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PREFACE

The intended reader of this book is a graduate student beginning a doctoral pro-
gram in physics or a closely related subject, who wants to understand the physical
and mathematical foundations of analytical mechanics and the relation of classical
mechanics to relativity and quantum theory.

The book’s distinguishing feature is the introduction of extended Lagrangian and
Hamiltonian methods that treat time as a transformable coordinate, rather than as the
universal time parameter of traditional Newtonian physics. This extended theory is
introduced in Part II, and is used for the more advanced topics such as covariant me-
chanics, Noether’s theorem, canonical transformations, and Hamilton—Jacobi theory.

The obvious motivation for this extended approach is its consistency with special
relativity. Since time is allowed to transform, the Lorentz transformation of special
relativity becomes a canonical transformation. At the start of the twenty-first century,
some hundred years after Einstein’s 1905 papers, it is no longer acceptable to use the
traditional definition of canonical transformation that excludes the Lorentz transfor-
mation. The book takes the position that special relativity is now a part of standard
classical mechanics and should be treated integrally with the other, more traditional,
topics. Chapters are included on special relativistic spacetime, fourvectors, and rela-
tivistic mechanics in fourvector notation. The extended Lagrangian and Hamiltonian
methods are used to derive manifestly covariant forms of the Lagrange, Hamilton,
and Hamilton-Jacobi equations.

In addition to its consistency with special relativity, the use of time as a coordi-
nate has great value even in pre-relativistic physics. It could have been adopted in
the nineteenth century, with mathematical elegance as the rationale. When an ex-
tended Lagrangian is used, the generalized energy theorem (sometimes called the
Jacobi-integral theorem), becomes just another Lagrange equation. Noether’s theo-
rem, which normally requires an longer proof to deal with the intricacies of a varied
time parameter, becomes a one-line corollary of Hamilton’s principle. The use of ex-
tended phase space greatly simplifies the definition of canonical transformations. In
the extended approach (but not in the traditional theory) a transformation is canoni-
cal if and only if it preserves the Hamilton equations. Canonical transformations can
thus be characterized as the most general phase-space transformations under which
the Hamilton equations are form invariant.

This is also a book for those who study analytical mechanics as a preliminary to
a critical exploration of quantum mechanics. Comparisons to quantum mechanics ap-
pear throughout the text, and classical mechanics itself is presented in a way that will
aid the reader in the study of quantum theory. A chapter is devoted to linear vector
operators and dyadics, including a comparison to the bra-ket notation of quantum
mechanics. Rotations are presented using an operator formalism similar to that used
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in quantum theory, and the definition of the Euler angles follows the quantum me-
chanical convention. The extended Hamiltonian theory with time as a coordinate is
compared to Dirac’s formalism of primary phase-space constraints. The chapter on
relativistic mechanics shows how to use covariant Hamiltonian theory to write the
Klein—-Gordon and Dirac wave functions. The chapter on Hamilton-Jacobi theory in-
cludes a discussion of the closely related Bohm hidden variable model of quantum
mechanics.

The reader is assumed to be familiar with ordinary three-dimensional vectors,
and to have studied undergraduate mechanics and linear algebra. Familiarity with
the notation of modern differential geometry is not assumed. In order to appreciate
the advance that the differential-geometric notation represents, a student should first
acquire the background knowledge that was taken for granted by those who created
it. The present book is designed to take the reader up to the point at which the
methods of differential geometry should properly be introduced—before launching
into phase-space flow, chaotic motion, and other topics where a geometric language
is essential.

Each chapter in the text ends with a set of exercises, some of which extend the
material in the chapter. The book attempts to maintain a level of mathematical rigor
sufficient to allow the reader to see clearly the assumptions being made and their
possible limitations. To assist the reader, arguments in the main body of the text fre-
quently refer to the mathematical appendices, collected in Part III, that summarize
various theorems that are essential for mechanics. I have found that even the most
talented students sometimes lack an adequate mathematical background, particularly
in linear algebra and many-variable calculus. The mathematical appendices are de-
signed to refresh the reader’s memory on these topics, and to give pointers to other
texts where more information may be found.

This book can be used in the first year of a doctoral physics program to provide a
necessary bridge from undergraduate mechanics to advanced relativity and quantum
theory. Unfortunately, such bridge courses are sometimes dropped from the curricu-
lum and replaced by a brief classical review in the graduate quantum course. The risk
of this is that students may learn the recipes of quantum mechanics but lack knowl-
edge of its classical roots. This seems particularly unwise at the moment, since several
of the current problems in theoretical physics—the development of quantum informa-
tion technology, and the problem of quantizing the gravitational field, to name two—
require a fundamental rethinking of the quantum-classical connection. Since progress
in physics depends on researchers who understand the foundations of theories and
not just the techniques of their application, it is hoped that this text may encourage
the retention or restoration of introductory graduate analytical mechanics courses.

Oliver Davis Johns
San Francisco, California
April 2005
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1

BASIC DYNAMICS OF POINT PARTICLES AND COLLECTIONS

Modern mechanics begins with the publication in 1687 of Isaac Newton’s Principia, an
extension of the work of his predecessors, notably Galileo and Descartes, that allows
him to explain mathematically what he calls the “System of the World”: the motions of
planets, moons, comets, tides. The three “Axioms, or Laws of Motion” in the Principia
(Newton, 1729) are:

Law I: Every body perseveres in its state of rest, or of uniform motion in
a right line, unless it is compelled to change that state by forces impressed
thereon.

Law II: The alteration of motion is ever proportional to the motive force
impressed; and is made in the direction of the right line in which that force
is impressed.

Law III: To every Action there is always opposed an equal Reaction: or the
mutual actions of two bodies upon each other are always equal, and directed
to contrary parts.

These axioms refer to the general behavior of a “body.” It is clear from Newton’s
examples (projectiles, a top, planets, comets, a stone) in the same section that he
intends these bodies to be macroscopic, ordinary objects.

But elsewhere Newton (1730) refers to the “particles of bodies” in ways that sug-
gest an atomic theory in which the primitive, elementary objects are small, indestruc-
tible, “solid, massy, hard, impenetrable, movable particles.” These are what we will
call the point particles of Newtonian physics. Newton says of them that, “these prim-
itive Particles being Solids, are incomparably harder than any porous Bodies com-
pounded of them; even so very hard as never to wear or break in pieces; no ordinary
Power being able to divide what God himself made one in the first Creation.”

The present chapter will begin with the assumption that Newton’s three axioms
refer fundamentally to these point particles. After deriving the laws of momentum,
angular momentum, and work-energy for point particles, we will show that, given
certain plausible and universally accepted additional axioms, essentially the same
laws can be proved to apply to macroscopic bodies, considered as collections of the
elementary point particles.

1.1 Newton’s Space and Time

Before discussing the laws of motion of point masses, we must consider the space and
time in which that motion takes place. For Newton, space was logically and physically
distinct from the masses that might occupy it. Space provided a static, absolute, and
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independent reference with respect to which all particle positions and motions were
to be measured. Space could be perceived by looking at the fixed stars which were
presumed to be at rest relative to it. Newton also emphasized the ubiquity of space,
comparing it to the sensorium of God.!

Newton thought of time geometrically, comparing it to a mathematical point mov-
ing steadily along a straight line. As with space, the even flow of time was absolute
and independent of objects. He writes in the Principia, “Absolute, true and mathe-
matical time, of itself, and from its own nature, flows equably without relation to
anything external.””

In postulating an absolute space, Newton was breaking with Descartes, who held
that the proper definition of motion was motion with respect to nearby objects. In
the Principia, Newton uses the example of a spinning bucket filled with water to
argue for absolute motion. If the bucket is suspended by a rope from a tree limb and
then twisted, upon release the bucket will initially spin rapidly but the water will
remain at rest. One observes that the surface of the water remains flat. Later, when
the water has begun to rotate with the bucket, the surface of the water will now be
concave, in response to the forces required to maintain its accelerated circular motion.
If motion were to be measured with respect to proximate objects, one would expect
the opposite observations. Initially, there is a large relative motion between the water
and the proximate bucket, and later the two have nearly zero relative motion. So the
Cartesian view would predict inertial effects initially, with the water surface becoming
flat later, contrary to observation.

Newton realized that, as a practical matter, motion would often be measured by
reference to objects rather than to absolute space directly. As we discuss in Section
14.1, the Galilean relativity principle states that Newton’s laws hold when position
is measured with respect to inertial systems that are either at rest, or moving with
constant velocity, relative to absolute space. But Newton considered these relative
standards to be secondary, merely stand-ins for space.

Nearly the opposite view was held by Newton’s great opponent, Leibniz, who held
that space is a “mere seeming thing” and that the only reality is the relation of objects.
Their debate took the form of an exchange of letters, later published, between Leibniz
and Clarke, Newton’s surrogate.? Every student is urged to read them. The main diffi-
culty for the modern reader is the abundance of theological arguments, mixed almost
inextricably with the physical ones. One can appreciate the enormous progress that
has been made since the seventeenth century in freeing physics from the constraints
of theology. In the century after Newton and Leibniz, their two philosophical tradi-
tions continued to compete. But the success of the Newtonian method in explaining

ISeventeenth century physiology held that the information from human sense organs is collected in a
“sensorium” which the soul then views.

ZNewton’s ideas about time were possibly influenced by those of his predecessor at Cambridge, Isaac
Barrow. See Chapter 9 of Whitrow (1989).

3The correspondence is reprinted, with portions of Newton’s writings, in Alexander (1956).
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experiments and phenomena led to its gradual ascendency.*

Newton’s space and time were challenged by Mach in the late nineteenth century.
Mach argued, like Leibniz, that absolute space and time are illusory and that the only
reality is the relation of objects.”> Mach also proposed that the inertia of a particle
is related to the existence of other particles and presumably would vanish without
them, an idea that Einstein referred to as Mach’s Principle.

Einstein’s special relativity unifies space and time. And in his general relativity the
metric of the combined spacetime becomes dynamic rather than static and absolute.
General relativity is Machian in the sense that the masses of the universe affect the
local curvature of spacetime, but Newtonian in the sense that spacetime itself (now
represented by the dynamic metric field) is something all pervasive that has definite
properties even at points containing no masses.

For the remainder of Part I of the book, we will adopt the traditional Newto-
nian definition of space and time. In Part II, we will consider the modifications of
Lagrangian and Hamiltonian mechanics that are needed to accommodate special rel-
ativity, in which space and time are combined and time becomes a transformable
coordinate.

1.2 Single Point Particle

In this section, we assume the applicability of Newton’s laws to point particles, and
introduce the basic derived quantities: momentum, angular momentum, work, kinetic
energy, and their relations.

An uncharged point particle is characterized completely by its mass m and its
position r relative to the origin of some inertial system of coordinates. The velocity
v = dr/dt and acceleration a = dv/dt are derived by successive differentiation. Its
momentum (which is what Newton called “motion” in his second law) is defined as

p = mv (1.1)

Newton’s second law then can be expressed as the law of momentum for point parti-
cles,

_dap
Cdt
Since the mass of a point particle is unchanging, this is equivalent to the more familiar
f=ma. The requirement that the change of momentum is “in the direction of the right

f (1.2)

4Leibnizian ideas continued to be influential, however. The great eighteenth century mathematician
Euler, to whom our subject owes so much, published in 1768 a widely read book, Letters Addressed to a
German Princess, in which he explained the science of his day to the lay person (Euler, 1823). He felt
it necessary to devote some thirty pages of that book to refute Wolff, the chief proponent of Leibniz’s
philosophy. See also the detailed defense of Newton’s ideas in Euler, L. (1748) “Reflexions sur 'Espace et
le Tems,” Mémoires de ’Académie des Sciences de Berlin, reprinted in Series III, Volume 2 of Euler (1911).

5See Mach (1907). Discussions of Mach’s ideas are found in Rindler (1977, 2001) and Misner, Thorne
and Wheeler (1973). A review of the history of spacetime theories from a Machian perspective is found in
Barbour (1989, 2001). See also Barbour and Pfister (1995).



6 BASIC DYNAMICS OF POINT PARTICLES AND COLLECTIONS

line” of the impressed force f is guaranteed in modern notation by the use of vector
quantities in the equations.
For the point particles, Newton’s first law follows directly from eqn (1.2). When
f = 0, the time derivative of p is zero and so p is a constant vector. Note that eqn
(1.2) is a vector relation. If, for example, the x-component of force f, is zero, then
the corresponding momentum component p, will be constant regardless of what the
other components may do.
The angular momentum j of a point particle and the torque t acting on it are
defined, respectively, as
j=rxp Tt=rxf (1.3)

It follows that the law of angular momentum for point particles is

dj
i 1.4
= 1.4)
since
dj d d
d—';zd—:xp+rxd—l;=vxmv+rxf=0+t (1.5)

In a time dt the particle moves a vector distance dr = v dt. The work dW done by
force f in this time is defined as
dW =f-dr (1.6)

This work is equal to the increment of the quantity (1/2)mv? since

dW =f.-vdt = (d(ZV) dt> -v=m(dv)'V=d<%mv2> (1.7)

Taking a particle at rest to have zero kinetic energy, we define the kinetic energy T as

1
T = -mv* 1.8
5mv (1.8)
with the result that a work—energy theorem for point particles may be expressed as

dW =dT or
_dar

T dr
If the force f is either zero or constantly perpendicular to v (as is the case for purely
magnetic forces on a charged particle, for example) then the left side of eqn (1.9) will
vanish and the kinetic energy T will be constant.

f-v 1.9)

1.3 Collective Variables

Now imagine a collection of N point particles labeled by index n, with masses m,
my, ..., my and positions ry,rp, ..., ry.

The other quantities defined in Section 1.2 will be indexed similarly, with p,, =
m,V,, for example, referring to the momentum of the nth particle and f,, denoting the
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FIG. 1.1. A collection of point masses.

force acting on it. The total mass, momentum, force, angular momentum, torque, and
kinetic energy of this collection may be defined by

N N N N N N
M=Y"my, P=)p, F=Y1f J=>j, =Y 1. T=)T,
n=1 n=1 n=1 =1

n=1 n=1 n=
(1.10)
Note that, in the cases of P, F, J, and <, these are vector sums. If a particular collection
consisted of two identical particles moving at equal speeds in opposite directions, for
example, P would be zero.

In the following sections, we derive the equations of motion for these collective
variables. All of the equations of Section 1.2 are assumed to hold individually for each
particle in the collection, with the obvious addition of subscripts n to each quantity to
label the particular particle being considered. For example, v, = dr,,/dt, a, = dv,/dt,
Pn = muVy, £, = dp,/dt, £, = mya,, etc.

1.4 The Law of Momentum for Collections

We begin with the law of momentum. Differentiation of the sum for P in eqn (1.10),
using eqn (1.2) in the indexed form dp, /dt = f,,, gives

N N

The time rate of change of the total momentum is thus the total force.

But the force f,, on the nth particle may be examined in more detail. Suppose that
it can be written as the vector sum of an external force £ coming from influences
operating on the collection from outside it, and an internal force £int) consisting of all
forces that cannot be identified as external, such as forces on particle n coming from
collision or other interaction with other particles in the collection. For example, if the
collection were a globular cluster of stars (idealized here as point particles!) orbiting
a galactic center, the external force on star n would be the gravitational attraction
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from the galaxy, and the internal force would be the gravitational attraction of the
other stars in the cluster. Thus

f, = (&0 4 glinD) and, correspondingly, F = F&x0 4 p(n) (1.12)
where
N ' N
FEO =3 gex)  and  Fi0 = 3 0 (1.13)
n=1 n=1

Axiom 1.4.1: The Law of Momentum
It is taken as an axiom in all branches of modern physics that, insofar as the action of
outside influences can be represented by forces, the following Law of Momentum must

hold: P
Flext _ - (1.14)

It follows from this Law and eqn (1.11) that F = F®™® and hence Fi" = 0. Identify-
ing P with Newton’s “motion” of a body, and F¢*V with his “motive force impressed”
on it, eqn (1.14) simply restates Newton’s second law for bodies, now considered as
collections of point particles.

An immediate consequence of the Law of Momentum is that the vanishing of
F©9 makes P constant. We then say that P is conserved. This rule of momentum
conservation is generally believed to apply even for those situations that cannot be
described correctly by the concept of force. This is the essential content of Newton’s
first law. The total momentum of an isolated body does not change.

1.5 The Law of Angular Momentum for Collections

The derivation of the Law of Angular Momentum is similar to the previous Section
1.4. Differentiation of the sum for J in eqn (1.10), using eqn (1.4) in the indexed form
djn/dt = ,, gives
N .

dy d . djn

R e
The time rate of change of the total angular momentum is thus the total torque.

Making the same division of forces into external and internal as was done in Sec-

tion 1.4, we use the indexed form of eqn (1.3) to write the torque on particle n as the
sum of external and internal torques,

T, =1, xf =1, x (fﬁleXt) + fflint)) = (X0 | (0 (1.16)
where . .
(&0 =, x flex0 and 00—, x fn0 (1.17)

Then, the total torque < defined in eqn (1.10) may then be written

- =T(ext)+.t(int) (1.18)
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where

N N
(&0 — Z (X0 and 0 — Z ¢ (int (1.19)
n=1 n=1

Axiom 1.5.1: The Law of Angular Momentum
It is taken as an axiom in all branches of modern physics that, insofar as the action of
outside influences can be represented by forces, the following Law of Angular Momentum
must hold:

et _ 4 (1.20)

dt

It follows from this Law and eqn (1.15) that T = t©* and hence t@9 = 0. An im-
mediate consequence of the Law of Angular Momentum is that the vanishing of t(€xV
makes J constant. We then say that J is conserved. This rule of angular momentum
conservation is generally believed to apply even for those situations that cannot be de-
scribed correctly by the concept of force. The total angular momentum of an isolated
body does not change.

It is important to notice that the Laws of Momentum and Angular Momentum
are vector relations. For example, in eqn (1.14), if Fy(e’“) = 0 then P, is conserved
regardless of the values of the other components of the total external force. A similar
separation of components holds also in eqn (1.20).

1.6 “Derivations” of the Axioms

Although the Law of Momentum is an axiom, it can actually be “derived” if one ac-
cepts an outdated action-at-a-distance model of internal forces in which the force £
is taken as the instantaneous vector sum of forces on particle n coming from all of the
other particles in the collection. Denote the force on particle n coming from particle
n’ as f,,, and thus write

N N N
f"0 = >"f,, andhence F™ =3%"3"f,, 1.21)

n'=1 n=1 n’=1
n'#n n'#n

In this model, Newton’s third law applied to the point particles implies that
£ = —fy (1.22)

which makes the symmetric double sum in eqn (1.21) vanish identically. With Fint —
0, eqns (1.11, 1.12) then imply eqn (1.14), as was to be proved. Equation (1.22) is
sometimes referred to as the weak form of Newton’s third law. We emphasize, however,
that the Law of Momentum is more general than the action-at-a-distance model of the
internal forces used in this derivation.

The Law of Angular Momentum is also an axiom but, just as in the case of linear
momentum, it too can be “derived” from an outdated action-at-a-distance model of
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internal forces. We again denote the force on particle n coming from particle »n’ as f,,/
and thus write

N N N

T — g, 5 fI00 — Z r, x £, and hence (00 — Z Z r, x £, (1.23)
n=1 n=1 n’=1
n' #n n' #n

It follows from eqn (1.22) that the second of eqn (1.23) may be rewritten as

N N
: 1
L0 _ 5 Z Z (ry, — 1) X £, (1.24)

n=1 n’=1
n'#n
If we now assume (which we did not need to assume in the linear momentum case)
that the force f,, is central, that is parallel (or anti-parallel) to the line (r, —r,)
between particles n and n’, then it follows from the vanishing of the cross products
that t(" is zero, as was to be proved.

The addition of centrality to eqn (1.22) is sometimes called the strong form of
Newton’s third law. We emphasize that, as in the case of linear momentum, the Law of
Angular Momentum is more general than the model of central, action-at-a-distance
internal forces used in this last derivation.

For example, the laws of momentum and angular momentum can be applied cor-
rectly to the behavior of physical objects such as quartz spheres, whose internal struc-
ture requires modern solid-state physics for its description rather than Newtonian
central forces between point masses. Yet, when there are identifiable external force
fields acting, such as gravity for example, these objects will obey Axioms 1.4.1 and
1.5.1.

1.7 The Work-Energy Theorem for Collections

The work-energy theorem of eqn (1.9) can be extended to collections. Using the def-
inition in eqn (1.10) together with the indexed form of eqn (1.8), the total kinetic

energy is
N

N
1 .
T = 2 T, = > Zmnvfl with v,% =V, V, (1.25)
n= n=
Then the time rate of change of T is equal to the rate at which work is done on all
particles of the collection,

N
dT
= ;f,, -V, (1.26)
To prove this result, differentiate the sum for 7 in eqn (1.10), using eqn (1.9) in its
indexed form dT,/dt = f, - v, where v, = dr, /dt. Then

N N
dT d aT,
_— = — T, =
dt dt’; " ; dt

N
= an -V, (1.27)

n=1

as was to be proved.
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There is little benefit to introducing the separation of force f, into external and
internal terms here, since the total kinetic energy T can be changed even when no
external forces are present. For example, consider four identical particles initially at
rest at the four corners of a plane square. If there is a gravitational internal force
among those particles, they will begin to collapse toward the center of the square.
Thus T will increase even though only internal forces are acting.

1.8 Potential and Total Energy for Collections

In some cases, there will exist a potential function U = U(ry,...,ry,t) from which
all forces on all particles can be derived. Thus

0

f,=-V,U(r,ry,...,rN, 1) = —BTU(rl,rz, S SV 3 (1.28)

n

where®
3

0 0
VvV, = = e 1.29
"= o ;1 T (1.29)

th

and x,; is the i
Z?:l xniéi-

The total energy E is defined as E = T + U, where T is the total kinetic energy.
Its rate of change is

coordinate of the nth particle of the collection, that is, r, =

dE _ aU(ry,rp,...,ryN, 1)

= 1.30
dt Jat ( )

To see this, use the chain rule of partial differentiation and eqns (1.27, 1.28) to write

ir & al ULt (AU QUG T, TN D)
dr HX:% X_: or, ( dt at )
(1.31)
where the last equality implies eqn (1.30).
If the potential function U = U(ry, s, ..., ry, ) happens not to depend explicitly

on the time 7, the partial derivative in eqn (1.30) will vanish and E will be a constant.
The total energy of the collection is then said to be conserved.

1.9 The Center of Mass

All of the collective variables in eqn (1.10) are simple scalar or vector sums of indi-
vidual quantities. The center of mass of the collection R is only slightly more compli-
cated. It is defined as the mass-weighted average position of the particles making up

6See Section A.11 for a discussion of the notation 3U/dr,, including cautions about its proper use.
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the collection,

R= — Zmnrn (1.32)

This R can be used to define a new set of position vectors p,, for the point particles,
called relative position vectors, that give the positions of masses relative to the center
of mass, rather than relative to the origin of coordinates as the r, do.

€]

F1G. 1.2. Center of mass and relative position vectors. The center of mass is at C.
The definition is
p, =T, —R or, equivalently, r, =R+ p, (1.33)

The vector p,, can be thought of as the position of particle n as seen by an observer
standing at the center of mass. The vectors p, can be expanded in terms of Cartesian
unit vectors €; as

3
Pp = aniéi (1.34)
i=1
Component p,; will be called the ith relative coordinate of particle n.
The velocity of the center of mass V is obtained by differentiating eqn (1.32) with
respect to the time,
N
dR 1
n=

Then, differentiation of eqn (1.33) yields
p, =V, —V or, equivalently, v, =V+0p, (1.36)

where the definition p, = dp, /dt is used. This quantity will be called the relative
velocity of mass m,. It may be thought of as the apparent velocity of m, as seen
by an observer riding on the center of mass. A particular p, may in some cases be
nonzero even when v, = 0 and the mass m, is at rest relative to absolute space, due
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to the motion of the center of mass induced by motions of the other particles in the
collection. Differentiating eqn (1.34) gives

3
Py = bnili (1.37)
i=1

where the p,; will be called the ith relative velocity coordinate of mass m,,.

An observer standing at the center of mass will calculate the center of mass to be
at his feet, at zero distance from him, as is shown in the following lemma which will
be used in the later proofs.

Lemma 1.9.1: Properties of Relative Vectors
A very useful property of vectors p, and p,, is

N N
0=> mup, and 0= mup, (1.38)
n=1 n=1

Proof: The proof of the first expression follows directly from the definitions in eqns
(1.32, 1.33),

N N N N
Zmnpn=Zmn(rn—R):Zmnrn—ZmnRzMR—MRzo (1.39)
n=1 n=1 n=1 n=1

with the second expression following from time differentiation of the first one. O

1.10 Center of Mass and Momentum

Having defined the center of mass, we now can write various collective quantities in
terms of the vectors R, p and their derivatives. The total momentum P introduced in
eqn (1.10) can be expressed in terms of the total mass M and velocity of the center of
mass V by the remarkably simple equation

P=MV (1.40)

To demonstrate this result, we use the second of eqn (1.36) to rewrite P as

N N N N N
P=>"pi=) mVa=3 my(V+p,) =D mV+ D mup, =MV (141
n=1 n=1 n=1 n=1

n=1

where the Lemma 1.9.1 was used to get the last equality. The total momentum of a
collection of particles is the same as would be produced by a single particle of mass
M moving with the center of mass velocity V.

The Law of Momentum in eqn (1.14) can then be written, using eqn (1.40) and
the constancy of M, as

dP dv
FEO — o= MA  where A= T (1.42)

is the acceleration of the center of mass. Thus, beginning from the assumption that
f = ma for individual point particles, we have demonstrated that F(&9 = MA for
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composite bodies, provided that A is defined precisely as the acceleration of the center
of mass of the body. This last result is very close to Newton’s original second law.

1.11 Center of Mass and Angular Momentum

The total angular momentum J can also be rewritten in terms of center of mass and
relative quantities. It is

J=L4+S (1.43)

where
N

L=RxP and S=) p,x (mp,) (1.44)

n=1

will be referred to as the “orbital” and “spin” contributions to J, respectively. Note
that L is just the angular momentum that would be produced by a single particle
of mass M moving with the center of mass, and that S is just the apparent angular
momentum that would be calculated by an observer standing on the center of mass
and using only quantities relative to herself.

To demonstrate this result, we begin with eqn (1.10) and the indexed form of eqn
(1.3) to write

N N N N
J= ZJH = Z (rp X pn) = Z (rp X mpvy) = Zmn (rp X V) (1.45)
n=1 n=1 n=1

n=1

Now we introduce the definitions in eqns (1.33, 1.36), and use the linearity of cross
products to get

N
J=>"m,(R+p,) x (V+p,) (1.46)
n=1
N N N N
= ZmnR x V4 ZmnR x P, + Zmnpn x V4 Zmnpn X P,
=1 n=1 n=1 n=1

Il
— e, S

(o] (o)
()] e

where, in each term in curly brackets, quantities not depending on index n have been
factored out of the sum. Lemma 1.9.1 now shows that the second and third terms
vanish identically. The remaining two terms are identical to the L and S defined in
eqn (1.44), as was to be proved.
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1.12 Center of Mass and Torque

The Law of Angular Momentum, eqn (1.20), contains the total external torque t(®XV,
Using eqns (1.17, 1.18), it may be written

N N
(X0 _ Z Tilext) _ Zr" % fglext) (1.47)
n=1 n=1
Substituting eqn (1.33) for r, then gives
N N N
T(ext) _ Z (R + Pn) ~ f,(leXt) — R x Zf;(qem) + Z 0, X fizeXt) — Tgext) + TéeXt) (1.48)
n=1 n=1 n=1

where we have defined the “orbital” and “spin” external torques as

n

N
Tgext) —R x F(ext) and T;ext) — Z P, X f(ext) (1.49)
n=1

In a pattern that is becoming familiar, téem) is the torque that would result if the total

external force on the collection acted on a particle at the center of mass, and < (ext) g
the external torque on the collection that would be calculated by an observer standing

at the center of mass and using p,, instead of r, as the moment arm.

1.13 Change of Angular Momentum

The Law of Angular Momentum in eqn (1.20) may now be broken down into separate
parts, one for the orbital angular momentum L and the other for the spin angular
momentum S. The rate of change of L is equal to the orbital external torque,

dL (ext)
— =8
dt
The demonstration is almost identical to that in Section 1.2 for the angular momen-
tum of a single point particle,

dL d dR dP
= RxP)=—" xP+Rx E:VxMV+RxF<ext)=0+T§f’“’ (1.51)

where eqns (1.40, 1.49) and the Law of Momentum, eqn (1.14), have been used. The
rate of change of S is equal to the spin external torque,

(1.50)

dsS
= (&0 (1.52)
The demonstration begins by using eqns (1.43, 1.48) to rewrite eqn (1.20) in the form
dL dS
(ext) (ext)
=— 4+ — 1.53
o+ T T (1.53)

Equation (1.50) can then be used to cancel dL/dt with T™". Equating the remaining

terms then gives eqn (1.52), as was to be shown.
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Thus eqns (1.50, 1.52) give a separation of the Law of Angular Momentum into
separate orbital and spin laws. The orbital angular momentum L and the orbital
torque Y are exactly what would be produced if all of the mass of the collec-
tion were concentrated into a point particle at the center of mass. The evolution of
the orbital angular momentum defined by eqn (1.50) is totally independent of the
fact that the collection may or may not be spinning about the center of mass.

Equation (1.52), on the other hand, shows that the time evolution of the spin an-
gular momentum S is determined entirely by the external torque ¥ measured by
an observer standing at the center of mass, and is unaffected by the possible acceler-

ation of the center of mass that may or may not be happening simultaneously.

1.14 Center of Mass and the Work-Energy Theorems

The total kinetic energy T may be expanded in the same way as the total angular
momentum J in Section 1.13. We may use 7, = m,v2/2 and v?> = v, - v, to rewrite
eqn (1.10), and then use eqn (1.36) to get

N 1 N 1 N
T:ZT,,:E mnvn~vn=EZmn(V+bn)~(V+bn) (1.54)
1 n=1

n=1 n=

Expanding the dot product and using Lemma 1.9.1 then gives

where
1

- .2
To = EMVZ and Ti= zlgmn |6, (1.56)

are the orbital and internal kinetic energies, respectively. The time rate of change of

the orbital kinetic energy is

dT,
O _ plext)  y (1.57)
dt

The demonstration uses eqn (1.40) and the Law of Momentum eqn (1.14),

V. F&0 (1.58)

dT, d (P-P\ P dP _
2M

dr ~ dt M dr

as was to be shown.
The time rate of change of the internal kinetic energy 77 is

N
dTi .
==, (1.59)

The demonstration of eqn (1.59) is quite similar to that of eqn (1.52). We begin with
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the collective work—energy theorem, eqn (1.27), rewritten using eqns (1.36, 1.55) as

dT, a1 & ol l
e S (Vib) =V Y0+ 2, (1.60)
n=1 n=1 n=1

The earlier result in Section 1.4 that F = F®* then gives

N
dT dT .
it =V E LY b, (1.61)

n=1

Using eqn (1.57) to cancel the first terms on each side gives eqn (1.59), as was to be
shown. Note the absence of the superscript “(ext)” on f, in eqn (1.59). This is not a
mistake! The internal kinetic energy 71 can be changed by both external and internal
forces, as we noted in Section 1.7.

1.15 Center of Mass as a Point Particle

It is remarkable that the center-of-mass motion of a body or other collection of point
particles can be solved by imagining that the entire mass of the collection is a point
particle at the center of mass R with the entire external force F(¢*V acting on that
single point. The quantities and relations derived above,

dP dL
P=MV  Fe = —  L=RxP == T R x FE  (1.62)

and
1 dT,
Ty =-MV? B N v 1.63
o=3 ’r (1.63)
refer only to the total mass M, the center of mass R, its derivative V, and the total
force F(®*Y, And yet these formulas replicate all of the results obtained in Section 1.2

for a single point particle.

If, as we have assumed, Newton’s laws apply fundamentally to Newtonian point
particles, then these quantities and relations vindicate Newton’s application of them
to “bodies” rather than point particles. A billiard ball (by which we mean the center
of a billiard ball) moves according to the same laws as a single point particle of the
same mass.

1.16 Special Results for Rigid Bodies

The results obtained up to this point apply to all collections, whether they be solid
bodies or a diffuse gas of point particles. Now we consider special, idealized collec-
tions called rigid bodies. They are defined by the condition that the distance |[r, — r,/||
between any two masses in the collection is constrained to be constant. In Chapter 8
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on the kinematics of rigid-body motion, we will prove that this constraint implies the
existence of a (generally time-varying) vector w and the relation given in eqn (8.93),

P, =®Xp, (1.64)

between each relative velocity vector and the corresponding relative location vector.
This relation has a number of interesting applications which we will discuss in later
chapters. Here we point out one of them, the effect on eqn (1.59). Rewriting that
equation and using eqn (1.64) gives

dTi

E_Zf WXp,=®- anxfn_w Z(rn—R)xfn_w (t—RxF)

n=1 n=1

(1.65)

where eqns (1.33, 1.10) have been used. But the Law of Momentum of Section 1.4
and the Law of Angular Momentum of Section 1.5 imply that

N N
F=F =3 and t=1"9=) r,x (1.66)
n=l1 n=1
and hence that It
U _ . (ﬂe’“) —R x F<ex0) (1.67)
dt

depends only on the external forces £V Thus, for rigid bodies and only for rigid
bodies, we may add an “(ext)” to eqn (1.59) and write

dTq
Rigid bodies only : = Z flexo . (1.68)

It follows from eqns (1.55, 1.57, 1.68) that dT/dt for rigid bodies also depends only
on external forces, and so we may write eqn (1.27) in the form

N
Rigid bodies only : Z fex0 Ly, (1.69)

1.17 Exercises

Exercise 1.1 In spherical polar coordinates, the radius vector is r = rF.

(a) Use the product and chain rules of differentiation, and the partial derivatives read from
eqns (A.48 — A.51), to obtain the standard expression for v = dr/dt as

v=Ft+r00+rsind ¢ ¢ (1.70)

(b) By a similar process, derive the expression for a = dv/dt in terms of
r(-)<|>r6?¢)r9¢>r9¢)
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Exercise 1.2 Derive the identities in eqns (A.69, A.71) and demonstrate that eqn (A.72) does
follow from them.

Exercise 1.3 Consider a circular helix defined by
r =acosB € +asinB e, + cfes (1.71)

where a, ¢ are given constants, and parameter 8 increases monotonically along the curve.

(a) Express the Serret—Frenet unit vectors f, n, f), the curvature p, and the torsion «, in terms
ofa, c, [3, él, éz, 63.
(b) Show that n is always parallel to the x-y plane.

Exercise 1.4 In Section A.12 it is stated that the Serret—Frenet relations eqns (A.77, A.78,
A.79) may be written as shown in eqn (A.80),

at . di

. db .
— =wX — = =
ds ds

® X n — =wxb (1.72)
ds

where o = « t + 0 b. Verify these formulas.

Exercise 1.5 A one tonne (1000 kg) spacecraft, in interstellar space far from large masses,
explodes into three pieces. At the instant of the explosion, the spacecraft was at the origin of
some inertial system of coordinates and had a velocity of 30 km/sec in the 4+x direction rel-
ative to it. Precisely 10 sec after the explosion, two of the pieces are located simultaneously.
They are a 300 kg piece at coordinates (400, 50, —20) km and a 500 kg piece at coordinates
(240, 10, 32) km.

(a) Where was the third piece 10 sec after the explosion?

(b) Mission control wants to know where the missing piece will be 1 hour after the explo-
sion. Give them a best estimate and an error circle. (Assume that the spacecraft had a largest
dimension of 10 m, so that, at worst, a given piece might have come from a point 10 m from
the center.)

(c) What if the spacecraft had been spinning end-over-end just before it exploded. Would the
above answers change? At all? Appreciably? Explain.

F1G. 1.3. Illustration for Exercise 1.6.

Exercise 1.6 Three equal point masses m| = my = m3 = m are attached to a rigid, massless
rod of total length 2b. Masses #1 and #3 are at the ends of the rod and #2 is in the middle.
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Mass m is suspended from a frictionless pivot at the origin of an inertial coordinate system.
Assume that the motion is constrained in a frictionless manner so that the masses all stay in
the x-y plane. Let a uniform gravitational field g = gé; act in the positive x-direction.

(a) Using plane polar coordinates, letting the r-direction be along the stick and letting ¢ be
the angle between the stick and the x-axis, use the law of angular momentum to obtain ¢ and
¢? as functions of ¢. R

(b) From the above, obtain d%r3 /dt2 as a function of ¢, T, ¢ and use

i d’r
(0 = my =5 —mig (1.73)

to obtain the internal force fgim) on mass ms.
(c) If it is entirely due to central forces from m and m; as is required by the “strong form”

of the second law, then fgim) should be parallel to the stick. Is it? Explain.’

Exercise 1.7 Show clearly how eqns (1.55, 1.56) follow from eqn (1.54).

FIG. 1.4. Illustration for Exercise 1.8.

Exercise 1.8 A hollow, right-circular cylinder of mass M and radius a rolls without slipping
straight down an inclined plane of angle «, starting from rest. Assume a uniform gravitational
field g = —gé€, acting downwards.

(a) After the center of mass of the cylinder has fallen a distance &, what are the vector values
of V, P, S for the cylinder? [Note: This question should be answered without considering the
details of the forces acting. Assume that rolling without slipping conserves energy.]

(b) Using your results in part (a), find the force F© and spin torque t'*" acting on the
cylinder.

Exercise 1.9 Write out eqn (A.67) and verify that it does express the correct chain rule result
for df/dt.

Exercise 1.10 If all external forces ff,em on the point masses of a rigid body are derived from
an external potential U®V (ry, ... rp, 1), show that the quantity E = T + U obeys

dE U (r;,ry, ..., xp,1)
dar at

(1.74)

7See Stadler, W. (1982) “Inadequacy of the Usual Newtonian Formulation for Certain Problems in Particle Me-
chanics,” Am. J. Phys. 50, p. 595.
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Exercise 1.11 Let a collection of point masses m1,my, ..., my move without interaction in
a uniform, external gravitational field g so that f, = ff,exr) = m,g.
(a) Demonstrate that a possible potential for this field is

N
UEry,....xn 1) ==Y mury g (1.75)
n=1

which may also be written as
U=-MR.g (1.76)

where M is the total mass of the collection, and R is its center of mass.
(b) Express F(&V 'tf,exr), rée“) in terms of M, g, R for this collection.
(c) Which of the following are conserved: E, P, L, S, T, T1?

Z ! L4 \\azl
1
[ /‘
\\ o
) e e ~.a=2
(1()‘. P
\ 3 /
R R® R ye
)N ® 3
= _ 1'3 -
/ N
e ..\ Y

X

(2

FI1G. 1.5. Ilustration for Exercise 1.12. Mass my is the third mass in the second collection. Vector

R® is the center of mass of the second collection, and R is the center of mass of the entire system.

Exercise 1.12 Suppose that a total collection is made up of C sub-collections, labeled by
the index @ = 1, ..., C. The ath sub-collection has N @ particles, mass M @ momentum
P@, center of mass R, and center-of-mass velocity V@ . (You might think of this as a
globular cluster made up of stars. Each star is a sub-collection and the whole cluster is the
total collection.)

(a) Demonstrate that the center of mass R and momentum P of the total collection may be
written as

C C
1
_ L @R@ _ (@)
R_MZM R P_ZP 1.77)
a=1 a=1
where
C
M = Z M@  and P@W = py@V@ (1.78)
a=1

i.e. that the total center of mass and total momentum may be calculated by treating each sub-
collection as a single particle with all of its mass at its center of mass.
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(b) Let the nth mass of the ath sub-collection m,(f) have location rfza). Define 6@ = R@ —R
and pf,a) = rfla) — R@ g0 that

r@ =R+0¢@ 4 p@ (1.79)
Prove the identities
N@ C
Ve =0 Y uta o a0
n=1 a=1

and use them and their first time derivatives to demonstrate that the total angular momentum
J may be written as

C
J=L+K+) s@ (1.81)

a=1
where

C N@
L=Rx MV K=Y 6@ x M@ S@W =Y "pl xm@p® (1.82)
n=1

a=1

Note that K is just the spin angular momentum that would result if each sub-collection were
a point mass located at its center of mass. Then the sum over S¢) adds the intrinsic spins of
the sub-collections.

(c) Suppose that a system consists of a massless stick of length b with six point masses, each
of mass m, held rigidly by a massless frame at the vertices of a plane hexagon centered on
one end of the stick. Similarly, four point masses, each also of mass m, are arranged at the
vertices of a plane square centered on the other end. How far from the first end is the center
of mass of the whole system? Do you need to assume that the hexagon and the square are
co-planar?

Exercise 1.13 Consider a system consisting of two point masses, m at vector location rj
and m> at r,, acted on only by internal forces £}, and f>, respectively. Denote the vector
from the first to the second mass by r = r, — ry. For this exercise, use the model in which
the interaction between m| and m> is due entirely to these forces.

(a) Show that Axiom 1.4.1, implies that f; + f;» = 0.

(b) Show that this and Axiom 1.5.1 imply that f; and £}, must be parallel or anti-parallel to
r (i.e., be central forces).

(c) Prove that dzR/dt2 = 0 and ;L(dzr/dtz) = f; where R is the center of mass and
W = mimo/(my + my) is the reduced mass.

(d) Show that a potential of the form U(ry,ry) = Upyf(r) where Uy is a constant and
r = 4/r -1 will produce forces fj = —9U/dr; and f; = —3dU/dr, having the required
properties.



EXERCISES 23

FIG. 1.6. Illustration for Exercise 1.14.

Exercise 1.14 Two masses m and m» are connected by a massless spring of zero rest length,
and force constant k. At time zero, the masses m and m lie at rest on the x axis at coordinates
(—a, 0,0) and (+a, 0, 0), respectively. Before time zero, a third mass m3 is moving upwards
with velocity vg = vg€;, x-coordinate a, and y-coordinate less than zero. At time zero, m3
collides with, and sticks to, my. Assume that the collision is impulsive, and is complete before
m1 or my have changed position. Assume that the three masses are equal, with m| = my =
m3 = m. Ignore gravity.

(a) Using the initial conditions of the problem to determine the constants of integration, write
expressions for the center of mass vector R and the relative position vector r = rp — ry as
functions of time for all r > 0.

(b) Write expressions for r; and r;, the vector locations of masses m| and m», respectively,
for all times ¢ > 0.

(c) Show that mass m1 has zero velocity at times t,, = 2nwn./3m/2k,forn =0,1,2,... but
that the masses never return to the x axis.

Exercise 1.15 Prove that the V| in eqn (A.4) can also be written as V| = fi x (V x ).

Exercise 1.16 Use eqn (A.61) to derive the related identity
AxB)xC=BA-C)—AB:-0O (1.83)

and show that the triple cross product is not associative.
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INTRODUCTION TO LAGRANGIAN MECHANICS

If modern mechanics began with Newton, modern analytical mechanics can be said
to have begun with the work of the eighteenth century mathematicians who elab-
orated his ideas. Without changing Newton’s fundamental principles, Euler, Laplace,
and Lagrange developed elegant computational methods for the increasingly complex
problems to which Newtonian mechanics was being applied.

The Lagrangian formulation of mechanics is, at first glance, merely an abstract
way of writing Newton’s second law. Someone approaching it for the first time will
possibly find it ugly and counterintuitive. But the beauty of it is that, if ugly, it is
terminally ugly. When simple Cartesian coordinates are replaced by the most gen-
eral variables capable of describing the system adequately, the Lagrange equations do
not change, do not become any more ugly than they were. The vector methods of
Chapter 1 fail when a mechanical system is described by systems of coordinates much
more general than the standard curvilinear ones. But such cases are treated easily by
Lagrangian mechanics.

Another beauty of the Lagrangian method is that it frees us from the task of keep-
ing track of the components of force vectors and the identities of the particles they
act on. The whole of mechanics is reduced to an algebraic method. Lagrange himself
was proud of the fact that his treatise on mechanics contained not a single figure.®

2.1 Configuration Space
In Chapter 1, the position of the nth point particle is given by the vector

Iy = X31€1 + X126 + X363 2.1

where x,1, x,2, x,3 are its x, y, z coordinates, respectively. Lagrangian mechanics,
however, uses what are called generalized coordinates, in which a particular coordinate
is usually not tied to a particular particle. These generalized coordinates may be any
set of independent variables capable of specifying the configuration of the system.
Taken together, they define what is called configuration space.

For example, the simplest set of generalized coordinates is what we will call the
s-system. Imagine all the Cartesian coordinates of N point masses listed in serial order,

8In the preface to his Méchanique Analytique, Lagrange wrote, “No diagrams are found in this work.
The methods that I explain in it require neither constructions nor geometrical or mechanical arguments,
but only the algebraic operations inherent to a regular and uniform process. Those who love Analysis will,
with joy, see mechanics become a new branch of it and will be grateful to me for thus having extended its
field.” See Chapter 11 of Dugas (1955).

24
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as in
X11, X12, X13, X21, X22, X23, X31, - . -, XN1, XN2, XN3 (2.2)

and define the corresponding s; generalized coordinates as
1552, 83, 54, 85,865 57, -+ +» SD—2, SD—1, SD (2.3)

where D = 3N is called the number of degrees of freedom of the system. Thus s; = x11,
§) = X12, §3 = X3, §4 = X21, ..., 57 = X3], etc. For example, ss is the y-coordinate of
the second particle.

Similarly, the force acting on the nth particle is

£, = fu1€1 + fn2€r + fn3€3 (2.4)

and we can define the generalized forces in the s-system, F;, by the correspondence
between the lists

St [z, f13, a1, 220 23, f315 -0 INTS fN2s N3 (2.5)

and
Fi, Fy, F3, F4, F5, Fs, F7, ..., Fp_>, Fp—1, Fp (2.6)

Masses may also be relabeled by means of a correspondence between the lists
myp, my, my, my, my, My, M3, ..., My, My, My (2.7)

and
My, My, M3, My, M5, Mg, M7, ..., Mp_>, Mp_1, Mp (2.8)

Note that M| = M> = M3 = m, My = M5 = Mg = my, etc.
With these definitions, Newton’s second law can be written in either of two equiv-
alent ways, the vector form from Chapter 1, or the equivalent form in the s-system,

d’r, d?s;
fn =mnﬁ or Fi ZMIW (29)
wheren=1,...,Nandi =1, ..., D. The content of these two equations is identical,

of course, but the second equation treats all coordinates equally, without reference to
the particular particle that a coordinate belongs to.
Other physical quantities can be expressed in the s-system notation. For example,

corresponding to the vector definition p, = m,v, for n = 1, ..., N, the generalized
momentum can be defined, for alli =1, ..., D, by
P, = M;s; (2.10)

where §; = ds; /dt is called the generalized velocity. Then eqn (2.9) can be written in
s-system notation as
dPp;
;= — 2.11
P= ( )

fori=1,...,D.
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The kinetic energy defined in eqn (1.25) can also be written in the two equivalent
ways, the first from Chapter 1, or the second using the s-system coordinates and
masses,

N
1 2 )
T = 3 E lmnvn or T=- E M;s; (2.12)
n=

2.2 Newton’s Second Law in Lagrangian Form

In Section 1.8 of Chapter 1, we noted that the total force on the nth particle can often
be derived from a potential function U(ry, ..., ry, t). Here, we are going to allow for
the possibility that some, but perhaps not all, of the force on a particle can be derived
from a potential so that

f, = -V, U(r;, 1, ...,rN, 1) 4+ £8P (2.13)

where 5 . 5 5
V,=—=¢ e e 2.14
" ory, laxnl e 0xn2 e 0xn3 ( )

and superscript “NP” means that £ is that part of the force that is Not derived from

a Potential. Expressed in the s-system notation, eqn (2.13) becomes

ad
Fl»:—a—U(Sl,Sz,...,SD,I)—}-Fi(NP) (2.15)
S;
wherei =1,...,D,and U(sy, ..., sp, t) is obtained by writing U (ry, ..., ry, t) out in
terms of its Cartesian coordinates and then using the correspondence between eqns
(2.2, 2.3) to translate to the s; variables. Using eqns (2.11, 2.15), Newton’s second
law can now be written as
dP,’ 0 (NP)
— =——U(s1,2,...,5p,1) + F; 2.16
7 35, (s1, 52 sp,t) + F; (2.16)
fori=1,...,D.
To obtain the Lagrangian form of Newton’s second law, define the Lagrangian
L =1L(s,s,t)as
L(s,§,t) = T(G) — U(s, ) (2.17)

In expanded form, this is
|2
L= L(s1,82, 5D, 81,82, 80, 0) = 5 ) Mjs] = Ust, 52,...,50,10) (2.18)
j=1
Then it follows that

0
a—_L(Sl,Sz, e s 8D, S1,82,...,8p, ) = M;s; = P; (2.19)
Si
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and
3 .o . 0
_L(slysza"'7SD5S17s27"'5SD7t):__U(s]9s2""7sD5t) (2'20)
0s; as;

so that eqn (2.16) may be rewritten as

d (9L(s,S$,t OL(s,s,t
da (S.S )\ 9L(s.s. 1) _ p@P) (2.21)
dt 05; 0s; !
fori =1,..., D. This is the Lagrangian form of Newton’s second law, as expressed in
the s-system of coordinates. Note that we have used the usual shorthand, abbreviating

L(st,...,sp,S1,...,$p,t) to the shorter form L(s, §, t).

2.3 A Simple Example

Suppose one particle of mass m is acted on by a spherically symmetric, harmonic
oscillator force attracting it to the origin. Then

1 I
L= (Mls'f + Mas? + M3s'§) L <s12 52+ s§) (2.22)

But, in problems this simple, it is often clearer to replace sy, s2, s3 by x, y, z, 1, 2, 53
by %, v, z, and M|, M>, M3 by m, giving

L= %m (#2452 +2) - %k (2432 +2) (2.23)

We can use this more familiar notation while still thinking of the s-system in the back
of our minds. Then eqn (2.21) becomes

) d (0L(s,s,t) aL(s,$,1) .

Fori=1: — - — =0 or mx +kx =0
dt 0x 0x
d [9L(s,§.1 IL(s, §.1 .

Fori—2: (LGS0 LGSO o 5k =0
dt ay ay
d [(dL(s. .1 IL(s, §. 1 .

Fori—3: & (2LG8:0) LGS, D o e 0 (2.04)
dt 0z 0z

which are the correct differential equations of motion for this problem.

2.4 Arbitrary Generalized Coordinates

The generalized coordinates of the s-system are only a trivial re-labelling of Cartesian
coordinates. The real power of the Lagrangian method appears when we move to
more general coordinate sets.

Let g1, g2, ..., gp be any set of D independent variables, which we will call the
g-system, such that their values completely specify all of the s-system values, and vice
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versa. We write each of the s;, fori = 1, ..., D, as a function of these ¢ variables and
possibly also the time 7,

si =si(q1,92,...,49D, 1) (2.25)
The only restriction placed on the set gy, g2, .. ., gp is that eqn (2.25) must be invert-
ible in an open neighborhood of every point of configuration space, so that we can
write the inverse relations, fork =1, ..., D,

qk = qk(s1,52,...,5p, 1) (2.26)

As proved in Theorem D.24.1, the necessary and sufficient condition for this inversion
is the Jacobian determinant condition

das(gq,t)

#0 (2.27)
dq

where the D x D Jacobian matrix (ds(q, )/dq) is defined, fori,k =1, ..., D, by’

<BS(q, t)) _ 0si(g, 1)
dq ik gk

(2.28)

t10 will be referred to

Generalized coordinates ¢ which obey eqn (2.27) at every poin
as good generalized coordinates.

Note that we may define a matrix (d¢(s,)/ds) by using eqn (2.26) to write its
matrix elements, fori,k =1,..., D, as

(aq(s, t)) _ daqk(s,0) (2.29)
ki

as as;

It follows from eqn (2.27) and the discussion in Section D.25 of Appendix D that
matrix (ds(q, t)/dq) has eqn (2.29) as its inverse matrix

3

-1 .
(8s(q,t)) _ <8q(s, t)) sothat 3 LD ) 30
dq ds i o5t

In the next four sections, we derive some important relations between the s- and
g-systems.!! Then, in Section 2.9 we will prove the main result of this chapter: The
Lagrange equations in a general g-system have the same form as that derived in eqn
(2.21) for the s-system.

9Note that here, and throughout the chapter, we often use the shorthand notations ¢ = ¢, ..., ¢p and
ISR PR sp in which a single, unsubscripted letter stands for a set of variables.
101n practice, this condition may be violated in regions whose dimensionality is less than D. For example,
in the transition to spherical polar coordinates, the condition is violated on the whole of the z-axis. Such
regions may be excluded, and then approached as a limit.
0f course the g-system, being general, includes the s-system as a special case. But we will continue to
refer to these two systems in this and the next few chapters to illustrate the methods of transformation be-
tween systems. The s-system is particularly important because of its close relation to Cartesian coordinates.
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2.5 Generalized Velocities in the g-System

In Section 2.1 we defined §; = ds;/dr as the generalized velocities in the s-system.
A similar definition, ¢x = dq/dt, is used for generalized velocities in the g-system.
Since s; in eqn (2.25) depends only on ¢, 7, the relation between § and ¢ takes a
simple form.

Using the chain rule to differentiate eqn (2.25) with respect to the time allows
§; = ds;/dt to be expanded as a function of ¢ and its time derivatives. The expansion
is

D D
dsi(qv t) Z 851’(‘]7 t) qu 351’(5]7 t) 831‘(43 t) . 351’(5]7 t)
-y DDl D 5D,

2.31
dt dqr  dr o1 dgr ar (231)

S; =

k=1 k=1
for each i = 1,..., D, where the generalized velocities in the g-system are denoted
in the last expression by ¢x = dgqi/dt. Inspection of eqn (2.31) shows that each s;
depends on ¢, ¢t through the dependency of the partial derivatives on these quantities,

and on ¢ due to the g factors in the sum. Thus
$i =38i(q,q,t) =5i(q1, 92, - -, 4D+ 41, G2+ - - - 4D, 1) (2.32)

2.6 Generalized Forces in the g-System

Given the generalized force F; in the s-system, the generalized force Qy in the g-system
is defined as

D dsiq. 1) O dqi(s.1)
O = Z F— 4 with the inverse F; = Z Or——— qk (2.33)
i=1 94k k=1 Si

The reason for this definition will become apparent in Section 2.9.
Substituting eqn (2.15) into this equation gives

D D
AU (s, 1) dsi(g, 1) p) 95 (g, 1)

S DI D N e e 2.34

o o 9 4 " rari 4 @39

If we consider the potential U(q, t) in the g-system to be the same function as U (s, t)
but expressed in the g, ¢ variable set, then substitution of eqn (2.25) into U (s, ) gives

U=U(q,1)=U(si(q.1),520q,1),...,sp(q.1),1) (2.35)
Thus the chain rule expansion of the compound function gives

0U(q,1) _ i AU (s, 1) 3si(q, 1)

(2.36)
gk as; 0qxk

Equation (2.34) then becomes

oU(q, 1) Q(NP)

(2.37)
gk

Or=—

where we have defined Q(NP) to be the g-system generalized force corresponding to
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Fi(NP) according to the rule defined in eqn (2.33),

D
dsi(q, t . . gk (s, 1
0P _ZE(NP)% with the inverse  F{") = ZQ(NP> q"(s ) (238
. Gk i
i=1

2.7 The Lagrangian Expressed in the g-System

We have defined the Lagrangian L(s, §,¢) in the s-system in eqn (2.18) above. The
Lagrangian in the g-system L(g, ¢, t) is defined to be the same function, but expressed
in terms of the ¢, ¢, t variable set.!? Substituting eqns (2.25, 2.32) into L(s, $, ) gives
the Lagrangian as a compound function of ¢, ¢, ¢,

L(q,q,1) =L (s1(q,1),52(q, 1), ..., 5p(q, 1), $1(¢, 4, 1), $2(q, 4, 1), - .., $D(q, G, 1), 1)
(2.39)
Equation (2.18) and the expansion in eqn (2.31) then give the Lagrangian in the
g-system in an expanded form

D

1
L=L(q7q.’t)=EZMj(*éj(q?q’t))z_U(Sl(qvt)’SZ(q’t)a'-~’SD(qvt)’t)
j=1
D O3g.0 (.1 2 Bs;(q.1) . | 9si(q. 1)
_ ! j\d, j\d, g, 0. j\ds
=33 (3 M ) (3 e )

-U (sl(q, t),s2(q,1),...,5p(q, 1), t) (2.40)

where each §; factor has been replaced by a separate sum. Exchanging the order of
the finite sums and collecting terms then gives

L= L(('I’ q.’ t) = Tz(‘], q’ t) + Tl (‘L q’ t) + TO(‘], t) - U(Qa t) (241)

where the kinetic energy is broken down into three terms

T(q,q.t) =T(q.q.1) +Ti(q,q.1) +To(q,1) (2.42)
where
D D D
asi(q,t) dsi(q,t)
Tx(q.q.1) = ZZ’”H(CI Dakgr with  mu(q, 1) =) M;— .
20 =1 94k Iqu
(2.43)
is homogeneous of degree two in the set of variables ¢, ¢2, ..., ¢p,

sj(q, 1) dsj(q, 1) (2.44)

D D
. . . 5
Ti(q, 4,0 =) mlg, D¢  with  mi(q,0) =) M; S i

k=1 j=1

12we follow the physics custom which uses the same letter L in both the s and ¢ systems, and considers
L(s,$,t) and L(q, g, t) to be the same function expressed in different coordinates. See the discussion in
Section D.5.
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is homogeneous of degree one in the same variables, and

= 3si(qg.H\>
To(q,1) = EJZ:;M]' < o ) (2.45)
and
U@,t)=U (sl(q, t),s2(q,1),...,5p(q, 1), t) (2.46)

are independent of the generalized velocities 4.

2.8 Two Important Identities

The proof of the form invariance of the Lagrange equations in Section 2.9 requires
the following Lemma. These two identities are formal consequences of eqn (2.31) and
the properties of partial derivatives, and are true only because of the simple form of
eqn (2.25) in which the s; = s;(g, ) depend only on ¢ and ¢.

Lemma 2.8.1: Identities in Configuration Space
It follows from the expansion in eqn (2.31) that the following two identities hold,

3s'i(qzq',t) _ 9silg, 1) and 95i(¢,4.1) _ d (BSi(q,t)) (2.47)
gk 0qk 9qk dt 9qk

Proof: The first of these follows immediately from the fact that both 9s;(q, t)/9gx
and 9s; (g, 1)/t in eqn (2.31) are functions only of ¢, ¢, so that the explicit linear term
in gy is the only place that the variables ¢ appear. The partial derivative of $;(q, ¢, t)
with respect to ¢ is thus the coefficient of the ¢; in eqn (2.31), which proves the first
of eqn (2.47).

The second identity in eqn (2.47) requires a somewhat longer proof. From eqn
(2.31), the left side of this second equation may be written as

. . D
9si(q,q,1) 9 (0si(qg.1)\ . d (0si(qg,1)
— = — — 2.48

0qk ( aqr )qz * aqx < or ) (2.48)

The right side of the second equation may be expanded by noting that, for any func-

tion g(q, 1),
dg(q.1) _ 2": 98g.0), | 9g(q.1)

2.4
di g T o (2.49)

I=1

Setting g(q,t) = 3s;(q, t)/9qx thus gives the right side of the second equation as
D
d [0s; a [0s; a [ 0s;
“ S:(‘]’t) :Z_ sl(q7t) ql+— Sz(CIat) (250)
dt aqk = 36][ 3qk at 8qk

which is equal to eqn (2.48) when the order of partial derivatives is exchanged. O
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2.9 Invariance of the Lagrange Equations

We now come to the main theorem of this chapter: The Lagrange equations are form
invariant under a change of generalized coordinates.

Theorem 2.9.1: Invariance of Lagrange Equations

Assume that a change of coordinates is made from the s-system to the gq-system (assumed
to be any good generalized coordinates), as defined by eqn (2.25). Define the Lagrangian
function in the g-system by eqn (2.39), and the non-potential generalized force in the
g-system by eqn (2.38). Then the Lagrange equations in the s-system,

d 8L(s,‘s', Y\  0L(s,8,1) _ ) @2.51)
dt as; as; !

hold for alli =1, ..., D if and only if the Lagrange equations in the g-system,
d (0L(q,q,t 0L(q.q.t
d (61. q.1)\ 9L(g.q,1) _ o) (2.52)
dt dqk aqik

hold forallk =1, ..., D.

Proof: We first prove that eqn (2.51) implies eqn (2.52). Multiplying both sides of
eqn (2.51) by 3s;(g, t)/dqx and summing over i gives

iasi(q,oi(ausis',z)) _iasi(q,r) OL(s. 3. 1) zias,-(q,wF;Np) 2.53)
P aqr dt 05; P gk as; P gk

If f and g are any functions, it follows from the product rule for differentiation that
f(dg/dt) = d(fg)/dt — g (df/dt). Applying this rule with f = 9s;(¢,?)/9qx and
g =0L(s, §,t)/0s; allows the first term in eqn (2.53) to be rewritten as

Bs,(q 1) d 8L(s S, t))

i= 1 g dt
D D .
Zi asi(q,t) 8L(s S, 1) Z BL(s,s,t)i asi(q,t)
= dt aqk = 0s; dt Gk
Doa (a5 t)BL(sst D L(sst)as( )
=Z_< i, ) 3 19.9.D (5 5
dt 8qk qu

i=1 i=1

where the first and second identities in eqn (2.47) were used to rewrite the first and
second terms on the right side of eqn (2.54), respectively.

Thus, rearranging terms slightly and using eqn (2.38) to replace the term on the
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right by Q(Np) eqn (2.53) may be written as

d (& oL, s, 1) 85i(q, 1)
E(Z 35 '

i—1 4
D
JdL t) ds; t JdL 1) ds; t
B Z (s,8,1) S(CI )+Z (S §$,1) 08i(q,q,1) Q(NP) (2.55)
o s iz gk

But the first parenthesis in eqn (2.55) is the chain rule expansion of dL(q, ¢, t)/3qx
where L(g, ¢, t) is the compound function defined in eqn (2.39). And the second
parenthesis in eqn (2.55) is the chain rule expansion of dL(q, ¢, t)/dqx. Thus eqn
(2.55) becomes

(2.56)

d (0L(g.q.1)\ 0L(g.4,1) Q(NP)
dt Gk gk
which is the same as eqn (2.52), as was to be proved.

To prove the converse, that eqn (2.52) implies eqn (2.51), we start from eqn (2.56)
and reverse the chain of algebra to arrive at eqn (2.53). Multiplying that equation by

dqx (s, 1)/ds;, summing over k = 1, ..., D, and using eqn (2.30) gives
d (0L(s,s,t oL(s,s,t
da (S,'S, )\ _ILGs, S 1) FONP) (2.57)
dt 3Sj 3Sj J

which is identical to eqn (2.51), as was to be proved. O

2.10 Relation Between Any Two Systems

The g-system above is taken to be any good system of generalized coordinates. If
we imagine it and any other good system, which we may call the r-system, then it
follows from what we’ve done above that the Lagrange equations in this r-system are
equivalent to the Lagrange equations in the g-system. Both of them are equivalent to
the s-system, hence they are equivalent to each other. But it may be useful to state
explicitly the relations between the g- and the r-systems. We state these relations
without proof, since their proof follows the pattern just established in going from the
s-system to the g-system.

The transformation between the q- and r-systems is
qr = qir(r, 1) and the inverse ri =rj(g,1) (2.58)

Since both the g- and the r-systems are good generalized coordinates, the determinant
conditions for transformations between them are

aq(r, 1)
ar

ar(q, t)
dq

#0 and

£0 (2.59)
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All generalized forces in the q-system Qy are related to those in the r-system R; by

A P, D arig, 0
R = Z 0, Z4KT and the inverse Qj = Z RJ-L (2.60)
k=1

81’]' = gk

The Lagrangian in the r-system is defined as the compound function obtained by
substituting gx = qx(r, t) and ¢ = ¢x(r, 7, t) into L (g, ¢, t) as

L(r,r, 1) = L(q(r, t),(j(r,i,t),t) (2.61)
Then
= oM (2.62)

d (3L(g.4.0Y 3L(g.4.0)
dt Gk Gk
forallk =1,..., D if and only if

d <8L(r,f,t)> E)L(r,i’,t) —R(NP)

2.63
dt af’j arj J ( )

forall j=1,...,D.

2.11 More of the Simple Example

Suppose that the simple example of Section 2.3 is transformed to a q-system consist-
ing of spherical polar coordinates. Choose g; =r, g» =0, g3 = ¢. Then fori =1, 2, 3,
respectively, the equations s; = s;(¢, 7) in eqn (2.25) take the form

x = rsinf cos ¢ y = rsin0 sing z=rcosf (2.64)
and the equations s; = $;(q1, 92, ...,9p, 41,42, ---,4p, t) of eqn (2.32) are, again for
i =1,2,3, respectively,

% =Fsinf cos¢ + rf cosd cos¢p — rsin6 ¢ sin ¢

y =rsinfsin¢g + r cos 6 sin¢ + r sin6 ¢ cos ¢

Z=rcosf —rfsind (2.65)
Note that these equations are linear in the dotted variables, as advertised in eqn

(2.31). Substituting eqns (2.64, 2.65) into the Lagrangian of eqn (2.23) following the
recipe given in eqn (2.39), we obtain, after some simplification,

1 . . 1
L=1L(g,q4,1)=3m (r'2 +r20% 42 sin29¢2) - 5kr2 (2.66)

The three Lagrange equations eqn (2.52) are then, for k = 1, 2, 3, respectively,

d (0L 7,1 oL 7,1 . .
k=1: — (q,.q, )\ _ L@ 4. ):O or mi —mré* —mrsin?0¢>+kr=0
dt or or
d (0L(q.q.0)\ OL(q.q,1 d : , .
k=2: d_t( (Zéq )>— (geq )=0 or E(mr29>—mr2s1n0c059¢2=0
d (0L(g,q,t oL(g,q,t d . .
k=3 L(%Eaq.n) G490 _, —(mr2sm29¢>>=0 (2.67)
dt ¢ ¢ dt

which are the correct equations of motion in the g-system.
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2.12 Generalized Momenta in the q-System

In eqn (2.19), the generalized momenta P; = M;s; in the s-system were derived from
partial differentiation of the Lagrangian, P; = 9dL(s, §,)/ds;. The generalized mo-
menta in the g-system are defined by a similar partial differentiation,
. aL(q,q,1)
Pe=r(q.q4.1) = —g.q (2.68)
qk

The expansion of the Lagrangian in eqns (2.41 — 2.46) shows that this p; can be
expanded as

D
Pr(q. 4.0 =Y mu(q. g + ni(q. 1) (2.69)
=1

A transformation law can be found between the generalized momenta in the s- and
g-systems. Using eqns (2.39, 2.68) and the chain rule gives

(2.70)

_9Lg.4.0) _ i L(v,s,nasl(q q,n i aw 2
0qik — 05; izl

where eqn (2.19), and the first of eqn (2.47) from Lemma 2.8.1, have been used in
the final expression. Using eqn (2.30), the inverse relation can also be written

D
P = me (2.71)

=1 8S,’

The pair of quantities gi, px are referred to as conjugates. The py is called the
conjugate momentum of coordinate g, and the ¢y is called the conjugate coordinate
of momentum p;. The same nomenclature is applied also to the pair s;, P;, and to
similar pairs in any system of coordinates.

2.13 Ignorable Coordinates

The Lagrange equations in the general g-system, eqn (2.52), may be written in the
form of two coupled equations,

_ 0L(g,q,1) Q(NP) and _ oL(q,q,1t)

; (2.72)
gk Gk

If Q(NP) 0and dL(q, g, t)/dqr = O for a particular k value, then we say that the vari-
able gy is ignorable. In this case, its conjugate momentum py is said to be conserved,
which means that its time derivative vanishes and hence it is equal to a constant
which may be taken to be its value at r = 0. If g; is ignorable, then

pr(t) = Cr = pr(0) (2.73)

For example, variable ¢ in Section 2.11 is ignorable.
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2.14 Some Remarks About Units

Notice that the generalized coordinates in the s-system all have units of length. But
the generalized coordinates in the g-system may have other units. For example, in the
simple example in Section 2.11, the variables ¢, and ¢3 are angles and hence unitless.
However, there are certain products that will always have the same units, regardless
of which system is used.

Using eqns (2.25, 2.70), with the notation 8¢ for a differential at fixed time with
8t = 0, the chain rule gives

Zpk(SQk—Z<iPaSl(q t)>8k_i (Zas’(q D ) Zpss,

k=1 \i=1 =1 k=1
(2.74)
It follows that the units of each product pyg; must be the same as the units of the
products P;s;, which are M L?/T, the units of what is called action. Thus, in the simple
example of Section 2.11, the p, and p3; generalized momenta are seen to be angular
momenta, which have the same units as action.
Similarly, denoting differentials with time fixed by 8¢ and és;, eqn (2.33) and the
chain rule show that

éka Z(iFas’(q r)) ZF(Zasl(q 0, ) stl

k=1 i=1 k=1
(2.75)
It follows that each product Qgr must have the same units as the products F;s;,
which are ML?/T?, the units of work and energy. Thus, in the simple example of
Section 2.11, the O, and Q3 generalized forces are torques, which have the same
units as work.
The results in this section can be very useful, allowing a unit check of sorts to be
performed even in complex Lagrangian systems for which the units of the ¢; may be
very strange.

2.15 The Generalized Energy Function
We have defined generalized coordinates, velocities, and momenta. We now define
what may be thought of as a generalized energy. The generalized energy function

(sometimes called the Jacobi-integral function) H, in a general g-system is defined to
be

oL =
H, =Hq<q,q,z>—2% —L(@.4:0 = Y_ pe(@. 4.0 — L(G. 4.1

k=1 k=1
(2.76)
The generalized energy function in the s-system is defined similarly,

D
si — L(s, s, t)—ZP(s s, 0)8; — L(s,s,t) (2.77)
i=1

OL(s,S$,1).

Hy = Hy(s,5,1) = Z T
1

i=1
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The subscripts on H, and H; are to emphasize that, unlike the Lagrangian function in
the s- and g-systems, the H, and H; are not in general the same function. One cannot
go from one to the other by simply making a coordinate substitution as we did for L.

Theorem 2.15.1: The Generalized Energy Theorem
The total time derivatives of the generalized energy functions are given by

D .
dHy _ . (NP) _9L(g. 4. 1)
_ 724990 2.78
dt ZQ ot (2.78)
k=1
dH, = IL(s, $,1)
= Z FPg, - (2.79)

Proof: The proof will be given for the g-system since the s-system proof is identical.
From eqn (2.78),

D

S .« e .. dL( ’ .7 t)
Hy =" (Prx + préie) — %
k=1
D . . .
.. . 0L(g,q,1). 9L(q.q,1).. dL(q,q,1)
= Z prin + priiy — —p DG, T2 D D) DD (2.80)
k=1 gk G at

Using eqn (2.68) to cancel the g terms, and eqn (2.72) for py, gives eqn (2.78) as
was to be proved. O

Equations (2.78, 2.79) are generalized work—energy theorems. If the non-potential
forces vanish identically for all index values, and if the Lagrangian does not contain
the letter r explicitly, then the generalized energy function will be conserved. For ex-
ample, in the g-system Q,({NP) = 0and dL(q, ¢,1)/3t = 0 would imply that Hq =0,
and hence that

Hy(q (1), q(1), 1) = C = Hy(q(0), 4(0), 0) (2.81)

2.16 The Generalized Energy and the Total Energy
One can easily show using eqns (2.18, 2.77) that

D
1
=EZij/-z—i-U(sl,sz,...,sD,t)=T+U:E (2.82)

where F is identical to the total energy defined in Section 1.8. So the s-system gener-
alized energy function H, is equal to the total energy.

The situation is different in the general g-system, however. Using eqns (2.41,
2.76),

D . D . D .
. 0h(q,q,1) . 0Ti(g,4q,1) . 0To(q,q,1) i
Hy = Z%T + Z%T + ZQkE)—Qk —L(g,q,1) (2.83)
k=1 k=1 k=1

Since functions 7; are homogeneous of degree [ in the generalized velocities ¢, the
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Euler condition from Theorem D.31.1 shows that

D . D .
. 0Ta(q, g, 1) . . 0T(q,q.1) .
Z%#=2Tz(q,q,t) qu#:ﬂ(q,q,t)
k=1 9k k=1 9k
D .
dTo(gq, q,t
qu% =0 (2.84)
k=1 dk
Therefore
H,=2L+T1 —(Lh+T1+Th-U)=Th-Ty+U (2.85)
and H, is related to H; = T + U by
Hy = (T +U) — (T +2Ty) = Hy — (T + 2Tp) = E — (11 + 21p) (2.86)

which is not in general equal to the total energy E.

Examination of eqns (2.44, 2.45, 2.86) shows that the condition for H, to equal
Hs; = T + U is for the coordinate transformation equation not to contain the letter ¢
explicitly. Then ds;(q, t)/dt = 0, which in turn implies that both T} and Ty are zero.

Thus
dsi(q,1)
ot

Note to the Reader: The condition for H, to be conserved (which, in the absence
of non-potential forces, is dL(q, ¢, t)/dt = 0) is independent of the condition for
H, = T + U (which is 3s;(q, 1)/9t = 0). The H, may be conserved even when the
total energy E is not.

=0 impliesthat H,=H;, =T +U (2.87)

The generalized energy function is most useful in problem solutions when it is
conserved. And if H, is conserved, it usually makes little difference to the prob-
lem solution whether or not H, equals T + U. For conservation implies the equation
H,(q,q.t) = C, afirst-order differential equation and a first integral of the equations
of motion, regardless of the relation of H, to the total energy.

2.17 Velocity Dependent Potentials

The problem of N charged particles in a given, externally applied electromagnetic
field can also be reduced to Lagrangian form. We use the s-system of generalized
coordinates, expressed in vector notation.

The Lorentz force acting on the nth particle is

h
g

c

f, = ¢'VEr,, 1) + Vp % B(r,, 1) (2.88)

where q,(fh) is the charge of the particle, E(r, t) is the electric field, B(r, ¢) is the
magnetic induction field, and
ry, = xnlél + anéZ + xn3é3 and Vp = -).Cnlél + xn2é2 + -)'Cn3é3 (2.89)

are the particle’s position and velocity, respectively.
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Introducing the scalar potential ®(r, ¢t) and the vector potential A(r, t), the electric
and magnetic induction fields at the particle location r, may be written

oD (r,, 1) 10A(r,, 1)
ar, c at

Er,, 1) =— and B(r,, 1) =V, x A, 1) (2.90)

where the notation for the gradient vector operator

0 . 0 . 0 .~ 0
=V, = 291
o " o T %00n T P (291)
has been introduced.!3
Substituting eqn (2.90) into the Lorentz force eqn (2.88) gives
O, 1) 1At (ch)
f, = g\ (— 1) LOAI )) + v X (VX A, 1)
or, c ot c
(ch)
d 0
=—— (¢ t)—— I A(r,, 1
Pl CRLICID) Bl B NG
(ch) (ch)
d
+—(vo A@w ) =V — [ E—A@. D) (2.92)
ar, c ar, c

where the triple cross product has been expanded, using the usual Lagrangian list of
variables r,, v,,, ¢ to define the meaning of the partial differentials in the next-to-last
term.

Noting that the total time derivative of (q,ﬁCh)A(rn, 1) /c) can be written, using the

chain rule, as

d (ch) 9 (ch) 9 (ch)
A ) =V — [ E—AC. ) ) + — (L A@.1) (2.93)
dt c ary, c at c

eqn (2.92) becomes

5 q(ch) d q(ch)
fn = 7. q)ECh)(D(rnv t) —Vu - - A(rn’ t) - =, n_A(rn’ t) (2‘94)
or, c dt c
Defining the velocity dependent potential UVeD by
N q(ch)
U(veb(l‘, v, 1) = Z <C],(,Ch)cb(rna 1) —v,- n A(l’n, [)) (295)
c
n=1
gives
QU (r, v, 1 e
av(r VD 9 A (2.96)
n

135ee Section A.11 for a discussion of this notation, and cautions for its proper use.
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where the operator
AR YA R
AR TR TR T
has been introduced and the identity eqn (A.71) of Section A.11 has been used. Thus,
finally

(2.97)

f, = —
" dr

(2.98)

v,

d (U (r, v, 1) AUV (r, v, 1)
ar,

expresses the Lorentz force in Lagrangian form.

In the present vector notation, the total kinetic energy is given in the first of eqn
(2.12). Again using the identities in Section A.11, the equations of motion for this
problem can thus be written as the following sequence of equivalent expressions

d
7 (muvy) = f, (2.99)
d (aT d (U (x,v, ¢ aUD(r, v, 1
< _—— rv.0) _ WAL (2.100)
dt \ 0v, dt vy, ory,
and hence 4 /3L .
s ¥y t s ¥y t
4 (OLwv.0) _ALv.D) (2.101)
dt A or;,
where the Lagrangian function for velocity dependent potentials is defined as
Lr,v,t) =T — U, v, 1) (2.102)
Written out, the Lagrangian is thus
| N N q(ch)
L=> Zlmnv,% - Zlq,id‘)cb(rn, 0+ Zlvn A1) (2.103)
n= n= n=

The generalized momenta of particles in an electromagnetic field are not simply the
particle momenta p, = m,v,. They are

(ch)
AL(r.v. 1
_LE VD P A, ) (2.104)
=n avy, c

which might be considered as the vector sum of a particle momentum p,, = m,v, and
a field momentum q,(,Ch)A(rn, t)/c. It is this generalized momentum that is conserved
when the coordinate r, is ignorable.

The generalized energy function can also be found,

N | N N
Hi=) Vy pa—L=2= mp2+ Y ¢, (2.105)
s nXZ; n* Pn B ; nUp ; qn (rp, 1)
Note that, even though we are in the s-system, the generalized energy function here
is not equal to T + U ) since the terms linear in the velocity have canceled. How-
ever, the generalized energy eqn (2.105) is equal to the total energy of the system of
charges as it is usually defined in electrodynamics.
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It seems surprising that a complicated velocity-dependent force like the Lorentz
force of electrodynamics can be written in the Lagrangian form of eqn (2.98). Why
do electrodynamics and Lagrangian mechanics fit together so neatly? We leave that
question for the reader to ponder.

Other velocity-dependent potentials are possible. The general rule for their use
follows the same pattern as the electromagnetic example. In the s-system with velocity
dependent potential UVe) = yeD (s, s, 1), the generalized forces can be defined as

(2.106)

Fi=— .
as,» as,-

d (aUWeD(s,s',r)) aUD (s, 5, 1)
dt

and the Lagrange equations are

d (0L(s,S$,t OL(s,$,t . . .
d (LG50 LSS g e Lisii) = TG) — UV (s, 5 0)
dt as; as;
(2.107)
Using the general q-system, the velocity-dependent potential will be U (g, ¢, 1),

obtained as a compound function from U (s, 5, 1),

yveh _ U(Vel)(q, g.1) = U veb (s(q, 1),5(q,q,1), t) (2.108)

The generalized forces are

0 d (ay(veb(q,q‘,o) aUD (g, 4,1
k=~ -

2.10
ar EPh b (2.109)

and the Lagrange equations are

d (0L(q,q,t dL(q,q.t . . .
— (q'q )\ _9L.4.0) =0 where L(q,4.0)=T(q.4.1) — U (q,4.1)
dt 3Gk gk
(2.110)
The zero on the right in eqns (2.107, 2.110) follows from the assumption that that no

forces other than those produced by UVeD are present.

2.18 Exercises

Exercise 2.1

(a) Calculate the Jacobian matrix for s; = x, 52 = y,s3 = zandq; =r,q2 =6, and g3 = ¢,
the transformation from Cartesian to spherical-polar coordinates. Show that r, 6, ¢ are good
generalized coordinates except on the z-axis.

(b) Work out in detail the derivation of eqn (2.66) from eqn (2.23).

Exercise 2.2

(a) Calculate the Jacobian matrix for s1 = x, sp = y,s3 = zand q1 = p, ¢ = ¢, and
q3 = z, the transformation from Cartesian to cylindrical-polar coordinates. Show that p, ¢, z
are good generalized coordinates except on the z-axis.

(b) Starting from the Lagrangian in eqn (2.23), work out in detail the transformation to the
Lagrangian L(p, ¢, z, p, ¢, , t) for this system.
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Exercise 2.3 We are given a Lagrangian L (g, ¢, t). Assume that there are no non-potential
forces. Let f (g, t) be an arbitrary function of ¢ = q1, g2, ..., gy and possibly the time ¢.
Show that if g = g (¢) are a solution of

d (0L (q,q,t oL (q,q,t

da (q.q )\ _ 9L(q.q9 )=o @.111)
then the same gy () are also a solution of

d (0L (q,q,t aL' (q,q,t

da (q‘q A (g.9 )=0 2.112)

dt 861k 8qk
where p

L'(q.4.t) =L(q.4.1) + 5 f@n (2.113)

This problem shows that L and L’ are equivalent Lagrangians. The same solution will be
found no matter which one is used.

Exercise 2.4 Consider a collection that consists of just two masses, m| and mj. We can
define the center of mass R and the vectors p; and p, as in Section 1.9. However, the compo-
nents of these three vectors are not suitable generalized coordinates. For one thing, there are
nine of them, whereas the number of degrees of freedom D is only six (the six components
of ry and rp). Suppose that we define a new vector r by r = r, — r; and define v = dr/dt as
its time derivative. Also it will be useful to define a reduced mass u = mimo/(m + my).
(a) Write r; and r; in terms of R and r and the appropriate masses. Then show that the six
components of R and r satisfy the Jacobian determinant condition and so are good general-
ized coordinates.

(b) Write P, L, S, Ty, and Tj in terms of u, M, R, r, V, and v only.

Exercise 2.5 Suppose that the two masses in Exercise 2.4 have a motion defined by a La-

grangian function

1 1
L= Emlvf + Emzvg —U(r,—r1) (2.114)

where v1 = /vy - v1 and vi = dr;/dt, with similar definitions for the second mass.

(a) Rewrite the Lagrangian in terms of the variables r, R and their derivatives. Show that this
Lagrangian can be written as the sum of two terms, one of which depends only on R and its
time derivative and the other only on r and its time derivative. (Such Lagrangian systems are
called separable.)

(b) Show that the three components of R are ignorable coordinates, and that the total momen-
tum of the system is conserved.

Exercise 2.6 A mass m is acted on by a force derived from the generalized potential

U(Vel) (I‘, v, t) — U(r) +o0-L (21 15)

r=x2+y2 472 0 =06 L=rxmv (2.116)

and r and v are the position and velocity of the mass relative to some inertial coordinate
system.

where
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(a) Express U (veD in Cartesian coordinates (the s-system) x, y, Z, X, ¥, z and find the force F
(i.e. find the three components Fy, Fy, F7).
(b) Now express U in spherical polar coordinates (which we might call the g-system)
r0,¢,r, é, ¢ and find the generalized force Qy fork =1, 2, 3.
(c) The force vector we found in part (a) can be re-expressed in terms of the spherical polar
unit vectors as R )

F=FT+ Fy0+ Fyd (2.117)
where

F,=%-F Fp=0.F Fy=4-F (2.118)
Show that Q, is equal to F,.
(d) However, Q4 is not equal to Fig. Show that Qy is equal to the z-component of the torque
Tt=rxF.
(e) Verify that the units of Q4d8¢ do obey the rule described in Section 2.14.

Exercise 2.7 Given an electric potential ®(r, t) and a vector potential A(r, t), the electric
and magnetic induction fields can be expressed as

E=-V® - -—— B=VxA (2.119)

We know that the E and B fields are left invariant by a gauge transformation of the potentials.
That is, if
’ ’ lax
A'=A+Vy P =0--— (2.120)
c ot
and E’ and B’ are found using eqn (2.119) but with ® and A replaced by the primed potentials

@’ and A/, then it can be shown that E' = E and B’ = B.

(a) For the case of a single particle of mass m and charge ¢, use eqn (2.103) to write out
two Lagrangians, one using the original potentials and one using the primed potentials. Call
them L and L'.
(b) Find

L (r,v,1) p = AL (r,v,1)

= —= d 2.121
P av an = av ( )
(c) Show that
df(r,t)

L' =L+
dt

(2.122)

and write f(r, t) in terms of  (r, t).

(d) If r = r(¢) is a solution to the Lagrange equations with L, is it also a solution to the
Lagrange equations with L’? Should it be? If it is, show why it is, and if not show why it is
not.

Exercise 2.8 A a single particle of mass m in one dimension has the Lagrangian in some q
system of coordinates

1
L(g1,q1,1) = =m—p — ——— 2.123
(q1.41. 1) > o 2 7 ( )

where a and w are given constants having appropriate units.
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(a) Find the generalized momentum p; and the generalized energy function H,(q, ¢, t) for
the q system. Is the generalized energy conserved?

(b) Suppose that the q system coordinates are related to those of the s system by g1 = a/s.
Write the Lagrangian in the s-system, L(s, §, ).

(c) Find the generalized momentum P; and the generalized energy function H(s, s, t) for
the s-system. Is the generalized energy conserved?

(d) Show that the momenta p; and P; are related as predicted by eqn (2.71).

(e) When expressed in the same coordinate system, is Hy equal to H,? Why should it be?

FIG. 2.1. Illustration for Exercise 2.9.

Exercise 2.9 A horizontal, circular table with a frictionless top surface is constrained to ro-
tate about a vertical line through its center, with constant angular velocity wg. A peg is driven
into the table top at a distance a from the center of the circle. A mass m slides freely on the
top surface of the table, connected to the peg by a massless spring of force constant k and zero
rest length. Take the s-system to be an inertial system of Cartesian coordinates x, y with ori-
gin at the center of the table top, and the g-system to be rotating Cartesian coordinates x’, y’
defined so that é/l defines a line passing through the peg. Ignore the z-coordinate, and treat
this problem as one with two degrees of freedom. The transformation between coordinates of
the mass in the two systems is

x = x’ coswot — y’ sin wpt y = x"sinwpt + y’ cos wot (2.124)

(a) Write L(s, s, t) in the s-system and L(q, ¢, t) in the g-system.
(b) Write Hy in the s-system. Is it equal to T + U ? Is it conserved?
(c) Write Hy in the g-system. Is it equal to T + U? Is it conserved?

Exercise 2.10 A one-dimensional system has the Lagrangian
. _om .o .9 ) 2 L .
L(g,q,t) = > gi sin” ot + w”qj cos” wt + wq1q sin2wt | —mgq; sinwt  (2.125)

where 0 < t < m/w.

(a) Find the generalized energy function for the g-system, H,(q, g, t). Is it conserved?

(b) Make a change of generalized coordinates, with the new coordinate r| defined by ¢ =
r1/ sinwt, as in Section 2.10. Write the Lagrangian in the r-system, L(r, 7, t).

(c) Find the generalized energy function for the r-system, H, (r, 7, t). Is it conserved?
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FI1G. 2.2. Illustration for Exercise 2.11.

Exercise 2.11 Consider a plane double pendulum with rigid, massless, but possibly extensi-
ble sticks. It has a mass m at coordinates x1, y; and a mass my at x, yo. Gravity g = gé;
acts downwards. Ignore the z coordinate in this problem, and assume that all pivots are fric-
tionless. In the s-system s = x1, y1, X2, y2, the Lagrangian is

. mip (., .2 mjz (.o -2
L(s,s,1t) = 5 (xl + Y1> + 5 <x2 + y2> +migx1 +mogxs (2.126)
(a) Consider a change of generalized coordinates to the g-system g = ry, 01, r2, 6> shown
in the diagram. Write the four transformation equations of the form s; = s;(g, t) for i =
1,...,4

(b) Calculate the Jacobian determinant |ds/dq| for this transformation and find the conditions
under which the g-system are good generalized coordinates.
(c) Write the Lagrangian L(q, ¢, t) in the g-system.

Exercise 2.12 A point particle of mass m and charge ¢ moves near a very long wire carrying
a current /. Choose the €3 axis along the wire in the direction of the current. In the region
near the wire, the vector potential in terms of cylindrical polar coordinates p, ¢, z is

A=-""m (-p->i (2.127)

2me

where pg is some arbitrarily chosen p value. Assume the electric potential ® to be zero.

(a) Write the Lagrangian L = L(p, ¢, z, p, ¢, z, t) for the particle, using cylindrical polar
coordinates.

(b) Find the generalized momenta p,, py, and p;.

(c) Write the three Lagrange equations, and show that ¢ and z are ignorable coordinates.

(d) Use the ¢ and z Lagrange equations to write expressions for ¢ and Z as functions of p and
integration constants.

(e) Write the generalized energy function. Is it conserved? Use it to express /2 as a function
only of p and some constants that can be determined at r = 0.
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LAGRANGIAN THEORY OF CONSTRAINTS

One attractive feature of the Lagrangian method is the ease with which it solves so-
called constraint problems. But, as the reader will see, applying the correct method
for a particular problem can be something of an art. We present several different
ways of solving such problems, with examples of each. With experience, the reader
will become adept at choosing among them.

In the previous chapter, the generalized coordinates were assumed to be indepen-
dent variables. But there are problems of interest in which these coordinates are not
independent, but rather are forced into particular relations by what are called con-
straints. For example, the x, y, z coordinates of a point mass falling under gravity are
independent. But if the mass is forced to slide on the surface of a plane, there would
be a constraint in a form such as ax + By + yz — A = 0 tying them together. The
present chapter shows that such constraints can be incorporated into the Lagrangian
method in a particularly convenient way:. If the constraints are idealized (such as fric-
tionless surfaces or perfectly rigid bodies), then the equations of motion can be solved
without knowing the forces of constraint. Also, the number of degrees of freedom of
the Lagrangian system can be reduced by one for each constraint applied.

Fi1G. 3.1. Example of a holonomic constraint. The mass m is constrained to move on the surface
of a plane defined by n-r = A. Constants «, 8, y are the components of a unit vector
perpendicular to the plane, and A is the perpendicular distance from the plane to the
origin.

3.1 Constraints Defined

The simplest class of constraints are those called holonomic. A constraint is holonomic
if it can be represented by a single function of the generalized coordinates, equated
to zero, as in

Ga(q’t) =0 (31)

46
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fora=1,...,C, where each a value is considered a separate constraint.

The relation among the coordinates may vary with time. For example, if the plane
in the previous paragraph had a time-varying distance from the origin A(¢), the con-
straint, using the s-system, would be

Gi(s,t) =ax+By+vyz—At)=0 (3.2)

If the number of constraints C is greater than one, care must be taken to en-
sure that the constraint equations are functionally independent. Otherwise the actual
number of constraints may be fewer than the number listed. As discussed in Theorem
D.28.1, the condition for functional independence of the constraints is that the C x D

matrix whose elements are

0G 0G,(q,t

(_) _ 9Ga (g,1) (3.3)
3(] ak aqk

must have rank C. In other words, there must be a nonzero C x C determinant, called

a critical minor,'* constructed by selecting the C rows, and C of the D columns, of
eqn (3.3). We will assume throughout that all sets of constraints obey this condition.

3.2 Virtual Displacement

In the treatment of Lagrangian constraint problems, it is very convenient to define the
new concept of virtual displacement.

Definition 3.2.1: Virtual Displacements Defined

A virtual displacement of a function f = f(q,t) is its differential, but with the conven-
tion that the time t is held fixed so that §t = 0. These virtual displacements are denoted
with a lowercase Greek § to distinguish them from normal differentials.

The virtual displacement of a function f(g, ¢) is then,

D

af (g, 1)

5= ACILIFY, (3.4)
peri

and the virtual displacement of the constraint function G,(q, t) defined in Section 3.1

1S
D

G, (q,t
8Ga= %5% (3.5)
=1 qdk

These definitions also apply to the s-system. By the chain rule, virtual displacements
in the s- and g-systems are related by

D D

asi(q,t . .
8si = Z %qu and the inverse relation d8q; = Z
k=1

k(s D (36
3Si

i=1

l4gee Section B.17 of Appendix B for a discussion of the rank of a matrix.
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and the differential of G, can be written equivalently as

D

3Gy(s, 1)
§G, = Z ;—Sias,- (3.7)
i=1

Definition 3.2.2: Virtual Displacements Re-defined
The definition of virtual displacement in Definition 3.2.1 is now extended to include
the condition that the 8q; must be chosen so that, at each instant of time, and for all
a=1,...,C,

0G, =0 (3.8)

Virtual displacements at a frozen instant of time must be such that the constraints
are maintained, that both G,(¢q, ) = 0 and G,(q + 8¢, t) = 0. For example, if the only
constraint is that a single mass must move on a flat, horizontal elevator floor located
at z = h(t), then the constraint equation is G(s,7) = z — h(t) = 0 and the only
allowed nonzero virtual displacements are dx and §y. The constraint requires 8z to
equal zero. The virtual displacements are constrained to remain in the instantaneous
surface of constraint as it is at time ¢, even though that surface may be moving as ¢
evolves.

F(cuns)
L_ or = 8)661 + 5}’62
& J
g
L. ‘z = h(1)
~ €2
€]

FIG. 3.2. A mass is constrained to slide without friction on the floor of an elevator which
is moving upwards. The constraint is z = h(¢). The virtual displacement Jr is parallel
to the instantaneous position of the floor, even though the floor is moving. Thus §z = 0
as shown. Since the floor is frictionless, F(€°™) is perpendicular to the floor and hence
(SW(cons) — F(cons) .or = 0.

3.3 Virtual Work

Generally, constraints are maintained by the actions of forces, like the force exerted
on the mass by elevator floor in the previous example. We will denote these forces
of constraint by 0\ in the g-system or F°™ in the s-system. These forces of
constraint (and indeed any generalized forces) in the two systems are related by the

same transformation formulas as in Section 2.6,

< dsi(g. 1) o dqi(s. 1)
(cons) (cons) 99i\q, (cons) (cons) SE
= F. _ and F. = _— 3.9
Oy iE_l ; bac ; kE_l (0 35, (3.9)
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The virtual work of the forces of constraint is defined as

D
sweons) = 3 s, Z 0™ s (3.10)

i=1

where the second equality follows from eqns (3.6, 3.9).1

The problems that can be dealt with easily by Lagrangian theory of constraints are
those in which, at least as an idealization, the forces of constraint do no virtual work.
This portentous phrase means simply that

swcons) — (3.11)

for all allowed virtual displacements. For example, if the elevator floor in the previous
section is made of frictionless ice, then the only constraint force will be a normal force
F(cons) — F{eOM)g, Then, since 8z = 0, the virtual displacement 8r = 8x&; + 8yé, will
be perpendicular to the constraint force, leading at once to the conclusion that

swcons) _ Z F(C0n5)5 — Fleons) sp — (3.12)
i=1

A wide class of problems can be imagined in which masses slide without friction
on various surfaces. For example, a coin sliding inside a spherical fish bowl made of
frictionless ice, with the g-system taken to be spherical polar coordinates, would have
8r =0 and Q(cons) Q(Cons) = 0, leading again to §W(°™) = 0. A bead sliding on a
frictionless wire of arb1trary shape would have a force of constraint perpendicular to
the wire but virtual displacement only along it, again producing zero virtual work.

A less obvious example is that the cohesive forces binding the masses of an ideal-
ized, perfectly rigid body also do no virtual work. The proof of this statement must be
deferred until the motion of rigid bodies is treated in later chapters. (It is proved in
Theorem 8.13.1.) Systems of rigid rods linked by frictionless pivots and joints, such as
the single or multiple pendulum, also have constraint forces that do no virtual work.
Another important example is that the friction force acting when a wheel rolls with-
out slipping on some surface does no virtual work, since the force acts at the contact
point, which does not move in virtual displacements.

Virtual work is not the same as the real, physical work that may be done by the
constraint forces. In the example of the elevator floor in Figure 3.2, if the elevator
is moving upwards then the floor definitely will do real work on the mass as time
evolves. But it will not do virtual work. The rule is that when the constraints are not
time dependent, then the forces of constraint that do no virtual work will also not
do real work. But when the constraints are time varying, with 4G, (s, 1)/t # 0, then
forces of constraint that do no virtual work may still do real work.

15The use of the symbol §W (€S in eqn (3.10) is not meant to imply the existence of a work function
Ww(ons) (4 1) from which the generalized forces of constraint can be derived by partial differentiation.
Such a function exists only in trivial cases. The forces of constraint take whatever values are necessary to
maintain the constraints. In general, this means that they depend on the first and second time derivatives
of the generalized coordinates, as well as the generalized coordinates and the time.
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3.4 Form of the Forces of Constraint

The reason for the above definitions of virtual displacement and virtual work is to
allow us to state the following theorem.

Theorem 3.4.1: Form of the Forces of Constraint
Given a system of constraints defined as in eqn (3.1), and virtual displacements obeying
eqn (3.8), the virtual work of the forces of constraint vanishes,

swons) — (3.13)

for all allowed virtual displacements if and only if there exist A, factors, called Lagrange
multipliers, such that the constraint forces can be written in the following form

c c
(cons) _ 0Ga(q, 1) (cons) 0G4 (s, 1)
Ag——— lentl F; Ag——— 3.1
0, E ™ or, equivalently, F; E o5, (3.19)

a=1 a=1

where the A, factors in the first of eqn (3.14) are the same as those in the second.

Proof: The equivalence of the two equations in eqn (3.14) follows from eqn (3.9)
and the chain rule.

We prove the theorem in the general g-system. The proof in the s-system is similar.
First, we prove that eqn (3.14) implies eqn (3.13). The definition eqn (3.10) gives

sy cons) _ Z Q(cons) Z Z)L 3Ga (q, t)

k=1 a=1
c D c
9G4(q,1)
=Y > L s = 308G, (3.15)
i a=1

where eqn (3.14) was used. But, by the definition of virtual displacement in Section
3.3, 8G, = 0 for all a. Hence §W(°" = (, as was to be proved.

The converse proof, that §W (" = ( implies eqn (3.14), is a bit more involved.
As a preliminary to the proof, note that the matrix eqn (3.3) discussed in Section
3.1 is assumed to have rank C. Since the order in which generalized coordinates are
indexed is arbitrary, we may gain some clarity without loss of generality by assuming
that its critical minor consists of its C rows and its last C columns, from (D — C + 1)
to D. We then denote'® by ¢/ the set of free variables qi, ..., g(p—c) and by g®
the set of bound variables ¢(p—c+1), - - -, ¢p. The constraint conditions eqns (3.5, 3.8)

16The choice of bound and free variables here is not unique. In a given problem, there may be several
critical minors of eqn (3.3) and hence several ways in which the free-bound division can be made.
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imply
D
=68G, = Zgakqu = Z gakdaqy + > gardq,” (3.16)
I=D—C+1
fora=1,...,C, where we have introduced the notation
0G,(q,1)
8ak = L (3.17)
aqxk

and have separated the sums over the free (superscript (f), index k) and bound (su-
perscript (b), index [) variables in the last form of the expression.
The C x C matrix g® whose aith matrix element is defined to be

g‘(l,) = 8a(D—C+i) (3.18)

is nonsingular by the assumption that the last C columns of eqn (3.3) are a critical
minor of that matrix. Therefore, the inverse g®~! exists and may be used to solve
eqn (3.16) for the bound virtual displacements in terms of the free ones. Thus, for
i=1,...,C,

C D-C

b b)—1

f))c+l —Z Z 80 guk Sq(f) (3.19)
a=1 k=1

With this relation now assumed, eqn (3.16) becomes an identity, satisfied regardless
of the values we choose for the §¢‘/) displacements. Thus the 8¢/) are not bound by
the constraints and may be assigned any values, just as the name “free” suggests.

Now form an expression by multiplying eqn (3.8) by an unknown function A, and
subtracting the sum over a from eqn (3.11). Since each constituent of this expression
is zero by assumption, the expression also vanishes. Thus

C D
0 == (SW(COHS) - Z)\-(/Z(SG(J = Z ( (COHS) Z)"(lgak> qu
a=1 k=1
D-C
_ Z ( (cons) Z)»agak> Sq(f) + Z <Q(cons) Zkag(u) 5q(b) (3.20)
k=1 [=D—-C+1

where we have once again separated the sums over free and bound variables. The last
sum in eqn (3.20) may be written

D

C
b b b
E ( (cons) _ g )\agal) Sq( ) § : ( goné)-l-t z :kagé,)) (D) CH+i (321)

I=D—-C+1 i=1

The A, can now be chosen to be

(cons) (b) 1
ha = Z QD C+i8ia (3.22)
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which makes
c
gon&l Z 2ag? =0 orequivalently Q" — Z *agal =0 (3.23)
identically foralli =1, ..., C, or equivalently foralli=D - C+1,...,D

Thus the choice in eqn (3.22) makes the last sum in eqn (3.20) zero. Equation
(3.20) then reduces to

D-C
=3 (Q,E“’“S) Zxagak> 5q," (3.24)
k=1

Now invoke the independence of the free dlsplacements to set the Sq(f ) nonzero one
at a time, thus establishing that, fork =1,..., D — C,
o) ijg]k =0 (3.25)

Together with the second of eqn (3.23) for/ = D — C+1, ..., D, this establishes eqn
(3.14) for all k values, as was to be proved. O

3.5 General Lagrange Equations with Constraints

There is a wide class of idealized systems in which it can be assumed that the only
forces acting are either constraint forces or forces derived from a potential func-
tion. Such systems are sometimes called monogenic. For such systems, the only non-
potential forces appearing are the constraint forces. Thus Q" = 0\ and the
general Lagrange equations, eqn (2.52), become

i(aL(q’é’t)>_ dL(q,q,1) Q(cons)
dt 9k Iqk

For forces of constraint that do no virtual work, Theorem 3.4.1 then allows us to
write the Lagrange equations for the constrained motion in a form that can be solved
without knowing the forces of constraint in advance. This result is one of the triumphs
of the Lagrangian method.

(3.26)

Theorem 3.5.1: General Lagrange Equations with Constraints
If the only non-potential forces in a problem are the forces of constraint and if those forces

of constraint do no virtual work, then the Lagrange equations become, fork =1, ..., D,
% (aL(gc,}j, t)) ~ aL(gc,]j, N _ ikaacgz, D) (3.27)

Together with the set of constraint equations
Galg, 1) =0 (3.28)
fora =1,...,C, these are (D + C) equations in the (D + C) variables qy, ..., qp,

A, ..., Ac and so may be solved for these variables.
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Proof: Since the forces of constraint are assumed to do no virtual work, Theorem
3.4.1 applies and eqn (3.14) may be substituted into eqn (3.26) to give the desired
result. 0

In applying these formulas, the partial derivatives in eqn (3.27) must be calculated
first, and then the constraints eqn (3.28) applied to simplify the resulting differential
equation. Note that applying the constraints before taking the partial derivatives in
eqn (3.27) would in general lead to error.

A second triumph of the Lagrangian method is that, not only can the problem be
solved without knowing the forces of constraint in advance, but also the same solution
allows one to calculate what those constraint forces must have been.

Corollary 3.5.2: Calculation of Constraint Forces
After the problem is solved for the equations of motion g = qx(t) by use of Theorem
3.5.1, one can then calculate what the forces of constraint were.

Proof: The solution to eqns (3.27, 3.28) gives the Lagrange multipliers A1, ..., Ac
as well as the coordinates g1, ..., gp. These 1, values can then be inserted into eqn
(3.14) to give the forces of constraint in the g- or s-systems. O

The general Lagrange equations, eqn (3.27), have been given in the g-system. But
equations of exactly the same form are true in any system of generalized coordinates.
Just replace the letter g by s or r for the s- or r-systems, respectively.

3.6 An Alternate Notation for Holonomic Constraints

Some texts write eqn (3.27) in an alternate notation that the reader should be aware
of.!” They define a new Lagrangian L that includes the constraint functions,

C
L(q,4,t,2) =L(g. 4.+ Y_ *aGalg, 1) (3.29)

a=1

Then eqn (3.27) can be written in the same form as the Lagrange equations without
constraints. It becomes

0 (3.30)

d (9L(q.4.t,1)\ 9L(g.4.t.%) _
dt A4 A N

Unfortunately, most of these texts do not include the A in the list of variables in
Z(q, q.t, A), which leads the reader to wonder how to take partial derivatives of the
Aq- When encountering this notation, one should mentally add A to the list of variables
in Z(q, g, t, ) so that the X, are held constant when partials with respect to ¢; and
gx are taken.

17 A notation similar to this one is also often used in the general calculus of variations.
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3.7 Example of the General Method

Let us return to the simple example of Section 2.3 but now with the constraint
0=Gi(s,t)=ax+By+yz—A (3.31)

discussed in the introduction to the present chapter. Applying eqn (3.27) and using
the Lagrangian in eqn (2.23) gives

d <8L(s,s',t)) L OLGs.E 1)

Ao or mx +kx = M« (3.32)

dt ax ax
d (dL(s,s,t oL(s,s,t .

i=2: — (s _S V) _ LG, 1) =MB or my +ky = A8 (3.33)
dt ay dy
d (dL(s,S$,t aL(s,$,t ..

i=3: — (S,S ) — (s, § )=k1y or mZ +kz=Ay (3.34)
dt 9z 9z

which, together with the constraint equation eqn (3.31) can be solved for the four
unknowns x, y, z, 1.

3.8 Reduction of Degrees of Freedom

One of the benefits of the Lagrangian method is that holonomic constraints that do
no virtual work may be used to reduce the number of degrees of freedom (i.e., the
number of generalized coordinates) from D to (D — C) where C is the number of
independent constraints. After this reduction, the forces of constraint and the con-
strained variables both disappear from the calculation, leaving Lagrange equations
that look like those of an unconstrained system of (D — C) degrees of freedom.

This reduction theorem is based on the idea of a reduced Lagrangian. Using the di-
vision into free and bound variables from Theorem 3.4.1, we note that the constraint
equations, eqn (3.1), may be written as

0==Guqg",q®, 1) (3.35)

fora = 1,...,C, where we have written the dependency on the free and bound
variables separately. As proved in Theorem D.26.1 of Appendix D, the nonsingularity
of the matrix we have called g in Theorem 3.4.1 is a sufficient condition for eqn
(3.35) to be solved for the bound variables. Forl = (D —C + 1), ..., D,

" =a" @0 (3.36)

Taking the time derivative of eqn (3.36) we also obtain the generalized velocities of
the bound variables,

. (b . (b ).
q; ) _ ql< (gD, 4D 1) (3.37)

The reduced Lagrangian L is defined as the original Lagrangian L with eqns (3.36,
3.37) substituted into it to eliminate the bound variables and their derivatives. Writ-
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ing the original Lagrangian with its free and bound variables listed separately,
L=1@q.¢.0=L@4".q". 4" ¢ 0 (3.38)

the reduced Lagrangian is
I <q(f)’ G\, t) - L (q(f)’ a® @D, 1), 6D, g® D, 6D, p), ,) (3.39)

We may now state the reduction theorem.

Theorem 3.8.1: Reduced Lagrange Equations
If the forces of constraint do no virtual work, and if the constraints are holonomic and
functionally independent, then the equations of motion of the system can be reduced to

d (3L (D¢ .0\ oL (¢P. 4. 1)
dt aqx B 0qxk

=0 (3.40)

fork =1,...,(D — C), where the reduced Lagrangian is defined by eqn (3.39). These
are (D — C) equations in (D — C) unknowns and so may be solved for the free variables
as functions of time. Thus a complete solution for the motion of the system is obtained.

Proof: The main burden of the proof is to justify the zero on the right side of eqn
(3.40). Constraints are present, yet there are no Lagrange multiplier expressions on
the right like the ones we saw in eqn (3.27).

The proof begins by a transformation to a new system of good generalized coor-
dinates, similar to that discussed in Section 2.10. This new system, which we will call
the special r-system, has its last C variables defined to be equal to the C constraint
functions G,. Thus, fora=1,...,C,

rD—C"ra = Ga(q’ t) = Ga <q(f)v q(b)’ t) (341)

The remaining (D — C) variables of the r-system are set equal to free variables ¢(/).
Fork=1,...,(D—-0C), '

ne=q." (3.42)
This choice guarantees that the Jacobian determinant condition eqn (2.59) is satisfied

and hence that the special r-system is a set of good generalized coordinates. For the
second determinant in that equation will have the block form

u 0
a’;"’ Dl Z| 196@.0\ 4| = |9®) (3.43)
q aq ) 9

where g (b) is the matrix defined in eqns (3.17, 3.18). The determinant of this matrix
is nonzero by the above assumption concerning the critical minor of eqn (3.3). Note
that we denoted the (D — C) x (D — C) identity matrix by U. It will be useful also to
label free and bound r-variables as r'/) = ry, ..., r(p—c) and r® = rip_ci1), ..., rp.
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Due to the definition in eqn (3.41), in the r-system each constraint function de-
pends only on a single r*) coordinate,

Gy (r,t) = r(D C-ta) (3.44)
fora =1,..., C. Thus the general Lagrange equations, eqn (3.27), now expressed in
the special r-system, are

. c
d (OL(r,7,t) 8L(r 7, 1) aGa(r 1)
— =0 3.45
dt < ary > Z (3.45)
fork=1,...,(D—-C),and
. . c
d (0L(r,F,t) OL(r,r,t) G, (r, 1)
= - =) A — = e 3.46
dt ( oF, ) o ; “on (=b+0) (3.46)
fori=(D—-C+1),..., D, with the equation of constraint 0 = G, (r, t) giving
=0 (3.47)

forl=(D —C+1),..., D. The zero on the right side of eqn (3.45) follows from eqn
(3.44). In the r-system, the G,(r, r) constraint functions do not depend on the free
variables and hence 3G, (r,1)/dry =0fork=1,...,(D — C).

Two immediate simplifications are possible now. First, we can drop eqn (3.46).
As we will see, it is not needed to solve the problem. Second, we can note that the
partials in eqn (3.45) are all with respect to the free variables. Thus eqn (3.47) set-
ting the bound variables to zero can be applied in eqn (3.45) even before the partial

derivatives are taken. For k =1, ..., (D — C), we can write
OL(r,F,t)
— = L@, 7, )0 40 (3.48)
e | jo—g Ok ( #0=0)

fwith a similar result for partials with respect to the free 7. If we define the reduced
Lagrangian L by

i3 (r(f)’ AU t) = L(r, 7, Dl 00 (3.49)
eqn (3.45) can then be written, fork =1, ..., (D — C), as
d (oL (r, i ¢ oL (r(D #D ¢
4 (LU0 i) LA (3.50)
dt org org

But, except for the use of »(/) to denote the free variables rather than ¢(/), the re-
duced Lagrangian L(r/), 7/ t) in eqn (3.49) is identical'® to the reduced Lagrangian

18Ty obtain the Lagrangian L (r, 7, t), the definitions PN = q<f) and r® = G (q(f), q(b), t) in eqns
(3.41, 3.42) must be inverted to give ¢(/) = r(/) and ¢® = 4® (r(f), r®, t). These functions and their

derivatives are then substituted into L(g, ¢, ) to get L(r, 7, t). Setting r® = 0and i® = 0in L@, 7, 1),
as is done in eqn (3.49), then gives a result that becomes identical to eqn (3.39) when labeling of the free
variables is changed from (/) to the equivalent ¢ (/).
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L(g'", ¢ 1) defined in eqn (3.39). And recall that eqn (3.42) makes g; = r for all
k=1,...,(D—C). Thus eqn (3.50) may be rewritten as

d (3L (gD . gD ¢ 9L (gD, gD, ¢

d (OL(g 4 )\ _ oL@y (3.51)
dt Gk 0qk

fork=1,...,(D — C), as was to be proved. O

3.9 Example of a Reduction

Suppose that we have a system of one mass m moving under an acceleration of gravity
g = —ges. The Lagrangian in the s-system (with sy = x, so =y, 53 = 2) is

L(s,$,0) = % (xz 324 22) — mgz (3.52)

FI1G. 3.3. Mass m is constrained to slide without friction on the surface of a sphere of radius a.
Gravity is assumed to be acting downward, in the negative z direction.

Now suppose that the mass is constrained to move on the surface of a frictionless
sphere of radius a by the constraint equation

0=Gi(s,t) =/x2+y*+z72—a (3.53)

Assuming that we are interested only in motions above the x-y plane, we can solve
eqn (3.53) for z giving

z=+Ja? —x2—y2 (3.54)
and its derivative . .
o XYY (3.55)
a2 —x2_ 2

We define'® the set of free variables to be s¢/) = x, y and the single bound vari-
able to be s(” = z. Substituting eqns (3.54, 3.55) into eqn (3.52) gives the reduced

9Note again that there are often several possible ways of making the bound-free division. Here it is
obvious from the symmetry of the problem that any one of x, y, z could be chosen to be the bound variable.
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Lagrangian

. N2
_ . m (. . xx +
i (S(f)’ § ,) =3 <x2 +37+ %) - mg\/zﬁhy2 (3.56)

from which we can derive the two Lagrange equations

d (9L (sD 5 ¢ 9L (s, 5N ¢

i—1. 4 (Lb 2 J) LG5 (3.57)
dt 0x 0x
d (9L (sD, 50 ¢ O (s, 5N

i=2: — ( - ) — ( ) =0 (3.58)
dt ay ay

and so solve the problem. The number of degrees of freedom has been reduced from
D=3toD-C=3-1=2.

3.10 Example of a Simpler Reduction Method

In some special cases, it may be possible to choose an initial g-system that matches
the symmetries of the constraints. Then the calculation of the reduced Lagrangian
becomes particularly simple.

Suppose that the initial g-system is chosen so that the equations of constraint
depend only on the bound variables ¢®). It follows that the constraint equations

0=Gal(q,1) = Ga (q(b), r) (3.59)

fora = 1,...,C, constitute C independent functions of the C variables ¢” and the
time. Thus the solution for the bound variables in eqn (3.36) now gives these bound
variables as functions of time alone, rather that as functions of the free variables and
the time. Thus

a” =q"w (3.60)

fori = (D—-C+1),...,D. The derivatives c}l(b) = q}"’ () may then be calculated
from these equations, and will also be functions of time only. The calculation of the
reduced Lagrangian is thus simplified.

For example, the constraint of Section 3.9 has spherical symmetry. If we choose
a system of coordinates q; = 6, g0 = ¢, g3 = r where r, 0, ¢ are spherical polar
coordinates, then the constraint equation depends only on ¢3. So we may define the
free variables to be ¢(/) = 6, ¢ and the single bound variable to be ¢\”’ = r. When
converted to this g-system, the constraint equation, eqn (3.53), becomes

Gi(g.t)=r—a (3.61)

which depends only on the bound variable r and so can be solved immediately for
r=aandr7 =0.



RECOVERY OF THE FORCES OF CONSTRAINT 59
In spherical polar coordinates, the full Lagrangian of eqn (3.52) becomes
L(q,q,t) = % (r'2 +r26% + r?sin® 9(&2) — mgr cos 6 (3.62)

Solving the constraint equation eqn (3.61) for r = a, 7 = 0 and inserting these into
eqn (3.62) gives the simple reduced Lagrangian

L (q(f), q<f), t) = % ((129'2 + a®sin® 9(]52) — mga cos 6 (3.63)

from which we derive the two reduced Lagrange equations

d (9L (. a1 oL (0. oD, 1

PP Y L et at) R WA VRS ) B (3.64)
dr 30 0
d (oL (¢, 4D, ¢ 9L (g1, 6N ¢

ko 40040\ aL(”4D) (3.65)
dt R ¢

which may be used to derive the equations of motion.

3.11 Recovery of the Forces of Constraint

We have given several methods for finding the equations of motion of the system
without knowing the forces of constraint. Let us suppose that one of them has been
used, and that we now have the complete solution to the problem,

qr = qx (t) and g =g (1) (3.66)

for k = 1,..., D. But suppose that we are curious, or otherwise need to know, the
forces of constraint that must be acting to produce this motion. One method has al-
ready been given, in Corollary 3.5.2. Here we will treat this problem in a more general
way which includes solution methods that do not produce the Lagrange multipliers
Aq directly.

Let us define Ag, for k = 1,..., D, to be those functions of time obtained by
putting the solution, eqn (3.66), into the left side of eqn (3.26),

W |4 (0L@.q.0Y _L@.q.1)
CTla U g dqx

{ a=q(1)
G=q (1)

] (3.67)

Then eqn (3.26) gives the forces of constraint in the g-system directly as
0™ = Ay (3.68)

The forces of constraint in other systems can then be found from these by using the
standard transformation formulas like eqn (3.9). One cautionary note: In evaluating
the right side of eqn (3.67), it is essential to use the full Lagrangian, not some re-
duced form of it. Also, all indicated partial derivatives must be taken first, before the
solutions ¢ = ¢ (¢) are introduced.
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But suppose we want to find the forces of constraint in some other system, such
as the s-system. Instead of using eqn (3.9) to convert Q\°™ to the s-system, it is
sometimes easier to find the Lagrange multipliers A, as an intermediate step. Then
these same Lagrange multipliers can be used to find the forces of constraint in any

system of coordinates by making use of equations like eqn (3.14).

Let us define
_ 0Ga(q,1)

Bak
gk lg=q()

(3.69)

Then, evaluating both sides of the general Lagrange equations in eqn (3.27) using the
known solution from eqn (3.66), gives the set of linear equations for the Lagrange
multipliers A4,

c
Ap = ZAaBak (3.70)
a=1
where k = 1, ..., D. These equations are redundant. Since the matrix B has rank C

by assumption, one can always select C of them to solve for the C Lagrange multi-
pliers A,, using Cramer’s rule or some other method. The forces of constraint in, for
example, the s-system can then be found from eqn (3.14),

c
0G4 (s,t
Fi(cons) — Z)\a a(s, t) (3.71)
aS,' s=s(t)
a=1
fori = 1,..., D, where the partial derivatives on the right are evaluated using the

known solution, eqn (3.66), now expressed in the s-system.

Although the formal description given here for finding the A, may seem complex,
in practice it is often quite simple to apply, as will be seen in the next section.

3.12 Example of a Recovery

As an example, imagine that we need the forces of constraint exerted by the sphere
in Section 3.10. In this example, ql(f ) = 0 and qéf ) = ¢ are the free variables, and

qéb) = r is the bound variable, and there is only one constraint, C = 1. Also, that
constraint G(g, t) = r — a depends only on qéb) = r. So there is only one nonzero
matrix element,
aG1(q,t
B = 20140 =1 (3.72)
93 lg=q@)

and eqn (3.70) for A reduces to

Az =AM Biz =7 (3.73)
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It remains to evaluate Asz. Using the full Lagrangian from eqn (3.62) gives

A 14 (9L, 4.0 9L.4,0)
3T {q:q(t)]
4=4 (1)

dt ar ar
d . 32 22552
= d—t(mr)—m(—i—re + rsin“ 6¢ —gcos@)

{q=q(t) ]
G=4q(t)

=—m (—l—aéz + asin? 0¢* — g cos 0) ‘{ 3.74)

q=q(t) }
G=q (1)

where the 6 and ¢ in the final expression must be evaluated using the known solution
previously obtained. Thus

q=q(1)

A =-—m (—f-aéz + a sin® 9(;52 — gcos 9)‘
{4=4(t)

] (3.75)

Using this same A, the forces of constraint in the Cartesian s-system are then
given by eqn (3.71) in the form, fori =1, 2, 3,

G (s, t i
Fi(cons) = Al 1(s, 1) = M (3.76)
aSi s=s(1) \/m s=5(1)
where eqn (3.53) was used. In vector form,
Flcons) — ;. ¢ 3.77)

which verifies the expected result that the force of constraint is entirely in the radial
direction.

3.13 Generalized Energy Theorem with Constraints

The generalized energy function in a system with constraints is the same as that
defined in Section 2.15. The generalized energy theorem is modified, however.

Theorem 3.13.1: Generalized Energy Theorem with Constraints
When the only non-potential forces are constraint forces that do no virtual work, the
generalized energy theorem becomes

. C
L
_a (Q5Q7I) _Z)\'aaGd(qvt)

H =
4 ot ar

(3.78)

a=1

where H, is the same generalized energy function as was defined earlier by eqn (2.76).
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Proof: First note that, using the standard definition eqn (2.68) for the generalized
momenta, the general Lagrange equations of eqn (3.27) may be written in the alter-
nate form

(3.79)

. C
8L(‘Za qat) aGa(Qat)
k= — Y Ay
dqx = ‘g

The proof of eqn (3.78) is the same as the proof given in Theorem 2.15.1 up to and
including eqn (2.80). The g terms cancel as before, but the use of eqn (3.79) for pi
instead of eqn (2.72) leads, after some cancellation, to the expression

C .
* aGa(qst) . aL(CI, q»t)
H, = § hg— 2 -2

‘ ( g ) o1

a=1

D .

8Ga(qat) . aL(quI»t)
A —
a <k§:1 aqk Qk) a1

(3.80)

I
M~ 10n T1s

¢ dt dr dt

Il
MR

a

But eqn (3.1) implies that dG, (¢, t) /dt = 0, leading at once to eqn (3.78), as was to
be proved. O]

It follows from Theorem 3.13.1 that, if both the Lagrangian L(g, ¢, ) and the
constraint functions G,(q, ) in the g-system do not contain the letter r explicitly, the
generalized energy function H, will be a constant of the motion, equal to its initial
value at + = 0.

The result in the s-system is similar, with a similar proof,?°

c

8L t 8 a 7t
_ (s’s’)—z)\.a G(S )

Hv =
at ot

(3.81)
a=1
An alternate generalized energy theorem is also possible in systems in which holo-
nomic constraints have been used to reduce the number of degrees of freedom from
D to (D — C). It begins with the reduced Lagrangian of eqn (3.39). Define a reduced,
generalized energy function H, by

L-0) (g 5

- (L (gD, gD ) )

Hy= ) q,§f>—( 7ie —L(q(f),q(f),t> (3.82)
k=1

Then a proof almost identical to that in Theorem 2.15.1 shows that

i, L(q".q",1)

= 3.83
dt ot ( )

20Equation (3.81) illustrates again that the forces of constraint may do real work even when they do no
virtual work. In the s-system, the generalized energy function H; will always equal the total energy. When
the constraint is time varying so that 3G, (s, 1)/dt # 0, the constraint forces are seen to contribute to the
rate of change of Hj.
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Thus, if the reduced Lagrangian L does not contain the letter r explicitly, then the
reduced generalized energy function H, will be a constant of the motion, equal to its
initial value at r = 0.

3.14 Tractable Non-Holonomic Constraints

To be treated by the Lagrangian method, constraints must at least define a definite re-
lation between displacements of the generalized coordinates. Other things that might
be thought of as constraints, such as inequalities like a; < gx < by defining walls of a
room, cannot be treated by the methods described here.?!

However, differential constraints of the form

D
0= gak (g, 1) dgx + ga0 (g, 1) dt (3.84)
k=1

or equivalently in the s-system

D
0= fai (s, 1) dsi + fao (s, ) dt (3.85)
i=1
where a = 1, ..., C, and the constraints are related by
D asi(q,0) dsi (q 1)
gak = Y _ fui —’aqk’ and  gu0 = fao + Z fai (3.86)

i=1 i=1

can be treated even though the differential expression in eqn (3.84) is not a perfect
differential and hence cannot be integrated to give a holonomic constraint function
G (g, 1). These will be called tractable non-holonomic constraints.??

In the case of tractable but non-holonomic constraints, the allowed virtual dis-
placements are defined to be those that satisfy an equation equivalent to eqns (eqn
(38.5),eqn (3.8)). Fora =1, ..., C, with 8G,/dq; replaced by gux,

D
0= gakda (3.87)

Theorem 3.4.1 then can be generalized to say that §W (") = 0 for all allowed

211 Lagrangian mechanics, a ball confined to a box with perfectly elastic, rigid walls would be treated
as a series of problems. Each problem would end when the ball hits a wall, the reflection conditions would
be applied, and the next problem would begin with the resulting initial conditions.

22The condition for differential expression eqn (3.84) to be a perfect differential which can be integrated
to yield a potential function like G, (g, 1) is given in Section D.20. Since each term of the homogeneous
eqn (3.84) could be multiplied by an integrating function u, (g, t) without changing the implied relation
between the differentials dgy, the general condition for the integrability of eqn (3.84) for the ath constraint
is that, for some nonzero integrating function u, (g, 1), 9 (uggak) /g1 = 0 (Ua&a1) /dqi for every pair of
indices k, I. Also, 3 (uggqk) /9t = 3 (uagq0) /dqr must hold for every k value. If no such integrating function
exists, then the constraint is non-holonomic.
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virtual displacements if and only if the constraint forces have the following form

Q(Cons) Z/\agak (g.1) or, equivalently, F; (cons) ZA fai (s,1)  (3.88)

a=1

If the constraint is holonomic, then g,+ = 3G, (g, t)/dqx and we recover eqn (3.14).
But if the constraint is non-holonomic eqn (3.88) still applies, with the g, taken from
eqn (3.84). The proof of this generalization is the same as that in Section 3.4. That
proof used only virtual displacements, and the fact that g, was equal to dG,/9qx
played no essential role in it.

Thus, for the case of tractable but non-holonomic constraints, the general La-
grange equations, eqn (3.27), become

) . c
d (0L(q,q,1) aL(q,q,1)
-~ — = A t 3.89
P ( 9, ™ ;;; a8ak (q.1) (3.89)
with the constraint equation
D
0= gak (q.1) Gk + 8a0 (q. 1) (3.90)
k=1
where k = 1,...,Dand a = 1,...,C. These are (D + C) differential equations for

the (D + C) unknown functions ¢, A and therefore can be solved. Similar equations
hold in the s-system, with f,; in place of gux.
The generalized energy theorem, Theorem 3.13.1, becomes

i aL( )
Hy = q 4. Zkagao (3.91)
or, in the s-system,
. C
. dL(s,s,t)
m="j;——zmm (3.92)
a=

Some problems combine holonomic and non-holonomic constraints. In that case,
the holonomic ones may be used to reduce the degrees of freedom of the system as
outlined in Section 3.8. The non-holonomic ones may then be included by using the
methods of the present section, but starting from the reduced Lagrangian.

3.15 Exercises

General note: These exercises are intended to help you master the Lagrangian theory of con-
straints. Therefore, they must be done using those methods, even if some of them are so
simple that elementary approaches would also be possible.
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Fi1G. 3.4. Illustration for Exercise 3.1.

Exercise 3.1 Consider the plane double pendulum from Exercise 2.11.

(a) The sticks of the pendulum are now constrained to have fixed lengths a; and ap. Write
the two constraint functions G (s, t) and G;(s, f) in terms of the s-system variables. Now
express these same functions in terms of the q-system variables, as G1(q, t) and G2(q, 1).
(b) Use the full Lagrangians from Exercise 2.11, L(s, s, t) in the s-system and L(q, ¢, t) in
the g-system, to write all four Lagrange equations, using the Lagrange multipliers A; and A;
as appropriate. Do this in both the s- and the g-systems.

(c) Taking 61 and 6, as your free variables, write the reduced Lagrangian in the reduced g-
system L(g"), ¢9), ) and the two Lagrange equations for the free variables in that system.
(d) Suppose that you are able to solve the equations in part (c) for 61(¢) and 6,(¢). State
clearly, showing the exact formulas you would use, how you would calculate the Cartesian
components of the force of constraint on each of the masses.

F1G. 3.5. Illustration for Exercise 3.2.

Exercise 3.2 A mass m slides on the inner surface of a conical hole in frictionless ice. The
cone has half-angle . Gravity acts downward, g = —gé€3. At t=0, the mass has spherical
polar coordinates ro>0, 7o=0, ¢o=r, q'bo >(). With the origin of coordinates at the vertex of
the cone (bottom of the hole), the mass is constrained to have 6=c«. The ice is fragile. Its
surface can only provide a normal force less than Fi,x. Find the radius r, at which the mass
breaks through the ice surface.
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F1G. 3.6. Illustration for Exercises 3.3 and 3.4. The dotted rectangle represents an imaginary door
swinging from hinges on the z-axis. The wire of the parabola is entirely in the plane of this door.

Exercise 3.3 A rigid wire of negligible mass is bent into the shape of a parabola and sus-
pended from the z-axis by frictionless pivots at z = *+a. The equation of the wire, in cylin-
drical polar coordinates, is p = b(1 — z>/a*). A bead of mass m slides without friction on
the wire. The acceleration of gravity is g = —gé3. Choose cylindrical polar coordinates as
your generalized coordinates. Assume the initial conditions at ¢ = 0 as follows: 0 < zg < a,
20 =0, ¢o =0, ¢p > 0.

(a) Write the full Lagrangian for this problem.

(b) Write the three Lagrange equations, using Lagrange multipliers as appropriate.

(c) Now, choosing your free variables to be z and ¢, write the reduced Lagrangian L and the
two Lagrange equations derived from it.

(d) Use the result of (c) to write the reduced generalized energy I:Iq. Is it conserved? If so
why, if not why not?

(e) Use the results so far obtained to write expressions for p, ¢, p, é, Z, P, (}5, 7 as functions
of z only. [Note: These expressions, and the ones in the next part, may of course also depend
on the initial values zg, qBO and on the parameters a, b, m, and g.]

(f) Find the Cartesian vector force of constraint exerted by the wire on the mass for t > 0,
expressing it as a function of z only.

Exercise 3.4 This problem has the same geometry as Exercise 3.3, but now there is an addi-
tional constraint: ¢ = wot where wyg is a given constant.

(a) Choosing z as your free coordinate, form the reduced Lagrangian and write the single
Lagrange equation derived from it.

(b) Derive the reduced generalized energy function. Is it conserved? If so why, if not why
not? [Note: This Hq will not be the same as the one derived in Exercise 3.3.]

(c) What is the smallest value of wq such that there will be at least one point (equilibrium
point) such that if zg is set equal to that value with zg = 0, the mass will remain at that height
for all time?
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Exercise 3.5 We use cylindrical polar coordinates in this problem. A roller-coaster car of
mass m slides without friction on a track defined by the constraints

o =po+ap and z=20—bo (3.93)
where a, b > 0. At =0 the mass is at rest at
ro = po€1 + 20€3 (3.94)

(a) Write the full Lagrangian L(q, ¢, t) using a g-system consisting of cylindrical polar co-
ordinates ¢, p, z.

(b) Write the three Lagrange equations in the q-system, putting in A; and X, correctly.

(c) Now use the constraints to eliminate p, z, p, z, leaving ¢ as your free variable. Write the

FI1G. 3.7. Illustration for Exercise 3.5.

reduced Lagrangian L = L(¢, b, 1).

(d) Write the Lagrange equation using L (¢, ¢, ¢) and solve the resulting equation for ¢ as a
function of ¢ and ¢.

(e) Write the reduced genfzralized energy Hq based on the reduced Lagrangian L, and use it
to derive an equation for ¢ as a function of ¢ and an integration constant that you determine
from the given initial conditions.

(f) From parts (d) and (e) you now have é as a function of ¢ and ¢, and also ¢ as a function
of ¢. Thus you effectively have both ¢ and ¢ as functions of ¢ only. Write an expression for
the Cartesian vector force of constraint that the track exerts on the car, writing it as a function
only of the given parameters and the variables ¢, qb qb [This expression, of course, could now
be used to write the force of constraint out as a function of ¢ only if you wished. But it is
clearer just to leave the result as it is, and cite the results of parts (d) and (e) to anyone who
wants it as a function of ¢ only. (e.g. a designer who needs to know how strong to make the
track.)]

Exercise 3.6 Suppose a mass m slides without friction on a horizontal table. There is a hole
in the center of the table. A massless string runs along the table top from m; to the hole,
through the hole, and down below the table, where it is attached to another mass m;. The
origin of coordinates is at the center of the hole, with the €3 axis pointing upwards. Gravity
acts downwards. Consider the hole to have a size big enough to let the string through without
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i m3
F1G. 3.8. Illustration for Exercise 3.6.

friction, but small enough to be neglected in our calculations.

(a) Using cylindrical polar coordinates for m and Cartesian coordinates for my, write the full
Lagrangian for this two-mass system.

(b) Now apply the following constraints: Mass m | is always at the level of the table’s surface.
Mass my is enclosed in a vertical plastic tube just large enough to hold it at x; = y» = 0
while exerting no friction forces on it. The string length is £( and never changes. With these
constraints, write the full Lagrange equations, including the Lagrange multipliers as required.
(c) Use the constraints to write a reduced Lagrangian with free coordinates p; and ¢1, the
cylindrical polar coordinates of the mass m1 on the top of the table.

(d) Write the two reduced Lagrange equations and show that the one for ¢; can be integrated
immediately to give ¢; as a function of p; and constants determined at = 0. Assume that
$1(0) > 0 at time zero. Use this result to write the other reduced Lagrange equation as an
ordinary differential equation involving only o1 and its derivatives.

Fi1G. 3.9. Illustration for Exercise 3.7.

Exercise 3.7 Consider a single mass m to be sliding without friction on the outside surface
of a sphere of radius a. Suppose that at time zero, it has spherical polar coordinates 6y > O,
¢o = 0 and generalized velocities 8) = 0 and ¢g > O.

(a) Using spherical polar coordinates, write both the full Lagrangian and the reduced La-
grangian for this problem.

(b) Write the Lagrange equations for both the full and the reduced Lagrangians.

(c) Use the reduced Lagrangian L to write the reduced generalized energy I-—Iq.

(d) The mass will leave the surface of the sphere at the instant at which the normal force
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of constraint becomes negative (the sphere cannot pull in on the mass, only push outwards).
Write an expression for the angle 6,,,, at which the mass leaves the sphere and the problem
ends.

(e) Define the parameter y by aq'bg = yg, where g is the acceleration of gravity, and express
Omax as a function of a, g, v, 6y only. In the case with y = 0, find Opax in the limit 6y — 0.
(f) With 6y = 10°, find the numerical value of 6y, for the case in which y = 0. How big
would y have to be in order to reduce Gpax to 45°?

X

F1G. 3.10. Figure for Exercise 3.8.

Exercise 3.8 A bead of mass m slides without friction on a rigid wire that lies in the x-z
plane and has the shape z = ae™"*, where y is some given positive constant. Gravity acts
downwards, with g = —gés.

(a) Write the full Lagrangian for this problem, and write equations for the two holonomic
constraints, first that the mass is confined to the plane y = 0, and second that it is confined to
the surface z = ae™V*.

(b) Write the three Lagrange equations, introducing the Lagrange multipliers A; and A, as
appropriate.

(c) Use the constraints to write a reduced Lagrangian L(x, x,1), with x serving as the single
free coordinate. Derive the reduced generalized energy from this reduced Lagrangian, and
use it to find an expression for 2 as a function x. (Assume that the mass is released from rest
at the point x = 0.) Also use the reduced Lagrange equation to find an expression for ¥ as a
function of x and x.

(d) Write an expression for the Cartesian vector force of constraint F(€°™) acting on the
particle, expressing it as a function of x only. Check the limit of F(?*) as x — oo. Is it
reasonable?

Exercise 3.9 A fixed, right circular cylinder (first cylinder) of radius a lies on its side, with
its symmetry axis horizontal. A hollow right circular cylinder (second cylinder) of radius b
and mass m, is free to roll without slipping on the first one. Assume that its symmetry axis
remains aligned with that of the first cylinder. The full Lagrangian for the second cylinder’s
motion is

1 . 1 .
L=3m (;‘»2 + r292> + 3mb*¢? — mgr cos (3.95)
where r is the distance between the axes of the two cylinders, and 8 and ¢ are the angles

shown in the figure. (This “full” Lagrangian is actually partially-reduced. Constraints not rel-
evant to this exercise have already been applied.) Notice that ¢ is the angle between vertical
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F1G. 3.11. Figure for Exercise 3.9. The upper cylinder rolls without slipping on the lower one.

and a mark inscribed on the face of the second cylinder.

(a) Write the two constraint functions, G| expressing the constraint that the second cylinder
is in contact with the first one, and G, expressing the condition of rolling without slipping.
Assume that ¢ = 0 when 6 = 0.

(b) Write a (completely) reduced Lagrangian L0, 6, t) and use the reduced generalized en-
ergy theorem to express 6 as a function of . Assume the second cylinder to be initially at
rest, and at a very small distance to the right of 6 = 0.

(c) Use the full Lagrangian eqn (3.95) to write the three Lagrange equations, introducing La-
grange multipliers as appropriate. Find the generalized force of constraint ngm) for the r
variable and use it to find the angle 6, at which the rolling cylinder will lose contact with the
fixed one.



4

INTRODUCTION TO HAMILTONIAN MECHANICS

The power of Lagrangian mechanics has caused generations of students to wonder
why it is necessary, or even desirable, to recast mechanics in Hamiltonian form. The
answer, which must be taken largely on faith at this point, is that the Hamiltonian
formulation is a much better base from which to build more advanced methods. The
Hamilton equations have an elegant symmetry that the Lagrange equations lack.

Another answer, not directly related to classical mechanics, is that the Hamilto-
nian function is used to write the Schroedinger equation of quantum mechanics, as
discussed in Section 4.7.

4.1 Phase Space

The differences between the Lagrange and Hamilton equations result mainly from
the different variable sets in which they act. The Lagrangian variable set?? is the set

of generalized coordinates and velocities g, 4 = ¢q1,...,9p, 41, ..., qp Whereas the
Hamiltonian set is the set of generalized coordinates and momenta ¢, p = g1, ..., gp,
Pi,---, PD-

The g; in the Hamiltonian set are the same as the, assumedly good, generalized
coordinates used in Lagrangian mechanics. And the p; are the same as the generalized
momenta that were defined in Section 2.12 as functions of the Lagrangian variables
and the time,

P = Pl g1y = 20D 4.1)
dqx

In Hamiltonian mechanics, the coordinates and momenta in set ¢, p are lumped
together and considered to be coordinates of a 2D dimensional space called phase
space. The variables qy, ..., gp, pi1, ..., pp are referred to collectively as canonical co-
ordinates of phase space. The gy is called the kth canonical coordinate, and py is called
the kth canonical momentum. The pair g, py for the same k value are called canoni-
cal conjugates. Hamiltonian mechanics is essentially Newton’s second law translated
from Lagrangian form into a form appropriate for this phase space.

In order for the phase-space variables gy, ..., ¢p, p1, ..., pp to be an adequate set

23In the previous chapters, we have made a distinction between the s-system coordinates sq, ..., s SD»
which were just re-labeled Cartesian coordinates, and the g-system coordinates ¢y, ..., gp which are the
most general good generalized coordinates. We now drop this distinction and use only the general set
q1,---,4qp-. Of course, being general, these coordinates include the s-system as a special case.

71
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of variables for mechanics, eqn (4.1) must be invertible to give inverse functions,

gr = qk(q, p, 1) (4.2)

fork = 1,..., D, from which the Lagrangian variables ¢ can be found. Then knowl-
edge of the phase-space variables gy, ..., ¢p, pi, ..., pp will allow one to determine
the Lagrangian variables ¢y, ..., gp, 41, - - ., gp, from which the position and velocity
of each mass in the system can be found.

By the inverse function theorem, Theorem D.24.1, the condition for such an in-
version is the Jacobian determinant condition

a

—’?‘ #0 (4.3)
dq

involving the determinant of a matrix defined by

9 9 gt 92L(q, q,t
(_g) _ g0 _97L(g.q.1) 4.4)
09 /1 g 0q10qy

The inversion leading to eqn (4.2) is always possible, as proved in the following
theorem.

Theorem 4.1.1: Inversion of Momenta

The matrix (dp/9q) defined in eqn (4.4) is nonsingular and positive definite. It therefore
satisfies the determinant condition in eqn (4.3), which allows p; = pi(q,q,t) to be
solved for qx = qi(q, p, t).

Proof: It follows from the expansion of the Lagrangian in Section 2.7 that the kl
matrix element in eqn (4.4) is

. D
opr(g. g, 1) dsj(g.1) 3sj(q. 1)
LESL A A =my(g, 1) =y  M;— 1 rd

: (4.5)
g dqk g

j=1

where the s; are the Cartesian components of the s-system, and the M; are the masses
of the point particles.
Defining a matrix M by its matrix elements M;; = M;$;;, eqn (4.5) may be written

ap\ _ [ 9s T _ /3s
(a‘q)‘(%) M(@) (“-6)

Properties 5 and 10 of Section B.11 then give the determinant of (dp/d4) as

as

2

) as |2 - 3
—l.? | = ‘M’Z il MM, ---Mp 4.7)
dq dq dq

The nonsingularity of the matrix (3s/9¢) appearing in eqn (4.6) was shown in Section
2.4 to be the condition for the ¢ to be a good system of generalized coordinates,
which we are assuming here. Thus the determinant |ds/dq| is nonzero. Since all of the
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particle masses M; are positive quantities, it follows that |dp/dq| # 0. Thus (dp/9q)
is nonsingular.

We now show that the real, symmetric matrix (dp/dq) is positive definite. If [x] #
[0] is an arbitrary, non-null column vector, it follows from eqn (4.5) that

[xJT( )[x] ZMJyJ (4.8)

where

D
dsi(q,t . . 0
y; = E Mxk or, in matrix form, [y]= kal [x] (4.9)
g aqik dq

j=1

Since the matrix (ds/dq) is nonsingular by assumption, it follows from Corollary
B.19.2 that the column vector [y] must also be non-null.
Since all point masses M; are positive, nonzero numbers, and since at least one

of the y; must be nonzero, the right side of eqn (4.8) must be positive and nonzero.
Hence

T mx] = [x]T < q)[x]>0 (4.10)

Using the definition in Section C.1, this implies that (dp/dq) is a positive definite
matrix. O

The theorem just proved means that any physical quantity expressed in terms of
Lagrangian variables can equally well be expressed in terms of phase-space ones by
simple substitution. Assuming that f = f (g, ¢, t) is given, the same function in terms
of phase-space variables is defined as the compound function

f=r(.p.0)=[(q.4(q. p.0).1) (4.11)

where eqn (4.2) has been used.

Since the matrix my; = 9pr/9dq; has been proved nonsingular, the theory of lin-
ear equations can be used to solve for the ¢; explicitly. The definition of canonical
momenta in eqn (2.69) can be written as the D linear equations, fork =1, ..., D,

D
> mulg. D = p(q. 4. 1) — ni(q. 1) (4.12)

for the D unknowns ¢;. They can be solved by calculating the inverse m~! of the
nonsingular matrix m and writing

D
(g, p. ) =Y_mi' {px — m(g. 1)} (4.13)
=1

or, equivalently, by using Cramer’s rule from Section B.16.
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Lagrangian methods are sometimes applied to physical systems that are not ob-
viously derived from Newton’s laws for point masses. In those cases, the proof given
above may not be relevant. But the inversion of eqn (4.1) may still be possible. Sys-
tems in which eqn (4.1) can be inverted to give eqn (4.2) will be referred to as well-
defined Lagrangian systems.

4.2 Hamilton Equations

The transformation from Lagrange to Hamilton equations is a Legendre transforma-
tion, of the sort defined in Section D.30, which the reader should consult for details.
In this transformation, the Lagrangian function L(g, ¢, t) of the Lagrangian variable
set g, ¢, t is to be replaced by the Hamiltonian function H(q, p, t) of the phase-space
variable set g, p,t. Thus L — H corresponds to f — g, and there is an exchange of
variables g <> p corresponding to the exchange of y and w. The correspondences be-
tween the present case and the general quantities defined in Section D.30 are: L < f,
(g,) ox,g<y,Ho g, peow,p<u.

The first step in the Legendre transformation, as in eqn (D.114), is to define the
new function H, still expressed in terms of the old variables g, ¢, t. In the present
case, this first step has already been done, in Section 2.15 where the generalized
energy function was defined as a function of the Lagrangian variables,

D . D
. 0L(q.q.1) . . N .
H=H(g ¢.t)=) %Qk —L(q, 4.0 =Y pilq, 4, Dgx — L(g, ¢, 1) (4.14)
k=1 k=1

As noted in Section D.30, to complete the Legendre transformation it is necessary
to write eqn (4.14) in terms of the correct variable set ¢y, ..., gp, p1, ..., pp- This can
always be done. Theorem 4.1.1 proved that the equations py = pk(q, ¢, t) can always
be inverted with to give gx = qr(q, p,t). Thus, one simply substitutes this inverse
equation into eqn (4.14) to write H(q, p, t) as the compound function

H=H(q,p,t)=H(q,4(q,p. 1,1 (4.15)

Note to the Reader: This step of writing H in terms of phase-space variables is
essential to the Hamiltonian method. The Hamilton equations will not be true with-
out it. To emphasize its importance, we reserve the name “Hamiltonian” for the
expression H (g, p, t) that results after this step is taken.

Thus, when written in terms of ¢, p, ¢, the generalized energy function H(q, g, t)
becomes the Hamiltonian H (g, p, t). They are the same function, but written in terms
of different variables and called by different names.?*

24gee Section D.5 for a discussion of the physics convention for labeling the same function expressed in
different variables.
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Following the Legendre transformation pattern in Section D.30, the differential of
the H in eqn (4.14) can be written as

D
dH = (prddx + grdpr) — dL
k=1

D . . .
oL dL(g.q.1) .. 9L(q,q,1) dL(q.q.1)
=> <PdeIk + Gedpe — LD gy - 201 d61k> - 4Dy,
k=1

9qk o gk ot
(4.16)
Assuming for now that Q,((NP) = 0, the Lagrange equations, eqn (2.52),
d (0L(g,q,t aL(q,q,t
d (q_q )\ _9L@.q.0) _ “4.17)
dt Gk 9qik
can be written in a compact form using the definition of p; from eqn (4.1),
0L(g,q,t 0L(g,q,t
v = M Where Dk = M (4.18)
gk dqx

When eqn (4.18) is substituted into eqn (4.16), the dq; terms cancel and eqn (4.16)
becomes

D
dH =" (Gedpi — prdqi) + Hdt (4.19)

k=1
where the generalized energy theorem H = —dL(q, ¢,t)/dt from Section 2.15 has

been used in the last term on the right.
The differential in eqn (4.19) may now be compared to the differential of the
function H(q, p, t) defined in eqn (4.15), which is

D

dH(q, p,t 0H(q, p,t dH(q, p,t

am =y (@, | SH@pD,, N @20, (4.20)
P Opk Gk ot

In the Legendre transformation method, the differentials of the original variables
dq,dq,dt are taken to be independent. Theorem D.18.5 and eqn (4.3) imply that
set of differentials dqy, ...,dqp,dp1,...,dpp, dt are also independent. Hence, using
Lemma D.18.3, the equality of the left sides of eqns (4.19, 4.20) implies equality of
the corresponding coefficient of each differential term, and hence

d0H(q, p, 1) ) 0H(q, p,1t) . 0H(g, p,t)
G = °ofi\g. p. 1) pp = —— > P. V) g2 r.b (4.21)
0Pk dqk ot
fork =1, ..., D. The first two of these expressions are called the Hamilton equations.

The Hamilton equations are two sets of coupled first-order differential equations
for the phase-space variables g, px. They are very nearly symmetric in these variables.
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Except for the minus sign, the second of eqn (4.21) is just the first one with ¢, and py
exchanged between the partial and the time derivative.

Since the Hamilton equations have been derived from the Lagrange equations
by a Legendre transformation, which is invertible by definition, it follows that the
Hamilton equations hold if and only if the Lagrange equations hold. Thus both are
equivalent to Newton’s second law.

Second law <= Lagrange equations <= Hamilton equations

As can be seen from the properties of Legendre transformations, the first expres-
sion in eqn (4.21) simply restates eqn (4.2). The Lagrangian definition in eqn (4.1)
gives pr(q,q,t) = 0L(q, ¢, t)/dqr and the first Hamilton equations just give the in-
verse relation ¢x (¢, p,t) = dH(q, p, t)/dpk-

The second Hamilton equations in eqn (4.21), pi(q, p,t) = —9H(q, p,t)/dqx, are
in a sense the “real” equations of motion, analogous to the Lagrange equations p; =
dL(q,q,1)/9gk. '

The last of eqn (4.21) equates H = d H/dt, the total time rate of change of the
quantity H, to the partial derivative dH (g, p, t)/9t of the function H(q, p,t). It is the
phase-space analog of the Lagrangian generalized energy theorem H = —3L/z.

4.3 An Example of the Hamilton Equations

As an example of the transition from Lagrange to Hamilton equations of motion,
consider the system of a single particle in a central potential from Section 2.11. Using
q1, 92, g3 equal to polar coordinates r, 6, ¢, the Lagrangian is

1 . N1
L=L(g.q.n=3m (iz 4202 4 2 sin20¢2) — Skr? (4.22)

and therefore the generalized momenta py; for k = 1, 2, 3 are given by eqn (4.1) as

oL(q,q,t ) oL(q,q,t . aL(q,q,t . .
r:%:mr pg:%:"’”’ze p¢=%=mr2sm26¢
(4.23)
and the generalized energy function calculated from eqn (2.76) is
1 . . 1
H=H(g,q,1)=m (fz +r20% 42 sin29¢2) + Ekﬂ (4.24)
Inverting eqn (4.23) to solve for the ¢; gives eqn (4.2) in the form
P §= P S - (4.25)

m mr? mr2sin? 9

Substituting these into the generalized energy function, eqn (4.24), then gives the
Hamiltonian as a function of the correct phase-space variables,

2 2 2

Py Py Py 1>

L —k 4.26
2m + 2mr? " 2mr2sin?@ * 2 ' ( )

H=H(q,p.t)=
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As is always the case, the first set of Hamilton equations from eqn (4.21), ¢x =
dH (g, p,t)/dpy for k = 1,2, 3, simply repeats eqn (4.25),

p= M@ pD_pr oy M@ pD) _pe 5 9HG.pD P
opr m dpe mr?2 py mr? sin” 0
(4.27)
The next Hamilton equations, py = —dH(q, p,t)/dqx for k = 1,2,3, are the real
equations of motion. They are
0H(q. p.1) _ P} Py
. ’ 3 [
= 2R, 0 g 4.28
br ar mr3 " msinte (4.28)

0H(q.p.1) _ Pyeost
200 "~ mr2sin 6

_0H(q,p.1) _

s 0 (4.29)

Po = and Po =

The last equation in eqn (4.21) is H = dH(q, p.t)/dt, which here implies that
H =0 and so H = H(0), where constant H(0) is determined from the value of H at
time zero. This is the Hamiltonian analog of the generalized energy theorem. Thus

PP i L H(0) (4.30)
2m  2mr?  2mr2sin’6 @ 2
where
Ho = QO O __ 12 (4.31)

2m  2mr2(0)  2mr2(0)sin?0(0) 2

and the needed values of the canonical momenta at time zero p;(0) can be determined
from eqn (4.23).

As noted in Section 2.13, in this example the coordinate ¢ is ignorable. The last of
eqn (4.29) implies that py = a where a = p4(0) is some constant determined from the
value of py at time zero. The constant value can be substituted into eqn (4.30) to give
the generalized energy theorem in an even simpler form, with both the coordinate ¢
and its conjugate momentum pg absent,

2

2 2
Pr Py a )
— + —kr-=H(0 4.32
2m  2mr?  2mr2sin20 2 " © ( )

4.4 Non-Potential and Constraint Forces

The derivation of the Hamilton equations in Section 4.2 has assumed that all forces
are derived from the potential U (g, t). However, if non-potential forces are present,
possibly including suitable constraint forces that do no virtual work, the Hamilton
equations can be generalized easily. In the step leading to eqn (4.19) above, one sim-
ply replaces the Lagrange equation py = dL(q, ¢, t)/9dq; and the generalized energy
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theorem H = —dL(q, ¢, t)/dt by the more general expressions from eqns (2.52, 2.78),

dL(g,q,1) (NP) D) 0L(g,q,1)
= d H = _ 4.33
o + Oy an E Oy 5 (4.33)

leading to the Hamilton equations

dH(q, p,t . dH(q, p,t
G = 9H(q, p. 1) Pr = _0H(, p.1) Q(NP) (4.34)
Pk gk
R T Z 0™ 4i(g. p.1) (4.35)

These are the general Hamilton equations in the presence of non-potential forces.

When the non-potential forces all come from suitable constraints, then, as proved
in Theorem 3.4.1, Q") = Q'™ = "¢ 1,8G.(q, 1)/dgx and hence the Hamilton
equations become

C
dH(q, pt , dH(q, p.t 3Ga(q.1
_3H@.p.1) po= - 2H@ 2D | 5, 86a@.0 (4.36)
apk 86]k o a‘]k
C
. 3H(q,p.1) 9Ga(q,1)
H=—"22 %", — = 3
a1 “ ot (437

a=1

This last equation follows from the same argument as was used in the proof of Theo-
rem 3.13.1.

4.5 Reduced Hamiltonian

When the forces of constraint in a Lagrangian problem do no virtual work, and the
C constraints are holonomic and independent, Section 3.8 showed how to use the
constraints to reduce the number of degrees of freedom of the problem from D to
D — C. The reduced Lagrangian L(q', 4/, t) defined there can be used to define a
reduced generalized energy function, as was done in eqn (3.82) of Theorem 3.13.1,

D—C .7, (f
- - . AL, gD 1) _ N
H=H0GgD ¢V n=>Y 124" LV ¢ 0

)
k=1 84
=Y 5@, 4D 0¢" — L@ ¢ (4.38)
k=1

where we have defined, fork =1,...,D - C,

o))

. ) AL, ¢ D, 1)
5 =" 0

) Ay —
,gl ) =
aq(f)

(4.39)

Since all of the reduced Lagrange equations, eqn (3.40), have zeroes on their right
hand side, the same Legendre transformation procedure used in Section 4.2 above
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can be used to define a reduced Hamiltonian H (¢, /), ) and reduced Hamilton
equations

() a[._[(q(f) _(f),t) S al:l(q(f),ﬁ(f),t) dH aﬁ(q(f),ﬁ(f),t)
U = 25 ko= g ar a7

(4.40)
fork=1,...,(D—-C).

The constrained variables have been eliminated from the problem. The whole
Hamiltonian procedure is just as if the original Lagrangian problem had been free of
constraints from the start.

However, the above derivation leading to eqn (4.40) will be correct only if the
definition p(f ) = p(f )(g'D, ¢, t) from eqn (4.39) can actually be inverted to give

g =q/§f)< (", 5 t) (4.41)

This inversion allows one to make the usual substitution

H=HgY, 5D, 1) = ( ), (f)(q(f)’l—,(f),t),t> (4.42)

to convert the reduced generalized energy function H(¢/), 4", 1) to the reduced
Hamiltonian H(¢", p1), 1).

Again using Theorem D.24.1, the condition for the inversion of eqn (4.39) to give
eqn (4.41) is

| £0 (4.43)

where the matrix (3 p/)/84") is defined by

0p "\ 05 @V. 4V, 9L, ¢
agh ]

- : (4.44)
3q(f) 3q'/Ef)36}1(f)

The following theorem proves that this inversion can always be done.

Theorem 4.5.1: Inversion of Reduced Momenta
The matrix (3 p) /3G ")) defined in eqn (4.44) is positive definite and hence nonsingular.
Thus the inversion condition eqn (4.43) is always satisfied.

Proof: When the constraints are holonomic and functionally independent, the bound

variables can be written as functions of the free ones as in eqn(3.36),
a” = q¢”(q'D, 1). Substituting this result and its derivatives into the expansion of

the full Lagrangian L in Section 2.7 gives the reduced Lagrangian L in the form

- D—C
1 . .
5 Z Z g 4" + > gy + Ty — U (4.45)

[\
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where, fork,l =1,...,(D —C),
My = my + Z Z ml]S][ + Z mp;jsj + Z mi;  (4.46)
i=D—C+1j=D—C+1 j=D—C+1 i=D—C+1

where m is the matrix proved positive definite in Theorem 4.1.1 and, with k = (D —
C+1),....Dandi=1,...,(D—-C),

aq(”) G, 1)

Ski = 3q(/‘) (447)
Putting eqn (4.45) into eqn (4.44) gives
95 2L, 6D
<—8’.7 : f)> SO D, (4.48)
q dq,” " 9q,

To prove m = (3p)/8¢/)) positive definite, let [x] be any arbitrary, real, non-
null column vector of dimension (D — C). Then define another column vector [y] of
dimension D as the compound matrix

[y] = ( [x] ) (4.49)

s[x]
It follows from the positive-definiteness of m that
T mixl=[yI"my] >0 (4.50)

which proves that m is also positive definite. It follows from Lemma C.1.1 that matrix
m = (8p)/84")) is nonsingular. Hence that the inversion condition eqn (4.43) is
satisfied. O

4.6 Poisson Brackets

In Hamiltonian mechanics, all physical quantities are represented by phase-space
functions like that in eqn (4.11). Assuming now that no constraints are present, the
Hamilton equations, eqn (4.21), and the chain rule can be used to write the total time
derivative of such a function f in a useful form

df of (g, p,t) af (g, p, 1) . af (g, p, 1)
Z( 94 r Pk pk) * ot

_Z<8f(q p.1)dH(q, p.1) 8f(q,p,t)3H(q,p,t))+ af (g, p, 1)

(4.51)
gk pk opk 99k ot

The sum in eqn (4.51) appears frequently enough to merit a special notation for it.
It is called the Poisson bracket [ f, H] of the two phase-space functions f (g, p, t) and
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H(g, p, 1), so that eqn (4.51) becomes

:_df 3f (g, p.1)
f_z_[f,H]—{—T (4.52)
If df/dr = 0, then phase-space function f is called a constant of the motion. Equa-
tion (4.52) thus implies that a phase-space function that is not an explicit function of
¢ will be a constant of the motion if and only if it has a vanishing Poisson bracket with
the Hamiltonian.
The Poisson bracket [ f, g] can be defined more generally, for any two phase-space

functions f = f(q, p,t) and g = g(q, p, 1),

D
fgl=Y <3f(q, p.1) dg(g, p,1) 9g(q.p.1) 0f(q, p. t)) (4.53)

Pt gk dpk G dpk

Note that, since partial derivatives are functions of the same variable set as was the
function differentiated, the [ f, g] is itself another phase-space function.

This definition implies some useful algebraic properties. First, by construction, the
Poisson bracket is anti-symmetric in the exchange of the two functions so that, for
any f and g,

lg. f1=—Lf. gl and hence [f, f1=0 (4.54)

Also, when f(q, p,1), g(q, p,t), and h = h(q, p, t) are any phase-space functions, and
@, B are numbers or otherwise not functions of ¢, p, the following identities can be
proved,

[f, (ag + BM)] = al f, gl + BLf, h] (4.55)
[f, ghl = gLf, h1+ L f. glh (4.56)
Lf,[g. k11 + (A, [f, gl + (g, [h, fII=0 (4.57)

where, for example, [f, [g, h]] denotes the Poisson bracket of function f with the
function [g, 2] which was obtained by taking the Poisson bracket of g and 4. The last
of the three identities is called the Jacobi identity.

The algebra of Poisson brackets closely resembles that of the commutators of op-
erators discussed in Section 7.1. This similarity is exploited in quantum mechanics.
One path from classical to quantum mechanics is to write Poisson bracket relations
and then replace the phase-space functions by quantum operators, as is discussed in
Section 12.13.

Poisson brackets can be used to write the Hamilton equations in Poisson bracket
form. Replacing f(q, p, t) in eqn (4.51) by the single variables g, px, H in succession
allows eqn (4.21) to be written in the form, forany k =1, ..., D,

d0H(q,p.1) _0H(q,p.1)
ot N

Gk = lqr. H] Pr = px, H] H =[H, H]+ Py
(4.58)
The following identities follow directly from the definition in eqn (4.53). If one

puts f(q, p,t) and g(g, p, t) equal to any single canonical coordinate or momentum,



82 INTRODUCTION TO HAMILTONIAN MECHANICS

then, for any choices k,/ =1, ..., D, it follows that

gk, q11 =0 gk, pi] = bui [Pk, p1] =0 (4.59)

where §; is the Kroeneker delta function. These are called the fundamental Poisson
brackets, and are analogous to similar operator equations in quantum mechanics.

Poisson brackets also play a crucial role in the definition of what are called Canon-
ical Transformations of phase-space variables. But we will defer that discussion until
the extended Lagrangian and Hamiltonian methods, with time as a coordinate, are
introduced in Part II of the book.

4.7 The Schroedinger Equation

The Hamiltonian is an essential element in the derivation of the Schroedinger equa-
tion of quantum mechanics. We illustrate this transition from classical to quantum
mechanics by using the example of a single particle of mass m moving in a potential
U(x,y,z,t). For such a system, the Lagrangian is

L= g (x2 2y 22) —U(x,y,2.1) (4.60)

from which we derive the Hamiltonian

P2+ pi+ p?

H=H(q,p,t) = o

+U(x,y,z,1) (4.61)

The generalized coordinates here are just the Cartesian coordinates of the particle,
q1 =X, 42 =Y, 43 = 2.

The standard recipe for the transition to quantum mechanics is to make the sub-
stitutions

.0 .0 .0 0
H — lhg Dx —> —lha Py = —1)‘15 P — _lha_z (4.62)

in eqn (4.61), and then introduce a Schroedinger wave function ¥ (x, y, x, t) for the
differential operators to operate on, leading to

o (a8 (od) o+ (03) (o)
ot 2m ax ox 2m ay dy
+—L<4ﬁi)(4ﬁi>w+Uw (4.63)
2m 0z 0z

The products of operators are interpreted as repeated application, leading to second
partial derivatives. For example,

OV (Cin® Yo = (inl (in®P)) = Y
< lhax)( lhax>¢—< lhax( lhax))— h 2 (4.64)

The result is the Schroedinger equation, the fundamental equation of nonrelativistic
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quantum mechanics. It is usually written as

h = —h vzw + Uy (4.65)

where the Laplacian operator V? is defined as

Ry Ry Py

Vi = —
VEga e Tz

=V .- (Vy) (4.66)
where V is the gradient operator defined in eqn (A.66).

4.8 The Ehrenfest Theorem

The square of the absolute value of the Schroedinger wave function serves as a prob-
ability density in quantum theory. In one dimensional problems, for example, in the
limit dx—0 the quantity P(x, t) dx is the probability that the particle will be found
between x and x + dx, where P(x) = ¥*(x, t) ¥ (x, t). Instead of predicting the actual
values of classical variables like position and momentum, quantum theory predicts a
most likely value called the expectation value. The recipe for finding the expectation
value is: (1) First one forms the classical phase-space function f(x,y, z, px, Py, Pz)
representing the physical variable. (2) One then replaces the classical ¢, p values by
quantum mechanical operators. In the position basis we are using here as an exam-
ple, the operators representing positions x, y, z are just the coordinates themselves,
but for the momenta the substitution in eqn (4.62) must be used. (3) The expectation
value is then

= / / / v f(x,y,z,—ih—, —ih—, —ih—){¥ dxdydz (4.67)
—00 J—00 J —00 ax ay 0z

where we assume throughout that the Schroedinger wave function is normalized to
give a probability of one that the particle will be found at some position,

1= /OO /oo /00 Y dxdydz (4.68)

For example, the expectation of the z-component of angular momentum, L, = xp, —

YPx, 18
L;) = —th/ / / <x— — y{%) Y dxdydz (4.69)

Quantum mechanics also predicts an RMS deviation from the expectation value. It is
defined as

o0 oo oo 9 9 9 2
Afz\// / / Y <f(x,y,z, —ih—,—ih—,—ih—)—(f)) V¥ dxdydz
—o0 J—c0 J—0 ox ay 0z

(4.70)
Quantum mechanics is what is called a cover theory for classical mechanics. This
means that quantum mechanics is the more comprehensive theory and should predict
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all of the classical results obtained in this book, in the limited domain, called the clas-
sical limit, in which classical mechanics is adequate. Roughly speaking, this classical
limit is reached when one may (to some acceptable degree of approximation) ignore
Af and treat the expectation value (f) as if it were the actual value of a classical
phase-space function f (g, p). However, it is difficult to give a general prescription for
this limit, and each case must be approached individually.

The Ehrenfest theorem shows that, with some limitations, the Hamilton equations
of classical mechanics also hold in quantum mechanics.

Theorem 4.8.1: Ehrenfest Theorem
With a Hamiltonian of the general form given in eqn (4.61), the expectation values of
position and momenta obey equations which resemble the classical Hamilton equations,

d 0H(x,y,2, Px; Py> Pz) d d0H(x,y,z, px> Dy, Pz)
— (x;) = —{pi) = —
dt api 0x;

dt
4.71)
where i = 1,2,3 and x; = x, x = y, p1 = px, etc. The expressions on the right, like
<3H(x, Y52, Px> Dy pz)/ax)for example, are obtained by first taking the partial deriva-
tive of the classical Hamiltonian, then making the substitutions from eqn (4.62), and
finally placing the resulting expression into eqn (4.67) to obtain its expectation value.

Proof: In quantum texts, for example Chapter 6 of Shankar (1994), eqn (4.71) is
proved to follow from the Schroedinger equation, eqn (4.65). This proof is general
and is not restricted to the classical limit. O

The Ehrenfest theorem does not allow us simply to replace the classical variables
by their expectation values. For example, in general

(4.72)

<3H(x’yszvpx»py»l7z)> # 8H(<)C>, <y>7 (Z>7 < Px >, < py >, < Pz >)
dx 9 (x)

and the classical limit still requires careful consideration.

4.9 Exercises

Exercise 4.1 This exercise is to emphasize the importance of writing the Hamiltonian in
terms of the correct variable set g, p, t before the Hamilton equations are applied. It shows
that partial derivatives depend not only on the variable differentiated with respect to (¢ here)
but also on the list of variables to be held constant as the derivative is taken. Define

1 1
ut) =a+ 5bt2 and  v(t) = zbtz + et 4.73)
Also define

fu,t)=u+sinwt +ct> and  f(v,1) =a+v+sinwr (4.74)

(a) By writing each out as a function of ¢, prove that the two compound functions are equal,
f(u,t) = f(v, 1) for every value of ¢. (Note that we are following the physicist’s convention
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of using the same letter f for both compound functions, as discussed in Section D.5.)
(b) Calculate af (u, t)/0t and df (v, ¢)/9¢ and show, by considering each as a function of 7,
that they are not equal.

Exercise 4.2 Suppose that a one-dimensional system has Lagrangian

2wt —mgq sinwt (4.75)

L(g,q,t) = %mql2 sin’ wt+mwq1q1 sin wt cos wt + %ma)qu2 cos
(a) Find an expression for the canonical momentum p; and solve it for g .
(b) Find the generalized energy function H (q, ¢, t), and use the result of part (a) to write it
in terms of the correct Hamiltonian variables to give the Hamiltonian H (g, p, t).
(c) Write the two Hamilton equations. Verify that the one for g1 is consistent with your result
from part (a).
(d) Use the Hamilton equation H = 9 H (¢, p, t)/dt to test whether or not H is conserved.

Exercise 4.3 In part () of Exercise 3.1, you derived a reduced Lagrangian L(g‘", ¢\, 1)
for the plane double pendulum, using the free coordinates ¢‘) = 6, 6,.

(a) Find the generalized momenta conjugate to these free coordinates and invert them to solve
for 61 and 6, as functions of the momenta.
(b) Write the reduced Hamiltonian H (q(f ), p(f ). 1) for this problem.

Exercise 4.4 A system with two degrees of freedom has a Lagrangian
L(q, ¢, 1) = agi +2bgi1go +cg3 + f (4.76)

where a, b, c, f are given functions of g1, ¢2, t.

(a) Find the two generalized momenta py (g, ¢, t) and, using Cramer’s rule or otherwise, write
expressions for the g as functions of ¢, p, t.

(b) Write the generalized energy function H(q, g, t) and express it in terms of the proper
phase-space coordinates ¢q, p, ¢ to form the Hamiltonian H (g, p, t).

(c) Verity that the Hamilton equations for g simply restate your result from part (a).

Exercise 4.5 Suppose that we have a Hamiltonian H (g, p, t) and the usual Hamilton equa-
tions

_0H(g.p.1) . _ 0H(g,p.1) . 9H(q, p,1)
Gk = ——"—"— P == H=—""—"

= 4.77
Opr ¢ aqx ot &77)

We want to make a Legendre transformation from H (g, p, t) back to L(q, g, t). Note that
the variables being exchanged are p <> ¢, and that this is the inverse of the Legendre trans-
formation we used to get H in the first place.

(a) Write an expression for L(q, p, t) in terms of H(q, p, t) using the rules of the Legendre
transformation as outlined in Section D.30.

(b) Assume that the first of eqn (4.77) can be inverted to give px = px(q, ¢, t) and show how
this can be used to write L in terms of the correct Lagrangian variables L = L (g, ¢, t).

(c) Write the differential dL and use it to derive the three Lagrange equations

pr=—rr— = H=——

(4.78)
gk G ot
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Exercise 4.6 We know from Exercise 2.3 that any solution of the Lagrange equations with
Lagrangian L (g, g, t) is also a solution of the Lagrange equations with an equivalent La-
grangian L'(q, ¢, t) where

df(q, ) af (g,
L'(g,q,t)=L(g,q,t) + f;qt D =L(q,q, t)-I—Z /4. t) f(aqt 2 4.79)

=1 29k

(a) Let the generalized momenta for these two Lagrangians be denoted

. I

_ BL(q,‘q,t) and  pl= oL (q‘»q,t) 4.80)
dqk G

Write an equation for p; as a function of p; and the partial derivatives of f.

(b) Find the generalized energy function H'(g, ¢, t) corresponding to the Lagrangian L'.

Write it in terms of H (g, g, t), the generalized energy function corresponding to Lagrangian

L, and partial derivatives of f as needed.

(c) Now assume that the original generalized energy function H (g, ¢, t) can be converted to

a Hamiltonian H (g, p, t) in the usual way. Use that fact to write H' as a function of variables

q,p,t.

(d) Solve your expression for p,’( in part (a) for py = pi(q, p’, 1), and use that solution to

write H' in terms of its correct Hamiltonian variables g, p’, t,

H =H'(q,p',t)=H'(q, p—>plq. P, 1), 1) (4.81)

(e) Assume that the Hamilton equations for the original Hamiltonian H hold, and prove that
the Hamilton equations for H' are also true

d0H'(q.p'. 1)
ap;

oH' (q, p’,t
and pgz—ﬂ (4.82)

Gr =
0qi

Exercise 4.7 Charged particles in an electromagnetic field were treated in Section 2.17.
(a) Show that the Hamiltonian derived from the generalized energy in eqn (2.105) is

(ch) Ao _
H=Y" (_" - A(rn’t)/c) (B" o A(rn’t)/c>+q“h>cb(rn nl (483
2my, " '

where p is the canonical momentum defined in eqn (2.104).
(b) Show that the Hamilton equations may be written in vector form as
oH ) oH

=— =— 4.84
v ap, L ory, “454)

(c) Show that the first Hamilton equation simply restates eqn (2.104).

(d) Use the quantum substitution analogous to eqn (4.62) but with the quantum operators>
Z5Note that, when there is a difference, the quantum operators replace p and not the particle momentum p = mv.

See also the discussion in Section 12.13. Equation (4.86) correctly describes a nonrelativistic, spinless, charged

particle in an external electromagnetic field. See, for example, page 387 of Shankar (1994).
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replacing components of the canonical momentum p,

a d 0 d
H i — —ih— —ih— —ih— 4.85
= iho p, = —iho— P, l8y p,~ —ihg (4.85)
to show that the Schroedinger equation for a single particle of mass m and charge ¢ moving
in a given electromagnetic field is

oW —ihV — g MA(r, 1 (—ihV — g WA, ¢
S A e )/cl (Y =g A 0/) L Do e @s6)
m

Note that the V in the first of the two (—i hV — g WA, 1)/ c) factors does operate on the
A(r, t) function in the second one, as well as on W.

Exercise 4.8 In Exercise 2.9 you found the generalized energy functions for a mass on a
rotating table in two different coordinate systems, one fixed and one rotating. You should
use the generalized energy functions and canonical momenta from your previous work as the
starting point of the present problem.

(a) Find the Hamiltonians H(q, p,t) and H'(¢’, p’, t) in these two systems.

(b) Use the Hamilton equations,

. _9H@.p.)

i ad B — 0H'(¢', p', 1)

4.87
ot at (4.87)
to verify your earlier result that H is not conserved but H' is.

Exercise 4.9 Consider a system consisting of a single particle.
(a) Using the phase-space variables g, p = x, y, z, px, Py, Pz, prove that for any phase-space
function f(q, p),

9 9 9
[f(g.p), px] = —af [f(g.p), py]= o [f(q.p), p:]l = 2 (4.83)
X dy 0z

(b) The orbital angular momentum of a single mass is L = r x p. Prove that
[L;,x]=y [L;,y]=—x [L;,z]=0 (4.89)

and
[L;, px] = Py [L,, py] = —Px [L;, p:1=0 (4.90)
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THE CALCULUS OF VARIATIONS

The calculus of variations is of enormous importance, not just in analytical mechan-
ics, but in the whole of theoretical physics. The present chapter introduces it in the
context of the finite-dimensional configuration spaces discussed in previous chapters.
Mastery of this relatively simple form of the theory will provide the background re-
quired to study more advanced topics such as the variations of fields in the complex
spaces of quantum field theory.

To understand what a variation is, imagine a curve drawn between two given
points in a three-dimensional Cartesian space. Such a curve is often called a path
between these points. Now imagine a line integral along that path, integrating some
quantity of interest to us. For example, that quantity might be simply the increment
of distance, so that the integral would give the total length of the path.

Now imagine several different paths between these same two end points. The
integrals along these different paths would, in general, be different. The calculus of
variations is concerned with the comparison of these line integrals along different
paths. The difference between the integral along some chosen path and the integral
of the same quantity along other paths is called the variation of that integral.

For example, if the integrated quantity is total length, we might want to find the
shortest distance between the two points. Just as the minimum of an ordinary func-
tion happens at a point at which its first-order rate of change vanishes (vanishing
first derivative), so the shortest path turns out to be the path whose length is, to first
order, equal to the length of its near neighbors. It is called an extremum path.?® The
variation of the integral about that extremum path will thus vanish to first order.

The presentation of the calculus of variations in the present chapter uses what we
call the General Parametric Method. In it, a path is specified parametrically, by letting
each of its coordinates be a function of some monotonically varying, but initially
unspecified, parameter 8. This method contrasts with some other textbooks in which
one of the coordinates is used as the parameter, and the other variables are made
functions of it rather than of a general 8. The two methods are compared in detail
in Sections 5.14 and 5.15. The General Parametric approach used here has much to
recommend it, and the reader is urged to adopt it.

261n ordinary calculus, after finding a point where the first derivative vanishes, we must evaluate the
second derivative to see if the point is a maximum, minimum, or point of inflection. A similar test would
be required also in the calculus of variations. However, the first-order theory presented in this chapter is
not capable of such a test, so we must accept the extremum determination and try to guess from context
whether the extremum is indeed a maximum or minimum.

88
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5.1 Paths in an N-Dimensional Space

We want a mathematical characterization of paths that can be generalized to spaces
of more than three dimensions. In a three-dimensional Cartesian example we could
imagine a path to be represented by a perspective drawing of it, but that will not be
possible in spaces of higher dimension. So, even in the three-dimensional example, we
will choose to represent a path by giving the three Cartesian coordinates as functions
of a common parameter 8, as x = x (8), y = y(8), and z = z(8), and picturing it
graphically as the three, separate graphs of these three functions.

X y <

/

B B B

F1G. 5.1. A path in a three-dimensional space represented by three graphs.

This Cartesian example is now easily generalized to N-dimensional spaces. A path
is characterized by making each of the coordinates x; of such a space be a function
of some parameter 8 that is unspecified except for the assumption that it increases
monotonically as the represented point moves along the path. Thus, fork =1,..., N,

Xk = xk(B) (5.1)

would be represented by N graphs, each one of a particular coordinate versus f.
Together these N functions and their associated graphs represent a single path in the
N-dimensional space, traced out as 8 advances.

The configuration spaces of mechanics described in Section 2.1, with x; replaced
by gx, are one example of the kind of spaces in which the calculus of variations may
be used. Chapter 6 is devoted to these applications. But the calculus of variations is
more general than this particular application, and may also be used to solve problems
that have nothing to do with mechanics.

Various paths will be given special names. First, imagine that some arbitrary path
x; = xx(B) has been chosen at the beginning of a calculation. This will be called the
chosen path or the unvaried path. It will be considered to run between beginning and
ending values of parameter 8, denoted as 81 and B, respectively, and to have the end
points defined, fork =1,..., N, by

xV=xB)  and  xP =x(B) (5.2)

After defining the chosen path, now consider another path, different from it but
passing through the same end points. This will be called the varied path. A general
way of writing such a varied path is to introduce a single scale parameter da and a set
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of N shape functions n;(8) so that the varied path x; (8, da) is defined by its deviation
from the chosen unvaried one. Thus, fork =1,..., N,

xk(B, 8a) = xi(B) + dani(B) (5.3)

The shape functions are finite, differentiable functions of 8 that are arbitrary except
for the condition

n(B1) = m(B2) =0 (5.4)

which ensures that the varied and unvaried paths cross at the end points. Note that
the scale parameter 8a is a rough measure of the difference between the varied and
unvaried paths, in that the two paths coalesce as §a goes to zero. This scale parameter
is the same for all coordinates x; and the same for the whole path; it is not a function
of the index k or the parameter 8.

5.2 Variations of Coordinates

The calculus of variations is based on comparisons of quantities evaluated on the
varied path with the same quantities evaluated, at the same g value, on the unvaried
path. The difference between such quantities evaluated on the two paths is called the
variation of the quantity. For example, the coordinates themselves can be compared,
leading to the variation 8x;(8) defined, forallk =1, ..., N, by

Sxk(B) = xk (B, 8a) — xi(B) = Sani(B) (5.5)

Note that the comparison happens at fixed g8, but that the variation éx;(8) is itself a
function of B. For example, eqn (5.4) shows that it vanishes at the end points,

Sxr(B1) = xr(B2) =0 (5.6)

Another quantity to compare is the derivative of x; with respect to 8. On the
unvaried path, this derivative is>’

d
) = P

The derivative on the varied path is found by differentiating eqn (5.3), taking account
of the fact that the scale parameter da is not a function of 8. It is

dxr(B, 8a) _ dxi(B) +8a% 5.8)

dp dp dp

(5.7)

or, in a simpler notation,

Xk (B, 8a) = xk(B) + ani(B) (5.9)

2TNote that throughout this chapter we will denote total derivatives with respect to 8 by a dot placed
above the differentiated quantity.
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The variation 8x;(8) is found as the difference between eqns (5.8, 5.7),

o du(Bba)  du(B) . dm(B) .
xr(B) = 4B B da - dane(B) (5.10)
An important consequence of the definition eqn (5.10) is that
d
83Xk (B) = ﬁ(sxk(ﬂ) (5.11)

Note that it follows from the definitions of this section that, for each value of 8,
the values on the varied path can be thought of as values on the chosen path plus a
variation

xi(B, 8a) = xi(B) + dxi(B) and Xk (B, 8a) = %k (B) + 81k (B) (5.12)

@
Xk

Xk

B B B2

FIG. 5.2. Varied (dashed) and unvaried (solid) paths for a typical coordinate xy.

5.3 Variations of Functions

The variation Af of a function f = f (x, x) is defined as the difference between its
values on the varied and unvaried paths, again taken at the same value of 8,

Af = f(x(B,da),x(B.8a)) — f (x(B),%(B)) (5.13)
The difference in eqn (5.13) may be expanded using a Taylor series, giving
. 2 .
Af (9f_<f (B.1) .5 (. ’z>_)> st ) (9 S B.h) 5 B >_) sa? + 0 ()
h= h=

=0 0
(5.14)
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If Af is calculated using only the first term on the right, the resulting quantity is
called the first-order variation and is denoted §f. Thus

5f — (af (x (ﬂ,i;)h,ic(ﬂ, h>)> sa (5.15)
h=0

Such first-order variations, which are the only ones used in the present text, are suf-
ficient to determine extremum paths, but not to determine whether those paths are
maxima, minima, or paths of inflection.

Note that the distinction between the variation Af and the first-order variation § f
was not needed in Section 5.2 when only the coordinates and their derivatives were
being varied. The definition in eqn (5.3) contains da only to the first power, and hence
Ax; = 8x; with a similar result for the derivatives, Ax; = §x.

One may expand the first partial derivative with respect to & in eqn (5.15) using
eqns (5.3, 5.9) and the chain rule, giving

5f = Z(af(x X) dxx (B, h) " af (x, x) 9xx (B, h))
h_

- da
oh Xy oh

=0

B
—Z( LD n(pysa+ L kos)aa)

k=1 0%k
N . .
-y (m&ck(ﬁ) + af(—f"x)axk@) (5.16)
- Xk 0X

where it is assumed that after the partials of f are taken, they are to be evaluated on
the unvaried path with 2 = 0.

5.4 Variation of a Line Integral

The interesting applications of the calculus of variations involve variation of line in-
tegrals along paths. A line integral of a function f (x, x) is taken along some line
between end values 8jand B, as

B2
I =/; £ (x(8).5(B)) dp (5.17)

When taken along the varied path, this integral I is a function of the scale parameter
8a, and a functional of the chosen, unvaried path x(8) and the shape function n(8).
It may be defined as

B2
I (8a, [x], [nD =/ f(x(B,8a),x(B,8a)) dp (5.18)

Bi

where the quantities in square brackets indicate functional dependence on the en-
closed functions.?® The line integral along the chosen or unvaried path is the same

28 functional is a function of a function. The [x] indicates that I (8a, [x], [7]) depends on the whole of
the function x(B) for all values 8; < B < B».
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integral, but with §a =0,

B
10, [x], [n]) = f F(x(B) . 2(B)) dB (5.19)

Bi

The variation of I is by definition the difference between these two integrals,
Al =1 (8a, [x], [n]) — 1 (0, [x], [n])

B2
=/ﬁ {f (x(B.8a),%(B,8a)) — f (x(B),x(B))} dB

B2
_ / Af dB (5.20)
B

1

where Af is the variation defined in eqn (5.13).
Since the scale parameter da does not depend on 8, inserting Af from eqn (5.14)
into eqn (5.20) gives

P (of (x (B.h). % (B. )
AJ — dp ;o
[ (o) o

1 (P2 (8%f (x (B.h),% (B, 1)) > >
+{§/ﬁ ( e )h_odﬁ}&z +0(8a> (5.21)

Using eqn (5.15), the first-order term in the variation AI may be written as

B : B
! 2/ 2 <8f — h)’x(ﬂ’h))> sadp = [ o dp (5.22)
Bi oh h=0 B1
Substituting eqn (5.16) for §f gives
of = Z(af D b k(B) + o )'C)afck(ﬁ)> dp (5.23)
ﬂl k=1

It will be useful to modify eqn (5.23) slightly, using eqn (5.11) to do an integration by
parts,

af (x, x) of (x,x) d )
5l = 5x —ox d
A 1;< KB+ = 7 «(B) | ap
of (x, x) of (x,x) af (x, x)
/ﬁl ;{ 5x <ﬁ)+@< e (ﬂ)) dﬁ( 0 )M(ﬂ)}dﬁ

(5.24)

The perfect-differential term may be integrated immediately to give an integrand
evaluated at the end points.
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Thus, the first-order variation of the line integral reduces to the expression,

N . B B N . .
_ af (x, %) B d (3f (x, X)) 9f (x,X)
s1=3 (e Pans) A Sl (5e2) - L an as

k=1 axk k=1
(5.25)

5.5 Finding Extremum Paths

The typical use of the calculus of variations is to find paths that give extremum values
to various line integrals. By definition, an extremum path is such that it, and all nearby
paths that cross it at the end points, produce the same value for the line integral, to
first order in da. In other words, the chosen unvaried path is an extremum if the first-
order variation vanishes, § = 0, in analogy to the vanishing of the first derivative at
the extremum points of functions in ordinary calculus.

The main theorem of the calculus of variations may now be stated.

Theorem 5.5.1: Euler-Lagrange Theorem
Assume a chosen unvaried path xi (B8), varied paths xi (B, 8a) = xi(B) + dxx(B) as
defined in Sections 5.1 and 5.2, and a line integral

B2
I = f(x,x)dB (5.26)
Bi

along those paths as specified in Section 5.4.

With the variations 8xi(B8) assumed arbitrary except for the condition that they van-
ish at the end points as stated in eqn (5.6), the unvaried path is an extremum path of
this integral, with vanishing first-order variation 81 = 0, if and only if the x;(B) of the
unvaried path are a solution to the Euler-Lagrange differential equations>’

d <8f (x,)'c)) Cfh)

0 5.2
dap X, 0Xy (5.27)

fork=1,...,N.

Proof: First, we assume eqn (5.27) and use eqn (5.25) to prove that §7 = 0. Since
eqn (5.27) holds for each value of k and B, the integrand of the second term on the
right in eqn (5.25) vanishes identically and so the integral is zero. The first term also
vanishes due to the assumed vanishing of the variations at the end points. Thus §7 = 0
regardless of the dx;(B) used, as was to be proved.

The proof that §7 = 0 implies eqn (5.27) also uses eqn (5.25). Assuming that
81 = 0, and that the variations vanish at the end points, the first term on the right of

29These equations are conventionally called the Euler-Lagrange equations, presumably to distinguish
them from the Lagrange equations of mechanics, which have virtually the same form. One of the first uses
of extremum principles was Fermat’s Principle (see Section 5.6), but Euler made the first clear statement
of the calculus of variations as a general computational method.
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eqn (5.25) is zero, giving

BN (d (of x, %)\ of (x %)
0=351 = £ 5 d 5.28
4 ng( : ) }(mﬁ (5.28)

1 Z)xk

Since the 8x;(B8) are arbitrary, they can be set nongero one at a time. Suppose, for
definiteness, we set all of them to zero except §x5(8). Then the sum in eqn (5.28)
collapses to just the k = 5 term,

B ; v B
ozuzfﬂi(wgw)—W“”kmmw=/ﬂwmmwwﬂ
B dﬁ 3)(5 Bi

) X5

(5.29)
where I's(B) stands for the quantity in the curly brackets. Now, exploiting the arbi-
trariness of dxs5(8) = ns(8) da, choose some arbitrary value 8; < By < B> and define
ns(B) to be a continuous and continuously differentiable function which is zero except
in a small range of 8 values By — ¢ < B < Bp + ¢, and non-negative within that range.
For example, one may choose n5(8) = exp{—1/y2} where y = /¢2/(8 — Bo)? — 1.
Then, using the mean value theorem of the integral calculus to collapse the integral,
eqn (5.29) reduces to

0 = T's(By + 6:¢) C da (5.30)

where 6, is some number in the range —1 < 6, < 1, and C > 0 is the integral of
ns over its nonzero range. This implies that, for any nonzero ¢ value, I's(Bg + 6¢) is
zero for some 6. Since the function f is assumed to be continuously differentiable,
the function I's(B) is continuous. Taking the limit as ¢ — 0 then gives I's(8y) =
lim, 0 I'5(8o + 6:€) = 0, and so

(5.31)

0=Ts(ho) = {dﬁ ( X5 0Xs5

But, since k = 5 and By were arbitrarily chosen, any values may be chosen instead
and so eqn (5.27) must be true for any k and B values, as was to be proved. When
Bo is one of the end values B; or 8, eqn (5.31) follows from its validity for interior
values and the assumed continuity of I's. O

of (x, x)) B Bf(x,)'c)H
B=Bo

Note that not every chosen unvaried path is an extremum path. It is quite possible
to choose some unvaried path and define a varied path based on it, only to find that
81 # 0. But if we choose an unvaried path that satisfies eqn (5.27), then we can be
sure that it is an extremum path with 6/ = 0. Such a path can always be found,
since the Fuler-Lagrange equations in eqn (5.27) are N differential equations in N
unknowns and so in principle can be solved exactly.

5.6 Example of an Extremum Path Calculation
In optics, Fermat’s Principle says that light rays always travel on paths that make
the phase transit time 7' an extremum.® Denoting the phase velocity of light by v,

30Calling this Fermat’s principle of least times, as is often done, is inaccurate. It is actually Fermat’s
principle of extremum times. For example, all rays going from an object point to a focus point through a
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the time required for a wave crest to traverse a distance ds is dT = ds/v = nds/c
where n is the index of refraction, and ¢ is the vacuum speed of light. The quantity
nds = dO is an increment of what is often called the Optical Path Length O. Thus,
since dT = dO/c it follows that T = O/c and Fermat’s principle may be restated by
saying that the ray paths make an extremum of the integral defining the optical path
length,

2
0= / n(x,y, z)ds (5.32)
1
To rewrite eqn (5.32) in a form that can be treated by the calculus of variations, let

x,y,z be functions of a monotonic parameter 8 so that, denoting derivatives with
respect to B by a dot as usual,

ds = /X2 +y2 +24dB (5.33)

The line integral to be made an extremum becomes
B2
0=/ n(x,y,z)/ x>+ y2+z2dp (5.34)
B

With x; = x, x; = y, and x3 = z and with

f, %) =n(x,y,2)\/x2+ 32+ 22 (5.35)

Theorem 5.5.1 says that O will be an extremum along an unvaried path that is a
solution to the three Euler-Lagrange equations, eqn (5.27), for k =1, 2, 3,

d [9f (x,X) af (x,x)

dp < % > T Y (5-36)
d <8f (x, )%)> _® (5.37)
dp ay dy

d [9f (x, %) af (x,x)

@ < 0z > 8z 0 38)

Inserting eqn (5.35) into these equations gives the three equations

d : s

4oy DX ) faggegpe 22D (5.39)
ap \ i+ +22 0x

d Y, \ R . . d s Vs

A (297 ) faggege M09 (5.40)
dp \ P2+ 32+ 22 ay

d ' 9

d [ n(xy2)z _\/m nx, .2 _ (5.41)
dp \ 2132+ 22 92

perfect lens will have the same phase transit times.
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The three eqns (5.39 — 5.41) are equivalent to the single vector equation

d n(x,y,z) dr 2 L2
— =) - X+ 3" +2* Vn(x,y,2) =0 (5.42)
apg (,/x2+y'2+z'2 dﬁ)

which can be used to determine the extremum path.

Throughout the development so far, we have taken care not to specify the parame-
ter 8. It can be any quantity that increases monotonically along the unvaried path. But
now, after all partial derivatives are taken and the final form of the Euler-Lagrange
equation, eqn (5.42), has been found, we are at liberty to make a choice of g that will
make its solution easier. One choice that is particularly appropriate to this problem is
to choose B equal to the arc length s measured along the unvaried path starting at
point 1.3! Then g = s implies that

ds ds
24242 =""=2"_ 5.43
V243242 BB ds (5.43)

on the unvaried path, so that eqn (5.42) simplifies to

4 (nt) = vn=0 (5.44)
ds

where t = dr/ds is the tangent unit vector defined in Section A.12. By inspection of
this equation we can see that the path will curve in the direction of increasing index of
refraction, giving, for example, a rough explanation of the desert mirages that occur
when surface heat makes n smaller at the surface.

As a byproduct of this example, we can also prove that the extremum distance
between two points is a straight line. If we set n (x, y, z) = 1 in the above problem,
then the optical path length becomes just the geometrical path length, or distance. It
follows that the extremum of geometrical path length is gotten by setting n = 1 in
eqn (5.44), giving simply

dt

= =0

ds
But, as can be seen by reference to Section A.12, a path whose unit tangent vector is
a constant is a straight line.

This Fermat’s Principle example shows the utility of the General Parametric Method
which leaves the parameter 8 unspecified until after all partial derivatives have been
taken and the Euler-Lagrange equations obtained. Upon examination of eqn (5.42),
it appeared that the choice 8 = s allowed it to be simplified, and recast as a rela-
tion among Serret-Frenet vectors. In some other problem, examination of the Euler—
Lagrange equations might suggest a different choice for 8. (See, for example, Section
5.8.) By retaining 8 as an unspecified monotonic parameter until the end of calcula-
tions, one obtains the maximum flexibility in problem solution.

(5.45)

311t is important that this s be measured along the unvaried path. The arc lengths along the varied paths
would depend on Sa, which would violate the condition that variations compare quantities at the same 8
value.



98 THE CALCULUS OF VARIATIONS

5.7 Invariance and Homogeneity

In Section 5.6, the integrand of the variational integral was the arc length ds weighted
by a scalar function n(x, y, z). This integral was translated into general parametric
form by writing ds = /X2 + y% + 72 dB.

In undergraduate texts, variational integrals are often presented in a form such as

dy dz
I = VY, 2, —, — | d 5.46
/g(x Iz dx dx) * ( )

in which the integration variable is one of the coordinates, here x for example, rather
than a general parameter 8. These integrals can always be recast into general para-
metric form by writing dx = x dB, where x = dx/dp in the notation being used in this
chapter. Then writing dy/dx = y/x and dz/dx = z/x gives

1= /g (x,y,z, ol di)dx = /g (x,y,z, 2, i)xdﬂ =/f<x,y,z,x,y',z)dﬁ
dx dx X X

(5.47)
with o
s . y z

fx,y,2,%,9,2) =xg (x,y,z, <, —.) (5.48)
X X

The general parametric method can then be applied with f(x, y, z, %, y, 2) as the in-

tegrand.

Both the function in eqn (5.35) and the f in eqn (5.48) are seen to be homoge-
neous of degree one in the set of derivatives %, y, 7.3? This homogeneity is an essential
element of the general parametric method. The integral I is equal to some physical
or geometrical quantity that is to be extremized. The parameter § is just a dummy
integration variable with no physical or geometrical significance. Its replacement by
some other monotonic parameter § = 6(8) must not change the value of the integral
I. Thus

I—fﬁzf(x X) dBg = elf(x x/) de—/ﬁzf(x (xd—ﬂ>> ﬁd,B (5.49)
B Bi ’ B 02 ’ B Bi "\ do dp .

where x; = dx;/d6 and hence x; = ix(dB/d6), as has been indicated in the integrand
of the last expression on the right. This equality holds for any values of the limits
x,ﬁl) = xx(B1) and x,ﬁz) = x;(B2) and for any choice of path between them. It follows
that the integrand f(x, x) must satisfy the relation

fx,x)=f (x, (x%)) % (5.50)

The required invariance under a change of parameter thus implies the homogeneity
of f, as stated in the following theorem.

32Homogeneous functions are defined in Section D.31.
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Theorem 5.7.1: Homogeneity

The value of the integral I is unchanged when parameter B is replaced by any other
monotonic parameter 6§ = 6(B) if and only lf the integrand f(x, x) is homogeneous of
degree one in the set of derivatives x = X1, X2, ..., XN.

Proof: Equation (5.50) can be written as
[, (L) =Af (x, %) (5.51)

where L = dB/d6 is an arbitrary nonzero number. By Theorem D.31.1, this is the
necessary and sufficient condition for f(x, x) to be homogeneous of degree one in
the set of derivatives x. O

It follows from the homogeneity of f that the Euler-Lagrange equations are also
parameter independent.

Theorem 5.7.2: Invariance

If 6 = 0(B) is any monotonically varying parameter, then the x;(8) are a solution to the
Euler-Lagrange equations with parameter B, as shown in eqn (5.27), if and only if the
x;(0) = xx (B(0)) are a solution to the Euler-Lagrange equations with parameter 9,

i 8f(x,x’) _Bf(x,x/)zo (5.52)
do )

dx;, Xy
fork=1,..., N, where x; = dx;/d6.

Proof: From Theorem 5.5.1, and a similar theorem with g replaced by 6, the Euler—
Lagrange equations in B and 4 hold if and only if

01

B
0= 6/ ’ f(x,x)dB and 0= 8/ f (x,x’) do (5.53)
Bi 12

2

respectively. But, eqn (5.49) shows that the two integrals in eqn (5.53) are equal. Thus
solution of the Euler-Lagrange equation in 8 implies the vanishing of both variations
in eqn (5.53), which in turn implies the solution of the Euler-Lagrange equation in 6.
The same argument holds with 8 and 6 interchanged. O

The homogeneity of the integrand f(x, x) also has the consequence that the N
Euler-Lagrange equations are redundant; only (N — 1) of them are independent.

Theorem 5.7.3: Redundancy

The Euler-Lagrange equations are redundant. If some set of functions x(8) satisfies the
Euler-Lagrange equations in eqn (5.27) for k = 0,1,2,..., (- 1), +1),...N, then
the Euler-Lagrange equation for index [ is also satisfied, except possibly at points where
X =0.
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Proof: From the Euler condition, Theorem D.31.1, the homogeneity of f (x, x) proved
in Theorem 5.7.1 implies that

N 9 .
0=Y" %kx)xk ) (5.54)

k=1

Differentiating this expression with respect to 8 and using the chain rule gives

0= é {xk% <3f§;kx)) N afg);],cx)xk B af;;,cx))_ék B af;ij)*k}
el () -
Thus
i {% (afé;ﬂ) - af;a;;x)} _ _é)&k {% (Bfgikx)) B af;i;x)} .56
from which the theorem follows. -

5.8 The Brachistochrone Problem

The general parametric method is particularly valuable when a proposed solution to
the Euler-Lagrange equations is written in terms of some parameter that is not itself
one of the variables of the problem. Then we can simplify the calculations by setting
B equal to that parameter.

For example, the solution to the brachistochrone problem is known to be a cycloid,
the locus of a point on the circumference of a circle that rolls without slipping on a
line, usually written as

x =a(f — sin0) y=a(l—cosh) z=0 (5.57)

where 6 is the angle through which the circle has rolled. The Euler-Lagrange equa-
tions for this problem will be obtained below as usual, with 8 not yet specified. Then,
after all partial derivatives have been taken, 8 can be set equal to 0 to test whether
or not eqn (5.57) is a solution. And, due to the redundancy noted in Theorem 5.7.3,
only the two simplest of the three Euler-Lagrange equations will need to be tested.

The brachistochrone problem seeks the shape of a frictionless wire stretching be-
tween (0,0, 0) and (x®, y®, 0) such that a bead of mass m sliding on the wire in a
uniform gravitational field g = g&, moves from the origin to the final point in min-
imum time 7. By methods similar to those used in Section 5.6, and using energy
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(x@,y®,0)

y

FIG. 5.3. Mass m slides on wire from origin to point =@, y(2)7 0) in minimum time.

conservation to get the speed of the bead v, the problem reduces to finding the ex-
tremum of the integral

d B[22 324 22
[=Ty2g = /zg/_s 2/ AV (5.58)
v B y

With x; = x, x = y, x3 = z, and

w2 “2 52
Fl i) = ‘/% (5.59)

the Euler-Lagrange equations, eqn (5.27) for k = 1, 2, 3,

d <8f(x,)'c)> A (k%) _o (5.60)
dp ¢ - ’

0X 0Xy

reduce to the three equations

X

=C (5.61)
y ()22 +y2 +22)

d )'z x2+y + 22 Z .
P\ [y 52+ 2) V Jy (2452 422)

(5.62)

where C| and C; are integration constants.

The z-equation can be dealt with at once. Since the square root denominator is
real and positive for the whole of the path, the second of eqn (5.62) implies that z
can never change sign. Thus, since 8 is monotonic, the function z = z(8) can pass
through both the initial and final points (both with z = 0) only if z = 0 for the whole
path and C, = 0.

The other simple equation, eqn (5.61), can now be tested. Use the flexibility of the
general parametric method to choose 8 = 6, where 6 is the cycloid parameter in the
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proposed solution eqn (5.57). Then, with x = dx/d0, etc., the left side of eqn (5.61)
reduces to 1/+/2a which is indeed a constant, and can be used to determine C;.

Since y = dy/d6 # 0 except at the isolated point § = 7, Theorem 5.7.3 shows that
the more complicated equation, the first of eqn (5.62), does not need to be tested. It is
satisfied automatically due to the redundancy of the Euler-Lagrange equations. Thus
eqn (5.57) does define the extremum path when the radius « is adjusted so that the
cycloid curve passes through the final point (x®, y . 0).

5.9 Calculus of Variations with Constraints

Suppose now that we want to find the path that makes the integral in eqn (5.17)
an extremum, but now subject to C holonomic constraints. These constraints are
expressed by writing a functionally independent set of C functions of x and then

requiring that the coordinates x; for k = 1,..., N and at each 8 value be such as to
make these functions identically zero. Thus, fora =1,...,C,
0=G,(x) (5.63)

Using the definitions of unvaried path, varied path, and variation developed in Sec-
tions 5.2 and 5.3, these constraints are assumed to hold both on the unvaried path
0 = G,4(x(B)), and on the varied path 0 = G,(x(8, 8a)). It follows that AG, =
G,(x(B,8a)) — G,(x(B)) is zero. Since the scale parameter §a is an arbitrary con-
tinuous parameter, it follows that the first-order variations §G, are zero also. Thus,
fora=1,...,C,

8G, =0 (5.64)

Theorem 5.9.1: Euler-Lagrange with Constraints
The integral
B2
I = f(x, %) dB (5.65)
Bi

will be an extremum, with §I = 0 for variations that vanish at the end points but are
otherwise arbitrary except for the constraints in eqn (5.63), if and only if there exist C
functions A, such that, fork =1, ..., N,

(5.66)

i(af(x,)'c)) f () _ik 3G, (x)
dp dxx dxk _azl O axg

Together; eqns (5.63, 5.66) constitute N + C equations in the N + C unknowns
X0s - +-» XN, AL, ..., Ac and so can be solved to find the extremum path. The functions
Lq are called®® Lagrange multipliers.

33In Chapter 2, the similarly denoted values A, were related to the forces of constraint. But the theory in
the present chapter is more general. The Lagrange multipliers appear also in problems having nothing to
do forces or with the Lagrange equations of mechanics.
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Proof: Using the definitions in Section 5.3 for variation of a function, the condition
3G, = 0 in eqn (5.64) may be expressed as a set of linear equations to be satisfied by

the 8xg,
N

0=05Gs= ) gakdx (5.67)
k=1
fora=1,...,C, where the C x N matrix g is defined by
gui = 200 (5.68)
Xy
The condition for the functional independence of the constraints is that matrix g
must be of rank C and hence have a C-rowed critical minor. As was done in the proof
of Theorem 3.4.1, we may reorder the coordinate indices so that this critical minor is
formed from the C rows and the last C columns of g. Then, the C x C matrix g®
defined by
8 = gaN—C+j) (5.69)

will be nonsingular and have an inverse g !, since its determinant is the critical
minor and hence is nonsingular by definition. Thus eqn (5.67) may be written as

N-C C
0=0Ga= Y gaibx;” + > g06x%) . (5.70)
i=1 j=1

which breaks the expression into two sums, first over what will be called the free coor-
dinates, x/) = xj,...,xw_c) and then over the bound coordinates x® =
X(N—C+1)s - - -» xN. Then eqn (5.70) can be solved for the variations of the bound co-
ordinates in terms of the variations of the free ones,

C (N=C)
) — ()1 62)
SX(N—cij =~ § : § 8ja 8aidX (5.71)

a=1 i=1

Now to the main part of the proof. First we prove that, with the constraints, the
extremum condition §/ = 0 implies eqn (5.66). The &I here is the same as that derived
earlier and given in eqn (5.25). Using the assumed vanishing of the variation at the
end points to eliminate the integrated term, the assumed condition §/ = 0 becomes

BN (d (of x,%)\ af (x,%) b
0:81:/131 kg{@( 2% )— ™ }8xkd,3= A k;rkaxkdﬂ (5.72)

where the notational definition

(5.73)

d (af (x,)'c)) CAf @b

L =— -
0Xy 0Xy

has been introduced. If the variations §x; were all arbitrary and independent, as was
assumed in Section 5.5, then eqn (5.72) would have the immediate consequence that
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'y = 0 for all k. But eqn (5.71) shows that the bound variations are not independent.
Writing eqn (5.72) with separate sums over free and bound variables, substituting
eqn (5.71) to eliminate the dependent variations, and reordering some finite sums,
gives

R S f ®)
0=46I = / Z iéx; " dB + / Z F(N_C+J)5x(N—C+j) dp
ﬂl i=1 ﬁ] J=1
g, N=C) c c "
- / - Z Z Cov- Cﬂ)g]a 'gai dx;” " dp (5.74)
p i=1 a=1 j=1
With the definition
c
b)—1
ko =D T(-c+))8); (5.75)

J=1

eqn (5.74) becomes

pr N=0)
_51_/ > (F —Zkaga,)éx(f)dﬂ (5.76)
B i=1

a=1

But the variations of the free variables 3xl.(f ) fori = I,...,(N — C) are independent.
The solution in eqn (5.71) satisfies the constraint equation, eqn (5.67), regardless of
the choices of the Sxi(f ). Thus an argument similar to that in Section 5.5, with 8xi(f )
set nonzero one at a time in eqn (5.76), shows that §/ = 0 implies

i — Z)\agai =0 (5.77)

foralli =1,..., (N —C) and all values of 8, which establishes eqn (5.66) for the free
variables.

To see that the eqn (5.66) also hold for the bound variables, write an expression
like eqn (5.77), but for the bound indices, and substitute eqn (5.75) for A, into it.
Thus, forall j =1,...,C,

c c
b
Fiv—c+j) — Z)»aga(N—Cﬂ) =Tw-c+j) — Z)»agf,/)
a=1 a=1
1
=Tw-c+j) — ZZF(N c+z)g( . gf,,)
a=1[=1
c
=Tw-ctj— P Tn—cind =0 (5.78)

=1

Thus eqn (5.66) holds for all values k = 1, ..., N, as was to be proved.
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To prove the converse, that eqn (5.66) implies that §I = 0, note that after the
constrained variations have been eliminated, the variation §7 is equal to the right
side of eqn (5.76). But eqn (5.66) implies that the integrand in this right side vanishes
identically. Thus 61 = 0, as was to be proved. O

5.10 An Example with Constraints

Suppose that we want to find the extremum path between two points on the surface
of a sphere. Such a path is called a geodesic. Using coordinates x; = x, x, = y, and
x3 = z, the integral to be extremized is

2 B2
S:/ ds=/ Jx2 4+ 32+ z2dB (5.79)
1 Bi

0=G(x)=/x2+y2+72—a (5.80)
Frh) = A2+ 52 42 (5.81)

the constrained Euler-Lagrange equations for k = 1,2, 3 are

and the constraint is

Using eqn (5.66) with

d (8f (@c)) _fa ) _, 0G1i() (5.82)
d,B ox ox 0x

d <8f (x_,x)) _dwdH 361w (5.83)
dpB 3y dy dy

d [(3f (x,%) af (x,%) . 3Gy (x)

o ( > ) SAmD 2 (5.84)

The three equations obtained by inserting eqns (5.80, 5.81) into these equations can
be combined into a single vector equation

d 1 dr r
— ] = (5.85)
dp\ 2452422 dp a

where the constraint was used after the partials were taken to replace \/x2 + yZ + z2
by a.

If, as we did in Section 5.6, we now choose 8 to be the arc-length s measured
along the unvaried path starting at point 1, eqn (5.85) can be simplified further to
give .

= (5.86)
ds a
where t = dr/ds. Using Serret—Frenet methods from Section A.12, along with eqn
(5.80) in the vector form /r - r = a, eqn (5.86) can be used to prove that the geodesic
is a great circle, the intersection of the spherical surface with a plane passing through
the center of the sphere.
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5.11 Reduction of Degrees of Freedom

The method of Lagrange multipliers treated in Sections 5.9 and 5.10 has the advan-
tage that it treats all the coordinates symmetrically, which avoids upsetting the nat-
ural symmetry of the problem. For example, this allowed the three Euler-Lagrange
equations to be combined neatly into one vector expression, eqn (5.86).

However, in some problems the easiest method is simply to eliminate the con-
strained variables at the outset. Assume that the coordinates have been relabeled as
was done in the proof in Section 5.9, with free coordinates x/) = x, .. S, X(N=C)
and bound coordinates x®) = x(y_c+1), ..., xy. Then, by construction, |g®| # 0
where g® is the matrix defined in eqn (5.69). But, from Theorem D.26.1, this is the
necessary and sufficient condition for the constraint equations

0= G, (x) (5.87)
fora=1,...,C, to be solved for the bound variables in terms of the free ones, with
the result forall j =1,...,C,

() _ .® ) f) _ b f)
X(N—C+j) = X (N—C+)) (x1 , ""x(N—C)) = X(N—C+)) (x / ) (5.88)

These equations can then be differentiated using the chain rule to obtain

dx(b) '
.(b) (N=C+j)) .(b) .
AN_caj) = T =X(N-_C+)) (x(f), x(f)> (5.89)

These expressions for the bound variables and their derivatives can then be sub-
stituted into the integral in eqn (5.65) to eliminate the bound variables, giving

B
I =/ ’ F (x50 ap (5.90)
Bi

where
7 (x(f), )-C(f)) —f (x(f)’ x® Dy, 5D O () )-C(f))) (5.91)

is obtained by writing f with the free and bound variables listed separately as
f=f(x,x® 20 +®) and then substituting eqns (5.88, 5.89) for the bound
ones.

Now;, eqn (5.90) can be taken as the start of a new problem with no constraints,
which can be solved by the methods of Section 5.5.3* Thus, the extremum condition
is just eqn (5.27) with f replaced by f and the number of variables reduced from N

34The redundancy of the Euler-Lagrange equations proved in Theorem 5.7.3 will still apply to this new
problem. If constraints have reduced the number of Euler-Lagrange equations from N to N — C, then under
the conditions of that Theorem, satisfaction of N — C — 1 of them will imply satisfaction of the remaining
one.
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to (N —C). Thus, fork=1,...,(N —C),

d f(x(f),)'c<f)) 3f(x(f),)'c(f))
% Xy a 0xk

=0 (5.92)

Whether this reduction method is superior to the Lagrange multiplier method of
Section 5.9 depends somewhat on the choice of the original coordinates before the
reduction is done. If original coordinates are chosen that reflect the symmetry of the
constraints, the reduction method is often quite simple. In the next two sections we
give two examples of the reduction method, the first with a nonoptimal choice of
original coordinates, and the second with a better choice.

The use of holonomic constraints to reduce the number of dimensions of an ex-
tremum problem is quite straightforward. We have simply solved for the bound coor-
dinates and eliminated them from the integral whose extremum path is to be found.
This simplicity contrasts to the similar problem in Section 3.8, where we had the
additional difficulty of accounting for the forces of constraint.

5.12 Example of a Reduction

Consider again the problem of finding the geodesics on a sphere of radius a, using
the same Cartesian coordinates as in Section 5.10. Then, restricting our attention to
paths entirely on the upper hemisphere, the constraint equation

0=G1(x) =/x2+y2+z72—a (5.93)

(f)
1

can be solved for the bound variable x, ° = z in terms of the free ones x,”’ = x and

W=,

(b)
3

2 x2—y2 (5.94)

I =4/a

Substituting this equation and its derivative into f (x, x) = /X2 + y2 + z2 from eqn
(5.81) gives

. N 1/2
) DY (2 2, GX+yY)
f(x X )_<x + +—a2—x2—y2 (5.95)

from which we obtain the two reduced Euler-Lagrange equations for the free vari-
ables withk =1,2

7 (x(D £ 7 (x(H 3
i(Bf(x i ))_Bf(x A 5.96)
ap 0x 0x
d (0F (XD HD)\ aF (x9,#0)

@ < a)'; - ay =0 (5.97)

which may be solved for the extremum path.
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5.13 Example of a Better Reduction

In Section 5.12, we used the constraint to eliminate the z variable. It is often much
simpler to take the preliminary step of choosing a set of coordinates appropriate to
the symmetries of the constraints, and then eliminate one of the variables.

Let us return again to the problem of the extremum path on the surface of a
sphere, but now using the coordinates xl(f ) — 0, xé‘f ) = ¢, and xéb) = r where 1,60, ¢
are spherical polar coordinates. These coordinates are more appropriate for the spher-

ical constraint. Then

2 B2 B B
S = / ds = / \/,;2 + 7262 + r2sin® 6 ¢2 dg (5.98)
1 Bi

Due to the clever choice of coordinates, the constraint is reduced to a function of
one variable only. Moreover, it can be solved to give the actual value of r, not just its
expression in terms of the other variables,

0=Gi(x)=r—a (5.99)

Putting the constrained values r = @ and 7 = 0 into

f(x, %) = \/ﬂ + 1262 4 r2sin” 0 $2 (5.100)

gives the reduced function

f (x<f>, W, ,3) = \/a2é2 + a2 sin? 6 ¢2 (5.101)

and hence the two reduced Euler-Lagrange equations

F(x(_+(D F (x5
i(af(x X ))_ of (x\V, % ):0 (5.102)
dp 30 90

F (x5 F (x5
i(af(x g ))_ of (€. &D) (5.103)
dp 3¢ ¢

which may be solved for the extremum path.

5.14 The Coordinate Parametric Method

In the general parametric method presented in this chapter, the integration parameter
B in the line integrals is left unspecified until the end of the calculation, when it is
selected to make the Euler-Lagrange equations as simple and transparent as possible.
Some other textbooks, particularly undergraduate ones, instead choose a particular
one of the variables as the integration parameter, and do so at the beginning of the
calculation rather than at the end. Let us call this use of one of the coordinates as the
integration parameter the coordinate parametric method.
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Since the reader is likely to have studied the calculus of variations from those
texts at some point, and since the traditional form of Hamilton’s Principle presented
in Chapter 6 closely resembles the coordinate parametric method, it will be useful to
state and prove the Euler-Lagrange equations for that method.

Suppose that, after rearranging the coordinates if necessary, we denote the coor-
dinate selected to be the integration parameter in the coordinate parametric method
by x;. Derivatives of the other coordinates with respect to x; will be denoted by x; so
that x; = dxy/dx. The integral to be extremized in the coordinate parametric method

may then be written as
@)

X1
/
I = /x(“ g(x, x{y) dxi (5.104)
1
where xy, ..., xy are the remaining variables and xEI] = x}, ..., x), are their deriva-
tives with respect to x;. (Here x stands for all of the variables, x, ..., xy, and x(;

stands for all of the variables except x;.)

Theorem 5.14.1: Coordinate Euler-Lagrange Theorem

Assume that the variable x| chosen to be the integration parameter of the coordinate
parametric method varies monotonically along the unvaried path. Then the first-order
variation of eqn (5.104) vanishes, 81 = 0, for arbitrary variations of the xa, ..., xn
variables with fixed end points (and no variation of x| itself), if and only if the unvaried
path x; = x;(x) is a solution to the Euler-Lagrange equations

d (ag(x,xf”)) _ag(x.xp)

E Bx,/{ axk

=0 (5.105)

fork=2,...,N.

Proof: The condition that x; must vary monotonically is essential. For if x; were
to be constant along some region of the unvaried path while other coordinates var-
ied, the derivatives x; = dxi/dx; would be infinite and the method would fail. The
present theorem can be proved by setting § = x; and ¢ = f in Theorem 5.5.1. The
only difficulty is that 8 does not appear explicitly in f(x, x), whereas x; does appear
in g(x, x{l]). But a close inspection of the proof of Theorem 5.5.1 reveals that the
presence of B8 in f would not invalidate the theorem. d

The coordinate parametric method may also be used for problems with constraints.

Theorem 5.14.2: Coordinate Method with Constraints

Assume that the variable x| chosen to be the integration parameter of the coordinate
parametric method varies monotonically along the unvaried path. Suppose that the vari-
ations are arbitrary except for the constraints, fora =1, ..., C,

G,(x)=0 (5.106)

Then, again with fixed end points, the first-order variation of eqn (5.104) vanishes, §1 =
0, if and only if the chosen unvaried path x; = xx(x1) is a solution to the Euler-Lagrange
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equations

i <8g(x, x[’l])> B og(x, x[/l]) _ ZC:)» 0G4 (x) (5.107)

dx dx; Xy Xy

a=1

fork=2,...,N.

Proof: As noted in the previous theorem, the condition that x; must vary monotoni-
cally is essential. To prove the present theorem, set 8§ = x|, f = g in Theorem 5.9.1.
The only difficulty is that x, appears explicitly in g(x, x{;}) and G (x) but g does not
appear explicitly in the f(x, x) and G(x) of Theorem 5.9.1. But examination will re-
veal that the proof of Theorem 5.9.1 remains valid even with a explicit dependence
of these quantities on . O

One problem with the coordinate parametric method is that we have N coordi-
nates xi, ..., xy but only N — 1 Euler-Lagrange equations. Compared to the general
parametric method in which there is an Euler-Lagrange equation for each coordinate,
the Euler-Lagrange equation involving partial derivatives with respect to x; has got-
ten lost. This lost equation can be recovered by what is often called the second form
of the Euler-Lagrange equations.

Theorem 5.14.3: Second Form of Euler-Lagrange Equations
The lost Euler-Lagrange equation in the coordinate parametric method may be recovered
by defining the second form h as

N

Bg(x x|
Z B, ) (5.108)
-2 k

The lost Euler-Lagrange equation is then

dh 98X S G, (x)
— = g ——— 5.109

dx1 8x1 + Z “ X1 ( )
In problems with no constraints, or in which the constrained variables have been elimi-
nated, the last term on the right will be absent.

Proof: The proof closely parallels the proofs of the generalized energy theorems in
Sections 2.15 and 3.13, with the substitutions h — H, x; — ¢, and x[;; — ¢, and will
not be repeated here. O

We note finally that any problem stated in the coordinate parametric form can be
converted to general parametric form. Introducing the general monotonic parameter
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B and writing dx; = x1df and x; = X; /%, the integral in eqn (5.104) may be written

@

X , B2 1] ' I .
I = f(l) g(X,x[I])dxl = / g <x, (— )) de,B = / f(x,x) dﬂ (5‘110)
i B X1 Bi

where '
flx, %) =% g(x, (%)) (5.111)
1

is the integrand for use in the general parametric method. There will now be N Euler—
Lagrange equations, one for each coordinate. The lost equation that was recovered
by the second form in Theorem 5.14.3 will be just another of the Euler-Lagrange
equations of the general parametric method, and the second form will no longer be
necessary.

5.15 Comparison of the Methods

Perhaps the clearest way to contrast the two methods is to re-do the example in
Section 5.6, but now using the coordinate parametric method. Selecting x to be the
integration parameter, the integral for the optical path length becomes

@

0 =f n(x,y,z)mdx (5.112)
o)

where now y’ = dy/dx and 7/ = dz/dx. In terms of the definitions in Section 5.14,
X1 =X, X[ =1y, 2z, and

g x) =g (x. 3,20, 2) =n @,y 2/ 1+ y* +27 (5.113)

Equation (5.105) of Theorem 5.14.1 gives the two Euler-Lagrange equations

/ / / !
i(&g(x,y,z,y,2)>_ag(xvy’z’y’z):() (5.114)
dx ay’ dy

’ / / /
i(&g(x,y,z,y,z)>_ag(x’y’z’y’z):() (5.115)
dx k4 dz

Using eqn (5.113), these two equations reduce to
d ( yn@x.y.z on(x, y,2
d [ ynxy 2 ) 142 422 Iy, _ (5.116)
dx \ /1+y2 +72 9y
d ( Zn(x.y. on(x, ,
d [ Zn(x,y.2 | 1 +y2 422 @, y.2) _ 0 (5.117)
dx \ /14 y?+z7 dz
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The lost third equation can be recovered by using the second form derived in Theorem
5.14.3.1tis

dg x,y,z,y/,z/ dg x,y,z,y/,z/ nwx,y,z
n=y 28 3y ) 4 28 o7 )—g(x,y,z,y’,z/):\/li—/yT)/z
y Z
(5.118)

and eqn (5.109) becomes

d a
d(neyd N e e D (5.119)
dx \ \/1+y? 422 ox

which is the lost equation, equivalent to eqn (5.39) of the general parametric method.
Some extra work would now be required to cast these three equations into a simple
vector form, as was done with the general parametric method in eqn (5.44) of Section
5.6

Many readers will have learned the calculus of variations using the coordinate
parametric method. The present text is urging you to use the general parametric
method instead. As you decide which method to adopt, in a particular problem or in
your general perception of the calculus of variations, the following points should be
considered:

1. As seen in the example in this section, the coordinate parametric method loses
one Euler-Lagrange equation. Since Theorem 5.7.3 proves the Euler-Lagrange
equations redundant, the solution path can still be found. But it is not always
obvious at the start of a problem which one of the Euler-Lagrange equations
one wishes to lose. It may turn out that the Euler-Lagrange equation lost as a
result of your choice of the corresponding coordinate as integration parameter
was actually the simplest one to solve.

2. The lost Euler-Lagrange equation in the coordinate method can always be re-
covered using the so-called second form of the Euler-Lagrange equations. But
this requires more calculation. It seems preferable to use the general parametric
method in which all of the available equations are present from the start. Rather
than recovering information, it seems best not to lose it in the first place.

3. The coordinate method will fail when the coordinate chosen as the integration
parameter happens to remain constant for a section of the path. But it is not
always obvious in advance which coordinate can be trusted to vary monoton-
ically. For example, if the problem were to find the geodesic on the surface of
a paraboloid of revolution oriented with its symmetry axis along €3, and if the
cylindrical polar coordinate ¢ had been chosen as the integration parameter,
it would be impossible to use the Euler-Lagrange equations of the coordinate
parametric method to test whether the line ¢ = constant is a geodesic (which it
is; see Exercise 5.3).

4. As seen in the example in this section, the premature choice of some variable
like x as the integration parameter often destroys the symmetry of the Euler—
Lagrange equations among the variables, and so makes it more difficult to put
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the resulting differential equations into a simple form. The general parametric
method, however, retains whatever symmetry the problem possesses.

5. Keeping B undetermined until after the partial derivatives are taken and the
Euler-Lagrange equations are written out gives one maximum flexibility in solv-
ing the resulting differential equations. For example, we made different choices
above: In Section 5.6, we chose 8 = s, the arc length along the solution path,
and in Section 5.8, we chose B = 0, the parameter of the cycloid solution.

5.16 Exercises

Exercise 5.1 Use the calculus of variations to solve the brachistochrone problem.

(a) Verify the details of the example in Section 5.8, including the derivation of eqns (5.61,
5.62).
(b) Carry out the demonstration that eqn (5.57) define the extremum path for the wire.

Exercise 5.2 Use the calculus of variations to find the extremum distance between two points
on the surface of a sphere of radius a.

(a) First do this problem entirely in Cartesian coordinates, with Lagrange multipliers as re-
quired. Show that the three eqns (5.82, 5.83, 5.84) really do lead to eqn (5.85). Show how the
choice 8 = s transforms eqn (5.85) into eqn (5.86). Use the Serret—Frenet methods of Section
A.12 to prove that the extremum path is the intersection of the sphere’s surface with a plane
passing through its center, i.e., a great circle.

(b) Now do the problem again, but this time use spherical polar coordinates and a reduced
f as outlined in Section 5.13. Choosing the &3 axis to pass through the initial point of your
extremum line, show that this line is indeed a great circle.

(c) Are the solutions to your differential equations necessarily the minimum distances be-
tween the two end points? Or could they be maximum distances?

Exercise 5.3 The general parametric method may be used to find geodesics on the surface of
a paraboloid of revolution defined in terms of cylindrical coordinates p, ¢, z by the equation
7 =ap’.

(a) Set up the integral to be minimized, using cylindrical polar coordinates.

(b) Eliminate the z variable and write the reduced integrand f(p, ¢, 0, $) and the two asso-
ciated Euler-Lagrange equations.

(¢) Consider the path: p = p1 with ¢ varying, where p(! is a constant. Show that this path
satisfies the Euler—Lagrange equation for ¢ but not the one for p and hence is not a geodesic.
(d) Explain how this result is consistent with the redundancy of the reduced Euler—Lagrange
equations proved in Theorem 5.7.3. Why does satisfaction of the ¢ equation not imply satis-
faction of the p equation?

(e) Consider the path: ¢ = ¢V with p varying, where ¢! is a constant. Show that this path
is a geodesic.

Exercise 5.4

(a) Using the result of Exercise 5.2, or otherwise, show that the shortest line of constant
latitude on the surface of the Earth (horizontal line on a Mercator projection map) is generally
not the shortest path between its two end points.

(b) What line would be the exception to this rule?
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x () (b)

F1G. 5.4. Illustration for Exercise 5.5. The cone in (a) is cut along the x-z plane and flattened out
as shown in (b). A straight line drawn on the flattened surface becomes a curve when the cone is
reassembled.

Exercise 5.5 An inverted right-circular cone of half-angle « is placed with its apex at the
origin of coordinates and its symmetry axis along €3.

(a) Use the calculus of variations to find the two differential equations describing the ex-
tremum path between two general points on the surface of this cone. [Note: For example, you
might use spherical polar coordinates with the constraint 6 = «.]

(b) Suppose the cone to be cut along a line defined by the surface of the cone and the x-z
plane. The cut cone is then flattened out and a straight line is drawn on the flattened surface.
The cone is then reassembled. Use the Euler-Lagrange equations you found in part (a) to
determine if the line you drew (now a curve, of course) is an extremum path on the surface of
the cone.

Exercise 5.6 A right-circular cylinder of top radius « is oriented with its symmetry axis along
€.

(a) Use the calculus of variations and cylindrical polar coordinates to find the two differential
equations describing the extremum path between two general points on the surface of the
cylinder.

(b) Choose B equal to s, the arc length along the curve, and solve for ¢ and z as functions
of s.

(c) Suppose the cylinder surface to be cut along a line parallel to its symmetry axis, and the
cut surface then flattened out onto a table. Draw a diagonal line on that flattened surface and
then re-assemble the cylinder. Determine if the line you drew (now a curve, of course) is an
extremum path on the surface of the cylinder.

Exercise 5.7

(a) Use the methods in Section 5.6 to show that the extremum (in this case, actually a mini-
mum) distance between two points in a plane is a straight line.

(b) Surfaces that can be defined by the continuous motion of a rigid line are called devel-
opable surfaces. They have the property that, with suitable cuts, they can be flattened out
onto a plane surface without stretching or tearing them. (The cone in Exercise 5.5 and the
cylinder in Exercise 5.6 are examples.) Give an argument showing that all developable sur-
faces have the property that a straight line drawn on their flattened surfaces will be a geodesic
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on the re-assembled curved surfaces. [Hint: Imagine the surface to have a regular arrange-
ment of atoms, with separation £ in the surface that will not change when they are flattened
or re-assembled. ]

F1G. 5.5. Illustration for Exercise 5.8, Huygens’ Isochronous Pendulum.

Exercise 5.8 Huygens’ Isochronous Pendulum. A mass m hangs from a massless string of
fixed length that swings between two metal sheaves bent into the shape of a cycloid whose
formula is given in eqn (5.57), as shown. The straight part of the string is always tangent to
the cycloid sheave at the point of last contact.

(a) If the string has length ¢ = 4a, show that the path of the mass m is the same cycloid as
eqn (5.57), but expressed in terms of displaced coordinates X = x +ax and y = y — 2a. (The
evolute of a cycloid is a cycloid.)

(b) Determine the period of oscillation of the mass, and show that it is independent of the
amplitude of the pendulum’s swing.

FIG. 5.6. Tllustration for Exercise 5.9. The train enters the tunnel at r'D : (Rg, 0,0) and the tunnel
ends atr® : (x@, y@ ).

Exercise 5.9 Suppose that a rail car moves without friction through a tunnel burrowed into
the Earth. It starts from rest, and moves entirely under the influence of the nonuniform grav-
itational field inside the Earth, assumed here to be a sphere of uniform density with gravi-
tational potential ® = MgG (r2 - 3Ré) /2R3, where G is the gravitational constant, Mg
is the mass of the Earth, and Rg is its radius. Ignore the rotation of the Earth. Assume that
the tunnel lies entirely in the x-y plane where the origin of coordinates is at the center of the
Earth and €; points directly toward the point of entry.

(a) Using the general parametric method, write the Euler—Lagrange equations for the path
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that extremizes the transit time 7 from the entry point to the point (x®, y®, 0).
(b) By choosing 8 = n after the Euler—Lagrange equations are written, show that the solution
to these equations is, for suitable choice of R, a, given by

R—a
a

R —
x:(R—a)cosn+acos< an) y = (R —a)sinn — asin n
a

(5.120)
which are the equations of a hypocycloid, the line traced out by a point on the circumference
of a circle of radius a that is rolling without slipping along the inside of a circle of radius
R > a. The parameter 7 here is the plane-polar angle of the center of the rolling circle.

(c) Suppose that the far end of the extremum tunnel is back at the surface of the Earth. If D is
the distance along the surface of the Earth between entry and exit points, what is the greatest
depth reached by the tunnel? How long did the trip take?

(d) Now rewrite the Euler—Lagrange equations with the choice 8 = s, the arc length along
the unvaried path. Write them as a single vector equation, using the notation of the Serret—
Frenet theory of Section A.12. Taking rj and r_ to be the resolution of the radius vector r
into vectors parallel and perpendicular to the unit tangent vector t, write d't\/ds in terms of
r1, Rg, x, y, z only, where Rg is the radius of the Earth.
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HAMILTON’S PRINCIPLE

The general calculus of variations developed in Chapter 5 may be used to derive vari-
ational principles in mechanics. Two different, but closely related, variational princi-
ples are presented here: Hamilton’s Principle and the phase-space Hamilton’s Princi-
ple. One acts in the space of Lagrangian variables ¢, ¢, ¢t and the other in Hamiltonian
phase space ¢, p, t.

Some authors believe that variational principles are the foundations of physics. For
example, the classic analytical mechanics text of Landau and Lifshitz (1976) writes
an action function on page two, and derives the whole of mechanics from it, includ-
ing Newton’s laws. Whether this is a fair judgement or not, it is certainly true that
variational principles play a crucial role in quantum theory, general relativity, and
theoretical physics in general.

6.1 Hamilton’s Principle in Lagrangian Form

We now revert to the mechanics notation and denote dgy/dt by ¢x. This is a change
from the notation of Chapter 5 where dx;/dB was denoted by k.

If we identify x; with the time 7, identify x[;; with the Lagrangian generalized
coordinates g, and restrict ourselves to cases in which no constraints are present,
the unconstrained Euler-Lagrange equations of the coordinate parametric variational
method in Section 5.14 become

d (0g(t,q,q 9g(t, q, g
d (og( 4 D\ _08tq.9 6.1)
dt Gk gk

for k = 1,..., D. These equations are remarkably similar in form to the Lagrange

equations of mechanics derived in Section 2.9 for the case with no constraints and all
forces derived from a potential,

i(aL(q,é,t)>_3L(‘1"3’”=o (6.2)

dt 94k dqk
That similarity underlies Hamilton’s Principle.

35This similarity is so striking that it seems surprising that Hamilton’s Principle was not stated clearly
until the middle of the nineteenth century. One possible reason is the authority of Maupertuis, who insisted
on theological grounds that the system trajectory must be a true minimum of some quantity, since a wise
God would not waste means. See the discussion in Chapter 3 of Yourgrau and Mandelstam (1968).
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Equation (6.1) is the condition for the extremum of the line integral of the coor-
dinate parametric method, eqn (5.104). With the above substitutions, it becomes

@

I=/(]) gt ,q,q)dt (6.3)
t

Since eqns (6.1, 6.2) differ only by the appearance of either g(z, ¢, ¢) or L (¢, 4, t) in
them, this suggests that the Lagrange equations of mechanics can be derived from a
variational principle that seeks to extremize the integral

/@

1:/(” L(q.§,0)dt (6.4)
t

In mechanics, this integral is called the Action Integral, or more simply, the Action. The
Hamilton’s Principle states that the natural path of system motion makes the action
integral an extremum.

Theorem 6.1.1: Hamilton’s Principle

With I defined as in eqn (6.4), and assuming variations that vanish at the end points, the
first-order variation §I vanishes for arbitrary dqy if and onéy if the g (t) of the unvaried
path are a solution to the Lagrange equations with Q,ﬁN ) = 0. Thus the extremum

condition 81 = 0 holds if and only if, forallk =1, ..., D,

0 (6.5)

d (0L(q.4.D\ _dL(g.4.0) _
dt 3(}]( aqk

Proof: With the substitutions listed above, the integral in eqn (5.104) becomes iden-
tical to eqn (6.4). With those same substitutions, the Euler-Lagrange equations, eqn
(5.105), become identical to eqn (6.5). Theorem 5.14.1 thus proves the present theo-
rem. O

The path in configuration space that is a solution to the Lagrange equations is of-
ten referred to as the classical path. This is the path of natural motion of a mechanical
system as it responds to the forces included in the potential part of the Lagrangian.
Thus we can say that 61 = 0 for variations about a chosen unvaried path if and only
if that chosen path is the classical path. Notice that many different unvaried paths
could be chosen, but that the condition §7 = 0 happens only for variations about the
classical path. Fortunately, that classical path can be found by a procedure better than
simple trial and error. It is found by solving the Lagrange equations.

6.2 Hamilton’s Principle with Constraints

If we make the same substitutions as in Section 6.1, the constrained form of the
coordinate parametric variational method derived in Theorem 5.14.2 implies a con-
strained form of Hamilton’s Principle.
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Theorem 6.2.1: Hamilton’s Principle with Constraints
With I defined as in eqn (6.4), consider variations that vanish at the end points but are
otherwise arbitrary, except for the C independent holonomic constraints given by eqn
(3.1),

0==Ga(g.1) (6.6)

fora=1,...,C. Then 81 = 0 if and only if the gy (t) of the chosen path are a solution
to the equations

. . c
d (0L (q,q.t dL(q,q,t 0G4 (g,t
_( .4 ))_ (q.4 )ZZM alg,1) 6.7)
dt gk dqk = G

for k = 1,..., D. Equation (6.7) is the correct equation of motion of the mechanical

system if and only if the forces of constraint do no virtual work.

Proof: With the same substitutions as above in Section 6.1, Theorem 5.14.2 estab-
lishes that 7 = 0 and the conditions in eqn (6.6) do imply eqn (6.7). And Theorem
3.5.1 establishes that eqn (6.7) is the correct equation of motion if and only if the
forces of constraint do no virtual work. O

The quantities A,, which are called Lagrange multipliers in the calculus of varia-
tions, have a special interpretation in the mechanical problem. They are related to the
forces of constraint and may be used, as in eqn (3.14), to derive those forces. Needless
to say, this interpretation of the A, does not apply when the calculus of variations is
used for nonmechanical problems.

6.3 Comments on Hamilton’s Principle

We proved in Chapter 2 that the Lagrange equations hold if and only if each point
mass of the mechanical system obeys Newton’s second law. Thus the Lagrange equa-
tions are equivalent to the second law. In Theorem 6.1.1 we have proved that, when
all forces are derived from a potential, §/ = 0 if and only if the Lagrange equations are
satisfied. Thus, the chain of logic has established, at least when no constraint or other
non-potential forces are present, that Hamilton’s Principle is equivalent to Newton’s
second law,

Second Law <= Lagrange Equations <= Hamilton’s Principle

But the equivalence of Hamilton’s Principle to Newton’s second law is established
only for the case when all forces are derived from a potential. If constraint forces
are present in a mechanical system, this equivalence breaks down. Then Hamilton’s
Principle is equivalent to Newton’s second law only in the idealized case in which the
constraint forces do no virtual work. Hamilton’s Principle always implies eqn (6.7),
but that equation is incorrect when the constraint forces have friction and hence
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do virtual work. If the forces of constraint do virtual work, the correct equations of
motion would be something like

. . C
d (0L(q,q,1) oL (qu7t) (frlct) aGa (Qa 1)
— - Aa 6.8
d; ( ) D> 6.8)

Gk 0qi

where the Q(fnd) are the generalized forces of the friction.

Note to the Reader: If the forces of constraint in a mechanical system happen
to have friction, and hence do virtual work, then eqn (6.7) will not be the correct
equation of motion of the system. However, Hamilton’s Principle in the form of
the variational hypothesis in Theorem 6.2.1 would still imply eqn (6.7). Thus it is
possible for an incorrect equation to be derived from a variational method.

Variational principles give an elegant way to express the results of mechanics. But one
must realize that the calculus of variations is just a language, and like all languages
can be used to make both true and false statements.

Hamilton’s Principle in Section 6.1 is analogous to the form of the calculus of
variations called the “coordinate parametric method,” and described in Section 5.14.
In that coordinate parametric method, some coordinate x; is prematurely removed
from the list of varied coordinates and is made to play the role of integration variable.
As seen in Section 6.1, the variable r = x; plays that role in Hamilton’s Principle. As
a result, Lagrangian mechanics does indeed require a “second form of the Euler-
Lagrange equations” in analogy to that discussed in Theorem 5.14.3. That second
form is just the generalized energy theorem H = —9L (g, §,t) /dt, which was derived
in Section 2.15.

But Section 5.15 argued that the general parametric method is simpler and more
complete than the coordinate parametric method. In the general parametric method,
the coordinate t would be restored to its proper place as a generalized coordinate and
the generalized energy theorem (the second form) would be restored to its proper
place as just another Lagrange equation. The problem of restoring the apparently lost
symmetry of Lagrangian mechanics, by treating 7 properly as a coordinate rather than
as a parameter, is discussed in Part II of the book. Hamilton’s Principle with time as a
coordinate is treated in Chapter 13.

6.4 Phase-Space Hamilton’s Principle

As stated in Chapter 4 on the Hamilton equations, the usefulness of phase space in
more advanced analytical mechanics depends on the equal treatment of the canonical
coordinates and momenta. To that end, we now use the calculus of variations to derive
a phase-space form of Hamilton’s Principle.

To begin, the action function defined in eqn (6.4) can be rewritten as a line integral
involving the Hamiltonian. Solving eqn (4.14) for L, and introducing phase-space
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variables, gives

@ D

(@
= /m Lat = /(1) (Z prqr — H(g, p, t)) dt (6.9)
4 t

k=1

The first-order variation of the line integral in eqn (6.9) may now be taken, using
the definitions of variations of a function and an integral from Sections 5.3 and 5.4.
The result will be

(@ /D
81 = f (Z (P8 + Grdpr) —8H<q,p,r>) di
! k=1

@

@ D 9H (
: q,p,t)) ( 8H(q,p,t)> }
+ 5 — — 22 ) o — | pr + ———= ) Sqi ¢ dt
M /;<1> P {(CM opk Pk Pk 99k *

(6.10)

D
=Y ()
k=1

where an integration by parts has been done.

Before proceeding to state a phase-space Hamilton’s Principle, we must first dis-
cuss the meaning to be given to variations dp; of the canonical momenta in eqn
(6.10). In Lagrangian mechanics, the generalized momenta p; = px(q, ¢, t) are func-
tions of the Lagrangian variables ¢, ¢, t and hence dp; would be calculated using eqn
(5.16). The result would be

D . .
Z opr(g,q,1) opi(g,q.1) .
k=1

which would make the variation §p; depend on §g; and its time derivative and hence
not be an independent variation.

But we want a phase-space Hamilton’s Principle that treats the coordinates and
momenta equally. Thus both 8¢ and 8p; should be treated as independent variations,
unrelated to each other. Therefore, we temporarily forget both the equation p; =
pr(q, g, t) and its inverse ¢r = qr(q, p,t). (As we will see, these relations will be
recovered at the end of the calculation.) Thus eqn (6.10) will be considered as an
expression involving two equally unknown sets of functions ¢ and p. Equation (6.11)
will therefore no longer hold. The variations of g and p; will now be defined by the

two equations, both holding for k =1,..., D,
qr(t, da) = qi(t) + da i (t) (6.12)
Pi(t, 8a) = pi(t) + da xi (1) (6.13)

where the shape functions n; and x; are considered to be arbitrary and independent
of one another. Since we wanted both ¢ and p to be considered simply as coordinates
of phase space, we have applied the definition of variation of coordinates from Section
5.2 to both ¢ and p. Then, as in that section, the variations g, = 8a n; and dpy = a xx
will all be arbitrary and independent.

We may now state the phase-space form of Hamilton’s Principle.
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Theorem 6.4.1: Phase-Space Hamilton’s Principle
With F defined to be the integrand of eqn (6.9),

D
F(q,p.4,p.0) =Y _ pegx — H(g, p, 1) (6.14)
k=1
the action integral
/@ /@
/= / Ldi = / F(g, p.q, p, i (6.15)
1eb) Ieb)

will be an extremum, §1 = 0, for variations 8¢ and Sp that are arbitrary except for the
requirement that they vanish at the end points 1\ and %, if and only if the Hamilton
equations
dH(q, p,t) . 0H(q, p,1)
R Y e L (6.16)
Pk 99k

hold on the unvaried path.

Proof: Since 8¢, vanishes at (1) and +® by assumption, the integrated term vanishes
and eqn (6.10) becomes

@ D
51_/1) Z{( IH (q, p, t)) - _(MM)M}M 6.17)

opk gk

Since both §g and §p are now arbitrary and independent, they may be set nonzero
one at a time. Hence 8/ = 0 if and only if 6.16 hold, as was to be proved.3¢ O

Notice that the first Hamilton equation gives ¢ = q¢x(q, p,t) as an equation of
motion. Thus the relation between p and ¢ is recovered. The difference between the
Hamiltonian and Lagrangian approaches is that in Lagrangian theory the relation
Gx = qr(q. p, t) is an identity, true both on the unvaried and on all varied paths. But
in the phase-space form of Hamilton’s Principle, that relation is an equation of motion
that is true only on the classical path. It is part of the definition of the classical path.

6.5 Exercises
Exercise 6.1 This exercise gives an alternate proof of Theorem 6.4.1, using Theorem 5.14.1.

(a) With the substitutions x[1] = ¢q1,...,¢p,p1, ..., pp and x; = ¢, show that the Euler—
Lagrange equations in eqn (5.105) become, fork =1, ..., D,

d aF ’ s .7 .at aF ’ ’ .7 ‘at

d (¢ p-4.p )\ _ . p.g. 0.0 _ ©6.18)
dt gk 0qk

d 8F ’ k) .7 '1t aF ’ k) .7 '1t

4 (3@ p.g. P 0\ _ K@ P4 pD _ 6.19)
dt d Pk APk

(b) With F given by eqn (6.14), show that these Euler-Lagrange equations imply the Hamil-
ton equations, eqn (6.16).

36gee the proof of the Euler-Lagrange theorem, Theorem 5.5.1, for more detail about setting arbitrary
variations nonzero one at a time.
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LINEAR OPERATORS AND DYADICS

Linear vector functions of vectors, and the related dyadic notation, are important in
the study of rigid body motion and the covariant formulations of relativistic mechan-
ics. In this chapter we introduce these topics and present methods which we will need
later.

Linear vector functions of vectors have a rich structure, with up to nine indepen-
dent parameters needed to characterize them, and vector outputs that need not even
have the same directions as the vector inputs. The subject of linear vector operators
merits a chapter to itself not only for its importance in analytical mechanics, but also
because study of it will help the reader to master the operator formalism of quantum
mechanics.

7.1 Definition of Operators

It seems easiest to write linear vector functions of vectors using the operator notation
familiar from quantum mechanics, but perfectly applicable here as well. To say that
some function maps vector A into vector B we could write B = f(A), where f denotes
the vector function. It is easier and clearer to write instead B = FA, with operator F
thought of as operating to the right on A and converting it into B. The linearity of 7
is expressed by defining its operation on A = «'V + W, where «, 8 are scalars, to be

FA =F(@V+ W) =aFV+ BFW (7.1)

Linearity says that the result of operating on sum A is the same as operating on each
of its terms and then doing the sum. Also, the scalar factors «, 8 may be applied either
before or after operation with F, giving the same result in either case. For example,
F(@V)=aFV.
Since operators are defined by their action on vectors, two operators are equal,
A = B, if and only if
AV = BV (7.2)

for any arbitrary vector V. For linear operators, this condition is equivalent to requir-
ing only that AV, = BV, for any three, non-coplanar vectors Vi, V,, V3 since any
arbitrary vector V can be expressed as a sum of these three.

The null operator O and the identity (or unity) operator U are defined by OV = 0
and UV =V for any vector V, where we adopt the usual convention of denoting the
null vector 0 by the number 0. The null operator O is also usually denoted by just the
number 0. This notational sloppiness seems not to lead to problems in either case.

123



124 LINEAR OPERATORS AND DYADICS

Thus expressions like .4 = 0 are allowed, although .4 = 3 would be nonsense unless
intended to be an (even more sloppy) short form for A = 3U/.
Linear operators can be added, subtracted, and multiplied by numbers. The defi-
nition is that
C=aA+ BB (7.3)

if and only if
CV =aAV + BBV 7.4)

for any arbitrary vector V. It follows from the properties of vector addition that addi-
tion of operators is commutative and associative,

A+B=B+ A and A+B)+C=A+B+0) (7.5)
The multiplication of operators is defined to mean successive application. Thus
C=AB ifandonlyif CV = A (BV) (7.6)

for any vector V. Operator B acts on V first, producing another vector BV. The oper-
ator A then acts on that vector to produce the final result. Operator multiplication is
associative,

(AB)C = A(BC) = ABC (7.7)

since all three expressions acting on an arbitrary V reduce to the same result
A (B (CV)).

However, operator multiplication is in general not commutative. In general
AB # BA. The commutator of the two operators is another operator [A, B]. defined
by37

[A Bl =AB—-BA (7.8)

If [A, B]. = 0, where here we use the number 0 for the null operator as noted above,
then the two operators are said to commute. The commutator is anti-symmetric in the
exchange of its two operators, and hence any operator commutes with itself,

(B, Al = —[A, Bl. and [A, Al =0 (7.9)

The evaluation of commutators is aided by some easily proved algebraic rules. With
scalars 8, v,

[A (BB+y0O)], =BIA Bl + v [ACl (7.10)
[AB,Cl. = A[B,C]. + [A,C]. B (7.11)
[F.1G. Hlele + [H. [FGlele + [G. [H, Fl]e = 0 (7.12)

For every operator A there is another operator AT called its transpose, which is

37The subscript c is to distinguish the commutator of two operators from the similarly denoted Poisson
bracket defined in Section 4.6. The algebra of commutators resembles that of Poisson brackets, as may
be seen by comparing the identities in eqns (7.10 — 7.12) with those in eqns (4.55 — 4.57). The algebraic
similarity of commutators and Poisson brackets has important consequences in quantum mechanics, as
discussed in Section 12.13.
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defined by the condition that
(AV) - W=V.ATW (7.13)

holds for any arbitrary vectors V, W.

It follows from this definition that (AT)T = A and that the transpose of a product
of operators is the product of the transposes, but in reverse order. To establish this
last result, note that eqns (7.6, 7.13) imply that

(ABV) - W = (A(BV)) - W = (BV) - ATW = V. BTATW (7.14)
and hence, again using definition eqn (7.13), that

ABT = BTAT (7.15)

7.2 Operators and Matrices

We know that, once an orthonormal basis €; is chosen for a three-dimensional vector
space, a one-to-one relation can be established between vectors and the 3 x 1 matrices,
called column vectors, made up of the vector components in that basis,

Vi
V& [V] where [V]=| W with V,=¢ -V (7.16)
V3

fori =1,2,3.

The relation is one-to-one because not only does every vector determine the its
components by the last of eqn (7.16), but also, given its components, any vector V
can be determined by writing it as

3
V=> Vg (7.17)
j=1
Thus two vectors are equal, with V = W, if and only if [V] = [W], or in component
form V; = W; foralli =1, 2, 3.
Operators are similar to vectors in that, once an orthonormal basis is chosen, each
operator is associated uniquely with a matrix. But in the case of operators, the matrix
is a 3 x 3 square matrix with nine components.

Definition 7.2.1: Matrix Elements
Assuming that a basis € has been chosen, there is a one-to-one relation between an
operator and its matrix in this basis given by the definition

Fi1 Fip Fr3
F<«<— F where F = | F»1 Fp Fr3 with Fij = €& ~.7:éj (7.18)
F31 F3 F33

fori, j =1,2,3. The nine numbers F;; are called the matrix elements of operator F in
the e; basis.
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Just as its components in some basis determine a vector V, so the matrix in some
basis determines the operator. Imagine that the linear operator F operates on a vector
expanded as V = 213.: | V;€;. Denote the result by W. Then

3 3
W=FV=F|) vig | =) V7§ (7.19)
j=1 j=1
where the linearity of operators from eqn (7.1) was used to derive the last equality.
Then the component W; of vector W is

Wi=(& W)= V(& F&) =) FyV (7.20)
j=1 j=1
where eqn (7.18) was used to get the matrix elements F;;. Equation (7.20) can be
written in matrix notation as

Wi Fi Fiz Fi3 Vi
Wy | = | Fo1 Fy Faj3 Vs or, more succinctly, [W]= F[V] (7.21)
W3 F31 F3 F33 V3

where the 3x3 matrix is denoted by single letter F.

Thus, given any vector V, knowledge of the matrix elements F;; will uniquely
determine the vector W. Since operators are defined by their action on vectors, this
defines F completely. Thus A = B if and only if A = B, or in component form
A,‘j = B,‘j for all i,j = 1,2, 3.

The matrices corresponding to the null and unit operators are easily found from
eqn (7.18). They are the null and unity matrices, with O;; = 0 and U;; = §;;, respec-
tively, where §;; is the Kroeneker delta function. Thus

000 100
O« 0=]000 U U=[010 (7.22)
000 001

The matrix AT corresponding to the transposed operator AT defined in eqn (7.13)
has the matrix elements AiTj = Aj; foralli, j =1, 2, 3. To see this, replace V by ¢ and
W by &, in eqn (7.13), and use eqn (7.18). The matrix element Al.Tj of matrix AT is
thus
AL =& - AT8; = (A&) - & =& - (A&) = A} (7.23)
where the symmetry of dot products proved in Section A.2 has been used.

The result in eqn (7.23) corresponds exactly to the definition of the transpose of a
matrix in Section B.2. Also, eqn (B.24) shows that

(AB)T = BTAT (7.24)

which is consistent with eqn (7.15) for operators.
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7.3 Addition and Multiplication

As discussed in Section 7.1, operators can be added or multiplied. The matrices corre-
sponding to the resulting operators are obtained by addition or multiplication of the
associated matrices.

Let operators A, B have corresponding matrices A, B, respectively. Let C = oA+
BB. Then using eqns (7.4, 7.18) gives the corresponding matrix C as

C,’j = é,‘ . Céj = é,‘ - (@ A+ BB) éj = é,’ . (O[Aéj + ﬂBé]) = OlA,‘j + ﬂB,‘j (7.25)

which may be written in matrix formas C = o A + 8B.
Let D = AB. The corresponding matrix D is

Dy =¢ -Dé, =e¢ - (ABék) =¢ - (.A (Bék)) (7.26)

where eqn (7.6) has been used to get the last equality. But, like any vector, € can be
expanded in the &; basis as

3 3
Bé =) & (& B&)=> &By (7.27)
j=1 j=1
Putting this result into eqn (7.26) then gives

3 3 3
Dip=¢-|A Zéijk = Z (él . .Aéj) Bjr = ZA,'ijk (7.28)
Jj=1 i

=1 j=1

Since the second index j of A;; matches the first index of Bj;, eqn (7.28) is equivalent
to the matrix multiplication D = A B.
Equations (7.25, 7.28) may be summarized as the correspondences

aA+ BB+ aA +8B (7.29)
AB<+—= AB (7.30)

7.4 Determinant, Trace, and Inverse

Given the basis €;, eqn (7.18) defines the nine components F;; of the matrix F that
corresponds uniquely to operator F, in exactly the same sense that the last of eqn
(7.16) defines the three components V; of the column vector [V] that corresponds
uniquely to vector V in that same basis.

If an alternate orthonormal basis &; is chosen, assumed also to be right-handed
with & x &, = &, then vector V and operator F will also have a unique relation to
column vector [V'] and matrix F’ in this alternate basis. The vector components and
matrix elements in the alternate basis are given by the same formulas as in Section
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7.2, but now using the primed basis vectors. Thus

V/=¢&-V and F;=¢ 7€ (7.31)
The unique relation between vectors and column vectors, and between operators and
matrices, holds in either basis, and hence

[V]<=V«<=[V] and Fles Fe=F (7.32)

This chain of unique correspondence has the consequence that any equation involving
matrices and column vectors in basis €; will be true if and only if the same equation
is true when primes are put on all the matrices and column vectors, indicating that
they refer to the alternate basis €;.

In general, even for the same i, j indices, V/ and F/, will be quite different from
V; and F;;. However, there are certain quantities calculated from these numbers that
have the same value no matter what basis is used. These are called invariant or basis-
independent quantities. Two such quantities are the determinant and trace.

Lemma 7.4.1: Invariance of Determinant and Trace
If an operator F has corresponding matrices F and F' in the two bases & and &,
respectively, then

|F|=|F| and TrF=TrF’ (7.33)

Proof: In Section 8.32 of Chapter 8, it will be proved that F' = RTF R where R
is the matrix, expressed in the €; basis, of a proper orthogonal operator R defined by
& = Re; fori = 1,2, 3. This operator will be proved there to have the property that
RTR = U = RRT and |R| = 1. It follows, using Property 5 and Property 10 of
Section B.11, that |[F’| = |RT||F||R| = | F| as was to be proved. Also, from eqn
(B.33), Tt F' =Tr(RTFR) =Tr(RRTF) =Tr F, as was to be proved. O

Since these quantities are basis independent, the determinant and trace of an
operator may be defined by selecting any basis €;, determining the matrix F corre-
sponding to F in that basis, and setting

det F = | F| and TrTF=TrF (7.34)

It follows from definition eqn (7.34) and the corresponding properties of matrices in
Section B.11 and eqn (B.33) that the determinant and trace of operators have the
properties

det AT = det A det (AB) = det Adet B (7.35)
Tr (ABC) = Tr (CAB) = Tr (BC.A) (7.36)

An operator F may or may not have an inverse. If the inverse exists, it is denoted
F~! and has the defining property that, for both right and left multiplication, the



SPECIAL OPERATORS 129

product of F with its inverse is the identity operator i,
FlFr=u=rr" (7.37)

The inverse is unique. If two operators both are inverses of a given F, then they can
be shown to be identical to each other.

The necessary and sufficient condition for the inverse of an operator F~! to exist
is that det F # 0. This result follows from the definition in eqn (7.34) and the similar
property of matrices proved in Section B.14.

If C = AB, it is easily verified that the inverse is C~! = B~'A~!, provided of
course that the inverses of A and B exist. The inverse of a product is the product of
the inverses, in reverse order.

7.5 Special Operators

If an operator S is identical to its transpose, ST = S, then SiTj = §j; = S;j and we say

that it (and its matrix) are symmetric.’8

An anti-symmetric (an alternate term is skew-symmetric) operator is in a sense
the opposite of a symmetric one. Such an operator is equal to the negative of its
transpose. If operator )V is anti-symmetric, then WT = —W and its matrix elements
obey W;g =W;; =—-W;.

The most general anti-symmetric operator has a matrix containing only three in-
dependent matrix elements,

0 —w3 w
Wl 0 - (7.38)
—w) W] 0
or equivalently
3
Wij = Zeikja)k (7.39)
k=1

fori, j = 1,2, 3, where w;, ws, w3 are three arbitrarily chosen numbers that together
determine W.

The operation of an anti-symmetric operator YV on a vector can be represented as
a cross-product.
Lemma 7.5.1: Equivalent Cross-Product
If we define a vector ® whose components are the same three numbers w; found in eqns
(7.38, 7.39),

® = w1€] + w6 + w33 (7.40)

then the action of operator W on an arbitrary vector V is the same as the cross product
of vector w with that vector,
WV =wxV (7.41)

38Matrix symmetries are treated in Section B.4.
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Proof: Let A = w x V. Then

3 3 3 3 3
Ai=¢-A=¢  -oxV= ZZa)kV/(él - e Xéj) = ZZEl'kja)ij = ZWijvj

j=1 k=1 j=
(7.42)
which is the component form of the matrix equation [A] = W [V]. Since there is a
one-to-one correspondence between operators and matrices, it follows that A = WV,
as was to be proved. O

If the anti-symmetric operator is given initially, the components of @ can be ex-
tracted from its matrix by

303
1
Wy = E Z Zsikj W,'j (743)
i=1j=1
where identity eqn (A.65) has been used.
Another important special class of operators is orthogonal operators. An operator
R is orthogonal if it has an inverse R ™! and its inverse is equal to its transpose,

R =RT (7.44)
Thus the property of inverses in eqn (7.37) implies that
RR' =uU =R"R (7.45)

for orthogonal operators. Orthogonal operators will be used to characterize rotations
in Chapter 8.

7.6 Dyadics

There is yet another way of writing linear vector functions of vectors in common use:
Dyadics. Those who have studied the Dirac notation in quantum mechanics should
find them familiar. Those who have not can learn dyadics here and get a head start
on mastering the Dirac notation.

We begin by defining a single-termed dyadic, or dyad, D as a pair of vectors a and
b written side-by-side with no operation between them such as dot or cross product,

This strange-looking object is intended to be an operator on vectors. But, unlike the
operators defined above, it operates either to its right or to its left, and by means of
dot products rather than directly. Thus, dotting D to its right onto vector V is defined
to give

D-V=a®-V) (7.47)

which is a vector parallel to a. The dyad D can also be dotted to the left on a vector V
to yield
V-D=(V-a)b (7.48)

which is a vector parallel to b. We see at once that left and right dotting will generally
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give different output vectors, since a need not be parallel to b. By its definition in
terms of the dot product, the dyadic operation is a linear function of vector V.

We define a law of addition for dyads similar to that for operators above. Suppose
that two dyads are D; = ab and D, = cd. Then multiplication by scalars and addition
asin

D = aD; + 8D, (7.49)

are defined by the rule that the operation of D on any arbitrary vector V is
D-V=aD;-V+8D,-V (7.50)

A similar rule holds for left multiplication. The sum of one or more dyads is called a
dyadic. The rule for the addition of two dyadics is the same as eqn (7.49) for dyads.

Now suppose that we have a linear operator like the F discussed in Section 7.1.
Since the matrix elements Fj; of this operator are just numbers like « and g in eqn
(7.49), we can define a dyadic corresponding to operator F by using this addition
rule to write the nine-termed sum

3 3
F:ZZFijéiéj (7.51)
i1 j=1

This dyadic is often denoted in equivalent ways, by using the freedom to write the
numerical factor F;; either before the pair of vectors, between the pair (as is often
done in quantum mechanics), or after both of them, as in

3 3 3 3 3 3
[F:ZZFijéiéj ZZZé,'FUAj ZZZéiéjFij (7.52)

Conversely, if we are given a dyadic F, the matrix elements F;; in the €; basis can be
determined by dotting from both sides with unit vectors, since

3 3 3
& -F- éj =& - (Z Zékalél) -éj = Z Zaikalalj = F;; (7.53)

k=1 1=1 k=1 1=1

As an example of a case in which the dyadic is given initially and the matrix and
operator derived from it, consider the dyad D = ab in eqn (7.46). Then

D;j; = ¢ ~|D-éj = (él ~a) (b~éj) =a;b; (7.54)

The matrix element of this simple dyad is just the product of the components of
the two vectors. General dyadics, of course, will not have matrices with this simple
product form.

By its construction, the dyadic F dotted onto any vector V has the same effect as
the operator F acting on that same vector.
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Lemma 7.6.1: Equivalence of Operator and Dyadic
If V is any vector, then

FV=F.V (7.55)

Proof: Let W = FV define the vector W. Then from eqn (7.20) W; = 213-:1 Fi;V;.
The dyadic acting on V gives the same vector W,

3 3
F-V= ZZel i@ V)=D"&)Y FVi=) &Wi=W (7.56)

i=1 j=1 i=1 j=1 i=1
which establishes eqn (7.55). O

Like operators and matrices, dyadics can also be multiplied. The product
C=A-B (7.57)

is defined by considering its operation on an arbitrary vector V. The dyadic B is first
dotted with vector V and the dyadic A is then dotted onto the resulting vector,

=(@A-B)-V=A-(B-V) (7.58)

Thus, from Lemma 7.6.1,
ABV=A-(B-V) (7.59)

for any vector V.
Like operator multiplication in eqn (7.7), dyadic multiplication is associative by
definition, since
(A-B)-C=A-(B-C)=A-B-C (7.60)
Just as for operators in Section 7.5, the determinant and trace of a dyadic are
defined to be the determinant and trace of its associated matrix in some basis. The
inverse dyadic is the dyadic constructed from the inverse matrix, and exists if and
only if the dyadic has a nonzero determinant.

The transpose of a dyadic is constructed from the transposed matrix, using eqn
(7.52). If a dyadic F has a matrix F then the transpose is defined as

3
Ff=>Y &r} ZZe,F,,e, (7.61)
i=1 j=1 i=1j=1

It follows that left multiplication of F by V gives the same result as right multiplication
of FT by the same vector. That is,

V.F=FT.V (7.62)

for any vector V.
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7.7 Resolution of Unity

Consider the identity operator &/ which has 4V = V for any vector V. The dyadic
form U of this operator is of particular interest. From eqn (7.22),

w
w

3
U= Z Zéiaijéj = €;€; = €16 + €€ + €3¢;3 (7.63)
i=1 j=1 i=1
This dyadic is called a resolution of unity in basis €;. Since UV = V, it follows that

U -V = V. The resolution of unity can be used as a convenient device to expand
vectors and other operators in a basis. For example,

V=U-V= (&€ +ee +eze3) -V (7.64)
=€ (é] ~V)~|—éz(éz'V)+é3 (ég,-V)

simply restates eqn (A.10). Any vector V in any expression can always be replaced
by either U - V or V - U. The result is always to expand the expression in terms of
components in the resolution’s basis, in this case €;.

7.8 Operators, Components, Matrices, and Dyadics

The equation W = FV can now be written in four equivalent ways: operator, compo-
nent, matrix, and dyadic:

W =FV Wi =Y F;V (W]=F [V] W=F-V  (7.65)
j=1

Each of the four expressions in eqn (7.65) is a different way of saying the same thing,
and each of them implies the others. This, and the various other equivalences proved
in the preceding sections of this chapter, can be summarized as a theorem, which we
state here without further proof.

Theorem 7.8.1: Equivalence of Operators, Matrices, Dyadics

Any equation involving the addition, multiplication, transposition, and inversion of oper-
ators, and the action of operators on vectors, will be true if and only if the same equation
is true with matrices or dyadics substituted for the operators. In the matrix case, of
course, the vectors must also be replaced by column vectors.

As an example of this theorem, consider the following equivalent expressions,

ABTV 4+ aC 'DW =Y (7.66)
3 3 3 3
Y AyBLVi+a) > CilDpWi =Y (7.67)
J=1k=1 j=1k=1
ABT[VI+aC !'D[W] =[] (7.68)
A-BY - V+aC ' D-W=Y (7.69)

Each of them is true if and only if the other three are true.
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The theorem of this section is of great use. It means that operator equations can
be proved by proving the equivalent component or matrix equations in some basis,
and vice versa. Throughout the text, we will use this theorem to go back and forth
between operator and matrix relations, often with little warning, assuming that the
reader understands that they are equivalent.

For example, if F(n) = A(n) B(n) is a product of two operators, each of which is a
function of some parameter 7, then the product rule for differentiation,

dF(m)  dAn) dB(n)
dn ~—  dnp dn

B + A(n) (7.70)

follows from the usual product rule for differentiation of the component expansion

3
Fix(n) =Y _ Aij(mBjr () (7.71)
j=1

where the matrix elements A;; (), etc., are now just ordinary functions of 7.

For the remainder of this chapter, we will exploit Theorem 7.8.1 to translate the
properties of matrices summarized in Appendix B into operator and dyadic forms.
Since the proofs are given in Appendix B, we will often simply state the results here
and refer the reader to that Appendix for more information.

7.9 Complex Vectors and Operators

A real vector is one whose components in some Cartesian basis are all purely real
numbers. (The Cartesian basis vectors themselves are always considered real in these
determinations.) If at least one component is an imaginary or complex number, the
vector is complex. A general complex vector V may be written

V=Vyz+iV; (7.72)

where real vector Vy collects all of the real parts of the components of V and real
vector V; collects all of the imaginary parts. For example, if V = 3e;+(2 — 4i) &;+6ié3
then Vi = 3e; + 2¢é; and V; = —4¢é, + 6€3.

Operators and dyadics can also be real or complex. The definition is similar to that
for vectors. An operator F and dyadic F is real only if all of its matrix elements F;;
in some Cartesian basis are real numbers. If even one matrix element is imaginary
or complex, the operator is complex. The transpose, and the definitions of symmet-
ric, anti-symmetric, and orthogonal operators, must be generalized when complex
operators are considered.

The complex conjugate of an operator can be defined as that operator all of whose
matrix elements in some Cartesian basis €; are the complex conjugates of the original
ones. If 7 has matrix elements F;;, then

F* has matrix elements F;; (7.73)

Thus an operator is real if and only if 7 = F*. Otherwise, it is complex.
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The generalization of transpose is Hermitian conjugate. The Hermitian conjugate
of operator F is denoted F' and is defined in a way similar to eqn (7.13) for the
transpose, by the condition that

(FV)*-W = V* . (f“'w) (7.74)

for any vectors V, W. As was done for the transpose in eqn (7.23), basis vectors may
be substituted for the vectors in eqn (7.74), giving the relation

;
Fl = F;, (7.75)

for the matrix elements F’ ;;. of matrix FT.
Notice that the Hermitian conjugate can be considered as the combination of
transpose and complex conjugate in either order,

Fi— (;T)* = (7" (7.76)

as can be seen by considering the matrix elements of each expression.

If the operator is real, then the complex conjugations have no effect, and ' = FT
holds. Thus the definition of Hermitian conjugate for possibly complex operators is a
generalization of the definition of transpose for real ones.

The generalization of symmetric is Hermitian. If an operator H is equal to its Her-
mitian conjugate, then it is Hermitian. Then H" = H and hence Hl.T. = H}; = H;;. For
real operators, the complex conjugation would have no effect, and hence a real Her-
mitian operator is a real symmetric one. Thus the definition of Hermitian for possibly
complex operators is a generalization of definition of symmetric for real ones. Simi-
larly, anti-Hermitian operators can be defined that generalize anti-symmetric ones.

The generalization of orthogonal is unitary. An operator 7 is unitary if it is non-
singular and if its inverse is equal to its Hermitian conjugate,

Tl =77 (7.77)

with the consequence that
TT'=U=T'T (7.78)

As seen above, for real operators there is no distinction between transpose and Her-
mitian conjugate. Hence a real unitary operator would be a real orthogonal one. Thus
the definition of unitary for possibly complex operators is a generalization of the def-
inition of orthogonal for real ones.

For complex operators, the determinants obey

det F* = (det F)* and hence also det F' = (det F)* (7.79)

Just as a complex vector can be written as the sum of its real and imaginary parts
as in eqn (7.72), any complex operator can be written as the sum of two Hermitian
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Operators,
F=Fr+iF; (7.80)

where the Hermitian operators Fz and F; are
1 i "
_ - il - __ _
Fr=5 (;E+ F ) and  Fj=—3 (]—' F ) (7.81)

7.10 Real and Complex Inner Products

Recall that, in the space of real vectors, the inner product of two vectors can be written
in column vector and component forms, as

3 Wi
V- W= Z ViW; = (V1 Vs V3) wa | = vitiw) (real vectors) (7.82)
i=l1 W3

In a space of complex vectors, this definition of inner product must be modified.
Orthogonality, norm, etc., for such a complex vector space are based on a generalized
inner product consisting of the dot product and complex conjugation of the left-hand
vector,

3 Wi
VEW =) VW = (Vi vy vE) | Wa | =[VITIW]  (complex vectors) (7.83)
i=1 W3

Note that the transpose of the column vector [V]T in the real case becomes the Her-
mitian conjugate [V]" in the complex case.

The redefinition of inner product for complex vectors is necessary in order to
preserve an important property that dot products have in real vector spaces: The
norm of a vector must be non-negative and be zero only for the null vector. Thus we
have, with the redefinition,

V2= |IVI?=V*. V= (Vg —iV))- (VR +iV)) = [[VRI? + VI (7.84)

which clearly has the desired non-negative property. The rule is that, when using
complex vector spaces, one must always be sure that the left-hand vector in an inner
product is complex conjugated before the dot product is taken.

7.11 Eigenvectors and Eigenvalues

An operator F acts on some vectors (but not others) in a particularly simple way: it
gives an output vector which is just the input vector multiplied by a numerical scale
factor. Those vectors are called the eigenvectors of F (“eigen” is German for “own”)
and the scale factors (in general different for each eigenvector) are called eigenvalues.
The equation

FVO =, v® (7.85)

defines V® to be an eigenvector, and X; to be the associated eigenvalue, of operator
F. The integer k labels the different eigenvalues and corresponding eigenvectors that
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F may have. The set of eigenvectors and eigenvalues of an operator may in many
cases characterize it completely, as we will see, and so their determination is of par-
ticular importance.’®

We may rewrite this equation, and its equivalent matrix equation in some basis,
in the forms

(F=rmhHV® =0  and (F=xmU)[v®y=o. (7.86)

where [V®] is the column vector of components V,*) = &.V® of eigenvector V® in
the chosen basis. The matrix equation, and hence the operator equation also, has a
solution other than the null vector if and only if

det (F — Md) =0 with matrix equivalent |[F — 2 U|=0. (7.87)

This cubic equation has three eigenvalue solutions Aj, A», A3 which may in general be
complex numbers. For each of those solutions, (F — A; U) has rank less than three,
and so a non-null eigenvector solution to eqn (7.86) can be found.*’ These eigenvec-
tors are usually normalized by dividing each one by its magnitude to produce a unit

A (k
vector. The form of eqn (7.85) shows that these normalized vectors v — v JIIV®|
are still eigenvectors.

7.12 Eigenvectors of Real Symmetric Operator

Real symmetric operators S, obeying ST = &, are an important special case. We list
here some properties of their eigenvalues and eigenvectors. The listed properties are
proved in Section B.24.

1. The eigenvalues A; of real symmetric operators are all real.

2. Since all matrix elements §;; are real numbers, the eigenvector solutions eqn
(7.86) may be taken to be real vectors.

3. If two eigenvalues are different, A; # A,,, then the corresponding eigenvectors are
orthogonal, Vk . Vn =0.

4. Three orthogonal unit eigenvectors of S can always be found. These three eigen-
vectors obey {71( . {7,, = &, and are said to form a complete orthonormal set. The
word “complete” is used here to indicate that these three eigenvectors could be
used as an orthonormal basis in place of €; if desired.

7.13 Eigenvectors of Real Anti-Symmetric Operator

The eigenvalue problem for the real, anti-symmetric operators described in Section
7.5 is of particular importance in the study of rigid body rotations. Fortunately, the
eigenvalues and eigenvectors of the most general anti-symmetric operator in three
dimensions can be found in a standard form.

39The reader should refer to Section B.23 for more detail about finding eigenvalues and eigenvectors.
403ee Section B.19.
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Theorem 7.13.1: Eigenvectors of Anti-Symmetric Operators
If W is a real anti-symmetric operator obeying W' = —W with eigenvector equation

wv® =, v® (7.88)

then its eigenvalues and corresponding eigenvectors are
M=iw M =—iw A3=0 (7.89)
and
v = (ﬁ _ if)) V2, v = (ﬁ n if)) V2, Voo  (7.90)

where w is the vector defined in eqn (7.40), w = ||®|| is its magnitude, a is some real unit
vector perpendicular to w, and b = (w/w) x a is also a real unit vector, perpendicular to
both a and w.

Proof: Direct computation of eqn (7.87) using the matrix in eqn (7.38) shows the

eigenvalues to be as stated. Lemma 7.5.1 showed that WV = w x V for any vector V.
A~ (k A (k ~ (k

Applying this result, one easily proves that WV( - ® X V( - AkV( : fork=1,2,3,

as was to be proved. O

Note that the three eigenvalues of an anti-symmetric W are always distinct. They
would be equal (all zero) only in the case @ = 0 which would imply a null operator.
The three eigenvectors of W are orthonormal using the extended definition of inner
product appropriate for vectors with complex components discussed in Section 7.10

A% Al
above. They are easily shown to obey V( . V() = 8kl-

‘b

N o

0>

@
F1G. 7.1. Construction of eigenvectors of W

One might think that the eigenvalue problem for W is not really solved, due to
the arbitrary choice of vector a. But in fact we have solved the problem as well as
eigenvalue problems can ever be solved. To show this, we begin with a lemma.

Lemma 7.13.2: Underdetermination of Eigenvectors
Normalized eigenvectors are determined only up to an arbitrary phase factor exp (iay),
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where ay are real numbers that may in general be different for the different eigenvectors.
. . . . ~ (k)
If an eigenvector problem is solved to give an orthonormal set of eigenvectors V', then

~ (k) ~ (k
V( - exp (i(xk)V( ) (7.91)

are also an orthonormal solution to the same problem.

Proof: Equation (7.85) is homogeneous in the eigenvectors. Thus, when any nor-

malized eigenvector \A7(k) is multiplied by a factor of the form exp (i), the exp (iay)
factors on left and right of eqn (7.85) will cancel and the result will still be an eigen-
vector. The resulting set of eigenvectors will also still be normalized and mutually
orthogonal, since

A\ Ay A (k)N * Al A () Al
<V()> -V() :(expiakV( )> -(expialV()>:exp(ioq—iak)V( )*~V()

=exp (iay — iag) O = du (7.92)
using of course the extended definition of dot product. O

It follows that the eigenvector equation eqn (7.88) can never determine a completely.
It can be any unit vector lying in the plane perpendicular to . To see this, use the
real, orthogonal unit vectors a and b defined above to derive the identities

exp (ia) (ﬁ — zﬁ) = (z’i/ — ilA)/) and exp (—ia) (ﬁ + zf)) = (ﬁ/ + ”3/) (7.93)

where
~ ~ . ~ A/ . ~ ~
a4’ =cosal+sinab and b = —sinwa +cosab (7.94)

are 4 and b rotated by the same angle « in the plane they define. Note that b =
A~/
(w/w) x 4" and &’ - b = 0 remain true. Thus the rotation of 4 by angle « to produce
some other vector 4" lying in the same plane leads to the new set of eigenvectors
A (1Y A (1 ~(2) A (2 A (3) A (1
V( ) =exp (i) V( ) V( ) =exp(—ia) V( ) V( ) = exp (0) V( ) (7.95)

By Lemma 7.13.2, the eigenvector equation cannot distinguish between the two sets
and so cannot determine the vector a.

7.14 Normal Operators

The properties of normal operators given below are proved for normal matrices in
the last three sections of Appendix B. Their correctness as operator relations is a con-
sequence of the one-to-one correspondence between operators and matrices proved
in Section 7.8. Note that the eigenvectors in Section B.26 and following sections are
denoted by [xl.(k)] whereas we are using [Vi(k)] here.
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An operator will have a complete orthonormal set of eigenvectors obeying

~ ()%~ (D)

\Y% -V ' =8y (7.96)
if and only if it is a normal operator. An operator A is called a normal operator if it
commutes with its Hermitian conjugate,

ATA=AA"T  or, equivalently, [A, A =0 (7.97)

Most operators that might be used in mechanics are normal. Real symmetric, real anti-
symmetric, real orthogonal, Hermitian, anti-Hermitian, and unitary operators are all
normal operators.

To exploit the properties of normal operators, we define a linear operator D to
be the operator that converts each of the basis vectors €; into the corresponding unit
eigenvector of the normal operator

N
e, = V& (7.98)

A (k
for k = 1, 2, 3. Since the eigenvectors V( ) will in general not be real vectors, it follows
that D will not in general be a real operator. It follows from definition eqn (7.98) that
the matrix elements of D in the €; basis are

N
Dj, =€ -De, = ¢ 3= Vl.(k) (7.99)

so that matrix element D;; is equal to the ith component of the kth eigenvector, and
the matrix D can be constructed by writing the components of the three normalized
eigenvectors as its three columns, as in
Vl(l) V1(2) V1(3)
D=|vi"v®vP (7.100)
D 2 O
Vit V3t Vg
The orthogonality condition eqn (7.96) may now be written out as

3 3
o 0
8=V ZV(k)*V(l) ZD Dy =Y DJ;Di (7.101)
i=1

where the definition of Hermitian conjugate in eqn (7.75) was used. Thus
Ui = 61 = (DTD) (7.102)
Kl

fork,l =1, 2,3, and hence
U=D'D (7.103)

As proved in Theorem B.22.2 this is sufficient to prove that D is a unitary operator
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obeying eqn (7.78)

D'D =u =DD’ (7.104)
Let us now define the operator £ by the two equivalent formulae
E=D'AD and A=DED (7.105)

By eqns (7.30, 7.99), the matrix elements of £ in the €, basis are

3 3 3 3
_ T _ T A D, — (k)* R 740)
Eq=(D AD)kl_ZZDkiA,JDJ,_ZVi > A
i=1j=1 i=1 j=l1
3
= Z Vi(k)*k[ Vi(l) = A8 (7.106)

i=1
where the component expansions of eqns (7.85, 7.96) have been used to write
3 3
> ayvP =uv®  and Y vOvO =5 (7.107)
j=1 i=1
Thus the matrix of operator £ is
X 00
E=]0Ax0 (7.108)
0 0 A3
a diagonal matrix with the eigenvectors as its diagonal elements. We say that the

operator D reduces A to a diagonal operator £.

7.15 Determinant and Trace of Normal Operator

For a normal operator, the determinant and trace defined in Section 7.4 can be written
in terms of the eigenvalues of the operator. Taking the determinant of the second of
eqn (7.105) and using eqn (7.35) gives

det A = det (DED') = det D det & det D' (7.109)
Also, taking the determinant of eqn (7.103) gives
I = detld = det (D'D) = det D' det D (7.110)
Thus, noting the diagonal form of E in eqn (7.108), we obtain
det A = det€ = A3 (7.111)
Similarly, taking the trace of both sides of eqn (7.105) gives
TrA=Tr (DEDT) —Tr (DTDE) —TrUE) =Tr€ = Ay + Ar + 23 (7.112)

where eqn (7.36) was used, and the final value of the trace was obtained by inspection
of eqn (7.108).
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7.16 Eigen-Dyadic Expansion of Normal Operator

Any linear operator has an equivalent dyadic as defined in Section 7.6. However,
for normal operators, that dyadic can be expanded in a form that depends only on
the eigenvectors and eigenvalues of the operator. We will call this the eigen-dyadic
expansion. Since operators and dyadics are equivalent, normal operators are thus
completely determined by their eigenvectors and eigenvalues. Expansion of this sort
are used, for example, in the proof of the Euler Theorem in Chapter 8. But they are
also important to the reader because of their frequent use in quantum theory.

Theorem 7.16.1: Eigen-Dyadic Expansion

A (k
If A'is a normal operator whose eigenvalues \; and orthonormal eigenvectors V( ) are
known, then its dyadic A can be expanded in eigen-dyadic form

3
A (k ~ (k
A=V (7.113)
k=1

which expresses A entirely in terms of the eigenvalues and eigenvectors of A.

Proof: This result follows from the component expansion of the second of eqn
(7.105), which is

3 3 3 3 3
k / k k
Aij =Y DyEuD); = > VvOusuv I =3 vOrv o (7.114)
k=1 I=1 k=1 I=1 k=1

where eqns (7.99, 7.106) have been used. Substituting that result into the definition
of the dyadic A in eqn (7.52) gives

3 3 3 3
IS 3 BTV 35 3) NATIRALES AT LD
i j j j k=1

which is eqn (7.113). O

Thus the expansion of W = A - V for a general vector V in eqn (7.56), can equally
well be written as

3
A (k A (k
W:A~V:ZV()/\kV<)*~

k=1

v (7.116)

Note that the right vector in eqn (7.113) is already complex conjugated and is simply
dotted onto V in eqn (7.116) without change.

As shown in Lemma 7.13.2, the eigenvectors are not uniquely determined. If each
A (k
V( ) is multiplied by a factor exp (i), the result will be an orthonormal set of eigen-

vectors that are equivalent to the original ones. However, this indeterminacy does not
affect the dyadic defined in eqn (7.113).
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Lemma 7.16.2: Uniqueness of Eigen-Dyadic
The eigen-dyadic in eqn (7.113) is uniquely determined even though the eigenvectors are
not.

Proof: Replacing \Af(k) by exp (iax) \A/(k) in eqn (7.113) gives

3 (exp i) \7(")) M (exp Giag) V(k))*

k=1
: ~ (k) (R)x A k), o (k)*
=Y explix —ia) V- V' =)V uV (7.117)
k=1 k=1
which is identical to the original dyadic A. O

The resolution of unity dyadic in eqn (7.63) of Section 7.7 can also be expanded
in terms of the eigenvectors of a normal operator. The second equality in eqn (7.104)
implies that
3 3
5ij = DyDj, =Y vy (7.118)
k=1 k=1

It follows that

3 3 3
U= a8 =33 Y & v vy = SOV (7.119)
i j i j k=1

which is the required expansion. Note that the only difference between eqns (7.113,
7.119) is that the former multiplies the terms by the eigenvalues A; before adding
them.

7.17 Functions of Normal Operators

The eigen-dyadic expansion eqn (7.113) can be used to define general functions of
normal operators and dyadics.

Definition 7.17.1: Functions of Normal Operators
If a function f(z) is well defined for all eigenvalues \; of a normal operator A, then the
dyadic function F = f(A) of the dyadic A is defined by

3
F=r=YV"ranv? (7.120)
k=1

which is the same as eqn (7.113), but with f(\y) replacing ig.
The operator function F = f(A) of the normal operator A is then defined by the
condition that its effect on any vector V be the same as that of the dyadic: FV =TF - V.
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This definition has the consequence that F = f(A) has the same eigenvectors as
does A, and eigenvalues y; = f(Ax),

A (k A (k
7:V( ' = VkV( ) where e = fw) (7.121)

To see this, note that

W

o (k) o (k)

FV P ron v Y = Z fonsn = fo0 VY (7.122)

||Mw

This result is important because it proves that any well-defined function of a normal
operator is also a normal operator, with the same orthonormal set of eigenvectors. Of
course, the eigenvalues y; in general are different from the eigenvalues 2.

If the function f is a very simple one, like f(z) = z" where n is some positive
integer then, as we would expect, F is the product of .A with itself n times, as in

n factors

——
F=A"=A...-AA (7.123)

For example, consider the case n = 2. Then eqn (7.113), and the orthogonality rela-

A Al
tion V( » -V() = 8y, give

3 3
A (k ~ (k ~ (1 ~ (1
K (ZV( Y )*) . (ZV()MV( >*>
k=1

3 3
A l k k
=SV nsur v = ZV( L2 (7129
k=1 I1=1 k=1

which is the definition in eqn (7.120) for this function. This result for n = 2 can be
generalized in an obvious way to any positive integer n.

The definition eqn (7.120) is well defined even if the function f(z) does not have
a power series expansion. But if it does have one, the following theorem applies.

Theorem 7.17.2: Function as Power Series
If function f(z) has a power series expansion

f=fR@Q=a+az+ar+ =) a7 (7.125)

and all eigenvalues A; of A lie in the circle of convergence of the power series, then the
operator function F = f(A) in Definition 7.17.1 equals a convergent power series in
operator A,

F=fA)=ald +aA+aA+ - (7.126)
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Proof: Using eqn (7.123) repeatedly gives

3
~ (k A (k
[F:f(A):ZV()(a0+alxk+a2x§+---)v‘ " (7.127)
k=1

3
~ A (k k
ZV) ©* g ZV YR AR ZV( T AT
k=1 k=1 k=1
= apU +a1A+a2A2+

which converges whenever all eigenvalues of A lie in the circle of convergence of the
power series. The equivalent operator equation is then the power series

F=fA)=ald +aA+a A +--. (7.128)
0

7.18 The Exponential Function

The exponential function is of particular importance in the treatment of rotation op-
erators. The power series expansion of this function,
i R
f(2) =exp(z) —1+z+—+§+ (7.129)
converges for any z. Thus, for any normal operator .4, Theorem 7.17.2 shows that the
function F = exp (A) can be expanded in a power series as
A2 A8
A (k
Then, if A has eigenvectors V( ) and eigenvalues A, the operator F = exp (A) is also
a normal operator with the same eigenvectors, and eigenvalues y; = exp (A).
If 0 is a scalar, and if A does not depend on 6, then the function f(z) = exp(0z)
produces the power series

92 2 93 3
F@O)=exp(OA) =U+0A+ ZA + :;4 + - (7.131)
Differentiating eqn (7.131) term-by-term gives
d 0243 9242
Eexp(GA) A+0A4% + o :A<U+9A+ T +---)=Aexp(9A)

(7.132)
which shows that F(0) defined in eqn (7.131) is a solution to the operator differential

equation

dF©)
— g =AF®) (7.133)

where the initial condition F(0) = I/ is assumed.
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If two operators commute, then they can be manipulated in the same way as
ordinary numbers. Thus it follows from the same proofs as are found in standard
calculus books that if operators A and B commute, [A, B]. = 0, the exponential
functions will have the property that

exp (A) exp (B) = exp (A + B) = exp (B) exp (A) (7.134)
Since any operator A commutes with (—.A4), it follows that
exp (A) exp (—A) = exp (—A)exp (A) =exp (0A4) =U (7.135)

Thus, whether A is singular or nonsingular, 7 = exp (6.4) is always nonsingular, with
the inverse F~! = exp (—6.A).

7.19 The Dirac Notation

Quantum mechanics uses complex vectors and operators similar to those described
in Sections 7.9 and 7.10. The main difference is that the quantum vectors may have
infinite dimension.

Quantum mechanics also uses a different notation for complex vectors, called the
Dirac notation.*! We have denoted a vector by V where the use of bold-face type
indicates that it is a vector, and the letter “V” is a label indicating which vector it is.
The Dirac notation denotes a vector by what is called a ket |V) where the | ) indicates
that this is a vector, and the letter “V” is its label.

Inner products, which we write V* - W, are written by reversing the ket to form
what is called a bra (V|, so that together the two parts of the inner product form a
bra-ket (V| W). Note that the bar is not doubled in the inner product of a bra and a
ket.

Operators are variously notated. One common notation, which we will adopt here,
is to place a hat symbol over the operator. For example, an equation that we would
write W = FV would be |W) = F |V) in Dirac notation.

The Dirac notation is essentially dyadic. The dyadic F defined in eqn (7.52) is
written in Dirac notation with the ket and bra vectors poised to make inner products
to the left or the right. Thus, the dyadic associated with operator F would be written

-3

i=1i

3
lei) Fyir {e;r] (7.136)

where the matrix element that we write F;;; = €; - € is written as
Fiir = (ei| Flei) (7.137)

The kets |e;) here are the Cartesian unit vectors that we denote by €;. Notice that in
quantum mechanics, the distinction between operator F and associated dyadic F is
ignored. So, in eqn (7.136) the operator is considered to be equal to its dyadic.

HMost quantum texts treat the Dirac notation. For a definitive statement of it, see Dirac (1935).
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Eigenvectors that are labeled by an index k are often denoted by kets using just
that index as their label. Thus eqn (7.85) in the Dirac notation is

F k) = rg k) (7.138)

A (k
where the eigenvector we denoted by V( ) is denoted simply by |k). This extreme
freedom in choosing labels for bras and kets is one of the strengths of the Dirac
notation. The orthogonality of the eigenvectors in eqn (7.96) becomes simply (k|l) =
Skl -
The Eigen-Dyadic of a normal operator defined in eqn (7.113) is then written

3
F=>"lk) ae (k| (7.139)
k=1
and the resolution of unity from eqn (7.119) is written
3
U=>"Ik)kl (7.140)
k=1

In the Dirac notation, the definition of Hermitian conjugate is extended to apply
also to bras and kets. Since, from eqn (7.83), the inner product is expressed in terms
of component column vectors by using the Hermitian conjugate of [V],

(VIW) = [VI'[W] (7.141)

the Dirac notation defines the bra (V| as the Hermitian conjugate of the ket |V), as
in (V| = |V)T. The bras are considered to be a separate vector space, called the dual
space, and expressions like (V| + |W) adding a bra and a ket make no sense and are
forbidden.

The flexibility in labeling kets leads to certain limitations in the Dirac notation.
If a ket is multiplied by a number, that number cannot be taken inside the ket. Thus
a|¥) # |lay) since the expression on the right is nonsense, a label multiplied by a
number. Also, in the case of the eigenkets |k) such a usage could lead to errors. Clearly,
3|1) # |3) since the eigenkets |1)and |3) are distinct members of an orthonormal set
of eigenvectors.

7.20 Exercises
Exercise 7.1 A 3 x 3 real matrix R can be thought of as three 3 x 1 column vectors,

Rn Ri2 Ri3
R = Ry Ry Ro3 (7.142)
R3) R3» R33
(a) Using the formalism of sums and indices, write out the i j components of both sides of the

equation
RTR=uU (7.143)

and show that it is true if and only if the three column vectors in eqn (7.142) are normalized
and mutually orthogonal (i.e. an orthonormal set of vectors).
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(b) Show that eqn (7.143) is true if and only if R ~! existsand RT = R !, and hence that a
real matrix is orthogonal if and only if its column vectors are an orthonormal set.

Exercise 7.2 In the following, you may use the fact that whenever operators A and B com-
mute, so that [ A, B], = 0, then
eeB — eATB) _ ¢BeA (7.144)

[Although it doesn’t matter for this exercise, note that this equation is not true when they fail
to commute. ]

(a) Suppose that A is a normal operator. Prove that B defined by
1 1
B=e=Ut A4 A+ S A+ (7.145)

is also a normal operator.
(b) Prove that if eqn (7.145) holds and A is a normal operator, then

det B = eTTA (7.146)

(c) Let A be a normal operator, which may or may not be singular. Prove that an operator 3
defined from this .A by eqn (7.145) has an inverse given by

Bl=eA (7.147)
and hence is nonsingular.
(d) Prove that if A is a real, anti-symmetric operator, then the B defined in eqn (7.145) will

be a real orthogonal operator. Find the value of its determinant det 3.
(e) Use the power series expansion of the exponential to prove that

-1
cBc! = LAC (7.148)

where C is any nonsingular operator, and eqn (7.145) is assumed to hold.

Mirror v

F1G. 7.2. Illustration for Exercise 7.3.

Exercise 7.3 Consider a plane mirror. Denote the unit vector normal to its surface and point-
ing out into the room by n.

(a) The operator M converts a general vector V in front of the mirror into its reflected image
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VM = MYV behind the mirror. Find a general expression for its matrix elements M; j in
terms of the components 7; of vector . [Hint: Write V and V™) as sums of vectors parallel
and perpendicular to n using eqn (A.3).]

(b) Is M an orthogonal operator? What is det M?

(c) Write the dyadic M corresponding to operator M, expressing it in terms of the unit dyadic
and n.

Exercise 7.4 Refer to eqn(A.3) of Appendix A. Operators P and P, which are called
projection operators, are defined by

V=PV V. =P,V (7.149)

for any general vector V.

(a) Find the matrices of these two operators, writing them in terms of the components of n.
(b) Prove that

(PH)2 =P (PL)? =P, PiPL=0="PLP Pi+PL=U (7.150)

(c) Are P and P_ orthogonal operators? Do they have inverses?
(d) Write the projection dyadics P and [P corresponding to P and P, respectively. Write
them in terms of the unit dyadic and the vector n.

Exercise 7.5 In Section 7.5, the general anti-symmetric operator V is defined in terms of a
vector w by its action YWV = @ x V on any arbitrary vector V.

(a) Use the eigenvalues and eigenvectors listed in eqns (7.89, 7.90) to verify that, for k =
1,2,3,

~ (k A (k
wv® =5, v (7.151)

(b) Verify that these eigenvectors are orthogonal and normalized, using the extended defini-
tion of dot product appropriate for complex vectors,

A (k A (1
v 30 =5, (7.152)

(c) Derive the identities given in eqns (7.93, 7.94). Use them to write out the alternate eigen-

~ k), . NG
vectors V' in eqn (7.95) in terms of a’.b,and w.

Exercise 7.6 A complex, spherical basis, é,(;p) form = —1,0, +1, in a three-dimensional
Cartesian space may be defined as

R 1 A on n N N I .

eﬁf‘i’) = G (—€ +ié) e(()sp) =& e(f‘f) = 7 (& +i&) (7.153)

(a) Prove that these basis vectors are orthonormal, using the complex inner product defined

in Section 7.10,

eUPF gD — 5 (7.154)

(b) Show that the dyadic

U = &Pl 4 giPgior | gl gtn (7.155)

is equal to the resolution of unity dyadic U defined in eqn (7.63).
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(c) Use the resolution of unity in eqn (7.155) to prove that a general vector A can be expanded
as
A= > AP where AR =P A (7.156)
m=+1,0,—1
[Recall that dyadics in complex spaces are written with the right-hand vector already com-
plex conjugated so that no further complex conjugation is required when dotting them onto
vectors. ]

Exercise 7.7
(a) Apply the expansion in eqn (7.156) to the radius vector r. Write the resulting r,sf P com-
ponents in terms of x, y, z.
(b) Write the components r,,(fp ) in terms of spherical polar coordinates, and demonstrate that,
form = +1,0, —1,

4r

=\ Y. 9) (7.157)

where the Y,,l1 (6, ¢) are the standard spherical harmonics for £ = 1 as listed, for example on
page 337 of (Shankar, 1994).

Exercise 7.8
(a) Use the definition of components in eqn(7.156) with the standard Cartesian expansion
A= Z?:] A;€; to show that the spherical components can be written in terms of the Carte-
sian ones as

3 ALY A
ASP = Z TniA;  or, equivalently, A(()Sp) =T| A (7.158)
i=1 A(_S’l’) A3
where
Ti = &5P* g (7.159)

(b) Demonstrate that the matrix T must be unitary, and check that the matrix you wrote is
indeed unitary.

(c) Using the resolution of unity eqn (7.155) or otherwise, show that the equation B = FA
can be written as the equivalent component equation

ByP = > FPAYY  where FOP=TFT' (7.160)
m'=+1,0,—1

gives the spherical matrix F ©P) in terms of the standard Cartesian matrix F defined in eqn
(7.18).

Exercise 7.9 An operator F is defined in terms of the unit operator / and a real, anti-
symmetric operator VV by

F=U+W (7.161)
The operator VV is associated with a given vector w, as described in Lemma 7.5.1.
(a) Show that F is a normal operator.

~ (3 ~ . .
(b) Show that V( - ® is an eigenvector of F.
(c) Find the eigenvalues of F and hence prove that F is nonsingular for any value of .
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Exercise 7.10 Consider a real, anti-symmetric operator A. Suppose that the associated vec-
tor discussed in Section 7.5 is the unit vector n = (él + 2@2) /+/5. (Thus NV = i x V for
any vector V.)

(a) Show that a = €5 is a suitable choice of the unit vector a discussed in Section 7.13. Use it
to find three eigenvectors of A/. Show that they are orthonormal, using the complex definition
of inner product from eqn (7.83).

(b) Consider now an operator defined by F = U + 2N — 3A?, where I/ is the unit operator.
Find eigenvectors and eigenvalues of F.
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KINEMATICS OF ROTATION

In this chapter, we develop the techniques needed to define the location and orienta-
tion of a moving rigid body. Roughly speaking, rotation can defined as what a rigid
body does. For example, imagine an artist’s construction consisting of straight sticks
of various lengths glued together at their ends to make a rigid structure. As you turn
such a construction in your hands, or move it closer for a better look, you will notice
that the lengths of the sticks, and the angles between them, do not change. Thinking
of those sticks as vectors, their general motion can be described by a class of linear op-
erators called rotation operators, which have the special property that they preserve
all vector lengths and relative orientations.

8.1 Characterization of Rigid Bodies

The concept of a rigid body is an idealization, since all real objects have some degree
of elasticity. However, the theory in the present and following chapters, based on this
idealization, provides a good first approximation to the behavior of many real objects.

Definition 8.1.1: Definition of Rigid Body

A rigid body can be defined as a collection of point masses such that the distances between
them do not change. If r; and r, are the locations of any two masses m; and m,, in the
body, relative to some inertial coordinate system, the body is rigid if and only if the
distances dy, defined for all I, n values by

r—r, = dln and ”dln ” = dln (81)

remain constant as the body moves.

We will refer to vectors d;,, between masses m; and m,, as internal vectors.
The above definition implies that the dot product of any two internal vectors is a
constant, regardless of where the masses occur in the rigid body.

Lemma 8.1.2: Constancy of Dot Products
For any masses mg, mp,, m,, mq of a rigid body,

dyp - dpy = constant (8.2)

Proof: The lemma is proved in two stages. First consider any three distinct masses
mq, my, mp, and the vectors between pairs of them. They form a triangle so that

dap - dhp = dah (83)

As the rigid body moves, this triangle will remain anchored to the same three masses.

152
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Now calculate the squared magnitude of the left and right sides of eqn (8.3),

[dap — sy ||2 = ldapl* or dg, —2(dep - dip) +dj, = dg (8.4)

The constancy defined in eqn (8.1) then implies that the squared terms in eqn (8.4)
are all constants, and hence that the dot product must also be constant. The dot
product of vectors d,, and d;,,, both of which start from mass m,, must therefore also
remain constant.

Now consider any two internal vectors of the rigid body. Call them d,, and d,,.
Picking some other mass, which will be labeled with index ¢, we can write

d,p = dye — dpe and dyy =dpe —dye (8.5)
Therefore the expression
dab : dpq = (dac - dbc) : (dpc - dqc) (86)

contains only dot products of internal vectors originating at the common single mass
m.. But all such dot products have just been proved to be constant, so d; - d,; must

be a constant, which completes the proof of the lemma. O
et g gy.\ /‘\,0
N N dhc pc
~ \\. o L]C
nme

FIG. 8.1. Relations among internal vectors.

The dot product of two internal vectors is the product of their magnitudes, which
are constant by the above definition, and the cosine of the angle between them. Thus
the above definition and lemma also establish that the relative angle between any two
internal vectors must remain constant as the body moves.

8.2 The Center of Mass of a Rigid Body

The center of mass R of any collection of point masses, including that of a rigid body,
is given in eqn (1.32) as

1 N
=— mur, (8.7)
M n=1

The relative position vector p, of mass m,, is then defined in eqn (1.33) by the equa-
tion

r, =R+ p, (8.8)
The relative position vectors may be used to give an alternate characterization of a
rigid body.
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€]

FI1G. 8.2. Center of mass and relative vectors for a rigid body. A typical mass m,, of the body is
shown.

Lemma 8.2.1: Constant Dot Product of Relative Position Vectors
A body is a rigid body if and only if, for all masses m; and my,

p; - p, = constant 8.9

Proof: First show that eqn (8.9) implies the constancy of dj,, and hence that the
body is a rigid body according to Definition 8.1.1. Equation (8.8) shows that any
internal vector may be written

djp =1, —1, = p; — p, (8.10)
since the R terms cancel. Thus
dpy = diy - diy = (0 — p,) - (P — P,) (8.11)

Equation (8.9) implies that all dot products in the expansion of the right side of eqn
(8.11) are constant. Hence each dj, is constant, as was to be proved.

Now prove the converse, that Definition 8.1.1 implies eqn (8.9). Use eqns (8.7,
8.8) to write, for any mass m,,,

N N
1 1
p,=Ir, —R= MZmp(rn —TI,) = MZdenp (8.12)
p=1 p=1
Using eqn (8.12), the expression p; - p, in eqn (8.9) becomes
| NN
PPy = e ng;mpqulp “dpg (8.13)
p=lg=

which contains only dot products of the form d;, - d,g, all of which were proved
constant by Lemma 8.1.2, which completes the proof. O

In general, the center of mass will not be at the location of one of the point masses.
In fact, for a hollow body like a basketball or a teacup, the center of mass may be at
some distance from the masses. But eqn (8.9) with [ = n implies that the distance
of the center of mass from any of the point masses is a constant. The center of mass
moves rigidly with the body just as if it were one of the point masses.
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8.3 General Definition of Rotation Operator

Rigid bodies have been defined by the condition that the dot product of any two
relative position vectors p; - p,, must remain constant as the body rotates. We now
investigate a class of linear operators called rotation operators that preserve the inner
product of any two vectors and are therefore appropriate for describing the rotation
of rigid bodies. These rotation operators will be applied to the kinematics of rigid
bodies in Section 8.9.

The first property of rotation operators is linearity. Let a general rotation operator
R transform a general vector V into the vector V&),

VR = RV (8.14)

Since we want operators that reproduce the behavior of rigid bodies, the first require-
ment placed on this operator must be that a triangle of internal vectors such as eqn
(8.3) must be transformed into the same triangle of transformed vectors with

R (R) (R)
diy) —d;) =d, (8.15)
or, introducing the operator,
Rdap — Rdpy = Rdap = R (dgp — dp)p) (8.16)

This condition is satisfied by requiring R to be a linear operator, as defined in eqn
(7.1) of Chapter 7, so that for any vectors V and W,

R @V + BW) = aRV + FRW (8.17)
However, linearity alone is not sufficient. In addition to being linear, the rotation
operator must satisfy the conditions of the following definition.

Definition 8.3.1: Rotation Operator Defined

A rotation operator, sometimes referred to as a rotation, is defined as a linear opera-
tor that also satisfies any one of the following three equivalent definitions. Each of the
definitions implies the other two.

1. Given vectors V and W, define V®® = RV and W® = RW. Then a linear
operator R is a rotation operator if only if

V.-W=VH&. whk (8.18)

is satisfied for any, arbitrary V, W.
2. The linear operator R is a rotation operator if and only if there is some or-
thonormal triad of vectors €1, €;, €3 obeying
& - =4 (8.19)

al®) ééR)

such that e, , égR) is also an orthonormal triad of vectors, obeying

& el = (8.20)

where éER) = Re; for each indexi =1, 2, 3.
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3. A linear operator R is a rotation operator if and only if it possesses an inverse
and its inverse is equal to its transpose,

R~ exists, and R =RT (8.21)

so that
RIR=UU=RRT (8.22)

where U is the unit operator. As discussed in Section 7.5, this is the definition
of an orthogonal operator, so this definition requires R to be a real, linear,
orthogonal operator.

W®R)

)

FIG. 8.3. The lengths of the rotated vectors VX and W(R) are the same as the original vectors.
Also the angle between them is same as between the original ones.

Proof: (Proof of equivalence) We now prove that the condition in each of these
definitions implies the condition in the following one, in the pattern 1=2=3=1.
This implies that an operator R satisfying any of the definitions will also satisfy the
other two, and thus that the three definitions are equivalent.

Since the vectors V and W in Definition 1 are assumed arbitrary, they can be taken
to be ; and ;. Thus the condition of Definition 1 implies that of Definition 2.

The condition in Definition 2 can be written, for i, j = 1,2, 3,

& e = Re; - RE; =8y (8.23)

Using the definition of the identity and transpose operators from Section 7.1, this
becomes
é,‘ . RTRéj = 3,']' = é,‘ ~Uéj or (RTR) = Ul“ (8.24)
ij

Since all of the matrix elements of the operators (RTR) and U are equal, the operators
are equal and*?

R'R =U (8.25)
Taking the determinants of both sides of eqn (8.25) and using eqn (7.35), shows that
(detR)? = (det RT)(det R) = detif = 1 (8.26)

with the result that
detR=+1#0 (8.27)

42As proved for matrices in Theorem B.22.1, eqn (8.25) is actually a necessary and sufficient condition
for R to be an orthogonal operator. That proof is repeated here.
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Thus R is nonsingular, and, R ! exists. Using / = RR~! and eqn (8.25) gives
R =RU=RRR'=UR"'=R"! (8.28)

which is the condition in Definition 3 and implies eqn (8.22).

Introducing the operator R, the condition in Definition 1 can be written using the
definition of the transpose operator in eqn (7.13),

V.W=vV®. Wk — (RV). (RW) =V . (RTRW) (8.29)

Thus the orthogonality condition RTR = U/ from Definition 3 implies the condition
of Definition 1, completing the circle of inference. O

8.4 Rotation Matrices

From the general discussion of linear operators in Section 7.2, we know that V(® =
RV implies and is implied by the equation

3
AR Z R;jV;  where  R;; =& -Rg (8.30)
=1

are the matrix elements of the matrix R associated with the operator R.

Equation (8.30) gives the components VI.(R) of V®) in the &; basis, in terms of the
components V; of the original vector V in that same basis. It may also be written in
matrix form, as

[V®] = R[V] (8.31)

where [V] is the column vector of components V; and [V(®)] is the column vector of
components Vl.(R).

As an example of a rotation operator, consider the rotation denoted R[fes3], a
rotation by angle 6 about the €3 axis. The second of eqn (8.30) shows that the matrix
element R;;is the dot product of &; with the rotated image of €;. Thus R;; = ¢; - el

J
Evaluating these dot products gives the matrix

cos@ —sinf 0
R[0e;] = | sin® cosd 0O (8.32)
0 0 1

The reader should verify all of the matrix elements of eqn (8.32), and also check that
this matrix, and hence the associated operator, are orthogonal and have determinant
equal to plus one. A general prescription for deriving the operators and matrices for
rotation about any axis will be given in Section 8.18.
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8.5 Some Properties of Rotation Operators

By Definition 2 of Section 8.3, the rotated images of the basis vectors €; are also
three, mutually orthogonal unit vectors and hence form a basis in the space. Like any
vectors, these rotated basis vectors may be expanded in the original basis, as

3 3
oo Z" (& égm):; - R&) Zea i gR}aéa (8.33)

Note that the basis vectors transform using the transposed matrix RT.

It is useful to define rotated versions of the Kroeneker delta function and the Levi-
Civita function defined in Section A.5. It follows from Definition 1 of Section 8.3, that
the rotated Kroeneker-delta function is the same as the original one,

50 =8 &0 =% g =4 (8.34)

Using eqn (8.33), the rotated Levi-Civita function may be expanded as

33 3 3 3 3
R) _ A(R) _ A(R) a(R
l(]k) - e( ) X e( ) ( ) Z Z Z Rﬂl Rb] ckea X ed ec Z Z Rainchk Eabc
a=1b=1 c=1 a=1b=1 c=1
(8.35)
It follows from eqn (B.37) and the properties of e, listed in Section A.5 that
3 3 3
R
£ip = Z Z Z Ra1 RpoRe3eape = |R| = detR (8.36)

1 b=1 c=1

Since exchange of two indices of ai(;? implies the exchange of two corresponding
indices of ¢, in eqn (8.35), one obtains

£ = 6P 6P . &P — det Roey (8.37)

8.6 Proper and Improper Rotation Operators

Equation (8.27) states that the determinant of a rotation operator must be either +1
or —1. Rotation operators with det’R = +1 are called proper rotation operators, or
proper rotations. Those with with det R = —1 are called improper rotation operators.
These operators are also referred to as proper or improper orthogonal operators.

For example, consider the identity operator I{. It is orthogonal, since T = U/ and
therefore UUT = U? = U. The identity can be thought of as a degenerate proper
rotation (by zero angle), since det!/ = +1.

But the total inversion operator 7 = —U, which converts every vector V into —V,
is also orthogonal since 77T = U*> = U{. But det7 = —1 and so the total inversion
operator is an improper rotation.
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The distinction between proper and improper rotations is of no importance for dot
products, since, by Definition 1 of Section 8.3,

VB . wWwhR —yv.w (8.38)

in either case.
But cross products are sensitive to the distinction, as proved in the following the-
orem.

Theorem 8.6.1: Rotated Cross Products
With the definitions A®) = RA, B® = RB, and C® = RC,

A=BxC implies A® = (detR) (B<R> x C<R>) (8.39)

Proof: Writing A = 2221 A€, with a similar expansion for B and C, it follows from
the linearity of operator R that

AR — RA = RZAkek = Z AcRE, = Z A (8.40)

with a similar expressions for B® and C®. Thus

3 3 3

B® «c® — ZZ BiCj e(R)x (R) ZZZ BiC; ( :(R) A(R) A(R)) él(cR) (8.41)

i=1j=1 i=1j=1k=1
where the last expression expands the vector éER) x &%) in the rotated basis. Using
eqns (8.37, 8.40), and the expansion of cross products from eqn (A.16), then gives

3.3 3
BR 5 € = (detR) Y D) e BiCiN = (detR) Z AR = (det R)AD
i=1 j=1 k=1 k=1
(8.42)
as was to be proved. O

We will be concerned almost entirely with proper rotations, for which det R = +1.
Using eqn (8.39), we may now give a necessary and sufficient condition for R to be a
proper rotation operator.

Definition 8.6.2: Proper Rotation Operator

The linear operator R is a proper rotation operator if and only if it satisfies Definition
2 of Section 8.3 as well as the condition that the original and the rotated basis vectors
“(R) = Re; fori = 1,2, 3 both form right-handed systems, obeying

& x&=6 and &P x&l =g (8.43)
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8.7 The Rotation Group

As for any linear operator, the product of two rotation operators is defined to mean
successive application. Thus, for any vector V, the product R = R|R, implies that

RV =(R1R2)V =TR1(R2V) (8.44)

in which the right operator R; is applied first to V and the left operator R; is then
applied to the result.

A set of objects is said to form a group if a binary operation called group multipli-
cation of the objects is defined and if a set of group axioms is satisfied. The common
usage is to say that the objects form a group under that particular group multiplica-
tion. We show that proper rotations form a group under the operator multiplication
defined in eqn (8.44).

1. The first axiom is closure. The group product of two objects must be an object
in the same group. Thus, the product of two proper rotations must also be a
proper rotation. If R = R|R, and rotations R| and R, both satisfy Definition 3
of Section 8.3, then

R7'=RiR)'=RIRT =RIRT = RiR)T =RT (8.45)

shows that R also satisfies the same definition and hence is also a rotation.
Moreover, if R and R, are proper rotations, then

detR = det (R1R2) = det R det Ry = (+1) (+1) = +1 (8.46)

shows that R is also a proper rotation. Thus closure is proved.

2. There must be an identity in the group such that pre- or post-multiplication of
any object by that identity does not change the object. We have previously seen
that the identity, or unity, operator !{ is a proper rotation operator.

3. Every object in the group must have an inverse in the group, such that pre-
or post-multiplication of that object by its inverse yields the identity object. As
noted in the proof of Definition 3 of Section 8.3, the inverse R~! of a proper
rotation always exists. To see that the inverse is also a proper rotation, set B =
R~! = RT, where R is a proper rotation operator. Then

B! = (R‘l)_l —R=(R") =5" (8.47)

which shows that B is a rotation operator. Also 1 = detR = det BT = detB
shows that B is a proper rotation.

4. Group multiplication must be associative. Proper rotation operators obey
(R1R2) Rz = R1 (RaR3) since, as discussed in Section 7.1, both sides are equal
to R1R2R3.
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The group of proper rotations is designated SO(3), which stands for the special (de-
terminant equal to +1), orthogonal group in three dimensions.

If the product of a pair of elements gives a result independent of their order, the
group is said to be Abelian. The rotation operators form a non-Abelian group. A finite
rotation R R, will not usually give the same end result as a finite rotation RoR;.

For example, place a closed book on the table in front of you, as if preparing to
open and read it. Rotate it by 90° about a vertical axis, and then by 90° about an
axis running from your left to your right hands. Now replace the book in its original
position and do the same two rotations in reverse order. You will see that the final
orientation of the book is indeed different.

We say that finite rotations do not commute. Writing the commutator of R; and
R, as
[R1, R2le = RiR2 — R2Ri (8.48)

we express this result by saying that proper rotations have in general a nonzero com-
mutator and so form a non-Abelian group.

8.8 Kinematics of a Rigid Body

Let a rigid body have a center of mass R and relative position vectors p,,. As the rigid
body moves, both R and the p, will be functions of time. At /=0, the position of the
mass m, relative to the origin of some inertial coordinate system will be

r,(0) = R(0) + p,(0) (8.49)
and at time ¢ the location will be
r,(t) = R(@®) + p, (1) (8.50)

As proved in Lemma 8.2.1, the dot product of any pair of relative position vectors is
constant (including that of a vector with itself, giving its magnitude squared). Hence,
these dot products also will be the same at all times ¢,

p1(1) - 0, () = p,(0) - p,,(0) (8.51)

Thus the problem of parameterizing the orientation of a rigid body (by which we
mean defining the location of all of its masses m, once its center of mass is known)
boils down to finding an expression for the evolution of vectors p, () that obey eqn
(8.51) at all times t.

The first step toward such a parameterization is to construct a system of coordi-
nates tied to the rigid body. With the rigid body at its initial position and orientation at
time zero, it is always possible to select three non-coplanar relative position vectors.
For simplicity, suppose that these are the first three of them p,(0), p,(0), p3(0). Now
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A N
€3 €,

€]

FIG. 8.4. The body system unit vectors & are rigidly fixed in the moving body. The relative
position vector p,, is also fixed in the body. Hence its components in the body system are
constants.

apply the Schmidt orthogonalization method*? to these vectors to construct a right-
handed, orthonormal set of unit vectors &;(0), & (0), &;(0). Thus, by construction,

3 3 3
&) =) aup(0) and 8; =&©0)-&O) =Y Y auncp(0) - p(0) (8.52)

k=1 k=1 I=1

where the o;; are coefficients specified by the Schmidt method.
Now define vectors &;(¢) at time ¢ by

3
&) =Y aupy(n) (8.53)

k=1
where the «;; factors in eqn (8.53) are defined to be the same as those in eqn (8.52).
It follows from eqns (8.51, 8.52) that

3 3
&) - &) =YY auajipy(t) - py (1)
k=1 I=1

3
> aikajipi(0) - p(0) = &(0) - &(0) =8 (8.54)
11=1

3
k=

which shows that the é; (1) are also an orthonormal set of unit vectors for all .

The coordinate system consisting of these three orthonormal vectors é; (1), with
its origin at the center of mass, will be called the body system. The relative position
vectors can be expanded in this body system as

3
P, (1) =D phi (D& @) (8.55)
i=1

Equation (8.51) implies that the components p, . (r) will be constants, always equal

435ee Section B.20.
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to their values p/.(0) at time zero,

3 3
i) = &) p, (1) = Y etiapy(t) - p, (1) = Y tikpi(0) - p,(0) = &(0) - p, (0) = py,; (0)

k=1 k=1

(8.56)

Thus the angles between the various &;(¢) and p, (t) will never change. The &:(¢) are
rigidly connected to the body and turn with it as it moves.

8.9 Rotation Operators and Rigid Bodies

The time evolution of a rigid body can be systematized by defining a time-dependent
rotation operator R(¢) by the condition that it maps each &;(0) of the body system at
time zero into its value é; (1) at time ¢, as proved in the following theorem.

Theorem 8.9.1 Define a time dependent operator R(t) by the condition that, for i =
1,2,3,
& (1) = R(1) &(0) (8.57)

It follows that R(t) is a proper rotation operator obeying
ROTR@) =U = ROR®)T (8.58)

and det R(¢) = +1 for all time ¢.
It also follows that
P, (1) = R(t)p,(0) (8.59)

and that
p; (1) - p, () = p;(0) - p,, (0) (8.60)

as is required for rigid bodies.

Proof: Identify é; (t) with the rotated basis vector éER) in Definition 2 of Section 8.3.

Since eqn (8.54) proved the é; () to be an orthonormal system of basis vectors, it fol-
lows from Definition 2 that R(¢) is a rotation operator. Hence, by equivalent Definition
3, it obeys eqn (8.58) at all times .

A general relative position vector p, (¢) can be expanded in the body system & ()
basis as given in eqn (8.55),

3
P, (1) = o () & (1) (8.61)
i=1

The components in this expansion were shown in eqn (8.56) to be constants, with
pn: (1) = p..(0). Thus, using the linearity of R(z),

3 3 3
0, (1) =Y ppi (O &) =D p;(OR()&(0) = R(1) (Z Pi (0) & <0>) = R(1) p,(0)
i=1 i=1
(8.62)

i=1

as was to be proved.
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It then follows from the orthogonality of R(¢) and the definition of transpose in
eqn (7.13) that

0,(1) - 0, (1) = R(1)p; (0) - R(1)p,(0) = p;(0) - R (HR(1)p,,(0) = p;(0) - p,,(0) (8.63)

which is eqn (8.60).

It follows from eqn (8.57) that at time zero, R(0) = U, which has determinant
+1. Since the vectors p,, (¢) of the rigid body, and hence the body system unit vectors
é; (1), are assumed to evolve continuously with time, the determinant cannot make
a discontinuous jump to the only other possible value —1. Thus det R(¢) = +1, R(¢)
is a proper rotation, and the body system unit vectors &;(t) remain a right-handed,
orthonormal triad for all time . O

8.10 Differentiation of a Rotation Operator

We now have an operator R(¢) that allows any vector of a rigid body at time ¢ to be
expressed in terms of that vector at time zero. But Lagrangian mechanics also needs
expressions for the velocities of the point masses of the rigid body. To obtain these
velocities, we now derive the time derivatives of the operator R(r) and of the vectors
rotated by it.

Suppose that R(r) acts on an arbitrary constant vector V to produce a time-varying
rotated vector VI®)(¢) as in

VR 1) = R@V (8.64)

Taking the derivative of eqn (8.64) gives

(R)
dVi (1) _ dR(t)V

8.65
dt dt ( )

since V is a constant. The meaning of this last equation is perhaps made clearer if we
express eqns (8.64, 8.65) in component form as

3
viR@ =Y R0 (8.66)
j=1

and

av® (o) _ 23: dRij(@)

dt dr 7

(8.67)
j=1

Comparison of eqns (8.65, 8.67) shows that dR(¢)/dt is that operator such that each
of its matrix elements is the time derivative of the corresponding matrix element
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R;j(t). Written out, the matrix of dR(t)/dt is

dRi1 dRip dRi3
dt dt dt
dR (1) — | dR21 dRyy dR»3 (8.68)

dt dt dtr dt
dR31 dR3 dR33
dt dt dt

in which each element is differentiated.
Continuing, we use eqn (8.58) to write eqn (8.65) in the form

dVP® @) dR(1) uv _dR®)

Tyv(R)
dt  dt dt ——R@®) V(@) (8.69)

U ROTR@V =

dR(t)
dt

where eqn (8.64) has been used to get the last equality. Defining the operator W(r)
by

W) = %R(tﬂ (8.70)
then gives
(R)
dvdt D — Wive (8.71)

which expresses the time derivative in terms of the current value of V®(¢) at time r.

The real, time-varying operator W(t) defined by eqn (8.70) is anti-symmetric.
From eqn (8.58) we have I/ = R(t)R(r)T. Differentiating both sides of this equation
with respect to ¢ using the product rule eqn (7.70) gives

_ Ciz;{ dR(t) dR® 2 T + R )dR(t)T
- ‘”j( )R(t)T +R(t) < 7;( )) = W(t) + W(n)T (8.72)
which implies the anti-symmetry
wn' = -wa) (8.73)

In deriving eqn (8.72) we used the fact that taking the transpose of an operator and
then differentiating it with respect to time produces the same result as doing the same
two operations in reverse order. This operator identity follows from the same identity
for matrices

It I (8.74)

which can be obtained by inspection of eqn (8.68).

dR(®T <d R (;))T
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In Section 7.5, we determined that the most general real, anti-symmetric operator
acting on a vector is equivalent to a vector w acting by means of a cross product. Thus
there is some vector w(¢) such that

WA = w(t) x A (8.75)

for any arbitrary vector A, where vector A itself may or may not be time-varying.
Hence the time derivative in eqn (8.71) can be written

dVE (1)

= WHOVH (1) = w@) x VR (1) (8.76)

where w(7) is in general time varying since W(r) is.
The vector w(r) in eqn (8.76) is called the angular velocity vector of the time-
varying rotation. Expanding this vector in the fixed, inertial €; basis,

o) = wi(t) € +war(t) € + w3(2) €3 (8.77)
the matrix of operator W(r) can be obtained from eqns (7.38, 7.39) with the time
dependence added. The matrix elements are

3
Wij(t) =Y eijor(t) (8.78)
k=1
and, written out, the matrix is
0 —w3(t) wa(t)
Wi =\ w3(t) 0 —w @ (8.79)
—n(t) (1) 0

An operator differential equation for R(¢) can also be written. Multiply both sides
of eqn (8.70) from the right by R(¢) to get

_dR®) g dR@®),,  dR(@)
W()R(t) = — R R(@) = o U= o (8.80)

and hence the differential equation
‘”;(t) = W(OR() (8.81)

8.11 Meaning of the Angular Velocity Vector

First, it is useful to establish some notation for later use. The angular velocity vector
w(?) has a magnitude w(¢) and an associated unit vector () which we will typically
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denote as n(z) in order to make it easier to distinguish from w(z) itself. Thus

A A @)
ni) = o) = _w(t) (8.82)
In component form, this equation is
nie) = 240 (8.83)
w(t)

fori =1, 2, 3, where the unit vector n(¢) has the expansion
n(t) =ni(t) e +na(t) € +nz(t) €3 (8.84)
Hence, the angular velocity may be written as a magnitude times a unit vector direc-
tion,
() = w@)n() orin component form w;(t) = w(t)n;(t) (8.85)
Dividing eqns (8.78, 8.79) by the magnitude w(¢) allows one to define a new op-

erator N'(t) = W(t)/w(t) with matrix elements based on the axis unit vector n(z).
Thus

Wi (1) :
ﬁ = N;j(t) = I;s,-kjnkm (8.86)
with matrix
0  —n3(t) na(r)
WO _Nov=[ mstr 0 —m) (8.87)
() —my(t) mi@t) 0
such that
W) =w@N(@) and W (@) =w()N(©) (8.88)

Also, dividing both sides of eqn (8.75) by the magnitude w(¢) shows that the action
of the operator N (¢) is equivalent to a cross product with the unit vector fi(¢) as in

N@®HOA =1() x A (8.89)

for an arbitrary vector A.
With this notation established, now consider the angular velocity vector. Multiply-
ing eqn (8.76) by dr gives the differential relation

dVP (1) = W()dt VB (1) = w(t) dt x VB (1) (8.90)
which we may rewrite as
dVP @) = (@) d) N(OVPR (1) = (w@) di) () x VB (1) (8.91)

For small enough dt, the differential dV®)(r) approximates the change in V®(r)
during that time interval. From the properties of cross products, this change is a vector
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perpendicular to both n(r) and V® (¢), with magnitude (w(¢) dt) V® (¢) sin 6,y where
0,v is the angle between the two vectors. Geometrically, this is a rotation of vector
V®(t) about an instantaneous axis whose direction is given by the unit vector n(z),
with a rotation angle d® defined as

d® = w(t)dt sothat dPn() = w(t)dt (8.92)

The angular velocity vector w(7) thus has a magnitude w(¢) that gives the instan-
taneous rate of rotation w(t) = d®/dt, and an associated unit vector @(¢) = n(¢) that
gives the instantaneous axis of rotation.

In general, both of these quantities will change with time. Thus, even if eqn (8.92)
could be integrated to obtain some angle &, in general that angle would be meaning-
less since each of the increments d® takes place at a different time and hence about a
different axis.

Note that vectors parallel to the instantaneous axis are not changed at all in time
interval dt since the cross product of the two parallel vectors in eqn (8.90) will vanish.

V('R)(t +dr)

FIG. 8.5. Geometry of the angular velocity vector w. The differential dV(®) is seen to be per-
pendicular to both @ and V(®) | corresponding to the cross product in eqn (8.90).

8.12 Velocities of the Masses of a Rigid Body

The theory of Section 8.10 can be used to find the time derivative of the relative
position vector p, (¢) discussed in Section 8.2.

From eqn (8.59) of Section 8.9, there is a time dependent rotation operator R ()
such that p,(r) = R(t)p,(0). Replacing V?®(¢) by p, (t) and V by p,(0) in eqn (8.64)
allows eqn (8.76) to be written as

...... D _ w(t) x p, (1) (8.93)

This important formula was used in eqn (1.64) in Chapter 1, and will be used exten-
sively in our discussion of rigid body dynamics.
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The time derivative of eqn (8.8) then gives the velocity of mass m,, relative to the
inertial origin as

_dr, (1) dR() | dp,(t) _ dR()
=Ta a4 T ar 00 x 0, (1) (8.94)

Vn
It follows that the most general differential displacement of a rigid body in time d¢
can be described as a differential displacement dR of its center of mass, together with
a rotation by an angle d® = w(¢) dt about an instantaneous axis n(z) passing through
the center of mass,

dr, = vydt = Vdi + (1) dt x p,(t) = dR + dP () x p, (1) (8.95)

8.13 Savio’s Theorem

In Section 3.3, we asserted that the cohesive forces holding a rigid body together do
no virtual work. The results of Section 8.12 allow us to give a proof.

Before presenting the proof, we note that, although eqn (8.95) refers to a differ-
ential displacement in a time dt, it is actually more general. The parameter d¢ could
be replaced by any parameter that varies monotonically as the body moves. Thus, the
most general virtual displacement of a mass m,, of a rigid body, in the sense defined
in Section 3.2, is given by

dr, =S8R +8®n x p, (8.96)

where n is some axis and §® is some angle. This is the most general virtual displace-
ment that is consistent with the rigidity of the body.

Theorem 8.13.1: Savio’s Theorem

If Axioms 1.4.1 and 1.5.1, the laws of linear and angular momentum,

dap = F(ext and aJ = (&0 (8.97)
dt dt

are assumed to hold for a rigid body, considered as a collection of point masses, then the

internal forces of cohesion will do no virtual work.**

Proof: For a rigid body, we identify as internal forces of constraint £879 a1l those
forces that are not explicitly external. Then, as discussed in Sections 1.4 and 1.5, eqn
(8.97) implies that

N N
FO =3t =0 and ™ =) "r, xf™ =0 (8.98)
n=1 n=1

The virtual work done by these internal forces of constraint is defined in Section 3.3.

44The theorem that the general laws of momentum are sufficient to establish the vanishing of rigid-body
virtual work was derived by the late Mario Savio while he was a graduate student at San Francisco State
University.
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In vector form, it is
N

SWnD = % "0 . 5, (8.99)
n=1
Using the virtual displacement from eqn (8.96) and the definition p, = r, — R from
eqn (1.33) gives

N N
SWOD = X" fIn0 . sR + Y £ . 5 x (r, — R) (8.100)

n=1 n=1

Factoring quantities that have no index n out of the sums, and rearranging a triple
scalar product, this becomes

gw(cons) — gint . sR 4 £ . 56 f — FI . 5ph x R (8.101)

Equations (8.98) imply that each term on the right in eqn (8.101) is zero, and hence
that §W (0" = 0, as was to be proved. O

8.14 Infinitesimal Rotation

Consider again the rotated vector V® (1) in eqn (8.64) of Section 8.10. The difference
AV® (1) between the vectors V®) (r + dr) and V®(r) may be approximated by the
differential dV® (r) from eqn (8.91). The error of this approximation approaches zero
in the limit as dt goes to zero. As discussed in Section D.12, the differential dr is
not assumed to be a small quantity. But when it is large, the approximation of the
difference AV® (¢) by the differential 4V® (¢) will in general be poor.

Thus we may use the definition of angle d® from eqn (8.92) to write

AVE () = VB (1 4d) — VB (1) = aVB (1) 40(dt) = dON ©)VE (1) +0(dt) (8.102)

and hence®

VBt 4+ dry = VB (1) + ddN 1)V B (1) + o(dr)
= U + dON 1)) VB (1) + o(dt) = R;[doa()] V® (1) + o(dt) (8.103)

The operator
RidPn(t)] = U + dOPN (1) (8.104)

defined in this equation will be referred to as an infinitesimal rotation operator. To
order o(dt) in the limit dr — 0, it transforms V®(¢) into its value V®) (¢ +dt) at time
t + dt . The notation R;[d®n(¢)] should be read as the rotation by angle d® about
instantaneous axis n(z).

43The symbol o(d?) is discussed in Section D.11. Including it in an equation means that terms of smaller
order than dr are being dropped. In the present context, this means that terms in d¢% or higher powers are
dropped since limg;_, o (d?)" /dt = 0 for n > 2.
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Note that the operator R;[d®n(r)] is indeed a rotation when terms in dr> and
higher powers are neglected, since it satisfies the orthogonality condition

R[dDA(1)] Ri[dP()]T = U + dON (1)) U + dON (1))T
= U+ dON 1)) U — dON (t)) = U + o(dr) (8.105)

due to the cancellation of the terms that are linear in d® and hence linear in dt.

8.15 Addition of Angular Velocities

In Section 8.10 and subsequently, we have referred to the angular velocity w(¢) as
a “vector.” However, vectors have more assumed properties than just the ability to
be used in cross products as in eqn (8.76). For example, vectors can be added, and
their sum is independent of the order of the addends. We now use the concept of
infinitesimal rotation to understand the geometrical meaning of expressions like

(1) = 0 (1) + 0p(t) = wp(t) + W, (1) (8.106)

If the addends are assumed to be angular velocity vectors like the ones discussed

above, we now show that the sum w(¢) in eqn (8.106), in either order, is also a legiti-

mate angular velocity vector corresponding to the same definite infinitesimal rotation.
If eqn (8.106) is assumed, then we can use eqn (8.92) to write

don(t) = w(@) dt = wy(t) dt + wp(t) dt = d® 0, (1) + dPpny, (1) (8.107)

where d®, = w,(t) dt and d®;, = w,(t) dt are the differential angles of the “a” and “b”
rotations. In operator form, this is

dON (1) = dO N, (1) + dPpNp (1) (8.108)

where operators NV (1), N, (¢), and N, (¢) are related to the unit vectors n(z), n, (), and
n, (1) as in eqn (8.89).
Then eqn (8.104) gives the infinitesimal rotation corresponding to vector w(¢) as

R[dPA()] = U + dON (1) = U + dD N (t) + dDp Ny (1) (8.109)
But when terms of order dt* are dropped, this can be written
RildPn(t)] = U + d N, (1)) (U + dPpN (1)) + o(dr) (8.110)

or
R[don(r)] = Ry[dP,h,(t)] Ri[dPpng ()] + o(dt) (8.111)

The sum of two angular velocity vectors thus corresponds to a compound infinitesimal
rotation consisting of two successive infinitesimal rotations, first the one produced by
wpdt, followed by the one produced by w,dz.
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But, again due to the neglect of terms of order dr?, we could just as well write the
products in reverse order,

R[dPR(r)] = U + dPpNp (1)) U + dD N, (1)) + o(dr) (8.112)

or
Ri[don(r)] = R[dPpny ()] Ri[dDy0,(1)] + o(dt) (8.113)

So the sum of two angular velocity vectors corresponds also to a compound infinitesi-
mal rotation consisting of two successive infinitesimal rotations in the opposite order,
first the one produced by w,dt, followed by a second one produced by w,d:.

Thus, with the understanding that terms dr> and higher are to be dropped, the
sum in eqn (8.106) corresponds to the product of the two infinitesimal rotations in
either order,

RildPang ()] Ri[dPpiy(1)] = R;[dPA(t)] = R;[dPphy ()] R;[dPsN,(1)]  (8.114)

The sum of two angular velocity vectors, in either order, corresponds to the same
product of two infinitesimal rotations, since the order of their application makes no
difference when terms containing d¢*> and higher powers are dropped.

Thus the vector w(¢) in eqn (8.106) is a legitimate angular velocity and corre-
sponds to the same definite, unambiguous infinitesimal rotation regardless of the
order of addition. Angular velocities like w(z) are thus vectors and have the algebraic
properties associated with them.

Note to the Reader: Equation (8.114) illustrates an important fact. Although finite
rotations do not commute in general, infinitesimal rotations always commute.

8.16 Fundamental Generators of Rotations

Since angular velocities can be added, it is legitimate to consider the expansion of w(z)
into its three Cartesian components to represent the product of three infinitesimal
rotations. These three rotations are now considered.

Let

o) =wi(t) €] +wr(t) e + w3(t) €3 (8.115)

as in eqn (8.77). The components w;(¢) in this expansion can be used to define the
new quantities d®; by
d®; = w;(t)dt = don; (1) (8.116)

for i = 1,2, 3, where the second equality follows from eqn (8.85) and the definitions
d® = w(t)dr and n; (t) = w;(t)/w(t). In vector form, the component definitions in eqn
(8.116) are equivalent to

w()dt = dPn(t) = dd| &) + dP; ey + dds €3 (8.117)

Applying the argument that led from eqn (8.109) to eqn (8.111), it follows that
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the infinitesimal rotation corresponding to w(¢) d¢ can be written as
R [dP0(1)] = R [dD €1] R;[dD; €] Ri[dD3 €3] + o(dr) (8.118)

where the order of the operators on the right makes no difference to the product,
since by assumption terms containing d¢> and higher powers are being dropped. The
components of the angular velocity vector can be thought of as producing a product
of three infinitesimal rotations with angles d®; = w;(¢) dt about the corresponding
coordinate axes €;, with the order of these infinitesimal rotations having no effect on
the final outcome.

Equation (8.104) shows that each of the three operators on the right in eqn
(8.118) has the form, fori =1, 2, 3,

Rild®;&;] =U + do; TV (8.119)

where each 7 is the operator A evaluated for the special case in which i = &;.
When terms in dr?> and higher powers are dropped, eqn (8.118) can also be written
as

3
Ri[dOAMN] =U + Y dd; T + o(dt) (8.120)

i=1

The operators 7@ are called the fundamental generators of infinitesimal rotations
or, more simply, the infinitesimal generators. The matrices corresponding to the 7
operators can be derived by setting n to be the vectors with components (1, 0, 0),
(0, 1,0), and (0, 0, 1), respectively, in eqn (8.87). They are

00 0 001 0-10
JO=100-1 J@P=1 000 J®=1100 (8.121)
010 -100 000

The infinitesimal generators 7) do not commute. To see this, recall from eqn (8.89)
that V'V = i x V and hence that the 7@ obey

TJOv=¢xV JOV=6xV JOV=63xV (8.122)

Thus, the rule for the expansion of triple cross products, together with the rule of
composition of linear operators, give, for any vector V,

TOTDV =8 x (& x V) =& (& -V) - V(& - &) (8.123)
and
TNTOV =8 x (& x V) =& (& -V) - V(& - &) (8.124)

with the result that

(7079~ J<f>J<i>) V=§ @& V)-&( V)=@&x&) xV (8.125)
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Then using the expansion of (¢; x €;) from eqn (A.14) gives
(707D = FPTOVV =Y eipix x V=3 eiuT OV (8.126)
k=1 k=1

Since V is any general vector, eqn (8.126) implies that the commutators of two fun-
damental generators are

3
[jm’ jm] = <j(i>j(/) _ ‘7(‘/>\7<:’>) = e ® (8.127)
¢ k=1

or, writing the three cases of interest explicitly,

[\7(”, j(2)] —7® [5(3)’ j(1>] ey [‘7(2)’ j(s)] — 70 (8.128)
C C C

These fundamental commutation relations control the structure of rotations in three-
dimensional Cartesian spaces. Relations eqn (8.127) define what is called the Lie al-
gebra of the rotation group.

The commutations for the matrices J ) must be the same as for the operators.
These commutation relations can be read from eqn (8.127), or can be derived directly
from eqn (8.121).

8.17 Rotation with a Fixed Axis

A time dependent rotation operator in general has a time varying instantaneous axis
of rotation n(z). However, there is an important special case in which one assumes
that the axis of rotation is constrained to be a constant independent of time, n(z) = n
for all r where n here is assumed not to be time varying. In this special case, unlike the
general case, the integral of the differential angle d® defined in eqn (8.92) does have
a simple geometric significance. It is the accumulated angle of the fixed-axis rotation.

The operator for rotation by angle ® about fixed axis n can be found in closed
form. It will be denoted R[®n], with R[®n] for the corresponding matrix, and will
be referred to as a fixed-axis rotation.

The derivation of this operator begins with the differential equation, eqn (8.81).
Making a change of variable from ¢ to ®, using the definitions

t t dd
P :[ do :/ w()dt' and — = w(t) (8.129)
0 0 dt
derived from eqn (8.92), gives the differential equation, eqn (8.81), in the form

dR(®) 1 _
& = anVOR@® = NOR(P) (8.130)

where eqn (8.88) was used to get the final equality.
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However, the assumed constancy of the axis unit vector n(t) = n implies that
operator N (¢), defined at the beginning of Section 8.11, is also constant in time. Thus
N(t) = N where N is a constant operator with a constant matrix composed of the
components of n,

0 —n3 np
N=| n3s 0 —n (8.131)
—no n1 O
where
n=n;e +nreé +ns3eé; (8.132)

is the constant axis of rotation. Thus eqn (8.130) becomes

dR(P)

& = VR@®) (8.133)

The solution to differential equation, eqn (8.133), with a constant operator such
as N has already been discussed in Section 7.18. From eqn (7.131), it is

R(®P) =exp (PN) or, in our preferred notation, R[PnA] = exp (PN) (8.134)
The exponential in eqn (8.134) can be written in a number of ways. A vector can
be defined by ® = ®n and a vector with operator components by

3
J=3 &g® (8.135)
k=1

where the fundamental infinitesimal generators from Section 8.16 have been used.
Using the matrices defined in eqn (8.121), the matrix in eqn (8.131) and hence the
corresponding operator N can be expanded as

3 3
N=>md® and N=>) mg® (8.136)

k=1 k=1

The product ® in eqn (8.134) can then be written as

3
ON =) on g = - T=&-7 (8.137)

k=1

which allows eqn (8.134) to be written as
R[®n] = exp (CIJﬁ . j) = exp <<I> . j) . (8.138)

An important special case arises when the fixed axis is chosen to be one of the
coordinate unit vectors. Rotation by ® about a coordinate axis €; becomes

RIDE] = exp (@ék : j) — exp (cbj<k>) (8.139)
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8.18 Expansion of Fixed-Axis Rotation

As discussed in Section 7.18, eqn (8.134) may be expanded in a power series,

2 3
R[DA] = exp (PN) = U + DN + @Q/) + (CD;\,/) SR (8.140)

This power series may be written as the sum of a finite number of terms.

Theorem 8.18.1: Expansion of Fixed-Axis Rotation
A finite rotation by angle ® about a fixed axis i may be written as

R[®n] = exp (PN) = U cos ® + N sin ® + M (1 — cos D) (8.141)
with the corresponding matrix in the €; basis,
R(®n] =exp(®N) = U cos®+ Nsin® + M (1 — cos ®) (8.142)

where operator M has a matrix M with matrix elements M;; = n;n;.

Proof: The evaluation of the power series in eqn (8.140) is facilitated by recursion
relations for powers of . Direct matrix multiplication of eqn (8.131) by itself, using
the fact that n? + n3 + n3 = 1 for unit vector A, yields

n% niny ninj

N?’=M - U where M = (n2n1 n3 nonz (8.143)

niny| n3ny n%

and U is the identity matrix. Note that matrix M has the form M;; = n;n;.
The next power is then

N’=N’N=(M-U)N=MN—N (8.144)

But M N =0, as can be seen from eqn (8.143) and the total skew-symmetry of ¢; j,

3 3 3 3 3
(M N),-j = ZM,’kaj = Z Zn,’nk&‘k”nl =n; Z Z niniej =0 (8.145)
k=1 k=1 I=1

k=1 I=1
This result, together with eqn (8.144), gives N> = —N. Thus
N=M-U N'=-N N=NN=-N=-M-U)  (8.146)

and so on through a repeating sequence. Collecting coefficients of ¢, N, and M in
eqn (8.140) gives

2 4 3 2 4
exp@N):u( —3+3—---)+N<¢—3+ )+M(q’ g

20 4l 3! 20 4
(8.147)
Identifying the power series in ® with the power series of trigonometric functions
gives eqn (8.141), as was to be proved. O
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For example, setting i = €3 gives

100 0-10 000
R[®e3]=[010)cos®+|1 0 0 |sin®+|[000 | (1 —cosd) (8.148)
001 000 001

which reproduces eqn (8.32) derived earlier for this special case.
The trace of R[®n] is easily obtained as the sum of the traces of the terms of eqn
(8.141). It is

TrR[®h] = 2cos ® + 1 (8.149)

Note that the dyadic form of operator M has the form of a dyad M = nn with the
consequence that MV =M -V =# (i V).

The result of the finite rotation of a general vector V by angle ® about a fixed axis
n can thus be written as

VR = RIPAIV = Vcos @ + 1 x Vsin® + 1 (- V) (1 — cos ) (8.150)

where eqn (8.89) has also been used, with f constant.

The geometric interpretation of eqn (8.150) is immediate. Use eqn (A.3) to write
the original vector as a sum of vectors parallel and perpendicular to i, as in V =
V| + V.. Then eqn (8.150) can be written in the same form, as V®® = VﬁR) + V(f),
where

VﬁR) =V, and ije) = (Vicos®+n x V sin®) (8.151)

The original vector component V| parallel to rotation axis n is unchanged by the
rotation, as one would expect. The vector ViR) perpendicular to fi has the same mag-
nitude V, as the original perpendicular vector V, but is rotated by angle ® in the
right-hand sense about axis n.

F1G. 8.6. Illustration of eqn (8.151). The component V | perpendicular to n is rotated by angle

d to give V(f). The component parallel to f is not changed.
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Since rotation operators obey eqn (8.22), the inverse of a fixed-axis rotation is
R[®n]~! = R[®n]T. The expansion eqn (8.140) gives

RI®ATT = {exp (AT = exp (cDNT) — exp (—DN) = R[—Pii] (8.152)

since N is anti-symmetric. Thus, as one would expect, the inverse is a rotation by the
same angle about an oppositely directed axis,

R[®A]"! = R[—PA] (8.153)

8.19 Eigenvectors of the Fixed-Axis Rotation Operator

The eigenvectors and eigenvalues of the fixed-axis rotation operator R[®n] are easily
derived. From eqn (8.134) we know that R[®n] = exp (PN), where N is a real anti-
symmetric operator associated with unit vector n by eqns (8.131, 8.132).
To begin, we solve the eigenvalue problem for A by noting that this operator
is identical to the W treated in Section 7.13 except for the substitution of n for .
Setting w = 1 in eqn (7.89) since n is a unit vector, gives the eigenvalues of operator
N as
WW=i WW=- 2P=0 (8.154)

with corresponding normalized eigenvectors

V(l)z(ﬁ—iﬁ)/«/i, \“7(2)=<ﬁ+i6) V2, and VY =4 (8.155)

where & is some real unit vector perpendicular to f but otherwise arbitrary and b =
n x a is also a real unit vector, perpendicular to both a and n.

By eqn (7.121) of Section 7.17, as discussed also in Section 7.18, the eigenvectors
of R[®n] = exp (9N) are the same as those of NV, and the eigenvalues are exponential
functions of those in eqn (8.154),

M=exp(i®) Ar=exp(—i®) A3 =exp(0d) =1 (8.156)

The dyadic R[®1i] corresponding to R[®n] can be obtained in eigen-dyadic form from
eqn (7.113) of Theorem 7.16.1. It is

3
R[®A] = ) VO VO (8.157)
k=1
where the eigenvalues A are from eqn (8.156).

The eigenvalue problem for R[®n] is now completely solved. As discussed in Sec-
tion 7.13, making different choices of arbitrary unit vector a is equivalent to multi-
plying the first two eigenvectors by exp (i) and exp (—i«), respectively, where « is
some real number. This is only a trivial change, since in any case eigenvectors are de-
termined only up to a multiplicative constant of modulus unity. As proved in Lemma
7.16.2, such a multiplication also makes no change in the dyadic eqn (8.157), since
the exponential factors cancel. Thus, in spite of its appearance, eqn (8.157) is in fact
independent of the choice of a. If written out in terms of a, b, and A, eqn (8.157) will
be seen to reduce to eqn (8.150) which depends only on ® and h.
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8.20 The Euler Theorem

We have now discussed two different types of rotations. The first, in Section 8.10,
happens when a rigid body is rotated in a general way during a time ¢, first about one
axis and then about another, and so on. The end product of all of this various motion
is still a rotation, however. The operator R(¢) at time ¢ is an orthogonal operator.

The other type is what we have called a fixed-axis rotation, discussed in Section
8.17. In this case, the rigid body is rotated by an angle ® about an axis that does not
change, somewhat as if the rigid body were mounted on a lathe.

The Euler Theorem proves a result that may seem obvious: Any general rotation of
the first type could have been accomplished by some fixed-axis rotation of the second
type. This does not mean that it necessarily was accomplished by a fixed-axis rotation,
only that it could have been. If one starts with some standard orientation of a rigid
body at time zero and rotates it during time ¢ in a general manner, the final orientation
could as well have been produced by starting from the same standard orientation and
rotating by some angle ® about some fixed axis n.

Theorem 8.20.1: The Euler Theorem
For any general proper, orthogonal operator R, there exist a fixed axis fi and an angle ®
in the range 0 < ® < & such that

R[®n] =R (8.158)

Proof: We show that the dyadic form of a general R is identical to the dyadic form
of some fixed-axis rotation R[®i]. Since two operators with identical dyadics are
themselves identical, this will prove the theorem.

The first step is to find the eigenvalues of a general rotation R. Use eqn (8.22) to
write

R-UWR'=U-RT=-R-T (8.159)
and then take determinants of both sides,
det(R —U)detR = (—1)3 det(R —U) (8.160)

where we used det RT = det R, and det (¢« R) = o det R for three-dimensional opera-
tors. Since det R = +1 for proper orthogonal operators, the result is det (R — i) = 0,
which, according to eqn (7.86), shows that +1 is an eigenvalue of R. Call this eigen-
value A3 = 1. To find the other two eigenvalues, we use eqns (7.111, 7.112) of Sec-
tion 7.15 relating the determinant and trace to the eigenvalues of R. Since the trace
of R is defined as the sum TrR = (Ri1 + R + R33) which is a real number, the
sum () + A3 + A3) = (A1 + A2 + 1) must be real, which implies the relation between
imaginary parts I (A2) = —3 (A1) . This, together with 1 = detR = AjA2A3 = A1A2(1),
implies that

A =exp (iP) Ay =exp (—i D) =1 (8.161)
where ® is some real number. The value of this number can be found from
(Rii+ R+ R33) =TtrR=A 1+ A+ A3=1+2cosd (8.162)

where @ can be restricted to the range 0 < ® < x. The three eigenvalues of a general
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proper orthogonal operator R are thus determined uniquely.

The (real) eigenvector V® corresponding to eigenvalue +1 is found by setting
A3 = 1 in the eigenvector equation, eqn (7.86), and solving for the eigenvector. The
equation to be solved is

(R-U)VY =0, or (R=U)[v®P1=0 (8.163)

in matrix form.

It follows from eqn (8.163) in the form RV® = V& that the normalized eigen-
vector i = V& / V) is not changed by R. Thus i will be along the axis of rotation of
R. Only one rather trivial difficulty remains, the choice of direction for fi. The eigen-
vector equation, eqn (8.163), only determines real unit vector n up to a factor =+1.
It is necessary to compare the action of R on some vector not parallel to n. If that
rotation is not in a right-handed sense about n, the direction of n must be reversed. A
unique axis direction and angle & are thus obtained, with positive angle ® meaning
rotation in a right-handed sense about n.

We now find the other two eigenvectors of R. Since R is a normal operator with

three distinct eigenvalues, Lemma B.26.2 proves that it must possess three eigenvec-

. . ~ (k) ~ () . ~ ~(3)
tors which are orthogonal in the extended sense V v = 3. Settingn =V |

and recalling that n is real, the other two eigenvectors must be composed of real and

. . . . ~ .o .
imaginary parts, both of which are perpendicular to n. Setting V'~ = a — ib where a
and b are unknown real vectors perpendicular to n, the first eigenvalue equation is

rvY =5, v (8.164)

Since R is a real operator and A, = A}, the complex conjugate of eqn (8.164),

A (1 A (1 A (1
RV = =, 0 (8.165)

. . ~(2) ~ (1) R . .
implies that V.- =V ' = a+ ib is the eigenvector corresponding to A,.

The orthogonality of these two eigenvectors then implies the vanishing of the real
and imaginary parts of the expression

0=V""¥¥ = (@a+ib)- (a+ib) = <a2 _ bz) tia-b) (8.166)

which requires that vectors a and b must be orthogonal and have the same magnitude.
The vector b must therefore be b = n x a. (The other possible choice b = —n x a would
have the effect of making positive ® mean rotation about n in the left-handed sense,

whereas f has already been chosen above so that R produces rotation in the right-

A (k)% A (K
handed sense.) Normalizing the eigenvectors of R using V( * -V( - lfork=1,2,3

shows that the eigenvectors of R may be written as
~ (1 ~ A2 ~ ~ (3 ~
v = (a - ib) W2, VP = (ﬁ + ib) /v2, and VO —a (8.167)

where a and hence b = n x a are unit vectors.
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The dyadic form of normal operator R is thus given by eqn (7.113) as
A k), p k)=
R=> "V nuV (8.168)
k=1

where the eigenvalues are those in eqn (8.161) above, with the angle ® found in eqn
(8.162), and eigenvectors are those in eqn (8.167) with the axis n found from eqn
(8.163).

If we put the same angle ® and same axis f into eqn (8.157) of Section 8.19, we
obtain a dyadic R[®n] which is exactly the same as eqn (8.168), except for a possi-
bly different choice of arbitrary unit vector a. But, as discussed in Section 8.19, the
dyadic is independent of the particular choice of a. Different choices are equivalent
to multiplying eigenvectors by phase factors of modulus unity that cancel from the
dyadics. The dyadic of R is thus identical to that of R[®n]. But two operators with
identical dyadics are themselves identical. Hence R[®n] = R, which proves the Euler
Theorem. O

8.21 Rotation of Operators

Suppose that W = FV where F is a linear operator and V a general vector. Suppose
a rotation R to act on both V and W giving V®® = RV and WX = RW. Then we
can find a linear operator F® that will map V® into W® as in WR = FRV®E),
To do so, write

WEB = RW = RFV = RFRTRV = FRVE (8.169)
which leads to the definition
FR _ RERT (8.170)

We refer to F®) as a rotated operator; since its action on the rotated vectors mimics
that of the original operator F on the original vectors.

8.22 Rotation of the Fundamental Generators

The rotated operators of the fundamental infinitesimal generators J* defined in
Section 8.16 are of particular interest. They are

3 3
JO® =RFORT =3 "gORy =Y RLTV (8.171)

=1 =1

where Ry, are the matrix elements of rotation R.
To prove eqn (8.171), we let 7®O® = R 7®RT act on a general vector V. The
result is
JPRY = RFORTV = R (& x (RTV)) (8.172)

where eqn (8.122) was used. The invariance of cross products under proper rotation
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from eqn (8.39) then gives
TJPPRV = R (& x (RTV)) = (R&) x (RRTV) = (Ré) x V (8.173)

Inserting a resolution of unity U = Z?:] €€, to expand Re; as

w

3
Re, = Rek = Z e - Re = Zélle (8.174)
=1 =1

eqn (8.173) becomes

3 3
JORV = (R&) x V=> Ru&xV=>Y RpJV (8.175)
=1 =1

Since V was an arbitrary vector we get finally the operator equality
JO® =3 7ORy,, which is the same as eqn (8.171).

Note the similarity between eqns (8.174, 8.171). The infinitesimal rotation gener-
ators J® transform under rotation in the same way as the Cartesian basis vectors &
do.

8.23 Rotation of a Fixed-Axis Rotation

The rotation of a fixed-axis rotation operator may now be derived. Suppose the oper-
ator F in eqn (8.170) to be a fixed-axis rotation R[®n] discussed in Section 8.17. Let
this fixed-axis rotation map a general vector V into another vector W so that

W =R[®n]V (8.176)

Now suppose some rotation R (not usually the same as R[®n]) is applied to both V
and W, to give VI® = RV and W® = RW. We expect intuitively that a fixed-axis
rotation by the same angle @ but about a rotated axis '™ = R should map V®
into W® as in

W = Rioa®v® (8.177)

In effect, the original rotation should itself be rotated, its fixed axis changed from n
to AR,
We now prove this important result formally.

Theorem 8.23.1: Rotation of Fixed-Axis Rotation
If R[®n] is a fixed-axis rotation operator, and if R is some other rotation, then

R[DA]® = RR[PAIRT = R[dAP)] (8.178)

where 2'® = RA.
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Proof: The proof begins with eqn (8.140) which gives

R[®A) R = RRIPAIRT = Rexp (PN) RT

(cI>N)2 (d>N>

=RURT+RO@N)RT+ R——RT+ R——RT+...  (8.179)

where the linearity of R has been used. Noting that
RNRT = RNN - NRT = RVRTRART .- RNRT = (RNRT)*  (8.180)
where unity operators in the form &/ = RT'R were inserted between N factors, gives
RI®A]® = R (exp (PN) RT

@ ™ (@ T3
=RURT+(CDRNRT)+( RNR) +( RNR) +

2! 3!
= exp (PRART) (8.181)
Now, by eqns (8.137, 8.171),
3 3 3 3
RNRT =3 " mRIORT =3 "m Y TR =) " nPg® (8.182)

k=1

where we have defined nl(R) = 22:1 Ryin; which, by eqn (8.30), is equivalent to
A® = RA. Thus, again using eqn (8.137), eqn (8.181) becomes

3
R[®A] P = exp <q> an(k)j(l)> R[®AF) (8.183)
=1

as was to be proved. A rotated fixed-axis rotation is indeed a rotation about a rotated
fixed axis! O

8.24 Parameterization of Rotation Operators

A general rotation R would appear at first sight to require nine parameters, the nine
matrix elements R;;, to define it completely. But these nine matrix elements are not
independent, being constrained by the six independent conditions coming from the
orthogonality condition eqn (8.22). A general rotation can be completely defined by
the values of only three independent parameters.

One obvious parameterization of R would make use of the Euler Theorem of
Section 8.20. As we saw there, any general R determines the unique angle ® and
axis n of an equivalent fixed-axis rotation R = R[®n]. Since it is a unit vector, the
fixed-axis n can be parameterized by two numbers, its components in spherical-polar
form, as in

n1 = sin6, cos ¢, ny = sin 6, sin ¢y, n3 = cosb, (8.184)

where 6, is the angle between n and the €3 axis, and ¢, is the azimuthal angle. Thus
a general rotation R can be uniquely parameterized by the three numbers ®, ,,, ¢,,.
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8.25 Differentiation of Parameterized Operator

When the rotation is varying with time, then the three parameters introduced in Sec-
tion 8.24 will become time dependent also, ®(¢), 6,,(¢), ¢, (¢), which we may write
as

R(@) = R[P(H)n(r)] (8.185)

At time 1, the rotation R(¢;) would be associated with the axis n(#;) and angle ® (¢;) of
the fixed-axis rotation that would carry the rigid body from some initial orientation
to the rotated position at time ;. At a later time 1, the rotation R(s;) would be
associated with a different axis n(#;) and angle ®(1,) of a different fixed-axis rotation.
Each rotation R[® (¢+)n(z)] is about a fixed axis, but the required fixed axis is varying
with time!

The angular velocity w(¢) of such a time-varying rotation operator can be written
in terms of the time derivatives of ®(¢) and n(z).

Theorem 8.25.1: Angular Velocity of Parameterized Rotation
If we use the parameterization of eqn (8.185) to write a time-varying rotated vector as
VB (1) = R[®(OAMD]V (8.186)

then the time derivative can be written as in eqn (8.76),

(R)
% =w() x V® () (8.187)

where the angular velocity vector w can expressed in terms of the parameters ®, n and
their derivatives ® = d®/dt and dn/dt as

A

.. . _dn . dn
w(t) = dn + sin @E + (I —cos®)n x N (8.188)

Proof: To establish eqn (8.188), we begin by writing eqn (8.186) in the form
V®@) = RIGOADIV = (U +5in ON + (1 = cos ) N?) V (8.189)

where the expansion of eqn (8.141) was used, with the first of eqn (8.146) used to
substitute M = U/ + N?. Taking the time derivative of eqn (8.189) gives

dV® @)

. . 2 . _dN dN dN
o {@(COS@N-FSIHCDN)+Slnq)7+(1—cos¢’)(ﬁ./\/’+./\/w \%

(8.190)
From eqn (8.153), the inverse of eqn (8.189) is
V=R[-POA@)]VE () = (u — sin ®N + (1 — cos @) NZ) VR (1) (8.191)

Since #i is a unit vector with fi - i = 1 it follows that i - (dfi/dr) = 0. Since, for any
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arbitrary vector A,
NA=nxA and so —A=—xA (8.192)
expanding the cross products using the rule of triple cross products gives
N%/NA =0 and hence N%/J\/’ =0 (8.193)

Substituting eqn (8.191) into eqn (8.190), and using eqn (8.193) as well as the iden-
tities in eqn (8.146) to simplify, gives

@ = {dw+ sincp%v + (1 — cos ®) (N%/ - %N) } v® 1) (8.194)

Since, for any arbitrary vector A,

d d . dn
( d—/;/—d—é[/\/')Az(an>xA (8.195)
eqn (8.194) is equivalent to
v = (d'>ﬁ + sin@ﬁ + (1 —cos®)n x @) x V® (1) (8.196)
dt dt dt

which completes the derivation of eqn (8.188). O

An important consequence of eqn (8.188) is that if we happen to have a very
simple time-dependent rotation, one with a time-varying ®(¢) but a fixed axis i which
does not vary with time, then

i
=
8.26 Euler Angles

For many problems, particularly in rigid body dynamics, the parameterization of a
rotation by fi and @ as in Section 8.24 is not the most convenient one. An alternate
parameterization uses the three Euler angles «, 8, y defined by

0 andso () =on (8.197)

Rla, B, y] = Rlaés] R[Be:] Rlyes] (8.198)

The definition in eqn (8.198) consists of three simple rotations about fixed coordinate
axes: First by y about the €3 axis, then by 8 about the &, axis, then by o about the &3
axis again. Since these are rotations by finite angles, their order is quite important, as
we will see.

We prove the somewhat surprising fact that the product of these three rotations is
capable of reproducing any rotation whatsoever.
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€]

FIG. 8.7. Rotation of V into V(R) by the Euler angles. First, a rotation by y about the &; axis
rotates V into V(1. Then a rotation by 8 about the &, axis rotates V(1) into V(®. Finally a
rotation by « about the &3 axis rotates V(® into the final vector V&),

Theorem 8.26.1: Adequacy of Euler Angles
For any proper rotation R, there are three angles «, B, y in the ranges —m < a < 7,
0<B<m —7m <y <msuch that

Rlo, B,y]1 =R (8.199)

Proof: We proved in Theorem 8.20.1 that for every proper rotation R there are a
unique axis n and angle 0 < ® < 7 such that R = R[®Pn]. So here we only need
to prove that, given any fixed-axis rotation, there are three angles «, 8, ¥ such that
Rle, B, ¥] = R[Pn]. We begin by writing the matrices of each factor of eqn (8.198),

cosy —siny 0 cosB 0sinp
Rlyeés]= | siny cosy 0 R[Be] = 0 1 0
0 0 1 —sinfB 0 cos B
cosa —sina 0
Rlxes;] = | sine cosa O (8.200)
0 0 1

Multiplication of these three matrices then gives the matrix of R[e, 8, y] as

Rla, B, y1 = R3] R[Be2] R[yes] =

(cosacosfcosy —sinasiny) (—coswcosBsiny —sinwcosy) cosa sinf
(sinacos Bcosy + cosasiny) (—sinacosfsiny + cosacosy) sinasinf
—sinfcosy sin 8 siny cos B
(8.201)
We compare this matrix to eqn (8.142). Comparing the 33 elements of the two matri-
ces gives

cosff = n% + (1 - n%) cos ® (8.202)

The components of unit vector i obey n% +n§ +n§ = 1. It follows that (1 — n%) > 0 and
hence that, as ® varies, the right side of eqn (8.202) has a maximum value of +1 and



EULER ANGLES 187

a minimum value of (—1 + 2n3) > —1. It follows that eqn (8.202) defines a unique 8
in the range 0 < 8 < .

Some special cases must now be considered. First, when n; = n, = 0 and hence
n% = 1, the rotation is purely about the €; axis. In this case, eqn (8.202) requires that
B = 0. The other two angles are not separately determined, but may have any values
such that (a + y) = ®.

Second, if ® = 0 the rotation is the trivial unity rotation, regardless of the value of
n. Then eqgn (8.202) requires that 8 = 0. The angles o and y are again not separately
determined but may have any values such that (« + y) = 0.

Having treated the cases ® = 0 and n% = 1 separately, we will henceforward
assume that ® > 0 and n% < 1. With these assumptions, we cannot have § = 0,
for that value would reduce eqn (8.202) to (1 — n%)(l — cos ®) = 0, which would be
impossible. The case g = 7 is possible, however. Again using eqn (8.202), it can arise
only when n3 = 0 and ® = 7. As can be seen by writing out R[a, 7, y] = R[7n] with
n3 = 0 assumed, the & and y can then have any values such that (y — «) = 6 where
0 is some unique angle in the range —7 < 6 < & defined by the pair of equations
sin@ = 2n1n; and cos§ = (n3 — n?).

The undetermination of « and y for certain special values of ® and i is similar to
the situation in spherical polar coordinates, where the polar angle ¢ is undetermined
when 6 = 0. Here, as in the polar angle case, if ® and n are continuously differentiable
functions of some parameter, the values of @ and y at the indeterminate points can
be determined from the condition that «, 8, y also vary continuously.

We now find unique values of « and y when & > 0, n% < 1 and sin8 > 0. With
B known from eqn (8.202), compare the 31 and 32 entries of the two sides of the
matrix equation R[e, 8, y] = R[®n] to obtain

nysin® — n3n; (1 — cos ®)

cosy = - (8.203)
sin 8

siny = nysin® + n?nz (1 —cos ®) (8.204)
sin B8

Similarly, comparison of the 13 and 23 entries gives

nysin® 4+ nyn3 (1 — cos ®)

cosa = - (8.205)
sin 8
—ny sin ® 1-— P
Gino — nysin® + 172n3 ( cos ®) (8.206)
sin B8

The sum of the squares of the right sides of eqn (8.203) and eqn (8.204) equals one.
Thus a unique angle y in the range —7 < y < & is determined. Similarly, eqns (8.205,
8.206) determine a unique « in the range —7 < o < 7.

The angles «, B, y are now determined and five of the matrix elements matched. It
remains to prove that the 11, 12, 21, and 22 elements of the two matrices are identical
with these same choices of «, 8, y. This algebraic exercise is done in Exercise 8.12.
Thus R = R[®n] = R[a, B, v], as was to be proved. O
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The trace of R[a, 8, y] is the sum of the diagonal terms of eqn (8.201). It can be
simplified to
TrR[e, B, y] = cos B + (1 4 cos B) cos(x + y) (8.207)

The definition eqn (8.198) rotates first by angle y about €3, then angle 8 about
€, then by o about €3 again. Repeated use of eqn (8.178) can be used to derive the
following remarkable result.

Theorem 8.26.2: Euler Angles in Reverse Order

The rotation Rl«, B, y] defined in eqn (8.198) can also be produced by three rotations
that use the angles «, B, y in reverse order; provided that each successive axis of rotation
is changed to reflect the effect of rotations already performed,

Rlw, B, v] = Rlaés] RI[Bé] Rlyés] = RIye\] RIAF] Rlaés] (8.208)
where
& = RIBFI& = Rlw, B, 718 and  § = Rlaés]é (8.209)

Proof: The first equality in eqn (8.208) simply repeats the definition eqn (8.198).
The proof of the second equality is left as an exercise. O

Note that the equivalence of the two forms in the first of eqn (8.209) follows from
the fact that €3 = R[«€3] €3 and égR) = R[yégR)] égR). A unit vector is unchanged by a
rotation of which it is the axis.

8.27 Fixed-Axis Rotation from Euler Angles

In Section 8.26 we began with a fixed axis rotation R[®n] and derived the three Euler
angles «, 8, and y. The inverse problem is also of interest.
We are given the three Euler angles «, 8, and y wish to find the equivalent finite
rotation with
R[®0] = Rle, B, v] (8.210)

The angle is found by solving for 0 < ® < 7 in the expression
2cos® + 1 =cospB + (1+ cosp)cos(x+ y) (8.211)

that is found by equating the traces in eqns (8.149, 8.207).
The components of the axis come from a straightforward application of the eigen-
vector equation, eqn (8.163), using the matrix R[«, 8, y] from eqn (8.201). The nor-

malized eigenvector corresponding to A3 = 1 is {7(3), which is the rotation axis. When
B = 0and (x +y) = 0, the rotation is the trivial identity transformation. In that case,
the axis n is undetermined since any vector is an eigenvector of U with eigenvalue
one. When 8 = 0 and (@ + y) # 0, the components of this axis vector are (0, 0, £1)
with the sign depending on the quadrant of (a + ). When 8 # 0 but (o + y) = 0, the



TIME DERIVATIVE OF A PRODUCT 189

components of the axis vector are (— sina, cosa, 0). When 8 # 0 and (« + y) # 0, the
components of the (not yet normalized) axis vector are

V(3) = (1 —cos B) (cosa — cosy) (8.212)
(3) = (1 —cos B) (sina + siny) (8.213)
v; ) —sinB (1 — cos (@ + 7)) (8.214)

The normalized rotation axis is then i = V®/V® where V& = Y3_, vg and
v is its magnitude. Just as in the Euler Theorem proof, the two sides of eqn (8.210)
must be applied to some vector not parallel to n and the results compared. If they fail
to match, n must be replaced by —n.

8.28 Time Derivative of a Product

It is useful to have general formulas for the time derivative of a rotation operator that
is the product of time-dependent rotation operators

R(t) = Ra(t) Ryp(t) (8.215)

Theorem 8.28.1: Angular Velocity of a Product
The angular velocity associated with the rotation R(t) defined in eqn (8.215) is

(1) = @u(1) + Ra(t) 0p(1) (8.216)
where w, (1), wp(t) are the angular velocities associated with R, (t), Rp(t), respectively.

Proof: Using the product rule,

dR(1) dRa(t) dRp(t)
dt

7 77 o)+ Ra(t) (8.217)

and hence, by eqn (8.70) of Section 8.10, the anti-symmetric operator associated with
rotation R(¢) is

W) = dR(”R( )T —

‘m”t D (Rut) Ry (1))

(8.218)
Since (Ra @) Rb(t))T = RZ(t) RI(t) and each operator is orthogonal, this expression
reduces to

dR,
- <O (1) (Ra®) R)" + Ra0)

W(t) = d”( )RT(>+R (r)

”( DRI RI (1) = Wa(t) + Ra(0) Wy () RT(1)

(8.219)
where W, (t), W} (¢) are the anti-symmetric operators associated with rotations R, (¢),
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Ry (t) respectively. Applying this to a general vector A and using eqn (8.75),
_ T
©() X A = 0,(t) X A + Ra(t) {wb(t) x (R (t)A)] (8.220)
Then eqn (8.39) of Section 8.6 and the orthogonality of the operators gives
o) x A = 0 (1) X A + {Ra(t) @y (1) X (Ra(t) RT (1) A)}
= @y(1) x A+ (Ra(t) @p(1)) x A = (04(t) + Ra(t) @p(1)) x A (8.221)
Since vector A is arbitrary, this implies eqn (8.216), as was to be proved. O

The above theorem can be applied repeatedly to obtain the derivative of a product
of any finite number of factors. Thus the angular velocity associated with

R(@) =Ra(®) Rp(t) Re(t) - - - Ry () R (1) (8.222)
is

o(t) = 0, (1) + Ry (1) wp(2)
+ (Ra(®) Rp(1)) @e(t) + - + (Ra() Rp(t) Re(t) -+ - Ry (1)) @ (1) (8.223)

in which each angular velocity is modified by all rotations that are applied after it.

8.29 Angular Velocity from Euler Angles

Time-dependent rotations can be parameterized by time-varying Euler angles. The
angular velocity vector of the rotation can then be obtained as a function of the Euler
angles and their first time derivatives.

Theorem 8.29.1: Angular Velocity from Euler Angles
Let a time-varying rotation be defined by

R (t) = Rla@), B®), y ()] = Rla(t) &] RIB() &1 Rly () &] (8.224)

where a (t), B (1), and y (t) give the three Euler angles as continuous, differentiable
functions of the time. Then the vector w (t) associated with the time-dependent rotation
in eqn (8.224) is

M =a&+ IO+ 700 (8.225)

where the dots represent time derivatives and égR) @) = Rla(t), B@), y(t)] €3 and y(t) =
Rlo () €3] €, are the same vectors found in eqn (8.209) above.

Proof: Each of the products on the right side of eqn (8.224) is a rotation about a
fixed coordinate axis. Hence, by eqn (8.197), the angular velocity vectors associated
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with rotations R« () €3], R[B(t) €21, Ry (¢) €3] are wu(t) = & €3, wg(t) = B &, and
o, (1) = y €3, respectively. Then eqn (8.223) gives

@ (1) = & & + fRIa(r) &]& + pRla(r) &] RIB(X) €218 (8.226)

Since rotation about a fixed axis does not change that axis vector, &3 = R[y (¢) €3] €3
and hence

Rla(t) &3] RIB(t) &2]€3 = Rla(r) &3] RIB(1) &2] Rly (t) €3]&;
= Rla(1). B1). y ()] & = & (1) (8.227)

Thus, using the definitions above, eqn (8.226) becomes identical to eqn (8.225), as
was to be proved. O

The expression for @ in eqn (8.225) is not yet in a useful form. It needs to be
expressed in terms of a single set of basis vectors. Denoting the components in the €
system by wy (¢) gives

o(t) = w1 (1) &1 (1) + wa (1) &(t) + w3 (1) &3(2) (8.228)
where, using eqn (8.225), wy(t) = € - w(t) may be written as

(1) = 6 & - & + B (Rle() &1&) +7 & - &7 (1)
= 6843 + BReale () &1+ Risla (1), (). y (1)) (8.229)

Writing the components out explicitly using eqns (8.200, 8.201) gives

wi(t) = —Bsina + y cosa sin B (8.230)
w(t) = Bcosa + y sinasin B (8.231)
w3(t) =a + ycos B (8.232)

where the Euler angles and their derivatives are all functions of time.

8.30 Active and Passive Rotations

We now return to the general treatment of the rotation operator. The rotation operator
R can be used either actively or passively. The active use, which is the only one we
have discussed to this point, transforms each vector V into a rotated vector V(&) =
RV. Although we have not emphasized the point, it is implicit that the coordinate
system unit vectors €; are not changed by this active rotation.

The passive use of R makes the opposite choice. The unit vectors €; are rotated to
form a new coordinate system, which we will denote é; and define, fori = 1,2, 3, as

& =& = Re; (8.233)

The vector V, however, is not changed by passive rotations. In a sense, active rotations
rotate the world while passive ones rotate the observer. Note that the same rotation
operator R is used in both cases, but used differently.
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FIG. 8.8. On the left is an active rotation. The vector V is rotated into the new vector V(%) but
the basis vectors €; do not change. On the right is a passive rotation. The basis vectors €;
are rotated into new basis vectors &; but the vector V does not change.

We now consider passive rotations. We will refer to the original unit vectors €; as
the old system or the original system, and often denote it by the letter o. The rotated
unit vectors &; will be called the new system or the rotated system, and will often be
denoted by the letter o’.

We assume here and in the following sections that the €; are a right-handed or-
thonormal system and R is a proper rotation operator. It follows from Definition 8.6.2
that the new system of unit vectors is orthonormal and right-handed,

€ & =¢-¢ =3¢, and & x& =& (8.234)
The new unit vectors can be expanded in terms of the old ones by eqn (8.33) with the
identification &, = él(R),

& = Zé, @-&)=> ¢ (& R&) Ze, = ZR,]e, (8.235)

8.31 Passive Transformation of Vector Components

An important thing to notice is that, although the vectors V do not change in passive
rotations, their components do change. An unchanged vector V can be expanded in
either system

DoV =V=> Vj§ (8.236)
where the components in the two systems are
Vi=¢-V and V/=¢ -V (8.237)

The new components V) =V - é; are different from the old ones V; = V - € even
though V is the same in both cases, because the unit vectors are different. We can
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denote the two alternate expansions of the vector V into components by the notation
Vi (Vi, V2, Va), (8.238)
Vi (V] V5, V35) (8.239)
We avoid using the equal sign here. A vector V is not equal to its components, rather
it is represented by its components in a particular reference system. As we see, the
components in the o’ system will be different from those in the o system, even though
the vector V is the same in both cases.

It follows from eqn (8.235) that the components of V in the two systems are re-
lated by

o

3 3
V=& - V=Y Ri& | -V=> RV (8.240)
j=1 j=1
This relation can also be written in matrix form. If we denote by [V] the column
vector of components in the o system, and by [V’] the column vector of components

in the o’ system, then eqn (8.240) can be written as

[V'1= RT[V] (8.241)

8.32 Passive Transformation of Matrix Elements

Just as a vector V has different components in the o and o’ systems, an operator
B will also be represented by different matrix elements (which we might consider
as the “components” of the operator) in the two systems. Since we are considering
passive rotations now, the operator itself if not changed by the rotation, but its matrix
elements are changed. In the two systems, we have

Bij = éi . Bé]‘ and Bi/j = é; . Bé; (8.242)

which are related by

3 3 3 3
Bi/j = é: . Bé} = (Z R;-l;(ék> -B (Z RjTlél) = Z Z R;l;(Bk[R[j (8.243)
k=1 =1

k=1 =1
which can be written as the matrix equation
B'=RTBR (8.244)

We say that the operator B is represented by the matrix B in the o system and by the
matrix B’ in the o’ system.

It follows from eqns (8.235, 8.243) that the dyadic associated with operator 15 can
be written out in either system, as

3 2 3
)IPILTIOREIS ) LA 245

Of particular interest is the unit operator U/. It follows from the orthogonality of R
and the transformation rule eqn (8.240) that its matrix elements are the same in any
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system,

Uij=6ij = U’ (8.246)
Thus the resolution-of-unity dyadic, the dyadic associated with U, has exactly the
same algebraic form in the two systems,

A A A A AA Al Al A/ Al
€18 + 28 + 8383 = U = &[] + &,¢; + &,&, (8.247)

Multiplying a vector by the expansion of U in the o (¢’) system will expand that vector
in the o (0’) system.

8.33 The Body Derivative

Let us now consider the case in which the o system is a fixed inertial system, but the
rotation operator and the rotated system o’ are both time varying. The basis vectors
of the o’ system will thus be functions of time. For i = 1,2, 3,

&) =) =R (8.248)

From the consideration of time-dependent rotations in Section 8.10, we know that
the time derivatives of the o’ system basis vectors are
deé (1)
dt

where w(¢) is the (generally time-dependent) angular velocity vector of the time vary-
ing rotation R(¢).

Now consider the task of calculating the time-derivative of some vector V. If we
expand this vector in the o system, then the time derivative will be

3

dv d R dv; .
av _ 4 = Z Ry (8.250)
dt dt —

= (1) x &(1) (8.249)

However, if we expand V in the o' system, the same derivative will have a more
complicated form, due to the time variation of the unit vectors. It is

AV d ., av!., &) 3 rdv! N
E—Ei:lvte,—;(dtel+‘67)—§<d +Vw(t)><e(t)>
(8.251)
Collecting terms and using the linearity of cross products to factor w(s) out of the
second term on the right gives

dv dv
—={— HxV 8.252
7 < 7 >b + o(f) x ( )
where the first term on the right is the so-called body derivative, a vector defined as
dv d Vl’ N
) = 8.253
<dt >b . dt ar i ( )

To understand what the body derivative is, imagine an observer rotating with the
o' system who is unaware that it and he are rotating. (We on the surface of the earth
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are good examples.) If he is asked to calculate the time derivative of a vector, he will
first express that vector in his o’ reference system, and then calculate eqn (8.253), the
body derivative. He thinks he is using eqn (8.250), but that is his error since his o’
reference system is not, in fact, inertial. After he calculates the body derivative, we
can correct his error by adding the term w(z) x V.

So the recipe for getting the body derivative is: (1) Express the vector in the o’
system, and then (2) take the time derivative as if the é}( basis vectors were constants.
Note that, although this body derivative is calculated in a special way, nonetheless it
is just an ordinary vector that can be expanded, if needed, in any coordinate system.

8.34 Passive Rotations and Rigid Bodies

We can identify the moving coordinate system &; of passive rotations introduced in
Section 8.30 with the similarly denoted coordinate system embedded in the moving
rigid body in Section 8.9. The position and orientation of the rigid body at time ¢ can
be thought of as the position and orientation of this &: system of coordinates, whose
origin is at the center of mass of the body and whose orientation is given by

&) =R(1) & (8.254)

derived from eqn (8.233). In this system of coordinates, the vectors p, can be ex-
pressed as

0, (1) = pp1 (1) €(0) + Py (1) & (1) + py3(1) &(2) (8.255)

where the components were shown in Section 8.8 to obey
i (1) = & (1) - p, (1) = &(0) - p,,(0) = p;,;(0) (8.256)

and hence not vary with time.
Thus the time derivative of p, (r), when expanded in terms of the body derivative
and its correction becomes

dp,(1)  [dp,()
= 2
1 < 1 >b + o) x p, @) (8.257)
where
3 ’
dpn (1) dp; (1)
— = —nl .= .2
< - >b Z:; L& =0 (8.258)
since eqn (8.256) implies that dp; ;(r)/dt = 0. Thus
. dp,(t
b, (1) = %() — (1) % p, (1) (8.259)

which reproduces eqn (8.93).

The coordinate system embedded in the rigid body, with unit vectors given by
eqn (8.254) and origin at the center of mass of the body, will be used frequently in
subsequent chapters. The constancy of the components p/. (1) = p,(0) in that system
will lead to many simplifications.
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8.35 Passive Use of Euler Angles

The time-dependent passive rotation in eqn (8.254) can be parameterized using time-
dependent Euler angles, as developed in Section 8.26. Rather than simply using the
standard definition in eqn (8.198), however, it is clearer to introduce the alternate
form of the Euler angle operators in eqn (8.208) to write

& (1) =Rla(), 1), y()]& = Rly @) & O] RIBM) §OI Rl (1) &3] &; (8.260)
where the definition égR)(t) = &,(¢) has been used, and where

& (1) = RIBH J(1)] & = Rla(r), (1), y(1)]& and §(t) = Rla(t) &]&  (8.261)

All A

€; =¢€3

F1G. 8.9. Steps in the passive use of Euler angles. First a rotation by « about the €3 axis leads
to é;’. Then (center figure) a rotation by 8 about the é’z’ axis leads to é;”. Finally, a rotation

by y about the &; axis leads to the final orientation &;.

Then the progression from &; to &;(¢) can be decomposed into three easily visu-
alized steps. First, the original triad is rotated by angle «/(r) about the €3 axis by the
operator R[a(t) &] to produce a triad that will be denoted &; (¢). Thus

&' (t) = Rla(t) &18& (8.262)

for i = 1,2, 3. The unit vector denoted y(¢) in eqn (8.261) is seen to be the same as
the vector &, (1) produced by this first rotation. It is the rotated y-axis. Note also that
rotation about the z-axis does not change the z-axis, so &; = &;.

The triad &/ (¢) is then rotated by angle B(t) about its own & (¢)-axis by the second
rotation operator to act, R[B(t) §(t)] = R[B(t) &(¢)]. Call the resulting triad &, (r).
Thus, fori =1, 2, 3,

&' (1) = RIB(1) & (1)1 & (1) (8.263)

The new z-axis after this second rotation is ég”(t), which is in fact identical to the

final z-axis é’3 (). Also, since the y-axis is unchanged by a rotation about the y-axis,
A~/ Al A
€, (1) =e)(t) =y(1).
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In the final step, the triad &(¢) is rotated by angle y(r) about its own & ()-
axis by the operator R[y (1) &(t)] = R[y(t)&; (t)] to produce the final triad & (¢). For
i=1,2,3,

&) =Ry & 18" @) (8.264)

Note that rotation about the z-axis doesn’t change the z-axis, and so 6/3 1) = ég/(t), as
was mentioned previously.

Thus a three-step process applied to the triad €;, consisting of rotation about the
original z-axis €; by «, rotation about the new y-axis y(z) by 8, and rotation about the
even newer z-axis &;(¢) by y, has led to the final triad &; (¢).

€3

Al

€]
FI1G. 8.10. Another view of the passive use of Euler angles. Not all unit vectors are shown, and

the final rotation by y is not shown. Note that & lies in the &;-&| plane and has spherical
polar angles «, B regardless of the value of y.

The final z-axis 6’3 (t) will have spherical polar coordinates
1,05, ¢y where 6y =8 and ¢y =« (8.265)
Hence, using either the definitions of spherical polar coordinates in Section A.8, or
applying the matrix in eqn (8.201) to the column vector (0, 0, 1)T to obtain the com-
ponents, the vector é; (¢) can be expressed in the ¢; coordinate system as
&,(t) = sin B cosa & + sin Bsina & + cos B &; (8.266)
Since parameterization of the body system by the three Euler angles will be used
extensively in the following chapters, it will be useful to express the angular velocity
vector in the body system. The general angular velocity is given by eqn (8.225) as
w)=d&+ Ay +7e =aés+ & 1) +y &0 (8.267)

where the last expression has been converted to the notation of the present section.
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The expansion in the &;(¢) system is

w(t) = o) (t) &) (1) + wh(1) & (1) + (1) &(1) (8.268)
where, fori =1, 2, 3,

Wi(1) = &(1) - o(t) = &) - (a3 + & (1) + y&(1))
= aRy[a(t), B(1), y ()] + BRY [y (1) &1+ ydi3 (8.269)

Al

Noting that R}/[y (1)€3' ] = Ra;[y (¢)€3], the matrices in eqn (8.200) through eqn (8.201)
may be used to evaluate the needed matrix elements, giving finally

w|(t) = —&sinBcosy + Bsiny (8.270)
wh(t) = @ sin Bsiny + B cosy (8.271)
wy(t) =dcosf+y (8.272)

and the Euler angles and their derivatives are all functions of time. These equations
could also be derived, or checked as in Exercise 8.5, by applying eqn (8.240) directly
to the inertial components of w(¢) in eqns (8.230 — 8.232).

8.36 Exercises

Exercise 8.1 Consider a rotation R[®n] with ® = 30° and a fixed axis n that lies in the first
octant and makes the same angle with each of the coordinate axes.

(a) Find numerical values for all nine components of the matrix R [®n]. [Note: It is much
better to write the matrix elements in exact forms like, e.g., V3 /2, rather than in terms of
decimals.]

(b) Verify numerically that your matrix is a proper, orthogonal matrix.

(c) Check numerically, that TrR[®n] = 1 + 2 cos ® for your matrix, as is required by eqn
(8.149).

(d) Check numerically that R [®n][n] = [n] where [n] is the column vector of components
of fi. Why is this equation true?

Exercise 8.2 Consider a plane mirror. Denote the unit vector normal to its surface and point-
ing out into the room by n. Let an operator M convert a general vector V in front of the mirror
into its reflected image V™) = MYV behind the mirror. The matrix M of this operator was
found in Exercise 7.3.

(a) Consider the operator R[] that rotates vectors by 180° about the normal to the mirror.
Find a general expression for its matrix elements R;; [7n] in terms of the components n; of
vector n.

(b) Show that M = T R[zn] = R[7n] T where T is the matrix of the total inversion oper-
ator 7 = —U discussed in Section 8.6. Mirror reflection is thus equivalent to total inversion
followed or preceded by rotation by 180° about the normal to the surface of the mirror.

(c) Use the result (b) to argue that M must be an improper rotation operator.
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Exercise 8.3 Suppose that a rotation operator is defined by the Euler angles
a=45° B=30° y=-45° (8.273)

(a) Write the numerical values of all nine matrix elements and the matrix R [«, 8, y]. [Note:
It is much better to use exact forms such as, e.g., ﬁ/ 3, rather than decimals. Please do it that
way.]

(b) Use the result of Exercise 7.1 to check that your matrix is orthogonal.

(c) By the Euler Theorem, there must be some fixed-axis rotation such that, for some @ in
the range 0 < ® < 7 and some axis i

R[®n] = R[o, B8, ] (8.274)

Find the numerical value of angle ® by the condition that the traces of both sides of eqn
(8.274) must be the same.

(d) The axis vector n for this rotation has components (—1, 1, 0)/ V2. Verify that

Rla, B, y1ln] = [n].

(e) Denoting égR) = Rla, B, y]€s, verify that €3 x égR) = nn where 7 is a positive number.
Why is that so? What would it mean if » turned out to be a negative number?

Exercise 8.4 Use the results of the Theorem 8.23.1 repeatedly to prove the second equality
in eqn (8.208) of Theorem 8.26.2.

Exercise 8.5 Use the passive transformation rule [»'] = RT[a, B, ][] from eqn (8.240),
and the inertial system components w; of w from eqns (8.230 — 8.232), to obtain the compo-
nents ; of w in the body system stated in eqns (8.270 — 8.272).

Exercise 8.6 Use eqn(8.252) to show that the angular velocity in eqn (8.188) can also be
written as
—<i>ﬁ+sin<l><d—ﬁ> —(1—cosc1>)ﬁx<@> (8.275)
®= dt [, dt [, '
Exercise 8.7 Use eqns (8.104, 8.140) to show that fixed axis rotations and infinitesimal rota-
tions are related by

R[dPn] = R;[dPR] + o(dd) (8.276)

Exercise 8.8 This exercise refers to Sections 8.30 through 8.32.
(a) The rotation matrix has been defined throughout the chapter by its expression in the
unrotated €; basis, R;; = € - Re;. Show that its expression in terms of the rotated basis,
le ;= é; . Ré}, obeys le i = R;j and hence that R has the same matrix in either basis.
(b) From eqn (8.70), one obtains the matrix equation W = (d R /dt) RT where the matrices
are expressed in the unrotated basis. Show that the matrix of the angular velocity operator W
in the rotated basis is

W’ = RT il (8.277)

dt

(c) In eqn(8.78) the matrix elements of the angular velocity operator VV in the unrotated
basis are written in terms of the components of the angular velocity vector w in that basis



200 KINEMATICS OF ROTATION

as W;j = 22: 1 Sikjwx Where @ = 22:1 wi €. Show that the matrix elements of W in the
rotated basis have the same relation to the components wy in that basis

3 3
W = Z gikjw, ~ where  @= Zw,’(éz (8.278)
k=1 k=1

[Hint: Use é; . é} X é;{ = ¢&jjx = €; - € x € and the transformation rule eqn (8.235).]

Exercise 8.9 In eqn (7.160) of Exercise 7.8, the matrix representing an operator in the spher-
ical basis was related to the standard Cartesian operator by the equation

FOP = TFT' (8.279)

(a) Apply that transformation to the matrices defined in eqn(8.200) to find R “P[y&;],
RGP[B8é,], and R P [aés].

(b) Check your work by comparing your R ©P[88&,] to the matrix with components d r}q w(B)
as listed in the page titled “Clebsch-Gordan Coefficients, Spherical Harmonics, and d Func-
tions” in S. Eidelman et al. (2004) “Review of Particle Physics,” Phys. Lett. B 592, 1. (That
reference uses 6 in place of §.)

(c) Equation (8.201) defines the matrix R [, B, ¥ ] representing a general rotation parameter-
ized in terms of Euler angles. Show that the matrix R P [«, 8, y] representing this rotation
in the spherical basis can be written as

(sp) i 1 iym!
R la, B, y] =e“md! (Bl (8.280)

This matrix, often denoted as D}lnm,[oz, B, v], is used to represent rotations of state vectors
of angular momentum ¢ = 1 in quantum theory. See, for example, Chapter 12 of Shankar

(1994).

Exercise 8.10 In eqn (8.138) it was shown that a rotation by angle ® about a fixed axis i can
be written as

RIDA] = exp (qaﬁ : j) (8.281)

where 7 is the vector with operator components defined in eqn (8.135).
(a) Prove that the commutation relations eqn (8.127) imply that, for two unit vectors n; and
ﬁz’

[(ﬁl - ), (fia - i)]c = (A x i) - J (8.282)

Exercise 8.11 In Sections 8.14 and 8.15 we demonstrated that infinitesimal rotations com-
mute. This result can be expressed as

[Rlef], Rlenz]], = o(e) ase — 0 (8.283)

c

where i and fip are any two unit vectors. [Recall that the symbol o(¢) means that the quantity
is of smaller order than &. See the definitions in Section D.11.]
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(a) We now want to carry the calculation of the commutator to quadratic order. Use eqn

(8.282) and
. 2 N2
Rleh]=U+ ¢ (ﬁl : J) + % (fn . J) + 0(g?) (8.284)

together with a similar definition for fip, where J is defined in eqn (8.135), to prove that
[Rlef], Rlefal], = &2 (fy x ) - T + o(e?) (8.285)

(b) If we denote by AV the change in vector V due to rotation by angle ¢ about axis n,
demonstrate that
AV = VPR —V = (R[eA] —U) V (8.286)

(c) Now denote the cumulative change in V resulting from successive rotations, first about
axis ny and then about axis ny, as

AV(1,2) = (Rlen IR [efo] — U) V (8.287)

and denote AV (3 1y as the change produced by the same two rotations but with the order
reversed. Prove that the difference between these two changes is

AV = AV 1) = [Rlefi], Rlefo]], V (8.288)
= (R[sz(ﬁl x fp) - J1— U) V + o(e?)

Thus the difference between the changes produced by pairs of rotations in opposite orders
is, to second order in &, equal to the change produced by a rotation about an axis parallel to
(ng x ny).

(d) Suppose that we first rotate successively about the x followed by the y axis. And then
we start again and rotate successively about the y followed by the x axis. Show that the
difference between the changes produced by two procedures is, to second order, equal to the
change produced by a rotation about the z axis.

Exercise 8.12 Complete the proof of Theorem 8.26.1.

Exercise 8.13 Under the conditions 8 # 0 and (o + y) # O stated in Section 8.27, verify
eqns (8.212 — 8.214).

Exercise 8.14 Find Euler angles «, 8, y for the following rotations:
(a) Rotation by /3 radians about an axis fi = (€; + &) / V2.

(b) Rotation by 7 radians about an axis n =((\/§ —Dé+W3+1) éz) /8.
(c) Rotation by 7/3 radians about an axis fi = (& + & + &) /v/3.

Exercise 8.15 Use the methods of Section 8.18 to derive the matrix R [B€;] in eqn (8.200).
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ROTATIONAL DYNAMICS

The successful description of rigid-body motion is one of the triumphs of Newtonian
mechanics. Having learned in the previous chapter how to specify the position and
orientation of a rigid body, we now study its natural motion under impressed external
forces and torques. The dynamical theorems of collective motion from Chapter 1 will
be extended by use of the rotation operators whose properties were developed in
Chapter 8.

9.1 Basic Facts of Rigid-Body Motion

The center of mass R of a rigid body obeys the same formulas as those summarized
in Section 1.15 of Chapter 1 for any collection of point masses,
dR

dP
o= F(ex0 where P=MV and V= o (9.1

The orbital angular momentum formulas are also the same,

& (ext)
o

= where L=RxP and t&Y =R x Fe (9.2)

The spin angular momentum of a rigid body is the same as that defined in Section

1.11.Itis
N

S = Z P, X NPy, (9.3)
n=1

and obeys the equation of motion derived in Section 1.13,

N
fl—? =™ where = Z p, x fexU (9.4)
n=1
where p,, = r, — R is the relative position vector defined in eqn (1.33).
The difference between a rigid body and a general collection of point masses is
the relation
bn =wXp, (9.5)

that holds only for rigid bodies. This important formula for the time derivatives of
the relative position vectors was initially stated in Section 8.12 and then re-derived
in Section 8.34 using the concept of body derivative.

The application of eqn (9.5) allows the formulas for S and its time derivative to
be expressed in a very useful operator form, in which the properties of the rigid body

202
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itself are contained in an operator 7 called the inertia operator or inertia tensor. The
exact form of this operator depends on the details of the experimental situation being
treated. We begin with the case of a freely moving rigid body.

9.2 The Inertia Operator and the Spin

Consider a rigid body moving freely in empty space, for example a tumbling asteroid.
Applying eqn (9.5) to the definition of S in eqn (9.3) and expanding the triple vector
product gives

N

N
S=2 mupy x (@x ) =D mu{(pn-Pn) ® =0, (0, - )} 9.6)
n=1

n=1

Section 8.34 describes the body system of coordinates &;(¢) that move with the
rigid body. Expressed in terms of components in that system,

3 3 3
S=ZSZ-/é; PnZZP,/n & w:Za)I/-é; 9.7)
i=1 i=1 i=1

and eqn (9.6) becomes

N 3
/ 12 72 12 / 14 AN
Si = Zmn ('Onl + o2t Pn3) O = Pp; Z Puj@;
n=1 =1

3N
=2 Y maf{ (ot + pi3 +0i3) 8 = puily | ) 9.8)
j=1n=1
where o] = Z;-:l 3;jw); has been used.
Introducing the definition

N
1§ =3 ma | (13 + 23+ 213) 815 = Plusly | 9.9)
n=1
allows eqn (9.8) to be written as
3
(cm)’
Si=Y 15" ) (9.10)
j=1
The discussion of the equivalence of operators, matrices, and components in Sec-
tion 7.8 can now be invoked to write

S =7(mMg (9.11)

where Z(°™ is that operator whose matrix elements in the body system are given by
eqn (9.9). This operator will be called the center-of-mass inertia operator. Often it is
also called the center-of-mass inertia tensor.

An important feature of this inertia operator is that its matrix elements in the body
system are not time varying.
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Lemma 9.2.1: Constancy of Matrix Elements
The body-system matrix elements

5™ =& . 1™, (9.12)

of the operator T(°™ are constants, obeying
d Ii(jcm)/
L E—— (9.13)
dt

Proof: In Section 8.8, and again in Section 8.34, we saw that the components p, . of
the relative position vectors in the body system are constants, with

dp’ .
i (1) = p,;(0) and hence % =0 (9.14)
. (cm)’ . .
But the expression for /; ;  ineqn(9.9) contains only the components p; ., and hence
I l.(jcm) must also be constant. O

9.3 The Inertia Dyadic

Like any operator equation, eqn (9.11) can also be written in dyadic form. The last
expression in eqn (9.6) can be written as

i
Mz

> n {(Pn - Pn) @ = 0, (0 - @)}

N
Z pn (U - pnpn} TW= H(Cm) ‘@ (9.15)

where the center-of-mass inertia dyadic is defined by

plem) — Zm YU = p,0,} (9.16)

This same dyadic can also be derived from the component expression eqn (9.9) us-
ing the definition of a dyadic in terms of its matrix elements from eqn (7.52), applied
here using basis vectors and matrix elements from the body system,

pem — Z Z G (9.17)

i=1j=1

An equivalent matrix equation can also be written. If we denote by [S’] and [w/]
the column vectors of components of S and w in the body system, then

[S] = 1™ [o] (9.18)

where the matrix elements of matrix 1™’ are those given in eqn (9.9).
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9.4 Kinetic Energy of a Rigid Body

The total kinetic energy of any collection, including a rigid body, is given in Section
1.14 as

N
1 1 .
T=T,+Ti where T, = EMVQ and T = 3 Zmn P, Py 9.19)
Using eqn (9.5), this last expression may be rewritten for a rigid body as

1
Zmnpn- wxp,)= Zmn P X Pp) _2S ® (9.20)

where eqn (9.3) was used. Expanding S using eqn (9.11) then gives

TI:%Q ( 7(em) ) ZZ 1 oo 9.21)

1—1]1

which expresses the internal kinetic energy in terms of the angular velocity and the
inertia operator.

9.5 Meaning of the Inertia Operator

The diagonal matrix elements of the matrix 1™’ are called moments of inertia. For
example, consider the element with i = j =3,

N N
15 = ma | (e + 03+ 013) 833 = plaei} = Y oma (i +013)  9:22)
n=1

n=1

which is the sum of each mass m, multiplied by its perpendicular distance from a
line parallel to &, and passing through the center of mass.*® The other two diagonal
elements have similar expressions in terms of perpendicular distances from the other
coordinate axes.

The off-diagonal elements of 1™ are called products of inertia. For example, the
element withi = 1and j =3 is

N
1™ =Y ma{ (o} + 3+ 013) 013 it} = Zmnpnmns (9.23)

The other off-diagonal elements are similar.

461f we imagine the body system of coordinates to have its origin at the center of mass of the body, this
is the distance of m;, from the 6/3 axis. It is the moment of inertia about that axis that would be measured
by an observer standing at the center of mass.
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9.6 Principal Axes

From eqn (9.9), we notice that, by construction, the inertia matrix is real and sym-
metric, with
(cm)” _ y(cm)’
i =1 (9.24)
As discussed in Section 7.12, any real symmetric operator in a three-dimensional
space has three real, mutually orthogonal, and normalized eigenvectors V& for k =

1,2, 3 obeying the standard eigenvector equation
7emvE = 3, v® (9.25)

These three, orthonormal eigenvectors are called the principal axes of the rigid body.
The corresponding real eigenvalues are the three solutions Aj, A2, A3 of the cubic
equation

(cm)’ (cm)’ (cm)’
(1 n - )“) Iy Iy
(=) Y | =0 (9.26)
(cm)’ (cm)’ (cm)’
I3 I3 (133 - A)
Since the matrix elements / j(ic ™" are all constant in time, the eigenvalues will also be

constants.
The eigenvectors may be expanded in the body system as

3
v =3y (9.27)

i=1

where the components Vl.(k)/ of the kth eigenvector are found by solving the equation

(™ =) ™ e
(S ) s v® =0 (9.28)
(cm) (cm)’ (cm)’ (k)
f I (133 - kk) Vs

. . " . o . A (9 BN (9]
and applying the normalization condition to obtain unit eigenvectors with V"= ". V'~ =

1. Since the eigenvalues and matrix elements are all constant in time, the components

’
Vi(k) will also be constant. The three eigenvectors now form an orthonormal set, with

NONRSONS

A (k A (k
zemy® 5 v ana VO VY 24y, (9.29)

forallk,/=1,2,3.
Now suppose that we choose a new set of basis vectors €; equal to the eigenvectors
just found,
~ ~ (1)
&=V (9.30)
for i = 1,2,3, where possibly the indices of the eigenvectors may need to inter-
changed, or one eigenvector replaced by its negative, to make sure that the & form



PRINCIPAL AXES 207

a right-handed set of basis vectors. Expressed in this new system, the inertia operator
. . . 4 . . .
will have a matrix 1€ defined by its matrix elements

Ii(jcm) _ é;/ . (I(Cm)é}/> (9.31)

But by eqns (9.25, 9.30), Z(“™g¢! = ;& and hence, using the orthonormality of the
new basis vectors,

1™ =g (A] ‘j) = ;8 (9.32)

The eigenvalues will be denoted, for j = 1,2, 3, by
b= 1" (9.33)

and will be called the principal moments of inertia of the rigid body. Thus, in the &;
system, the matrix corresponding to the inertia operator will be

™ 0 0
jem’ =1 o ™ o with 1™ = 1™, (9.34)
(Cl’l’l)”
0o 0 I

Warning: Change of Notation

In subsequent work, unless explicitly stated otherwise, we will assume that any body
system of coordinates used is already a principal axis system of the center-of-mass
inertia operator. We assume that the task of finding principal axes, if necessary, has
already been done. However, for notational simplicity, the double prime denoting the
principal axis system above will be replaced by a single prime. The effect is that,
dropping the double prime now, we will assume any body system to have a diagonal
center-of-mass inertia matrix with

™ o 0
e I Al with 1™ = 1™, (9.35)
(cm)’
0 0 I

Thus all products of inertia such as in eqn (9.23) will vanish, and the principal mo-
ments of inertia will be given by eqn (9.9) with i=},

N
1 = m [ (03 + 03+ 013) - 222 (9.36)
n=1

Use of the principal axis system leads to a considerable simplification. For exam-
ple, eqn (9.10) becomes

3 3
i =Y 1wl =3 1™ s 0 = 1 o (9.37)

Jj=1 Jj=1
for each individual value i = 1,2, 3, which says that each component of the spin is
just the corresponding component of the angular velocity multiplied by the principal
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moment of inertia,*’
S = I(cm)’ / S = I(cm)’ ’ r__ g(cm)

The expression for the internal kinetic energy in eqn (9.21) also simplifies, to a
single sum over the squares of the angular velocity components multiplied by the
principal moments of inertia,

3 3 3 3 3
1 1 / 1
_ T (cm) _ - (cm) oo (cm)’ ;) (cm)
fi= 50 (T) = 3 3 3 15 vje) = §§1] jof; = 3 1]
i=1j=1 z=1 j=1 i=1
(9.39)

When expressed in terms of principal axis unit vectors, the center-of-mass inertia
dyadic defined in eqn (9.17) also has a simple form. It becomes

3 3
jlem — ZZ L 58 = Ze ™' (9.40)
i=1j=1

9.7 Guessing the Principal Axes

We know that any rigid body will have a system of principal axes. If necessary, we
can choose three arbitrary body-fixed axes, calculate the inertia matrix, and then go
through the procedure to find the principal axis eigenvectors. But in many situations
of interest, the directions of the principal axes can be guessed (with certainty) from
the symmetry of the rigid body. We give here several rules that can be used.

Lemma 9.7.1: The Plane-Figure Theorem

If the rigid body is flat and of negligible thickness (a plane figure), then the unit vec-
tor perpendicular to the plane will be a principal axis. Moreover; when the other two
principal axes are found, the principal moments of inertia will obey the relation

L™ =™ 4 g™ (9.41)

where we assume for definiteness that the perpendicular to the plane was chosen to be
&
Proof: The proof begins by noting that all products of inertia involving the perpen-

dicular direction will vanish. Assuming the perpendicular to be &;, eqn (9.9) gives, for
i=172,

I(Cm)/ Z mnpmpn3 (9.42)

n=1

_ 1(cm)

But p/, = 0 was assumed for all n values, hence /5 (cm)’ = 0 and the inertia

4TReaders accustomed to seeing the Einstein summation convention should note that no sum over i is
intended or implied in eqn (9.37).
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matrix has the form ) )
0™ o

(cm)" ;(cm)’
Ly 1y, (O ; (9.43)
cm
0 0 I

Thus the vector 6/3, which has components (0, 0, 1), will be an eigenvector and hence
a principal axis, as was to be proved.

The equality in eqn (9.41) can now be proved. With p/, = 0, the three principal
moments of inertia in eqn (9.36) become

N N N
! 2 ! 2 ! 2 2
K =S md B =Y w1 =Y m (n 4+ 03)
n=1 n=1 n=1

(9.44)
from which eqn (9.41) follows. O

Lemma 9.7.2: The Symmetry Rule

Suppose there is a symmetry plane passing through the center of mass of a rigid body such
that, for each mass m,, on one side of the plane, there is a mirror-image mass m, = m,
on the other side. Then the perpendicular to the symmetry plane will be a principal axis.

Proof: The proof is similar to that of the Plane Figure Theorem. Assume &; chosen to
be the perpendicular to the symmetry plane, so that the symmetry plane is the &}-&,
plane. Then the sum in eqn (9.42) will vanish because each term of the form m,ab
will be matched by a term m,a(—b) that cancels it. Thus, the inertia matrix will have
the form shown in eqn (9.43) and so &; will once again be an eigenvector and hence
a principal axis, as was to be proved. O

Lemma 9.7.3: Figures of Rotation
For any figure of rotation (such as might be turned on a lathe), the symmetry axis and
any two unit vectors perpendicular to it, and to each other, will be the principal axes.
Also, if we assume for definiteness (and according to the usual custom) that &, is along
the symmetry axis, then

™ = e’ (9.45)

Proof: Note that any plane containing the symmetry axis of the figure will be a sym-
metry plane of the sort described in the Symmetry Rule above. Thus any unit vector
perpendicular to the symmetry axis will be a principal axis. Choose two perpendicu-
lar vectors from this set. With these as two of the principal axes, the only remaining
direction is the symmetry axis itself. Hence the symmetry axis must also be a prin-
cipal axis, as was to be proved. Rotating the rigid body by 90° about the symmetry
axis will move é/l into 6/2 but will not change the mass distribution. Hence eqn (9.45)
follows. O

Lemma 9.7.4: Cuboids
For any cubiod (a body with six rectangular faces), the perpendiculars to the faces will
be principal axes.
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Proof: This rule follows from application of the symmetry rule with planes of sym-
metry parallel to the faces and cutting the cubiod into two equal parts. O

For a continuous mass distribution with a mass density D, eqn (9.36) may be
generalized to

™ = fdm {(,0/12 + 022+ ,032) - ,0;2} (9.46)

where p = r — R is the location of mass element dm = D d>p relative to the center of
mass, and the integration is over the whole of the rigid body.

9.8 Time Evolution of the Spin

Assume now that the body axes &; are the principal axes of the center-of-mass iner-
tia operator 7™, These &; will be called the principal axis system. We continue the
treatment of the tumbling asteroid introduced in Section 9.2 by considering the rate
of change of its spin.

From eqn (9.38), in the principal axis system the spin takes the form

S= Zl(m & (9.47)

Its rate of change may be calculated using the body derivative introduced in Section
8.33,

ds ds
i <Z>b +ox8S (9.48)

where
ds d S’ ¢ (cm)’ . ¢
_ g I o .
< ar >b E E (9.49)

where &, = do//dt and the constancy of Ii(cm) from Lemma 9.2.1 was used.
The equation of motion for S from eqn (9.4) then becomes

3
20 _ Z Y68 + xS (9.50)

Expanding this equation in terms of components in the body system gives, for i =
1,2,3,

303 3.3
I(cm) ZZ ik, Sk _ I(cm) ZZ e I(cm) ), (9.51)

where eqn (A.15) was used to expand the cross product and eqn (9.38) was used to
get the second equality.
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Equation (9.51) is often written in a slightly modified form,
/ 3 3 /
Ii(cm) a)l/ = Z Z Sikjllgcm) a),’{a); + Ts,i (952)

When each i = 1, 2,3 component is written out, these equations have a symmetry
which makes them easy to remember

1™ i) = bl (1™ = 1) + 1 (9.53)
1™ ) = whor (1 = 1) + 1) (9.54)
1™ 6 = oo (1™ = 1™ ) + 7 (9.55)

Each successive formula is gotten by a cyclic permutation of the integers 123 relative
to the previous one.

Equations (9.53 — 9.55), like many others in this subject, are called the Euler
equations. They give a set of coupled differential equations for the components w; of
the angular velocity vector relative to the body system of coordinates.

9.9 Torque-Free Motion of a Symmetric Body

Imagine now that the tumbling asteroid is replaced by a spaceship or other object
(such as the Earth, or a football) with rotational symmetry about some axis. Taking
the symmetry axis to be &; as is conventional, it follows from Lemma 9.7.3 that such
objects have two equal principal moments of inertia Il(cm)/ = Iz(cm)/ £ 13(°m)/. Bodies
with 1 l(cm)/ = Iz(cm)/ will be referred to as symmetric rigid bodies.

Assume further that the symmetric body is moving with ™Y = 0. The Euler
equations of Section 9.8 can then be solved exactly for the angular velocity and spin
as functions of time. Although the torque-free symmetric body is a simple case, the
motion is surprisingly complicated.

We begin by assuming Il(cm)/ = Iz(cm)/ and writing the Euler equations eqns (9.53
—9.55) as

1™ o = wpoy (1™ = ™) (9.56)

1™ 6 = whor (5™ = 1) (9.57)

1™ @) =0 (9.58)

It follows at once from the third equation that ) is a constant equal to its value at
time zero, w} = wj,. Then the other two equations can be rewritten as

o) = —Qow) @) = Qo) (9.59)
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where the constant 2 is defined by

(cm)’ (cm)’
(5™ - ™)

T (9.60)
1

/

Throughout this and the following sections, we will assume for definiteness that
the principal axis directions have been chosen so that }, > 0. Then Q¢ > 0 when

1™ > 1™ as happens for oblate bodies like a thin circular disk, a thin square, or

the Earth. But Qy < 0 when I;cm)/ <1 fcm)/, as happens for prolate bodies like a long
rod, a long stick of square cross section, or an American or Rugby football.

The first of eqn (9.59) can be differentiated and the second substituted into it to
give

& = —Qiw) (9.61)

which has the general solution
w} = Acos (Qf + ) (9.62)

where A > 0 and —7 < § < 7 are constants of integration to be determined at time
zero. The other component is then

N

W = _;’_:) — Asin (Qof + 8) (9.63)

The angular velocity vector is thus completely determined from its initial values. It is
® = A {cos (Qot + 8) &) + sin (Qot + 8) &} + €3 = AN(E) + W&, (9.64)

where the unit vector n(z) is defined by
() = cos (Qot + 8) &) + sin (ot + 8) & (9.65)

As seen by an observer in the body system, the vector fi will rotate in a right-handed

sense about the symmetry axis &; when Iécm)/ > 1 l(cm)/
A

and in the opposite sense when

The spin angular momentum can also be written. Using eqn (9.38) and the as-
sumed equality 7/™ = 1{™ it is

S = 1™ (&) + wh&) + L™ W&y = 1™ ARQ) + 1™ W}, (9.66)

It is seen that » and S appear to rotate together about the symmetry axis &;. Their
components perpendicular to the symmetry axis are both parallel to the same unit
vector n(¢). The sign of A in eqn (9.62) has been chosen so that § = 0 will place both
o and S in the &)-&; plane at time zero.
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The constant magnitude of S is found from eqn (9.66) to be

So = IISI| = \/ (If‘WA)2 + (1§“ﬂ>’w’30)2 (9.67)

Since we know that a torque free rigid body has dS/dt = 0, we know that S must
be a constant vector relative to inertial space, both in magnitude and direction. We
exploit this constancy of S by choosing the space-fixed, inertial coordinate system &
such that S = Spés.

Since S is an absolute constant, the time variation of the components of S in eqn
(9.66) must be due to the motion of the unit vectors é;, and hence of the rigid body in
which they are embedded and whose orientation they define. Note that the solution
with A = 0 is trivial, with S, w, and ég all aligned and all constant in time. We will
assume the interesting case A > 0 from now on.

The angle 6,3 between the vector » and the symmetry axis &; can be determined

from y )
cos 0,3 = G0 _ 30 (9.68)

llwll [A2 4 w2

and is a constant. The angle 633 between the vector S and the symmetry axis can be
similarly determined from

A/ (cm)’ /
-S I w
cos b3y = G5 3 30 (9.69)

S]] ;N2 , 2
(Il(cm) A) + (Is(cm) a’éo)
and is also a constant.

The assumptions that o}, > 0 and A > 0 imply that 0 < 6,3 < 7/2 and 0 < 633 <
/2. It follows from eqns (9.68, 9.69) that 13(““), > Il(cm)/, as for the Earth, implies

that 033 < 6,3. And Iécm), < Il(cm)/, as for a football, implies the opposite inequality
033 > Oy

The motion of the torque-free symmetric body can be understood by a geometric
construction. A space-fixed right circular cone, called the space cone, is drawn with
its symmetry axis along S and its surface defined by the path of w. A body-fixed right
circular cone called the body cone, is drawn with its symmetry axis along &; and its
surface defined by the path of w relative to the body system. The half angle of the
body cone is thus 6,3 . These two cones are placed so that w is always along their line
of intersection, which makes the body cone roll on the space cone without slipping.
The body cone carries the body system of coordinates with it as it rolls, and thus
illustrates the motion of the body. The two cases, for Iécm)/ > l(cm), and Iécm), < Il(cm)/,
are shown in Figures 9.1 and 9.2. In cases like the Earth, the body cone encloses the
space cone. In cases like the football, the body cone rolls on the outside of the space
cone.

A great deal of qualitative information can be extracted from the results of this
section. We now estimate some magnitudes of interest. For example, the Earth has a
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FIG. 9.1. For an oblate object like the Earth, ¢ > 0. In the figure at the left, the body cone
rolls without slipping on the space cone, carrying the é; axes with it. The angular velocity
w is along the line of contact of the two cones, and the Euler angle « increases steadily.
The figure on the right shows the motion from the viewpoint of an observer standing on
the Earth at the north pole. The unit vector n appears to move counter-clockwise, with the
perpendicular components of €3 and w lined up with it.

Space cone

F1G. 9.2. For a prolate object such as a football, Q¢ < 0. In the figure on the left, the Euler angle
« increases steadily as the body cone rolls without slipping on the space cone, carrying
the é; axes with it. The figure on the right shows the motion from the viewpoint of an
observer riding on the nose of the football. The unit vector n appears to move in a clockwise
direction, with the perpendicular components of w and €3 lined up with it.

small positive value of the ratio (13(cm)’ —1 l(cm),) /1 l(cm)/. To a body-system observer, the
&, axis appears fixed and the vectors S and w (listed here in order of their angle from
&,) appear to rotate about it in a positive sense with an angular rate Q¢ > 0 that is
slow compared to the total angular velocity ||| ~ 27 /(1 day). The angle 653 is only
slightly smaller than 6,3 and hence the space cone is small compared to the body
cone, as is shown in Figure 9.1.
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For another example, a thin rod has a ratio (Iécm)/ -1 fcm)/) /1 fcm), that is negative,

and slightly greater than —1. A body-system observer sees the symmetry axis &; as
fixed and the vectors w and S (listed here in order of their angle from &;) appear to
rotate about it in a negative sense, with an angular rate Qy < 0 that is nearly as large
in magnitude as the total angular velocity ||w||. The angle 633 is considerably larger
than 6,3 and hence the space cone is large compared to the body cone, as shown.

When tidal torques are ignored, the Earth is approximately a torque-free symmet-
ric rigid body of the sort described here. If we assume an ideal case in which it is
perfectly rigid and torque free, we can imagine the three vectors &;, w, and S to be
drawn with a common origin at the center of the Earth and their lines extended out
through the surface of the Earth. These lines would all pierce the snow at or near the
north pole. The vector &; defines the north pole, the geometric symmetry axis of the
Earth, and would appear fixed to a polar observer standing in the snow. The trace of
the other two vectors would appear to rotate in concentric circles around the north
pole in a positive sense, with a common radius direction n(s). They would make one
complete circuit in a time To = 27/ Qp. This time can be calculated from the known
oblateness of the Earth.

(cm)’ (cm)’
21 2 1 1
== == 1 _ 1 - days = 306 days (9.70)
QO 30 13(cm) _ Il(cm) I}Scm) _ Il(cm)

Tq

The Earth’s symmetry axis apparently does have a periodic variation, called the
Chandler wobble, that can be associated with the effect calculated here. It has a small
amplitude: The circles in the snow mentioned above would be of the order of 5 meters
in radius. Also, it has a period of approximately 423 days and appears to be damped.
Because of the damping, it is not simply a relic of the Earth’s creation with some
nonzero A value as the above analysis would suggest, but must be sustained by some
present energy source not included in our analysis here.

9.10 Euler Angles of the Torque-Free Motion

The motion of the symmetric rigid body in Section 9.9 can also be described by es-
tablishing an inertial coordinate system with its €; axis along the fixed direction of
the spin S, and then using Euler angles «, 8, y to describe the orientation of the body-
fixed & unit vectors relative to this inertial system. The motion of the body is then
seen from the viewpoint of an inertial observer, perhaps someone watching a football
pass as it spirals, or someone viewing the Earth’s wobble from space.

In the present section, we assume the results derived in Section 9.9, but re-express
them in terms of these Euler angles.

In terms of the Euler angles, the body symmetry axis &; will have spherical polar
coordinates 1, B, o relative to inertial axes €, as was noted in eqn (8.265). The Euler
angle g is the angle between &; and &, and therefore must be constant here, equal to
the constant angle 0 < 033 < /2 calculated in eqn (9.69). Thus 8 = By = 633.
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Equations (8.270 — 8.272) with 8 = fy and § = 0 give the body system compo-
nents of the angular velocity in terms of the Euler angles. The angular velocity is

@ = —a sin By cosy &) + & sin By siny & + (& cos fo + ¥) & (9.71)

Equating the three components of this vector to the components of » in eqn (9.64)
gives

—asin Bycosy = A cos (Rt + 5) (9.72)
& sin By siny = A sin (Qpt + ) (9.73)
& cos fo +y = (9.74)

It follows from eqns (9.72, 9.73) that & and y are constants with ¢ = &g and y =

10, and that yp = —g. Then eqn (9.74) shows that ¢y must be a positive constant,
do > 0. With these conditions established, eqns (9.72 — 9.74) together imply that
(cm)’

3 @

(cm)’
I

aosinfyp = A Qg cos By = y =—Qot—86+7 o =dpt +k (9.75)

where the constant « is determined from the initial conditions.

We now can express the vectors S, 6’3, and w in the inertial system relative to which
the Euler angles are defined. These expressions will be consistent with the geometrical
constructions in Figures 9.1 and 9.2, and will show them from the inertial viewpoint.

The magnitude of the spin S may be calculated in terms of Euler angles using eqns
(9.67,9.75). It is

So = ISl = 1™ & (9.76)

Since the spin vector S is constant for a torque-free body, and since the €; axis of the
inertial system is defined to be along the direction of this vector, the spin vector will
at all times be equal to €3 times its magnitude, or

S = 11" &3 (9.77)
The body symmetry vector 6’3 can be found from eqn (8.266). It is
& = sin By §(1) + cos o & (9.78)

where
q(t) = cos(apt + k) €1 + sin(aot + «) € (9.79)

is a unit vector that rotates about €; in the positive sense. The expression for @ in
terms of inertial system unit vectors will be derived in Exercise 9.8.

To an inertial system observer viewing the Earth, the spin S is constant and along
the &; axis. The symmetry axis of the body &; is at angle Sy from the &; axis, and
rotates about it in a positive sense, with a rate ¢y > 0 that is slightly larger than ||w]|.
The third Euler angle y represents a rotation about the symmetry axis of the body
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that is combined with the rotation already provided by «. It moves in a retrograde
sense, with yp < 0 but small compared to |w||. The vectors » and ég lie on opposite
sides of €3 and are both in the plane defined by €3 and q(z).

To an inertial observer viewing the long rod or the football, the spin S is constant
and along the &; axis. The symmetry axis of the body &, is at angle Sy from the &; axis,
and rotates about it in a positive sense, with a rate & > 0 that is much smaller than
wll. The third Euler angle y moves in a positive sense, with yy > 0 and a magnitude
only slightly smaller than |lw|. The vectors » and &, are on the same side of & and
are both in the plane defined by €3 and q(z).

9.11 Body with One Point Fixed

In Section 9.8, we considered a rigid body moving freely in empty space, like a tum-
bling asteroid. The motion of its center of mass was therefore governed by the same
laws of motion as for any collection of masses, rigid or not.

We now consider another class of interesting cases, ones in which the rigid body
is not floating freely but has one of its points constrained to be fixed. Examples are a
top spinning with its point set into a depression that holds it fixed, a gyroscope with
a point along its symmetry axis held fixed, etc.

Suppose that a point P of a rigid body is constrained to be at rest. Place an inertial
coordinate system with its origin at that fixed point. Then the motion of the rigid body
can be derived from the time evolution of the total angular momentum J relative to
this inertial system, as given in Axiom 1.5.1,

N
d
d_.tl = (D where J= Zrn x mpyv, =L+ S (9.80)

n=1

where L and S are defined in Section 1.11, and ©(®*? is the total external torque
relative to the origin of coordinates as defined in Section 1.5.

We want to find an operator Z that maps the angular velocity w into J, similar to
the operator Z(°™ defined for the spin in Section 9.2. Since an operator expression for
the spin, S = Z(“™ w, has already been derived in Section 9.2, an obvious approach is
to find an operator expression for the orbital angular momentum L and then to use
J=L+ S tofind J.

From eqns (9.1, 9.2),

L=Rx MV (9.81)

where V = dR/dt is the velocity of the center of mass R, and M is the total mass of
the body. This is the same definition as for the tumbling asteroid, or for any collection
of point masses. But, when one point of the body is fixed at the origin of coordinates,
both ends of R are now fixed relative to the rigid body, and so vector R must move
with the body.

To derive an expression for L, let us begin by supposing that we have already
found the principal axes of the rigid body relative to its center of mass, as discussed
in Section 9.6. Then there is already a body-fixed coordinate system with principal



218 ROTATIONAL DYNAMICS

axis unit vectors &; and its origin at the center of mass. The vector R can be expanded
in that body system as

3
R= Z R/, where R/ =& R (9.82)

Since both the unit vectors & and R are now embedded in the same rigid body,
the components R; will all be constants with dR;/dt = 0. Hence the body derivative
of R defined in Section 8.33 vanishes,

3
dR >\ dR],
) ig—0 9.83
< . >b > (9.83)
i=1
and the total time derivative reduces to
dR dR
V=—=({—) +oxR=wxR (9.84)
dt dt [,

The orbital angular momentum L then becomes
L:RxMV:MRx(wa):M{sz—R(R~w)} (9.85)

Writing this equation out in terms of components in the body system gives

Lj=M{ (R + R+ R?) of — K] ZR/ / 21“’“’) 9.86)
j=1

where the orbital inertia matrix in the body system is defined by
1™ = m{(R2+ R+ R?) 8 - RR} (9.87)
Corresponding to the last expression in eqn (9.86), there is an operator equation
L =70 (9.88)

where Z(™) s the operator whose matrix elements in the body system are given
by eqn (9.86). Notice that, since the R; are constants, as was discussed above, the

matrix elements Il.(;)rb) will also be constant in time and have zero time derivatives.
The operator equation in eqn (9.88) may also be written as the equivalent dyadic
equation

L=1°.4y  where 1D = <R2[U - RR) (9.89)

With the orbital angular momentum L now determined, the total angular momen-
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tum J may be written as
J=L+8=TMe+ T™We = (T + ) o = To (9.90)
where the total inertia operator is defined by
7 = g 4 glem (9.91)

In terms of components in the body system, we have

3

I = Z I} (9.92)

fori =1,2,3, where
1 =M {(R2+ R + R?) 8 — RIR L+ 1™'s, (9.93)

The delta function appears in the last term because the body system is assumed to
be a principal axis system for the center of mass momentum operator Z™. If the
body system is not the center of mass principal axis system, then this term will be
replaced by the non-diagonal matrix /;; (cm)’ . Equation(9.93) will be referred to as the
translation of pivot theorem since it expresses the inertia tensor about a fixed point
displaced from the center of mass.

The dyadic equivalent to operator Z can also be written. It is

] = D) 4 pem) _ p7 <R2U - RR) ) 9.94)

where 1™ is the dyadic expressed in the center of mass principal axis system by eqn
(9.40).

In eqn (9.20), the internal kinetic energy 71 was given in terms of the spin and
the angular velocity. The same can be done for the orbital kinetic energy T, for rigid
bodies moving with one point fixed. Starting with the definition in eqn (9.19), and
using eqn (9.84),

1 1 1 1 1
To=-MV*=_-MV-V=_-MV-0xR=-RxMV-0=-0-L (9.95)
2 2 2 2 2
Combining this result with eqn (9.20) then gives
1 1 1 1
T=T,+T=-w0-L+-0-S=-0-J=-0- (T .
o+ T 2w +2wS 2wJ 2w Zw) (9.96)

where eqn (9.90) was used. Expanding the last expression on the right in eqn (9.96)
in the body basis gives

3
= %ZEI” o (9.97)

which is the same as eqn (9.21) for the internal kinetic energy Tj, but with the center-

of-mass inertia matrix Ii(jcm) now replaced by the total inertia matrix Il./j.
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9.12 Preserving the Principal Axes

An unfortunate feature of eqn (9.93) is that, although the matrix | ™" is diagonal by
the assumption that the center of mass principal axis system is being used, the matrix
I” may not be. Moving the reference point from the center of mass to fixed point P
may introduce non-diagonal terms. If so, then the whole calculation of the principal
axes will have to be done again.

However, there is a class of important special cases in which the center of mass
principal axes are preserved. If the vector R from the fixed point to the center of mass
happens to lie along one of the &, directions, then all products of inertia in eqn (9.87)
will vanish. For example, suppose that R = R&;. Then R} = R, = 0 and R} = R with
the result that )

Ii/j = MR? (3,'.,' — 8135/3) + Ij(cm) dij (9.98)
Thus i # j implies that Il./j = 0 and the diagonal elements become

I, = MR* + 1™ Iy = MR + I/ Ly = 1 (9.99)

In general, when R is along one of the center of mass principal axis é; the principal
axes of the problem are unchanged, the principal moments of inertia along the axes
perpendicular to & have MR? added to them, and the principal moment of inertia
along &, itself is unchanged.

Assume now that we have preserved the center of mass principal axes, or other-
wise found principal axes that make the total inertia operator Z diagonal, and are
now using a principal axis system of the total inertia operator. The formulas for the
total angular momentum and the total kinetic energy then become simpler, just as
the formulas for the spin angular momentum and the internal kinetic energy did in
Section 9.6.

The relation

J=7w (9.100)

is expressed in component form in eqn (9.92). If the body system is the principal axis
system for 7 then, fori =1, 2, 3,

3
Ij; = 1;5;; andhence J/ = Z [§jjw) = ljw; (9.101)

j=1

Just as in eqn (9.37), we emphasize that there is no sum implied in this last equation.
Each component of J/ is just the corresponding component of w; multiplied by the
principal moment of inertia 1/,

Ji=Hoy =nhLo, J;= Lo, (9.102)

In this same principal axis system, the total kinetic energy in eqn (9.97) simplifies to
a single sum

Lw;? (9.103)

1

N =

1 3 3
T:EZZIJ.’(SUCU; | = '

i=1 j=I i=1
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9.13 Time Evolution with One Point Fixed

The time evolution of the spin was calculated in Section 9.8. The same methods used
there for the spin equation of motion dS/dr = (¥ can also be used for the total
angular momentum equation of motion dJ/dt = t®*9. Just replace S by J, and z, by
7, and 1™ by I throughout.

Assuming that we are now using body axes that are principal axes for the total

inertia operator Z, the Euler equations analogous to eqns (9.53 — 9.55) are

Ho| = ooy (I5 — 13) + 71 (9.104)
Loh = il (15— 1)) + 15 (9.105)
Loy = ofoh (I — 1) + 1} (9.106)

where the torque components are defined by 7/ = &; - T(®X.

9.14 Body with One Point Fixed, Alternate Derivation

An operator expression for the total angular momentum J of a rigid body moving
with one point fixed can also be derived directly, without reference to L and S. The
operator Z obtained will be the same as that derived in Section 9.11.

The basic definition of the total angular momentum of any collection, including a
rigid body, is

N
J=) 1y xmyvy (9.107)

n=1

where v, = dr, /dt and r, is the vector from the fixed point P (which is taken as the
origin of the inertial coordinate system) to the mass m,,.

Assume that some body-fixed system of coordinates has been defined. Since all
of the vectors r,, connect two points of the same rigid body, their components in this
body system of coordinates must be constants, just as the components of R were in
Section 9.11. Thus the body derivatives vanish, (dr,/dt), = 0, and

Vv, =dr,/dt = ® X 1, (9.108)
Hence
N
J= Zmnrn X (0 X Iy) (9.109)
n=1

Now using the same pattern found in Section 9.2, but with p, replaced everywhere
by r,, the components of J in the body fixed system of coordinates can be reduced to

J = Z .o (9.110)

ij=j
j=1
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where
N

I, => "my, {(rﬁ—kré%—f-ré%) 8ij —r,/”-r,/lj} (9.111)

n=1
Thus
J=7w (9.112)

where operator 7 is the operator whose matrix elements in the body system are Il./j.
The dyadic form of 7 is

N
I]=Zmn{(rn r)U=rur) (9.113)

n=1

The matrix |’ defined in eqn (9.111) can be diagonalized to find a principal axis
system for the total inertia tensor Z. The result will be the same (except for possible
degeneracy of eigenvectors) as that obtained by the more indirect route taken in
Sections 9.11 and 9.12.

9.15 Work-Energy Theorems

In Section 1.16 we showed that the rate of change of the total kinetic energy T of a
rigid body can be written as

N
dT
— =) £y, (9.114)

Using eqn (9.108), in the case of a rigid body with one point fixed at the origin of an
inertial coordinate system this result can be written as

dT N N
n=1

n=1

where the definitions in eqns (1.17, 1.18) have been used. Thus an external torque
that is always perpendicular to the angular velocity vector will do no work, and will
not change the total kinetic energy of the rigid body:.

A similar result holds for the internal kinetic energy 77 and the torque < &0 defined
in eqn (1.49). Starting again from the result in Section 1.16,

N
dTy
LIy e g, (9.116)

the rate of change of the internal kinetic energy can be written using eqn (9.5) as

N N
dT
= ey, = (Z by X f”) o=t 0 (9.117)
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9.16 Rotation with a Fixed Axis

There is a class of problems in which the rigid body is constrained even more severely
than simply by having one point fixed. It might be constrained to rotate about a fixed
axis, as on a lathe. Examples of this sort are often used in elementary textbooks to
introduce students to “rotary motion.” However, it is instructive to see precisely how
these elementary results fit into the general theory being presented here.

Imagine that a fixed axis passes through the rigid body and is rigidly connected to
it. If the angle of rotation about the fixed axis is denoted @, then eqn (8.197) gives at
once that

o= ®h  orincomponent form = o} = dn, fori=1,2,3 (9.118)

where n is a constant unit vector, along the fixed axis and pointing in the direction
related to the positive direction of ® by a right-hand rule. Taking the origin of an
inertial coordinate system to be some point on the fixed axis, eqn (9.112) then gives
the angular momentum as

J=Zw = ®Th (9.119)

Note that 7 is an operator and that in general J will not point in the same direction
as o.

If, for example, a lathe is running and constraining & to have a given value, or
if ® is otherwise known as a function of time, then w is known. The torques acting
on the rigid body can be calculated by putting the known components of w from eqn
(9.118) into the Euler equations, eqns (9.104 — 9.106), and solving for the torque
components.

However, there is another class of problem in which the motor of the lathe is
assumed to be disconnected, so that the rigid body moves freely about the fixed axis.
An example might be a rear wheel of a front-wheel-drive automobile. The angle ®
then becomes a free dynamical variable. A differential equation for that variable can
be derived that depends only on the component of torque parallel to the fixed axis f.

Dotting n from the left onto both sides of eqn (9.80) gives

d . _ A dJ _ A (ext)

E(nd)_n-z_nﬂt (9.120)
where the constancy of n allows it to be taken inside the time derivative. Then, intro-
ducing eqn (9.119) gives

d

o (h- ®Zh) =h- ¢ (€x0 or L,d=r1, (9.121)

where the definitions
I, =h-(Zh) and 7, =h -t (9.122)

have been introduced.
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The I, will be shown below to be the moment of inertia about the fixed rotation
axis. It will be shown to be a constant, as has already been assumed in deriving eqn
(9.121). The torque term 7, is the component of the external torque parallel to the
axis. In elementary textbooks, the expression 7, = 1,® from eqn (9.121) is sometimes
referred to as the, “F equals MA of rotary motion.”

The quantity I, is easiest to understand if the dyadic expression in eqn (9.103) is
used,

I,=h-(Th)=h-1-A

I
M=

mn{(rn~r,,)ﬁoUoﬁ—(ﬁ-r”)(rn~ﬁ)}

=
—_

Il
M=

my {(xn - 1,) — (R 1) (v, - B)} (9.123)

3
I
—_

If we decompose each r, into a vector r,; = i (ﬁ . rn) parallel to n and a vector r,, |
perpendicular to f, in the manner described in Section A.2, the expression in the last
of eqn (9.123) reduces to

N
I, = Zmn ||rnJ_||2 (9.124)
n=1

This expression is the sum of each mass multiplied by its perpendicular distance from
the rotation axis, which is the definition of the moment of inertia about that axis.
Since both the origin of coordinates on the axis, and the masses m, are embedded
rigidly in the same rigid body, all dot products in eqn (9.123) will be constants. Hence
1,, is constant, as was asserted above.

In the special case that the fixed axis happens to pass through the center of mass of
the rigid body, the above analysis will still hold, but with J, Z, 1, I, r,,, T replaced
by S, Z(em) fem) plem o (&0 respectively.

Returning to the general case, there is an interesting relation between I, and
1™ called the parallel axis theorem. Using the translation of pivot theorem from
eqn (9.94),

Iy=h-0 = MR = (iR 4+ 0™ G = MR 4+ (9.125)

where R = R + R, decomposes R into vectors parallel and perpendicular to f.
The moment of inertia I, about an axis n is equal to the moment of inertia I,Ecm)
about a parallel axis passing through the center of mass, plus the total mass times the

perpendicular distance between the two axes.

9.17 The Symmetric Top with One Point Fixed

Although the Euler equations eqns (9.104 — 9.106) are correct, they are less useful
than they might be because the variables w! in them are not good generalized coor-
dinates in the Lagrangian sense described in Chapter 2. They are not even the time
derivatives of good generalized coordinates.
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However, a Lagrangian theory of rigid-body motion is possible, since, when used
to specify the orientation of a body-fixed system of unit vectors, the Euler angles «,
B, vy are good generalized coordinates. To demonstrate this from the Jacobian deter-
minant condition of eqn (2.27) would be a daunting task indeed, since a rigid body
with one point fixed has some 10> degrees of freedom and (10% — 3) independent
constraints. The “goodness” of the Euler angles must be established by going back to
the property behind the Jacobian determinant condition: bi-uniqueness. The general-
ized coordinates are “good” if they, together with the constraints, uniquely determine
the Cartesian coordinates of each of the point masses, and if conversely the Carte-
sian coordinates of all the point masses determine them uniquely. This bi-uniqueness
condition is satisfied by the Euler angles.

Thus a reduced Lagrangian may be written using the usual formula L = 7 — U
where, after the constraints are applied, the (highly) reduced Lagrangian is

L, By, @ By, t) =T(a By, B,7) — U, B,y) (9.126)

We wish to apply these Lagrangian methods to the motion of a symmetric top moving
with a point on its symmetry axis fixed.

FIG. 9.3. A symmetric top spins with one point fixed, at the origin of an inertial coordinate
system ¢&;. The Euler angle y represents the spin of the top about its symmetry axis €.

We assume that the symmetric top is a body of revolution in the sense of Lemma
9.7.3 so that its symmetry axis, taken conventionally to be &}, and any two axes per-
pendicular to the symmetry axis, are principal axes of the center of mass inertia oper-
ator. Assume moreover that the top moves with a fixed point that is on the symmetry
axis. Then, according to the analysis in Section 9.12, the center of mass principal axes
will be preserved and will also be the principal axes of the total inertia tensor. Then
the principal moments of inertia will obey 1] = I # I.

The force of gravity is assumed to be acting in a downward direction on the top.
An inertial coordinate system with its origin at the fixed point of the top is defined
with its €3 axis upwards, so that g = —ges. As shown in Exercise 1.11 for a general
collection, the potential energy of a rigid body in a uniform gravitational field is given
by U = —Mg - R where R points to its center of mass. Here, the vector R is along the
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&, direction with R = Ré, where R is the constant magnitude of R. Thus
U, B, y) = —M (—g&3) - (Ré;) = MgRe3 - &5 = MgR cos 8 (9.127)

since, as noted in Section 8.35, the spherical polar coordinates of &5 relative to the
inertial system are (1, 8, «).

The kinetic energy can be obtained from eqn (9.103). Setting /| = I} this equation
reduces to

3
Z = —11 (a)l + ) ) + %Iéwéz (9.128)

The angular velocity components in terms of the Euler angles and their derivatives
are given in eqns (8.270 — 8.272). Substituting these and simplifying gives

1 N1
T =1 (d2 sin B + /32) 31 @ cosp+7)? (9.129)
Thus the reduced Lagrangian is
1
L@, By, & By, 1) = —1 ((x sin® B + )+§1§ (& cos B+ )2 —MgRcos B (9.130)

The variables « and y are seen to be ignorable. So we deal with them first. The
reduced Lagrange equation for y is

d (dL\ L
—=)1-==0 (9.131)
dt \ oy ay
which simplifies to
(¢ cos B+ y) = constant (9.132)

It will simplify later formulas if this constant is defined in terms of another constant
A such that
IA

.133
7 (9.133)

acosp+y=

Since eqn (8.272) gives w} = (& cos B + y), eqn (9.132) implies that «/ is a constant,
equal to its value at time zero, a)g = a)go. The constant A in eqn (9.133) can be
determined at time zero by the condition

I (6 cos fo + o) _ Lo,

I I

A= (9.134)

The reduced Lagrange equation for « is

d 8L oL =0 (9.135)
dt doa )
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which simplifies to
I{asin® B+ I} (dcos B+ ) cos = constant (9.136)
Again, this constant is defined in terms of another constant B such that
Ijasin® B+ I} (dcos p+y)cos p = I| B (9.137)
Inserting eqn (9.133) and canceling the common /] factors, this becomes
dsinzﬂ +AcosB =B (9.138)
The constant B is thus determined from the conditions at time zero as
B = agsin® By + A cos By (9.139)

where A is determined from eqn (9.134).

The variable 8 is not ignorable. Its Lagrange equation involves a second time
derivative of 8 and will be bypassed in favor of the generalized energy theorem that
provides a first order differential equation for the same variable. The reduced gener-
alized energy function defined in eqn (3.82) is

Foall i g?l 0L
oa ap oy
L, (. 2\, Lo 2
=§I1 ((x sin? B+ B >+§I3 (¢cosB+y) +MgRcosp (9.140)
Since dL(a, B, y, &, B, y,1)/dt = 0 here, eqn (3.83) shows that the reduced general-
ized energy function is a constant equal to its value at time zero,

1 1
El (oz sin? B+ B ) + 513’ (& cos B+ )%+ MgRcos B
_ 1 P 22 : 2 32 1 R < N2
= 511 agsin® Bo + By ) + 513 (apcos Bo+ )+ MgRcos By (9.141)
Due to the constancy of w} noted in eqn (9.132), the terms involving I; cancel. Mul-
tiplying through by 2/1{ then gives

2MgR
a?sin® g + B2 + cosf=C (9.142)

I/

where C is a constant given in terms of conditions at time zero as
. 2MgR
2 sin? fo + f2 + o~ cos fo = C (9.143)

Equation (9.138) can be solved for « as

B—A
g=B-Acosh (9.144)
sin“ B
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and used to eliminate & from eqn (9.142), giving

— 2 )
w—f-ﬁz—f-wcosﬂ =C (9.145)
sin /3 Il
This equation can now be solved for 42
_ 2
,3'2 =C — 2M(/gR cos B — w (9.146)
I sin” B
and simplified further by the usual substitution ¥ = cos B, which implies that
(1 —u?) =sin® g and —it//1 — u2 = B, and gives
2M
Q2= fu) = (c _ I,g u) (1 - u2) — (B — Au)? (9.147)
1

Equation (9.147) is a differential equation for the variable u = cos 8 and can be
solved by writing

t
du _ +/f ) and hence t= / dt = :I:/
0 u

u /

0 \/f(u/)

and then inverting function F to get u as a function of time.

The general solution in eqn (9.148) involves elliptic integrals. For our purposes
here, it will suffice to extract some generalities about the motion. The physical range
of u = cos B is between —1 and +1. A plot of the cubic function f(u) versus u will
have f (+o0) = £oo and f(£1) < 0. Thus f(x) must have one zero in the unphysical
region u > 1. There must be two other zeroes u; < u, in the physical region, with
f(u) > 0 for u; < u < uy since #? in eqn (9.147) cannot be negative. The points u
and u; are called the turning points of the 8 motion. The 8 value will oscillate back
and forth between these points. Note that smaller values of u correspond to the larger
values of 8 and hence to lower positions of the top. Thus the top is lower at «; than
itis at uj.

The oscillation of 8 is called the nutation of the top. While that nutation is in
progress, the « variable is also changing with time. The change of « with time is
called the precession of the top. Equation(9.144) gives

= A B (9.149)
¢=1—7s (4w .

yrin = F(u,ug) (9.148)

Thus the direction*® of the o motion depends on the relative values of u and (B/A).
If (B/A) > u; then & > 0 always (direct precession). If (B/A) < u; then & < 0 always
(retrograde precession). If u; < (B/A) < u; then & < 0 during the upper part of the
nutation cycle and & > 0 for the lower part. The precession will then be stationary
at the value u; = (B/A). The result of this last case will be a series of loops of the
symmetry axis, one loop per nutation cycle.

48We assume that the top is initially spun in a right-hand sense about axis 6/3 so that A > 0. If A were
negative, the precession directions stated here would all be reversed.
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9.18 The Initially Clamped Symmetric Top

There is one special case in which the analysis of Section 9.17 simplifies somewhat:
The top whose symmetry axis is clamped at time zero so that ¢y = fo = 0.*° When
the top is initially clamped, the various constants defined in Section 9.17 become

2MgR Ly
B = Acos By C= ]‘/g cos Bo A= 31—3,/0 (9.150)
1 1
and it is useful to define another constant
A2 I (Ly?)2
Yo= b =3 LYo /2 (9.151)
A4MgR I} \ 2MgR

which is a rough measure of the speed of the top. Except for the factor (75/1]), which
is usually near unity, it is the ratio of the kinetic energy of the initial spin to the
maximum range of the potential energy values. For a fast top, this parameter should
therefore be very large.

For an initially clamped top with these parameters, eqn (9.147) becomes the prod-
uct of a linear and a quadratic factor

2MgR

7 (uo — u) g(u) (9.152)
1

i = f(u) =

where ug = cos By and
g(u) =1 —u? — 240 (o — u) (9.153)

One zero of f(u) is seen from eqn (9.152) to be the initial value, uy = ug. The other
turning point is that solution to the quadratic equation g(u;) = 0 that lies in the
physical range —1 < u; < 1. 1Itis

uy = Yo — /¥¢ — 2youo + 1 (9.154)

Then, completing the square of the expression in the square root, the difference ug—u;
may be written
2
l—ug  Yo—uo
(Yo — uo)* |0 — uol

ug — uy = Yo — uol 1+ (9.155)

This expression is seen to be essentially positive, which shows that ug = u; is the
upper turning point. When released from its clamp, the top falls until it reaches u| at
which point it turns in its 8 motion and returns to u( to begin another nutation cycle.

49The third angle y carries the spin of the top, and is not clamped. The y, is often very large, in fact.
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The value of the precession rate ¢ is found from eqn (9.149). For the initially
clamped top, this becomes
uo—u

¢=A"—7 (9.156)

1 —u
Thus at the upper nutation turning point u, = ug, the precession rate is zero. At the
lower point u;, the precession rate is positive. The symmetry axis of the top therefore
executes a series of cusps, stopping its precession at the upper turning point and
maximizing it at the lower turning point. Equation (9.155) can be used to write the
precession rate at u; as

A Yo — uol 1—uf Yo — ug
T VT o —uo? 1o — ol

If a fast top is assumed, eqn (9.157) can be expanded in powers of the small, dimen-
sionless quantity ¥, ! If terms up to and including quadratic order in this quantity
relative to unity are retained throughout, the approximate value is

MgR 2u?
g =225 (1204 (9.158)
I3J/O 1ﬂ()

9.19 Approximate Treatment of the Symmetric Top

In beginning textbooks, the precession of a rapidly spinning top is treated approx-
imately. The total angular momentum is assumed to be constant in magnitude and
directed along the symmetry axis. Thus

I~ Iy, (9.159)

In our exact treatment, this approximation is equivalent to assuming y is a constant
equal to its initial value yy, and that y > &, . Then the gravitational torque is calcu-
lated from

1@ = R x (—Mgé;) = MgRsin &, (9.160)

where &, is a unit vector lying in the &;-& plane and making an angle o with the &
axis.”” It is the result of rotating the &, axis by angle « in the right-hand sense about
axis €s.

The elementary treatments ignore nutation and assume g8 = fy for all time. Ignor-
ing nutation, one can then calculate the time derivative of J as

ay _ ,.dés _ . . ..
o= I/yod—t3 = Ly sin B, (9.161)

where eqn (8.266) has been used. Equating eqns (9.160, 9.161), and canceling the

301n Section 8.35, the & unit vectors are the result of rotating the inertial system unit vectors &; by Euler
angles «, B8 but not yet by y. They are the next to last stage of the progression from the inertial to the
rotated system.
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common sin B factor then gives a constant precession rate
.~ MgR
- L

(9.162)

It is interesting to compare this approximate result with the values of & obtained
in Section 9.18 for an initially clamped top in the fast-top limit. The precession rate
&1 at the lower turning point is given by eqn (9.158). It is twice the approximate
value in eqn (9.162). However, the precession rate at the upper turning point is zero,
ay = &g = 0. So, in some rough sense, the elementary value might be thought of as
an average between zero and a value twice too large. A careful treatment, however,
would require a time average of & over the nutation cycle, and not a simple average
of its values at the turning points.

9.20 Inertial Forces

We put aside the dynamics of rigid bodies now and consider the problem of rotating,
translating coordinate systems in general. The moving system considered now may
or may not be the body system of a rigid body. An observer sitting on or in a rigid
body and using its & system as his reference system (an astronaut riding on an aster-
oid) might be an example. Or, the moving system could be defined by the walls of a
spacecraft which is accelerating and tumbling, or by the walls of a laboratory on the
rotating earth.

An observer doing mechanics experiments in a laboratory that is translating and
rotating with respect to inertial space will experience anomalies due to his non-
inertial reference system. If the observer is unaware of the source of these anoma-
lies, he may attribute them to forces acting on the masses in his experiments. These
“forces” are called inertial forces, or sometimes fictitious forces.

® €

FIG. 9.4. A translating and rotating coordinate system o’ has its origin at vector displacement
b relative to an inertial system o. A mass is located at r relative to the inertial system and
at s relative to the moving system.

Let us suppose that an observer is using a reference system whose origin is lo-
cated at b(r) relative to the origin of some inertial system, where b(¢) is some general
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function of time. And let his basis vectors &;(¢) be rotating such that their position at
time 7 relative to some standard position at time zero is given by a rotation operator
R(¢) with an associated angular velocity vector w(z). The vector b(z) may point to the
location of the center of mass of a rigid body as in the example of the astronaut, but
it need not. It can be any displacement, just as R(¢) can be any rotation.

The position of a mass m relative to the origin of the inertial system will be denoted
by r and the position of the same mass relative to the origin of the moving system by
s. Thus

db d’r  d*» d’s
b D 2,2 9.163
r=b+s v=—-+u 3= g T ( )
where the inertial velocity and the velocity relative to the moving origin are denoted
dr ds
= = — 9.164
M T ©-169

Now assume that the observer is not only measuring position relative to a moving
origin, but is also expressing his vectors relative to moving unit vectors &;. Thus

3
s=) ;& where s/ =&:-s (9.165)
i=1
and, using the body derivative developed in Section 8.33,
d d
u=d—j=<d—j>b+wxs=ub+wxs (9.166)
where the body derivative will be denoted by u,. It can be expanded as
3
ds ds;
={(—) = — € 9.167
w <dt>h — di €i ( )

and is the velocity that the observer actually measures. Note that u, is not only mea-
sured relative to a moving origin, but also is calculated as if the moving coordinate
unit vectors were fixed.

The next time derivative may now be taken,

d*s d [ds d du, dow ds
—=—(=)== =— 4 — = .168
dt>  dt (dt) dt(ub+wxs) dt +dt Xerdet (©.168)

Each of the time derivatives in the last expression on the right may also be expanded
using body derivatives. The first one becomes

d d
%:<%>b+wxub:ab+wxub (9.169)
where we have denoted X
duy d>s! .,
e i) £

i=1
This is the acceleration that the observer would compute if he were operating in
complete ignorance of the fact that both his origin and his basis vectors are moving.
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Also

dw dw dw
. = —-—— —_— = _— .]. 1
= <d¢>b+“’x‘” <dt>b ©-171)
shows that there is no difference between the inertial and body derivative of the
angular velocity vector itself.

Putting the results of eqns (9.166, 9.169) into eqn (9.168) then gives the second
time derivative of s entirely in terms of body derivatives

d?s .
mzab+wxub+wxs+wx(uh+wxs)

=a,+0xS+20 XU, +®Xx (0 XS) (9.172)

Now suppose that an experiment consists of observing the motion of a mass m
acted on by net real force f, which may be composed of contact forces, gravity, spring
forces, electromagnetic forces, etc. Then, using eqn (9.163), Newton’s second law in
the inertial system gives

d*r d*b d*s

f:malt2 T +mdt2
d’b )
:mﬁ+m{ab+wxs+2wxub+wx(wxs)} (9.173)

The mass times acceleration measured by the observer in the moving system will thus
be

d’b )
may =f—mﬁ—mw XS —2mw X Uy —mw X (® X S)
=f+ f(trans) + f(ang) + f(cor) + f(cent) (9.17 4)

where the inertial forces and their names are:

fltrans) — —m% Translation of origin force (9.175)
£a8)  — _mo x s Change of angular velocity force (9.176)
£f0 = 2mw x w, Coriolis force 9.177)
£ — _jmw x (w X 8) Centrifugal force (9.178)

Notice that all of these inertial forces are proportional to the mass m of the particle.
This proportionality comes from the fact that these “forces” are actually correction
terms that appear when may, is used in place of ma = m (dzr/dtz) in Newton’s second
law.

A person driving a car that is rapidly accelerating forward will feel that the trans-
lation-of-origin inertial force is pushing her backwards into the car seat. Relative to
inertial space, what is really happening is that the back of the seat of the car is pressing
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forwards on her with a real force, to give her the acceleration she needs to keep up
with the accelerating car.

A person sitting facing forward on the bench of a merry-go-round that is rapidly
speeding up will feel that the change-of-angular-velocity force is pushing her back-
wards into the seat. The real, inertial effect is similar to the accelerating car.

Even when the angular acceleration is constant, a person on the merry-go-round
will feel that a centrifugal force is pushing him outwards from the center so that he
has to grab onto the pole to resist being thrown outwards. To see that the centrifugal
force is outwards, use the expansion formula for triple cross products to write

fleent) _ 4 )2 {s - ® ((:) . s)} = mw’s, (9.179)

where s has been decomposed as s = s + s, into vectors parallel and perpendicular
to w using the method in Section A.2. What is really happening, relative to inertial
space, is that in the absence of any forces, the rider would leave the merry-go-round
and go off on a tangent line with a constant, straight-line velocity. His grabbing the
pole provides the centripetal (inward) force that is required to keep him moving in a
circle.

The Coriolis force is more subtle. It is a velocity-dependent inertial force that
acts only on objects that are moving relative to the moving system, and always acts
at right angles to u. It can be understood by considering the merry-go-round once
again. Suppose that a person riding on it throws a ball radially outwards relative to
the merry-go-round system. The centrifugal inertial force will appear to accelerate the
ball outwards, but will not change its apparent radial direction relative to the thrower.
The Coriolis force, however, will appear to deflect the ball in a direction opposite
to the direction of rotation of the merry-go-round. What is happening inertially is
that the tangential velocity imparted to the ball as it is thrown is smaller than the
tangential velocity of the region of the merry-go-round into which the ball flies. Thus
the ball lags behind. The thrower attributes this lag to a Coriolis inertial force.

9.21 Laboratory on the Surface of the Earth

Assume that a coordinate system at the center of the earth with its unit vectors point-
ing toward fixed stars is approximately an inertial system. Consider a translating and
rotating reference system with its origin on the surface of the Earth at latitude A. For
definiteness, assume that the moving system unit vectors are

& =South & =EFast & =Up (9.180)

One immediate difference between this special case and the general theory of
Section 9.20 is that the vector b, which was there taken to be free to move in a
general way, is now constrained to move with the Earth. Assuming the Earth to be
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FIG. 9.5. The origin of the o’ system is fixed to the surface of the Earth at north latitude A. The
o system at the center of the Earth is assumed to be inertial.

spherical, it is
b = Rg&, (9.181)
where Rg is the radius of the Earth. Hence
db de’ .
E:R@ng@wxegzwxb (9.182)

The angular velocity of the Earth can be found from eqn (8.197), assuming that the
Earth rotates about the fixed axis €3 with constant angular speed wy,

® = wp€3 = wy (— cos A&] + sin Aéé) (9.183)
which gives
db A,
— = woRg cos A&, (9.184)
dt
Thus 5 )
d“b de . db
e = woRg cosk% = woRg cos Lw X e’z =X o (9.185)
Combining eqns (9.182, 9.185) then gives
d*b 2 A (A 2
W:wx(o)xb):—wo{b—w((o-b)}:—wobj_ (9.186)

where, again using the decomposition given in Section A.2, b, is the component of
b = by + b, that points directly away from the symmetry axis of the earth @. Thus
the translation of origin inertial force from eqn (9.175) is

flrans) mw(%bj_ = mR@wg cosAb | (9.187)

where b | is the unit vector formed from b .
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It is useful to write the real force f as a vector sum of the gravitational force mg
and all other forces fN® where the superscript stands for Not Gravitational. Then, as-
suming that the angular velocity of the Earth is approximately constant, the observer
in the Earth laboratory will find that

may, = fNO 4 (g + R@wg cos MA)L> —2mw X up —mw X (& X S) (9.188)

The last term, the centrifugal inertial force from the rotation of the laboratory frame,
is usually negligible and will be dropped. The term containing the gravitational force
and the translational inertial force can be written as mg,, where

g = g+ Row? cosib, (9.189)

is called the effective gravitational acceleration. It is the vector sum of the actual
gravitational force of attraction towards the center of the Earth and a term pointing
outwards from the Earth’s rotation axis and due to the centripetal acceleration of the
origin of coordinates as the Earth rotates. Then, finally, only the Coriolis inertial force
remains, and
— f0NG —
map = +mg, — 2mw X uy (9.190)

An approximate calculation of the figure of the earth, called the geoid, can be
made by initially assuming the Earth spherical as we have done and then calculating
g.. To first order, the oceans of the Earth should have surfaces perpendicular to g,
leading to a slight bulge at the equator, which is in fact observed.

Notice that, in the northern hemisphere, a wind from the north with u;, = u,&) will
be deflected to the west by the Coriolis force, while a wind from the south (opposite
sign) will be deflected to the east. Similar deflections occur for east and west winds.
This pattern is thought to be responsible for the weather pattern in which low pressure
areas (with winds rushing in) in the northern hemisphere have winds circulating in
a right-handed sense about the up axis. In the southern hemisphere, the direction of
circulation is reversed.

The Coriolis force is usually negligible in laboratories on the surface of the Earth.
However, if one designed a space station similar to the one in the film “2001 — A Space
Odyssey” with rotation of a large toroidal ring providing an artificial gravity from the
translation of origin inertial force, the Coriolis deflections could be troublesome in
ordinary life. Exercise 9.5 considers such a space station.

9.22 Coriolis Force Calculations

The Coriolis inertial force is often small compared to other forces, such as gravity.
This lends itself to an iterative approach.

A zeroth-order calculation is first done for the motion of the system with Coriolis
forces ignored. The velocity uy is calculated from that zeroth-order result, and applied
in eqn (9.177) to find a zeroth-order approximation to the Coriolis force f(¢°”. This
approximate Coriolis force is then used to repeat the calculation for the motion of the
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system, yielding a first-order approximation to the motion. This first-order approxi-
mation is often sufficient, at least for estimates. But, if necessary, the iteration can be
repeated to second and higher orders.

For example, consider a projectile fired in a southerly direction from the surface
of the Earth. With the Coriolis force ignored, the zeroth-order trajectory would be

" . 1 "
S = vpt cos oee’l + <vot sino — 5g6t2> e/3 (9.191)

where vy is the muzzle velocity of the cannon and « is its angle from horizontal. The
zeroth-order body derivative is

d n . "
u, = <d—j> = cosoze’1 + (vo sina — get) e/3 (9.192)
b

which is used to write the zeroth-order Coriolis force as
0 — _2me x wp, = —2mwy {vo sin (o + 1) — get cos A} & (9.193)

After two integrations with the zeroth-order Coriolis force included, the first-order
trajectory is found to be

N . 1 N . 1 .
S = vt cos oze/l —wot? (vo sin (o + A) — gget cos k) e/2+<v0t sina — Egetz) e/3 (9.194)

As shown in Exercise 9.11, assuming o = 45° gives a first-order deflection at impact
that is to the west in the whole of the northern hemisphere and in the southern
hemisphere down to A ~ —20°.

9.23 The Magnetic - Coriolis Analogy

Suppose that we have a set of particles located at radius vectors r,(¢) relative to
the origin of some inertial system of coordinates, where n = 1, ..., N. Suppose that
these particles have masses m, and electrical charges q,(,Ch). If an external electric field
E(r, 1) and a uniform and static external magnetic induction field B(r, ) = By are
present, these particles will be acted on by the Lorentz forces

"

f, = ¢/ VE,. 1) + -

v, X Bg (9.195)

where v, is the velocity of the nth particle relative to inertial space.

There is a striking analogy between the magnetic part of eqn (9.195) and the
Coriolis force in a rotating coordinate system, given by eqn (9.177). Each involves the
cross product of a uniform vector with a particle velocity. If we transform eqn (9.195)
to a rotating coordinate system, this analogy allows us to use a suitably chosen w to
cancel the magnetic part of the Lorentz force.
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To exploit the analogy, consider that the motion of the particles under the force
eqn (9.195) is now referred to a rotating system of coordinates. Assume that the re-
sults of Section 9.20 are applied with b = 0 so that the inertial and rotating origins
coincide, v, = u,, and r, = s,. The equations of motion in the rotating system are
then

my(an)p = 000 4 g PE(r,, 1) + q’ih) {(Wn)p + @ x 13} x Bo — 2m,@ X (uy)p
—m,o X (0 xr,) (9.196)
which may be written as
(ch)
my(an)p = £ 4 g PE(r,, 1) - ("”c By + Zmnw) X (W,)p
"

By x (0w x1,) —m,w x (0w xr1,;) (9.197)

where f(other) represents forces other than electromagnetic, and (u,), = (dr,/dt), and
(a,)p are the same body derivatives as defined in eqns (9.167, 9.170) but now applied
to the nth mass.

If we assume that all of the particles have the same charge to mass ratio,
q,(,Ch) /m, = x independent of n, then the term in eqn (9.197) containing the body
velocities (u,), can be eliminated by choosing w equal to what we will call the Lar-
mour angular velocity

. (9.198)
2¢
Then the equation of motion in the rotating system becomes
my(an)p = £ + g WEE,, 1) + myoL x (01, x 1) (9.199)

Note that the centrifugal inertial force does not cancel. The combination of the mag-
netic and centrifugal forces gives an effective force that is centripetal (tending toward
the center rather than away from it). If certain cases, this centripetal effective force
will be small, which leads to the following result, which we state as a theorem.

Theorem 9.23.1: Larmour Theorem

A system of charged particles with a uniform charge to mass ratio x is placed in a uni-
form, external magnetic field By. If one chooses the Larmour angular frequency as in eqn
(9.198), and if the maximum centripetal force magnitude max, (m,,a)frn) is negligible
compared to other forces, then the problem can be solved by solving the related problem

ma(ay)y = £ 4 g MR, 1) (9.200)
in the rotating system and then transforming the result back to the inertial system.

In other words, the motion with the magnetic field is approximately the same as
the motion without it, but rotated by the Larmour angular velocity. Notice that, for
positive charges, the direction of the Larmour rotation wy, is opposite to the direction
of By.
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9.24 Exercises

Exercise 9.1 Consider a flat (negligible thickness), uniform piece of rigid metal of mass m,
cut in the shape of a 45° right triangle. Its center of mass is on the symmetry line from the
90° vertex and is one-third of the way up from the base.

(a) Guess the principal axis directions, and calculate the three principal moments of inertia
relative to the center of mass.

(b) Check that your answers to part (a) obey the plane-figure theorem.

F1G. 9.6. Illustration for Exercise 9.2.

Exercise 9.2 Masses m|; = my = m3 = my4 = m are located at the Cartesian coordinates
shown. These masses are at the points of a regular tetrahedron. The four triangular faces are
equilateral and identical.

(a) Use vector methods to check that distance 12 equals distance 23.

(b) Find the center of mass vector R.

(c) Write out the four vectors p, =r, —Rforn =1,2,3,4.

(d) The inertia operator is Z°™, with a matrix 1™ in the &; system defined by the matrix
elements

4
Ii(;m) = Zm" {(p1121 + Ion22 + pnz?’) (Sij - Iom'pnj] (9-201)
n=1

Calculate the six independent moments and products of inertia in eqn (9.201) and write the
matrix 1™,

Exercise 9.3 A projectile is thrown vertically upward from the surface of the Earth. Its initial
upward speed is vp. It reaches a maximum height, and then falls back to the ground.

(a) Calculate its first-order vector Coriolis deflection.

(b) The same projectile is now dropped from rest, its initial height being the same as the
zeroth-order maximum height reached in part (a). Show that its first-order Coriolis deflection
is in the opposite direction, and one-quarter as large, as that calculated in part (a).

Exercise 9.4 A square stick of mass m has square sides a and length b. With the origin of
body-fixed coordinates at the center of mass, the principal axes of the stick are the symmetry
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0§00 Bearing

—

F1G. 9.7. Illustration for Exercise 9.4.

axes and the principal moments of inertia are / l(cm)/ = Iz(cm)/ = m(a® + b*)/12 and Iécm)/ =
ma?®/6. A thin, massless rod is driven through the center of the stick, making an angle 6y
with the stick’s long axis. It is glued to the stick rigidly. The massless rod is suspended in
frictionless bearings that hold it vertical (along the €3 space-fixed axis). Using an external
motor, it is then rotated about that vertical axis with constant angular velocity ®g = wg€3.
(a) Write an expression for the angular velocity vector of the stick expressed in the body-fixed
system é; .

(b) Write an expression for S, the spin angular momentum vector of the stick, expressed in
the body-fixed system.

(c) Write an expression for the kinetic energy of the stick. How much work per second must
the motor provide to keep the angular velocity constant?

(d) Write an expression for the vector torque T exerted on the system by the bearings and
motor, also expressed in the body-fixed system.

FI1G. 9.8. Illustration for Exercise 9.5.
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Exercise 9.5 Imagine a space station something like that in the film 2001: A wheel rotates
about its symmetry axis with fixed angular velocity wg, and with the living quarters on its
outer rim. The centrifugal inertial force provides an effective “gravity” in which the astronauts
live.

(a) If the outer rim of the wheel (at the feet of the astronaut pictured) has a radius of rg, what
must the magnitude of the angular velocity wg be in order to produce an effective gravity of
g.? [Note: Assume that the living quarters are small compared to rg and so just calculate the
effective gravity at that radius.]

(b) An astronaut drops a marble from a “height” £, so that it would land on her right toe in
the absence of Coriolis forces. Write an expression for the (vector!) first-order displacement
of the actual landing point from her right toe. [This expression must be in terms of the given
parameters rg, wg, h. For simplicity, take the right toe to be at moving-system coordinates
(r0,0,0).]

(c) Evaluate the displacement found in part (b) numerically, with rp = 500m, g, = 9.8 m/ s2,
h = 180 cm. By what distance will the marble miss the toe? Could you decrease this distance
by changing wg so that the effective gravity is smaller?

Exercise 9.6 The famous quarterback Joe Minnesota is drafted into the astronaut corps and
sent into orbit to test Euler’s equations for a torque-free rigid body. He throws a pointed,
near-ellipsoid of revolution [an American football] that has principal axes é; and principal
moments of inertia / l(cm)/zlécm)/zy Iy, and Iécm)/zlo where y > 1 and I are given con-
stants. Assume that no torques act on this football after it is thrown, and that it behaves as a
rigid body.

(a) Suppose that at t=0 the initial components of the angular momentum vector w relative to
the body-fixed principal-axis system are w|=a, w,=0, w;=b where a, b are given, positive
constants. What are the values of a)l’ (i = 1,2, 3) for all future times?

(b) Consider the spin angular momentum vector S. What are the values S[ (i =1,2,3), the
components of the spin angular momentum relative to the body-fixed principal axes, for a
general time ¢ > 0?

(c) Suppose that space-fixed axes €; are chosen so that the initial spin angular momentum is
along the €3 axis, that is S = Sp€3 at 1 = 0. What is the value of the constant Sy?

(d) What are the polar angles (call them «, 8) of the symmetry axis of the football ég relative
to this space-fixed system? [For simplicity, assume «g=0 at 7=0.]

Exercise 9.7 This exercise uses Lagrangian mechanics to derive the inertial forces discussed
in Section 9.20. Suppose that we have a single particle in three dimensions with a Lagrangian

1
L(s,$,t) = Em v-v)—=U(s,t) (9.202)
where the position and velocity are expressed in an inertial coordinate system as

r=xeé +yeé+ze; and v=x€ + yé + z€3 (9.203)

where the s-system coordinates are defined to be s1 = x, 5o = y, and s3 = z.

(a) Now switch to another coordinate system with the same origin, but rotating with respect
to the inertial one with a constant angular velocity w. Call it the é; system. In this system, the
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position and body derivative will be
r=x"¢ +y&+7¢ and u, =3¢ +y'¢ +2¢ (9.204)

where the g-system coordinates are defined to be g = x’, g2 = y’, and ¢3 = 7. Show that
eqn (9.202) becomes

1 1
L(g,q,t) = Em (up-up) +mup -® Xr+ Em (wxr)-(wxr)—U(q,t) (9.205)

(b) Show that the Lagrange equations in the g-system,

d (3LG@.q.D\ _ L. 4.0 _
dt aqk aqk

0 (9.206)

may be multiplied by the unit vectors é;( and added to obtain the equivalent vector expression,

<i (aL(q,q,r))> _9L(g.4.1) —0 (9.207)
dt duy b or

where the gradients are now to be interpreted in terms of the body system unit vectors. For

example, )
dL(q,q,t) oL ., 0L . 0L

=€ — +6&— +e&—

ar Pax' " 2oy tey

(c) Use vector methods (i.e. do not write everything out in terms of components) to show that
the equations of motion derived from eqn (9.207) are the same as eqn (9.174).

(9.208)

Exercise 9.8 This exercise continues the discussion in Section 9.10.

(a) Use the expressions in eqns (8.230 — 8.232) to write the angular velocity w of the torque-
free symmetric body in terms of the Euler angles and unit vectors q(¢) and €3.

(b) Define a parameter A = (13(°m) — Il(cm) ) /Il(cm) . Show that —1 < A < 1, with the
negative extreme being a long rod (extreme prolate) and the positive extreme being a flat,
symmetric disk (extreme oblate).

(c) Express w in terms of A, ag, Bo, q, €3 only.

(d) Show that the half angle of the body cone 63, is given by

1 + A sin?
C0S 03y = +Asin fo (9.209)

\/1 + A2+ A)sin? By

(e) Give arguments verifying the statements made in the last two paragraphs of Section 9.10.

Exercise 9.9 A thin, uniform disk of mass m and radius a has two extra point masses, each
of mass km, placed just inside its rim on diametrically opposite sides. The disk rolls without
slipping down an inclined plane of angle 5. Gravity acts downwards. The disk is supported
by massless, frictionless shaft and side wheels which keep it perpendicular to the plane’s sur-
face. The center of mass of the disk is at R = Xe| + Y&, + aés.

(a) Show that the principal axes are the é; shown in Figure 9.9, and calculate the principal
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FI1G. 9.9. Illustration for Exercise 9.9.

moments of inertia.

(b) Use Euler angles and X, Y, Z to write a reduced Lagrangian for this problem, including
the holonomic constraints § = /2 and Z = a.

(c) Write the Lagrange equations, including the tractable, non-holonomic constraints for
rolling without slipping.

(d) Solve for the motion of the disk in the case x = 0. Suppose the disk is at the origin at time
zero with the values ag = /2, 90 =0, =0, X9 = Yo = Obut ¢y > 0. Find o, ¥, X, Y as
functions of time. Show that X returns to zero at times t, = wn/ag wheren = 1,2,3,....

Exercise 9.10 This exercise shows the connection between the inertia operator Z derived in
Section 9.14 and the same operator Z = Z(©™ 4 7©™ derived in the previous Sections 9.11
and 9.12. Substitute r, = R + p,, into the dyadic expression eqn (9.113), and use Lemma
1.9.1 to obtain eqn (9.94), I = (o) 4 jem)

Exercise 9.11 This exercise continues the example in Section 9.22.

(a) Derive eqn (9.194) from eqn (9.193).

(b) Write an expression for the deflection y’(¢) of the projectile at the zeroth order time of
impact ty = (2vp sina)/ge.

(c) Assuming o = 45°, show that this deflection is to the west in the whole of the northern
hemisphere and in the southern hemisphere for A 2> —20°.

(d) If the zeroth order range of the projectile was 10 km and o = 45°, find the magnitude of
the first order Coriolis deflection with A = 40° in the northern hemisphere.

Exercise 9.12 Imagine a charged, symmetric rigid body consisting of particles of mass m,
and charge q,ECh). Let the center of mass of the body be at rest in an inertial system in which a
uniform magnetic induction field By acts. Assume that the magnetic part of the Lorentz force
eqn (9.195) is the only external force acting on the top.
(a) Using the vectors p, and p,, defined in Section 1.9 show that the external torque defined
in Section 1.12 is
N (ch)
@0 =38 o (b, x Bo) (9.210)
n=1

c
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(b) In electrodynamics texts, this torque is written as

N h
g

2c

n=1

1 = 1 x By where w=

(Pn x £,) 9211

is the magnetic moment of the system. Show that the difference between eqns (9.210, 9.211)
may be written as D - By where the dyadic is

d N q(ch)
:Z " (pnpn—p,%w)} (9212)
n=1

:E 2c

which will average to zero for periodic or bounded motions of the top.

(c) Accepting the form in eqn (9.211), and assuming that the masses have a uniform charge
to mass ratio (q,ECh) /m, = x not a function of n) show that » = () /2c)S where S is the spin
angular momentum defined in Section 1.11. The quantity x /2c is called the gyromagnetic
ratio.

(d) Use eqn (1.52), with the assumption that the body is rapidly spinning so that S = Ség
remains true with constant spin magnitude S (the same approximation made in Section 9.19)
to show that S precesses with the Larmour angular velocity wy derived in Section 9.23 and
therefore verifies the Larmour theorem, Theorem 9.23.1.

(e) The electron has magnetic moment . = g(—e/2mc)S where e is the absolute value of the
charge of the electron, m is its mass, and the number g is predicted by the Dirac equation of
quantum theory to be exactly 2 (radiative corrections raise it slightly). Show (using classical
mechanics, although the same result can be obtained in quantum theory) that when placed in
a uniform magnetic field, an electron precesses with an angular velocity w, = (e/mc)By.

(f) Show that a classical model of the electron as spinning matter with a uniform charge
to mass ratio is untenable because the Larmour theorem would predict a rate of precession
disagreeing with experiment.

Exercise 9.13 A sphere of radius ro and a right, circular cylinder of radius a and height A
both have the same mass M.

(a) The sphere and the cylinder have the same center-of-mass principal moments of inertia
I™'. Given ro, what must be the values of a and h? What is the ratio a/h?

(b) If the sphere is made from material of mass density p;, what must be the mass density p,
of the cylinder? Show that your answer is independent of rg.

Exercise 9.14 A right circular cone of mass M, radius a, and height 4 has principal moments
of inertia relative to a pivot at its point

3 3
I =13 = =M (a* +4n%) I = = Mad> 9.213
1=h=gMia + 3= 1M ( )
Its center of mass is distance 3. /4 from its point. Use the translation of pivot theorem, eqn
(9.93), to find the center-of-mass principal moments of inertia Ik(cm)/ of the cone without
doing any further integrations. (See also Section 9.12.)
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Exercise 9.15

(a) Use the symmetry rule, Lemma 9.7.2, and the symmetry of the object to show that an
equal-sided, regular tetrahedron has at least three non-coplanar eigenvector directions, each
of which must have the same eigenvalue.

(b) Argue from the linearity of the eigenvalue equation ZC™V® = 3, V& that any vector
is an eigenvector, with that same eigenvalue. And hence show that any three orthogonal unit
vectors may be used as center-of-mass principal axes of the tetrahedron, and that the three
corresponding principal moments of inertia will be equal.

(b) Show that this same result holds for any of the five regular Platonic solids: tetrahedron,
cube, octahedron, icosahedron, dodecahedron.

Exercise 9.16 A right, circular cone of mass M, radius a and height /4 rolls without slipping
on a horizontal table. The point of the cone is fixed to the table surface by a frictionless pivot.
There is an inertial coordinate system €; with origin at the pivot, and €3 perpendicularly
upwards from the table surface. Gravity g = —g€3; acts downwards. Assume that the cone
rolls steadily in the right-hand sense about €3, making one circuit in 7' seconds.

(a) Use Euler angles and Section 8.29 to find the components ; of the angular velocity vector
w relative to the inertial system.

(b) State why the angular velocity of the cone must always be parallel or anti-parallel to the
line of contact between the cone and the table. Show that your w from (a) does indeed have
this property.

(c) Use the results of Section 8.35 to find the components w! of the angular velocity vector
relative to the body principal axes of the cone. Use these in the Euler equations of motion
from Section 9.13 to calculate the net torque that must be applied to the cone to sustain its
motion.

(d) Demonstrate that this torque does not change the total kinetic energy of the cone, and
hence that kinetic energy is a conserved quantity in this problem.

Exercise 9.17 A cube of mass M and side a is glued to a massless stick, with the stick
perpendicular to a face of the cube. The distance from the far end of the stick to the center of
mass of the cube is R > a.

(a) Suppose the far end of the stick to be fixed. What are the principal axes and principal
moments of inertia relative to this fixed pivot?

(b) Now suppose that the cube is glued to the stick as before, but after being rotated by 37°
relative to the stick. Assume the distance R is the same as before. How would the principal
axes and principal moments of inertia differ from those of part (a)?
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SMALL VIBRATIONS ABOUT EQUILIBRIUM

A number of interesting mechanical systems have one or more essentially stable equi-
librium configurations. When disturbed slightly, they vibrate about equilibrium in
characteristic patterns called normal modes. We present the Lagrangian theory of
these small vibrations for the simple case of systems with a finite number of degrees
of freedom.

The theory introduced here has wide application. For example, the normal mode
oscillations of crystalline solids underlie both the overtone structure of a church bell
and the definition of phonons in solid state physics. A similar formalism leads to
photons as the quanta of modes of the electromagnetic field.

10.1 Equilibrium Defined

An equilibrium point in the configuration space of a mechanical system is a set of

values ql(e), qée), . qge) for all of its generalized coordinates, such that the initial

conditions g; (0) = ql.(e) and ¢; (0) = 0 at time zero will make the system remain at rest
at that point for all future times.

For example, a marble placed at rest at the bottom of a spherical bowl will remain
there forever. A marble placed at rest, and very carefully, on the top of a sphere will
also remain there so long as no forces other than gravity act, as will a marble placed
on a flat, level table top.

~—

[ ]
\&’ _« ()
Stable Conditional Unstable

FIG. 10.1. Three categories of equilibrium points.

These examples illustrate the three types of equilibrium point. The first is called
stable, since a small displacement of the marble would lead to a small vibration about
the equilibrium point. The second is called unstable. Any disturbance of the marble
will make it roll off the sphere with increasing speed. The third is called conditional.
If the marble is displaced slightly to another point, but still placed at rest, it will stay
at the new point and neither return to the first one nor move away. One important
feature of the theory presented here is that it gives a systematic method for detecting
stable, conditional, and unstable modes.

246
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10.2 Finding Equilibrium Points

Assume now, as will be done throughout this chapter, that the g-system of coordinates

is related to an inertial s-system by equations s; = s;(g) that do not depend explicitly

on the time, and that all forces are derived from a potential V (g) which also does not

depend explicitly on time. Also, we assume either that the system does not have any

constraints, or that the constraints are holonomic, do not depend explicitly on time,

and have been eliminated by the method of Section 3.8 to yield a reduced Lagrangian.
From Section 2.7, the Lagrangian of such a system is of the form

. 1 &L L
L=Lg.9)=T-U=7 ;;mu(q)qiq, ~U(q) (10.1)

and the Lagrange equations are

d (dL(q,q aL(q, g
d (g 9\ 9L(q.9) _0 (10.2)
dt 94k gk
which can be written out as
D D D

d ) 1 om;j(q) . . aU(q)

Bl mei(@)g; | — = ar + =0 (10.3)

P ; Y@ | =5 ;; Bar T 5o

2 2 I om0 () 2U(q)
kaj(Q)éj + kaj(q)iij - = Z Z L2l i+ =0 (10.4)
— — 24—t~ Ogi gk
j=1 j=1 i=1j=1
Theorem 4.1.1, and Theorem 4.5.1 for the reduced case, showed the matrix m to
be nonsingular and hence to have an inverse. If all §; are set zero at a point, then the
inverse matrix m ~! can be used to solve eqn (10.4) for the § at that same point.

PR o B 9U(g)
= ik
k=1 94

(10.5)

It follows that all of the ¢; will vanish, and the point will thus be an equilibrium point,
if and only if all U (¢)/dqy are also zero at that point.

Thus ¢‘© is an equilibrium point if and only if, foralli = 1, ..., D,
U
@ =0 (10.6)
Gi  |g=g@©

These are D equations in D unknowns and hence can be solved for the ql.(e) for all
i = 1,..., D. The point defined by eqn (10.6) satisfies the definition of equilibrium
in Section 10.1 because the conditions ¢; (0) = ql.(e) and ¢;(0) =0foralli =1,...,D
imply that g; (0) = 0 for all i values, with the result that the ¢ never change.
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10.3 Small Coordinates

Now assume that an equilibrium point has been found. We are interested in studying
systems in which the generalized coordinates are only slightly displaced from their
equilibrium values. Thus the quantities r; defined, foralli =1, ..., D, by

ri=gqi — ql.(e) or, equivalently qi = ql.(e) +r (10.7)

are assumed to be small, and are called the small coordinates. Their time derivatives
7 = ¢; are also assumed to be of the same order of smallness. For oscillatory solutions,
this amounts to an assumption that all frequencies of vibration are finite.

It is clear by inspection that the r; are a good system of generalized coordinates
satisfying eqn (2.59). Thus, the Lagrangian in eqn (10.1) may be transformed to the
r-system

D D

L =L = L), q(r, i) = - sz,j(q“Jrr)r F—U@® +r)  (10.8)
i=1j=1

with the assurance that the Lagrange equations in the r-system will be valid.
Approximate equations of motion may be obtained by using the Taylor series to
expand eqn (10.8) to second order in the small coordinates and their time derivatives

D .
dL(r, 7) oL(r, 1)
L(”)—L(rr)l,r0+2 R D i
dri r, =0 i—1 Jr; =0
+1XD:2D:3L(I’}”) +ZZaL(”) .
Z rirj rij
2 i=1j=1 r’arl =0 i=1 j—=1 arlar] =0
! LA
t32 2 070, |, ;g +o(h?) (10.9)
j r, =

i=1 j=1
where 1 = max;{r;, ;}. Denoting the constant first term by
Le = L(r,/)lpjmo = —U(q"®) (10.10)

and noting that the linear terms vanish identically due to the equilibrium condition
eqn (10.6), the expansion in eqn (10.9) becomes

D D
. 1 ..
L(r, i) = EZZ(T,-J-r,»rj — Vijrirj) + o(h%) (10.11)
i=1j=1
where the constant matrices T and V are defined by their matrix elements
3*L(r, 7)
(Tl LLEL A C) ’ = mi;(q® 10.12
Y 0707 |, 19 mij(q7 4 ) oo M @) ( )
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L(r, U *U
Vi = (r, 7 _ G@+nl (@) (10.13)
oriorj |, dr;dr; 3qi9q; |,—g@
By construction, T and V are real, symmetric matrices.
The Lagrange equations in the r-system are

d (OL(r,r oL(r, 7
4 (AL Dy L) _ (10.14)
dt 07y ory

Using these equations with the approximate Lagrangian of eqn (10.11) gives the ap-

proximate equations of motion, for alli =1, ..., D,
> (TijF + Vijrj) + o(h) =0 (10.15)

Jj=l1

Since the Lagrangian was expanded up to and including quadratic order, these equa-
tions are correct to linear order in the small coordinates.

10.4 Normal Modes

The task of small vibrations theory is to solve the linearized, approximate equations of
motion eqn (10.15) for the small coordinates r; as functions of time. Equation (10.15)
is a set of coupled, second-order differential equations. They can be decoupled by
making yet another Lagrangian change of variables, from the r-system to a p-system
called the system of normal coordinates. The variable p; will be called the kth normal
coordinate. The natural time evolution of the system produced by p; will be referred
to as motion in the kth normal mode.

The required transformation is linear. Introducing the constant coefficients C;; the
transformation is

D
ri = Z Cik Pk and hence Fi= Z Cik Pr (10.16)

Introducing these definitions into the Lagrangian of eqn (10.11), and dropping the
constant L term, gives

£ () () () (o)

D D D
ZZCiszjCﬂ st = DD CuViiCit | orpr
i=1j=1

=1 i=1 j=1

L(p,p) =

l\)l'—‘

Mo i Mc

£

l\)l»—\
=
Il
—
-

(10.17)

where the o(h?) term will now be omitted, with the understanding that the equations
are approximate to that order.
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It is useful to write eqn (10.17) in matrix form. Define column vectors by

r o1
2 02

rl=1 . and [p]l=] . (10.18)
rp PD

with the obvious extension to their time derivatives, and let the D x D matrices
T, V, C be defined by their sets of matrix elements 7;;, V;;, C;;, respectively. Then
eqn (10.16) becomes

[r1=Clp]l and [f]= C[p] (10.19)

and the Lagrangian in eqn (10.17) can be written as
1
L(p.5) = 5 (181 CT T CL41 = [pI" C"V Clp)) (10.20)

In Section 10.5, we will describe a method for finding a particular matrix C that
reduces T to the unit matrix U, and V to a diagonal matrix F with matrix elements
F,‘j = 6; 51‘]‘.

C'TC=U ad C'VC=F (10.21)

Then eqn (10.20) becomes

L(p. §) = > (52 - our}) (10.22)

k=1

N =

(o1 VL1 — Lo1" F 1) =

N =

The Lagrange equations in the p-system then give the equations of motion
Pk + ko =0 (10.23)

for k = 1,..., D. These equations have solutions that depend on the sign of the real
constants 0. The most general solutions for the three possibilities can be written

Ay cos wit + By sin wyt for 6, >0 with =46k
Ok = 3 Ax + Bt for 6, =0 (10.29)
Apcoshyit + Brsinhypr  for 0, <0 with v = /=6

where the constants Ay, By are to be determined from the initial conditions at time

zero. The meanings of these three solutions will be discussed in Section 10.6.

10.5 Generalized Eigenvalue Problem

The matrix C that performs the reductions in eqn (10.21) can be found using the
generalized eigenvalue methods from Appendix C.
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With the substitutions of the real, symmetric small-vibration matrices V and T
for the matrices A and g of that appendix, the generalized eigenvector equation in
eqn (C.16) becomes

V[P =6, T[z®] (10.25)

The theory of Appendix C requires that T, which is being substituted for g there,
must be a positive definite matrix. But that positive definiteness has already been
proved earlier, in our discussion of Hamiltonian mechanics. It is proved in Theorem
4.1.1, and in Theorem 4.5.1 for the reduced case.

So the whole theory of Appendix C can now be applied to the present problem.
The eigenvalues 6; in eqn (10.25), all of which will be real, are the D solutions of eqn
(C.18)

IV -6T|=0 (10.26)

and the corresponding eigenvectors [z¥'] are the solutions of eqn (C.17)
(V-6Ti91=10 (10.27)

The generalized inner product defined in Section C.2 becomes

D D
lelyl =" Tyl =) > xTijy (10.28)

i=1j=1

The eigenvector solutions are then normalized by using

D D
1=[zF]e[zP] = [T T[R] = Z Zz,f"’T,-,z}k’ (10.29)
=1 j=1

and, by Theorem C.3.2, D eigenvectors can always be found that are orthonormal in
the generalized sense given in eqn (10.29)

207 e [2P] = 8 (10.30)

Solution of the generalized eigenvalue problem produces the matrix C defined in
eqn (C.29) by

Cix =z (10.31)

i
Then, still with the substitutions of matrices V and T for the matrices A and g, eqn
(C.32) proved in Theorem C.5.1 is identical to our desired result, eqn (10.21).

The reader may consult Appendix C for more detailed information about solution
of the generalized eigenvalue problem.
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10.6 Stability

At the beginning of this chapter, we spoke of stable, conditional, and unstable systems.
Now, after seeing the general solution, we must speak more specifically of stable,
conditional, and unstable modes. If 6; > 0, then mode k is stable and has an oscillatory
time evolution. The conditional zero frequency modes with 6; = 0 will remain small
provided that the By of that mode is zero. But when 6; < 0, the mode solution involves
hyperbolic functions and will increase exponentially with time for any nonzero Aj or
By.. These are the unstable modes.

A system is unconditionally stable only if all of its modes are stable. Otherwise,
there will be some initial conditions in which a conditional or unstable mode will
cause the system to run away to infinity. One strength of the method presented here
is that the stability of a complex system can be determined simply by solving eqn
(10.26) for the eigenvalues. If all of them are positive, the system is stable.

If either of the coefficients A; or Bj of mode k is nonzero, then we say that mode
k is excited. Which modes are excited, and by how much, depends on the initial con-
ditions at time zero. The determination of A; and B from the initial conditions will
now be considered.

10.7 Initial Conditions

Equation (10.16) gives the general solution for the time evolution of the small coor-
dinates r; in terms of the normal coordinates p given by eqn (10.24). We now show
how to derive the general solution from the initial conditions at time zero.

As a preliminary to treating the initial conditions, we use the definition Cj; = z
from eqn (10.31) to write the solution eqn (10.16) as

(k)

i

D

= 2" (10.32)
k=1

where py is one of eqn (10.24). Introducing the column eigenvector [zX)] defined by
(k)
1
Z(k)
B I (10.33)

Z

P
and using eqn (10.18), eqn (10.32) may be written in matrix form as

D
[r] =Y 1% (10.34)
k=1

This equation may be inverted, solved for p; as functions of the r;, by using the
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generalized inner product defined in eqn (10.28),
D D
2P0 lr1 =121 11 =) sup = px (10.35)
=1 =1

where the orthogonality relation eqn (10.30) was used.
The inverse eqn (10.35) is true at all times. But it is particularly useful to consider
it at time zero. Then, using eqn (10.24),

A = pe(0) = [z2PT e [r(0)] and Dy = px(0) = [zX] e [7(0)] (10.36)

where
wirBy for 6, >0
D, = { Bx for 6,=0 (10.37)
viBr for 6, <0

give the coefficients Ay and B; in terms of the small coordinates r; (0) and velocities
7;(0) at time zero.

With the determination of the coefficients Ay and By, the problem is now com-
pletely solved. In matrix form, the solution is

[r] = Z [z0] (Ax cos wpt + By sinwit)
>0

+ Y 201 Ak + By + ) 12%1 (A cosh it + By sinhyyt)  (10.38)
Ox=0 6k <0

10.8 The Energy of Small Vibrations

Since the chain of transformation equations from an inertial s-system to the final
p-system of normal modes does not depend explicitly on the time, and since the
constraints, if any, were also assumed not to be explicit time functions, it follows from
the discussion in Section 2.16 that the generalized energy function in the p-system
will be equal to the total energy. Using the Lagrangian L(p, ¢) from eqn (10.22) in
the definition of the generalized energy in eqn (2.76) gives at once that

D
1
5) — (e) 2 2
H(p,p) =V(q') + 3 kE_l (pk + Hkpk> (10.39)

where the L, term from eqn (10.10) has now been restored. Using the solutions in
eqn (10.24), the generalized energy function can be expanded as a sum over the
stable, conditional, and unstable modes as

. 1 2 2 2 1 2 1 2 2 2
Hip.p) = V(g +5 Y of (AL +B)+5 Y Bi+5 Y v (-4l +BY) (10.40)
60k >0 0x=0 O <0

Note that an initial displacement of an unstable mode may decrease the energy, as
would be expected from the example of the sphere with a marble on top.
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The Hamiltonian in the normal mode system may also be found, using the tech-
niques of Chapter 4. Since py = dL(p, 0)/3px = px, it is

D

1
Hip,p) =V @+ (p,% - ekplf) (10.41)
k=1

Equation (10.41) is important in quantum mechanics. The classical normal mode
analysis separates the stable modes (which are to be quantized) from the conditional
and unstable ones. The coefficients pi, px of the stable modes are replaced by quan-
tum operators and eqn (10.41) becomes the Hamiltonian operator of a quantum sys-
tem. Each mode is thus a quantum mechanical harmonic oscillator. In solids, the
quanta of these mode oscillators are called phonons, in electrodynamics they are
called photons. The zero-frequency conditional modes must be dealt with separately.
Their quanta are sometimes referred to as Goldstone bosons.

10.9 Single Mode Excitations

Under some initial conditions, only one of the D possible modes will be excited.
Assume the kth mode to be the one excited, so that A; = 0 and B; = 0 for all [ # k.
Then, taking the excited mode to be a stable one, the solution in eqn (10.38) will take
the form

[r] = [z%] (Ax cos wpt + By sin wyt) (10.42)

where the sum has collapsed to the single index & of the excited mode. In component
form, eqn (10.42) says that, foralli =1,..., D,

ri = Zl(k) (Aj cos wit + By sin wyt) (10.43)

In a single mode excitation, all of the small coordinates r; are seen to oscillate
with the same frequency wy. Also, the ratios of the various small coordinates will be
constant in time, and equal to the ratios of corresponding components of the kth
eigenvector [z®]. Thus, for all i, j values, and all times 7,

ri(t) _ zl(k) (Ag cos wit + By sin wyt) _ zl(k) (10.44)
rj(t) zj(»k) (Ay cos wit + By sin wyt) ZJ(-k) '

These ratios give what can be thought of as the pattern of the kth mode, how much
and in what direction each coordinate moves relative to the others. Often, the fre-
quency and pattern of a mode are all that are needed to answer a particular question
about the system. In those cases, the step of normalizing the eigenvectors, as in eqn
(10.29), is not necessary since the ratios in eqn (10.44) will be the same whether
[z®)] is normalized or not.
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The initial conditions that will result in the single mode excitation of a particular
mode k can be derived from eqn (10.36). Choose

@@=z and  #(0) = P (10.45)

for all i values, with «, 8 chosen to be small but arbitrary constants. Then, by con-
struction,

FO]=az¥]  and  [#(0)] = Blz¥] (10.46)
and eqn (10.36) will give
Ar=1201e[r ()] = [z"] 0 a[zF] = adyy (10.47)
B = 120 o [H(O0)] = — (e ¢ Be®] = — po (10.48)
)] ()] (0]

which vanish for all / # k. The result is a single mode excitation of the kth mode with
ri = (k) (a cos wit + ﬁ sin a)kt) (10.49)
wk

as was desired.

Taking a case with all masses at rest at time zero as an example, a pure-mode exci-
tation of the single mode k results when all of the masses of the system are displaced
by small amounts, in exactly the pattern of the ratios given in eqn (10.44), held in
those positions, and then released from rest. Then eqn (10.45) will hold for some «,
and the B will be zero since all of the 7;(0) are assumed to vanish. Thus the single
mode vibration of eqn (10.49) will be obtained, with 8 = 0.

10.10 A Simple Example

Let a rod be driven horizontally into a wall with two beads threaded onto it. Assume
that there is no friction between the beads and the rod. The larger bead m; = 2m
is closer to the wall and is connected to the wall by a horizontal, massless spring
of force constant y« and rest length a. The y here is a dimensionless constant that
characterizes the relative strength of the two springs. Another massless, horizontal
spring, of force constant « and rest length «, connects m; to a smaller bead m, = m.
Taking generalized coordinates ¢;, ¢> to be the distances of the two beads from the
wall, the reduced Lagrangian of the system is L =T(g) — U(q) where

T(G) = (m1q1 + mqu) (10.50)

1
Ulq) = vk (g1 = a)® + /c (g2 — q1 — a)? (10.51)

Equation (10.6) becomes, fori = 1, 2,

0= =k { © _4 © © _4 } (10.52)
9q1 q=q® 4 (q] ) (q2 4 )
U
0= @) =« (¢ 4 ~a) (10.53)
Q2 lg=¢q®
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FIG. 10.2. Simple small-vibrations example.

The second of these equations implies that qée) = qfe) + a. Putting that result in the

first gives qfe) = a. Thus the equilibrium point is determined by the two values

ql(e) =a and qée) =2a (10.54)

To determine the matrix T, the first step is to find the required matrix elements
m;j(q). Equating eqn (10.50) to the first term in eqn (10.1),

2 2

Lo : 1 .

2 (mlqlz + m2q12) =5 DO mij(@)did (10.55)
i=1 j=1

from which one obtains m;;(q) = m;§;;. Then, from eqn (10.12),

Tij = mij(q®) = m;8;; (10.56)
and hence
T= <m1 0 ) (10.57)
0 my

The step in eqn (10.56), evaluating m;;(¢) at the equilibrium point ¢‘®, is not really
necessary in this simple example, but is included here because it will be necessary in
more complicated cases.

The matrix V is found from eqn (10.13). Thus, for i, j =1, 2,

82U (q) 32U (q)
Vip= ;.].. =(y + Dk 19 = e q) —
97 |,y 991992 |g=q©
32U %U
vy = 2 V@ — vy = 20U g@. —x  (10.58)
092091 g=q® 9g; g=q©
and hence
V= ((” + De _"> (10.59)
—K K

As in the determination of T, the step of evaluating the second partial derivatives in
eqn (10.58) at the equilibrium point ¢(® is not necessary in this simple example, since
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the second derivatives are already constants. But it is included here because it will be
an essential step in more complicated examples.

Note also that the evaluation of V,; was not really necessary once V|, was found,
since second partial derivatives give the same result in either order. In general prob-
lems, it will be sufficient to calculate the V;; for the diagonal elements and those
above the diagonal. Those below the diagonal are then determined by this symmetry
of V.

The eigenvalues of the generalized eigenvalue problem may now be found from
eqn (10.26). First note that

V_OTZ((V+1)K—K)_9(2m0>
—K K 0 m

_ y+1 -1 Om (20\]| _ ((y+1-2¢) -1
= (7A@ = (T D) aoe

where we have now set m| = 2m and m; = m to their given values, and have defined
a dimensionless quantity ¢ related to the eigenvalues 6 by

0
¢ = o so that 6 = £¢ (10.61)
K m
The eigenvalues are the two roots of the determinant equation

y+1-2¢) -1 ‘
-1 1—-9)

Since « # 0 by assumption, the roots can be found by setting the determinant on the
right equal to zero. The two roots are

1 1
¢1=Z<y+3—,/y2—2y+9) ¢2=Z<y+3+,/y2—2y+9) (10.63)

Taking y = 1 for simplicity from this point forward, the two roots become

0=|V —0T| =« (10.62)

2 2
po1- 142 (10.64)
2 2
and, from eqn (10.61), the actual eigenvalues are
2 2
o = < (1 _ £) o, = X (1 n £) (10.65)
m 2 m 2

The eigenvectors are now calculated using eqn (10.27), which may be written
here, fork =1, 2, as

_ _ (k)
(V-6 TP =« (2(1_1¢k) ’ —1¢>k)) (2’”) =0 (10.66)

where y =1 is still being assumed.
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For k = 1, eqn (10.66) gives

V2 -1 /o
-1 X2\
2
which expands to the two equations
2
ViV =P =0 and -V 4 %4” =0 (10.68)

The two equations are redundant. Solving either of them gives the ratio zg) / zil) =2
and hence the eigenvector

My _ v 1
[z"V]=N («/E (10.69)

where the N®) are normalization factors not yet determined.
A similar method for the mode k = 2 gives

1
@7 = vO@
[Z]=N (—ﬁ) (10.70)
The reader should now verify that these two eigenvectors are orthogonal in the gen-
eralized sense, as required by eqn (10.30). They must satisfy
0=1z"1e [z =V T[z?] (10.71)

using the generalized definition of inner product defined in eqn (10.28).
At this point in the calculation, we already know the frequency and pattern of
each of the normal modes. In a pure mode-1 pattern, both masses would vibrate at

the frequency
172
2
w1 =0 = \/g (1 - %) (10.72)

Equation (10.69) shows that mass m, would vibrate in phase with m; with an ampli-
tude /2 times as great, since for all times, eqn (10.44) gives

(D
2 _ Ve 10.73
() Zgl) 1 (10.73)

for a pure mode 1 excitation. A similar pattern results from a pure mode 2 excitation,
but with +/2 replaced by —+/2.

As described in Section 10.9, inspection of eqn (10.69) shows that the system
could be put into a pure mode-1 vibration by displacing mass m; by a small distance
« from its equilibrium position, displacing mass m» by +/2« in the same direction, and
then releasing both masses from rest. The two masses would then continue to vibrate
in the mode-1 pattern, both with frequency w;.
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In a pure mode-2 pattern, the higher-frequency mode here, both masses would

vibrate at the frequency
172
2
o =0, = | < (1 + %) (10.74)
m

eqn (10.70) shows that mass m, would vibrate exactly out of phase with m; with an
amplitude +/2 times as great. The system can be put into a pure mode-2 pattern by
following a similar prescription to that just described for mode-1. Inspection of eqn
(10.70) shows that a pure mode-2 vibration will be produced if one displaces mass
m1 by « and mass m, by —+/2« in the opposite direction.

To find the small vibrations of the system for arbitrary initial conditions, it is nec-
essary to find the normalization constants N® for the two modes, using eqn (10.29)
with k = 1, 2. That calculation yields

W yo_ 1
NV =N¥ = N (10.75)
The equality of these two factors is because of the simplicity of this example. In more
complex problems, the normalizing factors will not generally be the same for the
different modes.

As an example of a solution involving a particular initial condition, suppose that
at time zero the mass m, is displaced by a small distance & while the mass m; is
held fixed at its equilibrium position and not allowed to move. Then both masses are
released from rest. Thus, the column vectors of initial conditions to be used in eqn
(10.36) are

v«»]==<°> and w«»]==(°> (10.76)
o 0
with the results that B; = B, = 0 and
A =12V [r]1=NY (12) (26" 0) (O) _ a/am (10.77)
m o 2
Az=k@H-v®n=N@w1—¢®(”"O)(“):—“Jﬂz (10.78)
0 m o 2

The general solution from eqn (10.38) is then

[r] = 214 cos it + [2P]As cos wat

_ %5 {(le) cos oyl — (_1&) cosa)zt} (10.79)

In terms of components, this is

2
r = %_ (coswit — cos wyt) (10.80)
rp = % (cos w1t + cos wot) (10.81)

For this initial condition, both normal modes are excited simultaneously. The resulting
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motion can look quite complicated. Only two different frequencies of vibration are
present, but neither periodicity may be obvious to the untrained eye. Certainly, pure
mode vibrations are prettier and less interesting.

10.11 Zero-Frequency Modes

In the simple example of Section 10.10, the parameter y that gives the strength of
the first spring relative to the second one was chosen to be one. Here, let us consider
a different choice. What if the first spring is decreased in strength until y = 0. Then
the pair of masses would be in a sense floating freely, disconnected from the wall.

The first thing one would notice about such a problem is that the two eqns (10.52,
10.53) would become redundant. They would both determine that qée) = ql(e) +a,
but they would not determine the value of qfe). Physically, it is obvious why this is so.
If the two masses are placed at rest anywhere on the rod, but separated by distance
a equal to the rest length of the remaining spring, they will stay there forever. Any
arbitrary ql(e) choice then leads to a valid equilibrium point.

If we set y = 0 in eqn (10.63), the two eigenvalues become

3k
91 =0 and 92 =

= — 10.82
. ( )

and the eigenvectors can be calculated by the same technique as in Section 10.10.
They are

V)= ND (‘) and  [z?] =N<2>< 12> (10.83)

where of course the N normalization factors will be found to be different from
those in Section 10.10.

The pattern of the zero-frequency mode is seen from the first of eqn (10.83) to be
simply a translation of both masses without changing the distance between them. The
pattern of mode-2 can be shown to be a vibration with the center of mass of the two
masses fixed. The small vibrations method has automatically separated the motion
into the same collective and internal form that was seen in Chapter 1.

The general solution from eqn (10.38) will now be

r1 = 2P (A1 + Bit) + [2P] (A2 cos wat + By sinwat) (10.84)

where w; = 4/3k/2m and where the A, By will be determined using the same meth-
ods as in Section 10.10, but now using the eigenvectors from eqn (10.83).

It is characteristic of systems with zero-frequency modes that the equilibrium
points turn out to be under determined, as in this example. The condition for the
equilibrium point to be uniquely determined is that the matrix V must be nonsingu-
lar. But if the problem has n zero-frequency modes, that matrix will have rank (D —n),
and n of the components ql.(e) will have to be chosen arbitrarily. In the present exam-
ple, one can verify that the choice y = 0 does make the matrix V in eqn (10.59)
become singular.
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Notice that the zero-frequency mode with B; # 0 in eqn (10.84) would lead to
displacements of the r; that become infinitely large. This would violate the condition
that the r; must be small. But the small vibrations theory can still give useful results,
even in the presence of zero-frequency modes, provided that the By are all zero. For
example, if all masses are taken to be at rest at time zero, then eqns (10.36, 10.37)
imply that By = 0 for all k values.

10.12 Exercises

F1G. 10.3. Illustration for Exercise 10.1.

Exercise 10.1 Consider the double pendulum from Exercise 3.1. Assume that the sticks both
have length a and the masses have the same value m.

(a) Write the reduced Lagrangian with free variables g; = 67 and g2 = 65.

(b) Find values qlge) that give a stable equilibrium point.

(c) Find the constant matrices T and V used to write the Lagrangian of small vibrations in
terms of small displacements.

(d) Find the normal frequencies and the associated column vectors [z"] and [z®)]. Draw
diagrams showing the pattern of vibration for each of the two normal modes.

(e) Suppose that mass m is displaced by small angle « at time zero while mass m is held at
its equilibrium point. The masses are released from rest. Show that there is no time ¢ at which
the masses will have these same positions again while at rest.

Exercise 10.2 Suppose that two equal masses m| = my = m, where m is a given constant,
are constrained to move along the centerline of a narrow, frictionless, horizontal, circular-
toroidal tube of given constant radius Rg. The two masses are connected by elastic cords that
are also constrained to lie along the centerline of the tube. Assume that the toroidal tube is
very narrow, so that the masses and cords are all at radius Ry. Assume that there is no friction
between the cords and the walls of the tube, and that the cords behave as ideal springs of
zero rest length. That is, assume that the tension t in each cord is t = ks where k is the
force constant of that cord and s is its length. Assume that the two cords have force constants
k1 = 3k and k» = k, where k is a given constant.

(a) Find the equilibrium angles 91(0) and 02(0) .
(b) Find the constant matrices T and V used to write the Lagrangian of small vibrations in
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F1G. 10.4. Illustration for Exercise 10.2.

terms of small displacements.

(c) Find the frequencies of the normal modes of small vibration about equilibrium.

(d) For each frequency, find the un-normalized column vector that represents the pattern of
vibration in that mode. Show by a diagram and a sentence or two exactly what the pattern of
each mode is.

FIG. 10.5. Illustration for Exercise 10.3.

Exercise 10.3 Three beads, connected by massless springs, slide without friction on two hor-
izontal, rigid wires whose vertical separation is D. Ignore gravity, which plays no role here.
The two upper beads have m; = my = m and the lower bead has mass m3 = 2m, where
m is some given constant. All springs have force constant k. The two diagonal springs have
zero rest length, while the horizontal one has rest length a. Assume that the springs remain
in straight lines between the masses.

(a) Taking the distances g1, g2, g3 from the wall as your generalized coordinates, write the

Lagrangian for this problem.

(b) Find the equilibrium values ql(e), qée), s for the coordinates. You may take ql(e) as arbi-
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trary, and derive the other two in terms of it.

(c) Write the matrices T and V for the small vibrations problem.

(d) Find the frequencies wy for the three normal modes.

(e) Solve for the eigenvectors [z%®] corresponding to these normal modes. Find the normal-
ization constants for these eigenvectors, and check that they are orthonormal in the sense
[z9] e [zD] = 8.

(f) Suppose that at time zero all masses are at rest. Masses m| and m3 are at their equilibrium
positions, but m> is displaced by a small amount « from its equilibrium position. Find the
constants A1, A», Az, By, B>, B3 and write an expression for each small coordinate ry, 2, 73
as a function of time for all # > 0.

Exercise 10.4 Suppose I have a small vibrations problem whose eigenvectors are the column
vectors [z%)]. T want to excite only the /th mode so that all the masses and objects vibrate
with the single frequency w;. How can I do that? Explain your answer using the formalism
developed in the text.

Exercise 10.5 Show that a pure mode vibration with the pattern given by the second of eqn
(10.83) would produce a motion with the center of mass at rest.

Helical spring

.

/m2 . ms3

q3

F1G. 10.6. Figure for Exercise 10.6.

Exercise 10.6 Three beads of mass m; = m3 = m and my = 2m slide without friction on
a horizontal wire. They are connected by two massless springs of force constant k and rest
length a. A helical spring of force constant yk and zero rest length is attached to the middle
mass. The distances of the masses from the wall are g1, g2, and g3 as shown. The center point
of the helical spring is distance b from the wall.

(a) Taking g1, g2, and g3 as your generalized coordinates, write the Lagrangian for this sys-
tem.

(b) Find the equilibrium values ql(e), qée), qée) for the three masses.

(c)Find the T and V matrices and use them to solve for the frequencies of the normal modes.
(d) Find the un-normalized eigenvectors of the normal modes. Find the frequencies and un-
normalized eigenvectors for the specific case when y = 3. Draw a rough diagram showing
the pattern of each pure mode in this case.

(e) Show that in the limit ¥y — O one of the normal mode frequencies goes to zero. Show that
the pattern for that mode becomes a rigid-body translation of the system, with the inter-mass
distances fixed. Show that in the y — 0 limit each of the other two modes leaves the center
of mass at rest.
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11

LAGRANGIAN MECHANICS WITH TIME AS A COORDINATE

In traditional analytical mechanics, it is assumed that the system traces out a path
(one-dimensional curved line) in a D dimensional configuration space that is defined
by writing each of the generalized coordinates as a function of the absolute, Newto-
nian time. Thus, for allk =1, ..., D, one writes the equation of motion as g; = g (¢).
This is the approach that was used throughout Part I of the book when traditional
Lagrangian and Hamiltonian mechanics were introduced.

But more advanced topics, such as canonical transformations and Hamilton-Jacobi
theory, are simplified if Lagrangian and Hamiltonian theory are recast in what we will
call an extended form. The time becomes the zeroth generalized coordinate gy = ¢,
and its conjugate momentum py becomes the negative of the traditional generalized
energy function H. There are then (D + 1) extended Lagrange equations, the extra
Lagrange equation being equivalent to the traditional generalized energy theorem.

The extended theory thus combines the traditional Lagrange equations and gener-
alized energy theorem into a single set of equations, and restores the symmetry of the
mathematical system in the sense discussed in Chapter 5. The traditional Lagrangian
methods are analogous to the “coordinate parametric method” in the calculus of vari-
ations, described in Section 5.14. The extended Lagrangian theory is analogous to the
recommended “general parametric method” presented from the beginning of Chapter
5. The generalized energy theorem of traditional Lagrangian theory, which had been
a separate equation analogous to the “second form” of the Euler-Lagrange equations
derived in Theorem 5.14.3, gets restored to its proper place as just another of the ex-
tended Lagrange equations, which now form a complete set of equations appropriate
to the problem.

Besides the simplifications mentioned above, there is another motivation for use of
the extended theory. It is now some hundred years since Einstein’s 1905 relativity pa-
pers. Special relativity is now an accepted part of classical mechanics. The use of time
as a coordinate is essential so that, for example, the Lorentz transformation will not be
excluded when we define canonical transformations. The extended Lagrangian the-
ory of the present chapter will be essential in Chapter 16 where covariant Lagrangian
mechanics is discussed.

However, consistency with special relativity is only one argument for use of the
extended theory. It could as well have been introduced in the nineteenth century,
before relativity, motivated by the mathematical elegance it brings to the treatment
of canonical transformations and other advanced topics.

267
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11.1 Time as a Coordinate

Time is to be removed from its role as a universal background parameter, and elevated
to the status of a coordinate with g9 = ¢. When time is a coordinate, the path of the
system must be specified by introducing a new background parameter, which will be
denoted by 8. This parameter is not specified initially, except for the condition that
it must be monotonically varying along the path of the system. Since time always
advances, this condition is equivalent to requiring that dB/dt is always finite and
nonzero. Thus, the system traces out a path in an augmented (D + 1) dimensional
configuration space defined, for all k = 0, ..., D, by writing the equations of motion
as qx = qr(B), including go = ¢o(8) which is the same as ¢ = 7(8).

The idea of the extended method is that the monotonic parameter 8 is not to be
specified until the end of a calculation, after all partial derivatives have been taken
and the final differential equations of motion have been derived. Then it can be cho-
sen at will, using whatever definition will make those differential equations simple.
This eventual choice of 8 will depend on the nature of the mechanical system being
studied. For example, one possible choice is just to set 8 equal to the Newtonian time
t at the end. But, in special relativity, another possible (and covariant) choice is to set
B equal to the proper time along the world line of some particle.

11.2 A Change of Notation

From this point forward in the book, we will make a notational change and use the
dot over a quantity to denote its total derivative with respect to 8 rather than ¢,
so that ¢ = dqi/dB, including the case k = 0 for which i = dt/dB = dqo/dB =
qo. We will continue to refer to ¢, as a generalized velocity, just as we did in the
traditional Lagrangian theory, even though (as there) its units may not always be
distance divided by time. Derivatives with respect to time, when needed, will either
be written out explicitly or denoted by a prime. For example, the chain rule for total
derivatives gives the relations
=t _ B _& (11.1)
dt t q0
In this and subsequent chapters, the notation of using a single unsubscripted vari-
able to stand for a whole set of variables will be modified to include ¢gq in the sets.
Thus ¢ = g0, q1. 92, ..., qp is a set of (D + 1) coordinates. And ¢ = ¢o, 41,42, -...4D
is the set of (D + 1) generalized velocities.
Another new notation will be gx) to denote all of the (D + 1) variables except gy.
This same notation will also be applied to other sets, such as generalized velocities or
momenta. Thus, for example,

431 = 40, 41,42, 44,45, --..qp and  qjo] = 41,92, 43,494,945, .- -, 4D (11.2)

This notation will make it easier to compare the extended Lagrangian function to the
traditional one.>!

51The notations introduced here are similar to those used for the calculus of variations in Chapter 5.
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11.3 Extended Lagrangian

The traditional Lagrangian defined in Chapter 2 can be written in the new notation
as

L = L (qpo1. 9{o)- ) (11.3)

where go; is the set defined in eqn(11.2), and q[’o] denotes the set of traditional
generalized velocities

dg\ dq»  dap

e, 11.
dt’ dt’ dt (11.4)

!/ / / /
900 = 41:492>---»49p =
Motivation for selecting the form of the extended Lagrangian can be found in the
action integral of Hamilton’s Principle. The definition in eqn (6.4) can be rewritten
using B as the integration parameter instead of ¢. Introducing the notation of the
present chapter, the action integral becomes

_[" ya= [ a9 4\ g 11
I= [ Lqwonappt)dt= [ L{ao, =1 )idp (11.5)

51 Bi

where eqn (11.1) was used to replace q[’o] by the set

g1 91 42 4o
q[’m:T:—,,—.,...,—. (11.6)

where now ¢, = dgi/dB. Equation (11.5) suggests the following definition.

Definition 11.3.1: Extended Lagrangian
Starting from the traditional Lagrangian in eqn (11.3), the extended Lagrangian L is
defined by

) . . qro . 40
L(q,q) =1L (q10), 9{o}- 1) = I L (Q[O], % l) =qoL <6][O], %, 6]0) (11.7)

where the last expression in eqn (11.7) introduces the definition go = t.

This same definition can also be motivated by examining the prescription in eqn
(5.111) for converting from the “coordinate parametric” variational method to the
“general parametric” one in the calculus of variations. The identifications g — L,
x1 — t,xy1) — ¢, f — L lead at once to eqn (11.7).

An important property of L (g, ¢) is that, by construction, it is homogeneous of
degree one in the set of generalized velocities ¢. We state this as a lemma for future
reference.

Lemma 11.3.2: Homogeneity of Extended Lagrangian
The extended Lagrangian L(q, ¢) is homogeneous of degree one in the set of generalized
velocities q.
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Proof: Let us denote by Aqg the set Aqgg, A§1, ..., Agp in which each generalized ve-
locity is multiplied by the same nonzero number A. It follows from the definition in
eqn (11.7) that

. ) A .
L(q,1§) = Mol (61[0], % qo> =1L (g, 4) (11.8)

since the A factors cancel from the terms inside L. Using the definition in Section D.31,
this implies that £ (g, ¢) is homogeneous of degree one in the set ¢ = go, g1, ..., ¢p. O

11.4 Extended Momenta

The generalized momenta in the extended theory are defined as

. 8£ k] ]

P = pr(q,q) = M (11.9)
Gk

fork =0, ..., D. This definition is similar to eqn (2.68) for the traditional Lagrangian

theory, except that ¢; now denotes differentiation with respect to 8, and an additional
momentum po has been added.

For k # 0, the generalized momenta defined in eqn (11.9) are the same functions
as the traditional momenta defined in eqn (2.68), simply re-expressed in terms of the
new variables ¢, ¢. Applying the definition in eqn (11.9) to eqn (11.7) gives, for k # 0,

oL (?’ Q) _ qoi aL (4[0]7 ‘][,0]’ t) a_q,’

L — dq; Ak

~ oL (f][O]v‘][/oyt) 1 L (q[ow[’o]J)
= Go . — = . (11.10)
aqk q0 g,

Pk(% f]) =

where eqn (11.1) has been used to write d¢g;/9gx = 8x1(1/4o). The last expression on
the right of eqn (11.10) is exactly the traditional momentum defined in eqn (2.68). In
the notation of the present chapter, that equation is

IL (61[0], (o) t)

i (q101, 4oy 1) = — (11.11)
qk
Thus, for k # 0,
/
IL(q.q) : , oL (qmb qj0p- f)
—= = pi(q.9) = px (qro1. gy 1) = ———FF (11.12)
da = @9 = pe (o 9p0. 1) 7l

as was asserted.
For k = 0, the momentum defined by eqn (11.9) is the negative of the traditional
generalized energy function H defined in Section 2.15. Applying the definition in eqn
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(11.9) to eqn (11.7) and using eqn (11.11) gives

D 9L (fI[OvaEO]v’> dq/

0L (q,q)
7 dq, 4o

=L o t) + ¢
G0 (‘][0] q10] ) q0

polg, q) =
=1

2 qi
= L (q101. g{oy- 1) — do _, i (q101- 4{o)- 1) po
=1 0

D
= L (qro1. gjop- 1) — Zpl (q101- gg0- 1) 9/ = —H (q101 90y 1) (11.13)
=1

where H (gjoy, q[/()]’ t) is the traditional generalized energy function defined in Section
2.15, rewritten in the notation of the present chapter. Thus

0L (q,q)

= po(q.4) = —H (q01. {0 t (11.14)
% po(q.q (q101> 9{0y 1)

as was asserted.
We conclude this section with two more lemmas of importance.

Lemma 11.4.1: Homogeneity of Momenta
The generalized momenta pi(q, ¢) are all homogeneous of degree zero in the generalized
velocities.

Proof: Since Lemma 11.3.2 proved that £ (¢, ¢) is homogeneous of degree one in
the generalized velocities, it follows from Theorem D.32.1 that the partial derivatives
in eqn (11.9) must be homogeneous of degree zero. Thus it must be true that, using
the same notation Aq as used in the proof of Lemma 11.3.2,

pe (g, 24) = 2°pi (4, 9) = pr (g, 4) (11.15)

This fact can also be seen by inspection of eqns (11.12, 11.14), noting that the ex-
pressions on the right side of these equations contain generalized velocities only as
ratios like g; = gx/qo from which the A would cancel. O

Lemma 11.4.2: Extended Lagrangian and Momenta
The extended Lagrangian can be written in terms of the generalized velocities and mo-
menta as

D
L(g.9) =) pe(q, i (11.16)
k=0

Proof: Since Lemma 11.3.2 proved that £ (g, ¢) is homogeneous of degree one in
the ¢, the Euler Condition of Theorem D.31.1 applied to the present case implies that

9L (q.4)

(11.17)
Gk

D
Lq.9) =) @

k=0

The theorem then follows from the definition in eqn (11.9). O
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11.5 Extended Lagrange Equations

The extended Lagrange equations combine the traditional Lagrange equations and
generalized energy theorem into one set of equations. We first state the extended
Lagrange equations, and then prove their equivalence to the traditional formulas.

Definition 11.5.1: Extended Lagrange Equations

The extended Lagrange equations are, fork =0, ..., D,
d (0L (q,q L (q, g
_( ({1 q)) LG _ QNP (11.18)
dp dqk dqk
where b
Ql({NP) _ t-Ql(CNP) Q(()NP) _ _ Z Q,(Np)éz (11.19)

=1

for k = 1,..., D, where Q,({NP)

eqn (2.37).
When there are no non-potential forces, then the extended Lagrange equations in
eqn (11.18) of course reduce to the standard form

d <3E(q,c})> _ L9 _
dp Gk gk

The equivalence of eqn (11.18) to the traditional Lagrange equations and gener-
alized energy theorem is proved in the following theorem.

are the non-potential generalized forces introduced in

0 (11.20)

Theorem 11.5.2: Equivalence of Extended Lagrange Equations

The extended Lagrange equations for k # 0 are equivalent to the traditional Lagrange
equations, eqn (2.52). The extended Lagrange equation for k = 0 is equivalent to the
generalized energy theorem, eqn (2.78).

Proof: First consider the case k # 0. The traditional Lagrange equation from Section
2.9 can be written in our present notation as

/ !
d (9L (q[OL 410> t) dL (4[017 9[0> f) _ o™
rm - - Xk

o 24 o (11.21)
Multiplying through by 7 = dt/dB and using eqn (11.19) then gives
a4 oL (q[O],q[’OI, t) _ t-aL (q[O],q[’O], t) — o0\P) (11.22)
dp g gk -t '
But, from eqn (11.12)
Lk} <q[21q’z[/0]’ ) (@i 1) = o) = “5 0 (11.23)
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Thus definition eqn (11.7) may be used to write eqn (11.22) as

d (3/3(61,4)> L@ 9 _ QNP)
g\ gk dqi ¢
which is eqn (11.18) for the case k # 0, as was to be proved.

For the case k = 0, the generalized energy theorem, eqn (2.78) of Theorem 2.15.1,
can be written in our present notation as

(11.24)

dH <Q[O],CI[/()]’ t) dL (61[01 - 4oy ) (NP)
- — Z 0, q (11.25)

Multiplying through by 7 = dt/dB and using eqn (11.19) then gives

dH (Q[O]’ q[/()]’ t) B iaL <Q[0], f][/o], t) oNP) (11.26)
dﬁ - at 0 .
But eqn (11.14) gives
. 0L(q.9)
—H (qi01- gf0)- 1) = P0 (4. §) = R (127

Thus, using definition eqn (11.7) and multiplying through by minus one, equation
eqn (11.26) becomes

d <8£(f1,q)> _0L(q.9) — ot (11.28)
dp 990 990
which is eqn (11.18) for the case k = 0, as was to be proved. O

11.6 A Simple Example

The transition from traditional to extended Lagrange theory can be illustrated starting
from the Lagrangian in eqn (2.66). In our current notation, it is

1 1
L (q[o], 4{0]’ t) = Em (r'2 +7r20'% + r?%sin? 9¢/2> — ikr2 (11.29)

Following the recipe in eqn (11.7), each time derivative ¢; = dgy /dt is to be replaced
by ¢x/f and the resulting equation is to be multiplied by 7. Thus

2 . .2
E(C]aq')=t'{%m ((;) +r2 <§) +rzsin29((i—.§> )—%k}g}

. . i
= % (72 + 262 + rsin 047 — Sk (11.30)

2



274 LAGRANGIAN MECHANICS WITH TIME AS A COORDINATE

The generalized momenta are defined in eqn (11.9). In this example, they are

9L (q,q ) - } ; 1
Fork=0 po= % - —2'% (r2 4262 42 s1n29¢2) — Skt (113D)
1 |
=— {Em (r’2 +r20'2 + r?sin® 6¢)’2> + Ekrz}
IL(q. g ;
Fork—=1 p, = £@®d _ "r_ (11.32)
ar t
AL (q, q 29
Fork =2 py=2@® _, "0 _ oy (11.33)
90 i
AL (q, ¢ 2 sin” O¢
Fork=3 Py = ;3) q) — mr SlIil ¢ — er Sin2 Gd)/ (1134)

where eqn (11.1) has been used to write the last expression on the right in each
case. Note that, for k # 0, these generalized momenta are indeed just the same as the
traditional ones that would be derived from eqn (2.66) using the traditional definition
in eqn (2.68). And for k = 0, the py is just the negative of the traditional generalized
energy function H that would be derived from eqn (2.76) for this example.

The extended Lagrange equations, eqn (11.18), are

Fork—0 2 (Bﬁ(q,q)> _L@.9 _
ot ot

dp 0

. N1
or L {2% (r'2 + 7262 + 12 sin? 9¢2) + Ekrz} —0 (11.35)

5 /3 ) )
For k — 1 _( E(C{,q)>_8£(q,q)=0
d or or
d ; 62 in20¢% .
—(m—.r)—mr. _mrsint09T =0 (11.36)
dg \ t t t
d (9 ; ;
Fork—2 2 E(q_,q) _8£(q,q):0
dp 30 90
2) 2 o ;
or i(mr 9) _mr smt?cos@qb _0 (11.37)
dp t t
. . 2 - 2 M
For k = 3 i<8£(‘].’q’)>—M(‘M)=0 or L (MO o (11.38)
dp 3¢ A dp i

By repeated use of eqn (11.1), the equations with k = 1,2,3 can be shown to be
identical to the corresponding eqn (2.67). The equation with k = 0 is identical to
the generalized energy theorem eqn (2.78) applied to this example. Note that both ¢
and ¢ are ignorable coordinates, in the sense described in Section 2.13. Thus their
conjugate momenta po and py, respectively, are constants of the motion. In the case
of po, this implies the constancy of the generalized energy function H = — py.
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11.7 Invariance Under Change of Parameter

The choice of parameter 8 might seem to introduce an arbitrary element into me-
chanics. The whole development above could as well be done with some other mono-
tonic parameter, say 6. But, although the generalized velocities and the extended
Lagrangian would then be different, the resulting Lagrange equations would have the
same form as the ones derived above and would be equivalent to them. This equiv-
alence of form and content is often expressed by saying that the extended Lagrange
equations are form invariant under a change of parameter. So the arbitrariness is only
apparent.

Suppose that an alternate monotonic parameter § = 6 (B) is introduced, with
db/dB # 0. Denoting g, = dqi/d6, the generalized velocities with the two different
parameter choices are related by

qr = qk% or, equivalently, gk = q'k;l—'z (11.39)

Even though the generalized velocities and the Lagrangians are different, the gen-
eralized momenta p; defined in eqn (11.9) will be the same no matter what parame-
ter is chosen. Since, by Lemma 11.4.1, the generalized momenta are homogeneous of
degree zero in the generalized velocities, the replacement of 8 by 6 will not change
them. From eqn (11.15) with » = d6/dg,

.do

ao\° 5 y
q,q£> = (—) Pe(q,9) =pk(q,q) (11.40)

dp
This equality of these two momenta can also be derived from the work in Section
11.4, which proves that both of these momenta are equal to the traditional momenta
and generalized energy functions, which are obviously independent of the choice of
Boré.

The Lagrange equations with parameter 6 are

i(&/ﬁ(%@)) aE(Qvé)_Q(NP)
- =&

rr(q,q) = pk <

11.41
do Gk 9qk ( )

where, using eqn (11.7), the Lagrangian £ in terms of parameter 6 is now defined in
the same way as £ was in terms of 3,

5 - . 40 - 410
L(q,) =1L (qi01, 9joy- 1) = 7L (qm], % t) =1L (61[0], %, qo) (11.42)

where we used g /go = ¢;, to get the second equality.
The Lagrange equations in eqn (11.41) are equivalent to the ones in eqn (11.18)
in the following sense.

Theorem 11.7.1: Invariance Under Parameter Change
Functions qi(0) are a solution to eqn (11.41) if and only if qx(8) = qx(0(B)) are a
solution to eqn (11.18).
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Proof: Using the definitions in eqns (11.7, 11.9), the Lagrange equations, eqn (11.41),
may be written as

- /
dpr (q,q) - oL (q[O]’ 910> qo) _ =(NP)
—t =9,

11.43
do aqk ( )
Multiplying through by d6/dS and using eqn (11.40), this becomes
!/
dpk (Qv Q) _ L (Q[O]v 5][0]7 6]0) — Q(NP) (11 44)
dp g ¢ '
which can be rewritten as
d (9L(q,q 9L (q, q
_( (f] 4)) _ LG9 _ QP (11.45)
dp dqk dqk

which is eqn (11.18). Thus, gx = g (0) will reduce the left side of eqn (11.41) to zero
if and only if gx = qx(8) = qr(0(B)) reduces the left side of eqn (11.45) to zero, as
was to be proved. O

11.8 Change of Generalized Coordinates

The extended Lagrange equations are also form invariant under coordinate transfor-
mations with 8 unchanged, including a larger class of Lagrangian coordinate transfor-
mations than those considered in Chapter 2. The advantage of the extended theory
is that, since time is now a coordinate, it is allowed to transform in the same way
as the other generalized coordinates. The form invariance of the extended Lagrange
equations is stated in the following theorem.

Theorem 11.8.1: Invariance Under Coordinate Change

Let new generalized coordinates ro, ry, ..., rp be defined, for allk =0, ..., D, by
gk = qk(ro,r1,.--,rD) (11.46)
where the following (D + 1) x (D + 1) Jacobian determinant condition is assumed to
hold ; )
‘ ‘ #0 where <_q> — Yk ) (11.47)
ar ary

forallk,l =0,..., D. Let the extended Lagrangian in the r-system be the same function
as L(q, q), but expressed in terms of the r-system coordinates and generalized velocities

L, r)y=L(qr),q@,F)) (11.48)

Also let the generalized non-potential forces in the r-system be defined by

,R(NP) Z Q(NP) aka (r) (11.49)
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Then the Lagrange equations in the q-system

d 8£(q,q')) 9L£(q.9) (NP)
4 ' _ -0 (11.50)
dp ( G G ¢
hold if and only if equations of the same form hold in the r-system
d (AL (t,7) 0L (r,7) (NP)
il - =R 11.51
dp < ik ) ark k ( )

Proof: The proof of this theorem is very similar to the proofs of the invariance of
the traditional Lagrange equations in Sections 2.9 and 2.10, but with the addition of
coordinate go and the substitution of 8 for ¢ as the parameter. It will not be repeated
here. O

The traditional Lagrangian coordinate transformations treated in Chapter 2 are in-
cluded in the extended transformation theory as a special case. If gg = r¢ is assumed,
then the Jacobian condition eqn (11.47) becomes identical to the condition in eqn
(2.59).

The most important example of the new extended transformation theory is of
course the Lorentz transformation of special relativity. If we define go = ¢, g1 = x,
g =y,q3 =zand rg = t', r; = x’, r» = y/, r3 = 7/, then the standard Lorentz
transformation

%
t=r <t/ + §X/> x =T (Vi +x) y=y z=7 (11.52)

satisfies eqn (11.47) and is acceptable in the extended theory. This transformation
would not be possible in the traditional Lagrangian mechanics. The traditional theory
is tied to the Newtonian conception of absolute time, in which time is an invariant
parameter that is not allowed to transform.

11.9 Redundancy of the Extended Lagrange Equations

The (D + 1) extended Lagrange equations are redundant, as is proved in the lemma
below. With this lemma, the extended Lagrangian theory gives the conditions for the
correctness of a custom of long standing in Lagrangian mechanics.

For example, in the problem of the symmetric top in Section 9.17, we solved two
of the traditional Lagrange equations, the ones for Euler angles « and y. We then
moved to the generalized energy theorem to get a third equation. (In the extended
Lagrangian theory this would be the extended Lagrange equation with k = 0.) We
then solved for the motion of the top without even writing the Lagrange equation for
the Euler angle 8.

One might wonder if this omitted equation is actually satisfied by the solution
we found. The answer is given by Lemma 11.9.1. The Euler angle 8 has a nonzero
time derivative at all except isolated turning points of the motion. Thus the Lagrange
equation for that angle is satisfied automatically and we were justified in not checking
it.
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Lemma 11.9.1: Redundancy of Extended Lagrange Equations

If some solution g = q(B) satisfies all of the extended Lagrange equations, eqn (11.18),
except the one with index I, and if ¢; # 0, then the extended Lagrange equation for index
[ is satisfied automatically.

Proof: The proof closely parallels the proof of Theorem 5.7.3 in the calculus of vari-
ations. The homogeneity of £ proved in Lemma 11.3.2 implies that

D .
0L(q, ) . .
0= O Dy g g (11.53)
P

Taking the total derivative of both sides with respect to 8 then gives

i{ d <8£(q q)) N dL(q, q) _ 0L(q, q) _0L(q.9) . }

" ap " og 9 04 9

D ; 7

Z { d (ac(g,q)) B 8£(q,q)} (11.54)
—" |dp 94k qx

Thus, assuming the extended Lagrange equations satisfied for k # [,

.| d (9L(q,q) 8£(q ) wp o
{dﬂ< g, ) } ZqQ =q19 (11.55)

G2

where the definitions in eqn (11.19) have been used to get the last equality. Since
¢ # 0 by assumption, it can be cancelled, leading to the extended Lagrange equation
for the index [/, as was to be proved. O

11.10 Forces of Constraint

Extended Lagrangian mechanics is most useful as a tool for advanced theoretical de-
velopment. It is not intended for the mundane task of calculating the equations of
motion in constraint problems. However, it is interesting to see how easily the La-
grangian theory of constraints can be translated into the extended form in which
time is a coordinate.

The definition of a holonomic constraint in eqn (3.1) of Chapter 3 becomes, in our
current notation,

0 =G (qpo 1) = Gal@) (11.56)

fora = 1,...,C. Theorem 3.4.1 demonstrated that when the only non-potential
forces are constraint forces that do no virtual work, in the traditional sense defined by
the vanishing of the § W(©°™) defined in eqn (3.10), then these forces can be written
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in the form, fork =1,..., D,

C
Q(NP) (Cons) Z A aq[O], ) (11'57)
k

This result can be used to derive a similar expression for the extended generalized
forces Q(NP) Q(Cons) defined in eqn (11.19).

Theorem 11.10.1: Extended Forces of Constraint

If the only non-potential forces are constraint forces that do no virtual work in the tradi-
tional sense used in Chapter 3, then the non-potential forces of the extended Lagrangian
theory are, forallk =0, ..., D, given by

C
e
o = g = 307,20 (@) (11.58)
a

a=1
where Ay = fhq.

Proof: For k # 0, putting eqn (11.57) into the definitions in eqn (11.19) gives

(NP) (cons) _ (cons) < 0 Ga q101- )
Q=9 Q) Z iha—g (11.59)

as was to be proved.
Following the same procedure for k = 0 gives
D

G , ¢ 0G q[o], )
Q(NP) Q(cons) Q (Cons) )» a )\ a
-3 0™ == 3 Y O

1=1
(11 60)
as was to be proved. The last equality in eqn (11.60) was obtained by using eqn
(11.56) to write>?

dGa (q10- 1) XD: 9Gq (61[017f)q[ . 9Ga (quo1.1),

0= = 11.61
aq; ot ( )

d

Equation (11.58) can now be used in eqn (11.18) to obtain the extended Lagrange
equations in the presence of constraints. When the only non-potential forces are con-
straint forces that do no virtual work in the traditional sense, the extended Lagrange
equations become

) . c
d (3L (q, L (g, ~ G
_( 4 q)) _ L9 _ S a(q) (11.62)
B\ 9qx g o
fork =0, ..., D. Together with eqn (11.56), these are (D + C + 1) equations in the
(D + C + 1) unknowns qo, ¢1, ..., ¢p, A, ..., Ac and so can be solved in principle.

52For more detail, see the proof of the generalized energy theorem with constraints in Theorem 3.13.1.
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Equation (11.62) is very similar in form to the traditional Lagrange equations with
constraints given in eqn (3.27). The main difference is that now the generalized en-
ergy theorem of eqn (3.78) is included as one of the extended Lagrange equations. It
is eqn (11.62) with k = 0.

The traditional definition of virtual displacements and virtual work from Sections
3.2 and 3.3 can also be translated into extended form. When time is a coordinate,
the definition of a virtual displacement must be generalized to allow nonzero time
displacements. The virtual displacements §g; are now taken to be differentials of
the (D + 1) generalized coordinates that are arbitrary and independent except for
the condition §G,(g) = 0 which ensures that the constraints are not violated. This
condition can be written as

0=8Ga(q) = Z &z :q) Z G“ (Q) ( - dﬂ&t) (11.63)
=1

k=0 d

To obtain the last equality, the go = 8¢ term has been removed from the sum and
written explicitly using eqn (11.61).

The notation § instead of d for the differentials in virtual displacements is to re-
mind us that they are not to be taken as the actual motion of the system produced by
differential change dB. They are assumed to be arbitrary and independent, except for
the constraints, even though each of the gy is actually a function of 8.

The virtual work of constraint forces when time is a coordinate can be defined as

sWens) = Z QL™ 5qy (11.64)

where the quantities Q\°" are the same as those defined in eqn (11.19), except with
the superscript (NP) replaced by (cons) since the only non-potential forces acting are
the constraint forces.

The definition of virtual work with time as a coordinate in eqn (11.64) is equiv-
alent to the traditional one defined in Section 3.3. To see this, put the definitions in
eqn (11.19) into eqn (11.64), again with the superscript (NP) replaced by (cons)

D
swcons) — Z Q,ECOHS)BQk + Qodqo
k=1
D

d
(COIIS)(S Z Q( Ons)q15!]o = Z Q(Cons) ( _ %31‘) (11.65)

k=1

The traditional virtual displacement at fixed time used in Chapter 3 should be
identified with the expression (8g; — (dgx/dt)dt) in the present section. If we denote
the differentials at fixed time from Chapter 3 by §;g; to distinguish them from the 8g;



REDUCED LAGRANGIANS WITH TIME AS A COORDINATE 281

being used here, then setting

d
Seqr = <5qk _ ﬂ&) (11.66)
dt
for all k = 1,..., D makes eqn (11.63) become identical to the traditional expres-

sion in eqn (3.5). Also, eqn (11.65) and the traditional expression eqn (3.10) become
identical except for a 7 factor, which is of no importance since it is never zero and the
only use of § W (™) is to be set equal to zero. Thus the two definitions of virtual work
are equivalent, as was asserted.

The interpretation of eqn (11.66) is that, when time is a coordinate and so §z # 0,
the traditional definition of virtual displacement is obtained by subtracting off the
effect of §¢ to obtain a displacement §,q; at fixed time. The extended definition in
eqn (11.64) is equivalent to the traditional definition of § W(°") because it does that
subtraction automatically.

For extended Lagrangian theory, a theorem very similar to the traditional Theorem
3.4.1 can be proved. The following theorem reaches the same conclusion as Theorem
11.10.1 above, but does so with no dependence on traditional Lagrangian theory of
Chapter 3.

Theorem 11.10.2: Form of Forces of Constraint

Given the constraints defined by eqns (11.56, 11.63), the virtual work defined in eqn
(11.64) is zero, W1 = 0, if and only if. for allk = 0, ..., D, the generalized forces
of constraint have the form

€. 9G4 (q)
R
0qk

QLeoms) — (11.67)

a=1

Proof: The proof is very similar to that in Theorem 3.4.1 and will not be repeated
here. O

11.11 Reduced Lagrangians with Time as a Coordinate

Just as was proved for traditional Lagrangian theory in Theorem 3.8.1, holonomic
constrains that do no virtual work can be used to reduce the number of degrees of
freedom of extended Lagrangian systems. There are two ways that this can be done.

First, one might reduce the degrees of freedom using the traditional methods of
Section 3.8 to obtain a reduced traditional Lagrangian L. Then the transition to the
extended theory in Definition 11.3.1 can be done starting from the traditional reduced
L Lagrangian instead of the full Lagrangian. Then the extended Lagrangian theory
goes forward just as if the eliminated degrees of freedom had never existed.

Alternately, the transition to the extended theory can be done first, exactly as
stated in Definition 11.3.1, starting from the full traditional Lagrangian L to obtain
the full extended Lagrangian £. Then the constraints can be used to reduce the num-
ber of degrees of freedom in the context of the extended Lagrangian theory.

This second method is the subject of the following theorem, which is analogous to
Theorem 3.8.1 for the traditional Lagrangian theory.
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Theorem 11.11.1: Reduced Lagrangians With Time as a Coordinate

In the theory with time as a coordinate, a reduced Lagrangian L(g",§/)) can be ob-
tained by solving the constraint equations G,(q) = 0 from eqn (11.56) for the bound
variables as functions of the free ones, thus obtaining ql(b) = q](b)(q(f )y and from it

- (b)
[

¢? = ql(b) (", ¢1)), and then making the substitution

£gD.q") = £ (4.4 @ ). 4D.4P @ ", 4)) (11.68)

This reduced Lagrangian will be homogeneous of degree one in the reduced set of general-
ized velocities ¢'/). If the forces of constraint do no virtual work, the extended Lagrange
equations in the reduced variable set will then be

J (aﬁ'(q(f)’q(f))> _L@.4") _ (11.69)

dp 34 dqk

for all of the (D + 1 — C) index values k corresponding to the free variables.

Proof: The proof of this theorem is the same as that in Theorem 3.8.1, with the
substitution of £ for L and the addition of the variables ¢q and go.

The homogeneity of £ follows from fact that, in the extended Lagrangian theory
with time as a coordinate, the derivatives of the bound variables have the simple
linear form

®) ¢ ()
dq, " (q")
- (b) q, 9 - (f)
g = Z aq(f_> g (11.70)
k

freek

which preserves the homogeneity when the substitution in eqn (11.68) is made. O

One interesting property of the method of Theorem 11.11.1 is that it is possible
in some systems for the time g to be chosen as one of the bound variables. Then
the reduced Lagrangian £ will not contain the time or its derivative. Such a case is
examined in Exercise 11.6.

Note that the homogeneity of the reduced Lagrangian £ proved in Theorem 11.11.1
means that Lemmas 11.3.2, 11.4.1, 11.4.2, and 11.9.1 that were proved for the full
Lagrangian £ also apply to L.

11.12 Exercises
Exercise 11.1 Write out the proof of Theorem 11.8.1 in detail.

Exercise 11.2 In Section 2.10 it was stated that the traditional transformation between any
two systems of good generalized coordinates had to obey the D x D determinant condition
|0g(r1,...,rp,t)/or| 0.

(a) Show that this condition, plus the identity transformation for the time ro = g9 = ¢
assumed by the traditional theory, together imply the condition eqn (11.47) required for co-
ordinate transformations in the extended Lagrangian theory.

(b) Explain why the extended transformation theory therefore includes the traditional trans-
formation theory as a special case, but is more general.
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Exercise 11.3 Demonstrate that the standard Lorentz transformation of eqn (11.52) satisfies
the condition in eqn (11.47) and therefore is a legitimate extended Lagrangian transformation.

Exercise 11.4 A harmonic oscillator in three dimension has the traditional Lagrangian

1 1
L (qro1- gfo)- 40) = 5 (v24+y2+27) - Sk (2 4+ +2) (11.71)

where x” = dx/dt, etc.

(a) Write the extended Lagrangian L(g, ¢) for this system.

(b) Write the generalized momentum pg and show that it is the negative of the traditional
generalized energy function H (g, ‘1{0]7 1).

(c) Use the extended Lagrange equation for k = 0 to show that the time is an ignorable
coordinate, and that the energy of the system is a conserved quantity.

(d) Find the generalized momenta py for k =0, ..., 3 and use them to verify eqn (11.16) for
this system.

Exercise 11.5

(a) Starting from the traditional Lagrangian for a system of charged particles in a given elec-
tromagnetic field, as shown in eqn (2.103), write the extended Lagrangian L.

(b) Show that Py = 9L/91 is the negative of the generalized energy function eqn (2.105).

Exercise 11.6 Suppose a single mass m is constrained to lie on the frictionless floor of a
rising elevator, so that its z-coordinate obeys the constraint z = ar?. Assume that gravity acts
downwards in the negative z-direction.

(a) Write the full traditional and extended Lagrangians for this problem.

(b) Select gy = ¢ to be the bound coordinate and x, y, z to be the free ones. Write the reduced
Lagrangian £ as derived in Section 11.11.

(c) Use this £ to write the three extended Lagrange equations. Show that the x and y Lagrange
equations are simple, and reduce dx /dt and dy/dt to constants. Argue that the third Lagrange
equation is redundant and is automatically satisfied whenever the first two are.

Exercise 11.7 In the proof of Lemma 11.9.1, use eqn(11.19) to derive the last equality in
eqn (11.55).

Exercise 11.8 In Exercise 2.7 we considered two traditional Lagrangians L and L' related by
a gauge transformation. (Note that the prime here does not mean differentiation with respect
to time.)

(a) Write the extended Lagrangians for these two cases, and show that

q‘“M dx(q)
c dp

£ =L+ (11.72)

(b) Derive the canonical momenta Py P and Béy B’ from the two extended Lagrangians in
eqn (11.72).
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(c) Use the result of (b) to show that

) q“M ax

B q(Ch) 3_)(
Ly = LBy c ot P

c Or

(11.73)

Il
le=1

(d) Show that

(2 +aM0) = (p)+a V@) and (p—gPAasc)=(p/~qPA/c) (11.74)

and hence that these expressions are gauge invariant. Why must an expression like
(B —gMA/ c) be independent of the gauge of the electromagnetic field?

(e) Show that any solution gx = gx(8) that solves the extended Lagrange equations with £
also solves the extended Lagrange equations with £’
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HAMILTONIAN MECHANICS WITH TIME AS A COORDINATE

Chapter 11 used the traditional Lagrange equations of Chapter 2 as the basis for an
extended Lagrangian theory in which time is treated as a coordinate. This extended
theory combined the Lagrange equations and the generalized energy theorem into
one set of equations.

In the present chapter, we will do the same with the traditional Hamilton equa-
tions of Chapter 4. The traditional Hamilton equations, including the Hamiltonian
form of the generalized energy theorem, will be combined into one set of extended
Hamilton equations in which time is treated as a coordinate.

The extended Hamilton theory developed in this chapter is of fundamental impor-
tance for the more advanced topics in mechanics. It is used in Chapter 16 to write the
relativistically covariant Hamiltonian, which is then used to derive the Klein—Gordon
equation of relativistic quantum mechanics. And the extended Hamilton equations
provide the basis for our discussion of canonical transformations in Chapter 17.

12.1 Extended Phase Space

The objective of extended Hamiltonian theory is to write the equations of motion in
terms of an extended set of phase-space variables that includes the new coordinate
go = t and its conjugate momentum pg defined in Section 11.4. When the new coordi-
nates are included, the phase space becomes (2D +2)-dimensional, with the canonical
coordinates

q,P=40,91;---,49D, P0s P15 ---, PD (12.1)

Solutions to the traditional Hamilton equations of Chapter 4 gave the equations of
motion of the system as a trajectory through the traditional phase space, in the form
qr = qx(t) and py = pr(¢t) for k = 1,..., D. The equations of motion of extended
Hamiltonian theory will give the phase-space trajectory as functions of the new pa-
rameter B introduced in Section 11.1, gy = ¢x(B) and py = pr(B) fork =0, ..., D,
where the phase space now includes the two new coordinates gy and py.

12.2 Dependency Relation

From the viewpoint of extended Lagrangian mechanics, the (2D + 2) variables ¢, p
of the extended phase space defined above are not independent. They have a single
dependency relation among them, in the sense treated in Section D.29. We begin by
examining this dependency, since the function that describes it will also play the role
of the extended Hamiltonian in our extended theory.

285
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In extended Lagrangian theory, the generalized momenta are those defined in
eqns (11.9, 11.14)

. 0L(q.9) .. 0L(q.9) /
(q.q) = —2 47 )= —22 —_H Gl 12.2
pi(q.q) " po(q. q) 8d0 (q101- g10y- 1) (12.2)
fori =1,..., D, where g; = dqi/dt = gi/qo and the traditional generalized energy

function H (g0, ‘1{0]’ t) has been written in the notation of Section 11.2, which we will
continue to use in the present chapter.

In Theorem 4.1.1 it was proved that the D-rowed square matrix defined, for i, j =
1,...,D, by

<ap[0]> _ op; (C][O]» 61{0], 1) (12.3)

7 7
8q[o] ij 8q]

was nonsingular, and hence that the equations px = px (g0, q[’o], t) could be inverted
to give q; = q;(qio1. po1. t). The traditional generalized energy function was then
rewritten in terms of the traditional phase-space variables g}, pjo}, ¢, and was there-
after referred to as the Hamiltonian.

This change of variables does not change the function, however. The traditional
Hamilton is the same function as the generalized energy, and is defined as the com-
pound function

H = H (qpo1. pio)- t) = H (gpoy. o) (qr01 Proy- 1), 1) 12.4)

Thus the second of eqn (12.2) can be written as the identity

po(g. ) = —H (q101- P101(q- ) q0) (12.5)

where ¢ has now been replaced by ¢o.

As is customary (see Section D.29), we express this dependency among the ex-
tended phase-space variables ¢, p by defining a dependency function K(g, p) and
setting it equal to zero.

Thus, we write the dependency relation as

K(g,p) =0  where  K(q.p) = po+ H (g1, Pio1- 90) (12.6)

12.3 Only One Dependency Relation

It is important, particularly when we want to derive the extended Hamilton equa-
tions from Hamilton’s Principle in Chapter 13, to establish that there is only one de-
pendency relation among the extended phase-space variables, as is proved in the
following lemma and theorem.
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Lemma 12.3.1: Rank of Transformation Matrix
The (D + 1)-rowed square matrix defined by

(3_17) _pilg.p) _ L. p) 12.7)
9q ) jj dq; G 9
fori,j=0,..., D, is singular and has rank D:
d 0
Pl_o and Rank(Z)=b (12.8)
9q 9q

Proof: First, to prove the singularity. The homogeneity of the p; proved in Lemma
11.4.1 and the Euler Condition of Theorem D.31.1 together imply that

Oziq,wzic_p) ; 12.9)
=0 8ql 1=0 aq ki

where the last expression is written in the form of a matrix multiplication. But at least
one of the ¢; is nonzero, since it is always true that gg = (d¢/dB) # 0. Thus Corollary
B.19.2 implies that the matrix (dp/d4q) is singular, as was to be proved.

The proof that (dp/d4) has rank D then consists of demonstrating that, though
singular, it has a nonzero D-rowed critical minor. The matrix (dp/d¢) may be written
out as

dgo 941 94D
o dpr - Opt
(8_1)) = dgo 9491 d4p (12.10)

p pp D
dgo  9q1 d4p
Removing the first row and the first column of this matrix leaves a D-rowed square
matrix consisting of all rows and columns with nonzero indices. Section 11.4 demon-
strated that, for k # 0, the extended momenta p; in this matrix are identical to the
traditional ones defined in Section 2.12. Hence, except for nonzero { factors on each
matrix element, this matrix is the same as the matrix written above in eqn (12.3) and
proved nonsingular in Theorem 4.1.1. Thus this D-rowed matrix is nonsingular and
its determinant constitutes a D-rowed critical minor for the matrix in eqn (12.10), as

was to be proved. O
Theorem 12.3.2: One Dependency Relation

Considered as functions of the extended Lagrangian variables qo,q1,...,qD,
40, 41, - - - » 4D the phase-space coordinates listed in eqn (12.1) have exactly one depen-

dency relation of the sort defined in Section D.29.
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Proof: Apply Theorem D.29.1 to the present problem, with M = N = (2D + 2), the
functions f; replaced by the set ¢, p, and the variables x; by the set ¢, §. The number
of dependency relations then depends on the rank of the matrix (3f/dx), which here
has the block form

u 0

(50) ()

in which the matrix is written as four (D + 1) x (D + 1) blocks. The U is the unit
matrix, 0 is the null matrix, (dp/dq) is a matrix defined similarly to eqn (12.7) but
using ¢ rather than ¢, and the lower-right block (dp/d¢) is the matrix written in eqn
(12.10) above.

It follows from the discussion of the determinants of partitioned matrices in Sec-
tion B.15 that the determinant of the matrix in eqn (12.11) is the same as the deter-
minant of its lower, right-hand block (dp/d¢), which determinant was proved zero
in Lemma 12.3.1. Also, it follows from that same lemma that the matrix that would
remain when the py row and the gy column were removed from eqn (12.11) would
be nonsingular. Thus eqn (12.11) is a (2D + 2)-rowed square matrix of rank (2D + 1).

If the rank of the matrix eqn (12.11) is r, then Theorem D.29.1 proves that the
number of dependency relations among the ¢, p willbe M —r = 2D +2 —r. Since we
have shown that the rank of this matrix is » = 2D + 1, one less than the dimension of
the matrix, it follows that M — r = 1 and that there is one and only one dependency
relation, as was to be proved. O

(12.11)

12.4 From Traditional to Extended Hamiltonian Mechanics

The principal objective of extended Hamiltonian theory is to write the equations of
motion of the system in a form that treats all of the variables of phase space on an
equal footing. This was also the objective of the traditional Hamiltonian theory de-
veloped in Chapter 4. The difference is that the extended phase space includes a new
pair of canonically conjugate coordinates, the time gy and its conjugate momentum
Po-

In the extended Hamiltonian theory, the momenta p; (including po), which are
derived quantities in extended Lagrangian theory, are now to be considered as in-
dependent coordinates in phase space. This freeing of the momenta in Hamiltonian
mechanics means that the Lagrangian identities, eqn (12.2), no longer apply in Hamil-
tonian theory. The same relations will be recovered, however, not as identities but as
consequences of the Hamilton equations of motion at the end of the calculation.

In particular, it is important to note that the dependency relation eqn (12.6) is no
longer to be assumed in advance. In Lagrangian mechanics, K(g, p) = 0 is an identity.
But in Hamiltonian mechanics, K(g, p) is to be treated as just another phase-space
function whose value is determined by the Hamilton equations of motion.
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In Chapter 11, the extended Lagrangian theory was obtained by converting the
traditional Lagrange equations to a parametric form. Similarly, extended Hamilto-
nian mechanics is obtained by converting the traditional Hamilton equations to a
parametric form that uses derivatives with respect to an arbitrary monotonic parame-
ter B rather than with respect to the time as in traditional theory, and that includes the
Hamiltonian form of the generalized energy theorem as one of the extended Hamilton
equations. This conversion is most transparently accomplished if we define the depen-
dency function K(gq, p) itself to be the extended Hamiltonian function and write the
extended Hamilton equations in terms of it.

Definition 12.4.1: Standard Extended Hamiltonian
We define the standard extended Hamiltonian to be the function that appeared in the
dependency relation of eqn (12.6).

K(q. p) = po + H (q101 proj» o) (12.12)

Just as for the extended Lagrangian, this definition is not unique. Several different
forms are possible, but the simplest one is this standard function. We next use this
extended Hamiltonian to state the extended Hamilton equations.’>

Definition 12.4.2: Extended Hamilton Equations
With the extended Hamiltonian K(q, p) defined in eqn (12.12), the extended Hamilton
equations are

IK(q, . K (q,
go=Lar g 5= Map (12.13)
APk G
forallk =0,..., D, where the dot denotes differentiation with respect to parameter B.

An immediate consequence of the extended Hamilton equations is that

D D
K aK(q, p) . K(q, p) . .. ..
B kE:O ( b gk + e Dk kE:O( DPkqk + Gk Pi) (12.14)

Thus the relation K = 0, which was an identity in Lagrangian mechanics, is obtained
as a consequence of the Hamilton equations of motion, provided that we choose K
to be zero at some initial value of 8.>* We will assume throughout that this initial
condition has been specified. Thus the relation

K(g,p)=0 or  po=—H (g}, po1q. ). 90) (12.15)

is recovered, not as an identity but as a consequence of the Hamilton equations of
motion. Note that the condition K (g, p) = 0 must not be applied until after all partial
derivatives in eqn (12.13) have been taken. It may then be applied to simplify our
equations if necessary.

53What we call the extended Hamilton equations are referred to by Lanczos (1970) as “the parametric
form of the canonical equations.” See also Rund (1966).

54Choosing some nonzero constant for K at time zero would be equivalent to a trivial redefinition of the
traditional Hamiltonian. The value zero is the simplest choice and will be adopted here.
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12.5 Equivalence to Traditional Hamilton Equations

We now prove that these extended Hamilton equations are equivalent to a combina-
tion of the traditional Hamilton equations, and the traditional Hamiltonian form of
the generalized energy theorem.

Theorem 12.5.1: Equivalence of Extended Hamilton Equations

Let the extended Hamiltonian K(q, p) be defined as in eqn (12.12). Then the extended
Hamilton equations, eqn (12.13), when k = 0 are equivalent to the traditional Hamilto-
nian form of the generalized energy theorem. And the extended Hamilton equations, eqn
(12.13), when k # 0 are equivalent to the traditional Hamilton equations.

Proof: Expressed in our present notation, the traditional Hamilton equations in eqn
(4.21) are

9H (q101, pron» dH (q101. pro)-
il = (g101: P10y 40) Pl = — (a101, P10 90) (12.16)
dpk dqk

and the traditional Hamiltonian form of the generalized energy theorem, the third of
eqn (4.21), is

dH _ ., _9H (9101, P01, 90)

— 12.1
dt 990 ( 7

where, as throughout this chapter, the prime indicates differentiation with respect to
the time.

First consider the k = 0 case. Then, eqn (12.13) becomes

dH (qi01. Poy- 90)

(12.18)
990

go=1 po=—
The derivative gy = dt/dB, which here has the value one, can never be zero, since both
the time r and parameter 8 vary monotonically along the system path in configuration

space. Combining the two equations in eqn (12.18) and writing ¢ for ¢¢ therefore gives

dpo _po _ _OH (9101: P1o1: 90)

12.19
dt q0 ot ( )
But, from eqn (12.15), po = —H (g0, o, 90). Hence eqn (12.19) becomes
dH 0H , ,
_dH __9H (qp01, Ppo1, 90) (12.20)

dt 990

which is eqn (12.17), as was to be proved.
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When &k # 0, eqn (12.13) become

dH (q101- P01 90)
9qk

_9H (q101- Pro1- 90)

(12.21)
Opk

and Dk = —

G
Again using the first of eqn (12.18), these become

d ) aH ) )
and | dpx _ P 9H (o). pror 40)

dt 4o opx dt  qo g

dge _ gx _ 9H (qi01, Proy, 90)

(12.22)
which are eqn (12.16), as was to be proved. O

The privileged treatment of gp = ¢ in the first of eqn (12.18) is due to the simple
form chosen for the extended Hamiltonian eqn (12.12). As will be shown in Section
12.8, other choices of K are possible that treat some other coordinate ¢; similarly, or
that have no particular coordinate with a unit derivative.

12.6 Example of Extended Hamilton Equations

Consider the simple example of a three dimensional harmonic oscillator in Section
2.3. In the notation of the present chapter, the traditional Lagrangian function is

d 1 1
L (qlol, %, 610) = 5m (x/z +y'24 z’z) - Ek (x2 +y2 + 22) (12.23)

where we have written g, q1, g2, g3 = ¢, x, y, z for clarity, and we continue to use the
notation x” = dx/dt, etc. The extended Lagrangian is defined in eqn (11.7). It is
M (g f
L. 9) =+ (x2 +37 + zz) — 5k (x2 +y+ zz> (12.24)
Using the methods of Chapter 4, the traditional Hamiltonian function is found to
be

1 1
H (apo1, por: q0) = 5~ (pi +py+ pf) + ok (x2 +y2+ zz) (12.25)
The extended Hamiltonian is then defined in eqn (12.12) to be
1
_ ) 2 2 1 2, .2, .2
/C(CI,P)—P0+2m (px+py+pz)+2k<x +y +z ) (12.26)

and the extended Hamilton equations are

. 0K(q,p) . dK(g,p) . 0K(q,p) . 0K(q,p)
= ——— X=—" y=—"7—" 1=—7""

(12.27)
apo dpx apy ap:
and
_ 9K(q.p) . 0K(q,p) . 0K(q,p) . 9K(g,p)
pp=—-———  px=——F1— Ppy=——F— p;=————
ot ox ay 9z

(12.28)
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12.7 Equivalent Extended Hamiltonians

We have introduced an arbitrary monotonic parameter 8 and used it to write the
extended Hamilton equations (including the Hamiltonian form of the generalized
energy theorem) in a parametric form. The solutions to the extended Hamilton equa-
tions, eqn (12.13), will be referred to as phase-space trajectories.

The parameter 8 may be any quantity that is assumed to vary monotonically along
the system path. This parameter independence results from the fact that the right-
hand sides of the extended Hamilton equations, eqn (12.13), do not contain g explic-
itly. Sets of coupled differential equations of this type can be reduced to a smaller set
with parameter 8 eliminated, as is discussed in detail in Section D.36. For example,
if we know that ¢; # 0 in some region, then we can write a set of 2N + 1 equa-
tions by dividing each of eqn (12.13) by ¢, giving, for all j = 0,..., D, j # [, and
k=0,...,D,

dgj ¢, 9K(q, p)/dp; d ; aK(q, p)/d
dgj _ 4§ _ (qp)/pJ_Aj(q’p) 4Pk _ Pk _ (g, P)/dqk _

=4 D — = — = Bi(q. p)
dgq q  09K(q, p)/dpi dgi  q 0K (q, p)/op 7P

(12.29)
The number of equations has been reduced by one, and the parameter B is gone. The
independent variable in now ¢;. Theorem D.36.2 demonstrates that, given initial val-
ues qj(o) and p,ﬁo) at some value ql(o) of the new independent variable, these equations

have a unique solution. For all j,k =0, ..., D, j # 1, we have

q;i = q;(q) and Pr = pe(qr) (12.30)

which define a unique relation among the phase-space variables ¢, p.

This unique relation eqn (12.30) among the 2N + 2 phase-space variables defines
the phase-space trajectory of the system. Such a trajectory determines completely the
physical behavior of the system, and hence constitutes a unique solution to the me-
chanics problem. It does not matter physically how ¢;, for example, is related to the
parameter 8. Only the relations among the phase-space variables ¢, p themselves are
physically meaningful. Since the Hamilton equations exist only to predict system be-
havior, two different Hamiltonians that imply the same phase-space trajectory will be
taken to be equivalent.

Note to the Reader: Two extended Hamiltonians and sets of extended Hamilton
equations are equivalent if and only if they produce the same phase-space trajectory
and hence the same system behavior.

Theorem D.36.2 (which the reader is advised to study) also shows that we may;, if
it is convenient in a particular context, reintroduce the parameter 8 into eqn (12.30)
and so write them in parametric form gx = gx(8) and py = pr(B), forallk =0, ..., D.
However, it will still be true that the phase-space trajectory depends only on D + 1
arbitrary initial values, not on D + 2 as the parametric form might suggest.

In Section 11.7, we showed that the extended Lagrange equations are invariant
under a change of parameter from B to any other monotonic parameter 6. In the
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extended Hamiltonian theory, such a change of parameter would have the effect of
introducing a uniform multiplicative factor d6/dg into eqn (12.13) since, for exam-
ple, gx = (dqr/d0)(d6/dB). These factors would cancel from eqn (12.29) and hence
the phase-space trajectory defined would be the same no matter which parameter
was used. In the extended Hamiltonian theory, invariance under change of parameter
means that the same phase-space trajectory is obtained no matter what the monotonic
parameter 8 may be.

12.8 Alternate Hamiltonians

Theorem 12.5.1 used the standard Hamiltonian K(g, p) defined in eqn (12.12) to
prove the extended Hamilton equations equivalent to the traditional results. It might
seem that nothing has been accomplished except the introduction of a parameter j
which has just been shown to be removable. But the point of introducing 8 and writ-
ing eqn (12.13) has been to obtain equations that treat all of the 2N + 2 phase-space
coordinates ¢, p on an equal footing. The standard Hamiltonian eqn (12.12) leads to
go = 1 and hence treats time in a privileged way. But there are other Hamiltonians
that are equivalent to the standard one in the sense defined in Section 12.7, that do
not have this simple relation between ¢t and 8. Two cases of interest are proved in the
following lemmas.

Lemma 12.8.1: Multiplication by Nonzero Function

If an alternate extended Hamiltonian is defined by K,(q, p) = g(q, p)K(q, p), where
g(g, p) is any phase-space function that is known to be nonzero, then K(q, p) = 0 from
eqn (12.15) holds if and only if K4(q, p) = 0 holds. The extended Hamilton equations
with K,(q, p) are equivalent to those with K(q, p).

Proof: The extended Hamilton equations with the alternate Hamiltonian &, (g, p) =
8(q, p)K(q, p) are
AKa(q, . 0Ka(q,
o= Maep) g = @ p) (12.31)
P g
We show that these equations are equivalent to the standard extended Hamilton equa-
tions, eqn (12.13).
Consider the first of eqn (12.31) for a particular k value. The partial derivative is
IKa(q. p) IK(q. p) | 9g(g.p)
————=g(q, p) + K
Opk Pk Ik

But now, after the partial derivatives are all taken, we can use eqn (12.15) to write
K(g, p) = 0. Thus eqn (12.32) reduces to

(. p) (12.32)

K. (q, K (q,
Pl D) _ gq, py 202D (12.33)
Pk dpk
Similarly,
IKa(q, p) dK(q. p)
— =84, p)——
gk 9qk

If we now choose some coordinate with ¢; # 0 and form the ratios in eqn (12.29),
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the nonzero g(g, p) factors will cancel. Hence the functions A;(g, p) and Bi(q, p) in
eqn (12.29) will be the same whether K or &, is used for the extended Hamiltonian.
The two extended Hamiltonians will produce identical phase-space trajectories and
therefore are equivalent. O

We now present the second way in which an alternate extended Hamiltonian can
be formed.

Lemma 12.8.2: Solution for an Alternate Momentum

Suppose that there is a range of 8 values for which some particular generalized velocity ¢;
is nonzero. Then, the dependency relation K(gq, p) = 0 can be solved for p; = pi(q, puy)
and rewritten as

Kp(q,p) =0  where  Ky(g, p) = pi — pi(q, puy) (12.34)

and K(q, p) = 0if and only if Kp(q, p) = 0. The extended Hamilton equations with K
are equivalent to the standard equations in eqn (12.13).

Proof: First, we prove that the dependency relation can be written in the form eqn
(12.34). Since ¢; # 0 by assumption, eqn (12.13) gives

W@.p _ .2y (12.35)
opi

By the implicit function theorem, Theorem D.26.1 with the identifications N = 1,
f — K, y1 — pi, and x — g, py, this is the necessary and sufficient condition for
the equation (g, p) = 0 to be solved for p; giving p; = pi(q, pyy)-
The extended Hamilton equations with C;, are
_0Kp(g. p)

K (q, .
g=elar g = n) (12.36)
Ik 94k
To show them equivalent to the standard extended Hamilton equations of eqn (12.13),
we make use of eqn (D.103), with the same identifications as above, to write for all
k=0,...,D

A (g, ak\ "' aK
Ky _ . pup) _ <_> oK (12.37)
dqk 9qk opi 0qk
and for all k #/
K api(q, A\ ' aK
Ky _ . pm) _ (_> oK (12.38)
opk 0Pk opi opr
Also
0Ky _ | _ <a/c>—1 IK
opi op; opi

If we now form the ratios in eqn (12.29), the nonzero (3K /dp;)~" factors will cancel.
Hence the functions A;(g, p) and By (g, p) will be the same whether IC or K is used
for the extended Hamiltonian. The two extended Hamiltonians will produce identical
phase-space trajectories and therefore are equivalent. O
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12.9 Alternate Traditional Hamiltonians

The traditional Hamilton equations treat the time 7 in a special way. It is an interesting
curiosity that Hamilton equations of the traditional form can also be derived that treat
some other variable specially.

For ranges of 8 with §; # 0, an alternate traditional Hamiltonian H® can be
defined by

HY (quy. puy. a1) = —pi(q. puy) (12.39)

where p;(q, pyp) is the function defined in Lemma 12.8.2. Then the alternate extended
Hamiltonian X, may also be written in a form parallel to eqn (12.12)

Ks(q, p) = pi + H® (qu1, puy 1) (12.40)
The traditional Hamiltonian defined in eqn (12.39) can be used to write the tradi-
tional Hamilton equations in an alternate form. They are, fori =0,...,( — 1), ( +
0,...,D,
dgi _ 9H"Y (qu, puy, a1) dp; dH D (g, puy, ar)
dgi _ ari _ _ (12.41)
dq opi dqi agi

These equations can be proved by starting from eqn (12.36), and using the same
chain of logic used in Theorem 12.5.1, but now with index 0 replaced by index I.
Such alternate traditional Hamiltonians are discussed, for example, in Corben and
Stehle (1960).

12.10 Not a Legendre Transformation

It might seem that Hamilton equations with time as a coordinate could have been
derived by the same technique as was applied to derive the traditional Hamiltonian
H in Chapter 4. Since we already have an extended Lagrangian £(g, ¢) from Chapter
11, we might try to make a Legendre transformation to an extended Hamiltonian H
by the rule

D . D
. L(q, q) . . . .
GEIEDS %qk —L(g.9) =) pr(q. i — £(q.9) (12.42)
k=0 9 k=0
where the definition of p; from eqn (11.9) has been introduced. We would then ex-
press H(q, ¢) in terms of the correct variable set as H(g, p), leading to Hamilton
equations

IH(q, . IH(q,
= (4. p) = — (4, p) (12.43)

Pk gk

However, this procedure fails on two counts.
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First, as was proved in Lemma 11.4.2, the fact that £(g, ¢) is homogeneous of
degree one> in the generalized velocities implies that the (g, §) in eqn (12.42) is
identically zero. We emphasize that Z,?zo Pr(q, ¢)qr is exactly the same function of the
variables ¢, ¢ as L(g, ¢) is. Thus, not only is H(g, ¢) equal to zero, but all of its partial
derivatives with respect to g; and ¢ are also zero. We can denote this by writing
‘H = 0. Thus the Legendre transformation method fails at its first step. The function
H(q, ¢) cannot be written.

Second, even if a function H(q, ¢) could be found, we could not carry out the next
step in the Legendre transformation by writing it in terms of ¢, p and thus transform-
ing it into a correct Hamiltonian H(g, p). To make that change of variables, the equa-
tions defining the momenta in terms of the coordinates and velocities px = pr(q, ¢)
would have to be solved for the ¢; giving ¢ = ¢x(q, p), which could then be substi-
tuted into H(q, ¢) to give the Hamiltonian as H(q, p) = H(q, ¢(g, p)). But solving for
the ¢ is not possible. The necessary and sufficient condition for it is that the (D + 1)-
rowed square matrix (dp/dq) defined in eqn (12.7) must be nonsingular. But that
matrix was proved singular in Lemma 12.3.1.

Thus the extended Hamiltonian theory cannot be obtained by a Legendre trans-
formation from the extended Lagrangian theory. Rather, we have used the traditional
Hamiltonian function H (gjoy, q[’o], t) to define an extended Hamiltonian K(q, p) di-
rectly, as in eqn (12.12). The extended Hamilton equations eqn (12.13) then deter-
mine the phase-space trajectory of the system. The Lagrangian identity between pg
and —H (gjoy, q[’o], t) is not assumed in the extended Hamiltonian theory. It is, as it
were, “forgotten”. Thus, unlike H(g, ¢) = 0, the extended Hamiltonian K(g, p) is not
identically zero. It has nonzero partial derivatives and is set equal to zero at the end
of the calculation as a consequence of the Hamilton equations of motion.>®

12.11 Dirac’s Theory of Phase-Space Constraints

A theory of primary phase-space constraints developed by Dirac is closely related to
our extended Hamiltonian theory. Since the reader may already have encountered
Dirac’s ideas, or will in the future, it will be useful to discuss his formalism here.
Dirac believed that the route from classical to quantum mechanics required a
Hamiltonian that could be used to derive something like a Schroedinger equation,
much as is done in our Section 4.7 or in his derivation of the Dirac equation to be de-
scribed in Section 16.15. The identical vanishing of the H(q, ¢) defined in eqn (12.42)
was therefore a problem. Dirac (1964) addressed this problem by creating what he

55As was discussed in Section 5.15 in the context of the calculus of variations, the homogeneity of
L(q, ¢) is a consequence of the completeness of the set of extended Lagrange equations. No equations have
been left out that could be recovered by a “second form” of the Euler-Lagrange equations. Thus, in the
Lagrangian context, H(g, ¢) vanishes because it is not needed. The reader might look again at the example
in Section 5.6. If she tries to define a “second form” of the Euler-Lagrange equations in that example using
the prescription & = x(3f/0x) + y(3f/9y) + 2(df/3z) — f she will find the result to be identically zero, just
as in eqn (12.42), and for the same reason.

561n Dirac (1964), the same distinction is made. The H is said to be strongly zero, while K is said to be
weakly zero.
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called a “generalized Hamiltonian formalism” with modified Hamilton equations, and
phase-space constraints in the form ¢,,(¢, p) = 0. Dirac’s formalism is intended to in-
clude complex problems such as Hamiltonian theory in the curved spaces of general
relativity. We will present only enough of it to understand its relation to the extended
Hamiltonian theory that we have developed in this chapter.

Let us suppose for a moment that we have a Hamiltonian function H(g, p), such
as the one proved not to exist in Section 12.10, as well as N phase-space constraints
¢m(q, p) = 0. Dirac uses Hamilton’s Principle and the calculus of variations to derive
the equations

N N

) oH Ibm . oH Odm
=Y e =—=_-Y"1 (12.44)
"= o 122:1 "o T T 2_:1 " dqi

Except for our assumption that H = 0, his derivation is similar to the one we give in
Section 13.4. He rewrites these Hamilton equations by defining an effective Hamilto-

nian
N

Heii(q, p, 1) =H(q, p)+ D kmén(q, p) (12.45)

m=1

in which the constraints and their Lagrange multipliers have been incorporated into
Hegs.)! The result is that eqn (12.44) now take the standard Hamiltonian form>®

_ et . OHef

= (12.46)
dpxk Pk aqr

qk
But, of course, H does vanish identically, as discussed in Section 12.10. Thus we are
left with only the constraint functions

N
Heit(q, s A) = ) dmbm (12.47)

m=1

Dirac makes a distinction between primary and secondary constraints, and be-
tween first-class and second-class constraint functions. He says that the primary con-
straints, “are consequences merely of the equations that define the momentum vari-
ables.” It is clear that our function K(g, p) defined in eqn (12.12) is exactly the sort of
primary constraint that Dirac’s intends, since it derives from the Lagrangian definition
of pg. Dirac defines secondary constraints as those that emerge from a consistency
condition among the primary ones. He defines a first-class constraint function as one
whose Poisson bracket with all of the other constraint functions is itself weakly zero.
Otherwise the function is second-class.

57This incorporation procedure is the same as is often done in Lagrangian mechanics and the calculus of
variations, as discussed in Section 3.6.

58Dirac actually writes the effective Hamilton equations in an Poisson bracket form, similar to our eqn
(12.60). But the two ways of writing the Hamilton equations are equivalent.
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The reader is referred to the cited reference for details of these distinctions. For
our purposes here, they are unnecessary since we have proved in Section 12.3 that
there is one and only one dependency relation in our theory. Thus K(g, p) = 0 is a
primary, first-class constraint, and the only one present.

It follows that, setting ¢; = K for the single constraint, Dirac’s eqn (12.47) be-
comes simply

Hett(q. p. 1) = MK(q, p) (12.48)
and his effective Hamilton equations eqn (12.46) reduce to
IK(q, . IK(q,
qgx = klﬂ and Pk = —A1 M (12.49)
B Gk

The multiplier A cannot be zero, since that would imply that / = 0 in contradiction
to the monotonic variation of both ¢ and 8. A nonzero A; cancels from eqn (12.29)
and so eqn (12.49) are equivalent to the standard extended Hamilton equations eqn
(12.13). Dirac’s result is therefore equivalent to our extended Hamilton equations,
eqn (12.13).

It seems, at least in the context of the extended Hamiltonian theory presented in
this chapter, that the principal difference between Dirac’s approach and the one we
have used here is that we refer to K as a dependency function and an extended Hamil-
tonian, while Dirac would refer to the same K as a primary, first-class constraint that
appears in an effective Hamiltonian. The resulting equations of motion are equivalent
in either case.

By basing his treatment on the calculus of variations, Dirac also assumes implic-
itly that any equation of motion derived from Hamilton’s Principle, using a consistent
Lagrangian and well-defined constraints, must be true. But we see in Theorems 6.2.1
and 13.1.2 that there are cases in which a physically incorrect equation can be de-
rived from Hamilton’s Principle with constraints. Thus, while it is interesting to derive
the extended Hamilton equations from the calculus of variations, as Dirac has done
and as we do in Theorem 13.4.1, it is important that we have proved them to be
correct in Theorem 12.5.1 using a proof that is entirely independent of the calculus
of variations.

12.12 Poisson Brackets with Time as a Coordinate

In extended Hamiltonian mechanics, all quantities of physical interest are assumed to
be expressed as functions of the phase-space variables. For example,

f=1r(q,p)=f(q:.4q1,---.9D, Po, P15 ---, PD) (12.50)
The extended Poisson bracket of two such functions can be defined in the same way
as in Section 4.6, but now with the additional variables gy and py.

Definition 12.12.1: Extended Poisson Brackets
In the theory with time as a coordinate, the extended Poisson bracket of two phase-space
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functions f (g, p) and g (q, p) is another phase-space function defined by

(12.51)

D
3f(q. p) 3g(q. dg(q. p) 3f(q.
[f»8]=2< f(q.p)d8(q. p) _ 38(q, p) 3f(q p)>

P AN Ipx Gk Opk

The properties in eqn (4.54) through eqn (4.57) follow from the anti-symmetry of the
Poisson bracket, and so hold also for this extended definition. They are, with f, g,
and h any phase-space functions,

[f. 8]1=—lg, f1 [/, f1=0 (12.52)

Lf, (eg + B = alf, gl + BLSf. hl Lf. ghl = glf, h1+[f. glh (12.53)
and the Jacobi identity

Lf.[g. kT + [, [f, gl + [g. [h, f11 =0 (12.54)

The derivative of a function f with respect to 8 can be found from its Poisson
bracket. If f = f (g, p) is some phase-space function and K (g, p) is the extended
Hamiltonian, then

f=15K] (12.55)
To see this, apply the chain rule,

. df L <3f(q,p). af(q, p) . )
= — = 12.56
f dp k§ b gk + o Dk ( )

and then the extended Hamilton equations, eqn (12.13) to get

D
; a ) aIC ) a 5 BIC ,
f:Z<f(q p) 0K(q, p) _ 3f(q, p) 3K(q. p)

=[f K (12.57)
Gk opk opk 9qx ) Lf- K]

k=0

as was asserted.

It follows from eqn (12.55) that quantity f is a conserved quantity or constant of
the motion, defined as a quantity with f = 0, if and only if it has a vanishing Poisson
bracket with the extended Hamiltonian function K. Equation (12.55) does not require
the additional df (¢, p)/dt term that was needed in eqn (4.52) using the traditional
Hamiltonian. This is because any time dependence of f is already included by making
the time be a phase-space variable ¢.

The Poisson bracket technique for calculating f also allows new constants of the
motion to be found.

Theorem 12.12.2: Poisson’s Theorem
If phase-space functions f(q, p) and g(q, p) are constants of the motion, then the phase-
space function [ f, g] is also a constant of the motion.

Proof: The proof is left to the reader as Exercise 12.3. O
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The derivative of f with respect to some coordinate with ¢; # 0 can also be found.
For example, to calculate df/dt we can use the same equation eqn (12.55) applied to
the simple phase-space function r = ¢g9. Then

0K(q, p)

(12.58)
apo

i =1[q0, Kl =

and so ‘
df _f £k
dt — f  [qo, K]

(12.59)

As in the traditional case, the extended Hamilton equations eqn (12.13) can be
written as Poisson bracket expressions. They are

gk = lqr, K] and  pr = [px. K] (12.60)

And an extended set of fundamental Poisson brackets can also be defined. They are,
forallk,/=0,...,D,

gk, 11 =0 gk, pi] = b1 [Pk, P11 =0 (12.61)

Phase-space functions in extended Hamiltonian theory can be written as functions
of the entire set of independent phase-space coordinates qg, g1, ..., gD, P0s Pls---» PD-
We might be concerned that the same physical quantity could be written in two
different ways, for example as f = f (g(po).q.p), or f = f (g(—H), q, p) where
H = H(q0), po}> 90), which might lead to different values for f in eqn (12.55). But
Exercise 12.2 shows that the same value of f is obtained no matter which way f is
written.

12.13 Poisson Brackets and Quantum Commutators

In classical mechanics, the introduction of phase space and the Hamiltonian formal-
ism can be thought of simply as a mathematical technique that re-expresses Newton’s
second law in a particularly elegant manner, but that adds nothing to its physical
basis. The situation is different in quantum mechanics, however. The canonical mo-
menta>® of phase space determine the wave length of a quantum wave, which in turn
governs the pattern of wave interference phenomena. Thus phase space is given a
new physical significance beyond that found in classical theory.

The fundamental difference between classical and quantum mechanics is that the
latter is a wave theory, with particle interference and superposition phenomena that
are unknown in the classical mechanics of particles. The connection between the

39Note that, as discussed initially in Section 2.17, when a magnetic field acts on charged particles, the
canonical momentum p is different from the particle momentum p. In those cases, it is the canonical
momentum that governs interference phenomena and appears in the quantum uncertainty principle.
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particle variables of classical mechanics and wave variables of quantum mechanics
was originally stated in the early wave mechanics by the deBroglie relations

E =hw px = hiky py = hk, p, = hk; (12.62)

between the classical variables E, p and the angular frequency o and wave vector k of
a matter wave. (The vector k points in the direction of wave travel and its magnitude
k is related to the wave length A of the wave by k = 27/A.) A plane wave in wave
mechanics is then of the form

Yo=aexp{i(k-r—wt)} =aexp{(i/h) (p-r— Et)} (12.63)

The motivation for the definition p = —i% (3/9r), used for example in eqn (4.67)
and Exercise 12.1, is then that the plane wave eqn (12.63) is an eigenvector of this
operator

N 0
pYo = —lhatﬁo = ko = pyo (12.64)

where we have introduced the common notation of using the classical variable with
a hat over it to represent the corresponding quantum operator.®* Using this same
notation, the position operators in Schroedinger theory are identical to the classical
variables, hence X = x, etc. In the extended Hamiltonian theory, we can also introduce
the operator 7 = ¢, and the zeroth momentum operator py = —i%id/dt that obeys the
eigenvalue equation

- .0
povo = —IFZEWO = —hwyo = —Evp (12.65)

corresponding to the definition pg = —H.

It follows that the commutators of the quantum operators have an algebraic struc-
ture that closely resembles the fundamental Poisson brackets of the classical variables
in eqn (12.61). For any wave function v, the commutators of the quantum operators
acting on v are, fork,[ =0, 1,2,3,%!

[Gk. @1y =0 [k, pile¥y =ik [Pk piley =0 (12.66)

where we denote gy = 7, §; = x, etc. Since the wave function v is arbitrary, these
imply the operator equations

Gk, qi]le =0 [qk. pile = ihdy [Pk, Dile =0 (12.67)

which have the same structure as the Poisson bracket relations eqn (12.61) except for
the addition of the reduced Planck constant / as a scale factor with units of action, and
the addition of i due to the complex space used for quantum mechanical operators.

60A wide hat will be used for quantum operators, to distinguish them from Cartesian unit vectors that
are denoted by a narrow hat. Thus p is a unit vector, and p is a quantum operator.

61 Recall that, we use a subscript ¢ on the bracket symbol “]” to denote a commutator of two operators.
Thus [¢k, Pi]c is the commutator of two operators, while [¢, p;] as in eqn (12.61) is the Poisson bracket of
two phase-space functions.
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This analogy between Poisson brackets and quantum commutators can also be
used to state the Ehrenfest theorem of Section 4.8 in a form analogous to eqn (4.58).
Assuming the simple form for the traditional Hamiltonian given in eqn (4.61), it
follows from the general rules of commutators described in Section 7.1 that, for
i = 1,2, 3, the Ehrenfest relations in eqn (4.71) may be written as

g
lhE (qi) —<[41’H]c> lhdl (pi) —([PlaH]c) (12.68)

where H is the traditional quantum Hamiltonian operator defined as

R
2m

H= +UR 5.2, (12.69)
Again, except for the addition of the i# factors and the necessity to take expectation
values, these have the same structure as the Poisson bracket form of the traditional
Hamilton equations in eqn (4.58).

The transition from classical to quantum mechanics by the replacement of phase-
space variables ¢, p by quantum operators ¢, p leads at once to the Schroedinger
equation, as seen, for example, in Exercise 12.1. However, despite the above noted
motivations for it, this transition can appear to be more of a recipe than a funda-
mentally motivated theory. It is justified ultimately by its great success as a predictor
of experimental results. The close analogies between classical phase-space variables
and quantum operators, such as the analogy between Poisson brackets and quantum
commutators presented in this section, suggest that any future theory that seeks to
understand why particles sometimes behave as waves must also confront the funda-
mental origin of particle mass and momentum.

12.14 Exercises
Exercise 12.1 Suppose we have a traditional Lagrangian for a single particle of mass m
m p 17) 1)
ng(x +y% 42 )—U(x,y,z,t) (12.70)
where x” = dx/dt, etc.
(a) Write the traditional Hamiltonian H (go), pjo), t), the extended Lagrangian £(q, ¢), and
the standard form of the extended Hamiltonian /C(g, p) for this case.

(b) Show that the Schroedinger equation derived in Section 4.7 can also be derived by putting
the quantum substitutions

0 .0 : 0
po — —lhg Px — —li"la py — —ihi— p: — _lha_z (12.71)

into the dependency relation K(gq, p) = 0.
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Exercise 12.2
(a) If f is defined as the compound function f = f(g(q, p), g, p), show that

af(g.q, p)

£ = L Kl + ==

[g. K] (12.72)
where [ f, K]| ¢ 18 the Poisson bracket evaluated as if g were a constant.

(b) Define f] and f> as two phase-space functions that differ only in the dependency of g on
either po or —H (¢, pjo)),

fi =1 (3o}, 4. p) fr=1(s(-H@. pop) . 4. p) (12.73)
Show that the application of eqn (12.15) after all partial derivatives are taken gives

fi=f and  [f1.K]=[f2.K] (12.74)
(c) Explain why this proves the assertion made in the last paragraph of Section 12.12.

Exercise 12.3

(a) Use the Jacobi identity, eqn (12.54) to prove Theorem 12.12.2.

(b) Consider the case of a single mass with phase-space variables ¢, p
= 1,X,Y,2, D0, Px» Py Pz- The vector angular momentum of the particle is L = r x p.
Derive the Poisson bracket relations

[Li,Ly]=L;  [L:L:]=Ly [Ly.L;]=Ly (12.75)

(c) Make a short argument supporting the following proposition if true, or opposing it if
false: Any single particle system in which any two of Ly, Ly, and L, are conserved must
also conserve the third one.

Exercise 12.4 Consider a system of a single particle of mass m with traditional Lagrangian

1 1
Liguo gio. 1) = m (2432 +22) = Sk (x* +?) (12.76)

where x’ = dx/dt, etc.

(a) Write the traditional Hamiltonian H (go), pjoj, t), the extended Lagrangian £(q, ¢), and
the standard form of the extended Hamiltonian (g, p) for this system.

(b) Use the extended Hamilton equations to demonstrate that L, is conserved for this system,
but L, and L, are not. Does this contradict the result of Exercise 12.3?

Exercise 12.5 Consider again the case of a single mass with phase-space variables ¢, p
=1,X,Y,% P0, Px; Py, P; treated in Exercise 12.3

(a) State why no system of canonical phase-space coordinates ¢, p can contain both L, and
Ly.
(b) Show that [L2, Ly] = Owhere L2 =L -Land k = x, v, z. State why a set of canonical
phase-space coordinates could contain both L2 and L.
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Exercise 12.6 A single projectile of mass m moving in two dimensions has the traditional
Lagrangian

1
L= M (x’2 +z/2) —mgz (12.77)

where x’ = dx/dt, etc.

(a) Write the traditional Hamiltonian H (g0, pjo), t), the extended Lagrangian £(q, ¢), and
the standard extended Hamiltonian /C(g, p) for this system.

(b) Assuming that x (r=0) > 0 at time zero, and hence for all future times, write the alternate
extended Hamiltonian K in eqn (12.34) with the momentum py playing the role of p;. Show
that the extended Hamilton equations with /C, imply that x = 1.

(c) Derive an alternate traditional Hamiltonian H @ (t, z, po, pz, x) as described in Section
12.9. Use it to write out the alternate traditional Hamilton equations eqn (12.41). Show from
these equations that pg and p, are conserved quantities, with dpg/dx = 0 and dp, /dx = 0.

Exercise 12.7 Consider now a single particle of mass m and charge ¢ moving in a given
electromagnetic field.

(a) Starting with the traditional Lagrangian eqn (2.103) with N=1, write the traditional Hamil-
tonian H (g[o], 2[0]’ t), the extended Lagrangian £, and the standard form of the extended
Hamiltonian X for this case.

(b) Show that the only difference between this K and that of a free particle is that pg is re-
placed by (go + q(Ch)Cb) and p is replaced by (g - q(°h>A/c). In quantum texts this is often
referred to as “the gauge-invariant substitution”. (See Exercise 11.8 for proof of its gauge
invariance.)

(c) Show that putting the quantum substitutions

0 ., 0 0 L0
Py~ —zhg p. .~ —zha p, = —zhg r,— —zha (12.78)
into K leads to the same Schroedinger equation as was derived in Exercise 4.7.

Exercise 12.8 Show that the definitions pg = —ihd/dt and p = —i% (3/9r) imply eqn
(12.66).
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HAMILTON’S PRINCIPLE AND NOETHER’'S THEOREM

Hamilton’s Principle has already been treated in the context of traditional Lagrangian
and Hamiltonian mechanics. The reader should review Chapter 6 since many of the
ideas there also apply when time is a coordinate.

In this chapter, we present extended forms of Hamilton’s Principle and the phase
space Hamilton’s principle based on the extended Lagrangian and Hamiltonian meth-
ods developed in Chapters 11 and 12.

We also present Noether’s theorem, a method for using symmetries of the ex-
tended Lagrangian to identify quantities that are conserved during the motion of the
system. Noether’s theorem is a powerful technique for discovering conserved quanti-
ties in complex Lagrangian systems. We present the basics of the method in the simple
context of Lagrangian systems with a finite number of degrees of freedom.

13.1 Extended Hamilton’s Principle

The extended action function is defined as

B2
I =1(8a,lql [n]) = L(q,q)dp (13.1)

Bi
Putting eqn (11.7) into this definition gives

@

B2 B2
/ﬁ L(g,q)dB = /ﬂ L (q101, {0, 1) fdB = /(1) L (q101, 9{oy» 1) dt (13.2)
1 1 t

The last expression in this equation is the same as the traditional action function in
eqn (6.4), but now expressed in the notation introduced in Section 11.2 in which
q; = dqi/dt = qi/qo. The only difference between the extended action function and
the traditional one is that eqn (13.1) is written in a form that uses 8 as the integra-
tion parameter and hence allows ¢y to be varied along with the other generalized
coordinates.

Both the traditional and the extended Hamilton’s Principles are an application of
the calculus of variations to mechanics. The traditional Hamilton’s Principle used the
coordinate parametric method of Section 5.14. The extended Hamilton’s Principle
uses the general parametric method presented in the body of Chapter 5.

The general parametric method in the calculus of variations in Chapter 5 will be
applied in the present chapter with the variable set x, ..., xy used there replaced
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by the set qo, ..., gp. Thus there are now N = D + 1 independent variables. Equa-
tion (5.3) defining the varied path in the calculus of variations now includes a variable
with k = 0, giving

q0 (B, 8a) = qo(B) +no(B)éa or, equivalently, 7(B,da) =1(B)+no(B)éa (13.3)

In the traditional theory, time is not varied and there is no function ny. We can now
state the extended Hamilton’s Principle, as the following theorem.

Theorem 13.1.1: Extended Hamilton’s Principle

With the action integral I defined as in eqn (13.1), and assuming variations that vanish
at the end points, the first-order variation 81 vanishes for arbitrary 8qy if and only if
the gy (B) of the chosen path are a solution to the Lagrange equations, eqn (11.18), with

Q,((NP) = 0. That is, I = 0 if and only if, fork =0, ..., D

d <az:(q,c})> _ L.
dp Gk Gk

=0 (13.4)

on the unvaried path.

Proof: Replacing x by ¢, and replacing the f(x, x) by £L(q, ¢), Theorem 5.5.1 proves
the present theorem. O

The extended Hamilton’s Principle can also be applied in an obvious way to sys-
tems with holonomic constraints. We state the relevant theorem.

Theorem 13.1.2: Extended Hamilton’s Principle with Constraints
With I defined as in eqn (13.1), and variations that vanish at the end points but are
otherwise arbitrary except for the holonomic constraints given by eqn (11.56)

0=Gq.(q) (13.5)

fora=1,...,C, then the first-order variation § I about a chosen unvaried path vanishes,
81 = 0, if and only if the qi(B) of the chosen path are a solution to the Lagrange
equations in eqn (11.62)

. c
d (3“?’ q)) Bll(q 9) Z - 8Ga (q) (13.6)
ap Gk
for k =0,..., D. Equations (13.5, 13.6) are D + C + 1 equations in the D + C + 1
unknowns qo, q1, .., 4p,  ,. .. Ac and can be solved for them.
Equations (13.6) are the correct equations of motion if and only if the forces of
constraint do no virtual work.

Proof: This theorem follows from Theorem 5.9.1 with the replacement of variables
x by ¢, the substitution of £ for f and G,(q) for G,(x). Theorem 11.10.2 proves
that the right side of eqn (13.6) is correct if and only if the forces of constraint do no
virtual work. 0
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Note to the Reader: It is important to realize that the correctness of eqn (13.6)
in mechanics depends on the condition that the forces of constraint do no virtual
work. If the virtual work is nonzero, then eqn (13.6) will be false. But 7 = 0 and
eqn (13.5) will still imply eqn (13.6). Thus it is possible for Hamilton’s Principle to
imply a false equation. The reader might look at a similar note following Theorem
13.1.2 for more information.

13.2 Noether’s Theorem

In previous uses of the action function, eqn (13.1), the variations 8g; have been as-
sumed to be arbitrary except possibly for some constraints. Then §/ = 0 has been
proved equivalent to the condition that the unvaried path satisfies the Lagrange equa-
tions, and hence is the classical path of system motion.

But another use of eqn (13.1) begins by setting the unvaried path to be the clas-
sical path and also setting the variations dq; to be specific functions, at least one of
which must be nonzero at the end points. These 3g; are chosen so that the integral
I (8a, [q], [n]) on the varied path has the same value as the integral I (0, [¢], []) on
the unvaried path to first order, so that § = 0. Such a choice of the §g; reveals what
is called a symmetry of the Lagrangian system. The variational calculus can then be
used to derive a constant of the motion associated with that symmetry. The method
is described in the following theorem.®?

Theorem 13.2.1: Noether’s Theorem
Taking the unvaried path to be the classical path, select particular functions ni (8) defined
in Section 5.2 so that, to first order in the scale parameter $a,

I (8a,[q],[n]) =10, [q], [n]) + 0(da) (13.7)

and therefore §I = 0. At least one of the selected ny (B) must be nonzero at the end points,
so that the dqr = nr(B)8a do not all vanish there. Then the expression

D D
> pla. @)8qx =8ay_ pi(q. i (B) (13.8)

k=0 k=0
with the selected functions ni(8), will be a constant of the motion.

62E. Noether (1918) “Invariante Variationsprobleme,” Nachr. d. Kénig. Gesellsch. d. Wiss. zu Géttingen,
Math-phys. Klasse, 235. English translation, M. A. Tavel (1971) Transport Theory and Statistical Physics,
1(3), 183.

Noether’s original paper contained two theorems. The first theorem (the global theorem) assumed that
the 8q; are obtained from transformations, such as rotations for example, that form a group parameterized
by a set of constant coefficients. The second theorem (the local theorem) allowed transformations whose
groups were parameterized by non-constant functions. It has been suggested that Noether’s global theorem
and her local theorem are of independent importance, and could with justice be referred to as Noether’s
“first” and “second” theorems. See K. Brading and H.R. Brown, “Symmetries and Noether’s Theorems” in
Brading and Castellani (2003).

The theorem we call “Noether’s Theorem” corresponds to the first, or global, theorem. The redundancy
of the extended Lagrange equations, of which we give a direct proof in Lemma 11.9.1, is used by Noether
as an example consequence of her second theorem.
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Proof: Making the identifications x — ¢, f — L, the integral eqn (5.17) becomes
identical to eqn (13.1). The development in Section 5.4 can then be applied. Of par-
ticular interest is eqn (5.25), which now becomes

D . B B D . .
9L (q,q) ) f {d (8£(q,q)) Bﬁ(q,q)}
§I = =215 - — — F) d
;§< 2 S P)| kgo 5\ g, ag | 20k (B) dP

(13.9)
Since the unvaried path was chosen to be the classical path, the Lagrange equation,
eqn (13.4), is satisfied on the unvaried path. Thus the integrand is identically zero
and eqn (13.9) reduces to

D .
o1=3 (“E0D g, p) )

k=0 94k

B2
Bi

D D
=8a Y pi(q(B).4(B)) m(B2) —da Y pi (¢(B1). ¢(BD) me(B)  (13.10)
k=0 k=0
Since the end points 81, B, are arbitrary and éa is nonzero, the assumed choice of the
8qr = nk(B)da to make 81 = 0 implies that the expression in eqn (13.8) has the same
value at any two 8 values, as was to be proved. O

A theorem similar to Theorem 13.2.1 can also be proved in traditional Lagrangian me-
chanics. But, due to the complexity of varying the time ¢ when time is also being used
as an integration variable, the proof of the theorem can be several pages long. The
same result is obtained here, with much less effort, by using the extended Lagrangian
approach in which the variation of g9 = ¢ is no different from the variation of any
other coordinate. The proof of Noether’s Theorem just given required only one short
paragraph, and is an almost trivial corollary of the extended Hamilton’s Principle.

13.3 Examples of Noether’s Theorem

Noether’s Theorem is rather abstract, so we present several examples. First, consider
the Lagrangian in eqn (11.30). Then eqn (13.1) becomes

1(a.lq).n) = / " {ﬁ (72 + 7262 + 7 sin? 647 - £kr2} dp (13.11)
Bi 2t 2

Since the integrand in eqn (13.11) does not contain the letter ¢ explicitly, we can
select variations n; = 8;0Co where Cy is some constant. Thus n; = 0 for k # 0.
Since Cy is assumed to be a constant, the variations for k = 0 are 8§t = Cyda, and
8i = 8ang = 0. Then eqn (13.7) will hold because the selected variation will change
neither the integrand nor the range of integration. It follows from Noether’s Theorem
that

D
> prlg, Pne(B) = polg, §)Co (13.12)
k=0
is a constant of the motion. Thus the momentum py(q, ¢) is conserved. Examination
of eqn (11.31) shows that pg is the negative of the traditional generalized energy
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function, so we have proved the conservation of that function. Thus symmetry under
uniform time translation at fixed values of the other coordinates implies conservation
of energy.

For another example, consider the same Lagrangian and note that eqn (13.11) also
does not contain the variable ¢ explicitly. Therefore, we can choose n; = §x3C3 where
C3 is some constant. Then eqn (13.7) will again be satisfied, and Nother’s theorem
will predict the constant of the motion

D
> " (. m(B) = p3(q. 9)C3 (13.13)
k=0

Thus the momentum p3 = py is a conserved quantity. Symmetry under rotation about
the z-axis implies conservation of p,, which is equal to the z-component of the angular
momentum.

Of course, both pg and py had already been recognized as constants of the motion
in Section 11.6, since the corresponding variables ¢ and ¢ are ignorable. A more in-
teresting example is to treat the same problem as in Section 11.6, but using Cartesian
coordinates. Then it will not be so obvious that there is a constant of the motion like
Py-

In Cartesian coordinates, the extended Lagrangian becomes, with g9 = ¢, ¢; = x,
g2 =1y,and g3 =z,

L % NS BT AN T A0 SN S
ﬁ(q,q)=5<x ¥y ~|—z)—§k(x +y +z) (13.14)
and eqn (13.1) is thus

B (m i

1 Galgl. ) = [ {Z (€452 +2) - Sk (24 2) } i (13.15)
Bi

The obvious spherical symmetry of this integrand suggests that it is unchanged by a

rotation. Consideration of eqn (8.32), the matrix for rotation about the z-axis, for a

small angle § = 8a suggests that we might choose 9 = 0, n; = —y, 72 = x, and

n3 = 0. Then, to first order in éa,

(x(R) - x) =8x = —yda and (y(R) - y) =38y = xéa (13.16)

agrees with the rotation produced by eqn (8.32), since the cosine function becomes
just the number 1 and sin(da) = Sa to this order.

The reader can easily verify, either by direct computation or by noticing that eqn
(13.14) can be written as

£(q,¢) = 2% - F) — %k (r-r) (13.17)

which contains dot products invariant under rotations, that to first order in §a the
integrand in eqn (13.15) is unchanged by this choice of the n;, and that eqn (13.7)
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is therefore satisfied. Then Noether’s theorem implies that there is a constant of the
motion given by

D
> Pk(@, D(B) = —pry + pyx (13.18)
k=0

which is the z-component of the angular momentum, the same quantity as the py

proved constant earlier using spherical polar coordinates.

The appropriate choice of the n; to make §/ = 0 reveals a symmetry of the La-
grangian system. The value of the Noether theorem is that it allows symmetries to be
translated into conserved quantities. The last example was the most interesting be-
cause rotational symmetry produced a conserved quantity even though none of x, y, z
was an ignorable coordinate.

13.4 Hamilton’s Principle in an Extended Phase Space

In Section 6.4, a phase-space form of Hamilton’s Principle was developed in the con-
text of traditional Hamiltonian mechanics. The reader should refer to that section for
background. A similar phase-space Hamilton’s Principle will be presented here, but
using the extended theory in which time is a coordinate.

In the extended theory, the phase-space action function is defined by substituting
eqn (11.16) into the definition in eqn (13.1). It is

B2 g D .
I =/ Ldp =/ > prdrdp (13.19)
Bi Bi k=0

Here, as in Section 6.4, the idea is to write a variational principle that varies all of the
canonical coordinates ¢ and p of phase space independently. In the extended phase
space, this set includes the two new variables ¢y and py.

The variational calculus of Chapter 5 will be applied with N = (2D + 2), and
the variables xi, ..., xy used there defined to be the whole of the set qq, ..., ¢gp,
po, - .., pp listed in eqn (12.1). The function f(x,x) introduced in Section 5.3 will
then be identified with the integrand F(q, p, ¢, p) in eqn (13.19), which will be con-
sidered to be a function of the variables ¢, p and their derivatives

D
F(g,p.4,P) =Y, prdx (13.20)
k=0

Just as in the traditional theory of Section 6.4, the definition eqn (11.9) relating
the canonical momenta to the coordinates and velocities is to be forgotten here. The
momenta p; are taken to be independent of the coordinates. For example, the defini-
tion of coordinate variation in eqn (5.5) becomes the two equations

Sqr =38a 0k (B) and Spx = da xi (B) (13.21)

which hold for all k =0, ..., D, where we have replaced the shape function n by the
two independent sets of shape functions 6 and .
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The phase space Hamilton’s Principle also requires application of the dependency
relation K (g, p) = 0 from eqn (12.6). From the viewpoint of the calculus of variations,
this dependency relation is a constraint on the variations ¢ and §p. However, this
constraint is not of the same sort as was discussed in Chapter 3. Those constraints
were enforced by forces of constraint in particular mechanical systems. The constraint
K(g, p) = 0 is unrelated to forces. It is a kinematic rather than a dynamic constraint.

We now prove the extended form of the phase-space Hamilton’s Principle.

Theorem 13.4.1: Extended Hamilton’s Principle in Phase Space
Given the phase space action integral

B2 B D ) B2 o
1= / Ldp = / > priudp = / F(q.p.q. p)dp (13.22)
Bi Bi k=0 Bi

with F(q, p, q, p) defined in eqn (13.20), the first order variation 81 will be zero for all
8q and 8p that vanish at the end points but are otherwise arbitrary and independent
except for the single constraint

0=K(g, p) = po+ H (101, Po}: 90) (13.23)
if and only if the extended Hamilton equations, eqn (12.13),

_kaq.p i = _0K(g.p)

(13.24)
Opk aqr

qk

are satisfied on the unvaried path.

Proof: With the identifications x — ¢, p, f(x, X,) = F(q, p, ¢, p), G1(x) = K(q, p),
and setting C = 1, the premises in Theorem 5.9.1 become identical to those of
the present theorem. With the same substitutions, the Euler-Lagrange equations eqn
(5.66) become the two equations

d <3F(q,{),q,p)> _9F(g,p. 4. P) _ MBIC(q,p) (13.25)
dp Gk gk 0qk
P .. P ..
d (8 (q,g,q,p)) _0F(q.p.q.p) ZME?/C(q,p) (13.26)
dp 0 Pk Pk Opk
which are to hold for all k = 0, ..., D. Evaluating the left-hand sides gives
. K (q, ) IK(q,
do= (i) BEPang gy = oy D) (13.27)
pk gk

The Lagrange multiplier A; is not determined. But it is known that it must be nonzero,
because a zero value would imply that 0 = o = 7, in contradiction to the monotonic
variation of both 8 and ¢ along any system path. Thus the multiplier cancels from eqn
(12.29) that determines system trajectories. The same trajectory is obtained no matter
what nonzero value of A is used. Thus eqn (13.27) are equivalent to the standard
Hamilton equations, as was to be proved. O
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13.5 Exercises

Exercise 13.1
(a) Apply Noether’s theorem to the extended Lagrangian £ in eqn (13.14), with the variational
choice

or = (R[(Scbﬁ]—u)rzécbﬁ Xr (13.28)

where 1 is an arbitrary unit vector. Thus prove that the angular momentum vector J is a
constant of the motion for this system.
(b) Would the same be true for

f q (ch) 0 (ch)

4/ x% + y? + 22

where ¢M is the charge of a particle moving in the electric field of another charge QM
fixed at the origin of coordinates?

=2 (245742 -

= — 13.29
T ( )

Exercise 13.2 Suppose that a system of N point masses has a potential function

N n-—1

Ul ....tn) =Y > fen — 1) (13.30)

n=1n'=1
Use Noether’s theorem to prove that the total momentum vector P is a constant of the motion.

Exercise 13.3 Show that eqns (13.25, 13.26) reduce to eqn (13.27), as asserted in Theorem
13.4.1.
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RELATIVITY AND SPACETIME

When it was proposed at the start of the twentieth century, special relativity was revo-
lutionary and controversial. Now, some hundred years later, the consensus in physics
is that, at least in local spaces where the effects of curvature are negligible, standard
special relativity will reliably predict the outcome of any experiment to which it is
applied. The Lorentz transformation is considered a symmetry of nature, and new
theories are crafted with Lorentz invariance as a necessary feature.

In the early twenty-first century, the remaining task is to better understand the
implications of the special and general theories of relativity, to incorporate them fully
into our theoretical understanding. In particular, the task of unifying relativity and
quantum theory is incomplete, and a quantum theory of gravity remains elusive. This
book attempts to prepare the reader for this process of incorporation by at least pre-
senting elementary Lagrangian and Hamiltonian mechanics, and the theory of canon-
ical transformations, in a way that uses time as a coordinate and so does not exclude
special relativity from the outset.

In the present chapter, we introduce the ideas of special relativity with the assump-
tion that it is an established theory whose experimental efficacy is unquestioned. We
attempt to help the reader understand that theory more deeply, to see what the rela-
tivistic effects may be telling us about the world and the nature of spacetime. Those
who are familiar with elementary special relativity from earlier study may find Sec-
tion 14.5, which analyzes relativity from a surveyor’s viewpoint, to be an interesting
counterpoint to their previous reading.

14.1 Galilean Relativity

The relativity principle of Newtonian physics underlies all discussions of relativity,
so we begin with it. This relativity principle is commonly called Galilean relativity,
although the same ideas are found in the Principia, and in works before Galileo. Cer-
tainly, Galileo gave a detailed and poetic statement of it in a book of wide influence,
the Dialog Concerning the Two Chief World Systems (Galilei, 1632).

Galileo uses the example of passengers in a ship, below decks, with no view out-
side. Galileo’s protagonist Salviati asks his listeners to imagine that “there are with
you some flies, butterflies, and other small flying animals. Have a large bowl of water
with some fish in it; hang up a bottle that empties drop by drop into a wide vessel
beneath it.” The behaviors of all these things are to be observed with the ship stand-
ing still in harbor. Salviati then tells his audience to “have the ship proceed with any
speed you like, so long as the motion is uniform and not fluctuating this way and that.

313



314 RELATIVITY AND SPACETIME

You will discover not the least change in all the effects named, nor could you tell from
any of them whether the ship was moving or standing still.”

Although Galileo made enormous discoveries, such as that the trajectory of a pro-
jectile can be considered as simultaneous independent horizontal and vertical mo-
tions, his physics was still tied to the Earth. He believed that an initially horizontal
unforced motion would continue in a circular path parallel to the surface of the Earth
forever.%® So, when Galileo speaks of a ship at rest or in uniform motion, he means
with reference to the Earth.

Newton’s physics was free of such earthly constraints. He held that an unforced
motion would continue in a straight line with constant speed, forever. In the Scholium
of the Principia, Newton uses the same ship analogy as used by Galileo. But the refer-
ence for determining rest and constant velocity is plainly stated to be absolute space
rather than the Earth.

The Galilean relativity principle, modified to refer to Newton’s absolute space, can
be translated into a modern idiom as follows.

Definition 14.1.1: Galilean Relativity Principle

Consider a closed room with walls sufficient to prevent the detection of signals from
outside it. No experiment performed entirely inside such a room can detect whether the
room is at rest or moving with constant velocity relative to absolute space.

In Newtonian physics, both the room and the objects in it are moving in an exter-
nal absolute space. Distances measured relative to this space are compounded, using
what we now refer to as the rules of vector addition. Using Figure 14.1, and assuming
for simplicity that the two coordinate systems coincide at time zero and are oriented
with their relative velocity along both x-axes, the relations between measured dis-
tances and times are

t=t x=Vi+x y=y z=17 (14.1)

where V = V&, = V@] is the constant velocity of the S’ system relative to the S
system.

Equation (14.1) is called the Galilean coordinate transformation. Time transforms
identically, r = ¢/, because in Newtonian physics time is taken to be an absolute
quantity. Taking differentials and dividing by d¢ = dt’ leads at once to the Galilean
velocity transformation formula. Denoting v, = dx/dt, v, = dx'/dt’, etc,, it is

vy =V + . vy = v;, v, =] (14.2)

Since V is constant, another time derivative then shows that acceleration is invariant.
With ay = dvy/dt, a,, = dv/,/dt’, etc., the transformation of acceleration is

/
ax =a,

ay = a; a. =a, (14.3)

Hence, in the Newtonian model of point masses acted on by forces, the Galilean
relativity principle holds if the forces and masses are also invariant. If f = f’ and

63See the discussion in Chapter IV of Koyré (1957).
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X, y,2,1 .

X’, y/’ Z,, t

S X S/ x/

FIG. 14.1. A closed room moves with constant velocity V relative to a fixed coordinate system
S. The S and S’ axes coincide at time zero.

m = m’, then eqn (14.3) implies that the equation of motion relative to the body-
fixed coordinates, f’ = m’a’, is the same whether the room is at rest with V = 0 or
moving at constant-velocity.

In Newtonian physics, coordinate systems moving uniformly with respect to ab-
solute space are called inertial reference systems. The second law f = ma holds when
distances are measured with respect to any inertial system. And the Galilean relativ-
ity principle says that no local experiment can distinguish between different inertial
systems.

14.2 Conflict with the Aether

The nineteenth century discovery that light is a transverse electromagnetic wave sug-
gested that some medium, which came to be called the aether; must exist in which that
wave propagates. Waves, after all, are not things; they are states of collective motion
of something else. For example, a wave in the ocean is not itself a physical thing but
rather a propagating collective motion of the surface water. And the transversality of
the light waves suggested strongly that the medium had to have a rigid structure, be
something like a crystal of solid material. And yet, this medium of propagation was
invisible, unobserved except for the existence of the waves. One nineteenth century
observer® commented wryly that, “For more than two generations the main, if not
the only, function of the word ’aether’ has been to furnish a nominative case to the

77

verb ‘to undulate’.

There is an obvious conflict between the aether and the Galilean principle of rel-
ativity: An observer in a closed room can do experiments with light waves. It was
assumed in the nineteenth century that matter moved through the aether with no
resistance and that the aether was all pervasive, filling all of the Newtonian absolute
space and presumably at rest relative to it. So, no matter how closed the room was
in Definition 14.1.1, it would be impossible to exclude the aether. Moreover, the fact

64From Lord Salisbury’s presidential address to the British Association in 1894 as quoted in the Encyclo-
pedia Brittanica, 1911 edition, under entry AETHER.
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that an observer in the room could even do experiments with light proved that aether
must be present in the room to act as the propagation medium.

But measurement of the speed of light within a room would allow an observer
there to measure his own velocity relative to the aether and therefore assumedly with
respect to absolute space. This is a direct violation of the Galilean relativity principle,
which asserts that V cannot be detected by experiments done entirely inside a closed
room. Using eqn (14.2) and the assumption that all light propagates with a speed ¢
relative to an aether that is at rest in absolute space, the speed of light relative to
the room should be ¢ — V in the forward direction of the room’s motion, and ¢ + V
in the backward direction. The analogy is to a helicopter (the closed room) flying
over a lake (the aether). If water waves on the lake’s surface have speed c relative
to the lake and the helicopter has speed V relative to the lake, then the waves will
appear to the pilot to move at speed ¢ — V in the direction of the helicopter’s motion
as the helicopter partially overtakes them. Thus measurement of the speed of light
in different directions inside the closed room could allow V to be determined, which
would violate Definition 14.1.1.

At the end of the nineteenth century, it became technically possible to detect the
speed of a room on the Earth relative to the aether, using the Michelson—-Morley inter-
ferometer. The experiment failed to detect this motion, even though the aether theory
predicted an effect well within the detection limits. This null result was a severe crisis
for the aether theory.

14.3 Einsteinian Relativity

The conflict between the Galilean relativity principle and electrodynamics is not lim-
ited to light waves in an aether. Also, the Maxwell equations governing the basic
dynamics of electric and magnetic fields are not form invariant under the Galilean
transformation, eqn (14.1). Lorentz® used the requirement that the Maxwell equa-
tions must be form invariant under transformations from the aether system to other
inertial systems to derive what is now called the Lorentz transformation. Under the
same conditions as eqn (14.1), the transformation equations derived by Lorentz are

ct = I'(ct’ + Bx') x =T'(Bet’' +x') y=y z=17 (14.4)

where c is the speed of light relative to the aether, and B = V/c, I' = (1 — B>)~1/?
are unitless constants derived from the constant relative speed V of the two systems.
But, since he shared the common view that the Newtonian time was absolute, Lorentz
referred to the transformed time ¢’ in the moving system as “local time” as opposed
to ¢t which he called the “true time.”

Einstein’s great contribution was to extend the Newtonian concept of time. He
realized that the transformation of Lorentz could be re-derived from the Galilean

65H.A. Lorentz (1904) “Electromagnetic Phenomena in a System Moving with any Velocity Less than that
of Light,” Proceedings of the Academy of Sciences of Amsterdam, 6. English translation reprinted in Einstein,
Lorentz, Minkowski and Weyl (1923).
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relativity principle provided that: (1) The time ¢’ is not less “true” than 7, but is the
time actually measured by suitably synchronized physical clocks at rest in the moving
system, and (2) The Galilean relativity principle is assumed to include the assertion
that the speed of light in any direction has the same value ¢ when measured in either
the S or the S’ system.

After an introduction describing the synchronization of clocks, Einstein’s first 1905
paper states two axioms.% They are:

1. The Principle of Relativity: The laws by which the states of physical sys-
tems undergo change are not affected, whether these changes of state be re-
ferred to the one or the other of two systems of coordinates in uniform trans-
latory motion.

2. The Principle of the Constancy of the Velocity of Light: Any ray of light
moves in the “stationary” system of coordinates with the determined velocity
¢, whether the ray be emitted by a stationary or a moving body.

The first axiom is very close to being the Galilean relativity principle, simply translated
into coordinate language.®’ It differs from Definition 14.1.1 principally in its careful
avoidance of the idea of an absolute space.

Einstein’s second axiom is curious. An aether theorist of Einstein’s day would have
had no difficulty in accepting it, for the aether theory says that the velocity of light is
determined relative to the aether, and is not affected by the speed of the source of the
disturbance. The analogy is for the pilot of the helicopter mentioned above to throw
a stone in the lake. The speed of the water ripples (the light) relative to the lake (the
aether) does not depend on the velocity of the stone (the light source).

It is only in connection with a strict interpretation of Axiom 1 that the Principle of
the Constancy of the Velocity of Light has relevance. Ten paragraphs into his article,
Einstein states that relevance, “light (as required by the constancy of the velocity of
light, in combination with the principle of relativity) is also propagated with velocity
¢ when measured in the moving system.”

To carry out the derivation of the Lorentz transformation, Einstein makes some
plausible auxiliary assumptions. He uses the same simplified geometry as in Figure
14.1, and assumes that the three moving coordinate axes (which are perpendicular
when viewed in the S’ system by construction) appear perpendicular, and parallel to
the S system axes, when viewed from the stationary S system. He uses a particular
method for synchronizing co-moving clocks, and also assumes that the transforma-
tion equations must be linear. A number of good treatments of the derivation of the
Lorentz transformation from Einstein’s axioms can be found in the literature, so it will
not be repeated here. However, probably the clearest and most careful derivation is

66A. Einstein (1905) “On the Electrodynamics of Moving Bodies” Annalen der Physik, 17. Translated in
Einstein, Lorentz, Minkowski and Weyl (1923).

67In A. Einstein (1916) “The Foundation of the General Theory of Relativity,” Annalen der Physik, 49,
Einstein says that this postulate, “is also satisfied by the mechanics of Galileo and Newton.”
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that given by Einstein himself, in his original paper. The reader is urged to study at
least the first four sections of Einstein’s 1905 article.

One important point about Einstein’s approach is that he presents special relativity
as what is called a Principle Theory. He begins with axioms rather than experiments or
deductions from other theories. With such a theory, experimental verification is cru-
cial. And special relativity has been abundantly verified. But there is then a lingering
question as to why those axioms are true, and what physical effects underlie them.

14.4 What Is a Coordinate System?

The Lorentz transformation is a transformation between coordinate systems. But the
interesting question is how even one of these coordinate systems can be set up. The
nineteenth century image of a coordinate system as three perpendicular sticks, with
an observer at their intersection holding a clock, is not adequate. Among other prob-
lems, the finite speed of light would lead to a time delay between a distant event®
and its observation by the observer at the origin.

To avoid these systematic time-delay errors, it is necessary to have many station-
ary observers (human or robot), each equipped with a synchronized clock, placed
throughout the region of observation. Each observer makes observations only in his
immediate local neighborhood, whose size is small enough to make time delays neg-
ligible. These clocks and observers form an observer team, which replaces the single
observer of nineteenth century physics.5’

Aside from the nontrivial problem of synchronizing all of the clocks, it is important
to realize the essential level of abstraction that is introduced by the use of an observer
team instead of a single observer. Because observations are made by a team, the
combined result of their observations is never what is actually seen by any single
observer. The observers in the team make only local observations, which consist of the
x, y, z address of the observer and the time ¢ of the observed local event as measured
on that observer’s clock. These are the unprocessed raw data.

After the experiment is over, all of these scattered observations are reported back
to some central data collector, say the observer at the origin. She may use the collected
data to construct something like a motion picture or video animation, possibly a stere-
ographic one, consisting of a sequence of frames, each frame labeled with a different
value of reported time. She places in the animation frame labeled with a particular
value of ¢ only those reported events whose local observer assigned that particular
time to them. She then projects these frames on a screen in a time sequence, perhaps
in slow motion to help the viewer. Viewing this motion picture is the closest that we
can come to “seeing” in a coherent way what happened in the experiment.

68 An event in relativity theory is a point in both space and time. It can be thought of as the very brief
flash of a very small flash bulb. Analysis of experiments in relativity is aided by breaking them down into a
succession of events.

690ther schemes to eliminate the time-delay problem can be imagined. But they will be equivalent to the
one presented here, which has the virtue that it illustrates clearly the issues raised.
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When pondering the seemingly strange features of special relativity, the reader
should remember that our truest picture of spatiotemporal reality is this artificially
constructed composite, assembled after the fact from the separate observations of a
team of observers.

In the following section, we consider the physical steps required to set up a coor-
dinate system. The process is presented as a survey, a series of experiments. The end
result is a team of observers, each with a definite address and a synchronized clock,
ready to make observations.

14.5 A Survey of Spacetime

One way to understand better what a coordinate system is, and what lies behind
the success of special relativity, is to imagine a coordinate system as the end result
of a series of experiments—a survey of spacetime. Let us imagine that a group of
twenty-third century physicists and engineers, carrying instrumentation sufficient to
detect the very small corrections due to relativistic effects at small speeds, is sent to
an empty region of space far from significant masses, where special relativity should
apply. Imagine that they conduct a survey in which they confront the effects predicted
by Einstein’s special relativity theory, and are forced to work around them to establish
a coordinate system.

In describing this imaginary task, we assume the experimental efficacy of standard
special relativity, that the effects predicted by it will certainly be observed experimen-
tally. Experimental results that the survey group will certainly observe due to their be-
ing predicted by standard special relativity’® will be marked with the acronym “SR”.
As discussed in the introduction to this chapter, there is currently no doubt that the
predictions of standard special relativity are correct. So, in this imaginary exercise,
rather than starting with the principle of relativity and deriving the relativistic effects
such as time dilation and Lorentz contraction, we reverse the order. We begin with
the effects and show how they force a survey team to arrive at a coordination of
spacetime which has the principle of relativity as one of its features.

A possible source of caution for any approach of this sort is that rods and clocks—
taken to be primitive things in the survey described—are anything but simple ob-
jects. Any treatment of spacetime using rods and clocks faces this essential circularity:
Space and time cannot be defined without rods and clocks, but the theory of rods and
clocks (electromagnetism and quantum theory) cannot even be begun until space and
time are defined. We can argue only that the general success of physics as a theoret-
ical and experimental enterprise suggests that this circularity is benign and does not
lead to paradox.

T0Standard special relativity is taken here to include the axiom that (when possible inertial forces are
taken account of) sufficiently local and brief measurements by a moving observer will yield values iden-
tical to those that would be obtained in an inertial coordinate system relative to which the observer is
instantaneously at rest.
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14.5.1 Space Frame

The survey group’s first task is to establish a framework with respect to which position
and velocity can be defined. Imagine the group to be equipped with measuring rods
which are assembled into a cubical grid with equal cells of some standard length and
with right-angle corners defined by, for example, use of 3-4-5 right triangles. Con-
struction of such a grid is treated by a number of authors, all of whom seem to feel it
to be straightforward, so we will not dwell on this stage here.”! Assume the grid to be
arbitrarily oriented but non-accelerating and non-rotating, as controlled by placing
small test masses at rest at three or more non-linear points and observing them not to
drift relative to the grid. Imagine also that the survey group has chosen an initial state
of motion for the grid such that the local flux distribution of the three-degree cosmic
radiation field will appear to have no low-order spherical harmonics, indicating that
the inertial grid is co-moving with the local expansion of the universe. Choosing some
arbitrary vertex in the grid as the origin point (0, 0, 0), any other point may be given
an address (x, y, z) by counting along three perpendicular directions from the origin
and setting, for example, x = n, £y where £ is the standard length of rods in the grid,
and n, is the number of y-z planes pierced. Finer position gradations can be made by
interpolation between vertices, using any signal whose speed is independent of posi-
tion and direction (as in the acoustic spark chamber, for example). We assume also
that the three coordinate directions are chosen to make a right-handed coordinate
system.
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FIG. 14.2. Cubical grid used by the S group to set spatial locations. The circles represent the
clocks (only those on the y-z plane are shown) that will be placed at each vertex.

Suppose that the length A¢ of a rod is determined by laying it out along one of
the coordinate directions and counting the number of standard rods along its length.
It will be observed (SR) that the Pythagorean rule

Al = \/sz + Ay2 + AZ2 (14.5)
holds when this same rod is placed at rest between any two points in the grid regard-

T For example, see Bridgman (1962) or Taylor and Wheeler (1992).
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less of their location (homogeneity) and relative orientation (isotropy) where, e.g.,
Ax is the difference in the x-values of the ends of the rod. Homogeneity in time will
also be observed, so that the A¢ for a static stick arrangement agrees with eqn (14.5)
no matter when it is measured.

14.5.2 Clocks

Now the survey group introduces standard clocks. Clocks for our purposes are physi-
cal devices that tick regularly so that the passage of time can be measured by ¢ = n,Tj
where T is the standard tick time and n, is the number of ticks since some arbitrary
zero of time for that particular clock.

The accuracy of standard clocks of a given type could be estimated by placing a
group of identical clocks side-by-side and comparing the time interval they record be-
tween a pair of local events. The variance of these measurements could be taken to be
a measure of the intrinsic accuracy of clocks of that type. Prospective new generations
of clocks are taken to be successful if they pass this mutual consistency test to some
new level of accuracy, and also if they agree with the previous generation’s clocks to
within the accuracy of that previous generation.

A clock that measures time by exploiting a natural cyclic process of some sort, with
care taken to isolate the process and avoid interfering with its regularity, is taken to
be a good clock. It would, of course, always be possible to make a bad clock from
a good one by, for example, adding or subtracting a bit from its counter after every
n counts. If all clocks were submitted to this same “cooking” (where n might even
be chosen differently at different spatial locations relative to the cubical grid, or at
different times if a common zero of time were defined in some way), then they all
would still pass the above accuracy test when placed together. But they would not be
good clocks for our purposes. The statements we make about the behavior of standard
clocks below refer to good clocks.

14.5.3 Round-Trip Light Speed

Let the survey group place a good, standard clock at any vertex A of the grid, and
send a light pulse from that point to some other vertex B, from which it is reflected
back to A. The total round-trip time Ar of the light pulse can be used to define the
round-trip speed of light ¢ as

2A¢

c=" (14.6)
where AZ is the Pythagorean distance between the clock and the reflecting vertex.
This speed will be observed (SR) to be the same regardless of the location of the clock
and the other vertex. Homogeneity in time will also be observed, the same value ¢
being obtained no matter when the measurement is begun. Notice that only one clock
was used in the light speed determination, so only the average round-trip light speed
is measured directly.
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14.5.4 The One-Way Speed of Light: Unknown but Static

The formula eqn (14.6) makes sense because we believe that a light pulse actually
propagates from A to B and back during the time interval A¢. Although (since we do
not yet have synchronized clocks at A and B ) we cannot yet measure the time Az,
that the light pulse takes to go from A to B, nor the time Az, that it takes to return
from B to A, we can assume that any future determination of those quantities must
have the property Ar = At,, + Atp, necessary for consistency with eqn (14.6).

This consistency condition, together with the isotropy and homogeneity (both spa-
tial and temporal) observed for the two-way speed defined in eqn (14.6), can be used
by the survey group to establish that both At,; and A, and hence the correspond-
ing speeds, c,p, = AL/ Aty and cp, = AL/ Atp,, must be static quantities. That is, even
though we do not yet have a method of determining At¢,;, we know that its eventual
value must be found to be the same regardless of when the initial pulse leaves A. And
a similar statement can be made for Aty,.

To derive the static nature of these one-way times, suppose that the survey group
places a clock at A and another one at B. These clocks are not synchronized. A pulse
of light is emitted from A, is reflected from B, is re-reflected from A, and so on. Due
to the homogeneity, isotropy, and static nature of the round-trip speed of light in
eqn (14.6), we know that the round trip times for all ABA paths (measured by the
clock at A) and also for all BAB paths (measured by the clock at B) will be the same:
At = 2Al/c. If we denote the initial departure from A by index 1, the first reflection
at B by index 2, the next reflection at A by index 3, etc., we have

2ALfc = A2+ A = AL+ AGE = - (14.7)
for all round trips beginning and ending at A, and

2AL/c = At + A3} = AP 4 A0 = ... (14.8)

a

for all round trips beginning and ending at B. Combining these equations we obtain
A2 = At = A8 =... and A1F =Ah =A1) =... (14.9)

which demonstrates that Az, is always the same, no matter how long the experiment
is run. The same is true for Afy,. Thus these are static quantities.

14.5.5 Standard Clocks at Rest but Separated

Imagine that the survey group tests a collection of standard clocks to make sure that
they tick at the same rate when placed together, for example by comparing their
recorded time intervals between a pair of local events. Now the clocks are dispersed
and placed at rest at the various vertices of the cubic grid. The survey group can
determine that they still tick at the same equal rate as they did before dispersal.
Note that these clocks were not synchronized initially, and are not assumed to be
synchronized after their final placement.
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To establish the common ticking rate of a clock at A with one at B, imagine a pulse
of light to be emitted from A at time #,; and another one at a later time #,,, both
measured by the stationary clock at A which thus records the time interval (¢,5 — #41)
between these emissions.

Using the static, one-way transit time Az, derived in Section 14.5.4, the pulses
arrive at B separated by the time interval (tp; — tp1) = (ts2 + Atap2) — (ta1 + Alap) =
(ta> — ta1), where the static nature of At,, was used to cancel Az, and Atgp1. Thus if
the clock at B records times #5 and #5; for the arrival of the two pulses there, the group
will observe (SR) that (1, — t51) agrees with the quantity (¢,o — #,1). This establishes
that the clock at B is ticking at the same rate as the one at A, even though the two
clocks are not synchronized.

Note that these standard clocks do not yet define an extended time-measurement
system, since they are not yet synchronized. But synchronization is just the setting
of the zero point of the clock’s counter. Even without synchronization, the group has
established a distributed set of clocks that are known to tick at the same rate and so
define a common measure of time interval at any fixed vertex throughout the grid.

14.5.6 Proper Velocity

If some method of clock synchronization were already in place, the group could define
the velocity of a moving object by observing a distance traveled relative to the grid
and dividing that number by the elapsed time measured from a pair of clocks at the
beginning and end of the travel.

But such a measurement would require the use of at least two observers, and
synchronization of two separated clocks has not yet been accomplished. So, the survey
group reverts to another velocity definition that will prove useful, the proper velocity.
An observer riding on or with a moving object carries a clock. As he moves, he looks
at the cubical grid and counts the number of sticks of the grid that he passes during an
elapsed time At measured on the moving clock. This interval At is called the “self” or
“proper” time interval, since it is measured on on that single, moving clock carried by
the observer. Then the x-component of the proper velocity, for example, is defined as
uy = Ax/At, where Ax is the number of y-z planes pierced by the motion times their
standard separation £y and At is the elapsed time measured by the moving clock.
(We assume that, by using finer gradations of the grid, this quantity can be measured
to any desired accuracy and treated as a continuous variable in the usual way.)

The proper speed is defined as u = A¢/Azr. The Pythagorean theorem of eqn

(14.5) then gives
u=/u? +u§+u% (14.10)

The survey group will observe (SR) that the proper speed defined in this way can
range from zero to infinity. (In the Minkowskian language to be introduced in Chapter
15, proper velocity is the spatial part of the velocity fourvector.)
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14.5.7 Discovery of Time Dilation

Temporarily synchronizing two standard clocks at rest at the same location, and then
moving one of them around a closed circuit and back to the original location, the sur-
vey group will discover that the two clocks have lost their synchronization. Turning
this observation into a controlled experiment, they place a standard clock at rest at
point A of the grid, and let another clock move around some closed (but not neces-
sarily circular) path, returning periodically to A. They let the moving clock maintain
a constant proper speed u. The time between successive crossings of point A is Az,
according to the fixed clock at A, and At,, according to the moving clock. They find
(SR) that these quantities are always related by the formula

Atua = Ataar[1+12/2 (14.11)

where c is the round-trip speed of light defined above.

The question now arises as to the source of this time difference. Is its motion dis-
torting the moving clock, or is the motion of the moving clock distorting the fixed
one? The group answers this question by doing two experiments at the same time,
with two moving clocks whose different trajectories both pass through A, each exper-
iment using the same fixed clock at A. If the presence of a moving clock upsets the
running of the stationary one, then a second moving clock in the same vicinity should
upset the relation eqn (14.11) for the first one. But the presence of the second mov-
ing clock has no such effect (SR). Also, the group may observe, using the techniques
defined above, that the stationary clock at A continues to tick at the same rate as all
the other stationary clocks distributed throughout the grid. The conclusion is that the
moving clock is the one affected by the motion, and not the stationary one.

FIG. 14.3. Moving clock M moves on a closed path starting and ending at fixed clock A. The
time for one cycle is Az, on the fixed clock. Clock M records interval dr while its proper
speed is u.

The next question is whether the moving clock accumulates its distortion contin-
uously during its motion. To test the hypothesis that it is continuously distorted, the
group does a series of experiments in which the moving clock has varying proper
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speed. The result in all cases is correctly reproduced by (SR)

A
Atgy = f V1+u?/ctdr (14.12)
aa A

where dr is a differential time interval on the moving clock measured at an instant
at which the proper speed is u. The conclusion is that time intervals dt measured
on a moving clock are at each instant distorted by the current value of the factor
Vv 1+ u2/c? and hence eqn (14.12) implies the differential relation

dt =dt\/1+u?/c? (14.13)

between the proper time interval dt actually measured on a moving clock, and what
we may call a corrected or undistorted time interval dt.

After this correction, a clock moving in any closed path starting and ending at
a stationary clock at A will agree with that stationary clock as to the time elapsed

during the transit.
A A
Atyy =7§ dt =?§ J1+u?/cdr (14.14)
A A

The corrected time interval dr in eqn (14.13) removes the distortion of the moving
clock coming from its motion and reduces it to consistency with the stationary ones.
The survey group has thus discovered how to measure the standard time interval dt
using moving clocks.

Some caution is required here, however. To derive a differential relation such as
eqn (14.13) from a closed integral relation such as eqn (14.12), one must eliminate
the possibility of an integrable contribution to the right-hand side of eqn (14.13) of
the form d® where ®(x, y, z) is some single-valued function of position in the grid.
Such a contribution would integrate out of eqn (14.12), and could not be detected by
any of the closed-path experiments.

The survey group may reasonably use a symmetry argument to eliminate this pos-
sibility. The survey is taking place far from any significant gravitating objects, in a
cubical grid which is in free fall. The survey group has even taken the precaution of
choosing a state of motion which makes the local flux of the three-degree cosmic ra-
diation field appear to be maximally isotropic on the sky. Any maximum or minimum
of function ®(x, y, z) would select a particular place in the grid as special, in contra-
diction to the apparent homogeneity of the local space. And any nonzero gradient of
function ®(x, y, z) would define a particular spatial direction, in contradiction to the
apparent isotropy. The survey group can find no physical source of such a violation
of homogeneity and isotropy and so will conclude that any such function ®(x, y, z)
would have to be a constant, and hence that d® would be zero.

Still, the presumed total homogeneity and isotropy of the local environment re-
main conjectures by the survey group.
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14.5.8 Corrected Velocity from Corrected Time Interval

A moving clock was used above to define its own proper velocity u = dr/dz, with
components uy, iy, u;. The corrected time interval of eqn (14.13) can then be used
by the survey group to define what we will call a corrected velocity v.

dr  drd
r_drev 4 (14.15)

Sw T wa T itee

and a corresponding corrected speed v = u/+/1 + u?/c%. These two speeds are thus
related by

\/1 + uz/c2\/1 —v2/c?2 =1 (14.16)
so that eqn (14.15) may also be written in inverse form as

\4

V1 —=v2/c? -

u= (14.17)

where the notation |
y:—:,/l-i-uz/cz (1418)
V1—v2/c?

has been introduced.”? As the proper speed ranges from zero to infinity, the corrected
speed ranges from zero to ¢, the round-trip speed of light.

Note that the survey group has derived the corrected velocity v without making
any use of synchronized clocks. All measurements up to this point have been quite
independent of clock synchronization and have depended only on the experimentally
determined rates of ticking of clocks in various states of motion.

14.5.9 Discovery of Lorentz Contraction

The survey group may suspect that, since clocks are distorted by motion, possibly
measuring sticks such as those used in the grid might also be affected. Possible dis-
tortion of dimensions perpendicular to the motion is easily tested. Imagine the group
to make a square hole in a metal plate, and a metal cube that just passes through
the hole at perpendicular incidence and near zero speed. If they now pass the cube
through the hole at higher and higher proper velocities, they will see no change in
the tolerance of its passage through the hole. They conclude that dimensions perpen-
dicular to a velocity are unchanged by it.

The dimension along the motion is more difficult to measure. If there were a
system of synchronized clocks available, which at this point there is not, the group
could simply observe the leading and trailing ends of the moving cube at some single
synchronized time. In the absence of such a system of synchronized clocks, the survey
must resort to a more indirect method.

72Note that this y is not the same quantity as the constant I appearing in the Lorentz transformation
eqn (14.13). The T is a function of V, the constant relative velocity of the S and S’ systems. But y is a
variable quantity that changes as the clock’s velocity changes.



A SURVEY OF SPACETIME 327

(LT)
At

FIG. 14.4. A cube of rest dimension L moves past a fixed clock A. The cube has proper speed u

as measured by a clock riding on the cube (not shown). The clock A records a time interval

Atg“T) required for the cube to pass over it.

Imagine the moving cube to be carried, at constant proper velocity perpendicular
to one face, past a fixed clock at A. The time interval taken by the cube to pass A is
measured by the clock fixed at A to be Atl(\LT) , the time interval between passage of
the Leading and Trailing faces. In addition to this fixed clock, now imagine another,
separate and not synchronized, clock to be attached to the moving cube. The proper
speed of the cube u can be measured using that attached clock in the manner de-
scribed above. The group then uses eqn (14.15) to remove the error caused by the
motion of the attached clock and so calculate the corrected speed of the moving cube
v. The length of the cube, in the dimension along the line of its velocity, is then de-
fined to be its corrected velocity multiplied by the time interval Atj(\LT) required for it
to pass by the fixed clock at A.

L =vAr{" (14.19)

If the sides of the cube measured at rest are L, it will be observed (SR) that

Lo

Le Loyt — v/ (14.20)

Note that the clock at A requires no correction, since it is a standard clock at rest in
the grid.

14.5.10 Synchronization of Distant Clocks

The survey group has now dealt with two of the major impediments to its survey:
Time dilation and Lorentz contraction. And it has done this without as yet having a
synchronized system of clocks at different locations in the cubical grid. We now come
to clock synchronization as the last step.

First, we note that the survey group already has a system of clocks distributed
throughout the grid, ones that they know to be ticking at the same standard rate. In
a sense, dr is already defined. All that is required to finish the job is to find some
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systematic way of setting the zero of time for these stationary standard clocks. The
most natural way is to make use of eqn (14.13), the general formula for correcting
the time interval of a clock moving with the self-measured proper speed u.

To synchronize a clock at B with one at A, the procedure is as follows: Carry a
standard clock M from A to B. At the instant of M’s departure, reset M to the value
t,0 read currently on the clock at A. Record M’s proper speed u during the whole trip,
continuously calculating the accumulated corrected time

B B
Atyp = f dt = f 1+ u2/6'2d'l.’ (1421)
¢ A A

where dt is the small time increment measured by the moving clock M and u is its
instantaneous proper speed. At the instant when the clock M reaches B, the stationary
clock at B is reset to the time #, = 1,0+ Afy. This procedure has the merit that
slow clock transport is not required, which might appeal to the survey group on the
grounds of efficiency.

14.5.11 Internal Consistency of Synchronization

Using the above synchronization method, every stationary clock will be found to be
already synchronized with itself when M is carried around a closed path beginning
and ending at that clock. For if the clock M is carried to B and then returned to A,
possibly by a different return path, the total elapsed corrected time will be as given
earlier by eqn (14.14)

A B A
Atgy :f J1+u?/c2dr =f ,/1+u2/czdr+/ V1 +u?/ctd (14.22)
A A B

and the clock at A at that instant will thus be found to agree already with the value
ty = t,0+ Aty, that would be calculated to synchronize it.

Since f,0+ Afyq = tyo + Atyp + Aty = tp+ Atpg, this return of clock M back to A
establishes the reflexivity and path independence of the synchronization procedure.
For if clock B is synchronized with clock A using the outgoing path, then it is also
true that clock A will be found to be already synchronized with clock B using any of
many possible return paths, which may be different in both position and proper-speed
profile. Thus not only does “B synchronized with A’ imply “A synchronized with B,”
proving reflexivity, but also the synchronization of A with B is found true using any
return path, proving path independence.

Transitivity also follows. If clock B is synchronized with clock A, and clock C is
synchronized with clock B, then clock C will be found to be synchronized with clock
A

14.5.12 Two Limiting Cases

The above general method of clock synchronization has two limiting cases of interest.
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Slowly-Moving Clock In the first limiting case, the transported clock M is moved very
slowly, with u < ¢. Then eqn (14.21) may be expanded as

B 2 B 2 de
Atab:/ 1+ 2y dr:Arab—i—/ )= (14.23)
A 2¢? A 2c2 u

where the relation dt = d¢/u, which follows from the definition u = d¢/dz, has been
used in the last integral. If the total path length between A and B through which clock
M is carried is £, and the maximum proper speed is umax, then in the umax/c — 0 limit
the last term in eqn (14.23) is of order (umax/c)(£/c). Thus At,, = Aty plus a term
which can be made as small as needed by a suitably small choice of umax.

This slow-clock method of synchronization has the advantage that no calculations
are needed to get Aty since it can just be read off the moving clock directly: Az, =
At,p to whatever accuracy desired. When clock M arrives at B, the stationary clock
there should just be set to 7,0 + At,p. The disadvantage of this method is, of course,
that the synchronization process might be very slow if high accuracy is needed.

Rapidly Moving Clock In the second limit, the clock M is transported with a very
large proper speed u > c. Then eqn (14.21) may be expanded

B 2 ¢ B 2 de
Atab=/ (R Zd,=_+/ )= (14.24)
A 2u? c c  Ja \2u? c

where the relation d¢ = udt, which follows from the definition u = d¢/dzt, has been
used, and ¢ is the total length of the path through which M is carried. If we denote
the minimum proper speed by upi,, then in the c/upi, — 0 limit, the last term in
eqn (14.24) is of order (¢/umin)(¢/umin), Which can be made as small as needed by a
suitably large choice of umjp.

Upon arrival of the clock M at point B, the clock there should be set to #,0 + £/c.
With this method of synchronization, it is not even necessary to read the time on the
moving clock. Only the path length ¢ and the round-trip speed of light ¢ are needed.

14.5.13 The One-way Speed of Light

The survey group can now determine the one-way speed of light between points A
and B by transporting a moving clock M in a straight line between these points at
very high proper speed u. They will find (SR) that a light pulse leaving A at the
same instant will arrive at B at almost the same instant as the moving clock, with
the agreement getting better the higher « is. (Of course u can never be infinite, only
approach it as a limit.) Thus, according to eqn (14.24), the synchronized clocks at A
and B will record a limiting common travel time At,, = ¢/c for both M and the light
pulse, where now ¢ is the Pythagorean distance between A and B. It follows that the
one-way speed of the light pulse is the same as the two-way speed, c,p, = €/ Aty = c.
A similar argument applies between any two clocks. So the one-way speed of light
between B and A is also ¢p, = c.

This result can be used as an alternate method of clock synchronization, one that
gives the same results as those in the previous subsections, but may be simpler to
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implement: The time-signal method. Simply send a light pulse from A at 7,0 and, at
the instant of its arrival at B, set the clock at B to the value #, = t,0 + ¢/c, where ¢ is
the Pythagorean distance between the two clocks.

The clock synchronization method used by Einstein in his 1905 paper is closely
related to this time-signal method. It follows from the time signal method that when
a light pulse leaves A at 7,1, is reflected from B at 7, and returns to A at time #,;, the
three times are related by

1
1 = 5 (tal + ta2) (1425)
which was used by Einstein as a definition of #,.

14.5.14 Lorentz Contraction by Another Method

Now that the clocks at each vertex of the cubic grid are synchronized, the survey
group can do an alternate experiment to determine the Lorentz contraction of a cube
that is moving with constant proper velocity perpendicular to one face. Two observers
fixed in the grid observe the location of a corner of the leading and trailing faces of
the cube at the same instant of time, as measured on their two synchronized clocks.
Calculating the distance between the two points using the Pythagorean theorem, they
will find (SR) that the measurement agrees with eqn (14.20).

14.5.15 Coordinate Time and Velocity

In Section 14.5.7, the “corrected” time interval dr between two events on a moving
object was written in terms of the proper time interval dt between those two events
as read by a clock moving with the object. This was done before the stationary clocks
at the vertices of the grid were synchronized. But, since this corrected time interval
has now been used to determine the synchronization of the stationary grid clocks,
it follows that the same time interval dt would also be measured by these vertex
clocks. (Of course, two of them would be needed since two events on a moving object
take place at different points of the grid.) We will now refer to time read on the
synchronized, stationary vertex clocks as the coordinate time in the S system. The
“corrected” time intervals and coordinate time intervals are therefore identical, and
in later chapters will usually be referred to simply as intervals of coordinate time.

The synchronized clocks at the vertices of the grid may now be used to define
what will be called the coordinate velocity of a moving object. Consider two events
on the moving object. They will be separated in the grid by a vector displacement
dr and by a time interval dt measured by two different but synchronized stationary
clocks. The coordinate velocity is then defined by v = dr/dt. Since the corrected
and coordinate time intervals are equal, the “corrected” velocity v of a moving object
defined in Section 14.5.8 will be the same as this coordinate velocity. Thus, in later
chapters, the “corrected” velocity will usually be referred to as the coordinate velocity.

It follows that the earlier formulas, relating proper time interval and velocity to
corrected time interval and velocity, also apply to coordinate time interval and coor-
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dinate velocity. Thus, for example,

dt = ydt and v=yu where y=,/1+u?/c2=1/\/1—v%/c? (14.26)

relate the proper time interval dt and velocity u to the coordinate time interval d¢
and velocity v.

14.5.16 Universality

The survey group will also have observed another important phenomenon that de-
serves to be emphasized: universality. It will be found (SR) that any sort of good clock,
carried along with a standard moving clock M and initially synchronized with M at
the start of the travel, will remain synchronized with M to within its own accuracy.
Quartz watches, radioactive decays, elementary particle lifetimes, even presumably
human hearts, will all be observed to participate equally in the time-dilation effects.

Universality will also be observed (SR) in Lorentz contraction. Equal-sized, rigid
cubes of diverse materials placed side-by-side will be observed to remain congruent
when they move with the same constant proper velocity.

The group has now finished its survey. The cubical grid and observers holding
synchronized clocks at each vertex form an observer team (in the sense described in
Section 14.4) adequate for determination of the ¢, x, y, z coordinates of any event.
The survey described here has not been based on axioms or other preconceptions
about the nature of the surveyed spacetime. Special relativistic effects such as time
dilation and Lorentz contractions have been encountered as surprising complications
that had to be worked around, and the final coordinate system (observer team) has
incorporated these relativistic effects in a conservative way. The resulting coordinate
system is identical to one that could have been derived from Einstein’s axioms.

14.6 The Lorentz Transformation

As discussed in Section 14.4, the important and difficult problem was to create even
one coordinate system, which we now assume has been done as described in Section
14.5 or in some equivalent way. If we consider that a second survey group establishes
another coordinate system using exactly the same process as in Section 14.5, we will
find that the Lorentz transformation between two systems is already implicit in the
results of the first survey.

Suppose a second survey to be done. The second survey group uses sets of stan-
dard rods and clocks identical to the first one. They use exactly the same sequence of
experiments as the first survey did, with identical interpretations of them. The only
difference is that we will assume the second survey to have slightly mismeasured the
isotropy of the three-degree background radiation, and hence to have built a cubical
grid that is moving uniformly relative to the first one. However, we will assume that
the second survey group is unaware of this error, and will do its survey using exactly
the same assumptions as used by the first survey.

The original survey will be referred to as S, and the second survey as S’. To simplify
the algebra, we make the usual assumption that the origin of the second grid has
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coordinate velocity V = Vé; as measured by the S system, that the second survey
group has accidently chosen its own x’-axis along this same direction, and that its
y’-axis is such that points on the y’-axis have x = V¢ and z = 0 for all time z. We also
assume that the moving-system origin is accidently chosen so that it passes the origin
of the rest system at rest-system time s = 0, and that both S and S’ are right-handed
systems.

As the S’ group goes through the steps listed in Section 14.5, we can use the
already established S coordinate system to verify that the S’ group will obtain exactly
the same experimental outcomes as the S group did. We give a brief summary of this
process.

14.6.1 Second System — Space Frame

Following the procedure detailed in Section 14.5.1, the S’ group assigns the address
(x',y', 7z') where
x'=nl y = nto 7 =nlly (14.27)

to a vertex that s (n, n),, n’) counts from an S'-system origin. The lengths ¢, are those

values stamped on the sides of the standard rods, just as they were for the original
survey.

According to eqn (14.20) with v = V, the S group will observe the standard rods
along the x’-axis of the moving system to be contracted to £ = /1 — (V/c)%£y while
those along the y’- and 7’-axes will have their uncontracted length ¢(. The S group
might question the use of the marked length ¢ in the first of eqn (14.27), since rods
in the x’ direction are actually contracted. But S will understand this S’ coordinate
definition, since the universality noted in Section 14.5.16 implies that everything S’
might compare to these rods is itself contracted by the same factor and so the con-
traction is invisible to S’. Equation (14.27) is in fact the first notable example of the
S’ group’s insistence on using exactly the same methods as S used.

Given eqn (14.27), vertex (x’, y’,z’) will, at S time ¢, be assigned the S-system
address (x, y, z) where y = y’ and z = 7/, but

x=Vt+nl=Vi+n\J1=(V/c)o=Vi+,/1—(V/c)>x (14.28)

Thus the S group will obtain the last three Lorentz transformation equations
X' =T(x -V y =y 7=z (14.29)

where .
M= —— (14.30)

V1= (V/e)?

The S group will also verify the S’ group’s discovery of the Pythagorean theorem.
The universality of Lorentz contraction implies that the x’ dimension of both the
measured rod and the rods of the S’ grid will be shortened by the same factor. Thus
if the experiment were prepared first with S’ at rest relative to S (in which state we
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already know the Pythagorean theorem to hold), and then accelerated gently to its
final situation while the S’ group slept, the numbers An’,, An’,, An’, would not change
and the S’ group would observe eqn (14.5) to remain true.

14.6.2 Second System — Clocks and Two-Way Light Speed

The S’ group now introduces standard clocks and carries out the experiments de-
scribed in Sections 14.5.2 through 14.5.5. Using the established S coordinate system,
we can verify that the S’ group will obtain exactly the same results as the S group did.

For example, S will verify that all clocks at rest in the S’ system tick at the same
rate, since those clocks all have the same speed V and thus obey

dt/|x/y/z/
V1—=V2/c2?

where dt'|,+y is a time interval measured on a clock at rest in S" at address x’, y’, z'.

dt = (14.31)

Also, the experiment in which the S’ group measures the two-way speed of light
to be static, homogeneous, and isotropic according to the formula

2A0
=" (14.32)
At |x/y/z/
will be verified by the S system, which will view it as what is called a light clock. If a
light signal moves from a clock A’ to a clock B’ and back, both clocks being at rest in
S’, the S system will calculate the total transit time to be

2AY
At = — (14.33)

/1 —=V2/c2

where the Lorentz contraction formula eqn (14.20) has been used, along with the
Pythagorean theorem in the S’ system

A= \J(ax + ()2 + (a2)2 (14.34)

Using eqn (14.31) to write Af'|1y,» = /1 — V2/c2 At and putting this result into eqn
(14.32) then gives
, 200

(=——¥————=¢
At/1=VZ/2

where eqn (14.33) was used to get the final equality. This verifies the S’ result that ¢’
is homogeneous and isotropic and also demonstrates that ¢’ = ¢. The two-way speeds
of light in the two systems are numerically identical. Henceforward, we will denote
this common value as ¢, with no primes.

(14.35)
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14.6.3 Second System — Proper Velocity

Following the path of the first survey in Section 14.5.6, the second survey group
now uses the proper time At read from a moving clock to define the proper velocity.
The x’-component of the proper velocity, for example, is defined as u, = Ax'/Art,
where Ax’ is the number of y’-z’ planes pierced by the motion times their standard
separation, and At is the elapsed time measured by the moving clock. The proper
speed is defined as u’ = A¢’/At, and the Pythagorean theorem in the S’ system then

gives
u' = Jul +ul? +ul? (14.36)

The S group can use results already obtained in the S’ survey to derive a transfor-
mation law between proper velocities in the two systems. Dividing the differentials of
eqn (14.29) by the proper time interval dz and using dt/dt = /1 + u?/c? from eqn
(14.26), gives

u, =T (ux —Vy/1+ u2/62> Uy = uy u, = u; (14.37)

Defining y = /1 +u2/c? and y' = /1 +u'2/c2, eqn (14.37) implies the following

relation that will be of use later

V /
y=T (y’ + —Z*) (14.38)
C
It follows from these equations that u/c — oo if and only if u’/c — oo. Since a
light pulse was demonstrated in the S system to have an infinite u value, it follows
that the same light pulse viewed from S’ has an infinite u’ value also.

14.6.4 Second System — Time Dilation

Still following the example of the first survey, the S’ group observes that a clock
moving in a closed circuit beginning and ending at the same point A’ of the S’ system

obeys
A/
Aty = 7& V1+u'?/ctdr (14.39)

where Ar/, , is the time interval of one cycle as measured by a clock fixed at A" and dt
is the proper time interval of the moving clock at the instant when its proper speed is
u'. The S’ group then follows the same line of reasoning as outlined in Section 14.5.7
of the S group’s survey. They conclude that the moving clock is distorted by its motion,
and that the time interval d¢’ corrected for this distortion is

dt’' =\/1+u'?/c?dt (14.40)

As did the S group, the S’ group use symmetry arguments to discount the possibility
that the true relation might be

di' = /1 +u'?2/c2dt +dd’ (14.41)
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where ®'(x, ', 7’) is some single-valued function of position in the S’ system that in-
tegrates out of eqn (14.39). Like the S group, they argue from the apparent isotropy
and homogeneity of the local space—plus their precaution (failed, as we know)
of choosing a state of motion from which the three-degree radiation field appears
isotropic—that no such ®'(x’, y’, z’) term is present in eqn (14.41).

The S group verifies eqn (14.39) but not eqn (14.40). Multiplying eqn (14.38)
through by dt and using the definition u/, = dx’/dt gives

Vdx'

dt =ydt =T <y’dr + 2x ) (14.42)
C

where the relation dt = ydt from eqn (14.26) has also been used. Using eqn (14.42),

together with dt'|yy, = /1 — V?2/c?dt from eqn (14.31), the S group derives the

relation I
\%
di' |y =1+ w2 dT + 25 (14.43)
c

which illustrates that the correction rule eqn (14.40) does not bring the proper time
interval dt into agreement with the time interval dt’|,s,,, shown on the clocks fixed
in S’. (Note that the S system time interval d¢ is used in intermediate steps in this
derivation, but is absent from the final result. Equation (14.43) represents the time
interval that elapses on a clock fixed in S’ while a moving clock measures time interval
dt and moves an S'-distance dx’.) According to the S group, the S’ group is not in an
isotropic space but in one marked by a velocity V relative to the truly isotropic S
system. The function &’ thus was incorrectly assumed to be a constant. Its actual
form is found by the S group to be

Vx'

o =
2

(14.44)

Nonetheless, we are here considering the case in which the S’ survey group is
ignorant of its error and persists in using the definition of dt’ given in eqn (14.40).
The S’ group is assumed to do exactly as the S group did, including the using of eqn
(14.40) exactly as S used eqn (14.13).

14.6.5 Second System — Velocity and Lorentz Contraction

Having adopted the measurement of dt’ from eqn (14.40), the S’ group continues
the program followed by the S group in Sections 14.5.8 and 14.5.9. They define a
corrected velocity

, dr'dt u (14.45)
V== .
dfdt/ ,/1+M/2/C2
and a corresponding corrected speed v/ = u’//1 + u’?/c? such that
/
T &% (14.46)

V1—=v72/c? vy
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where .

V= s - 1wz (14.47)

The S’ group then uses this corrected velocity to measure the length of a cube, in
the dimension oriented along the line of its velocity, to be

L/
L=vAlli = — 20— J1 22 (14.48)
4 V1I4+u'?/c? 0

where L is the side of the cube when at rest in S'.

The S system will verify these experimental results to be correct provided that one
accepts the strange (to the S group) definition of time interval d¢’ being used by the
S’ group.

14.6.6 Second System — Clock Synchronization

The second survey group now follows the S procedures of Sections 14.5.10 through
14.5.13 to synchronize standard clocks fixed at the vertices of the S’ grid. A clock at
B’ is synchronized with one at A’ by carrying a moving clock M from A’ to B'. Clock M
is first synchronized with the clock at A'. If it leaves A" at time ¢/, then at the instant
of arrival at B’ the clock there is reset to 1, =1/ ,+ Ar/, where

B/ /
At = / dt’ = / J1+u'?/c2dr (14.49)
ab N ,

where dt is the small time increment measured by the moving clock and u’ is its
instantaneous proper speed.

The S’ group will find the same consequences (internal consistency, limiting cases,
one-way speeds of light) as found earlier by the S group. In particular, the one-way
speed of light between two clocks A’ and B’ fixed in S’ will be found to be

Chp =C=Cpy, (14.50)

just as for the S system. These results will be the same as for the S system because
they follow directly from eqn (14.49).

14.6.7 Second System — Emergence of the Lorentz Transformation

The S group observes that the S’ synchronization process implies the standard Lorentz
transformation between the two systems, again provided one follows the S’ group’s
use of the definition of dr’ in eqn (14.40). Using this definition, eqn (14.42) can be
written as

Vdx'

dt =T (d;’ + ) (14.51)
C

If a clock M is carried from the origin of S’ to the point x,” y,” 7/, starting at the instant

when the origins of S and S’ cross (an event taken to be at the arbitrary zero of time

in both systems), then according to eqn (14.49) the clock at x,”y,’z’ will be reset
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to ' = [ ° di’ at the instant of M’s arrival. Integrating each term of eqn (14.51)
between these same limits thus gives

V /
t=T (ﬂ + > (14.52)
C

Substituting this result into eqn (14.29) and solving for x, y, z then gives the trans-
formation between the coordinates of the two surveys

ct =T (ct’ 4+ Bx")

x =T (Bct' +x)

y=y

z=7 (14.53)

where B = V/c and T' = +/1 — B2. We will refer to this as the standard Lorentz
transformation. It holds when the axes of the two systems are aligned as described at
the beginning of Section 14.6.

14.6.8 Second System — Coordinate Time and Velocity

The discussion of coordinate time and velocity in Section 14.5.11 applies also to the
S’ system developed by the second survey. The time measured by the synchronized
clocks placed at the vertices of the S’ grid will be referred to as the coordinate time
in the S’ system. Since the “corrected” time interval dr’ obtained in Section 14.6.4
has been used to determine the synchronization of clocks at the vertices of the S’
grid, it follows that two events on an object moving relative to the S’ grid will have a
corrected time difference equal to their coordinate time difference.

The coordinate velocity of an object moving relative to the S’ system can also be
defined, by considering two events on the object. They will occur at two points of
the S’ grid with vector displacement dr’ and time interval d¢’ as measured by two
different but synchronized vertex clocks. The coordinate velocity in the S’ system
is then defined as v/ = dr//dt'. As in the S system, this velocity is identical to the
corrected velocity defined in Section 14.6.5.

It follows that the equations relating the proper time interval and proper velocity
to the corrected time interval and corrected velocity apply also to the coordinate time
interval and coordinate velocity. Thus, like eqn (14.26) in the S system, we have

dt =vy'dr and vV=yu where y' =./14+u?/c2=1/\/1—v"?/c2

(14.54)
relating the proper time interval dz and proper velocity u’ to the coordinate time
interval dt’ and coordinate velocity v’ in the S’ system.

14.7 The Principle of Relativity

Since the effects predicted by standard special relativity were assumed in the first sur-
vey, Section 14.5, and since the coordinate system produced by that survey was then



338 RELATIVITY AND SPACETIME

dt

cdt,dx,dy,dz

cdt’,dx', dy’, dz7

S X S/ x/

FIG. 14.5. Two flashes of a strobe light on a moving clock are separated by proper time dt on
the moving clock, by dt = ydt on the S system clocks, and by dt’ = y’dt on the S’ system
clocks.

used to predict the effects encountered by the second survey, it is not too surprising
that the standard Lorentz transformation in eqn (14.53) has emerged at the end of
the process. The benefit of considering the Lorentz transformation as the end product
of experimental surveys is that we get some insight into how it emerged.

The two survey groups have followed exactly the same experimental procedures to
establish systems S and S’. One crucial common procedure was the assertion by each
group that it was the one at rest in a locally homogeneous, isotropic space. Hence
each group used a symmetry argument to infer a differential relation, eqn (14.13)
for the S survey and eqn (14.40) for the S’ survey, from an experimentally measured
integral one. The surprising result is that, in both cases, this assertion of homogeneity
and isotropy suffices to produce a system that is indeed homogeneous and isotropic
in all of its internally measured properties like speeds of light, etc.

Moreover, these two systems seem truly indistinguishable. Inverting the set of
equations, eqn (14.53), using Cramer’s rule for linear equations, yields an inverse
transformation which differs only by the exchange of primed and unprimed coordi-
nates and the replacement of V by —V (and hence B by —B),

ct’ =T (ct — Bx)

x' =T (=Bect + x)

Y=y

= (14.55)

There is nothing internal to the two systems, nor in the transformation between them,
to prevent us from viewing S’ as the rest system, and S as a system moving along its
negative x’ axis direction with speed V in the opposite direction.

Thus Einstein’s two principles are recovered, at least as far as the outcomes of the
two surveys are concerned. Each group may assert that it is at rest in an isotropic,
homogeneous space and the other group therefore cannot be. But there is no local
experimental way to decide between these assertions.
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14.8 Lorentzian Relativity

As we noted above, Lorentz derived his transformation from the requirement that
the Maxwell equations must have the same form in both the S and S’ systems. After
Einstein’s 1905 paper, Lorentz also abandoned the absolute Newtonian time but tried
to hold on to the concept of an aether.”® His idea was that the relativistic effects
encountered by the S survey group were due to physical interactions of clocks and
cubes with the background aether. The details of the S survey, in particular the fact
that the time-dilation factor /1 + u2/c? is the same as the Lorentz contraction factor,
are then responsible for the principle of relativity and the equivalence of the S and S’
systems.

Lorentz thus views time dilation of clocks moving relative to the aether to be due
to a physical action of the aether on a moving clock. His approach makes relativity
a physical theory (albeit with mysterious and unknown mechanisms of interaction),
rather than just a statement of principles.

However, Lorentz’s view did not prevail. By the 1930s the consensus was that
the aether was an unnecessary and unobservable intellectual construct. The problem
it was meant to solve, the provision of a medium within which light waves could
propagate, was resolved by assuming that the electric and magnetic fields themselves
were “things” on the same footing as real particles. Light was then viewed as a wave
resulting from the interaction and mutual reinforcement of these real field objects.
The aether was relegated to the dustbin of history, with other failed concepts such
as phlogiston or N-rays. In Einstein’s magisterial phrase, from his first 1905 paper,
“the phenomena of electrodynamics as well as of mechanics possess no properties
corresponding to the idea of absolute rest.”

However, while the relativistic revolution was destroying the concept of the aether,
another revolution was underway that offers some support to the Lorentzian program:
quantum mechanics. The quantum theory of electrons and photons makes essential
use of the concept of a vacuum state. This is the state of nature when everything re-
movable is removed, and when all quantum fields are in their ground states. Due to
the uncertainty principle, the quantum vacuum state has nonzero energy. At present,
calculations of the energy density of the vacuum state give infinite answers. But its
physical reality is demonstrated experimentally by the Casimir effect, in which finite
changes in the vacuum energy can be observed. Also, each species of elementary par-
ticle in the standard model gives rise to what are called vacuum fluctuations in which
particles are spontaneously created and destroyed. It seems, in sum, that empty space
has become quite a busy place, with much in it that is undeniably physically real.

The physicality of the vacuum state of quantum mechanics opens the possibility
that the Lorentzian approach to relativity might be reconsidered, with the aether re-
placed by a physical substance that we might call by a more neutral term, the physical
vacuum. It might be that the relativistic effects are due to interactions of clocks and
cubes with the same physical vacuum that is also the arena for the vacuum state of

73See, for example, the last chapter of Lorentz (1952).
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quantum mechanics.

14.9 Mechanism and Relativity

There is a tradition in physics that goes back to Descartes’ arguments with the Aris-
totelian physics that preceded him. Called the mechanist tradition, it holds that phys-
ical objects have only a small number of intrinsic properties and that these properties
can be described geometrically or mathematically. This was in opposition to the Aris-
totelian propensity to treat each new phenomenon as the emergence of another as
yet unobserved (or occult, as in hidden) property of the objects. Descartes’ mechanics
also had the idea of proximate interaction. Things interact by collision, or by contact.
Thus Leibniz ridiculed Newton’s idea of a gravitational attraction acting between dis-
tant masses, calling it “occult”.

A modern statement of the mechanist tradition might be the assumption that phys-
ical effects have physical causes, and that those physical causes must act locally. Thus
the field picture of electrodynamics states that, rather than two electric charges acting
on each other at a distance, the charges produce an electric field that fills the space
between them and acts locally on each charge. The idea of field propagation at less
than the speed of light, combined with local interactions, is sometimes referred to as
Einstein locality.

We might ask whether the mechanist tradition is consistent with special relativity.
In particular, is there an explanation for the time dilation of a moving clock that is
local and involves the interaction of physical objects?

To explore this question, let us return to a very early stage in the first survey, when
we had only a cubical grid, a standard clock A at some fixed vertex of that grid and a
standard clock M free to move about in the grid. If M is carried around some closed
path starting and ending at A, the elapsed time At,, measured on the stationary clock
and the elapsed time At,, measured on the moving clock are related by eqn (14.12),

so that A A
At, =f J1+u?/c?dr and AT, =‘¢ dr (14.56)
aa A / aa

A

We note that this equation summarizes an experimental result that does not depend
on such choices as the definition of coordinate time made later in the S survey. There
is little room for doubt that the difference between At,, and At,, = f: dt, the cycle
time measured on the moving clock M, is a real effect that is independent of any
elements that could be considered arbitrary. We argued in Section 14.5.7 that this
difference must be due to a distortion of the running of clock M, and not of clock A.
Let us now seek a physical cause of this distortion.

First consider the hypothesis that M is distorted by its motion relative to the other
physical objects of the experiment, the rods and the fixed clock at A. This can be
disproved by setting up multiple sets of physical grids and multiple clocks at various
points in them or even moving freely in random ways. According to standard special
relativity (SR), the distortion of M relative to the original grid and the original clock
A will not be affected. Equation (14.56) will be unchanged. If a physical interaction
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between M and the grid or between M and A were the cause of M’s distortion, we
would expect that similar physical interactions with the other grids and clocks would
also distort M. But no such extra distortion will be observed.

Possibly the distortion of M is due to the forces that must be applied to it to
make it move in a non-inertial path? Those forces are indeed physical and are applied
locally to M. However, we can set up an experiment in which M travels out from A
on a straight, inertial path with no forces acting on it, then circles around on the
arc of some circle and returns to A again along another straight, inertial path. Then
M will experience forces only during the circular part of its path. On its outward
leg, M may not have experienced any acceleration since its distant past. Or, if M
is constructed, for example, from a swarm of decaying muons, it may never have
experienced an acceleration at all, having been emitted with its present momentum
value. Yet these inertial portions of M’s path contribute their fair share to the integral
in eqn (14.56), regardless. The hypothesis that forces are the source of the distortion
of M does not work out in detail. One can even imagine an experiment with no forces
on the clocks at all, with an inertial, force-free outbound clock transferring its elapsed
time count locally to an inertial, force-free inbound one as they pass each other. The
conclusion is that the distortion of M is not due to whatever agent it is that produces
the accelerations necessary to maintain its motion.

Mechanism requires that this physical effect, the dilation of the moving clock, must
be due to some local interaction between the clock and some other physical thing. The
mechanist tradition in physics will allow occult phenomena, those that just happen,
as a temporary expedient but is not satisfied until physical causes are found for them.
The question is: What is the physical thing with which a dilated clock is interacting?

One response has been to consider the metric field g, of general relativity to be
a physical thing, an idea akin to the reification of the electric field. The metric field
is present in all of space and thus could interact locally with moving clocks. As men-
tioned in Section 14.8, another possibility would be to revive Lorentzian relativity,
but with the aether replaced by a physical vacuum filling all space. The time dilation
of clocks would be a consequence of the local interaction between the clocks and
that physical vacuum. Then the metric field of general relativity would not be consid-
ered a thing in itself, but rather a way of representing local properties of the physical
vacuum.

14.10 Exercises

The questions in these exercises should be answered using the standard Lorentz transforma-
tion eqn (14.53) and its inverse eqn (14.55), together with the axiom noted in the footnote on
page 319.

Exercise 14.1

(a) Suppose that two events take place at the same S’ location but different times. Show that
the time intervals between these events in the S and S’ systems are related by dr = I'dt’.
What is the proper time interval dt between these events?

(b) Suppose that two events (event A at the end nearest to the origin, and event B at the other
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end) take place at the ends of a stick of length A¢" which is at rest in S” and aligned parallel
to the x’-axis. Suppose that these two events are simultaneous as seen by the S system. Find
the distance x;, — x,, and the time interval #; — 1/ between them as seen by the S” system.

(c) State why that the distance (x; — x,) is a good measure of the length of the stick £ as
seen by the S system. Show that it obeys the standard Lorentz contraction formula A¢ =

V1 =V2/cZAP.
Exercise 14.2

(a) Show that eqns (14.15, 14.17) are equivalent, and that either of them implies eqn (14.16).
(b) Use standard special relativity to predict the experimental result eqn (14.12).

Exercise 14.3 Show, using the standard Lorentz transformation, that the definition of the
length of a moving object in eqn (14.19) implies the experimental result eqn (14.20).

Exercise 14.4 Suppose that a light clock is set up, consisting of a stick of length A€ at rest
in the S’ system but not parallel to any of the axes. There are mirrors at each end of the stick
and one cycle of the light clock is the round-trip time of a light pulse that is reflected back
and forth between them. Calculate the round trip cycle time of the light clock Az as seen by
the S system, and thus verify eqn (14.33).

Exercise 14.5 Prove that eqn (14.37) implies eqn (14.38).

Exercise 14.6 Use Cramer’s rule (not assuming the principle of relativity, which is what
we’re seeking to prove) to show that eqn (14.53) implies the inverse eqn (14.55).

Exercise 14.7 Discuss the following questions.

(a) If time dilation is due to an interaction of clocks with a physical vacuum, then why is time
dilation universal? Why does that dilation have exactly the same magnitude for all sorts of
moving clocks, with presumably different interaction modes?

(b) If there is no physical vacuum, then what is the physical mechanism responsible for time
dilation? Is one needed?
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FOURVECTORS AND OPERATORS

The previous Chapter 14 discussed some of the philosophical questions raised by
special relativity. The present chapter develops techniques that allow relativistically
covariant calculations to be done in an elegant manner.

We introduce what will be called fourvectors. These are analogous to the famil-
iar vectors in three-dimensional Cartesian space (which will now be referred to as
threevectors) used throughout the earlier chapters of the text. The difference is that,
in additional to the three spatial components, fourvectors will have an additional ze-
roth component associated with time. This additional component allows us to deal
with the fact that the Lorentz transformation of special relativity transforms time as
well as spatial coordinates.

The theory of fourvectors and operators is presented using an invariant notation.
Rather than considering a fourvector to be only a set of components in some basis, we
will consider it to be something that models some physical property of the experiment
under study and is independent of the choice of coordinate system.

The reader is already familiar with this sort of notation because, for example in
discussing rotations in Chapter 8, we have used threevector equations wherever pos-
sible, rather than writing out component equations in a particular basis. We are here
extending to relativity (with fourvectors) the same techniques that made the theory
of rotations (with threevectors) tractable. The reader is urged to think of fourvector
equations in this invariant way.

The present chapter can only give the barest introduction to the vast subject of
fourvectors and tensors in special and general relativity. We introduce the subject
here in the simple context of special relativity, and present enough of it to allow the
reader to understand the special relativistic generalization of mechanics in Chapter
16.

15.1 Fourvectors

Sections 8.30 and 8.31 treated passive rotations in ordinary three-dimensional Carte-
sian spaces. We saw there that any threevector, for example the differential spatial
displacement threevector dr connecting two spatially separated points, can be ex-
panded in either an original o system or a rotated o’ system, according to the rule

dx@; +dyé +dz&; = dr = dx'€| + dy'&, + d7'&, (15.1)

where the differential components and basis vectors in the two systems are related by
the orthogonal transformations eqns (8.235, 8.240).

343
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From eqn (8.234), the basis threevectors obey
éi . éj = (Sij and éi . é; = (3,']' (15.2)

It follows that the square of the Pythagorean distance d¢ between the two points is
given by a form invariant’* expression (d¢)?> = dr - dr where

(dx)* 4 (dy)? + (dz2)? = dr - dr = (dx')? + (dy')* + (dZ')? (15.3)

Minkowski’> noted that a similar formalism can be introduced in special relativity
by the addition of a time coordinate to the original three coordinates of Newtonian
space. We can define components, basis fourvectors, and an inner product of pairs of
fourvectors—leading to an invariant quantity analogous to eqn (15.3).

The differential displacement between two events in special relativity can be repre-
sented by its coordinates cdt, dx, dy, dz in an S system and its corresponding coordi-
nates cdt’, dx’, dy’, dz’ in the S’ system (assumed, at least in this introductory section,
to have the same standard configuration as that described in Section 14.6). Taking the
differentials of the standard Lorentz transformation, eqn (14.53), the transformation
between the coordinate differentials is found to be

\%
cdt =T (cdt/ + —dx/)
¢

V / /
dx =T —cdt’' +dx
c
dy =dy’
dz = d7 (15.4)

As the reader can verify, the following quadratic expression is form invariant under
this transformation of coordinates

—(cdt)? + (dx)* + (dy)? + (d2)* = —(cdt’)? + (dx)* + (dy)* + (dZ)? (15.5)

Acting by analogy with Cartesian threevectors, we seek to define a displacement
fourvector dr in relativity theory such that its inner product with itself dr - dr will
reproduce the form invariant quantity in eqn (15.5). Following the pattern of eqn
(15.1), we introduce basis fourvectors €, and write’®

dr:dxoé()+dxlé1 +dx2é2+dx3 e; (15.6)

0

where x° = ¢r, x!

= x, x2 = y, x3 = z. This fourvector dr models the relativistic

T4Recall that a quantity or expression is called invariant if it has the same numerical value in two dif-
ferent coordinate systems. A form (short for algebraic form) is an algebraic expression written in terms of
coordinates. Thus an expression that has both the same algebraic form and the same numerical value when
expressed in two different coordinate systems is called an invariant form, or a form invariant expression.
Such expressions are also often referred to by the shorter term invariants.

75H. Minkowski (1908) “Space and Time,” Address at the 80th assembly of German Natural Scientists
and Physicians. English translation in Einstein, Lorentz, Minkowski and Weyl (1923).

T6We follow the established convention of using superscripts for the indices of fourvector components
and subscripts for the indices of basis fourvectors. Note also that fourvectors will be set in bold sans serif
type to distinguish them from threevectors that are set in bold serif.
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interval between two events. It is an invariant object of the sort mentioned in the
introduction to this chapter.

To see what the basis fourvectors mean, we consider an example from three di-
mensional space and then the analog in relativity. We know that in the threevector
case, the meaning of the basis vector € is that a threevector displacement dr = dxé€;
connects two points with the same y and z coordinates but differing x. Analogously,
the meaning of the basis fourvector €, is that a fourvector displacement dr = dx' €,
connects two events that have the same y, z, and ¢ coordinates. Hence the two events
connected by dx! €, are also simultaneous in the S system.

Basis fourvectors can also be introduced in the S’ system. These are defined by
the requirement that the fourvector displacement dr defined in eqn (15.6) can also be
written as an expansion in terms of the S’ basis fourvectors

dr=dx'" &y + dx'' €| + dx'? &, + dx'’ &, (15.7)

Thus, in analogy to eqn (15.1), we now have
dx"@y+dx' @ +dx’ @ +dx’8; =dr=dx'"&,+dx'' & +dx'*&,+dx'* &, (15.8)

For rotations of threevectors, the basis vectors appearing in eqn (15.1) were re-
quired to transform by an orthogonal matrix. In the fourvector case, the transfor-
mation law for the basis vectors can be obtained by substituting the inverse of eqn
(15.4) into eqn (15.8) and using the fact that the differentials dx* are independent
quantities that can be set nonzero one at a time. The result is

so=r(e_Ve

0 = 0 c 1

N VA/ A/l

é =I(-——¢é +6
C

A~ A/
e2 == 92
A A~/

e;3 (15.9)

Just as was done for threevectors, we can interpret the expansions in eqn (15.8)
by saying that the same fourvector displacement dr is represented by its components
in either the S or the S’ systems

dr: (cdt,dx,dy,dz)s dr: (cdt',dx’,dy’,d7)g (15.10)

We make the distinction of using the symbol “:” rather than “=” in eqn (15.10). As
discussed in Section A.5 for the threevector case, it is not correct to set the fourvector
dr equal to its components. The same fourvector dr is represented by different sets of
components in the two systems. The two sets are related, of course, by the Lorentz
transformation in eqn (15.4).
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15.2 Inner Product

The inner product (also called the dot product) in the space of fourvectors can now
be defined. But because of the minus sign on the time entry in eqn (15.5), an inner
product that will reproduce that expression cannot have the standard Cartesian form.
We adopt the definition that the basis fourvectors have inner products given, for all
w,v=0,1,2,3, by

€, € = gu (15.11)

where g, are the matrix elements of a four-rowed diagonal matrix g defined as

10 0 0
0410 0

9=10 0410 (15.12)
00 0 +1

It follows from eqns (15.9, 15.11) that basis vectors in the S’ system have the same
inner product

A/ A/

eu "€, =g (15.13)
with the same matrix g in both eqns (15.11 and 15.13). This g is the matrix of what is
called the Minkowski metric. We also define the inner product to be a linear operation,
just it was in Cartesian three space.

With the fourvector dr defined as in eqn (15.6), and the inner product of basis

fourvectors as defined in eqn (15.11), we may now use the assumed linearity of dot
products to write

3 3 3 3
dr-dr=|% "dx"é,|- <de”év) =Y dxtdx"é,-&,
n=0 v=0 n=0v=0
3 3
=YY dxtdx"gu, = —(cdt)’ + (dx)* + (dy)* + (d2) (15.14)
n=0v=0

with a similar expression, but with primed components and basis vectors substituted
for the unprimed ones, when dr is expanded in the S’ system

3 3

3 3
dr-dr=|> dx''e, .<de’”é’v>=Zde’“dx’”é;.é’u
v=0

M:O [4:0 =0

3 3
=) dx'tdx'V g, = —(cdt')* + (dx)* + (dy)? + (d2)? (15.15)
n=0v=0

Note the absence of a prime on g, in eqn (15.15). This matrix is the same in both
systems.
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The form invariant expression in eqn (15.5) may now be written using the fourvec-
tor formalism, as the dot product of two displacement fourvectors expanded indiffer-
ently in either the S or the S’ coordinate system

—(cdt)® + (dx)? + (dy)?> + (dz)? = dr-dr = —(cdt’)> + (dx)? + (dy)* + (dZ')* (15.16)

Thus, following Minkowski, we have successfully defined a system of fourvector dis-
placements dr whose dot product reproduces the Lorentz invariant expression eqn
(15.5).

15.3 Choice of Metric

The choice of Minkowski matrix in eqn (15.12) has a certain degree of arbitrariness.
We could as well have used its negative, with diagonal elements (1, —1, —1, —1). Un-
fortunately, about half of the physics community uses our choice, and the other half
uses the other.”” And once a researcher adopts one or the other convention, it is diffi-
cult to change because a large number of signs, and imaginary versus real quantities
in quantum field theory, depend on the choice.

A choice must be made, however, and for an analytical mechanics book like this
one that choice is strongly influenced by the desire to have the threevector parts
of fourvectors behave algebraically just as threevectors have behaved in the earlier
chapters. With the metric in eqn (15.12), the spatial basis fourvectors with i, j =
1,2,3 obey € - éj = &;; which is the same as eqn (15.2). Thus, we may write the
fourvector dr as

dr = dx" ey + dr (15.17)

where the spatial part of dr is written as the threevector
dr =dxé; +dyé, +dze;s (15.18)

with the assurance that dr - dr > 0, as has been true for threevectors throughout the
discussion in earlier chapters.”® This allows us to make use of our earlier treatments
of threevectors and operators with no changes, with just the replacement of the basis
vectors &; for i = 1, 2, 3 by the corresponding basis fourvectors €;.

15.4 Relativistic Interval

We saw in the case of Cartesian threevectors that the quantity dr - dr has an invariant
geometric meaning: It is the square of the spatial Pythagorean distance between the

TTFor example Misner, Thorne and Wheeler (1973) and Weinberg (1995) use our convention, while
Bjorken and Drell (1964) and Jackson (1975) use the other.

78The spatial, threevector part of the fourvector dr will be denoted by the same typeface dr as we have
used throughout the text for Cartesian threevectors. Strictly speaking, eqn (15.18) is both a threevector
(since it is invariant under spatial rotations at fixed time) and a fourvector (since it is composed of unit
fourvectors). Note that fourvectors like dr are invariant objects under Lorentz transformations, but the
spatial parts dr are not. If we transform to a coordinate system S’, the same fourvector as in eqn (15.17)
becomes dr = dx'? &; + dr’, with both dx® # dx’0 and dr’ # dr.
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two points that are connected by dr. We now investigate the meaning of the analogous
fourvector dot product dr - dr in special relativity.

The invariant expression in eqn (15.16) can be positive or negative. We consider
first the cases in which it is negative. If the two events connected by dr are like the
successive flashes of a quickly flashing strobe light moving at less than the speed of
light (imagine successive flashes of the navigation lights of a passing rocket ship),
then eqn (15.16) can be written in terms of the coordinate velocity of the moving
object, v in the S system and v’ in the S’ system. Factoring cdt from the left side of
eqn (15.16) and cdt’ from the right side, and using dx/dt = vy, etc., one obtains

v2? V2
- <1 - —2> A(dr)* =dr-dr=— (1 - —2> c(r'y? (15.19)
c Cc

Then either eqn (14.26) in the S system or eqn (14.54) in the S’ system can be used
to write
dr-dr = —c*(d7)? (15.20)

where dt is the proper time interval between events as read on a clock being carried
along with the strobing object, as defined in Section 14.5 and shown in Figure 14.5.
This proper time interval is a property of the moving clock and is independent of any
particular choice of coordinate system. Thus dz is an invariant quantity, as it must be
since it is written here as the dot product of two fourvectors.

Two events like the successive flashes of a moving strobe light just considered are
called timelike separated. The fourvector interval between such events has a negative
dot product with itself, and its value is related to the proper time interval measured
on a clock moving with the strobing object. From eqn (15.20),

dr-dr
o2

dt =,/ — for timelike separation (15.21)

In the opposite case, if the dr connecting two events has dr - dr > 0, then the two
events are called spacelike separated. Then, in analogy to the proper time for timelike
separated events, an invariant distance d¢ between the two events can be defined by

d¢ = ~/dr-dr for spacelike separation (15.22)

The intermediate case is when dr is a null vector, with dr-dr = 0. The two events in
this case are called lightlike separated. As can be seen by considering the v — ¢ limit
of eqn (15.19), such a dr connects successive events occurring on something moving
with the speed of light. As we saw in Section 14.5, this is the ultimate attainable
speed, corresponding to proper speed u equal to infinity. Two successive events on
the wave front of a light wave would have a null displacement vector

dr-dr=0 for lightlike separation (15.23)

Exercise 15.6 shows that for any two timelike separated events, there is some
coordinate system relative to which the two events appear to be at the same spatial
point. Exercise 15.7 shows that for any two spacelike separated events, there is some
coordinate system relative to which the two events are simultaneous.
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15.5 Spacetime Diagram

It has become customary to plot events in special relativity on what is called a spacetime
diagram, in which one or two spatial coordinates (but not more due to the limitations
of our primate sense apparatus) are plotted horizontally and x° = ¢t is plotted verti-
cally. An event is a mathematical point in such a diagram.

If we plot the successive strobe events of the passing rocket ship discussed in
Section 15.4, we find that these events can be connected by a continuous line, called
the world line of the strobe light. These world lines play the same role in relativity
theory that particle trajectories as a function of time play in Newtonian physics. They
give a complete description of the locus of the moving object at various epochs.
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F1G. 15.1. Spacetime diagram showing, on the left, the world line drawn through successive
flashes of a strobe light. The event A on the right is the origin of a light cone, shown as
dashed lines. Event B is in the forward light cone of A, event C is in the backward light
cone of A. Event D is outside the light cone of A and is not causally connected to it.

The spacetime diagram can also be used to define what is called a forward or
backward light cone associated with a given event. As shown in the Figure 15.1, event
B is in the forward light cone of event A if the displacement fourvector drag connect-
ing these two events obeys drap - drap < 0 and 73 > 7a. That is, it consists of all of the
events B later than event A that are timelike separated from event A. In that case, a
physical object moving at less than the speed of light can actually be present at both
event A and event B. (Note that an object can reach any location B from location A.
The question is, can it get there in time?) Note that the world line of an object that
is present at event A in a spacetime diagram will always remain within the forward
light cone of event A.

The backwards light cone of event A is all of those events C such that A is in the
forward light cone of C. This is the same as saying that drca - drca < 0 and ¢ < a.

Exercise 15.6 shows that any event B in the forward light cone of event A viewed
in a spacetime diagram of the S system will still be in the forward light cone of A when
viewed in any S’ system connected to it by a proper Lorentz transformation. Thus the
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temporal order of timelike separated events is an invariant. Exercise 15.7 shows that
the same is not true for spacelike separated events. For them, even if 15 > fa, there
will be some system S’ in which #; = 7, and another system S” in which 75 < ¢, with
the temporal order reversed.

Since no signal can propagate at greater than light speed, it is also true that the
forward light cone of event A contains all of the events B that A can possibly influ-
ence. And that the backward light cone of event A contains all of those events C that
can possibly influence A. We say that events within the light cones of A are causally
connected to A, while those outside cannot be. Two events A and D that are spacelike
separated are outside each other’s light cones and cannot be causally connected.

15.6 General Fourvectors

We have so far treated only one fourvector, the differential displacement between
two events dr. But, just as in ordinary Cartesian three space where force, velocity,
acceleration are all threevectors, there are many other fourvectors. The displacement
dr is in a sense the template fourvector that defines the class.

Suppose we define a mathematical object A in fourvector notation by specifying a
set of four components A?, A!, A%, A% in the S system and writing”®

A=A+ A'ée +A%é, +A%e; (15.24)

Then A will actually be a fourvector provided that its components in the S and S’
systems can be shown to be related by the same Lorentz transformation as eqn (15.4)
(note that we are still assuming the standard configuration here)

A'=r (A/O - KA”)
C

A'=T (ZA/O + A”)
(4

A2 — A/2
Al =43 (15.25)

Just as in the case of dr in Section 15.1, this transformation law insures that the same
fourvector A can be expressed in the S’ system using the primed coordinates and basis
fourvectors, as

A=A08 +ATE| + A28, + A8, (15.26)

For example, we can define a spacetime position or radius fourvector r as the dis-
placement vector between the origin of coordinates and an event with coordinates

T9Recall that we denote fourvectors by bold sans serif type, and matrices by normal sans serif type. Thus
A is a fourvector, and A is a matrix.
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(ct, x, y, 2)s in the S system and (ct’, x', y', /) g in the S’ system. It can be written as
ct@+x @€ +y€r+78; =cté+r=r=ct &y+r =cr' &+x' & +) &4z &; (15.27)

where
r=x€& +yé +z& and r=x'8& +)y& +78& (15.28)

are the radius threevectors, the spatial parts of r, in the two systems. The fact that
r is a fourvector follows directly from comparison of eqn (15.25) with the Lorentz
transformation in eqn (14.53).

If A and B are any fourvectors, it follows from the transformation equations eqn
(15.25) and the same reasoning that led to eqn (15.16), that the quantity A - B is an
invariant form, with the expansion in the S and S’ systems given by

3 3
AB=[> A*é,|-|> B"& | =-a"B"+A'B' + A*B* + A’
n=0 n=0
3 3
— ZA/Mé;/, . ZAH}é:; =_A/OB/O+A/IB/1+A/2B/2+A/3B/3
n=0 n=0

(15.29)

Like the displacement fourvector dr, general fourvectors can be timelike, space-
like, or lightlike, depending on the value and sign of A - A. A timelike fourvector A
can also be forward timelike (A - A < 0 and AY > 0) or backward timelike (A-A < 0
and A < 0).

15.7 Construction of New Fourvectors

An interesting way to form new fourvectors is by construction from previous fourvec-
tors and invariant quantities. For example, the quantity dt defined in eqn (15.21) is
an invariant. Dividing each term in the expansion of dr in eqn (15.8) through by the
same quantity dt gives

dx® o +dx1 5 +dx2é +dx3é _dr _ax® +dx’1 5 +dx’2é, +dx/3é,
dt 0 dt ' dr 2 dt 3_dr_dr 0 dr ! dr ? dt 3
(15.30)

Thus we can define a new fourvector u = dr/dt by giving its components in the S
system as

o_cdt _dx o, dy 5 dz

U =— u =— u = u = — (15.31)
dt dt dt dr
with the same definitions in the S’ system
o cdt o dx , dy 5 dZ
= = == = 15.32
! dt ! dt ! dt ! dt ( )

(Note the lack of primes on the dt and c. They are invariants with the same value for
any coordinate system.)
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With these definitions, the transformation equation for the components of u can
be obtained by dividing each of eqn (15.4) through by dr to obtain

cdt (cdt’ Vv dx’)
=T + =

dr dt ¢ drt

dx Vedt  dx’

“Z_r(l + =

dt c drt dt

dy dy

dr ~ dt

d d7

ﬁ - % (15.33)

Comparison of these transformation equations with eqn (15.25), with u substituted
for A, proves that the components of u do transform correctly and that u is indeed a
fourvector.
The fourvector u is called the fourvector velocity. In the S system it can be written
as
_ 04 14 24 3a. — 04
U=u € +u e +u"e+u’es=uey+u (15.34)
where the spatial part of u is the threevector
u:ulél +u262+u3é3 (15.35)

This u is the same as the proper velocity threevector that was used extensively in the
survey of spacetime in Section 14.5. Using the definition of coordinate velocity v from
eqn (14.26), the fourvector u can also be written as

u=ycéy+yv (15.36)

where y = 1/\/1 —v2/c2 = /1 + u?/c2.

This process can be repeated, taking differentials of u* and dividing again by dt
to construct what is called the fourvector acceleration w, defined by its components
in the S system as

o du® cd*t . du'  d%x , du* d*y 5 dud d*z
w = — =  —: w = — = — w = — = w = — = ——
dt dt? dt dt? dt dt? dt

dr? dr?
(15.37)
and similar definitions for primed components in the S’ system. Taking second deriva-
tives in eqn (15.33), the components of this fourvector acceleration are easily shown
to satisfy the transformation condition eqn (15.25).

We will return to the fourvector velocity and fourvector acceleration in Chapter
16 when the covariant form of mechanics is developed.

15.8 Covariant and Contravariant Components

We have so far written all fourvector components with a superscript index and all
basis fourvectors with a subscript index. Quantities with superscripts are called con-
travariant and those with subscripts covariant.
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This introduction of upper and lower indices is needed because the presence of
matrix g in the definition of the inner product of two fourvectors introduces a com-
plication into relativity theory that was absent in ordinary threevector algebra. A
method has evolved for dealing with this complication by defining two sets of S sys-
tem components for every fourvector: its contravariant components (the one we have
used above) and its covariant components. (There are also two sets in the S’ system,
and indeed in any coordinate system.)

However, the manipulation of these contravariant and covariant indices can itself
prove a challenge. One author refers to “index gymnastics.” We introduce the meth-
ods here even though they are scarcely needed in the examples treated in this book.
It is hoped that they will be easier to understand in the present context, and that
familiarity with them will prove useful when the reader moves on to more advanced
topics such as general relativity.

The general fourvector has been written with contravariant components A*. We
define a set of covariant components A, for the same fourvector A by a rule, called
“lowering the index”

3
Ap=)_ guA" (15.38)
v=0

The inner products like A - A can then be written in an alternate form involving one
covariant and one contravariant component and only one sum

33 3
AA=—A)+ @A)+ AT+ W) =) ) gnAtA” =) AA" (15.39)
n=0v=0 n=0

Often, the last expression on the right of eqn (15.39) is written without an explicit
summation sign, using what is called the Einstein summation convention: Any term
that contains the same Greek index (here u) on a contravariant and a covariant ob-
ject is automatically to be summed over that index from 0 to 3. In our treatment of
fourvectors here, we will write our sums using this Einstein index convention, but
will continue to write the summation signs explicitly, as we have done throughout the
text.

Indices can also be raised. The matrix g has an inverse, g~'. In the simple
Minkowski space of special relativity, g is in fact its own inverse since (g)> = U
where U is the four-rowed identity matrix with diagonal elements (1, 1, 1, 1). In gen-
eral relativity, the inverse of g will still exist, but will not have such a simple form.

We define a contravariant metric with g*¥ defined as the v element of the inverse
matrix g ~!. It follows that g~'g = U = g g !, or in component form,

3 3
D 8" ga =84 = guag™” (15.40)
a=0 a=0
The indexed quantity 8! is defined to have the value one whenever 1 = v and the

value zero otherwise. It is the four-dimensional generalization of the Kroeneker delta
function defined in Section A.5.
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Using this inverse g"", the covariant components A, defined in eqn (15.38) can
be raised again, using the rule called “raising the index”

3
Al =gl A, (15.41)
v=0

The reader can show that this operation recovers the original contravariant compo-
nents.

In special relativity, the Minkowski matrix g is diagonal. In general relativity the
matrix g will not in general be diagonal but will still be symmetric, with g,, = guv
and g"#* = g"*. So it makes no difference which index of g is summed. And the dot
product of two fourvectors will be independent of their order. For example,

A-B=B-A &, 8 =g,=g,=6-8, (15.42)

Basis fourvectors can also have their indices raised and lowered, by the rules®°
3 3
A A A AV
e = Zg“” 8, é, = Z guv € (15.43)
v=0 v=0

A general fourvector A can thus be expanded in a basis in two equivalent ways

3 3
Y A& =A=)"Are, (15.449)
u=0 =0

Dot products with contravariant (covariant) basis fourvectors can be used to recover
the contravariant (covariant) components of fourvectors, since

e’ .e =5 and hence A*F =e" . A and Ay =€, A (15.45)

All of the formulas in this section apply equally well in the S’ system. One simply
places primes on the components like A"# and A}, and on the basis vectors like e

and é;t (but not on the Kroeneker delta or the metric, as noted above).

801n advanced treatments of general relativity, in which it is often useful to work without introducing an
explicit metric, a dual vector space can be defined, consisting of what are called oneforms. These oneforms
act on fourvectors to produce a number, which is called their contraction. A common notation, for example
in Misner, Thorne and Wheeler (1973), for the contraction of a oneform ¢ with a fourvector A is <o, A>.
If a metric is now introduced, which allows dot products to be defined, then for every oneform o there is
a uniquely associated fourvector v defined by <o, A >= v - A for any A. Basis oneforms w* in the dual
space are also introduced, which contract with fourvectors according to < o, A >= A#*. Comparison of
this result with the second equation in eqn (15.45) shows that the basis oneform w* is uniquely associated
with the contravariant basis fourvector 8" since < w*, A >= &" . A. The contravariant basis vector é" is
indeed a fourvector and not a oneform, but it plays the same algebraic role as w#.
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15.9 General Lorentz Transformations

In the space of Cartesian threevectors, we saw in Section 8.3 that a general rotation
operator can be defined as one that preserves the value of three-dimensional dot
products, as seen, for example, in the invariant expression eqn (15.3). In an analogous
way, a general Lorentz transformation is defined as one that preserves dot products
of fourvectors and hence leads to the invariant expression eqn (15.16).

A general linear transformation between differential quantities dx* representing
the interval dr in the S system and dx'* representing it in the S’ system will be de-

noted as
3

dx' =Y "M"'dx'*  or  [dx]= M[dx'] (15.46)
a=0

where the second expression is in matrix form, with the o matrix element of matrix
M denoted by M",, and [dx] denoting a four rowed column vector consisting of the
four components of dr.

Definition 15.9.1: General Lorentz Transformation
A general Lorentz transformation is a linear coordinate transformation, written as in
eqn (15.46), that obeys the condition

303
Z Z MY MY 580 = gap 05 in equivalent matrix form, M TgM =g (1547
n=0v=0

Lemma 15.9.2: Invariance of Inner Product
Definition 15.9.1 implies and is implied by the invariance of dr - dr, where this inner
product is expanded in the S and S’ systems as

3 3 3 3
DO dxtdxVgu, =dr-dr=Y Y dx'tdx' g, (15.48)
n=0

v=0 n=0v=0

Proof: Using eqn (15.46), and changing the dummy indices of the second expres-
sion, eqn (15.48) becomes

3 3 3 3 3 3
SN M MY pdxdx P gy =D D gapdx’*dx’P (15.49)

n=0v=0a=0 =0 a=0 =0

or, in matrix form,
[dx'1"MTg M[dx'] = [dx']T gldx'] (15.50)

Since the differentials dx’# are arbitrary continuous variables, and both g and
MTg M are symmetric matrices, this condition holds if and only if MTgM = g,
which is the same as eqn (15.47). Thus, dr - dr is invariant if and only if Definition
15.9.1 is satisfied. U



356 FOURVECTORS AND OPERATORS

It follows from eqn (15.47) that the Lorentz transformation matrix M has a non-
zero determinant and hence an inverse M ~!. To avoid confusion between the “—1”
superscript and contravariant indices, we will denote M ~! as M. Thus, defining M",
to be the pv matrix element of M,

o— v

3
> Mr MO == M M oo MM=U=MM (15.51)
a=0

a=0

which can be used to write relations inverse to eqn (15.46)
3
dx'" =3 "M"dx"  or  [dx'] = M[dx] (15.52)
v=0

The transformation rule for fourvector components in eqn (15.46) implies a trans-
formation rule for the basis fourvectors. The covariant basis fourvectors in the S and
S’ systems must be related in a way that makes the expansion of dr in the two systems
equivalent, such that

3 3
D dxté, =dr=> dx'"é&, (15.53)
n=0 n=0

This equation is true for general dx* if and only if the following transformation equa-
tions hold for the covariant basis fourvectors

3 3
é,=>» M, 8 é,=> M8 (15.54)
v=0 v=0

Since the transformation coefficients M", in eqn (15.46) are constants, the trans-
formation rules for the radius fourvector r defined in eqn (15.27) are the same for the
differential fourvector displacement dr. Thus we can write the transformation rules
for the components x* of the radius fourvector r by simply replacing dx* by x*, etc.,
in the formulas of this section.

Note that the transformation rules in this section are generalizations of those de-
rived earlier. Equations (15.4, 15.9) assumed the standard configuration for the S
and S’ systems, with the x-axes aligned, etc. The equations of this section are more
general, and apply to any Lorentz transformation, not just the standard one.

15.10 Transformation of Components

By the definition of fourvectors, the transformation rules derived in Section 15.9 for
the template fourvector dr must apply also to any fourvector A. Thus A is a fourvector

if and only if
3 3

AP =3"MMA"Y and A=) MM A (15.55)

a=0 v=0
These equations are to be considered as the generalization of the transformation rules
in eqn (15.25), which assumed the special case of standard Lorentz transformations.
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If we apply the results from eqns (15.38, 15.41) for the raising and lowering of
indices to eqn (15.55), we obtain a transformation rule for quantities with covariant
indices. Applying g, and g"” gives

3 3 3 3
Ap=) 8uaA® =) D ) guaMe™ A, (15.56)
a=0

a=0 =0 v=0

Equation (15.47) implies that
M=g'MTg (15.57)

or, in component form,

3 3
EAS /L Z Z gUﬁM p8ap = Z ZgWM“ﬁgﬁ” (15.58)

a=0 =0 a=0 =0

where the order of terms has been changed to get the last equality. (Note that the
symmetry of the g allowed us also to exchange the indices on g#¥ and g,,,.) Thus the
transformation of covariant indices in eqn (15.56) can be written as

3 3
A, = ZM”MA; and the inverse A;L = Z MY, A, (15.59)

which shows that covariant components transform by the same rule as the covariant
basis fourvectors in eqn (15.54).

In a similar way, we can show that the contravariant basis fourvectors transform
by the same rule as contravariant components in eqn (15.55).

3
=Y M+ &" et =y meé (15.60)

It follows from the transformation rules in this section that any sum involving
the product of a covariant and a contravariant quantity will automatically be form
invariant under Lorentz transformations. For example, expressions such as

3 3 3 3
Z A"B,=A-B=)Y A"B, and > dx,&"=dr=) dx,&" (15.61)

n=0 n=0 n=0

are form invariant. This is the main utility of the formalism of upper and lower indices.
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15.11 Examples of Lorentz Transformations

We now give some examples of Lorentz transformations satisfying Definition 15.9.1.

15.11.1 The Standard Lorentz Transformation

The special case in which the coordinate axes of the S and S’ systems are parallel, and
the relative velocity is along the x-axis of each of them, is described in Section 14.6.
This is referred to as the standard Lorentz transformation. Inspection of eqn (15.4)
(or, equivalently, of eqn (14.53) for the radius fourvector r) shows that the matrix
M g for this special case has the form

r TBOO
Mg = FOB g (1)8 where I'=1/y1—-B2 and B=V/c
0 001

(15.62)
where V is the constant relative velocity of the two systems. From either eqn (15.57)
or Cramer’s rule, the inverse matrix is found to be

r -reoo
—I'B I' 00
0 0 01

Note that in this simple case the matrix Mg is symmetric, with MSTt = My General
Lorentz transformation matrices are not symmetric, however, as the next example
shows.

15.11.2 Rotations at Fixed Time

Threevector rotations of coordinates of the sort described in Section 8.3, with the
extra condition that time is not transformed, are a special case of Lorentz transforma-
tions. For them, the matrix M o has the form

10 0 O
0 R11 Ri2 Ry3
0 Ro1 R Ro3
0 R31 R32 R33

M ror = (15.64)

where the 3 x 3 sub-matrix R is the orthogonal transformation matrix of a rotation in
three-dimensional space, as discussed in Section 8.3. The reader can verify that, due
to the orthogonality condition RTR = U = R RT, this matrix M does satisfy the
condition Definition 15.9.1 and is therefore a Lorentz transformation.

15.11.3 General Boosts

If one begins with the standard Lorentz transformation and then applies the same
proper rotation matrix R to both the S and S’ coordinate systems, the result is what
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is called a boost in a general threevector direction V. Boosts are sometimes called
Lorentz transformations without rotation, but a more accurate term would be Lorentz
transformations with identical rotation in both systems.

/

y

ct',x',y, 7
ct, X, y,2

N x
Vi

S X

F1G. 15.2. Geometry of a boost in a general direction V. The origins of S and S’ coincide at
t = 0 = t'. The diagram is somewhat schematic since the S’ axes, which would appear to be
perpendicular as seen by S’, would not appear perpendicular as seen by S, due to Lorentz
contraction.

To derive the matrix My, for such a boost, we begin by writing the standard
Lorentz transformation eqn (14.53) in threevector form as?!

ct=F{ct’+B(‘7/~r’)}
N

r~ {r/ — (\7’ : r/) {/} 4T [Bct/f/ n (V : r’) \7’} (15.65)

where V' = €, r=x@ +yé +z€&,andr =x'& +y & +78&,.

Now assume that the S and S’ coordinate systems are rotated by the same proper
rotation matrix R. Equations (15.65) are expressed as threevector relations, and
hence are form invariant under such rotations. But the unit threevector V' will now
have different components. It will now be V= &), + a2 &) + a3 €;, where (a1)% +
(a2)? 4 (3)* = 1. The resulting transformation of coordinates can then be expanded
from eqn (15.65) as

ct =T {ct' + B (a1x' + a2y’ + a37')}

x={x' = (1x" + a2y’ + a3z a1} + T {Bet'ay + (a1 x" + a2y’ + a32') a1}

y=1{y = (e1x’ + a2y’ + @3z) a2} + T {Bct'ar + (13 + o0y’ + a32) o}

z= {Z/ — (oclx/ +oany + 0!32/) a3} + I {Bct/ot3 + ((X]X/ +ony + (xgz/) otg} (15.66)

81The notation a ~ b’ used here means that the threevector a has the same components in the S system
as the threevector b’ has in the S’ system. We do not use an equal sign because the basis fourvectors in
the two systems are not equal. For example, a displacement ¢&; would connect two events simultaneous
in S. Those same two events would not be simultaneous in S’ and hence could not be connected by any
displacement of the form ¢/&]. Thus £&; ~ ¢&] but £&; # ¢&].
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The matrix of a general boost can be read from eqn (15.66). It is

I' I'Ba; I'Bapy I'Bag
'Bay N1t Ni2 Ni3
I'Bay Nzi N Ny
'Baz N31 N3 Ni3

M st = where Nij =68ij+ @ = Do

(15.67)
with the inverse matrix is given (using the same N;;elements) by
r —I'Ba; —I'Bay —T"'Bas
M, — —I'Ba; Nii Nip Ni3 (15.68)

- —I'Bay N»j No» N3
—I'Basz N3 N3; N33

It follows (see Exercise 15.11) that a point at rest in the S’ system will appear to the
S system to be moving with a threevector velocity V = V (a; € + an €43 €3), and
that a point at rest in the S system will appear to the S’ system to be moving with
threevector velocity (—V’) where V' = V(a; €] + o, &,+a3&3). Thus V ~ V'. The
threevector r; perpendicular to V and the threevector r/, perpendicular to V' will
have the same components in the two systems. Thusr; ~ 1/, .

Boosts are also called velocity transformations. They are completely specified once
the threevector V.=V (a; €| + a2 € + a3 €3) is chosen.

15.12 Gradient Fourvector

A function f(ct, x, v, z) has a differential given by the chain rule

af af af f
df = 5 e + 5 dx 45 dy + 5 —dz (15.69)

A gradient fourvector af is defined by the condition that this differential be repro-
duced by
af o
df =dr-of =dr-—  where  dr= > dxte, (15.70)
un=0
The notation df = df/dr is similar to that discussed in Section A.11, and should be
used with the same cautions.

Inspection of eqn (15.69) shows that a gradient fourvector satisfying eqn (15.70)
is written most simply by using contravariant basis vectors, and covariant components
defined as 9, f = 9f/dx"

of a0 Of A13f ~20f A33f Au sl
8 = ea(ct)+ £+e— Z Ze d.f (15.71)
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It follows from this definition that

3 3 3 3
oresr = (Lo ) (S8 %) - T ae
n=0 =0
3

ZZd “a V‘SZ = de“ai—fﬂ =df (15.72)

n=0v=0 n=0

as required.

Like any fourvector, the same gradient fourvector can also be written using con-
travariant components and covariant basis vectors, as

of = =) €,0"f where 0'f= Z w ax = af (15.73)

Thus the gradient can also be written as

= e 8V 8V g VY

ar a(ct) x dy 3z a(ct) (15.74)

To prove that the quantity df truly is a fourvector, we must check its transfor-
mation properties. If a function is defined in the S and S’ systems by f(ct, x, y,2) =
f(ct',x',y',7') then the chain rule gives

3 3
af of oxV
! - = j—
S = ovm = Xg o’ A ;:mf M, (15.75)
— =

which matches the second of eqn (15.59) for the inverse transformation of covariant
components. Thus df is a fourvector.

15.13 Manifest Covariance

If an expression relating physical variables can be written entirely in terms of fourvec-
tors and invariants, it is said to be manifestly covariant. The exclusive use of manifestly
covariant expressions in physics guarantees the consistency of the resulting theory
with special relativity. If a manifestly covariant expression is correct when written out
in terms of coordinates in some system, say the S’ system, then it is guaranteed to be
correct when written out in any coordinate system.

For example, consider the fourvector expression K = mw, where m is an invariant
quantity. In the S’ system, it takes the form K'Y = mw’’. Assume that we know
this expression to be correct. Since K’ and w’" are components of a fourvector, we
may apply the same fourvector transformation from eqn (15.55) to both sides of this
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expression to obtain the second equality

3 3
ZM“VK”’ = mZM“ w’’ and hence K" = muw" (15.76)
v=0

v
v=0

which shows that the same expression is also correct in the S system. This example
illustrates the general rule stated in the following note.

Note to the Reader: If a manifestly covariant expression is true in one coordinate
system, then it is automatically true in all coordinate systems obtained by proper
Lorentz transformations. Thus, use of manifestly covariant expressions guarantees
consistency with special relativity.

The elegance of the fourvector formalism, however, should not seduce us into
believing that an expression must be true just because it is written in manifestly co-
variant form. A manifestly covariant expression might be false in all systems! For ex-
ample, assuming the above expression to be true, we could also write the manifestly
covariant expression K = mg8 (w - w) w where g is assumed to be some invariant con-
stant. But this expression would be false. The fourvector notation is just an elegant
language, and like any language can be used to make both true and false statements.

15.14 Formal Covariance

In Section 15.6 we saw how new fourvectors like u can be derived by combining old
fourvectors and invariant quantities like dz. But another way to make fourvectors is,
as it were, by fiat.

We could, for example, define a new fourvector R by giving its components in the
S’ system as h : (1,0,0,0)s. Then we could use the Lorentz transformation rule eqn
(15.55) to define the components of i in some other system. Thus, its components in
the S system would be i : (M%), M), M%), M3))s where the M, are the elements of
the transformation matrix between the two systems.

We can then use this fourvector in a covariant expression, for example r - i = 6
where 6 is some invariant quantity. Such an expression uses the formalism of covari-
ance (fourvectors and scalars) but violates the spirit of the principle of relativity. The
vector A by definition has a particular form in a particular coordinate system S’. Its
components in another system cannot be found unless we know the transformation
from our current system to that special system S’. Such equations are called formally
covariant. They use the covariant formalism to express an essentially nonrelativistic
idea since they contain elements (here n) that single out one particular coordinate
system for special treatment.

15.15 The Lorentz Group

We saw in Section 8.7 that threevector rotations form a group. We now show that the
same is true for Lorentz transformations.
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As for rotations, the product of two Lorentz transformations is defined to mean
successive transformation. Thus, if M denotes a Lorentz transformation and N de-
notes another, their product C = MN is defined to mean the application of N and
then the application of M to the result. Taking N’ to be the transformation matrix
from S’ to S” and M*, to be the transformation matrix from S to §/, the transformation
C = MN from S to S” has the matrix C where

3
CcH = Z M*,N® o in matrix form, C = MN (15.77)

a=0

A set of objects, often called a set of group elements, is said to form a group if an
ordered binary operation called group multiplication of the elements is defined, and
the standard group axioms listed below are satisfied. The common usage is to say
that the objects form a group under that particular group multiplication. We show
that Lorentz transformations form a group, under group multiplication defined as
successive transformation.

1. The first axiom is closure. The group product of two elements must be an ele-
ment in the same group. The product of two Lorentz transformations must also
be a Lorentz transformation. Closure is proved by showing if M and N obey
eqn (15.47) of Definition 15.9.1 then C does also, as follows from the matrix
relation

ClgCc=NTMTgMN =NTgN =g (15.78)

2. There must be an identity element U in the group such that pre- or post-
multiplication of any object by that identity does not change the object, UM =
M = MU. The identity transformation, with matrix U where U", = 8} satis-
fies this condition. It also satisfies definition eqn (15.47) since UTg U = g is
trivially true. Thus the identity is a member of the group, as required.

3. Every object M in the group must have an inverse M in the group, such that
pre- or post-multiplication of that object by its inverse yields the identity object,
MM = U = MM. The inverse transformation M defined in Section 15.9 sat-
isfies this condition, as shown by eqn (15.51). The inverse is also a member of
the group, as is demonstrated by multiplying both sides of eqn (15.47) from the
left by M Tand from the right by M which gives

g=M"MTgMM = MTgM (15.79)

This proves that M also satisfies eqn (15.47), and is hence also a Lorentz trans-
formation and a member of the group.

4. Group multiplication must be associative. As for rotations, the associativity of
group multiplication is a trivial consequence of its definition.

If the product of a pair of elements gives a result independent of their order, the
group is said to be Abelian. Like rotations, Lorentz transformations form a non-Abelian
group. In general MN # NM.
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We have already made use of the fact that Lorentz transformations form a group
under successive application, in Section 15.11.3 when we multiplied two rotations
and a standard Lorentz transformation to form a general boost. Due to the group
property of Lorentz transformations, we know that this boost is also a Lorentz trans-
formation.

15.16 Proper Lorentz Transformations and the Little Group

The following are Lorentz transformations and hence members of the Lorentz group:
time reversal with M = g; parity or spatial inversion with M, = —g; and total
inversion with Mj,, = — U. Together with the identity U, these elements define a
four-element, abelian subgroup called the Little Group.

A subgroup is a subset of group elements such that there are closure, an identity,
and inverses within the subgroup. The reader can easily verify that the product of any
pair of these four elements yields another one of the four, proving subgroup closure.
The identity element U is a member of the subgroup by definition. And each element
of the subgroup is its own inverse. Also the reader can verify that the product of
any pair of the four elements is the same regardless of the order in which they are
multiplied, verifying that the subgroup is abelian.

If a Lorentz transformation has matrix M with MO0 > 1 and determinant |[M| =
+1 then it will be called a proper Lorentz transformation. Such transformations, (1)
preserve the direction of time and, (2) preserve the right-handed sense of the spatial
basis fourvectors €; for i = 1,2, 3. Every Lorentz transformation can be written as the
product of a proper Lorentz transformation and a member of the Little Group.

Note that the standard Lorentz transformation and the general boost in Section
15.11 are proper Lorentz transformations. The rotation at fixed time is a proper
Lorentz transformation if the 3 x 3 sub-matrix R in eqn (15.64) is a proper rotation
matrix in the sense described in Section 8.6.

Proper Lorentz transformations form a subgroup of the Lorentz group. Subgroup
closure is proved in Exercise 15.13, which establishes that the product of any two
proper Lorentz transformations is a proper Lorentz transformation. The identity U is
a proper Lorentz transformation, and hence the subgroup contains an identity. And
it follows from eqn (15.57) that the inverse of a proper Lorentz transformation will
also be a proper Lorentz transformation. Thus all the group axioms are satisfied and
proper Lorentz transformations form a subgroup. The subgroup of proper Lorentz
transformations is said to be continuously connected to the identity U since, by The-
orem 15.17.2, one can begin with any proper Lorentz transformation and pass con-
tinuously to the limits ® — 0 and V — 0, arriving at the identity transformation
U.

15.17 Parameterization

The most general proper Lorentz transformation can be written as the product of a
boost and a rotation. To demonstrate how this is done, we first need a preliminary
result.
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Lemma 15.17.1: A Relation Among Matrix Elements
Let M be the matrix of any Lorentz transformation. Then the matrix elements of M obey
the following two identities

() S =1= () - S() se

i=1 i=1

The proof of this lemma is in Exercise 15.9. We now state the main theorem.3?

Theorem 15.17.2: Lorentz Transformation as Product of Boost and Rotation
Let M be the matrix of any proper Lorentz transformation. Then there are a unique
boost My and a unique proper rotation M ot such that

M - MbStMI'Ot (15.81)

It follows that a general Lorentz transformation can be parameterized uniquely by six
numbers: The three components of the threevector ®n (from the Euler theorem of Section
8.20) that specify the proper rotation M o and the three components of the threevector
velocity V = V'V which are shown in Section 15.11.3 to specify the boost My uniquely.

Proof: According to the transformation law eqn (15.55) applied to fourvector r, a
point at rest at the origin of the S’ system with coordinates (ct’, 0,0, O) 5 will be
represented in the S system by the four coordinates (Mooct’, M et Mzoct’, M30ct’)S
and will therefore appear to have threevector velocity

W

V= Z V;é; with components V; = cM' O/MOO (15.82)
i=1

It follows from Lemma 15.17.1 that this vector has magnitude V = +/V-V < c.
Define Mg to be the boost determined by this velocity V.
Apply the inverse of this boost, My, to M to get a new matrix X defined by

X = M M (15.83)

Performing the matrix multiplication shows that X 00 = 1. The matrix X is a product
of Lorentz transformations and hence, by the group properties in Section 15.15, is a
Lorentz transformation. Thus Lemma 15.17.1 applies and can be used to show that
X=X 0 ; =0fori =1,2,3. Thus X is a Lorentz transformation of the type given in
Section 15.11.2, a rotation at fixed time. Since X°) = 1 and | X| = [Myg|IM| =1,
X is also a proper rotation. Defining Mo = X and multiplying eqn (15.83) from the
left by My then gives eqn (15.81), which proves the theorem.

To prove the uniqueness of this factorization, suppose that some other boost M

and rotation M () can be found so that M = M ](;; MG,

()
bst

It follows from this equation

82This theorem and its proof are adapted from Wichmann (1974).
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and eqn (15.81) that My, M](;;)t = MM ). The right side of this equation is the

product of two proper rotations, and hence a proper rotation. Thus the matrix prod-
0
uct on the left must also be a proper rotation and hence have ( M M () = 1.
—Zbst V! st 0
Carrying out the matrix multiplication, this condition implies

B 1—(V-V®) /2
TV 1 - V22

Since (V- V®) < VV®, this equation can be satisfied if and only if V = V®. Since
a boost is completely determined by the choice of V, this proves that the two boosts
are the same and hence proves uniqueness. O

(15.84)

15.18 Fourvector Operators

In Chapter 7, we developed the formalism of linear operators that map threevectors
into other threevectors. Operators in the space of fourvectors can be defined similarly.
Let

C=FA (15.85)

map fourvector A into another fourvector C. We assume this operation to be linear,
so that
F (A + 8B) =aFA + BFB (15.86)

Using this linearity, as well as the assumed linearity of dot products, it follows that
eqn (15.85) can be written out in terms of components in a particular coordinate
system, say the S system, by writing

3
chr=e'.c=¢" { (ZAVGV)}=ZF“UA” (15.87)

v=0

where
F',=@&" . (Fe,) (15.88)

are the matrix elements of the matrix F that represents JF in the S coordinate system.
This result can also be written as the matrix equation [C] = F[A].

Operators like F are a particular example of a general class of mathematical ob-
jects called tensors. Since the matrix elements of operators have two indices, they are
called tensors of rank two. Tensors of other ranks can also be defined. Fourvectors
can be considered as tensors of rank one, for example. Tensors are an indispensable
tool in general relativity, but their development here would take us too far afield.
The reader can consult a number of excellent texts, particularly Misner, Thorne and
Wheeler (1973), which uses an invariant approach similar to the one we have used.

Like fourvectors, the operator F is considered to be an invariant object that models
some physical property that is independent of our particular choice of coordinate
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system. The same operator F can thus be represented by its matrix elements in any
coordinate system. In the S’ system, F is represented by

Pt =@ (fé;) (15.89)

v —

Using eqn (15.54), the relation between the matrix elements of F in the S and S
coordinate systems can be written as

3.3 303
F, =3 S MM MP, and F'M =33 MEFYMP, (15.90)
a=0 =0 a=0 =0

in which the upper index transforms as a contravariant and the lower index as a
covariant quantity.

The indices of F’, can be raised and lowered in the usual manner, giving, for
example, equivalent components of F like

3 3
Fuv=) uaF®, or  FM=3% Flg® (15.91)
a=0 a=0

The invariant trace and determinant of fourvector operators can also be defined.

The trace is
3

3
TrF =Y Fl =TtF=) F" =TrF' (15.92)
n=0 n=0
and the determinant is
|F|=det F = |F'| (15.93)

The invariance of these quantities follows from the matrix form of eqn (15.90),
F=MF'M and F'=MFM (15.94)

together with M M = U from eqn (15.51).

15.19 Fourvector Dyadics

The dyadic formalism of Section 7.6 can also be extended to the space of fourvectors.
We present the formalism very briefly here, assuming that the reader has already
understood the more extensive treatment of dyadics in the earlier section.

We define a dyadic [ associated with the F by

3 3

F=) > &,F'¢ (15.95)

n=0v=0

Then the action of F on fourvector A in eqn (15.87) can also be written as a dyadic
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dot product

33 33 3
FA=F-A=>">"¢&,F' e A=) >, F' A" =) &,C'=C (1596)
n=0v=0 n=0v=0 n=0

This result is analogous to the action of dyadics in the space of threevectors presented
in Section 7.6. The matrix associated with a dyadic can be recovered by the rule

F' =" .F.e, (15.97)

which can be derived from eqn (15.95) by use of eqn (15.45).

Dyadics, like operators, are invariant objects. The same dyadic F can also be ex-
panded in the S’ system as

3 3
F=> > & F"&" where F" =&"TF:§g (15.98)
n=0v=0

Thus, as was noted for threevectors and operators in Chapter 7, we have four

equivalent ways of presenting the same information:

3
C=FA C=F-A (‘=) FYA" [C]=F[A] (15.99)
v=0

The latter two expressions involve components in a particular basis, here the S system.
They would take the same form (with primes added) in the S’ system

3
C'H =3 "F'" A" [C']= F'[A] (15.100)
v=0

15.20 Wedge Products
One particular dyadic of importance is what is called the wedge product W of two
fourvectors A and B. It is denoted as A A B and defined as the difference of two dyads
W=AAB=AB-BA (15.101)
It follows from eqn (15.97) that the matrix of the wedge product in the S system is
WH = A"B, — B*A, (15.102)
which of course can have its indices raised or lowered as needed. By construction, the
wedge product has the properties
AAB=-BAA AAA=0 CA(@A+pB)=aCAA+B8CAB (15.103)

The wedge product of two fourvectors is analogous to the cross product of two
threevectors (See Exercise 15.14). In three-dimensional Cartesian spaces, the cross
product of two threevectors is a unique threevector orthogonal to the plane they
define. But in four dimensions, the space perpendicular to the plane defined by two
fourvectors is itself two dimensional. Hence, it is not possible to represent a cross
product by a single fourvector.
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15.21 Scalar, Fourvector, and Operator Fields

A scalar field is a function which assigns a particular number to each event. Since
events can be specified in an invariant way by the radius fourvector r, a scalar field
can be written as f = f(r). This function can be written out in terms of components
in different coordinate systems. In the S and S’ systems, for example,

flet,x,y,2)=f()=f (ct/,x/, y, z/) (15.104)

where we have followed the convention discussed in Section D.5, using the same
letter f to represent the function expressed in different coordinate systems. If the
functional form of f(ct, x, y,z) is known, and if f is known to be a scalar field,
then eqn (15.104) and the Lorentz transformation eqn (14.53) for the components of
fourvector r can be used to calculate f (ct’, x', v, 7 )

Fourvector fields are functions that assign a particular fourvector to each event.
They can be written as A(r). Thus, in the S and S’ systems,

3 3
D At x,y. )8, =AM =) Al Xy, )€, (15.105)
n=0 n=0

where the components are related by eqn (15.55)

3
At x,y,2) =Y M* A" (et X',y 2) (15.106)
v=0

Field operators F(r) and dyadic fields [ (r) are also useful. They can be written in
dyadic form in the S and S’ systems as

3
u=0

where the matrix elements transform according to the rule derived from eqn (15.90)

3 3 3
&, Fli(ct.x,y. 28 =F() =Y Y & F" (' x.y.2)&" (15107
0 n=0v=0

303

Fl(ct.x,y.2) = > MM Fyct' 'y, ) MP, (15.108)
a=0 =0

Note that transforming a field is a two-step process. Using fourvector fields as an
example, first one evaluates the right side of eqn (15.106). The resulting expression
is A*(ct’, x',y’,7’), a component in the S system as desired, but is still expressed in
terms of S’ system coordinates. The second step is to substitute the inverse Lorentz
transformation eqn (14.55) into this expression to write it in terms of the correct
S coordinates, as A*(ct, x, y, z). Transformation of field operators follows a similar
two-step process.
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15.22 Manifestly Covariant Form of Maxwell’s Equations

In the following Chapter 16, we will consider the relativistic generalization of me-
chanics, including manifestly covariant Lagrangian and Hamiltonian methods. In that
chapter, we will use the example of a charged point mass moving in an external, given
electromagnetic field. The fourvector formulation of electromagnetism to be used
there will be outlined here as an example, to help the reader see how a manifestly
covariant theory can be developed. Since the Lorentz transformation was initially
derived by Lorentz as the transformation theory leaving Maxwell’s equations form
invariant, we expect that a fourvector formulation of Maxwell’s equations should be
possible.

We begin with the threevector electrical current density
J(ct,x,y,2) = p(ct,x,y,z)v(ct, x,y,2) (15.109)

derived from the charge density p(ct, x, y, z) and the flow velocity field of that charge

v(ct, x, v, 7). These quantities obey the differential equation of charge conservation®?
ap
V~J+§=0 (15.110)

To put this expression in manifestly covariant form, we note that an observer moving
with the flow of charge can draw an averaging sphere of radius ¢ containing charge

¢\™ and thus define a comoving charge density p) = ¢\ / (4&3/3). It is taken as

an axiom that the electric charge qéCh) has the same value in any reference system.
An inertial observer team, relative to which the comoving observer has coordinate
velocity v, will thus observe a charge density modified only by the Lorentz contraction
of the averaging sphere

0 = po)Y where y=1/y/1—v%/c? (15.111)

leading to an observed current density J = pv = p()yv. Comparing these results
to the definition of the fourvector velocity u in Section 15.6, we see that the charge
density and the current density threevector can be combined to form a fourvector
defined by

J=cp€ +J=pou (15.112)

This J is a fourvector since u has already been shown to be a fourvector in Section
15.6, and because p() (sometimes called the proper density) is independent of any
particular observer team and hence is an invariant, much like the time dt measured
on a comoving clock was found to be an invariant. With the fourvector J, the con-
servation of electric charge in eqn (15.110) can be expressed in manifestly covariant

83The current density and equation of charge c