Mann and Zweig. The
many successes of these formalisms are automati-
cally incorporated into QCD.

Green Functions, Phases,
and Gauge Invariance

In large part, the business of quantum field theory is
to calculate Green functions,

Gu(x1...%,)

= (0|T(P1(x1) ... Pi(x) ... Pu(x,))][0)  [5]

where T denotes time ordering. The ®;(x) are
elementary fields, such as A or g, or composite
fields, such as currents like J*=gsy"qs. Such a
Green function generates amplitudes for the scatter-
ing of particles of definite momenta and spin, when
in the limit of large times the x;-dependence of the
Green function is that of a plane wave. For example,
we may have in the limit x? — oo,

Gu(x1...x,) — ¢i(p, \) eip'x’<(p, M|T(P1(x1) ...
D, 1 (xi1)Pip1(Xit1) - Pu(x4))|0) [6]

where ¢;(p, \) is a solution to the free-field equation for
field @;, characterized by momentum p and spin . (An
inegral over possible momenta p is understood.)
When this happens for field i, the vacuum state is
replaced by |(p, ), a particle state with precisely
this momentum and spin; when it occurs for all
fields, we derive a scattering (S)-matrix amplitude.
In essence, the statement of confinement is that
Green functions with fields gs(x) never behave as
plane waves at large times in the past or future.
Only Green functions of color singlet composite
fields, invariant under gauge transformations, are
associated with plane wave behavior at large times.

Green functions remain invariant under the BRST
transformations [3], and this invariance implies a set
of Ward identities

6§6(z)§1:<0|T(¢1(x1) L bars®i(xs) . .
®,(x,))|0) =0 [7]

The variation of the anti-ghost as in [3] is equivalent
to an infinitesimal change in the gauge-fixing term;
variations in the remaining fields all cancel single-
particle plane wave behavior in the corresponding
Green functions. These identities then ensure the
gauge invariance of the perturbative S-matrix, a result
that turns out to be useful despite confinement.

To go beyond a purely perturbative description of
QCD, it is useful to introduce a set of nonlocal
operators that are variously called nonabelian
phases, ordered exponentials, and Wilson lines,

Uc(z,y) = P exp l—igs / zdx“Aﬂ,(x) (8]
y

where C is some self-avoiding curve between y and z.
The U’s transform at each end linearly in nonabelian
gauge transformations §2(x) at that point,

Ue(z,y) = Q(z)Uc(z,y) ' (y) [9]

Especially interesting are closed curves C, for which
z=1y. The phases about such closed loops are, like
their abelian counterparts, sensitive to the magnetic
flux that they enclose, even when the field strengths
vanish on the curve.

QCD at the Shortest and Longest
Distances

Much of the fascination of QCD is its extraordinary
variation of behavior at differing distance scales. Its
discovery is linked to asymptotic freedom, which
characterizes the theory at the shortest scales.
Asymptotic freedom also suggests (and in part
provides) a bridge to longer distances.

Most analyses in QCD begin with a path-integral
formulation in terms of the elementary fields
P, = qr---»

G,,(xi,(z,-,y/))—/[ l_[(; 7D(I>a H(Di(Xi)
a=q.,3,G,c.c i

x [TUc 2,y e [10]
j

with Sqcp the action. Perturbation theory keeps
only the kinetic Lagrangian, quadratic in fields, in
the exponent, and expands the potential terms in
the coupling. This procedure produces Feynman
diagrams, with vertices corresponding to the cubic
and quartic terms in the QCD Lagrangian [1].
Most nonperturbative analyses of QCD require
studying the theory on a Eucliean, rather than
Minkowski space, related by an analytic continuation
in the times x%,7%,2° in G,, from real to imaginary
values. In Euclidean space, we find, for example,
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classical solutions to the equations of motion, known as
instantons, that provide nonperturbative contributions
to the path integral. Perhaps the most flexible non-
perturbative approach approximates the action and the
measure at a lattice of points in four-dimensional space.
For this purpose, integrals over the gauge fields are
replaced by averages over “gauge links,” of the form of
eqn [8] between neighboring points.

Perturbation theory is most useful for processes
that occur over short timescales and at high relative
energies. Lattice QCD, on the other hand, can
simulate processes that take much longer times, but
is less useful when large momentum transfers are
involved. The gap between the two methods remains
quite wide, but between the two they have covered
enormous ground, enough to more than confirm
QCD as the theory of strong interactions.

Asymptotic Freedom

QCD is a renormalizable field theory, which implies
that the coupling constant g must be defined by its
value at a “renormalization scale,” and is denoted
g(p). Usually, the magnitude of ay(u) = g*/4m, is
quoted at p=myz, where it is ~0.12. In effect, g(u)
controls the amplitude that connects any state to
another state with one more or one fewer gluon,
including quantum corrections that occur over time-
scales from zero up to %/u (if we measure p in units of
energy). The QCD Ward identities mentioned above
ensure that the coupling is the same for both quarks
and gluons, and indeed remains the same in all terms
in the Lagrangian, ensuring that the symmetries of
QCD are not destroyed by renormalization.

Quantum corrections to gluon emission are not
generally computable directly in renormalizable
theories, but their dependence on p is computable,
and is a power series in «(u) itself,

3

day (1) ag(p) , ad(p)
2 _ s _ s
a dp? bo 47 b1 (47

where bo=11—2n¢/3 and by =2(31—-197n¢/3). The
celebrated minus signs on the right-hand side are
associated with both the spin and self-interactions of
the gluons.

The solution to this equation provides an expres-
sion for « at any scale py in terms of its value at
any other scale py. Keeping only the lowest-order,
by, term, we have

Blas) [11]

B (o)
os(m) =17 (bo/4m) In (3 / 13)
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where in the second form, we have introduced Aqcp,
the scale parameter of the theory, which embodies
the condition that we get the same coupling at scale
i1 no matter which scale pg we start from.
Asymptotic freedom consists of the observation that
at larger renormalization masses p, or correspond-
ingly shorter timescales, the coupling weakens, and
indeed vanishes in the limit y — oo. The other side of
the coin is that over longer times or lower momenta,
the coupling grows. Eventually, near the pole at
w1 =Aqcp, the lowest-order approximation to the
running fails, and the theory becomes essentially
nonperturbative. Thus, the discovery of asymptotic
freedom suggested, although it certainly does not
prove, that QCD is capable of producing very strong
forces, and confinement at long distances. Current
estimates of Aqcp are ~200 MeV.

Spontaneous Breaking of Chiral Symmetry

The number of quarks and their masses is an external
input to QCD. In the standard model masses are
provided by the Higgs mechanism, but in QCD they
are simply parameters. Because the standard model
has chosen several of the quarks to be especially light,
QCD incorporates the chiral symmetries implied by
eqn [4] (with P=1). In the limit of zero quark
masses, these symmetries becomes exact, respected to
all orders of perturbation theory, that is, for any
finite number of gluons emitted or absorbed.

At distances on the order to 1/Aqcp, however,
QCD cannot respect chiral symmetry, which would
require each state to have a degenerate partner with
the opposite parity, something not seen in nature.
Rather, QCD produces, nonperturbatively, nonzero
values for matrix elements that mix right- and left-
handed fields, such as (0| ug |0), with # the up-quark
field. Pions are the Goldstone bosons of this symmetry,
and may be thought of as ripples in the chiral
condensate, rotating it locally as they pass along. The
observation that these Goldstone bosons are not
exactly massless is due to the “current” masses of the
quarks, their values in Lqcp. The (chiral perturbation
theory) expansion in these light-quark masses
also enables us to estimate them quantitatively:
1.5<m, <4MeV,4<my;<8MeV, and 80 <m,<
155MeV. These are the light quarks, with masses
smaller than Aqcp. (Like ay, the masses are renorma-
lized; these are quoted from Eidelman (2004) with
1u=2GeV.) For comparison, the heavy quarks
have masses m.~1-1.5GeV, my; ~4-4.5GeV, and
m; ~ 180 GeV (the giant among the known elementary
particles).

Although the mechanism of the chiral condensate
(and in general other nonperturbative aspects of
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QCD) has not yet been demonstrated from first
principles, a very satisfactory description of the origin
of the condensate, and indeed of much hadronic
structure, has been given in terms of the attractive
forces between quarks provided by instantons. The
actions of instanton solutions provide a dependence
exp[—87%/g?] in Euclidean path integrals, and so are
characteristically nonperturbative.

Mechanisms of Confinement

As described above, confinement is the absence of
asymptotic states that transform nontrivially under
color transformations. The full spectrum of QCD,
however, is a complex thing to study, and so the
problem has been approached somewhat indirectly. A
difficulty is the same light-quark masses associated
with approximate chiral symmetry. Because the masses
of the light quarks are far below the scale Aqcp at
which the perturbative coupling blows up, light quarks
are created freely from the vacuum and the process of
“hadronization,” by which quarks and gluons form
mesons and baryons, is both nonperturbative and
relativistic. It is therefore difficult to approach in both
perturbation theory and lattice simulations.

Tests and studies of confinement are thus normally
formulated in truncations of QCD, typically with no
light quarks. The question is then reformulated in a
way that is somewhat more tractable, without
relativistic light quarks popping in and out of the
vacuum all the time. In the limit that its mass becomes
infinite compared to the natural scale of fluctuations in
the QCD vacuum, the propagator of a quark becomes
identical to a phase operator, [8], with a path C
corresponding to a constant velocity. This observation
suggests a number of tests for confinement that can be
implemented in the lattice theory. The most intuitive is
the vacuum expectation value of a “Wilson loop,”
consisting of a rectangular path, with sides along the
time direction, corresponding to a heavy quark and
antiquark at rest a distance R apart, and closed at some
starting and ending times with straight lines. The
vacuum expectation value of the loop then turns out to
be the exponential of the potential energy between the
quark pair, multiplied by the elapsed time,

(0[P exp|ig. § A, o)

= exp(=V(R)T/h) [13]

When V(R) oc R (“area law” behavior), there is a
linearly rising, confining potential. This behavior,
not yet proven analytically yet well confirmed on the
lattice, has an appealing interpretation as the energy
of a “string,” connecting the quark and antiquark,
whose energy is proportional to its length.

Motivation for such a string picture was also
found from the hadron spectrum itself, before any of
the heavy quarks were known, and even before the
discovery of QCD, from the observation that many
mesonic (gq') states lie along “Regge trajectories,”
which consist of sets of states of spin | and mass m}
that obey a relation

J= o/m% [14]

for some constant . Such a relation can be modeled
by two light particles (“quarks”) revolving around each
other at some constant (for simplicity, fixed nonrela-
tivistic) velocity vy and distance 2R, connected by a
“string” whose energy per unit length is a constant p.

Suppose the center of the string is stationary, so
the overall system is at rest. Then neglecting the
masses, the total energy of the system is M =2Rp.
Meanwhile, the momentum density per unit length
at distance 7 from the center is v(r)=(r/R)vy, and
the total angular momentum of the system is

R
2
]=2pvo/ drF:—’;UORZ:Z—OMZ [15]
0 p

and for such a system, [14] is indeed satisfied.
Quantized values of angular momentum ] give
quantized masses m7;, and we might take this as a
sort of “Bohr model” for a meson. Indeed, string
theory has its origin in related consideration in the
strong interactions.

Lattice data are unequivocal on the linearly rising
potential, but it requires further analysis to take a
lattice result and determine what field configura-
tions, stringlike or not, gave that result. Probably the
most widely accepted explanation is in terms of an
analogy to the Meissner effect in superconductivity,
in which type II superconductors isolate magnetic
flux in quantized tubes, the result of the formation
of a condensate of Cooper pairs of electrons. If the
strings of QCD are to be made of the gauge field,
they must be electric (F*°) in nature to couple to
quarks, so the analogy postulates a “dual” Meissner
effect, in which electric flux is isolated as the result
of a condensate of objects with magnetic charge
(producing nonzero F7). Although no proof of this
mechanism has been provided yet, the role of
magnetic fluctuations in confinement has been
widely investigated in lattice simulations, with
encouraging results. Of special interest are magnetic
field configurations, monopoles or vortices, in the
Zs center of SU(3), exp [irk/3]I3x3, k=0,1,2. Such
configurations, even when localized, influence
closed gauge loops [13] through the nonabelian
Aharonov-Bohm effect. Eventually, of course, the
role of light quarks must be crucial for any complete



Quantum Chromodynamics 149

description of confinement in the real world, as
emphasized by Gribov.

Another related choice of closed loop is the
“Polyakov loop,” implemented at finite temperature,
for which the path integral is taken over periodic
field configurations with period 1/T, where T is the
temperature. In this case, the curve C extends from
times t=0 to t=1/T at a fixed point in space. In
this formulation it is possible to observe a phase
transition from a confined phase, where the expec-
tation is zero, to a deconfined phase, where it is
nonzero. This phase transition is currently under
intense experimental study in nuclear collisions.

Using Asymptotic Freedom:
Perturbative QCD

It is not entirely obvious how to use asymptotic
freedom in a theory that should (must) have
confinement. Such applications of asymptotic free-
dom go by the term perturbative QCD, which has
many applications, not the least as a window to
extensions of the standard model.

Lepton Annihilation and Infrared Safety

The electromagnetic current, [, = >/ erqrv,qy, is a
gauge-invariant operator, and its correlation functions
are not limited by confinement. Perhaps, the simplest
application of asymptotic freedom, yet of great
physical relevance, is the scalar two-point function,

Q)= / d*xe (O[T (7(0)],(x))[0)  [16]

The imaginary part of this function is related to the
total cross section for the annihilation process ete™ —
hadrons in the approximation that only one photon
takes part in the reaction. The specific relation is
oqep = (e*/0?) Im(Q?), which follows from the
optical theorem, illustrated in Figure 1. The perturba-
tive expansion of the function 7(Q) depends, in
general, on the mass scales O and the quark masses
my as well as on the strong coupling a(x) and on the
renormalization scale . We may also worry about the

w2 €2T1(Q)

Im @

s(@=3
-3 @=n-
=Im(- )
HoA D)
Figure 1 First line: schematic relation of lowest order ete~
annihilation to sum over quarks g, each with electric charge e,.

Second line: perturbative unitarity for the current correlation
function 7(Q).

influence of other, truly nonperturbative scales,
proportional to powers of Aqcp. At large values of
O?, however, the situation simplifies greatly, and
dependence on all scales below Q is suppressed by
powers of Q. This may be expressed in terms of the
operator product expansion,

(O[T (J*(0),.(x))|0)
_Z 3+d1/2

x <0|Oz( )10) [17]

Cr(x* 11, (1))

where dj is the mass dimension of operator Oy, and
where the dimensionless coefficient functions C;
incorporate quantum corrections. The sum over
operators begins with the identity (d;=0), whose
coefficient function is identified with the sum of
quantum corrections in the approximation of zero
masses. The sum continues with quark mass correc-
tions, which are suppressed by powers of at least

m? 7/ Q2 for those flavors with masses below Q. Any
QCD quantity that has this property, remaining
finite in perturbation theory when all particle masses
are set to zero, is said to be “infrared safe.”

The effects of quarks whose masses are above Q
are included indirectly, through the couplings and
masses observed at the lower scales. In summary,
the leading power behavior of 7(Q), and hence of
the cross section, is a function of O, u, and ag(u)
only. Higher-order operators whose vacuum matrix
elements receive nonperturbative corrections include
the “gluon condensate,” identified as the product

as(11)Gap G o A

Once we have concluded that O is the only
physical scale in 7, we may expect that the right
choice of the renormalization scale is ©=Q. Any
observable quantity is independent of the choice of
renormalization scale, u, and neglecting quark
masses, the chain rule gives

%}M - Mg—Z+zﬂ<as>§—; =0 [18]

which shows that we can determine the beta
function directly from the perturbative expansion
of the cross section. Defining a = as(p)/m, such a
perturbative calculation gives

Inm(QZ%:£;§:e%<l+w1+a2<1986
f

-0.115nf-(bo/4ﬂgln%%;)> 19

with by as above. Now, choosing ;1= O, we see that
asymptotic freedom implies that when O is large,
the total cross section is given by the lowest order,
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Figure 2 Experimental variation of the strong coupling with
scales. Reproduced from Bethke S (2004) Alpha(s) at Zinnowitz.
Nuclear Physics Proceedings Supplements 135: 345-352, with
permission from Elsevier.

plus small and calculable QCD corrections, a result
that is borne out in experiment. Comparing experi-
ment to an expression like [19], one can measure the
value of a5(Q), and hence, with eqn [12], as(p) for
any p > Aqcp. Figure 2 shows a recent compilation
of values of oy from this kind of analysis in different
experiments at different scales, clearly demonstrat-
ing asymptotic freedom.

Factorization, Scaling, and Parton distributions

One step beyond vacuum matrix elements of currents
are their expectation values in single-particle states,
and here we make contact with the discovery of
QCD, through scaling. Such expectations are relevant
to the class of experiments known as deep-inelastic
scattering, in which a high-energy electron exchanges
a photon with a nucleon target. All QCD information
is contained in the tensor matrix element

Wx'(p,9)
g2 2 [dxe o O ()lpio) [20)

with g the momentum transfer carried by the
photon, and p,o the momentum and spin of the
target nucleon, N. This matrix element is not
infrared safe, since it depends in principle on the
entire history of the nucleon state. Thus, it is not
accessible to direct perturbative calculation.
Nevertheless, when the scattering involves a large
momentum transfer compared to Aqcp, we may

Figure 3 Schematic depiction of factorization in deep-inelastic
scattering.

expect a quantum-mechanical incoherence between
the scattering reaction, which occurs (by the uncer-
tainty principle) at short distances, and the forces that
stabilize the nucleon. After all, we have seen that the
latter, strong forces, should be associated with long
distances. Such a separation of dynamics, called
factorization, can be implemented in perturbation
theory, and is assumed to be a property of full QCD.
Factorization is illustrated schematically in Figure 3.
Of course, short and long distances are relative
concepts, and the separation requires the introduction
of a so-called factorization scale, ur, not dissimilar to
the renormalization scale described above. For many
purposes, it is convenient to choose the two equal,
although this is not required.

The expression of factorization for deep-inelastic
scattering is

Wy (®,9)
S / deCt (e, q. pr, s (ar)
i=qs,qr,G 7 ¥
% fiyn (€. 1) [21]

where the functions C!" (the coefficient functions)
can be computed as an expansion in ag(ug), and
describe the scattering of the “partons,” quarks, and
gluons, of which the target is made. The variable &
ranges from unity down to x = —¢*/2p - q > 0, and
has the interpretation of the fractional momentum
of the proton carried by parton i. (Here —g*> = O? is
positive.) The parton distributions f;;y can be
defined in terms of matrix elements in the nucleon,
in which the currents are replaced by quark (or
antiquark or gluon) fields, as

/ d)e —i\xp™

x (p,o|lg(An)U,(nA,0)n

fq/N xﬂ

74(0)|p,0) [22]
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n' is a light-like vector, and U, a phase operator
whose path C is in the n-direction. The dependence
of the parton distribution on the factorization scale
is through the renormalization of the composite
operator consisting of the quark fields, separated
along the light cone, and the nonabelian phase
operator U,(n),0), which renders the matrix ele-
ment gauge invariant by eqn [9]. By combining the
calculations of the C’s and data for WY/, we can
infer the parton distributions, f;/x. Important factor-
izations of a similar sort also apply to some
exclusive processes, including amplitudes for elastic
pion or nucelon scattering at large momentum
transfer.

Equation [21] has a number of extraordinary
consequences. First, because the coefficient function
is an expansion in as, it is natural to choose uZ ~
O? ~p-q (when x is of order unity). When O is
large, we may approximate C!” by its lowest order,
which is first order in the electromagnetic coupling
of quarks to photons, and zeroth order in ag. In this
approximation, dependence on Q is entirely in the
parton distributions. But such dependence is of
necessity weak (again for x not so small as to
produce another scale), because the ur dependence
of fin(§pr) must be compensated by the purp
dependence of C!, which is order a;. This means
that the overall O dependence of the tensor W4, is
weak for O large when x is moderate. This is the
scaling phenomenon that played such an important
role in the discovery of QCD.

Evolution: Beyond Scaling

Another consequence of the factorization [21], or
equivalently of the operator definition [22], is that
the pgp-dependence of the coefficient functions and
the parton distributions are linked. As in the lepton
annihilation cross section, this may be thought of as
due to the independence of the physically observable
tensor W4 from the choice of factorization and
renormalization scales. This implies that the
pr-dependence of f;/y may be calculated perturba-
tively since it must cancel the corresponding
dependence in C;. The resulting relation is coven-
tionally expressed in terms of the “evolution
equations,”

dfa/N(x7 :u)
e i

1
=3 [ de Pulsf aufonten (23]

where P,.(§) are calculable as power series, now
known up to o. This relation expands the applic-
ability of QCD from scales where parton

distributions can be inferred directly from experi-
ment, to arbitrarily high scales, reachable in accel-
erators under construction or in the imagination, or
even on the cosmic level.

At very high energy, however, the effective values
of the variable x can become very small and
introduce new scales, so that eventually the evolu-
tion of eqn [23] fails. The study of nuclear collisions
may provide a new high-density regime for QCD,
which blurs the distinction between perturbative and
nonperturbative dynamics.

Inclusive Production

Once we have evolution at our disposal, we can take
yet another step, and replace electroweak currents
with any operator from any extension of QCD, in
the standard model or beyond, that couples quarks
and gluons to the particles of as-yet unseen fields.
Factorization can be extended to these situations as
well, providing predictions for the production of
new particles, F of mass M, in the form of factorized
inclusive cross sections,

oap—Fm) (M, pa,ps)
= > [dadafn i@
G

L=qrq,
X Hi/ﬁF(M)(xaPAaxbp&M7N»as(ﬂ)) [2’4}

where the functions Hj;_.r may be calculated
perturbatively, while the fj4 and f;p parton
distributions are known from a combination of
lower-energy observation and evolution. In this
context, they are said to be “universal,” in that
they are the same functions in hadron-hadron
collisions as in the electron-hadron collisions of
deep-inelastic scattering. In general, the calculation
of hard-scattering functions Hj; is quite nontrivial
beyond lowest order in as. The exploration of
methods to compute higher orders, currently as far
as o?, has required extraordinary insight into the
properties of multidimensional integrals.

The factorization method helped predict the
observation of the W and Z bosons of electroweak
theory, and the discovery of the top quark. The
extension of factorization from deep-inelastic scat-
tering to hadron production is nontrivial; indeed, it
only holds in the limit that the velocities, (;, of the
colliding particles approach the speed of light in the
center-of-momentum frame of the produced particle.
Corrections to the relation [24] are then at the level
of powers of 3 — 1, which translates into inverse
powers of the invariant mass(es) of the produced
particle(s) M. Factorizations of this sort do not
apply to low-velocity collisions. Arguments for this
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result rely on relativistic causality and the uncer-
tainty principle. The creation of the new state
happens over timescales of order 1/M. Before that
well-defined event, the colliding particles are
approaching at nearly the speed of light, and hence
cannot affect the distributions of each others’
partons. After the new particle is created, the
fragments of the hadrons recede from each other,
and the subsequent time development, when
summed over all possible final states that include
the heavy particle, is finite in perturbation theory as
a direct result of the unitarity of QCD.

Structure of Hadronic Final States

A wide range of semi-inclusive cross sections are
defined by measuring properties of final states that
depend only on the flow of energy, and which bring
QCD perturbation theory to the threshold of
nonperturbative dynamics. Schematically, for a
state N=|ky...ky), we define S(N)= 3", s(2:)k?,
where s(Q) is some smooth function of directions.
We generalize the ee™ annihilation case above, and
define a cross section in terms of a related, but
highly nonlocal, matrix element,

Mzoo/d4xe_ig"‘<0

= (0)

x 5( / d*Qs(Q)E() —S) Tu(x) o> 25]

where o¢ is a zeroth-order cross section, and where
& is an operator at spatial infinity, which measures
the energy flow of any state in direction Q: £(Q)
k... kn)=(1/0) >, k26*(Q — ;). This may seem a
little complicated, but like the total annihilation cross
section, the only dimensional scale on which it
depends is O. The operator £ can be defined in a
gauge-invariant manner, through the energy—-momen-
tum tensor for example, and has a meaning indepen-
dent of partonic final states. At the same time, this
sort of cross section may be implemented easily in
perturbation theory, and like the total annihilation
cross section, it is infrared safe. To see why, notice
that when a massless (k> =0) particle decays into two
particles of momenta xk and (1 — x)k (0 < x < 1), the
quantity S is unchanged, since the sum of the new
energies is the same as the old. This makes the
observable S(N) insensitive to processes at low
momentum transfer.

For the case of leptonic annihilation, the lowest-
order perturbative contribution to energy flow
requires no powers of «, and consists of an
oppositely moving quark and antiquark pair. Any
measure of energy flow that includes these config-
urations will dominate over correlations that require

as corrections. As a result, QCD predicts that in
most leptonic annihilation events, energy will flow
in two back-to-back collimated sets of particles,
known as “jets.” In this way, quarks and gluons are
observed clearly, albeit indirectly.

With varying choices of S, many properties of
jets, such as their distributions in invariant mass,
and the probabilities and angular distributions of
multijet events, and even the energy dependence of
their particle multiplicities, can be computed in
QCD. This is in part because hadronization is
dominated by the production of light quarks,
whose production from the vacuum requires very
little momentum transfer. Paradoxically, the very
lightness of quarks is a boon to the use of
perturbative methods. All these considerations can
be extended to hadronic scattering, and jet and other
semi-inclusive properties of final states also com-
puted and compared to experiment.

Conclusions

QCD is an extremely broad field, and this article has
hardly scratched the surface. The relation of QCD-
like theories to supersymmetric and string theories,
and implications of the latter for confinement and
the computation of higher-order perturbative ampli-
tudes, have been some of the most exciting devel-
opments of recent years. As another example, we
note that the reduction of the heavy-quark propa-
gator to a nonabelian phase, noted in our discussion
of confinement, is related to additional symmetries
of heavy quarks in QCD, with many consequences
for the analysis of their bound states. Of the
bibliography given below, one may mention the
four volumes of Shifman (2001, 2002), which
communicate in one place a sense of the sweep of
work in QCD.

Our confidence in QCD as the correct description of
the strong interactions is based on a wide variety of
experimental and observational results. At each stage in
the discovery, confirmation, and exploration of QCD,
the mathematical analysis of relativistic quantum field
theory entered new territory. As is the case for gravity or
electromagnetism, this period of exploration is far from
complete, and perhaps never will be.

See also: AdS/CFT Correspondence; Aharonov—Bohm
Effect; BRST Quantization; Current Algebra; Dirac
Operator and Dirac Field; Euclidean Field Theory;
Effective Field Theories; Electroweak Theory; Lattice
Gauge Theory; Operator Product Expansion in Quantum
Field Theory; Perturbation Theory and its Techniques;
Perturbative Renormalization Theory and BRST;
Quantum Field Theory: A Brief Introduction; Random
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Matrix Theory in Physics; Renormalization: General
Theory; Scattering in Relativistic Quantum Field Theory:
Fundamental Concepts and Tools; Scattering,
Asymptotic Completeness and Bound States;
Seiberg—Witten Theory; Standard Model of Particle
Physics.
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Introduction

Classical gravity, through its attractive nature, leads
to a high curvature in important situations. In
particular, this is realized in the very early universe
where in the backward evolution energy densities
are growing until the theory breaks down. Mathe-
matically, this point appears as a singularity where
curvature and physical quantities diverge and the
evolution breaks down. It is not possible to set up an
initial-value formulation at this place in order to
determine the further evolution.

In such a regime, quantum effects are expected to
play an important role and to modify the classical
behavior such as the attractive nature of gravity or the
underlying spacetime structure. Any candidate for
quantum gravity thus allows us to reanalyze the
singularity problem in a new light which implies the
tests of the characteristic properties of the respective
candidate. Moreover, close to the classical
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singularity, in the very early universe, quantum
modifications will give rise to new equations of
motion which turn into Einstein’s equations only on
larger scales. The analysis of these equations of
motion leads to new classes of early universe
phenomenology.

The application of quantum theory to cosmology
presents a unique problem with not only mathema-
tical but also many conceptual and philosophical
ramifications. Since by definition there is only one
universe which contains everything accessible, there
is no place for an outside observer separate from the
quantum system. This eliminates the most straight-
forward interpretations of quantum mechanics and
requires more elaborate, and sometimes also more
realistic, constructions such as decoherence. From
the mathematical point of view, this situation is
often expected to be mirrored by a new type of
theory which does not allow one to choose initial or
boundary conditions separately from the dynamical
laws. Initial or boundary conditions, after all, are
meant to specify the physical system prepared for
observations which is impossible in cosmology.
Since we observe only one universe, the expectation
goes, our theories should finally present us with only
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one, unique solution without any freedom for
further conditions. This solution then contains all
the information about observations as well as
observers. Mathematically, this is an extremely
complicated problem which has received only scant
attention. Equations of motion for quantum cosmol-
ogy are usually of the type of partial differential or
difference equations such that new ingredients from
quantum gravity are needed to restrict the large
freedom of solutions.

Minisuperspace approximation

In most investigations, the problem of applying full
quantum gravity to cosmology is simplified by a
symmetry reduction to homogeneous or isotropic
geometries. Originally, the reduction was performed
at the classical level, leaving in the isotropic case
only one gravitational degree of freedom given by
the scale factor a. Together with homogeneous
matter fields, such as a scalar ¢, there are then
only finitely many degrees of freedom which one can
quantize using quantum mechanics. The classical
Friedmann equation for the evolution of the scale
factor, depending on the spatial curvature k=0 or
+1, is then quantized to the Wheeler-DeWitt
equation, commonly written as

1, .0 .0
<§Z§a 2% %—kaz)w(a,qs)
_87TG -

= 3 aHmatter(a)dJ(aa d)) [1]

for the wave function v (a, ¢). The matter Hamilto-
nian Her(a), such as

2
Hmatter(a) = _%52473%"‘ d3V(¢) [2]
is left unspecified here, and x parametrizes factor
ordering ambiguities (but not completely). The
Planck length ¢p =v87Gh is defined in terms of
the gravitational constant G and the Planck
constant 5.

The central conceptual issue then is the generality
of effects seen in such a symmetric model and its
relation to the full theory of quantum gravity. This
is completely open in the Wheeler-DeWitt form
since the full theory itself is not even known. On the
other hand, such relations are necessary to value any
potential physical statement about the origin and
early history of the universe. In this context,
symmetric situations thus present models, and the
degree to which they approximate full quantum
gravity remains mostly unknown. There are exam-
ples, for instance, of i