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Preface

This book, first published some ten years ago, is an attempt to communicate to a
non-specialist readership the main results in selected areas of modern-day physics.
The last decade, which finally brought to a close an eventful century, was marked
by significant advances in science and technology, achieved against the background
of a shifting global political landscape.

In 1990, the Hubble Space Telescope, a 2.4 meter reflecting telescope, was de-
ployed in earth orbit by the crew of the space shuttle Discovery; together with other
orbiting observatories that followed close behind, it vastly expanded the horizons
of our observable cosmos and worked to better define our universe and our place
in it. That same year, the Human Genome Project was launched with the goal to
identify the genes in human DNA and to determine the sequences of the base pairs
that make it up; when this project is completed, not only will we know more about
ourselves than ever before, but we will also have learned, in the process, the ways
nature works. At about the same time, the HyperText Transfer Protocol (HTTP)
was created that went on to become the standardized means of information transfer
over computer networks, thereby inaugurating the information age and changing
forever the way we live and work.

To reflect these important developments and a number of others, we have
rewritten several chapters of the first edition and revised or updated all of the
others. To these we have added three completely new chapters, on Bose-Einstein
condensation, nanoscience, and quantum computation, three emerging areas with
great potential for impact and applications in physics and beyond.

It is the objective of this book to present the essential concepts and observations
of contemporary physics in language as simple as possible, without much mathe-
matics but not without rigor. We have tried to write at a level that corresponds to
a lower-undergraduate course, although, occasionally, the nature of the topic being
discussed makes a more advanced treatment unavoidable.

As a textbook, it may be regarded as our modest contribution to a renewed ap-
proach to teaching introductory physics, in which concrete real-life examples happily
cohabit with the usual elements of a traditional course. Whether taking a logical
bottom-up or a thematic top-down approach, the physics teacher would want above
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all to keep her students interested and motivated: she will find here a source of
fascinating topics at the research frontiers for open-classroom discussions or essay
assignments.

This work also addresses the general reader who has a keen interest in physics.
Physics, just as science in general, is not only about nature; it is also about people:
it is a human pursuit, as old as civilization, as ingrained in our nature as our search
for happiness. As a human activity, it shapes our intellect, molds our view of the
world and of ourselves; but, for good or ill, it also affects our everyday life. It
behoves us all, as ordinary citizens, to keep ourselves constantly informed of its
progress and be alert to its issues and implications. Given the way science is built
up and the pace at which advances are being made, those who stay behind are
bound to fall farther and farther behind.

The reader should regard our book as an invitation to deeper meditation or fur-
ther studies; you will find at the end of each chapter suggestions of possible avenues
to more extended explorations. Mathematics is the natural language of physics,
and, how ever hard we try, we cannot fully appreciate physics without equations.
You may wish to check your understanding of the subject at the quantitative level
by attempting to solve some of the end-of-chapter problems with the help, if nec-
essary, of the hints scattered throughout the chapter or in Appendixes A—C and a
peek or two at the solutions given in Appendix D.

C. S. Lam would like to thank Hoi-Kwong Lo and Patrick Hayden for their help
on Chapter 6.

March 2003
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Symmetry of Nature and
Nature of Symmetry

1.1 What Is Symmetry That We Should Be Mindful of It?

Our immediate sense of symmetry comes from looking at objects around us. It
may well be that the idea of symmetry is very primitive and comes naturally to the
human mind. Perhaps the human mind can grasp it internally all by itself. But we
shall leave these questions to the philosopher and to the artist. Instead, let us for
a moment turn experimentalist and consider a sphere. Then we will be left in no
doubt that we are in the presence of a perfect symmetry. We may view the sphere
actively by turning it around every which way we like and find that it looks the
same. We may view it passively by keeping the sphere fixed but shifting ourselves
around it and find again that it looks just the same. It is this unchanging aspect
of sameness against a changing viewpoint that symmetry is all about. But then
we have to get sophisticated. We have to abstract the general idea of symmetry
and make it free from this static and rather limited visual setting. This we must
do and in doing so we will see more, and not less than the artist can, for all his
sensitivity and imagination, ever hope to see. There is much more subtlety familiar
in the world of physics than meets the eye. However, we will continue to use the
same word for it: symmetry.

Symmetry suggests a sense of balance and proportion, of pattern and regularity,
of harmony and beauty, and finally of purity and perfection. These synonyms
just about sum up all our subjective reactions to the symmetries that abound in
Nature, with her myriads of inanimate objects and life forms — the celestial spheres
of the sun, the moon and the planets, the hexagonal snowflake with its six-fold
symmetry, the five-fold symmetry of the starfish and of many a wild flower, the
bilateral symmetry of the butterfly with its outstretched wings and of the man in
his poise (Fig. 1.1). One even speaks of the fearful symmetry of the tiger. Examples
will fill volumes. And as life imitates Art and Nature, we find something of it
reflected in the art forms created by man — be it sculpture, architecture, painting,
poetry or music. It is true though that in most of these cases the symmetry is
only approximate. As a matter of fact the ancient Greeks used to intentionally
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(e)

Figure 1.1:  (a) Snowflake with six-fold axis; (b) crystal of common salt; (c) butterfly with bilateral
symmetry; (d) starfish with five-fold axis; (e) right-handed helix.

and secretly introduce some degree of asymmetry in their otherwise symmetric
designs. (After all, there is no perfect beauty that has not in it a certain strangeness
of proportion). The fact remains, however, that the human mind is absolutely
fascinated by symmetry. In physics, the term symmetry takes on an objective
meaning which is much deeper and far more precise, almost more austere than our
vague feelings of it can command. Let us get acquainted with it.

Now, we can hardly do better than just repeat the definition of symmetry given
by the great German mathematician Hermann Weyl — a thing is symmetrical
if there is something you can do to it so that after you have finished doing it,
it looks the same as it did before. This is an operational definition — it can
decide. The ‘thing’ here is the object of interest. What you do to it is called
the Symmetry operation or transformation. And ‘looks the same’ is yet another
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name for invariance. The ‘look’ itself is some discernible property of the object
that remains invariant. Thus, there has to be an object with a discernible property
that remains invariant under the action of the ‘group’ of symmetry transformations.
Now, the point of all this is that the object itself can be just about anything. It
depends on our interest and on the level or the depth of our enquiry. At its simplest,
the object may be a mere geometrical figure (a hexagon, a helix or a lattice), or the
geometrical shape of a material body (a snowflake, a screw or a crystal of common
salt) (Fig. 1.1). The symmetry operations involved here are purely geometric in
nature — rotation by 360/6 = 60 degrees or multiples of it about the six-fold axis
of rotation, mirror reflection in the plane of the bilateral symmetry, translation in
space by a repeat distance, or combinations of these (Fig. 1.1). The object and its
transform must be superposable if the symmetry is true. (This is obviously not so
for a screw, or a helix. Although the screw is intrinsically identical with its mirror
image, the two are not superposable. We will return to this interesting case later).
But at its subtlest the object can be a mathematical entity, a (differential) equation
expressing a physical law. Now, how do you rotate, reflect or translate an equation
anyway? Well, we really do not do so literally. We perform these transformations
passively on the independent variables, i.e., the space-time coordinates occurring
in the equation accompanied then by suitable transformations on the dependent
variables. The invariance then is the invariance of the form of the equation under
these symmetry transformations. More properly, it is called covariance. Thus, for
instance, an expression 22 4+ 42+ 22 is invariant under any rotation of the Cartesian
coordinate system (x,y,z) with its origin fixed at x = 0, y = 0 and z = 0. It
just becomes z'? 4+ y'2 4 22, where the primed quantities are the coordinates of the
same point, but with respect to the rotated (primed) coordinate system (a,y’, 2’).
Similarly, the wave equation
¢ 0% ¢ 1 0% —0
R R R T
keeps its form under the above symmetry transformation, and additionally under
translation in space and in time. Just replace the unprimed quantities by the primed
quantities. In particular ¢(z,y, z,t) becomes ¢’ (', y’, 2/, ') and is numerically equal
to it. If you take ¢ to be the pressure or the density, then the wave equation begins
to describe a sound wave propagating in a medium such as air or water which is
homogeneous (translationally invariant in space), isotropic (rotationally invariant)
and unchanging in time (translationally invariant in time). In fact this equation has
a much higher symmetry and it can describe the widest range of wave phenomena
that occur in Nature. These symmetries of the medium (and the medium may well
be vacuum as in the case of light) almost uniquely fix the form of this equation.
Such is the restrictive power of symmetry.
One speaks of the symmetry of a particular law. Thus, we have the spherical
symmetry of the Coulomb law of electrostatic attraction between a negatively
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charged electron and a positively charged nucleus of an atom. The Coulomb
potential energy varies as the inverse of their distance apart, independent of the
direction. The force on the electron, being the gradient of potential, of course,
varies as the inverse of the square of this distance and is directed radially inward.
But for an atom embedded in a molecule or a solid, the potential law governing
the motion of the electron has the symmetry of its environment which is necessar-
ily lower than the spherical symmetry of the free atom. Much of the chemistry of
molecules and the physics of solids depend on these environmental symmetries.

As we probe matter deeper, we uncover special laws that govern the goings-on at
the nuclear and the subnuclear level — the domain of the elementary particles and
the fundamental interactions between them. Here we encounter yet another kind of
symmetry different from the space-time symmetries described above. These are the
so-called local gauge symmetries that seem to be at the very heart of the nature of
things. It is already present in the interaction of light with charged particles, where
it was discovered first. But, of this more later.

A note of caution at this stage is in order. The symmetry of a law as expressed by
a symmetric equation does not necessarily lead to symmetric phenomena resulting
from it. The states of a system, the processes or the events represent the allowed
solutions of the governing (differential) equation. But a particular solution gets
selected by the initial conditions that can be imposed at will. These conditions
need not have the symmetry of the system. And so it happens that the law of
gravitational attraction between the earth and the sun is spherically symmetric, and
yet the orbit of the earth round the sun is an ellipse — a foreshortened circle, with
the sun at one of its foci. The same is true of a man-made satellite orbiting the earth.
Its orbit depends on its height and the velocity at the time of its injection into orbit.
A symmetry operation will not leave the particular orbit invariant but carry it into
another, albeit allowed orbit. Thus, in general the particular solutions (realizations)
or the events or physical conditions themselves are not invariant. What is indeed
invariant is the governing equation that fixes only the correlations between the
successive events. The idea that the state of a system can have a symmetry lower
than that of the governing law takes on a deep physical significance as we will see
when we discuss the phenomenon of spontaneous symmetry breaking, which is the
most symmetrical way of breaking the symmetry. In this we may catch a glimpse of
the act of creation whereby Nature seems to have generated the observed diversity
of fundamental laws as a result of a descent from the most symmetric, possibly a
‘grand-unified’ law of interactions.

The all pervasive nature of symmetry is in itself a sufficiently strong reason for
us to be mindful of it. But the most compelling reason of all is that symmetry is a
great ordering principle and we can make it work for us. We will now demonstrate
this power with the help of some simple and some not-so-simple examples.

To start with, symmetry simplifies things. Suppose you are asked to draw a
butterfly with its out-stretched wings. Now, all that you really have to do is to
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draw only the left, or the right half of the butterfly, preferably on a tracing sheet.
The other half is related to it by mirror reflection. It is more of the same. You
can simply fold the sheet along the median line of bilateral symmetry and re-trace
over your half-drawing. That is all. The reflection symmetry has halved your work,
or very nearly so. In general, an n-fold symmetry divides your work by n. This is
really a common trick and we should imagine that the makers of patterns use it all
the time. This is, however, a trivial example.

A highly non-trivial example of reduction of a problem by symmetry is provided
by the case of a hydrogen atom. Here we have an electron bound to the nucleus
(proton) by the attractive Coulomb potential which is spherically symmetric. In
order to appreciate reasonably well the promised reduction of the problem, we have
to describe the atom properly. It is now well known that in the domain of the very
small, and that is where the atoms belong, the proper theoretical framework is that
of Quantum Mechanics, and not the classical (Newtonian) mechanics that describes
our sensible world of middle dimensions so well (see Appendices A and B). Thus,
we have to abandon the classical view of the hydrogen atom as a miniature solar
system with sharply defined orbits for the planetary electron. We have, instead,
an all pervasive waviness associated with the motion of the electron. We can pic-
ture the state of the electron as a fuzzy cloud around the nucleus, with the proviso
that the density of the cloud at a point gives the probability (density) of finding
the point-like electron at that point. (This replacement of the classical certainty
of sharply determined orbits by the quantum uncertainty of dicey probabilities of
being found somewhere is most disturbing. It was so to Einstein himself who was,
ironically, one of the founders of this ‘plutonic’ republic of Quantum Mechanics, but
never quite belonged there as a citizen. Quantum Mechanics is today the established
framework theory for everything in the physical universe. Its predictions differ from
those of classical mechanics and the difference gets more and more pronounced as
we go deeper into the domain of the small). To get these probabilities one has to
solve a certain wave equation, the Schrdodinger equation, for the wave function v,
which is complex in general. The probability is then simply |1|?, the square of its
absolute magnitude. All that is important for our discussion is to note that v has
both radial as well as angular dependence. The spherical symmetry of the Coulomb
potential now helps us factor out the angular dependence and determine it com-
pletely without having to solve the Schrédinger equation. The spherical symmetry
by itself determines the allowed values of the angular momentum ¢(=0,1,2,...)
and its component m (= —¢,—¢+1,...,£—1,/) along a chosen direction in units of
Planck’s constant h divided by 2w. These are the labels, called quantum numbers
that symmetry provides to specify completely the angular aspect of the state of
the system. This is no mean reduction of the problem. In fact one can do better
than this. In addition to the spherical symmetry, the Coulomb law has yet another
‘dynamical’ symmetry following from a certain special value of a parameter in its
form, namely that the force involves the square of the reciprocal of the distance,
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and not any other power such as the cube or the fourth power, and so on. (This
is, of course, a rather hidden dynamical symmetry and is for the preoccupied eyes
of the mathematical physicists only). Properly treated, this symmetry solves the
remaining radial problem too and provides yet another label, the principal quantum
number n (= 1,2,...) that fixes the allowed electronic energies.

That there is something special about the inverse square law which singles it
out from among all possible central forces, can be seen from the following fact.
Consider the motion of the earth around the sun, or better still the motion of a
man-made satellite around the earth. The orbits are elliptical as we know. But the
real point, which hardly ever gets emphasized, is that the orbit closes upon itself!
This will not be the case if you deviate ever so slightly from the inverse square law.
For small deviations the orbit will still be close to being an ellipse but the ellipse
will slowly precess or turn around the focus. The motion of perihelion (the point
of closest approach to the sun) of the orbit of the planet Mercury around the sun
may be viewed as due to small deviation from this dynamical symmetry of the
inverse-square law caused by Einstein’s general relativistic corrections to Newton’s
law of gravitation.

Now we turn to another aspect of this great ordering principle, namely, that
symmetry classifies things. All classification is based on identification of a set of
common characteristics. Thus we have the classification of the animal kingdom
into vertebrates and invertebrates depending on the presence or the absence of the
vertebral column. The periodic table of elements prepared by the great Russian
chemist Mendeleyev is a classic example of classification. The most striking and
rigorous example of classification by symmetry is the grouping of crystalline forms
of solids. A crystal is a periodic arrangement of atoms in space. It can have spatial
symmetries of discrete translation, discrete rotation and reflection and, of course,
combinations of these. Symmetry considerations have led to the remarkable result
that only a finite number of distinct groupings of these symmetry elements are
possible. These are the celebrated 230 space groups of crystallography! Any of the
nearly countless varieties of crystals, no matter how complex, must belong to one
of these groups. We must hasten to add, however, that the crystals belonging to a
given space group are certainly not identical, no more than all the vertebrates in
the animal kingdom are identical. Finding the space group of a crystal is the first
step towards understanding its molecular structure.

A much more profound example of symmetry-based classification in physics is
the classification of identical particles as fermions (after the great Italian physicist
Enrico Fermi) and as bosons (after the great Indian physicist S.N. Bose). Here
the symmetry is with respect to permutation, or more simply, reshuffling. Let us
understand this. Consider a set of particles located arbitrarily in space. Let the
particles be identical in all respects, i.e., the same mass, the same charge, and
so on. You may think of a pack of cards, somewhat unusual in the sense that
all the cards are alike — only queens of diamond, say. Now it is clear that any
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permutation of these identical particles (the same as reshuffling of the identical
cards) will leave our system unchanged. After all, a permutation involves just
pairwise interchanges, and interchanging identical objects changes nothing. But
not quite. The different permuted configurations are undoubtedly identical but
they are distinguishable all the same. The reason for this is that nothing prevents
you from keeping track of these identical particles as these are being moved around
to their new permuted locations. This knowledge is sufficient to distinguish between
the different permuted configurations even though the objects being permuted are
identical. Thus the identical particles are distinguishable even if only by virtue
of being initially located differently. You may wonder if this knowledge is of any
consequence and if this distinction between identity and indistinguishability is not
mere nitpicking. Classically, you are right. But as we have noted earlier, the correct
framework for dealing with microscopic particles is quantum mechanics. And, most
importantly, quantum mechanics does not allow sharply defined trajectories. It
replaces them with an irreducible fuzziness. Therefore, even in principle, we really
cannot keep track of our identical particles in the process of permuting them as we
did before. This idea of indistinguishability is brought home rather forcefully if you
consider, e.g., a pair of algebraic equations 22 + y?> = 13 and  +y = 5. These
two equations are left invariant if we interchange x and y and hence permutation
symmetric. Now, you can readily solve these two equations. You get either z = 3
and y = 2, or x = 2 and y = 3. Thus all you can say is that one of them equals
2 and the other equals 3, but which one is which you cannot say even in principle.
So is the case with our identical particles. We can only say how many are there
at a given point of space (i.e., the occupancy) but it is meaningless to ask which
ones. This indistinguishability when treated properly leads to the great divide of
identical particles into two classes — the fermions (e.g., electrons, protons, neutrons,
neutrinos, etc.) and bosons (photons, mesons, etc.). Identical fermions, electrons,
say, exclude each other in that not more than one can occupy the same state. This
is the Fermi statistics — kind of negative feedback at work. In contrast to this, any
number of identical bosons, photons say, are allowed to occupy the same state. This
is the Bose Statistics. In fact, bosons tend to clump together, a kind of positive
feedback. What determines whether a given set of identical particles will be fermions
or bosons requires deeper analysis of relativistic invariance. It is beyond our scope
to go into that. But the result is simple. It turns out that a particle can have an
intrinsic angular momentum called spin. You may roughly picture it as a spinning
top much the same way as the earth spins about its own axis in addition to orbiting
around the sun. The spin angular momentum is immutable (you cannot stop it
spinning). It is quantized in multiples of h/2m, denote by slashed /. Now the rule
is that particles with integral spin (0, i, 25, . . .) are bosons and those with half odd-
integral spin (A/2,3k/2,5h/2,...) are fermions. This connection between spin and
statistics has been one of the marvels of the symmetry principles in physics. The
fact that two electrons (fermions with spin half) cannot simultaneously occupy the
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same point of space with their spins pointing in the same direction (i.e., cannot be
in the same state) is responsible for the stability of all matter, and for the fortunate
circumstance that your hands do not go through the table which they might be
resting on. For, in doing so the electrons in your hand must go through the electrons
in the table which is clearly forbidden. The clumping tendency of photons (bosons
with spin unity), on the other hand, makes it possible for any number of them to
condense into a given state — Bose condensation (See Chapter 4). This is what
makes laser beams so coherent (See Chapter 2 on Lasers). Similarly, superfluidity
of *He (the isotope of helium with total spin zero), namely that it can flow through
the finest capillaries without any viscosity, is due to the same Bose condensation of
these atoms in the lowest energy state at low temperatures close to absolute zero.
3He, the fermionic isotope, on the other hand, behaves differently even though
chemically the two isotopes are identical.

Elementary particle physics abounds in examples of order brought about by
classification of the zoo of particles based on certain postulated, rather abstract
and well concealed symmetries without knowledge of the details of the underlying
laws (see Chapter 9).

Symmetry is also highly restrictive. It limits the possibilities allowed without
detailed knowledge of the system. The classic example is the forbidden five-fold axis
of rotational symmetry in a crystal. The only allowed ones are the two-fold, three-
fold, four-fold and the six-fold axes. The compatibility of the rotational and the
translational symmetries rules out the five-fold axis as also the higher order axes of
rotation. The five-fold axis is also conspicuous by its absence on the floor designs, or
the tiling of a plane called tessellation. You see the square, the equilateral triangular
and the regular hexagonal motifs, but never a regular repeating pentagonal pattern
with the five-fold symmetry. However, individual molecules and other objects can
and in fact do have the five-fold axis. Just think of a pentagram or the starfish.
It is an interesting thought that living organisms like the starfish may adopt the
five-fold symmetry as a natural defence against the deadly ‘capture’ by the rigid
crystalline formation.

The really restrictive power of symmetry in physics derives from the overriding
conservation laws that it imposes — the conservation of energy, momentum, angular
momentum and charge. We will return to this when we discuss this connection
between invariance and conservation laws. Processes violating these are simply
forbidden.

Symmetry is at its most powerful when it predicts. Let us illustrate this with an
example from solid geometry. Suppose you are interested in regular convex polyhe-
dra (poly = many, hedra = faces). A regular polyhedron is a volume bounded by
plane faces which are identical regular polygons. A simple cube (the common dice,
for earth) is one such polyhedron. It has six faces that are square (you can call it
a regular hexahedron). There are other regular polyhedra, namely the tetrahedron
(for fire) with four equilateral triangular faces, the octahedron (for air) with eight
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Figure 1.2: Five platonic solids: (a) tetrahedron; (b) cube; (c) octahedron; (d) dodecahedron.
(e) icosahedron;

(e)

equilateral triangular faces, the dodecahedron (for quintessence) with twelve regu-
lar pentagonal faces and finally the mysterious icosahedron (for water) with twenty
equilateral triangular faces (Fig. 1.2). These are the so-called Platonic Solids con-
templated by the Greek Pythagoreans. The question is if there are more. Well, the
answer is a definite no. Symmetry forbids any other occurrence. This is a restric-
tive aspect of symmetry. The predictive aspect is just the flip side of the coin. If
there are intelligent inhabitants in some distant galaxy interested in these exotic
dice-forms, we can predict that they will find just these five and no more.

But the real predictive power of symmetry is seen in particle physics. The basic
idea is just this. Having identified or guessed the symmetry of the governing law, the
processes, or the states or the particles related by the symmetry operations are all
treated at par, i.e., equally allowed and intrinsically the same. Thus, if you find one,
the others, the missing ones are predicted. This is, for example, how the short-lived
particle called 1~ was predicted by Gell-Mann in 1962, and later confirmed in 1964
as the missing member of the family of ten objects (resonances) predicted on the
basis of a postulated symmetry SU(3). This was a historic triumph of symmetry
in physics.

There are two other aspects of symmetry with far-reaching consequences. These
are its unifying and creative powers. We will return to this point later.

There is an ingenious way crystallographers use the power of symmetry con-
structively. Suppose you need to know the structure of a complex molecule. It may
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be a protein with some hundred thousand atoms, or a fragment of DNA. These are
very important but complex molecules. Proteins are the building blocks of cells
and enzymes, while DNA (Deoxyribonucleic acid) carries the genetic information
for making these proteins. Now, you cannot use ordinary light to probe these. Its
wavelength of several thousand Angstroms (1 A = 107% cm) is much too large
to reveal the finer molecular details on the scale of a few Angstroms. We must
use X-rays with wavelengths of about an Angstrom or so. If you shine X-rays on
a sample containing these molecules, placed and oriented randomly, the scattered
waves of X-rays will interfere randomly to produce a mere smudge on a photographic
plate. If, however, you could somehow arrange the molecules periodically in space,
that is to say if you could crystallize the substance, the waves scattered from the
molecules would interfere constructively in certain well-defined directions and thus
produce a systematic pattern of bright sharp spots (the diffraction pattern) on the
plate. This is like making Fourier series analysis of a periodic function. One can
invert this to get at not only the periodic structure of the crystal lattice but also the
structure of the molecules making it up! (One only hopes that the imposed crys-
talline arrangement has not done too much violence to the molecule whose structure
we were interested in). This is why crystallographers-turned-molecular biologists
round the world are preoccupied with crystallizing these substances. At this point,
we should note that the crystalline order as a necessary condition for getting sharp
X-ray spots has been called into question recently with the discovery of the so-called
quasicrystals by D. Shechtman, I. Blech, D. Gratias and J. W. Cahn (1984). The
first quasicrystal was an alloy, Al;4Mngg, i.e., 14 atomic per cent aluminum and
86 atomic per cent manganese. Since then many more have been found. These
materials show sharp diffraction spots like any other good crystal but the arrange-
ment of spots has a five-fold symmetry which is, of course, forbidden in the real
space crystal lattice. The conclusion is that the conventional crystalline order is
not necessary for sharp spots in X-ray diffraction. A two-dimensional quasicrystal
is exemplified by the so-called Penrose aperiodic tiling of a plane with motifs of two
rhombuses fitted as pieces of a jigsaw puzzle (Fig. 1.3). The smaller and the larger
rhombuses have angles 72 degrees and 108 degrees, and 36 degrees and 144 degrees,
respectively, and their areas and numbers are in the golden ratio = (1 + v/5)/2.
This is the intellectual property of the Oxford mathematician Roger Penrose, who
constructed it for play. The tiling has no translational symmetry of the conven-
tional crystals and yet would give a sharp diffraction pattern. It is now known
that quasicrystals may be viewed as a projection of ordinary-crystalline order from
hypothetical higher dimensional spaces.

Our discussion of symmetry so far has been rather discursive. But, as we have
remarked repeatedly, symmetry is a very precise concept. The proper language for
a systematic study of symmetry is that of group theory, which is a highly developed
branch of mathematics. The basic idea is simplicity itself. Identify all the symmetry
operations that leave a given object invariant. Call them A, B, C,... . This is then
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Figure 1.3: Penrose aperiodic tiling of a plane.

an exhaustive list. It is clear from the very definition of symmetry that the successive
applications of any two operations, first A and then B, say, will also leave the object
invariant. Therefore, the combined operation must also be one of the symmetry
elements we have listed exhaustively above. Let it be C. Then we can write C =
BA. Mark the order of A and B in BA. It means A operates first, followed by B
and the result is the same as C'. This is a kind of multiplication, composition or
successive operation, that gives the interlocking of the various symmetry operations.
We say that the symmetry operations are closed under this multiplication. Next, we
note that doing nothing at all to the object is also a symmetry operation because
it trivially leaves it invariant. In fact it leaves it alone! We denote this trivial
symmetry operation of ‘doing nothing’ by E (This is a fairly standard notation).
Finally, we note that reversing a symmetry operation is also a symmetry operation
— it restores status quo ante. Remember that the reverse of a clockwise rotation
by an angle 6 is an anticlockwise rotation by the same angle 8 about the same axis.
In obvious notation, we denote the reverse (more properly called inverse) of A by
A=Y Tt is now clear that E = A~'A. (That is applying a symmetry operation
followed by its inverse amounts to doing nothing). We are all set now. A set of
elements having a law of multiplication (successive operations) under which the set
is closed, with an identity (doing nothing) and where each element has a unique
inverse is called a group. The symmetry operations then form a group. We are
now compelled by the sheer logic of it. The inner structure of the symmetry group
is given completely by enumerating the results of all pairwise multiplications, e.g.,
C = BA. Constructing a multiplication table is like finger-printing the symmetry.
Identical multiplication tables imply identical symmetry structures no matter how
physically different the objects themselves may be. It is all very nice, but what can
we do with all this, you may ask. Well, you can do a lot. An example will help
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Figure 1.4: Symmetry elements of (a) equilateral triangle; (b) isosceles triangle.

illustrate the point. Suppose the symmetry of the physical law in question turns
out to be the symmetry of an equilateral triangle living on a plane (Fig. 1.4).

The symmetry operations are then E (identity), R1 and Rs (clockwise and anti-
clockwise rotations by 120 degrees, respectively, about the three-fold symmetry axis)
and the three reflections mq, mg and ms in the three mirror-lines (medians). One
can readily construct the multiplication table. Thus verify, for example, R1 Ry = E,
mims = R, momi = Ry, and so on. Remember that we have completely specified
the symmetry structure of the physical law that governs our physical system. The
latter may be a molecule with an atom literally at the center of an equilateral tri-
angular environment formed by three other identical atoms. (Situations analogous
to but more complicated than this are very common in chemistry, e.g., an atom, or
rather a doubly charged ion of copper at the center of a regular octahedron formed
by the negatively charged atoms of oxygen in copper sulphate). Let us assume now
that this system can exist in one of the three states, or linear combinations of these,
which are permuted among themselves under the symmetry operations. Of course,
we are assuming here that it is meaningful to speak of such linear superpositions.
This is indeed the basic structure underlying quantum mechanics (see Appendix B).
Thus we can identify the three vertices of our equilateral triangle with these three
states. We provocatively label them R (for red), Y (for yellow) and B (for blue). It
is easily verified that our symmetry operations indeed permute them in all possible
ways. (There are six ways in which three objects can be permuted and the number
of elements in our symmetry group is also six). While the symmetry operations do



1.1. What Is Symmetry That We Should Be Mindful of It? 13

permute the three states among themselves, they do not mix them indiscriminately.
Indeed, they split the possible linear combinations into two sets (called multiplets
more properly) such that only members of the same multiplet mix among them-
selves. One multiplet, call it W = R+ Y + B has only one member (a singlet).
The other has two members, 71 = R —2Y + B and Z, = R — B. Now Z; and Z,
mix freely under our symmetry operations and, therefore, they are intrinsically the
same — they differ according to our viewpoint only. Thus, for instance, they should
have the same energy (or mass). We say that the multiplet is two-fold degenerate.
Their energy, however, must be in general different from that of W with which they
do not mix under symmetry. In this simple case we could write down this multiplet
structure by mere inspection. In general one has to use the multiplication table in a
systematic way. It is called the representation theory of groups. In our example W
and {Z1, Z>} provide, respectively, one- and two-dimensional representations. We
can go further and lower the symmetry to that of an isosceles triangle by pulling
one of the vertices out (Fig. 1.4b). Our symmetry group now will consist of only two
elements {E, m1}. It is a sub-group of the earlier larger group. The result is that
the doublet is further split into two singlets. We now have three non-degenerate
(unequal) levels.

This splitting or reduction of degenerate multiplets with the progressive lower-
ing, or descent, of symmetry is well known and well studied in chemistry and solid
state physics, where the symmetry is mostly geometrical and known from structure.
The situation is quite different in elementary particle physics where the symmetry
is rather abstract and not directly accessible. Here symmetry takes on a creative
role. This is made possible by the fact that a given group uniquely specifies the
possible multiplet structures it can support. Thus one can postulate a symmetry
and then work out the multiplet structures it implies and compare with the ob-
served families of closely related particles. This is the idea underlying the unending
quest for symmetries, e.g., SU(2), SU(3) and so on. One is limited only by his
ingenuity and insight. Thus SU(3) (special unitary group of rotations in a three-
dimensional complex space) has a multiplet with eight members (eight-dimensional
representation) and one with ten members (ten-dimensional representation) that
fitted so well the observed families of eight baryons and ten hyperons — behold the
‘unreasonable’ effectiveness of symmetry in physics!

Finally, a remark on the group multiplication. Note, that in our example we
had mims = R and mom, = R;. Thus unlike ordinary multiplication of numbers,
the order in the applications of symmetry operations is important. We say that m;
and mo do not commute. Such a symmetry group is said to be non-abelian. The
important group of rotations in three-dimensional space SO(3) is non-abelian. The
corresponding group of rotations in a plane is Abelian. An amusing demonstration
of this is the following. You fly out of the North Pole down the zero-degree longitude
through Greenwich to the equator. You will be over the Atlantic, south of Ghana.
This is a rotation by 90 degrees about the east-west axis. Now you turn and follow
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the equator to longitude 90 degrees east. You should be over the Indian ocean east
of Sumatra. This amounts to a rotation by 90 degrees about the north-south axis.
Now, you perform these operations in the reverse order. Start out at the North Pole
and turn by 90 degrees eastwards. But since you are right on the axis of rotation,
you just stay put. Next fly down the zero degree longitude till you reach equator,
and thus you end up over the Atlantic, south of Ghana, thousands of kilometers
away from your earlier destination in the Indian ocean. It turns out that most
of the symmetries in Physics are non-Abelian, and that makes it richer. Abelian
symmetry gives only non-degenerate one-dimensional or single-state multiplets.

1.2 Space-Time Symmetries: Invariance and the Great
Conservation Laws

Objects are located in space. They endure in time. This is true of all events and
processes, of beings and becomings, that ultimately involve the elementary particles
and their interactions that make up the world of physics. Admittedly, this is a highly
reductionist viewpoint but you can hardly fault it. It seems reasonable, therefore,
that the study of symmetries of objects and phenomena must be preceded by a
proper study of the symmetries that this background space-time continuum may
have. For obvious reasons we will call these the framework symmetries. These
symmetries must be established as facts of experience, no matter how compelling
a priori they may appear to be. To the best of our knowledge, then, the following
symmetries are true.

Space is homogeneous. That is to say that the absolute position of an object
is irrelevant. What it operationally means is that if we perform an experiment at
a location and then repeat the same experiment somewhere else, in outer space,
say, the results will be identical — translationally invariant in space. By the ‘same
experiment’ we mean that all conditions relevant to the experiment must be repro-
duced exactly. Thus, if the change in earth’s gravity in going out there is relevant,
then the earth must be transported along with the apparatus. One may argue that
this claim is then vacuous inasmuch as any discrepancy between the results of the
two experiments can always be blamed on something that may have escaped our
attention, to wit our altered position with respect to the distant stars! Now, this is
perverse because it is possible to isolate our experiment far enough to any desired
degree of accuracy by including larger and larger regions of space as part of our
experimental set-up and, because one can assume reasonably that all effects are
essentially local in nature. Ghosts are not admitted! In any case, there is nothing
to suggest violation of this translational symmetry.

Next comes isotropy of space, or the irrelevance of absolute direction. Opera-
tionally, it means that if we perform a certain experiment and then rotate our
entire setup to a new orientation and repeat the same experiment, the results will
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be identical. We can re-word all our earlier provisions and arguments in support
of this. So far there is no empirical evidence in support of a preferred direction in
space. Thus isotropy of space is a good symmetry.

There is an interesting connection between these two symmetries. Isotropy
(relative to every point of space) implies homogeneity but not wvice versa. This
is readily proved. Let P; and P» be two points in space. Draw a sphere passing
through P; and P, with center, say, at O. You can draw any number of such
spheres. Now, viewed from O, P; and P, are related by isotropy and, therefore,
are equivalent. You can repeat this process till you cover the entire space and thus
establish homogeneity of space.

Next comes homogeneity of time, or time-translation symmetry. There is no
absolute origin of time. If you perform an experiment now and repeat the same
experiment at a later date, the results will be identical. Indeed, without these
symmetries the universe will hardly be comprehensible. We should perhaps mention
here that there is evidence that the universe is finite, though unbounded, and that
it had a beginning some 15 billion years ago — the Big Bang. We hope that we
are at a sufficient remove from this boundary (though there is actually none) and
initial conditions to ignore these symmetry breaking effects here and now.

Finally, to these irrelevancies, namely those of absolute position, absolute
direction and absolute time, we add the irrelevance of absolute rest, or of abso-
lute uniform motion. Consider two unaccelerated platforms in uniform relative
motion, that is to say that one platform is moving with a constant velocity as seen
by an observer who is stationary on the other platform. Now, if we perform an
experiment on one of these platforms and then repeat the same experiment on the
other, the results should be identical. Thus no local experiment, i.e., without refer-
ence to the other platform, will detect any effect that can distinguish between these
two unaccelerated platforms — there is no absolute uniform motion. This equiva-
lence of unaccelerated platforms is the great symmetry expressed by the principle of
relativity and was a wonderful achievement of Galileo. Acceleration is, on the other
hand, absolute and can be detected locally by an accelerometer — a mass attached
to one end of a spring, the other end of which is fixed to the platform. (In all these
discussions, we will ignore the presence of gravitation). This is quite consistent with
our every day experience. We are hardly aware of the velocity with which the lift,
by which we may be traveling, is moving except at the times of start and stop, i.e.,
when there is acceleration or deceleration.

A platform is, more formally, a set of points at rest relative to one another. It is
convenient to introduce a rectangular coordinate system (z, y, z) at rest with respect
to these points. One may also assume a clock, an atomic clock, say, attached to
every point of this set. The identical clocks may be synchronized by exchanging light
signals. Thus, if A and B are two points and if ¢; is the time at which a light signal
is sent out from point A, and if ¢ is the time at which the signal is received at and
reflected by the point at B, and finally if ¢3 is the time at which the signal is received
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back at the point A, then the clocks at A and B are synchronized if to —t; = t3 —to.
Note that this is purely by symmetry and does not require knowledge of the speed of
light. Thus an elementary event is completely located by giving spatial coordinates
(x,y,z) and the time of its occurrence t, read out by the clock at the point (z,y, 2).
Such an unaccelerated platform equipped with the markers (x,y, z;t) is called a
Galilean frame of reference S, say. Another Galilean frame S’, say, will have a
primed space-time coordinate system (z’,y’, 2’;t"). Now the relativistic invariance
asserts that the laws expressed in terms of the primed and the unprimed space-time
coordinates should have the same form. The question now is how the primed and
the unprimed space-time coordinates of the same event are related. The relativity
of motion encountered in everyday life, also called Galilean relativity, would suggest
the following answer. Time intervals are absolute. So are the space intervals. This
means that, if (z1,y1,21;t1) and (z2,ys, 22;t2) are the space-time coordinates of
two events observed in a Galilean frame S, and (zf,y], 21;t]) and (24, 5, z5;t5)
are those for the same two events but in another Galilean frame S’, then the time
interval t1o = (t; — t2) = t}5 = (t) — t5) and the space interval squared 7%, =
(21— 22)% + (g1 — 12)? + (21 — 22)2 = (P1)? = (&} — 25)® + (9} — 4)? + (2} — 24)°.

This leads to the rules of vector addition of velocities and displacements well
known from our high-school days. The symmetry operations here are the familiar
translation and rotation (re-orientation) in space, ‘boosting’ to a relatively uni-
formly moving frame, and time translation. Galilean relativity is, however, based
on our common experience with slow objects moving at small velocities, e.g., the
speed limit of about 100 kilometers per hour on national highways. Compare this
with the speed of light, 1080 million kilometers per hour in vacuum. Can we ex-
trapolate our tardy experience to such high velocities? Let us see. In Galilean
relativity the speed of light in vacuum would depend on the relative velocity of the
source of light and the observer. One can then, in principle, chase light and even
outrun it. Or one can run just fast enough to keep pace, bringing light to a relative
standstill. This is true, for instance, in the case of sound. But sound propagates
only in a medium, e.g., air. Light, however, can propagate in vacuum. Is vacuum
too filled with an all pervasive medium — the ‘aether’ as was indeed thought for
quite some time? This hypothetical medium, the aether, could then provide the pre-
ferred frame of reference at absolute rest, making thus the different Galilean frames
moving relative to it in principle non-equivalent. Even the most careful laboratory
measurements and astronomical observations have, however, failed to detect this
aethereal medium. Einstein did not like this loss of symmetry anyway. The point
is that light is an electromagnetic wave whose propagation in vacuum relative to a
Galilean frame is described by a wave equation of the type we wrote down in the last
section. Notice that the speed of light ‘¢’ occurs explicitly in this equation. The
invariance (or rather covariance) of this equation with change from one Galilean
frame to another then demands the invariance of the speed of light. Thus, we have
the fundamental postulate of the absolute constancy of the speed of light for all
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Galilean frames of reference — the basis of Finstein’s special theory of relativity.
The changes from one frame of reference to the other are the symmetry operations
that leave the speed of light unchanged. It is clear that for this to be so, the notion
of absolute time interval t15 as separate from that of the absolute space interval r15
between the two events labeled 1 and 2 inherent in the Galilean relativity must be
abandoned. Einstein’s relativity replaces these two with a single absolute invariant
interval s12 between the two events, given by s2, = r?, — c?t2,. Three-dimensional
Euclidean space and time (z,y, z;t) are replaced by a four-dimensional space-time
(the Minkowski world) that treats time ¢ as just another co-ordinate to label the
events, at par with space coordinates (z,y, z) (Fig. 1.5).

An event is now located at a world-point (x, y, z, t) — the semicolon that set time
apart from space has now been replaced by a common comma. The transformation
from (z,y, z,t) to (2/,y’,2’,t’) is now the symmetry operation of displacement and
rotation (Lorentz transformation) in this four dimensional world, keeping in mind,
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Figure 1.5: Rotation in (a) ordinary space; (b) Minkowski space-time.
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however, the technical point about the minus sign that occurs in s%, = (z1 — z2)% +
(y1—y2)%+(21—22)?—c%(t1—t2)?. Einstein’s special relativistic space-time symmetry
now demands that the laws of physics be invariant under the Lorentz transformation
from one Galilean frame (unaccelerated or inertial frame) to another. This replaces
the old Galilean invariance with its absolute time intervals. Indeed, the Maxwell
wave equation for the propagation of an electromagnetic disturbance in vacuum has
the Lorentz invariance, but not the Galilean invariance. One may mathematically
absorb the minus sign by defining an imaginary time 7 = 3¢, with ¢ = v/—1 and
treat time formally completely at par with space. But it is actually better to leave
it as such, as a gentle reminder that time is, after all, qualitatively different from
space. The negative sign implies that the interval s12 can vanish without the two
events coinciding in space-time, i.e., s;2 = 0 but 12 # 0, t12 # 0. We can even
have s12 negative. (We say that the Minkowski world has an indefinite metric).

The geometry of this four-dimensional world has important and interesting phys-
ical consequences. The well advertised popular effects — the variation of mass with
velocity, the equivalence of mass and energy, the Lorentz contraction and time dila-
tion, all belong here. The speed of light in vacuum is the limiting speed that cannot
be exceeded. Our main concern here is, however, only the symmetry aspect of rel-
ativity — the great framework symmetry. Let us note one highly counter-intuitive
aspect of it because it has a deep significance for our discussion of invariance and
conservation law later. Since it is only the interval s;5 that remains invariant from
the unprimed frame to the primed one, it is clear that we can have t12 zero but t,
non-zero. That is to say that in the unprimed frame the two events are simulta-
neous, but in the primed frame they are not. This is the relativity of simultaneity
that totally demolishes the notion of absolute time interval. (Incidentally, one may
have an uneasy feeling, when simultaneous events in one Galilean frame appear
non-simultaneous in the other, about what happens to their chronological order of
occurrence — which is older of the two. Well, relativity does allow a certain amount
of play in this game of courtesy, but there is an absolute past and an absolute future
even here consistent with notions of cause and effect).

We now turn to the deep connection between these relativistic space-time sym-
metries (invariances) and the conservation laws. Inasmuch as these symmetries are
the framework symmetries to which all the basic laws of physics are subject, we will
call the corresponding conservation laws the Great Conservation laws. Consider a
physical process written schematically as x +y — z + w. A quantity is said to be
conserved if its total value for the reactants x 4+ y is the same as its total value
for the products z 4+ w of the process as observed in a given Galilean frame. Thus
we speak of conservation of energy, linear momentum and of angular momentum.
It turns out that the conservation of energy follows from the invariance with re-
spect to translation in time. The conservation of linear momentum follows from the
invariance with respect to translation in space (homogeneity of space). The conser-
vation of angular momentum follows from the invariance with respect to rotation
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in space (isotropy of space). A proper discussion of conservation of these quantities
(and even their definition in general) as a consequence of the invariances requires
the introduction of ‘action’ and ‘action principle.” This is beyond our scope. The
important point to note is that this connection between invariance and the conser-
vation law is not restricted to any specific dynamical laws such as Newton’s laws
of motion. The connection is purely kinematic. For the specific case of mechanical
systems where, for instance, momentum is mass times velocity, one may derive con-
servation of linear momentum by applying Newton’s three laws of motion. And
so on for energy and angular momentum. But the connection is really much more
general. After all, there are non-mechanical objects, light for instance, that also
carry energy, momentum and angular momentum. We should note in passing that
just as isotropy of space implies (but is not implied by) homogeneity, conservation
of angular momentum implies conservation of linear momentum, but not vice versa.

Much of the restrictive and predictive power of these symmetries comes from
the associated conservation laws. The striking example is radioactivity (8-decay)
in which a neutron was thought to decay into an electron, a proton and something
else. The electric charge is conserved as required by another invariance called global
gauge invariance to be discussed later. However, a careful reckoning of energy and
momentum of the system before and after the reaction led to an imbalance. Thus
a new particle was suspected as a decay product that carries the missing energy
and momentum. It was predicted to be neutral and to have zero rest mass. Also,
recalling that the neutron, the electron and the proton all carry spin half (angular
momentum #/2), conservation of angular momentum required the then unknown
particle to carry spin half. All this was confirmed happily later. This is the now well
known but elusive elementary particle, the electronic anti-neutrino denoted by v,
and the corrected process reads n — e~ + p + .. These particles are now routinely
and abundantly produced in laboratories, in nuclear reactors as well as accelerators.

The full power of these great framework symmetries is realized only when
these are combined with the great framework theory — Quantum Mechanics
(Appendix B). But this will take us very far afield. We will be content with just
mentioning it. In addition to these continuous symmetries, there are discrete space-
time symmetries too. One of them is the symmetry under space reflection, also
called the mirror symmetry or parity. This produces enigmatic effects in ordinary
laboratory physics and chemistry as also in the extraordinary processes involving
elementary particles. We will take this up next.

1.3 Reflection Symmetry

We have spoken of objects having bilateral symmetry, also called the left-right
symmetry. A butterfly with outstretched wings or a maple leaf for example. When
an object is reflected in a mirror, the left and the right sides of it get interchanged.
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Thus, an object having bilateral symmetry is by definition superposable on its mirror
image. The mirror is just an optical device that enables us to visualize the result of
reflection of objects in space through a plane. For these reasons the terms bilateral
symmetry, left-right symmetry, mirror symmetry and the symmetry under space
reflection are all used interchangeably. In physics, handedness is often referred to
as chirality.

There is something that sets this symmetry apart from the rest that we have
discussed so far. As noted above it is a discrete symmetry unlike the continuous
symmetry of rotation or translation, say. Changes caused by continuous symmetry
operations can be made arbitrarily small. Not so with discrete ones. You reflect or
you don’t: The excluded middle — there is nothing in between. Also, unlike these,
it is a non-performable symmetry operation. Space reflection involves turning the
object inside out laterally, an operation we can hardly perform continuously. But
we can and we do visualize it by the optical trick of reflecting it in a mirror. Having
visualized it so, nothing prevents us from making a physical copy of the image, using
silly putty, say, which can then be tested for superposability on our object. This
is the operational meaning of reflection symmetry as applied to shapes of material
objects or geometrical figures. The non-performable nature of reflection symmetry
conceals an important aspect of it that we will try to uncover now. Consider an
arbitrarily shaped object and its reflection in a mirror. A rather handy example
would be, well, your right hand itself. Its mirror image is constructed by translating
every point on the hand to a point on the other side of the mirror, along the line
perpendicular to the plane of the mirror and equidistant from it (Fig. 1.6a).

Now, it is clear that this image (ideally your left hand) is not superposable on
your right hand. Such an asymmetric object is called ‘handed,” and with very good
reason. Have you ever tried your left-hand glove on your right hand? And yet
nothing else is more like my right hand than its mirror image, that is my left hand.
The reason that the two cannot be superposed is an inconvenient circumstance of
life, namely, that the hand is a three-dimensional object and so is our physical world
(space) in which cooped up we live. In a world of higher dimensions, the right hand
could have been turned around by a temporary excursion into the extra dimensions,
and thus superposed on the left hand. This can be demonstrated quite easily with
an example taken from the world of lower dimensions — of a two-dimensional object,
a flatlander living on a plane which is embedded in our familiar three-dimensional
space. Thus, the symbol “Om” in Fig. 1.6b can be superposed on its mirror image
by simply folding the paper along the mirror line M. The act of folding involves a
temporary lift or escape into the third dimension coming out of the plane of the
paper. Science fiction is full of such excursions into the extra dimension — the
“tesseract” in “A Wrinkle in Time” by Madeleine I’Engle is a fascinating case in
point. These extra dimensions, somewhat curled up and rather inaccessible, are also
the subject of serious thought by the physicists of our times. But we are digressing.
All this suggests that an object and its mirror image are intrinsically the same. To
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Figure 1.6: (a) Mirror reflection; (b) continuous reflection via third dimension; (c) right-handed
screw reflected as left-handed screw.

emphasize this we call them a pair of enantiomorphs or antipodes — an impressive
name for ordinary mirror images.

What is in a hand that makes it so ‘handed’? To understand handedness more
thoroughly we can think of a screw — the common screw that we use to fasten
things together, and without which much of our civilized world would simply come
apart. The common screw is nothing but a helical ridge, called thread, cut into
the surface of a cylinder, or a cone if it is a tapered screw. When the screw is
turned as indicated by the circular arrow (Fig. 1.6¢), it advances (or recedes) along
its axis as indicated by the linear arrow. This makes the screw a machine that
converts a rotary motion about its axis into a translational motion along that axis.
You may think of the Archimedes Screw that was used by the Egyptians to raise the
waters of the Nile, and is still in use for similar purposes. It should be clear that
there are two and only two classes of screws possible. These correspond to the
two possible relations between the circular and the linear arrows. Let us give them
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names. Suppose that you clasp the screw in your right hand with your fingers
pointing in the direction of the circular arrow while your thumb stays parallel to
the axis of the screw. Now, if your thumb points in the direction of the linear
arrow, then the screw is said to be right-handed. If, on the other hand, it points
in the opposite direction, then the screw is said to be left-handed (Fig. 1.6¢). It is
easy to see that the mirror image of a right-handed screw is a left-handed screw.
The two form a pair of enantiomorphs. That there are two classes of screws, i.e.,
the two-ness of it, is an absolute fact. But defining them as the left- and the
right-handed screw is, of course, a matter of convention — a very useful convention
though, which is followed uniformly all over the civilized world. This has been
made possible by the intimate contacts we have had over centuries of togetherness,
and not a little by our admirable practice of shaking hands. But a convention
all the same. The non-triviality of this is brought home by the following thought
provoking circumstance. Suppose we establish radio-contact with some advanced
civilization in a galaxy far away. Such an eventuality can not be ruled out, thanks
to the project SETI (Search for Extra-Terrestrial Intelligence) mounted by some
serious-minded people. Now we should have no difficulty convincing our distant
correspondents that these are the two classes of screws possible. But try hard as
we may, we will not be able to explain to them what we mean by the right-handed
screw. This is the famous problem of Ozma (named after the mythical prince Ozma
in Lyman Frank Baum’s classic “Wonderful Wizard of OZ”). The Ozma problem,
suggested by Martin Gardner, is a deep problem of communication theory, and its
solution involves deeper understanding of symmetry in physics. We will return to
it briefly later.

From the reflection symmetry of geometrical shapes let us now pass to the
real question. Are the various laws of physics symmetric with respect to space
reflection? To fix ideas consider a simple molecule CHy4, the molecule of methane
(marsh gas found commonly in marshy lands). The molecule consists of a carbon
atom surrounded by four equidistant hydrogen atoms arranged at the vertices of a
regular tetrahedron (Fig. 1.7).

The molecule is clearly reflection symmetric, i.e., it is superposable on its image.
We can break this reflection symmetry by replacing the four hydrogen atoms by four
different atoms (or groups of atoms) X, Y, Z and W, say. Thus, for example if
X =H,Y = CHs, Z = Co3Hs; and W = OH, we get a molecule of butyl alcohol.
Numerous other examples are possible. Chemists refer to such a molecule as having
an asymmetric carbon atom, and the pair of enantiomers are called stereoisomers.
Such a molecule is handed because it is no longer superposable on its mirror image.
Thus for example, if you look down the X O direction, the atoms Y, Z and W will be
seen as arranged either clockwise or anticlockwise. Now suppose we synthesize this
molecule in the laboratory starting from the elements C, H and O. The question is
which one of the pair of stereoisomers we will get. The answer is simply this. If the
laws governing the chemical reaction are symmetric with respect to space reflection,
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Figure 1.7: Mirror reflection of molecules: (a) CH4 with symmetric carbon atom; (b) OXYZW
with asymmetric carbon atom, hence optically active.

then the probabilities of getting the two stereoisomers are strictly equal. Therefore,
at the end of the reaction we will get a mixture of the two in equal proportions.
Chemists call this a racemic mixture. The mixture will have no net handedness. A
law is said to be reflection symmetric, if a process or phenomenon and its mirror
image are equally allowed by that law. Experimental evidence strongly suggests that
the laws of physics that govern processes at low energies, like chemical reactions, are
indeed reflection symmetric. Thus the molecules of butyl alcohol in our example and
the molecule of its mirror image will have the same physical and chemical properties,
e.g., the same boiling point, the same freezing point, the same density and, of course,
the same molecular weight. Next we will demonstrate the predictive power of this
symmetry of the physical law — we will predict optical activity. Consider again our
handed molecule with the asymmetric carbon atom. A molecule of sugar is perhaps
a more pleasing example. Sugar molecules are also handed but a bit more complex.
Now, we can hardly experiment on a single sugar molecule. So consider trillions
of these identical sugar molecules — a solution of the sugar molecules in water,
for example. The water molecules (H2O) are mirror symmetric and, therefore, any
handedness at all will be due only to the sugar molecules. We can and we will ignore
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Figure 1.8: (a) Plane-polarized light; (b) left-circularly polarized light; (c) right-circularly polar-
ized light.

the solvent (water) completely in what follows. In the aqueous solution the sugar
molecules are located and oriented randomly. This, however, does not neutralize
or average out their handedness. After all, a chest full of left gloves can hardly
be confused with a chest full of right gloves, no matter how randomly the gloves
are placed. We will now send a beam of light from a laser, say, through our sugar
solution. But first let us remind ourselves of some elementary facts about light.

Light is a transverse electromagnetic wave. The electric and the magnetic fields
oscillate sinusoidally in time and space with a given frequency and wavelength.
They are perpendicular to each other and to the direction of propagation of the
wave (hence transverse). Light can be circularly polarized. Here the tip of the
electric vector describes a helix with its axis along the direction of propagation. It
may be left- or right-circularly polarized according as to whether the helix is left-
or right-handed (Fig. 1.8).

Light can also be linearly (or plane) polarized if the oscillating electric vector lies
in a plane containing the direction of propagation. Finally, we note that a linearly
(plane) polarized light may be viewed as a vector addition of the two oppositely
circularly polarized light waves of the same frequency and wavelength. We are all set
now. Let the beam of light passing through our sample of handed sugar solution be
circularly polarized. The mirror image of this process will be an oppositely circularly
polarized light passing through a sugar solution of opposite handedness. Given the
reflection symmetry of the governing law, the two enantiomorphic processes must
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Figure 1.9: Rotation of plane of polarization of light by optically active medium.

be equally and identically allowed. In particular the speed of light in the two cases
must be exactly the same. But what if we keep our sugar solution the same and
only reverse the sense of circular polarization of light. Well, this is not symmetry
related to the earlier situation, and there is no sufficient reason to expect the speed
of light to remain the same — it will in general be different. Thus the speed of light
in a handed medium depends on the sense of circular polarization of the light! This
effect can be made more spectacular by taking our light to be plane polarized. Recall
that it may be viewed as a superposition of two oppositely circularly polarized light
waves. Now that these two components must travel with different speeds, they will
get out of phase as they traverse the handed medium. This results in the twisting of
the plane of polarization of the light relative to that of the incident light (Fig. 1.9).
This twisting or rotation of the plane of polarization is called optical activity. It
is perhaps the most dramatic manifestation of handedness of the medium. The
substance (sugar in our case) is said to be dextrorotary (dextro = right) if the
plane of polarization twists as a right handed screw. It is said to be levorotary
(levo = left) if it twists as a left-handed screw. A racemic mixture of the two will
leave the plane of polarization unchanged. (Somewhat confusingly, the opposite
convention is also in use).

Let us re-emphasize that optical activity is due to the handedness of the sub-
stance. The law itself is even-handed, i.e., reflection symmetric. This is expressed
perhaps most forcefully by the famous example of a milk drinking kitten of the
Looking Glass world. Milk contains asymmetric molecules of sugar, proteins and
fats. So does, of course, the body of the cat. And conventional cats love conven-
tional milk. Reflection symmetry now demands that the reflected kitten love the
reflected milk just as much, and fare just as well in all respects.

The living world is, however, far from being racemic. Thus, practically all the
20 odd amino acids that make up the proteins of the living cells are left-handed.
The proteins in the living cells, in turn, have a helical backbone which is almost
always right-handed. Each of the sugar phosphate chains in the double helix of the
information bearing molecule DNA is a right-handed (double) helix, and a man has
typically 10'! kilometers of it. Left amino acids are common and are assimilated
by our body, but the right amino acids are rare and filtered out by our kidneys.
The nicotine commonly found in tobacco is known to be harmful but its reflected
stereoisomer is rare and much less offensive. Limone, in perfumes, has the pleasant
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orange scent — its enantiomer smells like turpentine. The same is true of other
biochemicals such as the lactic acid found in milk, or the table sugar (sucrose) found
in sugarcane, etc. The sugar D-glucose is found throughout the animal kingdom but
its mirror image L-sugar is unknown except in laboratory synthesis. (Handedness
of drug molecules poses a serious problem — one has only to recall the tragedy of
the thalidomide babies with birth defects caused by the wrong handedness of the
drug molecules involved. Preparing optically pure compounds, i.e., those of a given
handedness, is, however, difficult and expensive).

There are indeed few exceptions to the rule that anything from lactic acid to the
double helical DNA, having handedness, will occur biologically in only one form.
Indeed if we let a colony of bacteria feed on a racemic (optically inactive) mixture
of (L) and right (R) sugars, the bacteria would feed preferentially on L-sugars, and
then leave the mixture right-handed and optically active. The question now is, do
we understand this dominance of handedness, or shall we say high-handedness of
the living world when the governing laws themselves are so just and even-handed?
Well, not quite. But a highly plausible answer is something like this. The observed
handedness of the living matter may be the result of a fantastic amplification of
an initial chance asymmetry, ever so slight. This is made possible by the positive
feedback inherent in the process of multiplication (reproduction) by self-replication
that is all pervasive in the animate world. To see this clearly let us simplify things
to the absurd limit and consider the first (single) helical strand of the DNA molecule
ever formed. We know that it is potentially equally likely to be right- or left-handed.
But once formed it has got to be just one of them. So let it be right-handed. Now
this single right-handed strand proliferates or multiplies by self-replication. It acts
as a template and makes a copy of itself which is now necessarily right-handed.
The process gets repeated over and over again. This is the positive feedback at
work that may lead to the necessary amplification of an initial chance event over
the aeons of chemical and biological evolution, and thus produce the handed life
as we know it today. This is made all the more plausible by the observation that
the inorganic world, by contrast, seems to be quite racemic. Consider the mineral
quartz for example. It is one of the crystalline forms of silicon dioxide (SiOsz),
the common silica sand. The basic unit here is SiOy which by itself is mirror
symmetric, making quartz optically inactive when dissolved. But in a quartz crystal
the units are arranged in the form of parallel helices which can be either left- or
right-handed, making quartz optically active. In Nature both the forms occur with
equal frequency.

Does this not go against the laws of thermodynamics, the entropy principle,
that makes states of equal energy equally probable? The left- and the right-handed
strands are, of course, energetically equivalent, being related by reflection symmetry.
Well, the point is that the thermodynamic statement is about a system in thermal
equilibrium. But the living state is far from equilibrium. It is self-organized and
maintained at the cost of ‘freely’ available energy that comes eventually from the
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sun. Once the cell is dead, the right-handed helices of the DNA molecule will
begin to flip their handedness, and gradually tend to the racemic state as dictated
by thermodynamics. Indeed, the rate of racemization can be, and has been, used
for the dating of dead cells older than 40,000 years or so, much better than the
conventional dating based on the decay of *C, a radioactive isotope of carbon.
Louis Pasteur regarded handedness as a sign of life. Racemization signaled death.

Are the fundamental laws of physics all strictly symmetric under space reflec-
tion? Is the antipodal world of the Looking Glass just as legal as our conventional
world? We now know that the answer to this question is a definite no. There
are fundamental processes such as the S-decay (radioactivity) controlled by the so-
called weak interaction that break this reflection symmetry. There is a screw at
the very heart of Nature. To see this we have to get more sophisticated. We have
seen how to reflect geometrical figures and shapes of material objects. But how do
we reflect magnetism? Take a bar magnet with the poles N and S marked on its
ends. Its mirror reflection will be just another bar magnet with the letters N and S
laterally inverted (Fig. 1.10).

But this is a naive reflection of the body of the magnet. It hardly addresses
the real question of how to reflect the magnetism of it. The magnetic field of the
magnet may be regarded as due to an electric current circulating in a loop around
the body of the magnet as indicated by the circular arrow (Fig. 1.10). Remember
Ampere’s Law! (Incidentally, when Ernst Mach learnt of the sideways deflection
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Figure 1.10: Mirror (M) reflection of (a) body of a magnet; (b) magnetism.



28 Symmetry of Nature and Nature of Symmetry

of a compass needle when placed below and parallel to a current carrying wire, he
was shocked out of his wits as he thought it to be violating the left-right symmetry.
With our picture of the magnet, now we see that Mach’s shock was a false alarm
as there is no such symmetry in this situation to start with). It should be clear
now that when reflected, the sense of the circular arrow will reverse. And so will
the polarity of the magnet. With this we are all set to describe the phenomenon
that shook the world of physics — the fall of parity. Parity is yet another name for
reflection symmetry. (Note that space reflection actually means inversion through
the origin — that is letting (z,y, z) go to (—x, —y, —z). In three-dimensional space,
however, the inversion through the origin and the reflection in a mirror are related
through a mere rotation by 180 degrees about an axis perpendicular to the mirror
plane. And, of course, the rotation symmetry is not in doubt).

Take an atom of cobalt, the isotope %°Co to be precise. The nucleus of 5°Co has
a spin. It is like a spinning top. This makes it a tiny magnet with the magnetic
poles on the spin axis. As before, this is equivalent to having a circulating current
loop indicated by the circular arrow. We now apply a magnetic field. The nuclear
magnet will align parallel to this field just as a compass needle aligns parallel to
earth’s magnetic field. The ®°Co is a radioactive nucleus. It decays by emitting,
among other things, electrons, the (-rays, in all directions. The question is whether
they come out equally in all directions, or there are some preferred directions. We
can know this by placing detectors all around our sample and counting the number
of electrons coming out in a given direction in a given interval of time. In particular
let us compare the number of electrons shot out of the north pole (N) parallel to
the field with the number shot out of the south pole (S) antiparallel to the field.
If we perform this experiment as Chien-Shiung Wu did in 1957, we will find that
more electrons are shot out of the south pole than out of the north pole. Is this
consistent with the reflection symmetry of the underlying law? To answer this all
we need to do is to look at the process reflected in a mirror (Fig. 1.11).

Everything looks the same except that the sense of the circular arrow and,
therefore, the polarity, is reversed. Thus in the mirror world, more electrons would
come out of the north pole antiparallel to the field than out of the south pole.
The reflection symmetry is violated! (This violation of parity was predicted by the
two Chinese-American physicists T. D. Lee and C. N. Yang in 1956 on theoretical
grounds. It was confirmed by C. S. Wu in 1957. The same year Lee and Yang
won the Nobel Prize in Physics). In fact the nuclear spin of the 5°Co nucleus (the
circular arrow) and the preferred direction of electron emission define a left-handed
screw. Nature is weakly left-handed after all! This is more than a mere convention.
One could perhaps use the 5°Co decay to communicate to our distant correspondent
the meaning of the left and the right, and thus solve the Ozma problem. But not
quite, as we will presently see.

We can go further and, as it were, pinpoint the screw by looking at the full 3-
decay reaction: ®°Co — %9Ni + ¢~ + 7. The neutrino (or rather anti-neutrino ),
as we have noted earlier, is an elusive particle with zero rest mass. This particle has
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Figure 1.11: (a) Parity violation in 3-decay of cobalt-60 nucleus; (b) left-handed neutrino.

a zero charge and relativity requires it to move with the speed of light. The neutrino
has spin one-half and this is important for us, since relativity demands that the spin
of this massless particle be either parallel or antiparallel to its velocity! Now the
spin (the circular arrow) and the velocity (the linear arrow) form a screw or a helix
that can be either right-handed or left-handed. In Nature we find only left-handed
neutrinos (and right-handed antineutrinos) (Fig. 1.11). Here lies the screw at the
heart of Nature! All reactions involving these handed objects violate parity.
Besides parity (P), there are two other discrete symmetries — charge conjugation
(C) and time reversal (T). The symmetry operation of charge conjugation (C)
replaces a particle with its antiparticle, denoted by an overhead bar. A particle and
its antiparticle have the same mass but equal and opposite electric charges, among
other things. Thus we speak of the anti-electron e (commonly called positron),
antiproton (p), antineutron (7), antineutrino (7), and so on. The photon () is
its own antiparticle. Charge conjugation symmetry demands invariance of physical
laws under the operation C. Thus a reaction X +Y — Z + W and its conjugate
X +Y — Z 4+ W should proceed at the same rate. The antiworld is as allowed as
our conventional world. And yet we see more electrons around than positrons, more
protons than antiprotons and so on. The asymmetry seems to be of a cosmological
origin, not fully understood at present. One thing should, however, be clear. We
can hardly expect particles and antiparticles to co-exist in close proximity. They
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would annihilate immediately producing a flash of radiation, e.g., e~ + et — v+ 7.
This positron annihilation is used in solid state physics to study electrons in metals.

Time-reversal symmetry demands invariance of the law under the operation of
time reversal (7). Thus, if we take a movie of a process and then re-run the
reel backwards, what we observe will be an equally allowed process. The reaction
X +Y — Z+ W is as legal as the time-reversed reaction Z +W — X + Y. The
time-reversal operation (7) requires reversing all velocities and spins in detail and
interchanging past and future. Thus, at the level of elementary processes, there
is no arrow of time. Microscopically, every process is reversible. (But how do we
reconcile this microscopic reversibility with the all too common irreversibility of
processes in complex systems — the irreversibility at the macroscopic level? What
about ageing for instance? There is a thermodynamic arrow of time no doubt. The
connection between the time-reversal symmetry of the microscopic laws and the
observed asymmetry of complex processes has been and continues to be a subject
of much debate. We will not pursue this matter here any further).

Like parity (P), the time-reversal (7) and the charge-conjugation (C) symme-
tries are also approximate. There are subnuclear reactions in which C and 7 are
individually violated. But amazingly, the combined action of these approximate
symmetry operations (in any order) is an exact symmetry of nature with no vio-
lation known. Thus, if in any process we replace all particles by their respective
antiparticles, reflect the resulting process in a mirror, and then reverse all veloci-
ties and interchange past and future, we will get an equally allowed process. This
celebrated CP7T theorem expresses a deep symmetry of Nature. “All Hell will break
loose” if CPT invariance is ever found to be violated.

Finally, what about the Ozma problem? We now know why it is not sufficient
just to ask our otherworldly correspondent to repeat the °°Co experiment, as he
(or she) may belong to the antiworld (of antimatter). There will always be an
ambiguity inasmuch as both a right-handed helix of matter and a left-handed helix
of antimatter will interpret the results of the experiment equally well. We must
somehow ascertain before-hand whether they are made of matter or antimatter. It
turns out that this is in fact possible. There are subnuclear reactions that violate
time-reversal symmetry and eventually provide us with a method of ascertaining the
material versus antimaterial nature of the distant world. The details are much too
complicated, but the happy ending is that the Ozma problem is solved in principle.

1.4 Gauge Symmetry

We have been talking mostly about the geometric symmetries of space-time. These
are the general framework symmetries without which the physical world will hardly
be comprehensible. They seem so natural, almost a priori, that we take them
for granted. Thus, the failure of symmetry under space reflection, even though a
discrete and non-performable one, came as a great shock. Now we are approaching
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a symmetry of an entirely different kind — the gauge symmetry. It is special, it
is abstract and it appeals only to a preoccupied mind. Here we are requesting
invariance of the law that there be, with respect to transformations that are simply
outrageous. And yet the experience of the last five decades points to these gauge
symmetries as the basic dynamical principles on which the fundamental interac-
tions (forces) of Nature are designed. The familiar electromagnetic interaction that
controls much of the low-energy physics and all of chemistry, the strong interac-
tions that hold neutrons and protons together in the nucleus, the weak interactions
responsible for the radioactive decay of unstable nuclei, and possibly even the uni-
versal gravitation that holds the planets and the stars together, all seem to fit in
with this general scheme as gauge fields.

A proper understanding of gauge symmetry in physics requires a background
knowledge of the framework theory, quantum mechanics, which is frankly outside the
scope of this discussion (see, however, Appendix B). It is possible to get acquainted
with the basic idea of gauge symmetry from an example that we know from our first
year in college — the example of a simple harmonic oscillator (SHO). It will be a
caricature, but real enough for our purpose. Let us get down to it without further
apology.

Consider a particle performing a simple harmonic motion in a plane, i.e., a
two-dimensional SHO. What it means is that both its x and y coordinates oscillate
sinusoidally with the same frequency. Thus the particle will in general describe an
elliptical trajectory in the z,y-plane. It is convenient to combine the two motions
along the = and the y axes into the motion of a single complex variable z = = + iy,
where i = v/—1 is the imaginary unity that keeps the real and the imaginary parts
of z from getting scrambled up. The position of the particle in the z, y-plane is now
labeled by a single complex variable z. This is the familiar Argand diagram, or the
Gauss plane, for complex numbers (Fig. 1.12).

The magnitude of z is r = y/x2 + y2, which is the distance of the particle from
the origin O, and the polar angle 6 is its angular position, where tanf = y/x.
The SHO is described by the equation d?z/dt? + w?z = 0. Here 27/w is the time

y

Figure 1.12: Elliptical trajectory of a two-dimensional harmonic oscillator in the complex plane
representation.
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period of oscillation. (We can even make w time dependent and have parametric
oscillations). As remarked before, the real and the imaginary parts of this equation
do indeed describe the simple harmonic motions along the x and y axes.

Now comes the crucial observation. We have reckoned the angle 6 from the
x-axis. But this is just a matter of convenience. The absolute origin of the angle
is irrelevant. And with this irrelevancy comes the freedom of choice. We could, for
example, rotate our x, y axes anticlockwise by an angle o to new axes z’, ¢’ and
reckon 6 from the new z'-axis. This trivially amounts to replacing 6 by 6§ — a. We
say that we have re-gauged 0. All we have to do is to multiply our equation by
e~* and absorb this phase factor by redefining 2’ = ze~*®, and our equation reads
the same in terms of z’. Nothing really has changed. We could do this, of course,

—i

because a was a constant, i.e., time independent. This irrelevance of absolute 6 and
the associated invariance of our equation is what we call the global gauge freedom
and invariance. Global because it was an overall shift of 0, fixed and the same for all
time. Encouraged by this, we now become more demanding. We demand freedom
of choosing « differently at different times. That is to say we demand invariance
under time-dependent shift «(t). This is the local gauge invariance, i.e., local in
time. But with a(t) varying with time, the factor e!® can no longer be absorbed by
the re-definition of z because of the time-derivative occurring in our equation. It will
generate additional terms involving time-derivatives of a(t). Our earlier invariance
of the equation is obviously lost. The question is if we can regain it with as little
and as reasonable, or natural, a modification as possible of our original equation. In
other words, can we introduce something that will compensate for these additional
terms? It comes as a pleasant surprise that the answer is yes. All we have to do is to
replace the time-derivative d/dt occurring in our equation by d/dt — i A(t) with the
proviso that re-gauging 6 locally as 6 — «(t) should be accompanied by a re-gauging
of A(t) as A(t) — da/dt. Here A(t) is the compensatory, or the ‘gauge’ field. That
is alll But what have we gained after all this, you may well ask. Let us see. The
time-dependent shift «(t) amounts to rotating our reference frame with an angular
velocity da/dt. Now we may recall from our high-school mechanics that such a
rotation gives rise to ‘fictitious forces,” namely the centrifugal force and the Coriolis
force acting on our particle. The centrifugal force is the radially outward directed
force you feel while riding a merry-go-round. This is the force that makes the
rotating earth bulge out at the equator. The Coriolis force is the force that makes
you swerve sideways when you try to walk on a rotating platform. This is the force
that deflects the winds and the ocean currents to the right (left) in the Northern
(Southern) hemisphere due to Earth’s rotation. After a little calculus our equation
will show that the ‘gauge field” A(t) generates precisely these forces automatically.
Thus, the requirement of local gauge invariance has created the right kind of forces
acting on the particle in accord with experience. Is this not wonderful? This is the
essence of local gauge symmetry.

It is now believed that all the fundamental forces of nature, the electromagnetic,
the weak, the strong, and even the gravitational, are generated just this way. One
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has to simply identify the correct global symmetry (the irrelevancy) that is to be
gauged locally. This is where all the ingenuity and the insight of the theorist lie.
We have spoken of the irrelevance of the absolute origin of space and time, and the
irrelevance of the absolute orientation in the Minkowski space-time. When these
global symmetries are gauged locally, we get Einstein’s general theory of relativity
that replaces the old-fashioned Newtonian gravitation acting in the old-fashioned
Euclidean space. Thus gravitation appears as a gauge field. The idea of local gauge
invariance really comes into its own only when it is combined with the framework
of quantum mechanics, with all its built-in redundancies, irrelevancies and unob-
servables. For instance, as we have remarked earlier, the absolute phase of the wave
function v of an electron is irrelevant. It can be changed globally by an arbitrary
constant. But when we gauge it locally, the compensating force turns out to be just
the electromagnetic force that we know so well from our experience. It couples to
(acts on) the charges and the currents as it should. In point of fact, should we re-
place the single independent variable ¢ in our oscillator equation by the three space
co-ordinates (z,y, z), generalize the gradients appropriately, and let z(¢) become
¥(x,y, z), our equation will become the Schrodinger equation for a charged particle
moving in a magnetic field represented by the gauge field A(x,y, z), the so-called
‘vector potential.’

When this gauge principle is applied to relativity-plus-quantum mechanics, it
becomes the formidable gauge-field theory of physics today. The principle of local
gauge invariance has become the guiding principle in our quest of fundamental
understanding in the domain of the very small as well as the very large. Let us
hasten to add that the same general principle appears again and again in our world
of middle dimensions — the physics of condensed matter. So, next time you hear of
gauge invariance, it may well be the gauge theory of ordinary glass, or its magnetic
cousin, the ‘spin glass.’

1.5 Spontaneous Symmetry Breaking (SSB)

Finally, we come to discussing an idea which is as deep as the idea of symmetry
itself, or perhaps even deeper. Its time came much later. But now it is seen as a
physical principle that holds the key to unifying all the fundamental forces of Nature,
the electromagnetic, the weak, the strong and possibly even the gravitational. This
has been in one form or another, the all-time dream of physicists. It is already
partially realized now, and some say that the end is in sight. But, first, what is
spontaneous symmetry breaking? Let us define it. A symmetry is said to be broken
spontaneously if the symmetry of the state of the system is lower than (is a sub-
group of) the symmetry of the force law governing the system. Mark you, we do not
break the symmetry of the law itself. We have already hinted at such a possibility
— remember the elliptical orbit of the earth around the sun in spite of the spherical
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Figure 1.13: Particle in a symmetrical potential well: (a) symmetric state; (b) spontaneously-
broken-symmetry state.

symmetry of the gravitational force of the sun! To fix the idea, let us consider two
examples, the first a trivial one, taken from mechanics, and the second a highly
non-trivial one taken from statistical mechanics where it all began.

Take a piece of wire. Bend it in a U-like shape and hold it vertically. Now slip
a bead on the wire and let it slide freely on it. It is common knowledge that the
bead will oscillate for a while and eventually settle down (due to friction) at the
bottom of the U-wire (Fig. 1.13), this being the state of lowest potential energy
(equilibrium).

The gravitational potential energy measured from the bottom is proportional
to the height. Thus, the U-wire is really a ‘potential well’ with a single potential
minimum at the bottom. Notice that the potential is symmetrical about the vertical
through this minimum. Thus the state of the system has the same symmetry as
the potential (the force law). Now, let us flatten the bottom part of our U-wire and
finally make it convex upwards. We will now have two local minima of the potential
located symmetrically about the midpoint which now becomes a local maximum.
What should we expect now? The potential is still symmetrical about the vertical
through the midpoint, but this is now a state of unstable equilibrium. A disturbance,
however small, will tilt the balance in favor of one or the other of the two minima
and the bead will roll down accordingly. Let it roll down to the right-side minimum.
Now, the symmetry of this lopsided state is definitely lower than the symmetry of
the potential which is still symmetrical about the vertical axis. This is spontaneous
symmetry breaking. Broken symmetry agreed, but what is spontaneous about it,
you may ask. After all we did need some disturbance to break it. Well, the point
is this. The disturbance needed to break the symmetry of the state can be made
arbitrarily small. Even the tiny thermal jiggling of molecules in the wire will do.
The effect produced, namely the rolling down to one of the minima, is totally out of
proportion to this tiny disturbance which could in principle be made almost zero —
we have here a critically poised atom! This is why it is called spontaneous. (One is
reminded of Buridan’s ass. The hapless ass was placed symmetrically between two
identical bales of hay. The ass was hungry but the very symmetry (equidistance)
of the two options forbade him from making up his mind and, as the parable goes,
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he starved to death. But, of course, we know that the ass will eat — the slightest
bias, even if an autosuggestion, or merely thinking about it, may make him turn to
one or the other of the two stacks of hay!).

Now, we turn to the physically interesting example of a system of many inter-
acting particles in thermal equilibrium. The branch of physics that deals with such
systems is called statistical mechanics (see Appendix C). Most inanimate systems
are of this kind. A good example is that of a ferromagnet. Take a piece of iron. For
our purpose, we may regard the atoms of iron as tiny magnets, compass needles if
you like. The origin of these tiny magnets, or the magnetic moments as they are
called, lies in the spinning electrons. But this detail is not relevant for our discus-
sion. These tiny magnets, shown as arrows in Fig. 1.14, interact with each other.
The interaction is due to the quantum-mechanical ‘exchange’ of electrons because
of their indistinguishability. But this is again a detail not important for our discus-
sion. What is really important is that the interaction energy depends on the angle
between these magnetic moments. Thus if we turn all the atomic magnetic moments
around by the same angle about the same axis, the energy of the system will remain
the same. We say that the law governing the system is spherically symmetric. Fur-
thermore, for a ferromagnet the energy is minimum when the magnetic moments
are all parallel to each other. It is clear, therefore, that these atomic moments will
tend to align parallel to each other. At high temperatures, however, the thermal
agitation will make these moments point in different directions at random so that
there is no net magnetization. The state of the system will be spherically symmetric
— it has the same symmetry as the law of interaction. We call this disordered, high-
temperature symmetric phase the paramagnetic phase. As the sample is sufficiently
cooled, however, the interaction energy favoring parallel alignment of the magnetic
moments wins over the disrupting tendency of the thermal agitation. When this
happens the magnetic moments align parallel to each other on average and thus the

Figure 1.14: Spontaneous symmetry breaking in a ferromagnet at T.. f(M) denotes thermo-
dynamic potential.
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system develops a net magnetization M, which grows in magnitude with decreasing
temperature. This low-temperature ordered state is called the ferromagnetic phase.
The temperature T, at which the system makes the continuous transition from the
high-temperature disordered phase to the low-temperature ordered phase is called
the critical temperature, or the Curie temperature. The magnetization which is a
measure of order is referred to as the order parameter. (The physics of continuous
phase transition, often called the second-order phase transition, at and about the
critical temperature has been an extremely active area of research of our times. It
is determined almost entirely by the symmetry and the dimensionality of the order
parameter and is quite independent of the microscopic details of chemical compo-
sition, etc. This ‘universality’ of the ‘critical behavior’ is most fascinating but we
must let it pass). The question now is what should be the direction of this net
magnetization M. Inasmuch as the energy depends only on the relative orientation
of the atomic moments, all directions of M are equally probable statistically. And
yet in a given realization some direction of M must get selected. This state is
then symmetric only for rotations about this direction of M — it has only an axial
symmetry which is a subgroup of the full spherical symmetry of the interaction law.
The symmetry is thus spontaneously broken! For a large, in principle infinite, system
an arbitrarily small magnetic field or anisotropy will fix the direction of M. The
connection with our mechanical example should be obvious. The order parameter
(magnetization M) plays the role of displacement . Instead of mechanical potential
energy V(z) which was to be minimized, here we have a thermodynamic potential
(free energy) f(M), which is to be minimized. The only detail that differs is that
whereas the position z in our mechanical case was a scalar (one-dimensional), the
order parameter M is a vector. Thus, in the mechanical case the two equivalent
minima were separated by a potential barrier in the broken symmetry phase, while
in the ferromagnetic case all the equivalent minima (differing only by the direction
of M) are degenerate (i.e., have the same free energy) and M can in principle freely
gyrate among them. Perhaps a better mechanical analogue would have been the
marble in a punted wine bottle. (Incidentally, this freedom leads to the possibility of
certain waves propagating in the broken symmetry phase whose frequency tends to
zero as the wavelength tends to infinity (i.e., they are massless). We call these Gold-
stone modes. For the (antiferro-)magnetic case, these are the spinwaves). All this
plays an important role in the physics of phase transition in condensed matter. We
emphasize that this is a highly cooperative phenomenon resulting from interaction
among large number, infinite in principle, of particles, their spins in this case.
Now, how can all this possibly bring about unification of the fundamental forces
of Nature? This is a magnificent and highly technical obsession of contemporary
physics. We will try to give just the flavor of it in plain words. Any symmetry
can be broken spontaneously. In particular and most importantly, it can be the
gauge symmetry. It is the combination of gauge symmetry and spontaneous sym-
metry breaking that is central to unification. Consider the simplest case when the
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matter consists of charged particles (electrons). As we have already seen, the global
symmetry (namely, the irrelevance of absolute phase) when gauged locally, gener-
ates the electromagnetic field automatically, which in the quantum version is the
photon. (It is inherent in this mechanism that the photon — the gauge field — be
massless). Now in quantum theory, the interactions between particles are mediated
by the exchange of quanta of some field (much the same way as the exchange of
a handball between two players will exert an effective force of repulsion between
them. For attraction, let them exchange boomerangs!). Thus, the photon mediates
interaction between charges. It also follows from general quantum principles that
the range of interaction be inversely proportional to the rest mass of the quanta
exchanged. This is why the range of the electromagnetic interaction is infinite.
This intimate ‘genetic’ connection between matter (electrons) and the gauge field
(photons) leads us to expect an induced change in the character of the gauge field
when the matter undergoes a phase transition in which the very global symmetry,
whose local gauging generated the gauge field, undergoes spontaneous breakdown.
In point of fact, it would be very surprising if it were otherwise. We already see this
effect in a superconductor in the laboratory (see Chapter 3 on Superconductivity).
Here electrons undergo a transition in which the phase of this collective (macro-
scopic) wave function takes on a definite value, breaking thus the global symmetry
spontaneously. This induces the photon to acquire a non-zero mass, making it
impossible for it to propagate very far into the superconductor. This explains the
famous Meissner effect, namely that the magnetic field is expelled from the bulk of
a superconductor.

This was the simplest, but a most striking demonstration, of the change of
character of a gauge field induced by the SSB of the matter (field). All we have
to do now is to generalize to more complicated internal symmetries that can be
imagined and indeed have been postulated. Thus, there may be several gauge
fields generated by local gauging. They may be all symmetry related and thus of
the same character. Now, if the matter undergoes SSB, the group of these gauge
fields may be split into subgroups, and different subgroups may acquire different
masses. Successive phase transitions (and the associated SSB’s) may generate thus
a gamut of fields with different characters. This generation of different gauge fields
(fundamental forces) by the descent of symmetry due to SSB, from the single most
symmetric initial entity is the dream of the grand wunified theory (GUT). It has
already been partially realized in the wunification of the electromagnetic and the
weak interaction by Glashow, Salam and Weinberg for which they won the 1979
Nobel Prize in Physics.

One has a plausible scenario in mind that the universe began totally symmetric
with a Big Bang some 15 billion years ago. As it expanded it cooled and un-
derwent successive phase transitions. The associated SSB’s led to the diversity of
fields that survive at the present epoch. And what a diversity — if the strong
interaction measures unity on a certain scale, the electromagnetic interaction will
measure 1072, the weak interaction 10~° and the gravitational interaction 10734
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The strong interaction acts on hadrons (protons, neutrons, pions, etc., or their pos-
tulated building blocks, the quarks) but not on leptons (electrons, neutrinos, etc.)
and is short-ranged. The weak interaction involves neutrinos and has a still shorter-
range. The electromagnetic interaction acts on all charged particles and has infinite
range. The gravitational interaction is the weakest of all, but acts universally on
everything and has infinite range. And yet all may have a common origin. This re-
minds one of the concept of the Nirguna Brahma of the ancient Hindus — formless,
featureless, totally symmetric pure existence, from which all diversity originated,
shall we say, by spontaneous symmetry breaking!

This brings us to the end of our exploration of symmetry. We have seen its
power. Obviously, symmetry cannot answer all the why’s and how’s, but it does
reduce them to fewer why’s and how’s. To the philosophical question of why Nature
is so symmetric, we can perhaps answer thus. Symmetry is, in the ultimate analysis,
absence of bias. It is an expression of justice. There is a principle of insufficient
reason against asymmetry. A sphere is admitted. But a deviation from sphericity
must bide our question.

Galileo had spoken of the great Book of Nature. We should perhaps add that
the first and the last Chapters of this Book are on symmetry and its spontaneous
breakdown, respectively.

1.6 Summary

Symmetry means invariance of an object with respect to a set of operations called
symmetry operations to be performed on it. The object may be the geometrical
form of body such as a crystal of common salt, and the set of operations may the
geometrical operations of translation along a direction, rotation about an axis, or
reflection in a plane. The symmetry operations may be continuous or discrete,
physically performable or non-performable. More importantly, the object may be
a law of nature itself expressed mathematically by a certain equation. Symmetry
then means the invariance, or rather covariance, of the form of the equation under
the mathematical transformations corresponding to the symmetry operations, that
may not be geometrical in nature. Symmetry is a powerful physical principle that
helps us not only simplify calculations and classify and unify diverse objects, it also
restricts the possibilities in the absence of complete knowledge of the physical world.
It creates new physics when a symmetry is requested on intuitive grounds. There is
a branch of mathematics called group theory that provides the proper and powerful
language for dealing with symmetry. Symmetry has played a fundamental role in
quantum physics, particularly in the domain of high-energy physics, where its pre-
dictive power has been fully vindicated. The rather abstract idea of gauge symmetry
is one of the profoundest concepts produced by the human mind. Any symmetry,
however compelling aesthetically it may be, must be established experimentally.
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Thus, parity signifying the left-right symmetry between an object or a process and
its mirror image turned out to be false in certain fundamental processes involv-
ing neutrinos. Symmetry can also be broken spontaneously when there is a phase
transition. The idea of spontaneous symmetry breaking has played a decisive role
in our understanding of phase transitions in general, and in the context of grand
unified theories and the early universe in particular. The search for deeper, hidden
symmetries of Nature continues.

1.7 Further Reading

Books

e M. Gardner, The New Ambidextrous Universe, 3rd Ed. (W. H. Freeman
and Company, New York, 1995).

o H. Weyl, Symmetry (Princeton University Press, Princeton, 1952).

e 1. Hargittai, Symmetry 2: Unifying Human Understanding (Pergamon
Press, Oxford, 1989).

o A. Zee, Fearful Symmetry: The Search for Beauty in Modern Physics
(Macmillan Publishing Company, New York, 1986).
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Lasers and Physics

2.1 Invitation to the New Optics

The laser may turn out to be one of the most significant inventions of our times.
A product of modern quantum mechanics, it generates a light endowed with many
remarkable properties and qualitatively very different from the light hitherto avail-
able to us from conventional sources. This form of light, which gives us a completely
new tool for probing nature, already transforms and broadens to an extraordinary
extent the ancient science of optics. It gives us a radically new power of control of
light that opens up seemingly limitless applications in arts and sciences, in medicine
and technology. Physicists have used lasers to study minute details of the structure
of atoms and molecules, to catch atoms in flight, and to perform delicate exper-
iments to test the very foundations of quantum mechanics. Biologists have used
lasers to study the structure and the degree of aggregation of various biomolecules,
to probe their dynamic behavior, or even to detect constituents of cells. Mathe-
maticians actively involved with nonlinear complex systems have been intrigued by
the possibility that their ideas could be tested by observing the dynamical instabil-
ities exhibited by some lasers. And not only scientists or engineers — artists and
dentists, soldiers and spies have also been touched by this invention.

The term laser, which is an acronym for light amplification by stimulated emis-
sion of radiation, is an apt description of the device. The principle on which the
laser is based can be traced back to a work by Albert Einstein who showed in 1917
that ‘stimulated,” or induced, radiation could be obtained from atoms under certain
conditions. But the actual invention of the laser did not come until 1958 when
Arthur Schawlow and Charles Townes and, independently, Alexander Prokhorov
demonstrated that it was possible to amplify this kind of radiation in the optical
and infrared regions of the spectrum. Soon thereafter, the first laser beam was
obtained.

The laser is a device for producing a very tight beam of extremely intense and
highly coherent light. To appreciate these remarkable properties of laser light that
make the laser the unique tool it has come to be for research and applications,
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we will begin by considering light as it is normally found and discuss its char-
acteristic features, so as to contrast them with the distinctive properties of laser
light. There exist now many types of lasers, which use different substances as active
media, achieve atomic excitations through different techniques and generate light
at different wavelengths. They all share, however, the same basic principles. We
will describe many applications of lasers, not only in technology, but also in basic
research in physics where the use of this tool has led us to new directions, taken us
to new frontiers.

2.2 Conventional Light Sources

Light is ordinarily produced in hot matter. In 1704, in his second great work,
Opticks, Isaac Newton wrote:

“Do not all fixed Bodies, when heated beyond a certain degree,
emit Light and shine; and is not this Emission performed by the
vibrating motions of their parts?”

2.2.1 Light and Electromagnetic Radiation

Light can be described as a perturbation of space of the kind one may observe in
the vicinity of an electric conductor or near the path of a rapidly moving charged
particle. Once we have observed how iron filings on a glass plate through which a
current-carrying wire passes point to form closed circles about the central wire, or
watched a small probe charge attached to the end of a very thin thread respond
to the particle’s motion, we are left in no doubt that space nearby is pervaded
with a certain distribution of force that is called electromagnetic field. The precise
way in which this field varies in space and time is described concisely by a set
of differential equations, due to James Clerk Maxwell (1873), which replaced and
generalized all previous empirical laws of electricity and magnetism. According to
the theory encapsulated in these equations and later confirmed by experiments,
the electromagnetic field is a disturbance that propagates from point to point in
all accessible directions and behaves at large distances from the source as a wave.
For this reason we may refer to it as an electromagnetic wave. One of its basic
properties is that it can convey energy through empty space without transferring
matter, always moving at the same high speed, the speed of light (¢ = 300000 km/s
in empty space), and when it stops moving, it ceases to exist. We implicitly refer to
this kind of energy transfer whenever we use the term ‘electromagnetic radiation.’
An electromagnetic wave has all the characteristics, except visibility, of light: it
can be reflected, refracted or diffracted. Light, in effect, is the wisible form of
electromagnetic radiation.

A light wave, like any other electromagnetic wave, is described by the variations
in space and time of two vectorial quantities, namely, an electric field E and a
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Figure 2.1: Representation of an electromagnetic wave as space and time variations of electric
field E and magnetic field B. In (a) E stays at all times in a plane passing by the propagation
line, and the polarization is said to be planar. In (b) E changes direction as it evolves, and the
polarization is nonplanar.

magnetic field B. These vectors remain at all times perpendicular to each other
and perpendicular to the direction of propagation. So the wave in question is a
traveling transverse wave, much like the ripples on a disturbed water surface. We
refer to the direction of the electric field vector as the wave polarization. Over a
period of time, the electric field defines a vibration pattern which may be projected
in the E-B plane as a line segment, a circle or an ellipse (Fig. 2.1). You can easily
discover in which way a light wave is polarized: let it pass through a polarizer —
a tourmaline crystal or a Polaroid filter — and observe the output as you slowly
rotate the polarizer. A typical polarizer is a substance composed of long straight
molecules aligned perfectly parallel to one another which strongly absorb the electric
component parallel to the molecules, but let the perpendicular component pass on
through with almost no absorption.

Electromagnetic waves differ from one another in their characteristic wave-
lengths, X\, the distances from one peak to the next. The whole range of electromag-
netic wavelengths, called the electromagnetic spectrum (Fig. 2.2), covers values from
the very small (for high-energy gamma rays) to the very large (for low-energy radio
waves). A small portion of it forms the optical, or visible spectrum, extending from
about 400 nm (violet) to about 700 nm (deep red). (1 nm is 1 nanometer, or one
billionth of a meter.) Instead of wavelength,! we may equivalently speak of wave fre-
quency, v, which refers to the rate of vibration and is measured in cycles per second,
or Hertz (Hz); or also angular frequency, w, which is just the ordinary frequency
multiplied by 27, and so is given in radians per second (rad/s). In practice, we can
characterize a given radiation by its wavelength, A, or by its frequency, v or w. For
example, orange light has wavelength A = 600 nm, or frequency v = 5 x 10 Hz, or
w = 3 x 10'5 rad/s. It is the same information said in different ways (Problem 2.1).

In many respects, light behaves as a stream of quantum particles, which we call
photons. The production of an electric current by a sheet of copper when irradiated
by intense light (a process known as the photoelectric effect) and the absorption

I\ = ¢/v, where A and v are the wavelength and ordinary frequency of the wave; the angular
frequency w is defined as w = 2wv. A brief discussion of the concepts of waves and fields can be
found in Appendix A.
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Figure 2.2: Electromagnetic spectrum shown in the left diagram, as a function of energies in
electron volts (eV) and wavelengths in nanometers (nm). Right diagram exhibits the optical part
of the spectrum.

or scattering of light by atoms are just two examples of phenomena that are more
naturally explained by the corpuscular model than the wave model of light. The
photon has all the attributes of a particle: it has a mass and charge, both of which
are exactly vanishing; it has an intrinsic angular momentum (or spin) equal to 1 (in
suitable units), meaning it can be described by a vector quantity, such as E. The
photon, of course, travels with the speed of light, and has two other attributes of a
particle, energy and momentum. The simple proportionality relations between the
energy (or momentum) of a photon and the frequency (or wavelength) of the wave

associated with it, provide the links between two apparently diverging pictures.?

2F = hv = hw, where E is the energy of the photon, v (or w) the frequency of the corresponding
wave, h a numerical constant called the Planck constant, and h = h/27. Aspects of the wave—
particle duality are discussed in Section 6 of this Chapter and Appendix B. Momentum p is
related to wavelength A by p = h/\ (de Broglie’s relation).
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2.2.2 Spontaneous Radiation

An atom, like any other stable quantum system, is characterized by a set of discrete
energy states (or energy levels); the atom may exist as a stable system in any one
of these allowed states but in no others. The state of lowest energy, or the ground
state, is the one in which the atom is normally found, and to which it ultimately
returns after being excited. When an atom is placed in an electromagnetic field, the
field acts on the atomic electrons, transferring energy to them. If an electron can
convert the energy gained into potential energy for itself, then it, and therefore the
atom to which it is bound, may be lifted to an allowed higher-energy, or excited,
state. This transition (photon absorption) can occur only if the energy added will
just raise the energy to one of the allowed values; otherwise there is no absorption.

Once an atom has reached an excited state, it stays there only for a short lapse
of time — close to the (radiative) lifetime of the state, or some tens of nanoseconds
(1 ns = 1079 s) — then gives up its excess energy by dropping spontaneously to a
lower energy level, emitting electromagnetic radiation (i.e., photons) in the process.
This transition is called a spontaneous emission. The word ‘spontaneous’ refers to
the fact that the transition is not provoked by the action of any external force, but is
rather the result of an interaction of the atom with the all-pervasive electromagnetic
field present in the medium itself. The frequency of the radiation emitted, w, and
the energies Fs and Fp of the initial and final levels are related by Planck’s law:
w = (Ey — E1)/h. Since the allowed energies of an isolated atom are discrete, the
corresponding emission frequencies are also discrete, in other words, non-continuous
(Problem 2.2).

But a continuous, broad range of frequencies exists in other situations: atomic
transitions to unbound states (whose energies are not restricted to discrete values),
radiation of an incandescent liquid or solid (where atoms are packed closely), and ra-
diation of a hot body (where frequent collisions cause loss of energy to the medium).

The light that emerges from any such source is non-directional, non-mono-
chromatic, and incoherent.

It is non-directional because each point of the source radiates isotropically, with
equal probability in any accessible directions in space. One may attempt to obtain
radiation in a selected direction by placing a screen with a small hole in it some
distance from the source, or by focusing the light output into a narrow beam with
a mirror or a lens. But, obviously, part of the light will fall outside the collecting
angle and will be lost. Even with the best available point sources, such as arc lamps,
the resulting beam will nevertheless spread.

Perhaps you would think that light waves behave as perfectly sinusoidal curves,
oscillating rhythmically and indefinitely over long distances. They do not. Ordinary
light actually comes in a jumble of very short wave trains. The light vibration may
change in shape and orientation over the duration of the wave train, depending
on a large number of perturbations that might have affected the radiating atom
during the emission process. What the eye perceives in the short lapse of time
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needed to make an observation is an average of the effects produced by an enormous
number of unrelated, tiny wave packets it receives. Thus, even if the beam may
have some dominant pattern of vibration at some given instant, the vibrations
of its field components keep continually changing, favoring now one pattern, now
another. Natural light emitted by ordinary light sources, the sun or any other star,
behaves in this way; it exhibits no long-term preference as to vibration pattern: it
is unpolarized.

The lack of coherence in ordinary light results from both the finite size of the
wave packets and the spatial spread of the radiating points in the light source.
Suppose that two such points, separated by a small distance, emit, at fixed time
intervals, short identical wave packets along two intersecting paths. These wave
packets can meet and interfere with each other only if they overlap at the inter-
section. Also, only if the wave trains are sufficiently long, does the interference
pattern remain stable long enough to be seen. Now, consider several such point
sources radiating identical wave packets at random, and observe the optical inter-
ferences on a screen some distance away. If the point sources are closely spaced, the
interferences are almost identical for all sources, and a stable pattern emerges. But
if the emitting points are distributed over a relatively large volume — as they are
in conventional sources — the wave packets follow paths of very different lengths,
and produce at any point on the screen successive interferences which fluctuate in
brightness one instant to the next. Such a pattern is very unstable and can hardly
be visible to the eye: it is incoherent. (This is not necessarily a bad thing: you
wouldn’t want to read by a coherent light.)

An idealized source that can emit infinitely long sinusoidal waves at a fixed
frequency — e.g., in radiative transitions between two infinitely stable and ex-
tremely sharp levels — is said to emit a monochromatic radiation at that frequency.
Such is not the case with sources of continuous radiation; neither is it with ordinary
sources of discrete radiation, as we now discuss.

Suppose that a certain number of atoms (or ions or molecules) have been raised
somehow to an upper atomic level E5. They will spontaneously decay, or relax,
to lower energy levels, giving up their excess energy in the process. And this, in
two ways: One by radiative relaxation (in which the radiation energy materializes
as photons, directly measurable with photodetectors); the other by nonradiative
relaxation, which occurs mainly in solid-state materials (here, the energy goes into
setting up mechanical vibrations of the surrounding crystal lattice and not into
producing radiation).

The lifetime of an atomic state Fo is the average length of time for finding
the atom in that state before it relaxes, regardless by radiative or nonradiative
processes. Its reciprocal is related to the decay rate, denoted by 72 or, equivalently,
the probability of atomic transition of state FEs. It tells us how fast atoms belonging
to a collection of identical members spontaneously relax from level E5 according
to an exponential decay law (Fig. 2.3). This law simply says that after each time
interval 75 = 1/~9 the atomic population in level Ey decreases by 63%. A discrete
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Figure 2.3: Spontaneous relaxation of a population of N2 atoms from the single-atom energy
level Es.

transition Fy — FEj gives rise to an exponentially decaying signal oscillating with
the transition frequency, w, = (E2 — E1)/h. The radiation carried by such a wave,
although most intense at frequency w,, exists at other adjacent frequencies as well.
The distribution of its intensity over all possible frequencies, called the frequency
spectrum of the signal, is a bell-shaped curve centered at w, and has a linewidth
Aw, = v2. When 7, includes the contributions from the decay to all lower energy
levels, it represents the lifetime line-broadening of level E5 (Problem 2.3).

Other mechanisms may accelerate the relaxation of atoms from a given level
and contribute to further broadening that level. In gases, the most important of
all such mechanisms is collisions between the radiating atoms and other atoms
in the medium. In solid-state materials, the major contributor is the modulation
of the atomic-transition frequency by lattice vibrations. All these line-broadening
mechanisms act on all of the constituent members in the same way, so that the
response of each member is equally and homogeneously broadened.

In other situations, however, different atoms in a system of identical atoms may
have their resonance frequencies unequally shifted, such that the resulting values
of the resonance frequencies for individual atoms, w,, are randomly distributed
about some central value wy,o. When a signal is sent through the medium, it cannot
pick out distinct responses from individual atoms, but it will receive a cacophony
of overlapping responses from all the atoms present. This gives the effect of a
broadening of the transition, an effect generically referred to as inhomogeneous
broadening (Fig. 2.4).

The prime example of broadening of this type is the Doppler broadening: the
resonance frequencies change randomly, following Doppler shifts on each gas atom,
an effect akin in nature to the apparent change in pitch of the whistling from
a passing train. Besides internal motion, atoms in a gas have a random kinetic
motion, or thermal motion. When an atom moving with a velocity v, along the
x direction interacts with an electromagnetic wave of frequency w traveling with
velocity ¢ along the same direction, the frequency of the wave as seen by the atom
is shifted to a new value given by w’ = (1 — v, /c)w. This means that the applied
signal can resonate with the atomic transition only when the transition frequency,
wao, coincides with the Doppler-shifted signal frequency, w’. Alternatively, we may
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Figure 2.4: (a) Individual atomic response with homogeneous broadening Aw, is Doppler-shifted
from wqo to we. (b) Inhomogeously broadened atomic transition.

say that, seen in the laboratory frame, the atomic resonance frequency w,g appears
to change to a new value, w, = (1 + vy/¢)wqao. Typically, the Doppler broadening,
vy /¢, amounts to a few parts per million at room temperatures (Problem 2.4).

In short, for reasons rooted in atomic and molecular physics, ordinary light
sources are bound to generate light over a broad range of frequencies without
supplying much power at any particular frequency.

2.2.3 Summary

Light is the visible form of electromagnetic radiation; its wavelengths range from
400 nm to 700 nm, a small part of the whole electromagnetic spectrum. Light
from conventional sources is produced in radiative collisions and also when excited
atoms in heated matter spontaneously relax to lower energy levels, releasing their
excess energy as radiation. The light that emerges from those sources runs in all
accessible directions of space, and is a mixture of very short unrelated wave trains:
it is non-directional, non-monochromatic, and incoherent.

2.3 What is a Laser?

In matter at normal temperatures, atoms are never at rest. Their nervous, random
motion produces in the system a kind of pressure we call heat. It also takes them
into a collision course with one another, constantly shifting about their energies
and changing their states. But when the system reaches thermal equilibrium with
its surroundings, there are just as many particles coming into each atomic state
as there are leaving it, and the atoms will then be statistically distributed among
all the allowed quantum states with a profile uniquely determined by the ambient
temperature. At a typical finite temperature, the Mazwell-Boltzmann distribution,
as this statistical law is called, will show the atomic populations of different energy
states to decrease smoothly and rapidly as the energy increases (Fig. 2.5). At room
temperatures, practically all the atoms sit in the ground state (Problem 2.5).
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Figure 2.5: Maxwell-Boltzmann distribution of the population densities of atomic levels in an
ensemble of atoms at some finite temperature T'.

2.3.1 Stimulated Radiation

As we have seen in the previous section, emission of light by ordinary sources, all
of which are atomic systems in thermal equilibrium, occurs when an atom absorbs
energy, jumps to an excited state, and then spontaneously decays to a lower level,
radiating its excess energy as a photon. But there is another mechanism, known as
stimulated emission, in which atoms in an upper level are triggered, or stimulated,
by an incoming photon of a specific energy to drop to a lower level, such that the
energy of the photon exactly matches the energy difference of the two atomic levels.
The incoming photon is mot absorbed by the atom; rather, it vibrates the pair of
levels in question, so that the atom de-excites and emits a photon identical to the
incident one. In this process, not only do we gain two photons in return for one in
each step, but also obtain photons with unique properties: they are in phase, have
the same wavelength and travel in the same direction (Fig. 2.6).

Stimulated emission makes negligibly small contributions to light emission by
thermal sources, but because it can produce energy that has exceptional qualities
and increases exponentially with each successive step, it has a great potential for
applications, in particular in lasers.

—— — —— —
1 1

W | AP~ BATA <
E+— -

(a) (b) (c)

Figure 2.6: Spontancous and stimulated transitions in atoms. (a) Atomic excitation upon ab-
sorption of a photon. (b) Emission of a photon in spontaneous downward relaxation of atom.
(c) Stimulated emission occurs when the excited atom is induced to decay by a photon of frequency
equal to the atomic transition frequency.
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2.3.2 Laser Action

Let us consider a large collection of identical atoms, and concentrate first on two
energy levels that we call upper (or active) and lower (or terminal) levels. To
achieve laser action between them, they must satisfy two basic conditions:

(1) De-excitation of the upper level must proceed by stimulated emission rather
than by spontaneous emission. For stimulated emission to occur, an excited atom
must not decay spontaneously before a photon of the right frequency has found its
way into the system. To promote this possibility, we must choose a pair of levels
such that the upper level has a very long lifetime for radiative decay to the lower
level — millions of times longer than an ordinary excited state, or up to a few
milliseconds. Such a long-lived state is called a metastable state. An atom excited
to such a state will stay there long enough for the ‘right’ photon to arrive and
trigger it to de-excite and emit a second photon. We refer to this step as the lasing
transition.

(2) To sustain stimulated emission, there must be more atoms arriving in the
upper level than leaving it. This can be achieved by continuously pumping (exciting)
atoms into that level at a rate greater than the rate at which they leave. And
because it is a metastable state, atoms can stay there without de-exciting while
the population is being built up. Eventually, when there are far more atoms in
the upper level than in the one below, these two levels reach a thermally unstable
situation known as population inversion.

However, it is not possible to break thermodynamic equilibrium with only two
levels: for any pair of levels, it is equally likely that the upper level is populated
by absorption as it is depopulated by emission, and no matter how hard pumping
works, the Boltzmann factor will prevent the number of excited atoms exceeding
the number of atoms in the lower state in thermal equilibrium. At best the two
populations are equalized. We get around this restriction by employing more than
two atomic states in the dynamics.

In a three-level lasing system, we have a third level (called the pump level)
located above the metastable level. Because it is chosen to have a short lifetime,
atoms excited into it drop rapidly into the metastable state, where they will stay
for a while. The lasing transition then proceeds from here on just as in a two-level
system. Once returned to the lower level, atoms are pumped back up rapidly into
the pump level, and the chain of events repeats itself (Fig. 2.7).

The lasing action works even better with four levels: to three levels that play the
same roles as described before, we now add another level below all three in energy,
so that the terminal level just above it can be rapidly emptied by fast relaxation.
The general idea, of course, is to have a huge number of atoms in the upper laser
level ready for lasing duty, and almost none in the lower to prevent losses of the
emitted photons through absorption.

A suitable lasing medium can certainly amplify light, but, by itself, it cannot
sustain an energy production large enough to make a useful beam. To transform an
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Figure 2.8: Resonance condition in a standing-wave laser cavity of length L.

active medium into a generator of light, one encloses it in a resonant cavity, which
is essentially a narrow cylinder closed at both ends by small, slightly curved mirrors
facing each other. One of the mirrors is totally reflecting and the other partially
reflecting. The qualitative ‘resonant’ implies that only specific longitudinal (or
axial) modes of oscillation can be supported, namely those leading to standing
waves pinned at both ends (Fig. 2.8). Although many modes are theoretically
possible, only those with frequencies close to the laser frequency remain stable for
a long time.

The mirrors at the cavity ends create conditions favorable to resonant feed-back
such that the stimulated photons are forced to flow back and forth across the length
of the cavity, stimulating further emission as they go. This fosters amplification of
a highly directional beam. Any emission in directions other than that of the cavity
axis will not be redirected back into the medium, and will just be lost (Problem 2.7).

Let us now see how a three-level cavity-enclosed laser works (Fig. 2.7). At
the beginning, the system is in thermal equilibrium, with the atomic populations
distributed among the three (lower, upper, and pump) states according to statistical
laws. Injecting a suitable energy to the system raises atoms to the pump state, from
which they must rapidly decay (by radiative or nonradiative processes) to the upper
laser state. The atoms arriving here will eventually de-excite either by spontaneous
or stimulated transitions. If they arrive much more quickly than they leave, the
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upper level will in the end have more inhabitants than the lower level, reversing
the statistical situation. Initially, as the population inversion is being built up,
spontaneous transitions from the upper laser level may occur, and photons emerge
in all directions. Most will be lost to the system. However, a few might travel along
the axis of the cavity, encounter further excited atoms and stimulate them to decay,
emitting more photons in the same direction which lock on to the phase that the
first spontaneously generated emission happens to have. As the stimulated photons
make repeated passes in the medium along the cavity, the herd will multiply into a
rapidly amplified beam of light down the axis of the system.

To keep the medium radiating, we maintain the population of the active level
above that of the terminal level. So the atoms that have radiated and fallen to the
ground state are continuously pumped back to the active level where they are again
available to further stimulation. The steady, coherent wave that now travels in a di-
rection precisely parallel to the axis of the cavity is reflected backward and forward
between the mirrors, and grows in amplitude with each new passage. The energy
output by individual atoms — which are distributed over a relatively large volume
and yet radiate with the same phase — adds up coherently to yield a powerful radi-
ation. When the laser gain (the increase in light intensity in the medium) exceeds
the loss of the beam intensity (caused by scattering at the mirrors, spontaneous
emission and off-axis propagation), the system has reached the threshold for laser
action, and a cascade of photons will break out through the output half-reflective
mirror in a short, sharp burst: we have a pulsed laser beam. If we keep re-enforcing
the population inversion in the medium, then we can produce a continuous-wave
laser beam (Problem 2.8).

2.3.3 Laser Light

In contrast to ordinary light, laser light is highly intense, directional, mono-
chromatic, and coherent.

Laser light has well-coordinated waves that can keep a constant phase rela-
tionship with each other over time and through space. Its temporal coherence is
measured by the lengths of its wave trains or, equivalently, the widths of its spec-
tral bands. Radiation emitted by a laser, just as ordinary light, could take place
throughout the Doppler-broadened distribution of frequencies (Fig. 2.9). However,
two factors contribute to make the linewidth of a laser gain considerably narrower.
First, stimulated emission is more likely to occur at the lasing-transition frequency,
at the center of the spectrum, than at any other frequencies. Secondly, when the
laser operates with a resonant cavity, only radiation corresponding to standing
waves, such that a whole number of their half-wavelengths fit perfectly between
the mirrors, can be supported as a cavity axial mode, and subsequently amplified
(Fig. 2.8). Within the range of the allowed frequencies, a large number of such
modes may be supported by long cavities (since the mirror spacing is usually much
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Figure 2.9: Gain profile of a typical laser system. The available axial-mode frequencies v are
equally spaced, separated by ¢/2L, where L is the cavity length. The centrally located frequency
coincides with the natural atomic transition frequency, vo = wq0/27.

greater than the radiation wavelength); the emission is then said to be multimode.
But for a short cavity, only one mode may lie within the gain bandwidth, and the
laser emission is single-mode, producing an extremely monochromatic light output.
For example, a helium—neon laser — a type of gas laser commonly used for reading
bar-codes at supermarkets — can be so designed that the emitted light emerges in
wave packets a hundred kilometers long with frequencies within a spectral band only
a kilohertz wide. The monochromaticity quality of laser light, like its coherence,
arises primarily from the resonant-cavity properties of the laser resonator rather
than from the quantum properties of the lasing medium (Problems 2.9, 2.10).

We can demonstrate the temporal coherence of laser light (Fig. 2.10) by directing
two laser beams on a photomultiplier (which generates a current by the photoelec-
tric effect) connected to an oscilloscope (which displays visually the changes in the
varying current). We assume that the two lasers are programmed to emit simulta-
neous pulses with two slightly different frequencies, w; and ws. The two beams are
then combined to give signals with frequencies ranging from w; — ws to wy + ws.

Beam Oscilloscope
Mirror splitter  Filter
/ > VAN | > @
|
Photo-
multiplier
Laser 1 Laser 2

Figure 2.10: Experimental set-up to observe optical beats. The beams from two lasers of nearly
identical frequencies are directed by a mirror arrangement to a photomultiplier connected to an
oscilloscope. The resulting signals have many compound frequencies. If all but those having a
frequency equal to the difference between the input frequencies are filtered out, beats can be
observed.
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A filter is used to remove all but the lowest frequencies so that the signal actually
received by the photomultiplier is a single modulated sinusoid of frequency wi — ws.
The intensity of the signal is large when the superposed waves interfere construc-
tively; it decreases and vanishes when they interfere destructively. Then, again, it
grows larger. With the passing of time, the recurring pattern of enhanced and re-
duced interferences moves along with the wave velocity. This phenomenon is known
as beats. It arises from a stable interference of two long waves of nearly identical
frequencies, and cannot be observed with an untreated incoherent light. Musicians
often use acoustical beats to bring their instruments in tune at the beginning of a
concert. They listen to the beats, and adjust one instrument against another to
reduce the beat frequency until it disappears.

Spatial coherence, on the other hand, is sensitive to the size of the light source.
Light emerging from the aperture of a laser system diverges slightly. But when
focused through a suitable lens, it always gives a point image as if emitted by a
point source. To demonstrate spatial coherence, we can repeat the two-slit inter-
ference experiment, first performed by Thomas Young in the early 1800s. In this
experiment, light passes through two parallel slits and falls on a screen placed some
distance away. When the light waves emerging from the two openings fall in phase
(crest on crest) at some point on the screen, they produce a bright spot. When
they arrive out of phase (crest on valley), they cancel out, producing a darker spot.
This superposition of waves gives rise to a pattern of alternating bright and dark
lines on the screen, each indicating a half-wavelength difference in lengths between
the two intersecting optical paths. The spacings between the fringes depend on the
relative obliquity angle of the interfering incoming waves: the greater this angle is,
the closer the fringes are.

When the experiment is performed with ordinary light, the source must be small
or made to appear small, and must be placed some distance from the slits so that the
wave fronts when reaching them are as nearly plane as possible. If neither condition
is met, no pattern of useful contrast will form. But when a laser is used as the source
of light, it can be placed directly in front of the slits and a clear, stable pattern can
be seen. More remarkably still, observations of interference of waves from different
lasers that emit long wave trains of well-defined frequencies become practical, a feat
evidently not possible with ordinary light sources (Problems 2.11-2.13).

2.3.4 Summary
A laser device has three essential components:

(1) alaser medium — a collection of atoms, molecules or ions in gaseous, liquid or
solid state — which allows population inversion in two levels and produces coherent
light by stimulated emission;

(2) a pumping mechanism, which injects energy into the medium and thereby
initiates and sustains the population inversion;
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(3) a resonant structure, which confines radiation emitted by stimulated transi-
tions and promotes its amplification in selected modes by repeated passages through
the medium.

The light produced by a laser, though basically of the same nature as the light
generated by any thermal source, also has significant differences. Laser light is more
intense, directional, monochromatic, and coherent than conventional light.

2.4 Types of Lasers

The first working laser model was announced by Theodore Maiman in 1960. Soon
after, lasers of different types were built. They all incorporate the three basic
components described earlier: an active medium, a pumping mechanism, and a
resonant structure. Lasers use a variety of substances as active media, and can
produce intense light at frequencies that range over the whole visible spectrum and
beyond.

2.4.1 Solid-state Lasers

In Maiman’s laser, ruby was used as the active medium. Here, as in many other
solid-state lasers now in operation, the ruby crystal is machine-tooled into a cylin-
drical rod about five centimeters long and half a centimeter wide. Its ends are
polished flat, parallel, and are partially silvered. It is placed at the center of a coil
of xenon-filled flashtube that can produce intense light. Ruby is aluminum oxide
(Al303) in which a small fraction of aluminum has been replaced by chromium. The
chromium ion absorbs green and yellow light, and lets blue and red pass through,
which gives ruby its characteristic color. Upon absorbing energy in the blue-green
spectral region, it is excited to a broad band of levels from which it quickly falls to a
relatively long-lived level lying immediately above the lowest energy level. As more
and more ions throughout the crystal reach the metastable state, the population
of this state rapidly exceeds that of the ground state, and we have an inversion
of population. Soon, a few excited ions spontaneously de-excite, releasing photons
which go on to strike other still-excited chromium ions, triggering off a cascade of
photons, mostly with a wavelength of about 700 nm (Fig. 2.11).

To keep the ruby laser in operation, it is necessary to pump at least half of the
chromium atoms in the crystal to the active level. Such an effort consumes a good
deal of energy. It can be significantly reduced in substances that allow a lasing tran-
sition to end not in the ground state itself, which is always densely populated, but
at a level that lies at some energy above it. The population of such a level is nor-
mally sparse and, provided a suitable metastable state exists, population inversion
can be achieved with only a small energy expenditure by placing a relatively small
number of atoms in the metastable state. Neodymium is such a substance. When
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Figure 2.11: Principle of operation of the three-level ruby laser. Chromium ions are raised from
the ground state (a) to a band of levels upon absorbing a photon (b). The atoms relax downward
to a metastable state (c), from which they decay and radiate by stimulation (d).

energy is injected into a Nd:YAG (neodymium-doped yttrium-aluminum garnet)
crystal, the neodymium atoms are excited to a band of levels, from which they drop
to the ground state in three steps. The first and the last transition are fast and
spontaneous, and do not contribute to the laser beam. The intermediate transition
proceeds by stimulation and produces coherent light at 1064 nm.

2.4.2 G@Gas Lasers

Whereas most solid-state lasers operate in the pulsed mode, gas lasers are capable
of continuous-wave operation. A gas laser consists of a tube filled with atomic or
molecular gas and placed in a resonant cavity. The pumping energy is provided
by a high-voltage electric current. Energetic electrons are injected into the tube
by electric discharge and, through collisions, boost the gas atoms or molecules
to excited quantum states. What makes gas lasers highly efficient is that there
always exist many transitions capable of laser emission that terminate on levels
above the ground state, making feasible a four-level laser operation. De-excitation
of the terminal levels can be accelerated by adding to the active medium other gases
that provoke more frequent collisions and convert the surplus internal energy more
quickly to kinetic energy. The high rate of depopulation of the terminal levels and
a continuous repopulation of the active levels are the two factors that contribute to
make gas lasers highly efficient continuous sources of light.

The first gas laser used atomic neon (Fig. 2.12). It generated a continuous
beam with excellent spectral purity, but with a power output low compared with
that of solid-state lasers. The advent of molecular-gas lasers changed all that. The
carbon-dioxide (CO3) laser, the prime example of this type of laser, is capable
of producing beams several kilowatts strong. The energy spectrum of the COs
molecule is far richer than that of each of its atomic components. Besides excitations
of the individual electrons, the molecule can change its internal energy through
oscillations of its component atoms about their mean positions, or through rotations
of the system as a whole. So each electronic state is associated with a set of
vibrational levels, which are in turn accompanied by rotational levels. The spacings
of the electronic levels in the molecule are comparable to those found in atoms — a



2.4. Types of Lasers 57

He Ne He Ne He Ne He Ne
’I 2 |
|
|
|
|
|
|

- —o — — - —

(a) (b) (c) (d)

Figure 2.12: Principle of the four-level helium—neon laser. Both atoms are initially in the ground
state (a). Helium atoms are excited by electron bombardment (b) and subsequently transfer their
surplus energy, via collisions, to neon atoms which are excited to high-energy levels (c). When
stimulated by an incoming photon, the neon atom fluoresces, contributing a photon to the laser
beam; it then falls back to the ground state in steps (d).

few electron volts — but the spacings of vibrational and rotational levels are smaller
by factors of ten and one hundred, respectively.

In COg the lasing transition occurs between rotational levels belonging to dif-
ferent vibrational bands, and emits a stimulated photon in the infrared. Their
output can be controlled by a @-switch, which is simply a rotating mirror replac-
ing one of the usual cavity mirrors. Normally, it is oriented so as to interrupt the
photon flow in the cavity, but when it lines up with the opposite stationary mirror,
the path is restored and the beam of accumulated energy passing through the gas
column touches off a massive avalanche of photons. Operating with this scheme,
a COgq laser can produce sharp, nanosecond (ns) pulses of energy which can reach
peaks a thousand times greater than the average power it normally produces in a
continuous-wave operation.

Even shorter pulses can be achieved by ‘mode-locking.” As we have seen in the
previous section, lasers usually allow within their bandwidth many axial-mode fre-
quencies separated by spacings that depend on the cavity length. These modes are
uncorrelated (independent) in phase, which leads to a randomly fluctuating laser
field. However, if they could be correlated (made to oscillate with comparable am-
plitudes and constant phase relationships), they would interfere regularly in step to
produce periodic strong pulses. The oscillating radiation thus produced could be vi-
sualized as a stable pulse that propagates back and forth between the cavity mirrors.
The duration of the resulting laser pulse will vary in inverse proportion to the oscil-
lation bandwidth: the larger the gain bandwidth is, the shorter the pulse produced.
More precisely, the spectral bandwidth Av controls the shortest duration of the
optical pulse T by the relation T > 1/Av. So gas lasers with bandwidths of about
1019 Hz are limited to pulses no shorter than 0.1 ns. To obtain picosecond (1 ps
is 10712 ) pulses, the bandwidth must be greater than 102 Hz. For this purpose,
dye lasers (in which the active medium is a complex organic dye in liquid solution)
are a good choice. Invented in the 1980s, they operated at about 620 nm, and gen-
erated pulses lasting 100 fs (1 fs or femtosecond is 1071 s), and 30 fs as technology
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was perfected. Later, in the 1990s, the invention of titanium-sapphire-based lasers
brought in a new revolution: Ti:sapphire oscillators now produce 10-20 fs pulses
routinely, and 4-5 fs in optimized configurations (Problem 2.14). The frontier of
the ultrafast world was pushed back further in early 2003 when researchers showed
that they could produce isolated bursts of coherent extreme ultraviolet photons in
controlled and reproducible shape that lasted a few hundred attoseconds (1 as is
107! ), breaching for the first time the femtosecond barrier.

To have an idea of the time scale we are dealing with, consider this: in 1 second
light goes around the earth 7 times; in 50 fs it travels a distance of 15 pum, smaller
than the thickness of a hair; 3 as is to the second what 1 s is to ten billion years,
or the present age of the universe. Used as an observational tool, a femtosecond
laser detects ultrafast events in a way analogous to a powerful electron microscope
resolving atom-sized details.

2.4.3 Semiconductor Lasers

Solid-state lasers usually operate at a single frequency or, at best, a few frequencies.
Gas lasers, especially molecular-gas lasers, are more versatile; they can generate
power at a very large number of discrete wavelengths lying within a narrow band.
Still, their radiation frequencies cannot be continuously varied and controlled, or,
as one says, tuned. This may be a drawback for some applications. Fortunately, full
tunability is available in lasers based on semiconductors.

In crystalline solids, atoms arrange themselves in a regular pattern, or lattice.
The strongly bound inner atomic orbits for electrons are unaffected by outside
forces, and remain essentially unchanged as if in isolated atoms. But the energy
level of each of the outer orbits, perturbed by interactions with other electrons and
atoms in the solid, now broadens into a band of some 102! closely packed individual
levels. The bands become wider with increasing energy, and are usually separated
from one another by no-electron’s intervals, or gaps, although in some materials
adjacent bands may overlap. An electron may have an energy lying in one of the
bands but not in any of the gaps.

In general, the bands are fully occupied from the lowest energy all the way up to
a certain limit (the Fermi level), above which the electron population of the bands
drops off abruptly to zero. Such an energy spectrum indicates that all electrons
remain firmly in their atomic orbits. In most metals, however, electrons in the
external orbits are more loosely bound, and some may even escape their orbits and
move about freely? in interatomic space. Normally occupied states may then become
empty — equivalently, ‘holes’ are created — and normally empty states may become
occupied. The presence in metals of free (or delocalized) electrons, unattached to
any specific atomic sites, makes such materials good conductors of electricity and

30f course, the conduction electrons are not free since they are influenced by other electrons and
atoms. What is meant is that they are not attached, or bound, to any particular atom. Later, we
use the same terminology in ‘free-electron laser,” even when the electrons propagate in magnetic
fields.
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Figure 2.13: Valence bands (V), conduction bands (C), and forbidden band gaps (G) for (a) an
insulator, (b) a metal, (c) a pure semiconductor, (d) a type-p semiconductor, and (e) a type-n
semiconductor.

heat. In electrical insulators, there exist no free electrons, and the lowest empty
band (called the conduction band) is separated from the highest occupied band (the
valence band) by a wide band gap (Fig. 2.13).

Semiconductors have an energy spectrum similar to that of insulators, only with
a smaller gap between the valence and conduction band. They exhibit electronic
properties halfway between those found in conductors and insulators. In practice,
researchers usually spike (dope) them with traces of foreign atoms, so as to mod-
ify their energy spectra and so also their conduction properties. Interactions with
the embedded impurities may remove some electrons from the valence band and
introduce others in the conduction band, creating conditions more favorable to con-
duction. So the situation normally observed in metals can be recreated in some
solids in a way that may better suit our purpose. In a type-p (positive) semiconduc-
tor, the donor atoms have empty levels just above the top of the valence band of the
receptor material; these empty levels can be readily reached via thermal excitations
by valence electrons, leaving holes behind, which then act as carriers of positive
charges. In a type-n (negative) semiconductor, the donor atoms have electrons on a
level just below the conduction band of the receptor. These electrons can be easily
excited to the conduction band, where they act as carriers of negative charges.

A semiconductor (or diode) laser in its simplest form is a junction diode formed
by the juxtaposition of a type-n and a type-p semiconducting crystal (Fig. 2.14).
The opposing faces of the two crystals are polished flat and parallel. They are
separated by a thin, undoped semiconducting layer. An electric current can be fed
into the heterostructure by connecting its p-component to the positive pole of an
external electric source and its n-component to the negative pole. Electrons injected
into the system move from the n-layer to the p-layer, whereas the holes present in
the crystals move in the opposite direction, quickly filling up the junction region
— electrons in the conduction band and holes in the valence band. In other words,
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Figure 2.14: Principle of operation of a semiconductor laser. Layers of p- and n-semiconducting
materials are separated by a thin layer of the same, but undoped material (p—n junction). Electrons
are pumped into the n-region. At the junction, the electrons drop into empty states of the p-region,
emitting photons. This recombination radiation is amplified by the geometry of the junction plane,
the mirrors at both ends of the junction and a proper choice of the refractive index such that the
junction can act as a wave-guide.

levels lying at the bottom of the conduction band hold many new electrons, while the
top levels of the valence band lose many. There exists then a population inversion
between the valence and the conduction band, exactly the situation required to
produce a sustained light emission when the conduction electrons, which exist in
abundance all along the plane of the junction layer, are stimulated to drop into
the empty states of the valence band: electrons and holes recombine to radiate
at a frequency determined by the band gap. This radiation steadily grows as it
propagates between the two reflecting inner faces of the crystals, which act as wave-
guides. The amplified waves finally emerge as a laser beam at one end of the junction
region.

Semiconductor lasers are highly efficient sources of energy because every electron
fed into the system contributes a useful photon (nonradiative decay being negligi-
ble), and no radiation is wasted in non-coherent transitions. Their output is also
tunable. For example, gallium-arsenide lasers emit light at a wavelength around
900 nm at room temperatures. As we gradually lower the ambient temperature,
the emission wavelength continuously decreases to 840 nm. We can further widen
the range of available wavelengths by inserting impurities in the semiconducting
medium. For instance, lasers based on heavily doped gallium-indium arsenide can
operate between 840 and 3100 nm. There now exist many lasers of this kind, based
on different materials and designs, and operating over a wide range of wavelengths,
in pulse or continuous-wave mode.

2.4.4 All Those Other Lasers

These descriptions give just an idea of the various media capable of sustaining laser
action. We can find lasers with a very wide range of wavelengths, from microwaves
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through infrared and visible to the ultraviolet and X-ray region of the spectrum.
If we include the maser (a device historically preceding the laser and generat-
ing not visible but microwave radiation), then we have a choice of wavelengths
anywhere from centimeters to nanometers, two extremes separated by seven orders
of magnitude. Power outputs range from a few milliwatts to hundreds of kilowatts
in continuous-wave operations, and hundreds of terawatts in pulsed lasers. There is
also an enormous choice of pulse durations, anywhere from the millisecond to the
femtosecond level. The physical dimensions of different types of lasers also vary
widely: At one end of the scale, we find the low-power semiconductor lasers in
sub-millimetric sizes and, more and more commonly, the even smaller quantum-
well lasers (to be studied in Chapter 5). At the other extreme, we have enormous
facilities, like the high-power neodymium-glass laser called NOVA and even the
more powerful National Ignition Facility, both at the Lawrence Livermore National
Laboratory in the USA.

2.4.5 Summary

Since the first ruby laser was presented to the public in 1960, many other types have
become available. Coherent light is now obtainable in wavelengths extending from
the far infrared to the near ultraviolet and beyond, in the microwave and X-ray
regions. Lasers are classified according to the media in which laser action takes
place. The main types are:

(1) Solid-state lasers, where the active elements are impurity ions (e.g., transition
metal ions, notably Cr3*; or rare-earth ions, notably Nd3* and Er3*) embedded in
a solid matrix; optical pumping is the commonly used excitation technique.

(2) Gas lasers, where the active elements are atoms, molecules or ions in gas or
vapor phase, and pumping is achieved by passing a strong electric current through
the gas.

(3) Semiconductor (or diode) lasers, using a variety of semiconductors as active
media (notably GaAs), which operate on the principle of electron—hole recombina-
tion radiation.

(4) Dye lasers, in which the active medium is a complex organic dye in liquid
solution or suspension; the most common dye laser is rhodamine 6G, which is
tunable over 200 nm in the red portion of the spectrum.

2.5 Applications of Lasers
Nowadays we can find lasers performing tasks in many fields: from measurement to

detection, cutting to etching, metallurgy to microelectronics, surgery to armament.
Of course, most of these tasks can also be done with other tools, but the unique
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properties of laser beams give them clear advantages. More significantly, lasers
have played a key role in opening new and often unexpected directions of research:
optoelectronics, femtochemistry, laser-based biological technology, and so on. We
will describe some of these applications and developments in the present and the
following section.

2.5.1 Optoelectronics

Many of the most familiar applications of lasers derive from the extreme brightness
at specific wavelengths of the light beam, which can be many orders of magnitude
greater than the output obtained from the best conventional light sources. The
laser beam can be captured with a suitable lens and focused to an extraordinary
density into a very small spot whose size, perhaps a micron across, depends only on
the resolution of the lens, not on the laser aperture itself. And this can be achieved
for durations varying from femtoseconds through picoseconds to the continuum,
depending on the laser type and operational mode.

Engineers now routinely use this tremendous source of energy to heat, weld,
melt or cut small areas of any materials in operations that require a high precision
and good control of the amount of power to be applied.

They also use tightly collimated laser beams to make microcapacitors by cut-
ting meander paths through a conducting film vapor-deposited on some substrate,
or to fabricate highly specialized microcircuits by performing discretionary wirings
on general purpose circuits. They can synthesize semiconducting compounds (e.g.,
CdTe, CulnSe) and oxides (CuO, SnO) by bringing thin films of the deposited
substances rapidly to high temperatures, or modify chemical reactivity of the
irradiated spots by changing the characteristics of the adsorbed molecules.

And, of course, in that area familiar to the public — data storage — the laser
has been instrumental in launching it on an exponential growth curve that it has
followed in recent years. Optical compact disks (CDs) have become one of the
cheapest and most convenient ways of storing digital information; they have all but
wiped out the vinyl record and are replacing bulky reference books. The digital
information on a read-only CD is encoded in microscopic bumps of varying lengths
along a single, continuous, extremely long, circular track. The pattern is stamped
on a clear polycarbonate plastic layer coated with a thin aluminum film, covered in
turn by a protective acrylic lacquer. A bump is 0.5 microns wide, 0.8 microns long,
and 0.12 microns high. To read the data, a laser beam passes through the plastic
substrate and reflects off the metallic layer to hit an optoelectronic sensor that
detects changes in light as the beam scans over successive hills and flatlands. The
electronics in the disk drive interpret the changes in reflectivity to read the stored
data (bits). The focused spot produced by the objective lens has a diameter limited
by the light wavelength and the numerical aperture of the lens. With a wavelength
of 780 nm (infrared), the laser produces a spot less than 1 micron across, sufficient
to resolve the bits on CDs.
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A single-layer DVD (digital video disk) can store 4.7 Gbytes of data (1 byte is
8 bits), seven times more than a standard CD. This gain in capacity is due mainly
to smaller pit length, tighter tracks and more efficient error correction. To read
data, one uses a laser emitting at a shorter wavelength (650 nm) and a larger lens
aperture to make the light spot smaller. Since their introduction in 1995, DVDs
have known a tremendous success and now exist in several formats, readable and
recordable.

The next-generation optical disks will be the high-density DVDs, of which there
are already several candidates (Advanced Optical Disk, Blu-ray Disk). They use
blue or violet (405 nm) lasers to read smaller pits, increasing data capacity to around
15 to 30 Gbytes per layer.

2.5.2 Optosurgery

The unique properties of lasers have also attracted, early on, the interest of prac-
titioners in the medical field. A well-focused laser image, flashing intense pulses
less than a millisecond in duration, makes it an ideal surgical tool: it can make
precise small cuts and cauterizes as it cuts; it can stop blood circulation in a small
volume of tissues; it can melt away the constricting plaque inside blood vessels
that could lead to a heart stroke. A laser beam can be carried inside the human
body on optical-fiber light guides, and used to attack ulcers and tumors in inter-
nal organs. Because of the absence of any contact, it ensures perfect asepsis and
excellent cicatrization. Specially designed compact lasers have now widely replaced
the more traditional tools in ophthalmology to weld torn retinas to their support
by coagulation and to remove the degenerative blood vessels that cause diabetic
retinopathy, in dermatology to treat angiomas or tumors of blood vessels, and in
urology to pulverize kidney stones via a laser-initiated shock wave.

Biologists are exploiting similar techniques on the microscale: they now use laser
tweezers and laser scissors to perform minimally invasive manipulations on living
cells. Laser tweezers make use of continuous, low-irradiance beams to trap and
grip individual molecules or bacteria. Let us try to understand this process: when
a laser light shines on a small transparent object, its rays are refracted and bent,
transferring momentum to the target. When the geometry of the arrangement of the
beam and the object is correct, the transferred momentum pulls the target in the
direction of the laser beam. So, with the beam grasping the target, the laser operator
can drag the object from place to place by moving the beam. Laser scissors, in
contrast, employ microsecond or femtosecond pulses of high irradiance focused in a
very small effective spot. Biologists may use them to inactivate a selected part of
a chromosome in dividing cells, when they want to modify its properties without
totally destroying it. They also may drill a micron-size hole in a cell membrane and
insert molecules into the cell without permanently damaging the membrane (the
hole seals within a fraction of a second). We don’t understand yet exactly how the
process works, but only that photon absorption heats the target and initiates in it
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Figure 2.15: Two common methods of wave modulation. In amplitude modulation (b), the
amplitude of a perfectly sinusoidal carrier wave (a) is modulated according to some lower-frequency
wave. In frequency modulation (c), the frequency of the carrier is modified according to some
definite pattern.

chemical reactions. With laser scissors and laser tweezers, biologists have powerful
tools to probe and manipulate cells and organelles, to cut DNA molecules into
fragments for analysis.

2.56.3 Communications

The advent of the laser marked a new era in long-distance communications. Light,
it is true, had been used for signaling since time immemorial. But it had been
handicapped in its development as a practical means of communication by the
noisiness and feebleness of existing light sources. So it was replaced at the turn of
this century by the more efficient and more versatile electrical techniques. With the
invention of the laser, light has become, once again, the focus of interest as a vehicle
for long-distance, high-volume communications. This renewed interest is justified
both by the inherent superior capacity of light for transmitting information and by
the special properties of the laser light itself.

The fundamentals of digital optical communication are straightforward. Let us
say we want to send something, like a message. First, we digitize it by breaking
it up into binary bits. Then we use a laser to produce the light and encode the
bits as light pulses, add information to them with a modulator (Fig. 2.15), trans-
mit the modulated wave through a medium (e.g., optical fibers), receive it with
a photodetector at the other end, and, finally, use a demodulator to recreate the
message.

The capacity of a communication system is measured by the maximal infor-
mation it can transmit per unit time (e.g., 10° bits per second). This capacity
depends crucially on the frequency of the carrier wave: the higher the frequency
is, the more rapidly the oscillations follow one another, and so the more numerous
bits of information can be imprinted on the carrier wave. In the lower frequencies,
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around 1 MHz (megahertz, or 106 Hz), used by ordinary radio broadcasts, only
voice and music can be transmitted; but at 50 MHz, electromagnetic waves can
carry the complex details of television pictures. Imagine the amount of information
that visible light, at frequencies some ten thousand times higher, could transmit!
Over the past decades, radio engineers have extended the usable radio region of the
spectrum to all frequencies between 10* Hz and 10'' Hz — from the navigation
bands to the bands reserved for use by microwave relays and radar stations. But
with the insatiable needs of modern society, the available capacity for transmission
of the electromagnetic spectrum has almost reached its point of saturation. The
visible region of the spectrum, which ranges in frequencies from 0.4 PHz to 0.7 PHz
(1 PHz or petahertz is 10*® Hz), could support ten thousand times more transmis-
sion channels than all the present radiowave and microwave portions combined, and
could satisfy our communication needs for many years to come. In addition, the
infrared and far-infrared light, which is available in many types of gas or semicon-
ductor lasers, holds another attraction: it suffers little loss in transmission on earth
and out into space, because the earth’s atmosphere is partially transparent to that
waveband.

Carrier waves used in long-distance transmission of information — much like
sheets of paper used in written communications — play a key role in determining
the quality of the transmission. Laser light waves are ideal for use as carrier waves
in intercity communications for at least two reasons.

First, the spatial coherence of the laser light makes it possible to have a highly
directional, well-focused beam over very large distances. The narrowness of the
beam means that a large fraction of the radiation output can be coupled to the
transmitting medium. The power output, already substantial to begin with, suf-
fers little loss, and so can provide perfect conditions for transporting broadband
information over great distances.

Secondly, the monochromaticity of laser light is a decisive advantage because
it helps to preserve the integrity of the information transmitted. When a light
signal containing a mixture of colors travels through a dispersive medium — an
optical fiber, for example — its spectral shape is inevitably distorted. Waves of
different colors travel at different speeds; the higher the frequency, the lower the
speed. Blue light falls behind, red light gets ahead, and the pulse spreads out
unevenly. The distortions, which are appreciable in pulses with broad bandwidths,
could pose severe limits on transmission. Consider for example the high-intensity
light-emitting diodes commonly used in optical communications. Their output has a
spectral bandwidth of about 35 nm, centered in the infrared part of the spectrum. A
pulse from these sources would spread over 65 cm/km, which would limit the signal
rate to about 1.5 x 10® pulses per second. In contrast, a pulse from an infrared diode
laser, which has a bandwidth of about 2 nm, would suffer a wavelength dispersion
of only 4 cm/km, allowing a transmission rate twenty times better.

Researchers have been working hard to develop advanced light sources based
on good tunable lasers that provide the needed bright, multi-wavelength light, and
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modulate it rapidly. State-of-the-art light sources are tunable over about 10 nm,
switch on and off faster than 20 billion times a second, and can send 100 channels
down a single glass fiber.

2.5.4 Holography

The laser has also been instrumental in the rapid development of another field,
holography. Invented in 1947 by Dennis Gabor, holography is a photographic process
that does not capture an image of the object being photographed, as is the case
with the conventional technique, but rather records the phases and amplitudes of
light waves reflected from the object. The wave amplitudes are readily encoded
on an ordinary photographic film, which converts variations in intensity of the
incident light into corresponding variations in opacity of the photographic emulsion.
Recording the phases is another matter since the emulsion is completely insensitive
to phase variations. But here comes Dennis Gabor with a truly ingenious idea: why
not let the light reflected from the subject interfere with a reference coherent light
on the photographic plate so as to produce interference patterns, which are then
visible to the film emulsion?
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Figure 2.16: (a) Making of a hologram. Interference patterns are produced and recorded on
a photographic plate H when the direct (d) and the reflected (r) beams interact on the plate.
(b) Viewing of the hologram. When the developed hologram H is illuminated by the same coherent
light as used in the recording, two images are formed: a virtual image P and a real image P’ at
points symmetric with respect to H.
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To understand Gabor’s idea, let’s first consider a simple arrangement in which
the object being photographed is just a point (Fig. 2.16). A beam of perfectly
coherent light splits into two parts: one goes on to illuminate the object before
being reflected away, the other — the reference wave — goes directly to a high
resolution emulsion plate. The divided beams recombine on the plate and produce
a clear pattern of alternating dark and bright circular fringes. The spacings of the
fringes depend on the angle between the reflected and direct waves as they together
strike the plate. The greater this angle is, the more closely spaced the fringes
are. The pattern tends to be coarser at the center of the plate, directly facing the
illuminated object, than near the edges, where the reflected beam makes a greater
angle with the direct beam. So the variations in the spacings of the fringes give
an exact measure of the phase variations of the reflected waves. Similarly, local
variations in the amplitude, or intensity, of the reflected waves translate into local
variations in the contrast of the fringes. In other words, the perfectly coherent waves
of the reference beam act as carrier waves on which is impressed the information
transmitted by the light reflected from the object. The waves thus modulated
are then recorded by the photographic emulsion. Once the plate is developed in
the traditional way, it has the ‘whole picture’ of the object photographed: it is
a hologram.

When a hologram is illuminated by a collimated beam of coherent light, it shows
the same properties as a grating surface: the transparent slits on the negative let the
light rays pass on through — some undisturbed, other bent — and effectively act as
sources of radiating cylindrical waves. These waves reinforce each other in certain
directions, and produce diffractions of varying degrees of intensity. For example,
the two directions of strongest reinforcement can be constructed — as suggested by
Christiaan Huygens, one of the first proponents of the wave theory of light in the
seventeenth century — by drawing lines tangent both to a wave front emerging from
each slit and to the wave fronts emerging a period earlier from the two adjacent
slits. We can draw in this way two series of parallel lines, representing moving
wave fronts, going away from the hologram in two diverging directions (Fig. 2.17).
Each direction defines a diffracted wave. Its obliquity depends on the separation
of the slits; the finer the grating spacings, the greater the diffraction angles. Since
the fringes become more closely spaced as one moves away from the center of the
pattern, it is evident that the two diffracted waves have reverse curvatures. One
wave diverges away from the hologram and seems to emanate from the point where
the real object was placed; it produces a virtual image visible to an observer placed
on the opposite side, in front of the hologram. The other converges as it moves away
from the hologram to form a real image at the point symmetric to the position of
the virtual image with respect to the hologram. This image can be seen with the
eye or recorded with a camera.

Now, if we take as the subject for our experiment a realistic three-dimensional
object, we still can obtain an interference pattern by making the split beam of
coherent light recombine on a photographic plate, just as before. Of course, the
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Figure 2.17: Diffraction pattern as could be formed in a hologram reconstruction. The figure
shows an unscattered wave parallel to the direction of the incident light, and two diverging
diffracted waves which could be prolonged backward to meet at the virtual image point.

data recorded are much more complex. Each point on the surface of the object
reflects light to the entire photographic plate; conversely, each speck of emulsion
receives light from all reflecting parts of the object. So the local variations in
opacity and spacings of the interference fringes on the plate are directly related
to the irregularities in the impinging waves and, ultimately, to the complexity of
the reflecting surface. When the hologram obtained from the development of a
film exposed in this way is placed in a beam of coherent light, two sets of strong
diffracted waves are produced — each an exact replica of the original signal-bearing
waves that impinged on the plate when the hologram was made. One set of diffracted
waves produces a virtual image which can be seen by looking through the hologram;
it appears in a complete three-dimensional form with highly realistic perspective
effects. The reconstructed picture has all the visual properties of the original object
and, for optical purposes, can be as useful as the original object.

Several recent developments have contributed to make this photography-by-
reconstruction-of-light-waves an exciting field of research. One of them is the intro-
duction of three-dimensional holography. An ordinary hologram is a two-dimensional
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Figure 2.18: X-ray holography. Incident radiation triggers an atom to emit photons, which reach
the detector, either directly (forming the holographic reference wave), or after scattering off other
atoms (forming the object wave).

recording of wave fronts as variations in opacity of a thin photographic film. A three-
dimensional hologram is a thick plate of high resolution emulsion that can record
interference fringes throughout its thickness. This is possible when the reference
beam and the reflected beam make a large angle between them as together they
strike the plate; the interference fringes will then be much finer than the thickness of
the emulsion layer. The plate, when developed, acts much like a three-dimensional
grating or a crystalline lattice. When exposed to a beam of light, it diffracts light
in the same way as a crystal would diffract X-rays.

In optical holography, the resolution of the image is limited by the wavelength
of the light to several hundred nanometers. Using hard X-rays and ~-rays offers the
potential for obtaining atomic resolution. The challenge here is to obtain a source
with sufficient coherence; researchers have solved this difficulty by using atoms
within the sample as the source.

The technique works as follows (Fig. 2.18). Atoms within the sample are stimu-
lated by an external source of, say, X-rays. As the atoms relax, they emit fluorescent
photons with a wavelength of about 0.1 nm. The radiation can reach the detector
directly, forming the reference wave, or after scattering off nearby atoms, forming
the object wave. The two waves meet and form an interference pattern that can
be mapped out by varying the angular position of the detector around the sample.
This produces a hologram.

This technique and its extensions, using X-rays and 7-rays, have been applied
to image light atoms, noncrystalline, and doped samples. Researchers believe that
biological and other large molecules, which are not amenable to study by X-ray
diffraction methods, may be good candidates for holographic investigations.

2.5.5 Summary

We have discussed some of the applications that take advantage of the exceptional
qualities of the laser beam. The high concentration of energy in a tightly collimated
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beam of light provides a particularly useful tool in microelectronics, medicine and
biology. On the other hand, the coherence of laser light is a crucial factor in
long-distance optical communications and holography.

2.6 Quantum Optics

In the previous sections we have related the invention of the laser and the subsequent
developments of one of the most important technologies of our time. The laser tech-
nology in turn has dramatically stimulated not only the field that has spawned and
nurtured it but also many other scientific endeavors, and even has initiated many
new, unexpected lines of research. Using the laser as a tool, physicists, chemists,
biologists and medical researchers have pushed their respective fields to new fron-
tiers. In what follows, we will focus on physics, and discuss how physicists make
use of the light newly available to them to scrutinize matter from various angles —
its structure, bonding and interactions with light — and to explore many funda-
mental aspects of physics — the wave—particle duality and the reality of quantum-
mechanical entities.

2.6.1 Atomic and Molecular Spectroscopy

Atoms and molecules are quantum-mechanical systems which can exist, unlike
classical objects, only in a certain number of discrete states, but no others. These
states are directly determined by the composition and the dynamics particular to
each system and the general laws of quantum mechanics. Each quantum state (or
energy level) is defined uniquely by a set of physical characteristics, called quantum
numbers, two examples of which are the energy and the angular momentum (or
spin). The full set of such states is unique to the system (atom, molecule, etc.), and
S0 can serve as its signature. It is essential to know exactly the physical properties
of the atom in its various states, because by comparing them with calculations, the
physicist can identify the system, learn about its structure and the forces shaping it.

One of their favorite approaches is to measure, whenever possible, the radiative
transitions between levels and, from information on levels already identified and
knowledge of the electromagnetic force governing such processes, extract bits of facts
from unknown levels. Unfortunately, the signals they detect for a given quantum
transition are, as a rule, spread around the expected transition energy (or frequency)
rather than located precisely at this energy itself, as one would anticipate from
conservation of energy. In Section 2, we mentioned that this kind of radiation
distribution, or line broadening, arises mainly from two effects. First, quantum
levels in real physical systems are fuzzy rather than sharply defined (because of their
finite lifetimes, various perturbations they are subjected to), so that any transitions
may take place within these uncertainties. Second, the frequencies of all these
transitions are further altered by the Doppler shift arising from the thermal motions
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of atoms or molecules; this effect is most pronounced in high frequency transitions
in gaseous samples involving low-mass particles at high temperatures. What one
observes then is not a single-emission mode but many transitions, closely related,
yet differing in frequencies. The upshot is that the object of the experimenter’s
quest, the energy level, is hidden somewhere beneath this background of noise.

One of the most significant contributions of the laser to atomic and molecular
spectroscopy is to reduce this noise by eliminating the (first-order) Doppler broad-
ening, which is (except in transitions involving very short-lived excited states) the
major factor limiting the resolution attainable in conventional spectroscopy. An-
other notable success of the laser is that, with its high intensity energy output, it
makes accessible to the experimenter’s scrutiny transitions that can only be reached
by processes involving more than one photon at a time.

2.6.1.1 Single-Photon Transitions

In a typical spectroscopic experiment making use of a laser, the light output from
a tunable dye laser with very stable lines and very small widths is beamed into an
atomic (or molecular) gas sample, traverses it once, then is reflected back into the
gas from the other end. The intensity of the reflected beam is measured for different
laser frequencies and, at the peak intensity, the laser is tuned to the frequency of
an atomic transition unaltered by any Doppler effects.

In this experiment, atoms moving in the gas generally see the direct and reflected
beam at Doppler-shifted frequencies, one up, the other down. If the laser light is
sufficiently intense to excite a large number of atoms, the velocity distribution of gas
atoms at ground states will be depleted at some definite velocity and we will see two
dips in the distribution, one produced by each beam, at different atomic velocities
(Fig. 2.19). The separation of the two dips gives a measure of the atoms longitudinal
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Figure 2.19: (a) Doppler effect for an atom moving obliquely to two counter-propagating laser
beams; photon frequency w is shifted to w(1 + vz /c). (b) Velocity-distribution of atoms. Dips in
the distribution are produced by the two beams tuned to resonate with obliquely moving atoms,
and occur at vy = +¢(1 — wo/w), where wg is the atomic transition frequency.
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velocities. Whenever the two dips merge together, it means that the same sets of
atoms interact with the two beams. This can happen only when their longitudinal
velocities vanish, i.e., when the Doppler effect is absent. Then, provided the laser
light is strong enough to excite a sufficiently large number of atoms, the direct
beam will bleach a path through the sample, completely depleting it of a set of
atoms moving at right angles to the beams over a range of velocities comparable
to the radiative transition linewidth. It follows that less of the reflected beam will
be absorbed, resulting in a greater intensity than at any other frequencies, and its
strong signal will display the spectrum of the transversely moving atoms free of
Doppler broadening.

With this technique, experimenters were able to study the fine structure of the
famous red line of atomic hydrogen at wavelength 656.5 nm, and determine the
value of the Rydberg constant, one of the fundamental physical constants, with an
unprecedented accuracy.

2.6.1.2 Multiphoton Transitions

So far we have discussed electromagnetic transitions involving only one photon at
a time. They are practically the only ones possible in weak fields. Generally, the
probability for a radiative transition to occur is sensitive to two factors which vary
in opposite directions with the number of photons involved. First, it is proportional
to the response of the system to the electromagnetic field, a factor that decreases
a hundred times for each additional participating photon; thus multiphoton excita-
tions are normally weaker by many orders of magnitude than allowed one-photon
transitions. Secondly, it depends strongly on the intensity of the incident radiation,
so that multiphoton transition probabilities may become significant when a suffi-
ciently strong source of light is used. In other words, in the strong field created by
an intense laser light, multiphoton processes will become observable.

To illustrate, let us consider the excitation of state ¢ to state f by absorption
of two photons. The nature of the electromagnetic interaction is such that only
one photon is absorbed or emitted at a time. So two-photon absorption is a two-
step process: the system (an atom or a molecule) absorbs a photon and passes to
some allowed intermediate state m, then absorbs the second photon and jumps to
state f (Fig. 2.20). In general, there are many such states m accessible through
one-photon absorption, all contributing to the process. Their contributions to the
total transition probability interfere destructively with deep minima when waves
following different available routes come up badly out of step, and constructively
with high maxima when the radiation frequency matches the frequency of a resonant
intermediate state. If there exists an accessible resonant intermediate state in the
system, that is, if there is an observable state with a well-defined lifetime in the range
1076-1077 s, then the second photon needs to arrive only within this lapse of time
after the first absorption for the process to complete successfully. The transition is
being carried out sequentially, an absorption completed before the next starts. But
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Figure 2.20: Two-photon absorption process via an intermediate state. (a) Energy level diagram;
hwi = Em — Ej, hwa = Ef — En. (b) Space-time representation of the sequential two-photon
absorption. For a transition via virtual state m, At ~ 10~15 s.

if there are no accessible intermediate resonant states, the transition still can go
through, provided the second photon arrives within the flyby-time, say, 107'° s, of
the first. The state m is not observable, it is a virtual state, a very fleeting situation
created by a temporary distortion of the system under the applied force. It is in
this particular circumstance that the laser can play a uniquely useful role.

Of course, if one-photon transitions between the two levels can occur at all, they
will dominate over any other transition modes. But such transitions are not always
physically allowed; whether they are or not depends on the nature of the interac-
tion and the conservation of energy, spin or other symmetries. Those considerations
are conveniently summarized in a set of rules called selection rules. Consider, for
instance, the possibility of exciting the hydrogen atom from its ground state, 1s,
to an excited state, 2s. Assume no observable states exist between the two. When
the atom is in either of these states, it has a spherically symmetric configuration.
But the interaction primarily responsible for one-photon transitions, the electric
dipole mode, is represented by a mathematical object that has the symmetry of
the spatial vector; in particular, it changes sign under inversion (an operation that
flips the signs of all position vectors). When acting on a symmetric state it changes
the state to one having the same symmetry as itself, and so cannot lead to a sym-
metric state: the transition 1s — 2s cannot occur via one-photon absorption, it
is said to be forbidden. But if a second photon with the right attributes (e.g.,
angular momentum) happens to be there, while the system is still distorting after a
dipole absorption, it can act in the reverse direction to bring the system back to a
symmetric configuration: the transition 1s — 2s is allowed in the two-photon mode.

In fact, this transition, which is of great importance in physics and astrophysics,
has been observed in a recent experiment using a tunable laser as the driving force
for atomic excitations. Photons at half the transition frequency are sent toward the
gas sample in two parallel beams from opposite directions with opposite circular
polarizations. When a moving atom absorbs two photons in rapid succession, one
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from each beam, it gains an energy exactly double of the photon energy and devoid
of any Doppler effects.* Thus, the transition frequency can be measured with
enough accuracy to determine the Lamb shift of the hydrogen ground state, a purely
quantum effect, which plays a crucial role in verifying the validity of relativistic
quantum theory.

Ultrafast lasers, even with modest energy, can produce huge peak power, making
them very suitable for inducing multiphoton absorption. And their femtosecond
pulse durations allow the researcher to create, detect and study in real time very
short-lived events, such as the electron—hole recombination in a semiconductor or
the initial steps in a chemical or biological reaction.

2.6.2 Nonlinear Optics

So, under intense light, atoms and molecules undergo complicated mutations in
their private little worlds. How can this affect our world? What does it do to the
medium as a whole? And how does light behave through all that? A short answer
to these questions is, in effect, intense radiation elicits from the medium a collective
response quite unlike that observed with weaker light, which in turn alters its own
properties, and even produces an output with novel features.

2.6.2.1 Harmonic Generation

As we have seen, when an intense electromagnetic field is applied on an atomic or
a molecular medium, photons are absorbed one by one, either singly or multiply,
and individual atoms or molecules are carried to excited states. This picture of the
microscopic world translates into the appearance of nonlinearities in the optical
bulk properties (e.g., refractive index and susceptibility) of the medium.

Normally the presence of a weak field does not affect the medium; the substance
acts as an inert background through which the field propagates. Its response will
vary linearly with the field intensity. But in a strong field, the medium itself is
modified in a field-sensitive way. Its response depends on both the applied field and
the modified medium, so that the overall dependence on the applied field is rather
complicated. To illustrate, let’s consider how a playground swing is brought back to
its vertical position. For small deviations, the restoring force is proportional to the
deviation angle; for larger deviations, it can be expressed as a finite combination
of successive powers of the angle. But for still larger angles, it will vary in an even
more complicated manner. In the same way, atoms always respond in a complicated
manner to external forces. But this nonlinearity is normally overshadowed by the
dominant linear effects; it becomes significant, leading to detectable effects, only
when the applied field is not much smaller than the interatomic field. A typical

4The two photons have energies (1 — vz /c)hw and (1 4 vy /c)fw in the atom frame, so together
they contribute an energy of 2Aw to the atom. Here, w is the light frequency in the laboratory
frame, v, the atom velocity in the direction parallel to the beams.
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laser at 1 MW cm ™2 irradiance produces fields of 10 volts/m. Though appreciably
smaller than the typical electric field in an atom (about 10! volts/m), they are
already sufficient to induce nonlinear effects discernible to sensitive detectors.

To be specific, let us consider the effects of the electric component of an intense
electromagnetic field on a dielectric (non-conducting) material. We assume the
field to be monochromatic at frequency w. As it propagates through the medium,
the applied field separates the positive and negative charge distributions in each
atom, inducing a time-dependent electric field, called the induced dipole moment.
This effect on the whole collection of atoms can be expressed in terms of a macro-
scopic quantity, the electric dipole moment per unit volume or, simply, the electric
polarization. It is a space-time dependent vector field, and can be expanded in
powers of the applied field. In contrast to the applied field, the induced polariza-
tion is anharmonic; it oscillates with more rounded peaks and deeper valleys than
the field itself, and can be decomposed into components of various frequencies, or
harmonics. These include, besides the frequency of the applied field, all of its whole
multiples. The simplest term, linear in the field, is responsible for classical weak-
field phenomena, such as ordinary refraction or absorption; its oscillations faithfully
retrace the field vibrations with the same frequency but a smaller amplitude. The
higher-order terms, in higher powers of the field, arise from processes involving
several photons, and can be visualized as anharmonic oscillations of less intense
higher harmonics.

The polarization vector has the same symmetry as the electric field vector which,
let us recall, changes sign under inversion. If the medium also has that symmetry,
even-order terms must vanish because they have the wrong symmetry, they do not
change signs under inversion. Examples are isotropic systems (crystals, liquids or
gases); they support only odd-order processes. However, for molecules and lattice
sites in crystals without inversion symmetry, both odd and even powers of the field
may appear. Since for a moderate field, contributions decrease in importance with
increasing orders, the dominant nonlinear term in a nonisotropic medium is gener-
ally the second-power term. Quartz, calcite and anisotropic crystals are materials
of this kind.

The induced polarization in a linear medium has a very simple frequency depen-
dence. If the applied field has a single frequency, this is precisely the frequency of
the induced oscillations; if the field has components at several different frequencies,
their contributions to the polarization add up, and the response of the medium is
simply proportional to the sum of all different components. Nothing new so far.
But if you have an anisotropic nonlinear medium (e.g., quartz), then a laser operat-
ing at frequency w induces a polarization that radiates at both w and 2w. In other
words, you send red light in through a piece of quartz, you get both red and violet
light out (of course, at lower intensities). Similarly, if the crystal is shined on by
two beams of frequencies wy and wo, it will generate waves of frequencies 2w, 2ws,
w1 +ws, and wy; —ws. Finally, for an example of polarization in an isotropic medium,
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when the applied field contains components with three distinct frequencies, wy, wa,
and w3, the dominant nonlinear components will have 22 different harmonics with
frequencies of the types 3w1, 2wi + w2, w1 +ws + w3, 2wW1 —we, w1 +ws — w3, and wi.
If the input frequencies are equal, with common value w, the polarization radiates
only at w and 3w.

The practical implication of this discussion is clear: you can use a suitable
nonlinear medium to boost the frequency of a strong field to higher values. In
fact, this idea has been applied to produce tunable VUV radiation by generating
third harmonics from a dye laser beam. The nonlinear medium is chosen so that
the third harmonic of the field (or any other combination of input frequencies you
wish, for that matter) falls close to a resonance of the medium. This harmonic will
then dominate over all others. Let us take an example. The output of a pulsed
dye laser, tunable over the 361-371 nm wavelengths, is focused onto a sample of
krypton gas. Now the krypton atom has a known allowed three-photon transition
to a state labeled 5s, at wavelength 124 nm. Thus, three light quanta will be
absorbed almost simultaneously by the atom, which on decay emits a single photon
at a frequency triple the input frequency. Other harmonics are suppressed. Third-
harmonic generations in krypton and other noble gases are a proven method of
producing VUV radiation of narrow bandwidths, high intensity and good tunability.
The technique has even been applied to molecular gases (CO, N3, C3Hy and HCI,
just to name a few) to produce VUV and extreme UV radiation.

2.6.2.2 Phase Conjugation

Let us return now to the general example of harmonic generation in a nonlinear
isotropic medium under the action of a three-component strong field, which we
briefly mentioned earlier. We will refer to this process as four-wave mizring. We want
to study a particular radiation produced in this process by three incident beams (of
frequencies w1, we, ws and momenta k1, ka, k3) through nonlinear frequency mixing.
Of all the possible harmonics generated, we focus on the radiation component at
frequency wy + wy — w3 and momentum k = ki + ko — k3. If now we let the three
incoming beams have a common frequency, w, then the emitted wave will also have
this frequency (2w — w = w). Its momentum is determined by the geometry of the
incoming beams: we let the first two (pump beams) counter-propagate, k1 + ko = 0,
so that the radiated beam has momentum opposite to that of the third (the probe
beam), k = —ks3. This means the emitted beam is identical to the third, except it
travels in the reverse direction, retracing the steps of the incident wave all the way
to its source (Fig. 2.21). For this reason, it is also called a time-reversed wave, being
the time-reversed replica of the probe wave or, more correctly, a phase-conjugate
wave because of its dependence on the complex conjugate of the probe wave.

The nonlinear medium, excited by the pump beams to states at twice the pump-
ing energy, acts as a perfect reflector for the probe beam, which is turned back
precisely along the retrodirection. When you gaze into such a mirror you will not
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Figure 2.21: Phase conjugation by nonlinear four-wave mixing. Two strong pump beams (F1
and E3) counterpropagate into a nonlinear medium; at the same time, a probe beam (F3) travels
into the medium and generates a fourth wave (E4) having the same frequency but moving in the
opposite direction.

see your face but just the dots of light scattered by the corneas of your eyes. If the
probe light is distorted or scrambled along its way, say, by a frosted glass plate, the
distortions will be gradually but completely undone as the light wave retraces its
path through the glass to its source. The medium may also act as an amplifier of
the incident light if the pumping fields are sufficiently strong; the reflective index
of the medium depends directly on their intensities. So the light reflected on a
phase-conjugate mirror may even be brighter than the light beamed in.

The reader may have noticed a certain resemblance between the production of
phase-conjugate waves and conventional holography. In holography the reference
beam and the object beam interfere on an emulsion plate to produce a hologram.
After the film is developed, the static hologram can be recreated with the same
reference beam, and a realistic image of the object obtained. In four-wave mixing,
the nonlinear medium acts as the photographic emulsion, the probe beam as the
object beam, and the pumping beams as reference beams. The probe beam and
each of the pumping beams interact to produce a wave pattern in the medium — a
sort of dynamic, real-time hologram. The phase-conjugate beam is radiated when
the other probe beam is reflected from the hologram.

The remarkable optical properties of phase-conjugate wave systems — e.g.,
perfect retro-reflectivity, perfect homing ability, cancelation of aberrations in wave-
fronts, and amplification — all point to applications in both practical and funda-
mental domains. For example, a high quality beam can be transmitted through
a turbulent atmosphere, collected and possibly amplified by a phase-conjugate
laser system, and sent back to its point of origin free of degradation (provided the
intervening atmosphere does not change appreciably in the interval). Such beams
can be used in tracking satellites, self-targeting of radiation in fusion, processing
images (comparing fingerprints, identifying cells and their mutations, and so on) or
in realizing novel classes of ultra sensitive detectors, sensitive enough to respond to
gravitational waves. Not to be neglected are the potential benefits for spectroscopic
studies: the properties of the observed conjugate-phase beam could be used to probe
the nonlinear medium that produces it, giving us further insight into matter and
its photonic properties.
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2.6.3 Is Quantum Physics Real?

It is very significant that the laser, a product of quantum theory, has played an
essential role in the ongoing process of clarifying some deep questions still remaining
in that theory. The problem does not concern any technical aspects of the theory
nor its overall validity, but rather the interpretation of quantum mechanics, how
to reconcile its strange character with our intuitive, common sense perception of
nature.’

Light has characteristic wave-like properties: it can be made to produce diffrac-
tion and interference patterns. It can also knock electrons out of metals to produce
a photoelectric current, an effect representative and indicative of a particle-like
behavior. The co-existence of the wave and particle properties in the photon —
its wave—particle duality — is one of the first basic realizations of the theory, with
implications that defy easy interpretations.

Consider again the now familiar two-slit interference experiment. The interfer-
ence pattern that one observes in this experiment is a clear proof of the wave-like
nature of light. But one can also argue just as convincingly in terms of quanta: the
corpuscular photons, each arriving at a definite point on the screen and each leaving
its own speck, all cooperate to build up a mosaic of spots which gradually takes the
form of a regular interference pattern by the law of averages of large numbers. This
is the first surprising conclusion: before the advent of quantum theory, the world
was completely predictable; now it looks as if events in the quantum world are only
known in a probabilistic sense. In Young’s experiment, when one of the two slits
is plugged, only a bright spot on the screen marks the image of the open slit; no
traces of interference fringes. We would certainly fail if we attempt to reconstruct
the interference pattern by superimposing the patterns obtained separately with
each individual aperture acting alone. The photons behave quite differently from
the way they did before; they ‘know’ that this time only one hole is open and pass
on through the aperture. The argument is in no way based on a perceived collective
wave-like behavior of the whole group of quanta but only on the inherent character
of each individual. How do they know, if they are independent, indivisible particles?
In classical physics, a particle moves along well-defined paths. Not so in quantum
physics. Suppose a photon is in a certain state at a certain time, and you want to
calculate the probability to find it in some other state at a later time. You simply
allow the photon to go wherever it wants to go in space and time, provided only that
it starts and ends in the two given fixed states. You obtain the required probability
by adding together the contributions from all possible paths from a large number
of identically prepared photons.

Wave—particle duality is not confined to the photon alone. Electrons, atoms,
particles of matter and quanta of energy, all have both wave and particle behavior.

5See Appendix B for a review of quantum theory.
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Wave-particle duality, probability of events, and undetermined paths, all this
implies an inescapable degree of indeterminacy in the quantum world that is not
due to experimental limitations, but belongs integrally to quantum mechanics, and
is perfectly compatible with the best accuracy obtainable in measurements. Sup-
pose we want to observe an electron under a ‘microscope’ by illuminating it with
a strong radiation. At the instant when the electron’s position is measured, i.e.,
just when the probing light is diffracted by the electron, the latter makes a jump,
changing its momentum discontinuously. So, just when the position is determined,
the momentum of the electron is known only up to a certain degree which corre-
sponds to the discontinuous change. The greater this change is, the smaller the
wavelength, and hence the more precise the position measurement. Conversely, if
we want to measure the momentum of the particle accurately, its location becomes
unavoidably uncertain.

Let Az denote the latitude within which a coordinate z is determined in a
large number of similarly prepared systems, and Ap the latitude within which the
z-component of the conjugate momentum p is determined, independently, in an
identical experimental arrangement. The indeterminacy in the values of position
and momentum is then given by the inequality AxzAp > fi/2. This equation means
that no matter how hard we try, we cannot know the values of x and p to a better
precision than indicated: h/2 (a very small number) is the best we can do for the
combined deviations. There exist similar inequalities involving other pairs of con-
jugate variables, such as different cartesian components of the angular momentum.
All these formulas, referred to as the Heisenberg uncertainty relations, describe the
irreducible level of uncertainty in our knowledge of those pairs of variables when
they are measured in identical conditions.

In quantum mechanics, a particle (or system) is described, not by its trajectory
as in classical mechanics, but by its wave function, or state function, which contains
complete information about the particle. Another basic tenet of quantum mechanics
is the superposition of states, which asserts that from any two independent quantum
states of a system, other states can be formed.

The principle of superposition leads to many disconcerting conclusions, not only
at the invisible, quantum level but also at the macroscopic level as well. To drama-
tize the kind of philosophical problem one might encounter with the superposition
principle, Erwin Schrédinger, one of the founders of quantum mechanics, devised
the following thought experiment. Suppose a cat is penned up in a steel chamber
along with a poisoning device that has equal probability of releasing or not releasing
a deadly poison within one hour. As long as the box remains sealed and as far as
we know, the poor animal is neither live nor dead — it is equally likely to be live
and dead! And it will remain in this uncertain state until we open the box and have
a look, at which time it either jumps out fully alive or remains quite dead, either
way with 100% probability.
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2.6.3.1 Delayed-Choice Experiment

An experiment that could sharpen the concept of wave—particle duality was pro-
posed some time ago by John Archibald Wheeler. It is basically a modern version
of the classic Young interference experiment in which the two slits are replaced by
the two arms of an interferometer (Fig. 2.22). A pulse of laser light, so severely
attenuated that at any time it carries only one photon into the apparatus, is split by
a beam splitter (BS1) into two beams (A and B). These beams are later deflected
toward the lower right of the set-up by two mirrors (M). A detector is placed at
the end of each of the two light paths. Two situations could be envisaged. In one,
a second beam splitter (BS2) is placed at the crossing of paths A and B. With a
proper adjustment of the lengths of the two arms of the interferometer, interference
signals can be recorded by the two detectors. This result would be evidence that
the photon came by both routes, thereby showing its wave-like property. In the
other, the second beam splitter is removed, and the detectors will indicate whether
the photon came along one of the two possible paths, A or B, thereby revealing its
particle-like property.

Wheeler then asks whether the result of the experiment would change if the
experimenter’s decision for the mode of observation — with or without the second
beam splitter, i.e., detecting wave-like or particle-like properties — is made after
the photon has passed the first beam splitter. Theoretically, one would decide to
put in or take out the second beam splitter at the very last moment. A photon

Detector

Figure 2.22: Modern interference experiment. A single-photon pulse enters an interferometer via
a beam splitter (BS1) and the two beams may follow paths A and B. In the absence of the second
beam splitter (BS2), detectors A’ and B’ will reveal the route taken by the photon, either path
A or path B. With BS2 in place, this particle-like information is lost, and the two detectors will
record a wave interference signature. In the delayed-choice version of the experiment, the second
beam splitter is put in place, and one of the light paths may be interrupted by actuating a Pockels
cell switch (PC) installed for this purpose.
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will take 15 ns to travel a distance of 4.5 m, which is the length of each route in a
typical experimental arrangement. This would not give enough time for an ordinary
mechanical device to switch between the two modes of measurement, but it would
be feasible with the use of a Pockels cell, which can respond in six nanoseconds or
less. The switch is installed on one of the light paths, which can be interrupted
by applying a voltage to the Pockels cell. In an experiment recently performed,
measurements are made in two ways. In the normal mode of operation, the Pockels
cell is open when the light pulse reaches the first beam splitter and remains open
during the whole transit time of light through the apparatus. In the delayed-choice
mode, the cell is normally closed, and is flipped open a few nanoseconds after the
pulse has passed through the beam splitter, and thus, has been well on its way to
the detectors. For data collection, the operation is switched back and forth be-
tween the two modes, normal or delayed-choice, with each successive light pulse,
and the photon counts are stored in different multichannel analyzers. Note that in
either mode, the data come from many single-particle events, and the information
obtained results from a time average, not an ensemble average as in many-particle
experiments. The results of the experiment show that there is no observable dif-
ference whatsoever between the interference patterns obtained in the normal and
delayed-choice modes.

Thus, the observations are completely consistent with the mainstream under-
standing of quantum physics: the photon behaves like a wave when undulatory
properties are observed, and like a particle when corpuscular properties are mea-
sured. In other words, the photon in the interferometer resides in an ambiguous
state that leaves many of its properties indefinite until a measurement is made. An
indefinite property becomes definite only when it is observed, the transition from
indefiniteness to definiteness is performed by some ‘irreversible act of amplifica-
tion.” Or, as Wheeler puts it: “In the real world of quantum physics, no elementary
phenomenon is a phenomenon until it is recorded as a phenomenon.”

2.6.3.2 To Catch an Atom

Perhaps the most convincing proof of the reality of the quantum world would be to
capture some of its creatures and hold them in place for all to see. This has become
feasible with laser cooling and trapping.

When light interacts with matter, it transfers to the medium some of its own
momentum. This momentum transfer manifests itself as a mechanical force acting
on the atoms. This force is not constant; it fluctuates over time because the photons
scatter at random times and because the recoil of the atoms following excitation and
spontaneous emission is also random. However, an average force can be defined: it
is parallel to the direction of propagation of light and equal in size to the product
of the photon momentum and the photon scattering rate. It is largest when light
resonates with an atomic transition. Let us consider a jet composed of atoms
having a strongly allowed transition close to the ground state. A laser beam with
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a frequency slightly below the atomic resonance frequency is directed against the
atomic jet. As an atom is moving against the beam, it sees light Doppler-shifted
toward resonance, and so becomes subject to a maximum scattering force which
can effectively brake the motion of the atomic jet. Once the atoms are sufficiently
slowed down and cooled, perhaps down to near one degree Kelvin, they can be
captured and confined in a small region of space by an appropriate configuration of
applied electromagnetic fields. For ions, trapping poses no problem. But for neutral
atoms, it is more delicate, but still feasible. The technique used is based on the fact
that a neutral atom, with its weak magnetic dipole, interacts with a magnetic field
and so can be controlled by this field.

Laser cooling is the basis for many interesting experiments. It can be used
to study collisions between very cold atoms and ions. Such interactions can be
observed with excellent energy resolutions.

Now that small thermal motions are largely eliminated by cooling, quantum
effects can emerge free of interference. Observations can be made in single-particle
systems rather than in collections of many particles. An interesting example of the
latter class of experiments is the observation of individual quantum jumps in single
ions. In this experiment, atoms are cooled, trapped and confined in a region of space;
then excited by a laser field. Two transitions are possible, driven by two lasers, one
to a dominant, strongly fluorescing level with a normal, short lifetime; the other to
a metastable state lasting several seconds. Normally, the strong emission is easily
detected; but whenever the atom makes a transition to the metastable state, this
strong fluorescence ceases, and a period of darkness follows. This period of darkness
ends when the atom decays from the metastable state to the ground state, at which
point the strong transitions resume, accompanied by spontaneous radiation. The
atom will flash on and off like a tiny lighthouse, signaling each time the absence or
occurrence of the weak transition.

Last but not least, cooling atoms may allow certain collective aspects of the
particle dynamics to emerge: when cooled to and below a certain low critical tem-
perature, a gas of a certain type of atom enters a new phase of matter in which a
large fraction of ultracold atom fall to the lowest-energy single-particle state, creat-
ing what is known as the Bose-FEinstein condensate, a new state of matter in which
the atoms move in unison in a way similar to the photons in a laser beam. The
reader will find a discussion of this subject in Chapter 4.

2.6.4 Summary

The laser has played a significant role in recent advances in atomic and molecu-
lar spectroscopy and in nonlinear optics, and also in clarifying some fundamental
aspects of quantum mechanics.

A major contribution of the laser to spectroscopic studies is to eliminate the
Doppler broadening of transition line widths, particularly in atomic and molecular
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gases where this effect has severely limited the resolution attainable in experiments
using conventional electromagnetic sources for excitations. The intense monochro-
matic laser light makes accessible states that are normally closed to one-photon
excitations — the ones usually available by conventional means — but are allowed
to transitions via multiple-photon absorptions. Multiphoton excitations have been
used together with Doppler-free techniques to deepen our understanding of the
structure and dynamics of gaseous atoms and molecules.

Under the intense radiation of a laser output, atoms and molecules are massively
excited to high-energy states. These strong interactions lead to the appearance of
nonlinearities in the response of the medium, such that the optical bulk properties
of the medium depend on the applied field strength in a more complicated way than
just the first power. The irradiated medium will in turn generate higher harmonics,
which can give us further insight into the medium itself, or can be put to other uses.
One such use is the generation of a phase-conjugate beam by a nonlinear medium
under the combined action of three appropriate laser beams.

Recent advances in detection techniques and the availability of high quality
laser light have made many experiments involving single-particle events possible.
The key point is that information gathered in these experiments results from a time
average of successive single-particle events rather than from an ensemble statistical
average. We stressed the importance of the delayed-choice interference experiment
and various works on the cooling and trapping of atoms.

2.7 Looking Beyond

Ever since the invention of the laser, researchers have been continually extending its
range of usefulness and improving its performance by exploring new lasing media
and testing novel system designs. They have also been probing the restrictions that
are common to all working lasers and considered indispensable to their functioning.

A helium-—neon laser emitting one milliwatt of power contains several quadrillion
active neon atoms and many more background helium atoms. The laser gain is
reached when about one billion stimulated photons are bouncing between the res-
onator mirrors. In other words, several million active atoms are needed to maintain
each photon in the resonator. Even in the most efficient conventional lasers, only
one photon in 100000 is useful. Because of this enormous waste, the system re-
quires a high threshold energy to ensure the presence of a sufficiently large number
of atoms in the upper laser state to sustain stimulated emission. This is why lasers
require relatively high currents to work. Or do they?

From the economical viewpoint, an ideal laser should have zero threshold: only
the tiniest amount of energy would be needed to bring it to self-sustained light
amplification. For this to be possible, the active component must be very small (of
the order of the wavelength of the light emitted) and designed such that every
photon produced, even by spontaneous radiation, contributes to lasing action.
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Imagine growing a layer of the lasing medium with a thickness equal to one half the
wavelength of the emitted light: photons would then be confined within the layer
and allowed just one state, the one that corresponds to the fundamental optical
mode. So they would have no other choice than to contribute to this one possible
wave, which would amplify to an intense beam. No photons would go to waste.
The laser would be thresholdless. At present, we have not yet reached this limit,
but researchers devoted to nanometric-sized lasers are making great strides in this
direction, as we will see in Chapter 5.

Michael Feld and Kyungwon An took another tack: they built a laser with a
single atom. They based their idea on an elementary process called quantized Rabi
oscillation, which works as follows. Suppose you have a sample of two-level atoms
enclosed in an electromagnetic cavity. First, the atoms absorb photons with energy
matching the difference in energy between the two atomic levels. Once all the atoms
have reached the upper level, they cannot absorb any more, and so the process must
reverse itself, and the atoms begin to de-excite and return energy to the system until
the upper level completely empties itself. Then the cycle starts all over again, and
you have a system oscillating between two states.

The resonator of a single-atom laser consists of two precisely aligned mirrors
with ultrahigh reflectivity, about one millimeter apart; its dimensions are carefully
adjusted so that quantum-mechanical coupling occurs (i.e., emitted photons can
build up inside). Excited two-level (e.g., barium) atoms stream one by one into
the resonator. The incoming atoms emit the first photons, and this light is further
amplified by the Rabi oscillations. As the number of photons in the cavity goes
up, it becomes increasingly more likely that an atom passing through the resonator
emits another photon. All the photons thus produced share the same direction,
wavelength and phase, producing a weak (picowatt) beam of coherent light.

In this type of laser, each transition could in principle produce one useful photon;
in the prototype built by Feld and An, only half the energy absorbed by the barium
atoms was converted to laser light. Not too bad compared with the efficiencies of
conventional lasers, which range from 1 to 30 percent. Note that even in this case
— one atom, two levels — the requirement of an inverted ‘population’ was satisfied.

But, is population inversion really indispensable? This question has more than
an academic interest for many researchers, who hope to produce coherent radiation
at ultraviolet or higher frequencies by inner-shell excitations: as the pump power in-
creases rapidly with the excitation energy, it becomes harder to achieve the required
population inversion. We recall that in lasers this process has the dual purpose of
lifting more atoms to the upper laser level so that they can be drafted into lasing
duty, and keeping fewer in the lower level so that they absorb less of the emitted
light and thereby sabotage the lasing action. But, what if we manage to block or
drastically reduce this absorption? Can we then lase without inversion (LWI)?

Consider a gas of atoms that have three levels interacting with an electromag-
netic field. Suppose that the two lower levels, g and ¢’, may be excited to a higher
level, u. Quantum mechanics tells us how to calculate the transition probability
from the two lower levels to the upper level: square the sum of the two probability
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amplitudes. When the conditions are right (when there is coherence between g
and g¢’), the various terms will mix so as to cancel each other, and the transition
probability for photon absorption by u vanishes. On the other hand, excited atoms
residing in v may relax to g and ¢’ by independent transitions, with non-vanishing
probabilities. It appears then, with u blocked to transitions by photon absorption
from g and ¢’, it would be possible to attain laser gain even if there are many more
atoms sitting in the lower levels than in the upper level. That this new scheme of
making laser light is feasible has been demonstrated by several groups of researchers,
who have produced coherent light beams at 480-600 nm by LWI with Rb, Cd, and
Ne gases.

Finally, the free-electron laser (FEL) is an entirely different way of producing
coherent radiation, advocated since 1971 by J.M.J. Madey. A beam of relativistic
electrons produced by an electron accelerator passes through a transverse, peri-
odic magnetic field (technically an undulator), itself enclosed in a resonator, and
exchanges energy with an electric radiation field. As the electrons travel through
the undulator they accelerate from side to side and spontaneously radiate in the for-
ward direction. Some of this radiation remains in the resonator. As more electrons
arrive and are forced to move from side to side, they emit photons, but now in the
presence of the stored radiation field; this is the classical analog of quantum stim-
ulated radiation. An intricate energy exchange takes place between the electrons,
the undulator and the radiation field, the outcome of which being the presence of
separate groups of slow and fast electrons; the beam becomes bunched on the scale
of the radiation wavelength. The bunched electrons then radiate coherently, and go
on to amplify existing radiation.

The FEL has several advantages. Because a single medium (the electrons) pro-
vides gain in all spectral regions, and because the conditions in the resonator can
be adjusted at will, the device is broadly and easily tuned. Because waste energy
leaves the system as kinetic energy of the electrons at nearly the speed of light,
and because the lasing medium cannot be damaged by high fields, it can gener-
ate very high (gigawatt) peak powers. FELs can produce, in principle, radiation
at any wavelengths, but they are most needed in the far-infrared and the X-ray
region, where no conventional laboratory lasers operate. At present, the shortest
wavelength achieved in an FEL is 240 nm. But numerous plans to build VUV and
X-ray FELs are being hatched in several countries.
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Problems

For a photon, an energy E of 1 eV is equivalent to a frequency v of 2.4x10'* Hz
or a wavelength A of 1240 nm. Use these equivalences and the relations
among F, v and \ to obtain the energies and frequencies corresponding to
the wavelengths of 500 nm (green), 1 nm (X-ray) and 10* nm (infrared).
The three lowest levels in the hydrogen atom have the energies £y = —13.6 eV,
E; =—-3.4¢eVand E5 = —1.5eV. (a) How much energy is needed to raise the
atom from the ground state to the first excited state F5? (b) What happens
when the atom de-excites from FEj3 to E? (c¢) Can the atom in the ground
state absorb a photon of 10.0 eV?

Two atomic levels have relative line widths ~2/~v3 = 100. What are their
relative lifetimes?

Make a rough estimate of the relative Doppler broadening, Av/v, of the
resonance transitions in atomic hydrogen gas at room temperature. The
average kinetic energy is related to the thermal energy by Mwv?2/2 = kT/2.
The mass M of the atom is given by Mc? = 10° eV.
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Bodies in thermal equilibrium have characteristic temperatures T', measured
in degrees Kelvin, or equivalently, thermal energies Ep related by Ep = kT,
where k is the Boltzmann constant. An energy of 1 eV is equivalent to a
temperature of 12000 K. Find the energies corresponding to temperatures
300 K (room temperature) and 6 000 K (at the solar surface).

Explain why ‘stimulated emission makes very small contributions to light
emission by atomic systems in thermal equilibrium.’

Which qualities of laser light depend most on the presence of a cavity?
Explain what happens when a laser has no resonant cavity.

The irradiance (power per unit area incident on a surface) of sunlight on earth
is 1400 W/m?. (a) A laser produces a beam of 1 mW in power, 1 mm in
diameter at wavelength of 700 nm. Calculate its irradiance, the photon flux
(number of photons per second), and the number of photons that a 1 m cavity
contains at any time during lasing. (b) NOVA produces 100 kJ of infrared
light in 3 ns pulse lengths. Calculate its power and irradiance assuming a
beam diameter of 10 mm.

The length L of the cavity and the wavelengths A, of the resonant radiation
modes are related by L = n\,, /2, where n = 1,2,3,... . (a) Suppose the laser
wavelength is Ap = 500 nm. If you want to have monochromatic laser light,
what value of L would you take? If L = 5 cm, how many modes will the
cavity support? Which are the most likely? (b) Calculate the wavelength
spacing A\, = |An41 — An| and the frequency spacing Av,, = |Vp41 — Vpl.
Note how they depend on n. Show that for large n, Av,, = c(A\,)/\2.

We may characterize a wave train by its coherence time 7y (its average
duration) or its coherence length Lo = ¢79, and the spectral width of the emit-
ted radiation by 2Av (the intensity falls by half over an interval of Av). We
have the relation Ly ~ A\2/A\ = ¢/Av, where ) is the radiation wavelength
(from Problem 2.9, Av = cAX/A?). Calculate the coherence length Lg of the
following sources: (a) Conventional lamp: A = 546 nm, AX = 10 nm. (b) He-
Ne laser: A = 0.628 ym, Av = 1 MHz. (c¢) Nd:YAG laser: A\ = 1.06 pm,
Av =12 GHz.

The divergence of a spatially coherent beam of diameter d is measured by the
divergence angle § = A\/d. Calculate 6 for (a) He-Ne laser: A = 0.628 pm,
d = 2 mm; and (b) Ruby laser: A = 0.694 um, d = 0.2 mm.

The beam from a ruby laser (A = 0.69 pm) is sent to the moon after passing
through a telescope of 1 m diameter. Calculate the beam diameter on the
moon assuming that the beam has perfect coherence (the distance to the
moon is 400000 km).

Consider the following version of Young’s two-slit experiment. Take a plain
window shade, and make two parallel, closely-spaced thin slits on it. Place on
one side of it a lamp that can be dimmed such that it emits only a few photons
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per second, and on the other side, a blank screen. Darken the room, then
do the following experiments: (a) Cover one slit so that light can pass only
through the other slit. What do you observe? Repeat, inverting the roles of
the slits. (b) Now uncover both slits, and place behind each a photomultiplier
designed to make a clicking sound each time a photon passes through it. Does
either of the detectors click, or can both click at the same time? (c) Now
remove the detectors so that light can pass freely through the slits. Describe
what you observe.

In mode locking, the bandwidth of the laser radiation Av determines the
lower limit of the duration T of the pulse by the condition T' > 1/Av. (a) If
you want to have a 100 fs pulse, what bandwidth should you have? (b) For a
1 m long cavity, how many modes should be locked in to have a 100 fs pulse?



Superconductivity

Disordered states are all alike. But every ordered state is ordered in its own strange
way. And the most strangely ordered of these is the state of superconductivity —
so much so that we may not even make a mental image of it. For superconduc-
tivity, as we will see, is a truly quantum effect coherent over a large, macroscopic
scale. It has manifest in it the wave nature of matter that is normally spoken of
atoms and molecules, that is, in the domain of the very small. For these reasons
superconductivity is somewhat hard to understand except for a preoccupied mind.
But we can easily get acquainted with the superconductor by watching its behavior,
which is quite robust and readily amenable to ordinary experiments. And when we
do this we will be left in no doubt that we are in the presence of something very
extraordinary, almost bizarre.

3.1 Zero Electrical Resistance

Superconductivity is the total disappearance of electrical resistance of a material
at and below a sharply defined temperature (7) which is characteristic of that
material (Fig. 3.1).

This critical temperature (T,) can, however, be very low, typically close to the
absolute zero of temperature. A superconductor is thus a perfect conductor. And
so an electric current once set up in a superconducting ring will go on circulating
undiminished forever, or very nearly so. A simple-minded calculation would give
the time of decay of this current much longer than the age of the universe, which
is some 15 billion years! Very precise laboratory measurements of the decay of
the supercurrent in a superconducting coil estimate the decay time to be about a
hundred thousand years, which is long enough. This persistent flow of electricity,
the supercurrent, is just about as close as we can get to man’s recurrent dream of a
perpetual motion — of the second kind (no frictional loss). Today, a superconducting
magnet with the supercurrents circulating in its winding coils is a common sight
in the low temperature physics laboratories around the world as a quiet source of
constant magnetic field as long, of course, as it is kept cold enough.

89
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Figure 3.1: (a). Temperature dependence of resistance for a superconductor (S) and a normal
metal (N); (b) superconducting transition in mercury after Kamerlingh Onnes.

This amazing phenomenon of superconductivity was discovered by the great
Dutch physicist Heike Kamerlingh Onnes back in 1911. Kamerlingh was studying
the low temperature behavior of electrical resistance of metals in his world famous
low-temperature laboratory at Leiden of which he was the director. Just three years
earlier, Kamerlingh had liquefied the last and the noblest of the permanent gases,
helium. Helium boils at the incredibly low temperature of 4.2 K (Kelvin), that is
just 4.2 degrees centigrade above the absolute zero of temperature — the lowest
temperature possible as ordained by the laws of physics. This circumstance made
it possible for Kamerlingh to observe things very close to absolute zero for the first
time. Kamerlingh found to his great surprise that the resistance of his sample of
frozen mercury (chemical symbol, Hg) dropped almost abruptly to zero, within
experimental limits, when it was cooled below about the boiling point of liquid
helium, 4.2 K (Fig. 3.1). Kamerlingh was quick to realize that the resistance was
not just low — it was essentially zero! He could observe the persistent current that
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flowed without an external source such as a battery. He called it superconductivity
and the name stuck. For this discovery Kamerlingh won the Nobel Prize in Physics
for the year 1913. His life-long preoccupation with low temperatures earned him
the informal title of the ‘gentleman of absolute zero.’

Since its discovery almost ninety years ago now, superconductivity has remained
one of the greatest surprises of physics. Why should zero resistance be so surprising?
Let us understand this first.

3.1.1 Metallic Resistance

Metals are, by definition, good conductors of electricity. Now, even the best and
the noblest of them all such as copper, silver and gold do offer some resistance to
the flow of electricity. This is what causes the wasteful heating of the wire, the
copper loss, in transmitting electrical power from one point to another. And for
this, of course, we have to pay as an invisible part of our electricity bill. Remember
Ohm’s Law: Amperes (I) = Volts (V)/Ohms (R) and Watts (W) = I?R. This
ohmic dissipation can be reduced by going to lower operating temperatures. This
is readily understandable. Much of the electrical resistance is due to the incessant
thermal jiggling of the atoms or the ions (atoms that have lost one or more of
their loosely attached outermost electrons) that perturbs the otherwise free flow of
electricity. More precisely, the ultimate carriers of electricity are the freely moving
electrons that abound in a metal. There are roughly 10?3 of them in each cubic
centimeter of the metal. In equilibrium, that is, in the absence of an applied electric
field or potential difference, there are, on the average, as many electrons moving in
any given direction as in the opposite one, and so there is no net current. In the
presence of an electric field, however, there are relatively more electrons moving in
the direction opposite to the applied electric force and this excess makes up the di-
rected electric current. Now, the thermal vibrations of the background ions ‘scatter’
these electrons randomly in all directions and tend to neutralize this excess current,
causing electrical resistance. Indeed, the electron would accelerate indefinitely but
for this continual scattering that offers the necessary friction forcing the electron
to settle down to a steady thermal drift — much the same way as the mechanical
friction or, better still, the fluid viscosity (treacliness) limits the flow of a liquid
through a metal pipe or a glass capillary in spite of a head of pressure. Now, the
lower the temperature, the lesser the intensity of heat motion, and hence the smaller
is the resistance. Thus, for example, the resistance of a specimen of copper will go
down by a factor of about a thousand or more as it is cooled from room tempera-
ture of 300 K (26.85°C) to liquid helium temperature, 4.2 K. (The Kelvin (K) and
the Celsius (C) scales of temperature are simply related: Degrees Kelvin = Degrees
Celsius + 273.15. Thus, absolute zero, written 0 K, corresponds to —273.15°C). But
the fall is a smooth one. Ideally, then, the resistance should vanish at the absolute
zero of temperature, where all thermal agitation ceases. We say ideally because
this would be true only if the specimen was a perfect crystal — a perfectly periodic
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array of atoms or ions. (It is a profound result of quantum mechanics that the
electrons are not scattered by such a perfectly periodic arrangement of ‘scatterers’
no matter how strong the individual scatterer may be. This has to do ultimately
with the wave nature of the electron). But, of course, real materials are far from
possessing this perfect crystalline symmetry. There are the ubiquitous defects —
impurities, misplaced atoms, or missing atoms (vacancies). These deviations from
perfect crystalline symmetry can scatter electrons and, therefore, offer resistance.
Thus, we have to live with this residual resistance even at the absolute zero of
temperature, which is inaccessible anyway. (Incidentally, the lowest recorded tem-
perature achieved so far in the laboratory is about a nanokelvin, that is, a billionth
of a degree Kelvin. But even this is not quite zero. And, of course, never mind the
cost of refrigeration). Against this normal behavior consider Kamerlingh’s sample
of frozen mercury that had lost all its resistance at and below about 4.2 K. Now
the point is that the thermal agitation of the atoms at this low temperature, while
admittedly small, is still far from being zero. Also, the randomly placed defects that
were present above 4.2 K are still very much around and look just as obstructive.
In fact nothing much has changed in the material by way of its chemistry or crystal
structure — but the resistance has vanished completely. The scatterer has somehow
lost the ‘will’ to scatter — it lets the electrons pass by uninterrogated. It is as if
the cloud of electrons flows past these obstacles, ever adjusting, ever adapting but
never quite getting perturbed — ghostlier than a ghost! The scatterer does not
scatter. The dog does not bark. And that is the strange thing!

3.1.2 Superconductivity is Common

One may get the impression that such a bizarre phenomenon as superconductivity
must be a rare occurrence. But this is simply not true. A quick look at a modern
periodic table of elements will convince you of this. Of the 92 elements prominently
displayed, 68 are metals, and of these at least 26 are superconductors. Then there
are others that become superconducting when pressed hard enough. Thus, sili-
con, which is not only not a metal but a semiconductor (of which transistors and
computer chips are made), begins to superconduct under the pressure of a few tens
of kilobars (kilo = thousand, bar = 1 atmospheric pressure). But there are excep-
tions. The magnetic metals, iron (Fe), nickel (Ni) and cobalt (Co) refuse to ever
superconduct — ferromagnetism seems inimical to superconductivity. The same is
true of the light alkali metals such as sodium (Na), potassium (K), etc. But the
most notable exceptions are the noble metals like copper (Cu), gold (Au) and silver
(Ag), which are normally the best conductors of electricity. In fact, ironic as it
may seem, it turns out that good superconductors (the ones with high T, such as
niobium (Nb) for example) are ‘bad’ normal metals. We will soon begin to see why
this has to be so. Besides these elemental superconductors, we have thousands of
superconducting alloys (metallic mixtures), organic compounds, and now even
earthy ceramics, that are found to superconduct — may their tribe increase! In
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Figure 3.2: (a) Absolute temperature scale marking well known transitions; (b) expanded scale
showing T¢’s of some superconductors.

Fig. 3.2 we have listed some of the common superconductors along with their critical
temperatures marked on the absolute (Kelvin) scale. Note the crowding at the lower
end of the scale — the low-temperature superconductors (LTSC). Until about five
years ago the highest critical temperature known was 23.2 K, for a compound of
niobium and germanium (NbsgGe). Now the record is about 165 K, held by a mercury
(Hg)-based high-temperature superconductor (HTSC).

Thus, superconductivity is indeed very common. It is just that the critical
temperatures are abysmally low. If, however, we are willing to leave our terres-
trial laboratories and look elsewhere, there is high temperature superconductivity
in abundance. For instance, there are strong theoretical reasons to believe that the
interior of the neutron star is a neutronic superfluid and a protonic superconductor,
with a T¢ of about a hundred million degrees (see Chapter 8). Nearer home we have
the case of the planet Jupiter. It is again suspected that hydrogen, the major con-
stituent of the giant planet, is crushed to a metallic density under its gravitational
pressure of about a million atmospheres (megabar), and the metal so formed is a
superconductor with a T, of several thousand degrees Kelvin.

Here on earth, however, until very recently, superconductors lived only in the
liquid helium cryostat (i.e., dewar, a sophisticated thermos or vacuum bottle that
keeps cold things cold and, of course, hot things hot). It is precisely this cold-
ness that has kept superconductors confined to the low-temperature laboratories
of the world, away from the gaze of the public eye. We may call these the liquid
helium (LHe) superconductors. More than half a century of uninterrupted worldwide
research could barely push the critical temperature to little over 20 K. So much
so that one began to doubt seriously if higher T.’s were possible at all. And
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then came the breakthrough in 1986, when J. G. Bednorz and K. A. Miiller of
International Business Machines (IBM) at Zurich announced in the September issue
of the German journal Zeitschrift fiur Physik their discovery of an earthy, ceramic
superconductor with a T, of more than 30 K. For this they won the Nobel Prize
in Physics for the year 1987. This led in quick succession to superconductors with
still higher critical temperatures ranging from 90 K to 125 K, thus bringing the
age of the LHe-superconductors to a sudden end. It also initiated the era of the
liquid nitrogen (LN2) superconductors. Liquid nitrogen boils at a comfortable 77 K.
The highest recorded T, stands at about 165 K, which is really not very far from
the lowest temperature recorded on Earth (183 K). And now there is already some
responsible talk of room temperature superconductors — the holy grail of solid-state
physicists.

These events of the last fifteen years have altered our view of superconducti-
vity. It is now a serious belief that in the coming decades, superconductors may
revolutionize human conditions more decisively than the laser, or nuclear power, or
even the transistor ever could. We ought to get more than just acquainted with
superconductivity.

3.2 Infinite Magnetic Reluctance

Zero electrical resistance is the defining property of a superconductor. It is also
by far the most striking properly of a superconductor. But the deciding property
of a superconductor is really its infinite reluctance to admit magnetic fields in its
interior. A superconductor is a perfect diamagnet, which as we shall see is more
than being just a perfect conductor. Let us understand what all this means. Take a
piece of a superconducting metal like tin (Sn) and hold it at a temperature above
its T, so that it is in the normal resistive state. Now, place it in a static magnetic
field which may be conveniently produced by a permanent magnet, or by a solenoid
carrying electric current. Now, a normal non-magnetic metal like tin is indifferent
to magnetic fields. It is almost as good as vacuum, and the magnetic lines of force
run right through it undisturbed. (Of course, the act of placing the sample in the
magnetic field involves initially some motion through the magnetic field which, by
the Faraday law of induction, induces an electric field in the metallic sample. This,
in turn, generates eddy currents in the metal and the associated stray magnetic
fields. But these transient effects die down rather quickly, and we assume that
we have waited long enough for this to happen). Now, let us cool the sample
sufficiently and, lo and behold, at a certain temperature around 7, the sample
turns superconducting and the magnetic lines of force (the flux) are expelled totally
from the bulk of the superconductor. This happens unless, of course, the external
field is much too strong, in which case superconductivity is suppressed and the
sample remains normal down to 0 K (Fig. 3.3).
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Figure 3.3: Meissner effect: (a) normal (N) state; (b) superconducting (S) state.

This dramatic phenomenon of flux expulsion or exclusion, is the famous
Meissner—QOchsenfeld effect named after the discoverers W. Meissner and R. Ochsen-
feld (1933). The process is reversible, that is, the flux lines re-enter the sample if
it is re-heated through the same temperature, T,. What really happens is that in
the presence of the external magnetic field, persistent supercurrents are generated
in the superconducting sample of a magnitude, sense and detail which is just right
so as to produce a field that cancels the external field throughout the interior of
the sample (see Fig. 3.3). We call these screening currents. They flow mostly on
the surface of the sample, almost skimming it. Note that we are talking here about
static magnetic fields and these screening currents are not to be confused with the
eddy currents that are induced even in normal metals but by a time-dependent field
(Faraday’s law of induction). In a perfect conductor (infinite conductivity) these
inductively induced eddy currents will be infinitely large so as to totally screen out
any time-dependent magnetic field. Even in a metal such as copper, which is merely
a good conductor, because of this screening the alternating currents flow only on the
surface up to skin depth which is about a centimeter at 60 Hz and one-twentieth of
a millimeter at 1 MHz. Thus, the central core of a thick copper wire hardly carries
any ‘AC’ current. A superconductor is not merely a perfect conductor (zero resis-
tance) — a perfect conductor will not exclude a static magnetic field. On the other
hand we can readily reason why perfect diamagnetism (flux expulsion) must imply
zero resistance. Assume to the contrary that our perfect diamagnet had a finite
resistance. But then the persistent screening currents must continually dissipate
energy — the I2R loss, remember! The question now is where could this energy
possibly come from. Perhaps from the energy stored in the magnetic field. But
the magnetic field is given to be static (constant in time) and, therefore, it cannot
supply the necessary energy. We seem to have a problem here. There is clearly
no source of energy available to our system. Having thus eliminated the obvious,
what remains, no matter how improbable, must be the true explanation — in this
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Figure 3.4: Magnetic levitation of a bar magnet above a superconductor (S).

case, namely that our perfect diamagnet had no resistance to start with and hence
there was no energy loss to be accounted for. We have just proved that a perfect
diamagnet is also a perfect conductor. The converse is not true. It is for this reason
that perfect diamagnetism is regarded as being a more fundamental property, in
fact the deciding property, of a superconductor.

Perfect diamagnetism (flux expulsion) implies that the superconductor is
repelled away from a strong magnetic field. Thus, for example, we can have a
bar magnet floating above a superconducting surface (Fig. 3.4). This magnetic
levitation has led to the possibility of having ultrafast trains gliding on a frictionless
magnetic cushion.

3.3 Flux Trapping

There is an interesting corollary to the Meissner effect, which is the trapping of
magnetic flux by a superconductor. Let us repeat our experiment demonstrating
flux expulsion, but this time with a sample in the shape of a hollow cylinder. As
the temperature is lowered through its critical value in the presence of the magnetic
field, the flux lines are again expelled from the bulk of the material as expected.
Nothing, however, comes in the way of the flux lines threading the hollow of the
cylinder. Persistent screening currents will flow near the inner and the outer surfaces

(a) Hext=0 (b) Hext=0 (c) Hext=0
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Figure 3.5: Flux trapping by a hollow superconducting cylinder on field cooling.
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of the hollow cylinder as shown in Fig. 3.5. And now let us gradually remove the
externally applied magnetic field leaving our sample all by itself. But what about
the flux lines passing through the hollow of the cylinder? Surely they cannot escape
sideways because in doing so they must traverse the surrounding superconducting
material and this is forbidden by our perfect diamagnet — the flux is trapped. The
persistent screening current now circulating near the inner surface of the hollow
cylinder will sustain this trapped flux. What we have really got here is a permanent
bar magnet. It is robust. You could carry it around in your pocket except for
the inconvenience of having to keep it cold enough. Viewed differently, you have
created a non-polluting device for storing energy — the trapped magnetic flux and
the circulating screening currents form a kind of flywheel, if you like, that stores
(magnetic) energy at almost zero entropy.

3.4 Wholeness of Trapped Flux

The curious case of the trapped flur becomes all the more curious if we enquire
further. What is the amount of magnetic flux trapped in the hollow of the cylinder?
It turns out, and we will shortly know why, that the flux thus trapped cannot have
an arbitrary value. It has to be an integral multiple of a certain basic unit of flux,
denoted by ¢¢. That is to say that it must be a whole number when measured
in lots of ¢g. Fractions, or half-measures, are not allowed! This wholeness is the
celebrated flur quantization, and ¢¢ the quantum of flux. This unit of flux is
extremely small but still macroscopic enough. To have an idea of how small it is,
imagine a circular wire loop of diameter 0.1 millimeter facing the earth’s magnetic
field. Then the loop will intercept about 100 of these flux quanta! Small as it is,
the trapped flux quanta can be counted by jiggling our cylinder in and out of a coil
and then measuring the voltage (electromotive force) induced in the coil due to the
changing flux linkages (Faraday’s law of induction). This was indeed done by B.S.
Deaver and W.M. Fairbank in their classic experiment in 1961 that confirmed this
quantization of trapped flux. As we shall see later, ¢y = hc/2e = 2 x 1077 gauss
centimeter-squared (= 2 x 10715 tesla meter-squared) where h is Planck’s constant,
¢ the speed of light and e the magnitude of the electric charge on the electron.
Planck’s constant gives away the hidden quantum nature of superconductivity. It is
a remarkable fact that the quantum nature of superconductivity was anticipated by
Fritz London in 1935, long before the fully microscopic theory of superconductivity
was given by John Bardeen, Leon N. Cooper and J. Robert Schrieffer in 1957, the
celebrated BCS theory for which the trio was awarded the Nobel Prize for Physics
in 1972. In fact, London had predicted flux quantization, but being far ahead of his
time, he missed the all important factor 2 in the denominator of ¢ = hc/2e. We
now know after BCS that it is ‘2¢’ and not ‘e,” and thereby hangs the tale of ‘two
electricities” — the electron pairing theory of superconductivity.
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3.5 Temperature and Phase Transition

The irresistible zero electrical resistance and the irrepressible infinite magnetic
reluctance that set in at the critical temperature should leave us in no doubt that
a qualitative change of state has taken place. There is a branch of physics that
describes these changes of states of matter in general terms — thermodynamics,
or statistical mechanics if we are interested in a microscopic treatment (see
Appendix C). Temperature plays the central role here. This section is a brief
digression intended to acquaint ourselves with some simple but powerful ideas that
make the change of state understandable.

But first some quick remarks on the absolute (Kelvin) scale of temperature that
we have already spoken of several times. Temperature is the intensity of heat. It
measures the energy of the random jiggling of atoms, molecules, electrons, spins,
or more generally, of the dynamical degrees of freedom that our system may have.
Absolute temperature measures it absolutely. Thus, at the absolute zero of tem-
perature the thermal energy is zero — all motion comes to a standstill. (There is,
of course an irreducible zero-point motion even at the absolute zero of temperature
which is of a purely quantum nature, and is appreciable for the so-called quantum
liquids of which we will speak later. In fact, the superconductor is one such quantum
liquid.) Tt is clear that any property that at all depends on temperature can be used
to detect changes in temperature. Thus, the common household thermometer uses
the thermal expansion of mercury for this purpose. One can also use, for example,
the change of electrical resistance of metals, alloys or semiconductors to measure
temperature charges. Thus, the Platinum (Pt) resistance thermometer is a prime
standard for measuring temperatures down to —260°C. But how can we meaning-
fully specify equal intervals of temperature? To say that equal changes in the length
of the column of mercury in our thermometer give equal intervals of temperature
is nothing more than an assertion that mercury expands equally for equal changes
in temperature — clearly a circular statement empty of any objective content. For
example, the equal intervals so defined may not be equal on a thermometer using
alcohol instead of mercury. The question is if we can define equal intervals of tem-
perature independently of the property of the material. The answer is Yes. As
an act of almost pure reason, Lord Kelvin of Britain, one of the greatest of the
classical physicists, proved in 1860 that such an absolute scale does exist and is
defined in terms of the efficiency of an ideal heat engine. The absolute (or Kelvin)
temperature scale (K) so defined is then conveniently graduated so that the boiling
and the freezing points of water differ by 100 degrees on this scale just as on the
commonly used centigrade scale (C) of Celsius. Then absolute zero (0 K) measures
—273.15°C and is the lowest temperature possible. Water freezes at 273.15 K (0°C),
and ‘room’ temperature is 300 K (26.85°C). It is a profound result of classical sta-
tistical mechanics that every degree of freedom of a system such as a classical gas
in equilibrium carries an equal amount of kinetic energy, kgT /2, where kg is the
Boltzmann constant (the law of equipartition of energy).
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Temperature is the single most important control parameter that determines
the states of matter. A solid (ice) melts to a liquid (water) and the liquid (water)
boils to a gas (steam) as the temperature is raised through the well defined melting
and the boiling points. These are the commonest and perhaps the most important
changes of states that have shaped our biological lives and indeed the universe itself
(see Chapter 10). Yet another interesting example of change of state is the loss
of magnetization when a bar magnet is heated above its Curie temperature —
the change from the ferromagnetic to the paramagnetic state. The change from
the non-magnetic resistive normal state at high temperatures to the diamagnetic
superconducting state at low temperatures is also a change of state, in fact closely
related to the paramagnetic-to-ferromagnetic change of state. We call these different
states different phases of the substance. The change of state is called phase
transition, and the corresponding temperature the transition temperature.

3.5.1 Order Parameter

There is a feature which is common to all phase transitions. The higher temperature
phase is disordered (or less ordered at any rate) while the lower temperature phase
is ordered (or more ordered). There is indeed a competition between order and
disorder, and temperature decides the winner. Thus, for example, the liquid state
is disordered — a snap shot of the liquid state will show atoms positioned more
or less at random, while the solid state formed upon freezing displays a periodic
arrangement, of atoms, which we call a crystal. Similarly, for the magnetic case,
the spins (the tiny atomic magnets) point in different directions at random in the
paramagnetic phase above the Curie temperature T, while they align parallel on
average in the ferromagnetic phase below T.. Indeed, one can define an order
parameter that vanishes in the disordered phase but assumes a nonzero value in
the ordered phase. For a magnet, the choice of the order parameter is obviously the
magnetization. In the case of the superconducting transition, however, the nature
of the order is too subtle as we will see later. The order parameter is one of the most
powerful intermediate concepts in the physics of phase transition. It is an emergent
quality. It was introduced by the great Russian physicist Leo Davidovich Landau in
1960, who gave a general theory of phase transition based on this crucial concept.

3.5.2 Free Energy and Entropy

What is the basic principle that determines which one of the possible phases our
system in equilibrium will be found to be in? For mechanical systems with friction
the answer is well known from our high school physics — the system will settle
down to a state of minimum potential energy. Thus, a marble thrown in a bowl will
eventually come to rest at the bottom-most point. This is a one-body problem. A
somewhat similar minimum principle exists even for our many-body systems with
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a large, almost infinite number of particles (or degrees of freedom) interacting with
one another. Left to itself, our system too will settle down to a final state which
will change no more in time — a state of equilibrium. This state will, however,
correspond to a minimum of what is called the free energy (see Appendix C). Let
us see what this means. Consider a microscopic state of our system of energy E. A
microscopic state means specifying in detail the momenta (roughly, velocities) and
the positions of all the particles (degrees of freedom). Then, the energy F is the
sum total of their kinetic and potential energies. Now, the fundamental principle
of statistical mechanics is that all such microscopic states, which are possible at
all, will occur, but with a probability proportional to exp(—FE/kpT). Next, strange
as it may seem, almost all of these microscopic states of the same energy (F) look
alike from the macroscopic (average) point of view. And it is the macroscopic
viewpoint that matters for all practical purposes. (Indeed, even if we knew the
finer microscopic details, we wouldn’t know what to do with them. The fact of
the matter is that the microscopic description is too fine-grained while our usual
probes are too coarse). Thus, for a given macroscopic state of energy E, there will
be a large number of the microscopic states corresponding to the number of ways
in which the energy E can be partitioned among the many degrees of freedom.
Let this number be g(F). Hence, the probability of occurrence of the physically
identifiable macroscopic state must be proportional to g(E) times exp(—FE/kpT).
We may re-write this as exp(—F/kgT') with the exponent F' = E — kgT In[g(E)].
Here In[g] denotes the ‘natural’ logarithm of g with respect to base e = 2.71828. .. .
So the most probable state is the one that corresponds to the minimum of F, the
Free Energy and not of E. The quantity kg In[g(F)] is the mysterious entropy and
is usually denoted by S. Thus, we must minimize F' = E — TS, and not just E. At
T = 0 K, this, of course, reduces to minimizing the energy itself. This lowest energy
state, called the ground state, is essentially unique for the system. For this state,
g is unity and hence S = 0 (remember, the logarithm of unity = 0). The ground
state, the most ordered state, has zero entropy! It is clear that at a sufficiently high
temperature the entropy term in F' may dominate the free-energy and a different
state may be preferred. In general, g(E) and, therefore, entropy is expected to
increase with energy — there are then obviously more ways of partitioning it among
the various degrees of freedom. The corresponding macroscopic state will also be
more disordered. Ordered microscopic states are fewer due to the constraints of
order, and hence the corresponding ordered macroscopic state has lower entropy.
(Just compare the disorderly crowd and the disciplined military and you will have
the general drift of the idea.) And so it happens that high temperature favors
disorder. The relationship between the many microscopic states and the single
macroscopic state corresponding to them is illustrated best by an analogy with the
game of dice. Consider casting two dice simultaneously. Fach can come face-up
with a number from 1 to 6. Thus there are 6 x 6 = 36 possibilities. These are
all the possible 36 microscopic states of our system of the two dice. Let the dice
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be true for simplicity. Then all 36 microscopic states are equally probable. But
suppose now that we are interested only in the sum of the numbers that the two
dice come up with. The sum can vary from 1 4+ 1 = 2 to 6 + 6 = 12. These
are then the 11 macroscopic states. Let us label them by the sums 2 to 12. Now
you see that the macroscopic state 2 = 1 4 1 is realized in only one way, and the
macroscopic state 3 =1+ 2 =2+ 1 in two ways, and so on. You can easily verify
that the macroscopic state 7 is realized in six ways, which is the maximum and
hence the most probable state. If you want to push this analogy further then
all you have to do is to imagine a large, almost infinite number of dice, and let
the dice not be true. Then the most probable macrostate is all that will occur
overwhelmingly. The others may be regarded as mere fluctuations about this. But
a discussion of these fluctuations will take us far afield.

In the case of our superconducting material the fact that for T' < T, the material
is in the superconducting (S) state implies that it has a free-energy less than the
normal (N) state. The difference Fx — Fy is called the condensation free energy and
is denoted by AF. (The corresponding AE is the condensation energy.) It is clear
that AF is positive and a maximum at 0 K, falls off to zero at T = T and then
turns negative for T' > T, when the normal state takes over.

Calculating the free energy is a horrendous task of statistical mechanics. But the
principle of phase transition is now clear. The behavior of free energy determines
the nature of the phase transition. It may be a discontinuous one, where the energy
E changes by a finite amount even though F' is (as it must be) continuous. This
discontinuous change of F is the latent heat that is given out (absorbed) during
freezing (melting) or condensation (boiling). We have all experienced it some time
or the other, rather regretfully though — the scalding of the hand exposed to
condensing steam from a boiling pot. We call these first-order phase transitions.
The superconducting transition, on the other hand, is a continuous transition with
no latent heat associated with it. The same is true of the magnetic transition.
These are called second-order phase transitions. Unlike first-order transitions, the
changes that take place at and near the second-order phase transition are very
subtle. Several physical quantities, such as the specific heat, show singular behavior
which is remarkably universal.

3.6 Type | Superconductors

While superconductors are all alike electrically, namely that they all transport
electricity without loss once they are below the critical temperature and at very
low currents, their magnetic behavior can be really very different. The perfect
diamagnetism that we have spoken of typifies a superconductor of Type I. Their
behavior is understood quite simply. Expulsion of the magnetic field from the bulk
of the superconductor requires doing some work against the magnetic pressure of the
field thus expelled. It is like blowing up a balloon. You may picture the magnetic
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Figure 3.6: Flux penetration in a superconductor (S). The London penetration length Ar,.

lines of force as elastic strings under tension. They get stretched as they are pushed
out sideways (Fig. 3.3). The amount of work done on the system is proportional to
the square of the field H. This raises the energy (and, therefore, the free energy)
of the superconductor by the same amount. It is clear now that when this exceeds
the condensation energy, the superconducting state will no longer be favorable
energetically and the sample will turn normal. This defines a critical field H. such
that superconductivity prevails only for H < H.. Inasmuch as the condensation
energy decreases from a maximum at 7' = 0 K to zero at T' = T¢, H. too will behave
likewise. Typical examples of a Type I superconductor are mercury, aluminum and
tin. The critical field H, is typically 0.1 tesla (1 kilogauss).

Even below H., the flux expulsion is really only partial. Indeed, it is energetically
favorable to allow the field to penetrate some distance into the interior of the sample.
This is a kind of energy minimization through an optimal compromise as we shall
see later. In fact the field diminishes exponentially as exp(—z/Ar) with the depth
below the surface of the sample (Fig. 3.6). The characteristic length Ay, is called the
London penetration depth. The screening currents flow mainly within this depth.
For the Type I superconductors, Ay, is typically 102-10% A (1 A=10"8 cm). It is
smallest at 0 K and grows to infinity (i.e., the size of the sample) as we approach
T., where the sample turns normal and is filled with the flux lines uniformly.

3.7 Type Il Superconductors

Type II superconductors are different, and much more interesting. Discovered in
1937 by the Russian physicist L. V. Shubnikov, they are also the more important
of the two types for most practical applications. They show the Meissner effect
just like Type I superconductors up to a lower critical field H.;. As the magnetic
field exceeds H.1, something catastrophic happens: the flux rushes into the bulk of
the superconductor and permeates the whole sample. But it does so in the form
of filaments, or flux tubes, rather than uniformly (Fig. 3.7). Each flux-tube carries
exactly one quantum of flux. As the external field is increased, more and more flux
tubes are formed in the sample to accommodate the increased total flux. This goes
on until the flux tubes begin to almost touch each other at H = Hco, the upper
critical field, beyond which superconductivity is destroyed. For Type II supercon-
ductors, the upper critical field H¢y is typically 1 to 10 tesla (10-100 kilogauss).
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Figure 3.7: Flux tube in a superconductor (S) carrying single flux quantum ¢g.

The flux tubes are very real. You can make them wisible by sprinkling finely di-
vided iron filings on the surface of the superconductor. The iron filings naturally
cling to the foot points where the flux-tubes emerge from the superconductor and
thus give them away. Such fluz decoration experiments demonstrate not just the
existence of the flux tubes, but also that these flux tubes are ordered in space as a
triangular lattice at low temperatures. This is the so-called Abrikosov fluzr lattice,
named after the Russian physicist A.A. Abrikosov who predicted it theoretically in
1957. The flux lattice is very real. It can vibrate elastically and even melt at higher
temperatures and form a flux liquid, where the flux tubes can get entangled like the
strands of melted polymers and hinder their mobility.

An individual flux tube has an interesting structure. It has a core which is in
the normal state in that the superconducting order-parameter (or the condensation
energy) is locally depressed to zero. The effect of this depression extends out to
a distance £ from the axis of the tube. This is the so-called coherence length and
measures the distance over which the superconducting order is correlated — it is the
minimum distance over which the superconducting order can change appreciably.
Such a coherence is characteristic of all systems ordered one way or another. Thus,
the superconducting order-parameter (roughly the condensation energy), which is
zero in the normal core, will rise to its full value only beyond &, in the supercon-
ducting regions between the flux tubes. The magnetic field, on the other hand,
will have its maximum value along the axis in the core region, and will fall off to
almost zero beyond a distance A\, away from the axis. Surrounding the core we will
have the circulating supercurrents that do this screening of the field. Thus, the flux
tube looks like a vortex and this state for H.y < H < H¢y is called the vortex state.
Here the normal core region co-exists with superconducting regions intervening
between the cores. For this reason the vortex state is also called the mixed state.

Let us see now what determines the type of a superconductor. The basic principle
is the same — the free energy must be minimized. For a superconductor this requires
compromise between two competing tendencies that operate at the interface (or the
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boundary) between the superconducting region of the sample and the region driven
normal by the magnetic field. On the one hand it is favorable energetically to let
the magnetic field penetrate the superconducting region and thereby reduce the
energy cost of flux expulsion. This gain in energy is proportional to the London
penetration depth Ay, for a given area of the interface. On the other hand, the
superconducting order (or the condensation energy), which is depressed to zero in
the core, remains more or less depressed up to a distance £ from the axis of the
flux tube. This costs energy proportional to £ for the given area of the interface.
Thus, for £ much greater than Ay, it is energetically favorable to reduce the total
area of the interface. It is as if there is a positive interfacial surface energy per unit
area (a surface tension). This will correspond to a complete Meissner effect — total
expulsion of flux as in a Type I superconductor. For the opposite case of £ much less
than Ap, it is energetically favorable to increase the interface area as if the surface
tension is negative. This is realized by flux tubes filling the sample as in a Type II
superconductor. Detailed calculation shows that & ~ A, is the dividing line. The
basic physics here is the same as that of wetting — water wets glass while mercury
does not wet it. A more closely related situation is that of mixing of oil and water
in the presence of some surfactant that controls surface tension. The mixture may
phase-separate into water and oil (Type I) or, globules of oil may be interspersed
in water (Type II). The Type II superconductor is indeed a laboratory for doing
interesting physics.

3.8 The Critical Current

The critical field (H, for Type I or H.y for Type II) is an important parameter
that limits the current carrying capacity of a superconductor. This is because a
superconducting wire carrying current generates its own magnetic field (Ampere’s
Law) and if this self-field exceeds H. or H.a, superconductivity will be quenched.
This defines a critical current density, J.. Clearly, a Type II superconductor with
large H.o up to 10 teslas, is far superior to Type I superconductors with H. of
about 0.1 tesla. There is, however, a snag here that involves some pretty physics.
Consider a flux tube threading a Type II superconductor, and let an electric current
I flow perpendicular to the flux tube. Now, by the Faraday principle of the electric
motor, there will be a force acting on the flux tube, forcing it to move sideways
perpendicular to the current and proportional to it. Physicists call it the Lorentz
force. Once the flux tube starts moving with some velocity, the Faraday principle
of the electric generator (the dynamo principle of flux cutting) begins to operate —
an electromotive force (potential drop, V') is generated perpendicular to both the
flux tube as well as its velocity so as to oppose the impressed current, I. This leads
to dissipation of energy. Remember W (watts) = V' (voltage drop) x I (amperes).
We have the paradoxical situation of having a lossy superconductor! Where is the
energy dissipated, you may ask. Well, the core of the flux tube is in the normal state
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and, therefore resistive. The motional electromotive force really acts on this normal
region, dissipating the energy. Now, this would make Type II superconductors
practically useless. The flux tubes must be clamped somehow. There is an ingenious
way of doing it. Let us introduce some defects into the material — by adding
impurities, alloying, or mechanically by cold working. This can locally depress the
order parameter (or even make it zero altogether). Now, it is clear that it will be
energetically favorable for the flux tube to position itself such that its normal core
overlaps maximally with these defects, where the order parameter (condensation
energy) is small anyway. Thus, the flux tube is pinned at these pinning centers.
Of course, beyond a critical current, the Lorentz force will exceed the pinning force
and the flux tubes will be released, leading to a snap-jiggle kind of motion and
hence to dissipation. (This is a kind of self-organized critical state, much like that
of a sand-pile that self-organizes through avalanches as its local slope exceeds some
critical value.) Proper pinning is the secret of superconductors with high critical
currents.

3.9 Understanding Superconductivity

It should be clear at the very outset that superconductivity has to do with the state
of the free electrons that make up our metal. The electrons repel one other and are
attracted towards the oppositely charged ions that form the background lattice. The
ions can collectively oscillate about their mean positions — the lattice vibrations or
the sound waves called phonons. This is our many-body system. Thus, an electron
moves under the influence of all other electrons and that of the ions. Individually,
it can easily be scattered and this is what happens in the normal resistive state.
But at temperatures below T,, the interacting electrons enter into an ordered state
that somehow has a collective rigidity against such scattering. What is the nature
of this order? It is certainly not that the electrons have crystallized. With such a
long-range rigid order in space they could hardly conduct, much less superconduct.
No, the electrons remain a liquid, but this liquid has an order of which we may not
form a simple mental picture. Here finally we are confronted with their all pervasive
quantum waviness, amplified infinitely by their indistinguishability, and reified in
the stillness of absolute zero, where the scattering ions have, so to speak, all but
gone to sleep — the single, whole macroscopic wave function of the many electrons.
That such may be the case was anticipated by Fritz London back in 1933, almost
25 years before the fully microscopic theory of BCS was completed. Let us try to
see how this may have come about without getting technical.

3.9.1 Fermions

The electron carries an internal angular momentum (spin) which is one-half in units
of A. The spin can point either parallel or antiparallel to any direction that can
be chosen arbitrarily. The quantum-mechanical state of a single free electron in a
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metal is then specified, or labelled, by its energy, its momentum and the direction
of its spin. The latter can be conveniently taken to be either up or down. As we saw
in Chapter 1 on Symmetry, spin-half particles (electrons) are fermions, and no more
than one electron can occupy the same state. Thus, at a given point in space you can
have at most two electrons with opposite spins — the Pauli exclusion principle. This
social (or rather asocial) behavior, called Fermi statistics, is the direct consequence
of indistinguishability of identical particles in quantum mechanics and their half
spin. Thus, the ground state of a system of free electrons, that is the state at
the absolute zero of temperature, is obtained by placing two electrons with
opposite spin directions in the lowest one-electron orbital state, two electrons with
opposite spin directions in the next higher one-electron orbital state and so on
until we have accommodated all the electrons in the system. Thus, there will be a
highest occupied one-electron state, defining an energy level, called the Fermi level
of energy usually denoted by Er. (see Fig. 3.8).

This distribution of occupation numbers among the allowed energy levels is
called Fermi statistics. This is precisely how we build up atoms. A solid is like
a large extended atom. The only difference is that in an atom there is a single
attractive center, the nucleus, and then the electrons are confined or localized
around it like the planets around the sun. In a solid, on the contrary, there are many
equivalent nuclei, and a given electron moving under their influence (potential) is
as likely to be on one of them as on any other. Thus, the electronic wavefunction is
extended over the whole sample like a plane wave. This corresponds to freely moving
electrons. Now, recall that the kinetic energy of a free electron is proportional to
the square of its momentum. Thus, the Fermi energy Er will define a Fermi sphere
in the space of momenta such that all states within the sphere are occupied while
the states outside are empty. Such a Fermi sphere is referred to as the Fermi sea
and the surface as the Fermi surface. In a crystal the Fermi surface can have a
complicated shape reflecting the symmetry of the crystal lattice.

Fermilevel $—$— Er . eT=0°K

Occupation
for each spin
direction

Figure 3.8: Fermi-distribution at zero and finite temperatures.
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For a macroscopic system size, the allowed energy levels are very closely spaced
— they nearly form a continuum, or a band. In a metal there are empty states
available just above the Fermi level into which an electron can be accelerated by
an external electric field, no matter how small. This is what makes a metal a
good conductor — there is room at the top! (Incidentally, in an insulator, by
contrast, there are no allowed higher-energy levels, arbitrarily close to the Fermi
level into which an electron may be promoted by a small electric field, and hence
no conduction. We say that the Fermi level lies in a forbidden gap — between a
lower filled (valence) band and an upper empty (conduction) band of allowed states.
A semiconductor is merely an insulator with a small band gap.) In a metal, the
electrons at the Fermi level (Er) move with large speeds, the Fermi speed vp —
typically 10° metres per second (i.e., a third of one hundredth of the speed of light).
Because of the exclusion principle, however, it is clear that only electrons lying close
to the Fermi level can participate in any low-energy phenomena, which is much of
the solid-state physics — including superconductivity.

The above picture at 0 K is only slightly modified at finite temperatures. All
that happens is that some of the electrons lying below the Fermi level get thermally
promoted to the empty states just above it. Thus, the sharp step in the Fermi-
distribution at 0 K gets smeared out over an energy interval of about kg7 which is
much smaller than Ep. Typically, kgT./Er is 104

One final remark about the electrons in a metal. The electrons, of course, repel
each other by strong long-range Coulomb forces. One may wonder how we can
possibly talk ourselves out of this and treat them as a Fermi gas of particles moving
independently of each other, in the given potential of the background ions. Surely
a moving electron creates a disturbance around it by pushing other electrons out
of its way, for example. This is a complicated many-body system — we speak
of a Fermi liquid. It turns out, however, that these effects can be by and large
absorbed in a re-definition of our particles: a bare electron is dressed with a cloud
of disturbance around it. The quasiparticles so defined now move more or less
independently of one another. Quasiparticles carry the same charge and spin as
the bare electron. But they have a different effective mass, and interact with a
relatively weak, short-ranged (screened) Coulomb repulsion. All we have to do then
is to read quasi-particle (quasi-electron) whenever we say particle (electron). This
tremendous reduction of strongly interacting bare particles to weakly interacting
quasiparticles is due to the great Russian physicist Landau. It is called the Landau
quasi-particle picture.

3.9.2 Bosons

Now, we turn to the other species of particles, the bosons, that have a completely
opposite social behavior — the Bose statistics. Bosons are particles with spin equal
to zero, or an integer. An example of direct interest to us is that of *He, an isotope of
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helium having two protons and two neutrons in the nucleus and two electrons outside
of it, with the total spin adding up to zero, i.e., it is a boson. (Remember that for all
phenomena involving low energies, as indeed is the case in condensed matter physics,
we do not probe the internal fine structure of a composite particle like *He. It acts
just like any other elementary particle with spin zero.) Bosons, unlike fermions, tend
to flock together. That is to say that any given one-particle state can be occupied
by any number of Bose particles. And this leads to a remarkable phenomena called
Bose-Einstein (B-E) condensation. To see this, consider an ideal gas of N Bose
particles (i.e., non-interacting Bose particles) with N very large, almost infinite.
The ground state of the system, that is, the state at 0 K, can be readily constructed
by simply putting all the N particles in the lowest one-particle state, which is
the state of zero momentum and zero energy. What we have is a macroscopic
occupation of a single one-particle state. The occupation number is proportional to
the size of the system — it is extensive. We call this phenomenon Bose—FEinstein
condensation (see Chapter 4.) As we raise the temperature, we expect a finite
fraction of the particles to be excited, or promoted to higher energy levels (Fig. 3.9),
thus depleting the condensate partially. The gas of excited particles in equilibrium
with the condensate forms a kind of interpenetrating two-fluid system. Finally, at
and above a characteristic temperature Tg-g, the condensate is depleted totally.
The temperature Ts-g is called the Bose—Finstein temperature, and ideally, i.e.,
for non-interacting Bose particles, it depends only on the number density and the
mass of the Bose particles. It increases with increasing density and decreasing
particle mass. Thus, something drastic must happens at Tg-g. At and below
this temperature, a finite fraction of atoms condenses into a single one-particle
state of zero momentum, and the fraction ideally grows to a maximum (unity) as
the temperature is lowered to absolute zero. For “He, regarded as an ideal Bose
system, the calculated Ts—g is about 3 K. Now, “He undergoes a phase transition
at 2.17 K, below which its viscosity drops abruptly by a factor of at least a hundred
million. It can flow through the finest capillaries without any viscous drag. It
becomes a superfluid! This phase is called He-II to distinguish it from the normal
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Figure 3.9: Bose distribution at zero and finite temperatures. Thick horizontal peak at zero
energy signifies Bose—Einstein condensate below the lambda point.
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phase of liquid helium called He-1. The transition point is called the lambda point
(T)) because the temperature dependence of the specific heat near T has the shape
of the Greek letter lambda (A). The proximity of the A point (2.17 K) to the Bose—
Einstein temperature (3 K) is no coincidence. It is now believed that superfluidity is
due to Bose—Einstein condensation. The difference between T and the ideal Tg—g
is attributed to the fact that helium is after all not an ideal Bose gas. The atoms of
4He repel each other strongly at short distances due to their hard core, and attract
weakly at long distances due to van der Waals forces (the latter act even between
neutral atoms and molecules and make small particles stick together).

3.9.3 Bose Condensation and Superfluidity

But why should Bose—Einstein condensation give superfluidity? The argument runs
something like this. It is not just that we are allowed to put any number of Bose
particles in a given single-particle state, it is rather that they tend to flock together.
Thus, if a Bose particle is scattered from an initial state to a final state that is
already preoccupied by N particles of its kind, then the probability of this process
is enhanced by a factor (N +1) — it is like the rich getting richer. Consider now the
situation where the condensate is moving with a certain velocity relative to the walls
of a capillary. Let a particle be scattered out of the condensate due to its interaction
with the wall. This is the kind of process that would give rise to viscous drag. Now
the probability of this particle being scattered back into the condensate is propor-
tional to (N* 4+ 1), where N* is the number of bosons in the condensate, which is
a macroscopic number, almost infinite. It is clear, therefore, that the particle will
relapse almost immediately into the condensate with probability unity. Thus, the
condensate has a collective rigidity against scattering — hence the superfluidity.

3.9.4 Phonon Mediated Attraction

But what has all this got to do with the superconductivity of metals, where we
have instead electrons obeying Fermi statistics? If only the spin-1/2 electrons could
somehow form bound pairs, with necessarily integral spin, they would then behave
like bosons and undergo Bose—Einstein condensation! But in order to form these
pairs the electrons must attract each other, and not repel as they normally do.
This then is the big question. It was, however, shown by H. Frohlich that the
electrons can indeed effectively attract one another in the presence of a deformable
(polarizable) lattice of ions that is, of course, always present as the background.
The Frohlich mechanism is roughly the following. An electron attracts the ions in
its immediate neighborhood. The ions respond by moving, ever so slightly, towards
it creating thus an excess of positive charge around it. We say that the electron has
polarized the lattice. Another electron is now attracted towards this polarization
localized around the first electron, and in doing so it is effectively attracted towards
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the first electron. This is very much like the water-bed effect. Imagine two people
lying on a water-bed: each one tends to fall into the depression in the bed created
by the other. You can easily demonstrate this effect by putting two marbles on
stretched linen held taught and watch them roll towards each other.

One is still left with the uneasy feeling that this rather indirect attraction may
not be strong enough to overcome the direct repulsion between the two electrons.
The argument gets somewhat subtle here and involves some interesting physics.
As we have already remarked, the electrons, that is our quasiparticles, repel via
a short-ranged, screened Coulomb potential of a range of the order of the mean
spacing between electrons. This is about an Angstrom or two. But what is most
important is the fact that this potential acts instantaneously, that is to say that
it depends only on the present positions of the two electrons under consideration.
The indirect attractive interaction, on the other hand, involves the tardy movement
of the ions. The ions are sluggish because of their relatively large mass, which is
at least a few thousand times the mass of the electron. The response time of the
ions may be taken to be the period mp of their harmonic oscillations, and is typi-
cally 107!2 s. This corresponds to their typical oscillation frequency, 10'2 Hz, the
so-called Debye frequency. This means that the local polarization induced by the
electron at a point will persist for a time 7p even after the electron has moved
away from that point. Now, the electron moves at the Fermi speed vg, typically
108 cm s~1. It would thus have moved a distance mTpvp which is about 10~% cm
(10* A) during this time 7p. This is much larger than the mean spacing between
the electrons, or the range of the screened Coulomb repulsive interaction. One may,
therefore, expect a second electron to come around and feel the attraction of the
persistent polarization left behind by the first electron, and still be too far away
from it to feel its direct repulsion. This is the essence of dynamical screening — a
rather subtle effect. Thus, the direct repulsion is strong but instantaneous, while
the indirect attraction is weak but retarded, and it is this difference of the time
scales that makes the weak attraction prevail over the stronger repulsion.

In the parlance of many-body quantum physics, this attractive interaction is
viewed as mediated by phonons, that is due to the exchange of virtual quanta
of lattice vibrations. One electron emits (creates) a phonon which is absorbed
(destroyed) by the other electron. Interaction between material particles by the
exchange of some virtual field-quanta is commonplace in physics. Thus, the ex-
change of virtual photons leads to an interaction between charged particles. We say
virtual because the exchanged quanta exist only between the times of emission and
absorption. It should be clear that these quanta must be bosonic. (Fermions have
to be created or destroyed only in pairs.) And phonons are bosons just as photons
are. There is a very transparent way of seeing these processes with the Feynman
diagram (Fig. 3.10).

It turns out that the attractive interaction mediated by the exchange of phonons
is maximum when the two electrons have equal and opposite momenta (velocities).
This enables the two electrons to take maximum advantage of the polarization
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Figure 3.10: Feynman diagram showing emission of a virtual phonon by one electron and its
absorption by another electron, giving an effective electron-electron attraction.

created by each other. Also, as the energy exchanged between the electrons is of
the order of the energy of the phonon exchanged, which is typically the Debye
energy, only electrons lying within the Debye energy of the Fermi surface take part
effectively in the process. The Debye energy of lattice vibrations is typically 104
times the Fermi energy — indeed only a very small fraction of the electrons are
affected by this attractive interaction.

3.10 Cooper Pairs and the BCS Theory

Given this attraction between the electrons lying close to the Fermi surface, one is
immediately tempted to ask if the electrons are going to bind to form pairs. The
pairs so formed will be bosons (because of integral total spin, zero or one), and it is
not hard to contemplate a Bose condensation that would lead to superfluidity (or
rather superconductivity as the pairs will be charged 2e).

It was Leon N. Cooper of the University of Illinois who first considered such
a possibility. Cooper showed that two ‘test’ electrons having a short-ranged at-
traction between them and moving in the background of an impenetrable Fermi
sea (Pauli exclusion principle) formed by the other ‘spectator’ electrons, will bind
with opposite spins, no matter how weak the attraction is. Pairing with opposite
spins means total spin zero — a singlet pairing. There was a hope. Opposite spins
allow the electrons to come close enough to take full advantage of attraction. The
formidable problem of pairing with all the electrons treated at par, gamesters and
the spectators alike, was finally solved by John Bardeen, Leon N. Cooper, and
J. R. Schrieffer, all at the University of Illinois at that time, in their now famous
paper published in Physical Review in 1957. This became the celebrated BCS theory
of superconductivity. The central idea remained that of pairing — of the ‘Cooper
pairs.” What causes the attraction is a secondary issue. Instead of phonons, other
bosonic quanta may be exchanged. One should note, however, that seen from a
distance, Cooper pairs will appear and act as bosons. But, it turns out that the



112 Superconductivity

size of the Cooper pair is typically 10~# cm (essentially the coherence length), which
is much too large compared to the mean electron spacing. Indeed, millions of Cooper
pairs overlap. Thus, treating them as compact bosons, like *He, is an oversimpli-
fication. Still the essential physics remains the same. A direct consequence of this
pairing is that it costs energy to break the pair. Thus, it turns out that unlike the
normal metallic state, we need a minimum energy 2A to excite the superconductor.
Here, A is called the superconducting energy gap. It is typically 10~% Ep. That
such relatively small energy scales should emerge giving a robust superconductor is
an amazing consequence of macroscopic quantum coherence.

The BCS pairing theory with phonon mediated attraction explains many of the
puzzles immediately. First, the electron-phonon coupling involved in the pairing
mechanism is no different from that causing scattering (resistance) in the normal
state. No wonder then that good superconductors are bad normal metals as we
had noted at the beginning. Then, there is the isotope effect. Since the pairing
mechanism involves motion of the ions, the ionic mass M must be a relevant
parameter. Other things remaining the same, the heavier the ion the smaller is the
displacement (dynamic polarization) and hence the weaker is the induced pairing.
Thus, replacing an ion with its heavier isotope (this being the meaning of the proviso
‘other things remaining the same’), T, must go down. The BCS theory predicts T,
to be proportional to 1/M'/2. This is indeed observed experimentally. These and
many other predictions of the BCS theory have since been confirmed — it is the
correct theory of superconductivity.

The connection between superconductivity (or superfluidity) and Bose conden-
sation seems intimate. After all, *He shows superfluidity at 2.15 K as we remarked
earlier while its isotope 3He, which is fermionic (with two protons and one neutron
in the nucleus and two outer electrons, and thus with total spin half), shows no sign
of it around that temperature. The superfluidity of 3He observed at much lower
temperatures in the millidegree Kelvin range is again due to pairing. But this time
around, the pairing is with total spin one (triplet) and not zero (singlet) as for BCS
superconductors. We should caution, however, that the BCS theory goes far beyond
the naive idea of Bose condensation of an ideal Bose gas.

3.11 Some Macroscopic Quantum Effects

As we have remarked several times, particles and in particular electrons have a
wave-like nature. Electrons may be reflected and diffracted by a diffraction grating.
Indeed, electron diffraction is used to study crystal surfaces, and in the electron
microscope. An electron wave can also be made to interfere (with itself) just as the
light wave in the Young double-slit experiment. All that we have to remember is
that these matter waves are the waves of probability amplitude — they are quantum
mechanical waves. A Bose condensate represents a macroscopic wavefunction of all
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the bosonic Cooper pairs in the condensate. It is, so to speak, a highly coherent
superposition of the individual Bosonic amplitudes — something akin to a laser
beam (see Chapter 2 on Lasers). The wave nature of this condensate is described
by the single complex wavefunction (1) = [1(r)|exp(if) such that |1(r)|? gives
the density of the condensate at the point . It has a global phase which is constant
over the whole sample in the absence of any supercurrent. We may treat this
complex wavefunction as the superconducting order parameter, much the same way
as the magnetization M(r) is for a ferromagnet. The magnitude of magnetization
corresponds to |t (r)| while the phase of 1(r) corresponds to the direction of M(r).
Similarly, all values of the phase from 0 to 27 are energetically equivalent. A fixed
global value of 6 for a given superconductor is the spontaneously broken symmetry
akin to a fixed global direction of spontaneous magnetization (see Chapter 1 on
Symmetry). The gradient of # in space causes a supercurrent to flow.

3.11.1 Flux Quantization Revisited

With this picture of the condensate in mind, flux quantization follows in a straight-
forward manner. Consider a superconducting ring enclosing a certain amount of flux
(Fig. 3.11). Let us reckon the total change of phase as we go round a closed curve
C deep in the material of the ring. The total change must, of course, be an integral
multiple of 2. This is because on completing the circuit we must return to the
same value of ¢ — it must be single-valued, we say. Now, recall that exp(i27n) =1
for any integer n. Thus, the phase change must be 27n. Now, it is known from
electrodynamics that the change of phase in going around a circuit must be
proportional to the magnetic flux enclosed by the circuit. In fact it is g¢/hc, where
q is the charge on the basic entity, in our case the Cooper pair. Thus, ¢ = 2e.
Equating the phase changes computed in these two ways, we get ¢ = n(hc/2e).
The flux is quantized!

-------- Superconducting
thick ring

Figure 3.11: Flux (¢) quantization through a superconducting loop.
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Figure 3.12: Josephson junction with persistent supercurrent tunneling through it.

3.11.2 Josephson Tunneling and the Superconducting
Interference

The long-range nature of superconducting coherence shows up dramatically when
we interpose a thin dielectric (insulating) barrier between two superconductors.
This is called a Josephson junction. We can have, for example, a film of tin oxide
(SnO3) separating the two superconducting tin (Sn) electrodes. No current will flow
on closing the circuit if the tin is in the normal state. If, however, the barrier is thin
enough (~25A) and the tin is in the superconducting state, a supercurrent can flow
persistently on closing the circuit without any potential drop across the junction
(Fig. 3.12). There will be a phase difference 6 between the two superconducting
contacts on the two sides of the barrier. The supercurrent will vary sinusoidally as a
function of 0, i.e., J ox sin . This dramatic effect was predicted by the 20-year-old
Brian Josephson at Cambridge in the U.K., for which he shared the Nobel Prize for
Physics in 1973. Since the maximum value of sin @ is 1, it is clear that the Josephson
current must be less than a critical value J.. Beyond J., a voltage appears across
the junction and the DC supercurrent drops to zero!

One can use a pair of Josephson junctions in parallel and demonstrate the
quantum interference effect (Fig. 3.13). The relative phase of the two supercon-
ducting amplitudes along the two arms can be varied by varying the magnetic flux
passing through the enclosed area. One obtains the oscillatory pattern reminiscent
of the Young double-slit experiment with light. It is indeed possible to count the
‘fringes’ (the maxima and minima of the current) and thus measure the flux change
with unprecedented accuracy. A strange thing to note here is that the effect de-
pends only on the total magnetic flux through the area enclosed by the two parallel
superconducting paths. The magnetic field need not touch the superconductors
at all. This non-locality again emphasizes the non-classical nature of superconduc-
tivity. This is the basic principle of the superconducting quantum interference device
(acronym, SQUID). Magnetic fields as small as 10~ gauss can be measured. These
are the kinds of fields produced by the tiny currents flowing in the human brain, or
the rusting fender of your car. Obvious applications are ultra-sensitive sensors.
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Figure 3.13: Interference of partial quantum amplitudes through two Josephson junctions con-
nected in parallel. The resultant supercurrent oscillates sinusoidally with magnetic flux trapped
between alternative paths.

An equally fascinating phenomenon is the AC Josephson effect. If you apply
a DC voltage V across the Josephson junction, the phase difference across the
junction will begin to increase linearly with time, making the current through the
junction oscillate at a frequency 2 eV /h. Thus, a DC voltage of 1 ¢V (one micro-
volt) will produce a frequency of 483.6 MHz. You have made an oscillator! This
fact can be used to measure the fundamental ratio e/h to unprecedented accuracy.
Conversely, we can measure low voltages of the order of 107'6 volt! The phase of
the superconducting order parameter is perhaps the most important aspect of it.

As an aside, let us mention that superconductivity affords us a means of ad-
dressing some very profound fundamental questions of quantum mechanics (see
Appendix B). In dealing with microscopic particles like an electron we freely super-
pose the wave amplitudes. Thus, if there are two possible states labelled 1 and 2 for
an electron with wave amplitudes v, and 19, then the electron can also be found
in the superposed state with the wave amplitude a1v; + ast2. Then, |ai|? and
laz|? give the probabilities of finding the electron in the two states 1 and 2, respec-
tively. The question is if this is true of macroscopic objects with states which are
identifiably (taxonomically) distinct. This is what Erwin Schrédinger, the founder
of quantum mechanics after whom the Schridinger equation is named, expressed
rather picturesquely by asking if a cat can be found in a superposed state of being
at once dead and alive! A superconductor provides us with a Schrédinger cat of
sensible magnitude! This question remains as yet unsettled.

3.12 The Superconductor Comes out of the Cold

Until about 1986, superconductivity belonged in the domain of liquid helium tem-
peratures. The age of low-temperature superconductors (LTSC), and with this the
pre-occupation with low temperatures, came to an abrupt end with the discovery of
the ceramic cuprate superconductor (La-Ba-Cu-O, T, about 35 K) by J. G. Bednorz
and K. A. Miller in 1986. These ceramics were made by mixing oxides of lanthanum,
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barium and copper, and heating them to high temperatures so that they react in the
solid state to form the compound. With this, the era of high-temperature supercon-
ductivity (HTSC) had begun. After some initial skepticism, confirmations poured
in from many laboratories around the world. Superconductors with still higher
transition temperatures (T, about 90 K to 125 K) were soon announced. One
could discern a systematic dependence of T, on the chemical composition. Thus,
substituting Y (yttrium) for La (lanthanum) gave a T, = 90 K for Y-Ba-Cu-O.
Higher transition temperatures were obtained with Bismuth (Bi), Thalium (T1)
and Mercury (Hg). Reports of unidentified superconducting objects (USQO’s) con-
tinue! Room-temperature superconductivity is awaited, though with some studied
nonchalance. This is not the time nor the place to tell the story of this break-
through, except to re-affirm that the excitement generated by it among physicists,
chemists, technologists, metallurgists, material scientists and the common man has
no parallel in the recent and the not-so-recent history of science and technology. It
also marks the culmination of a prolonged scientific ascent (see Fig. 3.14).

! '+ 165K
130 Hg—-based cuprates (1993)
- ® TI Cuprates (1988)
120 —
10— o Bl Cuprates (1988)
100 —
90— ¢ Y Bay,CuzO; (1987)
L 123
80 [Liquid N,
&g 70+~
= |
60—
50—
40—
30 ¢ LaBa(Sr)-Cu-O
(KoNiF, Type)
(1986)
J

0
1910 1930 1950 1970 1990
Year

Figure 3.14: The record of superconducting transition temperatures: The ascent of superconduc-
tivity.
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What is unusual about these high-T¢ superconductors? Are they really different
from conventional BCS superconductors? There are, of course, the obvious facts
of high Tt (35-165 K) and the high critical field Hco (about 100 tesla). These are
strongly Type II superconductors. But there is much more to it than just that.
The point is that normally one thinks of a superconductor as being derived from
a metal. The new superconductors seem more like to be derived from a parent
insulating antiferromagnet. These materials are transition-metal oxides — in fact,
earthy ceramics — and are very poor conductors, almost insulators in the normal
state. But they are insulators with a difference. It is not that the energy bands
of the allowed one-electron states are completely filled — as in the case of band
insulators, with electrons immobilized by the Pauli exclusion principle. In fact,
the bands are half-filled as in a typical metal. This can be readily verified by
doing the electron count right for the parent material, e.g., LapsCuOy4. It is the
partial replacement of the trivalent lanthanum (La) by the divalent strontium (Sr),
say (a process called doping, borrowed from semiconductor physics), that destroys
the parental antiferromagnetism and makes the material metallic, and then, of
course, superconducting with the 7. maximum for an optimal doping (z = 0.15)
for Las_,Sr,CuQy4. In fact, these materials are insulators because of the very large
repulsion between the electrons that prevents them from occupying a state doubly
— one with spin up and the other with the spin down as in normal metals. In
technical terms, this is called electron-correlation, and the materials are said to
be strongly correlated. This single fact makes them behave abnormally even in
the normal state above T.. A structural feature common to all HTSCs is their
layered structures, namely that they comprise weakly coupled layers of CuOs (hence
layered cuprates). This two-dimensionality seems crucial to their high-temperature
superconductivity. These materials hardly show any isotope effect. But pairing is
not in doubt as confirmed by flux quantization experiments. One strongly suspects
that pairing may not be due to phonons. It is believed to be electronic in nature,
and magnetism seems involved in the superconductivity of these materials in an
essential way. It is, however, too early to make any definite claims. There are
just too many theories around. What one can definitely say is that the novel ideas
generated by these superconductors will have a profoundly enriching effect on our
thinking for years to come. In fact, we may have to re-write solid-state physics texts.
One thing is clear: These high-T, cuprate superconductors are complex and rather
chemical, unlike the low-temperature BCS superconductors, which are simple and
rather physical (see Fig. 3.15).

On the practical side, however, the possibilities are clearly enormous. High-T,
superconductors can do whatever conventional superconductors do, and obviously
do it much cheaper, for the simple reason that liquid helium costs a few dollars a
litre while liquid nitrogen costs just a few cents a litre. You save on the cost of
cooling. Besides, liquid nitrogen is much more efficient as a coolant.

Several applications come to mind. Some are large scale applications involv-
ing high currents, high current densities and high magnetic fields as for power
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Figure 3.15: (a) Crystal structure of layered cuprate high-T. superconductor YBasCuszO7; (b)
Crystal structure of a low-temperature BCS superconductor, e.g., aluminium (face-centred cubic)
(schematic).

generation, transmission and energy storage. Others are small scale applications
as in electronics involving low currents, but the current densities can still be very
high. The zero electrical resistance and hence the absence of dissipation (heat loss)
helps in two ways. It obviously makes the system more energy efficient and pro-
vides cheap magnetic flux. Less obvious, however, is the fact that it allows compact
designs as we do not require large surface areas, cooling fins say, to remove heat as
none is generated. This, for example, makes it possible to achieve the highest pack-
ing density of electronic components by making all the interconnects on a silicon
chip superconducting — packing density of logic circuits comparable to that of the
human brain is realizable!

Compact and high-field superconducting magnets can be used in giant particle
accelerators to confine, store and direct the beams of charged particles. Just think
of one such giant machine, the late and lamented six-billion dollar Superconducting
Supercollider (SSC) having 10000 such magnets! The cheap magnetic flux should
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come in very handy here. The same is true of fusion reactors (TOKAMAK) where
the hot thermonuclear plasma has to be confined by a large toroidal magnetic field.

Large superconducting coils carrying persistent currents could be used for non-
polluting energy storage. Such Superconducting Magnetic Energy Storage (SMES)
systems would have to be built underground for reasons of excessive magnetic
stresses on the structure. Thus, the magnetic energy stored in one cubic meter
of space with a magnetic field of about 50 tesla could supply power at the rate of
1 kW for a period of about a month! The energy stored is proportional to the square
of the magnetic field and, of course, to the volume. Magnetically levitated trains
(maglevs) are possible and already being contemplated for operation soon. These
ultrafast bullet trains (speeds of about 500 kmph) will be, for one thing, free from
the ‘click-click’ of conventional trains running on the ‘permanent ways,” and far safer
too. One can also think of large amounts of DC electrical power distribution using
superconducting transmission lines, or better, still, underground cables, and cut the
copper-loss that can easily amount to 5% of the power generated — in 1985 this loss
had cost America US$9 billion! Most of this could have been saved by using DC su-
perconducting transmission lines. In all these cases, however, there is at present the
technological problem of drawing wires of these highly non-ductile materials. But,
encouragingly enough, 1 km long, 0.3 mm diameter fibers of these HTSC materials
are already being made. These may be clad in copper and made into multifila-
ment cables several meters long for actual use. The other limiting factor, almost
as important as the critical temperature, is of a more fundamental nature — the
critical current density J.. High J. is a sine qua non for most applications, but
requires efficient pinning of the flux lines. Remember that for HTSCs, the lower
critical field H; is very low, about 10-100 gauss and, therefore, the flux lines enter
the material rather easily. This is one of the most active areas of research in this
field today. We are, however, close to having usable current densities normally used
in copper conductors.

There are then the low-power applications. For example, sensors like SQUIDS
can be made much cheaper with HTSCs for mapping biomedical magnetic fields
of the human brain (1078 gauss) and the heart (1075 gauss). Even gravitational
waves, the weakest signal of all, may be detected with the help of these SQUIDS.
Studies were under way to use very large Josephson junction arrays for faster,
more compact fifth generation supercomputers with very large memory. Here, the
junction acts as a binary logic element that can be made to switch between the
on-state (corresponding to zero junction voltage) and the off-state (corresponding
to finite or normal junction voltage) in less than a picosecond (1072 seconds) by
passing a current in excess of the critical current. This is a thousand times faster
than conventional switching devices based on transistors. This has, however, been
abandoned now as something not quite feasible.

It may be some years before these low-power devices become fully commercially
competitive. It may take longer still for large scale applications to become feasible.
We may not be able to buy a spool of superconducting wire or ride a superfast
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maglev train for another decade. But there are no serious doubts about these things.
In fact, the possibilities are so diverse and so numerous that in any comprehensive
planning for the future along these lines, we would do well to involve a science fiction
writer. Just think of the curious toys that become possible with room temperature
superconducting materials — magnetically levitated gyros or spinning tops, to name
just two.

After all, room temperature superconductivity is a distinct possibility in the
decades to come. And in any case, in the foreseeable future when coal and oil have
nearly run out, humans may have no choice but to turn to this perpetual motion —
of the second kind.

3.13 Summary

Superconductivity is the complete disappearance of the electrical resistance of a
material at and below a certain critical temperature which is characteristic of that
material. The change of state occurring at the critical temperature is a thermo-
dynamic phase transition. The superconductor is, however, not merely a perfect
conductor, it is also a perfect diamagnet: the magnetic flux is expelled from
its bulk as the material is cooled in the presence of an applied magnetic field,
through its transition temperature. This is the well-known Meissner effect. This
tendency to exclude magnetic flux makes it possible to trap the flux threading
through a superconducting ring permanently, or to levitate a magnet above the
superconductor. But, if the magnetic field exceeds a certain critical value, the super-
conducting state is destroyed and the material reverts to its normal resistive state.
The flux expulsion is, however, not complete: the magnetic field does penetrate the
superconductor up to a certain depth called the London penetration depth which is
typically a few hundred Angstroms. As the critical temperature is approached from
below, the penetration depth tends to infinity (i.e., it equals the size of the system),
while the critical field tends to zero. All this is true for the so-called Type I, or
soft, superconductors. For Type II, or hard, superconductors on the other hand,
the Meissner effect is observed up to a certain lower critical field, which is rather
small, while the superconductivity is destroyed above a certain upper critical field,
which is much greater. In between, there is the mixed phase where the magnetic
flux enters the bulk of the material in the form of flux tubes that have a normal
core whose diameter is of the order of the coherence length, varying from a few to
several thousand Angstroms. The latter is the smallest length scale over which the
superconducting order may vary appreciably. When a supercurrent flows through
the material it exerts a force on these flux tubes making them flow sideways, causing
dissipation. It is necessary, therefore, to pin down these flux tubes to achieve high
critical currents that can flow without dissipation. At low enough temperature these
flux tubes can order as a triangular flux lattice called the Abrikosov flux lattice.
Superconductivity is a purely quantum phenomenon on a macroscopic length
scale. This strangely ordered electronic superfluid state is described by a complex



3.14. Further Reading 121

order parameter whose phase leads to observable effects, such as the quantization
(wholeness) of flux trapped in a superconducting ring, or a flux tube, when measured
in certain natural units, or the ability of the supercurrent to flow across an insulating
layer, several Angstroms thick, separating two superconductors. This is the famous
Josephson junction effect.

The correct microscopic theory of superconductivity, the celebrated BCS theory
named after J. Bardeen, L. N. Cooper and J. R. Schrieffer was proposed in 1957,
almost half a century after the phenomenon was discovered by Kamerlingh Onnes in
1911. The basic idea is the formation of loosely bound electron pairs, Cooper pairs,
due to an indirect attraction induced by the polarization of the background lattice.
Cooper pairs behave roughly as bosons and undergo Bose—Einstein condensation at
low enough temperatures. The condensate has the superfluid property.

Superconductivity occurs widely among elements, compounds and alloys. The
transition temperatures are, however, abysmally low, typically a few degrees above
the absolute zero of temperature. This necessitates the use of liquid helium
as coolant, which is both inefficient and expensive. The recent discovery by
J. G. Bednorz and K. A. Mueller in 1986 of high temperature superconductivity
in certain oxides with transition temperatures now as high as 165 K — much above
the boiling point of liquid nitrogen — has changed all this. Liquid nitrogen can
now be used as the coolant, which is much more efficient and costs much less.

Most applications depend on the Type II superconductors because of their higher
critical temperatures, critical fields and critical currents. Superconducting magnets
are already in use. Superconducting cables, energy storage devices, magnetically
levitated trains and Josephson-junction based devices are becoming feasible. It
seems that the revolution initiated by these novel high temperature superconductors
may well be comparable to that brought about by the transistor.

3.14 Further Reading

Books

e C. Kittel, Introduction to Solid State Physics, Sixth Edition (Wiley, New
York, 1988).

e F. London, Superfluids, Vol. 1 (Superconductivity) (Wiley, New York, 1954,
reprinted by Dover, New York).

Popular Books

e P. Davies (Ed.), The New Physics (Cambridge University Press, 1989).
Contains a chapter on superconductivity and superfluidity.

e B. Schecter, The Path of No Resistance: Story of the Revolution in Super-
conductivity (Simon and Schuster, New York, 1990).



This page intentionally left blank



Bose—Einstein Condensate:
Where Many Become One
and How to Get There

4.1 Introduction

Normally, the atoms and molecules of a gas, for example the air at room tempera-
ture, are distributed randomly and sparsely in energy and momentum with each
particle doing its own thing. This is described by the well-known Maxwellian dis-
tribution of velocities with its familiar Gaussian hump. This state of affairs can,
however, change dramatically at low enough temperatures and high enough densi-
ties for the gas of a certain type of atoms, Bose atoms or bosons, e.g., rubidium
atoms (87Rb), provided of course that the gas is still dilute enough so as to bypass
temporarily its eventual condensation to the liquid state, or freezing to the solid
state. Consider thus a dilute gas of rubidium containing about 10'2 atoms per
cm?, say, which is some ten orders of magnitude rarer than the typical solid or the
liquid that we know of. When cooled to and below an abysmally low critical tem-
perature, Tgrc, typically only a few billionths of a degree above the absolute zero
(—273.15°C), the gas enters a new phase in which a finite fraction, close to unity, of
the ultra-cold atoms suddenly drops into the lowest energy single-particle state, that
now becomes occupied macroscopically. This is most unlike the sparsely occupied
higher energy single-particle states that occur at room temperature. Such a many-
body state with a macroscopic occupation of the lowest energy single-particle state is
called the Bose-Einstein Condensate (BEC). It is an object with coherent wave-like
properties that are strange and totally counter-intuitive to our classically imprinted
mind. The BEC has aptly been claimed to be a new state of matter. Its strangeness
derives directly from the single fact that all the atoms in a BEC move in unison
— with every atom doing precisely the same thing. Because of this co-ordinated
lockstep motion, the BEC acts as a single giant atom despite the fact that it may
actually contain 103107 atoms, or more. It is as though the atoms have lost their in-
dividual identity — a coherent wholeness of which we may never make a true mental
picture. Figure 4.1 is a schematic depiction of this order. In fact, the BEC is a quan-
tum phenomenon in which the wave nature of matter, of the atoms, is manifested
on a macroscopic scale — where the microscopic atomic wave-amplitudes add up
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Figure 4.1: (a) de Broglie wavelength Agg(T) = h/\/ (27 MkpT) of an atom of mass M in a gas
at temperature T. (b) For T > Tggc, AaB(T) < d, the interatomic spacing. (c¢) For T' < Tsrc,
AaB(T) > d and the thermal de Broglie waves overlap in lockstep to give Bose-Einstein condensate
(BEC). (Schematic).

coherently to give a giant wave of macroscopic amplitude that has all the wave-like
properties such as interference and diffraction, much as the photons of light in a
laser beam or the overlapping Cooper pairs of electrons in a superconductor do.
Indeed, a BEC atom laser has already been demonstrated.

Such a BEC was experimentally realized first in a dilute gas of 8"Rb, a bosonic
isotope of rubidium, by Eric Cornell of JILA (Joint Institute for Laboratory
Astrophysics) and NIST (National Institute of Standards and Technology) Boulder,
Colorado, USA, jointly with Carl Wieman of JILA and the University of Colorado,
Boulder, USA, in 1995, and independently a few months later by Wolfgang Ketterle
of MIT, Cambridge, USA, in sodium (?3Na). This opened up a whole new field
of atomic, molecular and condensed matter physics with far-reaching potential for
applications including: metrology (ultra-precise and stable atomic clocks for global
positioning and space navigation); nanotechnology (nanolithography on semicon-
ducting chips using sharply focused atomic lasers); sensitive gravitational wave
detection (using atom interferometers); and fundamental physics (detection of
subtle and minute high-energy physics effects, e.g., the time-reversal symmetry
breaking effect in atoms at low energy). Some, like the atom laser have already
been demonstrated. In due recognition of their achievements, the three physicists,
Eric Cornell, Carl Wieman and Wolfgang Ketterle were awarded the 2001 Nobel
Prize in Physics. Of course, this extraordinary feat of creating the dilute-gas BEC at
nanokelvins was made possible by the earlier research of many others on the physics
of laser cooling and electromagnetic trapping of atoms that had culminated in the
work of Steven Chu (of Stanford University, USA), Claude Cohen-Tannoudji (of
College de France and Ecole Normale Supérieure, France), and William D. Phillips
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(of NIST, Gaithersburg, USA) on laser cooling for which they were awarded the
1997 Nobel Prize. More than 20 laboratories around the world have now realized
the BEC in various alkali-atomic vapors, and notably also in spin-polarized atomic
hydrogen, which was long awaited.

A brief historical note at this point seems in order. The idea and the reality of
BEC was, of course, not new and certainly not in doubt. Then why all this fuss
about the BEC, one may rightly ask. Let’s try to understand this. In fact such a
condensed state was predicted for liquid helium (*He) by Einstein back in 1925, as
a necessary consequence following from the new statistics proposed in 1924 by the
Indian physicist Satyendra Nath Bose — the new rule for counting correctly the
distinct arrangements of the indistinguishable photons, the quanta of light. Bose
had successfully derived from this the celebrated Planck law of black body radia-
tion. Einstein extended this new statistics to include also the other particles that
belonged in the same class as the photon as having an integral spin (intrinsic an-
gular momentum measured in certain natural units), but which, unlike the photon,
were permanent, i.e., of fixed (conserved) number, such as the atoms of the noble
gas helium (*He). After all, de Broglie had already proposed that atoms too are
waves — matter waves like photons of light — only that the atoms may have much
shorter wavelengths (A = h/p) depending on their momentum (p). And, of course,
Einstein was right, except that the strong inter-particle interactions of the dense
liquid helium (*He), unlike those in the dilute nearly ideal gas of sodium or rubid-
ium, all but deplete the condensate fraction — to even less than 10%. (Ironically,
Einstein himself didn’t quite believe in the reality of BEC, though he liked the idea
of it as something pretty. In fact, after 1925 he never ever returned to the subject
of BEC!). But, the new statistics has since been known as Bose—Einstein statistics,
and the particles obeying this statistics as bosons. Bose statistics is inclusive in
that any number of bosons of a kind can, indeed are encouraged to, occupy the
same single-particle state. It is again a profound result of physics that a particle,
be it elementary like the photon or composite like the *He atom, having an integral
spin (total intrinsic angular momentum measured in units of ki, Planck’s constant
h divided by 27) is a boson. (And those with a half-integral total spin, such as the
3He atom or the commonplace electron, are fermions. Fermions obey a different,
exclusive statistics, Fermi—Dirac statistics in which not more than one particle of
a kind can occupy the same state. Sure enough, the bosonic *He does undergo
a Bose-Einstein condensation, but not its fermionic cousin He. This connection
between the spin and the statistics is one of the deepest theorems in all of physics).
So once again, given this knowledge, why so much fuss about the BEC?

Much of the novelty of, and the fascination for, the dilute gaseous alkali atomic
BEC lies in the fact that this dilute BEC is near-ideal (having ~100% condensate
fraction, and not just <10% as is the case for dense liquid helium, *He). Besides, it is
tunable — over a wide range of density, composition, strength, range, and even the
sign of the inter-particle interaction. Its internal electronic state can be conveniently
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manipulated with light. This is unlike the case of the dense liquid “He, which is
just as given. Before the entry of the dilute gaseous BEC center-stage, the conden-
sate was the exclusive domain of a few exotic systems — primarily the aristocratic
4He and the *He-3He mixture of course, but also, on the side, the condensate of
the short-lived electron-hole excitons created optically in the semiconducting CusO;
the pion condensate suspected to lie in the interior of neutron stars; the predicted
spin-polarized hydrogen BEC now realized; the Bose-like Cooper pairs in a super-
conductor; and possibly even vacuum as the particle-antiparticle condensate. With
the coming of the dilute alkali gas BEC, this helium-centric exclusivity has finally
ended. Moreover, alkali atoms are common and highly reactive, while helium is
noble and inert, although admittedly, quite Nobel active!

4.2 Bose Statistics: Counting of the Indistinguishables

Classically identical objects become indistinguishable quantum mechanically. (And
quantum mechanics is now known to describe Nature correctly and exactly, from
the domain of the very small on the atomic and the sub-atomic scale to the do-
main of the very large on scales that are sensible and beyond, at which it is well
approximated by Newton’s laws of motion that underlie classical mechanics). Let
us try to grasp this idea of the indistinguishability of identical objects. It is no mere
nit-picking. It has observable consequences. Two objects are ordinarily said to be
identical if you cannot tell them apart. That is to say that if the two objects were
swapped while you were not looking, you simply wouldn’t know it — we then speak
of a symmetry with respect to exchange, or of the permutation symmetry if you
will. A little thought will, however, convince you that the two identical objects in
question were nevertheless distinguishable, even if only by virtue of their occupying
different positions in space at the given time. This is so because it is possible then,
in principle, to continuously follow the trajectories of the two objects as they were
being exchanged. For then you could always tell which was which. Such a tagging
and tracking is, however, not admissible in quantum mechanics. A trajectory re-
quires knowing the position as well as the momentum (velocity) of the particle at
each instant of time, but, the Heisenberg uncertainty principle does not allow such a
simultaneous fixation of the position and the momentum (velocity) of a particle —
there are no trajectories in quantum mechanics! This puts paid to our hope of con-
tinuously tracking the notionally tagged identical objects, even in principle. Thus,
even if we could identify them by their positions at one instant, their positions will
become totally confused at the very next instant. In fact, all we can claim at any
future date is that there is one particle here and one out there, say, without ever
knowing which was which. Hence the quantum indistinguishability of classically
identical particles! The argument is admittedly heuristic, but has a logical appeal
that one may not resist.
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This indistinguishability has profound consequences for statistics — for how
to count the distinct arrangements of the indistinguishable particles. A simple
example will illustrate this point. Let us consider four identical objects, apples
{41, As, A3, A4} say, and ask in how many ways can we distribute them in two boxes
with two apples each. Classically, we can count six distinct partitions, namely,

{A1, A2} /{As, A}
{A1, A3}/{A2, A}
{A1, Aa}/{A2, A5}
{A2, A3}/{ A1, A}
{A2, Aa}/{ A1, A5}
and {A3, A4}/{A1,A2} .

Here the first set of braces {---} denotes box 1 and the second set box 2. But
now, let the apples become indistinguishable. Then there will be just one such
distinct partitioning — with two apples (which two we do not, and in principle,
cannot know) in box 1 and the remaining two in box 2 — a reduction in count by
a factor of six in going from the identical to the indistinguishable! This reduction
factor would be 252 for 10 apples, and thanks to the tyranny of factorials, it would
grow quickly many-fold with more apples. Generalizing, it is clear that for the
indistinguishable objects we can specify only the occupation numbers of the different
bozes, and not the occupants. Shuffling of the indistinguishables does not generate
new arrangements — {Aj, Ao} /{As, A4} is the same as {41, A3} /{A2, Ay} — and,
physically, the labels count for nothing. All we have to do now is to replace the
apples with our indistinguishable bosons, and the boxes with the single-particle
states in which to put the particles, and we are home!

Associated with this indistinguishability, there is an additional feature of bosons,
namely, that any number, 0,1, 2, ..., of the bosons of a kind can be put into a given
single-particle state — they obey the inclusive Bose—Einstein statistics. The identity
crisis arising from indistinguishability leads to a reduction in the boson-state count,
which then together with the inclusive bosonic statistics leads to a crisis of over-
population. The BEC is the resolution of this over-population crisis.

As to what maketh a particle a boson, this is a deep question of which we do
not have a complete understanding. The great divide of the social bosons and
the asocial fermions is a fact of life. As pointed out earlier, a particle, whether
elementary (e.g., the photon) or composite (e.g., *He), is a boson if it has an integral
spin — meaning its total spin, the electronic and the nuclear spins added vectorially
together as per the quantum addition of angular momenta. Thus, the helium atom,
4He, with two protons, two neutrons, and two electrons (all spin-1/2 particles) is a
boson with a total spin of zero (like the photon), while the other helium isotope,
3He, with two-protons, one neutron and two electrons is not a boson (it is a spin-1/2
fermion). Similarly, rubidium atoms (87Rb) are bosons, but potassium atoms (*°K)
are not (they are fermions). Most atoms and other composite objects, even Swiss
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watches if you like, are bosons. The bosonic character, however, may not be manifest
macroscopically unless the de Broglie wavelength exceeds the inter-particle distance
(ensuring overlap of the atomic waves as in the BEC) or the range of interaction.
Thus, the hugely famous molecule of the last century, the fullerene, or Cgp, may
not reveal its bosonic character any time soon — much less Swiss watches!

We will end this section on a somewhat philosophical note. Two bosonic atoms
of 87Rb, say, one in the ground state and the other in the optically excited state, are
to be treated as the same object but in two different states. This non-dualist view
leads to calculable, verifiable and, indeed, verified results. The generally askable,
but not so frequently asked, question now is when two objects are to be viewed merely
as two different states of one and the same object, and not really as two different
objects altogether. Enough for us to wonder!

4.3 Bose-Einstein Condensation (BEC):
The Over-Population Crisis

Let us see now how BEC really comes about. For a system of N bosons in equi-
librium at temperature T, the chance or the probability of the system to be found
in a state of energy E is proportional to the Boltzmann factor exp(—F/kgT) times
the number of distinct configurations (microstates) of the particles in the system
corresponding to this given energy. It is this latter combinatorial weight factor that
gets drastically reduced for the Bose particles discussed above. Thus, the number
of Bose particles of a kind that can be statistically accommodated freely diminishes
as the temperature is lowered. This diminishing capacity to accommodate particles
implies a maximum number for the Bose particles that can be normally held in ther-
mal equilibrium at a given temperature. What should become of the excess then?
The excess over this maximum number, as was first argued by Einstein, must drop
into the lowest single-particle state, which then becomes macroscopically occupied
leaving the higher lying states populated sparsely. (This is much the same as a sat-
urated vapor supernatant above a condensed liquid with which it is in equilibrium.
At a given temperature, the saturated vapor can hold only so much. Any excess
simply condenses out into the liquid. A mere analogy though!). We see, therefore,
that the BEC is indeed a resolution of an over-population crisis resulting from the
identity crisis coupled with inclusive Bose statistics. A direct consequence of, and
the evidence for, this condensation is so-called Bose Narrowing: as the number of
the Bose particles is increased beyond a critical number for a given temperature,
more and more of the particles drop into the lowest energy BEC state, thereby bring-
ing down the average energy per particle as well as its spread below the classical
thermal value (3/2)kgT.

The condition for the onset of BEC follows from some fairly general arguments.
Consider an ideal gas of non-interacting Bose particles, to which a dilute Bose gas is
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a good approximation. Let the number density of the gas be n, giving a mean inter-
particle spacing of n=1/3. At temperature T, the mean thermal (kinetic) energy per
particle p /2M would be (3/2) kgT giving pin = (3MkpT)*/2. But as we know,
a particle of momentum p has associated with it a de Broglie wavelength, A\gg =
2nh/p, giving Agp(th) = 27h/\/(2n MEkpT). Now, it is reasonable to argue that for
Aap(th) > n~1/3 (i.e., the mean separation less than the de Broglie wavelength) the
matter waves will overlap appreciably and the system will exhibit a macroscopic
coherence. The onset condition for this degeneracy from the above consideration is
that nA3g(th) be close to unity. The exact condition turns out to be nA35(th) =
2.612. The quantity n)\gB (th) = p can be recognized as the phase-space density
(measured in units of h=3) at a given temperature. In a true sense then the BEC is
a confinement in phase-space — a product of simultaneous confinements in the space
of positions and in the space of momenta. For ordinary gases at room temperature
and pressure, we have p ~ 1075, a million times smaller than the critical value.
Thus, the condition for the onset of BEC is that there be one Bose particle for
every phase-space cell (of volume h?), this being the minimum phase-space cell
volume required by Heisenberg’s uncertainty principle. (Note that h® is the natural
unit for the phase-space volume). The corresponding critical temperature for BEC

turns out to be
P 27 h2 ( n )2/3
BEC ™\ Mkg ) \2.612/)
3

Thus, for a dilute gas of rubidium 8"Rb, with n ~ 5 x 10'2 atoms per cm?, we
get Terc ~ 100 nK (nanokelvins), as is indeed observed in experiments. In fact,
using this formula boldly for the dense liquid *He with ten orders of magnitude
higher density, we get Tsgc = 3.2 K against the observed Tggc = 2.18 K, which
is quite remarkable considering that the liquid *He is clearly far from being dilute,
much less an ideal (non-interacting) Bose gas. In fact, while the fraction condensed
as BEC clearly depends on the inter-particle interaction, the onset temperature for
BEC is quite insensitive to it. Unlike other phase transitions, the BEC is really a
consequence of quantum (Bose) statistics and not of any dynamical interaction.

Figure 4.2 sketches the Bose—FEinstein statistical distribution at different tem-
peratures, and the development of BEC as the temperature is lowered. The classical
Maxwell-Boltzmann distribution is also shown for comparison. The general statis-
tical features of an ideal, or a weakly interacting dilute Bose gas in thermal equi-

librium is best described by giving the average occupation number of the different
single-particle energy states. At temperatures above Tpgc these states are occupied
sparsely, but at Tggc a spike begins to appear at the lowest energy state that grows
in strength with the further lowering of temperature. The spike represents the BEC
— the macroscopic occupation of the lowest energy single-particle state.

It is important to realize here that for an extended uniform system (such as
liquid helium), the lowest energy single-particle state is the zero-momentum state
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Figure 4.2: Plot of occupation number n; of single-particle state ¢ against state energy ¢; at
different temperatures T: (a) Maxwell-Boltzmann statistics. (b) Bose-Einstein statistics for T' >
Tsrc- (c) Bose-Einstein statistics at T < Tggc. Spike at zero energy shows Bose-Einstein
Condensate (BEC). (Schematic).

which is necessarily delocalized over the entire sample volume. Thus, a BEC, if at all
there, will occur in this zero-momentum state that is spatially extended. (Indeed,
such a zero-momentum BEC in liquid “He was detected in experiments involving
the scattering of neutrons by the BEC.) In the recent realization of BEC in dilute
alkali gases, however, the gas is spatially confined in a certain potential trap, and,
therefore, the BEC is localized spatially in the lowest-energy orbital state in the
trap — a much more dramatic object! Another rather subtle point to consider here
is regarding the role of the spatial dimensionality. It may appear that the BEC
condition for the over-population crisis, namely that the thermal de Broglie wave-
length A\qp(th) exceed the mean inter-atomic spacing n~'/3
dimension (just replace n~'/3 for three-dimensions by n~1/? for two-dimensions, for

, can be satisfied in any

a very thin film, say). A proper counting of states, however, shows that extended
BEC is just not possible for fewer than three space dimensions. Indeed, with fewer
than three-dimensions there is plenty of room at the bottom to accommodate the
bosonic population, no matter how low the temperature is. Finally, thermal pho-
tons, despite being zero-spin bosons, do not form a BEC no matter how low the
temperature is — they simply disappear as the temperature drops, and there is



4.4. Cooling and Trapping of Atoms: Towards BEC 131

no over-population crisis. Their number is not conserved. The situation is quite
different for a laser, however, where the macroscopic photon population in a single
mode is created and maintained through optical pumping — a non-equilibrium
condition! Bose-Einstein Condensation in a gas of bosons of finite but long enough
life-time remains an open problem.

4.4 Cooling and Trapping of Atoms: Towards BEC

Cooling means the slowing down of the atoms that are normally in heat motion.
This involves removal of their kinetic energy and momentum. It requires forces
that depend on the velocity. Trapping means spatial confinement of the atoms.
This involves creating a potential minimum or well for them. It requires forces that
depend on the position. And all this under conditions of ultra-high vacuum, at about
one million millionth of the atmospheric pressure so as to eliminate their scattering
out of the trap, or reheating by collisions with the background air molecules that
continue to remain at room temperature! For a gas of neutral atoms cooling must
precede trapping. This is because the traps are shallow inasmuch as the neutral
atoms couple rather weakly to the external electromagnetic fields. And the traps
must be contactless to prevent nucleation that would lead to rapid condensation of
the vapor to the liquid, or freezing to the solid state. For similar reasons, as we
will see below, the gas must be very dilute, e.g., with n ~ 10'? per cm®. This then
requires ultra-low temperatures of the order of nanokelvins to obtain the BEC,
as discussed in the preceding section. These demands of ultra-low temperatures
and of contactless trapping rule out all conventional low-temperature (cryogenic)
techniques and material containments. One must use light and magnetic fields only.

Cooling and trapping generally proceeds in two stages. The first involves laser
cooling and magnetic trapping, while the second involves magnetic trapping and
evaporative cooling. Let us see how. But before we do, let us return briefly to the
question of why we must have such a dilution of the gas at all. Why not use instead
a denser gas and thus raise the abysmally low temperature required to realize the
BEC? (See the expression for Tgrc in Section 4.3). The problem really is with
the inter-atomic interactions. This involves some interesting physics worthy of a
digression. To get an ideal BEC, that is one with ~100% condensate, we must
minimize the effect of the inter-particle interactions to almost zero. For this the
particles must be kept far apart, away from one another, for most of the time so
as not to allow their condensation to the denser liquid droplets; or all is lost. The
cold gas must remain gaseous! Now, it is often not well appreciated that such
a condensation involves, at the very least, a three-body collision — three atoms
must simultaneously approach one another. A two-body elastic collision between
two freely moving atoms by itself cannot lead to their coalescence into a bound
molecule — the first step towards condensation. This would violate conservation
of energy-momentum. One must have a third body around to receive the kick and
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carry away the excess energy-momentum — one must have an inelastic process, if
you like. But, a three-body encounter is relatively improbable and, therefore, rare
in a highly dilute gas. It is this statistical rarity of the three-body encounters that
keeps the ultra-cold dilute gas gaseous — though metastable against condensation to
a liquid drop or freezing to a solid speck — despite the abysmally low temperature.
Admittedly, the metastable state has a short lifetime, of the order of seconds, for
the dilute alkali-atom gases used for BEC. But this time scale is still long enough
on microscopic time scales or for the experimental duty cycles of interest. This is
why a dilute gas and the associated ultra-low temperature is a sine qua non for
realizing a good BEC.

4.4.1 Laser Cooling and Magnetic Trapping:
Down to Microkelvins

That light carries energy is well known. A short exposure to sunlight and the
resultant feeling of warmth amply confirms it. Less well known, however, is the fact
that light also carries momentum; and much less that it carries angular momentum
too — that it can, therefore, exert pressure and torque on reflection, refraction,
absorption, or emission. (In the last case we call it recoil.) The pressure due to
light is, of course, too slight to be ordinarily sensible. Light pressure was first
demonstrated in the laboratory by the Russian physicist P. N. Lebedev back in
1899 by the torque it produced. On a much grander scale, we now know that it is
partly due to the pressure of the light from the Sun that the tail of a comet — the
tenuous part consisting of the finely divided dust particles and neutral molecules —
curves away from the Sun, as first suggested by Kepler. (A much more dominant
part of the comet tail, however, comprises ionized gases, and is deflected away from
the Sun by the charged-particle solar wind.) On a sunny noon, the pressure due
to the sunlight on a reflecting surface is about five micronewtons per m2. Indeed,
giant ultra-light solar sails (light-sails) for spaceships to be propelled by sunlight
pressure have been seriously proposed. So, light does carry momentum as well as
energy. We can make it work for us. Indeed, a micron-sized optical microrotor, held
in an optical tweezer and driven by the flux of light — a veritable windmill — has
been demonstrated recently.

Now, light is best described as consisting of photons — packets of energy (E)
and momentum (p) related to the wavelength () of the light through E = hv and
p = h/X\ with vA = ¢, the speed of light. Thus, a photon absorbed by an atom
imparts its energy and momentum to it — it can heat and accelerate the absorbing
atom. But can it also slow down the atom and thus cool it too? That is the question.
And the answer is yes, it can — under certain near-resonance conditions that can
be and have been obtained in the laboratory. (Admittedly, it is generally easier to
heat than to cool, and we know that, watt for watt, refrigerators cost more than the
heaters!) The cooling has indeed been realized through a combination of ingenious
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Figure 4.3: (a) Absorption and spontaneous emission of photons at resonance with atomic tran-
sition between ground (g) and excited (e) states. (b) Frequency response of atomic resonance of
width T" centred at v4. (Schematic).

ideas that allow selective and adaptive exchange of energy and momentum between
the light and the atoms. The key idea here is that of Doppler Cooling, and the fact
that the normally all too weak light-atom interaction gets enhanced many-fold at
and about resonance. This light force can indeed accelerate an atom up to 100000
times the acceleration due to Earth’s gravity!

4.4.1.1 Doppler Cooling

Doppler effect is the change in the observed wavelength or frequency of light due to
the velocity of the observer relative to the source of that light. In the present con-
text, the source is a laser that emits light and the observer is an atom that absorbs
(detects or observes) the laser light. Stated more precisely, the observed frequency
(vo) is shifted upwards (downwards) relative to the laser frequency (v1,) according
as the relative velocity (V) of the observer (O) and the laser (L) is towards (away
from) each other: vo = v,(1 £ %), where c is the speed of light. Understandably,
the upward shift is termed the blue-shift and the downward shift the red-shift. (The
Doppler effect has the well-known acoustic analogue in the common experience that
the sound from a siren or a train whistle has a higher (lower) pitch or shrillness
according as the siren or the train is approaching (receding) from us. The Doppler
radar used by the highway patrol to check for over-speeding works on the same prin-
ciple). Indeed, it was the Doppler red-shift of the light from the distant galaxies
that gave away the expansion of the universe, as discovered by Edwin Hubble in
1929. It is this very Doppler shift that gives the tunability of light-atom interaction
that ultimately allows the laser cooling of atoms, adaptively and selectively.
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The atom has an internal structure with a positively charged central nucleus
and the negatively charged electrons bound to it by the attractive Coulomb force.
The rules of quantum mechanics ordain the system to exist in one of the allowed
discrete (quantized) energy states, with the lowest energy (ground) state and many
higher lying excited states. These states are labeled by certain quantum numbers
that describe the orbital state of the electron — its principal energy level and
the angular momentum. Then there is the electron spin whose interaction with
the orbital motion gives a spin-orbital fine-structure, while its interaction with the
nuclear spin gives a still finer (hyperfine) structure. For a general understanding of
laser cooling and trapping, we do not have to enter into this atomic anxiety — the
details. It is enough to note that the atom can make transitions selectively between
two such states with the emission or absorption of a quantum of light (photon) so
as to conserve the energy, among other such quantities that must be conserved, e.g.,
the angular and the linear momentum. (This is what gives rise to the line spectrum
characterizing the atom, and used extensively in the laboratory to fingerprint them
— spectroscopically. Astronomers use it to determine the elemental composition of
distant stars from the spectrum of the light received from them.) Now, consider the
absorption of an incoming photon of frequency v by an atom involving its forced
excitation from the ground state (g) to an excited state (e). This would require
the photon energy to match the excitation energy, i.e., hv = E. — E,, the strict
resonance condition (Fig. 4.3a). But not quite so. The excited state actually has
a finite lifetime (7), of the order of 10~% sec, after which it decays spontaneously

scattering force

VL Va

frequency

Figure 4.4: Doppler cooling by velocity-dependent detuning: (a) Doppler effect showing blue
(red) shift Av = fv,V,/c of laser frequency v, due to atom moving with speed V, against or
with laser beam. (b) Red-detuned laser light (v, < va) gets blue-shifted inwards into resonance
for atom moving against laser beam. Enhanced scattering rate gives net retarding velocity kick.
(Schematic).
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back to the ground state re-emitting a photon in the process. This finite lifetime (7)
implies a minimum energy spread (line-width I') for the excited state through one of
Heisenberg’s uncertainty principles (I' ~ h/7). Thus, the sharp line from the strict
resonance condition relaxes to a broader absorption profile for the g—e transition
with a peak centered at the atomic resonance v,. The resonance condition hv = E.—
E, then need hold only to within this broader sense for a real transition (Fig. 4.3b).

And now for laser Doppler cooling. First, consider an atom placed in the beam of
light from a tunable laser with both the atom and the laser at rest in the laboratory.
Let the laser be red-detuned with respect to the atomic resonance, i.e., v, < v,
with the amount of detuning § = vy, — v, ~ I'/h. We may take the laser beam to be
directed along the positive z-axis, west to east, say. The response of the atom will
then follow its absorption profile as the laser frequency is varied, with a maximum
at the resonance, v;, = v,, the center frequency.

Now let the atom move with a velocity V, directed east to west, i.e., along the
negative x-axis, and, therefore, moving oppositely to the incident laser beam. The
Doppler effect now comes into play. The frequency of the laser light as seen by
the moving atom will be blue-shifted closer into resonance, enhancing thereby the
probability of absorption that would impart a momentum (velocity) kick directed
opposite to atom’s motion. This causes slowing down, or deceleration of the atom.
But what if the atom were moving west to east, i.e., in the direction of the light
beam, you may ask. Well, any absorption must then speed up (accelerate) the atom
eastwards. But, inasmuch as the light frequency will now be further red-detuned
away from the resonance, the eastward acceleration will be relatively smaller. All we
have to do now is to replace the single west to east laser beam with a pair of counter-
propagating red-detuned laser beams aligned east-west. (In practice, a beam from
a single laser is split in two using half-silvered mirrors, etc.) A little thought will
convince you then that the atom will now be slowed down irrespective of whether
it is moving eastwards or westwards, and that the retardation will be proportional
to its instantaneous velocity. Next, what if the atom is moving north-south, or up-

7y
optical
molasses

Figure 4.5: Cooling of atoms in optical molasses: Three pairs of counter-propagating mutually
perpendicular beams of red-detuned laser light. (Schematic).
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down, as indeed it will in a gas. Well, we simply do more of the same: three pairs
of counter-propagating red-detuned laser beams aligned along the three mutually
perpendicular directions will suffice — after all, any velocity can be resolved into
three such orthogonal components (Fig. 4.5). This then is the Doppler cooling
scheme. Inasmuch as the retarding force is proportional to the velocity but directed
opposite to it, the Doppler cooling system acts as a viscous fluid — very aptly called
optical molasses.

A nagging doubt, however, remains. The photon absorbed by the atom must
eventually be re-emitted spontaneously, causing the atom to recoil. Will this recoil
during the re-emission not undo what was done by the kick received during the ab-
sorption? Fortunately not! It turns out that the momentum kicks received from the
absorption of the laser photons are highly directed, while the recoil kicks delivered
at the spontaneous re-emission are totally un-directed (the spontaneous emission is
a random, isotropic process). Therefore, on average, after repeated cycles of absorp-
tion and re-emission, the atom suffers a net slowing down. Thus, it is the directed
kicks a priori followed by the undirected recoils a posteriori, that ultimately cause
the Doppler cooling.

We conclude this section with a few general remarks that should place the phe-
nomenon of Doppler cooling in a wider context. Thus, e.g., replacing the red-
detuned (laser) photons by the blue-detuned photons will turn the Doppler cooling
into Doppler heating — the atoms will be speeded up rather than slowed down!
Also, the highly directed, coherent laser beams can be replaced by some other
radiation environment with a general spectral distribution, and we may still have
overall non-trivial Doppler effects. (This will be, admittedly, less effective from the
point of laser cooling however.) Indeed, runaway Doppler instabilities due to near-
resonant interaction between light and atoms have been considered on the grand
astrophysical scales, away from the small laboratory scale setting, where an isotropic
background radiation may replace our laboratory laser beams causing a redistribu-
tion of the atomic velocities — familiar here as the Compton—Getting effect. Finally,
what happens to the (kinetic) energy lost by the atoms as they slow down through
Doppler cooling? Well, the mechanical (kinetic) energy of the moving atoms is con-
verted into the electromagnetic energy of the photons. Recall that the red-detuned
(low-energy) photons are blue-shifted (to higher energies) in each Doppler cooling
cycle of absorption and spontaneous re-emission. There is also an overall increase
in total entropy — thus, while the atoms are indeed being cooled down lowering
their entropy, the directed photons of the coherent laser light are being converted
into an undirected, incoherent radiation through the spontaneous re-emission with
a relatively large increase in entropy.

4.5 Doppler Limit and its Break-down

There is, however, a limit to the Doppler cooling. Even the slowest of atoms is
forced to continually absorb and re-emit discrete photons in the presence of the
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laser beams. The lowest temperature is reached when the viscous slowing down
(dissipation) is offset by the random recoils (fluctuations) due to the spontaneous
re-emissions. Such a connection between fluctuation and dissipation defining a
temperature holds quite generally in physics. (The same effect is responsible for
the incessant zig-zag motion of a speck of dust, or mote in the air, even in the absence
of any convection, as it receives kicks from the colliding molecules of air. There is a
name for it: Brownian motion, first observed in 1827 by the Scottish botanist Robert
Brown with plant pollen dispersed in water, and explained finally by Einstein in
1905 as due to collisions with the water molecules in thermal motion.) Ideally, the
lowest temperature reached by the above Doppler cooling system (called the classical
optical molasses) is Tp = I'/2kg, with optimal red-detuning vy, — v, = —I'/2. This
follows from a rather interesting way of looking at things. The atom must be viewed
as being in thermal equilibrium with the light it nearly resonates with. The width
of the resonance (~ I') may then be viewed as the thermal width kT, giving a
temperature ~ Tp. (This is true in general — the energy width of a Maxwellian
distribution is indeed ~ kgT'. In fact, laser light of spectral line width A is rightly
viewed as having a temperature ~ A /kg, i.e., the atom is now in thermal equilibrium
with the laser light). Experimentally, however, temperatures much lower than the
ideal Doppler limit (by as much as six times lower) were realized, which was a real
surprise — an anti-Murphy law at work! The explanation for the breakdown of the
Doppler limit lay in one of the most remarkable phenomena known in the schemes for
laser cooling, namely that of Sisyphus cooling, recognized first by Claude Cohen-
Tannoudji and J. Dalibard. The effect is too subtle and minute to be described
cursorily. But then, one can not resist its beauty. Let us just get acquainted with
the general idea of it.

In Sisyphus cooling, we again begin with the usual scheme for the Doppler
cooling involving the ground (g) and the excited (e) atomic states, but now with an
additional twist, namely, that the ground state has a finer structure — it comprises
two (hyperfine) sub-levels g; and go. Now, things are so arranged that the sub-level
energies E,, and E,, vary periodically in space, along the counter-propagating laser
beams that now form standing waves. The variations are, however, out of step such
that when E, is at a maximum, E4, is at minimum. These two energies act as the
two possible potential-energy branches for the moving atom to lie on. Consider now
an atom moving along one of these two potential-energy branches, g; say, climbing
up the potential hill as shown in Fig. 4.6, and thereby losing kinetic energy, which is
now stored as potential energy. Now, matters are so arranged that as it approaches
the crest of the potential hill, the energy difference E. — E;1 becomes just right
for it to absorb a resonant laser photon and get internally excited to the higher
lying excited state (e), from which, after a short lifetime 7, it re-emits a photon
spontaneously and drops back into the ground state — but this time around into the
other branch (sub-level g2), which is now at its trough. With this switch thus, the
atom finds itself once more at the bottom of a potential hill that must be climbed all
over again as it continues to move. The energy of the spontaneously emitted photon
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Figure 4.6: Sisyphus cooling: Atom climbs up the potential hill along g2 (or g1) converting kinetic
energy into potential energy which is dissipated radiatively by optical absorption g2 (or g1) to e
at the crest of g2 (or g1) followed by atom’s transfer to trough of g1 (or g2) by re-radiation e to
g1 (or g2). (Schematic).

E. - Ey4, > E. — E,,, the energy of the photon absorbed. This energy difference
must equal the kinetic energy lost by the atom, and is dumped (lost) radiatively
in each cycle of absorption followed by re-radiation. Hence, the Sisyphus cooling,
aptly named after the Greek character who was condemned to endlessly roll his
stone up the slope only to find that the slope beyond the crest was also an uphill
one. Inasmuch as the Sisyphus cooling depends on the finer structure of the ground
state, it is very sensitive to any external fields — even Earth’s magnetic field may
have to be neutralized properly. It may be noted here that the finer sub-level energy
structure, g; and gs, of the otherwise degenerate ground state (g), which is of the
essence for the Sisyphus cooling, is due to the state-dependent radiative corrections
to the energy of the state — also called therefore the light-shift. (It is the change in
the energy of a state due to its coupling to the photons, and depends on the intensity
and polarization of the light at the place where the atom happens to be. Thus, for
a standing light wave with polarization gradient, it varies periodically in space. It
is a purely quantum-mechanical effect.) The lowest temperature obtainable with
Sisyphus cooling (T%) is given by kpTs = hQ?/|6|, where Q (the so-called Rabi
frequency) measures the strength of the light-atom dipolar coupling and ¢ is the
detuning, assumed not too small.

The Sisyphus cooling can cool atoms below the Doppler cooling limit, Tp =
I'/2kp, because now the atom does not have to equilibrate with the photon in the
sense discussed earlier. The kinetic energy is being pumped out and dissipated away
radiatively. There is, however, still a lower limit to Sisyphus cooling — the Recoil
Limit, T = Er/kp, where ER is the energy of the one-photon atomic recoil due
to the photon momentum (h/M,) exchanged with the atom. Thus, for example, for
sodium atoms (?3*Na), Tk ~ 2.5 microkelvin! Laser cooling below the Recoil Limit
is also possible by somehow switching off the perturbing light-atom interaction —
this is accomplished by pushing the atoms into the so-called Dark State. We do
not, however, pursue this line of thought any further here.
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It is time now to get some feel for numbers. Consider the case of Doppler cooling
for sodium atoms (?*Na), where the transition involved is from the ground state (g)
to the excited state (e) with the energy difference E. — E; ~ 2 electron-volt. This is
the well-known yellow light from the sodium flame at the wavelength A ~ 589 nm.
The sodium vapor emerging from a heated source (oven) is at a temperature of
about 500 K, with a thermal atomic velocity of about 10° cm sec™! (about 4000 km
per hour). The momentum loss per collision (photon absorbed) ~ h/A, giving a
velocity slow down of about 3 cm sec™!. Hence, to slow down from 10° cm sec™! to
almost zero velocity in steps of 3 cm sec ™! will require about 3 x 10* collisions. The
lifetime of the excited state 7 ~ 16 ns (1 ns = 107 sec), giving the time required for
the Doppler cooling to be 2n7 ~ 1 ms (1 ms = 1073 sec). The stopping distance is
then about 50 cm. This amounts to an acceleration (actually deceleration) ~ 10° x
Earth’s gravity! Also, the Doppler limit T works out to be ~240 uK. As for lasers,
typically, the laser power for optical molasses is 10 mW, with a bandwidth of 1 MHz
and beamwidth of 2 mm radius. It is interesting to note that Doppler cooling is
quite insensitive to laser power. Sisyphus cooling, however, depends strongly on the
power of the laser through .

4.6 Trapping of Cold Atoms: Magentic and Magneto-Optic
Trap (MOT)

A gas of atoms, no matter how cold, must be trapped spatially for a time long enough
to be probed experimentally, or else the atoms will disperse, and most certainly fall
freely under Earth’s gravity and get lost. Just as laser cooling involved confinement
in velocity space centered about the zero of velocity throug the velocity-dependent
forces, trapping involves confinement in the positional space centered at the origin
through position-dependent forces. Such a force can derive naturally from the
gradient of the potential energy of the atom placed in a suitably inhomogeneous
electromagnetic field to which the atom couples. Thus, for a neutral atom one can
make use of the fact that the atom may have a permanent magnetic dipole moment
(p), which when placed in a magnetic field B(x) has a potential energy —u - B(x).
(This is what makes a floating bar magnet, or the needle of a magnetic compass
point due north in Earth’s magnetic field.) The same is true of alkali atoms, e.g.,
the sodium atom (?3Na), that has an unpaired electron spin which exhibits an
elementary magnetic dipole of moment x (the Bohr Magneton) associated with its
unpaired spin (with g antiparallel to the spin). The two possible orientations of
the spin, parallel and antiparallel to B differ in energy by 2uB(x). Such a splitting,
or the shift of an energy level is called the Zeeman effect. It acts on both the
spin and the orbital angular momentum, with different strengths though. In an
inhomogeneous field B(x), the potential energy is then position dependent. It has
a minimum for B(x) = 0, with the magnetic moment p antiparallel to B(x). An
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Figure 4.7: The quadrupolar magnetic field generated by coaxial anti-Helmholtz coils carrying
oppositely directed electric currents. The magnetic field is zero at the mid-point. (Schematic).

atom with such a spin orientation seeks out the lowest field and tends to sit at
the minimum of B(x). Such an inhomogeneous magnetic field can be conveniently
generated with the help of two co-axial coils carrying electric currents in the opposite
sense (the anti-Helmholtz coils). The resulting quadrupolar magnetic field has a zero
at the mid-point on the axis as shown in Fig. 4.7. This is the canonical quadrupolar
magnetic trap. The magnetic field gradient is typically ~ 10 gauss cm™! over a
trap size ~1 cm across. The trap potential is ~10 mK deep in temperature units.
(Room temperature of 300 K corresponds to ~1/40 eV.) The lifetime of the trapped
atom before it gets ejected by collisions is ~ 100 sec at a pressure of 10719 torr
(1 atmosphere = 760 torr, 1 torr = 1 mm of Hg).

This purely magnetic trap can be integrated intelligently into the laser Doppler
cooling arrangement discussed earlier. The result is a Magneto-Optic Trap (MOT),
which has now become a workhorse for all BEC work. Just as laser cooling is a
forced confinement of an atom in momentum (velocity) space towards the zero of
momentum, magnetic trapping is a forced confinement of an atom in positional
space towards the origin. The Magneto-Optic Trap (MOT) combines the two in
a kind of phase-space confinement towards the zero of the velocity as well as of
the position. In laser cooling we exploit the velocity-dependent Doppler shift of
the light from a red-detuned laser into or off the atomic resonance. In a MOT we
exploit additionally the position-dependent magnetic Zeeman shift of the atomic
levels into or off the resonance with the red-detuned laser light. In all cases it can
be so arranged that we have a selective and adaptive approach towards the zero of
velocity and of position. Such a MOT can produce a cold cloud at about 10 uK with

3 corresponding to a phase-space density of about 10~°, which

10 atoms per cm
is still far too small for BEC to occur. The cold atoms are huddled in a volume
~0.5 mm?> at the center of the MOT, which is about ~1 cm across.

It is to be noted here that unlike the case of a purely magnetic confinement,

the confining force in a MOT originates from the scattering of light involving
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Figure 4.8: (a) Magneto-Optic Trap combining trapping (position-dependent scattering forces
due to tuning by inhomogeneous Zeeman shift) and cooling, in one dimension. (b) Three-
dimensional MOT. (Schematic).

near-resonant absorption and re-emission — hence called the scattering (or the
spontaneous) force. It is just that the condition for the resonance is made position
dependent.

In Fig. 4.8a, the basic idea of a MOT is illustrated for the case of a one-
dimensional geometry, while Fig. 4.8b shows the schematic of a three-dimensional
MOT. Because the underlying trapping mechanism in the MOT involves the Zeeman
effect, it is also referred to as the ZOT (Zeeman Shift Optical Trap). The symbols
0+, 0— here denote the circular polarization states of the light beams chosen so as to
cause the atomic transitions selectively between the Zeeman-split and -shifted levels.

4.7 Evaporative Cooling: Down to the Nanokelvins

A cold atomic cloud trapped in a MOT and cooled to a few microkelvins is still a
factor of 1000 away from (hotter than) the gaseous BEC that demands nanokelvins.
This ultimate stage of cooling from microkelvins to nanokelvins — the last mile if
you like — involves the simplest of physics, namely that of cooling by forced evapo-
ration! Here a relatively small minority of energetic molecules with relatively large,
above-average kinetic energy per capita, are allowed to escape over the potential
barrier out of the trap, leaving behind the majority in the trap to settle down
(re-equilibrate) to a lower average kinetic energy per capita, that is to a lower tem-
perature. This is, of course, precisely what happens to a steaming cup of hot tea
in an insulating styrofoam left out in the open. It cools mostly by evaporation, the
barrier being the work function — the minimum kinetic energy needed to escape
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from the bulk liquid. The point to note here is that the amount of kinetic energy
removed, or the cooling effected, is greatly out of proportion to the mass of the
liquid lost by evaporation; a mere 2% loss of molecules can cool the cup of tea by
about 20%, i.e., from about 370 K to 300 K (room temperature) in a short interval
of time. The effect can be further enhanced by resorting to forced evaporation,
i.e., by lowering the barrier to be overcome for the great escape. The evaporative
cooling is ultimately traceable to the fact that the atoms in the fluid do not all
have the same kinetic energy, or speed. There is a broad thermal distribution —
the Maxwellian velocity distribution — that has a tail of very high-speed molecules
that, though small in number, can and do escape over the barrier carrying away a
disproportionately large amount of the energy. What is crucial, however, for evap-
orative cooling is the fast process of re-equilibration of the remaining molecules in
the trap. This requires some inter-particle interaction which is otherwise inimical
to an ideal BEC, as we have argued earlier. This calls for a compromise.

For evaporative cooling it is necessary to switch off all perturbing lasers of the
MOT leaving only the confining (trapping) magnetic field on. This, in general, is
the loading of a purely magnetic trap with the cold atoms from a MOT, and has
been variously achieved. Through some suitable optical pumping it is so arranged
that all atoms are put in the same state of the spin, with the magnetic moment
(spin) antiparallel (parallel) to the trap magnetic field. As discussed earlier, the
atoms with their magnetic moments aligned antiparallel to the magnetic field seek
the weak field and are thus attracted towards the center of the trap. The kinetically
energetic among them, however, climb up the potential barrier towards the edge of
the trap as shown in Fig. 4.9. Now, the trick is to apply a radio-frequency (rf) field
of the right intensity, duration and of a frequency resonant with the local Zeeman
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Figure 4.9: Schematic of forced evaporative cooling in a magnetic trap using inhomogeneous
Zeeman shift. The upper (lower) potential energy curve is for atomic spin parallel (antiparallel) to
local magnetic field and has minimum (maximum) at center. Spin-flip caused by resonant rf field
inverts potential upside down forcing energetic atoms nearer edge to fall off out of trap. Remaining
slow moving atoms re-equilibrate to lower temperatures. Hence, forced evaporative cooling.
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energy-splitting 2uB(z) so as to flip the atomic spin. This spin-flip inverts the
potential barrier as seen by the atom upside down, and the energetic atoms simply
fall off the edge of the trap-potential barrier, now becoming downhill. Tuning the
radio frequency (rf) progressively downwards, we can effectively move the surface-
of-escape-by-spin-flip radially inward, thereby slicing off layers of atoms of lower
and lower kinetic energy towards the center of the trap. One very aptly speaks of
an rf-scalpel here! The gas of remaining atoms now accumulates near the center
of the trap, somewhat depleted but rendered much colder and denser — possibly
about 107 atoms at 102 cm™3, huddled together in a volume ~ 10 pgm across at
the center of the magnetic trap ~1 cm across, and at an ultra-cold temperature of
~ 20 nanokelvins! Thus, we will have reached the coldest spot in the universe! The
entire evaporative cooling cycle lasts the time scale of seconds or minutes.

It is implicit here that the magnetic moment (or the spin) of the moving atom
precesses (as a spinning top) fast enough to follow the spatially varying magnetic
field so as to remain locally aligned with it — actually antiparallel to it in this case.
Inasmuch as the angular speed of spin precision (2uB(x)/h) is proportional to the
magnitude of the local magnetic field, this adiabatic condition must break down at
and about the trap center, where the magnetic field has a pointed zero, across which
the field changes its direction very rapidly. Nothing then energetically prevents the
electron spin of the moving atom from flipping its direction relative to the local
magnetic field vector, and, therefore, the atom from getting lost through this hole
in the magnetic trap. This kind of spin flip at the zero of the magnetic field is a
subtle effect. It has a name: the Majorana Spin-Flip, said in deep voice. It must
be avoided for a magnetic trap to act as a trap. A rather clever solution to this
problem turned out to be just this: jiggle the pointed zero by the application of a
suitable time-varying magnetic field and thus smoothen it out into a time-averaged
rounded minimum. This finessing is aptly called a TOP (Time-averaged Orbiting
Potential) that does plug this hole in the trap.

Nature uses evaporative cooling on all scales — we have mentioned the humble
cup of hot tea as an example on the scale of centimetres, and the not so humble
MOT on the scale of millimetres. But, we have evaporative cooling the scale of
kilo-parsecs too (1 parsec ~ 3.3 light years). This happens in the globular clusters
of stars, where the highly energetic stars get kicked out of the gravitational barrier
leaving behind a more compact cluster of less energetic stars. (In a lighter vein,
the so-called Brain Drain of the Third World may well be viewed as an evaporative
intellectual cooling: emigration of the higher-than-average qualified elite leading to
the lowering of the average (intellectual) temperature of the population which is
left behind). It seems that Nature truly has no architectural excess — it repeats
the same design again and again, only the contexts and the scales may vary, and
be vastly different!
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4.8 BEC Finally: But How Do We Know?

That is the question! There is no thermometer to tell nanokelvins anyway. Once
again we have to fall back on light: this time to visualize the condensate, its
distribution in velocity and position — its phase-space profile in fact — and to,
therefore, indirectly act as a contactless thermometer. For this, all we have to do
is to switch off the magnetic confinement too and let the ultra-cold cloud of atoms
fall freely under Earth’s gravity. Once set free, the atomic cloud expands as it falls.
As a result, the velocities translate into distances. In fact, for a parabolic trap the
velocity distribution is the same as the spatial distribution, properly scaled. Also,
the expanding cloud can be imaged by laser light which is tuned so as to be absorbed
resonantly by the atoms, casting thus a shadow on a camera (the so-called Charge
Coupled Device, or the CCD camera now in common use). At resonance, the cloud
is almost opaque (i.e., optically thick) at the BEC phase-space density (p ~ 1)
and the light can hardly penetrate beyond a depth ~ wavelength of light. But
an expanded cloud is rarer and lets some light pass through, and, therfore, casts
a shadow on the CCD camera whose shade (dark or grey) then depends on the
column density of the cloud traversed by the laser beam. These facts together
with the time of flight (TOF) allow us to essentially re-construct the velocity dis-
tribution in the cloud at different stages of evaporative cooling (i.e., at different
temperatures). Typically, the BEC which is initially about 10 um across expands
to about 200 pm across in about 40 ms of the time of flight.

In Fig. 4.10, we show schematically a cross-section of the velocity (z-component,
say) distribution as it evolves with cooling to lower temperatures. At relatively
higher temperature, we have the well-known Maxwellian velocity distribution with
its single broad Gaussian hump centred at the zero of velocity. This is the thermal
cloud. As we cool down just below Tggc, a qualitative change makes appearance.
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Figure 4.10: Section of distribution of ultra-cold trapped atoms imaged by expansion method:
(a) For T > Tggc showing Maxwellian thermal distribution. (b) T' < Tpgc showing central
spike of BEC emerging out of thermal Maxwellian background hump. (¢) Only central spike
representing fully formed Bose-Einstein Condensate (BEC). Not shown is elliptical cross-section
of spike indicating anisotropy of velocity distribution in BEC in contrast with circular cross-section,
or isotropy, of classical thermal background. (Schematic).
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The broad Maxwellian hump is pierced by a spike centered at zero velocity —
indicating an accumulation of atoms in the single, zero-velocity state, positioned
at the potential minimum of the magnetic trap, which is now switched off. There
is, of course, the sparse thermal cloud surrounding this central spike, often referred
to figuratively as the Oort cloud by astronomers — that tenuous cloud of matter
that surrounds the solar system, and is believed to be the outlying remnant of the
original molecular cloud that condensed and became our solar system. Finally, far
below Tspc we are left with just the central peak corresponding to the pure BEC
centered at zero velocity.

A remarkable feature of the velocity profile (distribution) is that while for the
background thermal cloud surrounding the central peak it remains isotropic (circular
in cross-section), it is anisotropic (actually elliptic in cross-section) for the central
peak. This characteristic difference gives away the BEC and can be readily un-
derstood. The Maxwellian velocity distribution for a gas in thermal equilibrium
(without any bulk motion) is isotropic, independently of the potential it is sub-
jected to — it depends only on the square of the velocity (or momentum). This
explains the isotropic velocity distribution of the classical thermal fraction of the
cloud that surrounds the central peak. The situation is qualitatively different for
the BEC in the trap. A BEC occupies the lowest-energy orbital (state) for the
given trap potential. It is a quantum-mechanical ground state. Now, the magnetic
trap potential is really not quite spherically symmetrical; it is actually ellipsoidal
because of the geometry of the coils producing the magnetic field. In fact, the
simple quadrupolar trap potential is elongated — twice as steep along the z-axis
as along the z and y axes. Other highly anisotropic traps with much more sophis-
ticated magnetic field configurations have been used, giving very elongated cigar
shaped condensates. This makes the spatial form of the ground state orbital (wave-
function, if you like) also ellipsoidal. Now, as the trap is switched off, this initial
ellipsoidal spatial form freely evolves into an ellipsoidal velocity distribution (to
which the former is related by Heisenberg’s uncertainty principle), centered about
the zero of velocity — that gives away the BEC. It is a quantum-mechanical object,
or goop if you like.

It is of the essence to emphasize here that once the initial BEC has expanded,
as it must, to a phase-space density p much below the critical BEC value (of
about unity), it is no longer a condensate in the original strict sense. But, the ini-
tial quantum-mechanical velocity distribution remains imprinted on this expanded
cloud, now becoming an almost sensible realization of it! This bears a striking
resemblance to the Big Bang picture of an early universe evolving out of a quantum-
mechanical, point-like initial state into the presently expanded, almost classical real-
ization of it with all the initial-state anisotropies imprinted on it, but now magnified
into the observable anisotropies of the Cosmic Microwave Background Radiation,
that the COBE (Cosmic Microwave Background Explorer) satellite had detected
not so long ago in 1995.
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4.9 BEC: What Good is it?

While the making of a BEC is not yet quite a Do-It-Yourself (DIY) proposition, it
is certainly very much of a table-top-experimental science that should belong in any
university physics department — it is small science, but potentially one with a big
impact. Thus, for example, the diode lasers used for the laser cooling and trapping
in a MOT are no different from the ones you have in your CD player at home. The
big thing about BEC really is that it is a combination of many clever ideas, and
that it holds promise for New Physics and novel applications, some of which have
already been demonstrated and others are around the corner as noted by the Nobel
Committee.

Professionally, for condensed matter physicists, who constitute about two thirds
of all physicists, a dilute gaseous BEC is a new state of controlled matter which
is coherent over the macroscopic scale, and tunable over a wide range of values of
its parameters, including the strength, range and even the sign of interaction be-
tween the alkali atoms that compose it; such control is totally inaccessible for its
condensed liquid counterpart, namely the exclusively noble and inert liquid helium
4He. The nanokelvin supergas can be readily manipulated with light, e.g., it can
be made non-uniform. It and its precursor, the microkelvin cold atomic cloud, can
be patterned into an optical lattice. Moreover, the gaseous BEC should provide
a proper understanding of the relationship between the condensate and its super-
fluid, or rather its supergas flow properties (of, e.g., zero viscosity), and the infinite
thermal conductivity. Indeed, it has opened up an entirely new field of a quantum
phase transition where an ultracold supergas of the bosons can change from being
a superfluid to being a solid insulator (the so-called Mott insulator) according as
the inter-particle repulsion is weak or strong relative to the depth of the potential
wells that trap the particles. The latter are patterned by the interference of light
so as to form a potential which can be periodic, or quasiperiodic or even random
in space. Some of the deeper issues of coherence and decoherence by interactions
(even from within the condensate) await resolution. So is the case with the ques-
tion of the bosonic stimulation, namely, that the bosons are preferentially scattered
(inelastically) into the state which has the higher pre-existing bosonic population,
and its role in the very kinetics of formation of the BEC out of a cloud of cold
atoms, which is far from well understood. Estimates of the time-scale of formation
vary from micro-seconds to the age of the universe, while the observed time is of
the order of seconds. (We should hasten to add, however, that the idea of coherence
goes far beyond the usual one of dividing a condensate in two and re-combining it
to get the interference fringes as in Young’s double-slit experiment. This is so-called
first-order coherence. There are higher order coherence effects too, and the gaseous
BEC has tested positive to up to coherence of the third order).

Almost all applications of the BEC, practical as well as basic, are traceable to
the single essential feature of the BEC, namely, that it has a macroscopic coherence
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in that it has a finite fraction of all atoms occupying one and the same single-particle
state — the macroscopic occupation of the lowest-energy orbital of the trap — and
that all the tens of millions of these atoms act in lockstep as one single whole. Let
us now consider some of its possible applications. A consequence of this coherence
is that a BEC can be used to detect the subtle and the minute such as the suspected
violation of the time-reversal invariance in atoms and molecules — too small to be
detected otherwise. Here the fact that of the order of tens of millions of the atoms
in the BEC act as one giant atom, enhances the tiny effect by a large factor of
that very order. Attempts are already afoot to try this with a BEC composed of
ytterbium (Yb) atoms. This is a general strategy for detecting small effects, and can
ultimately provide a low-energy test, e.g., of some aspects of the Standard Model
of high-energy physics.

As for practical applications, the first that comes to mind is the atom laser, or
more appropriately the matter-wave laser, which has already been demonstrated.
Recalling the wave nature of matter, with the de Broglie matter-wavelength A =
h/p, one may view the BEC as a wave of macroscopic amplitude, much as the laser
is viewed as a large number of photons occupying the same mode and contributing
additively (coherently) to its field amplitude. It has the same interference and
diffraction properties — one speaks of atom optics here. Except, of course, that
unlike photons the atom laser beam cannot pass through, e.g., window glass —
it requires ultra-high vacuum, created artifically in the laboratory, or occurring
naturally in the outer space. Also, normally, an atom laser may not be as well
collimated as light laser, because it is coupled out of a BEC trapped in the localized
ground state (unlike in the case of light laser, where the light is coupled out from a
higher lying mode of the optical cavity).

The distinctive feature of the condensate, namely that all the atoms in it occupy
the same single-particle ground state means that it is free from any inhomogeneous
broadening of its atomic spectrum — thus, for example, even as the magnetic field in
the magnetic trap varies over the spatial extent of the condensate, the Zeeman split-
ting in the condensate shall have one single value for all the atoms. Also, somewhat
counter-intuitively, the condensate in the trap is free from any random Doppler
broadening. All this makes for an exceptional spectral purity. High-resolution
spectroscopy with linewidths less than 2 Hz have already been realized using the
so-called BEC Atomic Fountain.

All this can be exploited to make BEC based atomic clocks that can beat the
best known atomic clocks, and even the celestial clock, namely the rotating neutron
star, or the pulsar, by several orders of magnitude in terms of precision and long-
term stability, as required for the global positioning system (GPS) and for space
navigation. An atom interferometer can replace the laser interferometers such as
the LIGO (Laser Interferometer for Gravitational wave Observatory) for detecting
the gravitational waves reaching us from the distant gravitational disturbances in
our galaxy, the tiny strains of space-time geometry of the order of 10~2! — this
being the last of the predictions of Einstein’s General Theory of Relativity. It can



148 Bose—FEinstein Condensate: Where Many Become One and How to Get There

also detect tiny variations or anomalies of a few parts in 10'° in Earth’s own gravity
for use in oil exploration.

A major application of BEC envisaged is in the area of nanotechnology —
namely, nanolithography, where an atom laser can write nanometric scale features
such as electronic components and other devices as integrated circuits on a semi-
conducting chip. The latest feat has been to create a BEC of rubidium atoms in
a microscopic magnetic trap built into a lithographically patterned microchip, and
to move the BEC by as much as a millimetre without loss of coherence. This opens
up the new field of atomtronics, much as we have electronics or photonics. Even
matter-wave holography is being contemplated. Here, the holograms will be real —
something out there reified!

A micron-sized Bose—Einstein Condensate in the magnetic trap is in a true sense
a giant Single Atomic Particle At Rest In Space (SAPARIS) — e pluribus unum.

4.10 Summary

Classically identical particles are quantum mechanically indistinguishable, with
different rules for what counts as their distinct re-arrangement. These indistin-
guishable particles can be either fermions or bosons. Fermions have half-integral
spin, and not more than one of a kind shall occupy a given state — they obey the
exclusive Fermi-Dirac statistics. Common examples are electrons, protons, neu-
trons or the helium atoms 3He, etc. Bosons, on the other hand, have integral spin,
and bosons of a kind can have, indeed are encouraged to have, multiple occupancy of
a given state. Common examples are helium (*He), hydrogen (1H), sodium (**Na),
etc. This inclusive Bose-Einstein statistics can, for the ideal case of non-interacting
Bose particles of a given fixed number, lead to a finite fraction of the total number
of particles dropping into the lowest energy single-particle state at a low enough
temperature and high enough density, that is for higher than a critical phase-space
density of order unity. This macroscopic occupation of the lowest energy state is the
Bose-Einstein Condensation (BEC). In a really dense Bose system such as the liquid
helium (*He), however, the inter-particle interaction depletes the condensate. This
can be avoided by going over to a highly dilute gas of the Bose particles, but that
would require going down to ultra-low temperatures, making the system metastable
towards a normal condensation to the liquid or the solid state, which would then
pre-empt the BEC. Starting in 1995, several laboratories around the world have
realized BEC of dilute gases of the bosonic isotopes of alkali metals, e.g., 8"Rb, 2*Na,
etc., cooled down to a few nanokelvins (10~% K). This has involved laser Doppler
Cooling in a Magneto-Optic trap (MOT) to microkelvins, followed by Magnetic
Trapping and Evaporative Cooling to nanokelvins, all in ultra-high vacuum. The
gaseous BEC typically contains about 107 atoms, at about 100 nanokelvins and
measures about 10 micrometers across, and lasts about a minute or so. The entire
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process of cooling and trapping is adaptive, and most importantly selective — thus,
e.g., the air molecules surrounding the nanokelvin BEC are essentially at room
temperature! The 3 K cosmic microwave background radiation is also very much
around. Laser cooling to the BEC, truly marks the ultimate march towards the
absolute zero of temperature — starting from room temperature at about 300 K
(with atomic velocities at ~4000 km/hr) through microkelvins (at ~250 m/hr) to
nanokelvins (~8 m/hr). A triumph of scientific endeavor!

The single most important property of a BEC is that the millions of atoms com-
posing it are all in the same single state — all doing the same thing, in a lockstep,
so to speak. This coherence opens up areas of New Physics and of novel appli-
cations, basic as well as practical. These include atom lasers for nanolithography
(nanotechnology); ultra-precise and stable clocks (metrology and space navigation);
atom interferometer for gravitational wave detection; possible detection by coherent
amplification of subtle and minute effects, such as violation of time-reversal symme-
try of high-energy physics at low energies; high resolution spectroscopy; and many
others.

Gaseous BEC is verily viewed as a new state of matter.

4.11 Further Reading

Books

e H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer,
New Hork, 1999).

Semi-popular papers

e Eric Cornell, Very Cold Indeed: The Nanokelvin Physics of Bose—Finstein
Condensation, Journal of Research of the National Institute of Standards
and Technology 101, 419 (1996).

e Carl E. Wieman, The Richtmyer Memorial Lecture: Bose—FEinstein Con-
densation in an Ultracold Gas, American Journal of Physics 64(7), 847
(1996).

e W.D. Phillips, P. L. Gould and P. D. Lett, Cooling, Stopping, and Trapping
Atoms, Science 239, 877 (1998).

e Steven Chu, Laser Trapping of Neutral Particles, Scientific American,
February, 1992, p. 49.

e Steven Chu, Laser Manipulation of Atoms and Particles, Science 253, 861
(1991).
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Exploring Nanostructures

In 1959 Richard Feynman delivered a lecture entitled “There’s Plenty of Room at
the Bottom,”! where the famous physicist speculated about manipulating matter at
very small length scales and the enormous effects it portends. A lot has happened
since then. A major field in science and technology is being created, and with it we
have a new world to explore.

5.1 Towards the Bottom

One of the most wonderful inventions of our times is the laptop computer. This
marvel of technology allows us to enter instantly the universe of the internet from
almost anywhere in the modern world, letting us exchange gossip with our friends
or learn about the latest developments on the human genome project. Its ‘brain’ is
a complete computing engine, called a microprocessor, fabricated on a single chip,
or thin piece of silicon less than a square inch in size, onto which some fifty million
transistors have been etched and which is capable of executing over two billion
instructions per second. What a powerhouse when compared with the six-thousand-
transistor circuit found in the first home computer in 1974, or a six-transistor radio
in 1960! This remarkable progress in harnessing informational power would not
have been possible without a parallel advance in fabrication: the smallest wire on
the chip, many microns across thirty years ago, now measures less than two tenths
of a micron, or five hundred times thinner than a human hair. Other key elements
of the computer, for example its data storage media and memory devices, are now
made very small too. In fact, we live surrounded more and more by all kinds of
finely structured materials designed exactly for our specific needs; ingenious little
devices that can do complex tasks have become so common that they are now very
much part of our life.

1Reprinted in Feynman and Computation: Ezxploring the Limits of Computers, edited by Anthony
J.G. Hey (Perseus Book, 1998). Also available at the websites: www.its.caltech.edu/ feynman
and www.zyvex.com/nanotech/feynman.html
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Since 1974 the number of transistors that can be fabricated on a silicon inte-
grated circuit, following Moore’s Law, is doubling every 18 to 24 months, a trend
made possible by the incredible shrinking of all electronic components with each chip
generation. The squeezing of more transistors and logic gates into integrated circuits
shortens the travelling distances of electrons and makes feasible a more efficient
circuit architecture (such as pipelining), so more instructions can be executed at a
faster rate, consuming less power. Miniaturization saves space and material, making
things cheaper and faster.

With this continual size downscaling, quantum effects eventually become domi-
nant, bringing with them both challenges and opportunities which can be exploited
for useful purposes. For example, new types of microlasers can be made that have
lower threshold currents and a wider choice of radiation wavelengths. Small things
just do not look the same, do not act the same as big things. They may change
color; bulk gold usually looks yellow, but fine-grained gold appears reddish. They
may take on new shapes; graphite normally exists in planar sheets, but when cut up
into fragments small enough, it may, under certain conditions, rearrange itself, curl
up, and close into hollow spheres or cylinders. As structures become very small,
many properties become strongly size-dependent, while others are enhanced by the
increased surface areas. By moving to near-atomic scales, scientists can select and
determine the properties of the final products right at the atom level, leading to
novel or improved materials and devices.

Finally, although strongly driven by technology, this trend towards the very
small can produce results that have significant implications in issues of fundamental
science: it is a place where one may want to test concepts of quantum theory, or
realize working models for complex biological systems.

We refer to that general trend by an umbrella term, nanoscience, which covers
all research activities centered on objects with defining dimensions on the scale of
a nanometer (or 1 nm, which is 107? m). Nanoscience deals with structures that
are actually fabricated with nanometric dimensions (called nanostructures), such
as carbon fullerenes. It studies bulk materials made from nanosized grains (nanos-
tructured materials), such as ultrafine-powdered ceramics. And it also encompasses
systems engineered from minuscule electromechanical devices (nanoelectromechan-
ical systems or NEMS), such as the cantilever used in probe microscopy, or the
Digital Micromirror Device invented by Texas Instruments scientists and used in
large-screen digital cinemas.

Nanostructures, the basic entities of these studies, range roughly in size from
1 to 100 nm and include both naturally occurring and artificially made objects —
metallic or ceramic grains, chemical or biological macromolecules, optical or elec-
tronic devices, and protein-based motors (Fig. 5.1). Nanoscience necessarily covers
a vast domain that gathers together experts in physics, chemistry, biology, materials
science and engineering to work in a collective program whose scope and potential
have rarely been seen before.
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Figure 5.1: Structures in the domain of the small length scales.

5.1.1 Summary

Nanoscience is a multidisciplinary field that deals with structures that have char-
acteristic dimensions on the scale of a nanometer, or with materials and devices
constructed with them. These structures may be naturally occurring entities as
well as artificially made objects. The objectives of these activities are, on the one
hand, to search for improved materials and more efficient ways of fabricating devices
and, on the other hand, to explore and eventually exploit new properties that should
arise from the small scale.

5.2 The Rise of Nanoscience

Of course, nano-sized particles have been around for a long time, and have become
the focus of a systematic though deliberate inquiry at least since Feynman’s rallying
call. But the recent massive upsurge in interest in the subject that has led to its
recognition as a distinct coherent field of endeavor stems from the confluence of three
important new developments: novel characterization methods, advanced fabrication
techniques and a better understanding of the basic science.

In 1982 Heinrich Rohrer and Gerd Binnig (1986 Nobel Prize laureates) invented
a new type of microscope, called the scanning tunneling microscope (STM), which
is capable of imaging individual atoms. It differs from all previous types of micro-
scope in that it uses no free particles to probe, and so has no need for lenses, and
can therefore bypass their inherent limitations. Its probing agent is the tip of an
extremely sharp metallic needle, and its operation relies on the quantum tunneling
effect (see Appendix B). One positions the tip so close to (say, 1 nm above) the
surface of a conductive sample that the wave functions of electrons in the tip over-
lap the wave functions of electrons in the object surface, enabling electrons to flow
across the vacuum gap when a small voltage is applied to the probe and sample.
The tunneling current thus produced is very sensitive to the tip—sample separation
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because the electron wave functions decay exponentially with distance in the gap;
changing the separation by a fraction of a nanometer causes the current to vary
by several orders of magnitude. In an STM operation, you maintain the tunneling
current at a set level, and when you scan the probe across the sample, it will follow
a constant current path, tracing the contours of the object surface. As the tip is
extremely sharp and the current confined to a fine thread connecting the tip end
and the sample surface, you can detect features on the surface as small as atoms.

Other types of scanned probe microscopes (SPMs) followed close behind. As in
the STM case, they work by sensing a local microscopic property of a specimen
(e.g., atomic forces, optical absorption or magnetism) with a submicron-scale probe
designed to detect the property of interest. You scan the probe back and forth
over the surface of the object while measuring the physical quantity, then process
and convert its local variations to a three-dimensional real-space representation of
the surface. Because of the nanometric- or even atomic-scale resolution that can
be achieved and their adaptability to different types of interactions and working
environments, including vacuum, air and liquids, these microscopes have become
indispensable characterization tools in nanotechnology.?

Even more significant is the ease in turning the probe of an SPM into a
nanometric-sized mechanical tool by simply changing the strength of the inter-
action involved. Increasing the applied potential to a few volts suffices to give the
probe enough force to break chemical bonds or initiate a local chemical reaction in
the sample. The probe now becomes an exquisitely delicate tool for local modifi-
cation and manipulation, capable of removing individual atoms and molecules and
repositioning them at selected sites, or forging chemical bonds between individual
particles, or even scratching and chiseling surfaces. So, you can alter matter or even
build it atom by atom.

Many other techniques of fabrication are found in the nanoscientist’s toolbox.
They can be loosely divided into two categories. With any method in the first
category, one organizes atoms into nanostructures by a careful control of the chem-
ical components and environment, and then assembles the building blocks into the
final material. It may be referred to as a chemical or bottom-up approach. In
the second category, one relies on some non-chemical force in a significant way to
sculpt the functionality of a suitable starting material. It is a physical or top-
down approach. In practice, one often applies a combination of techniques from
either or both approaches, and may strive at integrating both steps, the synthesis

2Besides the STM, other popular SPMs are: the atomic force microscope (AFM), which makes use
of the atomic force between tip and sample; the magnetic field microscope (MFM), in which a
magnetic tip is used to sense the magnetic domains of the specimen; and the near-field scanning
optical microscope (NSOM), in which an optical fiber funnels a light beam onto the specimen,
and the locally emitted light yields a spectroscopic image of the sample. Other microscopes with
atomic-scale resolutions, but operating on more conventional principles, are the transmission
X-ray microscope (STXM) and the transmission and scanning electron microscopes (TEM, SEM).
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of nanostructures and their assembly into materials, into a single process.® A few
of the methods may also be rightly considered biomimetic in the sense that they
seek to imitate some process in nature, for example in its use of seeds, templates
or self-assembly for nucleation and growth. A completely different kind of tool is
the computer, which now pervades all disciplines. But it is more than just a tool to
analyze data or test models; it has become an integral approach to problem solving:
it can predict outcomes for experiments too difficult to carry out, test structural
designs, or do molecular simulations for materials.

The third factor contributing to the rise of nanoscience is a better understanding
of the precise way the macroscopic properties and the functionality of materials
and structures are related to the size and arrangement of their components. For
example, it is crucial that we know exactly how the size and location of metallic or
semiconducting nanocrystals in a material affect its optical and electronic properties
if we intend to implant atoms into appropriately sized dots at precisely controlled
sites in order to obtain a product with the desired attributes. The new, finely
engineered material may lead us to observe novel properties that we would not have
otherwise suspected, which in turn may point us to other inventions. It is this kind
of cross-fertilization of the fundamental and the applied that makes nanoscience
and nanotechnology such an exciting and fast-moving field.

5.2.1 Summary

The recent rise of nanoscience stems from the confluence of three important new
scientific and technological developments: novel characterization tools (microscopes
capable of atomic-scale resolution), advanced fabrication techniques (deriving from
physics, chemistry and biology) and a better understanding of the basic science
(aided by mathematics and computing science).

5.3 Confined Systems

In order to gain some understanding of nanostructures, we will find it fruitful to
regard them as confined systems, that is, systems where the motion of the rele-
vant microscopic degrees of freedom is restricted from exploring the full three-
dimensional space. The confining spatial dimensions need not and, in fact, cannot
vanish, because of the quantum uncertainty principle (Problem 5.1). An electron
or a photon in a semiconducting film with a thickness of the order of the particle’s
characteristic wavelength is practically confined to a plane, having no freedom of
motion in the transverse direction. Particles confined in an ultrathin wire are free

3Examples of chemical methods include chemical reduction, thermal decomposition, electrochem-
ical processes, use of crystalline hosts, molecular-cluster seeding, and self-assembly. Among the
physical or physico-chemical methods, we have lithography, ball-milling, scanning-probe methods
and gas-phase condensation. See the Glossary for the definitions of some of these terms.
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to evolve in only one dimension, whereas those confined in a nanosized box are
constrained in all three directions.

5.3.1 Quantum Effects

Consider a piece of crystalline solid: it consists of a very large number (like 10%!)
of atoms sitting very close to one another in regular arrays. Each discrete energy
level for the electrons in an isolated atom now broadens, by interactions with all
other electrons and atoms in the solid, into a band of some 102! closely packed
energy levels. The bands become wider with increasing energy and are usually
separated from one another by gaps (the remnants of the original atomic energy
spacings), although in some materials a pair of adjacent bands may overlap. An
electron may have an energy that lies in one of the bands but not in any of the gaps.
The occupied band highest in energy is called the valence band (and the top filled
level is the Fermi level), and just above it lies the conduction band, which contains
allowed but very sparsely occupied levels. The relative locations and the degrees of
occupation of these two particular bands determine many of the physical properties
of the material. When an electron has an energy near the bottom of the conduction
band or near the top of the valence band, it is a good approximation in the absence
of applied fields to regard it as a free particle propagating with an effective mass,
m™, smaller than its actual mass, i.e., with less inertia than it does in vacuum. As
the parameter m* takes different values with different bands, we have two distinct
continuous energy spectra associated with the valence and the conduction electrons,
just as experimentally observed.

Now, what happens when space shrinks, say, to an interval d of a few nanometers
in the z direction? The electrons move freely as before in the xy plane, but are now
confined in the third direction between two energy barriers separated by d, forming
what is called a potential well. (The conduction and valence electrons evolve in
separate potentials.) If we assume the barriers to be infinitely high, the wave
functions that represent the particles in the z direction must fit snugly within those
confines, vanishing at the interfaces, and hence can only have an integral number
of half-wavelengths across the width of the quantum well. 1t follows that the only
allowed de Broglie wavelengths are A = 2d/n, wheren = 1,2, 3, ... . So the motion of
an electron across the layer is quantized, with allowed momenta p, = h/A = nh/2d
and corresponding energies FE, = p2/2m* = n?h?/8m*d?, where h is Planck’s
constant. As the energy for the in-plane motion remains essentially the same as in
bulk volume, the total energy of an electron in the thin film is given by

2
Dj

E(n,py) = En+ 53,

where p| denotes the in-plane component of the momentum. This energy spectrum
consists of a series of overlapping continuous bands (technically, subbands, i.e., small
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Figure 5.2: Quantum states in infinite square well. (a) and (b) Wave functions and energies for
the first three states. (c) Valence and conduction bands, separated by an energy gap.

bands within broader bands), each built upon a discrete energy level. Tt differs
markedly from the completely continuous spectrum E = p?/2m* for an electron in
a bulk sample (Fig. 5.2). The minimum allowed energy, F(1,0) = E1, does not go to
zero (and even increases as d is reduced), in sharp contrast with the unconfined case.
The non-vanishing minimum energies of electrons and holes in confined systems raise
the conduction-band lower edge a bit, and lower the valence-band upper edge a bit,
thus widening the band gap, a result loaded with important physical consequences.

If the number of electrons per unit area is low enough (like 10! per cm?), they
will fill up the lowest subband at zero Kelvin and stay there, provided the thermal
energy, kT (the product of the Boltzmann constant k& and absolute temperature
T), is small enough, i.e., less than the energy spacing of the first two subbands,
Ey — E; = 3h?/8m*d?. For a range of low energies, the motion in the transverse
direction is then described by the same wave function and contributes the same
energy; it gets frozen out of the particle dynamics. The electrons have effectively
reached the limit of a two-dimensional system and, for this reason, are said to form
a two-dimensional electron system (2DES). Take, for example, gallium arsenide
(GaAs), a common semiconductor. Here, the conduction electron has an effective
mass of about 7 percent of the actual mass. For the energy needed for transition
to the first excited level to be much greater than the thermal energy at room
temperatures,* d must be far less than 25 nm. This condition is amply satisfied for
a GaAs layer 10 nm thick, since the spacing Fs — F; = 170 meV (milli-electron-volt)
is too high for thermal excitations (Problems 5.2-5.4).

The effects of confinement on a system become even more transparent when
we look at its density of states (DOS), which is the number of its possible states

4A temperature of T = 300 K (or 27 C) is equivalent to thermal energy kT = 26 meV.
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Figure 5.3: Energy spectra and densities of states of systems with dimensionalities 3, 2, 1 and 0.
The symbol Ef stands for the Fermi energy, the energy of the top occupied level.

found at some energy per unit ‘volume’ per unit energy. It turns out that in three
dimensions the density of states starts from zero at zero energy and increases slowly
and smoothly with energy; by contrast, in the two-dimensional (2D) case it increases
in equal steps, staircase fashion, rising at the successive quantized energies of the
confined motion (Fig. 5.3). The DOS is a key factor in calculating transition rates.
As it is non-vanishing in 2D even at the bottom level, many dynamical phenomena,
such as scattering, optical absorption and gain, remain finite at low energies and
low temperatures.

In the preceding discussion, we have assumed ideal confinement, i.e., the walls
of the potential to be infinitely high. When they are finite, the results change
little, at least qualitatively, for the lowest levels; but whatever changes there are,
they may prove significant in certain situations. Then, the particle wave functions
do not vanish at the interfaces, but rather continue on and penetrate the barriers,
diminishing rapidly in an exponential decay, exactly the effects exploited in scanning
tunneling microscopy. The confinement energies decrease with the heights of the
potential walls, and the lower the barrier is or the higher the energy level, the deeper
the penetration. And, if the barrier walls are thin enough, the wave functions may
even go all the way through the walls, providing a mechanism for electrons and holes
to escape from the well. Quantum wells and quantum barriers can be combined to
build interesting quantum structures and devices.
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Quantum wire is the generic name for quasi-one-dimensional (1D) systems with
one direction for free motion and two directions of confinement. Its energy spectrum
and DOS are qualitatively similar to those for quantum wells, with more subbands
in the spectrum and a sawtooth profile for the DOS. The situation changes sub-
stantially for quantum dots, the quasi-zero-dimensional (0D) structures whose sizes
are of the quantum scale all around. Here, the energy spectrum consists entirely
of discrete levels, like rungs on a ladder, and the DOS of discrete sharp peaks, like
posts in a fence (Fig. 5.3). In general, as the dimensionality is reduced in steps from
three to zero, the energies become more and more sharply defined and the densities
of states progressively more singular, more condensed at particular energies.

5.3.2 How to Make them

The most common method of making ultrathin films of crystalline solids, usually the
first step in the fabrication of many lower-dimensional systems, is a high-vacuum
evaporation technique called molecular beam epitary (MBE). Think of it as spray-
painting atoms onto a flat surface. In an ultrahigh-vacuum chamber, place a heated
millimeter-thick crystalline (e.g., GaAs, InP) layer; spray it with jets of gases of
the substances (Si, Ga, As, In, etc.) you want to deposit. The substrate provides a
template for the arriving atoms and mechanical support for the final structure; the
high vacuum eliminates unwanted impurities; and the use of regulated jets provides
flexibility in the choice of the materials and control of the composition and thickness
of the film. In this way, you can produce single or multiple (semiconducting, as well
as insulating or conducting) layers of atoms of precise thicknesses and compositions.
To complete the construction of a semiconductor nanostructure in this method,
it is necessary to follow growth with lithography. This advanced etching technique,
similar to that applied in the fabrication of state-of-the-art integrated circuits, is
used to transfer a desired pattern from a master copy (mask) into a protective
polymer layer (resist) coating the semiconductor surface. After the resist has been
irradiated by focused X-rays, electron or ion beams through the mask, its weakened
exposed regions are washed off with solvent, and the semiconductor is etched away
where it has now been exposed by the removed resist. The patterned semiconduc-
tor structure can be further engineered (doped, metallized or etched further) for
targeted applications. Insulating tunnel barriers and metallic electrodes, or ‘gates,’
are often integral parts of the structure and fabricated with the same techniques.
Take, for example, the growth of a layer of aluminum-gallium arsenide
(Al.Gaj_.As) on a gallium arsenide (GaAs) substrate. This combination of two
lattice-matched semiconductors, having nearly identical atom-to-atom spacing,
together with a careful crystal growth will guarantee a defect-free, stress-free, and
hence high-quality interface. The alloy Al.Gaj_.As consists of periodic arrays of
arsenic atoms together with a fraction ¢ of aluminum and 1 — ¢ of gallium. The
aluminum fraction, controlled during growth, determines the energy band gap of the
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alloy as well as the shape of the confining potential. Keeping it constant through-
out the deposition leads to an abrupt interface and hence a square energy barrier,
whereas varying it spatially during the fabrication process produces a composition-
ally graded material and hence a z-dependent potential well.

A quantum-well structure is built by sandwiching a thin (say 10 nm) layer of
GaAs between two thicker layers of Al.Ga;_.As (Fig. 5.4). These two lattice-
matched semiconductors differ slightly in their energy band gaps and so also in
the energies of their free electrons. An aluminum concentration around 30% gives
AlGaAs a band gap larger than that found in GaAs by 360 meV, split roughly 2:1
between the conduction and valence bands, so that electrons see a 240 meV energy
barrier and holes see 120 meV. With potentials that deep, quantum size effects are
easily observable even at room temperatures.

There are no free electrons that move about in pure semiconductors at low
temperatures, all of them being consumed by the bonds that hold the solid together.
However, by adding during the crystal growth a small number of silicon atoms in
the AlGaAs compound at a distance of about 0.1 pm from the interface (a process
known as modulation doping), the outer-shell electrons of the Si atoms escape into
the GaAs layer, which has lower-energy electron states, and move freely about in
this highly pure crystal, unimpeded by their then-ionized parent impurities, which
remain behind in the AlGaAs layer on the other side of the barrier. The dipolar
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Figure 5.4: (a) Modulation-doped heterojunction. (b) Quantum well in a three-layer double-
heterostructure. (c¢) Formation of a 2DES in the potential well at the Si:AlGaAs/GaAs interface.
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charge distribution formed from the free electrons and the stationary ions creates an
electric field that pulls those electrons against the AlGaAs barrier of the interface.
The charge carriers effectively lose their freedom of motion in the z direction, being
quantum-mechanically bound within the confines of the GaAs film, but remain
highly mobile in the zy plane. The mean free path (a measure of this mobility)
of such an electron in today’s modulation-doped GaAs/AlGaAs heterostructures
reaches 0.2 mm at low temperatures, meaning that it flies past one million atoms
of the semiconductor before a collision takes place — a ballistic flight.

5.3.3 Summary

In order to gain a physical understanding of many of the nanostructures, it is fruitful
to view them as confined systems, that is, systems that are reduced to nanometric
dimensions in one or several directions. The motion of a particle in these directions
is then quantized, leading to effects observable on the macroscopic scale.

5.4 Quantum Devices

These are the devices that exploit the quantum properties of confined systems. They
are built on the basic concepts of the quantum well, quantum wire and quantum dot.

5.4.1 Quantum Wells

Quantum wells have found widespread use in light-emitting diode (LED) and laser
diode applications (e.g., displays, compact-disc players, communication systems).
While sharing the same double-heterostructure design and operation principles with
conventional semiconductor devices,? they have several advantages over the latter,
all due to the nanometric size of their active region, where electrons and holes recom-
bine to emit light. First, as the light from such devices is emitted with a wavelength
determined by the energy of the effective (i.e., broadened by confinement) band gap
and as this quantity varies with the chemical composition of the materials and the
thickness of the active layer, quantum-well devices can be designed to reach new
wavelengths. Secondly, the close proximity of the electrons and holes in the active
region implies a vastly improved recombination rate and hence a higher optical gain.
And the concentration of states at sharp energy levels gives rise to a narrower gain
spectrum, with considerably fewer unused excitations. This means smaller internal
losses and far less excess heat to be extracted from the laser die. Add to these
factors the electron’s high mobility in a modulation-doped semiconductor, and you
have devices with much better electrical-to-optical power efficiency functioning at
a far lower current threshold.

5Refer to Chapter 2 for elements of photonics and lasers.



162 Ezploring Nanostructures

Much of the initial research and development on quantum-well devices con-
centrated on the GaAs/AlGaAs and GaAs/AlInGaP combinations which operate
efficiently in the red—yellow optical region. However, the versatility of MBE and
other growth techniques allows us to explore other materials and engage in band-
structure engineering, where we tailor artificial electronic states and energy bands
to our design by programming the growth sequence of the MBE machine. An
interesting example is the long search for suitable blue-light emitting materials,
which has led eventually to the successful development of efficient devices based on
gallium nitrides. The new light-emitting diode is a structure consisting of a 3 nm
thick layer of indium-gallium nitride (Ing2GaggN) sandwiched between a p-type
(hole-rich) layer of aluminum-gallium nitride (AlGaN) and an n-type (electron-rich)
layer of gallium nitride (GaN), all grown on a sapphire substrate. The InGaN film
forms a quantum well into which are fed electrons and holes by the surrounding
materials. The charge carriers go into their respective bottom (n = 1) subbands,
and recombine to emit blue and green light. By combining red-, blue- and green-
light emitting diodes of comparable power and brightness, it is possible to make
full-color displays and efficient white-light sources that work longer, use less energy
and, best of all, can be coupled to computers for novel applications.

While the InGaN LED consists of a single quantum well, the corresponding laser
is a superlattice, or system of 2—10 coupled quantum wells formed by alternating thin
layers of InGaN and AlGaN or GaN. As with most other absorption devices based
on quantum wells; it is necessary to couple several wells together in order to boost
the absorption rate to a sizeable level. This type of laser can operate continuously
at a single wavelength in the 390-500 nm range at room temperatures. These short
wavelengths should give decisive advantages to many applications. For instance,
as CDs and DVDs now on the market rely on red semiconductor lasers to read
the stored information, their data packing density is always limited by the size of
the focused laser spot, but it can be increased when shorter wavelengths become
more widely available. The data storage capacity of single-layer DVDs, now at
4.7 Gbytes, could be improved at least threefold by moving to blue light, putting
high-definition DVDs within the general consumer’s reach.

The presence of subbands in quantum wells gives us the possibility of having
intersubband optical transitions when a conduction electron, excited into an upper
subband, relaxes to a lower subband and emits a photon with an energy roughly
equal to the energy difference between the two subbands. We expect the photon
emitted to be in the mid-to-far-infrared spectrum, which includes wavelengths to
which the atmosphere is transparent. A device based on intersubband transitions
would differ in a fundamental way from conventional LEDs, because it would rely on
only one type of carrier (electrons) and on transitions between energy levels arising
from quantum confinement (and not transitions across a band gap).

Such a novel device has been developed by Frederico Capasso and his collabo-
rators at AT&T Bell Laboratories in the US. This beautiful piece of technology,
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Figure 5.5: An active region of a quantum-cascade laser.

which they called a quantum-cascade laser, is a closely coordinated complex of
500 perfectly calibrated layers of GalnAs (gallium-indium arsenide) and AllnAs
(aluminum-indium arsenide) grown by MBE (Fig. 5.5). The central region consists
of 25 identical stages, acting like steps in an energy staircase, and each stage is in
turn made up of an optically active region and an injection—relaxation region. Each
active region consists of three quantum wells, which are nanometer-thick layers of
GalnAs flanked by insulating layers of AllnAs. The wells differ slightly in thickness
and hence in energy for corresponding levels. When an appropriate electric field is
applied, electrons are injected by tunneling into the n = 3 excited state of the first
well, where they stay for a relatively long time (like 4 ps), before tunneling through
an AllnAs layer into the second well, dropping into the n = 2 level and emitting an
infrared photon (of about 300 meV). The electrons then drop very quickly (after,
say, 0.5 ps) to the n = 1 subband of the third well (releasing a quantum of heat of
about 30 meV), from which they escape equally quickly into the injection—relaxation
region, before being re-injected into the n = 3 state of the next well to start another
stage all over again, and so on down the cascade. Thus, for each electron injected,
25 photons will be produced over the whole cycle. Population inversion between the
two upper states responsible for the lasing action is ensured by the long relaxation
time of the uppermost state and the extremely short tunneling escape times out of
the two lower states. Each injection—relaxation region is a compositionally graded
AllnAs—GalnAs superlattice designed so that the energy levels between the steps are
arranged in a descending order; its role is to convey the electrons from one active
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region to the next. All this is achieved by a superb band-structure engineering
that allows the designer to control the emitted light by varying the thicknesses and
spacings of the quantum wells.

5.4.2 Quantum Wires

If two-dimensional devices, such as the quantum-cascade laser, are promising, then
similar structures in fewer dimensions should even be better for the enhanced
speed and quantum effects that their further-reduced dimensionality must imply.
Electrons scatter even less and attain even higher mobility when traveling through a
one-dimensional channel than through a plane. Quantum wires act in effect as wave
guides for charge carriers, permitting only a few propagating modes. Endowed with
such a quality, they would provide enormous benefits for the photonics and electron-
ics industries. They could make efficient lasers powered by far less current, offer a
more economical alternative to superconducting wires as resistance-free conductors,
or serve as tiny sensors designed to detect the slightest trace of chemicals.

The ballistic propagation of particles in a quantum wire shows up most clearly
in the quantization of the wire conductance (or inverse of resistance). Electrons
that enter empty states at one end of the channel, to which we have applied a
small voltage V', pass right through it without loss or gain, provided that the wire
length is much shorter than the electron’s mean free path. As the current flowing
along the channel is independent of which subbands the electrons occupy, it must
be proportional to the number of occupied subbands and the applied potential.
The proportionality factor turns out to be a universal constant (the conductance
quantum), Gy = 2¢2/h, where e is the unit of electric charge, and 2 the number of
spin states for each electron. So, the conductance increases in steps of G as the wire

V<0 10nm R
Gg< VG<O <
Y 71 ¥ N
s

P

o

c

8

o

>

e

I LT L S
/DES GaAs o

Al Ga As _'2 ' —1..8 ' —1..6 '

Gate voltage

(a) (b)

Figure 5.6: One-dimensional quantum system. (a) Quantum wire consisting of electrons confined
by an electrostatic potential. (b) Conductance of quantum wire as function of voltage, showing
plateaus at multiples of 22 /h.
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is made wider, thereby accommodating successive higher-order wave guide modes
(Fig. 5.6). Recent experiments indicate, however, a more complex situation that
involves the electron spin in some decisive way, leading to an additional conductance
structure at 0.7Gq (Problem 5.5).

5.4.3 Quantum Dots

Quantum dots, the ultimate in confinement, are solid-state structures that contain
mobile electrons in a ‘box,” or a very small conducting region surrounded on all
sides either by insulating materials or by electric fields which produce the potential
needed for confining the electrons. If the confinement is robust enough and the size
of the box small enough, quantum effects can be observed macroscopically. Like
natural atoms, quantum dots contain a countable number of electrons (ranging
from a few to a few hundred thousands) and display a spectrum of sharp energy
levels, leading to the frequent reference to them as ‘artificial atoms.” The growing
interest in them is of a fundamental nature as well as strongly driven by potential
applications where their small size and discrete energy spectrum would be beneficial.
However, the two types of electronic systems also differ on several significant
points. First, while in real atoms confinement of electrons is caused by the elec-
trostatic force of the nucleus, in artificial atoms it is accomplished by material
boundaries or electrodes whose shape and strength control the shape, size and sym-
metry of the confining potential. Quantum dots have been created and studied,
with or without symmetry and in various geometries, including rods, pancakes and
spheres. Secondly, the relevant length and energy scales are not the same, with the
typical size and Fermi energy in naturally occurring metal clusters being around
0.5 nm and 5 eV, whereas the corresponding values in semiconductor nanostruc-
tures are 50 nm and 10 meV, respectively. It means that both the thermal motion
and the electron—electron interaction play a relatively more important role in the
much larger artificial atom than in the smaller real atom (Problems 5.6 and 5.7).
One possible way to construct a quantum box is to surround a small region
of a two-dimensional electron system with lateral walls. To implement this idea,
a crystal wafer is grown layer by layer, starting from the bottom (Fig. 5.7). One
begins with a heavily doped crystal of GaAs, which serves as a metal gate, over
which one grows by MBE a layer of AlGaAs, thin enough to let electrons leak
through it. Next, one grows a layer of pure GaAs, which is where the electrons
will accumulate and form a 2DES when a positive voltage Vg is applied to the
gate. Finally, a pair of tiny longish specially shaped metal electrodes, which look
like two gaping jaws baring their teeth, are deposited on top of the crystal wafer.
In addition, two contacts (called source and drain) are placed at the ends of the
electrodes to allow electrons to enter or leave the system. The metal plates are
negatively biased and so repel the electrons in the 2DES lying directly underneath,
thereby erecting potential barriers that separate a shallow pool of charges within
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Figure 5.7: Zero-dimensional confined system. (a) Schematic of a quantum dot. (b) Conductance
of a quantum dot a as function of the gate voltage, showing sharp peaks at equal intervals (adapted
from Marc Kastner, 1993).

the perimeter formed by the electrodes and the split gates from all the electrons
left outside. This quasi-zero-dimensional pool of electron gas is our quantum dot,
also called Coulomb island. For a sufficiently large negative bias voltage, each
constriction (or gap in the potential barrier under a pair of opposing metal teeth) is
completely closed off, and electrons must tunnel through it. But when the voltage
is made less negative, the constriction begins to open up, letting a current pass
freely through.

To probe this little box, you may imagine changing its charge content ever so
slightly. What work does it take, you’d ask, to add the smallest possible speck of
charge? Assuming there is no charge in the box and no applied voltage to begin
with, you need an energy Q?/2C to add a charge @ to a dot with total capacitance
C (which is proportional to the island’s diameter and of the order of 1071 farad).
Since you cannot add less than an electron, a transfer of charge onto the island costs
at least €2/2C in energy: charge quantization requires an electron to have an energy
€?/2C above the Fermi level in the contact in order to hop onto the island, and a
hole to have an energy lower than the Fermi level by the same amount in order to
cross the tunnel. So you see, in the absence of an applied voltage, no current can
flow through the system as long as the thermal energy stays below the minimum
charging energy e?/C, a phenomenon known as the Coulomb blockade.

However, when we apply a voltage Vi at the bottom plate, the attractive in-
teraction between the negative charge () and the positively charged gate must be
added to the repulsive interaction among the bits of charge on the dot to give the
total electrostatic (charging) energy:

2
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This equation tells us that, as a function of @, the energy F has a minimum at
induced charge Qo = —CVg or, equivalently, at gate voltage Vg = —Qo/C. When
Qo = —Ne, or Vo = Ne/C, an integral number N of electrons minimizes E, but
the Coulomb interaction still demands an amount of energy e?/2C to either add or
remove one electron. Given the control we have over the applied voltage, we may
wonder if, near this optimum number N, we can find a value of Vg for which it
would cost us less (and hopefully nothing) to add or remove a charge quantum. As
Vi varies continuously, it may be written in the form Vi = (N + d0)e/C, where ¢
is a number between 0 and 1. We will write the energy as E(N) to emphasize its
dependence on the charge number N = —@Q/e, and readily show that the states
with N and N + 1 electrons differ in energy by E(N +1) — E(N) = (1 —2§)e?/2C,
a quantity independent of N. We see that as ¢§ is varied from 0 to 1, this energy
difference goes from being positive to being negative in passing by zero at 6 = 0.5.
In other words, if the dot finds it energetically more favorable to have N electrons
at a voltage below Vg = (N + 0.5)e/C, then for higher voltages it would prefer
to have one additional electron. However, when the voltage is set precisely at that
value, the two configurations have equal energies, and the charge fluctuates between
—Ne and —(N + 1)e even at zero temperature. This fluctuation occurs when an
electron tunnels onto the dot from the left lead, and later another tunnels off the
dot to the right lead (Problem 5.8).

When a very small, fixed voltage is applied between the source and drain, just
large enough to coax the electrons to move along, we can measure the tunneling
current through the quantum dot as the gate voltage Vi is varied. Sharp current
peaks appear periodically at gate voltage Vg = (N 4 0.5)e/C and every time the
voltage increases by steps of e/C, which is the amount necessary to add one more
electron to the confined pool of electrons. So, increasing the gate voltage of an
artificial atom is equivalent to moving through the periodic table of real atoms.
While a range of voltages produces no current at all, a sharp spectacular current
spike appears when the voltage reaches the next critical value, and we know then
that another electron has just hopped into the pool. Whereas thousands of charge
carriers must flow (and produce a large amount of heat) each time a traditional
semiconductor transistor flips, it suffices a single electron to turn a quantum dot
on and off again. That is why some people consider, justifiably, a quantum dot a
single-electron transistor (SET).

This unique transport property of the single-electron transistor is the basis of
operation for several devices, such as electrometers and electron turnstiles, which
require extreme charge sensitivity. Even more promising in terms of new physics
and new applications are artificial molecules, consisting of two or more closely
spaced quantum dots, and artificial solids, made of large arrays of linked quantum
dots. The exciting feature here is that the researchers can control the strengths of
interactions between neighboring artificial atoms by varying at will the voltages on
electrodes, and thereby learn to engineer desired properties into artificial matter.
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5.4.4 Summary

Starting from the basic concepts of the quantum well, quantum wire and quan-
tum dot, researchers have made use of the control they have over the fabrication
process — the parameters of confinement, the choice of the primary materials, and
the composition and architecture of the structures — to design novel or improved
devices. The quantum-cascade laser and the single-electron transistor are good
examples of the photonic or electronic devices that exploit judiciously the unique
electronic and transport properties of systems having lesser dimensions.

5.5 The Genius of Carbon

Nature endows carbon with a wonderful versatility: by exploiting its bonding to the
full, it can build structures in all dimensionalities. Diamond is a three-dimensional
lattice, graphite is a stack of two-dimensional layers, and other carbon structures
are found so small that they may be considered one- or zero-dimensional.

5.5.1 Carbon Fullerenes

The extraordinary all-carbon molecule Cgg has become one of the best known nanos-
tructures. An interesting story behind its discovery, a pretty name and an alluring
shape also help.

The experiments that led to its discovery in 1985 were aimed at simulating
in laboratory the conditions under which carbon atoms cluster in the atmosphere
of a carbon-rich red giant star and, specifically, at exploring the possibility that
long carbon chain molecules could form when carbon nucleates in the presence
of hydrogen and nitrogen. In these experiments, an intense pulsed laser beam,
focused on a rotating graphite disk, vaporized the material, and the resulting carbon
vapor was entrained in a powerful stream of helium, which, being a chemically inert
gas, cooled the vapor so that it could condense into small clusters. As the carrier
gas expanded through a nozzle into a vacuum, it produced a jet of cold clusters
whose masses could be measured by a mass spectrometer. Reactive gases such as
hydrogen or nitrogen could also be added to the carrier gas, and the products of the
reactions of these gases with the carbon clusters could be similarly analyzed. The
experiments showed that species such as HC7N and HCgN could indeed be produced,
but, unexpectedly, a host of even-numbered clusters with 38-120 carbon atoms were
also generated in a roughly Gaussian mass distribution strongly dominated by Cgg
(Fig. 5.8). The leaders of the experiments, Robert Curl, Harold Kroto and Richard
Smalley, realized that the unusually high stability of Cgp could be explained by
a molecular structure having the perfect symmetry of a soccer ball, and called
the molecule buckminsterfullerene, or buckyball for short, because its shape was
reminiscent of the geodesic domes popularized by architect R. Buckminster Fuller.
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Figure 5.8: Crucial graphs in the discovery of Cgp. In 1985 the cluster-beam generator showed
the presence of many even-numbered carbon clusters, especially Cgg. In 1990 Krétschmer and
Huffman showed that this humped ultraviolet absorption spectrum revealed the presence of Cegg.

Although they did not have direct evidence to support their conjecture, subsequent
experiments in spectroscopy and crystallography have proven them right, which
earned them the 1996 Nobel Prize in Chemistry.

The proposed structure for Cgp looks like a hollow truncated icosahedron
obtained from an icosahedron by snipping off each of its twelve vertices. As a
result, each vertex of the Platonic polyhedron is replaced by a pentagon, and each
triangular face converted into a hexagon (Fig. 5.9). With the sixty atoms evenly
distributed among its vertices, the truncated icosahedral structure has exceptional
strength and stability (Problem 5.9).

The carbon atom has four valence electrons occupying an outer shell, which is
only half full. By combining with other elements which have similar, incomplete
shell structures, and by sharing with them one or more pairs of valence electrons
(thus creating single, double or triple bonds), it can form a stable molecule. It

a3
&

Figure 5.9: Structure of Cgg. When the vertices of a regular icosahedron are snipped off, one
obtains a truncated icosahedron, which gives the framework for Cgg. The carbon atoms are located
at the vertices, and the double bonds at the two-hexagon fusions.
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can also bond with other carbon atoms in different ways to create structures with
entirely different properties. When the four valence electrons of a carbon atom are
shared equally with four other carbon atoms sitting at the vertices of a tetrahedron
whose center is occupied by the given atom, we have, assuming an infinite lattice,
isotropically strong diamond. When only three are shared between neighbors, with
the fourth moving freely among atoms, we have graphite, a layered material possess-
ing highly anisotropic properties. Strength, elastic modulus, electric conductivity,
and thermal conductivity are much higher within the covalently bonded planes than
across them. In bulk solid phase, graphite is thermodynamically stable up to very
high temperatures under normal pressure. But in a finite chunk, atoms at the sur-
faces, having no carbon neighbors, must tie up their unsatisfied (dangling) bonds
with hydrogen in the air. Similarly, in a synthesis process where there are fewer
than a few hundred carbon atoms available at any given time, the growing struc-
tures will seek energetically favorable, finite configurations — linear chains, rings
or closed shells — that keep dangling bonds to a minimum.

Once monocyclic rings are formed, they can grow by adding further atoms or
small chains, and fold into polycyclic networks, which resemble pieces of hexagonal
graphite lattice or fragments of chicken wire. The general physical tendency to
reach the lowest-energy level induces the planar sheets to eliminate the unsatisfied
valences of the edge atoms by curling up. To curl up, or to produce a convex
curved structure, the sheets rearrange their bonding so that five-membered rings
are formed, enabling the dangling bonds of some of the edge atoms to tie up into
good carbon—carbon bonds. As the process continues, there is a high probability
that the graphitic sheets curl until the opposing edges meet to create closed cage-like
structures of nanometric dimensions.

A closed cage-like molecule that contains only hexagonal and pentagonal faces
is called a fullerene. This definition leaves out heptagons and octagons, which are
responsible for the concave parts and treated as defects. Like any simple polyhedron,
a fullerene satisfies Euler’s theorem, which relates the numbers of vertices (carbon
atoms) v, edges (covalent bonds) e, and faces f:

v—e+ f=2.

Let p be the number of pentagons, and h = f — p the number of hexagons. As each
vertex radiates into three edges and each edge joins two vertices, the doubled number
of edges equals the tripled number of vertices, 2e = 3v, which is also 5p + 6h since
each edge belongs to two adjacent faces. A simple calculation yields p = 12, meaning
that exactly 12 pentagons are required to provide the curvature needed to close a
hexagonal lattice into a defect-free fullerene. The addition of each hexagonal face
increases the total number of vertices and hence the number of atoms by two, so the
total number of carbon atoms in a fullerene must be even, according to v = 2(h+10),
which is consistent with the observed mass spectra. The smallest fullerene, Cop,
corresponds to h = 0, but no closed cage can be formed with A = 1, and Coy has



5.5. The Genius of Carbon 171

never been observed. Otherwise, any number of hexagons is allowed, and one could
imagine an elongated fullerene with exactly 12 pentagons and millions of hexagons.
However, not all such constructions are stable. For example, two adjacent pentagons
would be energetically unfavorable compared with isolated pentagons, because they
would give higher local curvature and hence more strain to the structure. That
is why unsaturated organic molecules with contiguous pentagonal rings are rarely
found; a chemically stable molecule cannot have adjacent pentagonal rings. The
molecules Cgp and Crg are the two lowest-mass carbon fullerenes that satisfy both
Euler’s 12-pentagonal closure principle and the isolated-pentagon rule and, for this
reason, appear prominently in the observed mass distributions of carbon clusters
(Problems 5.10 and 5.11).

Cgp is now produced in quantities large enough to make solids (fullerite) of
weakly bound molecules. Pure Cgg solid is an insulator. When it is doped with
alkali atoms, these impurities contribute electrons to the lowest empty band of the
fullerite, and the compound thus formed becomes insulating or conducting (i.e.,
metallic), depending on the degree of electronic occupation. At low temperatures,
not only some of these compounds (such as A3Cgg, where A = K, Rb, Cs), but also
alloys Cgo-alkaline-earth (e.g., BagCgo, Sr¢Cgp) and Cgo-rare-earth (e.g., Yba 75Ce0)
are superconducting, with a transition temperature T, that is surpassed only by the
cuprates (Chapter 3). Thus, T. is 33 K for RbCsyCgg and 40 K for Cs3Cgo under
pressure. The trend seems to suggest that even higher T, could be obtained by in-
corporating larger cations. Other workers, taking a different approach, showed that
fullerite doped with holes, rather than electrons, became superconducting at 52 K.

Within days of the discovery of Cgp, Smalley and his collaborators found that
metal atoms could be trapped inside fullerenes by impregnating graphite with the
desired metal before exposing it to laser vaporization. A carbon fullerene C,,
encaging a metal atom M is called an endohedral metallofullerene and written MQC,,
or, alternatively, fullerene-incar-metal and written iMC,,. All such complexes are
of the ship-in-a-bottle type, and many have been synthesized, including radioactive
species, which raises the prospect of their applications in materials, biological and
medical science. In 1992 Daniel Ugarte announced that under high-energy electron
irradiation, nested fullerenes could be generated. These ‘graphitic onions’ are of
considerable size, with diameters up to 47 nm, and contain thousands, even mil-
lions, of carbon atoms in spherical shells separated by spacings of 0.335 nm, just
as layers in graphite. As nested structures, they are a special form of multiwalled
nanotubes.

5.5.2 Carbon Nanotubes

A carbon nanotube is a single molecule of many carbon atoms arranged in a hexa-
gonal network that curls into a long, slender tubule capped at each end, and is
comparable in all respects to a very elongated fullerene. It exists in singles, known
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as single-wall nanotubes, or in nested multiples, called multiwalled nanotubes. The
latter — the first of the two to be discovered, by Sumio lijima in 1991, in samples
created by arc discharges between carbon electrodes immersed in a noble gas —
consist of several concentric cylindrical shells of graphitic sheets co-axially arranged
around a central hollow with a constant separation between the layers. They have
diameters ranging from 2 to 25 nm and lengths up to many micrometers. Single-wall
nanotubes are cylinders made of single sheets of graphene (one-atom thick layers of
graphite), with diameters distributed in a narrow range (1-2 nm). When produced
in the vapor phase, single-wall nanotubes self-assemble into larger bundles (ropes)
that consist of tens of nanotubes.

Suppose you want to build an ideal single-wall carbon nanotube. First, take a
rectangular sheet of graphene (chicken wire), then roll it up into a cylinder such that
the dangling bonds (open wire fragments) at opposing edges match perfectly to form
a seamless tube, and, finally, close the open ends of the tube with the hemispheric
domes obtained from a fullerene by cutting it evenly in half. Depending on the
width of your rectangle, you may roll in one of several directions relative to some
fixed row of bonds, so that on the curved surface of the tube the hexagonal arrays of
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Figure 5.10: Construction of an armchair nanotube (5,5) and a zigzag nanotube (9,0). Colored
hexagons indicate the direction of the tube axis. The rolling is along the vector AB.
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Figure 5.11: Construction of a chiral nanotube (6,4). Also indicated is the winding angle ¢
defined with respect to the tube axis.

carbon atoms may wind around in a helical fashion with a constant winding angle
with respect to the tube axis. To give a more precise description, let us define a
vector joining two sites, A and B, on the lattice by a pair of integers n and m, which
record the numbers of steps starting from point A and going along two reference
axes. This vector defines the wrapping into a tube of circumference AB if after
folding along its direction, points A = (0,0) and B = (n, m) coincide, so that (n, m)
contain all information on the structure (diameter and winding angle) of the tube,
and hence may serve to characterize it. Thus, the indices (n,0) designate zigzag
nanotubes, and (n,n) armchair nanotubes (Fig. 5.10), whereas all other possibilities
are termed chiral or helical (Fig. 5.11). Because of their simple and well-defined
structure, single-wall nanotubes serve as models for theoretical calculations and key
experiments (Problem 5.12).

What makes the carbon nanotubes fascinating is their wide-ranging superior
properties, which result from a unique combination of dimension, topology and
structure. For example, their light weight (1 g/cm?) results from a hollow cage-
like architecture, their relatively large surface area (10 m?/g) is due to nanometric
dimensions, and they owe their unusual capillary behavior to the smooth, straight,
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one-dimensional channel in their center. All these properties make nanotubes
useful as catalysts, components of novel materials, atomic-sized storage systems
and templates for fabrication of nanostructures.

Even more remarkable are their mechanical properties, which they inherit from
their graphitic frame and improve with their distinctive geometry. Carbon fibers,
which are long strands of graphene, have been used for decades to strengthen a
variety of substances, and nanotubes are predicted to be by far the strongest fibers
that can be made. A combination of great strength and light weight make them ideal
as materials for transport and construction. The Young’s modulus of a nanotube,
which is a measure of its elastic strength, or its degree of resistance to deformation,
can be obtained by measuring the thermal vibrations of the free end of the tube
clamped at the other end. The result found is consistent with the value for a
graphene sheet, which reaches 1 terapascal, or five times the value for steel. But,
because of their hollow structure and closed topology, carbon nanotubes respond
to extreme strains in a way quite different from other graphitic structures. Unlike
carbon fibers, they can be bent, twisted or compressed without breaking, and will
regain their original shape when the applied stress is released. The reversibility of
deformations, such as buckling, has been recorded in electron microscope images,
and indicates that nanotubes are highly elastic. Such superior mechanical properties
make them promising in reinforcement applications and for use as tips or tools in
proximity probe microscopy.

Apart from their special structural attributes, nanotubes possess equally intrigu-
ing electronic properties. In graphite, there is no band gap between the empty and
full states, but there are also very few free electrons (one per 10* atoms, compared
to one per atom in copper) capable of carrying charges along the graphene sheets.
Graphite therefore is not quite a conductor: it is a semimetal. In nanotubes, we
have the same electronic structure but an entirely different situation.

The differences stem from the fact that the free electrons in a nanotube are
confined to the one-dimensional geometry of a thin cylinder. The electrons can
propagate freely in only one direction, along the tube, rather than in the two direc-
tions that were available in the graphene plane, being constrained in the transverse
direction to move around the tube. The periodic boundary condition imposed on the
wave function by this confinement means that only a whole number of wavelengths
can fit around the tube, and so the electron wave vector around the circumference
is quantized. Since this quantization depends on the circumference and winding
angle, it follows that the electronic states and energies must depend on the indices
n and m of the nanotube.

Calculations predict, and experiments concur, that armchair tubes have valence
and conduction bands crossing at the Fermi level and are, therefore, metallic.
Among the other (chiral and zigzag) tubes, one third (those for which n —m = 3,
where [ is an integer) are metallic, and two thirds (for which n —m # 3[) semicon-
ducting (Problem 5.13).
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As with all other confined systems, the tube’s energy levels do not spread out
into a wide continuous band, but instead group into subbands with band onsets at
the discrete energies of the confined degrees of freedom. For single-wall nanotubes,
these subbands are well spaced out, which suppresses thermal excitations even at
room temperatures. In the metallic type, only two subbands cross the Fermi energy,
so that a current through such a tube is carried by only these two subbands. Since
each subband can support a quantum conductance of Gy = 2¢%/h, we expect a
perfect metallic nanotube to have a conductance of 2Gy.

Experiments based on scanning-tunneling microscopic and spectroscopic studies
have borne out all these predictions about the electronic structure and the strongly
one-dimensional character of conduction of carbon nanotubes. These structures
behave as true quantum wires. But, oddly enough, they also possess, at low
temperatures (like 1 K), features that belong more naturally to quantum dots.
This is so because, although nanotubes are much longer than they are wide (by a
factor of 10*), they still have a finite length, so that the boundary conditions at
both ends impose a limit on the number of allowed wave vectors in the longitudinal
direction — which means a completely quantized motion. So a nanotube is effec-
tively a zero-dimensional quantum system, with all the interesting consequences for
electron transport and conduction — single-electron tunneling, resonant tunneling
through molecular orbitals — that such a complete confinement implies.

This wealth of electronic properties is the source of a potential diversified tech-
nology. Because they are so thin yet so strong, carbon nanotubes, when stood on
end and electrified, emit electrons from their tips at prodigious rates and at lower
voltages than any other kind of known electrodes. They have all the desirable
attributes of electron guns for electron microscopes, and field emitters for vacuum-
tube lamps or flat-panel display. Cees Dekker and others at Delft University of
Technology in the Netherlands have further shown that they could build working
electronic devices out of carbon nanotubes. For example, they have made a current
flow through a semiconducting nanotube lying over two electrodes and switched it
on and off by applying voltages to a nearby gate electrode, just as in a transistor.
From the intrinsic properties of nanotubes, they expected this switching device to be
more sensitive, run faster, and use much less power than a silicon-based transistor.

There is also the exciting possibility of engineering nanotube complexes by
cutting, joining, and bending individual tubes. For instance, a junction of two
tubes, one metallic and one semiconducting, should behave as a diode, permitting
electricity to flow in only one direction, while other combinations of nanotubes
with different band gaps could operate like light-emitting diodes and perhaps even
nanolasers. And because carbon nanotubes conduct heat as well as diamond or
sapphire, and have chemical bonds much stronger than those found in any metal,
they can carry awesome amounts of electricity without overheating and vaporizing
the wire. All these studies raise the hope that soon one could build tiny circuits
entirely with these functionalized molecules.
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Scientists have also made brave attempts to coax nanotubes into holding data.
In one approach, they set up arrays of perpendicular tubes and inserted spring-
like molecules at the junctions where the wires crossed so as to create the on-
and off-states necessary for data storage. In another, they used an electric field
to bend metallic tubes towards or away from a transverse semiconducting tube,
thereby creating the on- and off-states. In short, nanotubes are amazingly versatile
molecules that can conduct, switch electric current and store information.

To build single-molecule devices that can perform functions identical or anal-
ogous to those of the conductors, transistors, diodes, memory devices and other
key components of today’s microcircuits — that is the dream of the proponents
of molecular electronics. But before that dream can turn into reality, either with
nanotubes or some other more exotic molecules, we must gain a deeper under-
standing of their quantum behavior, an important aspect of which resides in that
quintessential quantum property called spin.

5.5.3 Summary

Carbon fullerenes and nanotubes are among the best-known naturally occurring
nanostructures. They are appealing to theorists because of their high degree
of symmetry, which allows detailed calculations. For the experimentalists, their
distinctive hollow structure, unique electronic and mechanical properties offer a
rich potential for studying quantum phenomena and developing applications in
diverse areas.

5.6 Spintronics

The spin of the electron has its origins rooted deep in quantum mechanics and
relativity. Yet, because it imparts an orientation to the charge carrier’s magnetic
moment, it gives rise to a physically observable phenomenon, magnetism, which
is apparent to every schoolchild and which is essential to the functioning of many
common appliances. An electron does not spin like a top, but it can nevertheless
be described by an intrinsic angular momentum (or spin), which is a permanent
characteristic of the particle, as fundamental as charge. The quantization of angular
momentum measured in a specified direction implies that the magnetic moment in
that direction is also quantized. It confers on the electron two possible spin states,
called spin-up and spin-down states. The movement of spin, like the electric current,
can carry information among devices, but the existence of two controllable spin
states suggests even more: a new kind of binary logic of ones and zeros. As spin —
or its alter ego, the magnetic moment — can be readily manipulated by external
magnetic fields, we may look forward to the development of a new generation of
materials and structures based on the flow of spin in addition to the flow of charge
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that can perform much more than is possible with today’s electron-charge-based
microelectronics devices. Some call this young field ‘magnetoelectronics,” others
‘spintronics.’

5.6.1 Spin Flow

As a general rule, the most energetically stable state in an atom is the one in which
most or all of the electron spins cancel out in pairs, with the two spins in each pair
pointing in opposite directions. The moments that have not got so canceled out
could all line up and produce magnetism under the influence of some internal force.
The most obvious candidate — the purely magnetic force between the unpaired
electrons on neighboring atoms — turns out to be too weak to generate the kind of
spin alignment observed in magnetic metals. Quantum theory predicts that there
should be a much stronger interaction between neighboring atoms mediated by
electrons. This ‘exchange’ interaction, strong but short-ranged, depends critically
on the relative alignment of the two unpaired magnetic moments. For iron, cobalt,
nickel, and the other materials that we qualify as ferromagnetic, parallel alignment
of neighboring spins is favored, and the configuration of lowest energy in a ‘domain’
(small region) will be the one with all the spins pointing in the same direction.
Other materials, known as antiferromagnets, see all neighboring spins in pairwise
antiparallel alignment and, therefore, have no overall magnetic moment.

Let us note that magnetism is a cooperative behavior among atoms which derives
from a purely quantum-mechanical process effective only over distances of a few
atomic spacings. That is why magnetic materials structures are much harder to
design and control than semiconductors; they must be manipulated at the length
scale of a nanometer or less to have any impact on their behavior, whereas semicon-
ductors can exhibit novel properties already at carrier lengths of tens of nanometers.

Spin is more than magnetism: it can flow along with charge. What are the spin
carriers? Where and how do they show up? How do they move about in materials?

The relevant electronic states in ferromagnets, just as in conductors or semicon-
ductors, are those lying close to the Fermi energy, at the top of filled levels, and
their densities of states explain to a large extent the transition to ferromagnetism.
With spin present, each energy band splits in two, corresponding to the two possible
spin orientations. In a nonmagnetic metal, such as copper, the spin bands remain
lined up at the same energy level, and are equally occupied by the free electrons.
So copper has no net magnetic moment, and the conduction electrons at the Fermi
level are unpolarized, that is, equally distributed between the two spin orientations
(Fig. 5.12). However, in a ferromagnetic metal, the spin-up and spin-down states
are shifted in energy with respect to one another by the exchange interaction. This
shift leads to an unequal filling of the spin bands, which is the source of the net
magnetic moment for the metal, and also causes the spin-up and spin-down charge
carriers to be unequal in number, character and mobility.
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Figure 5.12: Density of states (DOS) that are available to electrons near the Fermi level (Er) in
(a) a normal metal and (b) a ferromagnetic metal whose spin-up states are completely filled.

Let us take cobalt as an example. In the atom, the d-level (so called because its
orbital angular momentum equals 2h) is incompletely filled, and the electrons that
normally occupy it are weakly bound. In the metal, the tendency of the system to
march towards the lowest-energy level demands that the spin-up (majority) states,
shifted down by the exchange splitting, get all filled up first, so that the d-electron
states at the Fermi level contain only spin-down (minority) electrons. There arises
then an imbalance in spin populations at the Fermi level. The magnetic moment of
cobalt is simply proportional to the difference between the occupations of the two
spin bands. At the same time, the highly polarized d-electrons, together with a few
other electrons with different orbital angular momenta at the Fermi level, produce
a partially spin-polarized flow of charge in which the majority of electrons are in a
spin-aligned state.

Thus, a ferromagnetic metal may be used as a source of spin-polarized carriers
injected into a normal metal, a semiconductor or a superconductor, or made to
tunnel through a nonmagnetic insulating barrier. Although Fe, Co, Ni and their
alloys are only partially polarized (with about 70% of the carriers in a spin state)
and adequate for useful devices, there are continuing efforts to find 100% spin-
polarized materials, which would strictly have only one occupied spin band at the
Fermi level and, when used as filter, would permit true on—off operation, with an
essentially infinite ratio of impedance between the two polarization states.

In the absence of any applied fields, magnetic materials have a complex large-
scale texture that results from several competing influences in submicron-sized
elements. While the exchange interaction attempts to make the whole of an element
magnetized in the same way, the magnetostatic force tries to split it into small do-
mains of independent magnetizations, so as to form closed magnetic loops and
keep stray fields to a minimum. However, the situation becomes simpler at the
nanometric scale. For instance, in a small needle-shaped grain, the magnetiza-
tion prefers to align along the long axis and occupy the whole element as a single
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domain; so it can remain highly stable against the influences of external fields. The
existence of two stable magnetization states make such structures suitable for data
storage applications. Thin films with a uniform composition and a proper thickness
(like 1 or 2 nm) also have a simple field pattern, with magnetization lying in the
plane of the layers rather than perpendicular to it. When made of soft magnetic
materials, such as permalloy (NiggFeg2) (whose magnetization is very sensitive to
external fields, in contrast to the magnetically hard materials), those films have
proved to be useful for a wide range of applications in sensors, memory elements
and data storage. For this reason, thin film structures will play a central role in
our discussion.

Now, let us see how a thin layer of magnetized ferromagnet affects the flow
of electrons (Fig. 5.13). The particles that can pass through the film are those
having spins oriented in the same direction as the spins of the states available
at the Fermi level; all others are reflected back at the surface. If the incident
current is unpolarized, electrons passing through the magnetized material acquire
this same spin bias, and the film acts like a spin polarizer. On the other hand, if
the current is completely polarized, it will pass through if the spins of the carriers
are aligned with those of the atoms in the layer; otherwise, its passage will be
seriously hindered. The film operates then like a spin analyzer. So, for a 100%-
polarized current, a magnetized ferromagnet can function either as a conductor
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Figure 5.13: Spin-polarized transport through a magnetized ferromagnetic layer. (a) When the
current is 100% polarized and its polarization has the same orientation as the magnetization of
the layer, the transmission is maximum. (b) When its polarization is opposite to the material
magnetization, the conduction is severely reduced. Sketches of the densities of states at the Fermi
level are also shown.
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Figure 5.14: Spin-valve action. Spin-polarized transport through a sandwich consisting of layers
of ferromagnetic metal, normal metal and ferromagnetic metal (a) when the magnetic moments
in the ferromagnetic layers are aligned, and (b) when they are anti-aligned.

or an insulator, depending on whether its direction of magnetization is parallel or
antiparallel to the spin polarization of the current.

5.6.2 Principles of Spintronic Devices

These basic principles of spin-dependent transport can be applied to a simple struc-
ture made of two ferromagnetic (e.g., permalloy or Co) thin films separated by a
nonmagnetic metallic (e.g., Cu) spacer layer, whose role it is to stop any magnetic
coupling between the layers but not to hinder the spin movement itself (Fig. 5.14).
Electrons originating from one spin state at the Fermi level in the first film will be
accepted by empty states of the same spin at the Fermi level in the second film.
If the two magnetic films are magnetized parallel to each other, the minority (e.g.,
down-spin) electrons from the first film will go into minority unfilled states in the
second, and the majority (up-spin) electrons from the first film will seek empty
majority states in the second. But if the magnetization of the second film is now
reversed so that the two films are magnetized in opposite directions, the identity
of majority and minority will be reversed in the second film, and the minority
(down-spin) electrons from the first film will look for empty majority (down-spin)
states in the second, while the majority electrons will try to find empty minority
states. Keeping in mind that the rate of any transition at some energy varies with
the density of states at that energy, we can see from Fig. 5.14 that the conduc-
tance of the system increases (the resistance is reduced) when the magnetizations
are in an aligned state, and decreases (the resistance is higher) in the anti-aligned
state. We may aptly compare this effect to that seen when light passes through an
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optical polarizer—analyzer. However, in the optical case, crossing the polarizer axes
at 90° prevents light transmission, whereas here minimum conduction is obtained
when the moments of the two ferromagnets are rotated 180° away from parallel.
(The difference in the rotation angles comes from the different spins of the electron
and photon.)

We refer to the change in the electrical resistivity of a material due to the
introduction of a magnetic field as magnetoresistance (MR), and measure it by
the percentage change of the initial resistivity (when the field is absent). Most
metals have very small MR. For instance, copper has MR ~ 1% at a high magnetic
field, H = 10 T (tesla), or 10° gauss (for comparison, the earth’s magnetic field is
0.7 gauss). But magnetic-layered structures, such as those described earlier, exhibit
large MR ~ 25% at H = 50 gauss and room temperatures, and even larger at higher
fields. For this reason, we refer to the effect observed here as giant magnetoresistance
(GMR). As we have seen, it arises from a difference in the carrier scattering rates
when the magnetizations in the adjacent layers change their relative orientations.

The geometry we have considered, in which the current flows perpendicular to
the plane of the layers, though conceptually simple, is much less practical (owing
to the extremely low resistance across the nanolayers) than the more common
arrangement in which the current flows in the layer plane. In this case, we still
can observe the suppression of the spin-dependent scattering by the interfaces when
the films go from an antialigned state to the aligned state, but the effect is harder
to visualize.

This simple metallic trilayer structure is called a spin valve. It is constructed
so that the moment of a hard magnetic film is held fixed (pinned) by an antifer-
romagnetic (e.g., FeMn) overlay and serves as a reference, whereas the moment of
the other layer can be easily flipped back and forth by an external magnetic field,
and so will act as a control valve. We can design the system so that initially, when
there is no field, the magnetization in the free layer lies antiparallel to the pinned
layer, but when the field is applied, it turns to parallel orientation. This will lead
to a decrease in resistance.

Magnetoresistance manifests itself also in another process characteristic of two-
dimensional magnetic nanostructures — spin-polarized tunneling. It occurs in
trilayer systems, technically magnetic tunneling junctions (MTJs), that consist
of two (one hard, one soft) ferromagnetic layers separated by an insulating (e.g.,
aluminum dioxide) film, typically 1 nm thick, which acts as a tunneling barrier.
When a voltage is applied, electrons can quantum-mechanically tunnel through the
spin-dependent energy barrier, with a probability proportional to the density of
states available at the Fermi level in the acceptor layer, so that, when the moments
of the two ferromagnetic layers are aligned parallel, there is a lower impedance than
when they are antiparallel. The tunneling current, which flows through the junction
perpendicular to the plane of the layers, is generally much lower than the current in
the all-metal spin valve. However, the high resistance typical of tunneling devices
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proved to be unattractive in terms of response time and noise, the more so because it
increased as the junction dimensions decreased. For this reason, magnetoresistance
in MTJs was a small effect at room temperatures for a long time, until better growth
techniques were developed for atomically sharp metal-insulator interfaces. Now the
observed effect comes close to the theoretical limit, and the resistance change can
be as large as 47% in small fields. As they can operate at low current and exhibit
high magnetoresitance in weak fields, MTJs would be unbeatable devices if they
could be manufactured in large number at an affordable cost.

5.6.3 Magnetic Recording

Both spin valves and magnetic tunnel junctions have been considered for appli-
cations, especially in the data storage industry where they are starting to play a
meaningful role. The first application was for the read/write heads in magnetic
recorders, which are components of every computer. At the heart of a state-of-
the-art recording head is a magnetoresistive sensor element, which can pick up
weak magnetic signals from magnetized domains (Fig. 5.15). To write information
on the medium (a magnetically hard material coating on a tape or disk), a tiny
electromagnet, also built into the recording device, magnetizes small segments of
very narrow tracks on the medium, each magnetized segment containing a unit of
data, or bit. Although there is no magnetic field emanating from the interior of a
magnetic domain itself, flux lines may extend out of the medium at the ‘wall’ sepa-
rating two adjacent domains. Whenever two adjacent domains are magnetized in
opposite directions, there are ‘transitions’ at the wall, meaning that there are field
lines extending out of or returning back into the medium, generated by uncompen-
sated magnetic poles. When two bits are written successively in the same direction,
there are no net transversal fields and hence no transitions at the domain wall. The
presence of a transition indicates a binary 1, just as its absence, a binary 0.

bit length

Figure 5.15: Magnetoresistive sensor element reading bits written on a track of a magnetized
recording medium.
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The magnetoresistive sensor element is fabricated so that the moment in the
soft magnetic layer lies parallel to the plane of a disk in the absence of any applied
fields, but the moment in the fixed magnetic layer is always perpendicular to and
directed towards the disk. When the head passes over the disk, reading the data as
it goes, the moment at the transitions causes the moment in the soft layer to rotate
towards a more anti-aligned or a more aligned direction with respect to the fixed
magnetic moment, producing an increase or a decrease in resistance in the sensor
element and signaling that a ‘1’ has been read.

Tens of millions of spin-valve read heads have already been made for the most
advanced disk drives, and many more will soon come off the production line to
replace the more traditional pick-up devices. Not far behind, MTJ read heads,
which are capable of delivering greater signals at lower sensed fields, have been
moving through the prototype state and will reach the manufacturing stage soon.

5.6.4 Data Storage and Processing by Spin

The second application that is expected to have a large economical impact is found
in nonvolatile memory. (‘Nonvolatile’ means permanent, or retaining stored data
even when power is switched off.) Magnetic disks provide the most widespread
form of nonvolatile information-storage media, because of their low cost and long
storage lifetime. The coating of a magnetic disk consists of grains of magnetic
nanoparticles, which generally segregate randomly in size, coercitivity and shape.
A recording density of 1 Gbit per square inch requires about a thousand grains per
bit in today’s commercial disks, with typical grain sizes in the 10-20 nm range.
There are continuing efforts to increase the storage density — by reducing the grain
size and the number of grains per bit, and by engineering new materials — with
the ultimate goal of quantized or single-particle-per-bit recording. We are still far
from that goal, but tremendous advances have been made in recent years, which
have allowed the density to double and the cost per bit to halve every three years
(Problems 5.15 and 5.16).

Although the position of hard disks in data storage is not threatened by any
means, their usefulness remains limited by the difficulty in a fast retrieval of the
stored information. We are rather more interested in examining possible improve-
ments in another form of computer memory, an electronic storage known as dynamic
random access memory (DRAM), which keeps temporarily most of the useful data,
ready for instant access by the computer processing unit during a working session.
Similar to a microprocessor, a memory chip is an integrated circuit made of millions
of electronic components, organized in pairs. Each pair, consisting of a transistor
and a capacitor, is a memory cell capable of containing a single bit of data. The
capacitor holds the bit, a ‘1’ when the capacitor is more than half filled with elec-
trons and a ‘0’ when it is not, whereas the transistor acts as a switch that lets the
control circuitry on the memory chip interrogate the capacitor or change its state.
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Useful as it is, DRAM has a serious drawback: charge leaks continually from the
charged capacitors. It means that they have to be refilled before they discharge,
an operation repeated thousands of times per second for every register, at a great
cost in time and power, and generating a large amount of heat. It also means that
every time you turn your computer on, its basic input/output system takes several
seconds to perform a series of functions to check every memory address and transfer
the basic operating codes from the hard disk to live memory.

Do you want to avoid that tedium of boot-up and inefficiency of refresh? Then
MRAM (magnetic random access memory) is the answer to your wish because
magnetism rather than electricity would be used to store data; and it would be
more economical to operate because it requires just a small amount of electricity to
switch the polarity of each memory cell. The idea of making a magnetic memory
cell is rather simple: a layered structure, whether a spin valve or an MTJ, will be
used to store the information, replacing the capacitor in current designs. In one
scheme, the free layer is switched relative to the pinned layer to store a ‘0’ or a ‘17,
and measuring the resistance of the element indicates its magnetic state and hence
the bit it holds. In another scheme, high-current pulses are used to write bits in the
magnetically hard layer. To read the information, lower-current pulses are used to
flip the magnetization in the soft layer, first one way and then the other. Comparing
the change in measured resistance in each direction reveals the orientation of the
magnetization in the hard layer and hence the stored data.

Each memory circuit consists of an array of multilayered elements fabricated
with standard lithographic processes. In the chip based on spin valves, these
elements are arranged in series and electrically connected by lithographic wires
to form a ‘sense’ line, which stores the information. Additional current lines above
and below the sense lines cross at right angles in an xy grid pattern, intersecting
at each of the spin valves. These currents produce the magnetic fields needed to
manipulate the magnetization of the data-storing elements (Fig. 5.16). A similar

Bit line

Sense line

= ="

Z

— Word line

Figure 5.16: Schematic representation of a data storage scheme, in which the memory cells are
constructed of GMR elements connected in series along the sense line. The currents passing
through the bit and word lines generate the magnetic fields that manipulate the GMR elements
for writing and reading.
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array architecture may be constructed with magnetic tunnel junctions. But, in this
case, as the sense current has to flow perpendicular to the layers and so can proceed
through many elements and not just the one at the intersection, a diode is placed
at every intersection so that the current is forced through the desired path and only
in one direction.

While the development of MRAM chips is racing ahead, spurred on by a huge
global market, there have been several other directions of research in materials and
spin transport that suggest possible applications. The search for useful materials
exhibiting enhanced polarization continues apace, and the range of materials studied
has significantly increased, including novel ferromagnetic semiconductors, high-
temperature superconductors, and carbon nanotubes. It was found that a family
of perovskite materials (Chapter 3) exhibit very large magnetoresistance, up to
100000%, but at very high magnetic fields (6 T), an effect termed *colossal’ (CMR).
Even more interesting is the extraordinary magnetoresistance (EMR) exhibited by
non-magnetic narrow-gap semiconductors with an embedded non-magnetic metallic
inhomogeneity. Room temperature EMR, in excess of 100% at 0.05 T and 3 million
percent at 5 T has been obtained. Researchers have already demonstrated that
mesoscopic read-heads made of nonmagnetic silicon-doped indium antimonide, op-
erating on the EMR principle, were sensitive enough to read data at 116 Gbits per
square inch, auguring well for the future of terabit-per-square-inch recording media.

Several schemes for spin transistors, in which the flow of spin-aligned electrons is
controlled by a magnetic field, have been proposed. The general intent is to search
for ways to construct smaller, more rugged multifunctional devices, that not only
could function as switches or valves and amplify signals, but would also possess
intrinsic memory, and could be seamlessly integrated with traditional electronic
technology.

Beyond perfecting existing technology, there is an even more ambitious vision
for spintronics of fully exploiting the quantum nature of spin. Central to this
picture is the tantalizing possibility of building spin-based quantum computers.
The basic idea of quantum computing (to be explained in more detail in Chapter 6)
is to exploit the laws of quantum mechanics to process information. Whereas the
basic unit of information in a conventional computer is a binary digit, either a
‘0’ or a ‘1’, a quantum computer processes information by quantum bits, or qubits,
which are representations of arbitrary linear combinations of both values, thus vastly
expanding the power of computing. To be useful as carriers of information, the
states of many qubits, which represent pieces of data, must be controlled precisely
and must remain coherent, or undisturbed by interactions with their environment,
for a long time. This makes electron spin an ideal candidate for the qubits. Off
hand, spins should have long coherence times because they are unaffected by the
long-range electrostatic interactions between charges, which are the most pervasive
kind of force in solid-state surroundings. Experiments have verified that it is indeed
the case. David Awschalom and co-workers have demonstrated that electron spins
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could survive in a coherent state for more than 100 nanoseconds, sufficient for the
standard operations on a memory chip, and coherently precessing electronic spins
could travel without a substantial increase in decoherence (losing information) over
distances exceeding 100 um, comparable to the size of a typical electronic device.

5.6.5 Summary

Traditional electronics is based on the flow of the electron charge. A new field, called
spintronics, intends to use both the flow of charge and the flow of the electron spin
to develop new materials and devices that can perform more than is possible with
today’s products. In particular, two magnetic-layered structures — spin valves and
magnetic tunnel junctions — exhibit a large magnetoresistive effect, which has been
exploited to make sensors, recording heads and memory cells.

5.7 Nanos at Large

In our discussion, we have focused on only three classes of nanostructures, at the
exclusion of many other cases of equally great interest. Even in the optoelectronics
field, which we have considered in some detail, we left out the important invention of
the photonic band-gap crystals. These structures are based on periodic variations of
the dielectric constant, and can produce many of the same phenomena for photons as
an ordinary crystal does for electrons. This is a good example of how scientists can
exercise control over the optical properties of materials and, in so doing, engineer
materials that reflect light of any polarization incident at any angle, or allow its
propagation only in certain directions at certain frequencies, or localize light in
specified areas.

Structural materials too can be improved by a control over their make-up at the
nanometric level. Where conventionally produced materials tend to be gross and
irregular in structure and composition, nanostructured materials can be created
in regular and flawless shapes, or with high strength and low weight, or with
a controlled brittle behavior. These materials, being more finely grained, have
a greater surface-to-volume ratio than conventional materials and, therefore, find
many applications in paint and coatings, and in catalysis. They can even be designed
so that they contain pores that admit particles of a particular size, thus opening
the way to ‘smart’” membranes that can selectively block out certain molecules.

Polymers are long-chain molecules in which a molecular unit repeats itself along
the length of the chain. We are in daily contact with them in the form of adhesives,
plastics and fibers (e.g., nylon and rayon). Silk, wool, and the molecule of deoxyri-
bonucleic acid (DNA) are examples of naturally occurring polymers. The interest
of the physicist in these materials is aroused particularly by the discovery that poly-
acetylene could be made conductive by suitable doping, thus opening the possibility
of controlling conductivity in materials normally regarded as good insulators (they
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are then called conjugated polymers). Block copolymers result from two reactant
oligomer species that form polymeric chains having segments (or blocks) that are
attracted to one another. They can give rise to nanoscale phases (which may, for
example, be present as spheres, rods or sheets) and provide the framework for man-
ufacturing a wealth of materials — including catalysts, ceramics and insulators —
with unique properties. Proteins are an example of block copolymers with two
phases, in the form of helical coils and sheets. Polymers have also been used in
medical applications, say, to produce artificial skin, dental fillings, and high-density
polyethylene for knee prostheses.

These polymers are examples of materials belonging to an interesting and vast
class called biomolecular materials, or biomaterials. Biological molecules, that
nature has been perfecting for millions or even billions of years, have important
lessons to teach and inspire us, especially for applications to nanotechnology. Bio-
logical sources have presented us with proof that proteins fold into precisely defined
three-dimensional shapes, and nucleic acids assemble according to well-understood
rules; and that antibodies are extremely specific in recognizing and binding their
ligands, and molecular motors can perform specialized tasks in the cell.

A key feature of biomaterials is their ability to undergo self-assembly, a pro-
cess in which aggregates of molecules and components arrange themselves into
ordered, functioning entities without external intervention. It is inextricably linked
to the idea of molecular recognition, according to which subunits, entrusted by
nature with sets of instructions, recognize each other and bind to each other, selec-
tively. From this observation, the chemist has constructed a model of biomembrane,
affectionately called SAM for self-assembled monolayer (Fig. 5.17). It is a one- to
two-nanometer thick film of organic molecules that form a two-dimensional crystal

Figure 5.17: Schematic illustration of the molecular structure of a self-assembled monolayer on
a surface substrate.
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on an adsorbing, typically metallic, surface. The molecules in a SAM are longer than
they are wide, and have an atom or atomic grouping at one end that ‘sticks’ spon-
taneously (by chemical affinity) to the substrate. When attached, they protrude
from the substrate, like a vast forest of identical trees planted in a perfect array. At
the other end, scientists can attach selected molecular fragments to give the SAM
a well-defined chemical surface property. For example, the molecular layer can be
made to attract or repel water, which in turn can affect its adhesion, corrosion
and lubrication. SAMs find applications in biological sciences, for example, in the
study of interactions of cells with surfaces, neural synaptic integration in planar
neural arrays. A long-term goal of research in organic thin films is to find ways of
making electronic devices in which the components are individual molecules that
self-assemble on substrates from solution or by deposition from interfaces.

Biosensors, devices that couple a biological or biologically-derived sensing
element with a physico-chemical transducer, have been known for many decades
(for example, in applications to analytical problems in health care, environmental
monitoring, defense and security). They are all based on the observation that
biological species (from dogs and snakes to enzymes and microbes) may sense the
presence of certain molecular species with extreme sensitivity and selectivity. When
miniaturized to nanoscale size, they could be implanted in the patient’s body, and
regulate a controlled release of drugs in phase with the body’s changing demands.
Recent advances in nanotechnology are broadening their already considerable range
of utility. For example, nanotubes filled with enzymes or coated with DNA could
be used as electrodes for biosensors. They are so small that an array of them con-
taining different enzymes could be integrated with a single microelectrode enabling
many simultaneous analyses.

In the development of sensors and, more generally, in bioelectronics and other
biologically related fields, the biomimetic approach plays an increasingly impor-
tant role. It involves directly mimicking biological systems or processes to pro-
duce improved materials, or applying techniques observed in nature in a different
context or using different materials. For instance, neural networks have arisen from
attempts to reproduce the architecture of the human brain, but are implemented
using standard electronic and optoelectronic components. Bioengineers, following
this path, have succeeded in synthesizing new chain molecules, which then may
self-assemble into desirable structures with new or improved properties. They have
obtained in this way a variety of designer polymers, such as natural proteins (like
silk or collagen) and their modified forms, and synthetic proteins that have no close
natural analogues.

As we all know, Nature is not only a genius in physics and chemistry, but also
a superb engineer: witness the many sophisticated molecular motors she has built.
It has been known for some time that much of the molecular transport in biological
systems proceeds not by diffusion but by transport. These biomotors are proteins
that use the energy of ATP (adenosine triphosphate) hydrolysis to shuttle along
individual fibers: myosin, responsible for muscle contraction, moves on an actin
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filament; and kinesin, responsible for cellular transport, moves on a microtubule.
Recent single-molecule experiments have shown that motor proteins like these act in
a discrete, stepwise fashion with very high efficiency, much like a thermal ratchet. A
number of researchers have proposed schemes by which such molecular motors could
be harnessed to deliver molecules, one at a time, and assemble nanoscale devices in a
sort of Lilliputian assembly-line factory. In fact, some micro-organisms have already
been employed in making semiconducting quantum dots: when introduced to a
potentially lethal concentration of cadmium, the organisms respond by synthesizing
crystalline spheres of cadmium sulphide coated with a peptide molecule.

A final but not least important example of the marriage of electronics and mole-
cular biology centers on the ‘molecule of life’ itself. During the last half-century,
researchers have concentrated in studying its biological properties. But many of
the same methods they have painstakingly developed — to identify and extract
fragments of DNA, to recombine them with other sections to create a new genetic
material, to modify the molecule’s ends for anchorage to appropriate surfaces — can
be applied, together with the tools of nanotechnology, to investigate its remarkable
physical properties as well. They have studied, for instance, its electrical conduc-
tivity (‘Is it a conductor or an insulator?’) and the mechanisms of electron transfer
within the molecule (‘Is it a single-step tunneling process or a multi-step hopping?’).

As is generally known, the DNA carries with it an incredibly complex quatranary
code. But can it compute? In a pioneering experiment, Leonard Adleman and
colleagues showed that a computer constructed of specially encoded strands of DNA
could solve a very difficult computational problem (of the ‘traveling salesman’ type)
with 20 variables and find the only correct answer from over a million possible
solutions. This is a very exciting result, which could turn out to be a watershed in
DNA computation. The DNA, with its unique assembly and recognition properties
together with its exceptional stability and adaptability, is bound to become one of
the key components in the future molecular electronics.

This chapter is just a snapshot of a young field in vigorous growth. Most of the
results discussed in these pages are less than a decade old; yet, at the pace advances
are being made, some results will rapidly date, but many will last, with enduring
value. The next few decades will see explosive waves of scientific and technological
development that will transform our lives to a far greater extent than we have seen in
the past, especially in the areas where nanoscience overlaps information science and
molecular biology, the two other most promising major areas of scientific activities
of our times.

5.7.1 Summary

We have discussed in detail three specific areas in nanoscience: optoelectronics,
carbon fullerenes and nanotubes, and spintronics. But there are other areas just
as active, such as structural and biological materials, bioelectronics and molecular
electronics, from which we expect important developments near term.
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Problems

Using the position—momentum uncertainty relation (Appendix B), explain
why it is not possible to have confinement in a thin film of vanishingly small
thickness.

Consider an electron trapped in an infinitely deep square potential of width
d, for which the energy spectrum is given by E,, = (nh)?/(8m*d?), as stated
in the text. We assume m* is 7% of the electron mass (given by m, =
0.5 x 10% eV/c?, where c is the speed of light). Calculate the excitation
energies AFy = Fy — F1 and AE33 = E3 — E5 for d = 10 nm. If these are
converted into photons, what are their wavelengths? Repeat the calculations
for d = 5 nm; which region of the light spectrum are we in?

The alloy cadmium—selenium can be fabricated as powder of crystallites, each
a few nm across. It is observed that the powder with the larger-sized grains
appears red, whereas it appears yellow with the smaller-sized grains. Explain
why it is so.

In the model of confinement in one dimension by an infinite potential of width
d, the excitation to the first excited state requires the energy AFEs, as defined
in Prob. 5.2. In order to eliminate this dimension from the particle dynamics,
we must require AFo; > kT. Find the corresponding condition on d, and
calculate its limiting values for m* = m, and m* = 0.07m., where m, is the
mass of the electron. Assume kT = 0.026 eV.

Consider electrons flowing through a 1D channel to which we have applied
a small voltage V. Using the uncertainty relation AEAt ~ h and the Pauli
principle, derive an expression for the conductance quantum Gy.

The Coulomb energy for a single electron in a sphere of radius R in a surround-
ing medium with dielectric constant ¢ is given by E. = e?/cR (cgs units).
Using the data e = 4.8 x 10719 esu, 1 eV = 1.6 x 1072 erg and ¢ = 12 (for
silicon), find the limiting value of R from the condition E, > kT for room
temperature.

Why is the electron—electron interaction relatively more important in artificial
atoms than in natural atoms?
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The charging energy of a quantum dot of capacitance C' holding charge @ is
given by E(Q,Vg) = QVg + Q?/2C, where Vg is the voltage responsible for
the charging. We assume that Vg = (N + 6)/C, where N is an integer and
—0.5 < § <0.5, and take e = 1 to simplify.

(a) Calculate for given ¢ (hence V) the charging energy E(N,J) for a quan-
tum dot with charge Q = —N, and the energies it would cost us to add
or remove one electron, defined by A, (N,§) = E(N + 1) — E(N), and
A_(N,d§) = E(N —1) — E(N). Calculate Ay + A_. Remark on how these
quantities depend on N, Vi and C.

(b) Show that when Vi takes the values 1/2C, 3/2C, (2N + 1)/2C, it costs
absolutely no energy to add an electron to a dot containing 0, 1, NV electrons,
or to remove an electron from a dot holding 1, 2, N + 1 electrons.

How many kinds of vertices and how many of each kind are there in Cgo?
How many hexagons are there? Given that the average edge is 0.142 nm long
(which is the carbon—carbon bond length), calculate the diameter of Cgg.
The C7y molecule may be considered a rugbyball-shaped cavity, constructed
by inserting a ring of ten atoms between the split halves of a Cgp structure.
How many pentagonal and hexagonal faces are there in C7¢? Given that the
average edge is approximately 0.142 nm long, estimate the width and length
(from end to end) of the cavity.

For a polyhedron containing only pentagonal and hexagonal faces, the number
of pentagons is given by p = 12. How is this relation modified when the
structure includes, in addition, heptagons and octagons?

On a hexagon, one may always define two vectors, called a; and as, separated
by an angle of 60°, starting from the same vertex and going to the opposite
vertices. Given a the edge length, what is the lengths of a; and a2? On a
hexagonal lattice, let a vector be given by C = na; + mas. Show that the
length of C' and the angle between C' and a; are given by

IC| = V3a(n? + nm + m?)'/?
and
0 = arctan[v3m/(2n +m)] .

The winding angle defined in the text is given by ¢ = 30° — 6.

Assuming the Cgg radius is 0.34 nm, identify the indices of the nanotubes
that can be capped by the split halves of that molecule. Which of them are
metallic?

Explain why in copper (and other nonmagnetic metals), the up and down
spin bands line up at the same energy level, and so there is no population
imbalance.
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Consider the problem of storing data on a magnetic medium. If it is given
that the data-storage density is & Gbits per square inch, what is the area
(in square nanometers) occupied by a bit? Assuming that a bit contains N
grains, each a square of size L, what is the storage density x7 For a density
of 1 Gbit/in? and L = 15 nm, how many grains are required to store one bit?
Recall that 1 inch equals 2.54 cm.

A standard compact disk has 12.8 square inch of usable surface. As in the
previous exercise, each bit contains N square grains of sides L. Assuming
that L = 10 nm, how much data can a CD store if N = 3000, and if N =17
Let us now assume, following the late Richard Feynman, that all the books
ever published amount to 1 Pbit = 10! bits, how many CDs do we need to
store all that, in either case?

A grain of size L = 10 nm contains about 1500 atoms. This is the limit in
today’s technology, below which the magnetic noise makes signals unreadable.
Suppose however that somehow this limit can be lowered to, say, L = 3.5 nm.
How many CDs do we need to store 1 Pbit, assuming N = 17
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Quantum Computation and
Information

6.1 Introduction

With continuing miniaturization, as discussed in Chapter 5, computers will soon
reach a point where the quantum effect begins to affect their basic operations. In-
stead of fighting to circumvent this problem, a more constructive approach is to use
it to our advantage to design a new breed of computers and algorithms, capable of
doing things that a conventional classical computer cannot do. This is theoretically
feasible because quantum mechanics allows states to be coherently superimposed,
which translates into a coherent superposition of numbers in the computer context.
This capacity of operating on many numbers all at once allows a highly parallel
processing, which in turn can be used to design computer algorithms that run much
faster. Unfortunately, quantum computers needed to carry out such manipulations
are difficult to build, so much so that as of December, 2001, the largest quantum
computer is a 7-bit computer built by IBM. Worse still, as will be discussed in
Sec. 6.9.3, this particular technology is really not a pure quantum technology, and
much larger computers cannot be built with this method. A sizable quantum com-
puter that can beat conventional computers in real operations is still quite some
time away. Nevertheless, when they finally arrive, they will be very powerful. To
illustrate how powerful we shall discuss two famous quantum algorithms: the al-
gorithm for sorting an unstructured database by L. K. Grover, and the algorithm
for factorizing a large integer into its prime components by P. W. Shor. Both are
fast, but the second is even faster than the first. It takes a classical computer O(N)
steps! to locate a specific item in a database with N entries, whereas Grover’s
algorithm allows a quantum computer to do so in only O(v/N ) steps, a vast sav-
ing of time for large N. A more dramatic saving occurs in Shor’s algorithm for
factoring a large integer of the form N = pq into its prime factors p and ¢. If
n is the number of bits in N, i.e., if 277! < N < 27, the fastest classical algo-
rithm takes O(exp[(64/9)'/3n'/3(Inn)?/%]) steps to get it done. Shor’s algorithm

LO(N) stands for ‘of the order N,’ or equivalently, cN for some constant ¢ which does not grow
with N.

195
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can accomplish the task in fewer than O(n?) steps. For example, a 129-digit number
known as RSA129 has 64-digit and 65-digit prime factors. It requires something
like 1.5 x 10'7 (150 million billion) instructions by an ordinary computer to get it
factorized. This was carried out in 1994 using 1000 work stations over a 8-month
period! For a quantum computer with a 100 MHz clock and Shor’s routine, the
factorization of RSA129 could be done in a few seconds.

There are practical consequences when a quantum computer can be built large
enough to run Shor’s algorithm. The RSA encryption scheme commonly used in
the Internet to encode transactions, whose security depends on the difficulty for a
classical computer to factorize a large number N, will no longer be reliable.

While quantum mechanics can be used this way of break a cipher, it can also
be used to increase security in another way. These topics of encryption will be
discussed towards the end of this chapter.

Quantum mechanics can also be used to send information on the quantum state
of a system, without physically sending the system itself. This is known as quantum
teleportation. It might remind you of what happens in the science fiction movies
‘Star Trek,” but at this point we are merely talking about ‘beaming up’ a single
quantum mechanical number, not the quantum state of a whole human being. This
topic will also be discussed briefly at the end of the chapter.

In order to understand how quantum algorithms really work, there is no way of
skipping a certain amount of detailed discussion. These discussions are relatively
dry and harder to understand, and to emphasize this fact they are printed in a
smaller font. For a first reading and for readers not interested in the details, those
parts can be skipped.

Quantum computation and quantum information is a fast growing field, so
clearly this chapter can provide only a very elementary introduction to the subject.
Readers wishing to know more can consult the books and articles, as well as the
web-sites, quoted at the end of this chapter.

6.1.1 Summary

Superposition of states allowed in quantum mechanics can be used to design a new
breed of computers, quantum computers. Algorithms designed using this coherent
property can run much faster than the corresponding classical algorithms. However,
the hardware needed to run them is difficult to build.

6.2 Classical Computers

In order to understand the outstanding features of a quantum computer, let us first
sketch how a usual (classical) computer works.

A computer relies on a central processing unit (CPU) to carry out its basic
operations. It is the brain of the computer, although it really cannot think by
itself. It must be told what to do, step by step, in a set of instructions known as
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a ‘program.” These operations are paced by a clock so that the next step will not
start before the current step is finished. The speed of the clock, and the efficiency
of the CPU, are some of the factors that determine the power of the computer.
A computer also requires devices to store its program, and the input and output
of the computation. These are: the internal random access memory (RAM), and
the permanent storage devices like a hard drive or a CD ROM. In the rest of this
section, we will concentrate on some of the most basic operations of the CPU.

A computer works on integers. As we learn in elementary school, a floating point
number like 3.2095764 can be added or multiplied as if it were an integer 32095764.
All that we need to do is to put back the decimal point at the right place at the end
of the calculation. For that reason it is sufficient to consider operations of integers
when we deal with numbers. Alphabetical characters can also be coded in terms
of integers. For example, in the ASCII code, the lowercase letter ‘a’ is represented
by the integer 97, and the uppercase letter ‘A’ is represented by 65. Thus, only
integers need to be considered by a computer.

The integers we are familiar with are the decimal numbers, with each digit
running from 0 to 9. In a computer, for ease of storage and operation, integers
are expressed as binary numbers, each bit of which being either ‘0’ or ‘1’. The
conversion between a decimal number and a binary number goes as follows. The
decimal number 1 is also 1 in binary, decimal 2 is 10 in binary, 4 is 100 in binary, 8 is
1000 in binary, etc. The binary number 1 followed by m zeros is the decimal number
2™, More generally, if (z,, - - - £3x2x1) is an n-bit binary number corresponding to
the decimal number y, with each x; being either 0 or 1, then

y=a1+2x04+ 2203 +2% 04+ +2" 1z, . (6.1)

For example, the 6-bit binary number 101101 is equal to the decimal number 45.

Hardware-wise, 0 and 1 are represented in a computer by the two states of a
transistor. A transistor is an electronic device with three leads, an incoming lead,
an outgoing lead, and a third one connected to the ground. If the incoming lead
carries a distinctly positive current or a distinctly positive voltage, the transistor
conducts, and a current flows from the outgoing lead via the transistor and its third
lead to the ground. If the incoming lead carries a negative or no current or voltage,
then the transistor stops conducting. In short, the transistor is a switch, it is either
‘on,’ to allow current to flow through, or ‘off,” to stop current from flowing through.
The number 0 is represented by the ‘off’ state of the transistor, and the number 1
is represented by its ‘on’ state. The output current or voltage of one transistor can
be fed to the incoming lead of another transistor to switch it on and off, and so on
down the line. The basic operations in a CPU are implemented by hooking up the
transistors in an appropriate way. Different operations correspond to different ways
of connecting the transistors.

The basic operations in a CPU can be built up from relatively simple units
known as gates. For example, there is a gate to do the addition of two bits without
‘carry,” and there is another gate to do the multiplication of two bits. One advantage
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of using binary numbers is the simplicity of its arithmetic rules. If a, b are two bits,
each being either 0 or 1, then there are only 4 rules of multiplication a x b that the
computer has to be told: 0 x 0=0,0x1=0,1x0=0,1x1=1. Compare this
with the decimal multiplication table that we were made to memorize in elementary
school! There are also only four rules of addition, a +6: 0+0=0,0+1 =1,
1+0=1,1+1=10. The last rule appears a bit complicated, because the result
10 is a 2-bit number rather than a 1-bit number like the other seven rules. This can
be rectified by using @, addition without carry. In that case, 00 =0,0®1 =1,
1®0=1,and 1® 1 = 0. The carry bit of a 4 b is simply a X b.

In computer or logical jargon, the multiplication operation is known as AND. It
is often denoted as - rather than x. The & operation is called XOR, standing for
exclusive OR. By definition, a AND b is 1 if and only if both a and b are 1; a OR b
is 1 if either a or b, or both, is 1; a XOR b is 1 if either a or b is 1, but excluding
the case when a and b are both 1. With these definitions, it is clear that AND is the
same as x, and XOR is the same as @.2 Another useful logical operation is called
NOT, which interchanges 0 and 1. Therefore, NOT applied to 0 becomes 1 and NOT
applied to 1 becomes 0. The compound operation of AND followed by a NOT is
called NAND.

All classical computer calculations can essentially be obtained by combining the
above simple logical operations, together with the rather trivial operations FANOUT
and SWAP. FANOUT of a bit a is simply to make a copy of it, changing a to (a,a).
SWAP is to exchange a pair of numbers, replacing (a,b) by (b,a). Moreover, these
logical operations are not all independent. In addition to SWAP and FANOUT, only
two more are needed to produce the rest. For more details, consult a book on digital
computers.

It is convenient at this point to establish some conventions for later use. We will
call the leftmost (the largest) bit of an n-bit binary number the first bit, and the
rightmost (the smallest) bit the nth bit.

Registers are places where binary numbers are stored. Every n-bit binary num-
ber can be stored in a single n-bit register, or it can be separated into two (or
more) portions, with the first k bits stored in a k-bit register and the remaining
(n — k)bits in an (n — k)bit register. In the latter case, the register containing the
largest (leftmost) bits is called register I, the one containing the next largest bits
is called register II, etc. If necessary, parentheses are used to group the bits in the
same register. For example, (10)(110) means the first two bits of 10110 is stored in
register I, and the last three bits of 10110 is stored in register II.

A gate is denoted graphically by a rectangular box, with its name written inside.
Data are fed into the gate from the left and extracted on the right. A gate may
work on only some of the bits of an input number, in which case those bits will be

2The OR operation can be related to arithmetic operations by the formula a OrR b = (a®b)+ (a x b).
In electronic literature, a OR b is often denoted as a + b. We shall avoid using that notation lest
it get confused with the addition sign used above.
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written as subscripts to the symbol for the gate. A Latin subscript means a bit, a
Roman subscript means all the bits in that particular register.
For example,

10110 — — 0110

(10)(110) — — (0)(110)

10110 — — 1000
(10)(110) — — (1)(110)

The bits being operated on are printed in bold face.

6.2.1 Summary

Classical computers work on binary numbers through elementary gates. Some of
the usual gates are NOT, AND, OR, XOR, NAND, FANOUT, and SWAP.

6.3 Quantum Computers

6.3.1 Introduction

What makes a quantum computer different is the presence of ‘schizophrenic states,’3
and gates to manipulate them. To understand that, let us first review the basic facts
of quantum mechanics needed to understand this section. (See also the discussion
in Appendix B.)

In quantum mechanics, ‘particles’® are regarded as waves. Different states
(energy, spin, position, etc.) of a particle are described by different complex-valued
wave functions 1(x, t) = [1h(x, )|, Tt is conventional to adopt Dirac’s notation
and denote the wave function as a whole by [1). The intensity of the wave, or equiva-
lently, the probability of finding the particle at position x at time ¢, is proportional
to [1(x, 1) 2.

The sum of two waves is another wave. Such a coherent superposition of two
waves may produce very strange effects. If 1 is the wave function of a particle in
a certain state, and - is the wave function of the same particle in another state,
then the wave function ¢ = 1 + 1 represents the particle in a ‘schizophrenic’
state, with finite probabilities of finding it in either of the two ‘personalities.” Since
|1 + 1p2]? # |¥1|? + |12)?, the intensity of the combined wave is not equal to the
combined intensities of the individual waves. This is a quantum effect that has no
classical counterparts. In other words, because quantum mechanical particles are

3¢Schizophrenic state’ is not an official name in quantum mechanics. We use this term to describe
a linear combination of (single or multi-particle) basis states.

4We use the generic term ‘particle’ to mean any isolated quantum mechanical system. Thus, a
particle can be a photon, an electron, a nucleus, or an atom.
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waves, interference effects may be present. The difference of the intensity of the
sum, and the sum of the intensities, is given by the cross term, which depends on
the phase difference Af = 6; — 05 of the two waves.

Unless the particle is completely isolated, its interaction with the environment
produces a phase shift. For a complex environment this additional phase shift
could become random, destroying the original phase difference. In that case the
cross term averages to zero, and the probability of the sum is then equal to the
sum of the probabilities, reverting it back to the classical scenario. This is known
as decoherence. The operation of a quantum computer relies on coherence being
maintained, which means that the effect due to environmental interactions must
be small during the course of quantum mechanical gate operations. This turns
out to be one of the most difficult problems to solve in practice. Nevertheless,
we shall assume in what follows that this can be achieved and that decoherence
effects can be ignored. Just like the transistor in a classical computer whose on-
off positions represent the basic bits 1 and 0, in a quantum system we must find
two convenient states |1) and |0) to act as the quantum mechanical bits, otherwise
known as qubits. For example, the two spin states of a spin—% electron could be
used provided that their energy levels are not the same. More generally, any two
states of a single particle could be used in principle, but in practice, they must
be relatively long lived to allow quantum mechanical operations to be carried out
before they decay. Moreover, practical techniques must be available to put the
particle in any one of these two basis states, as well as any normalized schizophrenic
state 1)) = a|0) + B|1), for any complex numbers o and 3 satisfying |a|? +[3]? = 1.
The picture below depicts the basis states and one such schizophrenic state.

A transistor in a classical computer can either be on, or off, but nothing in be-
tween. A particle in a quantum computer can be in |1) or |0), but it can also be in
a schizophrenic state. This difference between a qubit and a classical bit is the fun-
damental reason why a quantum computer can do things that a classical computer
cannot do. To work on a linear combination is like working on the basis states all
at once, so a quantum computer is like a highly parallel classical computer. The
problem is, a particle in a schizophrenic state is known only probabilistically, so it
is not generally possible to extract a definitive answer at the end of a computation,
which we need. To overcome this trade-off, a fast operation against a muddy out-
come, we must find ways to exploit the schizophrenic advantage, yet ending up in
an almost pure basis-state to avoid probabilistic uncertainty. Ingenuity is required
to make this happen, and even so it works only in certain problems. The famous
algorithms by Deutsch, by Shor, and by Glover discussed below are some examples
of these ingenious algorithms.
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6.3.2 Multiple Qubits

In a classical computer, a binary number of n bits is implemented by n transistors,
one for each bit. In a quantum computer, it is represented by n non-interacting
particles, each in the state |0) or |1), or a linear combination of them. The binary
number 11001, for example, is represented by a 5-particle state, [1)[1)]0)|0)|1), also
written simply as [11001). We shall often label an n-bit binary number by its decimal
equivalent. In that notation, the state [11001) is |25), and the state |1000000) is
|64). Every state of an n-particle system can be stored in an n-(qu)bit register. The
picture below shows a 10-qubit register with the state |0000100101) = |37) stored
in it.

—-— — — —— — —e
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Like single-particle states, we are allowed to make linear combinations of the
multi-particle basis states. Some of these linear combinations can be factorized into
a product of single-particle states, e.g., |00)+|01)+[10)+|11) = (|0) +|1))(|0)+]1)).
There are others which cannot, e.g., |00) + |11), or |01) — |10). These latter states
are known as entangled states. They contain a non-trivial and counter-intuitive
correlation between the particles. It is states of this kind that lead to the EPR
(Einstein—Podolsky—Rosen) ‘paradox’ of quantum mechanics.

In a quantum computer, two-particle entangled states are produced by 2-bit
‘controlled gates,” which take an uncorrelated 2-qubit input and convert it into a
correlated entangled output. The necessary correlation makes these 2-bit controlled
gates difficult to build, but their presence is indispensible if we want to obtain non-
trivial outputs from a quantum computer.

6.3.3 Summary

Each qubit in a quantum computer is represented by two states, |0) and |1), of a
quantum particle. These states can be superimposed and manipulated by quantum

5Suppose a spin-0 particle at rest decays into two spin—% particles, flying away in opposite di-
rections. By spin angular momentum conservation, the spin wave function of the final state is
%(\01) —|10)), where |0), |1) are respectively the spin-down and spin-up states of the particle.
This is an example of an entangled state. If a measurement of particle 1 shows that it is in the
spin-up state, then we automatically know that particle 2 is in the spin-down state, and vice
versa. This fact has been confirmed by experiments, but it violates usual intuition, and hence
it is thought to be a ‘paradox.” Since the two particles travel in opposite directions, and could
be very far apart when a measurement is made, this correlation seems to show that the result of
the measurement of particle 1 is instantaneously transmitted to observer 2, with a speed faster
than the speed of light. That this is not the case has been demonstrated by showing that we
cannot use the effect to transmit a message from observer 1 to observer 2 at a speed faster than
the speed of light.



202 Quantum Computation and Information

gates. One may consider the basis states in the superposition to be manipulated
simultaneouly, so in that sense, a quantum computer works in a highly parallel
manner. If the final result remains a superposition of basis states, then the answer
is only probabilistic, and the advantage gained by parallel processing is lost. How-
ever, for certain problems, the final state can be put in a single basis state (to be
continued).

6.4 Quantum Gates

A gate in a classical computer is a basic component which turns a number into
another one, according to some function y = F(z). The AND gate, for example,
takes a 2-bit number (ab) and converts it into the 1-bit number a x b. The XOR
gate takes (ab) and converts it into a @ b.

A gate in a quantum computer converts a state |z) into another state F(|x)) =
|F(x)). This is accomplished by switching on suitable quantum mechanical
interactions inside the gate. Interactions in quantum mechanics must be linear and
unitary, so quantum gates must be linear and unitary as well. If |¢)) = a|x1)+5|z2),
linearity demands |F'(¢)) = a|F(x1)) + B|F(z2)). In practice, this means that once
we know how a gate transforms the basis states, we know how it transforms all their
linearly combined states.

Since it is linear, the function F' may be thought of as a matrix, mapping the
2" n-particle orthonormal states |z) to the 2™ states |F'(z)). Unitarity requires this
matrix to be unitary, meaning that the 2" states |F/(x)) must also be orthonormal.
A unitary matrix has an inverse, hence two different states |x) must map to two
distinct states |F'(x)). In particular, if the gate has an n-bit input, it must also
have an n-bit output. For that reason, none of the classical gates AND, XOR, OR,
and NAND can be a quantum gate, because these gates map a 2-bit number into a
1-bit number.

Although the classical gates AND, XOR, etc. are not unitary, we can design in
each case a unitary gate to encompass their functions. What we need is to include
additional bits to pad it into a unitary gate. More generally, from a function
y = f(x) mapping an n-bit register into an m-bit register, an (m -+ n)-bit unitary
gate Uy can be constructed. Unlike the function F', which has to be linear and
unitary, the function f here only has to be linear. The unitary gate Uy maps |z)|y)
onto |x)|y @ f(z)), with the first register carrying n bits and the second m bits:

2)y) — [Us | = |o)y @ f(2)). (6.2)

6The inner product (11|¢2) of two wave functions is defined to be [ d3z1}(z)12(z). If this inner
product is zero the two states are said to be orthogonal. If (11|11) = 1, the state is said to be
normalized. A set of n wave functions 1); (z) is said to be an orthonormal set if (1;]1;) is 1 when
i =j, and 0 when i # j. The set of basis vectors are always chosen to be orthonormal.
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The symbol & here means addition modulo” 2™. It can be shown that this operation
is unitary but we shall skip the proof. In particular, iy maps |z)|0) onto |x)|f(z))
so we can read out f(x) from the second output register.

For example, the Uanp gate is a 3-bit gate, converting the 3-bit state |x)|y) =
|ab)|y) into the 3-bit state |ab)|y @ a x b). In particular, it converts |ab)|0) into
|ab)|axb), so the result of the AND operation can be read out in the third output bit.

We turn now to the question of how these quantum gates can be constructed.

The most commonly used gates are 1-bit gates. Happily, they are also the easiest
to construct. A 1-bit gate U changes |0) into some specific normalized state, and
[1) into an orthogonal one. If |0) and |1) are two levels separated by an energy fiv
(% is Planck’s constant), then an electromagnetic pulse with frequency v and an
appropriate phase, applied to the particle for a suitable length of time, can produce
any unitary transformation on the two basis states |0) and |1), and hence any U
gate. If the two basis states are the two polarizations of a photon, then we can use
standard optical equipment to rotate and combine these polarizations to produce
a desired 1-bit gate. It is also possible to have |0) and |1) represented by light
beams from two orthogonal directions, as shown in the diagram below. Then two
prisms sandwiching a partially silvered mirror can be used to mix the two beams
(to get outputs a and b), and a dielectric material inserted in the path of a beam
(a) can be used to shift the phase of the beam (to get ¢). The amount of mixing
is determined by the amount of silvering of the mirror, and the amount of phase
delay is determined by the thickness of the dielectric material. In this way one can
again construct any 1-bit unitary gate U.

)

10) A NN\

7a mod c is an integer between 0 and ¢ — 1. It is obtained by subtracting from a a suitable integral

multiple of ¢. For example, 3 mod 15 = 3, but 31 mod 15 = 1 because 31 = 1+ 2 x 15. We can
apply this rule to addition, so 57 + 13 mod 15 is 70 mod 15, which is 10. An equivalent way of
thinking about ‘mod ¢’ is to imagine counting numbers in the following way. We count 0, 1,2, ...,
up to ¢ — 1, then we circle back and count from 0 up again. Hence, c is 0, ¢+ 1 is 1, etc. The
binary addition without carry, discussed in Sec. 6.2, for which we use the symbol @, is the same
as addition mod 2.
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The most frequently used 1-bit gates are the NOT (N) gate and the HADAMAD
(H) gates. The N gate interchanges |0) and |1). It promotes the particle at the
ground state |0) to the excited state |1).

The H gate changes the basis states into an equal mixture of the two. Specifically,

0) — 1] — % (10) + 1))

|1>e~%<|o>—|1>>.

When H is applied to a 1-bit ground state |0), it changes into the state |h) =
(|0) + |1))/v/2. When H is applied to every bit of an n-bit ground state, it changes
every bit into this state h. The result is a sum of 2" n-bit states, where every bit
can be either a 0 or a 1. Converting that into decimal notation, it becomes

n2"—1

0) = [7] (%) S g = 1), (6.3)
x=0

where H = [[;, H;, and H; acts on the ith bit of [0). We shall refer to the gate
‘H as the n-bit HADAMAD gate. The ordinary H gate is simply the 1-bit HADAMAD
gate.

The uniform state |T) is a very useful state in quantum computation. It allows
maximal parallel processing because a quantum gate acting on it acts simultaneously
on all the 2™ states |z).

A quantum computer requires also 2-bit CONTROLLED-U (CU) gates to function.
One of the two incoming bits is a control bit (¢), and the other is the data bit
(d). The outgoing control bit is always the same as the incoming control bit. The
outgoing data bit d’ is also the same as the incoming data bit if ¢ = 0, but d is to
be transformed by the 1-bit U gate to get d’ if ¢ = 1.

These gates establish a correlation between the two bits. Such correlations are
clearly needed for computations, for without them one cannot even add or multiply
two numbers. Unfortunately these gates are difficult to manufacture in practice
precisely because of the required correlations. In fact, getting these gates working
is one of the big obstacles in the construction of a practical quantum computer. We
will discuss the problem more thoroughly in Sec. 6.9.

The most common CU gate is the CONTROLLED-NOT (CN) gate where U = N. In
this case, d’ = ¢ ® d, so it can be used as an adder without carry.

The correlation inherent in a control gate can also be used to produce entangled
states from unentangled ones. For example, starting from the 2-bit ground state
/2]00), apply H to the control bit to change it to [0) 4+ |1), and apply N to the data
bit to change it to |1). Now pass that through a CN gate. The outgoing state |cd’)
is then the entangled state |01) + |10).
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Some of these 1-bit and 2-bit gates are summarized in the following graph. The
incoming bit(s) are on top and the outgoing bit(s) are at the bottom, with the gate
in between. Schizophrenic states are indicated by dots between the two basis states.

For better or for worse, the linearity of a quantum gate makes it impossible to
copy states faithfully. To see why, let us copy the one-particle states |0) and |1)
onto a second particle, thus forming the states |00) and |11), respectively. This can
actually be accomplished using the CN gate if its control bit ¢ is the bit to be copied:

e 0) — [ON] — le,c@0) = |e o).

If the control qubit is now |¢)) = «|0) + G|1), then the input qubits to the cN
gate is [10)|0) = «|00) + 5]10). By linearity, the output qubits of the CN gate are
a)00) + B[11), and not the desired |1))|v)) = (a|0) + B]1))(a|0) + B]1)) = a2|00) +
aB(]01) + [10)) + B?]11). In other words, even if we can design a device to copy
the basis states, by linearity the same device will not be able to copy their linear
combinations faithfully. This is sometimes referred to as the ‘no-cloning theorem.’
The proof can be carried out in a completely general context.

This inability to copy is both good and bad. It is good because data cannot
be copied and stolen without our knowing it. It is bad because classical computer
algorithms often call for making copies of some data for later use, so such algorithms
must be modified.

Let us finally mention a famous 3-bit unitary gate, which can actually be con-
structed from 1-bit and 2-bit controlled gates. It is the CONTROLLED-CONTROLLED-
NOT (CCN) gate, otherwise known as the TOFFOLI gate. The incoming state |cc’d)
of this gate contains two control bits ¢ and ¢, which remain unchanged after passing
through the gate. The data bit d is also unchanged unless both ¢ and ¢’ are 1, in
which case the outgoing data bit is NOT operating on the incoming data bit d. This
gate can be used as a multiplier of the two control bits, because it converts |cc’0)
into |e, ¢, e x ).
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6.4.1 Summary

The magic of a quantum computer lies in its ability to manipulate superpositions
of qubits. The gates used to manipulate them are linear and unitary, quite differ-
ent from the gates used in a classical computer. One-bit gates are relatively easy
to construct, with the NOT (N) and HADAMAD (H) gates being some of the most
useful ones. Two-bit controlled gates such as the CONTROLLED-NOT (CN) and more
generally the CONTROLLED-U (CU) gates are also needed, but they are much more
difficult to manufacture because of the correlation requirement.

6.5 Deutsch’s Algorithm

Quantum computers can process a mixture of ‘numbers’ in the form of a
schizophrenic state. With this special feature efficient quantum algorithms can
be designed. If S is the (large) number of steps needed to do a job in a classical
algorithm, then we will consider the corresponding quantum algorithm efficient if
it takes only O(S?) steps, with some a < 1 (power saving) or, better still, O(In S)
steps (exponential saving).

The first successful quantum algorithm that provides a substantial (actually
exponential) saving is Deutsch’s algorithm. It is a toy program in the sense that it
is not that useful in practice. Nevertheless, it is important because it is simple, and
it illustrates how quantum savings can be accomplished by the use of schizophrenic
states, plus a judicious choice of a final state to yield a definitive rather than a
probabilistic answer.

Let us now state the problem to be solved. It concerns a class of functions
y = f(x), mapping an n-bit number x onto a 1-bit number y. Every function in
this class is either constant, mapping all 2™ values of z onto the same number, or
balanced, mapping half the values of x onto 0 and the other half of the values of
x into 1. A function of this class is given to us in a black box, also known as an
oracle. When z is fed into the black box, y = f(z) will appear as the output.

We are told that constant functions and balanced functions occur with equal
probability, but we do not know which it is in a specific black box. We are now asked
to design an efficient algorithm, incorporating this black box, to decide precisely
whether the function given is constant, or balanced.

In a classical computer, the only way to decide is to feed into the black box, one
x after another, and compare the outputs. If the function turns out to be constant,
then it takes exactly 2"~1 4 1 (half the number of x plus one) steps to recognize
it as such. This is so because even if the first 27! values of f turn out to be the
same, it can still be balanced if the next 2" ~' output has opposite values. On the
other hand, if the function is balanced, then we will be able to tell as soon as a
different value of f turns up, because then f obviously cannot be constant. Since
a balanced function has as many 0 values as 1 values, the chance that an opposite
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value of f turns up within the first few steps is very high. For that reason, even if
n is very, very large, it can be shown that the average number of steps, a, it takes
to tell that it is balanced is finite. Since we are told that balanced functions and
constant functions occur with equal probability, the average number of steps for a
classical algorithm to decide is S = (a +2""1 +1)/2 ~ 2"~2 steps, when n is large.

Deutsch’s quantum algorithm can accomplish this task in O(n) = O(In S) steps,
thus gaining an exponential advantage compared to the classical algorithm. Here is
how it works.

First of all, we must realize that the black box itself is not a unitary gate, because
it has an n-bit input but only a 1-bit output. However, the gate Uy in Eq. (6.2),
which maps |z)|y) to |z)|y @ f(z)), is unitary. Note that Uy maps |z)(]0) —|1)) onto
itself if f(x) = 0, and it reverses the sign of this state if f(z) = 1. In other words,
it produces a prefactor (—1)f () when operated on this state, no matter how many
bits x carries. What Deutsch did was to make use of this feature to determine what
kind of function f is.

In the notations explained at the end of Sec. 6.2, Deutsch’s algorithm can be
written schematically as follows:

0)[0) — ~ o))
LY (2 0) L -n
- a<\/§) ) ACRID

1 n /2"—1 1 (6.4)
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It starts from the (n+ 1)-bit ground state |0), with its first n bits stored in Register
I and the remaining bit stored in Register II. A NOT gate followed by a HADAMAD
gate on II converts the last qubit into the state (|0) — [1))/v/2, while the n-bit
HADAMAD gate converts the content of the first register into the uniform state.
Now the (n + 1)-bit state is passed through the gate Uy constructed from the black
box. The result is an extra sign factor (—1)/(*) applied to each state |z) in the
first register. The resulting state in the first register is finally passed through an
n-bit HADAMAD gate to convert it into a state |a). If f is constant, then since
H - 'H|0) = |0), |a) is £]|0). The sign is plus when all f(z) = 0, and minus when
all f(z) =1. On the other hand, if f is balanced, then the state 3" (—1)/®)|z) is
orthogonal to the uniform state. Since the unitary gate h; preserves inner products,
the resulting state |a) is orthogonal to the n-bit ground state |0), meaning that at
least one of the n-bits in |a) is 1. If we count as one step the query of a bit to
determine whether it is 0 or 1, then it takes n steps to decide whether a 1 is present
in at least one bit, and therefore whether the function is balanced. In counting the
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number of steps perhaps we should include the number of operations needed to get
|a), and that is of order n as well. Hence, the final number of steps is O(n), which
provides an exponential saving compared to the classical algorithm.

If we were to ask what precisely f is, rather than just whether it is constant or
balanced, then quantum algorithm or not, it requires O(2") steps.

6.5.1 Summary

Deutsch’s algorithm is designed to find out whether a given function y = f(z)
is constant or balanced. It makes use of the property that the unitary gate Uy
associated with these functions maps |z)(|0) — |1)) onto itself when f(z) = 0, and
minus the state when f(xz) = 1. A uniform state is passed through this gate to
allow the Deutsch algorithm to gain an exponential saving over the corresponding
classical algorithm.

6.6 Finding the Period of a Function

6.6.1 Introduction

What allows the Deutsch algorithm to succeed is the special nature of the function
f(z), being either constant or balanced, as well as the limited nature of our enquiry,
whether f is constant or balanced, and not precisely what the function f is. In
this section we will discuss another algorithm with similar characteristics. This
time the function f is periodic, and we only want to know what its period r is.
The quantum algorithm for this task again offers an exponential saving over the
classical algorithm. Moreover, it will be needed in Shor’s factorization routine to
be discussed in the next section.

Consider an m-bit periodic function y = f(z) of an n-bit variable x, with a
period r, so that f(x +r) = f(x) for every x. We shall assume that f(z) takes on
different values at different x within a period, and that r divides S = 2. Again f
is handed to us in a black box, or an oracle. Our aim is find out the period r of
this function.

The most straightforward method is again to pass each = value through the
black box and record its outcome y, from which we determine the period r. This
takes r 4+ 1 steps. The period r could be as small as 1 and as large as 2™, so on
average it would take roughly 27~ steps to find the period this way.

Since f is periodic, we may also use the Fourier transform to find the period.
However, this turns out not to be a good way with a classical computer, because it
takes O(S?) = 22" steps just to compute all the values of the Fourier transform,?
many more than what is required in the naive method discussed in the preceeding

8There are S values in the Fourier space and each can be computed by summing the S terms in
the Fourier transform.
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paragraph. The number of steps can be reduced to O(S In .S) by using a fast Fourier
transform, but that still does not beat the naive approach.

The situation is different with a quantum computer. The Fourier transform F
of a state |z) is a state given by

1 S—1 .
z) —[F|— 7 > ermikelS gy (6.5)
k=0

If |z) = |0), the output is the uniform state |Y) of Eq. (6.3), which can be
generated from |0) using the n-bit HADAMAD gate H in n steps. If |z) # |0),
additional phase factors are present, which requires 2-bit controlled gates to obtain.
The number of steps required is then O(n?), which still gains an exponential saving
of steps compared to the naive method. This is the reason why it pays to find the
period 7 using quantum Fourier transform if a quantum computer is present.

In the next subsection we shall discuss in more detail how to implement a quan-
tum Fourier transform and why it can be done in O(n?) steps. In the subsection
after we shall discuss how the quantum Fourier transform can be used to find the
periodicity of the function f(z). These two subsections are more technical, so
readers who are not interested in such details may skip now to the next section.

6.6.2 Implementing a Quantum Fourier Transform

Both the left-hand side and the right-hand side of Eq. (6.5) can be factorized. Their ¢th
qubits are related by

1 iz /2n— 1
lze) = | F | — 7 (|0g) + >/ [1e)),

which can be shown by expressing |k) in (6.5) in binary notation. If we expand z in the
exponent into binary form like Eq. (6.1), then every bit of = will enter into the exponent
on the right-hand side. In other words, F|z¢) depends not just on the £th bit of x, but
it also depends on every other bit of it. Such a correlation clearly requires control gates
to implement. The resulting gate to transform |z;) turns out to be H;®;, where ®, is
made up of a product of (£ — 1) 2-bit control gates cU for some appropriate U’s. Counting
each control gate and each H gate as one step, a qubit can therefore be transformed
with ¢ steps. The total number of steps for the quantum Fourier transform is therefore
> p_, £ =n(n+1)/2. This is O(n”) as promised.
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6.6.3 Period of the Function from the Fourier Transform

To find the period of the function f(z), construct the (n + m)-qubit state

1 S—1
|F) = ﬁglwﬂﬂw)%

This can be obtained by applying the n-bit gate H to the ground state |0) of the first
(n-bit) register, and then the Uy gate of Eq. (6.2) to both registers. These two operations
are summarized as

010y — [74r] — = (Z_j |a:>) 0) = [t |~ 1F).

It can be accomplished in n+1 steps: n steps for H and one step for ;. This is negligible
compared to the O(n2) steps needed later to carry out the quantum Fourier transform.

Organize the components of |F') according to the value |yo) = |f(x0)) of the second
register. Since the period of f(z) is 7, every f(x) with = o + jr (j is an integer) gives
the same value yo. In this way we can re-write the state as

1 r—1
|F) = 7 > lg(@o))| f(x0)),

xg=0

where |g(z0)) = Zf:_ol |zo 4 jr)/V/K . This definition of |g(x0)) can be extended to all
o between 0 and S — 1, provided we interpret the sum xo + jr as the sum mod S. With
this extension, |g(xo)) is periodic in o, with a period r. In this way, the periodicity of f
is transferred to the periodicity of g, which is easier to handle because it is independent
of other details of f. Since g has a period r, its Fourier transform, Eq. (6.5), has a
spectrum which vanishes except when k is an integral multiple of K = S/r. By performing
measurements in the first register of the state F;|F), we can find out K and hence r =

S/K.

6.6.4 Summary

An efficient algorithm with exponential saving can be designed to measure the
period r of a periodic function f(z), by using a quantum Fourier transform. The
number of steps needed is O(n?), if x ranges from 1 to S = 2". In contrast,
this requires O(n2™) number of steps to accomplish by using a classical Fourier
transform, and O(2") steps to do it naively.
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6.7 Shor’s Factorization Algorithm

Suppose we know that an n-bit number N is made up of the product of two prime
factors p and ¢q. Given N, how difficult is it to find p and ¢7 Naively, it takes an
average of O(v/N ) steps by trial and error to get them. Starting from 2, we test
whether it divides N. If it does, we have found one of the prime numbers, and the
other can be obtained by dividing N by it. If it does not, we proceed to the next
prime number 3, and try again. Since one of p and ¢ must be smaller than v/N , we
can certainly obtain the answer after at most v/N tries.

If N is large, say with 128 bits so that it is of the order of 2" ~ 3 x 1038,
then it will take a long time to succeed with this naive method. Fortunately, there
are classical algorithms which can do this much faster. The fastest known takes
O(exp[(64/9)*/3n'/3(Inn)?/3]) steps. For n = 128, this is of the order the of 276 ~
9.6 x 10", still a very large number of steps. This difficulty in factorization has
been exploited to design a coding system, the RSA public key encryption scheme,
which can be broken only when one succeeds in finding p and ¢ from a given N.
Since it takes such a long time to do so, by the time one succeeds, N and hence the
coding scheme will have been changed, so one’s effort is wasted and this encryption
method is safe. We will discuss exactly how the public key encryption works in a
later section.

As soon as the first quantum computer is turned on, this encryption system will
become obsolete. A quantum algorithm invented by Peter Shor in 1994 allows the
factorization to be done in less than O(n?) steps. What took months to do will now
be accomplished in seconds.

We will outline in this section how Shor’s algorithm works. Essentially, it turns
the factorization problem into a problem of finding the periodicity of a function, so
the technique discussed in the last section can be used to gain an exponential saving.

To start with, pick a number a < N at random. If a divides N, we are done,
for we have found either p or ¢. If a does not, then according to Euler’s theorem in
number theory, a number r can be found so that

a”" =1modN. (6.6)

The number r is not unique, but we will take the smallest of them.

For example, if N = 15, and we picked a = 4, then » = 2 because 42 = 1 + 15.
Note that we also have a* = 1 mod 15 because 4* = 256 = 1 + 17 x 15, but we will
take r to be the smallest, so it is 2 and not 4.

We will discuss in a moment how r can be found using the algorithm from the
last section. If 7 turns out to be odd, then we must start over again, pick another
a, and find another r. If r is even, then the condition (6.6) can be written in the
form:

(a"/? =1)(a"/? +1) = kN = kpg,
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for some integer k. Call the two factors on the left b and c¢. Unless one of them is
a multiple of IV, otherwise the largest common divisor of b and N, or ¢ and N, will
yield p or q. By the way, the largest common divisor of ¢ and N is by definition the
largest number that divides both numbers. It can be found by elementary algebraic
means (see Problem 6.9).

Taking again the example when N = 15, the choice of a = 4 produces r = 2, so
b=a"/?—1=3and ¢ =a"/2+1=5. The largest common divisor of 3 and 15 is
3, and the largest common divisor of 5 and 15 is 5. So in this way we have found
the prime factors p = 3 and ¢ = 5. Of course N = 15 is hardly a large number,
and we do not need this large machinery to find its prime factors. Nevertheless, it
illustrates what the procedure is for any N.

It can be proven that the probability of r being even and b or ¢ not being a
multiple of NV is at least % If we get unlucky the first time, getting either an odd r
of b, ¢ being multiples of N, chances are that we will be lucky when we try again.

We will now discuss how to find r for a given a.

Define a function f(z) = a” mod N, where x ranges from 0 to 2"—1 = S—1 = 54,
for some S > N to be specified later. Using Eq. (6.6), we see that f(z) = f(zx +r)
so the function f is periodic with a period r, if S/r = K is an integer. In that case,
we may use the period-finding algorithm of the last section to obtain . However, as
illustrated in the diagram above, generically K will not turn out to be an integer,
so the period-finding algorithm of the last section must be refined. We will not
describe the details here, though the idea is quite simple. We must pick S to be
large enough so that S/r is a large number, in which case K is so large that the
remainder from an integer is not too important. Detailed analysis shows that an S
of the order of N2 is sufficiently large for that purpose.

6.7.1 Summary

The problem of finding the prime factors p and ¢ from N = pg can be reformulated
as a problem of finding the period of the function f(z) = a® mod N, for any number
a which has no common factor with IN. The method explained in the last section
can then be used to find the period of f(z), and from there the prime factors p
and gq.

6.8 Grover’s Search Algorithm

Given an unstructured database with IV records, we want to pick out one with some
specific properties. What is the most efficient way of doing that?
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For simplicity we will assume only one record in the database has exactly these
properties. This is not a necessary condition for the algorithm, but we will not
discuss the additional details needed to remove this restriction. There are also
other variations of the algorithm but here we will stick only to the basic version.

For example, suppose there is a database containing all the essential data of
every person living in a country. Suppose we know that one and only one person
in the country is 120 years of age, but we do not know anything else about the
person — not the name nor the address. We would like to pull that record from the
database to find out possible clues to her/his longevity. What is a good and fast
way to find the record?

Naively we simply have to pull and examine every record until we find the right
one. That takes on the average N/2 trials, so the number of steps required is
O(N).

Note that if the database were structured, then there are much faster ways to
find the desired record. For example, if all the records are already arranged by
age, then no algorithm is needed because we simply pull the last few records. The
sorting problem is the hardest when the database is unstructured.

In this section we shall describe a quantum algorithm invented by Lov Grover,
which accomplishes the task in O(\/N ) steps. If the country has 400 million people,
this can be accomplished in of the order of 20,000 steps, rather than 200,000,000
steps.

By inserting empty records if necessary, we may assume the length of the
database to be N = 2™ for some n. In that case we can label the records by
an n-bit integer x. Suppose the desired record is located at xg, then the purpose of
the algorithm is to find this number xg.

To determine whether a record is the one we want, we must examine it for
the desired properties. Such an examination can be carried out by a subroutine
designed specifically to look for the properties we want, and we shall assume that
such a subroutine is already available, and is given to us in the form of a black box,
or an oracle. When we feed the xth record into the black box, it will examine it
and spit out either a 1, when it is the desired record, or a 0, when it is not. In other
words, the black box can be replaced by a ‘yes-no function’ f(x), with f(zg) =1
and f(x) = 0 for all other z.

The idea of the algorithm is as follows. Start with a uniform state,

1 N—-1
|T>:ﬁ ;} ) ,

and use the oracle repeatedly to filter out the desired state |zg). As indicated
before, this can be done in O(v/ N ) steps. We will now proceed to describe how this
is accomplished. Readers not interested in such details can skip to the next section.
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We start from the uniform state |T) obtained by applying the n-bit HADAMAD gate H
to the ground state |0). A GROVER gate (G) is then used repeatedly to filter out from |T)
the desired state |zo).

The GROVER gate is defined by

G = —HIyHI,, ,

where H is the n-bit HADAMAD gate mentioned above, and I, is a 1-bit gate that reverses
the sign of the state |zo) but leaves all other states |x) unchanged. In other words,

Lsye) = (-1)T@z).
Similarly, Io is a gate that reverses the sign of the state |0), but leaves all other states
unchanged.

I, can be constructed from the Uy gate of Eq. (6.2). In addition to the n-bit register
which holds |z), we need an auxiliary 1-bit register which holds |0) at the beginning. Then

12)10) — [ Hrr] = [2)—= (10) — |1))

V2
=[]~ 5 (0 1) - 1@ f@)

= H)”%% (10) = 1)) = [Hir | — (1) @z)0),

so that the output of I;,|x) appears at the end in the first register. In arriving at this
result, the fact that the property function f(x) is either 1 or 0 has been used.

Carrying out the algebraic computation, which we skip, it can be shown that passing
the uniform state |Y) through the GROVER gate k times will result in the state:

Tw) = cos[(2k + 1)0] Z |x) 4 sin[(2k + 1)0]|z0) | ,

1
VN —1 oyl
where 6 is determined by sinf = 1/v/N . For large N, the angle 6 is small. We see from
this formula that the weight of the uniform state is decreased through each pass, and
the weight of |z¢) is correspondingly enhanced. After k passes through the GROVER gate,
where (2k + 1)0 is chosen to be as close to w/2 as possible, namely,

1 Y
Rl (TG
2 2

then |YTx) =~ |zo). Even if the right-hand side of this equation is not an integer, there is
still a very high probability of finding |Yx) in the state |xo) when N is large. In that case
we simply have to run the search algorithm several times to determine the exact value of

ZXo.
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6.8.1 Summary

An unstructured database of N records can be sorted in O(N) steps classically, but
only O(\/N ) steps quantum mechanically. The Grover algorithm for doing that
starts with the uniform state of all records to enable maximal parallel processing,
then it uses the sorting criterion to design a filter to weed out the unwanted records.
When this filtering procedure is carried out a suitable number of times, what is left
is the desired record.

6.9 Hardware and Error Correction

All these nice quantum algorithms are useless unless we can build quantum gates
to process them. That unfortunately is a difficult task for control gates, so much
so that the largest quantum computer available, as of December 2001, is a 7-qubit
system built by the IBM group, using the NMR scheme (to be discussed later).
Earlier, in 2000, IBM also announced a 5-qubit device, each qubit being supplied
by a fluorine atom in a single molecule.

To build a quantum computer, we must choose a medium to store the qubits,
find ways to prepare an initial state, and means to read out the final state. We must
also construct the quantum gates needed to manipulate the data, while maintaining
coherence throughout their operations. Some of these problems have been solved
in small prototypes, but not yet for large computers.

The amount of time it takes to carry out a gate operation is also an important
parameter. The speed of the computer depends on it, and whether the state can
stay coherent during that time may also depend on it. The ability to maintain
coherence over a sufficiently long time depends on the careful choice of the system
and the basis states. Detailed discussion of this type tends to be technical so we
will skip it.

For most systems, initial states and 1-bit gates are relatively simple to construct
(see Sec. 6.4).

The final state of the particle can be read bit-by-bit using fluorescence, as de-
picted in the picture below. To do so an auxiliary state |auz) which couples strongly
to |1) is required. Suppose |auz) is an energy Avy above |1). Shining an electro-
magnetic pulse of frequency vy on the particle in state |1) causes it to jump to
|aux), and then it will relax into the ground state by emitting a fluorescent photon.
Thus a florescent photon is present for |1) but not for |0). If the particle is in a
schizophrenic state, then the probability of detecting a photon is proportional to
its probability to be in state |1). Since the act of measurement generally changes
the state of the particle, to get the probability we must repeat the calculation a
sufficient number of times. This will not change the estimate of the number of steps
for an efficient algorithm if the number of repetitions is insignificant compared to
that number of steps.
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Needless to say, we may also take the occupation of |0) rather than |1) to
fluoresce.

|aux)

2-bit controlled gates are much harder to construct, because of the necessary
correlation between the control qubit and the data qubit. Its fabrication depends
on the system as will be discussed later. In fact, the ability to produce 2-bit control
gates is an important criterion for choosing the system.

We come to the question of errors. Errors are unavoidable, even in a classical
computer. The problem is worse in a quantum computer because additional errors
can creep in through decoherence and the quantum gate operations. To keep the
calculation reliable, there must be ways to recognize the errors and the means to
correct them. If errors occur too frequently, then there is nothing one can do except
to build a better computer. If errors occurs infrequently, then there are well-known
mechanisms in classical computers to recognize and correct for them. These go
under names such as parity and majority voting; duplication and repetition are the
keys. In a quantum computer, there are more ways for errors to occur, so a built-
in error correction algorithm is even more crucial. We cannot do it quite like the
classical way, because of the no-cloning theorem, and because we must correct for a
continuous change between |0) and |1), not just flips between 0 and 1. Nevertheless,
the ideas are very similar, though the details are far more complicated, and beyond
our present scope.

The number of steps in a quantum algorithm given previously assumes an ideal-
ized situation where no error correction is necessary. Since quantum error correction
codes are longer than classical error correction codes, taking them into account will
reduce the advantage we gained for a quantum algorithm over a classical algorithm.
How much that sets us back depends on the quality of the quantum computer,
which is inversely related to the length of the error correction code.

In the remainder of this section, we shall describe some systems used to
experiment with the construction of qubits and quantum gates. We will concen-
trate on 2-qubit correlation, in some way the most difficult objective to achieve, but
absolutely needed for the construction of 2-bit control gates.

6.9.1 Trapped lons

This system consists of a string of ions placed in a linear Paul trap. A linear Paul
trap is a device using static and radio-frequency electric fields to confine charged
particles along a line. Each ion, depicted below by a round dot, represents a qubit
with its two selected levels. The entire chain of ions is laser cooled and vibrates
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together, either in its vibrational ground state, or the first excited state, thus cre-
ating another qubit (called phonons) which is depicted by a pair of thick lines. The
phonon is clearly coupled to the qubit of each ion because an ion is part of the
chain.

Suppose the ground state |0) and the excited state |1) of each ion is separated by
an energy difference hiv, and the ground state |0) and the first excited state |1) of
the phonon is separated by hv, < hv. The energy levels of the 2-bit state |[phonon,
ion) can be taken to be 0, hvp, hv, (v + 1), respectively for the states |00), |10),
|01), |11). Notice the difference between this level structure and that of two ions.
The energy difference between |1) and |0) depends on what state the phonon is in.
In other words, there is a correlation between the two qubits. This correlation can
be used to construct control gates:

laux)
v +vp) |11)
hv —_— |01)
hv, —_— |10)
0 100)

Let us illustrate this point by constructing a cu gate in which U leaves |0)
unchanged but adds a minus sign to |1). In this construction an auxiliary level
|auz) of the ion must be present, say with an energy hv,,, above |11).

A pulse of frequency v4,, shone on the ion for a suitable amount of time can
cause |11) to jump to |auz) and then back to itself, gaining a minus sign. None
of the other states are affected because that particular frequency cannot excite any
others. In this way it accomplishes what the desired CU gate sets out to do.

This scheme works for a [phonon, ion) state but not a |ion,ion) state, because
of the lack of direct coupling between the two ions. To see this more clearly, assume
again that there is an auxiliary state |auz) in an ion. Since the two ions are identical,
this state will be present in the other ion as well. Now a pulse shone on one ion can
cause its |1) state to jump to |auzx) and back, but that would be the case whether
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the other ion is in state |0) or |1). This lack of correlation makes it impossible for
either ion to act as a control bit.

6.9.2 Photons

In this system, 0 is represented by a photon coming in one direction, and 1 is
represented by a photon coming from an orthogonal direction. The 1-bit gate of
this system is shown in the first graph in Sec. 6.4.

For detection of photons, one can use charge coupled devices (CCD) and photo-
multipliers. However, single photon detectors are not yet well developed.

Production is more tricky, because we need to have exactly one photon in the
channel. A laser pulse produces many photons, but if we make it sufficiently weak,
then the probability of having two or more photons can be made arbitrarily small.
However, in that case, there is also a higher probability of having no photon, than
having one. This would severely affect the speed of the computer, but even without
worrying about that, we must also have a non-destructive way to find out when a
photon is present to do the calculation. This can be achieved through non-linear
optics. Material exists that can convert one photon into two less energetic ones.
One of these two photons is detected destructively in the usual way, but the other
is untouched so it can go on to do its job.

What eventually fails this simple system is the great difficulty in constructing
2-bit gates. For that, we need two photons to interact to produce correlations.
Photons hardly interact directly, but in principle, this can be achieved through
some non-linear material by using the Kerr effect.

The Kerr effect refers to a dependence of the index of reflection of a material
on the intensity of the beam. In this system, the 2-bit states |01) and [10) are
represented by two photons traveling in opposite directions, and the 2-bit states
|00) and |11) are represented by photons traveling in the same direction. This
causes the intensity to go up and a shift in the index of refraction of the material
to occur, thus causing a relative phase shift between the states [00) and |11) on the
one hand, and |01) and |10) on the other hand. This correlation can be exploited
to construct 2-bit controlled gates.

The problem is, all known Kerr materials have a weak dependence on the
intensity. Moreover, these materials cause a lot of absorption. To overcome the
first problem, the Kerr material the photons go through has to be thick, but then
we run into the second problem, which nobody knows how to solve at the moment.

6.9.3 Nuclear Magnetic Resonance (NMR)

In the presence of a static magnetic field, the two degenerate levels of a spin—%
nucleus split up. The size of this Zeeman effect depends on the strength of the
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magnetic field, as well as the magnitude of the nuclear magnetic moment. Since
the magnetic moment of a particle is inversely proportional to its mass, nuclear
magnetic moments are small because nuclei are heavy. The resonance frequency
between the Zeeman doublets of a hydrogen nucleus is typically around 500 MHz in
a 11.7 tesla magnetic field. This radio-frequency pulse has a wavelength much larger
than the size of an atom, so it is very difficult to target the pulse at a single nucleus
unless the atoms are very far apart. The other difficulty is the weakness of the signal
generated by a single nucleus, because of the smallness of its magnetic moment. The
only recourse then is for the pulse to address many molecules and their nuclei all
at once, usually in a solution to allow free movements of the molecules.

There is another difficulty, arising from the small energy difference between
the Zeeman doublet, because it is far smaller than the thermal energy at room
temperature. As a result, the system is no longer in its ground state, as thermal
excitation causes both |0) and |1) to be occupied, though the occupation number
of the ground state |0) is slightly larger than that of the |1) state. We shall refer to
this effect as thermal pollution. How can we separate a |0) from a |1) then? And,
since we are not targeting individual nuclei, how can we get several qubits out of
the system?

The second problem is solved by using, in the solution, molecules with several
atoms. In the ideal situation, (the nucleus of) each atom of the molecule represents
a different bit. The reason why this works is the same reason why NMR  is useful in
chemistry. The magnetic field felt by the nucleus is shielded by the electronic cloud
in the molecule. Thus, depending on its local electronic environment, the NMR,
frequency may differ from nucleus to nucleus. In chemistry this is used to probe
the environment of the nucleus, namely, the molecular structure. For our purpose,
we use this property to set up several distinct qubits, if their corresponding nuclei
have sufficiently different NMR frequencies. By using (or detecting) radio pulses of
the right frequency, we can selectively address (or detect) a particular qubit. For
example, if the Zeeman frequency of the ith nucleus is v;, then a |1) state in the
1th bit will yield an NMR line of frequency v; when it decays, whereas such a line
will be absent if this bit is |0). By counting which of these lines is present, we will
be able to tell which bits are 1 and which bits are 0.

As mentioned before, a 7-qubit NMR quantum computer has been successfully
constructed by IBM. Unfortunately, we cannot expect a sizable quantum computer
to be built this way because it is very hard to scale up NMR computers indefinitely.
To do so, we need to find a molecule large enough whose distinct NMR signals for
different nuclei can be controlled. Even so, thermal pollution, which increases with
the number of qubits, will eventually drown out the signal and render the computer
unworkable.

Still, pretending there is no thermal pollution, let us see how gates can be
constructed in this system. 1-bit gates are constructed in the usual way by suitable
radio pulses. 2-bit controlled gates require interactions between two nuclei, which
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fortunately is naturally present in the form hs;sovn, where s; = i% and sg = i%
indicate the |1)/|0) state of each nucleus. This interaction is small — vy < v,
vy — nevertheless it causes the energy of the first nucleus to depend on the state
of the second nucleus, and vice versa, as is the case between the ion bit and the
phonon bit in the ion-trap system. We can therefore exploit this correlation in a
similar way to construct control gates.

Finally, let us consider how thermal pollution is dealt with. Suppose n; and ng
are respectively the number of nuclei in the states |1) and |0), with ng > ny. We
can consider this as having (ng — n1) nuclei in the quantum state |0), in the midst
of an incoherent background of n; nuclei found equally in the two states. It can be
shown that this incoherent background is not affected by unitary gate operations,
so in the idealized situation we can ignore it and concentrate only on what the |0)
state is doing as it goes through the gates. At the end, the incoherent background
has to be subtracted out to get the final answer. Since the incoherent background
is much larger than the signal, this gets to be very difficult when too many qubits
are involved.

6.9.4 Other Systems

None of the systems considered above seem to be ideal for scaling up the size of
the quantum computer. Solid state devices like quantum dots (see Chapter 5) and
superconductors may have a better chance in that regard. There is now an active
program in these areas, but the success is still fragmentary. Only more research
will be able to tell what the best system is going to be.

6.9.5 Summary

Practical issues in the construction of a quantum computer are briefly discussed.
Maintenance of coherence and the ability to construct 2-bit control gates are
two of the most important issues governing the selection of a practical medium.
Among them, systems using ion traps, photons, and nuclear magnetic resonance
are separately discussed.

6.10 Cryptography

We might think that cryptography is for spies — not so in this electronic age. If
you do not want people to snoop on your communications, if you do not want
information on your credit card to be stolen when shopping on the Internet, and if
you do not want your transaction with the bank to be known to others, you have to
encrypt your message before you communicate. In modern browsers this is done for
you automatically, using the RSA public key system. This and a private key system
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will be discussed in this section, with special attention to how quantum technology
may affect their outcome.

To begin with, we shall always assume the original message (known as the plain-
text) to be expressed in integers. For example, we may use a two-digit decimal
number to represent every key on the computer keyboard. The numbers 0 to 9
could be represented by 01 to 09, the 26 lower case letters ‘a’ to ‘z’ could be repre-
sented by 11 to 36, and the 26 upper case letters ‘A’ to ‘Z’ could be represented by
41 to 66, leaving 99 to represent space, and all other numbers up to 98 to represent
the punctuation marks and the rest. The plaintext message ‘Send me 1000 dollars’
will appear in numerical form as 59 15 24 14 99 23 15 99 01 00 00 00 99 14 25 22
22 11 28 29.

This ad hoc system of convention is not in use; it is presented here just for
simple illustration. There are more standard conversion schemes, like the ASCII
code, which are usually used. We shall always assume that the sender and the
receiver have agreed on which conversion scheme is being used, so that when the
plaintext is sent directly, they can understand each other. The method of encryption
discussed below is independent of the conversion scheme.

For security reasons, instead of sending the message over an open channel, the
sender A (often known as Alice) converts the plaintext numbers into coded num-
bers, which only the intended receiver B (often known as Bob) can decipher. An
eavesdropper E (often known as Eve) may be able to intercept the string of coded
numbers, but she will have absolutely no idea what they mean.

6.10.1 Private Key System

In this system, both A and B possess a highly guarded string of numbers, known
as a private key. A codes her message by combining the numbers in the plaintext
with the numbers of the private key in some reversible manner. When B receives
the coded message, he simply reverses the process, combining the coded message
with the private key to get back the plaintext.

Let us illustrate this with the ad hoc conversion scheme above, taking as the
private key k the numerical value of © with the decimal removed:

k = 3141592653589793238462643383279502884197169399375 . ..

In practice we would never use such an obvious private key that every scientist can
guess at, but for illustrative purpose this would do.

Since each character of the ad hoc system is given by a number between 0 and
99, we shall separate the string of numbers in the plaintext p and the private key
k into pairs. We can create the coded number ¢ by adding the corresponding pairs
in p and k, modulo 100. For example, the coded message c for the plaintext ‘Send
me 1000 dollars’ appears as follows:
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S end m e 10
p 59 1524 14 99 23 15 99 01 00
k 31 41 59 26 53 58 97 93 23 84
¢ 90 56 83 40 52 81 12 92 24 84

00 dol 1l ars
p 00 00 99 14 25 22 22 11 28 29
k 62 64 33 83 27 95 02 88 41 97
c 6264 329752 17 24 99 69 26

When B receives the coded message ¢, all he has to do is subtract k from it
(modulo 100) to recover the plaintext p.

The private key system is absolutely secure if the key is as long as the message,
kept confidential, and used only once. In practice that is almost impossible to
achieve. To compromise, we might have a key of finite number of digits, 2L say,
and we can use it to code blocks of plaintext L characters long. We can also use
the same key in several messages, but we must make sure that it is not used too
often, for if many messages coded the same way have been intercepted, then there
may be ways to figure out the key because some letters are statistically used more
frequently than others. For that reason the private key k£ has to be changed often,
but then the difficulty is how to communicate the new private key between A and
B in a secure way. It is here that quantum properties can help.

According to the no-cloning theorem discussed in Sec. 6.4, quantum states can-
not be copied faithfully without altering them. It is essentially this property that
allows a private key to be transmitted securely between A and B. To illustrate how
this is done, let us discuss the system of C.H. Bennett and G. Brassard using polar-
ized photons. In practice, it is not easy to communicate quantum information over
a large distance, because of decoherence and absorption. However, using optical
fibers, this scheme has now been carried out successfully over many kilometers.

In this scheme, A sends B her private key over an open channel. The key is
sent in binary using linearly polarized photons to represent 0 and 1. The trick is
to transmit them randomly between two polarization bases. In one basis, to be
denoted by @, photons polarized along the z-direction represent a 1 and photons
polarized along the y-direction represent a 0. In the other basis, to be denoted
by ®, photons polarized along the 45° line represent a 1, and photons polarized
along the 135° line represent a 0. The polarized states of one basis is an equal
superposition of the states in another basis, so according to the probability rules of
quantum mechanics, a 0 in the @ basis has equal probability of being read off as a
0 or a 1 in the ® basis.

To begin with, A sends the private key she invented to B using randomly one of
these two basis for each bit. The random basis provides the coding and the security,
as we shall see. Not knowing what basis A uses to send out a bit, B will detect
the coded message using another random set of bases of his choice. For a given bit
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being sent out, say 0, B will detect it as a 0 if he happens to use the same basis she
uses, but B will detect it with equal probability either as a 0 or a 1 if he happens
to use the other basis.

Now A and B talk over an open channel to tell each other the bases they used
for each bit, and then they keep only those bits where they happen to use the same
basis. This sh