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Preface 

My objective in writing this book was to  help algebra students and their 
teachers to grasp the essence of classical polynomial algebra as a whole, to 
understand how it has developed and what it has developed into, to see the 
forest by looking at  the trees. I have striven to answer questions such as 
the following: What is algebra about? How did it arise? What uses does 
it have? How did it develop? What problems and issues have arisen in its 
history, and how were those problems solved and those issues resolved? Since 
the chapters were originally very short, I preferred to call them “lessons,” a 
name that I have retained as they grew longer in the rewriting. 

I am mainly addresssing what seems to me to be a pedagogical discon- 
nect between the subject taught as algebra in high school or as a remedial 
university-level course and the subject taught on the senior/graduate level 
in university courses called modern algebra. The typical high-school algebra 
course consists primarily of a set of rules for multiplying, dividing, and fac- 
toring polynomials, and unfortunately does not offer much explanation to 
the s tudmt about the ultimate usefulness of learning these techniques. At 
the other end of the spectrum, a course in modern algebra typically begins 
at  a rather high level, with the abstract concept of a group, t’hen progresses 
to rings, using polynomials as the primary example, and fields. At the end 
of this course the persevering student finally sees a connection between the 
t,wo in the form of Galois theory. But there is a huge gulf between a qua- 
dratic equation and the concept of a Galois group. This gulf ought to  make a 
person curious about the historical development that leads from the former 
to the latter. 

The history of this development is rich in documents from ancient, and 
medieval times showing what was achieved by Mesopothmian, Chinese, Hin- 
du. ancicnt Egyptian, and Muslim scholars. Although I have never special- 
ized in this area, I tried to describe it in general terms in my History of 
Mathemutics (second edition, Wiley, 2005). But in writing history, one is 
constrained by the need to avoid anachronisms. It is an error to describe 
what a scholar did in terms of later, more successful efforts by other schol- 
ars, as if‘ one were to say that Bach was trying very hard to write the kind 
of music Beethoven wrote. To write a pure history of algebra from ancient 
times to the year 1850 would require hundreds of pages. 

Because my main interests are now in the history of twentieth-century 
physics, I had resolved to write no more general history of mathematics 

ix 
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after finishing the sccond edition of rriy textbook. But when an invitation 
arrived from Amy Shell-Gellasch and Dick .Jardine in January 2007 to write 
historical essays that teachers coiild use to supplement classroom presenta- 
tions (the Mathematical Capsules project of the Mathematical Association 
of America), I could not resist the chance to say things in a slightly different 
way. 

Attending only to my own agenda, I soon wrote much more than ariy- 
body could possibly use, and apparently in a style inconsistent with that of 
the others participating in the project. In the end, I submitted only two of 
the following lessons (alternative versions of Lessons 3 and 5 below) for the 
Capsules project. By that time, I was well into the writing, and decided to 
finish it. The result is the narrative that follows, a mixture of historical vi- 
gnettes and elementary exposition of the main parts of polynomial algebra. 
As stated above, this book is aimed especially at  teachers of algebra on all 
levels and also at  students who wish to tie up the same loose ends that led 
me to write this book. 

The “lessons” that follow do not constitute the complete story of alge- 
bra. The present work is mostly confined to the algebra of polynomials in 
one variable, and even in that narrow area, I have mentioned w r y  few of 
the many authors and works that made this subject what it is today. Many 
mathematicians will probably be scandalized that I have written a book 
purporting to be a history of algebra without mentioning Cayley, Sylvester, 
Grassmann, and many others. Just how many contributors to the con- 
struction of the magnificent edifice of algebra have been slighted, their work 
callously and unfairly omitted from this account? can be judged by looking 
at  more comprehensive histories written for mathematicians. For example, 
in the discussion of eighteenth-century developments, I have said very little 
about the work of Euler and mentioned only briefly certain parts of La- 
grange’s grand memoir on the solution of equations, ignoring the simultane- 
ous and independent work of Variderrnondc and Waring. For the interested 
reader, two good places to start filling in these gaps are the monographs by 
LuboS Novji, in the literature cited at the. end of Lesson 9> and by Jean- 
Pierre Tignol, cited at  the end of Lesson 11. The former, in particular: 
shows the role played in the genesis of modern algebra by the analysis of 
binary operations: whereas I have confined myself to the origins of group 
and field theory in t,he context of solving equations. 

My excuse for omitting these people and topics is that, I intend to dis- 
cuss algebra in the sense it has for the average citizen, not as it is known to 
mathematicians. To do that,  I have omitted almost everythirig riot directly 
related to the algebraic solution of polynomial equations. The present book 
is close in spirit to the recent work of Petcr Pesic, cited at  the end of Les- 
son 10. It belongs to the genre that Grattan-Guinness calls herituge, focusing 
on “how things came to be the way they are” rathcr than “what happened 
in the past” (which is history). Those who are interested in knowing more 
of what was done in the past and what it looked like to contemporaries 
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can read translations of the major works of algebra. English translations of 
the works of al-Khwarizmi, Umar al-Khayyam, and Girolamo Cardano, for 
example, do existj. 

Compared to present-day mathematicians, these early algebraists were 
groping in the dark. The dawn came very slowly, and it was many centuries 
before polynomial equations were seen in the clear light of day. Once the 
dawn has come, it would be foolish to close the curtains and go back to 
groping in the dark. 

Outline of the book. The first four lessons investigate the nature and im- 
portance of algebra as it is now taught, to high-school students and some 
first-year university students. Lesson 5 presents the highlights of numerical 
solution of equations. Lessons 6 through 11 stay somewhat closer to the 
historical development of the subject that  I call the formulaic solution of 
equations. A rough division of this development into three periods is fur- 
nished by the different conceptual approaches that were tried and pushed to 
their limits, then supplemented by new techniques. The first phase, which I 
refer to  as the combinatorial period, involves the use of substitjutions t.o re- 
duce an equation to a form in which algebraic identities allow it, to be solved 
by extracting roots; this period is discussed in Lessons 6 and 7 and ends 
with the Cardano solution of the cubic equation. The next phase involves 
the Tschirnhaus solution of the cubic and the solution of the quartic equa- 
tion, both of which bring to light a kind of bootstrapping process, whereby 
siibstitutions are sought that allow the degree of the equation to be reduced. 
Particularly important is the concept of a resolvent, the dominant theme in 
the second phase, which I naturally call the resolvent period. It is discussed 
in Lessons 8 and 9. Finally, the search for a resolvent of the general quintic 
led to the creation of abstract algebra, beginning with the study of the per- 
mutations of the roots and their effect on hypothetical resolvents and finally 
resulting in proofs that no algebraic solution of the general quintic exists 
(Lesson 10) and a general method of analyzing equations (Galois theory, 
discussed in Lesson 11) to see whether their solutions can be expressed as 
algebraic formulas. This phase of the subject continues today, a full t,wo 
centuries later. I call it the period of modern algebra. 

As an Epilogue, I discuss very briefly some of the central concepts of 
niodern algebra as it has been taught for the past century. 

Prerequisites. Although I had originally called these essays “easy lessons,’’ 
t>hey are riot all equally easy, and all of them have gotten harder as one 
draft has succeeded another. Although I explain some of the undergraduate 
curriculum. especially linear algebra, on a need-to-know basis, the exposition 
is not systematic, and some core topics are used w-itliout proof. I regard 
linear algebra as the cleanest subject in the undergraduate nia,thematics 
curriculum arid hope that the reader who has not yet had this course will 
be pat,icnt arid t,ake such a course as soon as possible. Three other t.opics 
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that I refer to (rational roots of equations, the Euclidean algorithm, and 
Descartes’ rule of signs) are discussed in the Appendix. 

Beyond the linear algebra just mentioned, the main requirement for 
reading the first nine lessons is the ability to add and multiply simple poly- 
nomials, which is one of the early skills taught in algebra. It will also help if 
the reader has at  leaqt heard of imaginary and complex numbers. I am as- 
suming that some of my readers will have had only one year of algebra, but 
that others may have gone on to study calculus and even modern algebra 
on the university level. Consequently, at a few points, 1 invoke some morc 
advanced topics such as trigonometry, differential equations, elliptic furic- 
tions, and vectors and vector spaces without explaining what these things 
are. These passages can be omitted by the reader who is not yet familiar 
with them. I believe the parts of the book that are accessible to the aver- 
age university undergraduate or high-school student will still be worth the 
reader’s time. 

Although the main ideas of this book can be followed without knowing 
much advanced algebra, I am alerting the reader here that some rather 
formidable-looking mathematics pops up occasionally, even in the early 
chapters, in the form of field extensions, quaternions, and so forth. I im- 
plore the unsophisticated reader to skim over these rough spots, which are 
included in many cases only as examples. I believe the essence of the story of 
algebra can be understood without these details, and I hope that the reader 
will return and read them again, after getting some help from people who 
have studied these topics in formal courses. 

The last two lessons, however, do make heavy demands on the reader’s 
patience and sophistication. Here my opportunistic use of snatches of group 
theory with only minimal explanation would be outrageous in a textbook. 
My excuse for introducing this topic is twofold. First, some of my readers, I 
hope, will already know what these things are, and will be able to appreciate 
my condensed explanation of Galois theory. Second, those readers who have 
not studied group theory may still be able to understand the essence of what 
I am saying, and may be inspired to undertake a systemat,ic study of this 
rewarding area of mathematics. Minimal explanations of all these concepts 
are offered in the Epilogue and Appendix. 

I am grateful to Amy Shell-Gellasch arid Dick Jardine for getting me 
started on this book, and I would like to express special thanks to Garry J .  
Tee, who at the last inonient sent me a list of corrections arid suggestions that 
have greatly improved the result. I am, of course, the only one responsible 
for the defects that remain. 

Roger Cooke December 9, 2007 
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The first five lessoris consist of general information arid reflections on riurri- 
bers and equations and the meaning of algebra. Lessons 1 arid 2 tliscuss 
t,he relation between arithmetic and algebra. Lessons 3 and 4 inquire into 
the value of algebra for science and human culture as a whole. Lesson 5 is 
devoted to the numerical approach to solving equations, as opposed to the 
formulaic approach that will be our main concern in the rest of' the book. 



LESSON 1 

What Algebra Is 

In these lessons, we are going to explore key moments in the development of 
algebra in different places over the past 3500 years. As we shall see, different 
people have written about algebra in different ways, depending on the kinds 
of problems they were solving and the ways in which they manipulated 
numbers. In order to get a perspective that will enable us to appreciate 
what all these writings have in common, we devote this first lesson and the 
one following to some very general considerations, In the present lesson, 
we explore the nature of algebra itself and the different number systems in 
which its problems are stated and solved. 

1. Numbers in disguise 

As liiirnan societies grow larger, t,heir administrative coniplexity grows dis- 
proportionately. While a single leader can make all the decisions on where to 
hunt! where to encamp, how to watch out for enemies, and so on for a small 
clan in which everyone knows everyone else, large societies, in which peo- 
ple must often deal with strangers, require formal laws to govern behavior. 
As economies become more complex, it is necessary to regulate commerce: 
weights, and measures and to plan strategically for defense or conquest. Over 
time. a group of specialized bureaucrats arises, charged with administering 
these vital activities. 

These bureaucrats universally rely on two forms of mathematics: arith- 
metic and geometry. To collect taxes on land, to regulate trade and agri- 
culture, to design and construct large public works, it is vital t,o know the 
elements of these two subjects. Records show that the people of Egypt and 
Mesopotamia possessed this knowledge at  least 4000 years ago. Uridoubt- 
edly, such knowledge was also current in China and India about the samc 
time. However, t,liere is evidence that the Chinese used mechanical methods 
of calculating, in the form of counting rods, rather than graphical methods, 
and thus the details of their mathematics have vanished. Whether for that 
reason or because the first Emperor Ch’in Shih Huang Ti ordered the burn- 
ing of all books when he unified China in 221 BCE, only a few Chinese texts 
known to be more than 2000 years old have been preserved. 

Although the term bureuucrui, has an unforturiate comiotation that sug- 
gests a soulless automaton, mindlessly enforcing rules, the bureaucrats of 
these early societies were, like all human beings, possessed of an irnagina- 
tion, and t,hey were the first people who were given economic support t,liat 
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‘1 1. WHAT ALGEBRA IS 

enabled them to indulge their imagination. They must have been encour- 
aged to plan strategically; not only to see that the current year’s harvest is 
properly stored, distributed, and taxed but also to consider the possibilities 
of external aggression, future bad weather, and the like. If they were asked 
to design monuments, bridges, roads, and tunnels, such tasks would exercise 
their imaginations. 

Perhaps in the intervals of their administrative work they found time to 
play games with the mathematical knowledge they possessed, posing prob- 
lems for one another. This last activity may well explain why the earliest 
texts contain so many examples of problems for which a practical appli- 
cation is difficult to imagine. Or perhaps the explanation is our own lack 
of imagination about the kinds of practical problems they actually faced. 
Whichever is the case, we find arithmetic and geometry combining in many 
of these early texts to produce what we might call mathematical riddles: or 
perhaps numbers in disguise, with a challenge t,o unmask the numbers and 
make them reveal themselves, as in the following fictional anecdote. 

Example 1.1. The dynasty of Uresh-tun was the wonder of its neighbors 
because of the prodigiously tall tree that grew just outside the walls of the 
king’s castle. The kings of this dynasty held court under its branches in 
pleasant weather. No one knew what kind of tree it was; there was none 
like it for hundreds of miles around. Then, during the reign of the seventh 
king of the dynasty of Uresh-tun, this marvelous tree was blown over by a 
storni and fell with a great crash. The king commanded that it be cut into 
planks for his own use, and this was done. The largest of these planks was 
perfectly straight and of even thickness throughout and measured 44 meters 
in length and 75 centimeters in width. What suitable use could the king 
make of siicli a treasure? It was too long to fit inside any of his buildings, 
and he did not wish to leave it outside to rot in the damp weather. 

After much thought, he decided on a use for it: It would furnish the 
frame for a set of portraits of himself and his six illustrious predecessors of 
the dynasty. He summoned his artisans and ordered them to cut notches at  
the ends arid at three other points in such a way that the four pieces woiild 
provide a single frame for seven identical square tiles on which the portrait,s 
would be painted. 

The artisans recognized that they must cut out three isosceles right 
triangles at  three points on the plank and two others half as large, one at  
each end. Where should the three interior cuts be made? Obviously, one of 
them should be exactly in the middle. But where should the other two go? 
They could see that removing the triangles at  the two ends would decrease 
the perimeter of the inside of the frame by 1.5 meters, and each of the other 
three cuts woiild remove another 1.5 meters, so that  the rectangular inside 
of the frame would have a perimeter of 38 meters. The problem was to make 
that inner rectangle seven times as wide as it was high. 

The folk wisdom of Uresh-tun said, “Measure twice before ciit,tirig once.” 
arid they knew that the king would not forgive any bungling on their part. 
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The intact board 

/ \/ \ 

First cuts 

/ \/ \/ \/ \ 

Final cuts 

The finished frame 

FIGURE 1. Cutting a board to make a picture frame. 

They dared not experiment on such a precious piece of wood, and there was 
no other piece of such length on which they could make practice cuts. They 
had to get it right the first time. Symmetry showed them that the left and 
right halves of the plank would have to be cut identically. The problem that 
remained was to divide a length of 19 m into two parts so that  one of the 
parts was seven times the other. 

That is where we leave the artisans. You may enjoy thinking of both ex- 
perimental and computational ways by which they might solve this problem. 
Probably you will agree that the computational way is somehow ”neater” 
and more satisfying than trial and error, and much faster, once you see how 
to do the problem. To visualize it, look a t  Fig. 1. 

Having seen first-hand in histories of mathematics how easily urban leg- 
ends and folk tales begin, I do not wish to be the source of any new ones. 
Hence I emphasize again that this example is pure fiction. As far as I know. 
there has never been any place called Uresh-tun anywhere, much less one 
that generated the problem just described. However, the pure mathematics 
problem that corresponds to it was stated by an Egyptian scribe nearly 4000 
vears ago: A quantity and its seventh part together eqrual 19. Whut is the 
quantity ? 

If you wish to see how the Egyptian scribe solved this probleni, look 
aliead to Lesson 3. However, try to solve it, yourself, by both practical 
and mathematical means. There are several ways to proceed. (See Prob- 
lem 1.11.) 

1.1. “Classical” and modern algebra. The carpentry problem just posed 
leads to a single linear equation in one unknown. As such, it can be solved 
by pure arithmetic, and so marks the borderline between arithmetic and 
algebra. You don’t have to introduce an equation to solve this problem. 
although you can if you wish. 
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What this kind of probleni reveals is that  numbers do not have to be 
named explicitly in order to be determined. They are sometimes determined 
by properties that  they have. This way of thinking can apply to any objects, 
not just numbers. In geometry, lines are often determined by certain prop- 
erties, such as being tangent to a circle at  a given point. The technique of 
thinking in terms of descriptions, which is the essence of the early algebra we 
will be describing, was nientioried by the fourth-century geometer Pappiis 
of Alexandria (ca. 290Gca. 350) in Book 7 of his Collection. After explaining 
that analysis proceeds from the object being sought to something that was 
agreed on (known to be true), he said, “For in analysis we set down the ob- 
ject being sought as something that has been constructed, and then examine 
what follows from this; then we repeat with that consequence, until by such 
considerations we arrive at  something either already known or some first 
principle.” He was thinking of geometric objects, but his analysis reflects 
the same kind of thinking used in algebra, where we write down a synibol 
for the unknown number as if it were already at  hand, and then consider the 
conditions that it must satisfy. In our board-cutting example, the unknown 
number is characterized as being seven times the difference between 19 and 
the number itself. 

The technique described by Pappus lies at  the heart of even the more 
advanced and subtle thinking involved in the general solution of polynornial 
equations. Although no general method for finding the roots of a fifth- 
degree equation was known in the early nineteenth century, nevertheless 
mathematicians could write down five symbols to represent those roots and 
reason about the properties they must have. The result was eventually a 
proof that no finite algebraic formula expressing them exists. 

Thus, numbers may appear in disguise, and this way of thinking about 
them forms the subject that  we are going to call classical algebra. By that 
term, we mean the algebra that was practiced in many parts of the world 
for about 4000 years, from the earliest times to the midnineteenth century. 
This algebra was confined to the study of polynornial equations, an example 
of which is the quartic (fourth-degree) equation 

z4 - 1 0 2  + 3 2  + 2 2  - 7 = 0 .  

By the year 1850 the niajor questions in classical algcbra had received an- 
swers: and that is the portion of the story of algebra that will be told in this 
book. 

When difficult rnathematical problems that have been open for it lorig 
time ar t  finally solved, the techniques that were used to solve them generate 
their own interesting questions and become the foundation of a new subject. 
In this case that subject is known as modern algebra, and it studies gerieral 
operations on general sets. The most important structures of this type are 
called groups, rings, fields, vector spaces, modules, and algebras, which arc 
vector spaces whose elenierits can be rnultiplied. The most abstract form 
of algebra. known as uni,uersul algebra, studies arbitrary unspecified classes 
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of operations satisfying certain laws, all of which are generalizations of the 
familiar properties of numbers. 

For the sake of perspective, we describe parts of modern algebra briefly 
in the Epilogue that follows Lesson 11. We will have to invoke some of the 
concepts of modern algebra toward the end of the story of classical algebra, 
but for the first nine lessons, we can avoid most of them. The only concept 
we will make constant use of is that of a f ield,  described below. Having now 
defined our subject matter, we shall henceforth drop the adjective classical, 
with the understanding that when we refer to algebra, we mean the topic of 
polynomial equations unless we state otherwise. 

2. Arithmetic and algebra 

Most people would probably describe the difference between algebra and 
arithmetic by saying that in algebra we use letters in addition to numbers. 
That is a fair way of telling the two subjects apart, but it does not reveal 
the most important distinction between them. Letters are a convenient 
notation for recording the processes that we use in algebra, but algebra was 
being done for some 3000 years before this notation became widespread in 
the seventeenth century. With a few exceptions such as the Jains in India: 
who used symbols to represent unknown numbers, the earliest authors wrote 
their algebra problems in ordinary prose. When you see problems written in 
prose, it can be more difficult to distinguish between algebra and arithmetic. 
In both cases, you are given some numbers and asked to find others. What 
t,hen is the real difference? Let us look at  an example to rnake it clear. 

An arithmetic problem: 3 x 7 + 36 =? 

An algebra problem: Solve the equation 32 + 36 = 57. 

Let us see what these two problems look like when stated in prose. In 
the first problem, we are given three numbers (data), namely 3, 7, and 36. 
We are also given certain processes to perform on these numbers, namely to 
niiiltiply the first two, then add the third nurnber to the product. We get the 
answer (57) by following the known rules of arithmetic. Arithmetic amounts 
to the application of addition, subtraction, multiplication, and division to 
numbers that are explicitly named. 

In the second problem, we are presented with an unknown number. We 
are told that when it is multiplied by 3 and 36 is added to the product, the 
result is 57. We must then find the number. As you can see, the biggest 
difference here is that we are not told what processes we must use in order 
to find the unknown number. Instead, we are told that some arithmetic was 
performed on a number, and we are told the result. 

Schematically, we are looking a t  the same underlying process in both 
c:ascs: 

(da.ta) , (arithmetic operations) -----) (result). 
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In arithmetic we get the data and the operations given to us and must find 
the result. In algebra, we get the operations and the result and must find 
the original data. 

This difference can be illustrated by analogies from everyday life. The 
problems that come to us in algebra are a challenge to find concealed num- 
bers. The equations in which they occur are like locked boxes containing 
valuables. A technique for solving them is like a key to open the box. To 
take a different analogy, an equation is like a chunk of ore from a mine. The 
minerals it contains are all jumbled together. It takes a chemist to determine 
what those minerals are and a metallurgist to separate them so that they 
can be used. This analogy is better than the first, since chemists and met- 
allurgists study the ways in which minerals combine in order to understand 
how to separate them again. In the same way, algebraists study the ways 
in which numbers combine in order to find techniques for separating them, 
and the study of chemistry or algebra is a perfectly respectable occupation 
in itself, independently of any minerals or numbers that one may eventually 
extract from a piece of “ore.” 

3. The “environment” of algebra: Number systems 

The data in an equation and its solutions are numbers. But what kind 
of numbers are they to be‘? To solve linear problems like the equation 
32 + 36 = 57 given above, we need only the operations of arithmetic. How- 
ever, in order to perform these operations, we must have a sufficiently general 
set of numbers to work with. The positive integers work fine for addition 
and multiplication. But to make subtraction possible, we need to adjoin zero 
and the negative integers. Then, to make division (except by zero) possible, 
we also need to allow all proper and improper fractions. For that reason, the 
smallest set of numbers that we could possibly consider reasonable would be 
the rational numbers (all fractions, positive and negative, proper and im- 
proper). For later reference, we note that a number system in which the four 
operations of arithmetic are possible, with the exception of division by zero, 
is called a field. For brevity, the four operations of arithmetic are referred 
to as the rational operations. Rational operations can always be performed 
,within a field, without adjoining any new elements. In contrast, root ex- 
tractions are not always possible, and fields must sometimes be enlarged 
to accommodate them. In fact, the process of enlarging fields by adjoining 
roots lies at  the very heart of the problem of solving equations. Expressions 
formed using a finite number of rational operations and root extractions are 
called algebraic formulas. 

In the present lesson, we shall encounter four fields: the rational num- 
bers, the real numbers, the algebraic numbers, and the complex numbers, 
all defined below. But there are many others, including some finite fields 
of considerable interest in algebra, which we shall explore in the problem 
set below. Let us start with the smallest of these four fields, the rational 
numbers, which we shall always denote Q. These numbers are riot sufficient, 
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for solving all equations. To solve an equation like x7 = 10, we must be able 
to extract roots as well, and this operation forces us to consider a larger 
class of numbers, in which root extractions are possible. We shall refer to 
these five operations from now on as the algebraic operations on numbers. 

Allowing root, extractions forces us to include certain irrational numbers 
in our set of possible solutions since, for example, is not a rational 
nurnber. We might even want to solve x2 = -1, and so we shall also include 
im,aginary and complex numbers. A complication arises when we allow root 
extractions, since every complex number except 0 has exactly two square 
roots, three cube roots, and so on. For example, the fourth roots of -4 are 
1 + i, 1 - i, -1 + i ,  and -1 - i, where i = a. Thus, when we extract a 
root, we must either decide which of the possible roots we want, or else live 
with a symbol representing more than one number. Any complex number 
that is not a rational number is called an irrational number, but the term 
is most often applied to real numbers that are not rational. 

To avoid having to invent new numbers all the time, we need a field 
that contains the rational numbers and is such that every equation with 
Coefficients in the field will also have a solution in the field. Such a field is 
called algebraically closed. The smallest algebraically closed field is called 
the set of algebraic numbers.  This field includes all roots of integers, even 
roots of negative integers, so that some complex numbers, such as the fourth 
roots of -4 listed above, are algebraic. To be precise, an algebraic number 
is any number (real or complex) that satisfies an equation whose coefficients 
are rational numbers. If you have such an equation, you can multiply it 
by a common multiple of the denominators of the coefficients and get an 
equation having the same roots, but with integer coefficients. For example, 
tjhe equation $x2 - $ = 0 is equivalent to 21x2 - 10 = 0. Thus, the phrase 
rational numbers  in the definition of an algebraic number could have been 
replaced by the word integers. 

Algebraic numbers include all numbers that can be formed starting from 
rational numbers using a finite number of our five classes of operations, for 
example. fi + $6. Since there are two square roots of 2 and three cube 
roots of 2, this expression might represent any of six numbers. Because these 
six numbers are algebraic, they must be roots of an equation with integer 
coefficients. You can verify that they are in fact the six roots of the equation 

x6 - 6x4 - 42” + 12z2 - 2 4 ~  - 4 = 0 

Remark 1.1. Throughout these lessons, we may use the word root to refer 
to a value of s that makes a polynomial p ( x )  equal to zero (“root of the 
polynomial”) or to a value of x that makes a polynomial equation p ( x )  = 0 
true (“root of the equation”) or to a complex number, some power of which 
equals a given coniplex number z (“root of the complex number 2, t,hat is. 
a root of a polyrioniial 2‘‘ - z ,  which is the same as a root of the equation 
n.rl - -, - &). 
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Obviously, algebraic numbers can easily acquire a very messy appear- 
ance, for example, 

4+m 
Thinking of a messy expression like this is a good way to picture a “typical” 
algebraic number. Because of the ambiguity of taking roots, this expression 
actually represents 60 different complex numbers! In practice, we would 
probably choose the simplest of the possible values, which is approximately 
1.36415 - 1.133895. 

Remark 1.2. A few words of caution are needed here. Although we have 
just told the reader to think of an algebraic number as a finite expression in- 
volving rational numbers, arithmetic operations, and root extractions, num- 
bers of this form are very far from being typical algebraic numbers in an 
abstract sense. Not every algebraic number can be written as the result of 
applying a finite number of arithmetic operations and root extractions to  ra- 
tional numbers. In other words, not every algebraic number can be written 
as a f o rmula  involving only rational numbers, arithmetical operations, and 
root extractions. For example, the five roots of the equation z5 - 102+2 = 0 
cannot be written this way. This impossibility can be proved using Galois 
theory, an invention of Evariste Galois (“GAL-wa,” 1811-1832) and the ear- 
liest achievement of modern algebra. In Lesson 11, we shall sketch a proof 
of this impossibility. 

As far as algebra itself is concerned, algebraic numbers would be siiffi- 
cient for all needs. However, many algebra problems arise from applications 
in geometry, and these are quite likely to involve the number T ,  which is 
not  an algebraic number. Nonalgebraic complex numbers are called tran-  
scendental numbers, since thcy “transcend” algebra. Every transcendental 
number is irrational, but most of the coninion irrational numbers are alge- 
braic rather than transcendental. Because of the applications in geometry, it. 
is siniplest just to take the whole set of real and complex numbers as the set 
in which we seek solutions of our equations. For our purposes, a real number 
is a finite or infinite decimal expansion, and a complex number is a number 
of the form a + bi,  where a and b are both real numbers and i2 = -1. It, 
happens to be true that every equation with coefficients in this set will also 
have a solution in the complex numbers. In other words, like the algebraic 
riiimbers, the complex numbers form an algebraically closed field, one that 
is larger than the algebraic numbers. 

Remark 1.3. Although the complex numbers are used in algebra, and in- 
deed essential in the subject known as algebraic geometry, they arc niiich 
more geometric than algebraic in nature. The difference between the al- 
gebraic and the analytic construction of numbers is well illustrated by the 
number a. In real and complex analysis, this irrational number can be> 
located as the point where the circle t,hrough the point (1, 1) with cent’er 
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a t  (0,O) intersects the positive real axis. The proof that there actually is a 
point of intersection involves the order axioms of geometry. For algebraists, 
a number whose square is 2 is constructed as part of an extension of the 
field Q of rational numbers to a larger field denoted Q(8). This larger field 
consists of formal expressions T + SO, where T and s are rational numbers. 
Addition of such pairs follows the usual algebraic rules, and multiplication 
is defined by (T + so) x ( t  + uQ) = (rt + 2su) + (TU + st)8. For example, 
(2 - 38) x (1 + 50) = -28 + 78. The field Q of rational numbers is identi- 
fied with a subfield of Q(8) via the “injection” mapping T ++ T + 08. This 
injection preserves addition and multiplication, and so makes it reasonable 
to identify Q as a part of Q(8) .  Then the number Q = 0 + 18 satisfies 
O2 = 2 + 08 = 2, so that 0 amounts to a square root of 2. 

This algebraic process for constructing fi is finite, requiring no geome- 
try or approximating processes. Contrast this finiteness with the construc- 
tion of this number used by analysts. As a real number, & requires infinite 
precision to define, either as the infinitely small point on the intersection 
of the line and circle mentioned above, or as the infinite decimal expansion 

= 1.41421 . . . ~ which never repeats and never ends. 
The distinction between “finite” algebra and “infinite” or “infinitesimal” 

(infinitely small) analysis made here is not absolute. As already pointed out, 
not every algebraic number can be written as a formula involving only a finite 
number of algebraic operations and rational numbers. Even algebra resorts, 
at  sorne point. to potentially infinite processes. 

Remark 1.4. It can be difficult to determine whether a complex number is 
algebraic. Except for certain artificially constructed examples, the decimal 
expansion of an irrational number seldom helps to determine whether the 
number is algebraic or transcendental. Not until the nineteenth century were 
matheniaticians able to prove, for example, that  the fundamrntal constants 
T = 3.14159 ... and e = 2.71828 ... are transcendental. 

4. Important concepts and principles in this lesson 

Before proceeding to the next section, be sure you have a clear picture 
of ea.ch of the following concepts: equation, unknown, coefficient: integer, 
rational number, rational operation, algebraic number, algebraic formula. 
t,ranscenderital number, real number, and complex number. 

As you continue reading, keep in mind the analogies we have introduced 
here, comparing algebra to the analysis of an ore or the unlocking of a sealed 
box. Here is another that  may help: Doing arithmetic is like cooking; you 
follow a recipe using specified ingredients processed using available machin- 
ery. Doing algebra is like being a food taster; you try to firid out what the 
original ingredients were by looking at the final result. 
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m-1 
-1 0 

-1 -1 0 1 -1 

5. Problems and questions 

Problem 1.1. It is possible t,o make a field out of as few as two elements, 
which must necessarily be 0 and 1 and must have the following tables for 
addition and multiplication: 

x 0 1 - 1  
0 0 0  0 
1 0 1 - 1  

0 -1 1 

#q 
1 1 0  
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this point, we introduce the five-element field, whose elements are -2, -1. 
0, 1, and 2. (Or, if we prefer, 0, 1, 2, 3, and 4. In any case, it is just the 
arithmetic of remainders after division by 5.) Its addition and multiplication 
tables are as follows: 

What does the fraction 1 /2  mean in this field? (Hin t :  It should be a solution 
of the equation 2 2  = 1.) 

1. 

2. 

3. 

4. 

5 .  

Problem 1.7. The complex number z + iy  is naturally identified with thc 
point ( 2 ,  y) in the plane. Attempts by William Rowan Hamilton (1805- 1865) 
to regard “vectors” (z,y,z) in three-dimensional space as part of a field, 
on which rational operations could be performed, were unsuccessfiil, until 
he embedded them in a larger four-dimensional space of vectors ( t ,  z, y, 2 ) .  

Hamilton named this four-dimensional system quaternions. It will be de- 
scribed in the next problem. After that, Josiah Willard Gibbs (1839-1903) 
was able to distill an algebraic system for three-dimensional vectors by mul- 
tiplying them as quaternions and projecting them back onto the last three 
coordinates (the cross product) or the first coordinate (the dot product). For 
more on vectors in general, see the Epilogue. If a = (a l ,a2 ,a3)  and P = 
( b l ,  b2 .63) ,  their cross product is a x p  = ( a ~ b 3 - ~ 3 b ~ , a ~ b ~ - a ~ b g , a ~ b ~ - a ~ b ~ ) .  
The vectors a and p also have an “inner” or “dot’i product that is a number 
rather than a vector: a . P = albl + azh2 + a&. 

Verify the following simple facts: 
a . a = a: + a: + u:. This number is obviously positive unless a = 

(0, 0,O). Its square root is called the n o r m  or length or absolute value 
of a and denoted JayI = m. 
(a  . P)2 5 (a  . a )  (P . P) .  This inequality is called the Sch,wa?a 
rnequality after Hermann Amandus Schwarz (1843-1921). This is 
obvious if a = (0,0,0).  In all other cases, consider the vector y = 

( a  . /3)a - (a  . a ) P ,  and use the inequality y . y 2 0. 
The angle 6’ between a and P is defined to be 

6� = arccos ( F) f f . P  
a /  IPI 

In other words, a . P = /a1 IPI cos 6’. Then a is perpendicular to ,B if 
and only if a . P = 0. 
The cross product is anticommutative, that is, p x a = -a x P. In 
particular, a x a = 0 = (0,0, 0). 
/a x PI2 + (a  . P)2 = Ia I2 / /312 .  
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6. a x /3 is perpendicular to  each of its two factors. In fact, if‘ n is 
of unit length and perpendicular to both a and 0, then a x p = 
*la1 101 sinon. (Transpose one term in the preceding equation to the 
other side in order to conclude that /a x pi = la1 IpI sin 0.) 

Problem 1.8.  We can identify the real number a with the element ( a ,  0.0,O) 
in four-dimensional space. And we can identify the vector a = (al,a2,a~) 
with the element ( O , u l , a 2 , u ~ )  in four-dimensional space. In that way, we 
can think of a general quaternion A = a+ a = ( a ,  a l ,  u2, us) as a formal sum 
of a number and a vector. Adding two quaternions A = a + a and B = h+P 
is trivial: A +  B = (a+b)  + (a +p) .  Multiplying them is less trivial. It took 
Hamilton some time to work out the proper rules for multiplying elements 
of four-dimensional spaces. (As we mentioned, Gibbs’ work, which we are 
using to introduce this topic, actually came later.) The proper definition 
turns out to be A B  = (ah - a .  p) + (up + h a  + a x p). Notice that AB is 
in general different from BA, since the cross product is antisymmetric. 

Show that 1, identified with the quaternion 1 = ( l , O , O , O ) ,  has the 
property 1A = A1 = A for all quaternions A. 

Problem 1.9.  Although the order of multiplication makes a difference for 
quaternions, they do resemble complex numbers in many ways. Quaternions 
have a real part and a vector part, whereas complex numbers have a real part 
and an imaginary part. The vector part of a quaternion behaves something 
like an imaginary number, since if a = 0, you find that A2 = (O+a)(O+a) = 
(-la12)+0, which is identified with the negative real number -la/2. In other 
words, each vector a can be regarded as the square root of the negative of 
the square of its length. 

Show that real numbers commute with all quaternions. That is, the real 
number a ,  identified with the quaternion Ao = a + 0, has the property that 
AoB = BAo for all quaternions B. 

Problem 1.10 .  Like a complex number, the quaternion A = a + a has i~ 

“conjugate” A = a - a. Show that AA = u2 + laI2 = a2 + a: +a: + a;. Wc, 
shall write IAl = = d a 2  + af + a; + a;. Since real numbers commute 
with all quaternions, it makes sense to  define the reciprocal of the quaternion 
A its 

Notice that the quotient B/A isn’t well defined. This symbol could mean 
either ( l / A ) B  or B ( l I A ) ,  and these two quaternions arc in general not the 
same. Let A = (1 ,0 ,0 ,2 )  and B = (0,0, 3,O). What are the two possible 
interpretations of BIA? 

Problem 1.11 .  Describe several diff’erent ways of solving the plank-cutting 
problem of Example 1.1. 
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Question 1.1. Here are some questions of practical use in everyday life. 
Which of them pose arithmetic problems, and which pose algebra problems'? 

1. Looking at  a stack of current household bills to be paid, how much 
money must you have in the bank or on hand in order to pay them'? 

2. With 60% of your grade in a course already determined and your 
current average at  85%, what average must you maintain for the 
remaining 40% of the course to ensure a semester average of 90%? 

3.  The distance s (in meters) that an object falls in t seconds, starting 
from rest and neglecting air resistance, is given by the formula s = 
4.9t2. How far will an object fall in 7 seconds? 

4. Still referring to the formula s = 4.9t2, how long will it take an object 
t,o fall 120 meters? 

Question 1.2. Why is there no field having six elements? 

6. Further reading 

H. Behnke, F. Bachmann, K. Fladt, and W. Suss, Fundamentals of Mathe- 
matics, Vol. 1, translated by S. H. Gould, The MIT Press, Cambridge, MA, 
1974. 
Richard Courant and Herbert Robbins, What is Mathematics?, (second edi- 
tion, revised by Ian Stewart), Oxford University Press, New York, 1996. 
Lars GBrding, Encounter with Mathematics, Springer-Verlag, New York, 
1977. 
Albert C. Lewis, "Complex numbers and vector algebra," in Companion, 
Encyclopedia of the History and Philosoph,y of the Mathematical Sciences, I. 
Grattan-Guinness, ed., Vol. I ,  Routledge, London, 1994. 



LESSON 2 

Equations and Their Solutions 

In the previous lesson, we defined algebra as the study of equations and 
methods of solving them, arid an equation as a problem in which the “input” 
consists of certain given numbers that have been produced by performing 
specified arithmetic operations on unknown numbers. The ‘Loutput” of an 
algebra problem (its solution) consists of all possible values of the unknown 
numbers. In the present lesson, we shall do a preliminary analysis of the 
problem posed by an equation. 

1. Polynomial equations, coefficients, and roots 

The main object of interest in elementary algebra books consists of poly- 
nomial equations like the sixth-degree equation exhibited in the previous 
lesson, whose solutions are the six values of fi + a. Polynomial equa- 
tions of degrees 2 arid higher usually have more than one solution, as we 
can see by forming equations with given roots. For example, the simplest 
quadratic equation with roots u and v is (z - u ) ( z  - v) = 0, which expands 
to x2 - (u + v)x + uv = 0. Of course, it wouldn’t be written this way. You 
would not see the coefficients displayed as u+u and uv, and the whole equa- 
tion might be multiplied by some constant a. What you would see would 
be ax2 + bz + c = 0. Solving this one quadratic equation is equivalent to 
solving the two equations ‘u + v = - ( b / a )  and uv = c /a .  Similarly, solving 
a cubic equation 

is equivalent, to solving the three equations 

u + v + w  = 

u v + v w + w u  = - 

ax3 + bz2 + cz + d = 0 

b 

a ’  
- _  
c 
a ’  

d 
a 

U�u�Uj = -- , 

From this perspective, a cubic equation represents a single condition that 
must be satisfied by each of the roots of a s y s t e m  of three equations in three 
uriknowii numbers, and the variable z stands for any one of the roots u. 
‘ I ) ,  w of that system. In that context, the polynomial equation looks like a 
secondary problem arrived at in the course of solving a. more basic one. You 
can generalize from this case to an equation of degree 71. It will have (in 
general) 71 solutions, and the sum of all products of those solutions taken k 
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at  a time will be the coefficient of znPk in the equation, multiplied by ( - l ) k  
arid divided by the coefficient of xn. 

The system of equations represented by a polynomial equation is of a 
very special type, as you can see. The roots occur symmetrically in each 
of its equations. There is nothing to prevent us from considering general 
systems of equations, in which the roots need not occur symmetrically, for 
example, u + 3v = 5, uw = -10. But in the end, if we were to solve these 
equations, we would reduce them to the symmetric case. For example, we 
could solve the first equation for u and substitute that result in the second. 
Thus, u = 5 - 3v, and -10 = U I I  = (5 - 3v)v,  so that 3 w 2  - 5.0 - 10 = 0. 
This last equation is again a polynomial equation, and its roots v ,  w satisfy 
the symmetric system 

v + w  = 5 / 3 ,  

UUI  = -1013. 

Thus. it appears that  symmetry lies at  the heart of the problem of solving 
equations, even those that do not appear at the outset to have symmetry. 
As we shall see, in order to solve any higher-degree equation, it is necessary 
to break the symmetry somehow, and express some nonsymmetric function 
of the roots in terms of the coefficients, which are symmetric. Not to give 
away too much too soon, at  this point we’ll just say that the key to breaking 
the syrnnietry is extracting a root of a complex number. 

The uses of this symmetry-breaking principle go beyond the problem of 
finding the roots of polynomials. The mathematical technique developed 
for exploring symmetry (group theory) turned out to be not only a central 
subject in modern mathematics but also a tool of incalculable value for 
modern physics and chemistry. 

1.1. Geometric interpretations. A geometric perspective can help us 
to understand the nature of an equation or system of equations. Using the 
quadratic equation a x 2  + bz  + c = 0 as an example, we can think of thc: 
two solut.ions u and v as a point ( u , v )  in a two-dimensional space. Each 
coefficient represents a restriction on that point; that  is, it represents a 
curve that the point is confined to, so that  instead of having two “degrees 
of freedom,“ it has only one. Actually, as you may know, the equation 
‘IL + 2) = -b /u  represents a line, arid uv = c / a  represents a hyperbola. These 
two conditions are independent of each other, so that when we impose both 
simultaneously, the point has no freedom whatsoever to move around. The 
only freedom that remains is to interchange u and P I ,  which really doesn’t 
count, since we don’t care which of the two variables represents which of 
the two numbers. This procedure is illustrated in Fig. 2, where we solve the 
equation x2 - 2 2  - 8 = 0 by drawing the curves u + v = 2 and uu = -8 in a 
plane. Since u arid v occur symmetrically, there is no need to label the axes. 
Either axis will serve equally well as the u or v axis. Each of the points 
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FIGURE 2. Solution of the equation x2 - 2 2  - 8 = 0. 

(4, -2) arid (-2,4)  where the curves intersect represents the two possible 
solutions x = 4 and x = -2. 

Remark 2.1. The line and hyperbola shown in Fig. 2 meet in two points. If 
the hyperbola lies in the other two quadrants of the plane (corresponding to 
the case when c /a  is positive), the line may be tangent to it (corresponding 
to a double root of the quadratic equation), or even miss it entirely, since 
some quadratic equations have no solutions in real numbers. We can deal 
with that last possibility by working with complex numbers. However, Fig. 
2 doesn’t apply in the complex case. Two-dimensional complex space is 
actually four-dimensional space for our imagination, and so the situation is 
difficult to visualize and depict graphically. 

2. The classification of equations 

Many classifications of equations or systems of equations can be given, and 
the more one knows about algebra, the more complicated they become. Since 
we wish to keep things simple, our classification is the simplest possible. As 
far as we are concerned, there are only two kinds of systems: determinate 
and indeterminate. A determinate system is one that contains enough inde- 
pendent condit,ions (equations) to determine the solution uniquely. Strictly 
speaking, a polynomial equation of degree 2 or higher is not a determinate 
problem, since it has more than one solution. But, as we have shown, it is 
equivalent to a system of n equations in n unknowns that is determinate, 
siiice it has only one solution, except for permutations of the roots. For that 
reason, we shall classify polynomial equations as determinate problems. 

In keeping with the idea t,hat each new condition imposed reduces the 
iiiirnber of degrees of freedom by one, we can expect that in general three 
independent conditions would suffice to determine three unknowns uniquely, 
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cxcept for certain symmetries, as noted above. In counting tlie number of 
equations, one must be careful to verify that they really are independent. 
For example, the three equations x 2  + y2 + z2  = 16, x + y + z = 4, and 
zy + yz + zz = 0 do not constitute three independcnt conditions, since the 
first equation can be deduced by squaring the second equation, multiplying 
the third by 2, and then subtracting. In this case, it is possible to determine 
two of the variables in terms of the third (say, y and z in terms of x), but 
one of them remains indeterminate. 

It is possible to have more independent equations than unknowns. Such 
a system is determinate, but is said to be overdetermined. It may turn out 
to have no solutions at all. In order for an overdetermined system to have 
solutions, the equations must satisfy certain consistency conditions. We 
have really no use for overdetermined systems in these lessons and mention 
theni only for the sake of completeness. 

2.1. Diophantine equations. We shall also discuss indeterminate sys- 
tems only briefly. Since an indeterminate system generally has a solution 
set that can be represented as a curve or surface in a higher-dimensional 
space, it requires methods from analysis (calculus) that can be omitted in a 
discussion of classical algebra. There is one important case, however, that 
should at least be mentioned. In order to reduce the solution set from a 
continuous curve or surface to  a discrete set of points, mathematicians some- 
t’imes impose the additional requirement that the solutions be integers. An 
indeterminate system whose solutions are required to be integers is called 
a Diophantine system, after the (probably) third-century mathematician 
Diophantus of Alexandria (Egypt), who considered only positive rational 
solutions to his equations, since the positive rational numbers were tlie only 
numbers that he knew about. Some Diophantine equations have become 
quite famous. One that you are probably familiar with is the “Pythagorean” 
equation m2 + n2 = p 2 ,  which has solutions (3,4,5), (5,12,13), (15: 8> 17): 
and more generally, (u2 - v2,  2uv, ,u2 + u2)  for any integers u a.nd Y.  Another 
famous example, much harder to solve, is “Pell’s equation” m2 ~ On2 = 1, 
which has infinitely many solutions (m, n) for any positive integer valuc of 
D. (It has very little to do with the unfortunate John Pell, 1611-1685, af- 
ter whom it is named.) In fact, the seventh-century Hindu mathematician 
Brahmagupta showed that if ( a ;  b )  is a solution: so is (a2  + Db2; 2ab). This 
is because (a2 + Db2)2 - D ( 2 c ~ b ) ~  = (a2  - Db2)2 = 1. On the other hand, 
the Diophantirie equation rn4 + n4 = p2 has only the trivial solutions rn  = 0; 
p = &n2 and 71 = 0, p = f m 2 .  We shall have only one occasion to refer to 
Diophantine equations in the lessons that follow (problems 11.1 and 11.2 in 
Lesson 11). 

3. Numerical and formulaic approaches to equations 

We are about to begin a general survey of the history of the portion of algebra 
that we have outlined, focusing on the study of determinate polynoniial 
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equations. The last bit of preparation we need involves a discussion of the 
meaning of the phrase “solving an equation.’‘ 

3.1. The numerical approach. Since the solutions of equations are to 
he real or complex numbers, we can represent them, or their real and imag- 
inary parts in the case of coniplex numbers, as potentially infinite decimal 
expansions. By solving an equation, do we mean simply finding better and 
better decimal approximations to a solution? In many cases, we do mean 
exactly that,  and the development of fast arid accurate ways to find approx- 
imate roots is still a legitimate way for a numerical analyst to spend time. 
We shall call this approach to equations the numerical approach. As just 
stated, the numerical approach focuses on the result of doing algebra, ex- 
hibiting the roots of the equation explicitly. If we write the expression &. 
for example, we are merely using a concise way of specifying a real number 
whose square is 2, that is, a solution of the equation x2 - 2 = 0. If you want 
to know “how big” & is, you need to look at, decimal approximations to 
it. We need this potentially infinite process because we are accustomed to 
picturing points as strung out along a line representing the real numbers. If 
we omit that geometric interpretation, we can obtain a finite construction 
of fi, as shown in the previous lesson. 

Teachers have often told their students that  & is exact, while 1.41421 . . . 
is approximate. They have often insisted that only the “exact” value will 
do in mat,hernatical work. Actually, & is an exact symbol only in the alge- 
braic smse mentioned above. If & is to be interpreted geometrically, as the 
length of the diagonal of a square of side 1, and given a numerical value, we 
have to resort to some approximation. Doing so requires an algorithm for 
finding a sequence of rational numbers that approximate the real number 
A. Rational numbers can be assumed to be known exactly, that is. with 
infinite precision, since their decimal expansions repeat after a finite period. 

3.2. The formulaic approach. There is a second way of studying equa- 
tions, going back to the idea introduced at the beginning of the previous 
lesson, that algebra attempts to reverse a sequence of arithmetic operations 
and move from the result of those operations to the data that were input. 
This approach is best explained using the example of the quadratic eqiia- 
tion. Suppose that, the equation ax2 + bx + c = 0 has solutions u arid 21. 

From what was said above, we know that actually 
n,x2 + b r  + c = a ( z  - U ) ( X  - U) = ax2 - CL(U + U ) Z  + uuv 

That is, h = -a(u + w )  and c = uu71. As you may know, in this case it is 
possible to state explicitly, as a formula, exactly what needs to be done to 
solve the equation: 

-@/a)  - J(b/a,)2 - 4 ( c / a )  
2 

; 71 = 
- ( b / a )  + J(b/u)2 - 4 ( c / a )  

‘U = 
2 

You can verify that,  since - (b /w)  = u + 11 and c /u  = uu, the expression 
under the square root sign in this formula is simply ( u  - u ) ~ .  and hence 
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the square root can be replaced by TL - v .  When you do that,  you see that 
the two expressions for u and v are identities. The ancient Mesopotamians, 
some 3500 years ago, were the first people to make systematic use of what 
we now write as the “polarization” identity 

U - I J  

so called because it makes it possible to write the product uv as a difference 
of squares. They consistently used this relation implicitly (but wrote it out 
only with particular numbers in place of 7~ and v, never in the abstract, as 
we have done here) to find two numbers given either their sum and product 
or their difference and product. In both cases, the roots appear syinmetri- 
cally in the equation, but the polarization identity permits us to “break the 
symmetry” by taking the square root: 

In this way the quadratic equation am2 + bx + c = 0, which was the problem 

b _ _  U + ’11 = 
a 

c 
- u11 = 
a 

is replaced by the linear system 

b 
~ -_  - 1L + u 

- 
2 2a ’ 

El!! 2 = /=, 
and this last system is solvable. Thus, in a nutshell, the secret of solving a 
quadratic equation is to break its symmetry using the square root and the 
polarization identity, then replace it b.y a linear system whose solution is 
known. 

Here we have a different approach to equations, in which we seek a for- 
m,ula that’ shows how to go from the coefficients to the roots. This approach 
focuses on the relation between the coeficients and the roots. Of course, 
if we have a formula, it should be possible to apply it and find numerical 
approximations, so the second approach in some sense contains the first. 
But the converse is not true. A numerical niethod of solving an equation 
does not necessarily tell us anything about the relation between coefficients 
and roots. We shall call this second approach to equations the formulaic 
approach. When it works, the solutions can be written as a finite expression 
involving the four operations of arithmetic together with root extractions. 
The central technique of the formulaic approach is the use of cornbiriatorial 
methods---changing variables, rearranging terms, and the like---~in order to 
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obtain an equation of simpler form, whose solution may be obvious. We shall 
use both adjectives formulaic and combinatorial to describe this approach. 

In the past, mathematicians in some nations such as China and Japan 
adopted the numerical approach, and they were very successful in applying 
it to equations of enormously high degrees. Other peoples, such as the 
medieval Muslims and modern Europeans, followed the formulaic route. The 
formulaic route greatly limits the degree of equations that can be studied in 
a practical manner. In fact, it is rarely practical to use even the formulas 
for solving equations of degrees 3 and 4, which were discovered in Italy 
during the sixteenth century. The formulaic approach did, however, lead 
to a magnificent. intellectual edifice known as modern algebra, in particular 
the part of it known as Galois theory, which expresses the solvability of an 
equation by radicals in terms of a group of permutations. 

As a byproduct of Galois theory, it became possible to solve some farnous 
old problems from geometry. In the 1830s mathematicians using Galois 
theory were able to prove that no procedure using only a finite number of 
lines and circles drawn with straightedge and compass, starting from a line 
of unit length, can produce a square equal in area to a circle of unit radius, 
or an angle of 20" (the trisection of a 60" angle), or the side of a cube of 
volume 2. These constructions had been achieved by the ancient Greeks 
using curves more complicated than lines and circles, but here for the first 
time it was possible to state definitely that no solution could be found using 
only lines and circles. These "impossibility proofs" have unfortunately had 
no effect on the many eager amateurs, who, not understanding the problem 
that they imagine they are solving, construct hundreds of purported angle 
trisections and circle squarings every year. 

4. Important concepts and principles in this lesson 

If you have understood what was written in this lesson, you should have 
an adequate picture of the following concepts: determinate system, inde- 
terminate system, overdetermined system, degrees of freedom, polynomial 
equation, Diophantine equation, numerical approach, formulaic approach. 
Galois theory, and impossibility proofs. 

The main ideas contained in the present section are the following: (1) 
Solving a polynomial equation of degree n is equivalent to  solving a system 
of n equations for n unknowns. (2) Solving an equation can be interpreted 
in two different ways. It may mean finding decimal approximations t,o the 
real and imaginary parts of the roots, or it may mean finding a formula that 
can be applied to the coefficients in order to express the solution. 

5. Problems and questions 

Problem 2.1. Sketch the curves w + v  = - ( b / a ) ,  ~i = c / u  for the following 
equations ux2+bx+c = 0. On the basis of the sketch, determine the number 
of' real solutions the equation has arid the approximate value of the roots. 
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32’ - 152 + 12 = 0 
x 2 - 3 x f 5  = 0 
2x2 + 102 + 12 = 0 
3x2 + 32 - 18 = 0 

Problem 2.2. Solve the equation x2 + 2 2  + 2 = 0 in the field with five 
elements. Does it have any solutions in the field with three elements? (In- 
terpret the number 2 as -1 in that field.) 

Problem 2.3. Which of the following two systems of three equations is 
determinate and which is indeterminate? 

z + 2 y - 3 2 = 2 ,  z + y + z = 5 ,  
22 - 3y  + 42 = 1, x + 2y + 32 = 2 .  

Problem 2.4. What condition on a. b, c, and d makes the following overde- 
termined system consistent? 

z + y + z =  a1 

. I - y + z =  b l  

z f y -  z =  c ,  
x - y -  2 = d .  

Problem 2.5. Find (by guessing) a pair of positive integers rn and n sat- 
isfying the Diophantine equation nm = mn + 1. 

Question 2.1. Use the geometry of the situation, as illustrated in Fig. 2, 
to explain why a quadratic equation of the form x2 + a s  + b == 0 always has 
precisely one positive and one negative solution if b < 0. 

Question 2.2. What does Fig. 2 become for the equations s2 +2ax+a2 = 0 
and x2 - 2ax + a2 = O? 

2 + 9y  - 132 = 5 .  z + 4y  + 9~ = 3 .  

6. Further reading 

I. Grattari-Guinness and W. Ledermann, “Matrix theory,” in Companion 
Encyclopedia of the History and Philosophy of the Mathematical Sciences, 
Vol. 1, I. Grattan-Guinness, ed., Routledge, London, 1994. 

Eberhard Knobloch, “Determinants,” in Companion Encyclopedia of the 
History and Philosophy of the Mathematical Sciences, Vol. 1, I. Grattan- 
Guinness, ed., Routledge, London, 1994. 

Helena Pycior, “The philosophy of algebra,” in Companion Encyclopedia of 
the History and Philosophy of the Mathematical Sciences, Vol. 1: I. Grattan- 
Guinness, ed., Routledge, London, 1994. 



LESSON 3 

Where Algebra Comes From 

The simplest way to find out where algebra comes from is to look at some 
examples from long ago. In this lesson, we shall look at  five of the earliest 
problems that can be regarded as algebra, from different places around the 
world. 

1. An Egyptian problem 

(About 3700 years ago, from the Rhind Mathematical Papyrus, Problem 
24.) A quantity and the seventh part of at have 19 as a sum,. What is the 
qiran,t it y 2 

Here we are told that a quantity has been divided by seven and the 
seventh part of it has been added to  the original quantity, yielding 19 as 
the result. You will probably not find this problem difficult to solve if 
you write down the corresponding equation. When the Rhind Papyrus was 
written, some 3700 years ago, this problem was considerably more difficult. 
The author proceeded by a kind of guided guessing known in mathematical 
circles as the method of false position. He noted that if the quantity had 
been 7> the result of these operations would have been 8 .  Therefore, lie 
reasoned, we must divide our guess (7) by 8> to make the 8 disappear and 
then multiply the quotient by 19, to get the desired result. As we would 
say, he needed to scale 7 by a factor of 1918 so that the answer would come 
out to 19 instead of 8. Part  of the difficulty to the Egyptian scribe came 
from the fact that multiplicat.ion and division as we know them did not exist. 
I\/Iultiplication was performed by repeated doubling and adding. To multiply 
13 x 17, for example, the scribe would double 17, getting 34 (2 x 17), then 
double again to  get 68 (4 x 17), then once again, getting 136 ( 8  x 17). Then, 
since 13 = 1 + 4 + 8 ,  he would add the numbers corresponding to 1, 4> arid 8 ,  
namely 17, 68,  and 136, finally getting the product 221. To do what we call 
dividing, the scribe would niultiply the divisor by various integers and, if 
necessary. “unit” fractions with numerator I----t,he main exception was that 
2 /3  was allowed-until a set of products was reached that added up to the 
dividend. The sum of the integers and unit, fractions by which the divisor 
was multiplied provided what we call the quotient. Dividing 7 by 8 was 
one of the simpler problems:, it was merely a matter of dividing by 2, then 
repeating this operation twice more. The results were successively 3+ $, then 
1 + 4 + i, and finally + + i. This number was then multiplied by 19: which 
is 1+2+16; and the product waswritten as ($+$++)+(1+;+$)+(8+4+2),  
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which was finally simplified to 16 + + $. The restriction to unit fractions 
often led the scribe into very messy computations, since the double of a unit 
fraction had to be expressed as two other unit fractions. For example, was 
expressed as a + A. 

2. A Mesopotamian problem 

(Iraq, about 3500 years ago, cuneiform tablet AO 8862, now in the Louvre, 
Paris.) I multiplied length and width to  obtain area. I added the amount b y  
which length exceeds width to  the area and obtained 183. The s u m  of the 
length and width as 27. What  are the length, width, and area? 

As this problem shows, even the very oldest texts contain problems 
that can still be challenging today. Here we encounter a problem with two 
independent unknowns, length and width. Correspondingly, we are given 
two sets of operations that have been performed on them and the results. 
One is simple; their sum is 27. The other is much more complicated: their 
product plus their difference is 183. It is not at  all obvious how one can work 
backward from this information in order to get the two numbers. Trying to 
do this without putting it in modern notation is an interesting challenge. 
You can verify that the answer might be length 15, width 12 or length 14, 
width 13. The tablet gives only the first of these as an answer. 

The author was apparently guided by the geornetrical relations shown 
in Fig. 3, starting with a rectangle and gluing onto it first a strip of width 
one and length equal to the difference of the length and width of the original 
rectangle. The rectangle with this strip adjoined will have area 183, accord- 
ing to the problem. Then, gluing another strip of widt,h one and length 
equal to the width of the original rectangle, and finally a strip of width 1 
and length equal to the length of the original rectangle results in a new 
recta.ngle with the same length as the original but width increased by 2. Its 
area (the product of its length and width) will be 183 + 27 = 210, and the 
sum of its length and width will be 29. Thus the problem has been simpli- 
fied. We now have a rectangle in which we know the area (numerically, the 
product, of length and width) and the sum of length and width. As shown 
in Lesson 2, the problem of finding two unknown numbers given their sum 
and their product is exactly the same problem as finding the two solutions 
of a quadratic equation. We know the sum (29) and the product (210) of 
the two dimensions. Hence the enlarged rectangle must be 15 x 14, and so 
t,he original one must be eit,her 13 x 14 or 15 x 12. 

3. A Chinese problem 

(Han Dynasty, about 1900 years ago, from the Nine Chapters on  the Math- 
ematical Ar t ,  Chapter 6.) A fast  walker goes 100 paces in the t ime required 
f o r  a slower walker to  go 60 paces. If the slower walker has a head start of 
100 paces, how many  paces will be required fo r  the faster walker to  overtake 
the slwwer? 



4. A N  ARABIC PROBLEM 27 
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width length 
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FIGURE 3 .  An ancient Mesopotamian algebra/geometry 
problem. Modified from The History of Mathematzcs: A 
Brief Course, second edition, John Wiley and Sons, New 
York, 2005, page 402. 

You have very likely solved problems of this type already. Oncc the 
problem has been set up by taking the time required for the slower walker 
to go 60 paces a5 a unit, you set’ that  the faster walker is gaining 40 paces per 
iiiiit time. So you take as the unknown the number of units of time elapsed 
when the faster walker overtakes the slower. You know that  40 times this 
unknown number of units must equal 100 (the amount of the head start) .  
and therefore the unknown must be 2;. After that  many units. the slower 
walker will have gone 150 paces and the faster one 250 paces. 

4. An Arabic problem 

(From the Algebra of Muhammed ibn-Musa al-Khwarizmi, about 1200 years 
ago.) A man writes a wzll leaiizng 1 dirhem cash and one-fifth of hzs estate 
to a frzend, the rest to  be dzvzded equally between hzs two sons. When he 
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dies, he leaves 10 dirhems cash o n  hand, and one of his sons owes h im  10 
dirhems. Find the amount  of the 10-dirhem debt that must  be added to  the 
10 dirherris cash o n  hand so that, when the estate is divided, the indebted 
son neither owes anything n,or receives anything. 

The unknown in this problem is the portion of the debt that is to be 
added to the cash on hand to define the total estate, which will then be 
divided according to the will. The remainder of the debt was to be cariceled, 
taken “off-budget,“ so to speak. Using the Arabic word for thing where we 
woiild use a single letter 2 ,  al-Khwarizmi reasoned t,hat the estate consisted 
of 10 + 2 dirhems, where IC is the amount that the indebted son woiild “pay” 
out of his share of the inheritance. The friend was entitled to 3 + x / 5 ?  
leaving 7 + 4x15 to be divided equally between the sons. Since each was 
to get 3; + 2 2 / 5 ,  that  is the amount :1: that the indebted soil would havc 
t,o pay. 111 other words, al-Khwarizmi derived the equation il’ = 3 ;  + 2:c/5, 
whose only solution is z = 35/6. This is the amount that the unindebted 
son receives? and the friend gets the remainder of the 10 dirhems cash on 
hand, that, is, 2516 dirhems. 

5. A Japanese problem 

(Posed in 1670.) From 1600 t,o 1850 Japanese mathematicians published 
challenges to one another using area and volume problems. In oiie such 
problem, published in 1670 by Sawaguchi Kazuyuki (dates uncertain) ~ two 
equal circles are tangent to each other, and each is tangent to a third circle 
whose diameter is five units larger than their diameters. All three are en- 
closed in a large circle, to which each is tangent. The area inside the large 
circle and outside the other three is 120. (See Fig. 4.) The problem asks for 
the diameters of the four circles. (Two of them are equal.) 

This problem leads to one linear, one quadratic, and one cubic equation 
in the three diameters x? y, arid z, namely 

s + 5  = y ,  

2TZ2 + TI/ + 480 = T Z 2  ~ 

4y2z + 2xyz + ICY2 + :I2 = 4yz2. 

where the letters are as shown in Fig. 4. 
These equations have six solutions! but the only one that makes geo- 

metric sense is approximately z = 7.58688, y = 12.58688: and z = 20.648 
respectively for the diameters of the smallest two circles: the larger circle, 
and the enclosing circle. 

The first, equation here obviously gives y ir i  terms of IC. When :I: + :i is 
substituted for y in the second equation, we get z 2  = 3x2+ 1 0 z + 2 5 + 4 8 0 / ~ .  
This value of z2 can then be substituted into the third equation. and that 
equation can then be solved for z in terms of z: 

4 ~ 2 ~  + 4 0 ~ ~ : ~  + ( 1 2 5 ~  + 720)z + ( 2 5 0 ~  + 4800) 
~ ( 3 2 ~  + 2 5 ~ :  + 50) z =  
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I, 

2Lil.I = x 
~ M N = z - x  
2 K N = z - y  
2Khi '=x+y  
2LN = &?ZZG 

FIGURE 4. A Japanese algebra/geometry problem from 
1670. Modified from The History of Mathematics: A Brief 
Course, second edition, John Wiley and Sons, New York, 
2005, page 418. 

Thus each value of x determines the values of and z. If we square this last 
value of z, compare the result with the earlier value of z 2 ,  and clear out the 
denominator, the result is an equation of degree 6 in x: 

1440 l lx6  + 2 2 0 ~ ~  + (1900 - -----)xi' + (8500 - ~ 

7 l  7l 

) x  (20000 - ___ - -)2 + (25000 - ~ - ~ 

120000 518400 360000 6912000 
7 l  7l n-2 

- 
- 0 .  

This equation has six roots; four of which are complex and one of which 
is negative: -9.673 - 2.497322, -9.673 + 2.49732i, -1.66764 - 7.55092', 
-1.66764 + 7.550922, and -6.21813. Here again; i = a. All of these 
numbers are only approximate, since the decimal expansion of T is infinite. 
Only t,lie one positive root 7.58688 makes sense in the geonietric problem. 

1200000 23040000 
7l 7l2 

6. Problems and questions 

Problem 3.1. How many ways can you think of to solve a quadratic equa- 
tion such as x2 -x+ l = 0 in a finite field, such as the field of t h e e  elements? 

Problem 3.2. The quadratic formula for solving a.z2 + bx + c = 0 is 

x =  
2 0, 

"Trailslate" this formula into the field with three elements (replace 4 by 1 
; ~ n d  2 by - 1) and into the field with five elements. Under what circumstances 
will you be able to take the square root in this field? Is the translated forrriiila 
still valid? 
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Question 3.1. How does each of these five examples fit the definition of al- 
gebra as finding unknown numbers given the result of performing operations 
on them? In each case, what are the operations performed‘? 

Question 3.2. Which of the solutions described above are numerical arid 
which are formulaic? 

Question 3.3. Can the quadratic formula be translated into the field of 
two elements? 

7. Further reading 
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Press, New York, 1967. 
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Cambridge, MA, 1972. 
Lancelot Hogben, Mathematics for the Million (third edition), W. W. Nor- 
ton. New York, 1952. (Hogben erroneously calls the Aryabhatiya of the 
fifth-century Hindu astronomer Aryabhata I by the name Lilavati, which is 
the name of a work by the twelfth-century mathematician Bhaskara 11.) 

Annick 1LI. Horiuchi, “The development of algebraic methods and probleni- 
solving in Japan in the late seventeenth and early eighteenth centuries?” in 
Proceedings of the International Congress of Mathematicians, Kyoto, Japan, 
1990, The Mathematical Society of Japan, 1991. 
Lay-Yong Lam, “Jiu Zhang Suanshu (Nine Chapters on the Mathematical 
Art): An overview,” Archive ,for History of Exact Sciences. 47 (1994) 1-51. 
Yoshio hIikanii, The Development of Mathematics in China and .Japan. 
Chelsea, New York, 1961 (reprint of 1913 edition). 
Otto Neugebauer, The Exact Sciences in, Antiquity, Princeton University 
Press, Princeton, N J ,  1952. 
Elcarior Robson, Mesopotamian Mathematics, 21 00 1600 BC: Technical Con- 
stants i n  Bureaucracy and Education, Clarendon Press, Oxford, 1999. 
Frederic Rosen, The Algebra of Mohammed ben Musa, Oriental Translation 
Fund, London, 1831. 
V. S. Varadarajan, Algebra isn Ancient and Modern Tim,es, American Math- 
ematical Society, Providence. R.1, 1998. 



7.  FURTHER READING :< 1 

B. L. van der Waerden, Science Awakening, Wiley, New York, 1963. 
B. L. van der Waerden, A History of Algebra from al-Khwarizmc to Emmy 
Noether, Springer-Verlag, New York, 1985. 
Yan Li and Shiran Du, Chinese Mathematics: A Concise History, translated 
by John N. Crossley and Anthony W.-C. Lun, Clarendon Press, Oxford. 
1987. 



LESSON 4 

Why Algebra Is Important 

The title of the present lesson should perhaps be phrased as a question: 
Is algebra important? The examples presented in the previous lesson may 
riot strike yoii as particularly practical. On the basis of those examples the 
only answer one could give to the question “Why did people solve these 
problems?” is “Because they could.” If you delve into some early treatises 
on algebra, you may be even more discouraged in your attempt to feel the 
respect for the subject that the curriculum seems to require. 

Consider, for example, the following problem from the Lilawati of the 
Hindu mathematician Bhaskara I1 (about 850 years ago): 

One pair out of a flock of geese remained sporting in the 
water, and saw seven times the half of the square root of the 
flock proceeding to the shore, tired of the diversion. Tell me, 
dear girl, the number of the flock. 

You may be forgiven for thinking that. it is not wort,h the trouble to write 
down the equation for the number of geese in the flock, that is, 2 - 2  = gf i ,  
;tiid solve it to get IC = 16. 

Or, consider the following problem froni a treatise by Girolamo Cardario 
published about 450 years ago: 

The profit made by a certain business equals the cube of 
one-tenth of its capital. If the profit had been t,hree ducats 
greater. it would have been exactly equal to the capital. 
What was the capital and what was the profit? 

Again, rather than writing t,he equations P = (C/10)3 and P + 3 = C for 
profit arid capit,al, then eliminating P between them to get C3 + 3000 = 
IOOOC, to find that the capital was 30 ducats and the profit 27 ducats. you 
might prefer simply to ask the proprietors how much their capital and profit) 
were. 

If‘ you have gone very far in algebra, you have probably encountered 
problems of equal uselessness. One perennial favorite, which you may have 
seen, asserts that a man is now three times as old as his son and 10 years 
from now will be twice as old as his son and asks you 1.0 find their current 
ages. You must think to yourself, “Under what circumstances (outside of an 
algebra book) would I ever conie to know these facts about the two without 
knowing their ages?” 
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As these examples show, algebra books have alwa,ys found it difficult to 
produce motivating examples. Students may be excused for thinking that 
algebra is useful mostly in constructing puzzles for idle amusement. Even 
our glance into the actual treatises that  have been written on algebra has 
not revealed any serious, practical purpose for solving equations of degree 
higher than the first. 

Nevertheless, even if mathematicians developed algebra purely for amuse- 
ment, the way people create and solve crossword puzzles, we nowadays have 
many reasons to thank them. As it became more subtle, algebraic reasoning 
acquired the compact notation of letters and symbols that we associate with 
the subject today. This process began very early in India, but picked up 
speed noticeably in the early seventeenth century in the work of FranCois 
Vikte (1540-1603) and Re& Descartes (1596-1650). By the time of Leon- 
hard Euler (1707-1783), a century after Descartes, mathematical notation 
in Europe was nearly standardized in its present form. 

Along with the use of letters came the notion of a variable? a symbol 
(usually a letter) representing an unspecified number. In applications, vari- 
ables were used to denote quantities measured in specified ways. This new 
notation made it possible to rewrite the laws of physics in a much more 
compact way. Consider, for example, t,he way Johannes Kepler (1571-1630) 
originally stated his third law of planetary motion, in his 1619 treatise The 
Harmonies of the World, Book 5, Chapter 3: “The ratio between the peri- 
ods of any two planets is the ratio of the gth power of their mean distances 
from the Sun.“ We would nowadays write this in other ways. Let TI and 
T2 be the periods of two planets (length of a year on those planets) and r1 

and 7-2 their mean distances from the Sun. Then 

or, more typically, 

We remark in passing that the mean distance from the Sun is the average 
of the greatest and least distances. By Kepler’s first law, a planet moves in 
an elliptical orbit with the Sun a t  one focus (on the major axis), and this 
mean distance is half of the niajor axis of the ellipse. For simplicity in what 
follows, we are going to consider only circular orbits, for which the distance 
r is constant. 

The last equation makes it easy to take in a t  a glance what the relation 
between period and distance is. something that the prose statement given 
by Kepler does not do. 

Tinie, distance, area, volume, mass, density, pressure, temperaturc, 
charge, current, energy, and many other important physical concepts are 
variables, and there are relations among those variables that can IIC ex- 
pressed by equations, such as the ideal gas equation PV = nRT, or the 
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Stefari-Boltzmann law E = aT4 or Ohm’s law V = I R  or Newton’s law 
of gravitation F = Go(Mrn/r2),  or the most famous of them all, Einstein’s 
equation E = mc2.  

If that were the only advantage of algebraic notation, it would never 
have achieved the prominent place it now occupies in science. After all, Ro- 
man numerals can be used to record numerical data; arid, although everyone 
knows what they mean, few would regard them as an effective way of ac- 
quiring new information. Would you care to divide DCCXLI by CCXLVII, 
for example, without converting to Hindii-Arabic numerals? 

Algebra provided more than just a compact notation for writing down 
relations among variables. Its rules made it possible to manipulate those 
laws on paper arid derive some of them from others. For example, a conse- 
quence of Kepler’s third law is that  the ratio T 2 / r 3  of the square of a planet‘s 
period to the cube of its distance from the Sun is the same for all planets. 
In the exercises at the end of this lesson, you will be invited to use algebra 
t,o demonstrate that Kepler’s third law and Newton’s law of gravitation are 
equivalent statements, given certain basic facts of mechanics. 

Even though the importance of algebra is proved beyond any doubt by its 
applications to the laws of physics, its usefulness would still be very limited, 
if not for the enrichment provided by the use of infinitesimal methods-the 
calculus. Differential calculus allows physical laws to be stated as relatioris 
between variables arid their relative rates of change. Such relations are called 
dzflerentzal equations, and it turns out that  most of the important laws of 
nature have to be stated in precisely this way, as differential equations. 
Among the famous differential equations of physics are the heat equation. 
the wave equation, and the Schrodinger equation. Integral calculus provides 
a set of rules by means of which it is sometimes possible to eliminate the 
rates of‘ change from a differential equation and replace it with an ordinary 
algebraic, exponential, or trigonometric relation between variables. In this 
way, physics has achieved prodigies of understanding about the universe. We 
shall now explore one of these niore complicated examples where calculus 
is irivolved, leaving some simpler examples involving only algebra for the 
reader to explore in the exercises at  the end of the lesson. 

1. Example: An ideal pendulum 

The example we are about to study must be accompanied by a warning that 
it involves some basic mechanics, a differential equation, and a function from 
;dvaiiced analysis, all of which the reader is to accept on trust, as raw facts. 
The reader is not expected to be able to fill in the details of the physics 
arid mathematics below or to know what is meant by the Jacobi amplitude 
function that will be mentioned. (It is named in honor of Carl Custav 
Jacobi (1804~~-1851), who introduced it in connection with elliptic functioris.) 
Irist,ead; our aim is to show how algebra and calculus can generate predictioris 
for the behavior of an observable physical systeni on the basis of very general 
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FIGURE 5. A pendulum swinging through a 120' arc. 

principles written down in the language of algebra and analyzed by algebraic 
manipulation. 

The point to be understood is that it is possible to use the laws of 
Newtonian mechanics to write down a differential equation, and after that 
equation is solved, it is possible to draw a graph of the variation of an 
observable quantity over time. The steps in between are beyond the scope 
of this book. For us, the mere fact that they are logically connected, so that 
the beginning determines the end. is the important thing. Although this 
point has already been made, it bears repeating that the really important 
applications of algebra come only after the study of calculus. 

Imagine a cord or a rigid rod suspended from the ceiling of a room, free 
to pivot from its point of suspension, with a weight a t  the bottom of it. 
The cord or rod will be vertical when at rest. But, you can pull it to one 
side. causing it to rise toward the ceiling. If you then let go, it will begin to 
oscillate as a pendulum. How can you describe this oscillation? One way to 
do so is to let the letter x ( t )  denote the vertical distance from the ceiling to 
the weight at  time t ,  as shown in Fig. 5 .  

Since the pendulum is below the ceiling, we'll assume z ( t )  is a negativc 
number. Physicists and mathematicians use the symbol z’( t )  to represent 
t,he rate at  which z ( t )  is increasing at  time t .  (A negative value of z’(t)  means 
x ( t )  is decreasing.) From Newton's laws and a bit of integral calculus, one 
can derive the following law of oscillation: 

where g is the acceleration of gravity (9.8 meters per second per second) 
and L is the lcmgth of the cord or rod. This last equation relates the rate 
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FIGLJRE 6. Motion of  a pendulum. 

of  increase of a quantity to the quantity itself. Such an equation. as meri- 
tioncd above, is called a dzfferentzal equatzon. From it, again using integral 
calculus. one can express z(f) explicitly iri  terms o f t .  In the case where the 
oscillation begins with the pmdulum making a 60" angle with thr  vertical. 
the cxxpression is 

(1) z ( t )  = -Leos 2 JacobiAmplitude (0.842875 - 0.5Jf f ,4))  . 

For the particular case when the pendulum has length L = 5 meters, the up- 
and-down oscillation can be graphed as shown in Fig. 6. The complete period 
of  oscillation is just under 5 seconds (4.8165 seconds, to be more precise) 
as the pendulum moves from its maximum height of 2.5 meters below the 
ceiling to its minimum height of 5 meters below the ceiling, continues on 
to the same maximum at the opposite end of  its swing, and then swings 
back again. Here we have a prediction that can be tested by constructing 
a pendulum 5 meters long and timing its swings from an initial angular 
tlisplaceriient of 60". 

Turning to a general penduluni swinging through 120" arcs, we see by 
Ey. 1 that this model predicts that  the period of oscillation is proportional 
to the square root of  the length L.  This prediction also can be tested by 

( 
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building pendulums of different lengths. If we could go to the kIoori or 
some other heavenly body having a stronger or weaker gravitational field, 
we could also test the prediction that the period is inversely proportional 
to the square root of the acceleration of gravity. Thus, merely being able 
to read the language of algebra enables us to conjecture many possibilities 
about the world that can be checked by observation and serve as tests of 
the physical theories on which they are based. 

2. Problems and questions 

We chose to analyze a complicated illustration of the usefulness of algebra 
in the text above. To fix those ideas better, we now present the reader with 
a simpler example to work out. In the first four problems below, you will 
be given a set of dots to connect in order to “discover” the inverse-square 
law of gravitational attraction and test its validity from known data. For 
simplicity. we assume that all planetary orbits are circles. 

Problem 4.1. We begin with the first attempt to analyze motion more 
complicated than simple motion at constant velocity. For constant-velocity 
motion, the well-known law is s = vt, where s is the distance, 2’ the speed 
(rate). and t the time of the motion. 

The next step up is to consider uniformly accelerated motion in which 
the speed is proportional to the time, that  is, 21 = a t ,  where a is a constait 
called the acceleration. 

Caution: You cannot combine this equation with the previous equation arid 
deduce that s = at2,  since the two equations are not both valid for the 
same motion. The first one applies ondy when u is constant, arid the second 
asserts that u is not  constant. 

The 
geometric relation “area = height x width,” which applies to a rectangle 
(in a vertical plane), is of exactly the same form as the relation “distalice 
= speed x time.” Thus, we could represent the distance as the area bclow 
the curve that gives speed in terms of time. The two representations, for 
constant velocity and constant acceleration, are shown in Fig. 7 .  The area 
of the shaded region is numerically equal to the distance s.  

If the argument from analogy seems uncertain, it can be strengthened 
by introducing a bit of “infinitesimal” reasoning. Over a very short interval 
of time, the speed will be practically constant, and the constant-spced law 
will apply approximately. Divide the time interval from 0 to t into �r), equal 
pieces, that is, the pieces from ( k  - l ) t / n  to k t / n ,  k = 1 , 2 ,  
in Fig. 7?  where we took n = 8. The distance traveled in that interval 
will be approximately v t / n  = akt2/ /n2.  More precisely, it will be at least, 
a ( k  - 1)t2/n2 and at most akt2/nj2,  that is, larger than the area of the 
shorter rectangle over that  interval, and smaller than the area of the taller 

Algebra conies to our rescue here, aided by analytic geometry. 
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FIGURE 7. (a) Distance traveled at constant speed (u = ~ 0 )  
is represented as the area of a rectangle, that is, s = w o t .  
(b) The Merton rule, when speed is directly proportional to 
time (v = at )  and distance is represented as the area of the 
shaded triangle, so that s = ;at2. 

rectangle. As a result, the total distance s traveled will satisfy 
a t 2  at2 at2 at2 at2 at2 
n2 n2 n2 n2 n2 n2 ’ 

- f 2 -  + . . .  + ( n  - 1)- < S < - + 2- + ’ . .  + 72- 
These inequalities look cleaner when written as 

at2 at2 
n2 n2 

(1 + 2 + . ”  + ( n  - 1))- < s < (1 + 2 + .  . ’  + 7L)- . 

Here is your first simple algebra problem. Use the well-known identity 

Sirice n may be as large as desired, conclude that the law of uniformly 
accelerated motion is s = $at2.  Hint: If s < $at2,  then s < (1/2 ~ 1/2n)at2 
for some ri, which is a contradiction, and likewise if s > $at2.  

This law is a version of what is known as the Merton rule, after Merton 
Collcge, Oxford, where this rule was first, stated in the thirteenth century. 
It is illustrated in Fig. 7. 

Four centuries after this rule was first formulated, Galileo argued that 
a body falling near the Earth’s surface has approxiniately constant accel- 
eration. For such a body, the acceleration due to the Earth’s gravitational 
attraction as we now say, is denoted by 9, which has the value 9.8 meters 
per second per second. That is, during each second, the speed of the body 
increases by 9.8 meters per second. After 5 seconds, its speed will be 49 
meters per second. (This approximation neglects certain things, chiefly air 
resistance to the falling body.) 

Problem 4.2. The law of inertia, stated by Descartes in the seventeenth 
century, says that any unaccelerated motion will be motion in a straight line 
at constant speed. Now in nature, besides straight-line motion at constant, 
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FIGURE 8. Forces on a body in circular motion. 

speed, there are also many examples of motion in a circle at constant speed. 
To a very good approximation, for example, planetary orbits can be regarded 
as such a uniform circular motion. 

Since uniform circular motion is not in a straight line, it must be ac- 
celerated. Obviously the acceleration is not constant. In fact, it is always 
directed toward the center, a direction that changes as the object moves. 
However, symmetry considerations show that the magnitude of the acceler- 
ation must be constant. What is that  magnitude? 

To find the answer, consider Fig. 8. A body in uniform circular motion 
on a circle of radius r a t  speed v will travel from A to B in a given time, 
whereas if it had moved without any acceleration, it would have moved from 
A to C in the same time. Thns, the acceleration that keeps it on the circle 
has caused it to “fall” from C to B. Trigonometry (with angles measured in 
radians) reveals that the distance s that it “falls” has a ratio to the square 
of the time fallen that is given by 

s - 1 u 2  sin(vt/2r) ‘ 47-2 

- t2 - --J( 2 r vt/2r ) + (1- si:r;!r))2. 
Now we regard this physical process of falling as taking place continuously,  
so that the time interval t here is “infinitely small.” From calculus it is 
known that for very small angles sin(Q)/Q N 1 and 1 - sin(Q)/O x 0 2 / 6 .  

It follows that the quantity under the square root is approximately 1 
when t is a very short interval of time. That means that if s / t 2  is replaced 
by the constant i v2 / r . ,  the relative error is very small. It t,erids to zero as t 
tends to zero. Therein lies the whole secret of using calculus in physics. If 
the relative error tends to zero, it can be treated as zwo on the infinitesimal 
level. 

Aft,er these long preliminaries, you get a short task to perform: By 
coniparing this formula with the Merton rule s / t 2  = $a5  show that the 
magnitude of the “instantaneous” acceleration must be v2 / r .  
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Problem 4.3. Constant linear acceleration for falling bodies on Earth was 
generally accepted after Galileo’s work; giving the law relating distance and 
time as s = +gt2 .  

Uniform circular motion appeared to be of a different, celestial order. 
To take the simplest example, the Moon revolves around the Earth in an 
approximate circle, with a (sidereal) period of 27.3 days. (As you know, the 
time from one full Moon to the next is closer to 29.5 days. However, in that 
time the Moon must actually traverse about 390”, since the Earth moves 
about 30” around the Sun in the same period. A full 360” trip around the 
Earth takes the Moon only 27.3 days.) 

In the seventeenth century, people began to speculate that the same “g” 
force that causes bodies to fall to Earth might also be responsible for the 
acceleration that holds the Moon in its orbit. It was not expected that g 
would be as large at the distance of the Moon’s orbit as it is at the surface 
of the Earth. After all, the Moon is about 60 times farther from the Earth’s 
center than is the Earth’s surface. More precisely, the ratio is about 60.2687. 
If the Moon’s acceleration really is due to g,  how big must g be at that 
distance? 

It turns out that g at the radius of the Moon’s orbit is 0.00272327 meters 
per second per second. To see why, note that 9 = v2 / r ,  where r is the radius 
of the Moon’s orbit. You can do the computation yourself. Just observe 
that the Moon travels a distance equal to 27rr in 27.322 days. From that 
information you can compute v. There are 86,400 seconds in a day, and the 
average radius of the Moon’s orbit is r = 3.844 x lo8 meters. 

How does this value compare with the value of g on the Earth’s surface, 
which is 9.8 meters per second at the equator and 9.86 meters per second 
at the North Pole? The ratio is 

9.8 
0.00272327 

= 3598.62. 

This is remarkably close to 3600. Since the radius of the Earth is 6.3781 x lo6 
meters, the ratio that the distance from the Moon to the Earth’s center bears 
to the Earth’s radius is (3.844 x lO8)/(6.378l x lo6) M 60.2687, which is close 
to 60. It thus appears t,hat increasing the distance by a factor of 60 dccreases 
t,he gravitat,ional constant by a factor of 3600, which is 602. 

Thus. the hypothesis that the gravitational acceleration of a body de- 
crcascs in proportion to the square of the distance seems reasonable. It is 
reasonable on geometric grounds, if you think of this attractive force spread- 
ing out evenly, with the same total amount on all spheres about the center of 
attraction. Since the areas of spheres are proportional to the squares of their 
radii: the intensity (attraction per unit area) must be inversely proportional 
to that area. 

How could we test such a conjecture on a larger scale‘! Newton pondered 
t,liis problem, and askcd how the orbital period would have to decrease with 
increasing distance from the center of attraction. The orbital periods of 
the planets had been known since ancient times, and their distances from 
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the Sun, once the Copernican theory has been accepted, are also easy to 
compute from observation. Your problem is to compute the relation between 
the orbital period T and the radius r of a planet’s orbit, assuming that the 
gravitational attraction of the Sun produces an acceleration that is inversely 
proportional to r2. In other words, assume that w2/r = C/r2  (where C is 
a constant whose value we don’t need to know) and eliminate u from this 
relation by using the relation u = 2m-/T. If you do this, you will have 
derived Kepler�s third law, which was derived by Kepler as the best fit to 
observational data about 15 years before Newton was born. Newton realized 
in 1665 that Kepler’s third law and the inverse-square law linked the two 
kinds of acceleration and that this coincidence strongly suggested that the 
acceleration o f  a planet is gravitational in nature. However, not having 
accurate data on the size of the Earth and the radius of the Moon’s orbit, 
he didn’t get the kind of close agreement that we have obtained when he 
tested the hypothesis. He put the computation aside for a few years, until 
improved geographic studies provided better agreement. 

Problem 4.4. Show that the assumption that the gravitational acceleration 
due to a central body is .02/r, together with Kepler’s third law, implies that  
the gravitational acceleration must decrease according to the square of the 
distance. (This is the converse of what was done in the last problem. Iri 
other words, the inverse-square law of attraction and Kepler’s third law are 
equivalent statements for circular orbits, given that the acceleration of a 
body in uniform circular motion is 7 i 2 / 7 - . )  

Problem 4.5. As the preceding problems show, algebraic relations among 
physical variables can give insight into the universe, but only if they agree 
with physical measurements. The close agreement of the inverse-square law 
with the actual acceleration of the Moon is an excellent example. 

Here is another exaniple, in which agreement with observation strongly 
suggests a physical principle. The principle consists of three parts: 

1. Coulomb�s law. The repulsive force F between two like point charges 
q1 and q2 at distance r is 

where E is the dielectric permittiziity of the rnediurn in which the 
charges are found. For “empty” space this permittivity is experimeri- 
tally found to be 

EQ = 8.84 x 

2. The notion of magnet ic  induct ion.  A magnetic induction of magni- 
tude B exerts a force F on a charge q moving with speed v a t  an 
angle B with the direction of the magnetic induction, where 

coulomb2/newton-m2 . 

F = Bvq sin 0 . 



2. PROBLEMS AND QUESTIONS 43 

The physical units of B are force/(chargexvelocity), in other words, 
newtons times seconds divided by coulombs times meters. One newton- 
second per coulomb-meter is called a weber, after Wilhelm Weber 
(1804-1891). An intriguing aspect of electromagnetic theory is that 
a moving electric charge produces a magnetic induction at  a point P ,  
according to the equation 

where r is the distance from the charge q to point P and p is another 
physical constant called the magnetic permeability of the medium. 
For “empty” space, the permeability is 

po = 47r x lop7 weber-meter-second per coulomb. 
Eliminating the weber, we find 

= 47r x lop7 newton-second2 per coulomb2 . 
Notice that the product of the two fundamental constants EO and 

po has the dimensions of seconds-squared per meter-squared, in other 
words, E O ~ O  represents the square of the reciprocal of a velocity. Your 
task is to compute the numerical value of the velocity 1/- in 
meters per second. 

3.  Electromagnetic theory predicts that  an oscillating electric field and 
an oscillating magnetic field can propagate as a coupled wave, each 
generating the other, provided they propagate at the velocity 1/-. 

If you have done your part of this problem, you know that this velocity 
is precisely the velocity of light! This point was noted as early as 1856, and 
the natural coriclusion was drawn explicitly by James Clerk Maxwell (1832 
1879) in 1861: Light, which the human race has always perceived directly 
because of its action on our eyes, is actually an epiphenomenon rcsulting 
from the interaction of electric and magnetic fields. This insight produces 
an amazing simplification and unification of our knowledge of the universe. 

Question 4.1. Summarize the arguments given in these five problems: and 
explain how exactly algebra helps to relate physical phenomena to one an- 
other. Which of the steps here would have been meaningless without alge- 
kxaic notation‘? 

Question 4.2. Algebra also serves as a guide to physical reasoning in c011- 
nection with electromagnetic theory. According to Newtonian mechanics. 
two observers nioving with constant velocity relative to each othw must 
agree on all the forces that they observe. However, they do not agree about 
electric fields that they observe. If one observes an electric field intensity 
E arid a magnetic induction B ,  a second observer moving with velocity v 
relative to the first will observe fields E’ and B’ given by 

E‘ = E + v x B ,  

B’ = B .  
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Thus the two observers agree about the total force exerted by these two 
fields, but they disagree about the intensity of the electric field, even as 
they agree about the magnetic induction. This strange asymmetry disap- 
pears if we reconstruct electromagnetic theory within the context of special 
relativity. In that case, we find 

(1 - 0 ) E . u  
E’ = 0 ( E + u x B ) +  u ,  u.u 

1 (1 ~ 0 ) B .  u 
B’ = a ( B - - u x E ) +  c2 21.21 2 ) :  

where u) = l/J1 - u. v / c 2 .  Notice that if c = 03, then 01 = 1, and the 
relativistic law becomes the classical law. 

To what extent is the greater symmetry that we can read in the algebraic 
formulas from relativity a clue that relativity theory is a better explanation 
than Newtonian mechanics? 

3. Further reading 

Ivor Grattan-Guinness, The Fontana History of the Mathematical Sciences, 
Foritana Press, London, 1997. 
Morris Kline, Mathematics and the Physical World, Crowell, New York, 
1959. 
Henri Poincark, Science and Method, translated by Francis Maitland. Barnes 
& Noble Books, New York, 2004. 



LESSON 5 

Numerical Solution of Equations 

We now turn to the main purpose of classical algebra, the developnient of 
methods of solving polynomial equations. Recall that  there are two inter- 
pretations of the problem of solving an equation, leading to two different 
approaches to its solution. In the present lesson, we discuss the riurrierical 
approach. Although numerical methods are important in finding both real 
and complex solut,ions, the essential ideas can be presented without the use 
of coniplex numbers. For that reason, we shall take advantage of this s im 
plicity and discuss only methods of finding real solutions of equations with 
real coefficients. With this restriction some equations, such as xz + 1 = 0, 
will not have any solutions at  all, but that  problem will be addressed in our 
next lesson. 

1. A simple but crude method 

Let us try to invent a numerical method of solving an equation: using just our 
intuition. As an example, consider the polynomial p ( z )  = x3 - 5x2 + 103; - 5. 
We want to solve the equation p ( z )  = 0. Let us begin by computing the 
values of p ( x )  at small integers. Who knows? We may get lucky and hit 
a value a t  which p ( z )  equals 0. With very little effort, we find p ( 0 )  = -5. 
p(1) 1. Although we didn’t find a root, we can see that there must be one 
somewhere between 0 and 1, since the values of p ( z )  change from negative 
t,o positive as z increases from 0 to 1. We might even hazard a guess that 
the root is closer to 1 than to  0, since the value at 1 is closer to zero than the 
value at  0 is. What we can be sure of is that there is a root in the interval 

Our procedure from now on is to bisect the interval iii which the root is 
confined. It, is possible that the value of p ( z )  at the midpoint will be exactly 
O ?  in which case the process stops. If not, its sign will be opposite to the 
sign of the value a t  one of the endpoints, and we can take the half of the 
interval for which the values are of different signs at  the two endpoints as a 
new interval. In this way, we either find a root or cut its range of possible 
values in half at each stage. As you probably know, repeatedly discarding 
half of object reduces its size fairly quickly. A hand calculator may help in 
the process. Here are the first few steps. 
Step 1: p ( 0 . 5 )  = -1.125. We now have the root confined to the interval 
(0.5, 1): whose midpoint is 0.75. 

(0.1). 
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Step 2: p(0.75) = 0.109375. We now have the root confined to the int,erval 
(0.5,0.75), whose midpoint is 0.625. 
Step 3: p(0.625) = -0.458984. We now have the root confined to the interval 
(0.625,0.75), whose midpoint is 0.6875. 

You can see how to continue this process. If we were to stop a.t this point 
and offer the new midpoint 0.6875 as the root, we could be sure we were 
making an error no larger than 0.0625. Good numerical methods give the 
root as 0.724318, so that in fact our error would be about 0.037. The “exact” 
value of the root, as will be explained in Lesson 7, is one you probably don’t 
wish to contemplate, namely 

Modern mathematicians and computer scientists have worked out some 
amazingly efficient, accurate, and rapid algorithms for finding numerical 
approximations to roots. It is not our purpose to discuss any of these meth- 
ods in detail. Instead, we want to look at  numerical methods as a primary 
approach to solving equations. For that purpose, we can confine ourselves 
to the Chinese culture, in which these methods were highly developed. The 
Chinese method has one important feature in common with ours. It works 
by finding smaller and smaller intervals in which the root must lie, and finds 
them by keeping the values of the polynomial different at  the two endpoints. 
But where our method cuts the size of the interval in half at  each step, the 
Chinese method finds the next decimal digit at  each step, in other words, 
cuts the interval down to one-tenth of its previous size. To do that,  it must 
be more sophisticated than the method we have presented. 

2. Ancient Chinese methods of calculating 

Perhaps the Chinese developed numerical methods to such a high degree 
because of their numbering system and the fact that  they used mechanical 
methods of calculation, in the form of tally sticks, counting boards, and 
eventually the abacus. Let us first discuss the Chinese numbering system. 

Unlike the ancient Egyptians and Greeks, who had special symbols-- 
t,he Greeks used their alphabet-for 1: . . . ,9, 10, . . . , 90, 100, . . . , 900, the 
Chinese had only the symbols for 1, . . . , 9, 10, 100, 1000, and so on. The 
important theoretical difference between these two systems is that,, in the 
Chinese system, the numbers 20, . . . , 90, 200, . . . ~ 900 had to be written 
using the multiplicative principle, so that 300 was written using the symbol 
3 followed by the synibol for 100. Since Chinese symbols are words, we can 
get a feeling for this notation by writing the number 3845 as 3 thousand, 
8 hundred, 4 ten, 5. The system uses 10 as a base, but it is not strictly a 
place-value system, since the power of 10 represented by a symbol actually 
accompanies the symbol. To go from this system to a purely place-valut: 
system. one needs mainly a symbol for an empty place (zero) and then the 
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rather obvious realization that the symbols for the powers of ten need not 
be written down, since they can be inferred from physical location. This 
step was not taken in China, perhaps because of the advanced mechanical 
methods used. The rows or columns on a counting board can represent 
different powers of 10, and where we would put a zero, one could simply 
leave that row or column empty. Hence there was no immediate need to 
pass to a purely place-value written system with a zero. 

But arithmetic’s loss in this case is algebra’s gain, since it was realized 
early on that the rows and columns on a counting board could be used to 
represent different objects in a problem or different powers of an unknown 
quantity. We shall say just a few words about the use of columns to represent 
different objects before taking up our main theme, the solution of polynomial 
equations using counting-board methods. 

2.1. A linear problem in three unknowns. The fundamental early Chi- 
nese treatise on mathematics, the Nine Chapters on the Mathematical Art, 
contains a problem involving three varieties of wheat, of varying quality. 
Two bundles of the first kind plus one bundle of the second kind, when 
threshed out, will produce one bushel of grain, as will three bundles of the 
second kind plus one bundle of the third kind and four bundles of the third 
kind plus one bundle of the first kind. The problem is to determine how 
many bushels of grain are in one bundle of each kind of wheat. If these 
quantities are 5 ,  y, and z ,  then the conditions of the problem give 

2 z f y  = 1 ,  
3 y + z  = 1 ,  
z + 4 2  = 1 .  

Since these are linear equations, one can always solve them by successivr 
elimination. However. in modern linear algebra, a more efficient method 
has been developed that mimics to some extent the Chinese counting board. 
The coefficients of the system are arranged in a rectangular array called a 
matrrx, in this case consisting of three rows and four columns: 

On the Chinese counting board, the zeros would correspond to empty squares. 
The matrix is not merely a convenient, static way of writing down the equa- 
tions. It can be used dynamically by manipulating its rows and columns. If 
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we were to do this, we would probably interchange the first and last equa- 
tions, and then proceed as follows: 

( 0 3 1 1 ) + ( E  1 0 4 1  ; ;)+ 
2 1 0 1  0 1 -8 -1 

1 0  4 1 0  4 - 0 1 -8 -1 
(0 3 I :j - (: ; 2 -9 

To get from the first of these to the second, subtract the first row from the 
third row twice, replacing the third row with the result each time. To get 
from the second to the third, interchange the second and third rows. To get 
from the third to the fourth, subtract the second row from the third row 
three times, again replacing the third row with the result each time. 

The last row in this final array is interpreted as the equation 252 = 4. 
so that z = &. The second row represents the equation y - 82 = -1, and 
since we know the value of z ,  we get y = 8.2 - 1 = &. Finally, the first row 
represents the equation z + 42 = 1. so that II: = 1 - 42 = &. 

Our point in introducing this example is that the manipulations that we 
performed on this matrix are well adapted for performance using counters 
(sticks or pebbles) placed on the squares of a counting board. 

3. Systems of linear equations 

In the lessons that follow, we shall have occasion to discuss systems of linear 
equations in connection with polynomial equations. A slight digression is 
needed a t  this point to establish some important facts about such systems. 
To keep things simple, we shall take a system of three equations in three 
unknowns as typical. We need only two simple facts. First, whether a linear 
system 

a117L + a1221 + a13w = 

a21u + a z z u  + a2370 = r 

a31u + a32v + a33w = S 

can be solved or not, depends on a single number, called the determinant 
of the matrix of coefficients. Without going into details, we merely remark 
that the determinant is 

~ , l l (L22a33 f a12a23a31 + a13a21a32 ~ alla23a32 - a13a22a31 - a12a21a:33 

If this equation looks like a tangled mess of subscripts, notice that the first 
subscripts in each term are all in their natural order I ,  2,3 .  The second 
subscripts are permutations of that  ordering, with a plus sign if the perniu- 
tation is even and a minus sign if it is odd. (The notion of even and odd 
permutations will be explained in Lesson 9.) If the determinant is nonzero? 
the system always has one and only one solution for u, v, and 'w. 
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Second, a case of special interest occurs when the coefficients uz3 form 
what is called a Vundermonde matnx,  after Alexandre Vandermonde (1735- 
1796). In a Vandermonde matrix the entry in row i and column j is aZ3 = 

a;-�, that is, in the 3 x 3 case such a matrix has the form 

;; ”:) 
4 a3 

Its determinant is (a1 - a2)(u2 - u3)(a3 - a l ) ,  and hence nonzero if the num- 
bers are all distinct. This case will be important in several of the following 
lessons. 

4. Polynomial equations 

We shall now show that these same counting-board techniques can be used 
to solve a higher-degree equation. The usefulness of a matrix arrangement in 
solving a polynomial equation is that  different rows can be used to represent 
different powers of the unknown. As an example let us consider the quadratic 
equation x2 - 124x - 917 = 0. If p ( z )  = x2 - 1242 - 917, we can see that 
~ ( 1 0 0 )  = 10000 - 12400 - 917 = -3317 < 0 while p(200) = 40000 - 24800 - 
917 = 14283 > 0. Thus there is a root between 100 and 200, and so the first 
digit of the root is 1. 

To get the second digit: we take 100 as a “base value” and let z = 1OO+y, 
where now we know that 0 < y < 100. We need to rewrite the equation in 
terms of y. The Chinese found a very simple way to do this on a counting 
board, by filling in the blanks in the following array: 

1 1 1 1  
-124 0 .  
-917 0 0 

Before giving the rule for completing this array, we note two things: (1) each 
entry in the top row is equal to the leading coefficient of the equation, while 
the left-hand column is simply the full set of coefficients; and (2) the zeros 
here would be merely empty squares on the counting board. We inserted 
them as “stop signs” for the procedure about to be described, but they have 
an additional advantage that will appear shortly. 

The rule for filling in the array is simple. Work from left to right and 
top to bott,om. To find what goes in an empty space, multiply the eiitry 
ininiediately above the space by the current “base value’‘ (100) and add the 
adjacent number on the left. The result is 

1 1 1 1  
-124 -24 76 0 .  
-917 -3317 0 0 

The coefficients of the equation that y has to satisfy can now be read diago- 
nally downward from right to left, that  is, p l (y )  = y2 + 76y - 3317 = 0. We 
will riot take the t,inie to explain in full why this procedure always works, 
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although it is not difficult to analyze. You can verify that it has given the 
correct result in this case, since 0 = p ( z )  = (y+ - 124(y+ 100) -917 = 

y2 + 200y + 10000 - 124y - 12400 - 917 = y2 + 76y - 3317. 
Now we know that p l (y )  has a zero between 0 and 100. Calculation 

shows that pl(30) = -137 < 0 and pl(40) = 1323 > 0. Hence the zero is 
between 30 and 40, and so the second digit of the root is 3. 

To get the third digit, we repeat the process, writing y = 30 + z (using 
30 as the current “base value”) and filling in the array to get 

1 1 1 1  
76 106 136 0 

3317 -137 0 0 

Thus z satisfies p 2 ( z )  = z2  + 1362 - 137 = 0, and we know that 2 is between 
0 and 10. We then firid very quickly that z = 1 gives an exact root, so that 
L = 131 is the root of the original polynomial. 

Although the equation is now solved, we might continue to experiment 
with this method. What would happen if we continued, letting z = 1 + w‘? 
What would the equation for w look like‘! The method would yield 

1 1 1 1  
136 137 138 0 .  

-137 0 0 0 

In other words, w would satisfyps(w) = w2+138w = 0, so that w(wi138)  = 

0. What this tells us is that w might be either 0 (which we already knew) 
or -138, so that z might have been either 1 or -137, y might have been 
either 31 or -107, and z might have been either 131 (as we found) or -7. 
You can verify that II: = -7 is indeed a solution of the original equation 
x2 - 1242 - 917 = 0. 

4.1. Noninteger solutions. Before considering cubic equatioiis, we need 
to work one more example of this procedure to introduce a small compli- 
cation that arises when the solutions are not integers. We illustrate it by 
finding the zeros of the polynomial p ( z )  = 28z2 - 232 - 15. We start as usual 
by noting that p(1) = -10 and p ( 2 )  = 51, so that there is a root between 1 
and 2. As before, we let II: = 1 + y  and get the equation for y from the array 

28 28 28 28 
-23 5 33 0 
-15 -10 0 0 

Thus, y satisfies p l (y)  = 28y2 + 33y - 10 = 0, and y is between 0 and 1. 
Since we want the next digit of the solution, we should try the numbers 0.1, 
0.2, 0.3, and so on, as values of y until we find the point where p l  (y) changes 
sign. It is simpler, however, t,o do a decimal shift and consider 1Oy instead 
of y. That is, we let z = 10y, so y = z/10. It is quite simple to see that z 
satisfies q l ( z )  = 28z2 + 3302 - 1000 = 0, and this is easy to remember, since 
all we have to do is adjoin the zeros already in the array to the coefficients. 
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By trial, we find that ~ ( 2 )  = -228 < 0 and ~ ( 3 )  = 242 > 0, so the next 
digit will be 2. We then write z = 2 + u and continue. 

Again, since 7 1  is between 0 and 1, it is simpler to multiply it by 10 and 
write u = ~ O U ,  u = u/ lO.  The array 

28 28 28 28 
330 386 442 0 
1000 -228 0 0 

tells us that u satisfies q2(u) = 28u2 + 4420u - 22800 = 0 and that u is 
between 0 and 10. This time, we find that 11 = 5 gives an exact solution. 
Therefore the solution of the equation is .?: = 1.25. 

If we wanted to know the other solution, we could continue the procedure 
one more step, as we did above. The array would be 

28 28 28 28 
4420 4560 4700 0. 

-22800 0 0 0 

In other words. if u = 5 + w; then w satisfies 28w2 + 4700~ = 0, so 111 = 0 
(as already found) or w = -% = -?. Then z = 1 + y = 1 + 2/10 = 

1.2 + t1/100 = 1.25 + W / 1 0 0  = 514 - 1175/700 = -1200/2800 = -3/7. 

5. The cubic equation 

To show that this procedure is perfectly general, we shall solve a cubic 
equation by the same method. To do this, we need one extra row and one 
extra column. The polynomial for which we shall find a zero is p ( z )  = 

4x3 - 7z2 + 72 - 3 = 0. Since p ( 0 )  = -3 and p(1) = 1, there is a root 
between 0 and 1. 

We then let z = y/10 and rewrite the equation in terms of y, that is, 
q(y) = 4y3 - 70y2 + 700y - 3000 = 0. By guessing or trial, we find that 
q(7 )  = -158 andpl(8) = 168, and we see that there is a root of q(y) between 
7 and 8. We now let z = 7 + y. 

The array that gives the equation for z is 

4 4 4 4 4  
-70 -42 -14 14 0 
700 406 308 0 0' 

-3000 -158 0 0 0 

We firid that z must satisfy the equation pi (2) = 4z3 + 14z2 +308z - 158 = 0. 
\;VC now write the equation for w = lOz, which is ql(w) = 4w3 + 1 4 0 ~ 1 ~  + 
30800ui- 158000 = 0. We know that w is between 0 and 10. Since ql(5) = 0, 
we have now found the solution: z = 0.75. 

The procedure described here generates the successive decimal digits of 
a real solution of any equation with real coefficients that has at  least one 
real solution. If the solution has a finite decimal expression, the procedure 
terminates when it generates the solution exactly. 
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In this way (working with sufficient patience and accuracy), it is possible 
to firid any number of decimal digits of a root of any equation with real 
coefficients, no matter its degree. The .Japanese mathematician Seki Kowa 
(Seki Takakazu, 1642--1708) is said to have solved an equation of degree 
1458, over a period of several days, on tlie floor of a large room ruled into 
squares. (This claim should be treated skeptically!) 

In 1819, a technique essentially the same as this ancient Chinese method, 
except that, it applied to infinite series as well as polynomials, was developed 
by the British scholar William George Horner (1787-1837). It was taught 
for about a century in American high-school algebra books under the name 
H o m e r ’ s  method, with tlie computations simplified using "synthetic tlivi- 
sion." 

6. Problems and questions 

Problem 5.1. Using the examples given above as a model. solve the equa- 
tion xz - 7 = 0 to two decimal places. When you finish, you should have the 
first two digits of fi, truncated rather than rounded off. In other words, 
you should know that the root lies between 2.64 and 2.65. The computations 
should be easy, at  least at  the first stage, because of the absence of a linear 
terrii. 

Problem 5.2. Find a two-place approxiniatiori to fi by solving the equa- 
tion x 3  - 3 = 0. 

Problem 5.3. Solve the equation z3 + x2 + z + 1 = 0 in the finite field 
o f  five elements using the Chinese method. Make your first guess z = 1. 
a i d  verify that the new equation you get is indeed the result of substituting 
.r = 1 + y into this equation. 

Question 5.1. We have been vague about the way to find the initial ap- 
proximation to a root. Why must there be a root r of the polynomial 
agz" + u,1zn-l + . . . + a7,-1z + a,  satisfying 

Question 5.2. Is it necessary to try each digit 0, 1,. . . 9 i r i  succession in 
order to firid the successive digit,s of a a solutioii? If it were, why would wc 
need the algorithm, sirice we could just kecp substituting longer arid longcr 
decirnal expansions in t,he original equation? 

Question 5.3. Is the Chinese method more efficient than the bisectioii 
algorithm we developed in the first section? 

Question 5.4. In any field; finite or infinite, how does the Chiriese nuiner- 
ical procedure tell you that you have found a root precisely? 
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Lessons 6 arid 7 are devoted to the earliest phase of the formulaic approach 
to solving equations. This phase is characterized by attempts to express 
the unknown quantity in the equation in t e r m  of some other quantity that 
satisfies a simpler equation. By such manipulations, mathematicians suc- 
ceeded early in solving quadratic equations. The solution of cubic equations 
took much longer and required a second layer of recombination of variables 
in order to produce the result. Two different solutions of the general cubic 
equation were obtained by such techniques, but cubic equations represented 
the limit of its direct applicability. To progress beyond the cubic, it was 
necessary to supplement this combinatorial technique with the concept of a 
resolvent. 



LESSON 6 

Combinatoric Solutions I: Quadratic Equations 

In the preceding lesson, we discussed ways of finding the root of an equation 
by generating its decimal expansion. This approach leaves the relationship 
between the input (coefficients) and output (roots) of the problem obscure. 
In the present section, we study attempts to clarify that relation and find 
rules for getting from the input to the output. 

1. Why not set up tables of solutions? 

As a transition between the numerical approach we have just discussed and 
the formulaic approach we are about to study, let us consider another pos- 
sible proposal for solving equations: Solve a large number of equations with 
different coefficients and record the solutions in a table, so that one could 
simply look up the solution. 

At first glance, this proposal seems preposterous. If we wished to list all 
the different quadratic equations ax2 + bz  + c = 0 with coefficients a ,  b, and 
c indexed at intervals of say 0.01 for values between, say 0 and 10, we would 
have a billion entries in our table. Obviously, that wouldn’t work. But with 
a little thought and requiring a little extra work on the part of the person 
who uses the table, we can reduce the size of the table considerably. First 
of all, if a = 0, this isn’t a quadratic equation at all; and if a # 0, then we 
can get an equation having the same solutions by dividing out a ,  so that we 
get xz + ( b / a ) z  + c /a  = 0, which we shall write as x2 + p z  + q = 0. If yoii 
want to know the solution of the original equation, for which you know a? 
b, and c ,  yoii would first compute p = b/a  and q = c /a ,  then look up the 
answer in a much shorter table. However, if p and q both ran from 0 to 10 
in increments of 0.01, that table would still have a million entries, far too 
nlally. 

At the expense of still more work for the table user, we could reduce the 
number of parameters in the table still further, from 2 to 1, by making the 
substitution y = x + i p ,  that is, x = y - i p .  The equation x2 + px + y = 0 
then becomes y2 - p y  + ip2 + py - 1 ,p + q = 0, which can be rewritten as 
y2 = N ,  where N = $p2 - q .  Thus the table we construct would be a table 
of square roots, and letting N vary from 0 to 10 in increments of 0.01 would 
produce a table of only 1000 entries. Given our original equation ax2+bx+c. 
we’d first compute p and q,  as before, then compute N = i p 2  - q:  then do 
a lookup in the table to get y,  and finally subtract i p  froin y to get 2 .  In 
fact, tables of square roots do exist. Before the advent of calculators and 
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coniputers, the technique just described was the lazy way to solve quadratic 
equations numerically. 

Notice that while attempting to construct a compact table for solving 
the quadratic equation, we have actually produced a formula for doing so: 

/& - iP = /= - 4. 
z = y - 2 p =  2a 

In fact, this will be precisely the quadratic formula that you have probably 
already learned if we put an ambiguous sign in front of the square root: 

-b f 4- 
2a 

x =  

This formula tells us how to get from the data ( a ,  b, c )  to the two roots. 
Moreover? it tells us when a quadratic equation with real coefficients has 
no real roots. The discriminant  0 2  = b2 - 4ac is negative in that case 
and only in that case. This quantity is called the discriminant  because it 
discriminates between the cases of two distinct roots and one double root. 
When it is zero, the only root is x = -b / (2a) ,  but it is customary to count 
it as a double root since in that case ax2 + bx + c = a ( z  + b / (Za) )  . As you 
can easily compute, b2 - 4ac has a simple expression in terms of the roots u 
and v of the equation. Since b = -a(u + v )  and c = auv, the discriminant 
is a�(((. + v ) ~  - 4uv) = a2(u  - v)’. Strictly speaking, algebraists define 
the discriminant to be merely (u  - u ) ~ .  We shall take this quantity as the 
strict definition of the discriminant, but also use the term more loosely and 
refer to D2 = b2 - 4ac as the quadratic discriminant .  The important fact is 
that ,  since the discriminant is symmetric in u and v, it can be expressed in 
terms of the elementary symmetric functions u + IJ and uv; in other words, 
it can be computed from the coefficients of the polynomial, without having 
to find the roots. Also, its square root, which is an algebraic function of the 
coefficients, is a rational function of the roots. That is, expressed in terms 
of the coefficients, this square root requires a radical sign, but in terms of 
the roots, it is a polynomial. 

The discriminant gives us some useful information. As mentioned above, 
when the discriminant is zero (u = v), the polynomial ax2 + bz + c is a 
perfect square, namely (&(x - u)) . Further, when b2 - 4ac is negative 
(with real values of a ,  b, and c ) ,  we get complex roots for the equation. 
This interpretation of a negative quadratic discriminant is not the obvious 
one, and in fact, i t  was n,ot the  solution of quadratic equations that led t o  
the creation of imaginary numbers .  For centuries, it was simpler just to 
say that some quadratic equations have no solutions. What eventually led 
mathematicians to accept imaginary numbers was the cubic equation, as we 
shall see in the next lesson. 

We have now progressed from a numerical approach through the attempt 
to build a table of solutions and arrived at  a formula. We now ask what the 
formula means. If we need to find a numerical value for x. then we have to 
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be able to get a numerical value for the square root. Is that possible? There 
are two obvious objections. One is that the square root operation is not 
among the four basic operations of arithmetic. In order to solve quadrat>ic 
equations, we need to use this operation. Do we have a numerical procedure 
for getting an approximation to the square root of a positive real number? 

The answer to  that question is an emphatic “Yes.” One quick way of 
getting the square root of N is known as the Newton-Raphson approxima- 
tion, which starts with any guess. For example, we could start with xo = N ,  
which is a bad guess unless N is close to 1. If that guess is too large, N/xo  
will be too small, and vice versa, since the product of 50 and N / z ,  is N .  
Therefore, if we average them, we will improve on at least one of these two 
guesses. The Newton-Raphson algorithm then proceeds by the following 
recursion: 

1 N 
2 .z’ n 

xn+l = -(zn + -) ‘ 

I t  can be shown that { x ~ ~ }  converges very rapidly to a square root of N .  
One could also use the Chinese method of solving the equation y2 - N = 0. 
which gives the successive decimal digits of the square root, of N .  

With that difficulty taken care of, we still have to wonder what happens 
if b2 - 4ac < 0. In that case, we must resort to complex numbers to get 
a square root. But if we are going to allow complex numbers to be roots, 
we should allow them to be coefficients as well. If a? b,  and c are complex 
numbers, then b2 - 4ac is also, very likely, a complex number. Is it possible 
to take the square root of a complex number? How do we find a complex 
number z = u + iv such that z2 = 7u, where w = r + is? By writing the 
equations for the real and imaginary parts of the equation z2  = w, that is, 

r ;  2 - 112 = 

2uv = s, 

arid solving these two quadratic equations, you will find that the complex 

has the required property, provided the signs of the two square roots are 
Chosen properly (equal if s > 0, opposite if s < 0). Here the quantity under 
the square root signs is a nonnegative real number for all real values of T 

and s, and so we have reduced taking the square root of a complex number 
to taking the square root of nonnegative real numbers. 

It appears that our problem is solved. Having a numerical irnplemeri- 
tation of the square root for all possible numbers, real or complex, we CiErl 

adjoin the square root operation to the set of four numerical operations 
previously allowed, and confidently say that we have a solution for any qua- 
dratic equation. Strictly speaking, we should be more cautious. When we 
say we can solve every quadratic equation, we mean tf we can solve every 
‘.piirf-”’ quadratic equation y2 = N .  But since we are quite sure that we can 
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solve these equations, we can now state that we have solved the problem of 
the quadratic equation completely. 

2. The quadratic formula 

111 this section we begin a systematic, abstract study of formulas for solving 
polynomial equatio~is, which we shall continue in Lesson 8 for the case of 
cubic equations. To that end and for later reference, we need some uniform 
notation. Knowing what we do about the relationship between coefficients 
a.rid roots, we write a typical quadratic polynomial as z2 - a z  + b,  where n 
is the sum of the two roots of the polynomial, and b is their product. 

By a formula for finding the roots of a polynomial, we rneari an algebraic 
expression z ( a ,  b )  formed from a arid b such that (.(a, b ) )  - a z ( u ,  b )  +b = 0; 
that is, this function is formally zero. We already know such a forniula: 

2 

z ( a , b )  = !+ - b 
2 

Any formula that supplies the roots of the general quadratic equation for- 
mally must be a double-valued formula, since in general a quadratic equation 
lias two roots. Since a rational function is single-valued, it cannot generate 
all the roots. Therefore we must expect any quadratic forniula to contain a 
square root. To argue another way, rational operations do riot lead outside 
a field. Hence if there were a rational quadratic formula, every quadratic 
equation would be solvable without enlarging the smallest field containing 
the coefficients. That, we know. is impossible. 

We can rewrite the quadratic formula as 
a 

.r = J ; ( a ,  b )  = - + 2 .  
2 

where 2 = d m .  (Our reason for complicating things by introducing 
an extra letter z to stand for t,lie square root will appear when we continue 
this study in the next lesson.) In order to get a genuine algebraic formula. we 
omitted the i sign usually included in this formula. As it stands, the square 
root, is ambiguous. When actual numbers are substituted for the variables 
a, arid b; the square root may represent either of two numbers? except in the 
unusual case when b = a2/4. 

Remark 6.1. Here arid below, when we write a root na or R�Inl. where R 
is an algebraic formula, it is understood that this expression may be assigned 
any of m different values when numbers are substituted for the parameters 
arid variables that occur in the formula R. However, we do insist that if “a or R1/� occurs more than once in a formula, the sam,e value must 
be chosen in all occurrences when numbers are substituted for letters. In 
general, there is no sense in which �m and nfi are the “saine” root if K 
arid S are different algebraic forrnulas. 
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If we substitute the value of ~ ( a ,  b)  for z in the polynomial x2 - an: + b 
and then replace z2  by a2/4 - b, the result will be 

But, elementary algebra shows that both the coefficient of z arid t,he term 
independent of z are formally, identically zero here as functions of a and b. 
As a consequence, each of the two functions that are possible interpretations 
of the square root leads to  a function z ( a ,  b)  that is identically zero when 
substituted into the polynomial, and hence will yield a root of the poly- 
nomial when any  particular numerical values are substituted for a and b, 
independently of the choice of the numerical square root. In other words, the 
formula “works” for any particular numerical values of a and b, no matter 
how you choose the square root. 

Notice something else: If the two roots of the polynomial are u and I I ?  

then n = 11 + u and b = uv, so that  a2/4 - b = (u - ~ ) ~ / 4 .  and z = (‘u - v ) / 2  
or (71 - .)/a. In this way z is seen to  be a polynomial when expressed in 
terms of the roots, despite having a radical sign when written in terms of 
the coefficients. Indeed, it is (alu + a2v) /2 ,  where a1 = 1 and a2 = -1 
are tlie two square roots of unity. Although this seems a pretentious way of 
writing this simple fact, we shall see that it generalizes nicely to the cubic 
equation as well. 

It is a fact, not difficult to prove, that  any formula that is symmetric in 
the roots u and 71 can also be written in terms of a and b. For example, u2 + 
1,2 - 2 

- a - 26, u3 + u3 = u3 - 3ab, and so on. What we have discovered above 
is that ,  if root extractions are allowed, we can also express the nonsymmetric  
function u ~ v in terms of the coefficients as well. That step is crucial in 
solving the equation. In fact, by writing u - u in  terms of the coefficients, 
we obtain a simple system of linear equations for u and v :  

u + v  = a ,  
7 1 - - 1  = Ja2-41,, 

which is equivalent, to the system 

W + ? I  = a ,  
IL‘U = b 

that the equation z2 - az + b = 0 represents. 

t,rix is a Vanderrnonde matrix. 
Moreover, this linear system always has a unique solution, since its nia- 

3. Problems and questions 

Problem 6.1. Solve the equation x2 - L X  + (1 - 2 )  = 0. where / = a. 
Check your answer by direct substitution into the polynomial. Find the 
\quare root of the discrirriinant by using tlie formula given above. 



ti2 6. COMBINATORIC SOLUTIONS I: QUADRATlC EQUATIONS 

Problem 6.2. Find a condition on the complex numbers a ,  b, and c that  
is necessary and sufficient for the equation ax2 + bx + c = 0 to have at least 
one real root. 

Problem 6.3. In the field of two elements, the quadratic equation x2 + IC + 
1 = 0 has no solutions. Let us introduce a larger field in which it has two 
solutions u and u. From what we know of the relation between coefficierit,s 
arid roots, these must satisfy u + li = -1 = 1 and uu = 1. Therefore, in this 
larger four-element field, we must have the following tables for addition and 
multiplication : 

Use the tables to  verify that indeed u2 +u.+ 1 = 0 arid u2 fv + 1 = 0. Which 
of the four elements of this field have square roots in the field‘? 

Problem 6.4. For complex numbers u and 11, we have seen that the system 
of two equations 11, + u = -b/a and uu = c / a  is equivalent to the quadratic 
equation ax2 + hx + c = 0 satisfied by u, and I), arid IL and 21 are the only 
two complex numbers that satisfy this quadratic equation. Notice that this 
system of two equations is no longer symmetric if u and li are quaternions, 
sirice uu is in general different from uu. Does this asyrnmet,ry make any 
difference when it comes to solving a quadratic equation? Find ull of the 
quaternions X = IC + 6 that  satisfy the quadratic equation X 2  + r2 = 0, 
where r is a real number, identified with the quaternion r + 0. Hint: See 
Problem 1.9. 

Question 6.1. Why is it impossible for a quadratic equation with real 
coefficients to have one real and one nonreal root? 

Question 6.2. Can a finite field be algebraically closed‘! 

4. Further reading 

‘.Al-Khwarizrni. Quadratic equations,” in A Source Book in Mathematics 
1200- 1800, D. J. Struik, ed., Princeton University Press, Princeton, NJ ,  
1986. 
Vera Sanford, “Cardari’s treatment of imaginary roots?” in A Source Book 
in Mnthematlcs, David Eugene Smith, ed., Dover. New York, 1959. 



LESSON 7 

Combinatoric Solutions 11: Cubic Equations 

The solution of a quadratic equation by formula is sufficiently sophisticated 
that few attempts were made to solve any equations of higher degree by 
formula during the early days of algebra. Hindu and early Arabic treatises 
go as far as quadratic equations in the solution of determinate problems, 
but no further. On the other hand, Chinese mathematicians were not troii- 
bled by cubics, since they solved them numerically, as we saw in Lesson 5. 
Later Arabic treatises by Umar al-Khayyam Sharaf &Din al-Muzaffar al- 
Tiisi contain most of what is needed to solve cubic equations graphically and 
by formula. 

In the present lesson, we follow the approach used in the previous one, 
considering how we might construct a table of solutions for cubic equations. 
With luck, we might once again wind up with a f o rmula  for the solution and 
not actually have to construct the table. Obviously, we shall have to allow 
another operation, namely extracting cube roots. Since we have numerical 
ways of doing that,  we shouldn’t hesitate to do it with real numbers. As 
long as only real numbers are involved, we assume that cube roots can be 
taken; how to take the cube root of a complex number is a question that we 
shall consider when the situation arises. Taking the cube root of a positive 
riuniber r gives the side of a cube that is r times as large as a cube of side 
1. This is an ancient problem known as doubling the  cube in the case when 
�r = 2. The Greeks were able to solve the general problem of multiplying 
the volume of a cube by r using conic sections, specifically parabolas and 
hyperbolas. As we shall see below, conic sections do provide a graphical 
solution of general cubic equations. 

1. Reduction from four parameters to one 

Condensing the steps a bit, since we have already been over this ground, we 
note that we don’t actually need a four-parameter table indexed by u,  b, c ,  
and d to solve every cubic equation a x 3  + bx2 + CJ: + d = 0. First, we can 
divide out a if it is nonzero. (If it is zero, the equation isn’t really a cubic 
equation.) Next, the substitution 5 = y - b/3a will reduce t,he equation to 
the form 

where we could compute p and q if we needed to, knowing a,  b, c ,  and d.  
Thus it appears that our table of solutions to the cubic equation can be a 
two-parameter table. 

y3 + p y  + (1 = 0 ,  

ti3 
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Can we do still better? In fact, we can. If we let y = 2 4 ,  we find that 
the equation becomes 

which we can rewrite as 
3 Y z + z = - - .  

Thus we need to solve only this one type of cubic equation in order to solve 
them all. If we were to pursue this route and set up a t,able of solutions, 
we would provide “operating instructions” telling the user how to compute 
first p and q from the coefficients a, b, and c, then compute -q / (p&) ,  
use this last number to look up z in the table, and then finally compute 
II: = zJiT - b/3a. 

This equation, is not a pure equation, since it contains the term z .  For 
that, reason, we have not yet arrived at a formula for the solution. Still, 
we could construct a table of reasonable size. As a pseudohistorical not,e, 
tables have been found in Mesopotamia dating back several thousand years, 
giving the values of w3 + w2 for an indexed set of values of w from 1 to 30. 
The substitution y = q / ( p w )  in the equation y3 + py + y = 0 would have led 
us to the equation w3 + w2 = -q2/p3.  Thus, these ancient Mesopotamian 
tables could be used to solve any cubic equation, if the table were made big 
enough. However, it would be very far-fetched historically to say that they 
were constructed or ever used for that purpose. 

We have not yet been able to change the unknown in a cubic equation so 
as to get a “pure” equation y3 = N ,  which could be solved by a.llowing the 
extraction of a cube root. This reduction is difficult, and much preliminary 
work by Muslin1 and medieval European mathematicians was needed be- 
fore the appropriate substitution was discovered in the seventeenth century. 
When that step was finally taken, it came as something of an anticlimax, 
since a different formulaic solution of the general cubic had already been 
found in Italy a century earlier. 

P J i T  

2. Graphical solutions of cubic equations 

The Persian rnathernatician Umar al-Khayyam (Omar Khayyain, 1048 
1131) extended the application of conic sections to the solut,ion of cubic 
equations. The conic sections, which were tht: subject of a long treatise by 
Apolloriius of Perga in the third century BCE, had been invented by the 
Greeks to solve two problems for which straight lines and circles had provcd 
inadequate. These were the construction of a cube twice as large as a given 
cube (or, more generally, having a given ratio to a given cube), and the 
trisection of an arbitrary angle. We now know t,hat these two problems. 
taken together, are equivalent to  the probleni of finding the cube root, of a 
complex number. Umar al-Khayyam wrote a treatise 011 algebra showing 
how to solve any cubic equation using conic sections. He warned his readers 
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in the preface that no one should undertake his work without having first 
mastered the early books of the treatise of Apollonius. 

Since negative numbers were not yet recognized, Urnar al-Khayyam had 
to distribute the terms on the two sides of an equation so that every co- 
efficient was positive. Counting the possibility of missing terms (zero co- 
efficients), one can form 14 different types of cubic equations. We shall 
illustrate just one of these using the equation 

2 + 2 2  + 9x = 45. 
Umar al-Khayyam showed that the unique positive value of x satisfying this 
equation can be obtained as the x coordinate (as we would now say) of one 
of the two points of intersection of the following two curves: 

xy = 15,  
2 2 - 3 J :+y  2 - 6 y  = 1 .  

It is not difficult to work out how Umar al-Khayyam knew that these two 
equations would do the job. (See Problem 7.3.) The first of these equations 
is a hyperbola; the second represents a circle of ra,dius 3.5 with center a t  
(1.5, 3).  One of the two points of intersection is (5,3), but the value x = 5 
does not satisfy the original cubic equation. The other point of intersection 
is approximately (2.34505,6.30645), and its x coordinate is the desired root. 
The solution is illustrated in Fig. 9. You can verify that solving the first 
equation for y (y = 15/x), substituting that value into the second equation, 
and multiplying by x2 to clear out the denominators, leads to the equation 

(z - 5 ) ( 2  + 2x2 + 9z - 45) = 0 .  
Herice the z value at the point of intersection must be either 5 or a root of 
the original cubic equation. At the same time, the procedure shows that this 
way of breaking the cubic into two quadratics does not lead to any formula 
for solving the cubic. It displays the root as a line that could be measured, 
but does not express the length of that line as an explicit formula. As you 
will be able to prove at  the end of the present lesson, the “exact” value of 
this x is 

1361 + 94- 

3. Efforts to find a cubic formula 

Dcspite the extensive work of Umar al-Khayyain, contiriued by Sharaf al- 
Din al-Muzaffar al-Tusi (ca. 1135- 1213), a forniulaic solution of the cubic 
equat,ion eluded the Muslim mathematicians of the Middle Ages. When the 
knowledge that they had acquired passed into Europe, it was eagerly seized 
upon by scholars, and at last, in the early sixteenth century, several Ital- 
ian riiathernaticians found formulas for solving cubic and quart,ic equations. 
The first honors go to Scipione del Ferro (1465-1525) of the University of 
Bologna, but more generality and understanding was achieved by Niccolh 
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32 + y2 - 

= 15 

z 

FIGURE 9. Umar al-Khayyam’s solution of the cubic equa- 
tion z3 + 2s’ + 92 = 45. 

Tartaglia (1500-1557) of Brescia, Girolamo Cardano (1501-1576) of Padua 
and his student Ludovico Ferrari (1522-1565), and Rafael Bombelli (1526 
1572). 

The solution of the cubic depends first on the general reduction to the 
form y3 +py + q = 0, which we have already given. This reduction dovetails 
nicely with the identity ( r  - s ) ~  + 3rs(r - s )  + (s3 - r 3 )  = 0, which is true 
for all values of r and s. This identity shows that we could take y = r - s as 
a solution if we could choose r and s so that  3rs = p and s3 - r3 = q .  In the 
case when p = 0, the solution is trivial: y = -s. Hence we sliall assume 
that, p # 0, in which case r and s must also be nonzero. If we set r = p / ( 3 s )  
arid substitute this value into the second equation, we get s3-p3/(27s3) = y, 
which can be rewritten as s6 - ys3 -p3/27 = 0. Now the substitution z = s3 
gets us a quadratic equation: z2  - yz - p3/27 = 0, one of whose solutions is 

Then 

Herice we now have a formula for solving this cubic: 

y = r - s =  + -  
This forimila is called Cardano’s formula for solving the cubic. It does 
actually work -sometimes. For example, consider the cquation y3 + 6Oy - 
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992 = 0, that  is, p = 60, q = -992. The formula yields 

= i ? / . . +  q496 - 504 = m+ = 10 - 2 = 8 

At other times, while it works, it gives the answer in a very strange form. 
Cardano, for example, considered t,he equation y3 + 6y - 20 = 0, for which 
the formula yields 

?J = {a + l a .  
This form of the answer conceals the fact that the root is just y = 2. (It, 
mist  be: since the equation has only one positive solution, and that solution 
is y = 2. You can verify with a calculator that this forniula redly does yield 
the number 2.) 

Even worsc things happen than what we have already described. Con- 
sider the equation y3 - 7y + 6 = 0. The formula yields 

y=~-3+J-100/%7+i:/8J100/27. 
Thus the situation mentioned above has now arisen: We need to take the 
cube root of a complex number, that is, find a number z = u + i7i such that 
i3 = T + i s .  In terms of real numbers, that means solving the equations 
u3 ~ 3w2u - T = 0 aiid v3 - 3u2v + s = 0. These equations are of the same 
form as our original equation, only now there are two of them. We can solw 
the second one for u in terms of 1): 

As you can see, this approach is hopeless. We don’t yet know what v is 
going to be, but already it is appearing in a fraction under a square root 
sign, and we are going to have to cube u arid insert it into the other equation. 
Let us surrender quickly and admit that  our solution sometimes spins out 
of control. We conceal our ignorance by ,fiat, merely invoking the Cardano 
formula as if it solved the probleni. 

We conclude that what the cubic formula realty says is the following: 
If we could extract the cube root of every complex number, then we could 
solve any cubic equation. But how do we extract the cube root of a complex 
riurnber? In particular, how do we find a cube root of the complex number 

- 3 +  t:”L7= - 3 +  Xi? 
3& 

3.1. Cube roots of complex numbers. Actually, wc can extract the 
cube root of a complex number, but we can’t do so using only real algebraic 
operations on real numbers. We have to resort to trigonometry. It turns 
out, that every coniplex number z = II: + i y  can be written in the polar 
form z = r(cosQ + isiriQ), where T = d m  is a positive number arid 
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z=rcosO+irsinO 

I =  

2i 

2 

1 2 3 4  

FIGURE 10. Polar representation of the complex number z = 
1: + i y  = r cos0 + ir sinQ. 

Q = arctan(y/:c) is a certain angle, as shown in Fig. 10. One cube root of z 
is z1/3 = *( cos(Q/3) +isin(Q/3)).  (There are two others, found by adding 
120" and 240" to H/3.)  For the complex number -3+ a i  mentioned above, 
we have r = ,/9 + 100/27 = J343/27 = 7 m / 9  E 3.56422554 and Q = 

arctaii ( - 10/(9&)) E 2.5712158 radians or 147.31981 degrees. Hence the 
cube root is approximately q3.56422554( cos(0.857072) + z sin(O.857072)), 
which computation reveals to be approxirna1,ely 1 + 1.1547012. 

As just shown, extracting the cube root of a complex number involves 
taking the cube root of the positive real number r ,  which (as we have men- 
tioned) is the ancient, problem of doubling the  cube when ?' = 2, arid t r -  
secting the  angle 8,  which is another ancient problem. The Greeks solved 
both of these problems using hyperbolas and parabolas. No wondm Uniar 
al-Khayyam was successful in solving cubic equations by use of conic sec- 
tions. It is remarkable that these two ancient geometric problems, studied 
long before algebra was invented, should turn out to be the key to solving a 
fiindamental problem in algebra. 

3& 

4. Alternative forms of the cubic formula 

A further theoretical problem arises, since (:very complex number has two 
square roots (negatives of each other) and three cube roots, differing by 
factors of cr and c?, where cr = -1/2 + ( & / 2 ) i  is a pr.imitive cube root' 
of 1. that is, its powers a ,  a2,  a3 = 1 are all the cube roots of 1. The 
formula appears to require that we choose one of these square roots arid 
theii one of these cube roots in two different places. That would seem to 
give us 36 possibly different values for the root. Actually, as the forriiula 
shows, both square roots give the same formula. since replacing the square 
root by its negative merely interchanges thc two terms. That would still 
seem to leave nine possibilities for the root. However, the product of the 
two terms is a cube root of -p3/27, and hence can assume only the three 
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values - p / 3 ,  -ap/3,  and -a2p/3 .  Substitution of this formula into the 
polynomial leads to an expression that is identically zero if and only if the 
two cube roots it contains are chosen so that their product is -p /3 .  In other 
words, the formula gives an actual root of the equation only if we use the 
“rules” (instead of the correct rule +‘L$‘% = crjm for some 
j = 0 ,1 ,2 )  and @ = a (instead of the correct rule %? = &a for some 
j = 0,1 ,2) .  Thus, in fact the choice of one of the two cube roots determines 
the choice of the other, and so we have, as we should have, only three roots 
for this cubic polynomial. 

To simplify the use of the cubic formula, we can exploit the fact that 

= 

the product of the two cube roots must be - p / 3  and write the formula as 

or> alternatively 
P 

where - 
This formula is the promised analog of the quadratic formula given in 

the previous chapter. 
When complex numbers are substituted for a variable z in the formula 

A, the formula becomes ambiguous, since every complex number except 0 
has two square roots. Consequently, when we apply the cubic formula with 
specific numbers in place of p and q ,  we might expect to get two different 
roots by choosing the two possible values of the square root. But, as we have 
just seen, that doesn’t happen. Choosing tlie opposite value for the square 
root merely interchanges the two terms in the sum, leaving the formula 
unchanged. On the other hand, each of t,he three possible values of the cube 
root in the formula will produce a different root of the polynomial. Thus, a t  
last, we have a.rrived at a complete solution of the cubic equation, assuming 
t,liat one can take the cube root of a complex number, as a formula in terms 
of  the coefficients that becomes identically zero when substituted for tlie 
variable of the polynomial. 

5. The “irreducible case” 

For which cubic equations does the cubic formula involve the cube root 
of a complex number? It turns out that when the codficierits y and q 
are real, this happens precisely when there are three distinct real roots 7 ~ :  

Y,  and w. The formula “gets confused,” since it, doesn’t “know” which 
o f  the roots to choose. What can happen depends on the discriminant 
(11- U ) ~ ( ~ ~ J - W ) ~ ( W ~ - U ) ~ .  Since this discriminant is symmetric in the roots. we 
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know that it can be computed from the coefficients. The resulting expression 
for the discriminant in terms of the coefficients is 

-27a2d2 + 18abcd - 4uc3 - 4b3d + b2c2 
a4 

In the case when a = 1, b = 0 ,  c = p ,  and d = q ,  this expression equals 
-108(p3/27+q2/4) .  As we know, this LLstandardized” case is obtained by the 
substitution y = z - b/3a, which shifts all three roots by the same amount, 
namely (u  + 11 + w ) / 3 .  The differences of the pairs of roots are unaffected 
by this change of variable, so that the discriminant, is the same for both the 
equation in x and the equation in y. 

As with quadratic polynomials, the term discriminant is used with a 
slight ambiguity. While the actual discriminant is ( 1 ~ - ~ ) ~ ( 1 1 - w ) ~ ( w - u ) ~ ,  we 
define its product by -1/108 as the cubic discriminant 0 3  = p�/27 + y2 /4 .  
The expression for 0 3  in terms of the roots shows that if the roots u, v, 
and w are real and distinct, the cubic discriminant will be negative, and 
hence the cubic formula will require the cube root of a complex number. 
On t,he other hand, if one of the roots, say u, is real and the other two are 
a pair of conjugate complex numbers, that is, w = V ,  where %r = v1 + i u 2 ,  

then 0 3  = ( 1 / 2 7 ) ( ( u  - ~ 1 ) ’  + vf) uf, which is positive. Thus we see that 
for a cubic polynomial with real coefficients, the Cardano formula requires 
complex nurnbers i f  and only ij� all three roots are real and distinct. 

As the expression for the discriminant in terms of the roots shows, when 
the discriminant is zero, the equation y3 + p:y + q = 0 has either three equal 
real roots (a triple root) or a single root and a double root. In that case, 
if p and q are real, the cubic formula with real cube roots taken yields the 
triple root (which must be zero, since the sum of the roots is zero) or the 
single root, never the double root. Thus our preference for real cube roots 
of real numbers allows us to break the symmetry of the cubic formula in 
some cases and distinguish one root from another. 

5.1. Imaginary numbers. To repeat what we have just said for emphasis. 
only when the roots are all th,ree real and distinct does the cubic discrim,inant 
become negative for real p and q. And therein lies the reason for introdiicing 
imaginary and complex numbers into mathematics. While it might be all 
right to say that a quadratic equation has no roots if the quadratic formula 
requires the square root of a negative number, that answer will not do for 
the equation y3 - 7 y  + 6 = 0, whose cubic discriminant is negative, but 
which has real root>s ?J = 1, ?J = 2,  y = -3 .  As a result of this cubic formula. 
niatheniaticians began to  make sense of imaginary and coniplcx numbers. 
Rafael Bombelli, mentioned above, was able to show that the cube roots of 
complex numbers in the cubic formula could be chosen so that the formula 
really would yield the three real-valued solutions of the equation. 

Bornbelli’s work was not a systematic introduction of complex numbers 
as a subject of study. He used them only as a way of getting real numbers 
in the end. The case of three distinct real roots came to be known as tlio 

2 
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irreducible case, arid mathematicians like Franqois Vikte (1540-1603) tried 
to find methods of solving it involving only real numbers. Vikte managed 
to do so, again using trigonometry (trisecting an angle). But. trisecting an 
angle requires solving another irreducible equation; arid in any case, the 
introduction of trigonometry into the solution takes the solution outside the 
realm of pure algebra. Later mathematicians were able to show that there 
is no algebraic formula for the solution of a general cubic equation that 
involves only real numbers for every equation with three real roots. The 
path from coefficients to roots begins and ends in the real numbers, but 
cannot be confined to them; it must take a detour through the complex 
numbers. In this way, the cubic equation led to the acceptance of complex 
numbers, which have proved to be of immense value in the most diverse 
areas of mathematics and physics. 

6. Problems and questions 

Problem 7.1. Change the equation y3 + py + q = 0 to an equation of the 
form w3 + w2 = N by the substitution y = q / ( p w ) .  

Problem 7.2. List in “generic” form all the possible cubic equations, given 
that coefficients must be positive numbers, for example, “cubes plus first- 
degree terms equal constants.” Note that there must be both cubes and 
constant terms. Otherwise the equation is not really a cubic equation. 

Problem 7.3. Given an equation Az3 + Bx2 + Cx = D ,  where A, B ,  C ,  
and D are positive numbers, show how to choose positive numbers a ,  h, and 
c so that this equation is the same as x3 + ax2 + b2x = b2c. Then show 
that its only positive solution is one of the IC coordinates of the points of 
intersection of the hyperbola and circle 

XY = hc ,  

Problem 7.4. Use the technique of the previous problem to reduce the 
soliit,ion of the equation x3+3z2+ 152 = 27 to finding the intersection point,s 
of a circle and a hyperbola. Can you estimate the solution graphically? 

Problem 7.5. Solve the following equations using the Cardano formula for 
a cubic (use a calculator if you need the cube root of a complex number): 

1. J : � ~  + 1532 - 4886 = 0, 
2. .r3 - 6x2 + 1442 - 1539 = 0 (you must first eliminate the squared 

t,errn), 
3. 2 ” - 2 - 1 = ( )  
4. :x“ - 6x2 + 11:~ - 6 = 0. 

Problem 7.6. Show that if 01 is a primitive pth root of unity, where p is a 
prime. so is (YJ for any j that, is not a multiple of p .  
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Problem 7.7. List all the fourth roots of unity. Which of them are prirni- 
tive? 

Question 7.1. We saw in the previous lesson that the algebraic relation 
z = fi between two complex variables z = u + iv and w = r + is can be 
written as 

and that this relation can be inverted to yield 
r = u2 - v2 ; s = 2 U V ,  

u= \IF; ,“=\IF 
Similarly, the algebraic relation z = +% can be written as a pair of 

algebraic relations, 
2 3 r = u3 - 3uv2 ; s = 311. 71 - 71 . 

Again, these are relations among real variables. What is the essential dif- 
ference between these two cases that makes the cubic equation noticeably 
more difficult than the quadratic? 

Question 7.2. What is the difference between cubic equations with rational 
solutions, like x3 + 452 - 98 = 0, for which the Cardano formula yields a 
recognizable, familiar number, and equations like x3 + 17x - 42 = 0, for 
which the same answer appears in a strange form? How can you tell which 
of these is likely to happen? 

7. Further reading 

Daoud S. Kasir, The Algebra of Omar Khayyam, Columbia University Press: 
New York, 1931. 
R.. B. McClenon, “Cardan. Solution of the cubic: equation,” in Source Book: 
in Mathematics, David Eugene Smith, ed., Dover, New York, 1959. 
Dirk J .  Struik, “Cardan. On cubic equations,” in Source Book in Muthe- 
mat ics,  1200-1800,� D. J. Struik, ed., Princeton University Press, Princeton, 
N J ,  1986. 
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When the cornbinatorial approach was applied to equations of higher degree 
than the third, it was found that an appropriate substitution to simplify 
the quartic equation could not be found without solving a certain cubic 
equation. The combinatorial technique reached its high-water mark with 
the solution of this problem. It could do no more, but the effort to make it 
work produced a general strategy for finding roots via a resolvent, a function 
of the roots of an equation that assumes fewer values than there are roots 
when the roots are permuted. For a cubic equation with roots u, v ,  711, the 
function (u + cyv + cy2w)3 (where a = -1/2 + (fi/2)2 is a coniplex cube 
root of' unity) assumes only two different values when u, u ,  w art: permuted, 
since a cyclic permutation of the three roots is tantamount to multiplying 
the function by cy3 or a6, both of which equal 1. A resolvent satisfies an 
equation of lower degree than the original equation, and the coefficients of 
that  equation are symmetric functions of the roots of the original equation. 
They can be expressed in terms of the coefficients of the original equation, 
which are known. In this way, the resolvent provides additional information 
about the roots, information that can be obtained by solving an equation of 
lower degree. As its name implies, it helps to solve the equation. Lessons 8 
and 9 explore how resolvents arose, examine several different resolvents for 
a quartic equation, and consider the challenge of finding a resolvent for the 
quintic equation. 



LESSON 8 

From Combinatorics to Resolvents 

The formulaic solution of the cubic equation was a major milestone in the 
history of algebra. By analyzing this solution, mathematicians came to un- 
derstand what was involved in expressing the roots of a polynomial in terms 
of its coefficients. Eventually, this understanding led to a proof that no alge- 
braic formula could be given for solving the quintic equation. The concepts 
of group and field that were engendered by this rcscarch have proved to be 
even more valuable than the problem that gave rise to them. All this was 
beyond the horizon in the midsixteenth century, when the first formula was 
given. That formula led to immediate progress. As we have already noted, 
it led to the acceptance of coniplex numbers, another valuable analytic tool 
of modern science. 

It was obvious that matters were going to become more complicated 
as attempts were made to solve equations of ever higher degrees. Up to 
this point, the approach had been cornbinatoric: algebraic substitutions 
were sought that would reduce the equations to a simpler form. But these 
substitutions become progressively harder to find. The quadratic equation 
ax2 + b z  + c = 0 is reduced to the extraction of a square root hy the 
substitution z = x - b/2u. For the cubic ax3 + bx2 + cx + d = 0: the 
corresponding substitution z = z - b/3a removes one term, but must then 
be combined with the identity (u - u ) ~  + 3uu(u - ' 0 )  + (us - u3) = 0. That 
identity produces u and u via a quadratic equation for u3 or vu3 and allows 
i to be expressed as u - v. The highest-degree equation for which such 
a. conibinatorial technique will work is the quartic, and for that case the 
appropriate substitution is found by solving a cubic equation. 

The systematic search for a substitution that would eliminate both the 
linear and quadratic ternis in the cubic, and the attempt to perform a sim- 
ilar rearrangement to reduce the quartic equation to root extractions led 
niathematicians to the concept of a resolvent, an asymmetric function of the 
roots that  assumes fewer values when the roots are perniiited than there 
are roots. The resolvent satisfies an equation of lower degree than the orig- 
inal. but the coefficients of that equation are syninietric in the roots of t'lie 
original and hence can be expressed in ternis of those of the equation being 
studied. In this way, a general strategy for solving equations arises: start 
with the symmetric functions of the roots represented by the coefficients, 
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for example, f (s,  t ,  u: ’ u )  = s + t + 71 + v in the case of the quartic, and asym- 
rrietrize them via resolvents in order to produce the highly nonsymnietric 
function F ( s ,  t?  u, 71) = s, which is a root. 

Even before the Cardano solution of the cubic was fully sorted oiit, 
Cardano and his student Ferrari had cracked the problem of the quartic 
equation, showing how the general quartic could be solved by a substitution 
that could be discovered by solving a particular cubic equation. This pro- 
cedure turned out to be a much smaller step than the solution of the cubic 
had been. At the same time, as mentioned in the preceding lesson, Franqois 
Vikte found a trigonometric solution of the irreducible case of the cubic that 
avoided the use of complex numbers. Ehrenfried Wakher von Tschirnhaus 
(1652-1708) discovered that, just as the quadratic equation ax2 + bx + c can 
be reduced to  a pure equation z2 = N by the substitution z = x + b/(2a). 
a general cubic y3 + py + q = 0 can be reduced to a pure equation z3  = N 
by a substitution of the form z = y2 + ry + s if r and s are suitably cho- 
sen (see Problem 8.5), and that the suitable choice can be found by solving 
only linear and quadratic equations. Thus, the quadratic can be solved by 
a substitution that can be found by solving a linear equation; the cubic, by 
a substitution that can be found by solving a quadratic equation; and the 
quartic, as Cardano and Ferrari had shown, by a substitution that can be 
found by solving a cubic equation. These facts suggested to Tschirnhaus 
that a "bootstrapping" technique might be possible, enabling the solution 
of equations of degree n to be reduced to extracting nth roots and using sub- 
stitutions that can be found by solving equations of degree n ~ 1. Indeed. 
he said as much in a letter to Gottfried Wilhelm von Leibniz (1646-1716) 
in 1677. But he was mistaken: as we shall see below (Problem 8.7). 

1. Solution of the irreducible case using complex numbers 

In the preceding lesson, when we were trying to solve the equation y3 ~ 7y + 
6 = 0 using the cubic formula, we found that we needed the cube root of 
the complex number -3 + * i .  How do we find this cube root'! We gave a 
geometric method in the preceding lesson and found an approximate value 
1 + 1.154701i. But in this case we can pull the "exact" value oiit of our 
hat by inspired guessing: z = 1 + ! i  will do, as you can verify by direct 
computation. Rafael Bonibelli showed that if p and q are real numbers and 
z = r + s i  is a complex number such that 

3J5 

d3 

then ZCL and za? are also cube roots of this number, where = - l / 2  + 
( & / 2 ) i  and a’ = - 1/2 - ( & / 2 ) i  itre the two nonreal cube roots of 1. Then 
the three roots of the equation y3 + py + q = 0 are ( r  + si) + (T  - si) = 27., 
( r , +  s i ) ( ~  + (r.  ~ si)n2 = -T - A s ,  anti (T  + s i ) a 2  + (r. - si ) t r  = -T + &is. In 
the prcsent case, T = 1 arid s = 2/&: so that the roots are 2. - 3  and 1. But 
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Bonibelli introduced complex numbers minimally, as a formal way of making 
sense of the cubic formula. The imaginary parts had to drop out at  the end, 
leaving the three real solutions. Complex numbers themselves were riot a t  
first recognized as solutions, although nowadays we learn to accept then1 
from our first algebra course as the solutions of certain quadratic equations. 
Obviously, they were also not considered as coefficients in a polynomial. 

2. The quartic equation 

The general quartic equation is ax4 + bx3 + cx2 + da: + e = 0, arid as usual; 
division by a and the substitution a: = y - b / (4a )  reduces this equation to 
the form 

We transferred the last three terms to the right side here for convenience. 
Now the idea is to  add 2ty2 + t2 to both sides. The left side will then be 
(y2 + t)’. If t is suitably chosen, the right side will also be a perfect square. 
The question is, how do we choose t? 

y4 = py2 + y:y + r . 

Thus we have 

(y2 + t ) 2  = y4 + 2ty2 + t2  = ( p  + 2t)y2 + qy  + (7. + t 2 ) .  

But: as discussed in Lesson 6, a quadratic polynomial ay2+hy+c is a perfect 
square if and only if its quadratic discriminant Dz = b2 - 4nc is zero. Thus 
t niust be chosen so that 

q 2  - 4(p + 22)(r  + t 2 )  = 0 .  
As you see, this is a cubic equation in t ,  called the resolvent cubic: namely 
8t3 + 4pt2 + 8rt + 4pr - y2 = 0. If t is chosen so as to satisfy that equation, 
then the equation we are trying to solve can be rewritten as 

arid our original quartic equation breaks into the two quadratic equations 

Why does this technique work? How does it. happen that the substitution 
we need can be found by solving a cubic equation? Careful analysis of the 
procediire, involving some very messy computation, reveals that  if the four 
roots of the original quart,ic eqiiation are 7u, 2 ,  y, and z ,  then one root of 
the resolvent equation is 

-(7u + z + y + 2)' + 8(wz + yz) 

16 
tl = 

The other two roots t 2  and t s  can be obtained by interchanging x with y a i d  
.r with z .  The expression on the right side of the last equation can assume 
only these three values when the four roots are permuted among themselves. 
It follows that the cubic. polynomial ( t  - t l ) ( t  - t z ) ( t  - t 3 )  has coefficients 
that are symmetric. in w, 2 ,  y, and 2 ,  and hence expressible in terms of p ,  
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q ,  and r.  For that reason, we shall transfer tlie name resolvent from this 
auxiliary equation and apply it to any nonsymmetric rational function of 
the roots that assumes fewer values than there are roots when the roots arc 
permuted. (The symmetric functions are the coefficients we started with. 
They do have some claim to  be called resolvents, since they give information 
about the roots. But they are given at the outset, and so we shall reserve 
tlie term for nonsynimetric functions.) 

To fix these ideas, let us consider as an example the equation . T ~  - 6.r2 - 
Xz + 24 = 0, so that y = x. We write this equation as x4 = 6x2 + 82 - 24. 
We want to choose t so that the equation will assume the form 

The resolvent cubic is 8t3 + 24t2 - 192t - 640 = 0, which is equivalent to 
t3 + 3t2 - 24t - 80 = 0. The substitution y = t + 1, that is, t = y - 1. reduces 
this equation to y3 - 27y - 54 = 0. This happens to be an equation for 
which the Cardano formula works well. The formula discloses that y = 6, 
and therefore t = 5. Herice our original equation breaks into two quadratic 
equations 

that is, x2 - 42 + 4 = 0 or x2 + 42 + 6 = 0. Therefore z = 2 (a double root) 
or z = -2 i Jzi .  

In general, though, if we needed numerical answers. it would be more 
efficient to use numerical methods like those of the Chinese. This formula 
is far too cumbersome to be practical. Its chief valiie is that it formed part 
of the search for a general way of solving all polynomial equations. 

3. ViGte’s solution of the irreducible case of the cubic 

Although complex numbers began to gain acceptance after the work of Car- 
dano arid Bombelli, attempts were still made to solve the irreducible case 
using only real numbers. As already mentioned, this case is easily identified 
because the cubic discriminant 0 3  = p3 /27  + q2/4 is negative. It turns out 
that trigonometry provides the answer to this problem, as FranCois Viktc 
discovered. 

The classical problem of trisecting the angle reduces to a cubic equation 
through the trigonometric identity 

0 3  0 1  
3 4  3 4  

cos3 (-) - - cos (-) - - cos 8 = 0 .  

This is a cubic equation in the variable y = cos(h)/3). Its cubic discriminant 
is 0 3  = (-1 + cos28)/64, that is, -sin20/64, which is negat,ive for all 
nontrivial angles 8. (Only for multiples of 7r does it become zero, indicating 
that two of the roots are equal.) 
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To solve the irreducible equation y" + p;y + q = 0, Vikte's idea was to 
scale y by setting z = (&/(2J-p))y.  (The negative sign is necessary since 
p < 0 in the irreducible case.) We then get the equation 

As a result, we could choose z = cos(0/3) if we could find an angle 0 such 
that 

This will be possible provided 27q2/(-4p3) 5 1. In other words q'/4 5 
-p3/27, which just happens to be the condition that the cubic discriminant, 
be nonpositive! 

The 
corresponding equation for z is 

As an example, let us return to the equation y3 - 7y + 6 = 0. 

We need cos0 = -9&/(7fi). This gives 0 N 147.32' zz 2.57 radians, and 
so the three possible values of 013 are 49.1066' N 0.86 radians, 169.1066' zz 
2.95 radians, and -70.8934' = -1.23 radians. The cosines of these angles 
yield the three values of z :  0.654654, -0.981981, and 0.327327. Finally, the 
corresponding values of y = z m  are 2, -3, and 1. 

3.1. Comparison of the ViGte and Cardano solutions. Vikte's solu- 
tion uses trigonometry to find the cube root of a complex number. When 
p and q are real, the imaginary parts of the two complex cube roots cancel 
each other, and so we get a purely real expression for the solution. Vikte's 
method amounts to choosing the angle B so that 

so that 

It, then follows that 

that is, 
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- - cos (;) 
d3 

Thus, Vikte’s solution represents a condensation of the Cardano solution. 
It represents the solution of the equation ;y3 + py + q = 0 in transcendental 
form: 

In that form, it applies to all complex values of p and q and shows that a n  
algebraic relation can be equivalent to  a transcendental relation. This phe- 
nomenon was encountered again in the eighteenth century, as mathemati- 
cians worked out the theory of elliptic integrals, which are transcendental 
functions that nevertheless have algebraic addition formulas. (One example 
of an elliptic function is the Jacobi amplitude function mentioned in Les- 
son 4.) As it eventually turned out, the simplest solution of a general qiiiritic 
equation can be expressed in terms of elliptic functions. 

A final remark: The inverse cosine function “arccos” is multivalued. It 
has only one value (its principal value) between 0 and 7 r ,  but any multiple 
of 27r may be added to it. 

4. The Tschirnhaus solution of the cubic equation 

Tschirnhaus found a second approach to the cubic equation, an approach he 
hoped t,o generalize to equations of all degrees. His idea was to find some 
new variable z, in terms of which the equation y3 +py+q = 0 would have the 
form z3 = N ,  and hence the obvious solution z = $%. And he succeeded. 
We shall list the steps in his method as an algorithm. 

1. Let z = y2 + r y  + s ,  where r and s are chosen by solving the system 

2 p -  3s = 0 .  
?.‘“ pr� +3qr - - = 0 .  
3 

that is. 
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2P 
3 

s = - .  

Tschirnhaus chose these values after rewriting the equation for y in 
terms of z and setting the coefficients of z2 and z equal to zero. (For 
more details, work Problem 8.5 below.) Those coefficients are 2p - 3s 
and pr2  + 3qr + p2  - 4ps + 3 2 ,  which becomes p r 2  + 3qr - p 2 / 3  when 
s = 2 p / 3 .  Notice that r is just 3 / p  times the cube of one of the two 
terms in the Cardano formula. In particular, r contains the square 
root of the cubic discriminant, and hence is a complex number if the 
equation has three distinct real roots. Thus, the solution given by 
Tschirnhaus also involves a complex number in this case. 

2. When y is eliminated between the two equations, the result is an ex- 
pression that contains z under a radical (as discussed below). When 
that radical is removed by symmetrizing (multiplying by the con- 
jugate radical) and these values are used for r and s ,  the equation 
satisfied by z is the pure cubic equation 

z 3 = - + q  2P3 2 + p q r + - - q r .  2p2r2 3 
27 3 

3. Find z by extracting the cube root of both sides in this last equation. 

4. Solve the quadratic equation y2 + r y  + ( s  - z )  = 0 to find y. 

As you can see, the Tschirnhaus method lacks the symmetry of the 
Cardano method and is therefore much harder to remember. It also has a 
second disadvantage, as we are about to see. When applying it,  one can skip 
the explanations given above and just compute sequentially r ,  s, z ,  and y 
from the formulas given. 

When the parameters have specific valucs, we might expect some sim- 
plification. Let us consider a case where the Cardano formula works well, 
the equation y3 + 105y - 218 = 0. Thus we have s = 70, and r satisfies 
105r2 ~ 654r - 3675 = 0. With a little trouble, we find that r = or 
7' = -?. Let us keep things simple and take the first of these as the value 
of r .  We next find 

We can then find y by solving the equation 

y2 + (49/5)y - (118/5) = 0 .  

gc%ting y = 2 or y = -?. The first of these satisfies the original equation, 
the second does not. If we had chosen r = -7. instead, we would ham, 
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found z = 7. The equation for y is then 

y2 - ( 2 5 / 7 ) y  + (22 /7 )  = 0 ,  

whose roots are y = 2, y = y .  Thus, either of the possible values of T leads 
to the correct solution of the equation, but also to an extraneous root. And 
therein lies the second disadvantage of the Tschirnhaus method. 

These extraneous roots enter because the original expression for y, riarnely 

-r + J r 2  - 4s  + 42 
2 Y =  , 

involves the variable z under a radical sign. The new equation is of the form 
( A z  + B) + (Cz  + D ) J m  = 0. In order to get a polynomial equation in 
z ,  it is necessary to multiply by the conjugate expression ( A z  + B) - (Cz + 
D ) J m ,  and that is where the extraneous roots enter. For another 
derivation of this equation, one that does not use radicals, see Problem 8.5.) 

5. Lagrange’s reflections on the cubic equation 

We now continue the more abstract study of general polynomial equations 
one step beyond what we did for quadratic equations in Lesson 6. Consistent 
with the notation we used there, we write a typical cubic polynomial as 
z3-ax2+bx-c. We know that if the roots are u, u ,  and w, then a = u+v+w, 
b = uv+uw+~uw, and c = uvw. Just as in the case of the quadratic equation. 
any formula that contains the roots symmetrically can be written in terms of 
a ,  b, and c. For example, u2 + v2 + w2 = a2 - 2b, u3 + v3 + w3 = a3 - 3ab+ 3c: 
u2v + u2w + uu2 + uui2 + v2w + uw2 = ab - 3c, and so on. 

As we saw, the secret of finding the roots is to make the substitution 
z = y + a / 3 ,  leading to the “standardized” cubic polynomial y3 + py + q ,  
with p = b - a 2 / 3  and q = -2a3/27 + ab/3 - c. For this polynomial the 
formula 

where 

when substituted for J: in the polynomial z3-uwz2++bz-c, yields the function 
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This formula is obtained using only the relation z3 = - q / 2 -  J q 2 / 4  + ~ " 2 7 .  
Even though there are normally three values of z that satisfy this relation 
when p and q are given specific numerical values, all three work equally 
well. Just as in t,he case of the quadratic equation, the coefficient,s of z2  
and z and the term independent of z are all identically, formally equal to  0 
as expressions in p and q ,  and hence also as expressions in a ,  b, and c. It 
follows that when numerical values are assigned to a ,  b, and c,  each of thc 
three possible values of z will yield this same function of z ,  and so the result 
is always a root of the polynomial x3 - ax2 + bx - c. 

5.1. The cubic formula in terms of the roots. The significant fact that 
the radicals in the quadratic formula become rational functions (without 
root extractions) when expressed in terms of the roots of the equation turns 
out to be true also in the case of the cubic formula. That is, the variable 
we called z above is a polynomial in the roots u, U ,  and w of the original 
polynomial. 

To see what this polynomial is, note that there are two possible choices 
for the square root inside the cube root: 

83 

q2 (7L - V ) ( U  - w)(w - 11,) 
-+-=f 2 .  J p 3  27 4 6& 

This relation shows that the square root inside the cube root is a polynomial 
iii the roots of the original polynomial. 

Next, although the coniputation is tedious, one can compute that if 
(I = -112 + (&/2 ) i  is a primitive cube root of 1, then 

11. + QU + Q%l ’UI + QU + cy2Y 3 U + QlU + Q2U I = (  3 
z:3 = ( 

3 
if the positive sign is chosen for the square root and 

w + cy2u + QU U + Q2W + au 
> " = (  3 

if the negative sign is chosen. In other words, the six possible values of the 
expression 

are precisely the six values obtained by permuting u, U, and w in the ex- 
pression 

u + a21 + cyzw 
3 

Not,ice that this last formula is the exact analog of what we discovered in 
the case of the quadratic equation. This fact is a discovery of tremendous 
importance in the history of algebra: The radicals in the formulas fo r  solving 
quadratic and cubic equations in terms of the coeficients become polynomials 
uihen expressed in terms of the solutions of the equations, and the different 
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,uulues of the roots tha,t must be extracted correspond to permutations of the  
set of solutions. 

The polyrioniials we have encountered liere are not just any polynoniials. 
They are, first, the discriminant, which tells iis when two solutions are equal, 
arid second, a linear combination of the solutions whose coefficients are the 
roots of unity, divided by the degree of the equation. 

The 
function (alu+n2v)/2 in the case of the quadratic polyriomial, where 01 = 1 
and a2 = -1 are the two square roots of unity, and the function E = (oluf 

( Y ~ V  + n:3w)/3 in the case of the cubic, where 01 = 1, cy2 = - l / 2  + (&/2)si 
arid ag = -1/2-(&/2)2 are the three cube roots of unity, are n,ot symmetric 
functions of the roots. Nevertheless, as we have seen, they can be computed 
from the coefficients of the polynoniial by first generating the discriminant 
using arithmetical operat,ions, then taking its square root. In the case of 
the cubic, it is then necessary to add - q / 2  and take a cube root. These 
norisymnietric functions of the roots can be computed from the coefficient,s 
of the equation using root extractions. They provide a second nonsymrnetric 
linear equation for the three roots, supplementing the symmetric equation 
that comes from the coefficient of z (in the case of the quadratic) or x2 (in 
the case of the cubic). Thus we have: 

We have seen that the same is true of the quadratic: equat,ion. 

%L + 71 + u1 = U .  

&1%1 + N ~ V  + OS’W = A 3 E .  

All we need is one more such equation, say 
2 2 a$ + n2v + a;,, = B , 

and we woiild have a complete system of linear equations for u. u, and u;. 
in fact a system of the type mentioned in Lesson 2, in which the coefficients 
form a Vanderrnonde matrix. The problem is to write B in terms of the 
coefficients. That is easy to do, since a: = 02 and a; = a g .  while a: = (PI. 

Thus the third equation that we desire can be obtained from the expression 
for A by nierely interchanging u and w, and this operation amounts t,o 
reversing the sign of the square root inside the cube root, as we ,just saw. 
In m y  case, this third equation is provided by solving the same quadratic 
eqiiation that yielded the second equation here. 

In both quadratic and cubic equations, an asymmetric linear combilia- 
tiori of the roots that  can assume n! values when the roots are permuted has 
now been created by nesting root extractions starting with fiirict,ions of t,he 
roots t,liat are symmetric and hence expressible in terms of the coefficient,s. 
One is natiirally led to conjecture that it is always possible to producc i~ 

system of linear equations equivalent to a given polynomial equation ill this 
way. 

5.2. A test case: The quartic. Let us test, this conjecture in the case o f  
the quartic equation. 
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As we already know, the general quartic equation 
ax4 + bz3 + cx2 + dz + e = 0 

reduces via the substitution y = z - bJ(4a) and division by u to an equa.tion 
of the form 

where p, q! and r are polynomials in the variables bJu, cJn, dJu ,  and eJu.  
Thus no root extractions are needed to get this far. 

This equation then reduces to either of two quadratic equations, one of 
which is 

y4 = p:y2 + qy + r ; 

provided t is chosen as a solution of the cubic equation 
8t3 + 4pt2 + 8r.t + 4pr - q 2  = 0 .  

Looking at  the substitutions one at  a time, we get the following sequence 
of algebraic operations to find t,he roots: 

b 
J =  Y+,1 

Here P and Q are polynomials in p ,  q ,  and r ,  and hence also polynomials 
in bla .  c /a ,  d l a ,  and e l a .  Thus, we see that the expression for y contains 
a nested pair of square roots, inside which t occurs, and the expression for 
t contains a square root inside a cube root? so that the total order of root 
extractions, down to the bottom layer is 4 .  3 . 2, in other words. 3 ! ,  exactly 
a s  we conjectured would be the case. 

All this was realized by Lagrange, who wrote a long essay on the current 
state of polynomial equations in 1770. Although that date is about a century 
after the main subject of the present lesson, which is the methods of  Vikte 
arid Tschirnhaus, we have glanced into the fut,iire here in order to put all 
t,he different ways of solving cubic equations in proximity to one another. 

6. Problems and questions 

Problem 8.1. Solve the equation y3 ~ 39y + 70 = 0 using the C:artlano 
fori~iula and computing t,he real pa,rt' of the cube root, of the coniplex niiinber 
-35 + 18A.i. 

Problem 8.2. Find an "exact" cube root of -35 + 1 8 6 2  as a complex 
number of the form r + s&i, where r and s are rational numbers. Hzn,t: 
Look at  a numerical approximation to this cube root first. That  should k l l  
vou what i' is, and then the equation for s becomes very simplc. 
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Problem 8.3. Solve the quartic equation 

x4 - 6 2  + 142’ - 20z + 8 = 0 
Find all four roots. 

Problem 8.4. Use Vikte‘s method to find numerical approximations to the 
three real roots of the equation y3 - (11 + m ) y  + (5& + 6&) = 0. What 
do you suspect are the “exact” values of these three roots? 

Problem 8.5. Consider the pair of equations 

0 = y 3 + p y + q .  
2 z = y + r y + s .  

Multiplying the second equation by y and subtracting the first, derive the 
equation 

2 zy = r y  + ( s  - p)y - y = r ( z  - r y  - s) + ( s  - p)y - q ~ 

arid conclude that 
r z  - y - rs  

y =  z + p + 1 . 2 - s �  
This equation expresses y as a fractional-l inear or Mobius transforniation of 
z ,  so called after August Ferdinand Mobius (1790--1868). I t  is easy to verify 
that this equation can be solved to express z as a Mobius transformation of 
y, so that  y and z are in one-to-one correspondence when the two equations 
written above are satisfied. An exception to this claim occurs when ,r3 + 
pr + y = 0; in that case, every value of z yields the same value r for y, since 
the numerator of the fraction equals r times the denominator in that case. 
However--see Problem 8.1 1-the equation itself is trivial in that  case.) 

When this expression for y is substituted into the equation y“+py+y = 0 
and the denominator is cleared, the result is the equation 

(73 + p r  + q) ( z3  + ( 2 p  - 3 4 2  + (p2  + 3qr + pr2 - 4ps + 3,532 

+ (-y2 + p y r  + yr3  - p2s  - 3qrs - pr2s + 2ps2 - 2) )  = o 
The three values o f  z that make tlic second factor in t2his last eqimtioii 

equal to zero must correspond to the three values of y that  satisfy the original 
equation. Thus? we now need to solve the cubic equation 

z3  + ( 2 p  - 3s)z2 + (p2 + 3yr  + pr2 - 4ps + 3,772 

+ (-42 + pqr + qr3 - p2s - 3qrs - pr2.s + 2ps2 - 2) = 0 .  
Obviously, choosing s = 2 p / 3  will cause the coefficient of z2  to vanish. Then, 
solving the quadratic equation 

2 Pr + 3qr - - 3 = 0 

for r and inserting this value of r will cause the coefficient of z to vanish. 
leaving a “pure” equation 

z � - N = O .  
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is found, we find y by solving the original quadratic Once z = 

equation 

Work t,hrough this procedure step by step for the equation y3+18y+30 = 0. 
Observe that there are two possible values for r ,  namely r = 1 and r = -6, 
arid that  when you solve the first one for y with r = 1, you get the two values 
y = % - $% M -1.48481 and y = -1 - & + FZ 0.48481. When you 
solve for y with T = -6, you get the two values y = 8 - FZ -1.48481 
and y = 6 - (% + = 7.48481. How do you know which root t o  pick? 
Do you need to  see the solutions for both values of T in order t o  pick out the 
correct value of y (the root the two equations have in common)? Or could 
you have known which of the two roots was correct from only one of the two 
equations? 

Problem 8.6. Solve the equation y3 + 36y - 12 = 0 using the Tschirnhaus 
met hod. 

Problem 8.7. The Tschirnhaus method amounts t o  rewriting a cubic poly- 
riorriial p ( ~ )  = y3 + p y  + q in terms of  a variable z = y2 + r y  + s ,  resulting 
in a polynomial q ( z )  = z3 - A(r,  s ) z 2  + B(r ,  s)z - C(r ,  s ) ,  after which an 
attempt is made to  choose T and s so that A(r,  s) = 0 and B(r,  s) = 0. We 
were very fortunate that  this technique appears t o  work perfectly for the 
cubic. Lagrange, however, realized that this technique would not work in 
general. 

The general strategy is t o  let z = ynP1 - A l y n ~ ~ 2 + . . . + ( - l ) n - 2 A n - ~ y +  
(-l)T1-lATL-l, and attempt t.o choose Al,  . . . , ATL-l so that a polynomial 
p(y) = yn - ulyn-’ + . .  . + (-l)n-lun-ly + (-l)nu, beconies zn - N when 
rewritten in terms of z. 

Consider the case n = 5, where p(y) = y” - Ug4 + by3 - cy2 + dy - e. 
To simplify things, you may assume that u = 0, since we know a simple 
transformation that  will bring this about. Let z = y4 - py3 + qy2 - r y  + s: 
and show by the same kind of manipulation as in Problem 8.5 that  

2 y + r y + ( s - z ) = O .  

Note that this is a cubic equation in y,  so that  the equation p(y) = 0 can 
be used to express y in terms of z, just as in the case of the cubic equation. 
What, is t,he difference between this polynomial and the one that  appeared 
in Problem 8.5? How does this difference complicate the equation satisfied 
by z after y is expressed in terms of z? 

Problem 8.8. Show that  the solutions of the cyclotomic (circle-dividing) 
equation 

which are the four primitive fifth roots of unity, can theoretically be ex- 
pressed as finite algebraic expressions involving only square arid cube roots 
of rational numbers. In fact, the cube roots turn out t o  be unnecessary. You 

z4 + 2 3  + z2 + z + 1 = 0 :  
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are not being asked to  solue the equation. If you try  to  do so by the Car- 
dano method, you will probably understand why. The next problem shows 
the easy route to a realization of this theoretical possibility, following a 
technique analogous to Vikte’s solution of the cubic. 

Problem 8.9. Use the trigonometric identity 

cos(58) = 16 cos5 0 - 20 cos3 19 + 5 cos 0 

to compute the real part z = cos(2n/5) of a primitive fifth root of unity. 
Notice that the polynomial 16z5-20z“+5z-1 factors as ( ~ - 1 ) ( 4 z ~ + Z z - l ) ~ ,  
from which it follows that c o s ( 2 ~ / 5 )  is the positive root of the equation 
4z2 + 22 - 1 = 0. Prove that one of the fifth roots of unity is 

Problem 8.10. Solve the quartic equation x4 - 62� - 8x + 24 = 0, that is, 
(.x2 + t ) 2  = (6 + 2t)(z + -) 4 2  , 

6 + 2t 
with the other value t = -4 that results from solving the resolvent equation. 

Problem 8.11. You may have wondered about the factor r3 + p r  + q that  
factored out of the equation for z when the Tschirnhaus transformation is 
performed. Can it be zero? If so, what does that fact mean for the equation 
in y, since this factor is independent of y? Recall that  r was chosen (after s 
was taken as 2 p / 3 )  so as to satisfy the equation 3pr2+9qr-p2 = 0. Milltiply 
this equation by r and the equation r3 + p r  + q = 0 by 3p,  then subtract to 
obtain the equation 9qr2 - 4p2r - 3pq = 0. Then eliminate r2 between this 
equation and the one above so as to obtain r(27q2 +44p3) = 0. Conclude that 
this other factor equals zero only when the cubic discrirninant p 3 / 2 7  + q2/4 
equals zero; in other words, the original equation has a double or triple root. 
In that case, the cubic is trivial to solve (see Question 8.1). 

Question 8.1. Although the cubic formula for an equation with real coef- 
ficients never picks out the double root of the equation (if one exists), that 
root is always trivial to find without even having to solve the cubic equation. 
Why? Hint: You need calculus to answer this question. Find the derivative 
of p(i) = a ( z  - r)�(x - s ) .  

7. Further reading 

Dirk J. Struik, Terrari. The biquadratic equation,” in Source Book zn Matli- 
ematzcs, 1200-1800,�� D. J.  Struik, ed.. Princeton University Press, Prince- 
ton, N.J. 1986. 
Dirk J. Struik, “Lagrange. On the general theory of equations.” in Sourcp 
Book zn Mathem.atics, 1200-1800,� D. J.  Struik, ed., Princeton University 
Press, Princeton. NJ.  1986. 
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Dirk J. Struik, “Vikte. The new algebra,” in Source Book in Mathematics, 
1200-1800,� D. J.  Struik, ed., Princeton University Press, Princet,on, NJ ,  
1986. 



LESSON 9 

The Search for Resolvents 

It is no exaggeration to say that polynomial equations are nowadays under- 
stood fully. There are of course, unanswered questions. In mathematics, 
there always are. But the work of some brilliant mathematicians over the 
last 400 years has given us a very complete understanding of what is and 
is not possible in the formulaic approach to their solution. At the same 
time, numerical methods have succeeded brilliantly, so that computer alge- 
bra programs like Muthemwticw, Maple, arid Matlab can find the roots of 
polynomials of even very high degree in a split second. 

The story of these advances in knowledge is fascinating, and we shall 
devote the last three lessons to some of its important moments. In the 
present lesson, we cover the 150 years from 1620 to 1770. This period begins 
and ends with major milestones. At the beginning conies the realization that 
the coefficients of a polynomial are the symmetric functions of its roots. 
The end is marked by a detailed report on past efforts to solve polynomial 
equations and a proposal for a unified system that would reduce the solution 
of a polynomial equation to setting up a system of linear equations in the 
roots by means of an expression or equation called a resolvent. 

As we saw in the last chapter, resolvents developed naturally out of the 
coinbinatorial approach to the solution of equations. Resolvents in turn 
riaturally focused the attention of mathematicians on Permutations of the 
roots, at  first only for the purpose of counting the number of values a func- 
tion could have when its variables were permuted. That limited goal by 
itself was sufficient to produce, eventually, the realization that the general 
quintic cannot be solved algebraically, a topic that forms the subject of 
Lesson 10. More sophisticated reflections connecting permutations of the 
roots with the arithmetic operations in the enlarged fields that resulted 
from adjoining roots led to the construction of a general method--Galois 
t,heory-coniiecting each polyriornial equation with a group of perm1it)ations 
in such a way that the algebraic solvability of the equation is perfectly cor- 
related with the algebraic structure of the group. That development will 
be described in Lesson 11. The subject matter of the present lesson forms 
t.he critical bridge between the formal solution of equations, as presented in 
courses of high-school algebra, and the mathematics taught to seniors and 
graduate students as modern algebra. 

Classical Algebra: Its Nature, Origins, and Uses 
by Roger Cooke 

Copyright 0 2008 John Wiley & Sons, Inc. 
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1. Coefficients and roots 

The first to call attention to the symmetric functions of the roots (in 1629) 
was Albert Girard (1595-1632), who called them factions. For a set of four 
numbers {r .  s, t ,  u } ,  the factions are a = r+s+t+u, b rs+rt+ru+st+su+ 
tu ,  c = rst+rsu+rt,u+stu! and d = rstu. The equation x 4 - a x 3 + b z - c  = 0 
has roots T ,  s, t ,  u. Although these relations seeni obvious now: obtained by 
expanding (z - r ) ( z  - s)(z - t ) ( x  - u), the complications due to coincident 
roots and complex roots were not fiilly sorted out, at. the time. Bombelli's 
work on complex numbers had at first been taken only as a sort of useful 
fiction because it enabled mathematicians to make sense of the Cardano 
formula. Real roots were sought, and the complex numbers were supposed 
t,o arise and disappear in between the initial and final stages. Girard listed 
complex numbers among the roots. He noted, however? that an equation 
might have fewer roots than its degree, since, as we would now say, two or 
more roots might be equal. 

2. A unified approach to equations of all degrees 

What looked like a promising general a.pproach in the work of Tschirnhaiis 
turned out to be less general than had been hoped. Another systematic ap- 
proach was made by Joseph-Louis Lagrange (1736-1813) in the 1770 survey 
mentioned in the previous lesson. We have already described this approach 
in t,he case of the formulas for solving quadratic and cubic equations, both 
of which begin by taking the square root of the discriminant and end with a, 
maximally nonsymmetric linear function of the roots---it assumes n! values 
as t,he roots are permuted-that can be found from a resolvent equation of 
lower degree. It was probably the forms 

U. 
3 ' =  -+z. 2 

111 which the solutions of the quadratic and cubic equations can be expresscd 
(see pages 60 arid 82) that led Euler to propose in 1732 that the solution of 
an equation of degree n might be written as 

wherc A l . .  . . . A,.-1 are the roots of a resolvent equation of degree n - 1. 

namely 
Thirt,y years later, he proposed an alternative formula of the same typc. 

3: = !w + A fi + B ;/1Tz + . . . + Q . 

Such a form for t,he general solution of the quintic equation was used in 
Abel's proof that no such formula could exist. 



3 .  A RESOLVENT FOR THE GENERAL QUARTIC EQUATION 

2.1. A resolvent for the cubic equation. To get started on our dis- 
cussion of resolvents, let us begin with a recap of what we know about the 
resolvent for the cubic equation. The  equation ax3 + bx2 + ex + d = 0 is 
equivalent t o  the non-linear system 

93 

b u + v + w  = _ _  
U 

c 
0, 
- U,’U + vu/ + wu = 

d - _  uvw = 
U 

The resolvent technique replaces this non-linear system by an equivalent 
linear system 

u + v + w  = - b / a :  

u + u v + u 2 w  = B ;  
u+a21 /+aw = c. 

The first of these equations is written down directly from the equation. To 
find B and C ,  we use the fact that  the function ~ ( u ,  v, 20) = (u+ a2u + c ~ w ) ~  
assumes only two values when u, 1 1 ,  IU are permuted. namely the two square 
roots of the cubic discriminant a. Those two values are the roots of a 
quadratic equation whose coefficients are syninietric functions of u, 11: w and 
lierice computable in terms of a ,  b, c ,  d. Thus the nonsyrrimetric function 
r ( u ,  w, ~ u )  yields a determinate system of linear equations for the roots. The 
fact that  the values of this function can be found by solving an equation 
of lower degree arid extracting a root, together with the fact that  knowing 
t,hese two values allows us to  solve the equation, justifies the term resolvent 
that  we have applied to  the function ~ ( u ,  v,  w). 

This program can be stated for equations of any degree. The pattern 
that emerges is that  the resolvent produced by this approach is found by 
solving an equation of degree (n  - I)! in the variable xn. The introduction of 
the roots of unity in this approach guarantees that the resolvent will be an 
equation of degree n! but will contain only powers of zn.  Solving it amounts 
t o  solving an equation of degree (7% - l)!, then extracting an n th  root. That  
is exactly what happened in the case of the cubic equation. For a quartic 
equation. we would expect an  equation of degree 6 in z4. Let’s give this a 
try. We don‘t know how to  solve an  equation of degree 6, but perhaps we‘ll 
find that the resolvent is “sparser” than we thought. It may prove to be a 
cubic equation in z8 or a quadratic in z12, if we are lucky. 

3. A resolvent for the general quartic equation 

Consider the general quartic equation, x“ -ax‘’ + b.~? - cx + d = 0. Assuming 
that the roots are t ,  71, v, and 711% we follow our previous model, using the 
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fourth roots of unity fi, fl instead of the cube roots, and set up the system 

t + u + w + w  = a ,  
t + i u + i 2 v + i 3 w  = A ,  

t + i2 ’U + i 4 1 1  + iGw = B , 
t + i3u + i6tJ + i”w = c . 

that is, since i2 = -1, the system 

t+ ,u+7i+w = a ,  
t + i~ - v - ~ I L !  = A , 

t - u + v - w  = B ,  
t - i % l - u + + i w  = c. 

Thus, A and C can be obtained from each other by interchanging u and w. 
We need to symmetrize each of A,  B, and C in order to  get an equation that 
they satisfy with coefficients that  can be expressed in terms of a ,  b, c, and d. 
For B this is easy, sirice B2 = ( ( t  + w) - (u  + w ) ) ~  is completely determined 
by choosing a “companion” to  go in the set of parentheses with t ,  and this 
can be done in only three ways. In other words, only three different values 
will result for B2 when the roots are permuted. Therefore B2 satisfies the 
cubic equation 

( 2  - ( t  + 1) - 2L - w)2) ( 2  - ( t  + u - 2’ - w ) 2 )  ( 2  - ( t  + w - 7L - PI)2 )  = 0 ,  

whose coefficients are symmetric functions of t ,  u,  u ,  w. Because they are 
symmetric functions o f  the roots, the coefficients of this equation are ex- 
pressible in ternis of o , b 3 c , d .  Indeed, this equation is the same as the 
equation 

2’’ - ( 3 2  - 8 6 ) ~ �  + (3a4 - 16a2b + 16b2 + 16ac - 6 4 4 2  
- (aG - 8a4b + 16a“c + 16a2b2 - 64abc + 6 4 ~ ~ )  = 0 

We have now found that B2 is a resolvent, and it can be found by 
solving a cubic equation that  we can write down. Now if we are to follow 
Lagrange’s method faithfully, we need another to find some power of A or 
C that  also takes on fewer than 4 values when tlie roots are permuted. 
We know exactly how to express it,  but solving it turns out to be very 
discouraging. It is easy to  see that A assumes 24 fornially different values 
when the roots are permuted. And even the powers of A are of no help. 
They all assume at  least 6 values when the roots are permuted. Three of 
the values that A can assume are ZA, i 2 A  = - A ,  and i 3 A  = -iA. Thus t,lit, 
polynomial that  is the product of all 24 factors z-(TA, where (T ranges over all 
permutations of t,he roots. will break up into a product of six polynomials like 
( z - A ) ( z - ~ A ) ( z - ~ ~ A ) ( z - Z � ~ A )  = .&Adj and will therefore be a polynomial 
of degree 6 in the variable z4. However, after the substitution [ = z4; what 
results is a full equation of degree 6 in E ,  with no zero coefficients. Moreover. 
those coefficients are horrendously complicated expressions in tlie coefficients 
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of the original equation. The coefficient of [, for example, is a polynomial 
of degree 20 in t ,  u, v, w. We need to look for an alternative solution of the 
original equation. 

As it turns out, the answer is already a t  hand. We have already found 
three expressions in t ,  u, u,  w, namely B1 = t - u + u - 'w, B2 = t + u - u - w ,  
and B3 = t - u - v + w. We therefore have a system of four linear equations 
that we can solve, getting 

a + BI  + B2 + B3 

4 
u - B1 + BZ - B3 

4 

t =  

u =  

u + B1 - B2 - B3 

4 
u =  

u - B2 - B2 + B3 
4 

10 = 

We have been lucky here. The technique we suggested led us to a system of 
equations that we could solve. But it did not provide easily solvable equa- 
tions for A and C, which had been our original program. We opportunis- 
tically abandoned the linear system that we originally set up and jumped 
to another that  we happened to encounter along the way. The unity of 
approach we were seeking has therefore failed. 

Nevertheless, we have at  least discovered a general strategy for solving 
an equation of any degree n: Look for a rionsymmetric expression in the 
n roots that assumes fewer than n iiulues when the roots are permuted. 
Form the resolvent polynomial whose roots are the values assumed by this 
expression. (For our purposes, the expression itself or this polynomial or 
the equation obtained by setting the polynomial equal to zero can all be 
conveniently referred to as a resolvent.) The resolvent polynomial will be of 
degree less than n, and its coefficients will be symmetric in the original roots 
and hence expressible in terms of the coefficients of the original equation. 
In this way, the symmetry of the original equation will have been broken-- 
perhaps not completely, but at  least broken. The challenge then, is to seek 
such nonsymmetric expressions. The place to begin is with five roots: the 
quintic equation. 

4. The state of polynomial algebra in 1770 

Although only partially successfill, the method we have just examined sug- 
gested a new approach to the general problem of solving equations. For the 
quintic equation, this approach would work as follows. Starting with t,he 
equation itself x5 ~ ax4 + bz3 - cx2 + d z  - r = 0 with roots s, t ,  u, v, 7n. which 
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represents the system 

S + t + U + V + W  = a ,  

~ ( t  + u + u + W) + t (u  + 'U + w) + U ( V  + w) +vw = b ,  

S t ( U  + 'U + W) + S U ( U  + W) + SUUJ + tu(W + W) + tuw + tvw = C ,  

stuv + stuw + stvm + suuw + tuuui = d . 
stullw = e ,  

replace this system by a linear system with a Vanderrnonde matrix 

s + t + u + ' U + w  = a 

= A 
= B 

= c 
= 

s + at + a2u + a3u + a4w 

s + ( 1 3  + Q4U + CYU + CY3TLJ 

s + Q3t + QU + CY4V + a2u! 

s + cr4t + a3,u + o2zi + ( 1 % ~  D . 

where cr = cos(27~/5) + i s i n ( 2 ~ / 5 )  is a fifth root of unity. The challenge 
would be to express A , B , C , D  in terms of the coefficients of the original 
equation. That is, we would need to symmetrize these expressions as we 
have done above and hope for a %parse" equation containing only powers 
that are multiples of some multiple of 5. Therein lies the difficulty. To find 
an expression for the analog of A in the case of the cubic, as we did above, it 
was necessary to symmetrize, getting an equation of degree 6 = 3! in A that 
contained only powers that were multiples of 3,  and hence was quadratic in 
A". For the quartic, we were not so lucky, a.nd were stuck with the equation 
of degree 6. But perhaps that is because the degree was a composite number. 
Things may be simpler for equations of prime degree. 

To determine A for the quintic equation, we would expect an equation 
of degree 120 = 5!  that would be of degree of degree 24 in u5. Even if it were 
very "sparse" with only every fourth coefficient nonzero, that would still be 
an equation of degree 6 in u2', and so our method would fail. Lagrange 
realized all that, and gave a very pessimistic report on the prospects of 
finding a general solution of all polynomial equations. 

As Lagrange's survey showed, there was no known, systematic way of 
setting up a system of linear equations for the roots of a general equation 
of degree n. His use of a Vandernioride matrix formed on the roots of unity 
provided about the sparsest resolvent equation one could hope for, and it, 
was not sufficiently sparse to rerider the quintic equation solvable. The only 
other general approach that had been suggested, t,he Tschirnhaus technique 
of making a substitution one degree less than the degree of the equation. 
also fails for higher-degree equations. Thus, it seems that the generd quintic 
equation presents a formidable barricade. 

Lagrange's pessimism on this point turned out to be justified. Within a 
few years after he wrote, Paolo Ruffini (1765--1822, primarily a physician) 
had produced a cogent argurntmt that there was no algebraic formula for 
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solving quintic equations. That dknouement in the drama of polynomial 
algebra forms part of our next lesson. Now, one could easily believe that 
such a formula is too complicated for people to discover. How one would 
come to believe that it doesn’t exist at  all is quite another matter. What 
led mathematicians to that amazing conclusion? The answer is found in the 
analysis of resolvents in five roots. 

4.1. Seeking a resolvent for the quintic. To find a resolvent for a quin- 
tic equation 

x5 - ax4 + bx3 - cx2 + dz - e = 0 
with roots s , t , u , v ,  w ,  we need a function f ( s , t , u , v ,  w )  that  assumes at 
most four formally different values f J - ( s ,  t ,u ,  v, w ) ,  j = 1 , 2 , 3 , 4 ,  when the 
variables (roots) are permuted. 

Remark 9.1. In order for these permutations to be applicable, the functions 
themselves have to be such that the variables can be interchanged. The 
simplest class that will meet our needs is the class of rational functions 
f ( s , t , u ,  w,w),  and we shall assume that the functions we deal with are 
rational. 

These four different values will then be the roots of a quartic equation 

whose coefficients are symmetric in s ,  t ,  u, v, w and hence expressible as func- 
tions of a ,  b, c, d. Because this is a quartic equation, it can be solved, and 
then we will have four roots gJ = f 3 ( s ,  t ,  u, u ,  w ) ,  j = 1 , 2 , 3 , 4 ,  and hence a 
system of five equations 

If the functions f j  are not “too messy,” we might have a better chance of 
solving this system than the original system. It certainly has more symmetry 
than the original system, since the last four equations are all essentially the 
same equation, with permutations of the variables s ,  t !  u, v, w. 

As Problem 9.1 below shows, such a technique actually does work for 
the quartic equation with roots t ,  u, 71, w, using the function f ( t ,  71. 71, w) = 

tu,+vui. But, something goes wrong when we try to do t,his with five variables, 
and that failure has interesting consequences. as we shall see in the next 
lesson. 

Lagrange had provided the essential idea that was to lead to a solution of 
the problem. To get a resolvent. one should look at  suitable linear combina- 
tions of the roots, then form the simplest polynoniial in each of those linear 
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combinations whose coefficients will be symmetric functions of the roots, and 
hence expressible in terms of the coefficients of the original equation. Thus, 
the spotlight was turned onto the problem of the symmetries of a function 
of n variables when the variables are permuted. For each degree n, we need 
to find an asymmetric function of the roots for which some power assumes 
fewer than n values when the roots are permuted. For the cubic equation 
with roots u, 71, and w ,  the function ( u + c u ~ + a ~ w ) ~  assumes only two values. 
For the quartic with roots t ,  u, w, and w,  the functions ( t  + u - 71 - w ) ~  and 
tu, + ow both assume only three values. That was the clue mathematicians 
had to work on in order to solve the general problem. Before we take up 
this final phase of the story, we need to develop the necessary information 
about permutations. 

5. Permutations enter algebra 

Permutations and combinations were first studied for mystical reasons by 
the ancient Hindu mathematicians. The closely related topic of determi- 
nants originated in China and Japan in the sixteenth and seventeenth cen- 
turies. All this lore was independently rediscovered by Leibniz in the late 
seventeenth century. It proved its value a century later in the quest for a 
general method of solving equations. As we have just seen, the problem was 
to determine how many different values a function could assume when its 
variables were permuted. 

This problem was to lead ultimately to the fundamental notion of a 
group, the core concept of what is called modern algebra. Modern algebra 
is nowadays taught beginning with groups, but the historical connection 
with equations is never used as a motivation. A group is introduced as a 
purely abstract object, wit,h permutation groups playing the role of the most, 
important example. One generally has t,o get to the second or third semester 
of modern algebra before polynomial equations are mentioned in the sairie 
lecture with groups. Even then, the smooth modern highway leading to 
the solut.ion of the problem bypasses the old gravel road that the pioneers 
traveled over. 

To speak less metaphorically, the intermediate stage of development b e  
tween the classical problem of solving polynoniial equations and the modern 
solution to that problem using Galois theory involved counting the number 
of values a function may have when its variables are permuted. That procr- 
dure is omitted from modern algebra courses, since a more natural route to 
the solution has been found. In our final two lessons, we shall describe the 
old route, now bypassed, and the new highway to the solution. 

6. Permutations of the variables in a function 

In this section, we consider functions of an unspecified number of variables. 
To keep the discussion concrete? we shall illustrate it with the case o f  a 
function of four variables f ( t ,  u, 21, w), but, the possibilit,y of more variables 
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should be kept in mind as the discussion proceeds. As we mentioned above, 
we shall assume that f is a rational function, so that it will make sense to 
permute the variables. 

There are 24 formally different functions that can be formed from a 
given function f(t, u, u ,  w) by permuting the variables t ,  u,, u ,  w, and we could 
list all of them if we were inclined to  do so, starting with f o ( t ,  u ,  v ,  W )  = 

so forth up to f 2 3 ( t ,  u, 21, w). For particular functions f ( t ,  P L ,  u ,  w),  these 24 
functions may not all be formally different. Indeed, i f f  ( t ,  u,  v, w )  = tu+liw~, 
then only three different values occur among these functions. They fall 
nat,urally into three sets of eight, and all the functions in a given set are the 
same. There may be only one function, as happens, for example, with the 
function f ( f >  u ,  21, w) = t + u + u + w, or there may be only two, as in the 
case of the square root of the discriminant: 

f ( f , , u , u , w ) ,  f l ( t , U , V , W )  = f ( u , t , v , w ) ,  f2 ( l ,u ,v , . i )  = f ( v , u , t , w ) ,  and 

d / l ( t ,  u ,  21, w) = ( t  - u,)(t - v ) ( t  - w ) ( u  - .)(u - w)(u - w) . 

Here &(u, t ,  a, w) = -d4( t ,  u, v ,  w). 
We think of these functions as being the composition o f f  with various 

perniutations of the variables. Thus, if a( t ,  u,  v ,  w) = (u,  t ,  u ,  7u), then f l  = 
f 0 0 .  We can now leave the functions f in the background and concentrate 
on the permutations themselves. Every permutation can be writt,en as a 
sequence of transpositions that simply interchange two letters. We shall 
use the notation (uv)  to indicate the transposition of u and v, so that the 
effect of (uu) is to  replace ( t ,  w,, o,  w) with ( t ,  u, u, w). The representation of 
a permutation as such a sequence of transpositions is not unique. However, 
its purity: defined to be odd if the number of transpositions is odd and even 
if the number is even, is the same in all representations. 

The easiest way to see that fact is t'o imagine the letters in a finite 
string and count the number of inversions, that is, the number of pairs of 
letters that  are not in alphabetical order. For example, in t~he sequence 

(h ,  c ) ,  arid ( 9 ,  e )  are not in alphabetical order, a total of nine inversions. If 
wt' interchange a pair, say a and h, the number of inversions will change. 
However. all inversions involving letters that  precede a or follow h will re- 
main iiiversions. The only changes will be in those that involve the letters 
between a and h, anti of course a and h themselves. As for the letters in 
between, the pairs that  were inverted with respect to a before are now k n -  
inverted" and vice versa. The same is true for h. Thus the change in the 
number of inversions is ( m  - n) + ( p  - y ) ,  where m is the number of letters 
betweeu a and h that  were not inverted relative to a,  n is the number that, 
were inverted relative to a ,  p is the number that were not inverted relative 
to h and q the number that were. In particular, m + 72 = p + q = T .  where 
7' is the number of letters between a and h. It follows tha.t the change is 
7 n - ( r . - m ) + p - ( r - p )  = 2 m + 2 p - 2 r ,  which is an even number. Then if we 
consider the pair ( a ,  h )  itself, we see that it was originally not, an inversion. 

c. f, a ,  b, d ,  h: 9 ,  e: the pairs ( c ,  a ) ,  (c ,  b ) ,  ( f ,  a ) ,  ( f ,  b ) ,  ( f ,  4,  ( f> e l>  (h, Y), 
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but after the interchange, we have (h ,  a ) ,  which i s  an inversion. Thus, when 
a transposition is performed. the number of inversions changes by an odd 
number. Therefore, any permutation with an odd number of inversions can 
be written only as the result of a sequence of an odd number of transpo- 
sitions, starting from the natural order (which we take to be alphabetical 
for sets of letters and ascending for sets of numbers), and any with an even 
number is the result of a sequence of an even number of transpositions. 

Every permutation can be classified as even or odd according to the 
number of transpositions in any representation of it as a finite sequence of 
transpositions. Obviously an even permutation followed by an even permu- 
tation is even, as is an odd permutation followed by an odd permutation. 
An even permutation followed by an odd one, or an odd one followed by an 
even one, is odd. 

6.1. Two-valued functions. Particular interest attaches to a two-valued 
function. Suppose that the function f ( t ,  u, u, w) can assume only two possi- 
ble values. Let these values be f ( t ,  ’u,, 71 ,  w) = f o ( t ,  'u, 72, w) arid f l ( t ,  u, v,  w), 
which is different from f o .  Notice that if (T and T are permutations such that 
foo = f and f o r  = f ,  then f o ( a o r )  = ( f o o ) o r  = f o r  = f. It follows that if 
f assumes exactly two values, there must be some transposition (T such that 
f o (T = , f l .  (Otherwise f would assume only one value, since every permuta- 
tion is equivalent to a sequence of transpositions.) Without loss of generality. 
we may assume that n = (tu).  Now we claim that f l  o a  = f ;  for if not, t'hen 
f l o g  = f l ,  from which it follows that f l  = f l o a  = ( f o a ) o a  = f o ( o o a )  = f ,  
which contradicts the assumption that f # f i .  Hence there must be ut least 
one transposition that interchanges the two values. 

It now follows that if T = ( tv) ,  then f o T = f l  also; for if not, then 
f o r o n = f o n = f l .  If u = r o n, we note that v o v o v is the identity 
perinutation that moves nothing. Hence surely f o (v o v o v) = f .  Our 
hypothesis is that  ,f o v = f l  What can f o v o v be? It. must be f l  o v. If 
this is f ,  then f o v = ( f l  o v )  o v = f o v o i/ o v = f ,  which contradicts our 
hypothesis. Thus, if one transposition (tu) interchanges the two values, then 
all transpositions (tw) (for any 7 1 )  interchange the two values. But theri, for 
any ’ U I ?  (VW) must also interchange the two values; that is, if one transposition 
interchanges the two values, then all transpositions interchange the two 
values. Hence f o (T = f l  if (T is an odd permutation and f o (T = f if a is a11 
even permutation. 

Now consider the functions g ( t ,  u, ’u ,  w) = ( f ( t :  ZL. 71: w) + fl(t: fu; u. w ) ) / 2  
a,nd h( t ,  u. 21, w) = ( f ( t ,  'u, 71. u:) - f l  ( t?  7 4  71. .u:))/2. It, is clear that IJ is 
symmetric: since any transposition leaves it invariant. As such, it can 
be written as a function G ( a , b , c , d )  of the coefficientas of the polynoniial 
x4 - ax3 + bz2 - cz + d having t ,  u, ?I, w as roots. 

In contrast, h is aritisymrnetric in that h ~ o o  = -h for each transposition. 
The function 

q t :  7L; '0. U ! )  

&( t ;  ' I L .  1:. w )  ' 
s( t .  1 L .  '('. t U )  = 
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where d 4 ( t .  u. v, w) = JD4(a. b. c. d )  is the square root of the discriminant, 
is symmetric. Hence s ( t ,  u,  v, w) can be expressed as a function H of the 
coefficients of the polynomial x4  - uz3  + bz2 - cc + d having t ,  u. v, w as 
roots. Thus we have 

h ( t ; ~ .  PI, W )  = H ( a ,  b, c ,  d)d4(t ,  U ,  71, w) = H ( u ,  b, c ,  d ) d D 4 ( a ,  b, c,  d )  , 

where D4(a, b, c ,  d )  is the quartic discriminant ( t  - u)’(t - v)’( t  - w ) ~ ( u  - 

7 1 ) ~ ( u  - w)'(v ~ w)'. (It suffices to know that in principle 0 4  can be ex- 
pressed in terms of the coefficients a ,  b, c, and d. The actual expression is 
horrendously complicated and not enlightening.) Putting these expressions 
together, we see that any two-valued function of the roots can be written in 
terrns of the coefficients as 

(2)  f ( t :  U .  71, W )  = G(a,  b, c,  d )  + H ( a ,  6 ,  c ,  d ) d D , ( a ,  b, C, d )  . 

An important special case is that  of a quadratic equation with the two 
roots t arid u. We can take the function f ( t ,  PL) = t ,  which assumes only the 
two values t and u when the rooh are perniuted. The formula analogous to 
(2) is the quadratic formula for solving the equation x2 - ax + b = 0, that 
is. G(a,  b )  = a / 2 ,  H ( q  b) = 112, and Dz(a, b )  = a’ - 4b. 

Another good example occurs in the case of a cubic equation y"+py+y = 
0 with roots u,w,w. As we have seen, the function ~ ( P L , I I , W )  = -(u + 
( M I  + a27u)3 takes on only two values, and can be expressed as - q / 2  + 
JF3/27 + q2/4; that is, taking a = 0, b = p ,  c = - q ,  we get 

1 

f ( u ,  v , w )  = G(a,b ,  c)  + H ( a ,  b,  c ) @ Z G  1 

where G(a,  b, c )  = c/2, H ( a ,  b,  c )  = 1, and Dj(c1, b, c )  = b"27 + c2/4. 
The importance of two-valued functions lies in the following theorem 

proved by Augustin-Louis Cauchy (1789-1856); we shall stat,e it for the case 
of five variables (s: t ,  u, u ,  w) only: If a function f ( s ,  t ,  u,  11,  w) assume.s fewer 
than fifive values when the iiariables are permuted, then it assumes at most 
two values. 

In other words, there are no three- or four-valued functions of five vari- 
ables. Putting this fact together with the equat,ion-solving program we have 
formulated, we see that we would need two independent two-valued functions 
f and g to generate enough equations to produce a system of five indepcri- 
dent equations to determine the roots. Moreover, we know in general what, 
these functions would have to look like (Eq. 2). 

7. Problems and questions 

Problem 9.1. Although the linear system with a Vandernionde matrix 
constructed from the roots of unity is by far the simplest strategy for solving 
a polynomial equation, we have seen that it may not work. The failure of this 
particular method by no means indicates that  there is no formula for solving 
the equation, as we have seen in the case of the quartic equation. In fact. the 
solution that we have given in the case of the quartic is more complicated 
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than it needs to be. Consider again the quartic x4 - ax3 + bx2 - cx + d = 0 
with roots t ,  u,  PI, w .  Show that the function tu + vw has only three values 
when the roots are permuted arid that these values are the three solutions 
of the cubic equation 

2 - bz2 + (ac - 4d)z  + (46d - c2 ~ a%) = 0 .  

(The algebra will be very tedious. I t  would be advisable to resort to a 
computer algebra program to do this verification.) 

Let these roots be 91, 92, and 93, and show that the system of equations 

t + u + v + w  = a ,  

t 1 L  f v w  = 91. 

C v f u w  = gz, 
t w + u v  = g 3 ,  

implies the linear system 

Hint: Adding the second and third equations produces the product. ( t  + 
w)(u + I ) ) ,  and the first equation yields the sum ( t  + 7u) + (u + v). Use what 
you know about finding two quantities from their sum and product. Then 
do the same with the third and fourth equations. 

Problem 9.2. Show that only three of t,he four equations in the linear 
syst,em written in the previous problem are independent. 

Problem 9.3. Having determined tu + W U I  by solving the cubic equation in 
Problem 9.1, and knowing the product t7~71w = d:  show how to deterrninr 
tu, and vw.  Then, knowing t + u, show how to determine t and u. and 
likewise v arid w .  (Thus t.he one three-valued function we found does suffice 
t,o determine all four of the roots.) 

Problem 9.4. (Cycles.) Given a permutation g, we can start with m y  
letter, say t arid then proceed to the letter t,hat t replaces under the permu- 
t,atiori g >  then to the letter replaced by that letter, and so on, until eventually 
we get back to t .  For example, if n(t ,  u, v, w )  = (u, w ,  11, t ) ,  then t replaces 'w: 
which replaces u, which replaces t .  We write this pern1utat)ion as (twu). It 
is called a 9-cycZe, and is said to have order 3 ,  nieanirig that if it, is applied 
t,hree times, the result is the identity permutation, which moves nothing. 
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A transposition is a 2-cycle. Obviously, every perniutation is a unique se- 
quence of disjoint cycles, and two disjoint cycles have the same effect when 
applied in either order. 

List all the different types of permutations of five symbols, that  is, a 
single 2-cycle, a pair of disjoint 2-cycles, a single 3-cycle, and so on. 

Problem 9.5. ( T h e  order of a permutation.) We use the notation a2 = aoa 
and so forth. Since there are only n! permutations of n symbols, two of these 
powers must be equal, that  is, a P  = aq for some q > p .  Then d - p  must 
be the identity permutation. The smallest positive value of q - p for which 
that relation holds is called the order of the permutation. For example, the 
order of a transposition is 2. 

Show that the order of a sequence of disjoint cycles is the least common 
multiple of the orders of the cycles in the sequence. 

Problem 9.6. What are the possible orders of a permutation of four sym- 
bols? 

Problem 9.7. Show that the order of a permutation of five symbols must 
be 1, 2, 3, 4, 5, or 6. Which ones have order 5? 

Problem 9.8. Suppose that the function f ( s ,  t ,  u, v ,  w )  assumes fewer than 
five values when its arguments are permuted. Let a be any 5-cycle. Show 
first that  a5 is the identity, and hence that f o cr5 = f .  Then show that 
there must be two distinct nonnegative integers i , j ,  1 5 i < j 5 5, such 
that f o a� = f o 07, and hence f o cr-’ = f .  Show that f o a = f ,  and 
hence f o a� = f for all k .  If j - z = 1, you are done. If j ~ i = 2, show that 
f o a4 = f and therefore f = f o a5 = (f o 04) o a = f o a. Give a similar 
argument if j - i = 3 or j - i = 4. Conclude that f is inva.riant under all 
5-cycles. 

Problem 9.9. Show that the 5-cycle (suwtv)  followed by the &cycle (wuvts) 
has the same effect as the 3-cycle ( s t v ) .  Conclude that i f f  is invariant under 
all k y c l e s ,  it is also invariant under all 3-cycles. 

Problem 9.10. Suppose f is invariant under all 5-cycles and ,f o ( s t )  = f l .  

Show t,hat f o (tu) = f l  also by considering the equation f o ( s t )  o ( tu )  = 
f o (st�u) = f .  Conclude that if f assumes fewer than five values, then it 
assumes either exactly one value under transpositions (it is symmetric) or 
exactly two values, as stated above. 

Problem 9.11. Suppose that f is invariant under 3-cycles. Writc a 4-cycle 
(stu7)) as (stu)(uv), and deduce that f o aj assumes at most two values for 
m y  four-cycle a as j ranges over the positive integers: j = 1: 2 , .  . . . 

Problem 9.12. A once-popular puzzle is shown in Fig. 11 (a).  The numbers 
are on small squares of wood or plastic with grooves on the left and bottom 
sides and tongues on the right and top sides that fit those grooves. The frame 
around the outside has grooves on the top and right sides and tongues on 

. .  
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(a) 

FIGURE 11. A sliding-frame numbers puzzle. 

the bottom and left? so that the squares can tie slid up or down into the one 
empty space. 

In effect, if you imagine that the empty space bears the number 16, 
you can always transpose “16” with whatever number is immediately above, 
below, left, or right. Notice that when the puzzle comes to you, the numbers 
14 and 15 are out of order. The challenge is to get all 15 numbers in the 
correct order, leaving the blank space at  the lower right corner. 

In its initial configuration, the puzzle has precisely one inversion, and 
you need to get it so that there are no inverted pairs. Show that this is 
impossible. 

Hint: You need to impose a second “checkerboard” structure on the 
puzzle. Show that,  no matter how the squares are moved around, the total 
number of inversions is odd if “16” is on an unshaded square. 

Problem 9.13. Repeat Problem 9.12, this time with a 5 x 5 puzzle, in which 
all numbers are in the correct order except 23 and 24, which are reversed. 
You can skip the checkerboard st,ructure this time. Why? 

Question 9.1. Suppose that f(s, t ,  u, u, w) assumes exactly two values 1111- 

der transpositions. Can it assume more than two values under other per- 
mutations of the variables‘? 

Question 9.2. Is there a function f (s ,  t , ~ ,  . U , I U )  that assiinies 120 different 
values under permutations of its arguments? Hint: Think of Lagrange’s 
exaniple for the cubic equation.) 

Question 9.3. How might Lagrange have come to discover the expression 
i ( ’ u  + (YV + a2w) ,  used to construct the resolvent equation for the cubic? 
Could it have been an extrapolation from the case of the qua.dratic equation’! 
As a. different possibility, recall also that,  because of the work of Bornbelli. 
lie knew that the three roots u, u, and 211 ofthe cubic equation y’+py+q = 0 
are given by 

(1 = ( ~ + b ,  

PI = a w + r r 2 b .  

111 = a2a + N b  . 
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where a = -112 + (&/2)2 is a cube root of unity and 

Solve the first two of these equations for a and b, using the identity 
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The search for resolvents for the quintic equation led niatliernaticiaris to 
examine the properties of permutations. Although permutations form part 
of combiriatorics and are one of the oldest parts of mathematics, having 
been studied in India for more than two thousand years, their reappearance 
in the nineteenth century in the context of polynomial equations resulted in 
an explosion of generalization in all areas of mathematics. In short order, 
this new abstraction finished off attempts to find algebraic formulas to solve 
equations of degree higher than four and gave definitive answers to some old 
geometric problems that the ancient Greeks had studied. That is where we 
end our story, right on the threshold of a new world of thought: Modern 
algebra, and its siblings modern analysis and geometry, all of which are 
steeped in the abstract algebraic structures that grew out of this systematic 
study of permutations. 



LESSON 10 

Existence and Constructibility of Roots 

In the five and a half' decades from 1770 to 1825, answers to some of the 
mysteries of polynomial algebra were achieved in the work of several math- 
ematicians, notably Paolo Ruffini, Augustin-Louis Cauchy, Carl Friedrich 
Gauss (1777-1855), and Niels Henrik Abel (1802-1829). The two major 
events were the following: 

1. The first proof by Gauss in 1799 that the complex nurribers are 
algebraically closed. 

2. A convincing argument by Ruffini, also in 1799, that the general 
quintic equation cannot be solved by a single algebraic formula in 
terms of the coefficients. Ruffini's proof was endorsed and elaborated 
by Cauchy 15 years later. A second proof was offered by Abel a 
decade after Cauchy's work. 

1. Proof that the complex numbers are algebraically closed 

The recognition that a complex number has an nth root (in fact, n of them), 
meant that not only could the four arithmetical operations be performed in 
the complex numbers; roots could be extracted as well. Thus, if there were 
some algorithm for solving every equation using only arithmetical operations 
and root extractions (an algebraic method of solving every equation), it 
would follow, since these operations do not require any new numbers beyond 
the complex numbers, that every equation with complex coefficients has a 
root, in  the complex numbers. Notice, however, that the converse could well 
lie false. It might be that there exzsts a solution of every polynomial equation 
in the complex numbers, and yet it may be impossible to express that root in 
t,erins of the coefficients using only a finite number of algebraic operations. 
Actually, t,lia,t just happens to be the case! Gauss suspected as much, but 
he proved only the first part. He did, however, distinguish between the 
abstract existence of the root, which he proved, and the existence of an 
algebraic method of computing it starting from the coefficients, which he 
doubted. 

The fact that the complex numbers are closed used to be called the 
"furidamental theorem of algebra." Actually, the complex numbers belong 
niore to analysis and geometry than to algebra, and the theorem is not at 
all the basis of algebra. It is an easy theorem t'o prove using the theory 
of analytic functions of a complex variable, but a. purely algebraic proof 
is a different matter. The complex numbers are built up from t,he real 
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nunibers, which arc an essentially geometric structure, as opposed to the 
rational numbers, which develop naturally out of ordinary counting with 
integers from purely arithmetic considerations. To get from t,he rational 
numbers to the real numbers, it is essential to introduce some concept of a 
limit involving sequences of rational numbers or least upper bounds. These 
limiting procedures lie at the heart of the mathematical notions of continuity 
anti connectedness, which are essentially topological notions. The complex 
numbers can be constructed by purely algebraic processes starting from the 
real numbers, but the real numbers cannot be so constructed starting from 
t,he rational numbers. Any proof that the complex numbers are algebraically 
closed must explicitly or implicitly make some use of geometric or topological 
ideas. Without going into all the details, we will show briefly why it suffices 
to prove this theorem for polynomials with real coefficients and sketch the 
principles on which the first proof, given by Gauss in 1799. was based. 

Suppose p ( z )  = zn + a1zrL-' + . . .  + a,n-lz + a,. Here, a l : .  . . , a ,  are 
complex numbers, say ak  = u k  + zvk, where uk and V k  are real numbers. We 
recall that the complex conjugate of a k  (the number uk - i u k )  is denoted 
u k .  Notice that u k a k  = u i  + u;, which is a nonnegative real number, arid 
u k  + U k  = 2uk is also a real number. Form the polynomial y(z) = p0 = 
z" + a1Y-l + . . .  + i i , - l z  + ii,. It is easy to see that if z is a root of p ,  
then is a root of y, antl vice versa. Now the polynomial r ( z )  = p(z)y(z), 
which is of degree 2n, has real coeficients. For example, if k < n, then the 
coefficient of zk  in +) is al, + + . . . + i i l a k - 1  + ak. YOU can see by 
pairing ternis in this expression that this coefficient is real. If the theorem 
is proved for polynomials with real coefficients, it follows that r ( z )  = 0 for 
some value of z ,  and hence either p ( z )  = 0 or p ( Z )  = 0. This reduction is 
needed for the first of the four proofs that Gauss gave. 

When the coefficients are real, the equation p ( z )  = P ( x ,  y)+i&(x, y) = 0, 
where z = z + i y ,  can be written as a pair of simultaneous equations in x and 
9: P ( z ,  y) = 0 and Q ( x ,  y) = 0. For example, a quadratic equation az2 + 
bz + c = 0 becomes the two real equations ax2 + bx - a,y2 + c = 0. which is a 
hyperbola, and (2az+ b ) y  = 0, which represents the union of the x-axis (y = 

0) antl the vertical line 3: = -b/2a. (The two intersecting lines that represent 
this second equation are considered a degenerate hyperbola.) These curves 
do intersect. If the intersection occurs where y = 0, then the real part II' 

satisfies the original equation. If the quadratic discriminant is negative, the 
hyperbola arid the vertical line intersect at  the two vertices of the hyperbola, 
which have coordinates x = -h/2a,  y = * d c / a  - b2/(4a2) .  Gauss was able 
to show by topological considerations that the curves represented by these 
two polynomial equations in two variables would intersect in this way for any 
positive degree of the original equation, in fact, that they would intersect i r i  
n points. 

His argument was that p ( z )  can be written as 
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FIGURE 12. Graphical solution of 5z2 + 2 2  + 2 = 0 taking 
z = x + iy. 

He noted that if z = r(cos 8 + i sin 8 )  and r is very large, this last expression 
shows that the points on the circle Izl = T where the real part of p ( z )  is 
zero will be very close to the points where the real part of z" is zero, since 
p ( z )  = z n ( l  + E ) ,  where E is very small. (This is a continuity argument.) 
But we know exactly where the real part of z" is zero. It vanishes at the 
points r(cos6’ + isin6') where cos(n8) = 0, that is 0 = 12, k = 1,. . . , n. 
The curve P ( z , y )  = 0 representing the points where the real part of p ( z )  
vanishes must be a curve that wanders through points very near to these 
n points. Similarly, the points where the imaginary part is zero must form 
a curve Q(x,y)  = 0 that wanders through points very close to the points 
where sin(n6') = 0, that is, the points r(cos6’ + isin8) where 6’ = kn/n,  
k = 1,. . . .n. Since the points in this last set alternate with the points in 
the first set as we traverse the circle IzI = T ,  the two curves cannot weave 
through these two sets of points without intersecting n times. 

( k + i ) T  

Example 10.1. We illustrate how the two curves intersect in the case of the 
equation 5z2 + 2z + 2 = 0. We let z = z + iy  and set the real and imaginary 
parts of the polynomial equal to zero. That is, we form the system 

P ( z ,  y) = 5(2 - y2) + 22 + 2 = 0 ,  
Q(x:y) = l0xy + 2y = 0 .  

The equation P ( z , y )  = 0 describes the hyperbola shown in Fig. 12, and 
the equation Q ( z , y )  = 0 amounts to y(52 + 1) = 0, which is a degenerate 
hyperbola consisting of the horizontal line y = 0 (the x axis) and the vertical 
line z = -0.2. These two curves intersect in two points representing the 
solutions of the equation, naniely z = -0.2 + 0.62 and z = -0.2 - 0.6i. 
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Y 

FIGURE 13. Graphical solution of z3 + 242 - 56 : 

z = x + i y .  

Example 10.2. Consider the cubic equation z3 $242 - 56 
this equation becomes the system 

P ( x ,  y) = x3 - 32y2 + 242 - 56 = 0 ~ 

Q(z, y) = y ( 3 2  - y2 + 24) = 0 .  

0 taking 

0. If 2 = x+iy,  

In the portion of the complex plane shown in Fig. 13, the first of these curves 
consists of several disconnected pieces. The second is the union of the 2 axis 
and the hyperbola 3s’ - y2 + 24 = 0. The curves intersect in the three points 
corresponding to the roots 2 + O i ,  -1 + 3&i, and -1 - 3&2, as shown in 
Fig. 13. 

2. Solution by radicals: General considerations 

In this section we tie together what we know about lower-degree equations 
as background for our discussion of Abel’s 1826 revision of his 1824 proof 
of the non-existence of an algebraic formula for solving the general quintic 
equation 

4 3 2 - a x  +bx - C . C  + d x - e = 0 .  2.5 

The argument proceeds by showing that certain propert,ies possessed by 
t,he quadratic and cubic formulas are properties that any general formila 
must have, then showing that no formula for the quintic can possibly have 
them. To state these properties, we shall yet again repeat some facts we 
have derived in earlier lessons. 

2.1. The quadratic formula. As we saw in Lesson 6, the quadratic for- 
mula for solving the equation x2 - a,z + b = 0 can be written as 

a, 

2 
5 = :r(a.b) = - + 2 .  
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where z = d v .  Here we have omitted the f sign usually included 
in this formula. As you know, the square root sign is ambiguous. When 
complex numbers are substituted for the variables a and b, z may represent 
either of two numbers, except in the unusual case when b = a2/4. However, 
if we substitute a/2 + z for z in the polynomial z2 - az  + b and replace z2 
by a2/4 - b, the result is 

Elementary algebra shows that both the coefficient of z and the term in- 
dependent of z are formally, identically zero as functions of a and b. The 
only fact we needed to get this relation was the equation z2 = a2/4 - b. 
Since this equation involves only z 2 ,  not z ,  we do not have to worry about 
the ambiguity of the square root, and hence could omit the f sign that is 
used when the letters a and b are replaced by specific numbers. If the two 
roots of the polynomial are u and v ,  then a = u + v and b = uu, so that, 
a2/4 - b = (u - ~ ) ~ / 4 .  Thus z = (u - v ) / 2  or (v - u)/2, so that z may be 
either of two polynomials when expressed in terms of the roots. 

Remark 10.1. The ambiguity of the square root requires some explanation, 
since it is one of the sources of an annoying vagueness in Abel’s reasoning. 
We take for granted, as Abel did, that  we are dealing with complex numbers, 
and that each complex number except 0 has two square roots in the complex 
plane. The ambiguity in the equation w = & can be removed by giving 
a precise specification of the square root that  we want. For every complex 
number z except 0, we can write z = r(cos8 + isin8) in a unique way if we 
specify r > 0 and 0 5 8 < 27r. Then fi can be defined unambiguously either 
as fi( cos(8/2) + i  sin(8/2)) or as -fi( cos(8/2)+isin(8/2)) = fi( cos(7r+ 
8/2) + i sin(7r + 8/2)),  where fi is made unambiguous by requiring it to be 
the positive square root of T .  Let us call the first of these square roots u11 
and the second w2. In both cases, wf = z = w;, and we may choose to 
think of them as two dzfterent mappings z H w. For that reason, we might 
prefer to think of two different z values z1 and z2 occupying parallel planes, 
as shown in Fig. 14. Cauchy and Victor Puiseux (1820--1883) used this way 
of keeping track of the different “sheets” of an algebraic function. 

The subscripts we have attached to  z here help us keep track of what is 
really going on when we write UI = &, but they do not really capture all 
the nuances of the situation. We need to overcome the asymmetry between 
the z’s and the w’s: w1 and 1u2 inhabit the same plane, while z1 and 2% 

“live“ in parallel universes. A variable point in the plane of the two ,UUI�S 

can move smoothly from w1’s territory to w2�s by simply crossing the real 
line. The corresponding 2’s would have to  leap across empty space to do 
that. Moreover, if we imagine a variable point z starting at z = T on the 
positive real axis in the z1 plane and moving counterclockwise around a. 
circle centered at the origin, as it approaches the starting point from the 
lower half-plane, zl i l  will not be approaching its starting value. Rather, it 
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will be approaching the starting value of w2. We wish to take account. of 
the significant fact that  when z1 approaches its starting point, w1 tends 
to the starting point of w2. This strongly suggests that 21 should morph 
into 22 when it crosses its positive real axis, and vice versa. Such an idea, 
inspired by an 1850 paper of Puiseux, was developed by Bernhard Riemann 
(1826-1866) the following year. 

The technique for bringing about a sniootli transition from 21 to 22 is 
intuitive and is illustrated in Fig. 14. The two z-planes are cut along the 
positive real axis or any other ray emanating from the “branch point” 0. 
Then the lower side of each cut is glued to the upper side of the other. 
(This will be easiest to visualize if you imagine the z2-plane picked up and 
turned over so that the dotted edge of the zz-plane lies on the dotted edge of 
the z1 plane.) The result is the R i e m a n n  surface of the function w = fi. It 
consists of two “sheets” (copies of the complex plane) glued together as just 
stated. You can easily make a model of this surface with two sheets of paper, 
a pair of scissors, and cellophane tape. On such a model you can move your 
finger smoothly and contirluously over the entire Riemann surface, without 
any jumps when it moves from the z1 sheet to the z2 sheet. In particular, 
if you describe a small circle about the branch point 0 at’ the end of the 
cut, you will see that it crosses over to the back of the paper when it moves 
across the dotted edges that have been glued together, makes a whole circle 
on the back, then crosses over again to the front when it moves across the 
solid line. 

At every point or1 the Riemann surface except the branch point z = 0, 
the mapping z H w is analytic, that  is, it has a power-series representation. 
For example, near the point z1 = 2, we can express I!J as a series of powers 
of z - 2 using the binomial theorem: 

= &(I + 2(” 1 - 2) - -(% 1 - 2 )  2 1  + - ( z  - 2)3 - -(z 5 - 2)4 + - >  
2048 32 128 

The portion of the infinite series shown here yields the approxiination 
Jm N 1.52539 + 0.163961,. The computer value of this number is 
1.5254 + 0.1638912. Similarly, from the five terms of the series we have 
shown, we find Jm N 1.49661 - 0.200465.2, while the computer value 
is 1.49672 - 0.200438i. Notice that the first value yielded by the series was 
a wl-value, lying in the upper half-plane, while the second was a w2-vahie, 
lying in the lower half-plane. That is consistent with the way we glued 
the two sheets together, since the point z1 = 2 has 21-values above it arid 
z2-values below it. 

On the other hand, the function w = &? is really two separate functions 
w = z and w = -2. and it is not possible to move z around in such a way 
that one of these values switches into the other, since when z traverses a 
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FIGURE 14. The Riemann surface of w = &. The solid 21 

circle corresponds to the solid w1 semicircle, and the dashed 
22 circle to the dashed w2 semicircle. 

full circle, TLI does also. The two possible values of w do not share a single 
plane. Thus, we have the peculiar situation that the quadratic formula for 
the roots of a polynomial x2 - U J :  + b defines two different functions (the two 
roots) when expressed in terms of the roots u and u, but a single algebraic 
function having a two-sheeted Riemann surface when expressed in terms of 
the coefficients a and b. Of course, the situation is more complicated than 
we have described, since we are now dealing with functions of more than 
one complex variable. 

The example of ,,G illustrates two important points about the behav- 
ior of algebraic functions in general. First, they are generally multi-valued 
functions, but it is possible to “navigate” from one value to another with- 
out any abrupt jumps by moving around on a Riemann surface. Second, 
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the coefficients of the power series representation can be computed from 
the values of the function along any arc, no matter how short. If the 
function takes on only the value zero along such an arc: all those coeffi- 
cients will be zero, and hence the function will be identically zero. In the 
present context, that means that, if an algebraic function f ( a ,  b: c, d,  e )  pro- 
duces one root, of a polynomial p ( ~ )  = - ax4 + bx3 - cz2 + d : ~  ~ e. 
that  is; p ( f ( a ,  b ,  c, d ,  e)) G 0 at all points near one point, then t,his relat,ion 
holds identically a t  all points ( a ,  b, c ,  d,  e ) .  But, as the example of w = fi 
shows! it is possible that if the point, ((I, b, c, d ,  e )  is moved around: the root 
( f ( a ,  b,  c, d ,  e )  may be a different one when it returns to it,s starting point. In 
fact, it is guaranteed that starting from any point (00,  bo, co, do. cg)  and any 
value of f ( u o ,  bo, C O ,  do, eo) ,  it is possible to vary ( a ?  b; c, d ,  e )  cont,inuoiisly 
in such a way as that f (a0.  bo, co, do, e0) takes on every possible root when 
(a .  b. c. d ,  e) passes through the point (ao,  bo, cg ,  do, eo) .  

This pleasant situation comes about because R.ienlann surfaces are con- 
nected. It is possible for a point to traverse an arc from any point to ariy 
other point. If the power series expansion of a function is identically zero 
at  the starting point, it must remain so. The principle just described is 
sonietimes called the permanence of functional relations in t.he theory of 
functions of a complex variable. It allows us to ignore the multivaluedness 
of the radicals in a formula arid treat the forniula just like a single-valued 
function. 

Unfortunately, Abel did not have the Rieniann surface at  his disposal. 
since Riemariii was born in the year when lie published his paper on the 
insolvability of the quintic equation. As a result, his arguments suffer from 
a cert,ain lack of clarity. In order to understand them, it is necessary to ket.p 
the permanence of functional relations in mind. Abel took this principlc for 
granted when working with expressions representing algebraic formulas. As 
long as he used only the relation wn = z in his arguments, the anibiguity of 
the formula w = fi did not matter. 

The reason we have made this brief excursion into algebraic geoniet,ry is 
to clarify what Abel took for granted: Two multi-valued algebraic furictioiis 
can,not be equal, except at  isolated points, if they assume different ~iiiriibcrs 
of values. For if they are equal along any arc; no matter how short, 1,hen 
they must be identically equal, and that cannot be if they assunie different 
iitiriibers of values. To illustrate by our simple example, a function whose 
Rierriaiin surface is two-sheeted, like w = &, cannot be equal to a fiinction 
whose Rieniann surface is three-sheeted, like w = fi. 

2.2. The cubic formula. In Lesson 7. we showed that the way to find thc 
roots of the cubic polynomial T“ - ar2 + bx - c wab to make the substitution 
T = y + a / 3 ,  leading to the “standardized” cubic polynomial y3 + py + q .  
with p = b ~ a 2 / 3  and q = -2a3/27 + ah13 - c. For this polynomial the 
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forrnula 
z � + z + - ,  

3 ( q / 2  + Jq2/4 + P3/27) 3 

where 
I 

wherl substituted for 1 ~ ’  in the polynomial r 3  -nz2+bz -c,  yields the function 

z +(P-P)z  i 2  - p” P2 + 
3 ( 9 / 2  + Jq2/4 + p 3 / 2 7 )  + 27q 3 ( q / 2  + Jq2/4  + P3/27)  

PJ - 27 ( 9 / 2  + dq 1 4 + p3/27)*  + 27q (q!2 + dq 1 4 + p 3 / 2 7 )  

The only property of z used in deriving this last relation was the equation 
z’ = -q /2  - J m p .  Just as in the case of the quadratic equation, 
the coefficients of z2 and z and the term independent of z are all identically, 
formally equal to 0 as expressions in p and q,  and hence also as expressions 
in a ,  b, and c. It follows that when iiurnerical values are assigned to a ,  b, 
arid c, each of the three possible values of z will yield this same (identically 
zero) function of z ,  and so the result is always a root of the polynornial 

Moreover, as with the quadratic, z may be expressed as a polynomial in 
2 - a22 + bz - c. 

the roots u, u ,  and w of the original polynomial: 

1 
-3 

= 7 (Crl�U + Q2u + LYQZU) , 

where 011 = -112- (&/2)2,  0 2  = -1 /2+ ( & / 2 ) i ,  and a3 = 1 are the three 
cube roots of 1. Actually, z may be any one of six different polynomials 
in  the roots? all of which are obtained by perrnut,ing the roots in any one 
of t,herri. The examples of the quadratic and cubic formulas illustrate some 
general features of any formula for finding the roots of a polynomial: 

1. The formula is a multi-valued function when expressed in terms of 
t,hc coefficients, that is, it contains radicals. 

2. Each radical in the forrnula is a polynoniial when expressed iii terms 
of the roots. 

3.  The different values the formula can assume when different choices are 
made for the values of’ the radicals in it correspond to permutations 
of the roots of the polynomial. 

This correspondence between the allowable values of a radical in the cod- 
ficierits and the permutations of the roots lies at the heart, of the general 
problem of solving equations algebraically. 
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2.3. Algebraic functions and algebraic formulas. The fuiict,ions that 
we have displayed here as solutions of the general quadratic and cubic eqiia- 
tions are called algebraic functions of their variables, in analogy with the 
algebraic numbers that, we discussed in Lesson 1. Each function that we 
have exhibited is expressible using a finite number of rational operations 
and root extractions. We warned the reader in Lesson 1 that not all alge- 
braic numbers can be generated from the integers or rational numbers in 
this way, and the same is true of algebraic fiinctions. 

O ?  
where p ( a ,  6 ,  c, d ,  e ,  f )  is a nonzero polynonlial in its six varkbles, is by defi- 
nition an algebraic function of its five variables. Thus, a root of the general 
quintic equation is an algebraic function of the coefficients. But there is a 
difference between an implicitly expressed algebraic funct ion and an explic- 
itly expressed algebraic formula. This particular algebra,ic function is not 
expressible as an algebraic formula using only a finite number of algebraic 
operations on the coefficients. That  is the content of Abel’s theorem, which 
we are about to explore. 
Remark 10.2. The significance of Abel’s theorem is seen most clearly 
against the background just described. There are two important aspects 
of this background. (1) In any mathematical theory, the more explicit one 
can be, the better. A vague description is never as good as an explicit name. 
Instead of writing “the number whose cube is 1331,” it is far bett.er to write 
simply “11.” (2) Explicitness is relative to the language in which things are 
expressed. Consider, for example, the following description of the ellipse by 
Apollonius, which most people will find bewildering: It is a curiie such that 
the square of th,e ordinate f rom any point to  the axis equals the recta,ngle 
applied to  the portion of the axis cut off by the ordinate and wh,ose defect 
on  the axis is similar to  the rectangle contained by the axis and the latus 
rectum,. (Apollonius gave an extremely complicated description of the latus 
rectum, or upright side, within this definition!) Now consider the definition 
given in modern calculus books: An ellipse is the locus of a point m0vin.g in 
such a wuy that the sum of its distan,ces f rom two fixed points is constant. 
Or. even better, An ellipse is a curve whose equation i s  x 2 / a 2  + u2/b2  = 1. 
Apollonius was writing in the language of Euclidean constructions. In that 
language, the explicit description of an ellipse is complicated. In ours. it, 
can be understood at  a glance. This second point is relevant to our current 
discussion, since the language in which explicitness was being sought for so- 
lutions of equations was the language of algebraic formulas. Such a formiila 
serves as a name for a number. It turns out that most algebraic numbers do 
not have names in that language. And, as we shall see in the next chapter. 
some of those that do have names, like the solution to the general cubic. 
require Complicated circumlocutions analogous to Apollonius‘ descript,iori of 
the ellipse. 

Thus, one nioral to be drawn from the argument of Abel that, we arc: 
about to consider and the Galois theory discussed in the next lesson is 

Any function f (a :  b: c ,  d; e )  such that p ( a :  b, c, d ,  q f ( q  b, c, d. e ) )  
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that  mathematicians were "barking up the wrong tree" in seeking solutions 
by radicals. Transcendental solutions, such as Vikte's, may be far more 
practical, and may even lead to theoretical advances. 

The second moral is even more important: Guided by natural associ- 
ations and the historical development of the subject, mathematicians set 
themselves a problem to solve. The eventual solution via Galois theory 
showed that the problem was not solvable; and even where it was solvable, 
the solution was not the practical method that the early algebraists would 
have envisioned. Nevertheless, the study of this problem was of immense 
value because of the discoveries that were made while seeking a solution. 
Marly examples of this phenomenon can be cited in mathematics. For ex- 
ample, although the proof of Fermat's Last Theorem a decade ago merely 
confirmed what people had always believed during the 350 years when they 
were trying to prove the theorem, the algebraic number theory that was 
produced along the way was, like Galois theory, a magnificent triumph of 
human thought, producing volumes of profound mathematics. 

Remark 10.3. We mention in passing that there are nonalgebraic (tran- 
scendental) functions, the most elementary of which are exponential func- 
tions like 2" and trigonometric functions like sinz.  There is no nonzero 
polynomial p(x, y )  such that p ( z ,  2") = 0 or p(x, sin x) = 0. Since we have 
used trigonometric functions to solve the cubic equation, we know that tran- 
scendental formulas can express algebraic functions. That may seem odd, 
and it could have been avoided in the case of the cubic. But it will turn 
out to be the only option for expressing the roots of the general quintic 
polynomial. 

3. Abel's proof 

Suppose there is an algebraic formula f ( u ,  h,  c, d ,  e )  that is a fornial root of 
a polynomial p ( z )  = x5 - ax4 + bz3 - cz2 + dz - e. When f ( a ,  b, c, d ,  e )  is 
subst,ituted for z in this polynomial, the resulting function P(u,  h,  c .  d ,  e )  = 

p ( f ( a .  b. c ,  d,  e ) )  is formally zero. That implies that when any numbers are 
siibstituted for the variables a ,  b? c, d ,  e ,  the number f ( a ,  b, c, d ,  e )  will be a 
root, of the corresponding polynomial p ( z ) .  Abel derived a contradiction 
from this assumption, and we itre at  last ready to say what it was. But a 
word of warning: The details of Abel's argument are difficult to make clear 
and precise. Several modern mathematicians have produced argunients in 
the language of Galois theory that parallel the argument of Abel. These 
argunients are clear, but would have required considerable background in- 
struction if one were trying to explain them to Abel himself. 

Abel wrote the hypothetical formula as 

where pk are rational functions of algebraic functions of a ,  b. c ,  d, e.  



120 10. EXISTENCE A N D  CONSTRUCTIBILITY OF ROOTS 

The first part of Abel's proof requires the notion of the splitting field 
for the polynomial, the smallest field that contains all of its roots. It can be 
described as the field of all rational functions (quotients of polynomials) in 
the roots, with coefficients in the same field from which those of t,he original 
polynomial were taken. The first part of Abel's proof amounts to showing 
that,  if there is an algebraic formula for the roots, then the radicals that 
a.rise i n  the course of executing the formula also lie in the splitting field (see 
Question 10.2). As Leopold Kronecker (1823-1891) described it, these un- 
avoidable irrationalities in the formula are natural, riot eztraneozls. We have 
already seen how this happens in the case of quadratic and cubic equations: 
The radicals in the coefficients of the polynomial are rational fiinctions when 
expressed in terms of the roots, and that is merely another way of saying 
that these radicals lie in the splitting field. We emphasize again, however, 
that this statement is true only when the original field contains all the nec- 
essary roots of unity. What is actually true, is that the radicals are rational 
functions of the roots of the equation and the roots of unity. 

Abel obtained it system of linear equations for these radicals; and the 
coefficients of the system were a Vandermonde matrix in the mth roots of 
unity (just as in the case of the quadrat,ic and cubic) and whose right-hand 
sides were the m roots 2 1 , .  . . ,x,. In other words, the radicals that occur 
are actually linear functions of the roots, just as Lagrarige had pointed out 
in the particular cases of quadratic and cubic equations. Abel noted that 
when these equations are solved, one of the results is 

where ~ 1 . .  . . , (iTn are the ,/nth roots of unity. (The presence of the roots 
of unity here shows that this polynomial niay not be in  the splitting field 
unless that field also contains the roots of unity.) Since the right-hand side 
has m! different values as the roots are permuted. it follows that the algebraic 
formula R must assume ( m  - l)! different values, that is, R must contain 
root extract,ions of orders m - 1, m - 2, . . . , 2  nested in some order. At that 
point, the rest of the proof is a matter of counting the number of values 
cert,ain functions can assume. 

3.1. Taking the formula apart. It is possible that in the original form 
(as functions of the coefficients a ,  b, c, d:  e )  the function R contains somc 
radical! say an nth root z = S’ln, where n is a prime number. If so; the 
previous argument needs to be repeated to eliminate these radicals. As we 
strip away the layers of radicals, we continually get expressions that are 
polynomials in the roots of the original equation under each radical. and 
the degree of the polynomial indicates the level: An nth root inside an 
ntth root necessarily contains a polynomial in the roots whose degree is it 

multiple of Tin. We saw this in t,he case of the cubic formula for solving 
z3 - ax2 + bn: - c = 0. which contains 03 = p"/27+ q2/4 under a square root 
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sign under a cube root sign, and this expression (the cubic discriminant) is 
-1/108 times ((u - u)(u - w ) ( u  - w)) , which is of degree 6. 

3.2. The last step in the proof. At the end of his argument, Abel started 
at the bottom layer of the hypothetical formula for a solution, that is, con- 
sidering a radical s'/", where S is a rational function of the coefficients (and 
hence a symmetric rational function of the roots) and m is a prime number, 
necessarily 2, 3 ,  or 5. (Unfortunately, Abel used the letter R instead of S, 
assuming his readers would know it wasn't the same R he had used earlier.) 
When expressed as a rational function of the roots, S1/" must assume 7n 

different values as the roots are permuted (since all m values of the radical 
are admissible in the formula). But Ruffini and Cauchy had shown that 
it is not possible for a rational function of five variables to assume exactly 
three different values when those variables are permuted. (This result is 
contained in the exercises to the previous lesson. Even stronger results are 
known. Caiichy had shown that the number of different values for a rational 
function of m variables must be either at most 2 or at least m, if m is prime.) 
Hence there are only the two possibilities m = 2 or m = 5. 

To rule out rri = 5, Abel noted that S1/" could be expressed in terms of 
t,he roots s ,  t ,  u, u, w as a multiple of the function s + cut + cu2u + cu3u + cu4w7 
where 01 is a primitive fifth root of unity. But this function assumes 120 
values as the roots are permuted, while S1/" assumes only five values. Thus, 
rri = 5 is impossible. Therefore nz = 2, and S1/2 is of the form 7- + A, where 
s is the discriminant times the square of a symmetric function and 7- is a 
symmetric function of the roots. In other words, the hypothetical solution 
process would have to begin by extracting a square root. (In this connection, 
see Subsection 2.4 in Lesson 11.) 

Then, working back up to the top layer of the formula, Abel argued that 
a root could be expressed as in Eq. 3, with m = 5; so that 

2 

where cu1..  . . ,a5 are the fifth roots of unity and 5 1 , .  . . ,x5 the five roots of 
p ( z ) .  But, he noted, the middle expression here has 5! = 120 different values 
when the roots are permuted, while the right-hand expression has only 10. 
Thus a contradiction has been reached. 

3.3. The verdict on Abel's proof. If some statements in our surnniary 
of Abel's proof seem rather vague, do not blame yourself or (even worse) 
t,lie author. Abel was arguing on a very abstract level about the properties 
of an algebraic formula for solving the quintic equation. Without a great 
(leal of background in algebra, it is very difficult to be confident that a 
general algebraic formula must have these properties. The reasons for some 
of Abel's statements seemed obscure. Indeed, in 1832, only a few years after 
his publication of this argument, the Prague Scientific Society declared that 
the question was still open, and offered a prize for a definitive proof. That 
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prize was won by William Rowan Hamilton, who submitted a paper in 1836 
that makes for very dense reading. 

Once it was accepted that no algebraic formula could be found to express 
the roots of a general quintic equation, a search was begun for a transcenden- 
tal formula. Such a formula was discovered by Charles Herniite (1822-1900) 
in 1858 and by Kronecker in 1861. The formula involves elliptic integrals, 
whose symmetries had been investigated in great detail by earlier mathe- 
maticians, Abel among them. We saw an example of such a transcendental 
solution in Vikte's solution of the irreducible case of the cubic. The formulas 
given by Hermite and Kronecker, however, are much more complicated. 

4. Problems and questions 

Problem 10.1. Suppose that f ( x )  is an algebraic function; that is. there is 
a non-zero polynomial p(s, y) such that p(x, f ( z ) )  = 0. Show that there is 
some integer n such that f ( s ) / F  + 0 and f(x)xn + 00 as s + 00. Then 
prove that f ( x )  = 2z and f ( s )  = s inz  are not algebraic functions. 

Question 10.1. Explain why any algebraic formula x ( q  b, c, d ,  e )  for solving 
the quintic equation would necessarily have to contain, at  some point, a cube 
root. Hint: Suppose that p ( z )  = 0 is a cubic equation. You can convert, it 
into a quintic equation by multiplying it by (z - r)(x - s).) 

Question 10.2. How do you reconcile the following two facts? ( I )  Abel 
showed that the radicals that  arise in the course of solving an equation by 
formula must be in the splitting field of the polynomial. (2) The radicals 
involved in solving a cubic equation with three real roots (and hence a 
splittirig field consisting of only real numbers) must  be complex numbers. 
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LESSON 11 

The Breakthrough: Galois Theory 

Since formulas exist for solving equations up to degree four, many algebraic 
numbers can be expressed by applying a finite sequence of rational numbers 
and root extractions to integers. Algebraic numbers satisfying equations of 
degree 4 or less with rational coefficients have such an expression. 

The converse is not true, however. The absence of a general formula 
for solving the quintic equation does not imply that an algebraic number 
whose minimal polynomial is of degree 5 has no such expression. Some of 
them do? because some particular irreducible equations of degree 5 can be 
solved by a finite sequence of root extractions and rational operations. An 
example is the equation x5 + 5x4 + lox3 + lox2 + 5 2  - 1 = 0, which has 
the solution 2 = - 1. The problem is to separate those that have such 
a solution from those that do riot. That problem was taken up by Abel’s 
younger contemporary Evariste Galois when he was in his late teens. (As is 
well known, Galois died at  the age of 20 in a duel. Abel, in contrast, lived 
t,o the much riper age of 26 before succumbing to tuberculosis.) 

The vagueness in Abel’s argument was removed by a closer analysis of the 
process that leads to a formulaic solution of an equation. Since the formula 
consists of a series of steps, in each stage of which rational operations and 
root extractions are applied to expressions obtained at a previous stage, it 
is not a large step to describe the process by saying that we start with a 
field containing the coefficients of a given polynomial but none of its roots: 
then enlarge the field to the smallest one containing one of the roots. If we 
don’t get all the roots at that stage, we continue to enlarge the field until we 
do. That is; we arrive at what, is called the splitting field of the polyriomial. 
‘The quest for an algebraic solution is an attempt to construct this field by 
enlarging the field one step at a time by udjoining roots of numbers i n  the 
cur7snt ,field. Notice the essential difference: A root of an equation is not 
necessarily the root of a number;  it may be a complicated cornbiriatiori of 
roots of numbers, or not even expressible in terms of roots of numbers. That 
is the refined problem we are now considering. We are focused OKI particular 
equations rather than seeking a general formula to cover all equations. 

It is essentially the definition of a field that rational operations applied 
t,o its niernbers do not, lead to any numbers outside the field. Hence all the 
enlargenients of the field occur when roots are extracted. As Abel pointed 
out. only roots of prime order need to  be ext,racted, sirice roots of composite 
order are obtained by successive extraction of roots of prime order. 
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Since we are interested primarily in equations of degree 5 or less: arid 
since we know that all square, cube: fourth, and fifth roots of unity can 
be expressed as algebraic formulas (in fact formulas involving only square 
roots), we shall assume a t  first, for the sake of simplicity, that the field IF we 
st'art with contains all root's of unity and all the coefficients of the equation 
we are trying to solve. It necessarily contains all rational numbers, since we 
are interested only in equations with complex coefficients, and every subfieltl 
of the complex numbers contains all the rational numbers. 

1. An example of a solving an equation by radicals 

It will enhance our understanding of the field-extension process to work 
through it one step at a time for a cubic equation. Since we have an algebraic 
formula for the roots, we know that they can be reached by adjoining roots 
of numbers. Let us see how this procedure works using the example p(x) = 
8z3 + 4x2 - 42 - 1 = 0, which is irreducible over the rational numbers: but, 
does have three real roots. 

We start with a base field IF, which is assumed to contain the rational 
nunibers and all three cube roots of unity but none of the roots. Although 
we shall not prove this fact at, the moment, the polynomial p ( z )  has no roots 
in F .  We plan to enlarge IF to a larger field F' containing the three roots. 
We would like, if possible, for IF' to be minimal? that is, the intersection of 
all fields containing IF and the three roots of the polynomial. But, as we 
shall see, if we try to reach it by adjoining roots of numbers: we will have 
to include some extraneous elements. We shall take two routes to this end. 
The first route is a natural one to try. We shall simply invoke the cubic 
forniiila. 

The substitution y = z + 1/6 produces the standardized cubic equation 
8y3 - (14/3)y ~ 7/27 = 0, that is, y3 - (7/12)y - 7/216 = 0. The geritzd 
formula for the solution is then 

7 21 
6 

Sirice we assumed that the cube root of unit,y ( Y  = -1/2 + ( & / 2 ) i  is 
in tlie base field IF, the complex number &i = 2 a  + 1 is in this field. arid 
hence so is the complex number w = (7  + 21&2)/2 = 14 + 21a. In order 
to evaluate this formiila? we require a cube root of this number, which lies 
outside the real numbers. We also require the complex conjugat,e of this 
cube root, which fortunately lies in the field F ( f i )  obtained by adjoining 
t,his cube root t,o the field IF. In fact, since W = I I L I ’ / / ? I I  = 343/w. we find 
t2hat = 7 / f i >  which lies in the field I F ( f i ) .  We can then express one 
of the roots as 

Since (2  belongs to IF. we can replace fi by o fi and a2 fi in this formula 
to gct the othcr two roots. Thus. we can solve the equation by adjoining this 
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one cube root. Notice, however that we have overshot the desired splitting 
field IF', which consists entirely of sums of terms, each of which is a real 
number multiplied by a root of unity. The enlarged field IF( fi) contains the 
extraneous element fi, which is not a sum of this form. This overshooting 
occurred even though we started with a field containing more elements than 
were really needed. The equation itself had rational coefficients, so that we 
could have constructed a field containing all its roots entirely within the real 
numbers. 

Thus our first choice of a number whose root we need to adjoin led us 
to a field that is larger than it needs to be. But then, the original field was 
larger than it needs to be, since we included the cube roots of unity in it, arid 
these numbers are not in the splitting field of the polynomial. So should we 
have expected the enlarged field to contain extraneous elements? Could we 
have avoided it by not including any in the original field IF? No. Even if we 
hadn't included a a t  the outset and had begun with the rational numbers 
Q as the base field IF, we would have had to adjoin a-or, equivalently, 
& % i n  order to compute the number produced by the cubic formula, and 
so the final field produced would have had to contain a if we used the cubic 
formula to solve the equation. Following this path and starting with Q, we 
would have had to adjoin first a or a! then fi! and so there would have 
been two adjunctions of roots instead of one. 

Let us try a second approach. The equation we are now considering can 
also be solved by adjoining a seventh root of unity that is not itself unity. 
Since x7 - 1 = (z - 1)(x6 + 2' + x4 + z3 + x2 + 1 + l), such a root w satisfies 
the cyclotoniic equation w6 + w5 + w4 + w3 + w2 + w + 1 = 0. The number 
T = ( w - t w 6 ) / 2  is a root of the equation, that  is, p ( r )  = 0. All three roots can 
be produced in this way by choosing different values of w. But once again, 
the number w is a complex number, not in the minimal splitting field, and 
we have overshot the mark. This example shows that there are subtleties 
involved in solving equations by adjoining roots of numbers. For one thing, 
i ts we just saw, the root whose adjunction solves the equation is not unique. 

We can obtain the minimal splittirig field by adjoining just one root ’r 
o f  the equation. The other two roots are then easily shown to be 2r2 - 1 
aiid 4r" - 3r. But r is not the root of a number, so that this way of solving 
t,he equation is not a solution by radicals. It appears (and is true) that this 
equation cannot be solved by radicals within i t s  minimal splitting field.  

2. Field automorphisms and permutations of roots 

To study the general problem of finding a splitting field, we need to see how 
permuting the roots of a polynomial affects the enlarged field. A typical 
example occiirs when we adjoin a nonreal root r of an equation with real 
coefficients to a field that originally contained only real numbers. Along 
with that root. we automatically get its complex conjugate F ,  which is also 
it root. Interchanging the roots f and T ,  or more generally and z for all z in 
the larger field, preserves the field operations (addition and multiplication) 
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arid leaves the elements of the original field invariant. Such a mapping is 
called a field automorphism. In this case, it is a field automorphisni leaving 
the base field invariant, since a real number is its own conjugate. 

That situation holds in general. Each permutation of the roots of a 
polynomial p(x) that  have been adjoined to a field F to  produce a larger 
field IF’ results in an automorphism of the field IF’ that  leaves the field IF 
invariant. In the example considered in the previous section? the minimal 
splitting field admits three autornorphisms that leave the base field invariant. 
One is the trivial automorphisrn that leaves all elements of F’ where they 
are. Another takes the root r to 2r2 - 1, 2r2 - 1 to 4r3 - 3r, and 4r3 - 3r to 
1’. The third takes r to 4r3 - 313, 4r3 - 3r to 2r2 - 1, and 2r2 - 1 to I-. These 
are the only possibilities. There is no autornorphism that interchanges two 
of the roots and leaves the third one fixed. (See Problem 11.7, which is a 
slightly disguised treatment of the equation we have just discussed.) 

The larger field IF( fi) that we constructed also admits the three auto- 
rnorphisms just listed. Even though it contains complex numbers, this field 
does not admit complex conjugation as an automorphism, since IF contains 
a ,  which must be left fixed. On the other hand, if we had started with just 
the field of rational numbers as IF, omitting the cube roots of unity, then 
F (  fi) would have admitted complex conjugation as a field automorphism 
leaving IF invariant. But coniplex conjugation leaves all three roots fixed. 
In  that  case, we would have had to adjoin Q to IF first,, before adjoining fi 
to solve the equation. since the latter is not the root of an element of IF. In 
other words, we would have had to adjoin two radicals instead of one. 

Field autoniorphisms leaving a subfield invariant lie at the heart of Ga- 
lois theory. The automorphisms of a field form a group G. Those that leave 
a subfield invariant form a subgroup H of that group. In the context of 
field extensions, there is a natural one-to-one correspondence between the 
automorphisms of the splitting field of a polynomial p ( x )  that leave t,he 
base field invariant and the permutations in some subgroup of the group 
of perrriutations of the roots of the polynomial being factored. E x h  au- 
tomorphism necessarily permutes the roots, since it preserves polynonii& 
with coefficients in IF, and in particular preserves p(z) .  That  is, if T is 
a root and T is an automorphism, then T(r )  must also be a root,. siricc, 
p ( r ( r ) )  = T ( p ( r ) )  = r(O) = O. Conversely, if a permutation of the roots 
is given, there is a t  most one aiitorriorphisni of the larger field that, brings 
about that permutation of the roots in this way. 

The set of all autornorphisms of the splitting field IF’ that leave the basc 
field F invariant is called the Galois group of the equation (or polynomial) 
over IF. Because of the autoinorphism~perrnut,atiori correspondence, it is iisc’- 

fill to think of the Galois group of a polynomial as a group of perrniitatioiis 
of the roots of the polynomial. 

We shall now illustrate these concepts using the example of a cubic 
polynomial x 3  - ax2 + hz - c with ra,tional or integer coefficients (1,. ti. c and 
irrational roots u. ii, w, taking the rat,ional numbers Q as a base field. 
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2.1. Subgroups and cosets. To solve the equation by formula, we first 
adjoin the square root of the cubic discriminant d3 = dp3/27 + q2/4, where 
p = b - u2/3  and q = ub/3 - 2a3/27 - c. Although the enlarged field Q(d: l )  
does not yet contain any of the roots, each of the six permutations of u, v: w 
generates an automorphism on the enlarged field Q ( d 3 )  leaving the elements 
of base field Q unchanged. Three of thern, as noted, generate the trivial 
automorphism, that is, they also leave the elements of the enlarged field 
Q(d3) unchanged. Those three, the identity permutation that moves nothing 
and the two cyclic permutations ( W J W )  and (vuw), form a subgroup of the 
full symmetric group Ss. This subgroup consists of the even permutations. 
It is called the alternating group on three symbols, and usually denoted 
AS or Z3. The other three elements of S3-the three transpositions ( U U ) ?  

(7uu), and (vw)-form what is called a coset relative to this subgroup. Any 
two of them differ by an element of the subgroup AS, since, for example 
(V.) = (wuw)(wu). 

Remark 11.1. The order of cycles that have common elements is not a 
matter of indifference. Our convention is that ( U ~ L W ) ( W U )  means first do 
(vuw), then do (wu) ,  that is, starting with the order (u, u , ~ ) ,  put v where 
u is, 7~ where w is, and w where u is. The result of that  is the arrangement 
(w,ui,u). Next do (uw), that is, interchange u and w. The final result is 
( ‘u :  7 4  w ) ,  which is the same as doing (w) on the original ordering. Thus, as 
asserted (zm) = (vuw)(wu) .  

2.2. Normal subgroups and quotient groups. The subgroup A3 arid 
its single coset (wu)A3 can be made into a group called the quotient group 
of S3 over AS. It is in this case a very uncomplicated group consisting of 
two elements, the set A3 of even permutations and the set (vu)il3 of odd 
permutations. The group operation in this case is trivial: even plus even = 
even = odd plus odd, even plus odd = odd. That is, an odd permutation 
composed with an even permutation is odd, but the composition of two 
even or two odd permutations is even. We shall write the composition of 
t,wo permutations 7 o o as CTT. (Note the reversal of the order here. When 
we regard them as functions, it. makes sense to put the operation performed 
first, on the right. But for ease of reading, it makes more sense to proceed 
froin left to right.) 

The condition that makes it possible to define a quotient group iri  gen- 
cral, given a group G and a subgroup H ,  is that  the subgroup H be what, 
is called norm.ul. That means the coset to which a composition m- belongs 
depends only or1 the cosets to which 0 arid T belong, not on the particular 
choice of o and r within those cosets. The subgroup A3 in 5’3, mentioned 
above, is normal, since the product of any two odd permutations is even, 
the product of any two even perniutat,ions is even, arid the product of an 
wen permutation with an odd ptxmutation is odd. 

In the general case of a normal subgroup, if we choose two other per- 
iinitat,ioris from the same cosets, say CT’ = aX and 7’ = ~ p .  where X and p 
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belong to H ,  the product dr' must belong to the same coset as 07 if H is 
to be normal. That means O X T ~  = r r v  for some v E H .  Putting it another 
way, X T ~  = w, or .~-lXr = upp1, where 7-l represents the inverse of the 
permutation 7 ,  the one that puts everything back where it was before 7 

moved it. Since H is a subgroup, u~1-l belongs to H ,  and so T - ~ X T  E H .  
Since X was an arbitrary element of H and r an arbitrary element of G, 

this last relation says that T - ~ X T  belongs to H for any X E H and any 7 E G. 
Another way of stating the same thing is to say that the left coset r H  and 
the right coset HT are the same set. A subgroup of index 2, that  is, having 
only itself arid its complement as cosets, is necessarily normal. (The coset 
AH is H if X belongs to  H and AH is the complement of H otherwise, and 
the same is true for the right cosets.) An example of a nonnormal subgroup 
of S:3 is the subgroup K consisting of the identity and a single transposition, 
say ( 7 1 t h ) .  If we take X = (uu) and T = (uw)  = T - ~ ,  we find that the left 
coset, (’uw)K consists of ('uw) and ( V W ) ( V U )  = (ww)(uu) = (wu.). while the 
right coset K(7iw) consists of (wu)  and (uw)(uw) = (u71.w) = (wuu).  

2.3. Further analysis of the cubic equation. We now resume our dis- 
cussion of the field extension process when solving a general cubic equation. 
After we have adjoined d3, the enlarged field Q ( d 3 )  contains the element 
r = - q / 2  + dy. As we saw in Lesson 9, depending on the choice of d3, this 
will be either 

( U  + 07;+ 2)) 2 

>:3 

( 7 L  + 01% + 0 1 1 :  

if cl:j = ( i /J108)(~ - W ) ( U  - W ) ( V  - w), or 

3 

i f &  = (a /J108)(v- .~ l ) (u-w)( i ! -w) .  Since the enlarged field contains both 
d:( and 4 3 ,  it is irrelevant which we choose. Just to keep things simple, we 
choose the first of these, and take fi = i ( u  + ov + a271~). 

('u + ov + 0 2 w )  to the field Q ( d 3 ) ,  to get 
the larger field Q ( d g ,  fi): we will be adjoining the cube root of an elernerit 
in a)(&) .  We know that the ficld Q(&) ,  and the element T in particular, 
is invariant under even permutations of u, v, and 7u. An odd perniutat,ion 
0 ,  however, will have the effect of interchanging r = - q / 2  + d : ~  with itjs 
conjugate r* = - 4 / 2  - d g .  The group of autoniorphisins of a(&, fi) that 
leaves the new base field Q ( d 3 )  irivariant is therefore A S ,  the subgroup of even 
permutations of the roots. This group does not leave the newly enlarged 
field Q ( d 3 ,  fi) invariant, since even permutations of the roots can take $7 
to c i  fi and cy2 fi. The enlarged field contains all three roots u. ’ (1% U J  and 
is closed under all permutations of them, but some permutations move the 
elements of Q ( d 3 ,  fi) around. 

To sum up, there are six perinutatioiis of the roots u, 11, w .  Each gen- 
erates an automorphism of the field Q ( d 3 ,  fi) that leaves the base field Q 
invariant,. The even permutations form a subgroup that leaves the larger 

If we adjoin the element fi = 
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(intermediate) field Q ( d 3 )  invariant. There are also permutations of the 
roots ~ the three transpositions- that  do not leave Q(&) invariant. 

The enlarged field Q ( d 3 ,  fi) really does contain all three roots. For 
example. it contains 

a a 2 - 3 b  -+- + F, 
3 9+5  

which, when we substitute a = u + 7) + w, b = uu + uw + uw, and fi = 
i ( u  + CYV + a’w),  becomes 

u + V + w 
3 

u2 + u2 + u? - uu - U’UI - uu111 

3(u + CYV + dw) 
u + CYV + cY2w 

= u  
3 

+ + 

2.4. Why the cubic formula must have the form it does. Could a 
solution of the general cubic equation be achieved by adjoining first a cube 
root of some number in the base field, then a square root? As far as the 
technique of counting the number of values assumed by a function goes, the 
order in which root extractions are performed is irrelevant. From that point 
of view a cubic formula that consists of terms of the form 

J P  + QB+ R(=)" 

where P ,  Q ,  R,  and S are rational functions of the coefficients a ,  6, and c, is 
conceivable. But, as we saw in the previous chapter, Abel was able to rule 
out this possibility in general, showing that the first root extraction in any 
general formula must be a square root. More precise proofs of this fact can 
be found in later papers, such as the paper by Michael Rosen cited at, the 
end of Lesson 10. 

By looking at, the field extension process, we can see why such a formula 
is impossible. Before giving the argument, we note that the Tschirnhaus 
method of solving the cubic might seem to be a contradiction of this prin- 
ciple: since it, requires first solving the cubic equation z3  = N ,  and t'hen 
solving a quadratic equation in order to  get the solution of the original cii- 
bic. However, in order to find the N that, occurs in the pure equation for z? 
it is necessary first to find the appropriate substitution z ,  and that involves 
solving a quadratic equation. The order of operations when an equation is 
solved by radicals is reflected in the structure of the Galois group of the 
equation. as will be explained below. 

To see why a formula like the one shown above cannot produce roots of 
the general cubic equation, let us begin once again with the base field and 
form some expression S that is a rational function S ( a ,  b, c )  of the coefficienh 
and lierice a symmetric function of the root,s u, 2). w. We know that if a cube 
root of S appears in a general formula for the solution, it must be a rational 
function of the roots. If we try to find a rational function of the roots. say 
, f ( u . , o . ~ ) ,  such that ( f ( u , u ; w ) )  = S ( a , b , c ) ;  we see that permutations of 
the roots leave S unchanged, since they leave a ,  b. arid c unchanged. It 
follows that , f ( u , ~ u ~ w )  rnust also be a cube root of 5'. This means that one 

3 
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of the following three possibilities must hold: 

f ( 7 L  u> w) = f ( u ,  ‘ U ,  w )  , 
f(., u, w) = N f ( U ,  t i ,  w) , 
f(l.1: ‘U!  .i) = n2f(u.  2!> U�) ~ 

where a is a primitive cube root of unity. But the second of these ini- 
plies f ( u ,  u ,  w )  = n f ( v ,  u, u,) (interchanging the first two arguments, by as- 

surnptiori? multiplies the function by a ) ,  which in turn implies f ( u ,  v ,  w) = 
c v 2 f ( u .  21: w), and hence f ( . u ,  v,  w) = 0. Likewise, the third possibility must 
be ruled out. But that  means that f ( u ,  v, w) is invariant under transposi- 
tions. and hence invariant under all permutations. In other words, f ( 7 ~ ,  v ,  w )  
is symmetric in the roots, and hence, since it is a rational function, can be 
expressed in terms of the coefficients a ,  b, c. Thus f ( 7 4  71,  w) belongs to t,he 
base field F, and we get no enlargement of the field in this way. Thus cannot 
get a formula for solving a general cnbic equation that begins by taking cube 
roots of rational functions. 

2.5. Why the roots of unity are important. When we do not assiinie 
that our base field IF contains roots of unity, the field extension process 
just described beconies more complicated. We can show why, using as ari 
example the equation 

Because the polynomial p(x) = n:‘3 + 6n: - 2 is an increasing function---its 
derivative 3x2 + 6 is always  positive^ -it has a single real zero. Inspection 
reveals t,hat this root is between 0 and 1. Since the only possible rational 
roots must be integers that  divide 2 (see the Appendix), this polynomial has 
IIO roots in the field Q of rational numbers. Since the equation has one real 
root arid two imaginary roots, we can distinguish the three roots u, v,  arid 
� ~ 1  by letting u be the real root, from which it follows that v and %u must be 
- - P L / ~  + yi for some positive nuniber y. 

We could use the cubic forniula to firid the roots, but right now we are 
more ir ikested in the extension process. Let us adjoin the real root w to 
tlie base field, getting tlie larger field Q(u) ,  which consists of all riiirnbers of 
the form 

In doing so! we are not “solving by radicals,” since the riurnber we adjoined 
is riot a root of a rational number. This field. which corisists of real numbers 
only. does riot contain 7) or ~ L I .  If there were any nontrivial autoniorphisnis 
of Q(u) that leave Q invariant, the elerrleiit ZL would have to map to a root 
of the equat,ion 2‘’ + 6x  - 2 = 0. Since u is the only elt:nient, of Q ( P L )  that 
satisfies this equation, it would have to rnap to itself. Thus, there arc as yet 
110 nontrivial autoniorphisrns leaving Q invariant. Thc absence of nontrivial 
autornorphisnis of Q(u) leaving Q invariant is also reflected in the fact that, 
the subgroup of the complete Galois group of this polyiiomia.1 leaving Q ( ~ L )  
invariant is riot a normal subgroup: as we shall now see. 

3 
;I: + 6 2 ; - 2 = 0 .  

7’ + S‘U + t fU2 . 
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There are permutations of u, u, and w that leave the larger field Q(u) 
invariant, just as the even permutations left the field IF(&) invariant in 
the general cubic. There are in fact two such permutations, the identity and 
the transposition ( vw) ,  which corresponds to the conjugation autornorphism 
(1 + bi H a - bi in the complex numbers and leaves each real number fixed. 
These form a subgroup H of the full permutation group on three symbols, 
denoted 573. As we saw above, this is not a normal subgroup of the group 
Ss, which turns out to be the Galois group of this polynomial. That fact 
is reflected, as Galois noticed, in the fact that adjoining one root of the 
equation did not produce a field containing all of its roots. The subgroup 
H consists of permutations with a fixed point, corresponding to the fact 
that they must all leave u fixed. But no such subgroup can be a normal 
subgroup of S3, since c r - ’ ~ c r  will not leave u fixed if 7 does leave it fixed 
arid 

In fact, the solution of the equation itself has not been advanced in this 
way. It is true that over the larger field Q(u), the polynomial x3 + 6 2  - 2 
factors as (z - u )  ((x2 + uz + (u2 + 6)) (since u3 + 6u = a ) ,  and so we could 
find ’u and w by solving the quadratic equation 

transposes u with a symbol that 7 moves. 

z2 + uIc + (6 + 2) = 0 .  

But we would first need to find u, and the procedure for doing that, is to 
solve the original equation. 

Remark 11.2. The cubic formula reveals that  u = s- n = fi(@- 1). 
so that, the field extension Q(u) is contained in the field extension Q( a). 
Since both fields are of dimension 3 when regarded as vector spaces over Q. 
they are in fact, the same field. 

and a2 @ - a fi. where 
c): is a primitive cube root of unity, so that we would get all three roots of 
t,he equation in the field extension F ( u )  if the base field JF contained all three 
cube roots of unity. As a consequence, the Galois group of this equation over 
t,he field Q(n) is simply the cyclic group 2 3  of three elements, whose table 
of operations is the addition table of the field of three elernents discussed in 
Lesson 1. 

The other roots u and w are then a@ - n2 

2.6. The birth of Galois theory. The idea of looking a t  the way perrriu- 
t,ations combine in order to study the solution of equations first came to light 
in France during the late spring of 1832, simultaneously with a paroxysni 
of political unrest. This unrest was described by Victor Hugo in his great 
novel Lrs nrise’Tables, whose dashing young character Marius Pontmorericy 
has rriuch in common with our present hero Galois. including a radical polit- 
ical coniniitnierit, a love gone awry, and a serious gunshot wound sustained 
during the insurrection of June 1832. Unlike the unlucky Galois, hfariiis 
survived arid went on to live happily ever after with his love. 
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The night before the duel that  led to his death, Galois wrote to a friend 
that he had enough material for three papers, one of which was already 
written. He went on: 

By Propositions I1 and I11 of the first paper, one can see a 
great difference between adjoining one root of an auxiliary 
equation and adjoining all of its roots. 

In both cases, the group of the equation splits into [cosets] 
such that a fixed permutation takes one into another. But 
the condition that these [cosets] have the same substitution 
holds only in the second case [when all the roots are adjoined]. 
Putting the matter another way, when one group G contains 
another group H ,  the group G can be partitioned into [cosets] 
so that G is the union of the sets H ,  H a ,  Ha’,. . . .  It can 
also be partitioned into [cosets] in such a way that G is the 
union of the sets H ,  r H ,  r ’ H ,  Ordinarily, these two 
pa,rtitions are not the same. When they are the same, we 
call this a proIier part i t ion [a partition corresponding to a 
normal subgroup]. 

It is easy to see that when the group of an equation has 
no proper partition [no normal subgroiips], no matter how 
on(: transforms the equation, the groups of the transforrned 
equation will always have the same number of permutations. 

In contrast, when t,he group of an equation admits a 
proper decomposition, so that it can be partitioned into AJ 
[cosets] of N permutations each, the given equation can be 
solved by rriearis of two equations, one of which will have a 
group of A4 permutations and the other a group of N per- 
mutations. 

We have inserted the modern word coset here? where Galois himself used 
the word group. Again, the reason for these assertions is that when the sub- 
group leaving the elements of the extended field invariant is normal, it means 
that the extended field contains all the roots of the equation of rnininial de- 
gree (roots of the m i n i m a l  polynomial)  satisfied by each of its elements. As 
Galois said. when the group of the equation contains a (normal) subgroup 
of N elements having A4 cosets, then the group essentially split,s into the) 
product of' the subgroiip and the quotient group (consisting of the cosets). 
Each of these is the Galois group of' a simpler equation, corresponding to ail 

algebraic substitution in the original equation. 
We have seen this principle at work in the case of the general cubic: 

equat,ion x3 - ax2 + b z  - c = ( x  - a / 3 ) 3  + p ( x  - n / 3 )  + q = 0 ,  which splits 
into two pure equations 



3. A SKETCH OF GALOIS TIIEORY 135 

corresponding to the normal subgroup A3 consisting of even permutations 
of the full Galois group S3, after which we can write the solution of the 
equatioii as 

3. A sketch of Galois theory 

What Galois wrote in the passage just quoted sums up Galois theory in 
general terms, although onct may well disagree with the claim that any of 
this is “easy to see.” (Galois got in trouble a t  a university examination 
when ho told the examiners who asked him for proof of an assertion that 
it was obvious.) We cannot, of course, prove all these assertions in detail. 
What we can do is show in general how the theory applies to the solution 
of equations by radicals. 

Let us begin by stating the fundamental facts of Galois theory for the 
special case of interest to us, in which the base field is the rational numbers 
Q. We consider a polynomial p ( z )  that  has rational coefficients, but no 
rational roots, and let S be its splitting field, that  is, the smallest subfield 
of the field of algebraic (or complex) numbers that contains all the roots of 
p(z ) .  The Galo is  group of p is the group G of automorphisms of S leaving 
each ral,ional number fixed. The following facts are known: 

1. The field S can be regarded as a vector space V over the field Q. As 
such, it has finite dirnension. 

2. The Galois group G is finite, and the number of elements in it. equals 
the dimension of the vector space V. 

3 .  Each automorphism in G permutes the roots ofp(z) ,  arid different au- 
toniorphisms correspond to different permutations of the roots. Hence 
the Galois group can be regarded as a group of permutations of the 
roots. 

4. There is a one-to-one correspondence bctween the subgroups H of 
the group G and the subfields K of the field S. Each subfield IK 
corresponds to the subgroup H(K)  consisting of the automorphisms 
in G that leave the elements of K fixed. The subgroup H ( K )  is the 
Galois group of p ( z )  over the field K. 

5. If IK is any subfield of S, then H(K) is a nornial subgroup of G (so that 
the quotient group G/K is defined) if and only if every polynomial 
that  is irreducible over Q and has one root in K has all of its roots in 
K. In that case, K is naturally called a n,ormal extension of Q. 

6.  If K is a normal extension of Q, then the group of automorpkiisnis of 
K that leave Q invariant is the quotient group G/H(IK).  

We note that if K = Q( fi), where p is prime and ui E Q, then the group 
G/H(K)  is the cyclic group 2, of remainders when integers are divided by 
p ,  with addition as the group operation. This is very easy to see, since K 
consists of numbers of the form TO + i-1 fi + TZ( @ ) 2  + rn( fi),-’. Ari 
autoriiorphisrn T is determined by its effect on @, which must be a pth 



136 11. THE BREAKTHROUGH: GALOIS THEORY 

root of IU ,  and hence a power of fi. Thus, r must permute these powers 
cyclically, and so the group of automorphisrns of IK leaving Q fixed must 
be 7 ,  r2- . . . , r p - ’ ,  rp.  (This last automorphism is the identity, which leaves 
everything fixed.) 

4. Solution by radicals 

Let us now start with a base field F that  contains all the roots of unity, along 
with the rational numbers that it necessarily must contain. Let p(x) he a 
polynomial with coefficients in IF, but no roots in this field. It is possible to 
extend the field to a larger field in which it has roots (the complex numbers 
certainly contain all of t,hem). The question is whether one can get from 
the smaller field to the larger by rational operations and root extractions, 
in other words, by successive enlargements of the field via extraction of 
roots of prime order. Let us suppose that it is possible to do so. Starting 
from a field IK = IF(&, . . . ,On) that  has been reached at some stage of the 
enlargement operations, we adjoin the qth root of some element in the field 
IKI say &+I = +'$, where q may be assumed prime. The field IK(&+l) = 

on+,) consists of elements ko +klQn,+l  +k26;+, 
, k,-l belong to K. Since the original field F 

of unity, this enlarged field contains all q of the qth roots of d. It is therefore 
a normal extension. (Adjoining one root &+I of t,he equation xq - 4 = 0 
automatically resulted in the adjunction of all the roots of this equation.) 
The automorphisins of K(&+1) that leave K fixed form a group with q 
elements, and there is "essentially" only one such group. That group is the 
c:yclic group 2, with q elements, which are the remainders of the integers 
after division by q ,  with addition as the group operation. By "essentiallv," 
we mean that any two groups with y elements can be matched up element, 
bv element in such a way that the product of two elenients in one group 
is always paired with the product of t,he corresponding two elements in the 
other group. Such a pairing is called an isorno~phism. 

If this process eventually produces a field in which the polynomial splits, 
wc shall have produced a chain of fields IK c K1 c . . .  c R,-l c K,> in the 
last of which the polynomial p ( z )  can be factored completely. Corresponding 
to them is a set of subgroups of the Galois group G 3 GI  2 . . . 3 G,-1 2 G,. 
where G is the full Galois group and G,. consisk of the identity autoinor- 
phism alone. GI, consists of the automorpl-iisrns of K, that  leave each eleinent 
of KI, fixed. The group of the extension from KI, t,o KI ,+~ ,  which consist,s 
o f  the autornorphisms of that leave each element of KI, fixed, can bc 
regarded as the quotient group of GI, modulo G I , + ~ ;  that  is, it consist,s of 
tlie autornorphisms of K,. that leave KI, fixed (the group Gk) but regards 
two automorphisms c and r as <%he saine" if c7-l leaves &+I  fixed. 

Thus, transferring attention from the field extensions t,o the Ga.lois 
group, we see that the equation is solvable by radicals if the Galois group 
has a decreasing chain of subgroups, each of which is a normal subgroup of 
its predecessor, and the quotient group of each over its successor is a cyclic: 
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group of prime order. A group having this property is called a solvable 
group. It was proved by Walter Feit (1930-2004) and John Thompson (b. 
1932) iri a famous paper that occupied an entire issue of the 1963 Pacific 
Journal of Mathematics that every group having an odd number of elements 
is solvable. On the other hand, the alternating group As, which consists of 
the group of even permutations of five symbols, has only two normal sub- 
groups: A5 itself and the subgroup consisting of the identity permutation 
alone. It is therefore not solvable, and as a nonobvious consequence, neither 
is the full symmetric group S5, which consists of all the permutations of five 
synibols. 

The decreasing chain of subgroups with successive quotients equal to 
cyclic groups of prime order is in general not unique. However, by a general 
theorem, the quotient groups in any two such series can be paired up in a way 
such that each quotient group in one series is paired with a quotient group of 
the same order in the other series. In the case of t,he general cubic equation, 
whose Galois group is the symmetric group S,, there is only one normal 
subgroup, namely the subgroup A3 consisting of the even permutations (the 
identity and the two 3-cycles). As mentioned above, this group is called 
the alternating group; it has exactly the same group structure as the cyclic 
group 2,. Hence for this group, the order of the chain is unique. That is 
why the cubic formula must have a square root inside a cube root, rat,her 
tha.n the other way around. 

4.1. Abel's theorem. From our sketch of the way Galois theory works, we 
can now prove more than Abel set out to prove. Not only is there no general 
formula for solving a quintic equation, there are even particular quintic 
equations with rational coefficients whose solutions cannot tie expressed as 
a finite sequence of arithmetic operations and root' extractions starting from 
rat,iorial numbers. 

In fact,, all we need is a polynomial of degree 5 that has three real roots 
and two complex roots. The polynomial p ( z )  = x5 - 102 + 2 mentioned in 
Lesson 1 will do. By Descartes' rule of signs (see the Appendix), it has at, 
most two positive roots and one negative root. Sirice p ( - 2 )  = -10, p ( 0 )  = 2, 
p(1) = -7, and p ( 2 )  = 14, it does indeed have three real roots s, t ,  and 
and two cornplex roots v and w: which are conjugates of each other. Now 
t,he automorphism 2 + i y  H :r - i y  leaves the three real roots fixed arid 
interchanges the two complex roots; that is, it is the simple transposition 
(71 'w) .  Hence the Galois group of this equation over the rational niiinlms 
(which do riot include all roots of unity, of course) contains at  least oiie 
simple t,raiisposition. 

We can extend the base field by adjoining roots oiie at a time, starting 
wit,h s. The first enlargement results in a field consisting of elements po + 
p l s  + p2s2 + p3s3 + p4s4, that  is, a field of dimension 5 over the base field. 
When we get to the splitting field, we will find that its elements can t ie 
expressed as linear combinations of 5N new elements, and hence the Galois 
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group is a subgroup of 5’5 consisting of 5 N  elements. By a general theorem 
due to Peter Ludwig Mejdell Sylow (1832-~1918), any group of 5N elements 
contains an element of order 5. But the only permutations of order 5 in 
the symmetric group 5’5 are the 5-cycles. (See Problem 9.7.) By another 
general theorem, one that is not difficult to prove, any perniutation in 5’5 can 
be written by iterating any given 5-cycle and any given 2-cycle. Hence the 
Galois group of this equation over the rational numbers is the full symmetric 
group 5’5. But this group is not solvable. It follows, as Galois said, that the 
solution of this equation cannot be split into the solution of two equations 
of lower degree. No algebraic substitution will simplify this equation. In 
particular it is not, solvable “by radicals,” as an algebraic formula. 

Our exploration of some key moments in the history of algebra is now 
complete. The rest of this final lesson is devoted to some simple examples 
to make the basic ideas of Galois theory clearer and give some insight into 
what it can and cannot do. 

5. Some simple examples for practice 

The extension process illustrated above by the example of the cubic formula 
is perfectly general. To provide further clarity, we give some elementary 
ex aniples. 

Example 11.1. ( A  quadratic extension.) Let us begin with the equation 
r2+1 = 0. Here the coefficients are rational numbers, indeed integers. Herice 
our “base“ field IF could be any field between the rational numbers and the 
real numbers. If we adjoin just one root i to this field, we autoniatically get) 
the second root -i inside the same enlarged field. That, enlarged field, which 
we denote F(i), consists of all complex numbers a + bi where a and b belong 
to the original base field IF. In particular, if we start with the real numbers 
R,  the enlarged field is all of the complex numbers: C = R(i ) .  Adjoining 
one root of one quadratic equation to the real riumbers has led to a field in 
which every equation whatsoever has a full set of roots! 

To illustrate the connection with permutations of roots, we now ask 
what, happens in the enlarged field if we permute the two roots. That, is. 
every number a + bi is int,erchanged with its complex conjugate (L - bi. As 
wc have now seen several times, the mapping z = a + bi H 2 = a ~ b% 
has two important properties: (1) It preserves the field operations. sirice 
z + w = Z + W and z%li = ZW; in other words, it is an autoniorphisni of the 
enlarged field. (2) I t  leaves the original base field invariant: since = z if z is 
a real number. Obviously, repeating this permutation restores each riuniber 
to its original place. To sum up, the group consisting of those autoniorphisrns 
of the enlarged field that leave the base field invariant corresponds to the set 
of permutations of the two roots, which consists of just two perniutatioiis: 
one that leaves each root where it is (the identity permutation) and one that, 
interchanges the two roots. This group is the Galois group of tlie equation 
.I? + 1 = 0. It is the cyclic: group of two elements, denoted 22. 
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Example 11.2. (Another quadratic.) Consider now the quadratic equation 
x2 + x + 1 = 0, with some subfield F of the real numbers as the base field. 
In the complex numbers, the roots of this equation are the two complex 
cube roots of unity, (Y = -112 + ( & / 2 ) i  and 6 = -1 - u = u2. Obviously, 
the enlarged field F(N) automatically contains c y 2 ,  and cy = -1 - u2 is 
automatically in the enlarged field F(cx2). Hence it does not matter which 
root we adjoin. The polynomial x2+x+ 1 immediately splits in the enlarged 
field into the product (x-a)(x+cy+l). As before F(a) consists of expressions 
of the form r + scy, where r and s belong to the base field F. Division in this 
enlarged field is performed using the identity 

S 
(Y - 

r - s  - 1 
r + s u  ~ r 2 - r s + s 2  r 2 - r s + s 2  

The denominator in this expression cannot be zero when r and s are real 
numbers and not both zero, since it equals ( r  - ~ 1 2 ) ~  + 3s2/4. 

How will multiplication be affected if we permute the roots N and fi'? 
Since this mapping is just the complex conjugation r + sor H r + scy that 
we have already considered, it is indeed an automorphism that leaves the 
base field invariant. Hence the Galois group of this quadratic equation is 
also the group of permutations of the two roots. That is, the group is the 
cyclic group 22. 

You have no doubt by now guessed that for any quadratic polynomial 
having coefficients in a field but no roots in that field, the Galois group is 
the cyclic group 22. 

Example 11.3. ( A  cubic extension.) Consider the equation x3 - 2 = 0. 
taking the base field to be t,he rational numbers Q. This equation has three 
roots in the complex numbers, one of which-the real number @-we shall 
denote by p .  The other two are the mutually conjugate numbers p a  and p&, 
where, as in the preceding example, o is a complex cube root of unity. 

This time, the enlarged field Q ( p )  does not contain any other roots, since 
the real numbers are a larger field containing the rational numbers arid p .  
but not p a  or pa’. The situation is the same one we encountered above 
when analyzing the equation x3 + 6x - 2 = 0. In fact, Q ( p )  consists of all 
expressions of the form r + sp + t p 2 ,  where r ,  s; arid t are rational numbers. 
It is obvious that when two such expressions are added, the result is an 
expression of the same form. The product ( r  + sp + tp2)(u + up + .wp") is 
also easily seen to be ( ru  + 2S1L’ + 2tv) + (rc + S I L  + 2tiu)p + (TW + su+  t 7 ~ ) ~ ~ .  
It is not quite so obvious how one would divide by a nonzero number. The 
solution to that problem is provided by the identity 

( 2 t 2  - r s ) p  (s2 - 7t)pl 
+ r3 + 2s" + 4t3 - Grst + r3 + 2s" + 4t" - Grst ' 
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The denominator here cannot be zero if T ,  s ,  and t are rational and riot all 
zero. We leave the verification of this fact as an exercise (Problem 11.2). 

By the same reasoning, adjoining p a  will not bring p or p a 2  into the 
enlarged field, since, for exaniple, the equation p = T + spa + tp2a2 = 

(T  ~ t p 2 )  + ( s  - t p ) p a  would imply that a = ( p  + tp2  - T ) / ( ( s  ~ t p ) p )  is a 
real number. 

Now consider what possible automorphisms there can be in the enlarged 
field Q ( p )  that leave the base field Q invariant. Since p3  = 2? any such 
aiitomorphism z H z* ,  would have to be such that (p*)" = (p3 )*  = 2* = 2. 
Herice p* would have to be a cube root of 2 in Q ( p ) .  But p is the only 
cube root of 2 in this minimally enlarged field. Therefore the automorphisrri 
woiild have to be (T + sp + tp2)* = T + sp* + t ( ~ * ) ~  = T + s p  + t p 2 .  In other 
words. this group of autornorphisnis is the trivial group consisting of the 
identity element alone. 

Now, if we enlarge the new field by adjoining p a  as a second root, we 
automatically get not only the third root p a 2  = - p a  - p in the enlarged 
field Q ( p , p a ) ,  but also a ,  since cy = pai/p.  Conversely, adjoining CY to Q ( p )  
brings in p a  and p a 2 ,  so that the newly enlarged field is exactly what we 
would get by adjoining a to the field Q ( p ) .  That is convenient for us since. 
by what we showed above, it means we can express every element of the 
newly enlarged field in the form 

(T + s p  + t$) + ( u  + ’up + w p 2 ) a  . 

Thus, if we first, solve the auxiliary equation rc2 + x + 1 = 0, the splitting 
field of the original equation becomes easier to characterize. At this point. 
it is no surprise that starting with a base field containing all cube roots of 
unity simplifies both the extension process and the Galois group. 

Now that we have a field large enough to split the polynomial z3 ~ 2 = 

( z -p) (z -pa) (z -pcU) ,  but not any larger than it needs to be for this purpose. 
we can ask again, what are the automorphisms of this field that leave the 
rational numbers invariant? Since every element is written in ternis of p and 
o? we a,re merely asking where these elements must map. From what was 
sliowri above, Q must map either to itself or to f i  = -1 - a: and the 1att)er 
mapping is a genuine possibility, since it leaves riot only Q, but also Q ( p )  
invariant. Are there any others? We know that p would have to map to 
another cube root of 2; that is, the map would have to be p* = p a  or p* = 

pci = pa. Is the mapping p* = p a  a genuine possibility? If we keep (t fixed. 
this entails that  ( p a ) *  = p a 2  = pcU and (piy)* = p a 6  = p .  In other words. 
it gives a cyclic permutation of the roots: p H p o  H p 6  H p .  Sirriilarly. 
keeping a fixed and mapping p to p 6  would give the cyclic peririiita.tiori 
p H pti  H p a  H p .  Since the mapping a H f i  permutes p n  arid p f i .  
combiriiiig this last autornorphisrn with the first two provides four different, 
aiitomorphisrns. Applying conjugation alone arid leaving all roots fixed gives 
us a total of six automorphisms, arid shows that the Galois group of' this 
equation over the rational numbers consists of the whole group Ss of six 
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perrnutations of tlie roots. (Each permutation determines an automorphism 
and vice versa.) 

Notice that we got two different sequences of field extensions leading 
from the base field Q to the splitting field Q ( f i ; a )  = Q(a,  a). These 
were Q c Q( fi) c Q( s, a )  and Q c Q(a)  c Q(a,  -;I/z). Although the full 
Galois group of automorphisms of the splittirig field leaving the base field 
invariant is the same at  the end, namely 5’3, the behavior of the interme- 
diate field is different in the two cases, and t.his behavior is reflected in the 
structure of the Galois group. 

In the first case, there are no nontrivial automorphisrns of Q( 3) that 
leave Q invariant. If we adjoin fi first, we do not get all the roots as a result, 
but instead are left with a quadratic equation that we need to solve, namely 
.r2 + fix + fi = 0. In other words, this is not a normal extension. The 
quadratic formula reveals that  the roots of this equation are f i a  and $ b c y 2 >  

so that we need to adjoin a in order to split the polynomial. The absence 
of riont,rivial automorphisms at  the initial extension is reflected in the final 
extension, in the subgroup of autoniorphisms of Q( n, a )  that  leave Q( n) 
invariant. This subgroup consists of the identity and complex conjugation; 
it, interchanges the two complex roots and leaves the real root fixed. Hence 
it cannot be a normal subgroup of S3. In other words, extending tlie field 
in this order produced the Galois group, but no normal subgroup of it. 

In the second case, the field Q(a) does have a nontrivial automorphism, 
coniplex conjugation, that  leaves Q invariant. Again this fact is reflected in 
the final extension, in the subgroup of the Galois group that leaves Q(a) in- 
variant. This subgroup consists of three elements: (1) the identity automor- 
phisni; (2) the cycle p H cup H a 2 p  H p ;  (2) the cycle p w a 2 p  H cup H p .  
This is the subgroup A3 consisting of even permutations of the roots, and 
it is the Galois group of the equation x3 - 2 = 0 over the field Q(a).  In 
this case the group of automorphisms from the first extension is the quo- 
tient of the full Galois group S3 over the group of autoniorphisms from the 
second extension. The subgroup A3 is normal, and its quotient group is the 
two-element group corresponding to the conjugation operation a H ti = a2. 
The latter is an automorphism of Q(a)  that  leaves Q invariant. 

Again? this group structure reflects the solution process. If we atijoiri a ,  
then fi, in each case we progress from an equation having no roots in the 
preceding field to one having all its roots in the next field. In the second 
case? the Galois group is the quotient group of the group of automorphisms 
leaving Q invariant over the normal subgroup of automorphisms leaving 
Q(a)  invariant. In the first case, there is no such decomposition into smaller 
groups. 

Instead of a,  we could have joined a (which is 2cu + 1) first. In that 
case, we would have obtained a second intermediate field Q(a) that is a 
normal extension, and the subgroups of the Galois group in this extension 
and the previous one would pair off in such a way that the quotient groups 
were isomorphic. 
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Example 11.4. ( A  quartic polynomial.) The three simple examples we 
gave above may lead you t.o conclude that the Galois group of every irre- 
ducible polynomial is the group of all permutations of its roots. To see why 
that conjecture is wrong, consider the equation x4 + 1 = 0, with Q again 
as the base field. Any root r of this equation will satisfy ( T ' ) ~  = -1: and 
therefore r2 = +i. Hence the enlarged field Q ( r )  will contain all complex 
numbers of the form a + bi, where a and b are rational numbers. Since the 
four roots of the equation in the complex numbers are r1 = (1 + i ) / f i ,  
r2 = (1 - , i ) / f i ?  TQ = (-1 + i ) / f i ,  and 7-4 = (-1 - i ) / f i ,  we see that the 
enlarged field will contain & as well, no matter which root is adjoined. For 
example, fi = (1 + i ) / q .  Hence the polynomial splits completely whenever 
any one of its roots is adjoined, arid any element of it can be written in the 
form 

where r ,  s, t ,  and u are rational numbers. 
Now we ask which automorphisms of the enlarged field leave the base 

field invariant. As always, conjugation is a possibility, in this case actually 
two possibilities. Obviously since -1 and 2 are invariant, there are only 
four possibilities: i H jzi and & H *fi. The choice i H - i ,  H fi 
interchanges r1 with 7-2 and 7-3 with 7-4. The choice i H i ,  fi H -fi 
interchanges r1 with 7-4 and rz with 7-3. Finally, the choice i H -i, fi H 

-fi interchanges r1 with r j  and r2 with 7-4. Since each of these is an 
interchange of disjoint pairs of roots, each, when repeated, restores the roots 
t,o their original place. The resulting Galois group of four permutations 
is a famous group, known as the Kleiri four-group. It is the same group 
shown as the field of four elements with addition as the group operation 
(see Problem 6.3). 

Remark 11.3. We could have achieved this extension in two steps if we had 
wanted, by first adjoining fi to the rational numbers (solving the auxiliary 
equation x2 - 2 = 0). When that is done, the polynomial x4 + 1 is no 
longer irreducible, since x4 + 1 = (z2 + &z + 1)(xc2 - fix + 1). Either 
one of the quadratic factors would have produced the field we finally arrived 
at. In this way, we would have had a quadratic extension of a quadratic 
extension, and it would be obvious that we are dealing with a group of two 
permutations extended by a group of two permutations, that is, a group G' 
having a normal subgroup of two elements, for which the quotient group 
also has two elements. 

Example 11.5. Like many mathematical theories, Galois theory has miic:h 
in common with politicians: It offers generous amounts of information that 
you either knew already or never wanted to know, but, tends to be very 
confusing arid evasive when answering the question you did ask. A glance 
through any book on Galois theory will reveal that ,  in their examples, ail- 
thors often seem to  start their construction of the Galois group already 
knowing the roots of a given polynomial (as we have done in the preceding 

T + i s  + ( t  + i u ) J z .  
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examples). Theoretically, it ought to be possible to start from the coeff- 
cients, rather than the roots. After all, we know that the coefficients de- 
termine the roots and the roots determine the Galois group. In the schema 
that goes 

(coefficients) - (roots) - (Galois group), 
we really would like to find some way of proceeding directly from the first 
to the last, without having to go through the middle. Surely the purpose of 
the Galois group is to find a path to the solution of an equation, is it not? 

Well, actually, the famous classical applications of Galois theory have 
been in the construction of impossibility proofs. It put the capstone on 
the proof that there is no formula for solving the general quintic, as we have 
seen, and it shows that there are no straightedge-and-compass constructions 
that will trisect a 60” angle or produce the side of a cube twice as large as a 
given cube, or produce the side of a square equal in area to  a circle of given 
radius. So, is Galois theory a mathematical t,heory rich in negative results? 
If so, its applicability would seem to be limit,ed. 

For the moment, let us justify the time and effort spent creating Galois 
theory by simply admiring the human minds that have uncovered such deep 
algebraic secrets. Even if no way of computing the Galois group directly 
from the coefficients had ever been discovered, Galois theory would still be 
a splendid example of the power of human symbol-making capacity. In the 
equation x5 - 10x+2 = 0 that we considered above, we don’t know what the 
five roots s ,  t ,  u, v, w are, but we can invent symbols to stand for thcm, and 
we can reason about them using only the properties that  we do know, to 
conclude finally that they cannot be expressed as finite algebraic formulas 
involving only rational numbers. In doing so, we are following the technique 
of Pappus known as analysis and mentioned in Lesson 1. 

The fact is, however, that a Galois group can be very difficult to calcu- 
late unless you know some elements of the splitting field of the polynomial 
or some sophisticated theorems about finite groups and fields. Algorithms 
do exist for finding the Galois group starting from the coefficients, or at  least 
narrowing the range of  possibilities for it. Orie such algorithm is encoded in 
the computer algebra program Maple. A very powerful tool was provided 
by Nikolai Grigorevich Chebotarev (1894-1947)> whose name is pronounced 
-‘ChebotarYAWF.” The Chebotarev Density Theorem provides some prin- 
ciples that  enable thc range of possible Galois groups to be restricted. in 
some cases leaving only one possibility. 

With the limited techniques we are assuming here, the problem seenis 
circular. If you can get detailed information about the splitting field of the 
polyriornial, you can find the Galois group. But if you have that information, 
you can also, in all probability, solve the equation without knowing the 
Galois group. You may well wonder what the Galois group contributes. 
The applications of this theory depend on knowing some facts about finite 
groups and fields, and even with those facts a t  your disposal: you niay have 
to work fairly hard in order to calculate a nontrivial Galois group. 
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On the positive side, if you do happen to know the Galois group, you 
can get some useful information about’ its roots and how to find them. Two 
problems must be solved when applying Galois theory to  solve an equation: 
(1) Compute the Galois group that the problem leads to; and (2) interpret 
its structure in terms of the problem at hand in order to get the solution. 
Problem 1, as already mentioned, is quite difficult in general. Problem 2 
may also require more than trivial considerations and perhaps some “heavy 
artillery,” in the form of a computer, to soften it up a bit. 

For example, theoretically, the decomposition of a solvable Galois group 
into a sequence of subgroups with simple quotient groups as factors, tells 
you to adjoin roots of specified order to the base field in a certain order. 
The question is: Which radicals? We saw this problem in the previous 
chapter, when we investigated ways of solving the equation 8x3 + 4x2 - 4x - 
1 = 0. As another example, although the general fifth-degree polynomia.1 
is riot solvable by radicals, some particular fifth-degree polynomials are, 
namely those whose Galois groups are solvable subgroups of 5’s. Research 
into this problem continues, even today, using computer algebra programs 
like Mathematica (see the paper by Dummit in the literature at the end of 
this lesson) and Muple (see the paper by Lazard, also in the literature at  
the end of this lesson). Since we don’t have space to develop a sophisticated 
theory of fields and finite groups, wc‘ shall confine ourselves to a “bare- 
handed” t.echnique of getting detailed information on a field extension. 

To get such information about an extension K(0) of a field K containing 
the coefficients of a polynomial p ( x ) ,  you need to “coax” the equation into 
giving up some information. We shall illustrate with an example: but we 
warn the reader in advance that the information we are about to produce 
concerning K(0) is obtained by some rather artificial combinatorial work that 
may be bett,er described as heavy armtwisting rather than mere coaxing. 

x6 + 9z4 - 4x3 + 2 7 : ~ ~  + 36x + 31 = 0 .  

The base field here is the rational numbers Q. This polynomial is irreducible 
over this field, since any solution of it, would have to be an integer that 
divides 31, that is i l  or +31 (see the Appendix), and it is easy to see that 
none of these numbers is a root. Even more can be said: Since 27:c2 > 4z“ 
for 0 5 J: 5 1 and 9x4 > 4x3 for J; > 1, it follows that p ( x )  2 31 for 
x 2 0, so t,hat there are not even any positive real roots. As for negative 
roots, consider what happens when 11: is replaced by -x. All terms now have 
positive coefficients except z itself. But since 362 - 4 .  27 31 = -2052, it 
follows that 27x2 - 362 + 31 > 0 for all real x: and therefore there are no 
negative real roots, either. Hence the roots of this equation consist of three 
conjugate pairs of complex riunibers u1 f i v l ,  u2 i iv2> arid u3 f ivg. 

We iiow adjoin a root, 0 of this cqiiation to the rational numbers to 
produce thc larger field Q(0)  consisting of all expressions of the forni 

The equation we choose is 

7-0 + ?-lQ + r2Q2 + 7.:@ + r404 + 7 @ .  
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Alternatively, Q ( O )  can be described as all rational functions of Q 

where q(z)  and r ( z )  are polynomials with rational coefficients. 
Neither of these descriptions gives any real insight into the concrete 

nature of the field Q(0) .  It remains a bleak, fog-covered landscape in which 
we can distinguish nothing. 

However, by manipulating the equation, rewriting it, we can-after some 
t,liought and experiment produce the following equivalent forms: 

-27Q4 + 54Q2 - 27 = Q6 - 18Q4 - 4d3 + 8102 + 368 + 4 ,  
-27(Q2 - 1)2 = (Q3 - 98 - 2 ) 2 ,  

0 3 - 9 0 - 2  2 

- 3  = ( 3(d2 - 1) 1 '  
This last equation shows that Q(Q) contains a number a such that a2 = -3. 
Since it. also contains --a, we now know a few non-trivial complex numbers 
in the field Q ( d ) ,  namely *&i, and consequently also the primitive cube 
roots of 1> which are a = -1/2 + (&/2)2 and cy2 = - l / 2  - (&/2)2. 

Carl we perform this trick again'? It turns out that  we can, if we make 
use of the relations 

Q7 = 

Q8 = 

Q9 = 

-9Q5 + 404 - 2703 - 3602 - 310 ~ 

-9Q6 + 405 - 2719~ - 3603 - 3102, 

-9Q7 + 4Q6 - 27Q5 - 36d4 - 3103, 

= 48' + 54Q5 - 7204 + 21203 + 32402 + 2798. 

Using these relations, we can show that 

27(Q2 - 1)3 = 4(Q3 + 38 + 1)" 

that is: 

) I 3 .  2 Q 3 + 3 Q + 1  
3 0 2 - 1  

2 =  [-(  
It now follows that the field Q(Q)  contains an element b such that b" =- 2. 

Then it, must also contain bcu and ba2, that  is, all three complex cube roots 
of 2. and in particular the real cube root @. 

The fog has now lifted completely from the field Q(Q) .  We now know 
that it consists of all elements of the form 

r + ~ $ 5  + t +'Z + ( u v 5  + vJ'iiv5 + w$'Z&)i, 

wherc T ,  s ,  t ,  u,  71,  and w are rational numbers. As you can easily see: Q(0) 
is exactly the same extension field that we obtained above for the equation 
z" - 2 = 0: where we wrote p = B. 

We did not make use of any special properties of 0, other talian its being 
a root of the equation p(x) = 0. It follows that any one of t'he six roots Q 
would have generated this same field extension. Hence, when we adjoin just 
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one of the six roots, we automatically get a field that, contains all six roots. 
In other words Q(0)  is the splitting field of this polynomial. It follows that 
the Galois group of this equation is 5’3. 

At this point, the equation itself is practically solved, since we know the 
form that all six roots must have, and that they must occur in conjugate 
pairs. The actual solution of this sextic equation is left as an exercise (Prob- 
lem 11.4). It turns out that ,  for once, we can solve by radicals (adjoining 
(h and a) without overshooting the splitting field. 

6. The story of polynomial algebra: a recap 

Galois theory, which comes at the end of the story we are telling, is actually 
the opening of an entirely new era in mathematics. We have only hinted 
a t  the challenging problems it presented and continues to present. Having 
reached the end of the portion of the story wc wish to tell, let us cast one 
quick look back at the milestones that mark this intellectual journey of the 
human race. 

1. The first realization that a number could be described without be- 
ing explicitly named occurs in ancient texts, which show how to use 
arithmetic to solve problems that we can interpret as linear equations 
or systems of linear equations. 

2. Some of these ancient texts also solve problems that we interpret as 
quadratic equations. The key to doing so is the identity (u + 7 1 ) ~  = 
(u - 7 1 ) ~  + 4uv, which allows each of the sum and difference of two 
unknown numbers to be computed from the other if their product is 
also known. 

3.  Many problems that were studied by the ancient Greeks entirely 
within the scope of plane and solid geometry, without algebra, were 
found by Muslim mathematicians to be related to cubic equations. 
Their work was built upon by the Renaissance Italian mathemati- 
cians, producing a solution of the cubic equation based on the identity 
( u  - , u ) ~  + Su.u(u - v)  + (u3  - us) c 0. This achievernent rnarked the 
limit of applicability of such combinatorial methods alone in solving 
equations. 

4. Finding the algebraic substitution needed to solve the quartic equa- 
tion by formula required the solution of an auxiliary cubic equation 
called the resolvent; and opened up a new approach to the general 
problem of finding roots of polynomials, the search for a resolvent. 

5 .  Two centuries of searching for a resolvent t,o solve the quintic equa- 
tion finally brought the realization that no such resolvent could exist). 
This realization came about as the result of the study of perrnuta- 
tions of the roots of a polynomial, and eventually led beyond t,he 
mere non-existence of a general algebraic-formula solution to provc 
the non-existence of finite algebraic expressions for even some par t ic  
ular equations. 
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7. Problems and questions 

P r o b l e m  11.1. Prove that the Diophantine equation 

u 3  + 2v3 + 4w3 = 6uvw 

has only (0, 0,O) as a solution. (Notice that if a prime number p divides two 
of the three integers u, o,  ’ U I ,  then it must divide all three of them, and p" 
can be divided out of the equation. By doing this with as many primes as 
possible, we can produce a second solution in which any two of u, v, and w 
have no common prime factors. Use the same letters to denote this second 
solution. Observe that u must be even and hence v and w both odd. Assume 
' I L  = 2u'. and derive a contradiction.) 

P r o b l e m  11.2. Prove that the only rational numbers T ,  s ,  t satisfying 

r3 + 2s3 + 4t3 = 6rst 

are r = s = t = 0. Hint: Suppose that r = a,/a’, s = b/b’, and t = c/c’ 
satisfy this relation. Consider the integers u = ab’c’, v = a’bc’, w = a’b’c. 

P r o b l e m  11.3. Prove that the splitting fields of the equations x3 - 2 = 0 
and x6 + 9z4 ~ 4s3 + 27x2 + 36z + 31 over Q are the same, and hence the 
Galois groups are the same, namely the full symmetric group 5'3. 

P r o b l e m  11.4. Prove that if a2 = -3 and b3 = 2> then a + b is a solution 
of the equation 

x6 + 9x4 - 4x3 + 27x2 + 36s + 31 = 0 .  

P r o b l e m  11.5. Compute the Galois group (over Q) of the equation 

x6 - 6x4 - 4x3 + 12x2 - 242 - 4 = 0 ,  

whose solutions we already know from Lesson 1. Hint: Any field extension 
Q ( 0 )  that contains the two complex cube roots of 2 has to contain the six- 
dimensional splitting field of the polynomial z'j - 2. Show that this field 
niust bc extended by adjoining 4 in order to split the present polynomial. 

P r o b l e m  11.6. Prove that the Galois group of any irreducible polynomial 
of degrce higher than 1 over the real numbers is 2 2 .  Thus, Galois theory 
over the field of real numbers is very trivial. 

P r o b l e m  11.7. As we saw in our examples of the equations s3 + 62 - 2 = 0 
and x3 - 2 = 0 (Example 11.3), the splitting field of a cubic equation may 
be six-dimensional when regarded as a vector space over the base field. In 
these two cases, where we started without the cube roots of unity in the base 
field and the equation has only one real root, adjoining that root rcsults in 
a field contained in the real numbers. It is then necessary to adjoin it second 
root in order to get the full splitting field. If the base field is enlarged to  
include cube roots of unity, a single root adjunction suffices and produces a 
three-dimensional extension field. 
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We also saw, in our example of the polynomial p ( z )  = 8.2.‘’ + 4x2 - 43: - 
that even when the splitting field is three-dimensional, t.he field produced via 
a solution by radicals may be larger than the splitting field. It is in general 
iiecessary to include complex numbers in the final field enlargement in order 
t,o solve a cubic equation having three distinct real roots, what we called the 
“irreducible case.” Consider the polynomial p ( z )  = z3 + x2 - 2 2  - 1 = 0. 
By examining its values at z = -2, z = -1, z = 0, z = 1. and 2 = 2. you 
can see that this polynomial must have a root between -2 arid -1, another 
between -1 and 0, and a third between 1 and 2. Let r denote the root 
that lies between 1 and 2. Starting from the equation r3 = -r2 + 2r + 1, 
derive successively the equations r4 = 3r2 - r - 1, r5 = -4r2 + 5r + 3,  and 
r6 = 9r2 - 5r - 4. Then use these equations to show that s = r2 - 2 is also a 
solution of the equation. Since the sum of t,he roots must be -1. it follows 
that the third root is t = -1 - r - s = 1 - r - r2.  Hence the field Q(7.) 
is the splitting field of this eqiiation~ and is three-dimensional as a vector 
space over Q. 

Show that any automorphisrn of Q ( r )  that  leaves Q fixed must map s 
t,o t and t to r if it maps T to s.  Similarly, it must niap t to s and s to r if 
it maps r to t .  It therefore follows that the Galois group of this equation is 
23 ’ 

Solve this equation by the Cardario method, using the substitution :c = 
y - {. What roots of complex numbers need to be adjoined in order to 
compute this solution? Why are these roots not in the field Q(r)?  This 
problem shows that when solving an equation by radicals, it is soirietimes 
necessary t,o “overshoot” the minimal splitting field of the equation. It also 
shows that even a simple Galois group, which guarantees that the equation 
can be solved by radicals, does not give any obvious clue as to ruh,ich radicals 
need to be adjoined to solve the equation. 

Finally, solve the equation by Vigte’s method t,o get a solution 

where 

Problem 11.8. Galois theory over a finite field develops coniplications riot 
present, in the case of a subfield of the complex numbers. The quadratic 
forrniila shows that in any field where 1 + 1 # 0, every quadratic equation 
can be solved by adjoining the square root of a suitable element (depending 
on the equation). Show that this is not the case in the field of two elenleiits: 
where it is necessary to adjoin two cube roots of unity in order to solve the 
equation x2 + z + 1 = 0, and that these two cube roots cannot be expressed 
in the form a + b&, where a, b: arid c belong to the field of two elements. 

Question 11.1. Why can’t a 60” angle be trisected using straightedge and 
compass‘? Give a heuristic argunierit along the following lines: If you could 
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do so: you could locate the point (cos 20°, sin 20°), and hence by projection, 
t,he point (cos 20”, 0). That is, you could construct the real number cos 20”. 
Show that the polynoniial of lowest degree with rational coefficients that  
this number satisfies is 8z3 - Bz + 1 = 0. But the minimal polynomial for 
a Euclidean-constructible number (a length that can be constructed with 
straightedge and compass) cannot be of degree 3, since these numbers are 
obtained as the solutions of quadratic equations whose coefficients satisfy 
quadratic equations whose coefficients. . . satisfy quadratic equations with 
rat,ional coefficients. (Each new point that  can be located is the intersection 
of a circle (x - h)2 + (y - k ) 2  = r2 and a line az  + by = c ,  where a ,  b? c. h: 
k :  and T have been constructed previously.) 
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Epilogue: Modern Algebra 

The closing off of the search for general algebraic formulas to solve higher- 
degree equations in the rnidnineteenth century did not mean that algebra 
was “over and done with.” The solution of this problem was achieved only 
by passing to a higher level of abstraction than mathematicians had been 
accustomed to. Instead of merely counting the number of values that a 
function could assume when its variables were permuted, as Cauchy had 
done, Galois found it necessary to look at the permutations themselves and 
distinguish between proper and improper decompositions of the group, or, 
as we now say, between normal and nonnormal subgroups. This shift in 
emphasis marked the beginning of a gigantic paradigm shift in mathematics, 
not only in algebra but also in geometry, number theory, and analysis. All 
areas marched in the direction of increasing abstraction. 

Although algebra was the first area to  undergo this increase in abstrac- 
tion, no area of mathematics was left behind. Where earlier geometers had 
studied surfaces and curves in Euclidean space, Riemann introduced the 
notion of an n-fold extended quantity, what we now call a manifold. Both 
geometry and the need to study the convergence of trigonometric series led 
Georg Cantor (1845-1918) to create an abstract theory of point sets dur- 
ing the 1880s, which then formed the basis for new theories of integration. 
Number theorists began to move beyond the study of Diophantine equa- 
tions and the divisibility properties of positive integers, taking up the study 
of more abstract entities such as the Gaussian integers (complex numbers of 
the form m + ni, where m and n are integers) or even more abstract “ideal 
numbers” introduced by Ernst Eduard Kurnmer (1810--1893). 

Algebra was the leader in all this abstraction and became the indispens- 
able underpinning of many other areas of mathematics, such as topology and 
analysis, as they increased in abstraction. We shall close out our discussion 
by informally describing some of the more common and useful specimens 
of these abstract structures. What follows is a whirlwind tour through the 
zoological park of modern algebra. 

1. Groups 

We have made extensive use of permutation groups in the preceding lessons, 
so that the reader may already have some intuitive picture of what a group 
is. The word itself, as we saw, is due to Galois. 
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Modern algebra books present groups axiomatically. This axioniatiza- 
tion was a long time in coming, from the first introduction of the notion of 
a group of permutations of the roots of an equation by Galois in 1830. Four 
deca,des later, when Sophus Lie (1842-1899) and Felix Klein (1849-1925) 
wanted to create an analog of Galois theory for differential equations, they 
still thought of groups as sets of permutations, one-to-one mappings that 
obeyed a cancellation law, that is, ab = ac ==+ b = c .  Such a law auto- 
matically holds when a,  6 ,  and c are one-to-one mappings and ab means the 
composition of the two mappings. The abstract notion of a group was well 
established by the early twentieth century, but Klein himself did not think 
highly of it. He claimed that,  while the abstract formulation was useful in 
writing elegant proofs, it did nothing to help the mathematician discover 
new ideas and methods. 

Leaving aside the question whether Klein was right or wrong, we give 
here the modern description of a group. It is a nonempty set G on which any 
two elements a and b can be combined according to  some specified operation 
o having the following properties: (1) a o ( b  o c) = ( a  o b)  o c for all a ,  b, c E G 
(the associative law): (2) G contains an element e (the identity) such that 
e o a, = a o e = a for all a E G; (3) for all a E G there exists an element 
a-1 (the inverse of a )  such that a o a-1 = a-l o a = e .  These axioms can be 
weakened somewhat, but in practice there is no need to do so. If an object 
forms a group, it is usually possible to verify that fact quite easily using 
these axioms. Normally, the symbol o for the group operation is omitted, 
and we write ab instead of a o b. 

A good example of a group is the permutations of any set. This group 
is called the symmetric group. As we have already discussed this group, we 
give another example. The general linear group GL(2,R) consists of 2 x 2 
matrices of real numbers 

a = (::; 2) 
subject to the condition that the determinant D ( a )  = a 1 1 a z z  - ~ 1 2 ~ 2 1  is not 
zero. The operation o is matrix rriultiplication 

) a l l b l l  + a12b21 U l l b l 2  + a12022 ("n:: :::) (k 2) = ( a21b11 + a22b21 a21b12 + a22622 

In order for this set to be a group, the product) as we have defined it: nlust 
also belong to the group. Obviously the product ab is a 2 x 2 matrix. To 
show t,hat its determinant is not zero, one can verify the identity D(ab) = 

The associative law can be verified, rather tediously. The identity for 
D ( a )  D ( b ) ,  

this group is 
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The inverse of the matrix a is 
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One must be careful not to assume that ab = ba. This additional prop- 
erty (the comrnutative law) makes a group into a commutative group. If 
a group is being defined by specifying some rule o and is required to be 
commutative as part of its definition, it is called an abelian group. This 
name seems to have arisen because Abel noticed an important case in which 
an equation can be solved algebraically. If an equation of degree n has one 
root z, in terms of which the other roots can be expressed as rational func- 
tions 2 1  = f l(z ,) ,  . . . ,zn-l = fn- l (zn) ,  then the equation can be solved by 
radicals if fi(fj(z)) = fj(fi(z)) for all i and j. 

The distinction between abelian and conimutative groups is seldom im- 
portant, and generally mathematicians use the term abelian to refer to any 
conmutative group. When a group is commutative, its operation is usually 
written as addition rather than multiplication; that is, we write a+b instead 
of ab. Neither of these operations should be regarded as the ordinary sum 
and product of numbers, although those are important examples of group 
operations. (The nonzero real numbers form a commutative group with 
niultiplication as the operation. So do the positive real numbers, excluding 
zero.) 

Incidentally, Klein and Lie thought that the inverse property of a group 
would follow from the cancellation law, as indeed it does when the permu- 
tations are on a finite set. But on an infinite set such is not the case. For 
example, on the set of positive integers, the mapping a ( n )  = n2 obeys a 
cancellation law, since if ( b ( n ) )  = (e(n))� for all r i  and b(n) and c(n)  are 
positive integers, then b ( n )  = c ( n )  for all n. But the mapping a has no 
inverse. (It does have a “one-sided” inverse obtained by mapping n2 to n 
and the nonsquare integers in any one-to-one manner whatsoever.) 

As the work of Galois showed, a group may contain smaller groups us- 
ing the same operation. These are called subgroups. The group &, which 
consists of all permutations of three letters { a ,  b, c } ,  for example, has six 
elements. It contains three two-element subgroups, each consisting of the 
identity element (which leaves every letter fixed) and one transposition, (ab) 
or (UC)  or (be).  It also contains the subgroup whose elements arc: the identity 
and the two three-cycles (abc) and (acb) .  These are the even permutations, 
the so-called alternating group on three letters, usually denoted As. 

As Galois noted, it is crucial whether a subgroup is normal or riot. If a 
is an element of a normal subgroup and b is any element of the group (not 
necessarily in the subgroup), then b-lab will also belong to the subgroup. 
Obviously, in a commutative group b-lab = ab-lb = ae = a ,  so that all 
subgroups of a commutative group are normal. The alternating group A3 
is it normal subgroup of S3. The other three subgroups, each having two 
elements, are not normal. In GL(2, R),  the subgroup of upper-triangular 

2 
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matrices of the form 

is not normal, as you can easily verify. The still smaller subgroup consisting 
of the multiples of the identity matrix, in which all = a22 # 0 and a12 = 

0 = u21, is normal. 
Groups have permeated all of mathematics, and no mathematician can 

afford to neglect them. That  is not surprising, since they are the essential 
tool for defining symmetry. Wherever there is symmetry in nature, whether 
in crystals or differential equations or anywhere else, groups will arise! 

2. Rings 

While abstract groups generalize the properties of permutations, abstract 
rings generalize the properties of the integers. The integers (positive, neg- 
ative, and zero), together with the ordinary operation of addition, are a 
commutative group. But, as we know, the elements of this group can be 
multiplied also. The crucial property linking addition with multiplication is 
the distributive property expressed by the equation a(b  + c) = ab + ac. A 
commutative group with the operation + is called a ring if it has a second 
operation that is distributive with respect to addition. 

The classical example of a ring, besides the integers and the Gaussian 
integers just mentioned, is the ring of polynomials in several variables, that  
is, polynomials like 

These actually form what is called an algebra since they are a vector space 
(see below). Multiplication of polynomials is both associative and commu- 
tative, that is, p(yr) = (pq ) r  and p q  = qp for any polynomials p ,  y, and T .  

The name ring was first introduced in German in 1914 by Adolf Fraenkel 
(1891hl965). The English word was introduced by Eric Temple Bell (1883- 
1960) in 1930. The name seems to have been irispired by the cyclic groups, 
whose elements can be multiplied by regarding them as the remainders when 
integers are divided by a given integer. (See Problems 1.1, 1.3, and 1.6 in 
1,esson 1.) 

2.1. Associative rings. If the multiplication Operation is also associative 
and/or commutative (as is the case with integers and polynomials), the ring 
is called an associative (and/or commutative) ring. Associative rings are one 
of the two most important classes of rings. A good example of an associative 
(but not commutative) ring is the complete set of 2 x 2 matrices with real 
ent,ries. The addition is the obvious one: 

a + b = (z;; z:;) + (i;; !;;) = ( a21 + hz1 a22 + b22 ' 

all + hl a12 + b12) 

The multiplication is the one defined above. We are no longer requiring the 
determinant to be nonzero; in fact, we could not impose that requirement, 



2 .  RINGS 155 

since the sum of two matrices, each with nonzero determinant, may have 
determinant zero. 

Remark 11.4. The use of the same addition sign on both sides of this 
last equation is very convenient, indeed indispensable for sanity when work- 
ing with matrices and vectors. However, the two signs do not denote the 
same operation. The sign on the left stands between two matrices and de- 
notes matrix addition. The equation serves to tell us what matrix addition 
aniounts to. Each addition sign on the right stands between two real num- 
bers, which the reader, it is assumed, knows how to add. Please keep this 
conventional but ambiguous use of the notation for sums and products in 
mind throughout this section. It arises several times. 

Ideals. For an associative ring, the analog of a normal subgroup is called 
an ideal. An ideal I is a subgroup of the additive group of the ring having 
the additional property that if a E I and b is any element of the ring, then 
ab and ba both belong to I .  (That is a two-sided ideal. There are also left 
and right ideals, satisfying a weaker condition.) The whole point of ideals is 
that one can stratify a ring into disjoint cosets of an ideal, just as a group is 
stratified into disjoint cosets of a normal subgroup. These cosets can then 
be added and multiplied consistently by choosing a representative element 
from each coset that is to be added or multiplied, then adding or multiplying 
the representative elements, and finally taking the coset to which the sum 
or product belongs. The end result will be the same coset, no matter which 
representatives are chosen to determine it. For example, the even integers 
form an ideal in the ring of integers. In fact, the multiples of a fixed element 
always form an ideal, in any ring, called the principal ideal of that element. 

2.2. Lie rings. The other major class of rings is formed by the Lie rings, 
which are usually vector spaces and are accordingly called Lie algebras (see 
below). In a Lie ring, the niultiplication is usually written as a bracket 
[a,  b] ,  and the associative law is replaced by the anticommutative property 
[a ,  b] = -[b,  a] and the Jacobi identity: 

[a ,  16, .I1 + 16, [c, 41 + [c, [a ,  bll = 0 .  
A good example of a Lie algebra, for those who have studied calculus, is the 
algebra of vectors in three-dimensional space with the cross product as the 
multiplication. Given an associative ring, one can create a Lie ring on the 
same set by defining [a,  b] = ab - ba. Notice that if the associative ring is 
commutative, the corresponding Lie ring is trivial (all products are zero). 

Because of the wide variety of possible “multiplicatioris,” the theory of 
rings is much less unified and systematic than the theory of groups. (For 
example, one can form a trivial associative and commutative Lie ring out 
of any commutative group by simply defining u,b = 0 for all a and 0.) Two 
nonzero elements whose product is zero are called zero divisors. A commu- 
tative ring with identity but without any zero divisors is called an integral 
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domain.  The integers form an integral domain. The ring of 2 x 2 matrices 
does not, since multiplication is not commutative and there are zero divisors: 

0 0 (k X) (: :‘) = (0 0) 

2.3. Special classes of rings. A ring need not have any identity with 
respect to multiplication. (As one example, the even integers form a ring.) 
If a ring does have an identity for multiplication, the set of elements hav- 
ing a multiplicative inverse becomes important. These elements are called 
units. For the integers, the units are 1 and -1. For the ring of Gaussian 
integers, mentioned above, the units are 1, -1: i :  and 4. The question of 
the factorization of the noriunits of a ring then heconies important. 

If a nonunit in an integral domain cannot be written as a product of two 
or more nonunits, it is said to be irreducible. If a nonunit p has the property 
that it divides one of the two factors q and T whenever it divides their product 
q r ,  it is called a pr ime .  In any ring, a prime is irreducible. If the converse is 
true, the ring is called a unique factorizat ion d o m a i n  or a Gaussian domain.  
As the name implies, in such a domain, there is essentially only one way 
to write an element as a product of irreducible elements. The integers are 
a Gaussian domain. That is the content of the “fundamental theorem of 
arithmetic,” which asserts that every positive integer can be written in one 
and only one way as a product of positive primes. The Gaussian integers 
are another example. However, the set of complex numbers of the form 
711 + n a  is n o t  a Gaussian domain, since 2 x 2 = (1 + a) x (1 - G). 

3. Division rings and fields 

If every nonzero element of a ring with identity has a multiplicative inverse. 
that ring is called a division ring. If: in addition, the multiplication is 
associative and commutative, the ring is called a field. We have already seen 
one example of a general division ring, the ring of quaternions, explored in 
Problems 1.7 through 1.10 and 6.4, arid we have seen many examples of 
fields. 

4. Vector spaces and related structures 

Of all the abstract entities that mathematicians have invented and studied, 
vector spaces are among the simplest and also the most useful. To create 
a vector space, one needs first a commutative group, whose elements arc 
to be called vectors. The simplest example is three-dimensional Euclidean 
space? denoted R3. It consists of triples of real numbers a = ( a l ,  ap, a s )  with 
the group operation defined as the obvious addition: a + 0 = (u l .  a2, u3) + 

Having the vectors, one also rieeds a field, whose elements are to be 
called scalars. In our example, that  field will be the real numbers. Then, 

(b l ,  bar b 3 )  = (a1 f b l ,  a2 + b2, a3 + b3) .  
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one must define the product of a vector and a scalar. In our example, the 
definition is obvious: c a  = c(a1, a2, a s )  = (cal ,  ca2, cag). Again, notice that 
the multiplication on the left and in the middle is defined in terms of a 
different multiplication on t,he right, which the reader is assumed to know 
how to do. 

The definition of scalar multiplication cannot be completely arbitrary. 
It must satisfy two distributive laws, one associative law, and a special 
"unitary" law. These are the following: 

a ( a + , B )  = a a + a , B :  
( a + b ) a  = a a - t b a ,  

a ( b a )  = ( a b ) a ,  
la = a .  

Although these seem obvious, they are independent requirements, and it 
is not difficult to construct examples in which exactly one of them fails. For 
example, by defining c a  = ( ca l ,  0, 0), we would get the first three properties, 
but not the last. 

An illustrative example of a vector space is provided by the space of 
polynomials in two variables with real coefficients. For example, if p ( z ,  y) = 
3 + 52 - 22y2 and q ( z , y )  = -1 + 32 - y + zy - zy2, then the vector sum 
p + q is defined as 

(2, + q)(z,  y) = 2 + 82 - y + zy - 3xy2. 

and the scalar niultiplication 5p is defined by 5 p ( z ,  y) = 15 + 25z - 102y2. 
Vector spaces have been mentioned in Lesson 4 and elsewhere, and their 

applications are almost infinite in number. Wherever records must be kept 
of different' variables, vectors are apt to  arise. In physics, this is obvious. 
where the three components of velocity, acceleration, force, torque, and the 
like are all conveniently represented as vectors. Economists likewise can use 
them to analyze the ways in which different sectors of an economic system 
interact. A good example of the latter is the input--output analysis of the 
Harvard economist Wassily Leontief (1906-1999). 

The transformations of one vector space into another are extremely im- 
portant, and these can be represented by matrices, making the whole subject 
of vector spaces, which mathematicians call l inear algebra, very computa- 
tional. 

4.1. Modules. If the requirements for a vector space are relaxed slightly, so 
that the scalars are taken from a ring with a multiplicative identity instead of 
a field, the vector space is called a module (more strictly, a un i tary  modu le ) .  
Modules are relatively less important than vector spaces, but they have at  
least one important use in proving some crucial decomposition theorems 
for operators on a vector space. Mathematicians with an interest in string 
t,lieory and superstring theory also make use of modules. 
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4.2. Algebras. If the elements of a vector space can be multiplied so as to 
satisfy the distributive and associative laws 

the vector space is called an (associative) algebra. If the associative law is 
replaced by the anticommutative law and the Jacobi identity, it is called a 
Lie algebra. The polynomials in any number of variables with coefficients 
in a field form an associative algebra over that field. The vectors in R3: 
as already mentioned, form a Lie algebra with the cross product as the 
multiplication: 

[ c Y , ~ ]  = a x p = (azbs - a3b2,a& - albs,  ulb2 - a2b l ) .  

It may seem strange that the generic word for the entire subject that we 
are discussing is also applied to one very special object within that subject. 
The term is an American invention from the early twentieth century, and 
it was baffling to at least one or two European mathematicians. Salomon 
Bochner (1899-1982), who was in Oxford in 1925, heard a lecture by a young 
American woman on the concept of an algebra. He wrote in ”Mathemat- 
ical reflections” (Amer ican  Mathematical Monthly, 83 (1974), No. 8) that ,  
“She spoke in a well-articulated, self-confident manner, but none of us had 
remotely heard before the terms she used: and we were lost.” 

5. Conclusion 

Although modern algebra has introduced hundreds of abstract structures, 
which are being studied by thousands of mathematicians, those nientioried 
above have been the most enduring. They are basic concepts that. a tech- 
nically trained person needs to know. The algebraic way of thinking gets 
into one’s mind, in a manner that Klein did not expect when he disparaged 
abstract group theory. A great economy and unity is thereby produced. 
To take just one example, analysts had long known that functions of a real 
variable whose Fourier transforms never assume the value zero are of partic- 
ular importance. Without going into details, we note that these functions 
enabled Norbert Wiener (1894-1964) to prove a very general theorem about 
convergence of series, When the subject of Banach algebras was created by 
Izrail’ hloiseevich Gel’fand (b. 1913) in 1941, Wiener’s theorem tiirried out 
t,o be a consequence of the fact that every ideal in the algebra of integrable 
funct,ions is contained in a maximal ideal. 

That example illustrates the basic principle of algebraic reasoning in 
analysis. Instead of studying an individual object or trying to construct 
an object having certain properties, one studies the whole class of objects 
having specified properties. If this class is an algebra, or a group, or a ring, 
it may be possible to show that the interrelationships among those objects, 
characterized by the algebraic laws the class obeys, imply that the desired 
object, exists. 
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Having given this cursory glance at  “what came after,” we remind the 
reader that  the story we mainly meant to tell was the story of the solution 
of polynomial equations. The present chapter exists because the end of that  
story in the midnineteenth century was not the end of algebra. Although the 
invention of equations was not a crime, and the study of polynomial algebra 
is not the punishment. for it, an algebraist who lived through that crucial 
period might well be described by the final paragraph of Dostoevsky’s Crime 
and Punishment: 

At this point a new story begins, the story of the gradual 
renewal of a man, the story of his gradual rebirth, his gradual 
passage from one world into another, his acquaintance with 
a new, heretofore completely unknown reality. That  might 
form the subject for a new tale, but our present tale has 
reached its end. 



Appendix: Some Facts about Polynomials 

In the main portion of this book we have frequently alluded to, mentioned 
without proof, or otherwise abused the reader with, invocations of certain 
facts about polynomials that are well known to those who have had a course 
on modern algebra. To satisfy the curiosity or quell the frustration of readers 
who wonder what these things are all about, we list those facts here. 

Rational roots of a polynomial with integer coefficients. If a poly- 
nomial 

with integer coeficients ma,. . . , m, has a rational root r = s / t ,  where s and 
t are integers with no common factors, then s divides m,, and t divides m g .  

The proof of this fact is not difficult. We can write 

p(x) = mgxn + mlZn-1 + ' ' ' + mn-12 + m, 

S 0 = t" .p(-)  = rng.5,  + m1sn-lt + ' ' ' + vtn-lst,-l + m,tn. 
t 

Since s divides every term here except the last one, it must also divide the 
last term. Just transpose m,t" to the other side of the equation. Since s 
divides the right side, it must also divide the left side. However, since s has 
no factors in common with tn ,  that means it must divide mrL. A similar 
argument shows that t must divide mo. 

A particular consequence of this last fact is that if mo = 1, as is fre- 
quently the case, then the rational roots of the equation are all integers, 
since t = 1. Thus, in particular, the equation xn - N = 0 can have only 
integer solutions and irrational solutions. It follows that fi, A, A, and 
so on, are all irrational numbers. 

This principle also converts the finding of rational roots of an equation 
with rational coefficients into a finite search. Hence that problem can be 
solved algorithmically, and it is always possible to tell when a polynomial 
with rational coefficients is irreducible over the rational numbers. We have 
invoked this principle, for example, in Lesson 11. 

The Euclidean algorithm. Polynomials, like the integers, form a unique 
factorization domain. In fact, they are even better than that. They are it 
Euclidean ring since there is an algorithm for finding the greatest, connnon 
divisor of any two elements. This algorithm consists of repeated divisions. 

We will explain the procedure through an example, finding the greatest 
common divisor of 26,173,996,849 and 180,569,389. 
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We proceed as follows: 26,173,996,849 + 180,569,389 is 144 with a re- 
mainder of 172,004,833. We then divide 180,569?389 by 172,004,833, getting 
a quotient of 1 and a remainder of 8,564,556. Next we divide 172,004,833 
by 8,564,556, getting a quotient of 20 and a remainder of 713,713. We then 
divide 8,564,556 by 713,713 and get a quotient of 12 with no remainder. 
so that the greatest common divisor is 713,713. In other words, the last 
nonzero remainder is the greatest common divisor. This computation can 
be conveniently arranged with the divisions performed from right to left, so 
as to make the greatest common divisor appear at  the extreme left. 

12 20 1 144 
71 3713)8564556) 172004833) 180569389) 26 173996849 

8564556 171291120 172004833 26001992016 
0 713713 8564556 172004833 

The proof that this procedure works is not difficult. The first division 
says that 26,173,996,849 = 144x 180,569,389+172,004,833. This equation 
shows that any number that divides both of the numbers 26,173,996,849 
and 180,569,389 must also divide 172,004,833. (This is exactly the same 
reasoning used above when we were determining the possible rational roots of 
an equation with integer coefficients.) But then it follows from the equation 
for the next division, 180,569,389 = 172,004,833 + 8,564,556, that, it must 
also divide 8,564,556, and then that i t  must divide 713,713. At that point, 
we note that 713,713 does divide itself and 8,564,556, and therefore, since 
172,004,833 = 8,564,556 x 20 + 713, 713, the number 713,713 also divides 
172,004,833, and then it must divide 180,569,389, and finally 26,173,996,849. 
In other words, 713,713 is a common divisor of these two numbers, and any 
common divisor of them must also divide 713,713, which must therefore be 
the greatest common divisor. 

If you have taken two years of algebra, you will have learned how to 
divide two polynomials and get a remainder that is “smaller” (of lower de- 
gree) than the divisor. Since the degree cannot decrease indefinitely, this 
same procedure, applied to two polynomials, will eventually lead to t,heir 
greatest common divisor. For example, to find the greatest common divisor 
of p(x) = x5 - 32” + 3x2 - lox + 6 and q(z)  = x4 + 3x3 + 9x2 + 6z + 14: we 
first perform division with remainder: 

P ( Z )  = q(z) (z  - 3) + r(.) 1 

where r ( x )  = -3x3 + 24x2 - 6x + 48. We then write 

where q ( z )  = 95x2 + 190. At t,he next division, we find 
32 24 
95 95 r ( x )  = T I ( . ) (  - - + -) , 

Since there is no remainder, q ( 2 )  = 95(z2 + a ) ,  the last nonzero remainder, 
is the greatest common divisor. In this case, greatest means the polynomial 
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of largest degree that  divides both p ( x )  and q ( x ) ,  since the division procedure 
that we use to  find it works by decreasing the degrees of the remainders. 

Since 95 is a unit in the ring of polynomials (its inverse is &), it doesn’t 
really matter, and we could equally well say that xz + 2 is the greatest 
common divisor in this case. 

This repeated division-with-remainder procedure, producing the great- 
est common divisor as the last nonzero remainder, is called the Euclidean 
algorithm. The name comes from Proposition 2 of Book 10 of Euclid’s Ele- 
ments: If, when the smaller of two given quantities is continually subtracted 
from the layqer, that which is left never divides evenly the one before it, the 
quantities are incommensurable. In other words, if the algorithm fails to 
terminate in a finite number of steps, the two quantities in question have no 
common measure. In integral domains like the integers and the polynomials, 
where there is a positive-integer valued function of the quantities (the ab- 
solute value of the integers themselves in the case of the ring of integers, the 
degree of the polynomials in the case of the ring of polynomials) that  takes 
a smaller value on the remainder than on the divisor, this algorithm cannot 
fail to terminate after a finite number of steps, since a strictly decreasing 
infinite sequence of positive integers is an impossibility. Integral domains 
with this property are called Euclidean. 

Remark 1. The operations used in the Euclidean algorithm are all rational 
operations (no root extractions are involved). Hence the result is always a 
rational function of the data. 

Remark 2. In the Euclidean algorithm, we use only the remainders and 
ignore the quotients. These quotients are not unimportant, however. They 
form the basis for the contznued-fraction representation of the quotient of 
the two numbers under consideration. 

Descartes’ rule of signs. As shown above, for an equation with integer 
or rational coefficients, there is an algorithm for finding all rational roots. 
They must be of the form s / t ,  where s divides the constant term and t 
divides the leading coefficient. 

For an equation with real coefficients; there is no such procedure for 
finding real roots. However, it is possible to set bounds on the number of 
real roots. The rule for doing so is as follows: A polynomial p ( x )  with, real 
coeficients has no more positive roots than it has changes of s,ign. 

A change of sign is a pair of successive nonzero coefficients whose product 
is negative (in other words, one is positive, the other negative). Thus, we 
can conclude that the polynomial x7 + 32 - 1 cannot have more than one 
positive root. In fact. it does have exactly one (between 0 and 1): since its 
value when z = 0 is negative and its value when 2 = 1 is positive. Similarly, 
:cG - x3 + 1 could not. have more than two positive roots. In fact, it does 
not have any positive roots? or even any real roots, since it is (x3 - $1’ + 3 4 ‘  

which is always positive. Although the rule as we stated it sets orily an 
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upper bound on the number of roots, there are cases in which it is possible 
to get a lower bound as well. It is easy to see, for example, that a polynomial 
with exactly one change of sign must have exactly one positive root, since 
its sign at  z = 0 is opposite to i t s  sign for large positive values of Z. 

The proof of t,his rule can be found in older algebra books and is based 
on the simple idea that if r > 0, then (z ~ r ) p ( z )  has at least one more 
change of sign than p ( z )  has. The proof is short, but almost impossible for 
t’he average student to understand. (Please take that last statement as a 
challenge!) In fact, Descartes stated his rule of signs in 1637, but the validity 
of his argument was disputed for about a century, until proofs similar to the 
one given below began to appear. A thorough study of the rule and its 
proofs was given by Gauss nearly two centuries later, in 1828. New proofs 
of this rule have continued to appear as recently as 2004 and 2006. 

For students who have had a semester of calculus, the following proof 
will be more comprehensible than the algebraic proof given by Descartes. It 
is based on Rolle’s theorem, named after Michel Rolle (1652-1719), which 
asserts that  between any two zeros of a polynomial there must be a zero 
of its derivative. The derivative of a polynomial p(x) = a0xno + alz7L1 + 
. . . + a k - 1 ~ � k - l  + a/, (where u l , .  . . , ak are nonzero real numbers and n o  > 

+ n l a 1 ~ ~ 1 - l  + 
‘ ’ ’ + nk-1ak-1Znk-’-l , . In other words, to produce p � ( z ) ,  you multiply 
each term in p ( z )  by its exponent and decrease its exponent by 1. For the 
constant term ak, which corresponds to z’> you are multiplying by 0, and 
hence this term gets dropped. In proving this theorem, we may assume that 
the constant term a k  is not zero, since otherwise p ( z )  = Znk-lq(Z), where 
q(s) is of lower degree and p ( z )  and q(z) obviously have exactly the same 
number of positive zeros and the same number of changes of sign. 

Descartes’ rule is obvious for linear polynomials. We can therefore pro- 
ceed by induction on the degree of the polynomial p ( ~ )  and use the fact that 
the degree of p � ( z )  is one less than the degree of p ( ~ ) .  

First note that p � ( z )  has the same number of changes of sign as p(s) if 
a k - l u k  > 0 and one fewer if ak-lak < 0. If rl 5 r2 5 . . .  5 T,~ ,  are the 
positive zeros of p ( z ) ,  Rolle’s theorem guarantees that p � ( z )  has positive 
zeros s1, . . . , .5,1L-1 satisfying 

> n k - 1  are positive integers) is p�(x) = 

If ak-lak < 0, this is all we need to finish the proof, since by induction p � ( x )  
must have at  least rn - 1 changes of sign and hence p ( z )  must have at  least 
.m changes of sign. (Observe that this argument is valid even when multiple 
roots are counted according to their multiplicity.) 

In the other case, since a k  = p ( 0 )  and ak-1  is a positive multiple of 
tlie first nonzero derivative of p ( r )  at z = 0, it follows (by calculus) that 
if a k - l a k  > 0, then p ( x )  must bt: either positive and increasing or negative 
and decreasing at zero, and therefore must achieve a niaximuni or niinimiirn 
a t  some positive nuniber SO less than its first positive zero r1. It then follows 
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that p�(s0) = 0, and so p�(x) has m positive zeros. Therefore p�(x) has at  
least m changes of sign, and so p ( z )  does also. The proof is now complete. 
Negative roots. By the simple expedient of replacing x by -5 ,  we can see 
that a polynomial p(x) with real coeficients has no  more negative real roots 
than p (  -x) has changes of sign. 

Replacing x by --z merely changes the sign of the terms corresponding 
to odd powers, of course. Thus, the polynomial p(x) = x2 - 32 + 1 cannot 
have any negative roots, since p (  -x) = x2 + 32 + 1 has no changes of sign. 



Answers to the Problems and Questions 

Lesson 1 
Problem 1.1. The solution of x + 0 = 0 is z = 0, which is 0 + 0; the 
solution of 3: + 1 = 0 is x = 1, which is 1 + 0; the solution of x + 0 = 1 is 
z = 1, which is 0 + 1, and the solution of z + 1 = 1 is x = 0, which is 1 + 1. 

Problem 1.2. The solution of x2+ 1 = 0 is II: = 1, and this is a double root, 
since (z + 1)2  = x2 + x + x + 1 = x2 + 1. The two solutions of x2 + J: = 0 
are z = 0 and J: = 1. Since x2  + x + 1 = 1 for both x = 0 and z = 1, the 
equation x2 + z + 1 = 0 has no solutions. 

Problem 1.3. If m = 37- + 1 and n = 3s + 2, then m + n = 3(r + s + l), so 
that the remainder when m + n is divided by 3 is 0. Similarly, if m = 37- + 2, 
then m + n = 3(r + s + 1) + 1, and so the remainder when rn + n is divided 
by 3 is 1. 

Problem 1.4. Subtracting 1 means adding -1 and vice versa. Dividing 
by 1 (as usual) amounts to doing nothing. Dividing by -1 is the same as 
multiplying by -1. It leaves 0 fixed and interchanges 1 and -1. 

Problem 1.5. The possible pairs of roots in the three-element field are 
(-1, -1), (0,0),  (1, l), (-1,0), (-1, l), and (0 , l ) .  The respective quadratic 
equations are 

x 2 - z + 1  = 0 
x2 = 0 

Ic2 + 2; + 1 = 0 
x 2 + x  = 0 
x 2 - 1  = 0 
x 2 - x  = 0 .  

The only quadratic equations that have no solution in this field are z2+1 = 0, 
r 2 - z - l  = 0 , a n d x 2 + x - 1 1 0 .  

Problem 1.6. 

Problem 1.7. 1. The identity 

= -2 in this field, since 2 x -2 = 1. 

2 2 2  a ' a = a1 + a2 + a3 

is a straightforward computation. 
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FIGURE 15. The vector law of cosines: a . p = /a1 Ipi cost) 

2. To prove 
( a .  PI2 5 (a  ’ a )  (P ‘ 0) , 

follow the hint, and divide the inequality y . y 2 0 by a . a. 
3. From the definition of the angle in terms of the dot product, perpen- 

dicularity means that the cosine of the angle between the two vectors is zero. 
Hence perpendicularity means that the dot product is zero. This “answer,” 
however, is unsatisfying if the reader is not convinced that our definition of 
angle is intuitively correct. To see why it is, consider Fig. 15, which shows 
vectors a,  0, and a - p. We take it as given that the correct geometric 
interpretation of the sum of two vectors is obtained from the head-to-tail 
juxtaposition familiar to physicists, so that a - p goes from the head of ,B 
to the head of a. (It is what you need to add to p to get a as the sum.) We 
also assume that our interpretation of the length of a vector as the square 
root of the sum of the squares of its components is intuitively correct. With 
those assumptions, the law of cosines gives 

/a  - pi2 = l a12  + Ip12 - 2lal Ipi coso. 

(a  - 0 ) .  (a  - p)  = laI2 + ipi2 - a a . p ,  
Since the left side of this equation is 

all we have to do is subtract the conimon terms from the two sides and 
divide by 2 to get the equation 

a .  p = la1 IpI cost). 
4. The remaining identities, namely 

p x a  = - a x p ,  
la x pi2 + (a  p)2 = jaI21Pl2 % 

a x 0 . a  = 0 :  
a x ,B = +la1 ipI sirion, 

la x PI = 1 0 1  IpI sin0 
are all routine computations. (You may have to know a bit of linear algebra 
to deduce that the solution space of a . x = 0 = ,O . x is one-dimensional.) 

Problem 1.8. As in the previous problem? the identity ( l+O)(a+a) = a+a  
is a routine computation. 
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Problem 1.9. Yet again, the identity AB = BA if A = a + 0 is a routine 
computation. 

Problem 1.10. With boring monotony, we find that the identity AA = a�+ 

are as (0 ,0 ,3 ,0 ) (1 ,0 ,0 ,2 )~1  = ( O , - g , & O )  or as (1,0,0,2)-1(0,0,3,0) = 

Problem 1.11. The following ways of proceeding may occur to you. They 
are listed in increasing order of sophistication: 

lay1� is another routine computation. The possible interpretations of 0 (0 0 3 0 )  

(0, g ,  & O ) .  

1. 

2. 

3. 

4. 
5. 

An experimental solution, for those who don’t trust numbers and 
insist that only practical results are of value: Glue together some 
cheaper planks of the same dimensions and practice cutting the notches 
until you get it right. 
A experimental paper-and-pencil method: Try different numbers until 
find two that add up to 19 and one is seven times the other. 
Note that half of the plank must cover eight sides of the square, so 
divide 19 by 8. This will be the side of the square. 
Solve the linear equation 1z: = 7(19 - x).  
Solve the two linear equations x + y = 19, y = 72. 

Question 1.1. 1. To determine how much money you need to pay your 
bills, you add the bills. That is arithmetic. 

2. If your current average over the first, 60% of a course is 85%, the 
average z that you must maintain in order to get a semester average of 90% 
satisfies the equation 0.6 x 0.85 + 0.42 = 0.9. That is an algebra problem. 

3. To use the formula s = 4.9t2 to determine s given that t = 7, you 
substitute 7 for t in the equation. Since it is already solved for s ,  the 
computation you perform is arithmetic. 

4. To determine the value of t given s = 120, you need to solve the 
equation for t ,  getting t = m, and that is algebra. 
Question 1.2. Suppose that there were a field consisting of six elements. 

One of the elements of this field is -1. Assume first that -1 = 1. Then 
n = -a for all elements of the field. Let a be an element different from 0 
arid 1. Then the elements 0, 1, a ,  a�, are all different. To see this, note that 
the equation a2 = 0 implies a = 0. Likewist:, the equation a� = 1 implies 
n = 1 or n = -1 = 1: and the equation a2 = u implies a = 0 or a = 1. 

Now we cannot have a3 = 0 or a3 = a or a3 = a2,  since the first of these 
would imply a = 0 and the each of the other two would imply that, either 
a = 0 or a = 1. Either a3 is different from all four of 0, 1, a ,  and a2,  or 

Let, us assume teniporarily that a 3  = 1. Then, since a # 1, we must 
have u2 + u + 1 = 0, that is, a� = a + 1 and a2 + 1 = a. In that case, the 
elements of the field must be 0, 1, a ,  a’, 0,  c, for some b and c different from 
0, I ,  n :  and a2 and from each other. Now b2 must be different from 0, 1, 
u: a2. and b. Indeed, 6� = 0 implies b = 0, b2 = 1 implies b = 1, b2 = a‘ 

0 3  = 1. 
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implies b = a ,  and b2 = b implies b = 1 or b = 0. Finally, b� = a implies 
(b�)� = b6 = (b2 )3  = a3 = I ,  and therefore b3 = 1 also. That is, a and b 
are the solutions of x2 + 1z: + 1 = 0. But that means ab = 1, and therefore 
b = a’, contrary to hypothesis. Therefore c = b�, and the field consists of 
the distinct elements 0, 1, a ,  a2,  b, b�. 

But now the product ab cannot be defined. It must be a nonzero element. 
If it is 1, then ba = a2a, and dividing by a yields b = a�. If it is a,  then 
ba = a ,  and again dividing by a yields b = 1. If it is a,2, then ba = a�, and 
we get b = a. If it is b, dividing by b yields a = 1. Finally, if ab = b�, then 
a = b. 

Thus we conclude that 0, 1, a,  a2,  and a3 are all different. But then we 
cannot have a4 = 0, a4 = 1, a4 = a,  a4 = a�, or a4 = a3, since each of these 
implies either a = 0, or a = 1, or a� = 1, or a3 = 1. 

It follows that the elements of a six-element field in which 1 + 1 = 0 
would have to  be 0,1, a, a 2 ,  a3, a4, and a5 = 1. Now we ask which element is 
1 + a.  It is not 0, 1, a,  or a2, as already shown. Suppose that it is a3. Then 
1 + a2 must be u4 (since there is nothing else left that  it can be). But this 
implies that  a4 = 1 + a2 = (1  + a ) 2  = ( u ~ ) ~  = a6 = a ,  again a contradiction. 
Likewise, the assumption 1 + a = a4 leads to 1 + a2 = a3, which implies 
1 + a3 = a2.  But it also implies that  1 = a(1 + a 3 ) ,  which in turn says that 
1 + a3 = a4, that  is, a� = a4, which is again a contradiction. Thus there is 
no six-element field in which 1 + 1 = 0. 

We now assume that 1 + 1 # 0. For simplicity, we define 2 = 1 + 1, 
3 = 2 + 1 =  1 + 1 + 1 , 4  = 3 + l =  2 + 2  = 2 . 2  = 1 + 1 + 1 + 1 ,  and so 
on. As we know, in the field of two elements 2 = 0. We are now considering 
a hypothetical field of six elements in which 2 # 0. We now temporarily 
assume 3 = 0. That  implies 4 = 1, so that 2 . 2  = 1 .  Then the field contains 
the elements 0, 1, and 2, and a fourth element, which we call a. We cannot 
have 2a = 0 or 2a = 1 or 2a = 2 or 2a = a,  since these imply respectively 
a = 0, a = 2 (because 2 . 2 = l), a = 1, and 2 = 1. Therefore the field 
consists of the five elements 0 , 1 , 2 ,  a ,  2a  and a sixth element, which we label 
b. But then there is nowhere to go with 2b. It cannot be a ,  since that implies 
2a = 4b = b (because 3 = O ) ,  and all other hypotheses likewise lead to a 
contradiction. Thus we can safely exclude the possibility that 3 = 0 also. 

Now we certainly cannot have 4 = 0, since that implies 2 . 2 = 0. 
The next possibility is that  5 = 0. Then 6 = 1, i.e., 2 .  3 = 1, which 

in turn implies that  4 .  4 = 1’ = 1 (since 9 = 4). The field thus consists 
of 0 , 1 , 2 , 3 , 4 , a .  Once again, there is simply nowhere to go with 2a. The 
equations 2a = 0, 2a = I ,  2a = 2, 2a = 4> and 2a = a imply respectively 
a = 0: a = 3,  a = I ,  a = 2, and 2 = 1. The remaining possibility 2a = 3 
implies that 4a = 1 and hence a = 4. Thus we also rule out 5 = 0. 

Thus we must have 6 = 0 in any such field but 2 # 0 and 3 # 0, arid 
that is impossible, since 2 . 3 = 6. 
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(1.4) \ b, uv=4 

u+v=5 

3s’- 152+12=0 x 2 - 3 z + 5 = 0  

2s’+10z+12=0 3z2+3z-18=0 

FIGURE 16. Graphic solution of quadratic equations. 

Lesson 2 

Problem 2.1. The graphs in Fig. 16 show that the roots of 32’ - 15z+ 12 = 

0 are x = 1 and x = 4, that the equation xz - 32 + 5 = 0 has no real roots, 
that the roots of 2x2 + 102 + 12 = 0 are z = -3 and z = -2, and that the 
roots of 32’ + 32 - 18 are x = -3 and z = 2. 

Problem 2.2. We can solve by inspection. In the field of five elements, 
x = 1 and x = 2 are solutions of z2 + 22 + 2 = 0. In the field of three 
elements, the polynomial x2 + 2x + 2 assumes the values 2, 2, and 1, and 
herice has IIO zeros. (It is the same as Z’ - x - 1, which has no zeros, as 
shown in Problem 1.5.) 

Problem 2.3. The system 

x + 2y - 32 = 2 :  
2 2  - 3y + 42 = 1 ,  
z + 9y - 132 = 5 ,  
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is indeterminate. In fact, it. has the general solution z = (8 + 2) /7> y = 

(3  + 10z ) /7 ,  z arbitrary. 
The system 

z +  y + z = 5 ,  
z + 2y + 32 = 2 ,  
z + 4:y + 9z = 3 ,  

23 7 
2 is determinate. Its only solution is 3: = T ,  y = -10, z = - 

Problem 2.4. Combining the first equation with the second, third, and 
fourth respectively yields y = (u  - b ) / 2 ,  z = ( a  - .)/a, and x = ( u  + d ) / 2 .  
Tht: first equation then implies that u - b - c+ d = 0. This is the consistency 
condition. 

Problem 2.5. There is one solution: rn = 2, n = 3. It was conjectured 
by Eugkne Catalan (1814-1894) in 1844 that this is the only solution. That 
con.jecture was finally proved by Preda Mihgilescu (b. 1955) in 2003. 

Question 2.1. When b < 0 ,  the hyperbola uu = b occupies the second and 
fourth quadrants. Any straight line of negative slope (u + 2, = -u) must 
intersect each branch of the hyperbola in a point with one positive and one 
negative coordinate. This fact also follows since the polynomial x2 - a z  + b 
has exactly one change of sign when b < 0.  (See the discussion of Descartes’ 
rule of signs in the Appendix.) 

Question 2.2. For the equations x2 f 2ax + a2 = 0, the straight lines 
�u + 21 = f 2 a  are tangent to the hyperbola uu = u2 at  one vertex or the 
other. 

Lesson 3 
Problem 3.1. The quadratic formula that gives the solution of ax2 + bz + 
c = 0 as ( -b  2~ d m ) / ( 2 u )  is valid in any field where 2 # 0. Of course, 
one needs t.o know which elements of the field have square rook, and adjoin 
a suitable square root if necessary, that is, if b2 - 4ac is not a square in 
the field. One can also go through the process of completing the square 
that leads to this formula, but again, it works only if b2 - 4ac is a square. 
Finally, one can simply substitute each element of the field in place of z and 
see whether the result is zero. 

Problem 3.2. In the field of three elements we have 4 = 1 and 2 = -1, so 
that the solution of ux2 + b x  + c 0 is 

bid= 
.r = 

0. 

We niust have b2 - ac = 0 or b2 - uc = 1 in order to take the square 
root, since -1 has no square root in this field. In that case, we can write 
d G  = b2 - uc, and the formula is even simpler. 
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In t,lie field with five elements we have 4 = -1, and so the formula is 

- b I f  d G  
2a 

x =  

Again, b2 + ac must be 0, 1, or -1, so that its square root can be taken. 

Question 3.1. In each problem, we are given information about the result 
of performing certain operations on a number (or numbers) and asked to 
find the number(s). In the Egyptian problem, the result of multiplying 
t,he unknown number by is 19. In the Mesopotamian problem, there are 
two unknowns (length and width), and we are told that their sum is 27, 
while their product plus their difference is 183. In the Chinese problem, the 
unknown is the number of hours required for the faster runner to overtake 
the slower, and we know that 40 times this number must equal 100. In 
al-Khwarizmi's inheritance problem, the unknown is a fictional amount of 
money to be repaid, and it must equal two-fifths of itself plus 3: dirhems. 
In the Japanese geometry problem, there are three unknowns. These are 
the three diameters of the different-sized circles, and we are given certain 
relations between them and the areas inside the largest and outside the 
three smallest ~ relations that are expressible as operations performed 011 the 
diameters. 

Question 3.2. All the solutions given are formulaic (exact) except the 
geometry problem of Sawaguchi Kazuyuki. 

Question 3.3. The quadratic formula does not work in the field of two 
elements, since 2 = 0, and one cannot divide by 0. To solve the equation 
.z? + J: + 1 = 0 in this field, it is necessary to adjoin two more cube roots of 
unity, in addition to 1 itself. 

In both cases, the formula does work. 

Lesson 4 
Problem 4.1. The identity 

is easily proved by induction. When p = 1, both sides equal 1. If the identity 
is true with p = r ,  then 

Adding ’r + 1 to both sides then yields 
r ( r  + 1) ( r  + 1)(r + 2) 

2 1 + 2 + . . .  + r +  ( r  + 1) = ~ + ( r  + 1) = 2 
which is the same identity witah p = r + 1. 

Now working with the inequalities 
at2 at2 

( I  + 2 +  " ' +  (n  - 1))- < s < (1 + 2 + . . . + n ) -  
n2 n2 
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and invoking the given identity, we do indeed find that 

1 1  1 1  (z - - )at2 < s < (i + - ) a t 2 .  
2 n  2n  

Since these inequalities are true for all positive integers, we must have s = 

;at2. If we choose 
�n > a t2 / (2&) ,  we then have a t 2 / ( 2 n )  < E ,  and therefore ;at2 - a t 2 / ( 2 n )  > 
;at2 - E = s, which is a contradiction. A similar contradiction results from 
the assumption that s > ;at2. 

Problem 4.2. The formula for s / t2  is obtained by taking s as the distance 
from the point (r ,  v t )  to the point (T cos(wt/r), T sin(vt/r)): 

For if s < ;at2, let E = ;at2 - s, so that E > 0. 

A little trigonometry is then required to get rid of the cosine, namely the 
formula 1 - cos cp = 2 sin2 ( 5 ) .  You can then write this relation as 

Unfortunately, calculus is required to  show that (sin Q ) / Q  + 1 and (l/Q) (1 - 
(sinQ)/Q) + 0 as 0 --f 0. For that reason, we omit the proofs of these facts, 
even though the first of them is easy. Given those facts, you can see by 
letting t tend to zero that s2/t4 tends to v4/(4r2), from which it follows 
that the instantaneous law of “falling” is s = ; (u2/r) t2 .  

Comparing this law with the law for uniformly accelerated linear motion, 
we see that the magnitude of the acceleration must be a = ~ ~ / r .  

Problem 4.3. To express the linear velocity of the Moon in its revolutions 
around the Earth, we have 

where T = 27.3 days = 2.35872 x lo6 seconds, and r = 3.844 x 108 meters. 
Hence we find that II = 1023.97 meters per second. Actually, however, 
we don’t need this number, since it is the acceleration v 2 / r  that  we are 
interested in: 

u2 47r2r 
r T2  

- 0.0027 - - -- - 

This is the value given in the text, and, as noted, it is approximately 1/3600 
of the acceleration of gravity at the surface of the earth. Hence if the accel- 
eration of the Moon is indeed due to the Earth’s gravity, that  gravitational 
force must decrease in proportion to the square of the distance. (At least, 
that is the most elegant close fit for this single data point!) 
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Now, given that v2 / r  = C/r2 ,  we find that IJ = *I&. We then note 
that the period T of a planet in a circular orbit satisfies 

Putting it another way, T 2  = (4r2/Cjr3, which is Kepler’s third law. 
Problem 4.4. All these steps are reversible. If T2  = (4r2 /C)r3 ,  then 
v2/r  = C/r2 .  Hence, Kepler’s law implies an inverse-square law of gravita- 
tion. 
Problem 4.5. From the data given, we have 

x 10’ meters per second 
1 

- 
1 

V G j j X - d m  
Resorting to a calculator, we find that this is 3.00033 x 10’ meters per 
second, almost precisely the speed of light. Given that this is the speed at  
which a self-sustaining electromagnetic wave must propagate, Maxwell drew 
the obvious conclusion that light is an electromagnetic wave. 
Question 4.1. The similarity in mathematical form between the relations 
“area = length x width” and “distance = speed x time” (together with 
infinitesimal reasoning) leads to the conclusion that the area under the ve- 
locity curve is proportional to the distance traveled when the velocity is not 
uniform (acceleration is not zero). The particular case of constant accelera- 
tion was discussed early on and turned out to provide a good description of 
the motion of bodies falling near the Earth’s surface. 

Again, a mathematical form for the relation between distance and the 
square of the time leads to the expression v 2 / r  for the acceleration of a 
body in uniform circular motion. This expression linked the inverse-square 
law of gravitation to Kepler’s third law, and supported the hypothesis that 
universal gravitation was responsible for both the orbits of the planets and 
the falling of bodies near the Earth’s surface. The mere fact that the two 
laws (inverse-square relation for gravitation and Kepler’s third law) were 
mathematically equivalent provided support for both. (Kepler’s third law 
could be verified by observation, but the inverse-square law of gravitation 
could not. j The synibolic manipulation allowed by algebraic notation greatly 
facilitated the perception of this connection. 

Measurements of charges moving under the influence of electricity and 
magnetism led to the determination of the electric permittivity and mag- 
netic permeability of a vacuum. Maxwell’s laws relating the electric and 
magnetic fields showed that an electromagnetic wave could sustain itself if 
it propagated at a speed determined by these two constants, and compu- 
tation revealed that speed to be precisely the speed of light, thus unifying 
optical and electromagnetic phenomena. 

None of this would have been possible without the formulas, expressed 
in algebraic notation and manipulated according to the rules of algebra 
and calculus. In order to reach our final results, we had to replace some 
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expressions by others that were formally different but demonstrably equal 
to them. That is the essence of algebraic manipulation. 

Question 4.2. This question is more philosophical than mathematical. 
There is something about the asymmetry of the equations that reconcile 
the observations of two observers in classical physics that is disquieting. If 
electric and magnetic fields are truly observable, why do different observers 
agree about the magnetic fields but not the electric ones? In relativity. 
they don’t agree about either field, but at least the disagreement shows up 
symmetrically in the equations of transition between them. One is almost 
inclined to imitate Aristotle and assume that we have an intuitive feeling 
for the way a well-run universe would function. We could then say that, 
therefore the relativistic equations must be the correct ones. Almost, but 
not quite. That kind of self-confidence has been shattered many times in 
the past, and the history of science is littered with the wreckage of elegant 
theories, such as the elastic-solid explanation of light propagation. 

What, role does mathematical elegance play in the acceptance of a phys- 
ical theory? At the one extreme we have the scorn of Ludwig Boltzmann 
(1844-1906), who said, “Elegance is for tailors.” At the other extreme, we 
have Henri Poincark (1854~-1912): who said, “If nature were not beautiful, 
it would not be worth knowing.” 

These two extremes reflect the attitudes of scientists, not the nat,ure 
of the world itself. There is a tension between the “engineering” perspec- 
tive that insists on dealing with “just the facts” and the “mathematical” 
perspective that insists (again to quote PoincarR) that “facts don’t talk.” 
Each has something to contribute. In these lessons, we are promoting the 
mathematical perspective sympathetically, showing the insight that can be 
gained by linking different, seemingly unrelated parts of the universe such as 
electricity, magnetism, and light, in a harmonious order. A very nice essay 
on the subject, by the physicist Norman David Mermin (b. 1935) can be 
read at the following website (as long as it stays available): 

http://www.aip.org/pt/marOO/refrnar.htm 

Lesson 5 

Problem 5.1. Let p(x) = x2 - 7. Then p ( 2 )  = - 3  and p ( 3 )  = 2> so the 
first digit is 2. Let y = 2. The array that gives the equation for y is 

1 1 1 1  
0 2 4 0  

-7 - 3  0 0 

Thus we have p l ( y )  = y2 + 4y - 3.  Since we are now into decimal places, we 
let z = 1Oy and q l ( z )  = z2  + 402 - 300. Since ~ ( 6 )  = -24 and ~ ( 7 )  = 29, 
we now have the approximation IC = 2.6 for the root. Let z = w f 6, and 
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writ,e 
1 1 1 1  

40 46 52 0 .  
-300 -24 0 0 

Thus, p2(w) = w2 + 52w - 24 = 0, and if v = low,  we have q2(v) = 

ti2 + 520v - 2400. Since q2(4) = -304, while qz(5) = 225, the root lies 
between 2.64 and 2.65. 

Problem 5.2. Obviously the root is between 1 and 2. If we let 2 = 1 + y, 
the equation for y is found from the system 

1 1 1 1 1  
0 1 2 3 0  
0 1 3 0 0 ’  

-3 -2 0 0 0 

so that, pl(y) = y3 + 3y2 + 3y - 2 = 0. Since we are now right of the 
decimal point, we let z = IOy, and write instead the equation q l ( z )  = 
2‘’ + 30z2 + 3002 - 2000 = 0, where we know that 0 < z < 10. Now 
ql(4) = -256, while q l ( 5 )  = 375, so that the next digit of the solution is 4. 
That is, our next approximation to 2 is 1.4. Letting z = 4 + w ,  we get, 

1 1 1 1 1  
30 34 38 42 0 

300 436 588 0 0 ’ 

-2000 -256 0 0 0 

Thus w satisfies p2(w) = w3 + 42w2 + 588w - 256 = 0, and replacing w 
by v = low, we get q2(v) = v3 + 420v2 + 5 8 8 0 0 ~  - 256000 = 0. Since 
q2(4) = -14016 and q 2 ( 5 )  = 48625, the next approximation to the root is 
1.44. If you continue, you will get 5 = 1.44225. 

Problem 5.3. The system that provides the equation for y is 

1 1  1 1 1  
I 2 -2 -1 0 
1 -2 1 0 0 ’  
1 - 1  0 0 0  

Here we use the fact that “3” is -2 and “4” is -1. Thus we have y3 - y2 + 
y - 1 = 0. Since the elements of this field are not ordered, there is no point 
in looking for a “change of sign” in the value of this polynomial. What this 
equation tells us is that 2 = 1 is riot a solution, since the constant term here 
is not zero. 

We can keep on guessing 1, however, since taking y = 1 amourits to 
taking z = 2. And obviously, this is a solution. The method will reveal that 
t30 us (a.s if it were not already obvious!). If we let y = z + 1, the equation 
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for z will be derived from the system 

1 1 1 1 1  
- 1 0 1 2 0  

1 1 2 0 0 '  
- 1 0 0 0 0  

Thus y = 1 ( x  = 2) is a solution, and the equation satisfied by 2 is 
z 3  + 2z2 + 22 = 0, that is, 2(z2 + 22 + 2) = 0. Hence either 2 = 0 or 
z2  + 22 + 2 = 0. If you wish, you can solve this quadratic the same way, but 
obviously, its solutions are z = 1 and z = 2, meaning = -2 or x = -1. 

Question 5.1. Let bk = ak/ao, Ic = 
1 , 2 , .  . . , R. The roots of the given polynomial are the same as those of 
the polynomial zn + b1zn-l + . . . + b,-p + b,. We first invoke the "funda- 
mental theorem of algebra" (discussed in Lesson 10) to argue that there is 
at least one root. Then we note that if IzI 2 1 + /blI + .  .. + lbnl, we have 

w e  are assuming that a0 # 0. 

Ib lz"- l+ . . .+b ,~ lz+b, I  < ( Ib l /+"’+/b , / ) I zn- ’ I  < 121n, 

lzn + b1zn-l + ' ' ' + b,-p + b,/ > lznl - Ib1zn-l + ' .  ' + bn_1z + bTX1 > 0 ,  

and therefore 

so that there are no zeros outside the given range. Hence all the zeros (arid, 
in particular, at  least one) must be in the indicated range. 

Question 5.2. The most efficient way of finding the digit where the sign 
changes is repeated bisection. Try 5 first, then (depending on which sign is 
which) 3 or 8. In this way, you will not need to try more than four digits in 
order to get the answer. 

Trying successively longer values of z instead of substituting y, z, and 
so on, in succession, leads to horrendously long and complicated decimal 
computations at  a very early stage and is very much error-prone. 

Question 5.3. The principal advantage of the Chinese method is the fea- 
ture just mentioned: By working with an equation for a single-digit number 
at  each stage, one avoids dealing with horrendously long decimal expan- 
sions. In terms of the actual number of steps required, the two methods are 
comparable. 

Question 5.4. When the constant term in the equation for the new variable 
is zero, that new variable can be taken as 0, meaning that the previous 
equation was satisfied exactly by the value of the previous variable. 

Lesson 6 
Problem 6.1. The quadratic formula gives us 

i * J m  
5 =  
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According to our formula, we have 

As a result, we have 

or 

Problem 6.2. We are of course assuming a # 0. The quadratic formula 
reveals the roots to be 

b 

2a 

If one of these two roots has imaginary part zero, we must have 

If we square both sides of this equation, we get one that is fully equivalent 
to it. Then, using our formula for the square root of a complex number, we 
find 

- ( u b  4144 - ab)� =i(l(:)2-%;-Re((:)2-:)), 

where a is, as usual, the complex conjugate of a. After expanding the real 
part on the right side here and transferring it over to the left side, we get 
an equation that can be written as 

or, after multiplying through by / a / 2 ,  as 

Re (lb12 - 4ac) = /b2 - 4acl 

Problem 6.3. We have u2 = u arid so u2 + u + 1 = ii + u + 1 = 1 + 1 = 0, 
and likewise u2 = u, so that u2 + u + 1 = 0. All four of the elements have 
square roots. (And u and are cube roots of 1.) 

Problem 6.4. If a is any vector of length T ,  that is, la\ = r ,  then the 
quaternion A = 0 + a satisfies 

A2 = - a .  a = - r2 .  
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If B = b + p, then B2 = (b2 - lpi2) + 2 b p ,  and therefore we cannot have 
B2 +r2 = 0 if b # 0. Hence we have found all solutions of this equation. No- 
tice that  a quadratic equation in quaternions may have a simply enormous 
riurriber of solutions-a whole two-dimensional sphere full of theniv ~ and all 
because quaternion multiplication is not commutative. If it. were. the quater- 
nioris would be a field, in which a quadratic equation can have a t  most two 
solutions. 

Question 6.1. If orie of u and u is real and the other nonreal, then u + 7) is 
nonreal. Hence b/u is norireal. I t  follows that a and b cannot both be real. 

Question 6.2. If the elements of a finite field are ~ 1 , .  . . :aTL. t,heri the 
polynomial 

(Z - U I ) ( Z  ~ u2) .  . ' (Z - a,) + 1 

has no roots in the field. 

Lesson 7 
Problem 7.1. If y = q / (pu j ) ,  then 

0 = y 3 + p y + q  

Thus we have 
wi3 + w 2  = N 

where A' = -q2 /p3 .  

Problem 7.2 Equations with only two terms: (1) ax3 = d. 
Equations with three terms: ( 2 )  ax3 = cz+d,  (3) az'i-cz = d ,  (4) az"+tE = 

CZ:, (5) ax3 = bx2 + d ,  (6) a d  + bZ2 = d, ( 7 )  ax3 + d = bx2 .  
Equations with all four terms: (8) uz3 = h z 2 + c z + d ,  (9) a:r."+hz2 = c.r:+d, 
(10) ax3 + cz = bz2 + d ,  (11) a x 3  + d = bx2 + C X ,  (12) ax3 + Ox2 + cz = d ,  
(13) U Z ~  + Ox2 + d =  CZ, (14) ax3 + cz + d = b d ’ .  

Problem 7.3. Obviously we need a = B/A!  b = m, c = D/C. 
Now; given 

we write y = bc/z .  arid substitute this value in the second equation. Thr~ 
result, after multiplying by x 2 ,  is 
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Y 

t (~+0 .6 )~+(y -&)*=2 .4*  

FIGURE 17. Graphical solution of x3 + 3x2 + 152 = 27. 

Transposing the right side to the left and expanding, we get 
2 2  x4 + ( a  - c)x3 - acx + b ( c  - .)2 = 0 .  

(x - c)(x + u)x2 + (x - c)%2 = 0 .  
In other words 

Hence, either x = c or 
3 

2 + ax2 + b2x = b2c. 

Problem 7.4. Here we have a = 3, b = a, c = i, so that the circle and 
hyperbola are given by 

3 2  12 2 
(x.5) + ( y - J 1 5 ) 2  = ( T ) ,  

Figure 17 shows the two curves, and seems to indicate that a solution can 
be found around x = 1.3. In fact, there is a solution close to  x = 1.30824, 
as numerical methods will show. 

Problem 7.5. For x3 + 153x - 4886 = 0, we find 

3: = '' 2443 + J513 + 24432 - 2443 - J5I3 + 24432 = 17 - 3 = 14. 

For the equation x3 - 6x2 + 144z - 1539 = 0, we first let y = 3: - 2, so 
that x = y + 2 arid y3 + 132y - 1267 = 0. We then find that 

I I 

so that x = 9. 



1x2 ANSWERS TO THE PROBLEMS AND QUESTIONS 

For z 3  - x - 1 = 0, we get 

For x3 - 6x2 + 112 - 6 = 0, the reduction x = y + 2 leads to the equation 
3 y - y = o .  

The cubic discriminant is negative here. If we were mindless enough to apply 
the formula with p = -1, q = 0, we would get 

Imitating Bombelli, we could take this to be zero, which is indeed a root of 
the equation. Of course, there is no need to do this, since it is obvious that 
y = 0, y = -1, or y = 1, and so x = 1, x = 2, or x = 3. 

Problem 7.6. To say that a is a primitive pth root of unity, where p is a 
prime, is to say that ak = 1 if and only if k is a multiple of p.  Then, for 
any j ,  aJk = 1 if and only if j k  is a multiple of p .  Since p is a prime, this is 
equivalent to saying that either j or k is a multiple of p ;  and since j is not 
a multiple of p ,  this means that j k  is a multiple of p if and only if k is. 
Problem 7.7. The fourth roots of unity are 1, -1, i ,  and -i. The primitive 
fourth roots of unity are i and -2 .  

Question 7.1. In the case of the square root, the relation between u, u, r ,  
and s can be solved for u and v with an algebraic formula. This is done by 
eliminating v from the equation 2uv = s, substituting its value in terms of 
u into the other equation, and then solving for u. The lucky thing is that 
v is a rational function of u and s in this one equation. In the case of the 
cubic equation, u and v are algebraic functions of each other and r and s ,  
but not rational. Neither equation can be used to express v as a rational 
function of u, r ,  and s.  In one equation we find u = J(u3 - r ) (3u) .  The 
other is even worse, requiring us to solve a cubic equation for v. 
Question 7.2. In order for the Cardano formula for the solution of x3+pz+ 
q = 0 to contain only rational functions of p and q ,  there must be rational 
numbers m and n such that 3rnn = p and m3 - n3 = q .  The solution of the 
equation is then m - n. In very many cases, an irrationality in m cancels 
a corresponding irrationality in n, leaving the solution m - n rational, but 
expressed in terms of radicals. 
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Lesson 8 
Problem 8.1. The Cardano formula gives 

We need to make an inspired guess at a value of cube root. The best way to 
do that is to compute the root numerically using trigonometry. The number 
whose cube root we want can be written as 

J2197(cos 0 + i sin 0) , 

where 0 = arccos ( - 3 5 / m )  = 2.4139 (radians). Then the real part of 
one of the cube roots of this number is (2197)lI6 cos(0.80463) = 2 .5 .  Thus, 
the real part of this cube root is almost certainly i. That alone tells us that 
the root of the original equation should be y = 5, and we can verify that 
such is the case. 
Problem 8.2. Although we don't need to know the imaginary part of this 
cube root in order to solve the original equation, we can now find it by 
solving the equation 

5 3 (z + x i )  = - -35 + 1 8 h i  

Since the real part of this equation is quadratic in x ,  obviously it is the part 
we should be looking at: 

125 15 
8 2  

-x = - 3 5 ,  _ -  

that is. 

so that 11: = f 3 & / 2 .  Computation verifies that indeed 

Problem 8.3. First we get rid of the cubic term by writing y = x - g ,  that 
is, x = y + $. The result is 

4 1 2  91 
y = - - y  + 5 y + - = o  

2 16 
We then add 2t + t2 to both sides, getting 

1 91 
(!I2 + t ) 2  = ( 2 t  - -)y2 2 + 5y + ( t z  + -) 16 , 

The condition for the right side to be a perfect square is 
25 - 4(2t - 2) 1 ( t2  + -) 91 = 0 ,  

16 
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that is, 
3 2 91 291 

8t - 2 t  + - t - - = O  
2 8 

Fortunately, t = f is one of the solutions of this resolvent cubic equation. 
Our original quartic therefore breaks up into two equations 

2 3  5 
Y + 4 = *(Y + 2) , 

which yield y = f f 4 and y = -; & &z, as solutions. Hence x = y + $ = 

2 +  fi and z = 1 & &z. 

Prob lem 8.4. Vikte’s method converts the equation y3 + py + q = 0 into 
z3 - 2z = ( 3 & q ) / ( 8 p f i )  by means of the substitution y = d q z .  In 
the present case, that gives us the equation 

z3  - - z  3 = - 3&(5V% + 6&) 

8(11+rn)dGG. 

> .  2(11+ rn)JKZ% 

The right side must represent a cos 8. Hence we can express our answer as 
z = cos(Q/3),  where 

3&(5V% + 6 f i )  
Q = arccos ( - 

Any calculator will tell you that Q = 3.06272 radians, and adding 21r and 
47r gets two other values of 19, namely, 9.3459 radians and 15.6291 radi- 
ans. After dividing by 3 and taking the cosine, we get the values of z :  
0.522594, -0.999654, and 0.477061. These correspond to y values of 2.44949, 
-4.68556, 2.23607. Those with a sensitivity to common square roots will 
recognize that the first of these represents to the given accuracy and the 
last represents fi. Since the squared term is missing, the third root must 
be -(A + fi). It is easy to  verify that these are indeed the roots. 

Problem 8.5. We begin with the equations 

0 = y 3 + 1 8 y + 3 0 ,  
z = y 2 + r y + s  

Multiplying the second equation by y and subtracting the first, we obtain 
the equation 

zy = ry2  + (s - 18)y - 30,  
which we can write as 

y(z + 18 - s )  = ry2  - 30 = r ( z  - r y  - s) - 30 .  

arid conclude that 
rz  - 30 - rs ’= z + 18 + r 2  - s 
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When this value is substituted into the equation y3 + 18y + 30 = 0 and the 
denominator is cleared, the result is the equation 

(r3 + 18r + 30)(z3 + (36 - 3s)z2 + (18r2 + 9Or + 3s’ - 72s + 3 2 4 ) ~  
+ 30r3 - 18r2s - 9Ors + 540r - s3 + 36s2 - 324s - 900) = 0 .  

Thus, either r is a solution of the original equation, or 

z3 + (36 - 3s)z2 + (18r2 + 90r + 3s’ - 72s + 3 2 4 ) ~  
+ 30r3 - 18r2s - 9Ors + 540r - s3 + 36s2 - 324s - 900 = 0 .  

Choosing s = 12 will cause the coefficient of z2  to vanish. Then, solving the 
equation 

1 8 r 2 + 9 0 r - 1 0 8 = 0 ,  
that is, 

r2 + 5r - 6 = 0 ,  
for r and inserting this value of r will cause the coefficient of z to vanish, 
leaving a “pure” equation. This gives us two choices for r: r = -6 and 
r = 1. Obviously, the latter is simpler, and leads to 

z3 = 2058. 

We then have the equation 

y2 + y + (12 - 7%) = 0 .  

and so 
-1 It J- 

2 
Actually, only the negative sign in front of the square root yields a 

solution of the original equation. If you have the patience, you can verify 
that with this value of y, which is approximately -1.484806656062487, you 
get 

Y =  

y3 + lgy + 30 = -g((ii - 3%) + (1 + %)&iZCG). 
It is then straightforward to verify that 

(11 - 3%)2 = (1 + %)’((as% - 47).  

Hence this value really is a solution. 
If we had used the Cardano formula to solve this equation, which, by 

Descartes’ rule of signs (see the Appendix), has only this one (negative) real 
root, we would have obtained an alternative expression for it: 

y = % - % .  

You can verify easily that 

1 2 2 8 B  - 47 
(,+G-%) = 4 ’  
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As just noted, the value r = 1 leads to the two values y = fi - $% zz 

-1.48481 and y = -1 - @ + m E 0.48481. The second is impossible, 
since this equation has no real positive solutions. 

We could have used r = -6 also, leading to z = 7 m .  In that case, we 
would get the two values y = fi- $% = -1.48481 and y = 6- %+ $% % 

7.48481. Again, the second value is impossible, since the equation has no 
real positive solutions. 

Even without invoking Descartes’ rule of signs, we could have simply 
evaluated y3+ 18y+30 for numerical values of the roots we found sufficiently 
precise to  show us which one is correct, and which is extraneous. 
Problem 8.6. This time, we’ll skip all the explanation and go directly to 
the formulas. We know that s = 2p/3 = 24 in this case, and we find r from 
the equation 

36r2 - 36r - 432 = 0 ,  
which is to say that 

r2 - r - 12 = 0 .  
Hence r = 4 or r = -3. Let’s keep things simple and just use r = 4. We 
then get z from the equation z3 = 16464; that is, z = 14%. We then find 
y by solving 

y2 + 4y + (24 - 14%) = 0 .  
The result is 

y = 2 + ‘ i - m o r  y = - 4 - 2 ? G + m  

All we need is sign rules to see that the first of these must be correct. The 
quadratic equation has one positive root and one negative root, whereas the 
original cubic has only a positive root. Hence we must choose the first of 
these possible values, y = 2 8  - $%. 
Problem 8.7. We have the pair of equations 

0 = y‘ + by3 - cy2 + dy - e , 
z = y4 - py3 + qy2 - r y  + s . 

Multiplying the second by y and subtracting the first yields 

zy = 

zy = ( -p2  + q - b ) y 3 + ( p q - r + c ) y 2  - ( p r - s + d ) y - p ( z - s ) + r  

-py4 + ( q  - b)y3 - ( r  - c)y2 + (s - d)y  + e 

Thus we do get the equation 
p q - r + c 2  s - p r - d - z  e + p s - p z  

o = ’ y  + q - p 2 - b  + q - p 2 - b  ’+ q - p 2 - b  ’ 

and this is indeed a cubic equation in y, enabling us (in principle) to express 
y in ternis of z .  However, in contrast to the case of the Tschirnhaus solution 
of the cubic, y is not a rational function of z .  Substituting the expression for 
y in terms of z into the polynomial does not lead to a polynomial equation 
in z ,  but rather one that involves z under a radical. If the radical is removed 
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by symmetrizing, the resulting polynomial equation will be of degree larger 
than 5. 

Problem 8.8. The rational substitution y = z + leads to an equation 

y4 = ay2 + by + c ,  

where a ,  b, and c are rational numbers. Forming the resolvent cubic, we get 
the two equations 

where t satisfies 4(2t + a ) ( t 2  + c) - b2 = 0, and hence can be expressed in 
terms of a ,  b, and c, using only square and cube roots. The solutions y can 
then be expressed in terms of square roots of these quantities. 

Problem 8.9. The trigonometric identity is a result of the fundamental 
addition formula cos(a + b) = cos a cos b - sin a sin b, which in the case when 
a = b yields cos 2a = cos2 a-sin2 a = 2 cos2 a- 1. Similarly, since sin(a+b) = 
sin a cos b + cos a sin b, we get sin 2a = 2 sin a cos b, and from that 

cos 3a = cos(2a + a )  = cos 2a cos a - sin 2a sin a = 

= 2cos3a - cosu - 2sinacosasina = 4cos3a - 3cosa.  

Next, 

sin 3a = 

= 

We then have 

sin 2a cos a + cos 2a sin a 

2sinacos2 a + (2cos2 a - 1) sina = (4cos2 a - 1) s ina .  

COS% = cos(384-28) 
= 

= ( 4 C o s 3 e - 3 c o s ~ ) ( ~ c 0 s 2 e -  I )  - ( 4 c o s 2 ~ -  1 ) ( 2 c o s 0 ) s i n ~ ~  
cos 30 cos 20 - sin 30sin 20 

= 

= 

8c0s5 0 - locos3 0 + 3cosQ - locos3 19 + 2 ~ 0 ~ 1 9  
16 C O S ~  I9 - 20 cos3 I9 - 10 C O S ~  19 + 5 cos 0 

= (cos0 - 1)(4cos20 + 2cosB - 1 ) 2  + 1. 

Taking B = 2~11.5 here, we have cos 50 = 1, and therefore, since cos B - 1 # 0, 

4c0s2 0 + 2 cos 0 - 1 = 0 .  

This equation has only one positive solution: 

-2+m- - 1 + &  
- 

8 4 cos0 = 

Since 2x15 < 7r/2, we have 
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It thus follows that one of the fifth roots of unity is 

-1 + & + 

b .  4 

P rob lem 8.10. We have the two equations 

z2 - 4 = r t h q z  - 2). 

Thus we need to solve 

x2 - h i z  + 2 h i  - 4 = 0 

and 
.‘Z2 + h i z  - ( 2 h i  + 4) = 0 .  

That gives us the four solutions 

f i i  Z!Z 1/14 - S f i i  

2 
x =  

and 

Since 4 1 4  + S f i i  = 1 ( 4  + f i i ) ,  the root is either 2 or -2 - f i i .  

Prob lem 8.11. The elimination procedures are trivial. Notice that the 
equation r(27q2 + 4p3) = 0 would be satisfied if the discriminant were zero 
(which means that the original equation has a multiple root), or if r = 0. 
However, if r = 0, then p = 0 also, because of the equation that determines r.  
That in turn transforms the original equation into a pure equation y3+q = 0, 
whose solution is again trivial. 

Quest ion 8.1. A double root of the polynomial p ( z )  = a(x - ~ ) ~ ( z  - s )  = 
ax3 - a ( s  + 2r)x2 + (ar2 + 2ars)z  - ar2s is also a root of its derivative 
p�(.z) = a ( 2 ( z  - r ) ( z  - s )  + (x - r)�) = a ( z  - r ) (3z  - 2s  - r ) ,  which is a 
quadratic polynomial. 

Lesson 9 

Prob lem 9.1. The value of tu + vw is completely determined by choosing 
one of u , u , w  to be the coefficient of t .  Hence it has only three values. 
Consider the equation 

( z  - tu - V W ) ( Z  - tv - uw)(z - tw - uv) = 0 .  

By dint of tedious computation (or by invoking a computer algebra pro- 
gram), we find that this equation can be rewritten as 

2 - bz2 + (ac - 4d)z + (46d - c2 - a2d) = 0 .  
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Now consider the system 

t + u + w + w  = a 

tu+ww = g1 
tv + uw = g2 

t w + u v  = 9 3 .  

We have ( t  + w )  + (u + w) = a and (t  + w ) ( u  + v)  = (tu + ww) + ( t w  + uw) = 

g1 + g2. Thus, for the two quantities ( t  + w )  and (u + w ) ,  we know their sum 
and product. That, as we have emphasized repeatedly, amounts to knowing 
the coefficients of the quadratic equation having these two quantities as 
roots. Thus t+w and u+v are the roots of the equation y2-ay+(gl+gz) = 0, 
and so they are 

a * J a 2  - 4(m + QZ) 

2 
Thus, with suitable choices of the square roots in each case, we must have 

Problem 9.2. The sum of the first two equations minus the sum of the 
last two equations is identically zero (on both sides). In other words, the 
fourth equation can be derived from the first three by adding the first two 
and subtracting the third. 

Problem 9.3. If tu + vw = 91 and d = tuww, then tu and vw are the two 
roots of the quadratic equation 

- glz + d = 0 .  z2 

We now know tu and t+u,  and hence can solve one more quadratic equation 
to find t and u. 

Problem 9.4. We can categorize the permutations of five letters by the 
number of points left fixed: 
Fiue fixed points. This must be the identity permutation, which leaves every 
element where it was. There is one such permutation. 
Four fixed points. There are no permutations that leave exactly four ele- 
ments fixed, since any such permutation must also leave the fifth element' 
fixed. 
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Three fixed points. Such a permutation is a simple 2-cycle (transposition). 
There are 10 of these, since there are 10 ways of choosing the three fixed 
points (or the two nonfixed points). 
Two fixed points. Once the two fixed elements are chosen (which can be 
done in 10 ways, as we know), there are two 3-cycles that move all three of 
the other elements. Hence there are 20 of these. 
One fixed point. The one fixed point can be chosen in five ways. After that, 
there are six 4-cycles that move all of the remaining elements, and three 
pairs of 2-cycles that also move all of the remaining elements. Hence, there 
are 45 of these. 
No fixed points. These must be either 5-cycles (and there are 24 of those) or 
a 3-cycle and a 2-cycle. For each fixed choice of the elements of the 3-cycle, 
there are two cyclic permutations that move all three elements. Hence there 
are 20 of the latter, for a total of 44 permutations with no fixed points. 

Thus, we find the following categories of permutations: (1) the identity, 
(2) a single 2-cycle, (3) a single 3-cycle, (4) a single 4-cycle, (5) a single 
5-cycle, (6) a pair of disjoint 2-cycles, (7) a disjoint 2-cycle and 3-cycle. 

Problem 9.5. Obviously, the order of a cycle is its length (the number of 
elements it contains). Since disjoint cycles commute, we have ( 0 7 ) ~  = on?, 
arid the only way this last permutation can leave every element fixed is for 
both on and T~ to do so. Hence n must be a multiple of the order of both 
(7 and 7 .  

Problem 9.6. A perrnutation of four symbols must be one of the following: 
(1) the identity (order 1), (2) a single transposition (order a), ( 3 )  a single 
3-cycle (order 3), (4) a 4-cycle (order 4), and (5) a pair of disjoint 2-cycles 
(order 2). Hence the possible orders are 1, 2, 3,  and 4. 

Problem 9.7. From the list of permutation types compiled above we obtain 
the following: (1) the identity (order l ) ,  (2) a single 2-cycle (order a), (3) 
a single 3-cycle (order 3), (4) a single 4-cycle (order 4), (5) a single 5-cycle 
(order 5), (6) a pair of disjoint 2-cycles (order a), and (7) a disjoint 2-cycle 
and 3-cycle (order 6). Thus, only the 5-cycles have order 5. 

Problem 9.8. We have already shown that a 5-cycle o has order 5, and in 
any case, this is quite obvious. Since f assumes fewer than five values, we 
must have f o 0' = f o uJ for some integers satisfying 1 5 i < j 5 5, and 
hence f o gJP2 = f .  So f is invariant under gj-2. But then it must also be 
invariant under ok(j-z), k = 1,2 ,3 ,4 ,  5, and these permutations are simply 
g> 02,. . . , n5 (the identity), in some order. In particular, since 0 must be 
among them, f must be invariant under g, that is, under any 5-cycle. 

Problem 9.9. The effect of 
(suwtv)  is to  produce the ordering (v, 20, s ,  t ,  u). Then the effect of (wuvts)  
is to produce ( u , s , t , v , w ) ,  that is, the two together have the same effect 
that (s tu)  has. 

. .  

Let the original ordering be ( s , t , u , v , w ) .  
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Problem 9.10. It follows immediately that f i  o ( s t )  = f o ( s t )  0 ( s t )  = f ,  
and obviously f l  is also invariant under all 5-cycles, and hence also under 
all 3-cycles. Then f o (tu) = f l  o ( s t )  0 (tu) = f l  o (s tu)  = f l .  Thus, if 
f l  = f ,  then f assumes only one value (is symmetric); otherwise f assumes 
only two values. This is the case in particular if it assumes fewer than five 
values. 

Problem 9.11. Write fo (s tuw)  = f o (s tu ) (uu )  = fo(uu).Then f ~ ( s t u u ) ~  = 
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f 0 (suut) = f 0 (tswu) = f 0 (uu) = f 0 (uw) = f 0 (stuv).  

Problem 9.12. Suppose that a configuration is a,. . , ,p,  q,r,s, ‘116”,t,u,v, w,. . . , 
z (reading from left to right and top to bottom). The allowable moves of 
“16” are an interchange with p (moving “16” up a row), s (moving “16” 
left by one column), t, or w. Each of these moves switches the color of the 
square on which “16” is located. If the interchange is with p ,  the number 
of inversions involving “16” increases by four, while the number involving p 
and one of q, r, and s switches from (say) n to 3 - n, in other words, the 
change is 3 - 2n, which is an odd number, so that the total change is 7 - 2n, 
also an odd number. If the interchange is with s, the total number of in- 
versions increases by one. If it is with t, the total number decreases by one. 
Finally, if it is with w, the change is -1 - 212, again an odd number. Thus, 
every allowable move changes the color of the blank square and changes the 
total number of inversions by an odd number. The total number is therefore 
odd if the blank square is white and even if it is shaded. 

Problem 9.13. In this case, we can ignore the inversions involving the 
fictional “25.” Every move changes the number of inversions involving the 
numbers 1,. . . , 24 by an even number. (There is no change when a square 
is moved left or right. When one is moved up or down, the total change is 
from 5 to 4 - x, a total change of 4 - 2 2 ,  or from x to 6 - 2 2 ,  both of which 
are even numbers. Thus, no move of any kind will change the parity of the 
number of inversions in the numbered tiles.) 

Question 9.1. Since every permutation is a composition of transpositions, 
there can be only two values altogether. 

Question 9.2. The function f ( s ,  t ,  u, u, w )  = s + 2t + 3u + 4v + 5u1 as- 
sumes 120 formally different values. 

Question 9.3. The usual elimination procedure for solving a pair of linear 
equations leads to 

v-CYu 1 u + CYu + a�-u - u) 
3 

a = ~ = - (a  - CY2)(?J - au) = 
C Y y 2  - C Y 3  

Lesson 10 
Problem 10.1 Suppose p (z ,y )  = p o ( z )  + pl(z)y + t . .  + pn-i(z)ynpl + 
pn(x)yn, where pn(x) is not identically zero. As shown in Question 5.1 
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above, if p(z ,  f(z)) 3 0, then 

Let k be the maximum of degpj(z) -degpn(x). Then the preceding inequal- 
ity implies that 

as x --f M. 
Now g(z) = l /f(z) is also an algebraic function, since 

PO(x)(g(z))n + ' .  ' + Pn-l(x)g(z) + pn(z) 0 .  

Hence by exactly the same reasoning, if 1 is the maximum of degpj(z) - 
deg po (z) , we have 

as x + M, that is 

Take n = 1 + max(k, 1). 
f(z)zl+l + 00. 

The series expansion 

( x  In 2). +...+-+...  (x In 2 ~ ) ~  
2" = ," In2  = 1 + x In 2 + ~ 

2! n! 
shows that 

2" (1n2)n 
xn n! 
- > -  

for all z and n, and hence the first of these conditions is violated. 
The fact that sin mz = 0 makes it impossible for us to have xn sin x 4 00 

as x + oc. 

Question 10.1. If there were an algebraic formula for solving every quintic 
equation, we could multiply any cubic equation by ( x  - r)(x - s )  and turn 
it into a quintic, which could then be solved by this formula. That is, the 
formula would be a multivalued function that assumed all five roots as values 
when different branches of the radicals were taken. Hence the general cubic 
x3 - ux2 + bx - c = 0 could be solved as well using this formula. But the 
solution of the general cubic requires the extraction of cube roots. 

Question 10.2. Abel assumed that the base field containing the coefficients 
also contained all the roots of unity. If these are adjoined to the real field 
(in fact, if just the cube roots are joined), then the cubic formula does not 
go outside the splitting field of the polynomial, that is, all the intermediate 
computations can be carried out within the field. To see why, not that 
the cubic formula requires us to adjoin a certain cube root z = fi, and 
the splitting field contains z + 2,  which is a root. Since it contains 6, it 
also contains &z + 62.  But another root is a z  + 62, and so the splitting 
field contains the difference of these two numbers, which is - 2 .  Thus, the 
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radical that the cubic formula requires is inside the splitting field if that 
field contains a complex cube root of unity. 

Lesson 11 
Problem 11.1. We observe first of all that if there are any integers u, u ,  
and w ,  not all zero, satisfying the relation 

u3 + 2u3 + 4w3 = ~ U U W  , 
then none of them can be zero. The assumption that exactly one of them 
is zero leads to the conclusion that either fi or is a rational number, 
which we know is not the case; and obviously if two of them are zero, then 
the third one is also. 

If two of the integers u, u ,  and w satisfying this relation are even, then 
in fact all three must be even. Obviously 2 does divide u. If it also divides 
u ,  then u3, 2u3: and 6uuw are all divisible by 8, which implies that 4w3 
is divisible by 8 and hence that w is also divisible by 2. Likewise, if w is 
divisible by 2, then u3, 4w3, and 6uuw are all divisible by 8, which implies 
that u is divisible by 2. Thus, if either u or ‘UI is even, then in fact all four 
terms are divisible by 8, and so we can replace u, u ,  and w by u’ = u / 2 ,  
v‘ = u / 2 ,  w� = w/2 and have the same equation: 

( u � ) ~  + 2 ( ~ ’ ) ~  + 4 ( ~ � ) ~  = 6u�u�w�. 

Since every nonempty set of nonzero integers contains an integer of minimal 
absolute value, let w be an integer for which there exist nonzero integers u 
and u satisfying the given equation and for which IwI is minimal. Then, as 
just shown, w must be odd. Otherwise, we could cut all three integers in 
half and get a w with ( w I  only half as large. Therefore (also by what was 
just shown), u must also be odd. But this is impossible, since u3, 4w3, and 
6uuw are all divisible by 4, so that 2u3 is divisible by 4. 

It follows that there can be no nonzero integer solutions of this equation. 

Problem 11.2. Suppose that r = a/a�, s = b/b�, and t = c/c� (where a ,  a�; 
b, b�, c? and c’ are integers) are rational numbers, not all zero, satisfying the 
relation 

r3 + 2s3 + 4t3 = 6rst . 
Then, multiplying through by (a’)3(b’)3(c’)3, we find that 

( ~ b � c � ) ~  + 2 ( a � b ~ � ) ~  + 4 ( a � b � ~ ) ~  = 6(ab�c�)(a�bc�)(a�b�c) . 

In other words, the integers ‘u = ub�c�, u = a�bc�, w = db�c satisfy the 
equation in Problem 11.1, which we know is impossible. 
Problem 11.3. The splitting field of both equations, by what was shown 
in the text, is obtained by adjoining (or, equivalently, a complex cube 
root of unity) and the real number to the rational numbers. Hence the 
splitting field is the same for both. It was shown in the text that the Galois 
group o f  automorphisms of this field leaving the rational numbers invariant 
corresponds to the permutation group Ss. 
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Problem 11.4. The result of replacing z by ( a  + b )  in the polynomial 

p(.) = z6 + 9z4 - 4x3 + 272� + 3 6 ~ :  + 31 
a.rid expanding is 

p ( a  + b)  = 31 + 36a + 27a2 - 4a3 + 9a4 + a6 + 36b + 54ab - 12a2b 

+ 36a3b + 6a5b + 27b2 - 12ab2 + 54a2b2 + 15a4b2 - 4b3 

+ 36ab:� + 20a3b3 + 9b4 + 15a2b4 + 6ab5 + b� 
If you now go through this expression very carefully and replace a2 by -3 ,  
a3 by -3a, a4 by 9, a5 by 9a, a6 by -27, b3 by 2 ,  b4 by 2b, b5 by 2b2, and 
b6 by 4 ,  you will obtain a polynomial in a and b that is formally zero. A 
computer algebra program will save you some time in this verification. 

Problem 11.5. Since we know the roots of this equation in advance, and we 
know that they are all the complex numbers of the form a + b, where a2 = 2 
and b3 = 2 ,  it is easy to see that the splitting field contains all three cube 
roots of 2 and both square roots of 2. For example, since it contains both 
& + n and -& + a, it must contain 2 f i ,  and therefore also $b, no 
matter which of the three complex cube roots of 2 this number represents. 
It follows that the splitting field of this equation contains (bl  - b z ) / ( b 3 ) ,  
where bl and b2 are the two complex cube roots of 2 and b3 is the real cube 
root. That is to say, the field contains the difference of the two complex 
cube roots of unity, which is a. Hence this field contains both a and 
3, and therefore contains the splitting field IK of the polynomial in the 
previous problem. But this splitting field also contains &, which is not 
in K. Hence it must be IK(&). The Galois group is therefore a group of 
12 elements, containing a copy of 22 as a normal subgroup with quotient 
group Ss. This is not surprising, since the allowable permutations of the 
roots of this equation are of the form m r ,  where cr is a permutation of the 
two square roots of 2 and 7 a permutation of the three cube roots of 2. Let 
us denote this group by G. It has the same “multiplication table” as the 
dihedral group DG consisting of the symmetries of the regular hexagon, as 
we shall now show. 

Let the vertices of the hexagon be uo, v l ,  uz, uj, u4, and us in cyclic order, 
as shown in Fig. 18. A symmetry is determined once we specify the locations 
to which vo and u1 map, and these must be adjacent vertices. Thus there 
are six possibilities for the image of WO, and then two for the image of q, 
resulting in a group of order 12. The cyclic permutation m = (VOV1712u3u4U5) 

generates the subgroup of rotations, arid the permutation r = ( ~ 1 ~ 5 ) ( ~ 2 ~ 4 ) ,  

which leaves vo and u3 fixed, generates a subgroup of order 2. The entire 
group consists of elements njrk,  j = O , 1 , 2 , 3 , 4 , 5 ,  k = 0 , 1 ,  and m r  = 

( V 1 u O ) ( u 5 V 2 ) ( v : p 4 )  = 7 m 5 :  as you can easily verify. 
The group G can be regarded as the subgroup of S5 consisting of the 

permutations of ( a ,  b, c, d, e )  leaving the set {a ,  b,  c }  invariant, that is, moving 
each element of this set to another element of this set, and hence also leaving 
{ d , e }  invariant. All we have to do is regard a ,  b, and c as the cube roots 
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FIGURE 18. A regular hexagon. 

of 2 and d and e as the square roots of 2. Any permutation that leaves these 
two sets invariant will permute the roots of the polynomial and generate 
an automorphism cr that  leaves Q invariant. A multiplication-preserving 
correspondence (one of six possible ones) between D6 and G is established 
by the mapping cr H (abc)(de) and T H (ab).  

Problem 11.6. Most of this problem is straightforward. The three expres- 
sions for r4, r5,  and r6 are obtained successively from the equation for r9 
my first multiplying the equation for rn by T ,  then using the equation for r3 
to eliminate r3 from the resulting equation. It is then easy to compute that 

s3 + s2 - 2s - 1 = (.2 - 213 + (.2 - 2 ) 2  - q - 2  - 2) - 1 = o 
and similarly for t ,  which is s2 - 2, as it happens. 

The Cardano solution gives 

z = - - + y = - - +  1 1 /= - + + t +  i 3 .  
3 3 

It follows that we need to adjoin the cube root of the complex number 
p = & + zi. Since /pi2 = z, which is a rational number, adjoining p to 
the field will result in a larger field that automatically contains (p = Ip/’/p, 
and hence also the root 5 .  However, the field Q(p) cannot be obtained from 
Q by adjoining just one root of a rational number. Once again, the difficulty 
comes from not assuming that we start with a field containing the roots of 
unity. If we started with the field Q(cy), where cy is a primitive cube root of 
unity, we would already have p in the field, and then the adjunction of its 
cube root would split the polynomial. 
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The Vikte solution is merely a matter of copying the formula. It ex- 
presses the solution in terms of an angle /? such that cos(/?) = 1, but this 
angle is not a rational multiple of ?r radians, even though r itself does have 
a nice expression: T = 2 cos(2?r/7). 

As shown above, since s = r2 - 2, we also have t = s2 - 2. Hence if an 
automorphism T that leaves Q fixed takes r to s, that same automorphisni 
must take s to t .  If it leaves r fixed, it must also leave s and t fixed. In 
both cases, these conclusions follow from the relation ~ ( s )  = ~ ( r ’  - 2) = 

( ~ ( r ) )  - ~ ( 2 )  = (T ( r ) )  - 2. 
Problem 11.7. There is only one proper algebraic extension of the real 
numbers, and that is the complex numbers. (Since the complex numbers are 
algebraically closed, every polynomial with real coefficients splits completely 
in the complex numbers.) Its group of automorphisms consists of the identity 
and complex conjugation; in other words, it is the group Z2. 
Problem 11.8. The solutions of x2 + z + 1 = 0 are cube roots of unity 
in  any field, since ( 2  - 1)(z2 + z + 1) = x3 - 1. Since both 0 and 1 have 
square roots, the numbers of the form a + bJF are just the original field of 
two elements. 
Question 11.1. We established above that cos38 = 4cos3d - 3cos8. 
Taking 6' = 20°, we find that x = cos2Oo satisfies 4x3 - 3x = -, 2 or 
8x3 - 6 2  - 1 = 0. Suppose that we have a set S of points in the plane 
(complex numbers) that we have been able to locate, starting from 0 and 1, 
by straightedge-and-compass constructions. Any new point we can locate 
using ruler and compass may be the intersection of two lines determined 
by two pairs of points in S ,  in which case the coordinates of that, point are 
rational functions of the coordinates of the points in S ;  in other words, they 
are in the smallest field F(S) containing all those coordinates. 

If not. the new point is the intersection of such a line and a circle with 
center at a point in S passing through a second point in S. In that case, the 
coordinates of the new points satisfy a quadratic equation with coefficients 
in F(S). Hence their minimal polynomial over F(S) is of degree 2. In this 
way, although the rigor leaves something to be desired, we can see that the 
minimal polynomial over the rational numbers of a Euclidean-constructible 
number could not be of degree 3. Thus we can see why it is impossible to 
trisect a 60" angle (construct the cosine of 20°) or double an arbitrary cube 
(construct @) using ruler and compass. Since ?r has no minimal polynomial 
whatsoever over the rational numbers (it is transcendental), we can also see 
why it is impossible to square the circle using these tools. 

2 J ; j  

2 2 

1 
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Gaussian integer, 151, 154, 156 
geese, 33 
geometry, 6, 10, 11, 18-19, 23, 26, 28, 

1255149, 152, 193-196 

109, 151 
analytic, 38 

GL(2, R) (general linear group), 152 
grain, 47 
gravitation, 35, 175 
gravitational field, 38 
greatest common divisor, 161-163 
Greeks, 23, 46 
group, ix, xii, 6, 75, 98, 128, 138, 

151.~154 
abelian, 153 
alternating, 129, 137 
commutative, 153 
cyclic, 137, 138, 154 
dihedral, 194 
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Galois, ix, 128, 131, 136 
Klein, 142 
quotient, 129, 136 
solvable, 137 
symmetric, 138, 152 

group theory, xii, 18 

Han Dynasty, 26 
heat equation, 35 
Hindu-Arabic numerals, 35 
Hindus, 33, 63, 98 
Homer’s method, 52 
hyperbola, 18, 63, 71, 110, 172, 181 

degenerate, 11 1 

ideal, 158 
in a ring, 155 
maximal, 158 

ideal gas, 34 
identity 

in a group, 152 
in a ring, 156 
polarization, 22 

imaginary number, 9, 58, 70-71 
imaginary part of a complex number, 

impossibility proof, 23 
independence, 20 
indeterminate system, 172 
index of a subgroup, 130 
India; 7, 34 
induction, magnetic, 42 
inertia; 39 
infinitesimal methods, 35, 38, 40 
inheritance problem, 28 
inner product, 13 
input-output analysis, 157 
integer, 8, 11, 24; 125; 154 

59, 77, 79 

even, 156 
Gaussian, 154, 156 
negative, 8, 9 

integral calciilus, 35, 36 
integral domain, 156, 163 

inverse of a group element, 152 
inversion, 99 
Iraq, 26 
irrational number, 9, 10 
irreducible element. 156 
isomorphism, 136 
Italy, 23, 64, 65 

Jacobi amplitude, 35, 37, 80 
Jains, 7 

Euclidean, 163 

Japan, 23, 28, 98 

Kepler‘s third law, 34, 42 
Klein four-group, 142 

1atu.s rectum, 118 
law 

Coulomb’s, 42 
inverse-square, 38, 42 
Kepler’s third, 34, 42, 175 
of inertia, 39 
of universal gravitation, 35 
Ohm’s, 35 
Stefan-Boltzmann, 35 

left coset, 130 
Les misirables, 133 
light, 43, 175 

speed of, 43 
like charges, 42 
limit, 110 
line, 18. 64 
linear algebra, 47, 157 
linear equation, 28, 76 
linear system, 101 
Louvre, 26 

magnetic field, 43, 176 
magnetic induction, 42 
magnetic permeability, 43 
manifold, 151 
Maple, 91, 143, 144 
mass, 34 
Mathematica, 91, 144 
Mathematical Association of America, x 
Mathematical Capsules, x 
Matlab, 91 
matrix, 47, 48, 152, 157 

upper-triangular, 154 
Vandermonde, 49, 61, 84, 96, 101, 120 

Maxwell’s laws, 175 
mechanics 

Newtonian, 43 
medieval Muslims, 23, 64, 65 
Merton College, 39 
Merton rule, 39, 40 
Mesopotamia, 22, 26, 64 
meter, 43 
method 

Cardano, 88 
Tschirnhaus, 87, 184-187 
Vikte‘s, 79, 86, 184 

method of false posit.ion, 25 
Mobius transformation, 86 
modern algebra, 98 
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module, 6, 157 
unitary, 157 

Moon, 38, 41 
orbital radius, 42 

motion 
at  constant velocity, 38 
uniformly accelerated, 38 

multiplication, 8, 25 

negative number, 65 
newton (unit of force), 43 
Newton’s law of universal gravitation, 

Newton’s laws of motion, 36 
Newton-Raphson approximation, 59 
Newtonian mechanics, 43 
Nine Chapters on the Mathematical 

norm, 13 
normal subgroup, 130, 153 
North Pole, 41 
number 

35 

.4rt, 26, 47 

algebraic, 8, 9, 11, 125 
Chinese notation, 46-47 
complex, 8, 11, 19, 45, 62, 71, 76, 81, 

cube root, 63, 64, 67-68, 79, 182, 

imaginary part, 59, 79 
real part, 59 
square root, 59, 182 

imaginary, 9, 58, 70-71 
irrational, 9, 10 
negative, 65 
prime, 121 
rational. 8, 11, 21, 87, 110, 125, 136 
real, 8. 11, 19, 21, 45, 58, 110, 138, 

92, 109, 136, 179 

183 

152, 180 
cube root, 63 

transcendental, 10, 11 
number theory, 151 
numerals, 35 

Hindu-Arabic, 35 
Roman, 35 

numerical approximation, 21, 46 
numerical solution, 21, 63, 176-178 

observer. 43 
Ohm’s law, 35 
operation 

arithmetical, 109 
rational, 11, 13, 125, 136 

order of a group element, 138 
Oxford. 39, 158 

Pacijic Journal of Mathematics, 137 
parabola, 63 
parameter, 63, 81 
Paris, 26 
parity of a permutation, 99 
Pell’s equation, 20 
pendulum, 35-37 
period 

sidereal, 41 
permanence of functional relations, 116 
permeability, magnetic, 43 
permittivity, dielectric, 42 
permutation, 48, 91, 97-101, 138; 152; 

154, 189-191 
cyclic, 102, 129 
even, 129, 130 
identity, 190 
inverse, 130 
odd, 130 
order, 103, 190 
parity, 99 

perpendicularity, 14 
physics, 18, 34-44 
7r, 10, 11 
planet, 34 

distance from the Sun, 42 
period, 42 

polarization identity, 22 
polynomial, ix, x, 17, 110, 157 

cubic, 82, 87 
splitting field, 125 

polynomial equation, xi, 23 
polynomial ring, 154, 163 
Prague Scientific Society, 121 
pressure, 34 
prime element of an integral domain. 

156 
prime number, 121 
primitive root of unity, 87, 182 
profit, 33 
puzzle 

crossword, 34 
sliding-frame, 103 

“Pythagorean” equation, 20 

quadratic equation, 12, 17, 19. 21: 24, 
26. 28, 29; 57-62, 76, 77, 82, 83, 86, 
110, 167, 185 

quadratic formula, 29, 58, 60--61, 

quartic equation. 65, 76-78, 84-86, 93, 

quaternion, 13-14, 62, 156, 169, 180 

112--113, 172, 178 

97, 101, 142, 184 
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quintic equation, 75, 91, 92, 95, 96, 109: 
125, 137 

transcendental solution, 80 
unsolvabili ty, 1 12- 122 

quotient, 25 
quotient group, 129, 136 

radical, 81 

rational function, 60, 97, 99, 132, 182 
rational number, 8, 11, 21, 87, 110, 125, 

rational operation, 8, 11, 13, 125, 136 
real analysis, 10 
real number, 8, 11, 19, 21, 45, 58, 110, 

conjugate, 81 

136 

138. 152, 180 
cube root, 63 

real part of a complex number, 59 
rectangle, 26, 38 
relation 

algebraic, 80 
transcendental, 80 

relativity, 176 
resolvent, 91, 92 

for the quartic, 94 
resolvent equation, 88 
Rhznd Muthematzcal Papyrus, 25 
Riemann surface, 114 
right coset, 130 
ring, ix, 6, 154-156 

associative, 154-155 
Lie, 155-156 
polynomial, 154, 163 

Rolle's theorem, 164 
Roman numerals, 35 
root, 22. 50, 57, 58, 84, 91, 97, 100, 109 

nth,  76 
approximate, 177 
cube, 139, 177, 179 

double, 70, 88, 188 
extraneous, 82 
finding, 45 
of unity, 71, 87, 96, 120, 126, 173, 182 

of a complex number, 182 

fifth, 188 
fourth, 182 
primitive, 68, 87, 182 

rational, 161 
single. 70 
square, 172, 176, 179, 196 

triple, 70 
of a complex number, 182 

root extraction, 8, 9, 18, 61, 109, 125, 

root of unity, 132-133 
137 

primitive, 132 

scalar, 156 
Schrodinger equation, 35 
Schwarz inequality, 13 
set theory, 151 
sextic equation, 146 
sidereal period, 41 
single root, 70 
sliding-frame puzzle, 103 
solution, 10 

algebraic, 135, 138 
Chinese method, 59 
formulaic, 21-23, 30 
numerical, 23, 30, 176-178 
real, 79 
transcendental form, 80 

solvable group, 137 
space 

Euclidean, 151 
special relativity, 44 
speed of light, 175 
sphere, 41 

area, 41 
splitting field, 120, 125, 147 
square root, 9, 22, 29, 33, 58, 61, 81, 87, 

172, 176, 179, 182, 196 
of a complex number, 59 
table. 57 

squaring the circle, 23 
Stefan-Boltzmann law, 35 
straightedge-and-compass 

constructions, 23, 148 
string theory, 157 
subfield, 11 
subgroup, 129, 134, 151. 153 

index, 130 
nonnormal, 151 
normal, 130, 134, 151, 153 

substitution, algebraic, 138 
subtraction, 8, 167 
Sun, 34 
superstring theory, 157 
symmetric function, 58, 84, 91, 100, 121 

elementary, 58, 100 
symmetric group, 138, 152 
symmetrizing, 81 
symmetry, 18, 40, 58 

synthetic division, 52 
breaking, 18, 22, 70 
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systeni 
determinate, 172 
indeterminate, 172 

temperature, 34 
The Harmonies of the World. 34 
theory 

Copernican, 42 
electromagnetic, 43 

3-cycle, 102, 103, 137, 190 
three-element field, 133, 167, 171, 172 
three-valued function, 101, 102 
time, 34 
topology, 110, 151 
transcendental function, 122 
transcendental number, 10, 11 
transcendental relation, 80 
transformation 

fractional-linear, 86 
Mobius, 86 

transposition, 99, 100, 103 
trigonometric series, 151 
trigonometry, xii, 35, 40, 71, 76, 78, 88, 

187 
triple root, 70 
trisection, 148 
Tschirnhaus method, 82, 87, 131, 

2-cycle (transposition), 103, 138, 190 
two-element field, 173 

184-187 

two-valued function, 100-101 

unique factorization domain, 156 
unit fractions, 25 
unit in a ring, 156, 163 
unitary law, 157 
universal algebra, 6 
unknown, 11, 17 

Vanderrnonde matrix, 49, 61, 96, 101, 
120 

variable, x, 34 
complex, 109 
real, 72 

absolute value, 13 
length, 13 
norm, 13 

four-dimensional, 13 

vector, xii, 13, 156, 167-169 

vector space, xii, 6, 154, 156-157 

Vikte’s method, 79, 86, 184 
volume, 34 

wave equation, 35 
wave, electromagnetic, 43, 175 
weber (unit of magnetic induction), 43 
wheat, 47 

zero, 8, 47 
zero divisor, 155 
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