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PREFACE

The intended reader of this book is a graduate student beginning a doctoral pro-
gram in physics or a closely related subject, who wants to understand the physical
and mathematical foundations of analytical mechanics and the relation of classical
mechanics to relativity and quantum theory.

The book’s distinguishing feature is the introduction of extended Lagrangian and
Hamiltonian methods that treat time as a transformable coordinate, rather than as the
universal time parameter of traditional Newtonian physics. This extended theory is
introduced in Part II, and is used for the more advanced topics such as covariant me-
chanics, Noether’s theorem, canonical transformations, and Hamilton–Jacobi theory.

The obvious motivation for this extended approach is its consistency with special
relativity. Since time is allowed to transform, the Lorentz transformation of special
relativity becomes a canonical transformation. At the start of the twenty-first century,
some hundred years after Einstein’s 1905 papers, it is no longer acceptable to use the
traditional definition of canonical transformation that excludes the Lorentz transfor-
mation. The book takes the position that special relativity is now a part of standard
classical mechanics and should be treated integrally with the other, more traditional,
topics. Chapters are included on special relativistic spacetime, fourvectors, and rela-
tivistic mechanics in fourvector notation. The extended Lagrangian and Hamiltonian
methods are used to derive manifestly covariant forms of the Lagrange, Hamilton,
and Hamilton–Jacobi equations.

In addition to its consistency with special relativity, the use of time as a coordi-
nate has great value even in pre-relativistic physics. It could have been adopted in
the nineteenth century, with mathematical elegance as the rationale. When an ex-
tended Lagrangian is used, the generalized energy theorem (sometimes called the
Jacobi-integral theorem), becomes just another Lagrange equation. Noether’s theo-
rem, which normally requires an longer proof to deal with the intricacies of a varied
time parameter, becomes a one-line corollary of Hamilton’s principle. The use of ex-
tended phase space greatly simplifies the definition of canonical transformations. In
the extended approach (but not in the traditional theory) a transformation is canoni-
cal if and only if it preserves the Hamilton equations. Canonical transformations can
thus be characterized as the most general phase-space transformations under which
the Hamilton equations are form invariant.

This is also a book for those who study analytical mechanics as a preliminary to
a critical exploration of quantum mechanics. Comparisons to quantum mechanics ap-
pear throughout the text, and classical mechanics itself is presented in a way that will
aid the reader in the study of quantum theory. A chapter is devoted to linear vector
operators and dyadics, including a comparison to the bra-ket notation of quantum
mechanics. Rotations are presented using an operator formalism similar to that used
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in quantum theory, and the definition of the Euler angles follows the quantum me-
chanical convention. The extended Hamiltonian theory with time as a coordinate is
compared to Dirac’s formalism of primary phase-space constraints. The chapter on
relativistic mechanics shows how to use covariant Hamiltonian theory to write the
Klein–Gordon and Dirac wave functions. The chapter on Hamilton–Jacobi theory in-
cludes a discussion of the closely related Bohm hidden variable model of quantum
mechanics.

The reader is assumed to be familiar with ordinary three-dimensional vectors,
and to have studied undergraduate mechanics and linear algebra. Familiarity with
the notation of modern differential geometry is not assumed. In order to appreciate
the advance that the differential-geometric notation represents, a student should first
acquire the background knowledge that was taken for granted by those who created
it. The present book is designed to take the reader up to the point at which the
methods of differential geometry should properly be introduced—before launching
into phase-space flow, chaotic motion, and other topics where a geometric language
is essential.

Each chapter in the text ends with a set of exercises, some of which extend the
material in the chapter. The book attempts to maintain a level of mathematical rigor
sufficient to allow the reader to see clearly the assumptions being made and their
possible limitations. To assist the reader, arguments in the main body of the text fre-
quently refer to the mathematical appendices, collected in Part III, that summarize
various theorems that are essential for mechanics. I have found that even the most
talented students sometimes lack an adequate mathematical background, particularly
in linear algebra and many-variable calculus. The mathematical appendices are de-
signed to refresh the reader’s memory on these topics, and to give pointers to other
texts where more information may be found.

This book can be used in the first year of a doctoral physics program to provide a
necessary bridge from undergraduate mechanics to advanced relativity and quantum
theory. Unfortunately, such bridge courses are sometimes dropped from the curricu-
lum and replaced by a brief classical review in the graduate quantum course. The risk
of this is that students may learn the recipes of quantum mechanics but lack knowl-
edge of its classical roots. This seems particularly unwise at the moment, since several
of the current problems in theoretical physics—the development of quantum informa-
tion technology, and the problem of quantizing the gravitational field, to name two—
require a fundamental rethinking of the quantum-classical connection. Since progress
in physics depends on researchers who understand the foundations of theories and
not just the techniques of their application, it is hoped that this text may encourage
the retention or restoration of introductory graduate analytical mechanics courses.

Oliver Davis Johns
San Francisco, California

April 2005
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1

BASIC DYNAMICS OF POINT PARTICLES AND COLLECTIONS

Modern mechanics begins with the publication in 1687 of Isaac Newton’s Principia, an
extension of the work of his predecessors, notably Galileo and Descartes, that allows
him to explain mathematically what he calls the “System of the World”: the motions of
planets, moons, comets, tides. The three “Axioms, or Laws of Motion” in the Principia
(Newton, 1729) are:

Law I: Every body perseveres in its state of rest, or of uniform motion in
a right line, unless it is compelled to change that state by forces impressed
thereon.
Law II: The alteration of motion is ever proportional to the motive force
impressed; and is made in the direction of the right line in which that force
is impressed.
Law III: To every Action there is always opposed an equal Reaction: or the
mutual actions of two bodies upon each other are always equal, and directed
to contrary parts.

These axioms refer to the general behavior of a “body.” It is clear from Newton’s
examples (projectiles, a top, planets, comets, a stone) in the same section that he
intends these bodies to be macroscopic, ordinary objects.

But elsewhere Newton (1730) refers to the “particles of bodies” in ways that sug-
gest an atomic theory in which the primitive, elementary objects are small, indestruc-
tible, “solid, massy, hard, impenetrable, movable particles.” These are what we will
call the point particles of Newtonian physics. Newton says of them that, “these prim-
itive Particles being Solids, are incomparably harder than any porous Bodies com-
pounded of them; even so very hard as never to wear or break in pieces; no ordinary
Power being able to divide what God himself made one in the first Creation.”

The present chapter will begin with the assumption that Newton’s three axioms
refer fundamentally to these point particles. After deriving the laws of momentum,
angular momentum, and work–energy for point particles, we will show that, given
certain plausible and universally accepted additional axioms, essentially the same
laws can be proved to apply to macroscopic bodies, considered as collections of the
elementary point particles.

1.1 Newton’s Space and Time
Before discussing the laws of motion of point masses, we must consider the space and
time in which that motion takes place. For Newton, space was logically and physically
distinct from the masses that might occupy it. Space provided a static, absolute, and

3



4 BASIC DYNAMICS OF POINT PARTICLES AND COLLECTIONS

independent reference with respect to which all particle positions and motions were
to be measured. Space could be perceived by looking at the fixed stars which were
presumed to be at rest relative to it. Newton also emphasized the ubiquity of space,
comparing it to the sensorium of God.1

Newton thought of time geometrically, comparing it to a mathematical point mov-
ing steadily along a straight line. As with space, the even flow of time was absolute
and independent of objects. He writes in the Principia, “Absolute, true and mathe-
matical time, of itself, and from its own nature, flows equably without relation to
anything external.”2

In postulating an absolute space, Newton was breaking with Descartes, who held
that the proper definition of motion was motion with respect to nearby objects. In
the Principia, Newton uses the example of a spinning bucket filled with water to
argue for absolute motion. If the bucket is suspended by a rope from a tree limb and
then twisted, upon release the bucket will initially spin rapidly but the water will
remain at rest. One observes that the surface of the water remains flat. Later, when
the water has begun to rotate with the bucket, the surface of the water will now be
concave, in response to the forces required to maintain its accelerated circular motion.
If motion were to be measured with respect to proximate objects, one would expect
the opposite observations. Initially, there is a large relative motion between the water
and the proximate bucket, and later the two have nearly zero relative motion. So the
Cartesian view would predict inertial effects initially, with the water surface becoming
flat later, contrary to observation.

Newton realized that, as a practical matter, motion would often be measured by
reference to objects rather than to absolute space directly. As we discuss in Section
14.1, the Galilean relativity principle states that Newton’s laws hold when position
is measured with respect to inertial systems that are either at rest, or moving with
constant velocity, relative to absolute space. But Newton considered these relative
standards to be secondary, merely stand-ins for space.

Nearly the opposite view was held by Newton’s great opponent, Leibniz, who held
that space is a “mere seeming thing” and that the only reality is the relation of objects.
Their debate took the form of an exchange of letters, later published, between Leibniz
and Clarke, Newton’s surrogate.3 Every student is urged to read them. The main diffi-
culty for the modern reader is the abundance of theological arguments, mixed almost
inextricably with the physical ones. One can appreciate the enormous progress that
has been made since the seventeenth century in freeing physics from the constraints
of theology. In the century after Newton and Leibniz, their two philosophical tradi-
tions continued to compete. But the success of the Newtonian method in explaining

1Seventeenth century physiology held that the information from human sense organs is collected in a
“sensorium” which the soul then views.

2Newton’s ideas about time were possibly influenced by those of his predecessor at Cambridge, Isaac
Barrow. See Chapter 9 of Whitrow (1989).

3The correspondence is reprinted, with portions of Newton’s writings, in Alexander (1956).
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experiments and phenomena led to its gradual ascendency.4

Newton’s space and time were challenged by Mach in the late nineteenth century.
Mach argued, like Leibniz, that absolute space and time are illusory and that the only
reality is the relation of objects.5 Mach also proposed that the inertia of a particle
is related to the existence of other particles and presumably would vanish without
them, an idea that Einstein referred to as Mach’s Principle.

Einstein’s special relativity unifies space and time. And in his general relativity the
metric of the combined spacetime becomes dynamic rather than static and absolute.
General relativity is Machian in the sense that the masses of the universe affect the
local curvature of spacetime, but Newtonian in the sense that spacetime itself (now
represented by the dynamic metric field) is something all pervasive that has definite
properties even at points containing no masses.

For the remainder of Part I of the book, we will adopt the traditional Newto-
nian definition of space and time. In Part II, we will consider the modifications of
Lagrangian and Hamiltonian mechanics that are needed to accommodate special rel-
ativity, in which space and time are combined and time becomes a transformable
coordinate.

1.2 Single Point Particle
In this section, we assume the applicability of Newton’s laws to point particles, and
introduce the basic derived quantities: momentum, angular momentum, work, kinetic
energy, and their relations.

An uncharged point particle is characterized completely by its mass m and its
position r relative to the origin of some inertial system of coordinates. The velocity
v = dr/dt and acceleration a = dv/dt are derived by successive differentiation. Its
momentum (which is what Newton called “motion” in his second law) is defined as

p = mv (1.1)

Newton’s second law then can be expressed as the law of momentum for point parti-
cles,

f = dp
dt

(1.2)

Since the mass of a point particle is unchanging, this is equivalent to the more familiar
f=ma. The requirement that the change of momentum is “in the direction of the right

4Leibnizian ideas continued to be influential, however. The great eighteenth century mathematician
Euler, to whom our subject owes so much, published in 1768 a widely read book, Letters Addressed to a
German Princess, in which he explained the science of his day to the lay person (Euler, 1823). He felt
it necessary to devote some thirty pages of that book to refute Wolff, the chief proponent of Leibniz’s
philosophy. See also the detailed defense of Newton’s ideas in Euler, L. (1748) “Reflexions sur l’Espace et
le Tems,” Mémoires de l’Académie des Sciences de Berlin, reprinted in Series III, Volume 2 of Euler (1911).

5See Mach (1907). Discussions of Mach’s ideas are found in Rindler (1977, 2001) and Misner, Thorne
and Wheeler (1973). A review of the history of spacetime theories from a Machian perspective is found in
Barbour (1989, 2001). See also Barbour and Pfister (1995).
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line” of the impressed force f is guaranteed in modern notation by the use of vector
quantities in the equations.

For the point particles, Newton’s first law follows directly from eqn (1.2). When
f = 0, the time derivative of p is zero and so p is a constant vector. Note that eqn
(1.2) is a vector relation. If, for example, the x-component of force fx is zero, then
the corresponding momentum component px will be constant regardless of what the
other components may do.

The angular momentum j of a point particle and the torque τ acting on it are
defined, respectively, as

j = r × p τ = r × f (1.3)

It follows that the law of angular momentum for point particles is

τ = dj
dt

(1.4)

since

dj
dt

= dr
dt

× p + r × dp
dt

= v × mv + r × f = 0 + τ (1.5)

In a time dt the particle moves a vector distance dr = v dt . The work dW done by
force f in this time is defined as

dW = f · dr (1.6)

This work is equal to the increment of the quantity (1/2)mv2 since

dW = f · v dt =
(

d(mv)

dt
dt

)
· v = m (dv) · v = d

(
1

2
mv2

)
(1.7)

Taking a particle at rest to have zero kinetic energy, we define the kinetic energy T as

T = 1

2
mv2 (1.8)

with the result that a work–energy theorem for point particles may be expressed as
dW = dT or

f · v = dT

dt
(1.9)

If the force f is either zero or constantly perpendicular to v (as is the case for purely
magnetic forces on a charged particle, for example) then the left side of eqn (1.9) will
vanish and the kinetic energy T will be constant.

1.3 Collective Variables
Now imagine a collection of N point particles labeled by index n, with masses m1,
m2, . . . , m N and positions r1,r2, . . . , rN .

The other quantities defined in Section 1.2 will be indexed similarly, with pn =
mnvn , for example, referring to the momentum of the nth particle and fn denoting the



THE LAW OF MOMENTUM FOR COLLECTIONS 7

��

�
�
�
�

�
�
�
�

����

�
�
�
�

��
��

ê2
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FIG. 1.1. A collection of point masses.

force acting on it. The total mass, momentum, force, angular momentum, torque, and
kinetic energy of this collection may be defined by

M =
N∑

n=1

mn P =
N∑

n=1

pn F =
N∑

n=1

fn J =
N∑

n=1

jn τ =
N∑

n=1

τn T =
N∑

n=1

Tn

(1.10)
Note that, in the cases of P, F, J, and τ, these are vector sums. If a particular collection
consisted of two identical particles moving at equal speeds in opposite directions, for
example, P would be zero.

In the following sections, we derive the equations of motion for these collective
variables. All of the equations of Section 1.2 are assumed to hold individually for each
particle in the collection, with the obvious addition of subscripts n to each quantity to
label the particular particle being considered. For example, vn = drn/dt , an = dvn/dt ,
pn = mnvn , fn = dpn/dt , fn = mnan , etc.

1.4 The Law of Momentum for Collections
We begin with the law of momentum. Differentiation of the sum for P in eqn (1.10),
using eqn (1.2) in the indexed form dpn/dt = fn , gives

dP
dt

= d

dt

N∑
n=1

pn =
N∑

n=1

dpn

dt
=

N∑
n=1

fn = F (1.11)

The time rate of change of the total momentum is thus the total force.
But the force fn on the nth particle may be examined in more detail. Suppose that

it can be written as the vector sum of an external force f(ext)
n coming from influences

operating on the collection from outside it, and an internal force f(int)
n consisting of all

forces that cannot be identified as external, such as forces on particle n coming from
collision or other interaction with other particles in the collection. For example, if the
collection were a globular cluster of stars (idealized here as point particles!) orbiting
a galactic center, the external force on star n would be the gravitational attraction
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from the galaxy, and the internal force would be the gravitational attraction of the
other stars in the cluster. Thus

fn = f(ext)
n + f(int)

n and, correspondingly, F = F(ext) + F(int) (1.12)

where

F(ext) =
N∑

n=1

f(ext)
n and F(int) =

N∑
n=1

f(int)
n (1.13)

Axiom 1.4.1: The Law of Momentum
It is taken as an axiom in all branches of modern physics that, insofar as the action of
outside influences can be represented by forces, the following Law of Momentum must
hold:

F(ext) = dP
dt

(1.14)

It follows from this Law and eqn (1.11) that F = F(ext) and hence F(int) = 0. Identify-
ing P with Newton’s “motion” of a body, and F(ext) with his “motive force impressed”
on it, eqn (1.14) simply restates Newton’s second law for bodies, now considered as
collections of point particles.

An immediate consequence of the Law of Momentum is that the vanishing of
F(ext) makes P constant. We then say that P is conserved. This rule of momentum
conservation is generally believed to apply even for those situations that cannot be
described correctly by the concept of force. This is the essential content of Newton’s
first law. The total momentum of an isolated body does not change.

1.5 The Law of Angular Momentum for Collections
The derivation of the Law of Angular Momentum is similar to the previous Section
1.4. Differentiation of the sum for J in eqn (1.10), using eqn (1.4) in the indexed form
djn/dt = τn , gives

dJ
dt

= d

dt

N∑
n=1

jn =
N∑

n=1

djn

dt
=

N∑
n=1

τn = τ (1.15)

The time rate of change of the total angular momentum is thus the total torque.
Making the same division of forces into external and internal as was done in Sec-

tion 1.4, we use the indexed form of eqn (1.3) to write the torque on particle n as the
sum of external and internal torques,

τn = rn × fn = rn ×
(

f(ext)
n + f(int)

n

)
= τ(ext)

n + τ(int)
n (1.16)

where
τ(ext)

n = rn × f(ext)
n and τ(int)

n = rn × f(int)
n (1.17)

Then, the total torque τ defined in eqn (1.10) may then be written

τ = τ(ext) + τ(int) (1.18)
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where

τ(ext) =
N∑

n=1

τ(ext)
n and τ(int) =

N∑
n=1

τ(int)
n (1.19)

Axiom 1.5.1: The Law of Angular Momentum
It is taken as an axiom in all branches of modern physics that, insofar as the action of
outside influences can be represented by forces, the following Law of Angular Momentum
must hold:

τ(ext) = dJ
dt

(1.20)

It follows from this Law and eqn (1.15) that τ = τ(ext) and hence τ(int) = 0. An im-
mediate consequence of the Law of Angular Momentum is that the vanishing of τ(ext)

makes J constant. We then say that J is conserved. This rule of angular momentum
conservation is generally believed to apply even for those situations that cannot be de-
scribed correctly by the concept of force. The total angular momentum of an isolated
body does not change.

It is important to notice that the Laws of Momentum and Angular Momentum
are vector relations. For example, in eqn (1.14), if F (ext)

y = 0 then Py is conserved
regardless of the values of the other components of the total external force. A similar
separation of components holds also in eqn (1.20).

1.6 “Derivations” of the Axioms
Although the Law of Momentum is an axiom, it can actually be “derived” if one ac-
cepts an outdated action-at-a-distance model of internal forces in which the force f(int)

n

is taken as the instantaneous vector sum of forces on particle n coming from all of the
other particles in the collection. Denote the force on particle n coming from particle
n′ as fnn′ and thus write

f(int)
n =

N∑
n′=1
n′ �=n

fnn′ and hence F(int) =
N∑

n=1

N∑
n′=1
n′ �=n

fnn′ (1.21)

In this model, Newton’s third law applied to the point particles implies that

fnn′ = −fn′n (1.22)

which makes the symmetric double sum in eqn (1.21) vanish identically. With F(int) =
0, eqns (1.11, 1.12) then imply eqn (1.14), as was to be proved. Equation (1.22) is
sometimes referred to as the weak form of Newton’s third law. We emphasize, however,
that the Law of Momentum is more general than the action-at-a-distance model of the
internal forces used in this derivation.

The Law of Angular Momentum is also an axiom but, just as in the case of linear
momentum, it too can be “derived” from an outdated action-at-a-distance model of
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internal forces. We again denote the force on particle n coming from particle n′ as fnn′
and thus write

τ(int)
n = rn × f(int)

n =
N∑

n′=1
n′ �=n

rn × fnn′ and hence τ(int) =
N∑

n=1

N∑
n′=1
n′ �=n

rn × fnn′ (1.23)

It follows from eqn (1.22) that the second of eqn (1.23) may be rewritten as

τ(int) = 1

2

N∑
n=1

N∑
n′=1
n′ �=n

(rn − rn′)× fnn′ (1.24)

If we now assume (which we did not need to assume in the linear momentum case)
that the force fnn′ is central, that is parallel (or anti-parallel) to the line (rn − rn′)
between particles n and n′, then it follows from the vanishing of the cross products
that τ(int) is zero, as was to be proved.

The addition of centrality to eqn (1.22) is sometimes called the strong form of
Newton’s third law. We emphasize that, as in the case of linear momentum, the Law of
Angular Momentum is more general than the model of central, action-at-a-distance
internal forces used in this last derivation.

For example, the laws of momentum and angular momentum can be applied cor-
rectly to the behavior of physical objects such as quartz spheres, whose internal struc-
ture requires modern solid-state physics for its description rather than Newtonian
central forces between point masses. Yet, when there are identifiable external force
fields acting, such as gravity for example, these objects will obey Axioms 1.4.1 and
1.5.1.

1.7 The Work–Energy Theorem for Collections
The work–energy theorem of eqn (1.9) can be extended to collections. Using the def-
inition in eqn (1.10) together with the indexed form of eqn (1.8), the total kinetic
energy is

T =
N∑

n=1

Tn = 1

2

N∑
n=1

mnv2
n with v2

n = vn · vn (1.25)

Then the time rate of change of T is equal to the rate at which work is done on all
particles of the collection,

dT

dt
=

N∑
n=1

fn · vn (1.26)

To prove this result, differentiate the sum for T in eqn (1.10), using eqn (1.9) in its
indexed form dTn/dt = fn · vn where vn = drn/dt . Then

dT

dt
= d

dt

N∑
n=1

Tn =
N∑

n=1

dTn

dt
=

N∑
n=1

fn · vn (1.27)

as was to be proved.
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There is little benefit to introducing the separation of force fn into external and
internal terms here, since the total kinetic energy T can be changed even when no
external forces are present. For example, consider four identical particles initially at
rest at the four corners of a plane square. If there is a gravitational internal force
among those particles, they will begin to collapse toward the center of the square.
Thus T will increase even though only internal forces are acting.

1.8 Potential and Total Energy for Collections

In some cases, there will exist a potential function U = U (r1, . . . , rN , t) from which
all forces on all particles can be derived. Thus

fn = −∇nU (r1, r2, . . . , rN , t) = − ∂

∂rn
U (r1, r2, . . . , rN , t) (1.28)

where6

∇n = ∂

∂rn
=

3∑
i=1

êi
∂

∂xni
(1.29)

and xni is the i th coordinate of the nth particle of the collection, that is, rn =∑3
i=1 xni êi .
The total energy E is defined as E = T + U , where T is the total kinetic energy.

Its rate of change is
d E

dt
= ∂U (r1, r2, . . . , rN , t)

∂t
(1.30)

To see this, use the chain rule of partial differentiation and eqns (1.27, 1.28) to write

dT

dt
=

N∑
n=1

fn · vn = −
N∑

n=1

vn · ∂U (r1, r2, . . . , rN , t)

∂rn
= −

(
dU

dt
− ∂U (r1, r2, . . . , rN , t)

∂t

)
(1.31)

where the last equality implies eqn (1.30).
If the potential function U = U (r1, r2, . . . , rN , t) happens not to depend explicitly

on the time t , the partial derivative in eqn (1.30) will vanish and E will be a constant.
The total energy of the collection is then said to be conserved.

1.9 The Center of Mass

All of the collective variables in eqn (1.10) are simple scalar or vector sums of indi-
vidual quantities. The center of mass of the collection R is only slightly more compli-
cated. It is defined as the mass-weighted average position of the particles making up

6See Section A.11 for a discussion of the notation ∂U/∂rn , including cautions about its proper use.
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the collection,

R = 1

M

N∑
n=1

mnrn (1.32)

This R can be used to define a new set of position vectors ρn for the point particles,
called relative position vectors, that give the positions of masses relative to the center
of mass, rather than relative to the origin of coordinates as the rn do.
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C

FIG. 1.2. Center of mass and relative position vectors. The center of mass is at C.

The definition is

ρn = rn − R or, equivalently, rn = R + ρn (1.33)

The vector ρn can be thought of as the position of particle n as seen by an observer
standing at the center of mass. The vectors ρn can be expanded in terms of Cartesian
unit vectors êi as

ρn =
3∑

i=1

ρni êi (1.34)

Component ρni will be called the ith relative coordinate of particle n.
The velocity of the center of mass V is obtained by differentiating eqn (1.32) with

respect to the time,

V = dR
dt

= 1

M

N∑
n=1

mnvn (1.35)

Then, differentiation of eqn (1.33) yields

ρ̇n = vn − V or, equivalently, vn = V + ρ̇n (1.36)

where the definition ρ̇n = dρn/dt is used. This quantity will be called the relative
velocity of mass mn . It may be thought of as the apparent velocity of mn as seen
by an observer riding on the center of mass. A particular ρ̇n may in some cases be
nonzero even when vn = 0 and the mass mn is at rest relative to absolute space, due
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to the motion of the center of mass induced by motions of the other particles in the
collection. Differentiating eqn (1.34) gives

ρ̇n =
3∑

i=1

ρ̇ni êi (1.37)

where the ρ̇ni will be called the ith relative velocity coordinate of mass mn .
An observer standing at the center of mass will calculate the center of mass to be

at his feet, at zero distance from him, as is shown in the following lemma which will
be used in the later proofs.

Lemma 1.9.1: Properties of Relative Vectors
A very useful property of vectors ρn and ρ̇n is

0 =
N∑

n=1

mnρn and 0 =
N∑

n=1

mnρ̇n (1.38)

Proof: The proof of the first expression follows directly from the definitions in eqns
(1.32, 1.33),

N∑
n=1

mnρn =
N∑

n=1

mn (rn − R) =
N∑

n=1

mnrn −
N∑

n=1

mnR = MR − MR = 0 (1.39)

with the second expression following from time differentiation of the first one. �

1.10 Center of Mass and Momentum
Having defined the center of mass, we now can write various collective quantities in
terms of the vectors R,ρ and their derivatives. The total momentum P introduced in
eqn (1.10) can be expressed in terms of the total mass M and velocity of the center of
mass V by the remarkably simple equation

P = MV (1.40)

To demonstrate this result, we use the second of eqn (1.36) to rewrite P as

P =
N∑

n=1

pn =
N∑

n=1

mnvn =
N∑

n=1

mn
(
V + ρ̇n

) = N∑
n=1

mnV +
N∑

n=1

mn ρ̇n = MV (1.41)

where the Lemma 1.9.1 was used to get the last equality. The total momentum of a
collection of particles is the same as would be produced by a single particle of mass
M moving with the center of mass velocity V.

The Law of Momentum in eqn (1.14) can then be written, using eqn (1.40) and
the constancy of M , as

F(ext) = dP
dt

= MA where A = dV
dt

(1.42)

is the acceleration of the center of mass. Thus, beginning from the assumption that
f = ma for individual point particles, we have demonstrated that F(ext) = MA for
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composite bodies, provided that A is defined precisely as the acceleration of the center
of mass of the body. This last result is very close to Newton’s original second law.

1.11 Center of Mass and Angular Momentum

The total angular momentum J can also be rewritten in terms of center of mass and
relative quantities. It is

J = L + S (1.43)

where

L = R × P and S =
N∑

n=1

ρn ×
(
mnρ̇n

)
(1.44)

will be referred to as the “orbital” and “spin” contributions to J, respectively. Note
that L is just the angular momentum that would be produced by a single particle
of mass M moving with the center of mass, and that S is just the apparent angular
momentum that would be calculated by an observer standing on the center of mass
and using only quantities relative to herself.

To demonstrate this result, we begin with eqn (1.10) and the indexed form of eqn
(1.3) to write

J =
N∑

n=1

jn =
N∑

n=1

(rn × pn) =
N∑

n=1

(rn × mnvn) =
N∑

n=1

mn (rn × vn) (1.45)

Now we introduce the definitions in eqns (1.33, 1.36), and use the linearity of cross
products to get

J =
N∑

n=1

mn
(
R + ρn

)× (
V + ρ̇n

)
(1.46)

=
N∑

n=1

mnR × V +
N∑

n=1

mnR × ρ̇n +
N∑

n=1

mnρn × V +
N∑

n=1

mnρn × ρ̇n

=
{(

N∑
n=1

mn

)
R × V

}
+

{
R ×

(
N∑

n=1

mn ρ̇n

)}

+
{(

N∑
n=1

mnρn

)
× V

}
+

{
N∑

n=1

mnρn × ρ̇n

}

where, in each term in curly brackets, quantities not depending on index n have been
factored out of the sum. Lemma 1.9.1 now shows that the second and third terms
vanish identically. The remaining two terms are identical to the L and S defined in
eqn (1.44), as was to be proved.
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1.12 Center of Mass and Torque
The Law of Angular Momentum, eqn (1.20), contains the total external torque τ(ext).
Using eqns (1.17, 1.18), it may be written

τ(ext) =
N∑

n=1

τ(ext)
n =

N∑
n=1

rn × f(ext)
n (1.47)

Substituting eqn (1.33) for rn then gives

τ(ext) =
N∑

n=1

(
R + ρn

)× f(ext)
n = R ×

N∑
n=1

f(ext)
n +

N∑
n=1

ρn × f(ext)
n = τ

(ext)
o + τ

(ext)
s (1.48)

where we have defined the “orbital” and “spin” external torques as

τ
(ext)
o = R × F(ext) and τ

(ext)
s =

N∑
n=1

ρn × f(ext)
n (1.49)

In a pattern that is becoming familiar, τ
(ext)
o is the torque that would result if the total

external force on the collection acted on a particle at the center of mass, and τ
(ext)
s is

the external torque on the collection that would be calculated by an observer standing
at the center of mass and using ρn instead of rn as the moment arm.

1.13 Change of Angular Momentum
The Law of Angular Momentum in eqn (1.20) may now be broken down into separate
parts, one for the orbital angular momentum L and the other for the spin angular
momentum S. The rate of change of L is equal to the orbital external torque,

dL
dt

= τ
(ext)
o (1.50)

The demonstration is almost identical to that in Section 1.2 for the angular momen-
tum of a single point particle,

dL
dt

= d

dt
(R × P) = dR

dt
× P + R × dP

dt
= V × MV + R × F(ext) = 0 + τ

(ext)
o (1.51)

where eqns (1.40, 1.49) and the Law of Momentum, eqn (1.14), have been used. The
rate of change of S is equal to the spin external torque,

dS
dt

= τ
(ext)
s (1.52)

The demonstration begins by using eqns (1.43, 1.48) to rewrite eqn (1.20) in the form

τ
(ext)
o + τ

(ext)
s = dL

dt
+ dS

dt
(1.53)

Equation (1.50) can then be used to cancel dL/dt with τ
(ext)
o . Equating the remaining

terms then gives eqn (1.52), as was to be shown.
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Thus eqns (1.50, 1.52) give a separation of the Law of Angular Momentum into
separate orbital and spin laws. The orbital angular momentum L and the orbital
torque τ

(ext)
o are exactly what would be produced if all of the mass of the collec-

tion were concentrated into a point particle at the center of mass. The evolution of
the orbital angular momentum defined by eqn (1.50) is totally independent of the
fact that the collection may or may not be spinning about the center of mass.

Equation (1.52), on the other hand, shows that the time evolution of the spin an-
gular momentum S is determined entirely by the external torque τ

(ext)
s measured by

an observer standing at the center of mass, and is unaffected by the possible acceler-
ation of the center of mass that may or may not be happening simultaneously.

1.14 Center of Mass and the Work–Energy Theorems
The total kinetic energy T may be expanded in the same way as the total angular
momentum J in Section 1.13. We may use Tn = mnv2

n/2 and v2
n = vn · vn to rewrite

eqn (1.10), and then use eqn (1.36) to get

T =
N∑

n=1

Tn = 1

2

N∑
n=1

mnvn · vn = 1

2

N∑
n=1

mn
(
V + ρ̇n

) · (V + ρ̇n

)
(1.54)

Expanding the dot product and using Lemma 1.9.1 then gives

T = To + TI (1.55)

where

To = 1

2
MV 2 and TI = 1

2

N∑
n=1

mn
∥∥ρ̇n

∥∥2 (1.56)

are the orbital and internal kinetic energies, respectively. The time rate of change of
the orbital kinetic energy is

dTo

dt
= F(ext) · V (1.57)

The demonstration uses eqn (1.40) and the Law of Momentum eqn (1.14),

dTo

dt
= d

dt

(
P · P
2M

)
= P

M
· dP

dt
= V · F(ext) (1.58)

as was to be shown.
The time rate of change of the internal kinetic energy TI is

dTI

dt
=

N∑
n=1

fn · ρ̇n (1.59)

The demonstration of eqn (1.59) is quite similar to that of eqn (1.52). We begin with
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the collective work–energy theorem, eqn (1.27), rewritten using eqns (1.36, 1.55) as

dTo

dt
+ dTI

dt
=

N∑
n=1

fn ·
(
V + ρ̇n

) = V ·
N∑

n=1

fn +
N∑

n=1

fn · ρ̇n (1.60)

The earlier result in Section 1.4 that F = F(ext) then gives

dTo

dt
+ dTI

dt
= V · F(ext) +

N∑
n=1

fn · ρ̇n (1.61)

Using eqn (1.57) to cancel the first terms on each side gives eqn (1.59), as was to be
shown. Note the absence of the superscript “(ext)” on fn in eqn (1.59). This is not a
mistake! The internal kinetic energy TI can be changed by both external and internal
forces, as we noted in Section 1.7.

1.15 Center of Mass as a Point Particle

It is remarkable that the center-of-mass motion of a body or other collection of point
particles can be solved by imagining that the entire mass of the collection is a point
particle at the center of mass R with the entire external force F(ext) acting on that
single point. The quantities and relations derived above,

P = MV F(ext) = dP
dt

L = R × P
dL
dt

= τ
(ext)
o = R × F(ext) (1.62)

and

To = 1

2
MV 2 dTo

dt
= F(ext) · V (1.63)

refer only to the total mass M , the center of mass R, its derivative V, and the total
force F(ext). And yet these formulas replicate all of the results obtained in Section 1.2
for a single point particle.

If, as we have assumed, Newton’s laws apply fundamentally to Newtonian point
particles, then these quantities and relations vindicate Newton’s application of them
to “bodies” rather than point particles. A billiard ball (by which we mean the center
of a billiard ball) moves according to the same laws as a single point particle of the
same mass.

1.16 Special Results for Rigid Bodies

The results obtained up to this point apply to all collections, whether they be solid
bodies or a diffuse gas of point particles. Now we consider special, idealized collec-
tions called rigid bodies. They are defined by the condition that the distance ‖rn − rn′ ‖
between any two masses in the collection is constrained to be constant. In Chapter 8
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on the kinematics of rigid-body motion, we will prove that this constraint implies the
existence of a (generally time-varying) vector ω and the relation given in eqn (8.93),

ρ̇n = ω× ρn (1.64)

between each relative velocity vector and the corresponding relative location vector.
This relation has a number of interesting applications which we will discuss in later
chapters. Here we point out one of them, the effect on eqn (1.59). Rewriting that
equation and using eqn (1.64) gives

dTI

dt
=

N∑
n=1

fn · ω × ρn = ω ·
N∑

n=1

ρn × fn = ω ·
N∑

n=1

(rn − R) × fn = ω · (τ − R × F)

(1.65)

where eqns (1.33, 1.10) have been used. But the Law of Momentum of Section 1.4
and the Law of Angular Momentum of Section 1.5 imply that

F = F(ext) =
N∑

n=1

f(ext)
n and τ = τ(ext) =

N∑
n=1

rn × f(ext)
n (1.66)

and hence that
dTI

dt
= ω ·

(
τ(ext) − R × F(ext)

)
(1.67)

depends only on the external forces f(ext)
n . Thus, for rigid bodies and only for rigid

bodies, we may add an “(ext)” to eqn (1.59) and write

Rigid bodies only : dTI

dt
=

N∑
n=1

f(ext)
n · ρ̇n (1.68)

It follows from eqns (1.55, 1.57, 1.68) that dT/dt for rigid bodies also depends only
on external forces, and so we may write eqn (1.27) in the form

Rigid bodies only : dT

dt
=

N∑
n=1

f(ext)
n · vn . (1.69)

1.17 Exercises
Exercise 1.1 In spherical polar coordinates, the radius vector is r = r r̂.

(a) Use the product and chain rules of differentiation, and the partial derivatives read from
eqns (A.48 – A.51), to obtain the standard expression for v = dr/dt as

v = ṙ r̂ + r θ̇ θ̂ + r sinθ φ̇ φ̂ (1.70)

(b) By a similar process, derive the expression for a = dv/dt in terms of
r̂, θ̂, φ̂, r, θ, φ, ṙ , θ̇ , φ̇, r̈ , θ̈ , φ̈.
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Exercise 1.2 Derive the identities in eqns (A.69, A.71) and demonstrate that eqn (A.72) does
follow from them.

Exercise 1.3 Consider a circular helix defined by

r = a cosβ ê1 + a sinβ ê2 + cβ ê3 (1.71)

where a, c are given constants, and parameter β increases monotonically along the curve.

(a) Express the Serret–Frenet unit vectors t̂, n̂, b̂, the curvature ρ, and the torsion κ , in terms
of a, c, β, ê1, ê2, ê3.
(b) Show that n̂ is always parallel to the x-y plane.

Exercise 1.4 In Section A.12 it is stated that the Serret–Frenet relations eqns (A.77, A.78,
A.79) may be written as shown in eqn (A.80),

d t̂
ds

= ω× t̂
dn̂
ds

= ω× n̂
db̂
ds

= ω× b̂ (1.72)

where ω = κ t̂ + ρ b̂. Verify these formulas.

Exercise 1.5 A one tonne (1000 kg) spacecraft, in interstellar space far from large masses,
explodes into three pieces. At the instant of the explosion, the spacecraft was at the origin of
some inertial system of coordinates and had a velocity of 30 km/sec in the +x direction rel-
ative to it. Precisely 10 sec after the explosion, two of the pieces are located simultaneously.
They are a 300 kg piece at coordinates (400, 50,−20) km and a 500 kg piece at coordinates
(240, 10, 32) km.

(a) Where was the third piece 10 sec after the explosion?
(b) Mission control wants to know where the missing piece will be 1 hour after the explo-
sion. Give them a best estimate and an error circle. (Assume that the spacecraft had a largest
dimension of 10 m, so that, at worst, a given piece might have come from a point 10 m from
the center.)
(c) What if the spacecraft had been spinning end-over-end just before it exploded. Would the
above answers change? At all? Appreciably? Explain.

φ

m2

m3

m1

b

b

x

y

g

FIG. 1.3. Illustration for Exercise 1.6.

Exercise 1.6 Three equal point masses m1 = m2 = m3 = m are attached to a rigid, massless
rod of total length 2b. Masses #1 and #3 are at the ends of the rod and #2 is in the middle.
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Mass m1 is suspended from a frictionless pivot at the origin of an inertial coordinate system.
Assume that the motion is constrained in a frictionless manner so that the masses all stay in
the x-y plane. Let a uniform gravitational field g = gê1 act in the positive x-direction.

(a) Using plane polar coordinates, letting the r -direction be along the stick and letting φ be
the angle between the stick and the x-axis, use the law of angular momentum to obtain φ̈ and
φ̇2 as functions of φ.
(b) From the above, obtain d2r3/dt2 as a function of φ, r̂, φ̂ and use

f(int)
3 = m3

d2r3

dt2
− m3g (1.73)

to obtain the internal force f(int)
3 on mass m3.

(c) If it is entirely due to central forces from m1 and m2 as is required by the “strong form”
of the second law, then f(int)

3 should be parallel to the stick. Is it? Explain.7

Exercise 1.7 Show clearly how eqns (1.55, 1.56) follow from eqn (1.54).

ê2

ê1
α

g

FIG. 1.4. Illustration for Exercise 1.8.

Exercise 1.8 A hollow, right-circular cylinder of mass M and radius a rolls without slipping
straight down an inclined plane of angle α, starting from rest. Assume a uniform gravitational
field g = −gê2 acting downwards.

(a) After the center of mass of the cylinder has fallen a distance h, what are the vector values
of V, P, S for the cylinder? [Note: This question should be answered without considering the
details of the forces acting. Assume that rolling without slipping conserves energy.]
(b) Using your results in part (a), find the force F(ext) and spin torque τ

(ext)
s acting on the

cylinder.

Exercise 1.9 Write out eqn (A.67) and verify that it does express the correct chain rule result
for d f/dt .

Exercise 1.10 If all external forces f(ext)
n on the point masses of a rigid body are derived from

an external potential U (ext)(r1, . . . , rD, t), show that the quantity E = T +U (ext) obeys

d E

dt
= ∂U (ext)(r1, r2, . . . , rD, t)

∂t
(1.74)

7See Stadler, W. (1982) “Inadequacy of the Usual Newtonian Formulation for Certain Problems in Particle Me-
chanics,” Am. J. Phys. 50, p. 595.
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Exercise 1.11 Let a collection of point masses m1,m2, . . . , m N move without interaction in
a uniform, external gravitational field g so that fn = f(ext)

n = mng.

(a) Demonstrate that a possible potential for this field is

U (r1, r2, . . . , rN , t) = −
N∑

n=1

mnrn · g (1.75)

which may also be written as
U = −MR · g (1.76)

where M is the total mass of the collection, and R is its center of mass.
(b) Express F(ext), τ

(ext)
o , τ

(ext)
s in terms of M, g, R for this collection.

(c) Which of the following are conserved: E, P, L, S, To, TI?

R
ρ

(2)
3

a = 1

a = 3

a = 2

m(2)
3

R(2)

r(2)
3

y

z

x

σ(2)

FIG. 1.5. Illustration for Exercise 1.12. Mass m(2)
3 is the third mass in the second collection. Vector

R(2) is the center of mass of the second collection, and R is the center of mass of the entire system.

Exercise 1.12 Suppose that a total collection is made up of C sub-collections, labeled by
the index a = 1, . . . , C . The ath sub-collection has N (a) particles, mass M(a), momentum
P(a), center of mass R(a), and center-of-mass velocity V(a). (You might think of this as a
globular cluster made up of stars. Each star is a sub-collection and the whole cluster is the
total collection.)

(a) Demonstrate that the center of mass R and momentum P of the total collection may be
written as

R = 1

M

C∑
a=1

M(a)R(a) P =
C∑

a=1

P(a) (1.77)

where

M =
C∑

a=1

M(a) and P(a) = M(a)V(a) (1.78)

i.e. that the total center of mass and total momentum may be calculated by treating each sub-
collection as a single particle with all of its mass at its center of mass.
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(b) Let the nth mass of the ath sub-collection m(a)
n have location r(a)

n . Define σ(a) = R(a)−R
and ρ

(a)
n = r(a)

n − R(a) so that

r(a)
n = R + σ(a) + ρ(a)

n (1.79)

Prove the identities

N (a)∑
n=1

m(a)
n ρ(a)

n = 0
C∑

a=1

M(a)σ(a) = 0 (1.80)

and use them and their first time derivatives to demonstrate that the total angular momentum
J may be written as

J = L + K +
C∑

a=1

S(a) (1.81)

where

L = R × MV K =
C∑

a=1

σ(a) × M(a)σ̇(a) S(a) =
N (a)∑
n=1

ρ(a)
n × m(a)

n ρ̇(a)
n (1.82)

Note that K is just the spin angular momentum that would result if each sub-collection were
a point mass located at its center of mass. Then the sum over S(a) adds the intrinsic spins of
the sub-collections.
(c) Suppose that a system consists of a massless stick of length b with six point masses, each
of mass m, held rigidly by a massless frame at the vertices of a plane hexagon centered on
one end of the stick. Similarly, four point masses, each also of mass m, are arranged at the
vertices of a plane square centered on the other end. How far from the first end is the center
of mass of the whole system? Do you need to assume that the hexagon and the square are
co-planar?

Exercise 1.13 Consider a system consisting of two point masses, m1 at vector location r1
and m2 at r2, acted on only by internal forces f12 and f21, respectively. Denote the vector
from the first to the second mass by r = r2 − r1. For this exercise, use the model in which
the interaction between m1 and m2 is due entirely to these forces.

(a) Show that Axiom 1.4.1, implies that f21 + f12 = 0.
(b) Show that this and Axiom 1.5.1 imply that f21 and f12 must be parallel or anti-parallel to
r (i.e., be central forces).
(c) Prove that d2R/dt2 = 0 and µ(d2r/dt2) = f21 where R is the center of mass and
µ = m1m2/(m1 + m2) is the reduced mass.
(d) Show that a potential of the form U (r1, r2) = U0 f (r) where U0 is a constant and
r = √

r · r will produce forces f12 = −∂U/∂r1 and f21 = −∂U/∂r2 having the required
properties.
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m2m1

x

y

v0

m3

k

FIG. 1.6. Illustration for Exercise 1.14.

Exercise 1.14 Two masses m1 and m2 are connected by a massless spring of zero rest length,
and force constant k. At time zero, the masses m1 and m2 lie at rest on the x axis at coordinates
(−a, 0, 0) and (+a, 0, 0), respectively. Before time zero, a third mass m3 is moving upwards
with velocity v0 = v0ê2, x-coordinate a, and y-coordinate less than zero. At time zero, m3
collides with, and sticks to, m2. Assume that the collision is impulsive, and is complete before
m1 or m2 have changed position. Assume that the three masses are equal, with m1 = m2 =
m3 = m. Ignore gravity.

(a) Using the initial conditions of the problem to determine the constants of integration, write
expressions for the center of mass vector R and the relative position vector r = r2 − r1 as
functions of time for all t > 0.
(b) Write expressions for r1 and r2, the vector locations of masses m1 and m2, respectively,
for all times t > 0.
(c) Show that mass m1 has zero velocity at times tn = 2πn

√
3m/2k, for n = 0, 1, 2, . . . but

that the masses never return to the x axis.

Exercise 1.15 Prove that the V⊥ in eqn (A.4) can also be written as V⊥ = n̂ × (V × n̂).

Exercise 1.16 Use eqn (A.61) to derive the related identity

(A × B)× C = B (A · C)− A (B · C) (1.83)

and show that the triple cross product is not associative.



2

INTRODUCTION TO LAGRANGIAN MECHANICS

If modern mechanics began with Newton, modern analytical mechanics can be said
to have begun with the work of the eighteenth century mathematicians who elab-
orated his ideas. Without changing Newton’s fundamental principles, Euler, Laplace,
and Lagrange developed elegant computational methods for the increasingly complex
problems to which Newtonian mechanics was being applied.

The Lagrangian formulation of mechanics is, at first glance, merely an abstract
way of writing Newton’s second law. Someone approaching it for the first time will
possibly find it ugly and counterintuitive. But the beauty of it is that, if ugly, it is
terminally ugly. When simple Cartesian coordinates are replaced by the most gen-
eral variables capable of describing the system adequately, the Lagrange equations do
not change, do not become any more ugly than they were. The vector methods of
Chapter 1 fail when a mechanical system is described by systems of coordinates much
more general than the standard curvilinear ones. But such cases are treated easily by
Lagrangian mechanics.

Another beauty of the Lagrangian method is that it frees us from the task of keep-
ing track of the components of force vectors and the identities of the particles they
act on. The whole of mechanics is reduced to an algebraic method. Lagrange himself
was proud of the fact that his treatise on mechanics contained not a single figure.8

2.1 Configuration Space
In Chapter 1, the position of the nth point particle is given by the vector

rn = xn1ê1 + xn2ê2 + xn3ê3 (2.1)

where xn1, xn2, xn3 are its x, y, z coordinates, respectively. Lagrangian mechanics,
however, uses what are called generalized coordinates, in which a particular coordinate
is usually not tied to a particular particle. These generalized coordinates may be any
set of independent variables capable of specifying the configuration of the system.
Taken together, they define what is called configuration space.

For example, the simplest set of generalized coordinates is what we will call the
s-system. Imagine all the Cartesian coordinates of N point masses listed in serial order,

8In the preface to his Méchanique Analytique, Lagrange wrote, “No diagrams are found in this work.
The methods that I explain in it require neither constructions nor geometrical or mechanical arguments,
but only the algebraic operations inherent to a regular and uniform process. Those who love Analysis will,
with joy, see mechanics become a new branch of it and will be grateful to me for thus having extended its
field.” See Chapter 11 of Dugas (1955).

24
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as in
x11, x12, x13, x21, x22, x23, x31, . . . , xN1, xN2, xN3 (2.2)

and define the corresponding si generalized coordinates as

s1, s2, s3, s4, s5, s6, s7, . . . , sD−2, sD−1, sD (2.3)

where D = 3N is called the number of degrees of freedom of the system. Thus s1 = x11,
s2 = x12, s3 = x13, s4 = x21, . . ., s7 = x31, etc. For example, s5 is the y-coordinate of
the second particle.

Similarly, the force acting on the nth particle is

fn = fn1ê1 + fn2ê2 + fn3ê3 (2.4)

and we can define the generalized forces in the s-system, Fi , by the correspondence
between the lists

f11, f12, f13, f21, f22, f23, f31, . . . , fN1, fN2, fN3 (2.5)

and
F1, F2, F3, F4, F5, F6, F7, . . . , FD−2, FD−1, FD (2.6)

Masses may also be relabeled by means of a correspondence between the lists

m1, m1, m1, m2, m2, m2, m3, . . . , m N , m N , m N (2.7)

and
M1, M2, M3, M4, M5, M6, M7, . . . , MD−2, MD−1, MD (2.8)

Note that M1 = M2 = M3 = m1, M4 = M5 = M6 = m2, etc.
With these definitions, Newton’s second law can be written in either of two equiv-

alent ways, the vector form from Chapter 1, or the equivalent form in the s-system,

fn = mn
d2rn

dt2
or Fi = Mi

d2si

dt2
(2.9)

where n = 1, . . . , N and i = 1, . . . , D. The content of these two equations is identical,
of course, but the second equation treats all coordinates equally, without reference to
the particular particle that a coordinate belongs to.

Other physical quantities can be expressed in the s-system notation. For example,
corresponding to the vector definition pn = mnvn for n = 1, . . . , N , the generalized
momentum can be defined, for all i = 1, . . . , D, by

Pi = Mi ṡi (2.10)

where ṡi = dsi/dt is called the generalized velocity. Then eqn (2.9) can be written in
s-system notation as

Fi = d Pi

dt
(2.11)

for i = 1, . . . , D.
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The kinetic energy defined in eqn (1.25) can also be written in the two equivalent
ways, the first from Chapter 1, or the second using the s-system coordinates and
masses,

T = 1

2

N∑
n=1

mnv2
n or T = 1

2

D∑
i=1

Mi ṡ
2
i (2.12)

2.2 Newton’s Second Law in Lagrangian Form
In Section 1.8 of Chapter 1, we noted that the total force on the nth particle can often
be derived from a potential function U (r1, . . . , rN , t). Here, we are going to allow for
the possibility that some, but perhaps not all, of the force on a particle can be derived
from a potential so that

fn = −∇nU (r1, r2, . . . , rN , t)+ f(NP)
n (2.13)

where

∇n = ∂

∂rn
= ê1

∂

∂xn1
+ ê2

∂

∂xn2
+ ê3

∂

∂xn3
(2.14)

and superscript “NP” means that f(NP)
n is that part of the force that is Not derived from

a Potential. Expressed in the s-system notation, eqn (2.13) becomes

Fi = − ∂

∂si
U (s1, s2, . . . , sD, t)+ F (NP)

i (2.15)

where i = 1, . . . , D, and U (s1, . . . , sD, t) is obtained by writing U (r1, . . . , rN , t) out in
terms of its Cartesian coordinates and then using the correspondence between eqns
(2.2, 2.3) to translate to the si variables. Using eqns (2.11, 2.15), Newton’s second
law can now be written as

d Pi

dt
= − ∂

∂si
U (s1, s2, . . . , sD, t)+ F (NP)

i (2.16)

for i = 1, . . . , D.
To obtain the Lagrangian form of Newton’s second law, define the Lagrangian

L = L(s, ṡ, t) as
L(s, ṡ, t) = T (ṡ)−U (s, t) (2.17)

In expanded form, this is

L = L(s1, s2, . . . , sD, ṡ1, ṡ2, . . . , ṡD, t) = 1

2

D∑
j=1

Mj ṡ
2
j −U (s1, s2, . . . , sD, t) (2.18)

Then it follows that

∂

∂ ṡi
L(s1, s2, . . . , sD, ṡ1, ṡ2, . . . , ṡD, t) = Mi ṡi = Pi (2.19)
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and

∂

∂si
L(s1, s2, . . . , sD, ṡ1, ṡ2, . . . , ṡD, t) = − ∂

∂si
U (s1, s2, . . . , sD, t) (2.20)

so that eqn (2.16) may be rewritten as

d

dt

(
∂L(s, ṡ, t)

∂ ṡi

)
− ∂L(s, ṡ, t)

∂si
= F (NP)

i (2.21)

for i = 1, . . . , D. This is the Lagrangian form of Newton’s second law, as expressed in
the s-system of coordinates. Note that we have used the usual shorthand, abbreviating
L(s1, . . . , sD, ṡ1, . . . , ṡD, t) to the shorter form L(s, ṡ, t).

2.3 A Simple Example
Suppose one particle of mass m is acted on by a spherically symmetric, harmonic
oscillator force attracting it to the origin. Then

L = 1

2

(
M1ṡ2

1 + M2ṡ2
2 + M3ṡ2

3

)
− 1

2
k
(

s2
1 + s2

2 + s2
3

)
(2.22)

But, in problems this simple, it is often clearer to replace s1, s2, s3 by x, y, z, ṡ1, ṡ2, ṡ3

by ẋ, ẏ, ż, and M1, M2, M3 by m, giving

L = 1

2
m

(
ẋ2 + ẏ2 + ż2

)
− 1

2
k
(

x2 + y2 + z2
)

(2.23)

We can use this more familiar notation while still thinking of the s-system in the back
of our minds. Then eqn (2.21) becomes

For i = 1 : d

dt

(
∂L(s, ṡ, t)

∂ ẋ

)
− ∂L(s, ṡ, t)

∂x
= 0 or mẍ + kx = 0

For i = 2 : d

dt

(
∂L(s, ṡ, t)

∂ ẏ

)
− ∂L(s, ṡ, t)

∂y
= 0 or mÿ + ky = 0

For i = 3 : d

dt

(
∂L(s, ṡ, t)

∂ ż

)
− ∂L(s, ṡ, t)

∂z
= 0 or mz̈ + kz = 0 (2.24)

which are the correct differential equations of motion for this problem.

2.4 Arbitrary Generalized Coordinates
The generalized coordinates of the s-system are only a trivial re-labelling of Cartesian
coordinates. The real power of the Lagrangian method appears when we move to
more general coordinate sets.

Let q1, q2, . . . , qD be any set of D independent variables, which we will call the
q-system, such that their values completely specify all of the s-system values, and vice
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versa. We write each of the si , for i = 1, . . . , D, as a function of these q variables and
possibly also the time t ,

si = si (q1, q2, . . . , qD, t) (2.25)

The only restriction placed on the set q1, q2, . . . , qD is that eqn (2.25) must be invert-
ible in an open neighborhood of every point of configuration space, so that we can
write the inverse relations, for k = 1, . . . , D,

qk = qk(s1, s2, . . . , sD, t) (2.26)

As proved in Theorem D.24.1, the necessary and sufficient condition for this inversion
is the Jacobian determinant condition∣∣∣∣∂s(q, t)

∂q

∣∣∣∣ �= 0 (2.27)

where the D × D Jacobian matrix (∂s(q, t)/∂q) is defined, for i, k = 1, . . . , D, by9(
∂s(q, t)

∂q

)
ik
= ∂si (q, t)

∂qk
(2.28)

Generalized coordinates q which obey eqn (2.27) at every point10 will be referred to
as good generalized coordinates.

Note that we may define a matrix (∂q(s, t)/∂s) by using eqn (2.26) to write its
matrix elements, for i, k = 1, . . . , D, as(

∂q(s, t)

∂s

)
ki
= ∂qk(s, t)

∂si
(2.29)

It follows from eqn (2.27) and the discussion in Section D.25 of Appendix D that
matrix (∂s(q, t)/∂q) has eqn (2.29) as its inverse matrix(

∂s(q, t)

∂q

)−1

=
(

∂q(s, t)

∂s

)
so that

3∑
k=1

∂si (q, t)

∂qk

∂qk(s, t)

∂sl
= δil (2.30)

In the next four sections, we derive some important relations between the s- and
q-systems.11 Then, in Section 2.9 we will prove the main result of this chapter: The
Lagrange equations in a general q-system have the same form as that derived in eqn
(2.21) for the s-system.

9Note that here, and throughout the chapter, we often use the shorthand notations q = q1, . . . , qD and
s = s1, . . . , sD in which a single, unsubscripted letter stands for a set of variables.

10In practice, this condition may be violated in regions whose dimensionality is less than D. For example,
in the transition to spherical polar coordinates, the condition is violated on the whole of the z-axis. Such
regions may be excluded, and then approached as a limit.

11Of course the q-system, being general, includes the s-system as a special case. But we will continue to
refer to these two systems in this and the next few chapters to illustrate the methods of transformation be-
tween systems. The s-system is particularly important because of its close relation to Cartesian coordinates.



GENERALIZED VELOCITIES IN THE Q-SYSTEM 29

2.5 Generalized Velocities in the q-System
In Section 2.1 we defined ṡi = dsi/dt as the generalized velocities in the s-system.
A similar definition, q̇k = dqk/dt , is used for generalized velocities in the q-system.
Since si in eqn (2.25) depends only on q, t , the relation between ṡ and q̇ takes a
simple form.

Using the chain rule to differentiate eqn (2.25) with respect to the time allows
ṡi = dsi/dt to be expanded as a function of q and its time derivatives. The expansion
is

ṡi = dsi (q, t)

dt
=

D∑
k=1

∂si (q, t)

∂qk

dqk

dt
+ ∂si (q, t)

∂t
=

D∑
k=1

∂si (q, t)

∂qk
q̇k + ∂si (q, t)

∂t
(2.31)

for each i = 1, . . . , D, where the generalized velocities in the q-system are denoted
in the last expression by q̇k = dqk/dt . Inspection of eqn (2.31) shows that each ṡi

depends on q, t through the dependency of the partial derivatives on these quantities,
and on q̇ due to the q̇k factors in the sum. Thus

ṡi = ṡi (q, q̇, t) = ṡi (q1, q2, . . . , qD, q̇1, q̇2, . . . , q̇D, t) (2.32)

2.6 Generalized Forces in the q-System
Given the generalized force Fi in the s-system, the generalized force Qk in the q-system
is defined as

Qk =
D∑

i=1

Fi
∂si (q, t)

∂qk
with the inverse Fi =

D∑
k=1

Qk
∂qk(s, t)

∂si
(2.33)

The reason for this definition will become apparent in Section 2.9.
Substituting eqn (2.15) into this equation gives

Qk = −
D∑

i=1

∂U (s, t)

∂si

∂si (q, t)

∂qk
+

D∑
i=1

F (NP)
i

∂si (q, t)

∂qk
(2.34)

If we consider the potential U (q, t) in the q-system to be the same function as U (s, t)
but expressed in the q, t variable set, then substitution of eqn (2.25) into U (s, t) gives

U = U (q, t) = U
(
s1(q, t), s2(q, t), . . . , sD(q, t), t

)
(2.35)

Thus the chain rule expansion of the compound function gives

∂U (q, t)

∂qk
=

D∑
i=1

∂U (s, t)

∂si

∂si (q, t)

∂qk
(2.36)

Equation (2.34) then becomes

Qk = −∂U (q, t)

∂qk
+ Q(NP)

k (2.37)

where we have defined Q(NP)
k to be the q-system generalized force corresponding to
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F (NP)
i according to the rule defined in eqn (2.33),

Q(NP)
k =

D∑
i=1

F (NP)
i

∂si (q, t)

∂qk
with the inverse F (NP)

i =
D∑

k=1

Q(NP)
k

∂qk(s, t)

∂si
(2.38)

2.7 The Lagrangian Expressed in the q-System
We have defined the Lagrangian L(s, ṡ, t) in the s-system in eqn (2.18) above. The
Lagrangian in the q-system L(q, q̇, t) is defined to be the same function, but expressed
in terms of the q, q̇, t variable set.12 Substituting eqns (2.25, 2.32) into L(s, ṡ, t) gives
the Lagrangian as a compound function of q, q̇, t ,

L(q, q̇, t) = L
(
s1(q, t), s2(q, t), . . . , sD(q, t), ṡ1(q, q̇, t), ṡ2(q, q̇, t), . . . , ṡD(q, q̇, t), t

)
(2.39)

Equation (2.18) and the expansion in eqn (2.31) then give the Lagrangian in the
q-system in an expanded form

L = L(q, q̇, t) = 1

2

D∑
j=1

Mj
(
ṡj (q, q̇, t)

)2 −U
(
s1(q, t), s2(q, t), . . . , sD(q, t), t

)
= 1

2

D∑
j=1

Mj

(
D∑

k=1

∂sj (q, t)

∂qk
q̇k + ∂sj (q, t)

∂t

)(
D∑

l=1

∂sj (q, t)

∂ql
q̇l + ∂sj (q, t)

∂t

)
−U

(
s1(q, t), s2(q, t), . . . , sD(q, t), t

)
(2.40)

where each ṡj factor has been replaced by a separate sum. Exchanging the order of
the finite sums and collecting terms then gives

L = L(q, q̇, t) = T2(q, q̇, t)+ T1(q, q̇, t)+ T0(q, t)−U (q, t) (2.41)

where the kinetic energy is broken down into three terms

T (q, q̇, t) = T2(q, q̇, t)+ T1(q, q̇, t)+ T0(q, t) (2.42)

where

T2(q, q̇, t) = 1

2

D∑
k=1

D∑
l=1

mkl(q, t)q̇k q̇l with mkl(q, t) =
D∑

j=1

Mj
∂sj (q, t)

∂qk

∂sj (q, t)

∂ql

(2.43)
is homogeneous of degree two in the set of variables q̇1, q̇2, . . . , q̇D,

T1(q, q̇, t) =
D∑

k=1

nk(q, t)q̇k with nk(q, t) =
D∑

j=1

Mj
∂sj (q, t)

∂qk

∂sj (q, t)

∂t
(2.44)

12We follow the physics custom which uses the same letter L in both the s and q systems, and considers
L(s, ṡ, t) and L(q, q̇, t) to be the same function expressed in different coordinates. See the discussion in
Section D.5.
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is homogeneous of degree one in the same variables, and

T0(q, t) = 1

2

D∑
j=1

Mj

(
∂sj (q, t)

∂t

)2

(2.45)

and
U (q, t) = U

(
s1(q, t), s2(q, t), . . . , sD(q, t), t

)
(2.46)

are independent of the generalized velocities q̇.

2.8 Two Important Identities
The proof of the form invariance of the Lagrange equations in Section 2.9 requires
the following Lemma. These two identities are formal consequences of eqn (2.31) and
the properties of partial derivatives, and are true only because of the simple form of
eqn (2.25) in which the si = si (q, t) depend only on q and t .

Lemma 2.8.1: Identities in Configuration Space
It follows from the expansion in eqn (2.31) that the following two identities hold,

∂ ṡi (q, q̇, t)

∂ q̇k
= ∂si (q, t)

∂qk
and

∂ ṡi (q, q̇, t)

∂qk
= d

dt

(
∂si (q, t)

∂qk

)
(2.47)

Proof: The first of these follows immediately from the fact that both ∂si (q, t)/∂qk

and ∂si (q, t)/∂t in eqn (2.31) are functions only of q, t , so that the explicit linear term
in q̇k is the only place that the variables q̇ appear. The partial derivative of ṡi (q, q̇, t)
with respect to q̇k is thus the coefficient of the q̇k in eqn (2.31), which proves the first
of eqn (2.47).

The second identity in eqn (2.47) requires a somewhat longer proof. From eqn
(2.31), the left side of this second equation may be written as

∂ ṡi (q, q̇, t)

∂qk
=

D∑
l=1

∂

∂qk

(
∂si (q, t)

∂ql

)
q̇l + ∂

∂qk

(
∂si (q, t)

∂t

)
(2.48)

The right side of the second equation may be expanded by noting that, for any func-
tion g(q, t),

dg(q, t)

dt
=

D∑
l=1

∂g(q, t)

∂ql
q̇l + ∂g(q, t)

∂t
(2.49)

Setting g(q, t) = ∂si (q, t)/∂qk thus gives the right side of the second equation as

d

dt

(
∂si (q, t)

∂qk

)
=

D∑
l=1

∂

∂ql

(
∂si (q, t)

∂qk

)
q̇l + ∂

∂t

(
∂si (q, t)

∂qk

)
(2.50)

which is equal to eqn (2.48) when the order of partial derivatives is exchanged. �
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2.9 Invariance of the Lagrange Equations

We now come to the main theorem of this chapter: The Lagrange equations are form
invariant under a change of generalized coordinates.

Theorem 2.9.1: Invariance of Lagrange Equations
Assume that a change of coordinates is made from the s-system to the q-system (assumed
to be any good generalized coordinates), as defined by eqn (2.25). Define the Lagrangian
function in the q-system by eqn (2.39), and the non-potential generalized force in the
q-system by eqn (2.38). Then the Lagrange equations in the s-system,

d

dt

(
∂L(s, ṡ, t)

∂ ṡi

)
− ∂L(s, ṡ, t)

∂si
= F (NP)

i (2.51)

hold for all i = 1, . . . , D if and only if the Lagrange equations in the q-system,

d

dt

(
∂L(q, q̇, t)

∂ q̇k

)
− ∂L(q, q̇, t)

∂qk
= Q(NP)

k (2.52)

hold for all k = 1, . . . , D.

Proof: We first prove that eqn (2.51) implies eqn (2.52). Multiplying both sides of
eqn (2.51) by ∂si (q, t)/∂qk and summing over i gives

D∑
i=1

∂si (q, t)

∂qk

d

dt

(
∂L(s, ṡ, t)

∂ ṡi

)
−

D∑
i=1

∂si (q, t)

∂qk

∂L(s, ṡ, t)

∂si
=

D∑
i=1

∂si (q, t)

∂qk
F (NP)

i (2.53)

If f and g are any functions, it follows from the product rule for differentiation that
f (dg/dt) = d ( f g) /dt − g (d f/dt). Applying this rule with f = ∂si (q, t)/∂qk and
g = ∂L(s, ṡ, t)/∂ ṡi allows the first term in eqn (2.53) to be rewritten as

D∑
i=1

∂si (q, t)

∂qk

d

dt

(
∂L(s, ṡ, t)

∂ ṡi

)

=
D∑

i=1

d

dt

(
∂si (q, t)

∂qk

∂L(s, ṡ, t)

∂ ṡi

)
−

D∑
i=1

∂L(s, ṡ, t)

∂ ṡi

d

dt

(
∂si (q, t)

∂qk

)

=
D∑

i=1

d

dt

(
∂ ṡi (q, t)

∂ q̇k

∂L(s, ṡ, t)

∂ ṡi

)
−

D∑
i=1

∂L(s, ṡ, t)

∂ ṡi

∂ ṡi (q, q̇, t)

∂qk
(2.54)

where the first and second identities in eqn (2.47) were used to rewrite the first and
second terms on the right side of eqn (2.54), respectively.

Thus, rearranging terms slightly and using eqn (2.38) to replace the term on the
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right by Q(NP)
k , eqn (2.53) may be written as

d

dt

(
D∑

i=1

∂L(s, ṡ, t)

∂ ṡi

∂ ṡi (q, t)

∂ q̇k

)

−
(

D∑
i=1

∂L(s, ṡ, t)

∂si

∂si (q, t)

∂qk
+

D∑
i=1

∂L(s, ṡ, t)

∂ ṡi

∂ ṡi (q, q̇, t)

∂qk

)
= Q(NP)

k (2.55)

But the first parenthesis in eqn (2.55) is the chain rule expansion of ∂L(q, q̇, t)/∂q̇k

where L(q, q̇, t) is the compound function defined in eqn (2.39). And the second
parenthesis in eqn (2.55) is the chain rule expansion of ∂L(q, q̇, t)/∂qk . Thus eqn
(2.55) becomes

d

dt

(
∂L(q, q̇, t)

∂ q̇k

)
− ∂L(q, q̇, t)

∂qk
= Q(NP)

k (2.56)

which is the same as eqn (2.52), as was to be proved.
To prove the converse, that eqn (2.52) implies eqn (2.51), we start from eqn (2.56)

and reverse the chain of algebra to arrive at eqn (2.53). Multiplying that equation by
∂qk(s, t)/∂sj , summing over k = 1, . . . , D, and using eqn (2.30) gives

d

dt

(
∂L(s, ṡ, t)

∂ ṡj

)
− ∂L(s, ṡ, t)

∂sj
= F (NP)

j (2.57)

which is identical to eqn (2.51), as was to be proved. �

2.10 Relation Between Any Two Systems

The q-system above is taken to be any good system of generalized coordinates. If
we imagine it and any other good system, which we may call the r-system, then it
follows from what we’ve done above that the Lagrange equations in this r-system are
equivalent to the Lagrange equations in the q-system. Both of them are equivalent to
the s-system, hence they are equivalent to each other. But it may be useful to state
explicitly the relations between the q- and the r-systems. We state these relations
without proof, since their proof follows the pattern just established in going from the
s-system to the q-system.

The transformation between the q- and r-systems is

qk = qk(r, t) and the inverse rj = rj (q, t) (2.58)

Since both the q- and the r-systems are good generalized coordinates, the determinant
conditions for transformations between them are∣∣∣∣∂q(r, t)

∂r

∣∣∣∣ �= 0 and
∣∣∣∣∂r(q, t)

∂q

∣∣∣∣ �= 0 (2.59)
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All generalized forces in the q-system Qk are related to those in the r-system Rj by

Rj =
D∑

k=1

Qk
∂qk(r, t)

∂rj
and the inverse Qk =

D∑
j=1

Rj
∂rj (q, t)

∂qk
(2.60)

The Lagrangian in the r-system is defined as the compound function obtained by
substituting qk = qk(r, t) and q̇k = q̇k(r, ṙ , t) into L (q, q̇, t) as

L(r, ṙ , t) = L
(
q(r, t), q̇(r, ṙ , t), t

)
(2.61)

Then
d

dt

(
∂L(q, q̇, t)

∂ q̇k

)
− ∂L(q, q̇, t)

∂qk
= Q(NP)

k (2.62)

for all k = 1, . . . , D if and only if

d

dt

(
∂L(r, ṙ , t)

∂ṙ j

)
− ∂L(r, ṙ , t)

∂rj
= R(NP)

j (2.63)

for all j = 1, . . . , D.

2.11 More of the Simple Example
Suppose that the simple example of Section 2.3 is transformed to a q-system consist-
ing of spherical polar coordinates. Choose q1 = r , q2 = θ , q3 = φ. Then for i = 1, 2, 3,
respectively, the equations si = si (q, t) in eqn (2.25) take the form

x = r sin θ cos φ y = r sin θ sinφ z = r cos θ (2.64)

and the equations ṡi = ṡi (q1, q2, . . . , qD, q̇1, q̇2, . . . , q̇D, t) of eqn (2.32) are, again for
i = 1, 2, 3, respectively,

ẋ = ṙ sin θ cos φ + r θ̇ cos θ cos φ − r sin θ φ̇ sin φ

ẏ = ṙ sin θ sin φ + r θ̇ cos θ sin φ + r sin θ φ̇ cos φ

ż = ṙ cos θ − r θ̇ sin θ (2.65)

Note that these equations are linear in the dotted variables, as advertised in eqn
(2.31). Substituting eqns (2.64, 2.65) into the Lagrangian of eqn (2.23) following the
recipe given in eqn (2.39), we obtain, after some simplification,

L = L(q, q̇, t) = 1

2
m

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
− 1

2
kr2 (2.66)

The three Lagrange equations eqn (2.52) are then, for k = 1, 2, 3, respectively,

k = 1 : d

dt

(
∂L(q, q̇, t)

∂ṙ

)
− ∂L(q, q̇, t)

∂r
= 0 or mr̈ − mr θ̇2 − mr sin2 θ φ̇2 + kr = 0

k = 2 : d

dt

(
∂L(q, q̇, t)

∂θ̇

)
− ∂L(q, q̇, t)

∂θ
= 0 or

d

dt

(
mr2θ̇

)
− mr2 sin θ cos θ φ̇2 = 0

k = 3 : d

dt

(
∂L(q, q̇, t)

∂φ̇

)
− ∂L(q, q̇, t)

∂φ
= 0 or

d

dt

(
mr2 sin2 θ φ̇

)
= 0 (2.67)

which are the correct equations of motion in the q-system.
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2.12 Generalized Momenta in the q-System
In eqn (2.19), the generalized momenta Pi = Mi ṡi in the s-system were derived from
partial differentiation of the Lagrangian, Pi = ∂L(s, ṡ, t)/∂ ṡi . The generalized mo-
menta in the q-system are defined by a similar partial differentiation,

pk = pk(q, q̇, t) = ∂L(q, q̇, t)

∂ q̇k
(2.68)

The expansion of the Lagrangian in eqns (2.41 – 2.46) shows that this pk can be
expanded as

pk(q, q̇, t) =
D∑

l=1

mkl(q, t)q̇l + nk(q, t) (2.69)

A transformation law can be found between the generalized momenta in the s- and
q-systems. Using eqns (2.39, 2.68) and the chain rule gives

pk = ∂L(q, q̇, t)

∂ q̇k
=

D∑
i=1

∂L(s, ṡ, t)

∂ ṡi

∂ ṡi (q, q̇, t)

∂ q̇k
=

D∑
i=1

Pi
∂si (q, t)

∂qk
(2.70)

where eqn (2.19), and the first of eqn (2.47) from Lemma 2.8.1, have been used in
the final expression. Using eqn (2.30), the inverse relation can also be written

Pi =
D∑

k=1

pk
∂qk(s, t)

∂si
(2.71)

The pair of quantities qk, pk are referred to as conjugates. The pk is called the
conjugate momentum of coordinate qk , and the qk is called the conjugate coordinate
of momentum pk . The same nomenclature is applied also to the pair si , Pi , and to
similar pairs in any system of coordinates.

2.13 Ignorable Coordinates
The Lagrange equations in the general q-system, eqn (2.52), may be written in the
form of two coupled equations,

ṗk = ∂L(q, q̇, t)

∂qk
+ Q(NP)

k and pk = ∂L(q, q̇, t)

∂ q̇k
(2.72)

If Q(NP)
k = 0 and ∂L(q, q̇, t)/∂qk = 0 for a particular k value, then we say that the vari-

able qk is ignorable. In this case, its conjugate momentum pk is said to be conserved,
which means that its time derivative vanishes and hence it is equal to a constant
which may be taken to be its value at t = 0. If qk is ignorable, then

pk(t) = Ck = pk(0) (2.73)

For example, variable φ in Section 2.11 is ignorable.
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2.14 Some Remarks About Units
Notice that the generalized coordinates in the s-system all have units of length. But
the generalized coordinates in the q-system may have other units. For example, in the
simple example in Section 2.11, the variables q2 and q3 are angles and hence unitless.
However, there are certain products that will always have the same units, regardless
of which system is used.

Using eqns (2.25, 2.70), with the notation δqk for a differential at fixed time with
δt = 0, the chain rule gives

D∑
k=1

pkδqk =
D∑

k=1

(
D∑

i=1

Pi
∂si (q, t)

∂qk

)
δqk =

D∑
i=1

Pi

(
D∑

k=1

∂si (q, t)

∂qk
δqk

)
=

D∑
i=1

Piδsi

(2.74)
It follows that the units of each product pkqk must be the same as the units of the
products Pi si , which are M L2/T , the units of what is called action. Thus, in the simple
example of Section 2.11, the p2 and p3 generalized momenta are seen to be angular
momenta, which have the same units as action.

Similarly, denoting differentials with time fixed by δqk and δsi , eqn (2.33) and the
chain rule show that

D∑
k=1

Qkδqk =
D∑

k=1

(
D∑

i=1

Fi
∂si (q, t)

∂qk

)
δqk =

D∑
i=1

Fi

(
D∑

k=1

∂si (q, t)

∂qk
δqk

)
=

D∑
i=1

Fiδsi

(2.75)
It follows that each product Qkqk must have the same units as the products Fi si ,
which are M L2/T 2, the units of work and energy. Thus, in the simple example of
Section 2.11, the Q2 and Q3 generalized forces are torques, which have the same
units as work.

The results in this section can be very useful, allowing a unit check of sorts to be
performed even in complex Lagrangian systems for which the units of the qk may be
very strange.

2.15 The Generalized Energy Function
We have defined generalized coordinates, velocities, and momenta. We now define
what may be thought of as a generalized energy. The generalized energy function
(sometimes called the Jacobi-integral function) Hq in a general q-system is defined to
be

Hq = Hq(q, q̇, t) =
D∑

k=1

∂L(q, q̇, t)

∂ q̇k
q̇k − L(q, q̇, t) =

D∑
k=1

pk(q, q̇, t)q̇k − L(q, q̇, t)

(2.76)
The generalized energy function in the s-system is defined similarly,

Hs = Hs(s, ṡ, t) =
D∑

i=1

∂L(s, ṡ, t)

∂ ṡi
ṡi − L(s, ṡ, t) =

D∑
i=1

Pi (s, ṡ, t)ṡi − L(s, ṡ, t) (2.77)
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The subscripts on Hq and Hs are to emphasize that, unlike the Lagrangian function in
the s- and q-systems, the Hq and Hs are not in general the same function. One cannot
go from one to the other by simply making a coordinate substitution as we did for L.

Theorem 2.15.1: The Generalized Energy Theorem
The total time derivatives of the generalized energy functions are given by

d Hq

dt
= Ḣq =

D∑
k=1

Q(NP)
k q̇k − ∂L(q, q̇, t)

∂t
(2.78)

d Hs

dt
= Ḣs =

D∑
i=1

F (NP)
i ṡi − ∂L(s, ṡ, t)

∂t
(2.79)

Proof: The proof will be given for the q-system since the s-system proof is identical.
From eqn (2.78),

Ḣq =
D∑

k=1

( ṗk q̇k + pkq̈k)− d L(q, q̇, t)

dt

=
D∑

k=1

(
ṗk q̇k + pkq̈k − ∂L(q, q̇, t)

∂qk
q̇k − ∂L(q, q̇, t)

∂ q̇k
q̈k

)
− ∂L(q, q̇, t)

∂t
(2.80)

Using eqn (2.68) to cancel the q̈k terms, and eqn (2.72) for ṗk , gives eqn (2.78) as
was to be proved. �

Equations (2.78, 2.79) are generalized work–energy theorems. If the non-potential
forces vanish identically for all index values, and if the Lagrangian does not contain
the letter t explicitly, then the generalized energy function will be conserved. For ex-
ample, in the q-system Q(NP)

k = 0 and ∂L(q, q̇, t)/∂t = 0 would imply that Ḣq = 0,
and hence that

Hq(q(t), q̇(t), t) = C = Hq(q(0), q̇(0), 0) (2.81)

2.16 The Generalized Energy and the Total Energy
One can easily show using eqns (2.18, 2.77) that

Hs = 1

2

D∑
j=1

Mj ṡ
2
j +U (s1, s2, . . . , sD, t) = T +U = E (2.82)

where E is identical to the total energy defined in Section 1.8. So the s-system gener-
alized energy function Hs is equal to the total energy.

The situation is different in the general q-system, however. Using eqns (2.41,
2.76),

Hq =
D∑

k=1

q̇k
∂T2(q, q̇, t)

∂ q̇k
+

D∑
k=1

q̇k
∂T1(q, q̇, t)

∂ q̇k
+

D∑
k=1

q̇k
∂T0(q, q̇, t)

∂ q̇k
− L(q, q̇, t) (2.83)

Since functions Tl are homogeneous of degree l in the generalized velocities q̇k , the
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Euler condition from Theorem D.31.1 shows that
D∑

k=1

q̇k
∂T2(q, q̇, t)

∂ q̇k
= 2T2(q, q̇, t)

D∑
k=1

q̇k
∂T1(q, q̇, t)

∂ q̇k
= T1(q, q̇, t)

D∑
k=1

q̇k
∂T0(q, q̇, t)

∂ q̇k
= 0 (2.84)

Therefore
Hq = 2T2 + T1 − (T2 + T1 + T0 −U ) = T2 − T0 +U (2.85)

and Hq is related to Hs = T +U by

Hq = (T +U )− (T1 + 2T0) = Hs − (T1 + 2T0) = E − (T1 + 2T0) (2.86)

which is not in general equal to the total energy E .
Examination of eqns (2.44, 2.45, 2.86) shows that the condition for Hq to equal

Hs = T + U is for the coordinate transformation equation not to contain the letter t
explicitly. Then ∂si (q, t)/∂t = 0, which in turn implies that both T1 and T0 are zero.
Thus

∂si (q, t)

∂t
= 0 implies that Hq = Hs = T +U (2.87)

Note to the Reader: The condition for Hq to be conserved (which, in the absence
of non-potential forces, is ∂L(q, q̇, t)/∂t = 0) is independent of the condition for
Hq = T + U (which is ∂si (q, t)/∂t = 0). The Hq may be conserved even when the
total energy E is not.

The generalized energy function is most useful in problem solutions when it is
conserved. And if Hq is conserved, it usually makes little difference to the prob-
lem solution whether or not Hq equals T +U . For conservation implies the equation
Hq(q, q̇, t) = C , a first-order differential equation and a first integral of the equations
of motion, regardless of the relation of Hq to the total energy.

2.17 Velocity Dependent Potentials
The problem of N charged particles in a given, externally applied electromagnetic
field can also be reduced to Lagrangian form. We use the s-system of generalized
coordinates, expressed in vector notation.

The Lorentz force acting on the nth particle is

fn = q(ch)
n E(rn, t)+ q(ch)

n

c
vn × B(rn, t) (2.88)

where q(ch)
n is the charge of the particle, E(r, t) is the electric field, B(r, t) is the

magnetic induction field, and

rn = xn1ê1 + xn2ê2 + xn3ê3 and vn = ẋn1ê1 + ẋn2ê2 + ẋn3ê3 (2.89)

are the particle’s position and velocity, respectively.
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Introducing the scalar potential 
(r, t) and the vector potential A(r, t), the electric
and magnetic induction fields at the particle location rn may be written

E(rn, t) = −∂
(rn, t)

∂rn
− 1

c

∂A(rn, t)

∂t
and B(rn, t) = ∇n × A(rn, t) (2.90)

where the notation for the gradient vector operator

∂

∂rn
= ∇n = ê1

∂

∂xn1
+ ê2

∂

∂xn1
+ ê3

∂

∂xn1
(2.91)

has been introduced.13

Substituting eqn (2.90) into the Lorentz force eqn (2.88) gives

fn = q(ch)
n

(
−∂
(rn, t)

∂rn
− 1

c

∂A(rn, t)

∂t

)
+ q(ch)

n

c
vn × (∇n × A(rn, t))

= − ∂

∂rn

(
q(ch)

n 
(rn, t)
)
− ∂

∂t

(
q(ch)

n

c
A(rn, t)

)

+ ∂

∂rn

(
vn · q(ch)

n

c
A(rn, t)

)
− vn · ∂

∂rn

(
q(ch)

n

c
A(rn, t)

)
(2.92)

where the triple cross product has been expanded, using the usual Lagrangian list of
variables rn, vn, t to define the meaning of the partial differentials in the next-to-last
term.

Noting that the total time derivative of
(

q(ch)
n A(rn, t)/c

)
can be written, using the

chain rule, as

d

dt

(
q(ch)

n

c
A(rn, t)

)
= vn · ∂

∂rn

(
q(ch)

n

c
A(rn, t)

)
+ ∂

∂t

(
q(ch)

n

c
A(rn, t)

)
(2.93)

eqn (2.92) becomes

fn = − ∂

∂rn

(
q(ch)

n 
(rn, t)− vn · q(ch)
n

c
A(rn, t)

)
− d

dt

(
q(ch)

n

c
A(rn, t)

)
(2.94)

Defining the velocity dependent potential U (vel) by

U (vel)(r, v, t) =
N∑

n=1

(
q(ch)

n 
(rn, t)− vn · q(ch)
n

c
A(rn, t)

)
(2.95)

gives
∂U (vel)(r, v, t)

∂vn
= −q(ch)

n

c
A(rn, t) (2.96)

13See Section A.11 for a discussion of this notation, and cautions for its proper use.
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where the operator
∂

∂vn
= ê1

∂

∂ ẋn1
+ ê2

∂

∂ ẋn1
+ ê3

∂

∂ ẋn1
(2.97)

has been introduced and the identity eqn (A.71) of Section A.11 has been used. Thus,
finally

fn = d

dt

(
∂U (vel)(r, v, t)

∂vn

)
− ∂U (vel)(r, v, t)

∂rn
(2.98)

expresses the Lorentz force in Lagrangian form.
In the present vector notation, the total kinetic energy is given in the first of eqn

(2.12). Again using the identities in Section A.11, the equations of motion for this
problem can thus be written as the following sequence of equivalent expressions

d

dt
(mnvn) = fn (2.99)

d

dt

(
∂T

∂vn

)
= d

dt

(
∂U (vel)(r, v, t)

∂vn

)
− ∂U (vel)(r, v, t)

∂rn
(2.100)

and hence
d

dt

(
∂L(r, v, t)

∂vn

)
− ∂L(r, v, t)

∂rn
= 0 (2.101)

where the Lagrangian function for velocity dependent potentials is defined as

L(r, v, t) = T (v)−U (vel)(r, v, t) (2.102)

Written out, the Lagrangian is thus

L = 1

2

N∑
n=1

mnv2
n −

N∑
n=1

q(ch)
n 
(rn, t)+

N∑
n=1

vn · q(ch)
n

c
A(rn, t) (2.103)

The generalized momenta of particles in an electromagnetic field are not simply the
particle momenta pn = mnvn . They are

p
n
= ∂L(r, v, t)

∂vn
= mnvn + q(ch)

n

c
A(rn, t) (2.104)

which might be considered as the vector sum of a particle momentum pn = mnvn and
a field momentum q(ch)

n A(rn, t)/c. It is this generalized momentum that is conserved
when the coordinate rn is ignorable.

The generalized energy function can also be found,

Hs =
N∑

n=1

vn · pn − L = 1

2

N∑
n=1

mnv2
n +

N∑
n=1

q(ch)
n 
(rn, t) (2.105)

Note that, even though we are in the s-system, the generalized energy function here
is not equal to T + U (vel) since the terms linear in the velocity have canceled. How-
ever, the generalized energy eqn (2.105) is equal to the total energy of the system of
charges as it is usually defined in electrodynamics.



EXERCISES 41

It seems surprising that a complicated velocity-dependent force like the Lorentz
force of electrodynamics can be written in the Lagrangian form of eqn (2.98). Why
do electrodynamics and Lagrangian mechanics fit together so neatly? We leave that
question for the reader to ponder.

Other velocity-dependent potentials are possible. The general rule for their use
follows the same pattern as the electromagnetic example. In the s-system with velocity
dependent potential U (vel) = U (vel)(s, ṡ, t), the generalized forces can be defined as

Fi = d

dt

(
∂U (vel)(s, ṡ, t)

∂ ṡi

)
− ∂U (vel)(s, ṡ, t)

∂si
(2.106)

and the Lagrange equations are

d

dt

(
∂L(s, ṡ, t)

∂ ṡi

)
− ∂L(s, ṡ, t)

∂si
= 0 where L(s, ṡ, t) = T (ṡ)−U (vel)(s, ṡ, t)

(2.107)
Using the general q-system, the velocity-dependent potential will be U (vel)(q, q̇, t),

obtained as a compound function from U (vel)(s, ṡ, t),

U (vel) = U (vel)(q, q̇, t) = U (vel) (s(q, t), ṡ(q, q̇, t), t
)

(2.108)

The generalized forces are

Qk = d

dt

(
∂U (vel)(q, q̇, t)

∂ q̇k

)
− ∂U (vel)(q, q̇, t)

∂qk
(2.109)

and the Lagrange equations are

d

dt

(
∂L(q, q̇, t)

∂ q̇k

)
− ∂L(q, q̇, t)

∂qk
= 0 where L(q, q̇, t) = T (q, q̇, t)−U (vel)(q, q̇, t)

(2.110)
The zero on the right in eqns (2.107, 2.110) follows from the assumption that that no
forces other than those produced by U (vel) are present.

2.18 Exercises
Exercise 2.1
(a) Calculate the Jacobian matrix for s1 = x , s2 = y, s3 = z and q1 = r , q2 = θ , and q3 = φ,
the transformation from Cartesian to spherical-polar coordinates. Show that r, θ, φ are good
generalized coordinates except on the z-axis.
(b) Work out in detail the derivation of eqn (2.66) from eqn (2.23).

Exercise 2.2
(a) Calculate the Jacobian matrix for s1 = x , s2 = y, s3 = z and q1 = ρ, q2 = φ, and
q3 = z, the transformation from Cartesian to cylindrical-polar coordinates. Show that ρ, φ, z
are good generalized coordinates except on the z-axis.
(b) Starting from the Lagrangian in eqn (2.23), work out in detail the transformation to the
Lagrangian L(ρ, φ, z, ρ̇, φ̇, ż, t) for this system.
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Exercise 2.3 We are given a Lagrangian L (q, q̇, t). Assume that there are no non-potential
forces. Let f (q, t) be an arbitrary function of q = q1, q2, . . . , qN and possibly the time t .
Show that if qk = qk(t) are a solution of

d

dt

(
∂L (q, q̇, t)

∂ q̇k

)
− ∂L (q, q̇, t)

∂qk
= 0 (2.111)

then the same qk(t) are also a solution of

d

dt

(
∂L ′ (q, q̇, t)

∂ q̇k

)
− ∂L ′ (q, q̇, t)

∂qk
= 0 (2.112)

where

L ′ (q, q̇, t) = L (q, q̇, t)+ d

dt
f (q, t) (2.113)

This problem shows that L and L ′ are equivalent Lagrangians. The same solution will be
found no matter which one is used.

Exercise 2.4 Consider a collection that consists of just two masses, m1 and m2. We can
define the center of mass R and the vectors ρ1 and ρ2 as in Section 1.9. However, the compo-
nents of these three vectors are not suitable generalized coordinates. For one thing, there are
nine of them, whereas the number of degrees of freedom D is only six (the six components
of r1 and r2). Suppose that we define a new vector r by r = r2 − r1 and define v = dr/dt as
its time derivative. Also it will be useful to define a reduced mass µ = m1m2/(m1 + m2).

(a) Write r1 and r2 in terms of R and r and the appropriate masses. Then show that the six
components of R and r satisfy the Jacobian determinant condition and so are good general-
ized coordinates.
(b) Write P, L, S, To, and TI in terms of µ, M , R, r, V, and v only.

Exercise 2.5 Suppose that the two masses in Exercise 2.4 have a motion defined by a La-
grangian function

L = 1

2
m1v

2
1 +

1

2
m2v

2
2 −U (r2 − r1) (2.114)

where v1 = √
v1 · v1 and v1 = dr1/dt , with similar definitions for the second mass.

(a) Rewrite the Lagrangian in terms of the variables r, R and their derivatives. Show that this
Lagrangian can be written as the sum of two terms, one of which depends only on R and its
time derivative and the other only on r and its time derivative. (Such Lagrangian systems are
called separable.)
(b) Show that the three components of R are ignorable coordinates, and that the total momen-
tum of the system is conserved.

Exercise 2.6 A mass m is acted on by a force derived from the generalized potential

U (vel)(r, v, t) = U (r)+ σ · L (2.115)

where

r =
√

x2 + y2 + z2 σ = σ ê3 L = r × mv (2.116)

and r and v are the position and velocity of the mass relative to some inertial coordinate
system.
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(a) Express U (vel) in Cartesian coordinates (the s-system) x, y, z, ẋ, ẏ, ż and find the force F
(i.e. find the three components Fx , Fy, Fz).
(b) Now express U (vel) in spherical polar coordinates (which we might call the q-system)
r, θ, φ, ṙ , θ̇ , φ̇ and find the generalized force Qk for k = 1, 2, 3.
(c) The force vector we found in part (a) can be re-expressed in terms of the spherical polar
unit vectors as

F = Fr r̂ + Fθ θ̂ + Fφφ̂ (2.117)

where
Fr = r̂ · F Fθ = θ̂ · F Fφ = φ̂ · F (2.118)

Show that Qr is equal to Fr .
(d) However, Qφ is not equal to Fφ . Show that Qφ is equal to the z-component of the torque
τ = r × F.
(e) Verify that the units of Qφδφ do obey the rule described in Section 2.14.

Exercise 2.7 Given an electric potential 
(r, t) and a vector potential A(r, t), the electric
and magnetic induction fields can be expressed as

E = −∇
− 1

c

∂A
∂t

B = ∇ × A (2.119)

We know that the E and B fields are left invariant by a gauge transformation of the potentials.
That is, if

A′ = A +∇χ 
′ = 
− 1

c

∂χ

∂t
(2.120)

and E′ and B′ are found using eqn (2.119) but with 
 and A replaced by the primed potentials

′ and A′, then it can be shown that E′ = E and B′ = B.

(a) For the case of a single particle of mass m and charge q(ch), use eqn (2.103) to write out
two Lagrangians, one using the original potentials and one using the primed potentials. Call
them L and L ′.
(b) Find

p = ∂L (r, v, t)

∂v
and p′ = ∂L ′ (r, v, t)

∂v
(2.121)

(c) Show that

L ′ = L + d f (r, t)

dt
(2.122)

and write f (r, t) in terms of χ(r, t).
(d) If r = r(t) is a solution to the Lagrange equations with L , is it also a solution to the
Lagrange equations with L ′? Should it be? If it is, show why it is, and if not show why it is
not.

Exercise 2.8 A a single particle of mass m in one dimension has the Lagrangian in some q
system of coordinates

L(q1, q̇1, t) = 1

2
m

a2q̇2
1

q4
1

− mω2

2

a2

q2
1

(2.123)

where a and ω are given constants having appropriate units.



44 INTRODUCTION TO LAGRANGIAN MECHANICS

(a) Find the generalized momentum p1 and the generalized energy function Hq(q, q̇, t) for
the q system. Is the generalized energy conserved?
(b) Suppose that the q system coordinates are related to those of the s system by q1 = a/s1.
Write the Lagrangian in the s-system, L(s, ṡ, t).
(c) Find the generalized momentum P1 and the generalized energy function Hs(s, ṡ, t) for
the s-system. Is the generalized energy conserved?
(d) Show that the momenta p1 and P1 are related as predicted by eqn (2.71).
(e) When expressed in the same coordinate system, is Hs equal to Hq? Why should it be?

x

x ′

y
y′

a ω0t

m

FIG. 2.1. Illustration for Exercise 2.9.

Exercise 2.9 A horizontal, circular table with a frictionless top surface is constrained to ro-
tate about a vertical line through its center, with constant angular velocity ω0. A peg is driven
into the table top at a distance a from the center of the circle. A mass m slides freely on the
top surface of the table, connected to the peg by a massless spring of force constant k and zero
rest length. Take the s-system to be an inertial system of Cartesian coordinates x, y with ori-
gin at the center of the table top, and the q-system to be rotating Cartesian coordinates x ′, y′
defined so that ê′1 defines a line passing through the peg. Ignore the z-coordinate, and treat
this problem as one with two degrees of freedom. The transformation between coordinates of
the mass in the two systems is

x = x ′ cos ω0t − y′ sin ω0t y = x ′ sin ω0t + y′ cos ω0t (2.124)

(a) Write L(s, ṡ, t) in the s-system and L(q, q̇, t) in the q-system.
(b) Write Hs in the s-system. Is it equal to T +U? Is it conserved?
(c) Write Hq in the q-system. Is it equal to T +U? Is it conserved?

Exercise 2.10 A one-dimensional system has the Lagrangian

L(q, q̇, t) = m

2

(
q̇2

1 sin2 ωt + ω2q2
1 cos2 ωt + ωq1q̇1 sin 2ωt

)
− mgq1 sin ωt (2.125)

where 0 < t < π/ω.

(a) Find the generalized energy function for the q-system, Hq(q, q̇, t). Is it conserved?
(b) Make a change of generalized coordinates, with the new coordinate r1 defined by q1 =
r1/ sin ωt , as in Section 2.10. Write the Lagrangian in the r-system, L(r, ṙ , t).
(c) Find the generalized energy function for the r-system, Hr (r, ṙ , t). Is it conserved?
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x

y

g
m1

m2

r1

r2

θ1

θ2

FIG. 2.2. Illustration for Exercise 2.11.

Exercise 2.11 Consider a plane double pendulum with rigid, massless, but possibly extensi-
ble sticks. It has a mass m1 at coordinates x1, y1 and a mass m2 at x2, y2. Gravity g = gê1
acts downwards. Ignore the z coordinate in this problem, and assume that all pivots are fric-
tionless. In the s-system s = x1, y1, x2, y2, the Lagrangian is

L (s, ṡ, t) = m1

2

(
ẋ2

1 + ẏ2
1

)
+ m2

2

(
ẋ2

2 + ẏ2
2

)
+ m1gx1 + m2gx2 (2.126)

(a) Consider a change of generalized coordinates to the q-system q = r1, θ1, r2, θ2 shown
in the diagram. Write the four transformation equations of the form si = si (q, t) for i =
1, . . . , 4.
(b) Calculate the Jacobian determinant |∂s/∂q| for this transformation and find the conditions
under which the q-system are good generalized coordinates.
(c) Write the Lagrangian L(q, q̇, t) in the q-system.

Exercise 2.12 A point particle of mass m and charge q moves near a very long wire carrying
a current I . Choose the ê3 axis along the wire in the direction of the current. In the region
near the wire, the vector potential in terms of cylindrical polar coordinates ρ, φ, z is

A = I

2πc
ln

(
ρ

ρ0

)
ẑ (2.127)

where ρ0 is some arbitrarily chosen ρ value. Assume the electric potential 
 to be zero.

(a) Write the Lagrangian L = L(ρ, φ, z, ρ̇, φ̇, ż, t) for the particle, using cylindrical polar
coordinates.
(b) Find the generalized momenta pρ , pφ , and pz .
(c) Write the three Lagrange equations, and show that φ and z are ignorable coordinates.
(d) Use the φ and z Lagrange equations to write expressions for φ̇ and ż as functions of ρ and
integration constants.
(e) Write the generalized energy function. Is it conserved? Use it to express ρ̇2 as a function
only of ρ and some constants that can be determined at t = 0.
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LAGRANGIAN THEORY OF CONSTRAINTS

One attractive feature of the Lagrangian method is the ease with which it solves so-
called constraint problems. But, as the reader will see, applying the correct method
for a particular problem can be something of an art. We present several different
ways of solving such problems, with examples of each. With experience, the reader
will become adept at choosing among them.

In the previous chapter, the generalized coordinates were assumed to be indepen-
dent variables. But there are problems of interest in which these coordinates are not
independent, but rather are forced into particular relations by what are called con-
straints. For example, the x, y, z coordinates of a point mass falling under gravity are
independent. But if the mass is forced to slide on the surface of a plane, there would
be a constraint in a form such as αx + βy + γ z − � = 0 tying them together. The
present chapter shows that such constraints can be incorporated into the Lagrangian
method in a particularly convenient way. If the constraints are idealized (such as fric-
tionless surfaces or perfectly rigid bodies), then the equations of motion can be solved
without knowing the forces of constraint. Also, the number of degrees of freedom of
the Lagrangian system can be reduced by one for each constraint applied.

r

n̂ : (α, β, γ )

�

y

z

x

gm

FIG. 3.1. Example of a holonomic constraint. The mass m is constrained to move on the surface
of a plane defined by n̂ · r = �. Constants α, β, γ are the components of a unit vector
perpendicular to the plane, and � is the perpendicular distance from the plane to the
origin.

3.1 Constraints Defined

The simplest class of constraints are those called holonomic. A constraint is holonomic
if it can be represented by a single function of the generalized coordinates, equated
to zero, as in

Ga(q, t) = 0 (3.1)

46
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for a = 1, . . . , C , where each a value is considered a separate constraint.
The relation among the coordinates may vary with time. For example, if the plane

in the previous paragraph had a time-varying distance from the origin �(t), the con-
straint, using the s-system, would be

G1(s, t) = αx + βy + γ z −�(t) = 0 (3.2)

If the number of constraints C is greater than one, care must be taken to en-
sure that the constraint equations are functionally independent. Otherwise the actual
number of constraints may be fewer than the number listed. As discussed in Theorem
D.28.1, the condition for functional independence of the constraints is that the C × D
matrix whose elements are (

∂G

∂q

)
ak
= ∂Ga(q, t)

∂qk
(3.3)

must have rank C . In other words, there must be a nonzero C×C determinant, called
a critical minor,14 constructed by selecting the C rows, and C of the D columns, of
eqn (3.3). We will assume throughout that all sets of constraints obey this condition.

3.2 Virtual Displacement
In the treatment of Lagrangian constraint problems, it is very convenient to define the
new concept of virtual displacement.

Definition 3.2.1: Virtual Displacements Defined
A virtual displacement of a function f = f (q, t) is its differential, but with the conven-
tion that the time t is held fixed so that δt = 0. These virtual displacements are denoted
with a lowercase Greek δ to distinguish them from normal differentials.

The virtual displacement of a function f (q, t) is then,

δ f =
D∑

k=1

∂ f (q, t)

∂qk
δqk (3.4)

and the virtual displacement of the constraint function Ga(q, t) defined in Section 3.1
is

δGa =
D∑

k=1

∂Ga(q, t)

∂qk
δqk (3.5)

These definitions also apply to the s-system. By the chain rule, virtual displacements
in the s- and q-systems are related by

δsi =
D∑

k=1

∂si (q, t)

∂qk
δqk and the inverse relation δqk =

D∑
i=1

∂qk(s, t)

∂si
δsi (3.6)

14See Section B.17 of Appendix B for a discussion of the rank of a matrix.
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and the differential of Ga can be written equivalently as

δGa =
D∑

i=1

∂Ga(s, t)

∂si
δsi (3.7)

Definition 3.2.2: Virtual Displacements Re-defined
The definition of virtual displacement in Definition 3.2.1 is now extended to include
the condition that the δqk must be chosen so that, at each instant of time, and for all
a = 1, . . . , C ,

δGa = 0 (3.8)

Virtual displacements at a frozen instant of time must be such that the constraints
are maintained, that both Ga(q, t) = 0 and Ga(q + δq, t) = 0. For example, if the only
constraint is that a single mass must move on a flat, horizontal elevator floor located
at z = h(t), then the constraint equation is G1(s, t) = z − h(t) = 0 and the only
allowed nonzero virtual displacements are δx and δy. The constraint requires δz to
equal zero. The virtual displacements are constrained to remain in the instantaneous
surface of constraint as it is at time t , even though that surface may be moving as t
evolves.

ê1

ê3

ê2

F(cons)

δr = δx ê1 + δyê2

z = h(t)
g

FIG. 3.2. A mass is constrained to slide without friction on the floor of an elevator which
is moving upwards. The constraint is z = h(t). The virtual displacement δr is parallel
to the instantaneous position of the floor, even though the floor is moving. Thus δz = 0
as shown. Since the floor is frictionless, F(cons) is perpendicular to the floor and hence
δW (cons) = F(cons) · δr = 0.

3.3 Virtual Work
Generally, constraints are maintained by the actions of forces, like the force exerted
on the mass by elevator floor in the previous example. We will denote these forces
of constraint by Q(cons)

k in the q-system or F (cons)
i in the s-system. These forces of

constraint (and indeed any generalized forces) in the two systems are related by the
same transformation formulas as in Section 2.6,

Q(cons)
k =

D∑
i=1

F (cons)
i

∂si (q, t)

∂qk
and F (cons)

i =
D∑

k=1

Q(cons)
k

∂qk(s, t)

∂si
(3.9)
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The virtual work of the forces of constraint is defined as

δW (cons) =
D∑

i=1

F (cons)
i δsi =

D∑
k=1

Q(cons)
k δqk (3.10)

where the second equality follows from eqns (3.6, 3.9).15

The problems that can be dealt with easily by Lagrangian theory of constraints are
those in which, at least as an idealization, the forces of constraint do no virtual work.
This portentous phrase means simply that

δW (cons) = 0 (3.11)

for all allowed virtual displacements. For example, if the elevator floor in the previous
section is made of frictionless ice, then the only constraint force will be a normal force
F(cons) = F (cons)

z ê3. Then, since δz = 0, the virtual displacement δr = δx ê1 + δyê2 will
be perpendicular to the constraint force, leading at once to the conclusion that

δW (cons) =
D∑

i=1

F (cons)
i δsi = F(cons) · δr = 0 (3.12)

A wide class of problems can be imagined in which masses slide without friction
on various surfaces. For example, a coin sliding inside a spherical fish bowl made of
frictionless ice, with the q-system taken to be spherical polar coordinates, would have
δr = 0 and Q(cons)

θ = Q(cons)
φ = 0, leading again to δW (cons) = 0. A bead sliding on a

frictionless wire of arbitrary shape would have a force of constraint perpendicular to
the wire but virtual displacement only along it, again producing zero virtual work.

A less obvious example is that the cohesive forces binding the masses of an ideal-
ized, perfectly rigid body also do no virtual work. The proof of this statement must be
deferred until the motion of rigid bodies is treated in later chapters. (It is proved in
Theorem 8.13.1.) Systems of rigid rods linked by frictionless pivots and joints, such as
the single or multiple pendulum, also have constraint forces that do no virtual work.
Another important example is that the friction force acting when a wheel rolls with-
out slipping on some surface does no virtual work, since the force acts at the contact
point, which does not move in virtual displacements.

Virtual work is not the same as the real, physical work that may be done by the
constraint forces. In the example of the elevator floor in Figure 3.2, if the elevator
is moving upwards then the floor definitely will do real work on the mass as time
evolves. But it will not do virtual work. The rule is that when the constraints are not
time dependent, then the forces of constraint that do no virtual work will also not
do real work. But when the constraints are time varying, with ∂Ga(s, t)/∂t �= 0, then
forces of constraint that do no virtual work may still do real work.

15The use of the symbol δW (cons) in eqn (3.10) is not meant to imply the existence of a work function
W (cons)(q, t) from which the generalized forces of constraint can be derived by partial differentiation.
Such a function exists only in trivial cases. The forces of constraint take whatever values are necessary to
maintain the constraints. In general, this means that they depend on the first and second time derivatives
of the generalized coordinates, as well as the generalized coordinates and the time.
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3.4 Form of the Forces of Constraint

The reason for the above definitions of virtual displacement and virtual work is to
allow us to state the following theorem.

Theorem 3.4.1: Form of the Forces of Constraint
Given a system of constraints defined as in eqn (3.1), and virtual displacements obeying
eqn (3.8), the virtual work of the forces of constraint vanishes,

δW (cons) = 0 (3.13)

for all allowed virtual displacements if and only if there exist λa factors, called Lagrange
multipliers, such that the constraint forces can be written in the following form

Q(cons)
k =

C∑
a=1

λa
∂Ga(q, t)

∂qk
or, equivalently, F (cons)

i =
C∑

a=1

λa
∂Ga(s, t)

∂si
(3.14)

where the λa factors in the first of eqn (3.14) are the same as those in the second.

Proof: The equivalence of the two equations in eqn (3.14) follows from eqn (3.9)
and the chain rule.

We prove the theorem in the general q-system. The proof in the s-system is similar.
First, we prove that eqn (3.14) implies eqn (3.13). The definition eqn (3.10) gives

δW (cons) =
D∑

k=1

Q(cons)
k δqk =

D∑
k=1

C∑
a=1

λa
∂Ga(q, t)

∂qk
δqk

=
C∑

a=1

λa

D∑
k=1

∂Ga(q, t)

∂qk
δqk =

C∑
a=1

λaδGa (3.15)

where eqn (3.14) was used. But, by the definition of virtual displacement in Section
3.3, δGa = 0 for all a. Hence δW (cons) = 0, as was to be proved.

The converse proof, that δW (cons) = 0 implies eqn (3.14), is a bit more involved.
As a preliminary to the proof, note that the matrix eqn (3.3) discussed in Section
3.1 is assumed to have rank C . Since the order in which generalized coordinates are
indexed is arbitrary, we may gain some clarity without loss of generality by assuming
that its critical minor consists of its C rows and its last C columns, from (D − C + 1)

to D. We then denote16 by q( f ) the set of free variables q1, . . . , q(D−C) and by q(b)

the set of bound variables q(D−C+1), . . . , qD. The constraint conditions eqns (3.5, 3.8)

16The choice of bound and free variables here is not unique. In a given problem, there may be several
critical minors of eqn (3.3) and hence several ways in which the free-bound division can be made.
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imply

0 = δGa =
D∑

k=1

gakδqk =
D−C∑
k=1

gakδq( f )
k +

D∑
l=D−C+1

galδq(b)
l (3.16)

for a = 1, . . . , C , where we have introduced the notation

gak = ∂Ga(q, t)

∂qk
(3.17)

and have separated the sums over the free (superscript ( f ), index k) and bound (su-
perscript (b), index l) variables in the last form of the expression.

The C × C matrix g (b) whose aith matrix element is defined to be

g(b)
ai = ga(D−C+i) (3.18)

is nonsingular by the assumption that the last C columns of eqn (3.3) are a critical
minor of that matrix. Therefore, the inverse g (b)−1 exists and may be used to solve
eqn (3.16) for the bound virtual displacements in terms of the free ones. Thus, for
i = 1, . . . , C ,

δq(b)
D−C+i = −

C∑
a=1

D−C∑
k=1

g(b)−1
ia gakδq( f )

k (3.19)

With this relation now assumed, eqn (3.16) becomes an identity, satisfied regardless
of the values we choose for the δq( f ) displacements. Thus the δq( f ) are not bound by
the constraints and may be assigned any values, just as the name “free” suggests.

Now form an expression by multiplying eqn (3.8) by an unknown function λa and
subtracting the sum over a from eqn (3.11). Since each constituent of this expression
is zero by assumption, the expression also vanishes. Thus

0 = δW (cons) −
C∑

a=1

λaδGa =
D∑

k=1

(
Q(cons)

k −
C∑

a=1

λagak

)
δqk

=
D−C∑
k=1

(
Q(cons)

k −
C∑

a=1

λagak

)
δq( f )

k +
D∑

l=D−C+1

(
Q(cons)

l −
C∑

a=1

λagal

)
δq(b)

l (3.20)

where we have once again separated the sums over free and bound variables. The last
sum in eqn (3.20) may be written

D∑
l=D−C+1

(
Q(cons)

l −
C∑

a=1

λagal

)
δq(b)

l =
C∑

i=1

(
Q(cons)

D−C+i −
C∑

a=1

λag(b)
ai

)
δq(b)

D−C+i (3.21)

The λa can now be chosen to be

λa =
C∑

i=1

Q(cons)
D−C+i g

(b)−1
ia (3.22)
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which makes

Q(cons)
D−C+i −

C∑
a=1

λag(b)
ai = 0 or equivalently Q(cons)

l −
C∑

a=1

λagal = 0 (3.23)

identically for all i = 1, . . . , C , or equivalently for all l = D − C + 1, . . . , D.
Thus the choice in eqn (3.22) makes the last sum in eqn (3.20) zero. Equation

(3.20) then reduces to

0 =
D−C∑
k=1

(
Q(cons)

k −
C∑

a=1

λagak

)
δq( f )

k (3.24)

Now invoke the independence of the free displacements to set the δq( f )
k nonzero one

at a time, thus establishing that, for k = 1, . . . , D − C ,

Q(cons)
k −

C∑
j=1

λj gjk = 0 (3.25)

Together with the second of eqn (3.23) for l = D −C + 1, . . . , D, this establishes eqn
(3.14) for all k values, as was to be proved. �

3.5 General Lagrange Equations with Constraints
There is a wide class of idealized systems in which it can be assumed that the only
forces acting are either constraint forces or forces derived from a potential func-
tion. Such systems are sometimes called monogenic. For such systems, the only non-
potential forces appearing are the constraint forces. Thus Q(NP)

k = Q(cons)
k and the

general Lagrange equations, eqn (2.52), become

d

dt

(
∂L(q, q̇, t)

∂ q̇k

)
− ∂L(q, q̇, t)

∂qk
= Q(cons)

k (3.26)

For forces of constraint that do no virtual work, Theorem 3.4.1 then allows us to
write the Lagrange equations for the constrained motion in a form that can be solved
without knowing the forces of constraint in advance. This result is one of the triumphs
of the Lagrangian method.

Theorem 3.5.1: General Lagrange Equations with Constraints
If the only non-potential forces in a problem are the forces of constraint and if those forces
of constraint do no virtual work, then the Lagrange equations become, for k = 1, . . . , D,

d

dt

(
∂L(q, q̇, t)

∂ q̇k

)
− ∂L(q, q̇, t)

∂qk
=

C∑
a=1

λa
∂Ga(q, t)

∂qk
(3.27)

Together with the set of constraint equations

Ga(q, t) = 0 (3.28)

for a = 1, . . . , C , these are (D + C) equations in the (D + C) variables q1, . . . , qD,

λ1, . . . , λC and so may be solved for these variables.
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Proof: Since the forces of constraint are assumed to do no virtual work, Theorem
3.4.1 applies and eqn (3.14) may be substituted into eqn (3.26) to give the desired
result. �

In applying these formulas, the partial derivatives in eqn (3.27) must be calculated
first, and then the constraints eqn (3.28) applied to simplify the resulting differential
equation. Note that applying the constraints before taking the partial derivatives in
eqn (3.27) would in general lead to error.

A second triumph of the Lagrangian method is that, not only can the problem be
solved without knowing the forces of constraint in advance, but also the same solution
allows one to calculate what those constraint forces must have been.

Corollary 3.5.2: Calculation of Constraint Forces
After the problem is solved for the equations of motion qk = qk(t) by use of Theorem
3.5.1, one can then calculate what the forces of constraint were.

Proof: The solution to eqns (3.27, 3.28) gives the Lagrange multipliers λ1, . . . , λC

as well as the coordinates q1, . . . , qD. These λa values can then be inserted into eqn
(3.14) to give the forces of constraint in the q- or s-systems. �

The general Lagrange equations, eqn (3.27), have been given in the q-system. But
equations of exactly the same form are true in any system of generalized coordinates.
Just replace the letter q by s or r for the s- or r-systems, respectively.

3.6 An Alternate Notation for Holonomic Constraints

Some texts write eqn (3.27) in an alternate notation that the reader should be aware
of.17 They define a new Lagrangian L̃ that includes the constraint functions,

L̃(q, q̇, t, λ) = L(q, q̇, t)+
C∑

a=1

λaGa(q, t) (3.29)

Then eqn (3.27) can be written in the same form as the Lagrange equations without
constraints. It becomes

d

dt

(
∂ L̃(q, q̇, t, λ)

∂ q̇k

)
− ∂ L̃(q, q̇, t, λ)

∂qk
= 0 (3.30)

Unfortunately, most of these texts do not include the λ in the list of variables in
L̃(q, q̇, t, λ), which leads the reader to wonder how to take partial derivatives of the
λa . When encountering this notation, one should mentally add λ to the list of variables
in L̃(q, q̇, t, λ) so that the λa are held constant when partials with respect to qk and
q̇k are taken.

17A notation similar to this one is also often used in the general calculus of variations.
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3.7 Example of the General Method
Let us return to the simple example of Section 2.3 but now with the constraint

0 = G1 (s, t) = αx + βy + γ z −� (3.31)

discussed in the introduction to the present chapter. Applying eqn (3.27) and using
the Lagrangian in eqn (2.23) gives

i = 1 : d

dt

(
∂L(s, ṡ, t)

∂ ẋ

)
− ∂L(s, ṡ, t)

∂x
= λ1α or mẍ + kx = λ1α (3.32)

i = 2 : d

dt

(
∂L(s, ṡ, t)

∂ ẏ

)
− ∂L(s, ṡ, t)

∂y
= λ1β or mÿ + ky = λ1β (3.33)

i = 3 : d

dt

(
∂L(s, ṡ, t)

∂ ż

)
− ∂L(s, ṡ, t)

∂z
= λ1γ or mz̈ + kz = λ1γ (3.34)

which, together with the constraint equation eqn (3.31) can be solved for the four
unknowns x, y, z, λ1.

3.8 Reduction of Degrees of Freedom
One of the benefits of the Lagrangian method is that holonomic constraints that do
no virtual work may be used to reduce the number of degrees of freedom (i.e., the
number of generalized coordinates) from D to (D − C) where C is the number of
independent constraints. After this reduction, the forces of constraint and the con-
strained variables both disappear from the calculation, leaving Lagrange equations
that look like those of an unconstrained system of (D − C) degrees of freedom.

This reduction theorem is based on the idea of a reduced Lagrangian. Using the di-
vision into free and bound variables from Theorem 3.4.1, we note that the constraint
equations, eqn (3.1), may be written as

0 = Ga(q( f ), q(b), t) (3.35)

for a = 1, . . . , C , where we have written the dependency on the free and bound
variables separately. As proved in Theorem D.26.1 of Appendix D, the nonsingularity
of the matrix we have called g (b) in Theorem 3.4.1 is a sufficient condition for eqn
(3.35) to be solved for the bound variables. For l = (D − C + 1), . . . , D,

q(b)
l = q(b)

l (q( f ), t) (3.36)

Taking the time derivative of eqn (3.36) we also obtain the generalized velocities of
the bound variables,

q̇(b)
l = q̇(b)

l (q( f ), q̇( f ), t) (3.37)

The reduced Lagrangian L̄ is defined as the original Lagrangian L with eqns (3.36,
3.37) substituted into it to eliminate the bound variables and their derivatives. Writ-
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ing the original Lagrangian with its free and bound variables listed separately,

L = L(q, q̇, t) = L(q( f ), q(b), q̇( f ), q̇(b), t) (3.38)

the reduced Lagrangian is

L̄
(

q( f ), q̇( f ), t
)
= L

(
q( f ), q(b)(q( f ), t), q̇( f ), q̇(b)(q( f ), q̇( f ), t), t

)
(3.39)

We may now state the reduction theorem.

Theorem 3.8.1: Reduced Lagrange Equations
If the forces of constraint do no virtual work, and if the constraints are holonomic and
functionally independent, then the equations of motion of the system can be reduced to

d

dt

(
∂ L̄

(
q( f ), q̇( f ), t

)
∂ q̇k

)
− ∂ L̄

(
q( f ), q̇( f ), t

)
∂qk

= 0 (3.40)

for k = 1, . . . , (D − C), where the reduced Lagrangian is defined by eqn (3.39). These
are (D −C) equations in (D −C) unknowns and so may be solved for the free variables
as functions of time. Thus a complete solution for the motion of the system is obtained.

Proof: The main burden of the proof is to justify the zero on the right side of eqn
(3.40). Constraints are present, yet there are no Lagrange multiplier expressions on
the right like the ones we saw in eqn (3.27).

The proof begins by a transformation to a new system of good generalized coor-
dinates, similar to that discussed in Section 2.10. This new system, which we will call
the special r-system, has its last C variables defined to be equal to the C constraint
functions Ga . Thus, for a = 1, . . . , C ,

rD−C+a = Ga(q, t) = Ga

(
q( f ), q(b), t

)
(3.41)

The remaining (D − C) variables of the r-system are set equal to free variables q( f ).
For k = 1, . . . , (D − C),

rk = q( f )
k (3.42)

This choice guarantees that the Jacobian determinant condition eqn (2.59) is satisfied
and hence that the special r-system is a set of good generalized coordinates. For the
second determinant in that equation will have the block form

∣∣∣∣∂r (q, t)

∂q

∣∣∣∣ =
∣∣∣∣∣∣

U 0(
∂G(q, t)

∂q( f )

)
g (b)

∣∣∣∣∣∣ =
∣∣∣g (b)

∣∣∣ (3.43)

where g (b) is the matrix defined in eqns (3.17, 3.18). The determinant of this matrix
is nonzero by the above assumption concerning the critical minor of eqn (3.3). Note
that we denoted the (D − C)× (D − C) identity matrix by U . It will be useful also to
label free and bound r -variables as r ( f ) = r1, . . . , r(D−C) and r (b) = r(D−C+1), . . . , rD.
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Due to the definition in eqn (3.41), in the r-system each constraint function de-
pends only on a single r (b) coordinate,

Ga (r, t) = r (b)
(D−C+a) (3.44)

for a = 1, . . . , C . Thus the general Lagrange equations, eqn (3.27), now expressed in
the special r-system, are

d

dt

(
∂L(r, ṙ , t)

∂ṙk

)
− ∂L(r, ṙ , t)

∂rk
=

C∑
a=1

λa
∂Ga(r, t)

∂rk
= 0 (3.45)

for k = 1, . . . , (D − C), and

d

dt

(
∂L(r, ṙ , t)

∂ṙl

)
− ∂L(r, ṙ , t)

∂rl
=

C∑
a=1

λa
∂Ga(r, t)

∂rl
= λ(l−D+C) (3.46)

for l = (D − C + 1) , . . . , D, with the equation of constraint 0 = Ga (r, t) giving

r (b)
l = 0 (3.47)

for l = (D − C + 1) , . . . , D. The zero on the right side of eqn (3.45) follows from eqn
(3.44). In the r-system, the Ga(r, t) constraint functions do not depend on the free
variables and hence ∂Ga(r, t)/∂rk = 0 for k = 1, . . . , (D − C).

Two immediate simplifications are possible now. First, we can drop eqn (3.46).
As we will see, it is not needed to solve the problem. Second, we can note that the
partials in eqn (3.45) are all with respect to the free variables. Thus eqn (3.47) set-
ting the bound variables to zero can be applied in eqn (3.45) even before the partial
derivatives are taken. For k = 1, . . . , (D − C), we can write

∂L(r, ṙ , t)

∂rk

∣∣∣∣
r (b),ṙ (b)=0

= ∂

∂rk

(
L(r, ṙ , t)|r (b),ṙ (b)=0

)
(3.48)

fwith a similar result for partials with respect to the free ṙk . If we define the reduced
Lagrangian L̄ by

L̄
(

r ( f ), ṙ ( f ), t
)
= L(r, ṙ , t)|r (b),ṙ (b)=0 (3.49)

eqn (3.45) can then be written, for k = 1, . . . , (D − C), as

d

dt

(
∂ L̄

(
r ( f ), ṙ ( f ), t

)
∂ṙk

)
− ∂ L̄

(
r ( f ), ṙ ( f ), t

)
∂rk

= 0 (3.50)

But, except for the use of r ( f ) to denote the free variables rather than q( f ), the re-
duced Lagrangian L̄(r ( f ), ṙ ( f ), t) in eqn (3.49) is identical18 to the reduced Lagrangian

18To obtain the Lagrangian L (r, ṙ , t), the definitions r ( f ) = q( f ) and r (b) = G
(

q( f ), q(b), t
)

in eqns

(3.41, 3.42) must be inverted to give q( f ) = r ( f ) and q(b) = q(b)
(

r ( f ), r (b), t
)
. These functions and their

derivatives are then substituted into L(q, q̇, t) to get L(r, ṙ , t). Setting r (b) = 0 and ṙ (b) = 0 in L(r, ṙ , t),
as is done in eqn (3.49), then gives a result that becomes identical to eqn (3.39) when labeling of the free
variables is changed from r ( f ) to the equivalent q( f ).
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L̄(q( f ), q̇( f ), t) defined in eqn (3.39). And recall that eqn (3.42) makes qk = rk for all
k = 1, . . . , (D − C). Thus eqn (3.50) may be rewritten as

d

dt

(
∂ L̄

(
q( f ), q̇( f ), t

)
∂ q̇k

)
− ∂ L̄

(
q( f ), q̇( f ), t

)
∂qk

= 0 (3.51)

for k = 1, . . . , (D − C), as was to be proved. �

3.9 Example of a Reduction
Suppose that we have a system of one mass m moving under an acceleration of gravity
g = −gê3. The Lagrangian in the s-system (with s1 = x, s2 = y, s3 = z) is

L (s, ṡ, t) = m

2

(
ẋ2 + ẏ2 + ż2

)
− mgz (3.52)

φ

a

r̂θ

x

z

m

y

FIG. 3.3. Mass m is constrained to slide without friction on the surface of a sphere of radius a.
Gravity is assumed to be acting downward, in the negative z direction.

Now suppose that the mass is constrained to move on the surface of a frictionless
sphere of radius a by the constraint equation

0 = G1 (s, t) =
√

x2 + y2 + z2 − a (3.53)

Assuming that we are interested only in motions above the x-y plane, we can solve
eqn (3.53) for z giving

z =
√

a2 − x2 − y2 (3.54)

and its derivative
ż = − x ẋ + y ẏ√

a2 − x2 − y2
(3.55)

We define19 the set of free variables to be s( f ) = x, y and the single bound vari-
able to be s(b) = z. Substituting eqns (3.54, 3.55) into eqn (3.52) gives the reduced

19Note again that there are often several possible ways of making the bound-free division. Here it is
obvious from the symmetry of the problem that any one of x, y, z could be chosen to be the bound variable.
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Lagrangian

L̄
(

s( f ), ṡ( f ), t
)
= m

2

(
ẋ2 + ẏ2 + (x ẋ + y ẏ)2

a2 − x2 − y2

)
− mg

√
a2 − x2 − y2 (3.56)

from which we can derive the two Lagrange equations

i = 1 : d

dt

(
∂ L̄

(
s( f ), ṡ( f ), t

)
∂ ẋ

)
− ∂ L̄

(
s( f ), ṡ( f ), t

)
∂x

= 0 (3.57)

i = 2 : d

dt

(
∂ L̄

(
s( f ), ṡ( f ), t

)
∂ ẏ

)
− ∂ L̄

(
s( f ), ṡ( f ), t

)
∂y

= 0 (3.58)

and so solve the problem. The number of degrees of freedom has been reduced from
D = 3 to D − C = 3 − 1 = 2.

3.10 Example of a Simpler Reduction Method
In some special cases, it may be possible to choose an initial q-system that matches
the symmetries of the constraints. Then the calculation of the reduced Lagrangian
becomes particularly simple.

Suppose that the initial q-system is chosen so that the equations of constraint
depend only on the bound variables q(b). It follows that the constraint equations

0 = Ga (q, t) = Ga

(
q(b), t

)
(3.59)

for a = 1, . . . , C , constitute C independent functions of the C variables q(b) and the
time. Thus the solution for the bound variables in eqn (3.36) now gives these bound
variables as functions of time alone, rather that as functions of the free variables and
the time. Thus

q(b)
l = q(b)

l (t) (3.60)

for l = (D − C + 1) , . . . , D. The derivatives q̇(b)
l = q̇(b)

l (t) may then be calculated
from these equations, and will also be functions of time only. The calculation of the
reduced Lagrangian is thus simplified.

For example, the constraint of Section 3.9 has spherical symmetry. If we choose
a system of coordinates q1 = θ , q2 = φ, q3 = r where r, θ, φ are spherical polar
coordinates, then the constraint equation depends only on q3. So we may define the
free variables to be q( f ) = θ, φ and the single bound variable to be q(b)

3 = r . When
converted to this q-system, the constraint equation, eqn (3.53), becomes

G1 (q, t) = r − a (3.61)

which depends only on the bound variable r and so can be solved immediately for
r = a and ṙ = 0.
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In spherical polar coordinates, the full Lagrangian of eqn (3.52) becomes

L (q, q̇, t) = m

2

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
− mgr cos θ (3.62)

Solving the constraint equation eqn (3.61) for r = a, ṙ = 0 and inserting these into
eqn (3.62) gives the simple reduced Lagrangian

L̄
(

q( f ), q̇( f ), t
)
= m

2

(
a2θ̇2 + a2 sin2 θφ̇2

)
− mga cos θ (3.63)

from which we derive the two reduced Lagrange equations

k = 1 : d

dt

(
∂ L̄

(
q( f ), q̇( f ), t

)
∂θ̇

)
− ∂ L̄

(
q( f ), q̇( f ), t

)
∂θ

= 0 (3.64)

k = 2 : d

dt

(
∂ L̄

(
q( f ), q̇( f ), t

)
∂φ̇

)
− ∂ L̄

(
q( f ), q̇( f ), t

)
∂φ

= 0 (3.65)

which may be used to derive the equations of motion.

3.11 Recovery of the Forces of Constraint
We have given several methods for finding the equations of motion of the system
without knowing the forces of constraint. Let us suppose that one of them has been
used, and that we now have the complete solution to the problem,

qk = qk (t) and q̇k = q̇k(t) (3.66)

for k = 1, . . . , D. But suppose that we are curious, or otherwise need to know, the
forces of constraint that must be acting to produce this motion. One method has al-
ready been given, in Corollary 3.5.2. Here we will treat this problem in a more general
way which includes solution methods that do not produce the Lagrange multipliers
λa directly.

Let us define Ak , for k = 1, . . . , D, to be those functions of time obtained by
putting the solution, eqn (3.66), into the left side of eqn (3.26),

Ak =
{

d

dt

(
∂L(q, q̇, t)

∂ q̇k

)
− ∂L(q, q̇, t)

∂qk

}∣∣∣∣{ q=q(t)

q̇=q̇(t)

} (3.67)

Then eqn (3.26) gives the forces of constraint in the q-system directly as

Q(cons)
k = Ak (3.68)

The forces of constraint in other systems can then be found from these by using the
standard transformation formulas like eqn (3.9). One cautionary note: In evaluating
the right side of eqn (3.67), it is essential to use the full Lagrangian, not some re-
duced form of it. Also, all indicated partial derivatives must be taken first, before the
solutions q = q (t) are introduced.



60 LAGRANGIAN THEORY OF CONSTRAINTS

But suppose we want to find the forces of constraint in some other system, such
as the s-system. Instead of using eqn (3.9) to convert Q(cons)

k to the s-system, it is
sometimes easier to find the Lagrange multipliers λa as an intermediate step. Then
these same Lagrange multipliers can be used to find the forces of constraint in any
system of coordinates by making use of equations like eqn (3.14).

Let us define

Bak = ∂Ga(q, t)

∂qk

∣∣∣∣
q=q(t)

(3.69)

Then, evaluating both sides of the general Lagrange equations in eqn (3.27) using the
known solution from eqn (3.66), gives the set of linear equations for the Lagrange
multipliers λa ,

Ak =
C∑

a=1

λa Bak (3.70)

where k = 1, . . . , D. These equations are redundant. Since the matrix B has rank C
by assumption, one can always select C of them to solve for the C Lagrange multi-
pliers λa , using Cramer’s rule or some other method. The forces of constraint in, for
example, the s-system can then be found from eqn (3.14),

F (cons)
i =

C∑
a=1

λa
∂Ga(s, t)

∂si

∣∣∣∣
s=s(t)

(3.71)

for i = 1, . . . , D, where the partial derivatives on the right are evaluated using the
known solution, eqn (3.66), now expressed in the s-system.

Although the formal description given here for finding the λa may seem complex,
in practice it is often quite simple to apply, as will be seen in the next section.

3.12 Example of a Recovery

As an example, imagine that we need the forces of constraint exerted by the sphere
in Section 3.10. In this example, q( f )

1 = θ and q( f )

2 = φ are the free variables, and
q(b)

3 = r is the bound variable, and there is only one constraint, C = 1. Also, that
constraint G1(q, t) = r − a depends only on q(b)

3 = r . So there is only one nonzero
matrix element,

B13 = ∂G1(q, t)

∂q3

∣∣∣∣
q=q(t)

= 1 (3.72)

and eqn (3.70) for λ1 reduces to

A3 = λ1 B13 = λ1 (3.73)
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It remains to evaluate A3. Using the full Lagrangian from eqn (3.62) gives

A3 =
{

d

dt

(
∂L(q, q̇, t)

∂ṙ

)
− ∂L(q, q̇, t)

∂r

}∣∣∣∣{ q=q(t)

q̇=q̇(t)

}

=
{

d

dt
(mṙ)− m

(
+r θ̇2 + r sin2 θφ̇2 − g cos θ

)}∣∣∣∣{ q=q(t)

q̇=q̇(t)

}

= −m
(
+aθ̇2 + a sin2 θφ̇2 − g cos θ

)∣∣∣{
q=q(t)

q̇=q̇(t)

} (3.74)

where the θ and φ in the final expression must be evaluated using the known solution
previously obtained. Thus

λ1 = −m
(
+aθ̇2 + a sin2 θφ̇2 − g cos θ

)∣∣∣{
q=q(t)

q̇=q̇(t)

} (3.75)

Using this same λ1, the forces of constraint in the Cartesian s-system are then
given by eqn (3.71) in the form, for i = 1, 2, 3,

F (cons)
i = λ1

∂G1(s, t)

∂si

∣∣∣∣
s=s(t)

= λ1
xi√

x2 + y2 + z2

∣∣∣∣∣
s=s(t)

(3.76)

where eqn (3.53) was used. In vector form,

F(cons) = λ1r̂ (3.77)

which verifies the expected result that the force of constraint is entirely in the radial
direction.

3.13 Generalized Energy Theorem with Constraints
The generalized energy function in a system with constraints is the same as that
defined in Section 2.15. The generalized energy theorem is modified, however.

Theorem 3.13.1: Generalized Energy Theorem with Constraints
When the only non-potential forces are constraint forces that do no virtual work, the
generalized energy theorem becomes

Ḣq = −∂L(q, q̇, t)

∂t
−

C∑
a=1

λa
∂Ga(q, t)

∂t
(3.78)

where Hq is the same generalized energy function as was defined earlier by eqn (2.76).
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Proof: First note that, using the standard definition eqn (2.68) for the generalized
momenta, the general Lagrange equations of eqn (3.27) may be written in the alter-
nate form

ṗk = ∂L(q, q̇, t)

∂qk
+

C∑
a=1

λa
∂Ga(q, t)

∂qk
(3.79)

The proof of eqn (3.78) is the same as the proof given in Theorem 2.15.1 up to and
including eqn (2.80). The q̈k terms cancel as before, but the use of eqn (3.79) for ṗk

instead of eqn (2.72) leads, after some cancellation, to the expression

Ḣq =
D∑

k=1

(
C∑

a=1

λa
∂Ga(q, t)

∂qk

)
q̇k − ∂L(q, q̇, t)

∂t

=
C∑

a=1

λa

(
D∑

k=1

∂Ga(q, t)

∂qk
q̇k

)
− ∂L(q, q̇, t)

∂t

=
C∑

a=1

λa

(
dGa (q, t)

dt
− ∂Ga(q, t)

∂t

)
− ∂L(q, q̇, t)

∂t
(3.80)

But eqn (3.1) implies that dGa (q, t) /dt = 0, leading at once to eqn (3.78), as was to
be proved. �

It follows from Theorem 3.13.1 that, if both the Lagrangian L(q, q̇, t) and the
constraint functions Ga(q, t) in the q-system do not contain the letter t explicitly, the
generalized energy function Hq will be a constant of the motion, equal to its initial
value at t = 0.

The result in the s-system is similar, with a similar proof,20

Ḣs = −∂L(s, ṡ, t)

∂t
−

C∑
a=1

λa
∂Ga(s, t)

∂t
(3.81)

An alternate generalized energy theorem is also possible in systems in which holo-
nomic constraints have been used to reduce the number of degrees of freedom from
D to (D −C). It begins with the reduced Lagrangian of eqn (3.39). Define a reduced,
generalized energy function H̄q by

H̄q =
(D−C)∑

k=1

q̇( f )
k

∂ L̄
(
q( f ), q̇( f ), t

)
∂ q̇k

− L̄
(

q( f ), q̇( f ), t
)

(3.82)

Then a proof almost identical to that in Theorem 2.15.1 shows that

d H̄q

dt
= −∂ L̄

(
q( f ), q̇( f ), t

)
∂t

(3.83)

20Equation (3.81) illustrates again that the forces of constraint may do real work even when they do no
virtual work. In the s-system, the generalized energy function Hs will always equal the total energy. When
the constraint is time varying so that ∂Ga(s, t)/∂t �= 0, the constraint forces are seen to contribute to the
rate of change of Hs .
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Thus, if the reduced Lagrangian L̄ does not contain the letter t explicitly, then the
reduced generalized energy function H̄q will be a constant of the motion, equal to its
initial value at t = 0.

3.14 Tractable Non-Holonomic Constraints
To be treated by the Lagrangian method, constraints must at least define a definite re-
lation between displacements of the generalized coordinates. Other things that might
be thought of as constraints, such as inequalities like ak ≤ qk ≤ bk defining walls of a
room, cannot be treated by the methods described here.21

However, differential constraints of the form

0 =
D∑

k=1

gak (q, t) dqk + ga0 (q, t) dt (3.84)

or equivalently in the s-system

0 =
D∑

i=1

fai (s, t) dsi + fa0 (s, t) dt (3.85)

where a = 1, . . . , C , and the constraints are related by

gak =
D∑

i=1

fai
∂si (q, t)

∂qk
and ga0 = fa0 +

D∑
i=1

fai
∂si (q, t)

∂t
(3.86)

can be treated even though the differential expression in eqn (3.84) is not a perfect
differential and hence cannot be integrated to give a holonomic constraint function
Ga (q, t). These will be called tractable non-holonomic constraints.22

In the case of tractable but non-holonomic constraints, the allowed virtual dis-
placements are defined to be those that satisfy an equation equivalent to eqns (eqn
(3.5), eqn (3.8)). For a = 1, . . . , C , with ∂Ga/∂qk replaced by gak ,

0 =
D∑

k=1

gakδqk (3.87)

Theorem 3.4.1 then can be generalized to say that δW (cons) = 0 for all allowed

21In Lagrangian mechanics, a ball confined to a box with perfectly elastic, rigid walls would be treated
as a series of problems. Each problem would end when the ball hits a wall, the reflection conditions would
be applied, and the next problem would begin with the resulting initial conditions.

22The condition for differential expression eqn (3.84) to be a perfect differential which can be integrated
to yield a potential function like Ga (q, t) is given in Section D.20. Since each term of the homogeneous
eqn (3.84) could be multiplied by an integrating function ua (q, t) without changing the implied relation
between the differentials dqk , the general condition for the integrability of eqn (3.84) for the ath constraint
is that, for some nonzero integrating function ua (q, t), ∂ (ua gak ) /∂ql = ∂ (ua gal ) /∂qk for every pair of
indices k, l. Also, ∂ (ua gak ) /∂t = ∂ (ua ga0) /∂qk must hold for every k value. If no such integrating function
exists, then the constraint is non-holonomic.
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virtual displacements if and only if the constraint forces have the following form

Q(cons)
k =

C∑
a=1

λagak (q, t) or, equivalently, F (cons)
i =

C∑
a=1

λa fai (s, t) (3.88)

If the constraint is holonomic, then gak = ∂Ga(q, t)/∂qk and we recover eqn (3.14).
But if the constraint is non-holonomic eqn (3.88) still applies, with the gak taken from
eqn (3.84). The proof of this generalization is the same as that in Section 3.4. That
proof used only virtual displacements, and the fact that gak was equal to ∂Ga/∂qk

played no essential role in it.
Thus, for the case of tractable but non-holonomic constraints, the general La-

grange equations, eqn (3.27), become

d

dt

(
∂L(q, q̇, t)

∂ q̇k

)
− ∂L(q, q̇, t)

∂qk
=

C∑
a=1

λagak (q, t) (3.89)

with the constraint equation

0 =
D∑

k=1

gak (q, t) q̇k + ga0 (q, t) (3.90)

where k = 1, . . . , D and a = 1, . . . , C . These are (D + C) differential equations for
the (D + C) unknown functions q, λ and therefore can be solved. Similar equations
hold in the s-system, with fai in place of gak .

The generalized energy theorem, Theorem 3.13.1, becomes

Ḣq = −∂L(q, q̇, t)

∂t
−

C∑
a=1

λaga0 (3.91)

or, in the s-system,

Ḣs = −∂L(s, ṡ, t)

∂t
−

C∑
a=1

λa fa0 (3.92)

Some problems combine holonomic and non-holonomic constraints. In that case,
the holonomic ones may be used to reduce the degrees of freedom of the system as
outlined in Section 3.8. The non-holonomic ones may then be included by using the
methods of the present section, but starting from the reduced Lagrangian.

3.15 Exercises
General note: These exercises are intended to help you master the Lagrangian theory of con-
straints. Therefore, they must be done using those methods, even if some of them are so
simple that elementary approaches would also be possible.
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FIG. 3.4. Illustration for Exercise 3.1.

Exercise 3.1 Consider the plane double pendulum from Exercise 2.11.

(a) The sticks of the pendulum are now constrained to have fixed lengths a1 and a2. Write
the two constraint functions G1(s, t) and G2(s, t) in terms of the s-system variables. Now
express these same functions in terms of the q-system variables, as G1(q, t) and G2(q, t).
(b) Use the full Lagrangians from Exercise 2.11, L(s, ṡ, t) in the s-system and L(q, q̇, t) in
the q-system, to write all four Lagrange equations, using the Lagrange multipliers λ1 and λ2
as appropriate. Do this in both the s- and the q-systems.
(c) Taking θ1 and θ2 as your free variables, write the reduced Lagrangian in the reduced q-
system L̄(q( f ), q̇( f ), t) and the two Lagrange equations for the free variables in that system.
(d) Suppose that you are able to solve the equations in part (c) for θ1(t) and θ2(t). State
clearly, showing the exact formulas you would use, how you would calculate the Cartesian
components of the force of constraint on each of the masses.

m
ê3

ê1

ê2

FIG. 3.5. Illustration for Exercise 3.2.

Exercise 3.2 A mass m slides on the inner surface of a conical hole in frictionless ice. The
cone has half-angle α. Gravity acts downward, g = −gê3. At t=0, the mass has spherical
polar coordinates r0>0, ṙ0=0, φ0=π , φ̇0>0. With the origin of coordinates at the vertex of
the cone (bottom of the hole), the mass is constrained to have θ=α. The ice is fragile. Its
surface can only provide a normal force less than Fmax. Find the radius rb at which the mass
breaks through the ice surface.
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FIG. 3.6. Illustration for Exercises 3.3 and 3.4. The dotted rectangle represents an imaginary door
swinging from hinges on the z-axis. The wire of the parabola is entirely in the plane of this door.

Exercise 3.3 A rigid wire of negligible mass is bent into the shape of a parabola and sus-
pended from the z-axis by frictionless pivots at z = ±a. The equation of the wire, in cylin-
drical polar coordinates, is ρ = b(1 − z2/a2). A bead of mass m slides without friction on
the wire. The acceleration of gravity is g = −gê3. Choose cylindrical polar coordinates as
your generalized coordinates. Assume the initial conditions at t = 0 as follows: 0 < z0 < a,
ż0 = 0, φ0 = 0, φ̇0 > 0.

(a) Write the full Lagrangian for this problem.
(b) Write the three Lagrange equations, using Lagrange multipliers as appropriate.
(c) Now, choosing your free variables to be z and φ, write the reduced Lagrangian L̄ and the
two Lagrange equations derived from it.
(d) Use the result of (c) to write the reduced generalized energy H̄q . Is it conserved? If so
why, if not why not?
(e) Use the results so far obtained to write expressions for ρ, φ, ρ̇, φ̇, ż, ρ̈, φ̈, z̈ as functions
of z only. [Note: These expressions, and the ones in the next part, may of course also depend
on the initial values z0, φ̇0 and on the parameters a, b, m, and g.]
(f) Find the Cartesian vector force of constraint exerted by the wire on the mass for t ≥ 0,
expressing it as a function of z only.

Exercise 3.4 This problem has the same geometry as Exercise 3.3, but now there is an addi-
tional constraint: φ = ω0t where ω0 is a given constant.

(a) Choosing z as your free coordinate, form the reduced Lagrangian and write the single
Lagrange equation derived from it.
(b) Derive the reduced generalized energy function. Is it conserved? If so why, if not why
not? [Note: This H̄q will not be the same as the one derived in Exercise 3.3.]
(c) What is the smallest value of ω0 such that there will be at least one point (equilibrium
point) such that if z0 is set equal to that value with ż0 = 0, the mass will remain at that height
for all time?
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Exercise 3.5 We use cylindrical polar coordinates in this problem. A roller-coaster car of
mass m slides without friction on a track defined by the constraints

ρ = ρ0 + aφ and z = z0 − bφ (3.93)

where a, b > 0. At t=0 the mass is at rest at

r0 = ρ0ê1 + z0ê3 (3.94)

(a) Write the full Lagrangian L(q, q̇, t) using a q-system consisting of cylindrical polar co-
ordinates φ, ρ, z.
(b) Write the three Lagrange equations in the q-system, putting in λ1 and λ2 correctly.
(c) Now use the constraints to eliminate ρ, z, ρ̇, ż, leaving φ as your free variable. Write the

x

y

z

m

FIG. 3.7. Illustration for Exercise 3.5.

reduced Lagrangian L̄ = L̄(φ, φ̇, t).
(d) Write the Lagrange equation using L̄(φ, φ̇, t) and solve the resulting equation for φ̈ as a
function of φ and φ̇.
(e) Write the reduced generalized energy H̄q based on the reduced Lagrangian L̄ , and use it
to derive an equation for φ̇ as a function of φ and an integration constant that you determine
from the given initial conditions.
(f) From parts (d) and (e) you now have φ̈ as a function of φ and φ̇, and also φ̇ as a function
of φ. Thus you effectively have both φ̇ and φ̈ as functions of φ only. Write an expression for
the Cartesian vector force of constraint that the track exerts on the car, writing it as a function
only of the given parameters and the variables φ, φ̇, φ̈. [This expression, of course, could now
be used to write the force of constraint out as a function of φ only if you wished. But it is
clearer just to leave the result as it is, and cite the results of parts (d) and (e) to anyone who
wants it as a function of φ only. (e.g. a designer who needs to know how strong to make the
track.)]

Exercise 3.6 Suppose a mass m1 slides without friction on a horizontal table. There is a hole
in the center of the table. A massless string runs along the table top from m1 to the hole,
through the hole, and down below the table, where it is attached to another mass m2. The
origin of coordinates is at the center of the hole, with the ê3 axis pointing upwards. Gravity
acts downwards. Consider the hole to have a size big enough to let the string through without
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ê1

ê2

ê3

m2

m1

FIG. 3.8. Illustration for Exercise 3.6.

friction, but small enough to be neglected in our calculations.

(a) Using cylindrical polar coordinates for m1 and Cartesian coordinates for m2, write the full
Lagrangian for this two-mass system.
(b) Now apply the following constraints: Mass m1 is always at the level of the table’s surface.
Mass m2 is enclosed in a vertical plastic tube just large enough to hold it at x2 = y2 = 0
while exerting no friction forces on it. The string length is �0 and never changes. With these
constraints, write the full Lagrange equations, including the Lagrange multipliers as required.
(c) Use the constraints to write a reduced Lagrangian with free coordinates ρ1 and φ1, the
cylindrical polar coordinates of the mass m1 on the top of the table.
(d) Write the two reduced Lagrange equations and show that the one for φ1 can be integrated
immediately to give φ̇1 as a function of ρ1 and constants determined at t = 0. Assume that
φ̇1(0) > 0 at time zero. Use this result to write the other reduced Lagrange equation as an
ordinary differential equation involving only ρ1 and its derivatives.

φ

a

r̂θ

m

FIG. 3.9. Illustration for Exercise 3.7.

Exercise 3.7 Consider a single mass m to be sliding without friction on the outside surface
of a sphere of radius a. Suppose that at time zero, it has spherical polar coordinates θ0 > 0,
φ0 = 0 and generalized velocities θ̇0 = 0 and φ̇0 > 0.

(a) Using spherical polar coordinates, write both the full Lagrangian and the reduced La-
grangian for this problem.
(b) Write the Lagrange equations for both the full and the reduced Lagrangians.
(c) Use the reduced Lagrangian L̄ to write the reduced generalized energy H̄q .
(d) The mass will leave the surface of the sphere at the instant at which the normal force
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of constraint becomes negative (the sphere cannot pull in on the mass, only push outwards).
Write an expression for the angle θmax at which the mass leaves the sphere and the problem
ends.
(e) Define the parameter γ by aφ̇2

0 = γ g, where g is the acceleration of gravity, and express
θmax as a function of a, g, γ, θ0 only. In the case with γ = 0, find θmax in the limit θ0 → 0.
(f) With θ0 = 10◦, find the numerical value of θmax for the case in which γ = 0. How big
would γ have to be in order to reduce θmax to 45◦?

m

x

z

a

FIG. 3.10. Figure for Exercise 3.8.

Exercise 3.8 A bead of mass m slides without friction on a rigid wire that lies in the x-z
plane and has the shape z = ae−γ x , where γ is some given positive constant. Gravity acts
downwards, with g = −gê3.

(a) Write the full Lagrangian for this problem, and write equations for the two holonomic
constraints, first that the mass is confined to the plane y = 0, and second that it is confined to
the surface z = ae−γ x .
(b) Write the three Lagrange equations, introducing the Lagrange multipliers λ1 and λ2 as
appropriate.
(c) Use the constraints to write a reduced Lagrangian L̄(x, ẋ, t), with x serving as the single
free coordinate. Derive the reduced generalized energy from this reduced Lagrangian, and
use it to find an expression for ẋ2 as a function x . (Assume that the mass is released from rest
at the point x = 0.) Also use the reduced Lagrange equation to find an expression for ẍ as a
function of x and ẋ .
(d) Write an expression for the Cartesian vector force of constraint F(cons) acting on the
particle, expressing it as a function of x only. Check the limit of F(cons) as x → ∞. Is it
reasonable?

Exercise 3.9 A fixed, right circular cylinder (first cylinder) of radius a lies on its side, with
its symmetry axis horizontal. A hollow right circular cylinder (second cylinder) of radius b
and mass m, is free to roll without slipping on the first one. Assume that its symmetry axis
remains aligned with that of the first cylinder. The full Lagrangian for the second cylinder’s
motion is

L = 1

2
m

(
ṙ2 + r2θ̇2

)
+ 1

2
mb2φ̇2 − mgr cos θ (3.95)

where r is the distance between the axes of the two cylinders, and θ and φ are the angles
shown in the figure. (This “full” Lagrangian is actually partially-reduced. Constraints not rel-
evant to this exercise have already been applied.) Notice that φ is the angle between vertical
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FIG. 3.11. Figure for Exercise 3.9. The upper cylinder rolls without slipping on the lower one.

and a mark inscribed on the face of the second cylinder.

(a) Write the two constraint functions, G1 expressing the constraint that the second cylinder
is in contact with the first one, and G2 expressing the condition of rolling without slipping.
Assume that φ = 0 when θ = 0.
(b) Write a (completely) reduced Lagrangian L̄(θ, θ̇ , t) and use the reduced generalized en-
ergy theorem to express θ̇ as a function of θ . Assume the second cylinder to be initially at
rest, and at a very small distance to the right of θ = 0.
(c) Use the full Lagrangian eqn (3.95) to write the three Lagrange equations, introducing La-
grange multipliers as appropriate. Find the generalized force of constraint Q(cons)

r for the r
variable and use it to find the angle θc at which the rolling cylinder will lose contact with the
fixed one.



4

INTRODUCTION TO HAMILTONIAN MECHANICS

The power of Lagrangian mechanics has caused generations of students to wonder
why it is necessary, or even desirable, to recast mechanics in Hamiltonian form. The
answer, which must be taken largely on faith at this point, is that the Hamiltonian
formulation is a much better base from which to build more advanced methods. The
Hamilton equations have an elegant symmetry that the Lagrange equations lack.

Another answer, not directly related to classical mechanics, is that the Hamilto-
nian function is used to write the Schroedinger equation of quantum mechanics, as
discussed in Section 4.7.

4.1 Phase Space

The differences between the Lagrange and Hamilton equations result mainly from
the different variable sets in which they act. The Lagrangian variable set23 is the set
of generalized coordinates and velocities q, q̇ = q1, . . . , qD, q̇1, . . . , q̇D whereas the
Hamiltonian set is the set of generalized coordinates and momenta q, p = q1, . . . , qD,
p1, . . . , pD.

The qk in the Hamiltonian set are the same as the, assumedly good, generalized
coordinates used in Lagrangian mechanics. And the pk are the same as the generalized
momenta that were defined in Section 2.12 as functions of the Lagrangian variables
and the time,

pk = pk(q, q̇, t) = ∂L(q, q̇, t)

∂ q̇k
(4.1)

In Hamiltonian mechanics, the coordinates and momenta in set q, p are lumped
together and considered to be coordinates of a 2D dimensional space called phase
space. The variables q1, . . . , qD, p1, . . . , pD are referred to collectively as canonical co-
ordinates of phase space. The qk is called the kth canonical coordinate, and pk is called
the kth canonical momentum. The pair qk, pk for the same k value are called canoni-
cal conjugates. Hamiltonian mechanics is essentially Newton’s second law translated
from Lagrangian form into a form appropriate for this phase space.

In order for the phase-space variables q1, . . . , qD, p1, . . . , pD to be an adequate set

23In the previous chapters, we have made a distinction between the s-system coordinates s1, . . . , sD ,
which were just re-labeled Cartesian coordinates, and the q-system coordinates q1, . . . , qD which are the
most general good generalized coordinates. We now drop this distinction and use only the general set
q1, . . . , qD . Of course, being general, these coordinates include the s-system as a special case.

71



72 INTRODUCTION TO HAMILTONIAN MECHANICS

of variables for mechanics, eqn (4.1) must be invertible to give inverse functions,

q̇k = q̇k(q, p, t) (4.2)

for k = 1, . . . , D, from which the Lagrangian variables q̇ can be found. Then knowl-
edge of the phase-space variables q1, . . . , qD, p1, . . . , pD will allow one to determine
the Lagrangian variables q1, . . . , qD, q̇1, . . . , q̇D, from which the position and velocity
of each mass in the system can be found.

By the inverse function theorem, Theorem D.24.1, the condition for such an in-
version is the Jacobian determinant condition∣∣∣∣∂p

∂ q̇

∣∣∣∣ �= 0 (4.3)

involving the determinant of a matrix defined by(
∂p

∂ q̇

)
kl
= ∂pk(q, q̇, t)

∂ q̇l
= ∂2L(q, q̇, t)

∂ q̇l∂ q̇k
(4.4)

The inversion leading to eqn (4.2) is always possible, as proved in the following
theorem.

Theorem 4.1.1: Inversion of Momenta
The matrix (∂p/∂ q̇) defined in eqn (4.4) is nonsingular and positive definite. It therefore
satisfies the determinant condition in eqn (4.3), which allows pk = pk(q, q̇, t) to be
solved for q̇k = q̇k(q, p, t).

Proof: It follows from the expansion of the Lagrangian in Section 2.7 that the kl
matrix element in eqn (4.4) is

∂pk(q, q̇, t)

∂ q̇l
= mkl(q, t) =

D∑
j=1

Mj
∂sj (q, t)

∂qk

∂sj (q, t)

∂ql
(4.5)

where the sj are the Cartesian components of the s-system, and the Mj are the masses
of the point particles.

Defining a matrix M̄ by its matrix elements M̄i j = Miδi j , eqn (4.5) may be written
as (

∂p

∂ q̇

)
=

(
∂s

∂q

)T

M̄
(

∂s

∂q

)
(4.6)

Properties 5 and 10 of Section B.11 then give the determinant of (∂p/∂ q̇) as∣∣∣∣∂p

∂ q̇

∣∣∣∣ = ∣∣∣∣ ∂s

∂q

∣∣∣∣2 ∣∣∣ M̄
∣∣∣ = ∣∣∣∣ ∂s

∂q

∣∣∣∣2 M1 M2 · · · MD (4.7)

The nonsingularity of the matrix (∂s/∂q) appearing in eqn (4.6) was shown in Section
2.4 to be the condition for the q to be a good system of generalized coordinates,
which we are assuming here. Thus the determinant |∂s/∂q| is nonzero. Since all of the
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particle masses Mi are positive quantities, it follows that |∂p/∂ q̇| �= 0. Thus (∂p/∂ q̇)

is nonsingular.
We now show that the real, symmetric matrix (∂p/∂ q̇) is positive definite. If [x] �=

[0] is an arbitrary, non-null column vector, it follows from eqn (4.5) that

[x]T
(

∂p

∂ q̇

)
[x] =

D∑
j=1

Mj y2
j (4.8)

where

yj =
D∑

j=1

∂sj (q, t)

∂qk
xk or, in matrix form, [y] =

(
∂s

∂q

)
[x] (4.9)

Since the matrix (∂s/∂q) is nonsingular by assumption, it follows from Corollary
B.19.2 that the column vector [y] must also be non-null.

Since all point masses Mj are positive, nonzero numbers, and since at least one
of the yj must be nonzero, the right side of eqn (4.8) must be positive and nonzero.
Hence

[x]T m [x] = [x]T
(

∂p

∂ q̇

)
[x] > 0 (4.10)

Using the definition in Section C.1, this implies that (∂p/∂ q̇) is a positive definite
matrix. �

The theorem just proved means that any physical quantity expressed in terms of
Lagrangian variables can equally well be expressed in terms of phase-space ones by
simple substitution. Assuming that f = f (q, q̇, t) is given, the same function in terms
of phase-space variables is defined as the compound function

f = f (q, p, t) = f
(
q, q̇(q, p, t), t

)
(4.11)

where eqn (4.2) has been used.
Since the matrix mkl = ∂pk/∂ q̇l has been proved nonsingular, the theory of lin-

ear equations can be used to solve for the q̇k explicitly. The definition of canonical
momenta in eqn (2.69) can be written as the D linear equations, for k = 1, . . . , D,

D∑
l=1

mkl(q, t)q̇l = pk(q, q̇, t)− nk(q, t) (4.12)

for the D unknowns q̇l . They can be solved by calculating the inverse m−1 of the
nonsingular matrix m and writing

q̇l(q, p, t) =
D∑

l=1

m−1
lk {pk − nk(q, t)} (4.13)

or, equivalently, by using Cramer’s rule from Section B.16.
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Lagrangian methods are sometimes applied to physical systems that are not ob-
viously derived from Newton’s laws for point masses. In those cases, the proof given
above may not be relevant. But the inversion of eqn (4.1) may still be possible. Sys-
tems in which eqn (4.1) can be inverted to give eqn (4.2) will be referred to as well-
defined Lagrangian systems.

4.2 Hamilton Equations

The transformation from Lagrange to Hamilton equations is a Legendre transforma-
tion, of the sort defined in Section D.30, which the reader should consult for details.
In this transformation, the Lagrangian function L(q, q̇, t) of the Lagrangian variable
set q, q̇, t is to be replaced by the Hamiltonian function H(q, p, t) of the phase-space
variable set q, p, t . Thus L → H corresponds to f → g, and there is an exchange of
variables q̇ ↔ p corresponding to the exchange of y and w. The correspondences be-
tween the present case and the general quantities defined in Section D.30 are: L ↔ f ,
(q, t) ↔ x , q̇ ↔ y, H ↔ g, p ↔ w, ṗ ↔ u.

The first step in the Legendre transformation, as in eqn (D.114), is to define the
new function H , still expressed in terms of the old variables q, q̇, t . In the present
case, this first step has already been done, in Section 2.15 where the generalized
energy function was defined as a function of the Lagrangian variables,

H = H(q, q̇, t) =
D∑

k=1

∂L(q, q̇, t)

∂ q̇k
q̇k − L(q, q̇, t) =

D∑
k=1

pk(q, q̇, t)q̇k − L(q, q̇, t) (4.14)

As noted in Section D.30, to complete the Legendre transformation it is necessary
to write eqn (4.14) in terms of the correct variable set q1, . . . , qD, p1, . . . , pD. This can
always be done. Theorem 4.1.1 proved that the equations pk = pk(q, q̇, t) can always
be inverted with to give q̇k = q̇k(q, p, t). Thus, one simply substitutes this inverse
equation into eqn (4.14) to write H(q, p, t) as the compound function

H = H(q, p, t) = H
(
q, q̇(q, p, t), t

)
(4.15)

Note to the Reader: This step of writing H in terms of phase-space variables is
essential to the Hamiltonian method. The Hamilton equations will not be true with-
out it. To emphasize its importance, we reserve the name “Hamiltonian” for the
expression H(q, p, t) that results after this step is taken.

Thus, when written in terms of q, p, t , the generalized energy function H(q, q̇, t)
becomes the Hamiltonian H(q, p, t). They are the same function, but written in terms
of different variables and called by different names.24

24See Section D.5 for a discussion of the physics convention for labeling the same function expressed in
different variables.
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Following the Legendre transformation pattern in Section D.30, the differential of
the H in eqn (4.14) can be written as

d H =
D∑

k=1

(pkdq̇k + q̇kdpk)− d L

=
D∑

k=1

(
pkdq̇k + q̇kdpk − ∂L(q, q̇, t)

∂ q̇k
dq̇k − ∂L(q, q̇, t)

∂qk
dqk

)
− ∂L(q, q̇, t)

∂t
dt

(4.16)

Assuming for now that Q(NP)
k = 0, the Lagrange equations, eqn (2.52),

d

dt

(
∂L(q, q̇, t)

∂ q̇k

)
− ∂L(q, q̇, t)

∂qk
= 0 (4.17)

can be written in a compact form using the definition of pk from eqn (4.1),

ṗk = ∂L(q, q̇, t)

∂qk
where pk = ∂L(q, q̇, t)

∂ q̇k
(4.18)

When eqn (4.18) is substituted into eqn (4.16), the dq̇k terms cancel and eqn (4.16)
becomes

d H =
D∑

k=1

(q̇kdpk − ṗkdqk)+ Ḣdt (4.19)

where the generalized energy theorem Ḣ = −∂L(q, q̇, t)/∂t from Section 2.15 has
been used in the last term on the right.

The differential in eqn (4.19) may now be compared to the differential of the
function H(q, p, t) defined in eqn (4.15), which is

d H =
D∑

k=1

(
∂ H(q, p, t)

∂pk
dpk + ∂ H(q, p, t)

∂qk
dqk

)
+ ∂ H(q, p, t)

∂t
dt (4.20)

In the Legendre transformation method, the differentials of the original variables
dq, dq̇, dt are taken to be independent. Theorem D.18.5 and eqn (4.3) imply that
set of differentials dq1, . . . , dqD,dp1, . . . , dpD, dt are also independent. Hence, using
Lemma D.18.3, the equality of the left sides of eqns (4.19, 4.20) implies equality of
the corresponding coefficient of each differential term, and hence

q̇k = ∂ H(q, p, t)

∂pk
ṗk = −∂ H(q, p, t)

∂qk
Ḣ = ∂ H(q, p, t)

∂t
(4.21)

for k = 1, . . . , D. The first two of these expressions are called the Hamilton equations.
The Hamilton equations are two sets of coupled first-order differential equations

for the phase-space variables qk, pk . They are very nearly symmetric in these variables.
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Except for the minus sign, the second of eqn (4.21) is just the first one with qk and pk

exchanged between the partial and the time derivative.
Since the Hamilton equations have been derived from the Lagrange equations

by a Legendre transformation, which is invertible by definition, it follows that the
Hamilton equations hold if and only if the Lagrange equations hold. Thus both are
equivalent to Newton’s second law.

Second law ⇐⇒ Lagrange equations ⇐⇒ Hamilton equations

As can be seen from the properties of Legendre transformations, the first expres-
sion in eqn (4.21) simply restates eqn (4.2). The Lagrangian definition in eqn (4.1)
gives pk(q, q̇, t) = ∂L(q, q̇, t)/∂q̇k and the first Hamilton equations just give the in-
verse relation q̇k(q, p, t) = ∂ H(q, p, t)/∂pk .

The second Hamilton equations in eqn (4.21), ṗk(q, p, t) = −∂ H(q, p, t)/∂qk , are
in a sense the “real” equations of motion, analogous to the Lagrange equations ṗk =
∂L(q, q̇, t)/∂qk .

The last of eqn (4.21) equates Ḣ = d H/dt , the total time rate of change of the
quantity H , to the partial derivative ∂ H(q, p, t)/∂t of the function H(q, p, t). It is the
phase-space analog of the Lagrangian generalized energy theorem Ḣ = −∂L/∂t .

4.3 An Example of the Hamilton Equations
As an example of the transition from Lagrange to Hamilton equations of motion,
consider the system of a single particle in a central potential from Section 2.11. Using
q1, q2, q3 equal to polar coordinates r, θ, φ, the Lagrangian is

L = L(q, q̇, t) = 1

2
m

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
− 1

2
kr2 (4.22)

and therefore the generalized momenta pk for k = 1, 2, 3 are given by eqn (4.1) as

pr = ∂L(q, q̇, t)

∂ṙ
= mṙ pθ = ∂L(q, q̇, t)

∂ṙ
= mr2θ̇ pφ = ∂L(q, q̇, t)

∂φ̇
= mr2 sin2 θφ̇

(4.23)
and the generalized energy function calculated from eqn (2.76) is

H = H(q, q̇, t) = 1

2
m

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
+ 1

2
kr2 (4.24)

Inverting eqn (4.23) to solve for the q̇k gives eqn (4.2) in the form

ṙ = pr

m
θ̇ = pθ

mr2
φ̇ = pφ

mr2 sin2 θ
(4.25)

Substituting these into the generalized energy function, eqn (4.24), then gives the
Hamiltonian as a function of the correct phase-space variables,

H = H(q, p, t) = p2
r

2m
+ p2

θ

2mr2
+ p2

φ

2mr2 sin2 θ
+ 1

2
kr2 (4.26)
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As is always the case, the first set of Hamilton equations from eqn (4.21), q̇k =
∂ H(q, p, t)/∂pk for k = 1, 2, 3, simply repeats eqn (4.25),

ṙ = ∂ H(q, p, t)

∂pr
= pr

m
θ̇ = ∂ H(q, p, t)

∂pθ

= pθ

mr2
φ̇ = ∂ H(q, p, t)

∂pφ

= pφ

mr2 sin2 θ
(4.27)

The next Hamilton equations, ṗk = −∂ H(q, p, t)/∂qk for k = 1, 2, 3, are the real
equations of motion. They are

ṗr = −∂ H(q, p, t)

∂r
= p2

θ

mr3
+ p2

φ

mr3 sin2 θ
− kr (4.28)

ṗθ = −∂ H(q, p, t)

∂θ
= p2

φ cos θ

mr2 sin3 θ
and ṗφ = −∂ H(q, p, t)

∂φ
= 0 (4.29)

The last equation in eqn (4.21) is Ḣ = ∂ H(q, p, t)/∂t , which here implies that
Ḣ = 0 and so H = H(0), where constant H(0) is determined from the value of H at
time zero. This is the Hamiltonian analog of the generalized energy theorem. Thus

p2
r

2m
+ p2

θ

2mr2
+ p2

φ

2mr2 sin2 θ
+ 1

2
kr2 = H(0) (4.30)

where

H(0) = p2
r (0)

2m
+ p2

θ (0)

2mr2(0)
+ p2

φ(0)

2mr2(0) sin2 θ(0)
+ 1

2
kr2(0) (4.31)

and the needed values of the canonical momenta at time zero pk(0) can be determined
from eqn (4.23).

As noted in Section 2.13, in this example the coordinate φ is ignorable. The last of
eqn (4.29) implies that pφ = a where a = pφ(0) is some constant determined from the
value of pφ at time zero. The constant value can be substituted into eqn (4.30) to give
the generalized energy theorem in an even simpler form, with both the coordinate φ

and its conjugate momentum pφ absent,

p2
r

2m
+ p2

θ

2mr2
+ a2

2mr2 sin2 θ
+ 1

2
kr2 = H(0) (4.32)

4.4 Non-Potential and Constraint Forces

The derivation of the Hamilton equations in Section 4.2 has assumed that all forces
are derived from the potential U (q, t). However, if non-potential forces are present,
possibly including suitable constraint forces that do no virtual work, the Hamilton
equations can be generalized easily. In the step leading to eqn (4.19) above, one sim-
ply replaces the Lagrange equation ṗk = ∂L(q, q̇, t)/∂qk and the generalized energy
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theorem Ḣ = −∂L(q, q̇, t)/∂t by the more general expressions from eqns (2.52, 2.78),

ṗk = ∂L(q, q̇, t)

∂qk
+ Q(NP)

k and Ḣ =
D∑

k=1

Q(NP)
k q̇k − ∂L(q, q̇, t)

∂t
(4.33)

leading to the Hamilton equations

q̇k = ∂ H(q, p, t)

∂pk
ṗk = −∂ H(q, p, t)

∂qk
+ Q(NP)

k (4.34)

Ḣ = ∂ H(q, p, t)

∂t
+

D∑
k=1

Q(NP)
k q̇k(q, p, t) (4.35)

These are the general Hamilton equations in the presence of non-potential forces.
When the non-potential forces all come from suitable constraints, then, as proved

in Theorem 3.4.1, Q(NP)
k = Q(cons)

k = ∑C
a=1 λa∂Ga(q, t)/∂qk and hence the Hamilton

equations become

q̇k = ∂ H(q, p, t)

∂pk
ṗk = −∂ H(q, p, t)

∂qk
+

C∑
a=1

λa
∂Ga(q, t)

∂qk
(4.36)

Ḣ = ∂ H(q, p, t)

∂t
−

C∑
a=1

λa
∂Ga(q, t)

∂t
(4.37)

This last equation follows from the same argument as was used in the proof of Theo-
rem 3.13.1.

4.5 Reduced Hamiltonian
When the forces of constraint in a Lagrangian problem do no virtual work, and the
C constraints are holonomic and independent, Section 3.8 showed how to use the
constraints to reduce the number of degrees of freedom of the problem from D to
D − C . The reduced Lagrangian L̄(q( f ), q̇( f ), t) defined there can be used to define a
reduced generalized energy function, as was done in eqn (3.82) of Theorem 3.13.1,

H̄ = H̄(q( f ), q̇( f ), t) =
D−C∑
k=1

∂ L̄(q( f ), q̇( f ), t)

∂ q̇( f )
k

q̇( f )
k − L̄(q( f ), q̇( f ), t)

=
D−C∑
k=1

p̄( f )
k (q( f ), q̇( f ), t)q̇( f )

k − L̄(q( f ), q̇( f ), t) (4.38)

where we have defined, for k = 1, . . . , D − C ,

p̄( f )
k = p̄( f )

k (q( f ), q̇( f ), t) = ∂ L̄(q( f ), q̇( f ), t)

∂ q̇( f )
k

(4.39)

Since all of the reduced Lagrange equations, eqn (3.40), have zeroes on their right
hand side, the same Legendre transformation procedure used in Section 4.2 above
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can be used to define a reduced Hamiltonian H̄(q( f ), p̄( f ), t) and reduced Hamilton
equations

q̇( f )
k = ∂ H̄(q( f ), p̄( f ), t)

∂ p̄( f )
k

˙̄p( f )
k = −∂ H̄(q( f ), p̄( f ), t)

∂q( f )
k

d H̄

dt
= ∂ H̄(q( f ), p̄( f ), t)

∂t

(4.40)
for k = 1, . . . , (D − C).

The constrained variables have been eliminated from the problem. The whole
Hamiltonian procedure is just as if the original Lagrangian problem had been free of
constraints from the start.

However, the above derivation leading to eqn (4.40) will be correct only if the
definition p̄( f )

k = p̄( f )
k (q( f ), q̇( f ), t) from eqn (4.39) can actually be inverted to give

q̇( f )
k = q̇( f )

k

(
q( f ), p̄( f ), t

)
(4.41)

This inversion allows one to make the usual substitution

H̄ = H̄(q( f ), p̄( f ), t) = H̄
(

q( f ), q̇( f )(q( f ), p̄( f ), t), t
)

(4.42)

to convert the reduced generalized energy function H̄(q( f ), q̇( f ), t) to the reduced
Hamiltonian H̄(q( f ), p̄( f ), t).

Again using Theorem D.24.1, the condition for the inversion of eqn (4.39) to give
eqn (4.41) is ∣∣∣∣∣∂ p̄( f )

∂ q̇( f )

∣∣∣∣∣ �= 0 (4.43)

where the matrix (∂ p̄( f )/∂ q̇( f )) is defined by(
∂ p̄( f )

∂ q̇( f )

)
kl

= ∂ p̄( f )
k (q( f ), q̇( f ), t)

∂ q̇( f )
l

= ∂2 L̄(q( f ), q̇( f ), t)

∂ q̇( f )
k ∂ q̇( f )

l

(4.44)

The following theorem proves that this inversion can always be done.

Theorem 4.5.1: Inversion of Reduced Momenta
The matrix (∂ p̄( f )/∂ q̇( f )) defined in eqn (4.44) is positive definite and hence nonsingular.
Thus the inversion condition eqn (4.43) is always satisfied.

Proof: When the constraints are holonomic and functionally independent, the bound
variables can be written as functions of the free ones as in eqn (3.36),
q(b)

l = q(b)
l (q( f ), t). Substituting this result and its derivatives into the expansion of

the full Lagrangian L in Section 2.7 gives the reduced Lagrangian L̄ in the form

L̄ = 1

2

D−C∑
k=1

D−C∑
l=1

m̄kl q̇
( f )
k q̇( f )

l +
D−C∑
k=1

n̄k q̇( f )
k + T̄0 − Ū (4.45)
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where, for k, l = 1, . . . , (D − C),

m̄kl = mkl +
D∑

i=D−C+1

D∑
j=D−C+1

sT
ki mi j sjl +

D∑
j=D−C+1

mkj sjl +
D∑

i=D−C+1

sT
ki mil (4.46)

where m is the matrix proved positive definite in Theorem 4.1.1 and, with k = (D −
C + 1), . . . , D and i = 1, . . . , (D − C),

ski = ∂q(b)
k (q( f ), t)

∂q( f )
i

(4.47)

Putting eqn (4.45) into eqn (4.44) gives(
∂ p̄( f )

∂ q̇( f )

)
kl

= ∂2 L̄(q( f ), q̇( f ), t)

∂ q̇( f )
k ∂ q̇( f )

l

= m̄kl (4.48)

To prove m̄ = (∂ p̄( f )/∂ q̇( f )) positive definite, let [x] be any arbitrary, real, non-
null column vector of dimension (D − C). Then define another column vector [y] of
dimension D as the compound matrix

[y] =
( [x]

s[x]
)

(4.49)

It follows from the positive-definiteness of m that

[x]T m̄ [x] = [y]T m [y] > 0 (4.50)

which proves that m̄ is also positive definite. It follows from Lemma C.1.1 that matrix
m̄ = (∂ p̄( f )/∂ q̇( f )) is nonsingular. Hence that the inversion condition eqn (4.43) is
satisfied. �

4.6 Poisson Brackets
In Hamiltonian mechanics, all physical quantities are represented by phase-space
functions like that in eqn (4.11). Assuming now that no constraints are present, the
Hamilton equations, eqn (4.21), and the chain rule can be used to write the total time
derivative of such a function f in a useful form

ḟ = d f

dt
=

D∑
k=1

(
∂ f (q, p, t)

∂qk
q̇k + ∂ f (q, p, t)

∂pk
ṗk

)
+ ∂ f (q, p, t)

∂t

=
D∑

k=1

(
∂ f (q, p, t)

∂qk

∂ H(q, p, t)

∂pk
− ∂ f (q, p, t)

∂pk

∂ H(q, p, t)

∂qk

)
+ ∂ f (q, p, t)

∂t
(4.51)

The sum in eqn (4.51) appears frequently enough to merit a special notation for it.
It is called the Poisson bracket [ f, H ] of the two phase-space functions f (q, p, t) and
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H(q, p, t), so that eqn (4.51) becomes

ḟ = d f

dt
= [ f, H ] + ∂ f (q, p, t)

∂t
(4.52)

If d f/dt = 0, then phase-space function f is called a constant of the motion. Equa-
tion (4.52) thus implies that a phase-space function that is not an explicit function of
t will be a constant of the motion if and only if it has a vanishing Poisson bracket with
the Hamiltonian.

The Poisson bracket [ f, g] can be defined more generally, for any two phase-space
functions f = f (q, p, t) and g = g(q, p, t),

[ f, g] =
D∑

k=1

(
∂ f (q, p, t)

∂qk

∂g(q, p, t)

∂pk
− ∂g(q, p, t)

∂qk

∂ f (q, p, t)

∂pk

)
(4.53)

Note that, since partial derivatives are functions of the same variable set as was the
function differentiated, the [ f, g] is itself another phase-space function.

This definition implies some useful algebraic properties. First, by construction, the
Poisson bracket is anti-symmetric in the exchange of the two functions so that, for
any f and g,

[g, f ] = −[ f, g] and hence [ f, f ] = 0 (4.54)

Also, when f (q, p, t), g(q, p, t), and h = h(q, p, t) are any phase-space functions, and
α, β are numbers or otherwise not functions of q, p, the following identities can be
proved,

[ f, (αg + βh)] = α[ f, g] + β[ f, h] (4.55)

[ f, gh] = g[ f, h] + [ f, g]h (4.56)

[ f, [g, h]] + [h, [ f, g]] + [g, [h, f ]] = 0 (4.57)

where, for example, [ f, [g, h]] denotes the Poisson bracket of function f with the
function [g, h] which was obtained by taking the Poisson bracket of g and h. The last
of the three identities is called the Jacobi identity.

The algebra of Poisson brackets closely resembles that of the commutators of op-
erators discussed in Section 7.1. This similarity is exploited in quantum mechanics.
One path from classical to quantum mechanics is to write Poisson bracket relations
and then replace the phase-space functions by quantum operators, as is discussed in
Section 12.13.

Poisson brackets can be used to write the Hamilton equations in Poisson bracket
form. Replacing f (q, p, t) in eqn (4.51) by the single variables qk, pk, H in succession
allows eqn (4.21) to be written in the form, for any k = 1, . . . , D,

q̇k = [qk, H ] ṗk = [pk, H ] Ḣ = [H, H ] + ∂ H(q, p, t)

∂t
= ∂ H(q, p, t)

∂t
(4.58)

The following identities follow directly from the definition in eqn (4.53). If one
puts f (q, p, t) and g(q, p, t) equal to any single canonical coordinate or momentum,
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then, for any choices k, l = 1, . . . , D, it follows that

[qk, ql ] = 0 [qk, pl ] = δkl [pk, pl ] = 0 (4.59)

where δkl is the Kroeneker delta function. These are called the fundamental Poisson
brackets, and are analogous to similar operator equations in quantum mechanics.

Poisson brackets also play a crucial role in the definition of what are called Canon-
ical Transformations of phase-space variables. But we will defer that discussion until
the extended Lagrangian and Hamiltonian methods, with time as a coordinate, are
introduced in Part II of the book.

4.7 The Schroedinger Equation
The Hamiltonian is an essential element in the derivation of the Schroedinger equa-
tion of quantum mechanics. We illustrate this transition from classical to quantum
mechanics by using the example of a single particle of mass m moving in a potential
U (x, y, z, t). For such a system, the Lagrangian is

L = m

2

(
ẋ2 + ẏ2 + ż2

)
−U (x, y, z, t) (4.60)

from which we derive the Hamiltonian

H = H(q, p, t) = p2
x + p2

y + p2
z

2m
+U (x, y, z, t) (4.61)

The generalized coordinates here are just the Cartesian coordinates of the particle,
q1 = x , q2 = y, q3 = z.

The standard recipe for the transition to quantum mechanics is to make the sub-
stitutions

H → i h̄
∂

∂t
px →−i h̄

∂

∂x
py →−i h̄

∂

∂y
pz →−i h̄

∂

∂z
(4.62)

in eqn (4.61), and then introduce a Schroedinger wave function ψ(x, y, x, t) for the
differential operators to operate on, leading to

i h̄
∂

∂t
ψ = 1

2m

(
−i h̄

∂

∂x

)(
−i h̄

∂

∂x

)
ψ + 1

2m

(
−i h̄

∂

∂y

)(
−i h̄

∂

∂y

)
ψ

+ 1

2m

(
−i h̄

∂

∂z

)(
−i h̄

∂

∂z

)
ψ +Uψ (4.63)

The products of operators are interpreted as repeated application, leading to second
partial derivatives. For example,(

−i h̄
∂

∂x

)(
−i h̄

∂

∂x

)
ψ =

(
−i h̄

∂

∂x

(
−i h̄

∂ψ

∂x

))
= −h̄2 ∂2ψ

∂x2
(4.64)

The result is the Schroedinger equation, the fundamental equation of nonrelativistic
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quantum mechanics. It is usually written as

i h̄
∂

∂t
ψ = −h̄2

2m
∇2ψ +Uψ (4.65)

where the Laplacian operator ∇2 is defined as

∇2ψ = ∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
= ∇ · (∇ψ) (4.66)

where ∇ is the gradient operator defined in eqn (A.66).

4.8 The Ehrenfest Theorem
The square of the absolute value of the Schroedinger wave function serves as a prob-
ability density in quantum theory. In one dimensional problems, for example, in the
limit dx→0 the quantity P(x, t) dx is the probability that the particle will be found
between x and x + dx , where P(x) = ψ∗(x, t) ψ(x, t). Instead of predicting the actual
values of classical variables like position and momentum, quantum theory predicts a
most likely value called the expectation value. The recipe for finding the expectation
value is: (1) First one forms the classical phase-space function f (x, y, z, px , py, pz)

representing the physical variable. (2) One then replaces the classical q, p values by
quantum mechanical operators. In the position basis we are using here as an exam-
ple, the operators representing positions x, y, z are just the coordinates themselves,
but for the momenta the substitution in eqn (4.62) must be used. (3) The expectation
value is then

〈 f 〉 =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ∗ f (x, y, z,−i h̄

∂

∂x
,−i h̄

∂

∂y
,−i h̄

∂

∂z
)ψ dxdydz (4.67)

where we assume throughout that the Schroedinger wave function is normalized to
give a probability of one that the particle will be found at some position,

1 =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ∗ψ dxdydz (4.68)

For example, the expectation of the z-component of angular momentum, Lz = xpy −
ypx , is

〈Lz〉 = −i h̄
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ∗

(
x

∂

∂y
− y

∂

∂x

)
ψ dxdydz (4.69)

Quantum mechanics also predicts an RMS deviation from the expectation value. It is
defined as

� f =
√∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ∗

(
f (x, y, z,−i h̄

∂

∂x
,−i h̄

∂

∂y
,−i h̄

∂

∂z
)− 〈 f 〉

)2

ψ dxdydz

(4.70)
Quantum mechanics is what is called a cover theory for classical mechanics. This

means that quantum mechanics is the more comprehensive theory and should predict
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all of the classical results obtained in this book, in the limited domain, called the clas-
sical limit, in which classical mechanics is adequate. Roughly speaking, this classical
limit is reached when one may (to some acceptable degree of approximation) ignore
� f and treat the expectation value 〈 f 〉 as if it were the actual value of a classical
phase-space function f (q, p). However, it is difficult to give a general prescription for
this limit, and each case must be approached individually.

The Ehrenfest theorem shows that, with some limitations, the Hamilton equations
of classical mechanics also hold in quantum mechanics.

Theorem 4.8.1: Ehrenfest Theorem
With a Hamiltonian of the general form given in eqn (4.61), the expectation values of
position and momenta obey equations which resemble the classical Hamilton equations,

d

dt
〈xi 〉 =

〈
∂ H(x, y, z, px , py, pz)

∂pi

〉
d

dt
〈pi 〉 = −

〈
∂ H(x, y, z, px , py, pz)

∂xi

〉
(4.71)

where i = 1, 2, 3 and x1 = x, x2 = y, p1 = px , etc. The expressions on the right, like〈
∂ H(x, y, z, px , py, pz)/∂x

〉
for example, are obtained by first taking the partial deriva-

tive of the classical Hamiltonian, then making the substitutions from eqn (4.62), and
finally placing the resulting expression into eqn (4.67) to obtain its expectation value.

Proof: In quantum texts, for example Chapter 6 of Shankar (1994), eqn (4.71) is
proved to follow from the Schroedinger equation, eqn (4.65). This proof is general
and is not restricted to the classical limit. �

The Ehrenfest theorem does not allow us simply to replace the classical variables
by their expectation values. For example, in general〈

∂ H(x, y, z, px , py, pz)

∂x

〉
�= ∂ H

(〈x〉 , 〈y〉 , 〈z〉 ,< px >,< py >,< pz >
)

∂ 〈x〉 (4.72)

and the classical limit still requires careful consideration.

4.9 Exercises
Exercise 4.1 This exercise is to emphasize the importance of writing the Hamiltonian in
terms of the correct variable set q, p, t before the Hamilton equations are applied. It shows
that partial derivatives depend not only on the variable differentiated with respect to (t here)
but also on the list of variables to be held constant as the derivative is taken. Define

u(t) = a + 1

2
bt2 and v(t) = 1

2
bt2 + ct5 (4.73)

Also define

f (u, t) = u + sin ωt + ct5 and f (v, t) = a + v + sin ωt (4.74)

(a) By writing each out as a function of t , prove that the two compound functions are equal,
f (u, t) = f (v, t) for every value of t . (Note that we are following the physicist’s convention
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of using the same letter f for both compound functions, as discussed in Section D.5.)
(b) Calculate ∂ f (u, t)/∂t and ∂ f (v, t)/∂t and show, by considering each as a function of t ,
that they are not equal.

Exercise 4.2 Suppose that a one-dimensional system has Lagrangian

L(q, q̇, t) = 1

2
mq̇2

1 sin2 ωt+mωq1q̇1 sin ωt cos ωt+ 1

2
mω2q2

1 cos2 ωt−mgq1 sin ωt (4.75)

(a) Find an expression for the canonical momentum p1 and solve it for q̇1.
(b) Find the generalized energy function H (q, q̇, t), and use the result of part (a) to write it
in terms of the correct Hamiltonian variables to give the Hamiltonian H(q, p, t).
(c) Write the two Hamilton equations. Verify that the one for q̇1 is consistent with your result
from part (a).
(d) Use the Hamilton equation Ḣ = ∂ H(q, p, t)/∂t to test whether or not H is conserved.

Exercise 4.3 In part (e) of Exercise 3.1, you derived a reduced Lagrangian L̄(q( f ), q̇( f ), t)
for the plane double pendulum, using the free coordinates q( f ) = θ1, θ2.

(a) Find the generalized momenta conjugate to these free coordinates and invert them to solve
for θ̇1 and θ̇2 as functions of the momenta.
(b) Write the reduced Hamiltonian H̄(q( f ), p( f ), t) for this problem.

Exercise 4.4 A system with two degrees of freedom has a Lagrangian

L(q, q̇, t) = aq̇2
1 + 2bq̇1q̇2 + cq̇2

2 + f (4.76)

where a, b, c, f are given functions of q1, q2, t .

(a) Find the two generalized momenta pk(q, q̇, t) and, using Cramer’s rule or otherwise, write
expressions for the q̇k as functions of q, p, t .
(b) Write the generalized energy function H(q, q̇, t) and express it in terms of the proper
phase-space coordinates q, p, t to form the Hamiltonian H(q, p, t).
(c) Verify that the Hamilton equations for q̇k simply restate your result from part (a).

Exercise 4.5 Suppose that we have a Hamiltonian H(q, p, t) and the usual Hamilton equa-
tions

q̇k = ∂ H(q, p, t)

∂pk
ṗk = −∂ H(q, p, t)

∂qk
Ḣ = ∂ H(q, p, t)

∂t
(4.77)

We want to make a Legendre transformation from H(q, p, t) back to L(q, q̇, t). Note that
the variables being exchanged are p ↔ q̇ , and that this is the inverse of the Legendre trans-
formation we used to get H in the first place.

(a) Write an expression for L(q, p, t) in terms of H(q, p, t) using the rules of the Legendre
transformation as outlined in Section D.30.
(b) Assume that the first of eqn (4.77) can be inverted to give pk = pk(q, q̇, t) and show how
this can be used to write L in terms of the correct Lagrangian variables L = L (q, q̇, t).
(c) Write the differential d L and use it to derive the three Lagrange equations

pk = ∂L(q, q̇, t)

∂ q̇k
ṗk = ∂L(q, q̇, t)

∂qk
Ḣ = −∂L(q, q̇, t)

∂t
(4.78)
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Exercise 4.6 We know from Exercise 2.3 that any solution of the Lagrange equations with
Lagrangian L (q, q̇, t) is also a solution of the Lagrange equations with an equivalent La-
grangian L ′(q, q̇, t) where

L ′(q, q̇, t) = L(q, q̇, t)+ d f (q, t)

dt
= L(q, q̇, t)+

N∑
k=1

∂ f (q, t)

∂qk
q̇k + ∂ f (q, t)

∂t
(4.79)

(a) Let the generalized momenta for these two Lagrangians be denoted

pk = ∂L(q, q̇, t)

∂ q̇k
and p′k =

∂L ′(q, q̇, t)

∂ q̇k
(4.80)

Write an equation for p′k as a function of pk and the partial derivatives of f .
(b) Find the generalized energy function H ′(q, q̇, t) corresponding to the Lagrangian L ′.
Write it in terms of H (q, q̇, t), the generalized energy function corresponding to Lagrangian
L , and partial derivatives of f as needed.
(c) Now assume that the original generalized energy function H (q, q̇, t) can be converted to
a Hamiltonian H(q, p, t) in the usual way. Use that fact to write H ′ as a function of variables
q, p, t .
(d) Solve your expression for p′k in part (a) for pk = pk(q, p′, t), and use that solution to
write H ′ in terms of its correct Hamiltonian variables q, p′, t ,

H ′ = H ′(q, p′, t) = H ′(q, p→p(q, p′, t), t) (4.81)

(e) Assume that the Hamilton equations for the original Hamiltonian H hold, and prove that
the Hamilton equations for H ′ are also true

q̇k = ∂ H ′(q, p′, t)

∂p′k
and ṗ′k = −∂ H ′(q, p′, t)

∂qk
(4.82)

Exercise 4.7 Charged particles in an electromagnetic field were treated in Section 2.17.

(a) Show that the Hamiltonian derived from the generalized energy in eqn (2.105) is

H =
N∑

n=1

⎛⎝
(

p
n
− q(ch)

n A(rn, t)/c
)
·
(

p
n
− q(ch)

n A(rn, t)/c
)

2mn
+ q(ch)

n 
(rn, t)

⎞⎠ (4.83)

where p
n

is the canonical momentum defined in eqn (2.104).
(b) Show that the Hamilton equations may be written in vector form as

vn = ∂ H

∂p
n

ṗ
n
= −∂ H

∂rn
(4.84)

(c) Show that the first Hamilton equation simply restates eqn (2.104).
(d) Use the quantum substitution analogous to eqn (4.62) but with the quantum operators25

25Note that, when there is a difference, the quantum operators replace p and not the particle momentum p = mv.
See also the discussion in Section 12.13. Equation (4.86) correctly describes a nonrelativistic, spinless, charged
particle in an external electromagnetic field. See, for example, page 387 of Shankar (1994).
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replacing components of the canonical momentum p,

H → i h̄
∂

∂t
p

x
→−i h̄

∂

∂x
p

y
→−i h̄

∂

∂y
p

z
→−i h̄

∂

∂z
(4.85)

to show that the Schroedinger equation for a single particle of mass m and charge q moving
in a given electromagnetic field is

i h̄
∂�

∂t
=

(−i h̄∇ − q(ch)A(r, t)/c
) · (−i h̄∇ − q(ch)A(r, t)/c

)
2m

� + q(ch)
 (r, t) � (4.86)

Note that the ∇ in the first of the two
(−i h̄∇ − q(ch)A(r, t)/c

)
factors does operate on the

A(r, t) function in the second one, as well as on �.

Exercise 4.8 In Exercise 2.9 you found the generalized energy functions for a mass on a
rotating table in two different coordinate systems, one fixed and one rotating. You should
use the generalized energy functions and canonical momenta from your previous work as the
starting point of the present problem.

(a) Find the Hamiltonians H(q, p, t) and H ′(q ′, p′, t) in these two systems.
(b) Use the Hamilton equations,

Ḣ = ∂ H(q, p, t)

∂t
and Ḣ ′ = ∂ H ′(q ′, p′, t)

∂t
(4.87)

to verify your earlier result that H is not conserved but H ′ is.

Exercise 4.9 Consider a system consisting of a single particle.

(a) Using the phase-space variables q, p = x, y, z, px , py, pz , prove that for any phase-space
function f (q, p),

[ f (q, p), px ] = ∂ f

∂x
[ f (q, p), py] = ∂ f

∂y
[ f (q, p), pz] = ∂ f

∂z
(4.88)

(b) The orbital angular momentum of a single mass is L = r × p. Prove that

[Lz, x] = y [Lz, y] = −x [Lz, z] = 0 (4.89)

and
[Lz, px ] = py [Lz, py] = −px [Lz, pz] = 0 (4.90)
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THE CALCULUS OF VARIATIONS

The calculus of variations is of enormous importance, not just in analytical mechan-
ics, but in the whole of theoretical physics. The present chapter introduces it in the
context of the finite-dimensional configuration spaces discussed in previous chapters.
Mastery of this relatively simple form of the theory will provide the background re-
quired to study more advanced topics such as the variations of fields in the complex
spaces of quantum field theory.

To understand what a variation is, imagine a curve drawn between two given
points in a three-dimensional Cartesian space. Such a curve is often called a path
between these points. Now imagine a line integral along that path, integrating some
quantity of interest to us. For example, that quantity might be simply the increment
of distance, so that the integral would give the total length of the path.

Now imagine several different paths between these same two end points. The
integrals along these different paths would, in general, be different. The calculus of
variations is concerned with the comparison of these line integrals along different
paths. The difference between the integral along some chosen path and the integral
of the same quantity along other paths is called the variation of that integral.

For example, if the integrated quantity is total length, we might want to find the
shortest distance between the two points. Just as the minimum of an ordinary func-
tion happens at a point at which its first-order rate of change vanishes (vanishing
first derivative), so the shortest path turns out to be the path whose length is, to first
order, equal to the length of its near neighbors. It is called an extremum path.26 The
variation of the integral about that extremum path will thus vanish to first order.

The presentation of the calculus of variations in the present chapter uses what we
call the General Parametric Method. In it, a path is specified parametrically, by letting
each of its coordinates be a function of some monotonically varying, but initially
unspecified, parameter β. This method contrasts with some other textbooks in which
one of the coordinates is used as the parameter, and the other variables are made
functions of it rather than of a general β. The two methods are compared in detail
in Sections 5.14 and 5.15. The General Parametric approach used here has much to
recommend it, and the reader is urged to adopt it.

26In ordinary calculus, after finding a point where the first derivative vanishes, we must evaluate the
second derivative to see if the point is a maximum, minimum, or point of inflection. A similar test would
be required also in the calculus of variations. However, the first-order theory presented in this chapter is
not capable of such a test, so we must accept the extremum determination and try to guess from context
whether the extremum is indeed a maximum or minimum.

88
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5.1 Paths in an N -Dimensional Space
We want a mathematical characterization of paths that can be generalized to spaces
of more than three dimensions. In a three-dimensional Cartesian example we could
imagine a path to be represented by a perspective drawing of it, but that will not be
possible in spaces of higher dimension. So, even in the three-dimensional example, we
will choose to represent a path by giving the three Cartesian coordinates as functions
of a common parameter β, as x = x (β), y = y (β), and z = z (β), and picturing it
graphically as the three, separate graphs of these three functions.

x y z

β β β

FIG. 5.1. A path in a three-dimensional space represented by three graphs.

This Cartesian example is now easily generalized to N -dimensional spaces. A path
is characterized by making each of the coordinates xk of such a space be a function
of some parameter β that is unspecified except for the assumption that it increases
monotonically as the represented point moves along the path. Thus, for k = 1, . . . , N ,

xk = xk(β) (5.1)

would be represented by N graphs, each one of a particular coordinate versus β.
Together these N functions and their associated graphs represent a single path in the
N -dimensional space, traced out as β advances.

The configuration spaces of mechanics described in Section 2.1, with xk replaced
by qk , are one example of the kind of spaces in which the calculus of variations may
be used. Chapter 6 is devoted to these applications. But the calculus of variations is
more general than this particular application, and may also be used to solve problems
that have nothing to do with mechanics.

Various paths will be given special names. First, imagine that some arbitrary path
xk = xk(β) has been chosen at the beginning of a calculation. This will be called the
chosen path or the unvaried path. It will be considered to run between beginning and
ending values of parameter β, denoted as β1 and β2 respectively, and to have the end
points defined, for k = 1, . . . , N , by

x (1)
k = xk(β1) and x (2)

k = xk(β2) (5.2)

After defining the chosen path, now consider another path, different from it but
passing through the same end points. This will be called the varied path. A general
way of writing such a varied path is to introduce a single scale parameter δa and a set
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of N shape functions ηk(β) so that the varied path xk(β, δa) is defined by its deviation
from the chosen unvaried one. Thus, for k = 1, . . . , N ,

xk(β, δa) = xk(β)+ δa ηk(β) (5.3)

The shape functions are finite, differentiable functions of β that are arbitrary except
for the condition

ηk(β1) = ηk(β2) = 0 (5.4)

which ensures that the varied and unvaried paths cross at the end points. Note that
the scale parameter δa is a rough measure of the difference between the varied and
unvaried paths, in that the two paths coalesce as δa goes to zero. This scale parameter
is the same for all coordinates xk and the same for the whole path; it is not a function
of the index k or the parameter β.

5.2 Variations of Coordinates
The calculus of variations is based on comparisons of quantities evaluated on the
varied path with the same quantities evaluated, at the same β value, on the unvaried
path. The difference between such quantities evaluated on the two paths is called the
variation of the quantity. For example, the coordinates themselves can be compared,
leading to the variation δxk(β) defined, for all k = 1, . . . , N , by

δxk(β) = xk(β, δa)− xk(β) = δa ηk(β) (5.5)

Note that the comparison happens at fixed β, but that the variation δxk(β) is itself a
function of β. For example, eqn (5.4) shows that it vanishes at the end points,

δxk(β1) = δxk(β2) = 0 (5.6)

Another quantity to compare is the derivative of xk with respect to β. On the
unvaried path, this derivative is27

ẋk(β) = dxk(β)

dβ
(5.7)

The derivative on the varied path is found by differentiating eqn (5.3), taking account
of the fact that the scale parameter δa is not a function of β. It is

dxk(β, δa)

dβ
= dxk(β)

dβ
+ δa

dηk

dβ
(5.8)

or, in a simpler notation,

ẋk(β, δa) = ẋk(β)+ δa η̇k(β) (5.9)

27Note that throughout this chapter we will denote total derivatives with respect to β by a dot placed
above the differentiated quantity.
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The variation δ ẋk(β) is found as the difference between eqns (5.8, 5.7),

δ ẋk(β) = dxk(β, δa)

dβ
− dxk(β)

dβ
= δa

dηk(β)

dβ
= δa η̇k(β) (5.10)

An important consequence of the definition eqn (5.10) is that

δ ẋk(β) = d

dβ
δxk(β) (5.11)

Note that it follows from the definitions of this section that, for each value of β,
the values on the varied path can be thought of as values on the chosen path plus a
variation

xk(β, δa) = xk(β)+ δxk(β) and ẋk(β, δa) = ẋk(β)+ δ ẋk(β) (5.12)

Varied Path

Unvaried Path

β1 β β2

x (1)
k

x (2)
k

xk
δxk(β)

xk(β)

FIG. 5.2. Varied (dashed) and unvaried (solid) paths for a typical coordinate xk .

5.3 Variations of Functions
The variation � f of a function f = f (x, ẋ) is defined as the difference between its
values on the varied and unvaried paths, again taken at the same value of β,

� f = f
(
x (β, δa) , ẋ (β, δa)

)− f
(
x (β) , ẋ (β)

)
(5.13)

The difference in eqn (5.13) may be expanded using a Taylor series, giving

� f =
(

∂ f
(
x (β, h) , ẋ (β, h)

)
∂h

)
h=0

δa + 1

2

(
∂2 f

(
x (β, h) , ẋ (β, h)

)
∂h2

)
h=0

δa2 + o
(
δa2

)
(5.14)
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If � f is calculated using only the first term on the right, the resulting quantity is
called the first-order variation and is denoted δ f . Thus

δ f =
(

∂ f
(
x (β, h) , ẋ (β, h)

)
∂h

)
h=0

δa (5.15)

Such first-order variations, which are the only ones used in the present text, are suf-
ficient to determine extremum paths, but not to determine whether those paths are
maxima, minima, or paths of inflection.

Note that the distinction between the variation � f and the first-order variation δ f
was not needed in Section 5.2 when only the coordinates and their derivatives were
being varied. The definition in eqn (5.3) contains δa only to the first power, and hence
�xk = δxk with a similar result for the derivatives, �ẋk = δ ẋk .

One may expand the first partial derivative with respect to h in eqn (5.15) using
eqns (5.3, 5.9) and the chain rule, giving

δ f =
N∑

k=1

(
∂ f (x, ẋ)

∂xk

∂xk (β, h)

∂h
+ ∂ f (x, ẋ)

∂ ẋk

∂ ẋk (β, h)

∂h

)
h=0

δa

=
N∑

k=1

(
∂ f (x, ẋ)

∂xk
ηk(β) δa + ∂ f (x, ẋ)

∂ ẋk
η̇k(β) δa

)

=
N∑

k=1

(
∂ f (x, ẋ)

∂xk
δxk(β)+ ∂ f (x, ẋ)

∂ ẋk
δ ẋk(β)

)
(5.16)

where it is assumed that after the partials of f are taken, they are to be evaluated on
the unvaried path with h = 0.

5.4 Variation of a Line Integral
The interesting applications of the calculus of variations involve variation of line in-
tegrals along paths. A line integral of a function f (x, ẋ) is taken along some line
between end values β1and β2 as

I =
∫ β2

β1

f
(
x(β) , ẋ(β)

)
dβ (5.17)

When taken along the varied path, this integral I is a function of the scale parameter
δa, and a functional of the chosen, unvaried path x(β) and the shape function η(β).
It may be defined as

I (δa, [x], [η]) =
∫ β2

β1

f
(
x(β, δa) , ẋ(β, δa)

)
dβ (5.18)

where the quantities in square brackets indicate functional dependence on the en-
closed functions.28 The line integral along the chosen or unvaried path is the same

28A functional is a function of a function. The [x] indicates that I (δa, [x], [η]) depends on the whole of
the function x(β) for all values β1 ≤ β ≤ β2.
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integral, but with δa = 0,

I (0, [x], [η]) =
∫ β2

β1

f
(
x(β) , ẋ(β)

)
dβ (5.19)

The variation of I is by definition the difference between these two integrals,

�I = I (δa, [x], [η])− I (0, [x], [η])

=
∫ β2

β1

{
f (x(β, δa) , ẋ(β, δa))− f

(
x(β) , ẋ(β)

)}
dβ

=
∫ β2

β1

� f dβ (5.20)

where � f is the variation defined in eqn (5.13).
Since the scale parameter δa does not depend on β, inserting � f from eqn (5.14)

into eqn (5.20) gives

�I =
{∫ β2

β1

(
∂ f

(
x (β, h) , ẋ (β, h)

)
∂h

)
h=0

dβ

}
δα

+
{

1

2

∫ β2

β1

(
∂2 f

(
x (β, h) , ẋ (β, h)

)
∂h2

)
h=0

dβ

}
δa2 + o

(
δa2

)
(5.21)

Using eqn (5.15), the first-order term in the variation �I may be written as

δ I =
∫ β2

β1

(
∂ f

(
x (β, h) , ẋ (β, h)

)
∂h

)
h=0

δα dβ =
∫ β2

β1

δ f dβ (5.22)

Substituting eqn (5.16) for δ f gives

δ I =
∫ β2

β1

N∑
k=1

(
∂ f (x, ẋ)

∂xk
δxk(β)+ ∂ f (x, ẋ)

∂ ẋk
δ ẋk(β)

)
dβ (5.23)

It will be useful to modify eqn (5.23) slightly, using eqn (5.11) to do an integration by
parts,

δ I =
∫ β2

β1

N∑
k=1

(
∂ f (x, ẋ)

∂xk
δxk(β)+ ∂ f (x, ẋ)

∂ ẋk

d

dβ
δxk(β)

)
dβ

=
∫ β2

β1

N∑
k=1

{
∂ f (x, ẋ)

∂xk
δxk(β)+ d

dβ

(
∂ f (x, ẋ)

∂ ẋk
δxk(β)

)
− d

dβ

(
∂ f (x, ẋ)

∂ ẋk

)
δxk(β)

}
dβ

(5.24)

The perfect-differential term may be integrated immediately to give an integrand
evaluated at the end points.



94 THE CALCULUS OF VARIATIONS

Thus, the first-order variation of the line integral reduces to the expression,

δ I =
N∑

k=1

(
∂ f (x, ẋ)

∂ ẋk
δxk(β)

)∣∣∣∣β2

β1

−
∫ β2

β1

N∑
k=1

{
d

dβ

(
∂ f (x, ẋ)

∂ ẋk

)
− ∂ f (x, ẋ)

∂xk

}
δxk(β) dβ

(5.25)

5.5 Finding Extremum Paths
The typical use of the calculus of variations is to find paths that give extremum values
to various line integrals. By definition, an extremum path is such that it, and all nearby
paths that cross it at the end points, produce the same value for the line integral, to
first order in δa. In other words, the chosen unvaried path is an extremum if the first-
order variation vanishes, δ I = 0, in analogy to the vanishing of the first derivative at
the extremum points of functions in ordinary calculus.

The main theorem of the calculus of variations may now be stated.

Theorem 5.5.1: Euler–Lagrange Theorem
Assume a chosen unvaried path xk (β), varied paths xk (β, δa) = xk(β) + δxk(β) as
defined in Sections 5.1 and 5.2, and a line integral

I =
∫ β2

β1

f (x, ẋ) dβ (5.26)

along those paths as specified in Section 5.4.
With the variations δxk(β) assumed arbitrary except for the condition that they van-

ish at the end points as stated in eqn (5.6), the unvaried path is an extremum path of
this integral, with vanishing first-order variation δ I = 0, if and only if the xk(β) of the
unvaried path are a solution to the Euler–Lagrange differential equations29

d

dβ

(
∂ f (x, ẋ)

∂ ẋk

)
− ∂ f (x, ẋ)

∂xk
= 0 (5.27)

for k = 1, . . . , N .

Proof: First, we assume eqn (5.27) and use eqn (5.25) to prove that δ I = 0. Since
eqn (5.27) holds for each value of k and β, the integrand of the second term on the
right in eqn (5.25) vanishes identically and so the integral is zero. The first term also
vanishes due to the assumed vanishing of the variations at the end points. Thus δ I = 0
regardless of the δxk(β) used, as was to be proved.

The proof that δ I = 0 implies eqn (5.27) also uses eqn (5.25). Assuming that
δ I = 0, and that the variations vanish at the end points, the first term on the right of

29These equations are conventionally called the Euler–Lagrange equations, presumably to distinguish
them from the Lagrange equations of mechanics, which have virtually the same form. One of the first uses
of extremum principles was Fermat’s Principle (see Section 5.6), but Euler made the first clear statement
of the calculus of variations as a general computational method.
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eqn (5.25) is zero, giving

0 = δ I =
∫ β2

β1

N∑
k=1

{
d

dβ

(
∂ f (x, ẋ)

∂ ẋk

)
− ∂ f (x, ẋ)

∂xk

}
δxk(β) dβ (5.28)

Since the δxk(β) are arbitrary, they can be set nonzero one at a time. Suppose, for
definiteness, we set all of them to zero except δx5(β). Then the sum in eqn (5.28)
collapses to just the k = 5 term,

0 = δ I =
∫ β2

β1

{
d

dβ

(
∂ f (x, ẋ)

∂ ẋ5

)
− ∂ f (x, ẋ)

∂x5

}
δx5(β) dβ =

∫ β2

β1

�5(β) δx5(β) dβ

(5.29)
where �5(β) stands for the quantity in the curly brackets. Now, exploiting the arbi-
trariness of δx5(β) = η5(β) δa, choose some arbitrary value β1 < β0 < β2 and define
η5(β) to be a continuous and continuously differentiable function which is zero except
in a small range of β values β0 − ε < β < β0 + ε, and non-negative within that range.
For example, one may choose η5(β) = exp{−1/γ 2} where γ = √

ε2/(β − β0)2 − 1.
Then, using the mean value theorem of the integral calculus to collapse the integral,
eqn (5.29) reduces to

0 = �5(β0 + θεε) C δa (5.30)

where θε is some number in the range −1 ≤ θε ≤ 1, and C > 0 is the integral of
η5 over its nonzero range. This implies that, for any nonzero ε value, �5(β0 + θεε) is
zero for some θε. Since the function f is assumed to be continuously differentiable,
the function �5(β) is continuous. Taking the limit as ε → 0 then gives �5(β0) =
limε→0 �5(β0 + θεε) = 0, and so

0 = �5(β0) =
{

d

dβ

(
∂ f (x, ẋ)

∂ ẋ5

)
− ∂ f (x, ẋ)

∂x5

}∣∣∣∣
β=β0

(5.31)

But, since k = 5 and β0 were arbitrarily chosen, any values may be chosen instead
and so eqn (5.27) must be true for any k and β values, as was to be proved. When
β0 is one of the end values β1 or β2, eqn (5.31) follows from its validity for interior
values and the assumed continuity of �5. �

Note that not every chosen unvaried path is an extremum path. It is quite possible
to choose some unvaried path and define a varied path based on it, only to find that
δ I �= 0. But if we choose an unvaried path that satisfies eqn (5.27), then we can be
sure that it is an extremum path with δ I = 0. Such a path can always be found,
since the Euler–Lagrange equations in eqn (5.27) are N differential equations in N
unknowns and so in principle can be solved exactly.

5.6 Example of an Extremum Path Calculation
In optics, Fermat’s Principle says that light rays always travel on paths that make
the phase transit time T an extremum.30 Denoting the phase velocity of light by v,

30Calling this Fermat’s principle of least times, as is often done, is inaccurate. It is actually Fermat’s
principle of extremum times. For example, all rays going from an object point to a focus point through a
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the time required for a wave crest to traverse a distance ds is dT = ds/v = n ds/c
where n is the index of refraction, and c is the vacuum speed of light. The quantity
n ds = d O is an increment of what is often called the Optical Path Length O. Thus,
since dT = d O/c it follows that T = O/c and Fermat’s principle may be restated by
saying that the ray paths make an extremum of the integral defining the optical path
length,

O =
∫ 2

1
n (x, y, z) ds (5.32)

To rewrite eqn (5.32) in a form that can be treated by the calculus of variations, let
x, y, z be functions of a monotonic parameter β so that, denoting derivatives with
respect to β by a dot as usual,

ds =
√

ẋ2 + ẏ2 + ż2 dβ (5.33)

The line integral to be made an extremum becomes

O =
∫ β2

β1

n (x, y, z)
√

ẋ2 + ẏ2 + ż2 dβ (5.34)

With x1 = x , x2 = y, and x3 = z and with

f (x, ẋ) = n (x, y, z)
√

ẋ2 + ẏ2 + ż2 (5.35)

Theorem 5.5.1 says that O will be an extremum along an unvaried path that is a
solution to the three Euler–Lagrange equations, eqn (5.27), for k = 1, 2, 3,

d

dβ

(
∂ f (x, ẋ)

∂ ẋ

)
− ∂ f (x, ẋ)

∂x
= 0 (5.36)

d

dβ

(
∂ f (x, ẋ)

∂ ẏ

)
− ∂ f (x, ẋ)

∂y
= 0 (5.37)

d

dβ

(
∂ f (x, ẋ)

∂ ż

)
− ∂ f (x, ẋ)

∂z
= 0 (5.38)

Inserting eqn (5.35) into these equations gives the three equations

d

dβ

(
n (x, y, z) ẋ√
ẋ2 + ẏ2 + ż2

)
−

√
ẋ2 + ẏ2 + ż2 ∂n(x, y, z)

∂x
= 0 (5.39)

d

dβ

(
n (x, y, z) ẏ√
ẋ2 + ẏ2 + ż2

)
−

√
ẋ2 + ẏ2 + ż2 ∂n(x, y, z)

∂y
= 0 (5.40)

d

dβ

(
n (x, y, z) ż√
ẋ2 + ẏ2 + ż2

)
−

√
ẋ2 + ẏ2 + ż2 ∂n(x, y, z)

∂z
= 0 (5.41)

perfect lens will have the same phase transit times.
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The three eqns (5.39 – 5.41) are equivalent to the single vector equation

d

dβ

(
n (x, y, z)√
ẋ2 + ẏ2 + ż2

dr
dβ

)
−

√
ẋ2 + ẏ2 + ż2 ∇n (x, y, z) = 0 (5.42)

which can be used to determine the extremum path.
Throughout the development so far, we have taken care not to specify the parame-

ter β. It can be any quantity that increases monotonically along the unvaried path. But
now, after all partial derivatives are taken and the final form of the Euler–Lagrange
equation, eqn (5.42), has been found, we are at liberty to make a choice of β that will
make its solution easier. One choice that is particularly appropriate to this problem is
to choose β equal to the arc length s measured along the unvaried path starting at
point 1.31 Then β = s implies that√

ẋ2 + ẏ2 + ż2 = ds

dβ
= ds

ds
= 1 (5.43)

on the unvaried path, so that eqn (5.42) simplifies to

d

ds

(
nt̂

)
−∇n = 0 (5.44)

where t̂ = dr/ds is the tangent unit vector defined in Section A.12. By inspection of
this equation we can see that the path will curve in the direction of increasing index of
refraction, giving, for example, a rough explanation of the desert mirages that occur
when surface heat makes n smaller at the surface.

As a byproduct of this example, we can also prove that the extremum distance
between two points is a straight line. If we set n (x, y, z) = 1 in the above problem,
then the optical path length becomes just the geometrical path length, or distance. It
follows that the extremum of geometrical path length is gotten by setting n = 1 in
eqn (5.44), giving simply

d t̂
ds

= 0 (5.45)

But, as can be seen by reference to Section A.12, a path whose unit tangent vector is
a constant is a straight line.

This Fermat’s Principle example shows the utility of the General Parametric Method
which leaves the parameter β unspecified until after all partial derivatives have been
taken and the Euler–Lagrange equations obtained. Upon examination of eqn (5.42),
it appeared that the choice β = s allowed it to be simplified, and recast as a rela-
tion among Serret–Frenet vectors. In some other problem, examination of the Euler–
Lagrange equations might suggest a different choice for β. (See, for example, Section
5.8.) By retaining β as an unspecified monotonic parameter until the end of calcula-
tions, one obtains the maximum flexibility in problem solution.

31It is important that this s be measured along the unvaried path. The arc lengths along the varied paths
would depend on δα, which would violate the condition that variations compare quantities at the same β

value.
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5.7 Invariance and Homogeneity
In Section 5.6, the integrand of the variational integral was the arc length ds weighted
by a scalar function n(x, y, z). This integral was translated into general parametric
form by writing ds = √

ẋ2 + ẏ2 + ż2 dβ.
In undergraduate texts, variational integrals are often presented in a form such as

I =
∫

g

(
x, y, z,

dy

dx
,

dz

dx

)
dx (5.46)

in which the integration variable is one of the coordinates, here x for example, rather
than a general parameter β. These integrals can always be recast into general para-
metric form by writing dx = ẋ dβ, where ẋ = dx/dβ in the notation being used in this
chapter. Then writing dy/dx = ẏ/ẋ and dz/dx = ż/ẋ gives

I =
∫

g

(
x, y, z,

dy

dx
,

dz

dx

)
dx =

∫
g

(
x, y, z,

ẏ

ẋ
,

ż

ẋ

)
ẋ dβ =

∫
f (x, y, z, ẋ, ẏ, ż)dβ

(5.47)
with

f (x, y, z, ẋ, ẏ, ż) = ẋ g

(
x, y, z,

ẏ

ẋ
,

ż

ẋ

)
(5.48)

The general parametric method can then be applied with f (x, y, z, ẋ, ẏ, ż) as the in-
tegrand.

Both the function in eqn (5.35) and the f in eqn (5.48) are seen to be homoge-
neous of degree one in the set of derivatives ẋ, ẏ, ż.32 This homogeneity is an essential
element of the general parametric method. The integral I is equal to some physical
or geometrical quantity that is to be extremized. The parameter β is just a dummy
integration variable with no physical or geometrical significance. Its replacement by
some other monotonic parameter θ = θ(β) must not change the value of the integral
I . Thus

I =
∫ β2

β1

f (x, ẋ) dβ =
∫ θ1

θ2

f
(
x, x ′

)
dθ =

∫ β2

β1

f

(
x,

(
ẋ

dβ

dθ

))
dθ

dβ
dβ (5.49)

where x ′k = dxk/dθ and hence x ′k = ẋk(dβ/dθ), as has been indicated in the integrand
of the last expression on the right. This equality holds for any values of the limits
x (1)

k = xk(β1) and x (2)
k = xk(β2) and for any choice of path between them. It follows

that the integrand f (x, ẋ) must satisfy the relation

f (x, ẋ) = f

(
x,

(
ẋ

dβ

dθ

))
dθ

dβ
(5.50)

The required invariance under a change of parameter thus implies the homogeneity
of f , as stated in the following theorem.

32Homogeneous functions are defined in Section D.31.



INVARIANCE AND HOMOGENEITY 99

Theorem 5.7.1: Homogeneity
The value of the integral I is unchanged when parameter β is replaced by any other
monotonic parameter θ = θ(β) if and only if the integrand f (x, ẋ) is homogeneous of
degree one in the set of derivatives ẋ = ẋ1, ẋ2, . . . , ˙xN .

Proof: Equation (5.50) can be written as

f (x, (ẋλ)) = λ f (x, ẋ) (5.51)

where λ = dβ/dθ is an arbitrary nonzero number. By Theorem D.31.1, this is the
necessary and sufficient condition for f (x, ẋ) to be homogeneous of degree one in
the set of derivatives ẋ . �

It follows from the homogeneity of f that the Euler–Lagrange equations are also
parameter independent.

Theorem 5.7.2: Invariance
If θ = θ(β) is any monotonically varying parameter, then the xk(β) are a solution to the
Euler–Lagrange equations with parameter β, as shown in eqn (5.27), if and only if the
xk(θ) = xk (β(θ)) are a solution to the Euler–Lagrange equations with parameter θ ,

d

dθ

(
∂ f

(
x, x ′

)
∂x ′k

)
− ∂ f

(
x, x ′

)
∂xk

= 0 (5.52)

for k = 1, . . . , N , where x ′k = dxk/dθ .

Proof: From Theorem 5.5.1, and a similar theorem with β replaced by θ , the Euler–
Lagrange equations in β and θ hold if and only if

0 = δ

∫ β2

β1

f (x, ẋ) dβ and 0 = δ

∫ θ1

θ2

f
(
x, x ′

)
dθ (5.53)

respectively. But, eqn (5.49) shows that the two integrals in eqn (5.53) are equal. Thus
solution of the Euler–Lagrange equation in β implies the vanishing of both variations
in eqn (5.53), which in turn implies the solution of the Euler–Lagrange equation in θ .
The same argument holds with β and θ interchanged. �

The homogeneity of the integrand f (x, ẋ) also has the consequence that the N
Euler–Lagrange equations are redundant; only (N − 1) of them are independent.

Theorem 5.7.3: Redundancy
The Euler–Lagrange equations are redundant. If some set of functions x(β) satisfies the
Euler–Lagrange equations in eqn (5.27) for k = 0, 1, 2, . . . , (l − 1) ,(l + 1) , . . . N , then
the Euler–Lagrange equation for index l is also satisfied, except possibly at points where
ẋl = 0.
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Proof: From the Euler condition, Theorem D.31.1, the homogeneity of f (x, ẋ) proved
in Theorem 5.7.1 implies that

0 =
N∑

k=1

∂ f (x, ẋ)

∂ ẋk
ẋk − f (x, ẋ) (5.54)

Differentiating this expression with respect to β and using the chain rule gives

0 =
N∑

k=1

{
ẋk

d

dβ

(
∂ f (x, ẋ)

∂ ẋk

)
+ ∂ f (x, ẋ)

∂ ẋk
ẍk − ∂ f (x, ẋ)

∂ ẋk
ẍk − ∂ f (x, ẋ)

∂xk
ẋk

}

=
N∑

k=1

ẋk

{
d

dβ

(
∂ f (x, ẋ)

∂ ẋk

)
− ∂ f (x, ẋ)

∂xk

}
(5.55)

Thus

ẋl

{
d

dβ

(
∂ f (x, ẋ)

∂ ẋl

)
− ∂ f (x, ẋ)

∂xl

}
= −

N∑
k �=l

ẋk

{
d

dβ

(
∂ f (x, ẋ)

∂ ẋk

)
− ∂ f (x, ẋ)

∂xk

}
(5.56)

from which the theorem follows. �

5.8 The Brachistochrone Problem

The general parametric method is particularly valuable when a proposed solution to
the Euler–Lagrange equations is written in terms of some parameter that is not itself
one of the variables of the problem. Then we can simplify the calculations by setting
β equal to that parameter.

For example, the solution to the brachistochrone problem is known to be a cycloid,
the locus of a point on the circumference of a circle that rolls without slipping on a
line, usually written as

x = a(θ − sin θ) y = a (1 − cos θ) z = 0 (5.57)

where θ is the angle through which the circle has rolled. The Euler–Lagrange equa-
tions for this problem will be obtained below as usual, with β not yet specified. Then,
after all partial derivatives have been taken, β can be set equal to θ to test whether
or not eqn (5.57) is a solution. And, due to the redundancy noted in Theorem 5.7.3,
only the two simplest of the three Euler–Lagrange equations will need to be tested.

The brachistochrone problem seeks the shape of a frictionless wire stretching be-
tween (0, 0, 0) and (x (2), y(2), 0) such that a bead of mass m sliding on the wire in a
uniform gravitational field g = gê2 moves from the origin to the final point in min-
imum time T . By methods similar to those used in Section 5.6, and using energy
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��
��
��
�� θm

y

x

(x (2), y(2), 0)

FIG. 5.3. Mass m slides on wire from origin to point (x(2), y(2), 0) in minimum time.

conservation to get the speed of the bead v, the problem reduces to finding the ex-
tremum of the integral

I = T
√

2g = √
2g

∫
ds

v
=

∫ β2

β1

√
ẋ2 + ẏ2 + ż2

y
dβ (5.58)

With x1 = x , x2 = y, x3 = z, and

f (x, ẋ) =
√

ẋ2 + ẏ2 + ż2

y
(5.59)

the Euler–Lagrange equations, eqn (5.27) for k = 1, 2, 3,

d

dβ

(
∂ f (x, ẋ)

∂ ẋk

)
− ∂ f (x, ẋ)

∂xk
= 0 (5.60)

reduce to the three equations

ẋ√
y
(
ẋ2 + ẏ2 + ż2

) = C1 (5.61)

d

dβ

⎛⎝ ẏ√
y
(
ẋ2 + ẏ2 + ż2

)
⎞⎠+ 1

2

√
ẋ2 + ẏ2 + ż2

y3
= 0

ż√
y
(
ẋ2 + ẏ2 + ż2

) = C2

(5.62)

where C1 and C2 are integration constants.
The z-equation can be dealt with at once. Since the square root denominator is

real and positive for the whole of the path, the second of eqn (5.62) implies that ż
can never change sign. Thus, since β is monotonic, the function z = z(β) can pass
through both the initial and final points (both with z = 0) only if z = 0 for the whole
path and C2 = 0.

The other simple equation, eqn (5.61), can now be tested. Use the flexibility of the
general parametric method to choose β = θ , where θ is the cycloid parameter in the
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proposed solution eqn (5.57). Then, with ẋ = dx/dθ , etc., the left side of eqn (5.61)
reduces to 1/

√
2a which is indeed a constant, and can be used to determine C1.

Since ẏ = dy/dθ �= 0 except at the isolated point θ = π , Theorem 5.7.3 shows that
the more complicated equation, the first of eqn (5.62), does not need to be tested. It is
satisfied automatically due to the redundancy of the Euler–Lagrange equations. Thus
eqn (5.57) does define the extremum path when the radius a is adjusted so that the
cycloid curve passes through the final point (x (2), y(2), 0).

5.9 Calculus of Variations with Constraints
Suppose now that we want to find the path that makes the integral in eqn (5.17)
an extremum, but now subject to C holonomic constraints. These constraints are
expressed by writing a functionally independent set of C functions of x and then
requiring that the coordinates xk for k = 1, . . . , N and at each β value be such as to
make these functions identically zero. Thus, for a = 1, . . . , C ,

0 = Ga (x) (5.63)

Using the definitions of unvaried path, varied path, and variation developed in Sec-
tions 5.2 and 5.3, these constraints are assumed to hold both on the unvaried path
0 = Ga(x(β)), and on the varied path 0 = Ga(x(β, δa)). It follows that �Ga =
Ga(x(β, δa)) − Ga(x(β)) is zero. Since the scale parameter δa is an arbitrary con-
tinuous parameter, it follows that the first-order variations δGa are zero also. Thus,
for a = 1, . . . , C ,

δGa = 0 (5.64)

Theorem 5.9.1: Euler–Lagrange with Constraints
The integral

I =
∫ β2

β1

f (x, ẋ) dβ (5.65)

will be an extremum, with δ I = 0 for variations that vanish at the end points but are
otherwise arbitrary except for the constraints in eqn (5.63), if and only if there exist C
functions λa such that, for k = 1, . . . , N ,

d

dβ

(
∂ f (x, ẋ)

∂ ẋk

)
− ∂ f (x, ẋ)

∂xk
=

C∑
a=1

λa
∂Ga (x)

∂xk
(5.66)

Together, eqns (5.63, 5.66) constitute N + C equations in the N + C unknowns
x0, . . . , xN , λ1, . . . , λC and so can be solved to find the extremum path. The functions
λa are called33 Lagrange multipliers.

33In Chapter 2, the similarly denoted values λa were related to the forces of constraint. But the theory in
the present chapter is more general. The Lagrange multipliers appear also in problems having nothing to
do forces or with the Lagrange equations of mechanics.
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Proof: Using the definitions in Section 5.3 for variation of a function, the condition
δGa = 0 in eqn (5.64) may be expressed as a set of linear equations to be satisfied by
the δxk ,

0 = δGa =
N∑

k=1

gakδxk (5.67)

for a = 1, . . . , C , where the C × N matrix g is defined by

gak = ∂Ga (x)

∂xk
(5.68)

The condition for the functional independence of the constraints is that matrix g
must be of rank C and hence have a C-rowed critical minor. As was done in the proof
of Theorem 3.4.1, we may reorder the coordinate indices so that this critical minor is
formed from the C rows and the last C columns of g . Then, the C × C matrix g (b)

defined by
g(b)

aj = ga(N−C+ j) (5.69)

will be nonsingular and have an inverse g (b)−1, since its determinant is the critical
minor and hence is nonsingular by definition. Thus eqn (5.67) may be written as

0 = δGa =
N−C∑
i=1

gaiδx ( f )
i +

C∑
j=1

g(b)
aj δx (b)

(N−C+ j) (5.70)

which breaks the expression into two sums, first over what will be called the free coor-
dinates, x ( f ) = x1, . . . , x(N−C) and then over the bound coordinates x (b) =
x(N−C+1), . . . , xN . Then eqn (5.70) can be solved for the variations of the bound co-
ordinates in terms of the variations of the free ones,

δx (b)
(N−C+ j) = −

C∑
a=1

(N−C)∑
i=1

g(b)−1
ja gaiδx ( f )

i (5.71)

Now to the main part of the proof. First we prove that, with the constraints, the
extremum condition δ I = 0 implies eqn (5.66). The δ I here is the same as that derived
earlier and given in eqn (5.25). Using the assumed vanishing of the variation at the
end points to eliminate the integrated term, the assumed condition δ I = 0 becomes

0 = δ I =
∫ β2

β1

N∑
k=1

{
d

dβ

(
∂ f (x, ẋ)

∂ ẋk

)
− ∂ f (x, ẋ)

∂xk

}
δxk dβ =

∫ β2

β1

N∑
k=1

�kδxk dβ (5.72)

where the notational definition

�k = d

dβ

(
∂ f (x, ẋ)

∂ ẋk

)
− ∂ f (x, ẋ)

∂xk
(5.73)

has been introduced. If the variations δxk were all arbitrary and independent, as was
assumed in Section 5.5, then eqn (5.72) would have the immediate consequence that
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�k = 0 for all k. But eqn (5.71) shows that the bound variations are not independent.
Writing eqn (5.72) with separate sums over free and bound variables, substituting
eqn (5.71) to eliminate the dependent variations, and reordering some finite sums,
gives

0 = δ I =
∫ β2

β1

(N−C)∑
i=1

�iδx ( f )
i dβ +

∫ β2

β1

C∑
j=1

�(N−C+ j)δx (b)
(N−C+ j) dβ

=
∫ β2

β1

(N−C)∑
i=1

⎛⎝�i −
C∑

a=1

C∑
j=1

�(N−C+ j)g
(b)−1
ja gai

⎞⎠ δx ( f )
i dβ (5.74)

With the definition

λa =
C∑

j=1

�(N−C+ j)g
(b)−1
ja (5.75)

eqn (5.74) becomes

0 = δ I =
∫ β2

β1

(N−C)∑
i=1

(
�i −

C∑
a=1

λagai

)
δx ( f )

i dβ (5.76)

But the variations of the free variables δx ( f )
i for i = 1, . . . , (N − C) are independent.

The solution in eqn (5.71) satisfies the constraint equation, eqn (5.67), regardless of
the choices of the δx ( f )

i . Thus an argument similar to that in Section 5.5, with δx ( f )
i

set nonzero one at a time in eqn (5.76), shows that δ I = 0 implies

�i −
C∑

a=1

λagai = 0 (5.77)

for all i = 1, . . . , (N −C) and all values of β, which establishes eqn (5.66) for the free
variables.

To see that the eqn (5.66) also hold for the bound variables, write an expression
like eqn (5.77), but for the bound indices, and substitute eqn (5.75) for λa into it.
Thus, for all j = 1, . . . , C ,

�(N−C+ j) −
C∑

a=1

λaga(N−C+ j) = �(N−C+ j) −
C∑

a=1

λag(b)
aj

= �(N−C+ j) −
C∑

a=1

C∑
l=1

�(N−C+l)g
(b)−1
la g(b)

aj

= �(N−C+ j) −
C∑

l=1

�(N−C+l)δl j = 0 (5.78)

Thus eqn (5.66) holds for all values k = 1, . . . , N , as was to be proved.
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To prove the converse, that eqn (5.66) implies that δ I = 0, note that after the
constrained variations have been eliminated, the variation δ I is equal to the right
side of eqn (5.76). But eqn (5.66) implies that the integrand in this right side vanishes
identically. Thus δ I = 0, as was to be proved. �

5.10 An Example with Constraints
Suppose that we want to find the extremum path between two points on the surface
of a sphere. Such a path is called a geodesic. Using coordinates x1 = x , x2 = y, and
x3 = z, the integral to be extremized is

S =
∫ 2

1
ds =

∫ β2

β1

√
ẋ2 + ẏ2 + ż2 dβ (5.79)

and the constraint is
0 = G1 (x) =

√
x2 + y2 + z2 − a (5.80)

Using eqn (5.66) with

f (x, ẋ) =
√

ẋ2 + ẏ2 + ż2 (5.81)

the constrained Euler–Lagrange equations for k = 1, 2, 3 are

d

dβ

(
∂ f (x, ẋ)

∂ ẋ

)
− ∂ f (x, ẋ)

∂x
= λ1

∂G1 (x)

∂x
(5.82)

d

dβ

(
∂ f (x, ẋ)

∂ ẏ

)
− ∂ f (x, ẋ)

∂y
= λ1

∂G1 (x)

∂y
(5.83)

d

dβ

(
∂ f (x, ẋ)

∂ ż

)
− ∂ f (x, ẋ)

∂z
= λ1

∂G1 (x)

∂z
(5.84)

The three equations obtained by inserting eqns (5.80, 5.81) into these equations can
be combined into a single vector equation

d

dβ

(
1√

ẋ2 + ẏ2 + ż2

dr
dβ

)
= λ1

r
a

(5.85)

where the constraint was used after the partials were taken to replace
√

x2 + y2 + z2

by a.
If, as we did in Section 5.6, we now choose β to be the arc-length s measured

along the unvaried path starting at point 1, eqn (5.85) can be simplified further to
give

d t̂
ds

= λ1
r
a

(5.86)

where t̂ = dr/ds. Using Serret–Frenet methods from Section A.12, along with eqn
(5.80) in the vector form

√
r · r = a, eqn (5.86) can be used to prove that the geodesic

is a great circle, the intersection of the spherical surface with a plane passing through
the center of the sphere.
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5.11 Reduction of Degrees of Freedom

The method of Lagrange multipliers treated in Sections 5.9 and 5.10 has the advan-
tage that it treats all the coordinates symmetrically, which avoids upsetting the nat-
ural symmetry of the problem. For example, this allowed the three Euler–Lagrange
equations to be combined neatly into one vector expression, eqn (5.86).

However, in some problems the easiest method is simply to eliminate the con-
strained variables at the outset. Assume that the coordinates have been relabeled as
was done in the proof in Section 5.9, with free coordinates x ( f ) = x1, . . . , x(N−C)

and bound coordinates x (b) = x(N−C+1), . . . , xN . Then, by construction,
∣∣g (b)

∣∣ �= 0
where g (b) is the matrix defined in eqn (5.69). But, from Theorem D.26.1, this is the
necessary and sufficient condition for the constraint equations

0 = Ga (x) (5.87)

for a = 1, . . . , C , to be solved for the bound variables in terms of the free ones, with
the result for all j = 1, . . . , C ,

x (b)
(N−C+ j) = x (b)

(N−C+ j)

(
x ( f )

1 , . . . , x ( f )

(N−C)

)
= x (b)

(N−C+ j)

(
x ( f )

)
(5.88)

These equations can then be differentiated using the chain rule to obtain

ẋ (b)
(N−C+ j) =

dx (b)
(N−C+ j)

dβ
= ẋ (b)

(N−C+ j)

(
x ( f ), ẋ ( f )

)
(5.89)

These expressions for the bound variables and their derivatives can then be sub-
stituted into the integral in eqn (5.65) to eliminate the bound variables, giving

I =
∫ β2

β1

f̄
(

x ( f ), ẋ ( f )
)

dβ (5.90)

where
f̄
(

x ( f ), ẋ ( f )
)
= f

(
x ( f ), x (b)(x ( f )), ẋ ( f ), ẋ (b)(x ( f ), ẋ ( f ))

)
(5.91)

is obtained by writing f with the free and bound variables listed separately as
f = f

(
x ( f ), x (b), ẋ ( f ), ẋ (b)

)
and then substituting eqns (5.88, 5.89) for the bound

ones.
Now, eqn (5.90) can be taken as the start of a new problem with no constraints,

which can be solved by the methods of Section 5.5.34 Thus, the extremum condition
is just eqn (5.27) with f replaced by f̄ and the number of variables reduced from N

34The redundancy of the Euler–Lagrange equations proved in Theorem 5.7.3 will still apply to this new
problem. If constraints have reduced the number of Euler–Lagrange equations from N to N−C , then under
the conditions of that Theorem, satisfaction of N − C − 1 of them will imply satisfaction of the remaining
one.
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to (N − C). Thus, for k = 1, . . . , (N − C),

d

dβ

(
f̄
(
x ( f ), ẋ ( f )

)
∂ ẋk

)
− ∂ f̄

(
x ( f ), ẋ ( f )

)
∂xk

= 0 (5.92)

Whether this reduction method is superior to the Lagrange multiplier method of
Section 5.9 depends somewhat on the choice of the original coordinates before the
reduction is done. If original coordinates are chosen that reflect the symmetry of the
constraints, the reduction method is often quite simple. In the next two sections we
give two examples of the reduction method, the first with a nonoptimal choice of
original coordinates, and the second with a better choice.

The use of holonomic constraints to reduce the number of dimensions of an ex-
tremum problem is quite straightforward. We have simply solved for the bound coor-
dinates and eliminated them from the integral whose extremum path is to be found.
This simplicity contrasts to the similar problem in Section 3.8, where we had the
additional difficulty of accounting for the forces of constraint.

5.12 Example of a Reduction
Consider again the problem of finding the geodesics on a sphere of radius a, using
the same Cartesian coordinates as in Section 5.10. Then, restricting our attention to
paths entirely on the upper hemisphere, the constraint equation

0 = G1 (x) =
√

x2 + y2 + z2 − a (5.93)

can be solved for the bound variable x (b)
3 = z in terms of the free ones x ( f )

1 = x and
x ( f )

2 = y,

z =
√

a2 − x2 − y2 (5.94)

Substituting this equation and its derivative into f (x, ẋ) = √
ẋ2 + ẏ2 + ż2 from eqn

(5.81) gives

f̄
(

x ( f ), ẋ ( f )
)
=

(
ẋ2 + ẏ2 + (x ẋ + y ẏ)2

a2 − x2 − y2

)1/2

(5.95)

from which we obtain the two reduced Euler–Lagrange equations for the free vari-
ables with k = 1, 2

d

dβ

(
∂ f̄

(
x ( f ), ẋ ( f )

)
∂ ẋ

)
− ∂ f̄

(
x ( f ), ẋ ( f )

)
∂x

= 0 (5.96)

d

dβ

(
∂ f̄

(
x ( f ), ẋ ( f )

)
∂ ẏ

)
− ∂ f̄

(
x ( f ), ẋ ( f )

)
∂y

= 0 (5.97)

which may be solved for the extremum path.
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5.13 Example of a Better Reduction
In Section 5.12, we used the constraint to eliminate the z variable. It is often much
simpler to take the preliminary step of choosing a set of coordinates appropriate to
the symmetries of the constraints, and then eliminate one of the variables.

Let us return again to the problem of the extremum path on the surface of a
sphere, but now using the coordinates x ( f )

1 = θ , x ( f )

2 = φ, and x (b)
3 = r where r, θ, φ

are spherical polar coordinates. These coordinates are more appropriate for the spher-
ical constraint. Then

S =
∫ 2

1
ds =

∫ β2

β1

√
ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2 dβ (5.98)

Due to the clever choice of coordinates, the constraint is reduced to a function of
one variable only. Moreover, it can be solved to give the actual value of r , not just its
expression in terms of the other variables,

0 = G1 (x) = r − a (5.99)

Putting the constrained values r = a and ṙ = 0 into

f (x, ẋ) =
√

ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2 (5.100)

gives the reduced function

f̄
(

x ( f ), ẋ ( f ), β
)
=

√
a2θ̇2 + a2 sin2 θ φ̇2 (5.101)

and hence the two reduced Euler–Lagrange equations

d

dβ

(
∂ f̄

(
x ( f ), ẋ ( f )

)
∂θ̇

)
− ∂ f̄

(
x ( f ), ẋ ( f )

)
∂θ

= 0 (5.102)

d

dβ

(
∂ f̄

(
x ( f ), ẋ ( f )

)
∂φ̇

)
− ∂ f̄

(
x ( f ), ẋ ( f )

)
∂φ

= 0 (5.103)

which may be solved for the extremum path.

5.14 The Coordinate Parametric Method
In the general parametric method presented in this chapter, the integration parameter
β in the line integrals is left unspecified until the end of the calculation, when it is
selected to make the Euler–Lagrange equations as simple and transparent as possible.
Some other textbooks, particularly undergraduate ones, instead choose a particular
one of the variables as the integration parameter, and do so at the beginning of the
calculation rather than at the end. Let us call this use of one of the coordinates as the
integration parameter the coordinate parametric method.
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Since the reader is likely to have studied the calculus of variations from those
texts at some point, and since the traditional form of Hamilton’s Principle presented
in Chapter 6 closely resembles the coordinate parametric method, it will be useful to
state and prove the Euler–Lagrange equations for that method.

Suppose that, after rearranging the coordinates if necessary, we denote the coor-
dinate selected to be the integration parameter in the coordinate parametric method
by x1. Derivatives of the other coordinates with respect to x1 will be denoted by x ′k so
that x ′k = dxk/dx1. The integral to be extremized in the coordinate parametric method
may then be written as

I =
∫ x (2)

1

x (1)
1

g(x, x ′[1]) dx1 (5.104)

where x2, . . . , xN are the remaining variables and x ′[1] = x ′2, . . . , x ′N are their deriva-
tives with respect to x1. (Here x stands for all of the variables, x1, . . . , xN , and x[1]
stands for all of the variables except x1.)

Theorem 5.14.1: Coordinate Euler–Lagrange Theorem
Assume that the variable x1 chosen to be the integration parameter of the coordinate
parametric method varies monotonically along the unvaried path. Then the first-order
variation of eqn (5.104) vanishes, δ I = 0, for arbitrary variations of the x2, . . . , xN

variables with fixed end points (and no variation of x1 itself), if and only if the unvaried
path xk = xk(x1) is a solution to the Euler–Lagrange equations

d

dx1

(
∂g(x, x ′[1])

∂x ′k

)
− ∂g(x, x ′[1])

∂xk
= 0 (5.105)

for k = 2, . . . , N .

Proof: The condition that x1 must vary monotonically is essential. For if x1 were
to be constant along some region of the unvaried path while other coordinates var-
ied, the derivatives x ′k = dxk/dx1 would be infinite and the method would fail. The
present theorem can be proved by setting β = x1 and g = f in Theorem 5.5.1. The
only difficulty is that β does not appear explicitly in f (x, ẋ), whereas x1 does appear
in g(x, x ′[1]). But a close inspection of the proof of Theorem 5.5.1 reveals that the
presence of β in f would not invalidate the theorem. �

The coordinate parametric method may also be used for problems with constraints.

Theorem 5.14.2: Coordinate Method with Constraints
Assume that the variable x1 chosen to be the integration parameter of the coordinate
parametric method varies monotonically along the unvaried path. Suppose that the vari-
ations are arbitrary except for the constraints, for a = 1, . . . , C ,

Ga(x) = 0 (5.106)

Then, again with fixed end points, the first-order variation of eqn (5.104) vanishes, δ I =
0, if and only if the chosen unvaried path xk = xk(x1) is a solution to the Euler–Lagrange
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equations

d

dx1

(
∂g(x, x ′[1])

∂x ′k

)
− ∂g(x, x ′[1])

∂xk
=

C∑
a=1

λa
∂Ga (x)

∂xk
(5.107)

for k = 2, . . . , N .

Proof: As noted in the previous theorem, the condition that x1 must vary monotoni-
cally is essential. To prove the present theorem, set β = x1, f = g in Theorem 5.9.1.
The only difficulty is that x1 appears explicitly in g(x, x ′[1]) and G (x) but β does not
appear explicitly in the f (x, ẋ) and G(x) of Theorem 5.9.1. But examination will re-
veal that the proof of Theorem 5.9.1 remains valid even with a explicit dependence
of these quantities on β. �

One problem with the coordinate parametric method is that we have N coordi-
nates x1, . . . , xN but only N − 1 Euler–Lagrange equations. Compared to the general
parametric method in which there is an Euler–Lagrange equation for each coordinate,
the Euler–Lagrange equation involving partial derivatives with respect to x1 has got-
ten lost. This lost equation can be recovered by what is often called the second form
of the Euler–Lagrange equations.

Theorem 5.14.3: Second Form of Euler–Lagrange Equations
The lost Euler–Lagrange equation in the coordinate parametric method may be recovered
by defining the second form h as

h =
N∑

k=2

x ′k
∂g(x, x ′[1])

∂x ′k
− g(x, x ′[1]) (5.108)

The lost Euler–Lagrange equation is then

dh

dx1
= −∂g(x, x ′[1])

∂x1
+

C∑
a=1

λa
∂Ga (x)

∂x1
(5.109)

In problems with no constraints, or in which the constrained variables have been elimi-
nated, the last term on the right will be absent.

Proof: The proof closely parallels the proofs of the generalized energy theorems in
Sections 2.15 and 3.13, with the substitutions h → H , x1 → t , and x[1] → q, and will
not be repeated here. �

We note finally that any problem stated in the coordinate parametric form can be
converted to general parametric form. Introducing the general monotonic parameter
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β and writing dx1 = ẋ1dβ and x ′k = ẋk/ẋ1, the integral in eqn (5.104) may be written

I =
∫ x (2)

1

x (1)
1

g(x, x ′[1]) dx1 =
∫ β2

β1

g

(
x,

(
ẋ[1]
ẋ1

))
ẋ1dβ =

∫ β2

β1

f (x, ẋ) dβ (5.110)

where

f (x, ẋ) = ẋ1 g

(
x,

(
ẋ[1]
ẋ1

))
(5.111)

is the integrand for use in the general parametric method. There will now be N Euler–
Lagrange equations, one for each coordinate. The lost equation that was recovered
by the second form in Theorem 5.14.3 will be just another of the Euler–Lagrange
equations of the general parametric method, and the second form will no longer be
necessary.

5.15 Comparison of the Methods

Perhaps the clearest way to contrast the two methods is to re-do the example in
Section 5.6, but now using the coordinate parametric method. Selecting x to be the
integration parameter, the integral for the optical path length becomes

O =
∫ x (2)

x (1)

n (x, y, z)
√

1 + y′2 + z′2 dx (5.112)

where now y′ = dy/dx and z′ = dz/dx . In terms of the definitions in Section 5.14,
x1 = x , x[1] = y, z, and

g(x, x ′[1]) = g
(
x, y, z, y′, z′

) = n (x, y, z)
√

1 + y′2 + z′2 (5.113)

Equation (5.105) of Theorem 5.14.1 gives the two Euler–Lagrange equations

d

dx

(
∂g

(
x, y, z, y′, z′

)
∂y′

)
− ∂g

(
x, y, z, y′, z′

)
∂y

= 0 (5.114)

d

dx

(
∂g

(
x, y, z, y′, z′

)
∂z′

)
− ∂g

(
x, y, z, y′, z′

)
∂z

= 0 (5.115)

Using eqn (5.113), these two equations reduce to

d

dx

(
y′ n(x, y, z)√
1 + y′2 + z′2

)
−

√
1 + y′2 + z′2 ∂n(x, y, z)

∂y
= 0 (5.116)

d

dx

(
z′ n(x, y, z)√
1 + y′2 + z′2

)
−

√
1 + y′2 + z′2 ∂n(x, y, z)

∂z
= 0 (5.117)
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The lost third equation can be recovered by using the second form derived in Theorem
5.14.3. It is

h = y′
∂g

(
x, y, z, y′, z′

)
∂y′

+ z′
∂g

(
x, y, z, y′, z′

)
∂z′

− g
(
x, y, z, y′, z′

) = n(x, y, z)√
1 + y′2 + z′2

(5.118)
and eqn (5.109) becomes

d

dx

(
n(x, y, z)√

1 + y′2 + z′2

)
−

√
1 + y′2 + z′2 ∂n(x, y, z)

∂x
= 0 (5.119)

which is the lost equation, equivalent to eqn (5.39) of the general parametric method.
Some extra work would now be required to cast these three equations into a simple
vector form, as was done with the general parametric method in eqn (5.44) of Section
5.6

Many readers will have learned the calculus of variations using the coordinate
parametric method. The present text is urging you to use the general parametric
method instead. As you decide which method to adopt, in a particular problem or in
your general perception of the calculus of variations, the following points should be
considered:

1. As seen in the example in this section, the coordinate parametric method loses
one Euler–Lagrange equation. Since Theorem 5.7.3 proves the Euler–Lagrange
equations redundant, the solution path can still be found. But it is not always
obvious at the start of a problem which one of the Euler–Lagrange equations
one wishes to lose. It may turn out that the Euler–Lagrange equation lost as a
result of your choice of the corresponding coordinate as integration parameter
was actually the simplest one to solve.

2. The lost Euler–Lagrange equation in the coordinate method can always be re-
covered using the so-called second form of the Euler–Lagrange equations. But
this requires more calculation. It seems preferable to use the general parametric
method in which all of the available equations are present from the start. Rather
than recovering information, it seems best not to lose it in the first place.

3. The coordinate method will fail when the coordinate chosen as the integration
parameter happens to remain constant for a section of the path. But it is not
always obvious in advance which coordinate can be trusted to vary monoton-
ically. For example, if the problem were to find the geodesic on the surface of
a paraboloid of revolution oriented with its symmetry axis along ê3, and if the
cylindrical polar coordinate φ had been chosen as the integration parameter,
it would be impossible to use the Euler–Lagrange equations of the coordinate
parametric method to test whether the line φ = constant is a geodesic (which it
is; see Exercise 5.3).

4. As seen in the example in this section, the premature choice of some variable
like x as the integration parameter often destroys the symmetry of the Euler–
Lagrange equations among the variables, and so makes it more difficult to put
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the resulting differential equations into a simple form. The general parametric
method, however, retains whatever symmetry the problem possesses.

5. Keeping β undetermined until after the partial derivatives are taken and the
Euler–Lagrange equations are written out gives one maximum flexibility in solv-
ing the resulting differential equations. For example, we made different choices
above: In Section 5.6, we chose β = s, the arc length along the solution path,
and in Section 5.8, we chose β = θ , the parameter of the cycloid solution.

5.16 Exercises
Exercise 5.1 Use the calculus of variations to solve the brachistochrone problem.

(a) Verify the details of the example in Section 5.8, including the derivation of eqns (5.61,
5.62).
(b) Carry out the demonstration that eqn (5.57) define the extremum path for the wire.

Exercise 5.2 Use the calculus of variations to find the extremum distance between two points
on the surface of a sphere of radius a.

(a) First do this problem entirely in Cartesian coordinates, with Lagrange multipliers as re-
quired. Show that the three eqns (5.82, 5.83, 5.84) really do lead to eqn (5.85). Show how the
choice β = s transforms eqn (5.85) into eqn (5.86). Use the Serret–Frenet methods of Section
A.12 to prove that the extremum path is the intersection of the sphere’s surface with a plane
passing through its center, i.e., a great circle.
(b) Now do the problem again, but this time use spherical polar coordinates and a reduced
f as outlined in Section 5.13. Choosing the ê3 axis to pass through the initial point of your
extremum line, show that this line is indeed a great circle.
(c) Are the solutions to your differential equations necessarily the minimum distances be-
tween the two end points? Or could they be maximum distances?

Exercise 5.3 The general parametric method may be used to find geodesics on the surface of
a paraboloid of revolution defined in terms of cylindrical coordinates ρ, φ, z by the equation
z = aρ2.

(a) Set up the integral to be minimized, using cylindrical polar coordinates.
(b) Eliminate the z variable and write the reduced integrand f̄ (ρ, φ, ρ̇, φ̇) and the two asso-
ciated Euler–Lagrange equations.
(c) Consider the path: ρ = ρ(1) with φ varying, where ρ(1) is a constant. Show that this path
satisfies the Euler–Lagrange equation for φ but not the one for ρ and hence is not a geodesic.
(d) Explain how this result is consistent with the redundancy of the reduced Euler–Lagrange
equations proved in Theorem 5.7.3. Why does satisfaction of the φ equation not imply satis-
faction of the ρ equation?
(e) Consider the path: φ = φ(1) with ρ varying, where φ(1) is a constant. Show that this path
is a geodesic.

Exercise 5.4
(a) Using the result of Exercise 5.2, or otherwise, show that the shortest line of constant
latitude on the surface of the Earth (horizontal line on a Mercator projection map) is generally
not the shortest path between its two end points.
(b) What line would be the exception to this rule?
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h

x

y

z

x ′

y′

(a) (b)

h

FIG. 5.4. Illustration for Exercise 5.5. The cone in (a) is cut along the x-z plane and flattened out
as shown in (b). A straight line drawn on the flattened surface becomes a curve when the cone is
reassembled.

Exercise 5.5 An inverted right-circular cone of half-angle α is placed with its apex at the
origin of coordinates and its symmetry axis along ê3.

(a) Use the calculus of variations to find the two differential equations describing the ex-
tremum path between two general points on the surface of this cone. [Note: For example, you
might use spherical polar coordinates with the constraint θ = α.]
(b) Suppose the cone to be cut along a line defined by the surface of the cone and the x-z
plane. The cut cone is then flattened out and a straight line is drawn on the flattened surface.
The cone is then reassembled. Use the Euler–Lagrange equations you found in part (a) to
determine if the line you drew (now a curve, of course) is an extremum path on the surface of
the cone.

Exercise 5.6 A right-circular cylinder of top radius a is oriented with its symmetry axis along
ê3.

(a) Use the calculus of variations and cylindrical polar coordinates to find the two differential
equations describing the extremum path between two general points on the surface of the
cylinder.
(b) Choose β equal to s, the arc length along the curve, and solve for φ and z as functions
of s.
(c) Suppose the cylinder surface to be cut along a line parallel to its symmetry axis, and the
cut surface then flattened out onto a table. Draw a diagonal line on that flattened surface and
then re-assemble the cylinder. Determine if the line you drew (now a curve, of course) is an
extremum path on the surface of the cylinder.

Exercise 5.7
(a) Use the methods in Section 5.6 to show that the extremum (in this case, actually a mini-
mum) distance between two points in a plane is a straight line.
(b) Surfaces that can be defined by the continuous motion of a rigid line are called devel-
opable surfaces. They have the property that, with suitable cuts, they can be flattened out
onto a plane surface without stretching or tearing them. (The cone in Exercise 5.5 and the
cylinder in Exercise 5.6 are examples.) Give an argument showing that all developable sur-
faces have the property that a straight line drawn on their flattened surfaces will be a geodesic
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on the re-assembled curved surfaces. [Hint: Imagine the surface to have a regular arrange-
ment of atoms, with separation � in the surface that will not change when they are flattened
or re-assembled.]

y

m

ȳ

x

x̄

FIG. 5.5. Illustration for Exercise 5.8, Huygens’ Isochronous Pendulum.

Exercise 5.8 Huygens’ Isochronous Pendulum. A mass m hangs from a massless string of
fixed length that swings between two metal sheaves bent into the shape of a cycloid whose
formula is given in eqn (5.57), as shown. The straight part of the string is always tangent to
the cycloid sheave at the point of last contact.

(a) If the string has length � = 4a, show that the path of the mass m is the same cycloid as
eqn (5.57), but expressed in terms of displaced coordinates x̄ = x+aπ and ȳ = y−2a. (The
evolute of a cycloid is a cycloid.)
(b) Determine the period of oscillation of the mass, and show that it is independent of the
amplitude of the pendulum’s swing.

x

y

r

R⊕
r(1)

r(2)

FIG. 5.6. Illustration for Exercise 5.9. The train enters the tunnel at r(1) : (R⊕, 0, 0) and the tunnel
ends at r(2) : (x(2), y(2), 0).

Exercise 5.9 Suppose that a rail car moves without friction through a tunnel burrowed into
the Earth. It starts from rest, and moves entirely under the influence of the nonuniform grav-
itational field inside the Earth, assumed here to be a sphere of uniform density with gravi-
tational potential 
 = M⊕G

(
r2 − 3R2⊕

)
/2R3⊕, where G is the gravitational constant, M⊕

is the mass of the Earth, and R⊕ is its radius. Ignore the rotation of the Earth. Assume that
the tunnel lies entirely in the x-y plane where the origin of coordinates is at the center of the
Earth and ê1 points directly toward the point of entry.

(a) Using the general parametric method, write the Euler–Lagrange equations for the path
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that extremizes the transit time T from the entry point to the point (x (2), y(2), 0).
(b) By choosing β = η after the Euler–Lagrange equations are written, show that the solution
to these equations is, for suitable choice of R, a, given by

x = (R − a) cos η + a cos

(
R − a

a
η

)
y = (R − a) sin η − a sin

(
R − a

a
η

)
(5.120)

which are the equations of a hypocycloid, the line traced out by a point on the circumference
of a circle of radius a that is rolling without slipping along the inside of a circle of radius
R > a. The parameter η here is the plane-polar angle of the center of the rolling circle.
(c) Suppose that the far end of the extremum tunnel is back at the surface of the Earth. If D is
the distance along the surface of the Earth between entry and exit points, what is the greatest
depth reached by the tunnel? How long did the trip take?
(d) Now rewrite the Euler–Lagrange equations with the choice β = s, the arc length along
the unvaried path. Write them as a single vector equation, using the notation of the Serret–
Frenet theory of Section A.12. Taking r‖ and r⊥ to be the resolution of the radius vector r
into vectors parallel and perpendicular to the unit tangent vector t̂, write d t̂/ds in terms of
r⊥, R⊕, x, y, z only, where R⊕ is the radius of the Earth.
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HAMILTON’S PRINCIPLE

The general calculus of variations developed in Chapter 5 may be used to derive vari-
ational principles in mechanics. Two different, but closely related, variational princi-
ples are presented here: Hamilton’s Principle and the phase-space Hamilton’s Princi-
ple. One acts in the space of Lagrangian variables q, q̇, t and the other in Hamiltonian
phase space q, p, t .

Some authors believe that variational principles are the foundations of physics. For
example, the classic analytical mechanics text of Landau and Lifshitz (1976) writes
an action function on page two, and derives the whole of mechanics from it, includ-
ing Newton’s laws. Whether this is a fair judgement or not, it is certainly true that
variational principles play a crucial role in quantum theory, general relativity, and
theoretical physics in general.

6.1 Hamilton’s Principle in Lagrangian Form

We now revert to the mechanics notation and denote dqk/dt by q̇k . This is a change
from the notation of Chapter 5 where dxk/dβ was denoted by ẋk .

If we identify x1 with the time t , identify x[1] with the Lagrangian generalized
coordinates q, and restrict ourselves to cases in which no constraints are present,
the unconstrained Euler–Lagrange equations of the coordinate parametric variational
method in Section 5.14 become

d

dt

(
∂g(t, q, q̇)

∂ q̇k

)
− ∂g(t, q, q̇)

∂qk
= 0 (6.1)

for k = 1, . . . , D. These equations are remarkably similar in form to the Lagrange
equations of mechanics derived in Section 2.9 for the case with no constraints and all
forces derived from a potential,

d

dt

(
∂L (q, q̇, t)

∂ q̇k

)
− ∂L (q, q̇, t)

∂qk
= 0 (6.2)

That similarity underlies Hamilton’s Principle.35

35This similarity is so striking that it seems surprising that Hamilton’s Principle was not stated clearly
until the middle of the nineteenth century. One possible reason is the authority of Maupertuis, who insisted
on theological grounds that the system trajectory must be a true minimum of some quantity, since a wise
God would not waste means. See the discussion in Chapter 3 of Yourgrau and Mandelstam (1968).

117



118 HAMILTON’S PRINCIPLE

Equation (6.1) is the condition for the extremum of the line integral of the coor-
dinate parametric method, eqn (5.104). With the above substitutions, it becomes

I =
∫ t (2)

t (1)

g(t, q, q̇) dt (6.3)

Since eqns (6.1, 6.2) differ only by the appearance of either g(t, q, q̇) or L (q, q̇, t) in
them, this suggests that the Lagrange equations of mechanics can be derived from a
variational principle that seeks to extremize the integral

I =
∫ t (2)

t (1)

L (q, q̇, t) dt (6.4)

In mechanics, this integral is called the Action Integral, or more simply, the Action. The
Hamilton’s Principle states that the natural path of system motion makes the action
integral an extremum.

Theorem 6.1.1: Hamilton’s Principle
With I defined as in eqn (6.4), and assuming variations that vanish at the end points, the
first-order variation δ I vanishes for arbitrary δqk if and only if the qk (t) of the unvaried
path are a solution to the Lagrange equations with Q(NP)

k = 0. Thus the extremum
condition δ I = 0 holds if and only if, for all k = 1, . . . , D,

d

dt

(
∂L (q, q̇, t)

∂ q̇k

)
− ∂L (q, q̇, t)

∂qk
= 0 (6.5)

Proof: With the substitutions listed above, the integral in eqn (5.104) becomes iden-
tical to eqn (6.4). With those same substitutions, the Euler–Lagrange equations, eqn
(5.105), become identical to eqn (6.5). Theorem 5.14.1 thus proves the present theo-
rem. �

The path in configuration space that is a solution to the Lagrange equations is of-
ten referred to as the classical path. This is the path of natural motion of a mechanical
system as it responds to the forces included in the potential part of the Lagrangian.
Thus we can say that δ I = 0 for variations about a chosen unvaried path if and only
if that chosen path is the classical path. Notice that many different unvaried paths
could be chosen, but that the condition δ I = 0 happens only for variations about the
classical path. Fortunately, that classical path can be found by a procedure better than
simple trial and error. It is found by solving the Lagrange equations.

6.2 Hamilton’s Principle with Constraints

If we make the same substitutions as in Section 6.1, the constrained form of the
coordinate parametric variational method derived in Theorem 5.14.2 implies a con-
strained form of Hamilton’s Principle.
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Theorem 6.2.1: Hamilton’s Principle with Constraints
With I defined as in eqn (6.4), consider variations that vanish at the end points but are
otherwise arbitrary, except for the C independent holonomic constraints given by eqn
(3.1),

0 = Ga (q, t) (6.6)

for a = 1, . . . , C . Then δ I = 0 if and only if the qk (t) of the chosen path are a solution
to the equations

d

dt

(
∂L (q, q̇, t)

∂ q̇k

)
− ∂L (q, q̇, t)

∂qk
=

C∑
a=1

λa
∂Ga (q, t)

∂qk
(6.7)

for k = 1, . . . , D. Equation (6.7) is the correct equation of motion of the mechanical
system if and only if the forces of constraint do no virtual work.

Proof: With the same substitutions as above in Section 6.1, Theorem 5.14.2 estab-
lishes that δ I = 0 and the conditions in eqn (6.6) do imply eqn (6.7). And Theorem
3.5.1 establishes that eqn (6.7) is the correct equation of motion if and only if the
forces of constraint do no virtual work. �

The quantities λa , which are called Lagrange multipliers in the calculus of varia-
tions, have a special interpretation in the mechanical problem. They are related to the
forces of constraint and may be used, as in eqn (3.14), to derive those forces. Needless
to say, this interpretation of the λa does not apply when the calculus of variations is
used for nonmechanical problems.

6.3 Comments on Hamilton’s Principle

We proved in Chapter 2 that the Lagrange equations hold if and only if each point
mass of the mechanical system obeys Newton’s second law. Thus the Lagrange equa-
tions are equivalent to the second law. In Theorem 6.1.1 we have proved that, when
all forces are derived from a potential, δ I = 0 if and only if the Lagrange equations are
satisfied. Thus, the chain of logic has established, at least when no constraint or other
non-potential forces are present, that Hamilton’s Principle is equivalent to Newton’s
second law,

Second Law ⇐⇒ Lagrange Equations ⇐⇒ Hamilton′s Principle

But the equivalence of Hamilton’s Principle to Newton’s second law is established
only for the case when all forces are derived from a potential. If constraint forces
are present in a mechanical system, this equivalence breaks down. Then Hamilton’s
Principle is equivalent to Newton’s second law only in the idealized case in which the
constraint forces do no virtual work. Hamilton’s Principle always implies eqn (6.7),
but that equation is incorrect when the constraint forces have friction and hence
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do virtual work. If the forces of constraint do virtual work, the correct equations of
motion would be something like

d

dt

(
∂L (q, q̇, t)

∂ q̇k

)
− ∂L (q, q̇, t)

∂qk
= Q(frict)

k +
C∑

a=1

λa
∂Ga (q, t)

∂qk
(6.8)

where the Q(frict)
k are the generalized forces of the friction.

Note to the Reader: If the forces of constraint in a mechanical system happen
to have friction, and hence do virtual work, then eqn (6.7) will not be the correct
equation of motion of the system. However, Hamilton’s Principle in the form of
the variational hypothesis in Theorem 6.2.1 would still imply eqn (6.7). Thus it is
possible for an incorrect equation to be derived from a variational method.

Variational principles give an elegant way to express the results of mechanics. But one
must realize that the calculus of variations is just a language, and like all languages
can be used to make both true and false statements.

Hamilton’s Principle in Section 6.1 is analogous to the form of the calculus of
variations called the “coordinate parametric method,” and described in Section 5.14.
In that coordinate parametric method, some coordinate x1 is prematurely removed
from the list of varied coordinates and is made to play the role of integration variable.
As seen in Section 6.1, the variable t = x1 plays that role in Hamilton’s Principle. As
a result, Lagrangian mechanics does indeed require a “second form of the Euler–
Lagrange equations” in analogy to that discussed in Theorem 5.14.3. That second
form is just the generalized energy theorem Ḣ = −∂L (q, q̇, t) /∂t , which was derived
in Section 2.15.

But Section 5.15 argued that the general parametric method is simpler and more
complete than the coordinate parametric method. In the general parametric method,
the coordinate t would be restored to its proper place as a generalized coordinate and
the generalized energy theorem (the second form) would be restored to its proper
place as just another Lagrange equation. The problem of restoring the apparently lost
symmetry of Lagrangian mechanics, by treating t properly as a coordinate rather than
as a parameter, is discussed in Part II of the book. Hamilton’s Principle with time as a
coordinate is treated in Chapter 13.

6.4 Phase-Space Hamilton’s Principle

As stated in Chapter 4 on the Hamilton equations, the usefulness of phase space in
more advanced analytical mechanics depends on the equal treatment of the canonical
coordinates and momenta. To that end, we now use the calculus of variations to derive
a phase-space form of Hamilton’s Principle.

To begin, the action function defined in eqn (6.4) can be rewritten as a line integral
involving the Hamiltonian. Solving eqn (4.14) for L, and introducing phase-space
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variables, gives

I =
∫ t (2)

t (1)

Ldt =
∫ t (2)

t (1)

(
D∑

k=1

pkq̇k − H(q, p, t)

)
dt (6.9)

The first-order variation of the line integral in eqn (6.9) may now be taken, using
the definitions of variations of a function and an integral from Sections 5.3 and 5.4.
The result will be

δ I =
∫ t (2)

t (1)

(
D∑

k=1

(pkδq̇k + q̇kδpk)− δH(q, p, t)

)
dt

=
D∑

k=1

(pk δqk)

∣∣∣t (2)

t (1)
+

∫ t (2)

t (1)

D∑
k=1

{(
q̇k − ∂ H (q, p, t)

∂pk

)
δpk −

(
ṗk + ∂ H (q, p, t)

∂qk

)
δqk

}
dt

(6.10)

where an integration by parts has been done.
Before proceeding to state a phase-space Hamilton’s Principle, we must first dis-

cuss the meaning to be given to variations δpk of the canonical momenta in eqn
(6.10). In Lagrangian mechanics, the generalized momenta pk = pk(q, q̇, t) are func-
tions of the Lagrangian variables q, q̇, t and hence δpk would be calculated using eqn
(5.16). The result would be

δpk =
D∑

k=1

(
∂pk(q, q̇, t)

∂qk
δqk + ∂pk(q, q̇, t)

∂ q̇k
δq̇k

)
(6.11)

which would make the variation δpk depend on δqk and its time derivative and hence
not be an independent variation.

But we want a phase-space Hamilton’s Principle that treats the coordinates and
momenta equally. Thus both δqk and δpk should be treated as independent variations,
unrelated to each other. Therefore, we temporarily forget both the equation pk =
pk(q, q̇, t) and its inverse q̇k = q̇k(q, p, t). (As we will see, these relations will be
recovered at the end of the calculation.) Thus eqn (6.10) will be considered as an
expression involving two equally unknown sets of functions q and p. Equation (6.11)
will therefore no longer hold. The variations of qkand pk will now be defined by the
two equations, both holding for k = 1, . . . , D,

qk(t, δa) = qk(t)+ δa ηk(t) (6.12)

pk(t, δa) = pk(t)+ δa χk(t) (6.13)

where the shape functions ηk and χk are considered to be arbitrary and independent
of one another. Since we wanted both q and p to be considered simply as coordinates
of phase space, we have applied the definition of variation of coordinates from Section
5.2 to both q and p. Then, as in that section, the variations δqk = δa ηk and δpk = δa χk

will all be arbitrary and independent.
We may now state the phase-space form of Hamilton’s Principle.
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Theorem 6.4.1: Phase-Space Hamilton’s Principle
With F defined to be the integrand of eqn (6.9),

F(q, p, q̇, ṗ, t) =
D∑

k=1

pkq̇k − H(q, p, t) (6.14)

the action integral

I =
∫ t (2)

t (1)

Ldt =
∫ t (2)

t (1)

F(q, p, q̇, ṗ, t)dt (6.15)

will be an extremum, δ I = 0, for variations δq and δp that are arbitrary except for the
requirement that they vanish at the end points t (1) and t (2), if and only if the Hamilton
equations

q̇k = ∂ H(q, p, t)

∂pk
ṗk = −∂ H(q, p, t)

∂qk
(6.16)

hold on the unvaried path.

Proof: Since δqk vanishes at t (1) and t (2) by assumption, the integrated term vanishes
and eqn (6.10) becomes

δ I =
∫ t (2)

t (1)

D∑
k=1

{(
q̇k − ∂ H (q, p, t)

∂pk

)
δpk −

(
ṗk + ∂ H (q, p, t)

∂qk

)
δqk

}
dt (6.17)

Since both δq and δp are now arbitrary and independent, they may be set nonzero
one at a time. Hence δ I = 0 if and only if 6.16 hold, as was to be proved.36 �

Notice that the first Hamilton equation gives q̇k = q̇k(q, p, t) as an equation of
motion. Thus the relation between p and q̇ is recovered. The difference between the
Hamiltonian and Lagrangian approaches is that in Lagrangian theory the relation
q̇k = q̇k(q, p, t) is an identity, true both on the unvaried and on all varied paths. But
in the phase-space form of Hamilton’s Principle, that relation is an equation of motion
that is true only on the classical path. It is part of the definition of the classical path.

6.5 Exercises
Exercise 6.1 This exercise gives an alternate proof of Theorem 6.4.1, using Theorem 5.14.1.

(a) With the substitutions x[1] = q1, . . . , qD,p1, . . . , pD and x1 = t , show that the Euler–
Lagrange equations in eqn (5.105) become, for k = 1, . . . , D,

d

dt

(
∂ F(q, p, q̇, ṗ, t)

∂ q̇k

)
− ∂ F(q, p, q̇, ṗ, t)

∂qk
= 0 (6.18)

d

dt

(
∂ F(q, p, q̇, ṗ, t)

∂ ṗk

)
− ∂ F(q, p, q̇, ṗ, t)

∂pk
= 0 (6.19)

(b) With F given by eqn (6.14), show that these Euler–Lagrange equations imply the Hamil-
ton equations, eqn (6.16).

36See the proof of the Euler–Lagrange theorem, Theorem 5.5.1, for more detail about setting arbitrary
variations nonzero one at a time.
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LINEAR OPERATORS AND DYADICS

Linear vector functions of vectors, and the related dyadic notation, are important in
the study of rigid body motion and the covariant formulations of relativistic mechan-
ics. In this chapter we introduce these topics and present methods which we will need
later.

Linear vector functions of vectors have a rich structure, with up to nine indepen-
dent parameters needed to characterize them, and vector outputs that need not even
have the same directions as the vector inputs. The subject of linear vector operators
merits a chapter to itself not only for its importance in analytical mechanics, but also
because study of it will help the reader to master the operator formalism of quantum
mechanics.

7.1 Definition of Operators
It seems easiest to write linear vector functions of vectors using the operator notation
familiar from quantum mechanics, but perfectly applicable here as well. To say that
some function maps vector A into vector B we could write B = �f (A), where �f denotes
the vector function. It is easier and clearer to write instead B = FA, with operator F
thought of as operating to the right on A and converting it into B. The linearity of F
is expressed by defining its operation on A = αV + βW, where α, β are scalars, to be

FA = F(αV + βW) = αFV + βFW (7.1)

Linearity says that the result of operating on sum A is the same as operating on each
of its terms and then doing the sum. Also, the scalar factors α, β may be applied either
before or after operation with F , giving the same result in either case. For example,
F(αV) = αFV.

Since operators are defined by their action on vectors, two operators are equal,
A = B, if and only if

AV = BV (7.2)

for any arbitrary vector V. For linear operators, this condition is equivalent to requir-
ing only that AVk = BVk for any three, non-coplanar vectors V1, V2, V3 since any
arbitrary vector V can be expressed as a sum of these three.

The null operator O and the identity (or unity) operator U are defined by OV = 0
and UV = V for any vector V, where we adopt the usual convention of denoting the
null vector 0 by the number 0. The null operator O is also usually denoted by just the
number 0. This notational sloppiness seems not to lead to problems in either case.

123
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Thus expressions like A = 0 are allowed, although A = 3 would be nonsense unless
intended to be an (even more sloppy) short form for A = 3U .

Linear operators can be added, subtracted, and multiplied by numbers. The defi-
nition is that

C = αA+ βB (7.3)

if and only if
CV = αAV + βBV (7.4)

for any arbitrary vector V. It follows from the properties of vector addition that addi-
tion of operators is commutative and associative,

A+ B = B +A and (A+ B)+ C = A+ (B + C) (7.5)

The multiplication of operators is defined to mean successive application. Thus

C = AB if and only if CV = A (BV) (7.6)

for any vector V. Operator B acts on V first, producing another vector BV. The oper-
ator A then acts on that vector to produce the final result. Operator multiplication is
associative,

(AB) C = A (BC) = ABC (7.7)

since all three expressions acting on an arbitrary V reduce to the same result
A (B (CV)).

However, operator multiplication is in general not commutative. In general
AB �= BA. The commutator of the two operators is another operator [A,B]c defined
by37

[A,B]c = AB − BA (7.8)

If [A,B]c = 0, where here we use the number 0 for the null operator as noted above,
then the two operators are said to commute. The commutator is anti-symmetric in the
exchange of its two operators, and hence any operator commutes with itself,

[B,A]c = − [A,B]c and [A,A]c = 0 (7.9)

The evaluation of commutators is aided by some easily proved algebraic rules. With
scalars β, γ , [

A, (βB + γ C)
]

c = β [A,B]c + γ [A, C]c (7.10)

[AB, C]c = A [B, C]c + [A, C]c B (7.11)

[F, [G,H]c]c + [H, [FG]c]c + [G, [H,F]c]c = 0 (7.12)

For every operator A there is another operator AT called its transpose, which is

37The subscript c is to distinguish the commutator of two operators from the similarly denoted Poisson
bracket defined in Section 4.6. The algebra of commutators resembles that of Poisson brackets, as may
be seen by comparing the identities in eqns (7.10 – 7.12) with those in eqns (4.55 – 4.57). The algebraic
similarity of commutators and Poisson brackets has important consequences in quantum mechanics, as
discussed in Section 12.13.
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defined by the condition that

(AV) · W = V ·ATW (7.13)

holds for any arbitrary vectors V, W.
It follows from this definition that

(
AT)T = A and that the transpose of a product

of operators is the product of the transposes, but in reverse order. To establish this
last result, note that eqns (7.6, 7.13) imply that

(ABV) · W = (A (BV)) · W = (BV) ·ATW = V · BTATW (7.14)

and hence, again using definition eqn (7.13), that

(AB)T = BTAT (7.15)

7.2 Operators and Matrices
We know that, once an orthonormal basis êi is chosen for a three-dimensional vector
space, a one-to-one relation can be established between vectors and the 3×1 matrices,
called column vectors, made up of the vector components in that basis,

V ⇐⇒ [V ] where [V ] =
⎛⎝ V1

V2

V3

⎞⎠ with Vi = êi · V (7.16)

for i = 1, 2, 3.
The relation is one-to-one because not only does every vector determine the its

components by the last of eqn (7.16), but also, given its components, any vector V
can be determined by writing it as

V =
3∑

j=1

Vj êj (7.17)

Thus two vectors are equal, with V = W, if and only if [V ] = [W ], or in component
form Vi = Wi for all i = 1, 2, 3.

Operators are similar to vectors in that, once an orthonormal basis is chosen, each
operator is associated uniquely with a matrix. But in the case of operators, the matrix
is a 3 × 3 square matrix with nine components.

Definition 7.2.1: Matrix Elements
Assuming that a basis êi has been chosen, there is a one-to-one relation between an
operator and its matrix in this basis given by the definition

F ⇐⇒ F where F =
⎛⎝ F11 F12 F13

F21 F22 F23

F31 F32 F33

⎞⎠ with Fi j = êi · F êj (7.18)

for i, j = 1, 2, 3. The nine numbers Fi j are called the matrix elements of operator F in
the êi basis.
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Just as its components in some basis determine a vector V, so the matrix in some
basis determines the operator. Imagine that the linear operator F operates on a vector
expanded as V = ∑3

j=1 Vj êj . Denote the result by W. Then

W = FV = F

⎛⎝ 3∑
j=1

Vj êj

⎞⎠ =
3∑

j=1

VjF êj (7.19)

where the linearity of operators from eqn (7.1) was used to derive the last equality.
Then the component Wi of vector W is

Wi =
(
êi · W

) = 3∑
j=1

Vj
(
êi · F êj

) = 3∑
j=1

Fi j Vj (7.20)

where eqn (7.18) was used to get the matrix elements Fi j . Equation (7.20) can be
written in matrix notation as⎛⎝ W1

W2

W3

⎞⎠ =
⎛⎝ F11 F12 F13

F21 F22 F23

F31 F32 F33

⎞⎠⎛⎝ V1

V2

V3

⎞⎠ or, more succinctly, [W ] = F [V ] (7.21)

where the 3×3 matrix is denoted by single letter F .
Thus, given any vector V, knowledge of the matrix elements Fi j will uniquely

determine the vector W. Since operators are defined by their action on vectors, this
defines F completely. Thus A = B if and only if A = B , or in component form
Ai j = Bi j for all i, j = 1, 2, 3.

The matrices corresponding to the null and unit operators are easily found from
eqn (7.18). They are the null and unity matrices, with Oi j = 0 and Ui j = δi j , respec-
tively, where δi j is the Kroeneker delta function. Thus

O ⇐⇒ O =
⎛⎝ 0 0 0

0 0 0
0 0 0

⎞⎠ U ⇐⇒ U =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠ (7.22)

The matrix A T corresponding to the transposed operator AT defined in eqn (7.13)
has the matrix elements AT

i j = Aji for all i, j = 1, 2, 3. To see this, replace V by êi and
W by êj in eqn (7.13), and use eqn (7.18). The matrix element AT

i j of matrix A T is
thus

AT
i j = êi ·ATêj =

(
Aêi

) · êj = êj ·
(
Aêi

) = Aji (7.23)

where the symmetry of dot products proved in Section A.2 has been used.
The result in eqn (7.23) corresponds exactly to the definition of the transpose of a

matrix in Section B.2. Also, eqn (B.24) shows that

( A B )T = B T A T (7.24)

which is consistent with eqn (7.15) for operators.
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7.3 Addition and Multiplication

As discussed in Section 7.1, operators can be added or multiplied. The matrices corre-
sponding to the resulting operators are obtained by addition or multiplication of the
associated matrices.

Let operators A,B have corresponding matrices A , B , respectively. Let C = αA+
βB. Then using eqns (7.4, 7.18) gives the corresponding matrix C as

Ci j = êi · Cêj = êi · (αA+ βB) êj = êi ·
(
αAêj + βBêj

) = αAi j + βBi j (7.25)

which may be written in matrix form as C = α A + β B .
Let D = AB. The corresponding matrix D is

Dik = êi ·Dêk = êi ·
(
ABêk

) = êi ·
(
A

(
Bêk

))
(7.26)

where eqn (7.6) has been used to get the last equality. But, like any vector, Bêk can be
expanded in the êi basis as

Bêk =
3∑

j=1

êj
(
êj · Bêk

) = 3∑
j=1

êj Bjk (7.27)

Putting this result into eqn (7.26) then gives

Dik = êi ·
⎛⎝A

⎛⎝ 3∑
j=1

êj Bjk

⎞⎠⎞⎠ =
3∑

j=1

(
êi ·Aêj

)
Bjk =

3∑
j=1

Ai j Bjk (7.28)

Since the second index j of Ai j matches the first index of Bjk , eqn (7.28) is equivalent
to the matrix multiplication D = A B .

Equations (7.25, 7.28) may be summarized as the correspondences

αA+ βB ⇐⇒ α A + β B (7.29)

AB ⇐⇒ A B (7.30)

7.4 Determinant, Trace, and Inverse

Given the basis êi , eqn (7.18) defines the nine components Fi j of the matrix F that
corresponds uniquely to operator F , in exactly the same sense that the last of eqn
(7.16) defines the three components Vi of the column vector [V ] that corresponds
uniquely to vector V in that same basis.

If an alternate orthonormal basis ê′i is chosen, assumed also to be right-handed
with ê′1 × ê′2 = ê′3, then vector V and operator F will also have a unique relation to
column vector [V ′] and matrix F ′ in this alternate basis. The vector components and
matrix elements in the alternate basis are given by the same formulas as in Section
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7.2, but now using the primed basis vectors. Thus

V ′
i = ê′i · V and F ′

i j = ê′i · F ê′j (7.31)

The unique relation between vectors and column vectors, and between operators and
matrices, holds in either basis, and hence

[V ′] ⇐⇒ V ⇐⇒ [V ] and F ′ ⇐⇒ F ⇐⇒ F (7.32)

This chain of unique correspondence has the consequence that any equation involving
matrices and column vectors in basis êi will be true if and only if the same equation
is true when primes are put on all the matrices and column vectors, indicating that
they refer to the alternate basis ê′i .

In general, even for the same i, j indices, V ′
i and F ′

i j will be quite different from
Vi and Fi j . However, there are certain quantities calculated from these numbers that
have the same value no matter what basis is used. These are called invariant or basis-
independent quantities. Two such quantities are the determinant and trace.

Lemma 7.4.1: Invariance of Determinant and Trace
If an operator F has corresponding matrices F and F ′ in the two bases êi and ê′i ,
respectively, then ∣∣F

∣∣ = ∣∣F ′∣∣ and Tr F = Tr F ′ (7.33)

Proof: In Section 8.32 of Chapter 8, it will be proved that F ′ = R T F R where R
is the matrix, expressed in the êi basis, of a proper orthogonal operator R defined by
ê′i = Rêi for i = 1, 2, 3. This operator will be proved there to have the property that
R T R = U = R R T and |R | = 1. It follows, using Property 5 and Property 10 of
Section B.11, that

∣∣F ′∣∣ = ∣∣R T
∣∣ ∣∣F

∣∣ ∣∣R
∣∣ = ∣∣F

∣∣ as was to be proved. Also, from eqn
(B.33), Tr F ′ = Tr

(
R T F R

) = Tr
(

R R T F
) = Tr F , as was to be proved. �

Since these quantities are basis independent, the determinant and trace of an
operator may be defined by selecting any basis êi , determining the matrix F corre-
sponding to F in that basis, and setting

detF = |F | and TrF = Tr F (7.34)

It follows from definition eqn (7.34) and the corresponding properties of matrices in
Section B.11 and eqn (B.33) that the determinant and trace of operators have the
properties

detAT = detA det (AB) = detA detB (7.35)

Tr (ABC) = Tr (CAB) = Tr (BCA) (7.36)

An operator F may or may not have an inverse. If the inverse exists, it is denoted
F−1 and has the defining property that, for both right and left multiplication, the
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product of F with its inverse is the identity operator U ,

F−1F = U = FF−1 (7.37)

The inverse is unique. If two operators both are inverses of a given F , then they can
be shown to be identical to each other.

The necessary and sufficient condition for the inverse of an operator F−1 to exist
is that detF �= 0. This result follows from the definition in eqn (7.34) and the similar
property of matrices proved in Section B.14.

If C = AB, it is easily verified that the inverse is C−1 = B−1A−1, provided of
course that the inverses of A and B exist. The inverse of a product is the product of
the inverses, in reverse order.

7.5 Special Operators
If an operator S is identical to its transpose, ST = S, then ST

i j = Sji = Si j and we say
that it (and its matrix) are symmetric.38

An anti-symmetric (an alternate term is skew-symmetric) operator is in a sense
the opposite of a symmetric one. Such an operator is equal to the negative of its
transpose. If operator W is anti-symmetric, then WT = −W and its matrix elements
obey W T

i j = Wji = −Wi j .
The most general anti-symmetric operator has a matrix containing only three in-

dependent matrix elements,

W =
⎛⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞⎠ (7.38)

or equivalently

Wi j =
3∑

k=1

εik jωk (7.39)

for i, j = 1, 2, 3, where ω1, ω2, ω3 are three arbitrarily chosen numbers that together
determine W .

The operation of an anti-symmetric operator W on a vector can be represented as
a cross-product.

Lemma 7.5.1: Equivalent Cross-Product
If we define a vector ω whose components are the same three numbers ωi found in eqns
(7.38, 7.39),

ω = ω1ê1 + ω2ê2 + ω3ê3 (7.40)

then the action of operator W on an arbitrary vector V is the same as the cross product
of vector ω with that vector,

WV = ω× V (7.41)

38Matrix symmetries are treated in Section B.4.
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Proof: Let A = ω× V. Then

Ai = êi · A = êi · ω× V =
3∑

j=1

3∑
k=1

ωk Vj (êi · êk × êj ) =
3∑

j=1

3∑
k=1

εik jωk Vj =
3∑

j=1

Wi j Vj

(7.42)
which is the component form of the matrix equation [A] = W [V ]. Since there is a
one-to-one correspondence between operators and matrices, it follows that A =WV,
as was to be proved. �

If the anti-symmetric operator is given initially, the components of ω can be ex-
tracted from its matrix by

ωk = 1

2

3∑
i=1

3∑
j=1

εik j Wi j (7.43)

where identity eqn (A.65) has been used.
Another important special class of operators is orthogonal operators. An operator

R is orthogonal if it has an inverse R−1 and its inverse is equal to its transpose,

R−1 = RT (7.44)

Thus the property of inverses in eqn (7.37) implies that

RRT = U = RTR (7.45)

for orthogonal operators. Orthogonal operators will be used to characterize rotations
in Chapter 8.

7.6 Dyadics
There is yet another way of writing linear vector functions of vectors in common use:
Dyadics. Those who have studied the Dirac notation in quantum mechanics should
find them familiar. Those who have not can learn dyadics here and get a head start
on mastering the Dirac notation.

We begin by defining a single-termed dyadic, or dyad, � as a pair of vectors a and
b written side-by-side with no operation between them such as dot or cross product,

� = ab (7.46)

This strange-looking object is intended to be an operator on vectors. But, unlike the
operators defined above, it operates either to its right or to its left, and by means of
dot products rather than directly. Thus, dotting � to its right onto vector V is defined
to give

� · V = a (b · V) (7.47)

which is a vector parallel to a. The dyad � can also be dotted to the left on a vector V
to yield

V · � = (V · a) b (7.48)

which is a vector parallel to b. We see at once that left and right dotting will generally



DYADICS 131

give different output vectors, since a need not be parallel to b. By its definition in
terms of the dot product, the dyadic operation is a linear function of vector V.

We define a law of addition for dyads similar to that for operators above. Suppose
that two dyads are �1 = ab and �2 = cd. Then multiplication by scalars and addition
as in

� = α�1 + β�2 (7.49)

are defined by the rule that the operation of � on any arbitrary vector V is

� · V = α�1 · V + β�2 · V (7.50)

A similar rule holds for left multiplication. The sum of one or more dyads is called a
dyadic. The rule for the addition of two dyadics is the same as eqn (7.49) for dyads.

Now suppose that we have a linear operator like the F discussed in Section 7.1.
Since the matrix elements Fi j of this operator are just numbers like α and β in eqn
(7.49), we can define a dyadic corresponding to operator F by using this addition
rule to write the nine-termed sum

� =
3∑

i=1

3∑
j=1

Fi j êi êj (7.51)

This dyadic is often denoted in equivalent ways, by using the freedom to write the
numerical factor Fi j either before the pair of vectors, between the pair (as is often
done in quantum mechanics), or after both of them, as in

� =
3∑

i=1

3∑
j=1

Fi j êi êj =
3∑

i=1

3∑
j=1

êi Fi j êj =
3∑

i=1

3∑
j=1

êi êj Fi j (7.52)

Conversely, if we are given a dyadic �, the matrix elements Fi j in the êi basis can be
determined by dotting from both sides with unit vectors, since

êi · � · êj = êi ·
(

3∑
k=1

3∑
l=1

êk Fkl êl

)
· êj =

3∑
k=1

3∑
l=1

δik Fklδl j = Fi j (7.53)

As an example of a case in which the dyadic is given initially and the matrix and
operator derived from it, consider the dyad � = ab in eqn (7.46). Then

Di j = êi · � · êj =
(
êi · a

) (
b · êj

) = ai bj (7.54)

The matrix element of this simple dyad is just the product of the components of
the two vectors. General dyadics, of course, will not have matrices with this simple
product form.

By its construction, the dyadic � dotted onto any vector V has the same effect as
the operator F acting on that same vector.
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Lemma 7.6.1: Equivalence of Operator and Dyadic
If V is any vector, then

FV = � · V (7.55)

Proof: Let W = FV define the vector W. Then from eqn (7.20) Wi = ∑3
j=1 Fi j Vj .

The dyadic acting on V gives the same vector W,

� · V =
3∑

i=1

3∑
j=1

êi Fi j
(
êj · V

) = 3∑
i=1

êi

3∑
j=1

Fi j Vj =
3∑

i=1

êi Wi = W (7.56)

which establishes eqn (7.55). �

Like operators and matrices, dyadics can also be multiplied. The product

� = � · � (7.57)

is defined by considering its operation on an arbitrary vector V. The dyadic � is first
dotted with vector V and the dyadic � is then dotted onto the resulting vector,

� · V = (� · �) · V = � · (� · V) (7.58)

Thus, from Lemma 7.6.1,
ABV = � · (� · V) (7.59)

for any vector V.
Like operator multiplication in eqn (7.7), dyadic multiplication is associative by

definition, since
(� · �) · � = � · (� · �) = � · � · � (7.60)

Just as for operators in Section 7.5, the determinant and trace of a dyadic are
defined to be the determinant and trace of its associated matrix in some basis. The
inverse dyadic is the dyadic constructed from the inverse matrix, and exists if and
only if the dyadic has a nonzero determinant.

The transpose of a dyadic is constructed from the transposed matrix, using eqn
(7.52). If a dyadic � has a matrix F then the transpose is defined as

�
T =

3∑
i=1

3∑
j=1

êi FT
i j êj =

3∑
i=1

3∑
j=1

êi Fji êj (7.61)

It follows that left multiplication of � by V gives the same result as right multiplication
of �T by the same vector. That is,

V · � = �
T · V (7.62)

for any vector V.
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7.7 Resolution of Unity
Consider the identity operator U which has UV = V for any vector V. The dyadic
form � of this operator is of particular interest. From eqn (7.22),

� =
3∑

i=1

3∑
j=1

êiδi j êj =
3∑

i=1

êi êi = ê1ê1 + ê2ê2 + ê3ê3 (7.63)

This dyadic is called a resolution of unity in basis êi . Since UV = V, it follows that
� · V = V. The resolution of unity can be used as a convenient device to expand
vectors and other operators in a basis. For example,

V = � · V = (ê1ê1 + ê2ê2 + ê3ê3) · V (7.64)

= ê1
(
ê1 · V

)+ ê2
(
ê2 · V

)+ ê3
(
ê3 · V

)
simply restates eqn (A.10). Any vector V in any expression can always be replaced
by either � · V or V · �. The result is always to expand the expression in terms of
components in the resolution’s basis, in this case êi .

7.8 Operators, Components, Matrices, and Dyadics
The equation W = FV can now be written in four equivalent ways: operator, compo-
nent, matrix, and dyadic:

W = FV Wi =
3∑

j=1

Fi j Vj [W ] = F [V ] W = � · V (7.65)

Each of the four expressions in eqn (7.65) is a different way of saying the same thing,
and each of them implies the others. This, and the various other equivalences proved
in the preceding sections of this chapter, can be summarized as a theorem, which we
state here without further proof.

Theorem 7.8.1: Equivalence of Operators, Matrices, Dyadics
Any equation involving the addition, multiplication, transposition, and inversion of oper-
ators, and the action of operators on vectors, will be true if and only if the same equation
is true with matrices or dyadics substituted for the operators. In the matrix case, of
course, the vectors must also be replaced by column vectors.

As an example of this theorem, consider the following equivalent expressions,

ABTV + αC−1DW = Y (7.66)
3∑

j=1

3∑
k=1

Ai j BT
jk Vk + α

3∑
j=1

3∑
k=1

C−1
i j Djk Wk = Yi (7.67)

A B T[V ] + α C−1 D [W ] = [Y ] (7.68)

� · �T · V + α�−1 · � · W = Y (7.69)

Each of them is true if and only if the other three are true.
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The theorem of this section is of great use. It means that operator equations can
be proved by proving the equivalent component or matrix equations in some basis,
and vice versa. Throughout the text, we will use this theorem to go back and forth
between operator and matrix relations, often with little warning, assuming that the
reader understands that they are equivalent.

For example, if F(η) = A(η)B(η) is a product of two operators, each of which is a
function of some parameter η, then the product rule for differentiation,

dF(η)

dη
= dA(η)

dη
B(η)+A(η)

dB(η)

dη
(7.70)

follows from the usual product rule for differentiation of the component expansion

Fik(η) =
3∑

j=1

Ai j (η)Bjk(η) (7.71)

where the matrix elements Ai j (η), etc., are now just ordinary functions of η.
For the remainder of this chapter, we will exploit Theorem 7.8.1 to translate the

properties of matrices summarized in Appendix B into operator and dyadic forms.
Since the proofs are given in Appendix B, we will often simply state the results here
and refer the reader to that Appendix for more information.

7.9 Complex Vectors and Operators
A real vector is one whose components in some Cartesian basis are all purely real
numbers. (The Cartesian basis vectors themselves are always considered real in these
determinations.) If at least one component is an imaginary or complex number, the
vector is complex. A general complex vector V may be written

V = VR + iVI (7.72)

where real vector VR collects all of the real parts of the components of V and real
vector VI collects all of the imaginary parts. For example, if V = 3ê1+(2 − 4i) ê2+6i ê3

then VR = 3ê1 + 2ê2 and VI = −4ê2 + 6ê3.
Operators and dyadics can also be real or complex. The definition is similar to that

for vectors. An operator F and dyadic � is real only if all of its matrix elements Fi j

in some Cartesian basis are real numbers. If even one matrix element is imaginary
or complex, the operator is complex. The transpose, and the definitions of symmet-
ric, anti-symmetric, and orthogonal operators, must be generalized when complex
operators are considered.

The complex conjugate of an operator can be defined as that operator all of whose
matrix elements in some Cartesian basis êi are the complex conjugates of the original
ones. If F has matrix elements Fi j , then

F∗ has matrix elements F∗
i j (7.73)

Thus an operator is real if and only if F = F∗. Otherwise, it is complex.
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The generalization of transpose is Hermitian conjugate. The Hermitian conjugate
of operator F is denoted F† and is defined in a way similar to eqn (7.13) for the
transpose, by the condition that

(FV)∗ · W = V∗ ·
(
F†W

)
(7.74)

for any vectors V, W. As was done for the transpose in eqn (7.23), basis vectors may
be substituted for the vectors in eqn (7.74), giving the relation

F†
i j = F∗

j i (7.75)

for the matrix elements F†
i j of matrix F †.

Notice that the Hermitian conjugate can be considered as the combination of
transpose and complex conjugate in either order,

F† =
(
FT

)∗ = (
F∗)T (7.76)

as can be seen by considering the matrix elements of each expression.
If the operator is real, then the complex conjugations have no effect, and F† = FT

holds. Thus the definition of Hermitian conjugate for possibly complex operators is a
generalization of the definition of transpose for real ones.

The generalization of symmetric is Hermitian. If an operator H is equal to its Her-
mitian conjugate, then it is Hermitian. Then H† = H and hence H†

i j = H∗
j i = Hi j . For

real operators, the complex conjugation would have no effect, and hence a real Her-
mitian operator is a real symmetric one. Thus the definition of Hermitian for possibly
complex operators is a generalization of definition of symmetric for real ones. Simi-
larly, anti-Hermitian operators can be defined that generalize anti-symmetric ones.

The generalization of orthogonal is unitary. An operator T is unitary if it is non-
singular and if its inverse is equal to its Hermitian conjugate,

T −1 = T † (7.77)

with the consequence that
T T † = U = T †T (7.78)

As seen above, for real operators there is no distinction between transpose and Her-
mitian conjugate. Hence a real unitary operator would be a real orthogonal one. Thus
the definition of unitary for possibly complex operators is a generalization of the def-
inition of orthogonal for real ones.

For complex operators, the determinants obey

detF∗ = (detF)∗ and hence also detF† = (detF)∗ (7.79)

Just as a complex vector can be written as the sum of its real and imaginary parts
as in eqn (7.72), any complex operator can be written as the sum of two Hermitian
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operators,
F = FR + iFI (7.80)

where the Hermitian operators FR and FI are

FR = 1

2

(
F + F†

)
and FI = − i

2

(
F − F†

)
(7.81)

7.10 Real and Complex Inner Products
Recall that, in the space of real vectors, the inner product of two vectors can be written
in column vector and component forms, as

V · W =
3∑

i=1

Vi Wi =
(

V1 V2 V3
)⎛⎝ W1

W2

W3

⎞⎠ = [V ]T[W ] (real vectors) (7.82)

In a space of complex vectors, this definition of inner product must be modified.
Orthogonality, norm, etc., for such a complex vector space are based on a generalized
inner product consisting of the dot product and complex conjugation of the left-hand
vector,

V∗ · W =
3∑

i=1

V ∗
i Wi =

(
V ∗

1 V ∗
2 V ∗

3

)⎛⎝ W1

W2

W3

⎞⎠ = [V ]†[W ] (complex vectors) (7.83)

Note that the transpose of the column vector [V ]T in the real case becomes the Her-
mitian conjugate [V ]† in the complex case.

The redefinition of inner product for complex vectors is necessary in order to
preserve an important property that dot products have in real vector spaces: The
norm of a vector must be non-negative and be zero only for the null vector. Thus we
have, with the redefinition,

V 2 = ‖V‖2 = V∗ · V = (VR − iVI ) · (VR + iVI ) = ‖VR‖2 + ‖VI‖2 (7.84)

which clearly has the desired non-negative property. The rule is that, when using
complex vector spaces, one must always be sure that the left-hand vector in an inner
product is complex conjugated before the dot product is taken.

7.11 Eigenvectors and Eigenvalues
An operator F acts on some vectors (but not others) in a particularly simple way: it
gives an output vector which is just the input vector multiplied by a numerical scale
factor. Those vectors are called the eigenvectors of F (“eigen” is German for “own”)
and the scale factors (in general different for each eigenvector) are called eigenvalues.
The equation

FV(k) = λkV(k) (7.85)

defines V(k) to be an eigenvector, and λk to be the associated eigenvalue, of operator
F . The integer k labels the different eigenvalues and corresponding eigenvectors that
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F may have. The set of eigenvectors and eigenvalues of an operator may in many
cases characterize it completely, as we will see, and so their determination is of par-
ticular importance.39

We may rewrite this equation, and its equivalent matrix equation in some basis,
in the forms

(F − λkU) V(k) = 0 and ( F − λk U ) [V (k)] = 0. (7.86)

where [V (k)] is the column vector of components V (k)
i = êi ·V(k) of eigenvector V(k) in

the chosen basis. The matrix equation, and hence the operator equation also, has a
solution other than the null vector if and only if

det (F − λkU) = 0 with matrix equivalent |F − λk U | = 0. (7.87)

This cubic equation has three eigenvalue solutions λ1, λ2, λ3 which may in general be
complex numbers. For each of those solutions, ( F − λk U ) has rank less than three,
and so a non-null eigenvector solution to eqn (7.86) can be found.40 These eigenvec-
tors are usually normalized by dividing each one by its magnitude to produce a unit

vector. The form of eqn (7.85) shows that these normalized vectors V̂
(k) = V(k)/||V(k)||

are still eigenvectors.

7.12 Eigenvectors of Real Symmetric Operator
Real symmetric operators S, obeying ST = S, are an important special case. We list
here some properties of their eigenvalues and eigenvectors. The listed properties are
proved in Section B.24.

1. The eigenvalues λk of real symmetric operators are all real.
2. Since all matrix elements Si j are real numbers, the eigenvector solutions eqn

(7.86) may be taken to be real vectors.
3. If two eigenvalues are different, λk �= λn , then the corresponding eigenvectors are

orthogonal, V̂k · V̂n = 0.
4. Three orthogonal unit eigenvectors of S can always be found. These three eigen-

vectors obey V̂k · V̂n = δkn and are said to form a complete orthonormal set. The
word “complete” is used here to indicate that these three eigenvectors could be
used as an orthonormal basis in place of êi if desired.

7.13 Eigenvectors of Real Anti-Symmetric Operator
The eigenvalue problem for the real, anti-symmetric operators described in Section
7.5 is of particular importance in the study of rigid body rotations. Fortunately, the
eigenvalues and eigenvectors of the most general anti-symmetric operator in three
dimensions can be found in a standard form.

39The reader should refer to Section B.23 for more detail about finding eigenvalues and eigenvectors.
40See Section B.19.
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Theorem 7.13.1: Eigenvectors of Anti-Symmetric Operators
If W is a real anti-symmetric operator obeying WT = −W with eigenvector equation

WV̂
(k) = λkV̂

(k)
(7.88)

then its eigenvalues and corresponding eigenvectors are

λ1 = iω λ2 = −iω λ3 = 0 (7.89)

and

V̂
(1) =

(
â − i b̂

)
/
√

2, V̂
(2) =

(
â + i b̂

)
/
√

2, V̂
(3) = ω/ω (7.90)

where ω is the vector defined in eqn (7.40), ω = ‖ω‖ is its magnitude, â is some real unit
vector perpendicular to ω, and b̂ = (ω/ω)× â is also a real unit vector, perpendicular to
both â and ω.

Proof: Direct computation of eqn (7.87) using the matrix in eqn (7.38) shows the
eigenvalues to be as stated. Lemma 7.5.1 showed that WV = ω×V for any vector V.

Applying this result, one easily proves that WV̂
(k) = ω× V̂

(k) = λkV̂
(k)

for k = 1, 2, 3,
as was to be proved. �

Note that the three eigenvalues of an anti-symmetric W are always distinct. They
would be equal (all zero) only in the case ω = 0 which would imply a null operator.
The three eigenvectors of W are orthonormal using the extended definition of inner
product appropriate for vectors with complex components discussed in Section 7.10

above. They are easily shown to obey V̂
(k)∗ · V̂

(l) = δkl .

â

â′

α

α

b̂
′ b̂

ω̂

FIG. 7.1. Construction of eigenvectors of W

One might think that the eigenvalue problem for W is not really solved, due to
the arbitrary choice of vector â. But in fact we have solved the problem as well as
eigenvalue problems can ever be solved. To show this, we begin with a lemma.

Lemma 7.13.2: Underdetermination of Eigenvectors
Normalized eigenvectors are determined only up to an arbitrary phase factor exp (iαk),
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where αk are real numbers that may in general be different for the different eigenvectors.

If an eigenvector problem is solved to give an orthonormal set of eigenvectors V̂
(k)

, then

V̂
(k)′ = exp (iαk) V̂

(k)
(7.91)

are also an orthonormal solution to the same problem.

Proof: Equation (7.85) is homogeneous in the eigenvectors. Thus, when any nor-

malized eigenvector V̂
(k)

is multiplied by a factor of the form exp (iαk), the exp (iαk)

factors on left and right of eqn (7.85) will cancel and the result will still be an eigen-
vector. The resulting set of eigenvectors will also still be normalized and mutually
orthogonal, since(

V̂
(k)′

)∗
· V̂

(l)′ =
(

exp iαkV̂
(k)

)∗
·
(

exp iαlV̂
(l)) = exp (iαl − iαk) V̂

(k)∗ · V̂
(l)

= exp (iαl − iαk) δkl = δkl (7.92)

using of course the extended definition of dot product. �

It follows that the eigenvector equation eqn (7.88) can never determine â completely.
It can be any unit vector lying in the plane perpendicular to ω. To see this, use the
real, orthogonal unit vectors â and b̂ defined above to derive the identities

exp (iα)
(

â − i b̂
)
=

(
â′ − i b̂

′)
and exp (−iα)

(
â + i b̂

)
=

(
â′ + i b̂

′)
(7.93)

where
â′ = cos α â + sin α b̂ and b̂

′ = − sin α â + cos α b̂ (7.94)

are â and b̂ rotated by the same angle α in the plane they define. Note that b̂
′ =

(ω/ω) × â′ and â′ · b̂
′ = 0 remain true. Thus the rotation of â by angle α to produce

some other vector â′ lying in the same plane leads to the new set of eigenvectors

V̂
(1)′ = exp (iα) V̂

(1)
V̂

(2)′ = exp (−iα) V̂
(2)

V̂
(3)′ = exp (0) V̂

(1)
(7.95)

By Lemma 7.13.2, the eigenvector equation cannot distinguish between the two sets
and so cannot determine the vector â.

7.14 Normal Operators
The properties of normal operators given below are proved for normal matrices in
the last three sections of Appendix B. Their correctness as operator relations is a con-
sequence of the one-to-one correspondence between operators and matrices proved
in Section 7.8. Note that the eigenvectors in Section B.26 and following sections are
denoted by [x (k)

i ] whereas we are using [V (k)
i ] here.
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An operator will have a complete orthonormal set of eigenvectors obeying

V̂
(k)∗ · V̂

(l) = δkl (7.96)

if and only if it is a normal operator. An operator A is called a normal operator if it
commutes with its Hermitian conjugate,

A†A = AA† or, equivalently, [A,A†]c = 0 (7.97)

Most operators that might be used in mechanics are normal. Real symmetric, real anti-
symmetric, real orthogonal, Hermitian, anti-Hermitian, and unitary operators are all
normal operators.

To exploit the properties of normal operators, we define a linear operator D to
be the operator that converts each of the basis vectors êk into the corresponding unit
eigenvector of the normal operator

Dêk = V̂
(k)

(7.98)

for k = 1, 2, 3. Since the eigenvectors V̂
(k)

will in general not be real vectors, it follows
that D will not in general be a real operator. It follows from definition eqn (7.98) that
the matrix elements of D in the êi basis are

Dik = êi ·Dêk = êi · V̂
(k) = V (k)

i (7.99)

so that matrix element Dik is equal to the ith component of the kth eigenvector, and
the matrix D can be constructed by writing the components of the three normalized
eigenvectors as its three columns, as in

D =
⎛⎜⎝ V (1)

1 V (2)
1 V (3)

1

V (1)
2 V (2)

2 V (3)
2

V (1)
3 V (2)

3 V (3)
3

⎞⎟⎠ (7.100)

The orthogonality condition eqn (7.96) may now be written out as

δkl = V̂
(k)∗ · V̂

(l) =
3∑

i=1

V (k)∗
i V (l)

i =
3∑

i=1

D∗
ik Dil =

3∑
i=1

D†
ki Dil (7.101)

where the definition of Hermitian conjugate in eqn (7.75) was used. Thus

Ukl = δkl =
(

D † D
)

kl
(7.102)

for k, l = 1, 2, 3, and hence
U = D†D (7.103)

As proved in Theorem B.22.2 this is sufficient to prove that D is a unitary operator
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obeying eqn (7.78)
D†D = U = DD† (7.104)

Let us now define the operator E by the two equivalent formulae

E = D†AD and A = DED† (7.105)

By eqns (7.30, 7.99), the matrix elements of E in the êk basis are

Ekl =
(

D † A D
)

kl
=

3∑
i=1

3∑
j=1

D†
ki Ai j Djl =

3∑
i=1

V (k)∗
i

3∑
j=1

Ai j V (l)
j

=
3∑

i=1

V (k)∗
i λl V

(l)
i = λlδkl (7.106)

where the component expansions of eqns (7.85, 7.96) have been used to write

3∑
j=1

Ai j V (l)
j = λl V

(l)
i and

3∑
i=1

V (k)∗
i V (l)

i = δkl (7.107)

Thus the matrix of operator E is

E =
⎛⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞⎠ (7.108)

a diagonal matrix with the eigenvectors as its diagonal elements. We say that the
operator D reduces A to a diagonal operator E .

7.15 Determinant and Trace of Normal Operator
For a normal operator, the determinant and trace defined in Section 7.4 can be written
in terms of the eigenvalues of the operator. Taking the determinant of the second of
eqn (7.105) and using eqn (7.35) gives

detA = det
(
DED†

)
= detD det E detD† (7.109)

Also, taking the determinant of eqn (7.103) gives

1 = detU = det
(
D†D

)
= detD† detD (7.110)

Thus, noting the diagonal form of E in eqn (7.108), we obtain

detA = det E = λ1λ2λ3 (7.111)

Similarly, taking the trace of both sides of eqn (7.105) gives

TrA = Tr
(
DED†

)
= Tr

(
D†DE

)
= Tr (UE) = Tr E = λ1 + λ2 + λ3 (7.112)

where eqn (7.36) was used, and the final value of the trace was obtained by inspection
of eqn (7.108).
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7.16 Eigen-Dyadic Expansion of Normal Operator
Any linear operator has an equivalent dyadic as defined in Section 7.6. However,
for normal operators, that dyadic can be expanded in a form that depends only on
the eigenvectors and eigenvalues of the operator. We will call this the eigen-dyadic
expansion. Since operators and dyadics are equivalent, normal operators are thus
completely determined by their eigenvectors and eigenvalues. Expansion of this sort
are used, for example, in the proof of the Euler Theorem in Chapter 8. But they are
also important to the reader because of their frequent use in quantum theory.

Theorem 7.16.1: Eigen-Dyadic Expansion

If A is a normal operator whose eigenvalues λk and orthonormal eigenvectors V̂
(k)

are
known, then its dyadic � can be expanded in eigen-dyadic form

� =
3∑

k=1

V̂
(k)

λkV̂
(k)∗

(7.113)

which expresses � entirely in terms of the eigenvalues and eigenvectors of A.

Proof: This result follows from the component expansion of the second of eqn
(7.105), which is

Ai j =
3∑

k=1

3∑
l=1

Dik Ekl D†
l j =

3∑
k=1

3∑
l=1

V (k)
i λlδkl V

(l)∗
j =

3∑
k=1

V (k)
i λk V (k)∗

j (7.114)

where eqns (7.99, 7.106) have been used. Substituting that result into the definition
of the dyadic � in eqn (7.52) gives

� =
3∑

i=1

3∑
j=1

êi Ai j êj =
3∑

i=1

3∑
j=1

3∑
k=1

êi V (k)
i λk V (k)∗

j êj =
3∑

k=1

V̂
(k)

λkV̂
(k)∗

(7.115)

which is eqn (7.113). �

Thus the expansion of W = � ·V for a general vector V in eqn (7.56), can equally
well be written as

W = � · V =
3∑

k=1

V̂
(k)

λkV̂
(k)∗ · V (7.116)

Note that the right vector in eqn (7.113) is already complex conjugated and is simply
dotted onto V in eqn (7.116) without change.

As shown in Lemma 7.13.2, the eigenvectors are not uniquely determined. If each

V̂
(k)

is multiplied by a factor exp (iαk), the result will be an orthonormal set of eigen-
vectors that are equivalent to the original ones. However, this indeterminacy does not
affect the dyadic defined in eqn (7.113).
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Lemma 7.16.2: Uniqueness of Eigen-Dyadic
The eigen-dyadic in eqn (7.113) is uniquely determined even though the eigenvectors are
not.

Proof: Replacing V̂
(k)

by exp (iαk) V̂
(k)

in eqn (7.113) gives

3∑
k=1

(
exp (iαk) V̂

(k)
)

λk

(
exp (iαk) V̂

(k)
)∗

=
3∑

k=1

exp (iαk − iαk) V̂
(k)

λkV̂
(k)∗ =

3∑
k=1

V̂
(k)

λkV̂
(k)∗

(7.117)

which is identical to the original dyadic �. �

The resolution of unity dyadic in eqn (7.63) of Section 7.7 can also be expanded
in terms of the eigenvectors of a normal operator. The second equality in eqn (7.104)
implies that

δi j =
3∑

k=1

Dik D†
k j =

3∑
k=1

V (k)
i V (k)∗

j (7.118)

It follows that

� =
3∑

i=1

3∑
j=1

êiδi j êj =
3∑

i=1

3∑
j=1

3∑
k=1

êi V (k)
i V (k)∗

j êj =
3∑

k=1

V̂
(k)

V̂
(k)∗

(7.119)

which is the required expansion. Note that the only difference between eqns (7.113,
7.119) is that the former multiplies the terms by the eigenvalues λk before adding
them.

7.17 Functions of Normal Operators
The eigen-dyadic expansion eqn (7.113) can be used to define general functions of
normal operators and dyadics.

Definition 7.17.1: Functions of Normal Operators
If a function f (z) is well defined for all eigenvalues λk of a normal operator A, then the
dyadic function � = f (�) of the dyadic � is defined by

� = f (�) =
3∑

k=1

V̂
(k)

f (λk) V̂
(k)∗

(7.120)

which is the same as eqn (7.113), but with f (λk) replacing λk .
The operator function F = f (A) of the normal operator A is then defined by the

condition that its effect on any vector V be the same as that of the dyadic: FV = � · V.
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This definition has the consequence that F = f (A) has the same eigenvectors as
does A, and eigenvalues γk = f (λk),

FV̂
(k) = γkV̂

(k)
where γk = f (λk) (7.121)

To see this, note that

FV̂
(k) = � · V̂

(k) =
3∑

l=1

V̂
(l)

f (λl) V̂
(l)∗ · V̂

(k) =
3∑

l=1

V̂
(l)

f (λl)δlk = f (λk) V̂
(k)

(7.122)

This result is important because it proves that any well-defined function of a normal
operator is also a normal operator, with the same orthonormal set of eigenvectors. Of
course, the eigenvalues γk in general are different from the eigenvalues λk .

If the function f is a very simple one, like f (z) = zn where n is some positive
integer then, as we would expect, F is the product of A with itself n times, as in

F = An =
n factors︷ ︸︸ ︷

A · · ·AA (7.123)

For example, consider the case n = 2. Then eqn (7.113), and the orthogonality rela-

tion V̂
(k)∗ · V̂

(l) = δkl , give

�
2 = � · � =

(
3∑

k=1

V̂
(k)

λkV̂
(k)∗

)
·
(

3∑
l=1

V̂
(l)

λlV̂
(l)∗

)

=
3∑

k=1

3∑
l=1

V̂
(k)

λkδklλlV̂
(l)∗ =

3∑
k=1

V̂
(k)

λ2
kV̂

(k)∗
(7.124)

which is the definition in eqn (7.120) for this function. This result for n = 2 can be
generalized in an obvious way to any positive integer n.

The definition eqn (7.120) is well defined even if the function f (z) does not have
a power series expansion. But if it does have one, the following theorem applies.

Theorem 7.17.2: Function as Power Series
If function f (z) has a power series expansion

f = f (z) = a0 + a1z + a2z2 + · · · =
∞∑

n=0

anzn (7.125)

and all eigenvalues λk of A lie in the circle of convergence of the power series, then the
operator function F = f (A) in Definition 7.17.1 equals a convergent power series in
operator A,

F = f (A) = a0U + a1A+ a2A2 + · · · (7.126)
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Proof: Using eqn (7.123) repeatedly gives

� = f (�) =
3∑

k=1

V̂
(k)

(
a0 + a1λk + a2λ

2
k + · · ·

)
V̂

(k)∗
(7.127)

= a0

3∑
k=1

V̂
(k)

V̂
(k)∗ + a1

3∑
k=1

V̂
(k)

λkV̂
(k)∗ + a2

3∑
k=1

V̂
(k)

λ2
kV̂

(k)∗ + · · ·

= a0�+ a1�+ a2�
2 + · · ·

which converges whenever all eigenvalues of A lie in the circle of convergence of the
power series. The equivalent operator equation is then the power series

F = f (A) = a0U + a1A+ a2A2 + · · · (7.128)

�

7.18 The Exponential Function
The exponential function is of particular importance in the treatment of rotation op-
erators. The power series expansion of this function,

f (z) = exp(z) = 1 + z + z2

2! +
z3

3! + · · · (7.129)

converges for any z. Thus, for any normal operator A, Theorem 7.17.2 shows that the
function F = exp (A) can be expanded in a power series as

F = exp (A) = U +A+ A2

2! +
A3

3! + · · · (7.130)

Then, if A has eigenvectors V̂
(k)

and eigenvalues λk , the operator F = exp (A) is also
a normal operator with the same eigenvectors, and eigenvalues γk = exp (λk).

If θ is a scalar, and if A does not depend on θ , then the function f (z) = exp(θz)
produces the power series

F(θ) = exp (θA) = U + θA+ θ2A2

2! + θ3A3

3! + · · · (7.131)

Differentiating eqn (7.131) term-by-term gives

d

dθ
exp (θA) = A+ θA2 + θ2A3

2! + · · · = A
(
U + θA+ θ2A2

2! + · · ·
)
= A exp (θA)

(7.132)
which shows that F(θ) defined in eqn (7.131) is a solution to the operator differential
equation

dF(θ)

dθ
= AF(θ) (7.133)

where the initial condition F(0) = U is assumed.



146 LINEAR OPERATORS AND DYADICS

If two operators commute, then they can be manipulated in the same way as
ordinary numbers. Thus it follows from the same proofs as are found in standard
calculus books that if operators A and B commute, [A,B]c = 0, the exponential
functions will have the property that

exp (A) exp (B) = exp (A+ B) = exp (B) exp (A) (7.134)

Since any operator A commutes with (−A), it follows that

exp (A) exp (−A) = exp (−A) exp (A) = exp (0A) = U (7.135)

Thus, whether A is singular or nonsingular, F = exp (θA) is always nonsingular, with
the inverse F−1 = exp (−θA).

7.19 The Dirac Notation
Quantum mechanics uses complex vectors and operators similar to those described
in Sections 7.9 and 7.10. The main difference is that the quantum vectors may have
infinite dimension.

Quantum mechanics also uses a different notation for complex vectors, called the
Dirac notation.41 We have denoted a vector by V where the use of bold-face type
indicates that it is a vector, and the letter “V” is a label indicating which vector it is.
The Dirac notation denotes a vector by what is called a ket |V 〉 where the | 〉 indicates
that this is a vector, and the letter “V” is its label.

Inner products, which we write V∗ · W, are written by reversing the ket to form
what is called a bra 〈V |, so that together the two parts of the inner product form a
bra-ket 〈V |W 〉. Note that the bar is not doubled in the inner product of a bra and a
ket.

Operators are variously notated. One common notation, which we will adopt here,
is to place a hat symbol over the operator. For example, an equation that we would
write W = FV would be |W 〉 = F̂ |V 〉 in Dirac notation.

The Dirac notation is essentially dyadic. The dyadic � defined in eqn (7.52) is
written in Dirac notation with the ket and bra vectors poised to make inner products
to the left or the right. Thus, the dyadic associated with operator F would be written

F̂ =
3∑

i=1

3∑
i ′=1

|ei 〉 Fii ′ 〈ei ′ | (7.136)

where the matrix element that we write Fii ′ = êi · F êi ′ is written as

Fii ′ = 〈ei | F̂ |ei ′ 〉 (7.137)

The kets |ei 〉 here are the Cartesian unit vectors that we denote by êi . Notice that in
quantum mechanics, the distinction between operator F and associated dyadic � is
ignored. So, in eqn (7.136) the operator is considered to be equal to its dyadic.

41Most quantum texts treat the Dirac notation. For a definitive statement of it, see Dirac (1935).
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Eigenvectors that are labeled by an index k are often denoted by kets using just
that index as their label. Thus eqn (7.85) in the Dirac notation is

F̂ |k〉 = λk |k〉 (7.138)

where the eigenvector we denoted by V̂
(k)

is denoted simply by |k〉. This extreme
freedom in choosing labels for bras and kets is one of the strengths of the Dirac
notation. The orthogonality of the eigenvectors in eqn (7.96) becomes simply 〈k| l〉 =
δkl .

The Eigen-Dyadic of a normal operator defined in eqn (7.113) is then written

F̂ =
3∑

k=1

|k〉 λk 〈k| (7.139)

and the resolution of unity from eqn (7.119) is written

Û =
3∑

k=1

|k〉 〈k| (7.140)

In the Dirac notation, the definition of Hermitian conjugate is extended to apply
also to bras and kets. Since, from eqn (7.83), the inner product is expressed in terms
of component column vectors by using the Hermitian conjugate of [V ],

〈V |W 〉 = [V ]†[W ] (7.141)

the Dirac notation defines the bra 〈V | as the Hermitian conjugate of the ket |V 〉, as
in 〈V | = |V 〉†. The bras are considered to be a separate vector space, called the dual
space, and expressions like 〈V | + |W 〉 adding a bra and a ket make no sense and are
forbidden.

The flexibility in labeling kets leads to certain limitations in the Dirac notation.
If a ket is multiplied by a number, that number cannot be taken inside the ket. Thus
α |ψ〉 �= |αψ〉 since the expression on the right is nonsense, a label multiplied by a
number. Also, in the case of the eigenkets |k〉 such a usage could lead to errors. Clearly,
3 |1〉 �= |3〉 since the eigenkets |1〉and |3〉 are distinct members of an orthonormal set
of eigenvectors.

7.20 Exercises
Exercise 7.1 A 3 × 3 real matrix R can be thought of as three 3× 1 column vectors,

R =
⎛⎝⎡⎣ R11

R21
R31

⎤⎦ ⎡⎣ R12
R22
R32

⎤⎦ ⎡⎣ R13
R23
R33

⎤⎦⎞⎠ (7.142)

(a) Using the formalism of sums and indices, write out the i j components of both sides of the
equation

R T R = U (7.143)

and show that it is true if and only if the three column vectors in eqn (7.142) are normalized
and mutually orthogonal (i.e. an orthonormal set of vectors).
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(b) Show that eqn (7.143) is true if and only if R−1 exists and R T = R−1, and hence that a
real matrix is orthogonal if and only if its column vectors are an orthonormal set.

Exercise 7.2 In the following, you may use the fact that whenever operators A and B com-
mute, so that [A,B]c = 0, then

eAeB = e(A+B) = eBeA (7.144)

[Although it doesn’t matter for this exercise, note that this equation is not true when they fail
to commute.]

(a) Suppose that A is a normal operator. Prove that B defined by

B = eA = U +A+ 1

2!A
2 + 1

3!A
3 + · · · (7.145)

is also a normal operator.
(b) Prove that if eqn (7.145) holds and A is a normal operator, then

detB = eTrA (7.146)

(c) Let A be a normal operator, which may or may not be singular. Prove that an operator B
defined from this A by eqn (7.145) has an inverse given by

B−1 = e−A (7.147)

and hence is nonsingular.
(d) Prove that if A is a real, anti-symmetric operator, then the B defined in eqn (7.145) will
be a real orthogonal operator. Find the value of its determinant detB.
(e) Use the power series expansion of the exponential to prove that

CBC−1 = eCAC−1
(7.148)

where C is any nonsingular operator, and eqn (7.145) is assumed to hold.

n̂

V

V(M)

Mirror

FIG. 7.2. Illustration for Exercise 7.3.

Exercise 7.3 Consider a plane mirror. Denote the unit vector normal to its surface and point-
ing out into the room by n̂.

(a) The operator M converts a general vector V in front of the mirror into its reflected image
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V(M) = MV behind the mirror. Find a general expression for its matrix elements Mi j in
terms of the components ni of vector n̂. [Hint: Write V and V(M) as sums of vectors parallel
and perpendicular to n using eqn (A.3).]
(b) Is M an orthogonal operator? What is detM?
(c) Write the dyadic � corresponding to operator M, expressing it in terms of the unit dyadic
and n̂.

Exercise 7.4 Refer to eqn (A.3) of Appendix A. Operators P‖ and P⊥, which are called
projection operators, are defined by

V‖ = P‖V V⊥ = P⊥V (7.149)

for any general vector V.

(a) Find the matrices of these two operators, writing them in terms of the components of n̂.
(b) Prove that(

P‖
)2 = P‖ (P⊥)2 = P⊥ P‖P⊥ = 0 = P⊥P‖ P‖ + P⊥ = U (7.150)

(c) Are P‖ and P⊥ orthogonal operators? Do they have inverses?
(d) Write the projection dyadics �‖ and �⊥ corresponding to P‖ and P⊥, respectively. Write
them in terms of the unit dyadic and the vector n̂.

Exercise 7.5 In Section 7.5, the general anti-symmetric operator W is defined in terms of a
vector ω by its action WV = ω× V on any arbitrary vector V.

(a) Use the eigenvalues and eigenvectors listed in eqns (7.89, 7.90) to verify that, for k =
1, 2, 3,

WV̂
(k) = λkV̂

(k)
(7.151)

(b) Verify that these eigenvectors are orthogonal and normalized, using the extended defini-
tion of dot product appropriate for complex vectors,

V̂
(k)∗ · V̂

(l) = δkl (7.152)

(c) Derive the identities given in eqns (7.93, 7.94). Use them to write out the alternate eigen-

vectors V̂
(k)′

in eqn (7.95) in terms of â′, b̂
′
, and ω.

Exercise 7.6 A complex, spherical basis, ê(sp)
m for m = −1, 0,+1, in a three-dimensional

Cartesian space may be defined as

ê(sp)

+1 = 1√
2

(−ê1 + i ê2
)

ê(sp)

0 = ê3 ê(sp)

−1 = 1√
2

(
ê1 + i ê2

)
(7.153)

(a) Prove that these basis vectors are orthonormal, using the complex inner product defined
in Section 7.10,

ê(sp)∗
m · ê(sp)

m′ = δmm′ (7.154)

(b) Show that the dyadic

� = ê(sp)

+1 ê(sp)∗
+1 + ê(sp)

0 ê(sp)∗
0 + ê(sp)

−1 ê(sp)∗
−1 (7.155)

is equal to the resolution of unity dyadic � defined in eqn (7.63).
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(c) Use the resolution of unity in eqn (7.155) to prove that a general vector A can be expanded
as

A =
∑

m=+1,0,−1

A(sp)
m ê(sp)

m where A(sp)
m = ê(sp)∗

m · A (7.156)

[Recall that dyadics in complex spaces are written with the right-hand vector already com-
plex conjugated so that no further complex conjugation is required when dotting them onto
vectors.]

Exercise 7.7
(a) Apply the expansion in eqn (7.156) to the radius vector r. Write the resulting r (sp)

m com-
ponents in terms of x, y, z.
(b) Write the components r (sp)

m in terms of spherical polar coordinates, and demonstrate that,
for m = +1, 0,−1,

r (sp)
m =

√
4π

3
rY m

1 (θ, φ) (7.157)

where the Y 1
m(θ, φ) are the standard spherical harmonics for � = 1 as listed, for example on

page 337 of (Shankar, 1994).

Exercise 7.8
(a) Use the definition of components in eqn (7.156) with the standard Cartesian expansion
A = ∑3

i=1 Ai êi to show that the spherical components can be written in terms of the Carte-
sian ones as

A(sp)
m =

3∑
i=1

Tmi Ai or, equivalently,

⎡⎢⎣ A(sp)

+1

A(sp)

0

A(sp)

−1

⎤⎥⎦ = T

⎡⎣ A1
A2
A3

⎤⎦ (7.158)

where
Tmi = ê(sp)∗

m · êi (7.159)

(b) Demonstrate that the matrix T must be unitary, and check that the matrix you wrote is
indeed unitary.
(c) Using the resolution of unity eqn (7.155) or otherwise, show that the equation B = FA
can be written as the equivalent component equation

B(sp)
m =

∑
m′=+1,0,−1

F (sp)

mm′ A
(sp)

m′ where F (sp) = T F T † (7.160)

gives the spherical matrix F (sp) in terms of the standard Cartesian matrix F defined in eqn
(7.18).

Exercise 7.9 An operator F is defined in terms of the unit operator U and a real, anti-
symmetric operator W by

F = U +W (7.161)

The operator W is associated with a given vector ω, as described in Lemma 7.5.1.

(a) Show that F is a normal operator.

(b) Show that V̂
(3) = ω̂ is an eigenvector of F .

(c) Find the eigenvalues of F and hence prove that F is nonsingular for any value of ω.
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Exercise 7.10 Consider a real, anti-symmetric operator N . Suppose that the associated vec-
tor discussed in Section 7.5 is the unit vector n̂ = (

ê1 + 2ê2
)
/
√

5. (Thus NV = n̂ × V for
any vector V.)

(a) Show that â = ê3 is a suitable choice of the unit vector â discussed in Section 7.13. Use it
to find three eigenvectors of N . Show that they are orthonormal, using the complex definition
of inner product from eqn (7.83).
(b) Consider now an operator defined by F = U + 2N − 3N 2, where U is the unit operator.
Find eigenvectors and eigenvalues of F .



8

KINEMATICS OF ROTATION

In this chapter, we develop the techniques needed to define the location and orienta-
tion of a moving rigid body. Roughly speaking, rotation can defined as what a rigid
body does. For example, imagine an artist’s construction consisting of straight sticks
of various lengths glued together at their ends to make a rigid structure. As you turn
such a construction in your hands, or move it closer for a better look, you will notice
that the lengths of the sticks, and the angles between them, do not change. Thinking
of those sticks as vectors, their general motion can be described by a class of linear op-
erators called rotation operators, which have the special property that they preserve
all vector lengths and relative orientations.

8.1 Characterization of Rigid Bodies
The concept of a rigid body is an idealization, since all real objects have some degree
of elasticity. However, the theory in the present and following chapters, based on this
idealization, provides a good first approximation to the behavior of many real objects.

Definition 8.1.1: Definition of Rigid Body
A rigid body can be defined as a collection of point masses such that the distances between
them do not change. If rl and rn are the locations of any two masses ml and mn in the
body, relative to some inertial coordinate system, the body is rigid if and only if the
distances dln defined for all l, n values by

rl − rn = dln and ‖dln‖ = dln (8.1)

remain constant as the body moves.

We will refer to vectors dln between masses ml and mn as internal vectors.
The above definition implies that the dot product of any two internal vectors is a

constant, regardless of where the masses occur in the rigid body.

Lemma 8.1.2: Constancy of Dot Products
For any masses ma, mb, mp, mq of a rigid body,

dab · dpq = constant (8.2)

Proof: The lemma is proved in two stages. First consider any three distinct masses
ma, mb, mp and the vectors between pairs of them. They form a triangle so that

dap − dbp = dab (8.3)

As the rigid body moves, this triangle will remain anchored to the same three masses.

152
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Now calculate the squared magnitude of the left and right sides of eqn (8.3),∥∥dap − dbp
∥∥2 = ‖dab‖2 or d2

ap − 2
(
dap · dbp

)+ d2
bp = d2

ab (8.4)

The constancy defined in eqn (8.1) then implies that the squared terms in eqn (8.4)
are all constants, and hence that the dot product must also be constant. The dot
product of vectors dap and dbp, both of which start from mass mp, must therefore also
remain constant.

Now consider any two internal vectors of the rigid body. Call them dab and dpq .
Picking some other mass, which will be labeled with index c, we can write

dab = dac − dbc and dpq = dpc − dqc (8.5)

Therefore the expression

dab · dpq = (dac − dbc) ·
(
dpc − dqc

)
(8.6)

contains only dot products of internal vectors originating at the common single mass
mc. But all such dot products have just been proved to be constant, so dab · dpq must
be a constant, which completes the proof of the lemma. �

mp

dbp

ma

dap

mbdab mb

mq

dab dpq

dac

dbc dpc

dqc

mc

ma
mp

FIG. 8.1. Relations among internal vectors.

The dot product of two internal vectors is the product of their magnitudes, which
are constant by the above definition, and the cosine of the angle between them. Thus
the above definition and lemma also establish that the relative angle between any two
internal vectors must remain constant as the body moves.

8.2 The Center of Mass of a Rigid Body
The center of mass R of any collection of point masses, including that of a rigid body,
is given in eqn (1.32) as

R = 1

M

N∑
n=1

mnrn (8.7)

The relative position vector ρn of mass mn is then defined in eqn (1.33) by the equa-
tion

rn = R + ρn (8.8)

The relative position vectors may be used to give an alternate characterization of a
rigid body.
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mn

FIG. 8.2. Center of mass and relative vectors for a rigid body. A typical mass mn of the body is
shown.

Lemma 8.2.1: Constant Dot Product of Relative Position Vectors
A body is a rigid body if and only if, for all masses ml and mn ,

ρl · ρn = constant (8.9)

Proof: First show that eqn (8.9) implies the constancy of dln , and hence that the
body is a rigid body according to Definition 8.1.1. Equation (8.8) shows that any
internal vector may be written

dln = rl − rn = ρl − ρn (8.10)

since the R terms cancel. Thus

d2
ln = dln · dln =

(
ρl − ρn

) · (ρl − ρn

)
(8.11)

Equation (8.9) implies that all dot products in the expansion of the right side of eqn
(8.11) are constant. Hence each dln is constant, as was to be proved.

Now prove the converse, that Definition 8.1.1 implies eqn (8.9). Use eqns (8.7,
8.8) to write, for any mass mn ,

ρn = rn − R = 1

M

N∑
p=1

mp(rn − rp) = 1

M

N∑
p=1

mpdnp (8.12)

Using eqn (8.12), the expression ρl · ρn in eqn (8.9) becomes

ρl · ρn =
1

M2

N∑
p=1

N∑
q=1

mpmqdlp · dnq (8.13)

which contains only dot products of the form dlp · dnq , all of which were proved
constant by Lemma 8.1.2, which completes the proof. �

In general, the center of mass will not be at the location of one of the point masses.
In fact, for a hollow body like a basketball or a teacup, the center of mass may be at
some distance from the masses. But eqn (8.9) with l = n implies that the distance
of the center of mass from any of the point masses is a constant. The center of mass
moves rigidly with the body just as if it were one of the point masses.
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8.3 General Definition of Rotation Operator
Rigid bodies have been defined by the condition that the dot product of any two
relative position vectors ρl · ρn must remain constant as the body rotates. We now
investigate a class of linear operators called rotation operators that preserve the inner
product of any two vectors and are therefore appropriate for describing the rotation
of rigid bodies. These rotation operators will be applied to the kinematics of rigid
bodies in Section 8.9.

The first property of rotation operators is linearity. Let a general rotation operator
R transform a general vector V into the vector V(R),

V(R) = RV (8.14)

Since we want operators that reproduce the behavior of rigid bodies, the first require-
ment placed on this operator must be that a triangle of internal vectors such as eqn
(8.3) must be transformed into the same triangle of transformed vectors with

d(R)
ap − d(R)

bp = d(R)
ab (8.15)

or, introducing the operator,

Rdap −Rdbp = Rdab = R
(
dap − dbp

)
(8.16)

This condition is satisfied by requiring R to be a linear operator, as defined in eqn
(7.1) of Chapter 7, so that for any vectors V and W,

R (αV + βW) = αRV + βRW (8.17)

However, linearity alone is not sufficient. In addition to being linear, the rotation
operator must satisfy the conditions of the following definition.

Definition 8.3.1: Rotation Operator Defined
A rotation operator, sometimes referred to as a rotation, is defined as a linear opera-
tor that also satisfies any one of the following three equivalent definitions. Each of the
definitions implies the other two.

1. Given vectors V and W, define V(R) = RV and W(R) = RW. Then a linear
operator R is a rotation operator if only if

V · W = V(R) · W(R) (8.18)

is satisfied for any, arbitrary V, W.
2. The linear operator R is a rotation operator if and only if there is some or-

thonormal triad of vectors ê1, ê2, ê3 obeying

êi · êj = δi j (8.19)

such that ê(R)
1 , ê(R)

2 , ê(R)
3 is also an orthonormal triad of vectors, obeying

ê(R)
i · ê(R)

j = δi j (8.20)

where ê(R)
i = Rêi for each index i = 1, 2, 3.
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3. A linear operator R is a rotation operator if and only if it possesses an inverse
and its inverse is equal to its transpose,

R−1 exists, and R−1 = RT (8.21)

so that
RTR = U = RRT (8.22)

where U is the unit operator. As discussed in Section 7.5, this is the definition
of an orthogonal operator, so this definition requires R to be a real, linear,
orthogonal operator.

W
V

V(R)

W(R)

FIG. 8.3. The lengths of the rotated vectors V(R) and W(R) are the same as the original vectors.
Also the angle between them is same as between the original ones.

Proof: (Proof of equivalence) We now prove that the condition in each of these
definitions implies the condition in the following one, in the pattern 1⇒2⇒3⇒1.
This implies that an operator R satisfying any of the definitions will also satisfy the
other two, and thus that the three definitions are equivalent.

Since the vectors V and W in Definition 1 are assumed arbitrary, they can be taken
to be êi and êj . Thus the condition of Definition 1 implies that of Definition 2.

The condition in Definition 2 can be written, for i, j = 1, 2, 3,

ê(R)
i · ê(R)

j = Rêi ·Rêj = δi j (8.23)

Using the definition of the identity and transpose operators from Section 7.1, this
becomes

êi ·RTRêj = δi j = êi · U êj or
(
RTR

)
i j
= Ui j (8.24)

Since all of the matrix elements of the operators
(
RTR

)
and U are equal, the operators

are equal and42

RTR = U (8.25)

Taking the determinants of both sides of eqn (8.25) and using eqn (7.35), shows that

(detR)2 = (detRT)(detR) = detU = 1 (8.26)

with the result that
detR = ±1 �= 0 (8.27)

42As proved for matrices in Theorem B.22.1, eqn (8.25) is actually a necessary and sufficient condition
for R to be an orthogonal operator. That proof is repeated here.
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Thus R is nonsingular, and, R−1 exists. Using U = RR−1 and eqn (8.25) gives

RT = RTU = RTRR−1 = UR−1 = R−1 (8.28)

which is the condition in Definition 3 and implies eqn (8.22).
Introducing the operator R, the condition in Definition 1 can be written using the

definition of the transpose operator in eqn (7.13),

V · W = V(R) · W(R) = (RV) · (RW) = V ·
(
RTRW

)
(8.29)

Thus the orthogonality condition RTR = U from Definition 3 implies the condition
of Definition 1, completing the circle of inference. �

8.4 Rotation Matrices

From the general discussion of linear operators in Section 7.2, we know that V(R) =
RV implies and is implied by the equation

V (R)
i =

3∑
j=1

Ri j Vj where Ri j = êi ·Rêj (8.30)

are the matrix elements of the matrix R associated with the operator R.
Equation (8.30) gives the components V (R)

i of V(R) in the êi basis, in terms of the
components Vj of the original vector V in that same basis. It may also be written in
matrix form, as

[V (R)] = R [V ] (8.31)

where [V ] is the column vector of components Vj and [V (R)] is the column vector of
components V (R)

i .
As an example of a rotation operator, consider the rotation denoted R[θ ê3], a

rotation by angle θ about the ê3 axis. The second of eqn (8.30) shows that the matrix
element Ri j is the dot product of êi with the rotated image of êj . Thus Ri j = êi · ê(R)

j .
Evaluating these dot products gives the matrix

R [θ ê3] =
⎛⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞⎠ (8.32)

The reader should verify all of the matrix elements of eqn (8.32), and also check that
this matrix, and hence the associated operator, are orthogonal and have determinant
equal to plus one. A general prescription for deriving the operators and matrices for
rotation about any axis will be given in Section 8.18.
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8.5 Some Properties of Rotation Operators

By Definition 2 of Section 8.3, the rotated images of the basis vectors êi are also
three, mutually orthogonal unit vectors and hence form a basis in the space. Like any
vectors, these rotated basis vectors may be expanded in the original basis, as

ê(R)
i =

3∑
a=1

êa

(
êa · ê(R)

i

)
=

3∑
a=1

êa
(
êa ·Rêi

) = 3∑
a=1

êa Rai =
3∑

a=1

RT
ia êa (8.33)

Note that the basis vectors transform using the transposed matrix R T.
It is useful to define rotated versions of the Kroeneker delta function and the Levi-

Civita function defined in Section A.5. It follows from Definition 1 of Section 8.3, that
the rotated Kroeneker-delta function is the same as the original one,

δ
(R)
i j = ê(R)

i · ê(R)
j = êi · êj = δi j (8.34)

Using eqn (8.33), the rotated Levi-Civita function may be expanded as

ε
(R)
i jk = ê(R)

i × ê(R)
j · ê(R)

k =
3∑

a=1

3∑
b=1

3∑
c=1

Rai Rbj Rck êa × êa · êc =
3∑

a=1

3∑
b=1

3∑
c=1

Rai Rbj Rck εabc

(8.35)
It follows from eqn (B.37) and the properties of εabc listed in Section A.5 that

ε
(R)
123 =

3∑
a=1

3∑
b=1

3∑
c=1

Ra1 Rb2 Rc3εabc = |R | = detR (8.36)

Since exchange of two indices of ε
(R)
i jk implies the exchange of two corresponding

indices of εabc in eqn (8.35), one obtains

ε
(R)
i jk = ê(R)

i × ê(R)
j · ê(R)

k = detR εi jk (8.37)

8.6 Proper and Improper Rotation Operators

Equation (8.27) states that the determinant of a rotation operator must be either +1
or −1. Rotation operators with detR = +1 are called proper rotation operators, or
proper rotations. Those with with detR = −1 are called improper rotation operators.
These operators are also referred to as proper or improper orthogonal operators.

For example, consider the identity operator U . It is orthogonal, since UT = U and
therefore UUT = U2 = U . The identity can be thought of as a degenerate proper
rotation (by zero angle), since detU = +1.

But the total inversion operator T = −U , which converts every vector V into −V,

is also orthogonal since T T T = U2 = U . But det T = −1 and so the total inversion
operator is an improper rotation.
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The distinction between proper and improper rotations is of no importance for dot
products, since, by Definition 1 of Section 8.3,

V(R) · W(R) = V · W (8.38)

in either case.
But cross products are sensitive to the distinction, as proved in the following the-

orem.

Theorem 8.6.1: Rotated Cross Products
With the definitions A(R) = RA, B(R) = RB, and C(R) = RC,

A = B × C implies A(R) = (detR)
(

B(R) × C(R)
)

(8.39)

Proof: Writing A = ∑3
k=1 Ak êk , with a similar expansion for B and C, it follows from

the linearity of operator R that

A(R) = RA = R
3∑

k=1

Ak êk =
3∑

k=1

AkRêk =
3∑

k=1

Ak ê(R)
k (8.40)

with a similar expressions for B(R) and C(R). Thus

B(R)×C(R) =
3∑

i=1

3∑
j=1

Bi Cj ê
(R)
i ×ê(R)

j =
3∑

i=1

3∑
j=1

3∑
k=1

Bi Cj

(
ê(R)

i × ê(R)
j · ê(R)

k

)
ê(R)

k (8.41)

where the last expression expands the vector ê(R)
i × ê(R)

j in the rotated basis. Using
eqns (8.37, 8.40), and the expansion of cross products from eqn (A.16), then gives

B(R) × C(R) = (detR)

3∑
i=1

3∑
j=1

3∑
k=1

εi jk Bi Cj ê
(R)
k = (detR)

3∑
k=1

Ak ê(R)
k = (detR)A(R)

(8.42)
as was to be proved. �

We will be concerned almost entirely with proper rotations, for which detR = +1.
Using eqn (8.39), we may now give a necessary and sufficient condition for R to be a
proper rotation operator.

Definition 8.6.2: Proper Rotation Operator
The linear operator R is a proper rotation operator if and only if it satisfies Definition
2 of Section 8.3 as well as the condition that the original and the rotated basis vectors
ê(R)

i = Rêi for i = 1, 2, 3 both form right-handed systems, obeying

ê1 × ê2 = ê3 and ê(R)
1 × ê(R)

2 = ê(R)
3 (8.43)
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8.7 The Rotation Group

As for any linear operator, the product of two rotation operators is defined to mean
successive application. Thus, for any vector V, the product R = R1R2 implies that

RV = (R1R2) V = R1 (R2V) (8.44)

in which the right operator R2 is applied first to V and the left operator R1 is then
applied to the result.

A set of objects is said to form a group if a binary operation called group multipli-
cation of the objects is defined and if a set of group axioms is satisfied. The common
usage is to say that the objects form a group under that particular group multiplica-
tion. We show that proper rotations form a group under the operator multiplication
defined in eqn (8.44).

1. The first axiom is closure. The group product of two objects must be an object
in the same group. Thus, the product of two proper rotations must also be a
proper rotation. If R = R1R2 and rotations R1 and R2 both satisfy Definition 3
of Section 8.3, then

R−1 = (R1R2)
−1 = R−1

2 R−1
1 = RT

2RT
1 = (R1R2)

T = RT (8.45)

shows that R also satisfies the same definition and hence is also a rotation.
Moreover, if R1 and R2 are proper rotations, then

detR = det (R1R2) = detR1 detR2 = (+1) (+1) = +1 (8.46)

shows that R is also a proper rotation. Thus closure is proved.
2. There must be an identity in the group such that pre- or post-multiplication of

any object by that identity does not change the object. We have previously seen
that the identity, or unity, operator U is a proper rotation operator.

3. Every object in the group must have an inverse in the group, such that pre-
or post-multiplication of that object by its inverse yields the identity object. As
noted in the proof of Definition 3 of Section 8.3, the inverse R−1 of a proper
rotation always exists. To see that the inverse is also a proper rotation, set B =
R−1 = RT, where R is a proper rotation operator. Then

B−1 =
(
R−1

)−1 = R = (
RT)T = BT (8.47)

which shows that B is a rotation operator. Also 1 = detR = detBT = detB
shows that B is a proper rotation.

4. Group multiplication must be associative. Proper rotation operators obey
(R1R2)R3 = R1 (R2R3) since, as discussed in Section 7.1, both sides are equal
to R1R2R3.
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The group of proper rotations is designated SO(3), which stands for the special (de-
terminant equal to +1), orthogonal group in three dimensions.

If the product of a pair of elements gives a result independent of their order, the
group is said to be Abelian. The rotation operators form a non-Abelian group. A finite
rotation R1R2 will not usually give the same end result as a finite rotation R2R1.

For example, place a closed book on the table in front of you, as if preparing to
open and read it. Rotate it by 90◦ about a vertical axis, and then by 90◦ about an
axis running from your left to your right hands. Now replace the book in its original
position and do the same two rotations in reverse order. You will see that the final
orientation of the book is indeed different.

We say that finite rotations do not commute. Writing the commutator of R1 and
R2 as

[R1,R2]c = R1R2 −R2R1 (8.48)

we express this result by saying that proper rotations have in general a nonzero com-
mutator and so form a non-Abelian group.

8.8 Kinematics of a Rigid Body

Let a rigid body have a center of mass R and relative position vectors ρn . As the rigid
body moves, both R and the ρn will be functions of time. At t=0, the position of the
mass mn relative to the origin of some inertial coordinate system will be

rn(0) = R(0)+ ρn(0) (8.49)

and at time t the location will be

rn(t) = R(t)+ ρn(t) (8.50)

As proved in Lemma 8.2.1, the dot product of any pair of relative position vectors is
constant (including that of a vector with itself, giving its magnitude squared). Hence,
these dot products also will be the same at all times t ,

ρl(t) · ρn(t) = ρl(0) · ρn(0) (8.51)

Thus the problem of parameterizing the orientation of a rigid body (by which we
mean defining the location of all of its masses mn once its center of mass is known)
boils down to finding an expression for the evolution of vectors ρn(t) that obey eqn
(8.51) at all times t .

The first step toward such a parameterization is to construct a system of coordi-
nates tied to the rigid body. With the rigid body at its initial position and orientation at
time zero, it is always possible to select three non-coplanar relative position vectors.
For simplicity, suppose that these are the first three of them ρ1(0),ρ2(0),ρ3(0). Now
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ê1

ê2

ê3

ê′3 ê′2
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ρn

rn
ê′1

mn

FIG. 8.4. The body system unit vectors ê′i are rigidly fixed in the moving body. The relative
position vector ρn is also fixed in the body. Hence its components in the body system are
constants.

apply the Schmidt orthogonalization method43 to these vectors to construct a right-
handed, orthonormal set of unit vectors ê′1(0), ê′2(0), ê′3(0). Thus, by construction,

ê′i (0) =
3∑

k=1

αikρk(0) and δi j = ê′i (0) · ê′j (0) =
3∑

k=1

3∑
l=1

αikαjlρk(0) · ρl(0) (8.52)

where the αik are coefficients specified by the Schmidt method.
Now define vectors ê′i (t) at time t by

ê′i (t) =
3∑

k=1

αikρk(t) (8.53)

where the αik factors in eqn (8.53) are defined to be the same as those in eqn (8.52).
It follows from eqns (8.51, 8.52) that

ê′i (t) · ê′j (t) =
3∑

k=1

3∑
l=1

αikαjlρk(t) · ρl(t)

=
3∑

k=1

3∑
l=1

αikαjlρk(0) · ρl(0) = ê′i (0) · ê′j (0) = δi j (8.54)

which shows that the ê′i (t) are also an orthonormal set of unit vectors for all t .
The coordinate system consisting of these three orthonormal vectors ê′i (t), with

its origin at the center of mass, will be called the body system. The relative position
vectors can be expanded in this body system as

ρn(t) =
3∑

i=1

ρ′ni (t)ê
′
i (t) (8.55)

Equation (8.51) implies that the components ρ′ni (t) will be constants, always equal

43See Section B.20.
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to their values ρ′ni (0) at time zero,

ρ′ni (t) = ê′i (t) · ρn(t) =
3∑

k=1

αikρk(t) · ρn(t) =
3∑

k=1

αikρk(0) · ρn(0) = ê′i (0) · ρn(0) = ρ′ni (0)

(8.56)
Thus the angles between the various ê′i (t) and ρn(t) will never change. The ê′i (t) are
rigidly connected to the body and turn with it as it moves.

8.9 Rotation Operators and Rigid Bodies
The time evolution of a rigid body can be systematized by defining a time-dependent
rotation operator R(t) by the condition that it maps each ê′i (0) of the body system at
time zero into its value ê′i (t) at time t , as proved in the following theorem.

Theorem 8.9.1 Define a time dependent operator R(t) by the condition that, for i =
1, 2, 3,

ê′i (t) = R(t) ê′i (0) (8.57)

It follows that R(t) is a proper rotation operator obeying

R(t)TR(t) = U = R(t)R(t)T (8.58)

and detR(t) = +1 for all time t .
It also follows that

ρn(t) = R(t)ρn(0) (8.59)

and that
ρl(t) · ρn(t) = ρl(0) · ρn(0) (8.60)

as is required for rigid bodies.

Proof: Identify ê′i (t) with the rotated basis vector ê(R)
i in Definition 2 of Section 8.3.

Since eqn (8.54) proved the ê′i (t) to be an orthonormal system of basis vectors, it fol-
lows from Definition 2 that R(t) is a rotation operator. Hence, by equivalent Definition
3, it obeys eqn (8.58) at all times t .

A general relative position vector ρn(t) can be expanded in the body system ê′i (t)
basis as given in eqn (8.55),

ρn(t) =
3∑

i=1

ρ′ni (t) ê′i (t) (8.61)

The components in this expansion were shown in eqn (8.56) to be constants, with
ρ′ni (t) = ρ′ni (0). Thus, using the linearity of R(t),

ρn(t) =
3∑

i=1

ρ′ni (0) ê′i (t) =
3∑

i=1

ρ′ni (0)R(t) ê′i (0) = R(t)

(
3∑

i=1

ρ′ni (0) ê′i (0)

)
= R(t)ρn(0)

(8.62)
as was to be proved.
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It then follows from the orthogonality of R(t) and the definition of transpose in
eqn (7.13) that

ρl(t) · ρn(t) = R(t)ρl(0) ·R(t)ρn(0) = ρl(0) ·RT(t)R(t)ρn(0) = ρl(0) · ρn(0) (8.63)

which is eqn (8.60).

It follows from eqn (8.57) that at time zero, R(0) = U , which has determinant
+1. Since the vectors ρn(t) of the rigid body, and hence the body system unit vectors
ê′i (t), are assumed to evolve continuously with time, the determinant cannot make
a discontinuous jump to the only other possible value −1. Thus detR(t) = +1, R(t)
is a proper rotation, and the body system unit vectors ê′i (t) remain a right-handed,
orthonormal triad for all time t . �

8.10 Differentiation of a Rotation Operator

We now have an operator R(t) that allows any vector of a rigid body at time t to be
expressed in terms of that vector at time zero. But Lagrangian mechanics also needs
expressions for the velocities of the point masses of the rigid body. To obtain these
velocities, we now derive the time derivatives of the operator R(t) and of the vectors
rotated by it.

Suppose that R(t) acts on an arbitrary constant vector V to produce a time-varying
rotated vector V(R)(t) as in

V(R)(t) = R(t)V (8.64)

Taking the derivative of eqn (8.64) gives

dV(R)(t)

dt
= dR(t)

dt
V (8.65)

since V is a constant. The meaning of this last equation is perhaps made clearer if we
express eqns (8.64, 8.65) in component form as

V (R)
i (t) =

3∑
j=1

Ri j (t)Vj (8.66)

and

dV (R)
i (t)

dt
=

3∑
j=1

d Ri j (t)

dt
Vj (8.67)

Comparison of eqns (8.65, 8.67) shows that dR(t)/dt is that operator such that each
of its matrix elements is the time derivative of the corresponding matrix element
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Ri j (t). Written out, the matrix of dR(t)/dt is

d R (t)

dt
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d R11

dt

d R12

dt

d R13

dt

d R21

dt

d R22

dt

d R23

dt

d R31

dt

d R32

dt

d R33

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.68)

in which each element is differentiated.
Continuing, we use eqn (8.58) to write eqn (8.65) in the form

dV(R)(t)

dt
= dR(t)

dt
UV = dR(t)

dt
R(t)TR(t)V = dR(t)

dt
R(t)TV(R)(t) (8.69)

where eqn (8.64) has been used to get the last equality. Defining the operator W(t)
by

W(t) = dR(t)

dt
R(t)T (8.70)

then gives
dV(R)(t)

dt
=W(t)V(R)(t) (8.71)

which expresses the time derivative in terms of the current value of V(R)(t) at time t .
The real, time-varying operator W(t) defined by eqn (8.70) is anti-symmetric.

From eqn (8.58) we have U = R(t)R(t)T. Differentiating both sides of this equation
with respect to t using the product rule eqn (7.70) gives

0 = dU
dt

= dR(t)

dt
R(t)T +R(t)

dR(t)T

dt

= dR(t)

dt
R(t)T +R(t)

(
dR(t)

dt

)T

=W(t)+W(t)T (8.72)

which implies the anti-symmetry

W(t)T = −W(t) (8.73)

In deriving eqn (8.72) we used the fact that taking the transpose of an operator and
then differentiating it with respect to time produces the same result as doing the same
two operations in reverse order. This operator identity follows from the same identity
for matrices

d R (t)T

dt
=

(
d R (t)

dt

)T

(8.74)

which can be obtained by inspection of eqn (8.68).
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In Section 7.5, we determined that the most general real, anti-symmetric operator
acting on a vector is equivalent to a vector ω acting by means of a cross product. Thus
there is some vector ω(t) such that

W(t)A = ω(t)× A (8.75)

for any arbitrary vector A, where vector A itself may or may not be time-varying.
Hence the time derivative in eqn (8.71) can be written

dV(R)(t)

dt
=W(t)V(R)(t) = ω(t)× V(R)(t) (8.76)

where ω(t) is in general time varying since W(t) is.
The vector ω(t) in eqn (8.76) is called the angular velocity vector of the time-

varying rotation. Expanding this vector in the fixed, inertial êi basis,

ω(t) = ω1(t) ê1 + ω2(t) ê2 + ω3(t) ê3 (8.77)

the matrix of operator W(t) can be obtained from eqns (7.38, 7.39) with the time
dependence added. The matrix elements are

Wi j (t) =
3∑

k=1

εik jωk(t) (8.78)

and, written out, the matrix is

W (t) =
⎛⎝ 0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

⎞⎠ (8.79)

An operator differential equation for R(t) can also be written. Multiply both sides
of eqn (8.70) from the right by R(t) to get

W(t)R(t) = dR(t)

dt
R(t)TR(t) = dR(t)

dt
U = dR(t)

dt
(8.80)

and hence the differential equation

dR(t)

dt
=W(t)R(t) (8.81)

8.11 Meaning of the Angular Velocity Vector

First, it is useful to establish some notation for later use. The angular velocity vector
ω(t) has a magnitude ω(t) and an associated unit vector ω̂(t) which we will typically
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denote as n̂(t) in order to make it easier to distinguish from ω(t) itself. Thus

n̂(t) = ω̂(t) = ω(t)

ω(t)
(8.82)

In component form, this equation is

ni (t) = ωi (t)

ω(t)
(8.83)

for i = 1, 2, 3, where the unit vector n̂(t) has the expansion

n̂(t) = n1(t) ê1 + n2(t) ê2 + n3(t) ê3 (8.84)

Hence, the angular velocity may be written as a magnitude times a unit vector direc-
tion,

ω(t) = ω(t) n̂(t) or in component form ωi (t) = ω(t) ni (t) (8.85)

Dividing eqns (8.78, 8.79) by the magnitude ω(t) allows one to define a new op-
erator N (t) = W(t)/ω(t) with matrix elements based on the axis unit vector n̂(t).
Thus

Wi j (t)

ω(t)
= Ni j (t) =

3∑
k=1

εik j nk(t) (8.86)

with matrix

W (t)

ω(t)
= N (t) =

⎛⎝ 0 −n3(t) n2(t)
n3(t) 0 −n1(t)
−n2(t) n1(t) 0

⎞⎠ (8.87)

such that

W(t) = ω(t)N (t) and W (t) = ω(t) N (t) (8.88)

Also, dividing both sides of eqn (8.75) by the magnitude ω(t) shows that the action
of the operator N (t) is equivalent to a cross product with the unit vector n̂(t) as in

N (t)A = n̂(t)× A (8.89)

for an arbitrary vector A.
With this notation established, now consider the angular velocity vector. Multiply-

ing eqn (8.76) by dt gives the differential relation

dV(R)(t) =W(t)dt V(R)(t) = ω(t) dt × V(R)(t) (8.90)

which we may rewrite as

dV(R)(t) = (ω(t) dt)N (t)V(R)(t) = (ω(t) dt) n̂(t)× V(R)(t) (8.91)

For small enough dt , the differential dV(R)(t) approximates the change in V(R)(t)
during that time interval. From the properties of cross products, this change is a vector
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perpendicular to both n̂(t) and V(R)(t), with magnitude (ω(t) dt) V (R)(t) sin θωV where
θωV is the angle between the two vectors. Geometrically, this is a rotation of vector
V(R)(t) about an instantaneous axis whose direction is given by the unit vector n̂(t),
with a rotation angle d
 defined as

d
 = ω(t) dt so that d
 n̂(t) = ω(t) dt (8.92)

The angular velocity vector ω(t) thus has a magnitude ω(t) that gives the instan-
taneous rate of rotation ω(t) = d
/dt , and an associated unit vector ω̂(t) = n̂(t) that
gives the instantaneous axis of rotation.

In general, both of these quantities will change with time. Thus, even if eqn (8.92)
could be integrated to obtain some angle 
, in general that angle would be meaning-
less since each of the increments d
 takes place at a different time and hence about a
different axis.

Note that vectors parallel to the instantaneous axis are not changed at all in time
interval dt since the cross product of the two parallel vectors in eqn (8.90) will vanish.

ω

d


V(R)(t + dt)

dV(R)

V(R)(t)

FIG. 8.5. Geometry of the angular velocity vector ω. The differential dV(R) is seen to be per-
pendicular to both ω and V(R), corresponding to the cross product in eqn (8.90).

8.12 Velocities of the Masses of a Rigid Body
The theory of Section 8.10 can be used to find the time derivative of the relative
position vector ρn(t) discussed in Section 8.2.

From eqn (8.59) of Section 8.9, there is a time dependent rotation operator R(t)
such that ρn(t) = R(t)ρn(0). Replacing V(R)(t) by ρn(t) and V by ρn(0) in eqn (8.64)
allows eqn (8.76) to be written as

dρn(t)

dt
= ω(t)× ρn(t) (8.93)

This important formula was used in eqn (1.64) in Chapter 1, and will be used exten-
sively in our discussion of rigid body dynamics.
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The time derivative of eqn (8.8) then gives the velocity of mass mn relative to the
inertial origin as

vn = drn(t)

dt
= dR(t)

dt
+ dρn(t)

dt
= dR(t)

dt
+ ω(t)× ρn(t) (8.94)

It follows that the most general differential displacement of a rigid body in time dt
can be described as a differential displacement dR of its center of mass, together with
a rotation by an angle d
 = ω(t) dt about an instantaneous axis n̂(t) passing through
the center of mass,

drn = vndt = Vdt + ω(t) dt × ρn(t) = dR + d
 n̂(t)× ρn(t) (8.95)

8.13 Savio’s Theorem
In Section 3.3, we asserted that the cohesive forces holding a rigid body together do
no virtual work. The results of Section 8.12 allow us to give a proof.

Before presenting the proof, we note that, although eqn (8.95) refers to a differ-
ential displacement in a time dt , it is actually more general. The parameter dt could
be replaced by any parameter that varies monotonically as the body moves. Thus, the
most general virtual displacement of a mass mn of a rigid body, in the sense defined
in Section 3.2, is given by

δrn = δR + δ
 n̂ × ρn (8.96)

where n̂ is some axis and δ
 is some angle. This is the most general virtual displace-
ment that is consistent with the rigidity of the body.

Theorem 8.13.1: Savio’s Theorem
If Axioms 1.4.1 and 1.5.1, the laws of linear and angular momentum,

dP
dt

= F(ext) and
dJ
dt

= τ(ext) (8.97)

are assumed to hold for a rigid body, considered as a collection of point masses, then the
internal forces of cohesion will do no virtual work.44

Proof: For a rigid body, we identify as internal forces of constraint f(int)
n all those

forces that are not explicitly external. Then, as discussed in Sections 1.4 and 1.5, eqn
(8.97) implies that

F(int) =
N∑

n=1

f(int)
n = 0 and τ(int) =

N∑
n=1

rn × f(int)
n = 0 (8.98)

The virtual work done by these internal forces of constraint is defined in Section 3.3.

44The theorem that the general laws of momentum are sufficient to establish the vanishing of rigid-body
virtual work was derived by the late Mario Savio while he was a graduate student at San Francisco State
University.
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In vector form, it is

δW (cons) =
N∑

n=1

f(int)
n · δrn (8.99)

Using the virtual displacement from eqn (8.96) and the definition ρn = rn − R from
eqn (1.33) gives

δW (cons) =
N∑

n=1

f(int)
n · δR +

N∑
n=1

f(int)
n · δ
n̂ × (rn − R) (8.100)

Factoring quantities that have no index n out of the sums, and rearranging a triple
scalar product, this becomes

δW (cons) = F(int) · δR + τ(int) · δ
 n̂ − F(int) · δ
n̂ × R (8.101)

Equations (8.98) imply that each term on the right in eqn (8.101) is zero, and hence
that δW (cons) = 0, as was to be proved. �

8.14 Infinitesimal Rotation
Consider again the rotated vector V(R)(t) in eqn (8.64) of Section 8.10. The difference
�V(R)(t) between the vectors V(R)(t + dt) and V(R)(t) may be approximated by the
differential dV(R)(t) from eqn (8.91). The error of this approximation approaches zero
in the limit as dt goes to zero. As discussed in Section D.12, the differential dt is
not assumed to be a small quantity. But when it is large, the approximation of the
difference �V(R)(t) by the differential dV(R)(t) will in general be poor.

Thus we may use the definition of angle d
 from eqn (8.92) to write

�V(R)(t) = V(R)(t+dt)−V(R)(t) = dV(R)(t)+o(dt) = d
N (t)V(R)(t)+o(dt) (8.102)

and hence45

V(R)(t + dt) = V(R)(t)+ d
N (t)V(R)(t)+ o(dt)

= (U + d
N (t)) V(R)(t)+ o(dt) = RI [d
n̂(t)]V(R)(t)+ o(dt) (8.103)

The operator
RI [d
n̂(t)] = U + d
N (t) (8.104)

defined in this equation will be referred to as an infinitesimal rotation operator. To
order o(dt) in the limit dt → 0, it transforms V(R)(t) into its value V(R)(t +dt) at time
t + dt . The notation RI [d
n̂(t)] should be read as the rotation by angle d
 about
instantaneous axis n̂(t).

45The symbol o(dt) is discussed in Section D.11. Including it in an equation means that terms of smaller
order than dt are being dropped. In the present context, this means that terms in dt2 or higher powers are
dropped since limdt→0(dt)n/dt = 0 for n ≥ 2.
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Note that the operator RI [d
n̂(t)] is indeed a rotation when terms in dt2 and
higher powers are neglected, since it satisfies the orthogonality condition

RI [d
n̂(t)] RI [d
n̂(t)]T = (U + d
N (t)) (U + d
N (t))T

= (U + d
N (t)) (U − d
N (t)) = U + o(dt) (8.105)

due to the cancellation of the terms that are linear in d
 and hence linear in dt .

8.15 Addition of Angular Velocities
In Section 8.10 and subsequently, we have referred to the angular velocity ω(t) as
a “vector.” However, vectors have more assumed properties than just the ability to
be used in cross products as in eqn (8.76). For example, vectors can be added, and
their sum is independent of the order of the addends. We now use the concept of
infinitesimal rotation to understand the geometrical meaning of expressions like

ω(t) = ωa(t)+ ωb(t) = ωb(t)+ ωa(t) (8.106)

If the addends are assumed to be angular velocity vectors like the ones discussed
above, we now show that the sum ω(t) in eqn (8.106), in either order, is also a legiti-
mate angular velocity vector corresponding to the same definite infinitesimal rotation.

If eqn (8.106) is assumed, then we can use eqn (8.92) to write

d
n̂(t) = ω(t) dt = ωa(t) dt + ωb(t) dt = d
a n̂a(t)+ d
bn̂b(t) (8.107)

where d
a = ωa(t) dt and d
b = ωb(t) dt are the differential angles of the “a” and “b”
rotations. In operator form, this is

d
N (t) = d
aNa(t)+ d
bNb(t) (8.108)

where operators N (t), Na(t), and Nb(t) are related to the unit vectors n̂(t), n̂a(t), and
n̂b(t) as in eqn (8.89).

Then eqn (8.104) gives the infinitesimal rotation corresponding to vector ω(t) as

RI [d
n̂(t)] = U + d
N (t) = U + d
aNa(t)+ d
bNb(t) (8.109)

But when terms of order dt2 are dropped, this can be written

RI [d
n̂(t)] = (U + d
aNa(t)) (U + d
bNb(t))+ o(dt) (8.110)

or
RI [d
n̂(t)] = RI [d
a n̂a(t)] RI [d
bn̂b(t)] + o(dt) (8.111)

The sum of two angular velocity vectors thus corresponds to a compound infinitesimal
rotation consisting of two successive infinitesimal rotations, first the one produced by
ωbdt , followed by the one produced by ωadt .
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But, again due to the neglect of terms of order dt2, we could just as well write the
products in reverse order,

RI [d
n̂(t)] = (U + d
bNb(t)) (U + d
aNa(t))+ o(dt) (8.112)

or
RI [d
n̂(t)] = RI [d
bn̂b(t)] RI [d
a n̂a(t)] + o(dt) (8.113)

So the sum of two angular velocity vectors corresponds also to a compound infinitesi-
mal rotation consisting of two successive infinitesimal rotations in the opposite order,
first the one produced by ωadt , followed by a second one produced by ωbdt .

Thus, with the understanding that terms dt2 and higher are to be dropped, the
sum in eqn (8.106) corresponds to the product of the two infinitesimal rotations in
either order,

RI [d
a n̂a(t)] RI [d
bn̂b(t)] = RI [d
n̂(t)] = RI [d
bn̂b(t)] RI [d
a n̂a(t)] (8.114)

The sum of two angular velocity vectors, in either order, corresponds to the same
product of two infinitesimal rotations, since the order of their application makes no
difference when terms containing dt2 and higher powers are dropped.

Thus the vector ω(t) in eqn (8.106) is a legitimate angular velocity and corre-
sponds to the same definite, unambiguous infinitesimal rotation regardless of the
order of addition. Angular velocities like ω(t) are thus vectors and have the algebraic
properties associated with them.

Note to the Reader: Equation (8.114) illustrates an important fact. Although finite
rotations do not commute in general, infinitesimal rotations always commute.

8.16 Fundamental Generators of Rotations
Since angular velocities can be added, it is legitimate to consider the expansion of ω(t)
into its three Cartesian components to represent the product of three infinitesimal
rotations. These three rotations are now considered.

Let
ω(t) = ω1(t) ê1 + ω2(t) ê2 + ω3(t) ê3 (8.115)

as in eqn (8.77). The components ωi (t) in this expansion can be used to define the
new quantities d
i by

d
i = ωi (t) dt = d
ni (t) (8.116)

for i = 1, 2, 3, where the second equality follows from eqn (8.85) and the definitions
d
 = ω(t) dt and ni (t) = ωi (t)/ω(t). In vector form, the component definitions in eqn
(8.116) are equivalent to

ω(t)dt = d
n̂(t) = d
1 ê1 + d
2 ê2 + d
3 ê3 (8.117)

Applying the argument that led from eqn (8.109) to eqn (8.111), it follows that
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the infinitesimal rotation corresponding to ω(t) dt can be written as

RI [d
n̂(t)] = RI [d
1 ê1] RI [d
2 ê2] RI [d
3 ê3] + o(dt) (8.118)

where the order of the operators on the right makes no difference to the product,
since by assumption terms containing dt2 and higher powers are being dropped. The
components of the angular velocity vector can be thought of as producing a product
of three infinitesimal rotations with angles d
i = ωi (t) dt about the corresponding
coordinate axes êi , with the order of these infinitesimal rotations having no effect on
the final outcome.

Equation (8.104) shows that each of the three operators on the right in eqn
(8.118) has the form, for i = 1, 2, 3,

RI [d
i êi ] = U + d
iJ (i) (8.119)

where each J (i) is the operator N evaluated for the special case in which n̂ = êi .
When terms in dt2 and higher powers are dropped, eqn (8.118) can also be written
as

RI [d
n̂(t)] = U +
3∑

i=1

d
iJ (i) + o(dt) (8.120)

The operators J (i) are called the fundamental generators of infinitesimal rotations
or, more simply, the infinitesimal generators. The matrices corresponding to the J (i)

operators can be derived by setting n̂ to be the vectors with components (1, 0, 0),
(0, 1, 0), and (0, 0, 1), respectively, in eqn (8.87). They are

J (1) =
⎛⎝ 0 0 0

0 0 −1
0 1 0

⎞⎠ J (2) =
⎛⎝ 0 0 1

0 0 0
−1 0 0

⎞⎠ J (3) =
⎛⎝0 −1 0

1 0 0
0 0 0

⎞⎠ (8.121)

The infinitesimal generators J (i) do not commute. To see this, recall from eqn (8.89)
that NV = n̂ × V and hence that the J (i) obey

J (1)V = ê1 × V J (2)V = ê2 × V J (3)V = ê3 × V (8.122)

Thus, the rule for the expansion of triple cross products, together with the rule of
composition of linear operators, give, for any vector V,

J (i)J ( j)V = êi ×
(
êj × V

) = êj
(
êi · V

)− V
(
êi · êj

)
(8.123)

and
J ( j)J (i)V = êj ×

(
êi × V

) = êi
(
êj · V

)− V
(
êj · êi

)
(8.124)

with the result that(
J (i)J ( j) − J ( j)J (i)

)
V = êj

(
êi · V

)− êi
(
êj · V

) = (êi × êj )× V (8.125)
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Then using the expansion of (êi × êj ) from eqn (A.14) gives

(
J (i)J ( j) − J ( j)J (i)

)
V =

3∑
k=1

εi jk êk × V =
3∑

k=1

εi jkJ (k)V (8.126)

Since V is any general vector, eqn (8.126) implies that the commutators of two fun-
damental generators are

[
J (i),J ( j)

]
c
=

(
J (i)J ( j) − J ( j)J (i)

)
=

3∑
k=1

εi jkJ (k) (8.127)

or, writing the three cases of interest explicitly,[
J (1),J (2)

]
c
= J (3)

[
J (3),J (1)

]
c
= J (2)

[
J (2),J (3)

]
c
= J (1) (8.128)

These fundamental commutation relations control the structure of rotations in three-
dimensional Cartesian spaces. Relations eqn (8.127) define what is called the Lie al-
gebra of the rotation group.

The commutations for the matrices J (i) must be the same as for the operators.
These commutation relations can be read from eqn (8.127), or can be derived directly
from eqn (8.121).

8.17 Rotation with a Fixed Axis
A time dependent rotation operator in general has a time varying instantaneous axis
of rotation n̂(t). However, there is an important special case in which one assumes
that the axis of rotation is constrained to be a constant independent of time, n̂(t) = n̂
for all t where n̂ here is assumed not to be time varying. In this special case, unlike the
general case, the integral of the differential angle d
 defined in eqn (8.92) does have
a simple geometric significance. It is the accumulated angle of the fixed-axis rotation.

The operator for rotation by angle 
 about fixed axis n̂ can be found in closed
form. It will be denoted R[
n̂], with R [
n̂] for the corresponding matrix, and will
be referred to as a fixed-axis rotation.

The derivation of this operator begins with the differential equation, eqn (8.81).
Making a change of variable from t to 
, using the definitions


 =
∫ t

0
d
 =

∫ t

0
ω(t ′) dt ′ and

d


dt
= ω(t) (8.129)

derived from eqn (8.92), gives the differential equation, eqn (8.81), in the form

dR(
)

d

= 1

ω(t)
W(t)R(
) = N (t)R(
) (8.130)

where eqn (8.88) was used to get the final equality.
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However, the assumed constancy of the axis unit vector n̂(t) = n̂ implies that
operator N (t), defined at the beginning of Section 8.11, is also constant in time. Thus
N (t) = N where N is a constant operator with a constant matrix composed of the
components of n̂,

N =
⎛⎝ 0 −n3 n2

n3 0 −n1

−n2 n1 0

⎞⎠ (8.131)

where
n̂ = n1 ê1 + n2 ê2 + n3 ê3 (8.132)

is the constant axis of rotation. Thus eqn (8.130) becomes

dR(
)

d

= NR(
) (8.133)

The solution to differential equation, eqn (8.133), with a constant operator such
as N has already been discussed in Section 7.18. From eqn (7.131), it is

R(
) = exp (
N ) or, in our preferred notation, R[
n̂] = exp (
N ) (8.134)

The exponential in eqn (8.134) can be written in a number of ways. A vector can
be defined by � = 
n̂ and a vector with operator components by

�J =
3∑

k=1

êkJ (k) (8.135)

where the fundamental infinitesimal generators from Section 8.16 have been used.
Using the matrices defined in eqn (8.121), the matrix in eqn (8.131) and hence the
corresponding operator N can be expanded as

N =
3∑

k=1

nk J (k) and N =
3∑

k=1

nkJ (k) (8.136)

The product 
N in eqn (8.134) can then be written as


N =
3∑

k=1


nkJ (k) = 
n̂ · �J = � · �J (8.137)

which allows eqn (8.134) to be written as

R[
n̂] = exp
(

n̂ · �J

)
= exp

(
� · �J

)
. (8.138)

An important special case arises when the fixed axis is chosen to be one of the
coordinate unit vectors. Rotation by 
 about a coordinate axis êk becomes

R[
êk] = exp
(

êk · �J

)
= exp

(

J (k)

)
(8.139)
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8.18 Expansion of Fixed-Axis Rotation
As discussed in Section 7.18, eqn (8.134) may be expanded in a power series,

R[
n̂] = exp (
N ) = U +
N + (
N )2

2! + (
N )3

3! + · · · (8.140)

This power series may be written as the sum of a finite number of terms.

Theorem 8.18.1: Expansion of Fixed-Axis Rotation
A finite rotation by angle 
 about a fixed axis n̂ may be written as

R[
n̂] = exp (
N ) = U cos 
+N sin 
+M (1 − cos 
) (8.141)

with the corresponding matrix in the êi basis,

R [
n̂] = exp (
 N ) = U cos 
+ N sin 
+ M (1 − cos 
) (8.142)

where operator M has a matrix M with matrix elements Mi j = ni nj .

Proof: The evaluation of the power series in eqn (8.140) is facilitated by recursion
relations for powers of N . Direct matrix multiplication of eqn (8.131) by itself, using
the fact that n2

1 + n2
2 + n2

3 = 1 for unit vector n̂, yields

N 2 = M − U where M =
⎛⎝ n2

1 n1n2 n1n3

n2n1 n2
2 n2n3

n3n1 n3n2 n2
3

⎞⎠ (8.143)

and U is the identity matrix. Note that matrix M has the form Mi j = ni nj .

The next power is then

N 3 = N 2 N = ( M − U ) N = M N − N (8.144)

But M N = 0, as can be seen from eqn (8.143) and the total skew-symmetry of εi jk ,

( M N )i j =
3∑

k=1

Mik Nkj =
3∑

k=1

3∑
l=1

ni nkεkl j nl = ni

3∑
k=1

3∑
l=1

nknlεkl j = 0 (8.145)

This result, together with eqn (8.144), gives N 3 = −N . Thus

N 2 =M− U N 3 = −N N 4 = N 3N = −N 2 = − (M− U) (8.146)

and so on through a repeating sequence. Collecting coefficients of U , N , and M in
eqn (8.140) gives

exp (
N ) = U
(

1 − 
2

2! +

4

4! − · · ·
)
+N

(

− 
3

3! + · · ·
)
+M

(

2

2! −

4

4! + · · ·
)

(8.147)
Identifying the power series in 
 with the power series of trigonometric functions
gives eqn (8.141), as was to be proved. �
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For example, setting n̂ = ê3 gives

R [
ê3] =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠ cos 
+
⎛⎝ 0 −1 0

1 0 0
0 0 0

⎞⎠ sin 
+
⎛⎝ 0 0 0

0 0 0
0 0 1

⎞⎠ (1 − cos 
) (8.148)

which reproduces eqn (8.32) derived earlier for this special case.

The trace of R[
n̂] is easily obtained as the sum of the traces of the terms of eqn
(8.141). It is

TrR[
n̂] = 2 cos 
+ 1 (8.149)

Note that the dyadic form of operator M has the form of a dyad � = n̂n̂ with the
consequence that MV = � · V = n̂

(
n̂ · V

)
.

The result of the finite rotation of a general vector V by angle 
 about a fixed axis
n̂ can thus be written as

V(R) = R[
n̂]V = V cos 
+ n̂ × V sin 
+ n̂
(
n̂ · V

)
(1 − cos 
) (8.150)

where eqn (8.89) has also been used, with n̂ constant.

The geometric interpretation of eqn (8.150) is immediate. Use eqn (A.3) to write
the original vector as a sum of vectors parallel and perpendicular to n̂, as in V =
V‖ + V⊥. Then eqn (8.150) can be written in the same form, as V(R) = V(R)

‖ + V(R)
⊥ ,

where

V(R)
‖ = V‖ and V(R)

⊥ = (
V⊥ cos 
+ n̂ × V⊥ sin 


)
(8.151)

The original vector component V‖ parallel to rotation axis n̂ is unchanged by the
rotation, as one would expect. The vector V(R)

⊥ perpendicular to n̂ has the same mag-
nitude V⊥ as the original perpendicular vector V⊥, but is rotated by angle 
 in the
right-hand sense about axis n̂.

n̂

n̂ × V⊥

V(R)
⊥




V⊥

FIG. 8.6. Illustration of eqn (8.151). The component V⊥ perpendicular to n̂ is rotated by angle

 to give V(R)

⊥ . The component parallel to n̂ is not changed.
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Since rotation operators obey eqn (8.22), the inverse of a fixed-axis rotation is
R[
n̂]−1 = R[
n̂]T. The expansion eqn (8.140) gives

R[
n̂]T = {exp (
N )}T = exp
(

N T

)
= exp (−
N ) = R[−
n̂] (8.152)

since N is anti-symmetric. Thus, as one would expect, the inverse is a rotation by the
same angle about an oppositely directed axis,

R[
n̂]−1 = R[−
n̂] (8.153)

8.19 Eigenvectors of the Fixed-Axis Rotation Operator
The eigenvectors and eigenvalues of the fixed-axis rotation operator R[
n̂] are easily
derived. From eqn (8.134) we know that R[
n̂] = exp (
N ), where N is a real anti-
symmetric operator associated with unit vector n̂ by eqns (8.131, 8.132).

To begin, we solve the eigenvalue problem for N by noting that this operator
is identical to the W treated in Section 7.13 except for the substitution of n̂ for ω.
Setting ω = 1 in eqn (7.89) since n̂ is a unit vector, gives the eigenvalues of operator
N as

λ
(N)
1 = i λ

(N)
2 = −i λ

(N)
3 = 0 (8.154)

with corresponding normalized eigenvectors

V̂
(1) =

(
â − i b̂

)
/
√

2, V̂
(2) =

(
â + i b̂

)
/
√

2, and V̂
(3) = n̂ (8.155)

where â is some real unit vector perpendicular to n̂ but otherwise arbitrary and b̂ =
n̂ × â is also a real unit vector, perpendicular to both â and n̂.

By eqn (7.121) of Section 7.17, as discussed also in Section 7.18, the eigenvectors
of R[
n̂] = exp (θN ) are the same as those of N , and the eigenvalues are exponential
functions of those in eqn (8.154),

λ1 = exp (i
) λ2 = exp (−i
) λ3 = exp (0
) = 1 (8.156)

The dyadic �[
n̂] corresponding to R[
n̂] can be obtained in eigen-dyadic form from
eqn (7.113) of Theorem 7.16.1. It is

�[
n̂] =
3∑

k=1

V(k)λkV(k)∗ (8.157)

where the eigenvalues λk are from eqn (8.156).
The eigenvalue problem for R[
n̂] is now completely solved. As discussed in Sec-

tion 7.13, making different choices of arbitrary unit vector â is equivalent to multi-
plying the first two eigenvectors by exp (iα) and exp (−iα), respectively, where α is
some real number. This is only a trivial change, since in any case eigenvectors are de-
termined only up to a multiplicative constant of modulus unity. As proved in Lemma
7.16.2, such a multiplication also makes no change in the dyadic eqn (8.157), since
the exponential factors cancel. Thus, in spite of its appearance, eqn (8.157) is in fact
independent of the choice of â. If written out in terms of â, b̂, and n̂, eqn (8.157) will
be seen to reduce to eqn (8.150) which depends only on 
 and n̂.
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8.20 The Euler Theorem
We have now discussed two different types of rotations. The first, in Section 8.10,
happens when a rigid body is rotated in a general way during a time t , first about one
axis and then about another, and so on. The end product of all of this various motion
is still a rotation, however. The operator R(t) at time t is an orthogonal operator.

The other type is what we have called a fixed-axis rotation, discussed in Section
8.17. In this case, the rigid body is rotated by an angle 
 about an axis that does not
change, somewhat as if the rigid body were mounted on a lathe.

The Euler Theorem proves a result that may seem obvious: Any general rotation of
the first type could have been accomplished by some fixed-axis rotation of the second
type. This does not mean that it necessarily was accomplished by a fixed-axis rotation,
only that it could have been. If one starts with some standard orientation of a rigid
body at time zero and rotates it during time t in a general manner, the final orientation
could as well have been produced by starting from the same standard orientation and
rotating by some angle 
 about some fixed axis n̂.

Theorem 8.20.1: The Euler Theorem
For any general proper, orthogonal operator R, there exist a fixed axis n̂ and an angle 


in the range 0 ≤ 
 ≤ π such that

R[
n̂] = R (8.158)

Proof: We show that the dyadic form of a general R is identical to the dyadic form
of some fixed-axis rotation R[
n̂]. Since two operators with identical dyadics are
themselves identical, this will prove the theorem.

The first step is to find the eigenvalues of a general rotation R. Use eqn (8.22) to
write

(R− U)RT = U −RT = − (R− U)T (8.159)

and then take determinants of both sides,

det (R− U) detR = (−1)3 det (R− U) (8.160)

where we used detRT = detR, and det (αR) = α3 detR for three-dimensional opera-
tors. Since detR = +1 for proper orthogonal operators, the result is det (R− U) = 0,

which, according to eqn (7.86), shows that +1 is an eigenvalue of R. Call this eigen-
value λ3 = 1. To find the other two eigenvalues, we use eqns (7.111, 7.112) of Sec-
tion 7.15 relating the determinant and trace to the eigenvalues of R. Since the trace
of R is defined as the sum TrR = (R11 + R22 + R33) which is a real number, the
sum (λ1 + λ2 + λ3) = (λ1 + λ2 + 1) must be real, which implies the relation between
imaginary parts � (λ2) = −� (λ1) . This, together with 1 = detR = λ1λ2λ3 = λ1λ2(1),
implies that

λ1 = exp (i
) λ2 = exp (−i
) λ3 = 1 (8.161)

where 
 is some real number. The value of this number can be found from

(R11 + R22 + R33) = TrR = λ1 + λ2 + λ3 = 1 + 2 cos 
 (8.162)

where 
 can be restricted to the range 0 ≤ 
 ≤ π . The three eigenvalues of a general
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proper orthogonal operator R are thus determined uniquely.
The (real) eigenvector V(3) corresponding to eigenvalue +1 is found by setting

λ3 = 1 in the eigenvector equation, eqn (7.86), and solving for the eigenvector. The
equation to be solved is

(R− U) V(3) = 0, or ( R − U ) [V (3)] = 0 (8.163)

in matrix form.
It follows from eqn (8.163) in the form RV(3) = V(3) that the normalized eigen-

vector n̂ = V(3)/V (3) is not changed by R. Thus n̂ will be along the axis of rotation of
R. Only one rather trivial difficulty remains, the choice of direction for n̂. The eigen-
vector equation, eqn (8.163), only determines real unit vector n̂ up to a factor ±1.
It is necessary to compare the action of R on some vector not parallel to n̂. If that
rotation is not in a right-handed sense about n̂, the direction of n̂ must be reversed. A
unique axis direction and angle 
 are thus obtained, with positive angle 
 meaning
rotation in a right-handed sense about n̂.

We now find the other two eigenvectors of R. Since R is a normal operator with
three distinct eigenvalues, Lemma B.26.2 proves that it must possess three eigenvec-

tors which are orthogonal in the extended sense V̂
(k)∗ · V̂

(l) = δkl . Setting n̂ = V̂
(3)

,
and recalling that n̂ is real, the other two eigenvectors must be composed of real and

imaginary parts, both of which are perpendicular to n̂. Setting V̂
(1) = a − ib where a

and b are unknown real vectors perpendicular to n̂, the first eigenvalue equation is

RV̂
(1) = λ1V̂

(1)
(8.164)

Since R is a real operator and λ2 = λ∗1, the complex conjugate of eqn (8.164),

RV̂
(1)∗ = λ∗1V̂

(1)∗ = λ2V̂
(1)∗

(8.165)

implies that V̂
(2) = V̂

(1)∗ = a + ib is the eigenvector corresponding to λ2.

The orthogonality of these two eigenvectors then implies the vanishing of the real
and imaginary parts of the expression

0 = V̂
(1)∗ · V̂

(2) = (a + ib) · (a + ib) =
(

a2 − b2
)
+ i (a · b) (8.166)

which requires that vectors a and b must be orthogonal and have the same magnitude.
The vector b must therefore be b = n̂×a. (The other possible choice b = −n̂×a would
have the effect of making positive 
 mean rotation about n̂ in the left-handed sense,
whereas n̂ has already been chosen above so that R produces rotation in the right-

handed sense.) Normalizing the eigenvectors of R using V̂
(k)∗ · V̂(k) = 1 for k = 1, 2, 3

shows that the eigenvectors of R may be written as

V̂
(1) =

(
â − i b̂

)
/
√

2, V̂
(2) =

(
â + i b̂

)
/
√

2, and V̂
(3) = n̂ (8.167)

where â and hence b̂ = n̂ × â are unit vectors.
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The dyadic form of normal operator R is thus given by eqn (7.113) as

� =
3∑

k=1

V̂
(k)

λkV̂
(k)∗

(8.168)

where the eigenvalues are those in eqn (8.161) above, with the angle 
 found in eqn
(8.162), and eigenvectors are those in eqn (8.167) with the axis n̂ found from eqn
(8.163).

If we put the same angle 
 and same axis n̂ into eqn (8.157) of Section 8.19, we
obtain a dyadic �[
n̂] which is exactly the same as eqn (8.168), except for a possi-
bly different choice of arbitrary unit vector a. But, as discussed in Section 8.19, the
dyadic is independent of the particular choice of a. Different choices are equivalent
to multiplying eigenvectors by phase factors of modulus unity that cancel from the
dyadics. The dyadic of R is thus identical to that of R[
n̂]. But two operators with
identical dyadics are themselves identical. Hence R[
n̂] = R, which proves the Euler
Theorem. �

8.21 Rotation of Operators
Suppose that W = FV where F is a linear operator and V a general vector. Suppose
a rotation R to act on both V and W giving V(R) = RV and W(R) = RW. Then we
can find a linear operator F (R) that will map V(R) into W(R) as in W(R) = F (R)V(R).
To do so, write

W(R) = RW = RFV = RFRTRV = F (R)V(R) (8.169)

which leads to the definition
F (R) = RFRT (8.170)

We refer to F (R) as a rotated operator, since its action on the rotated vectors mimics
that of the original operator F on the original vectors.

8.22 Rotation of the Fundamental Generators
The rotated operators of the fundamental infinitesimal generators J (k) defined in
Section 8.16 are of particular interest. They are

J (k)(R) = RJ (k)RT =
3∑

l=1

J (l) Rlk =
3∑

l=1

RT
klJ (l) (8.171)

where Rlk are the matrix elements of rotation R.
To prove eqn (8.171), we let J (k)(R) = RJ (k)RT act on a general vector V. The

result is
J (k)(R)V = RJ (k)RTV = R

(
êk ×

(
RTV

))
(8.172)

where eqn (8.122) was used. The invariance of cross products under proper rotation
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from eqn (8.39) then gives

J (k)(R)V = R
(
êk ×

(
RTV

)) = (
Rêk

)× (
RRTV

) = (
Rêk

)× V (8.173)

Inserting a resolution of unity � = ∑3
l=1 êl êl to expand Rêk as

Rêk = � ·
(
Rêk

) = 3∑
l=1

êl êl ·Rêk =
3∑

l=1

êl Rlk (8.174)

eqn (8.173) becomes

J (k)(R)V = (
Rêk

)× V =
3∑

l=1

Rlk êl × V =
3∑

l=1

RlkJ (l)V (8.175)

Since V was an arbitrary vector we get finally the operator equality
J (k)(R)= ∑3

l=1 J (l) Rlk , which is the same as eqn (8.171).
Note the similarity between eqns (8.174, 8.171). The infinitesimal rotation gener-

ators J (k) transform under rotation in the same way as the Cartesian basis vectors êk

do.

8.23 Rotation of a Fixed-Axis Rotation

The rotation of a fixed-axis rotation operator may now be derived. Suppose the oper-
ator F in eqn (8.170) to be a fixed-axis rotation R[
n̂] discussed in Section 8.17. Let
this fixed-axis rotation map a general vector V into another vector W so that

W = R[
n̂]V (8.176)

Now suppose some rotation R (not usually the same as R[
n̂]) is applied to both V
and W, to give V(R) = RV and W(R) = RW. We expect intuitively that a fixed-axis
rotation by the same angle 
 but about a rotated axis n̂(R) = Rn̂ should map V(R)

into W(R) as in
W(R) = R[
n̂(R)]V(R) (8.177)

In effect, the original rotation should itself be rotated, its fixed axis changed from n̂
to n̂(R).

We now prove this important result formally.

Theorem 8.23.1: Rotation of Fixed-Axis Rotation
If R[
n̂] is a fixed-axis rotation operator, and if R is some other rotation, then

R[
n̂](R) = RR[
n̂]RT = R[
n̂(R)] (8.178)

where n̂(R) = Rn̂.
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Proof: The proof begins with eqn (8.140) which gives

R[
n̂](R) = RR[
n̂]RT = R exp (
N )RT

= RURT +R (
N )RT +R (
N )2

2! RT +R (
N )3

3! RT + · · · (8.179)

where the linearity of R has been used. Noting that

RN kRT = RNN · · ·NRT = RNRTRNRT · · ·RNRT = (
RNRT)k

(8.180)

where unity operators in the form U = RTR were inserted between N factors, gives

R[
n̂](R) = R (exp (
N ))RT

= RURT + (

RNRT)+ (


RNRT)2

2! +
(

RNRT)3

3! + · · ·
= exp

(

RNRT) (8.181)

Now, by eqns (8.137, 8.171),

RNRT =
3∑

k=1

nkRJ (k)RT =
3∑

k=1

nk

3∑
l=1

J (l) Rlk =
3∑

l=1

n(R)
l J (l) (8.182)

where we have defined n(R)
l = ∑3

k=1 Rlknk which, by eqn (8.30), is equivalent to
n̂(R) = Rn̂. Thus, again using eqn (8.137), eqn (8.181) becomes

R[
n̂](R) = exp

(



3∑
l=1

n(R)
l J (l)

)
= R[
n̂(R)] (8.183)

as was to be proved. A rotated fixed-axis rotation is indeed a rotation about a rotated
fixed axis! �

8.24 Parameterization of Rotation Operators
A general rotation R would appear at first sight to require nine parameters, the nine
matrix elements Ri j , to define it completely. But these nine matrix elements are not
independent, being constrained by the six independent conditions coming from the
orthogonality condition eqn (8.22). A general rotation can be completely defined by
the values of only three independent parameters.

One obvious parameterization of R would make use of the Euler Theorem of
Section 8.20. As we saw there, any general R determines the unique angle 
 and
axis n̂ of an equivalent fixed-axis rotation R = R[
n̂]. Since it is a unit vector, the
fixed-axis n̂ can be parameterized by two numbers, its components in spherical-polar
form, as in

n1 = sin θn cos φn n2 = sin θn sin φn n3 = cos θn (8.184)

where θn is the angle between n̂ and the ê3 axis, and φn is the azimuthal angle. Thus
a general rotation R can be uniquely parameterized by the three numbers 
, θn, φn .
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8.25 Differentiation of Parameterized Operator
When the rotation is varying with time, then the three parameters introduced in Sec-
tion 8.24 will become time dependent also, 
(t), θn(t), φn(t), which we may write
as

R(t) = R[
(t)n̂(t)] (8.185)

At time t1, the rotation R(t1) would be associated with the axis n̂(t1) and angle 
(t1) of
the fixed-axis rotation that would carry the rigid body from some initial orientation
to the rotated position at time t1. At a later time t2, the rotation R(t2) would be
associated with a different axis n̂(t2) and angle 
(t2) of a different fixed-axis rotation.
Each rotation R[
(t)n̂(t)] is about a fixed axis, but the required fixed axis is varying
with time!

The angular velocity ω(t) of such a time-varying rotation operator can be written
in terms of the time derivatives of 
(t) and n̂(t).

Theorem 8.25.1: Angular Velocity of Parameterized Rotation
If we use the parameterization of eqn (8.185) to write a time-varying rotated vector as

V(R)(t) = R[
(t)n̂(t)]V (8.186)

then the time derivative can be written as in eqn (8.76),

dV(R)(t)

dt
= ω(t)× V(R)(t) (8.187)

where the angular velocity vector ω can expressed in terms of the parameters 
, n̂ and
their derivatives 
̇ = d
/dt and dn̂/dt as

ω(t) = 
̇n̂ + sin 

dn̂
dt

+ (1 − cos 
) n̂ × dn̂
dt

(8.188)

Proof: To establish eqn (8.188), we begin by writing eqn (8.186) in the form

V(R)(t) = R[
(t)n̂(t)]V =
(
U + sin 
N + (1 − cos 
)N 2

)
V (8.189)

where the expansion of eqn (8.141) was used, with the first of eqn (8.146) used to
substitute M = U +N 2. Taking the time derivative of eqn (8.189) gives

dV(R)(t)

dt
=

{

̇

(
cos 
N + sin 
N 2

)
+ sin 


dN
dt

+ (1 − cos 
)

(
dN
dt

N +N dN
dt

)}
V

(8.190)
From eqn (8.153), the inverse of eqn (8.189) is

V = R[−
(t)n̂(t)]V(R)(t) =
(
U − sin 
N + (1 − cos 
)N 2

)
V(R)(t) (8.191)

Since n̂ is a unit vector with n̂ · n̂ = 1 it follows that n̂ · (dn̂/dt
) = 0. Since, for any
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arbitrary vector A,

NA = n̂ × A and so
dN
dt

A = dn̂
dt

× A (8.192)

expanding the cross products using the rule of triple cross products gives

N dN
dt

NA = 0 and hence N dN
dt

N = 0 (8.193)

Substituting eqn (8.191) into eqn (8.190), and using eqn (8.193) as well as the iden-
tities in eqn (8.146) to simplify, gives

dV(R)(t)

dt
=

{

̇N + sin 


dN
dt

+ (1 − cos 
)

(
N dN

dt
− dN

dt
N

)}
V(R)(t) (8.194)

Since, for any arbitrary vector A,(
N dN

dt
− dN

dt
N

)
A =

(
n̂ × dn̂

dt

)
× A (8.195)

eqn (8.194) is equivalent to

dV(R)(t)

dt
=

(

̇n̂ + sin 


dn̂
dt

+ (1 − cos 
) n̂ × dn̂
dt

)
× V(R)(t) (8.196)

which completes the derivation of eqn (8.188). �

An important consequence of eqn (8.188) is that if we happen to have a very
simple time-dependent rotation, one with a time-varying 
(t) but a fixed axis n̂ which
does not vary with time, then

dn̂
dt

= 0 and so ω(t) = 
̇n̂ (8.197)

8.26 Euler Angles
For many problems, particularly in rigid body dynamics, the parameterization of a
rotation by n̂ and 
 as in Section 8.24 is not the most convenient one. An alternate
parameterization uses the three Euler angles α, β, γ defined by

R[α, β, γ ] = R[αê3] R[β ê2] R[γ ê3] (8.198)

The definition in eqn (8.198) consists of three simple rotations about fixed coordinate
axes: First by γ about the ê3 axis, then by β about the ê2 axis, then by α about the ê3

axis again. Since these are rotations by finite angles, their order is quite important, as
we will see.

We prove the somewhat surprising fact that the product of these three rotations is
capable of reproducing any rotation whatsoever.
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γ

ê1

ê2

V(1)V
β

ê1

ê2

ê3

V(1)

V(2)

α

ê1

ê2

ê3

V(2)

V(R)

ê3

FIG. 8.7. Rotation of V into V(R) by the Euler angles. First, a rotation by γ about the ê3 axis
rotates V into V(1). Then a rotation by β about the ê2 axis rotates V(1) into V(2). Finally a
rotation by α about the ê3 axis rotates V(2) into the final vector V(R).

Theorem 8.26.1: Adequacy of Euler Angles
For any proper rotation R, there are three angles α, β, γ in the ranges −π < α ≤ π ,
0 ≤ β ≤ π , −π < γ ≤ π such that

R[α, β, γ ] = R (8.199)

Proof: We proved in Theorem 8.20.1 that for every proper rotation R there are a
unique axis n̂ and angle 0 ≤ 
 ≤ π such that R = R[
n̂]. So here we only need
to prove that, given any fixed-axis rotation, there are three angles α, β, γ such that
R[α, β, γ ] = R[
n̂]. We begin by writing the matrices of each factor of eqn (8.198),

R [γ ê3] =
⎛⎝ cos γ − sin γ 0

sin γ cos γ 0
0 0 1

⎞⎠ R [β ê2] =
⎛⎝ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎞⎠
R [αê3] =

⎛⎝ cos α − sin α 0
sin α cos α 0

0 0 1

⎞⎠ (8.200)

Multiplication of these three matrices then gives the matrix of R[α, β, γ ] as

R [α, β, γ ] = R [αê3] R [β ê2] R [γ ê3] =⎛⎝ (cos α cos β cos γ − sin α sin γ ) (− cos α cos β sin γ − sin α cos γ ) cos α sin β

(sin α cos β cos γ + cos α sin γ ) (− sin α cos β sin γ + cos α cos γ ) sin α sin β

− sin β cos γ sin β sin γ cos β

⎞⎠
(8.201)

We compare this matrix to eqn (8.142). Comparing the 33 elements of the two matri-
ces gives

cos β = n2
3 +

(
1 − n2

3

)
cos 
 (8.202)

The components of unit vector n̂ obey n2
1+n2

2+n2
3 = 1. It follows that (1−n3

3) ≥ 0 and
hence that, as 
 varies, the right side of eqn (8.202) has a maximum value of +1 and
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a minimum value of
(−1 + 2n2

3

) ≥ −1. It follows that eqn (8.202) defines a unique β

in the range 0 ≤ β ≤ π.

Some special cases must now be considered. First, when n1 = n2 = 0 and hence
n2

3 = 1, the rotation is purely about the ê3 axis. In this case, eqn (8.202) requires that
β = 0. The other two angles are not separately determined, but may have any values
such that (α + γ ) = 
.

Second, if 
 = 0 the rotation is the trivial unity rotation, regardless of the value of
n̂. Then eqn (8.202) requires that β = 0. The angles α and γ are again not separately
determined but may have any values such that (α + γ ) = 0.

Having treated the cases 
 = 0 and n2
3 = 1 separately, we will henceforward

assume that 
 > 0 and n2
3 < 1. With these assumptions, we cannot have β = 0,

for that value would reduce eqn (8.202) to (1 − n2
3)(1 − cos 
) = 0, which would be

impossible. The case β = π is possible, however. Again using eqn (8.202), it can arise
only when n3 = 0 and 
 = π . As can be seen by writing out R [α, π, γ ] = R [π n̂] with
n3 = 0 assumed, the α and γ can then have any values such that (γ − α) = θ where
θ is some unique angle in the range −π < θ ≤ π defined by the pair of equations
sin θ = 2n1n2 and cos θ = (n2

2 − n2
1).

The undetermination of α and γ for certain special values of 
 and n̂ is similar to
the situation in spherical polar coordinates, where the polar angle φ is undetermined
when θ = 0. Here, as in the polar angle case, if 
 and n̂ are continuously differentiable
functions of some parameter, the values of α and γ at the indeterminate points can
be determined from the condition that α, β, γ also vary continuously.

We now find unique values of α and γ when 
 > 0, n2
3 < 1 and sin β > 0. With

β known from eqn (8.202), compare the 31 and 32 entries of the two sides of the
matrix equation R [α, β, γ ] = R [
n̂] to obtain

cos γ = n2 sin 
− n3n1 (1 − cos 
)

sin β
(8.203)

sin γ = n1 sin 
+ n3n2 (1 − cos 
)

sin β
(8.204)

Similarly, comparison of the 13 and 23 entries gives

cos α = n2 sin 
+ n1n3 (1 − cos 
)

sin β
(8.205)

sin α = −n1 sin 
+ n2n3 (1 − cos 
)

sin β
(8.206)

The sum of the squares of the right sides of eqn (8.203) and eqn (8.204) equals one.
Thus a unique angle γ in the range −π < γ ≤ π is determined. Similarly, eqns (8.205,
8.206) determine a unique α in the range −π < α ≤ π .

The angles α, β, γ are now determined and five of the matrix elements matched. It
remains to prove that the 11, 12, 21, and 22 elements of the two matrices are identical
with these same choices of α, β, γ . This algebraic exercise is done in Exercise 8.12.
Thus R = R[
n̂] = R[α, β, γ ], as was to be proved. �
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The trace of R[α, β, γ ] is the sum of the diagonal terms of eqn (8.201). It can be
simplified to

TrR[α, β, γ ] = cos β + (1 + cos β) cos(α + γ ) (8.207)

The definition eqn (8.198) rotates first by angle γ about ê3, then angle β about
ê2, then by α about ê3 again. Repeated use of eqn (8.178) can be used to derive the
following remarkable result.

Theorem 8.26.2: Euler Angles in Reverse Order
The rotation R[α, β, γ ] defined in eqn (8.198) can also be produced by three rotations
that use the angles α, β, γ in reverse order, provided that each successive axis of rotation
is changed to reflect the effect of rotations already performed,

R[α, β, γ ] = R[αê3] R[β ê2] R[γ ê3] = R[γ ê(R)
3 ] R[βŷ] R[αê3] (8.208)

where

ê(R)
3 = R[βŷ] ê3 = R[α, β, γ ] ê3 and ŷ = R[αê3] ê2 (8.209)

Proof: The first equality in eqn (8.208) simply repeats the definition eqn (8.198).
The proof of the second equality is left as an exercise. �

Note that the equivalence of the two forms in the first of eqn (8.209) follows from
the fact that ê3 = R[αê3] ê3 and ê(R)

3 = R[γ ê(R)
3 ] ê(R)

3 . A unit vector is unchanged by a
rotation of which it is the axis.

8.27 Fixed-Axis Rotation from Euler Angles
In Section 8.26 we began with a fixed axis rotation R[
n̂] and derived the three Euler
angles α, β, and γ . The inverse problem is also of interest.

We are given the three Euler angles α, β, and γ wish to find the equivalent finite
rotation with

R[
n̂] = R[α, β, γ ] (8.210)

The angle is found by solving for 0 ≤ 
 ≤ π in the expression

2 cos 
+ 1 = cos β + (1 + cos β) cos (α + γ ) (8.211)

that is found by equating the traces in eqns (8.149, 8.207).
The components of the axis come from a straightforward application of the eigen-

vector equation, eqn (8.163), using the matrix R [α, β, γ ] from eqn (8.201). The nor-

malized eigenvector corresponding to λ3 = 1 is V̂
(3)

, which is the rotation axis. When
β = 0 and (α+ γ ) = 0, the rotation is the trivial identity transformation. In that case,
the axis n̂ is undetermined since any vector is an eigenvector of U with eigenvalue
one. When β = 0 and (α + γ ) �= 0, the components of this axis vector are (0, 0,±1)

with the sign depending on the quadrant of (α+ γ ). When β �= 0 but (α+ γ ) = 0, the
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components of the axis vector are (− sin α, cos α, 0). When β �= 0 and (α+ γ ) �= 0, the
components of the (not yet normalized) axis vector are

V (3)
1 = (1 − cos β) (cos α − cos γ ) (8.212)

V (3)
2 = (1 − cos β) (sin α + sin γ ) (8.213)

V (3)
3 = sin β (1 − cos (α + γ )) (8.214)

The normalized rotation axis is then n̂ = V(3)/V (3) where V(3) = ∑3
i=1 V (3)

i êi and
V (3) is its magnitude. Just as in the Euler Theorem proof, the two sides of eqn (8.210)
must be applied to some vector not parallel to n̂ and the results compared. If they fail
to match, n̂ must be replaced by −n̂.

8.28 Time Derivative of a Product

It is useful to have general formulas for the time derivative of a rotation operator that
is the product of time-dependent rotation operators

R(t) = Ra(t)Rb(t) (8.215)

Theorem 8.28.1: Angular Velocity of a Product
The angular velocity associated with the rotation R(t) defined in eqn (8.215) is

ω(t) = ωa(t)+Ra(t)ωb(t) (8.216)

where ωa(t), ωb(t) are the angular velocities associated with Ra(t), Rb(t), respectively.

Proof: Using the product rule,

dR(t)

dt
= dRa(t)

dt
Rb(t)+Ra(t)

dRb(t)

dt
(8.217)

and hence, by eqn (8.70) of Section 8.10, the anti-symmetric operator associated with
rotation R(t) is

W(t) = dR(t)

dt
R(t)T = dRa(t)

dt
Rb(t)

(
Ra(t)Rb(t)

)T +Ra(t)
dRb(t)

dt

(
Ra(t)Rb(t)

)T

(8.218)
Since

(
Ra(t)Rb(t)

)T = RT
b (t)RT

a (t) and each operator is orthogonal, this expression
reduces to

W(t) = dRa(t)

dt
RT

a (t)+Ra(t)
dRb(t)

dt
RT

b (t)RT
a (t) =Wa(t)+Ra(t)Wb(t)RT

a (t)

(8.219)
where Wa(t), Wb(t) are the anti-symmetric operators associated with rotations Ra(t),
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Rb(t) respectively. Applying this to a general vector A and using eqn (8.75),

ω(t)× A = ωa(t)× A +Ra(t)
{
ωb(t)×

(
RT

a (t) A
)}

(8.220)

Then eqn (8.39) of Section 8.6 and the orthogonality of the operators gives

ω(t)× A = ωa(t)× A +
{
Ra(t)ωb(t)×

(
Ra(t)RT

a (t) A
)}

= ωa(t)× A + (
Ra(t)ωb(t)

)× A = (
ωa(t)+Ra(t)ωb(t)

)× A (8.221)

Since vector A is arbitrary, this implies eqn (8.216), as was to be proved. �

The above theorem can be applied repeatedly to obtain the derivative of a product
of any finite number of factors. Thus the angular velocity associated with

R(t) = Ra(t)Rb(t)Rc(t) · · ·Ry(t)Rz(t) (8.222)

is

ω(t) = ωa(t)+Ra(t)ωb(t)

+ (
Ra(t)Rb(t)

)
ωc(t)+ · · · + (

Ra(t)Rb(t)Rc(t) · · ·Ry(t)
)
ωz(t) (8.223)

in which each angular velocity is modified by all rotations that are applied after it.

8.29 Angular Velocity from Euler Angles

Time-dependent rotations can be parameterized by time-varying Euler angles. The
angular velocity vector of the rotation can then be obtained as a function of the Euler
angles and their first time derivatives.

Theorem 8.29.1: Angular Velocity from Euler Angles
Let a time-varying rotation be defined by

R (t) = R[α(t), β(t), γ (t)] = R[α(t) ê3] R[β(t) ê2] R[γ (t) ê3] (8.224)

where α (t), β (t), and γ (t) give the three Euler angles as continuous, differentiable
functions of the time. Then the vector ω (t) associated with the time-dependent rotation
in eqn (8.224) is

ω (t) = α̇ ê3 + β̇ ŷ(t)+ γ̇ ê(R)
3 (t) (8.225)

where the dots represent time derivatives and ê(R)
3 (t) = R[α(t), β(t), γ (t)] ê3 and ŷ(t) =

R[α(t) ê3] ê2 are the same vectors found in eqn (8.209) above.

Proof: Each of the products on the right side of eqn (8.224) is a rotation about a
fixed coordinate axis. Hence, by eqn (8.197), the angular velocity vectors associated
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with rotations R[α(t) ê3], R[β(t) ê2], R[γ (t) ê3] are ωα(t) = α̇ ê3, ωβ(t) = β̇ ê2, and
ωγ (t) = γ̇ ê3, respectively. Then eqn (8.223) gives

ω (t) = α̇ ê3 + β̇R[α(t) ê3] ê2 + γ̇R[α(t) ê3] R[β(t) ê2] ê3 (8.226)

Since rotation about a fixed axis does not change that axis vector, ê3 = R[γ (t) ê3] ê3

and hence

R[α(t) ê3] R[β(t) ê2] ê3 = R[α(t) ê3] R[β(t) ê2] R[γ (t) ê3] ê3

= R[α(t), β(t), γ (t)] ê3 = ê(R)
3 (t) (8.227)

Thus, using the definitions above, eqn (8.226) becomes identical to eqn (8.225), as
was to be proved. �

The expression for ω in eqn (8.225) is not yet in a useful form. It needs to be
expressed in terms of a single set of basis vectors. Denoting the components in the êk

system by ωk(t) gives

ω(t) = ω1(t) ê1(t)+ ω2(t) ê2(t)+ ω3(t) ê3(t) (8.228)

where, using eqn (8.225), ωk(t) = êk · ω(t) may be written as

ωk(t) = α̇ êk · ê3 + β̇ êk ·
(
R[α(t) ê3] ê2

)+ γ̇ êk · ê(R)
3 (t)

= α̇δk3 + β̇ Rk2[α(t) ê3] + γ̇ Rk3[α(t), β(t), γ (t)] (8.229)

Writing the components out explicitly using eqns (8.200, 8.201) gives

ω1(t) = −β̇ sin α + γ̇ cos α sin β (8.230)

ω2(t) = β̇ cos α + γ̇ sin α sin β (8.231)

ω3(t) = α̇ + γ̇ cos β (8.232)

where the Euler angles and their derivatives are all functions of time.

8.30 Active and Passive Rotations
We now return to the general treatment of the rotation operator. The rotation operator
R can be used either actively or passively. The active use, which is the only one we
have discussed to this point, transforms each vector V into a rotated vector V(R) =
RV. Although we have not emphasized the point, it is implicit that the coordinate
system unit vectors êi are not changed by this active rotation.

The passive use of R makes the opposite choice. The unit vectors êi are rotated to
form a new coordinate system, which we will denote ê′i and define, for i = 1, 2, 3, as

ê′i = ê(R)
i = Rêi (8.233)

The vector V, however, is not changed by passive rotations. In a sense, active rotations
rotate the world while passive ones rotate the observer. Note that the same rotation
operator R is used in both cases, but used differently.
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V
V

V(R)







ê2ê2 ê′2

ê1 ê1

ê′1

FIG. 8.8. On the left is an active rotation. The vector V is rotated into the new vector V(R) but
the basis vectors êi do not change. On the right is a passive rotation. The basis vectors êi
are rotated into new basis vectors ê′i but the vector V does not change.

We now consider passive rotations. We will refer to the original unit vectors êi as
the old system or the original system, and often denote it by the letter o. The rotated
unit vectors ê′i will be called the new system or the rotated system, and will often be
denoted by the letter o′.

We assume here and in the following sections that the êi are a right-handed or-
thonormal system and R is a proper rotation operator. It follows from Definition 8.6.2
that the new system of unit vectors is orthonormal and right-handed,

ê′i · ê′j = êi · êj = δi j and ê′1 × ê′2 = ê′3 (8.234)

The new unit vectors can be expanded in terms of the old ones by eqn (8.33) with the
identification ê′i = ê(R)

i ,

ê′i =
3∑

j=1

êj
(
êj · ê′i

) = 3∑
j=1

êj
(
êj ·Rêi

) = 3∑
j=1

êj Rji =
3∑

j=1

RT
i j êj (8.235)

8.31 Passive Transformation of Vector Components

An important thing to notice is that, although the vectors V do not change in passive
rotations, their components do change. An unchanged vector V can be expanded in
either system

3∑
i=1

Vi êi = V =
3∑

i=1

V ′
i ê′i (8.236)

where the components in the two systems are

Vi = êi · V and V ′
i = ê′i · V (8.237)

The new components V ′
i = V · ê′i are different from the old ones Vi = V · êi even

though V is the same in both cases, because the unit vectors are different. We can
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denote the two alternate expansions of the vector V into components by the notation

V : (V1, V2, V3)o (8.238)

V : (V ′
1, V ′

2, V ′
3

)
o′ (8.239)

We avoid using the equal sign here. A vector V is not equal to its components, rather
it is represented by its components in a particular reference system. As we see, the
components in the o′ system will be different from those in the o system, even though
the vector V is the same in both cases.

It follows from eqn (8.235) that the components of V in the two systems are re-
lated by

V ′
i = ê′i · V =

⎛⎝ 3∑
j=1

RT
i j êj

⎞⎠ · V =
3∑

j=1

RT
i j Vj (8.240)

This relation can also be written in matrix form. If we denote by [V ] the column
vector of components in the o system, and by [V ′] the column vector of components
in the o′ system, then eqn (8.240) can be written as

[V ′] = RT [V ] (8.241)

8.32 Passive Transformation of Matrix Elements
Just as a vector V has different components in the o and o′ systems, an operator
B will also be represented by different matrix elements (which we might consider
as the “components” of the operator) in the two systems. Since we are considering
passive rotations now, the operator itself if not changed by the rotation, but its matrix
elements are changed. In the two systems, we have

Bi j = êi · Bêj and B′
i j = ê′i · Bê′j (8.242)

which are related by

B′
i j = ê′i · Bê′j =

(
3∑

k=1

RT
ik êk

)
· B

(
3∑

l=1

RT
jl êl

)
=

3∑
k=1

3∑
l=1

RT
ik Bkl Rl j (8.243)

which can be written as the matrix equation

B ′ = R T B R (8.244)

We say that the operator B is represented by the matrix B in the o system and by the
matrix B ′ in the o′ system.

It follows from eqns (8.235, 8.243) that the dyadic associated with operator B can
be written out in either system, as

3∑
i=1

3∑
j=1

êi Bi j êj = � =
3∑

i=1

3∑
j=1

ê′i B′
i j ê

′
j (8.245)

Of particular interest is the unit operator U . It follows from the orthogonality of R
and the transformation rule eqn (8.240) that its matrix elements are the same in any
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system,
Ui j = δi j = U ′

i j (8.246)

Thus the resolution-of-unity dyadic, the dyadic associated with U , has exactly the
same algebraic form in the two systems,

ê1ê1 + ê2ê2 + ê3ê3 = � = ê′1ê′1 + ê′2ê′2 + ê′3ê′3 (8.247)

Multiplying a vector by the expansion of � in the o (o′) system will expand that vector
in the o (o′) system.

8.33 The Body Derivative
Let us now consider the case in which the o system is a fixed inertial system, but the
rotation operator and the rotated system o′ are both time varying. The basis vectors
of the o′ system will thus be functions of time. For i = 1, 2, 3,

ê′i (t) = ê(R)
i (t) = R(t)êi (8.248)

From the consideration of time-dependent rotations in Section 8.10, we know that
the time derivatives of the o′ system basis vectors are

d ê′i (t)
dt

= ω(t)× ê′i (t) (8.249)

where ω(t) is the (generally time-dependent) angular velocity vector of the time vary-
ing rotation R(t).

Now consider the task of calculating the time-derivative of some vector V. If we
expand this vector in the o system, then the time derivative will be

dV
dt

= d

dt

3∑
i=1

Vi êi =
3∑

k=1

dVi

dt
êi (8.250)

However, if we expand V in the o′ system, the same derivative will have a more
complicated form, due to the time variation of the unit vectors. It is

dV
dt

= d

dt

3∑
i=1

V ′
i ê′i =

3∑
i=1

(
dV ′

i

dt
ê′i + V ′

i
d ê′i (t)

dt

)
=

3∑
i=1

(
dV ′

i

dt
ê′i + V ′

i ω(t)× ê′i (t)
)

(8.251)
Collecting terms and using the linearity of cross products to factor ω(t) out of the
second term on the right gives

dV
dt

=
〈

dV
dt

〉
b
+ ω(t)× V (8.252)

where the first term on the right is the so-called body derivative, a vector defined as〈
dV
dt

〉
b
=

3∑
i=1

dV ′
i

dt
ê′i (8.253)

To understand what the body derivative is, imagine an observer rotating with the
o′ system who is unaware that it and he are rotating. (We on the surface of the earth
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are good examples.) If he is asked to calculate the time derivative of a vector, he will
first express that vector in his o′ reference system, and then calculate eqn (8.253), the
body derivative. He thinks he is using eqn (8.250), but that is his error since his o′
reference system is not, in fact, inertial. After he calculates the body derivative, we
can correct his error by adding the term ω(t)× V.

So the recipe for getting the body derivative is: (1) Express the vector in the o′
system, and then (2) take the time derivative as if the ê′k basis vectors were constants.
Note that, although this body derivative is calculated in a special way, nonetheless it
is just an ordinary vector that can be expanded, if needed, in any coordinate system.

8.34 Passive Rotations and Rigid Bodies
We can identify the moving coordinate system ê′i of passive rotations introduced in
Section 8.30 with the similarly denoted coordinate system embedded in the moving
rigid body in Section 8.9. The position and orientation of the rigid body at time t can
be thought of as the position and orientation of this ê′i system of coordinates, whose
origin is at the center of mass of the body and whose orientation is given by

ê′i (t) = R(t) êi (8.254)

derived from eqn (8.233). In this system of coordinates, the vectors ρn can be ex-
pressed as

ρn(t) = ρ′n1(t) ê′1(t)+ ρ′n2(t) ê′2(t)+ ρ′n3(t) ê′3(t) (8.255)

where the components were shown in Section 8.8 to obey

ρ′ni (t) = ê′i (t) · ρn(t) = ê′i (0) · ρn(0) = ρ′ni (0) (8.256)

and hence not vary with time.
Thus the time derivative of ρn(t), when expanded in terms of the body derivative

and its correction becomes

dρn(t)

dt
=

〈
dρn(t)

dt

〉
b
+ ω(t)× ρn(t) (8.257)

where 〈
dρn(t)

dt

〉
b
=

3∑
i=1

dρ′ni (t)

dt
ê′i = 0 (8.258)

since eqn (8.256) implies that dρ′ni (t)/dt = 0. Thus

ρ̇n(t) = dρn(t)

dt
= ω(t)× ρn(t) (8.259)

which reproduces eqn (8.93).
The coordinate system embedded in the rigid body, with unit vectors given by

eqn (8.254) and origin at the center of mass of the body, will be used frequently in
subsequent chapters. The constancy of the components ρ′ni (t) = ρ′ni (0) in that system
will lead to many simplifications.
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8.35 Passive Use of Euler Angles
The time-dependent passive rotation in eqn (8.254) can be parameterized using time-
dependent Euler angles, as developed in Section 8.26. Rather than simply using the
standard definition in eqn (8.198), however, it is clearer to introduce the alternate
form of the Euler angle operators in eqn (8.208) to write

ê′i (t) = R[α(t), β(t), γ (t)] êi = R[γ (t) ê′3(t)]R[β(t) ŷ(t)]R[α(t) ê3] êi (8.260)

where the definition ê(R)
3 (t) = ê′3(t) has been used, and where

ê′3(t) = R[β(t) ŷ(t)] ê3 = R[α(t), β(t), γ (t)] ê3 and ŷ(t) = R[α(t) ê3] ê2 (8.261)

ê1

ê2

ê′′1
α

α

ê′′2

ê′′3 = ê3 ê′′3

ê′′1

ê′′′2 = ê′′2

ê′′′1

ê′3 = ê′′′3

ê′′′2

ê′2
γ

β
ê′′′1

ê′1
γ

ê′′′3
β

FIG. 8.9. Steps in the passive use of Euler angles. First a rotation by α about the ê3 axis leads
to ê′′i . Then (center figure) a rotation by β about the ê′′2 axis leads to ê′′′i . Finally, a rotation
by γ about the ê′′′3 axis leads to the final orientation ê′i .

Then the progression from êi to ê′i (t) can be decomposed into three easily visu-
alized steps. First, the original triad is rotated by angle α(t) about the ê3 axis by the
operator R[α(t) ê3] to produce a triad that will be denoted ê′′i (t). Thus

ê′′i (t) = R[α(t) ê3] êi (8.262)

for i = 1, 2, 3. The unit vector denoted ŷ(t) in eqn (8.261) is seen to be the same as
the vector ê′′2(t) produced by this first rotation. It is the rotated y-axis. Note also that
rotation about the z-axis does not change the z-axis, so ê′′3 = ê3.

The triad ê′′i (t) is then rotated by angle β(t) about its own ê′′2(t)-axis by the second
rotation operator to act, R[β(t) ŷ(t)] = R[β(t) ê′′2(t)]. Call the resulting triad ê′′′i (t).
Thus, for i = 1, 2, 3,

ê′′′i (t) = R[β(t) ê′′2(t)] ê′′i (t) (8.263)

The new z-axis after this second rotation is ê′′′3 (t), which is in fact identical to the
final z-axis ê′3(t). Also, since the y-axis is unchanged by a rotation about the y-axis,
ê′′′2 (t) = ê′′2(t) = ŷ(t).
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In the final step, the triad ê′′′i (t) is rotated by angle γ (t) about its own ê′′′3 (t)-
axis by the operator R[γ (t) ê′3(t)] = R[γ (t) ê′′′3 (t)] to produce the final triad ê′i (t). For
i = 1, 2, 3,

ê′i (t) = R[γ (t) ê′′′3 (t)] ê′′′i (t) (8.264)

Note that rotation about the z-axis doesn’t change the z-axis, and so ê′3(t) = ê′′′3 (t), as
was mentioned previously.

Thus a three-step process applied to the triad êi , consisting of rotation about the
original z-axis ê3 by α, rotation about the new y-axis ŷ(t) by β, and rotation about the
even newer z-axis ê′3(t) by γ , has led to the final triad ê′i (t).

ê1

ê3

ê2

ê′3

ê′′1
α

α

β

ê′′2

FIG. 8.10. Another view of the passive use of Euler angles. Not all unit vectors are shown, and
the final rotation by γ is not shown. Note that ê′3 lies in the ê3–ê′′1 plane and has spherical
polar angles α, β regardless of the value of γ .

The final z-axis ê′3(t) will have spherical polar coordinates

1, θ3′ , φ3′ where θ3′ = β and φ3′ = α (8.265)

Hence, using either the definitions of spherical polar coordinates in Section A.8, or
applying the matrix in eqn (8.201) to the column vector (0, 0, 1)T to obtain the com-
ponents, the vector ê′3(t) can be expressed in the êi coordinate system as

ê′3(t) = sin β cos α ê1 + sin β sin α ê2 + cos β ê3 (8.266)

Since parameterization of the body system by the three Euler angles will be used
extensively in the following chapters, it will be useful to express the angular velocity
vector in the body system. The general angular velocity is given by eqn (8.225) as

ω (t) = α̇ ê3 + β̇ ŷ + γ̇ ê(R)
3 = α̇ ê3 + β̇ ê′′′2 (t)+ γ̇ ê′3(t) (8.267)

where the last expression has been converted to the notation of the present section.
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The expansion in the ê′i (t) system is

ω(t) = ω′1(t) ê′1(t)+ ω′2(t) ê′2(t)+ ω′3(t) ê′3(t) (8.268)

where, for i = 1, 2, 3,

ω′i (t) = ê′i (t) · ω(t) = ê′i (t) ·
(
α̇ê3 + β̇ ê′′′2 (t)+ γ̇ ê′3(t)

)
= α̇R3i [α(t), β(t), γ (t)] + β̇ R′′′

2i [γ (t) ê′′′3 ] + γ̇ δi3 (8.269)

Noting that R′′′
2i [γ (t)ê′′′3 ] = R2i [γ (t)ê3], the matrices in eqn (8.200) through eqn (8.201)

may be used to evaluate the needed matrix elements, giving finally

ω′1(t) = −α̇ sin β cos γ + β̇ sin γ (8.270)

ω′2(t) = α̇ sin β sin γ + β̇ cos γ (8.271)

ω′3(t) = α̇ cos β + γ̇ (8.272)

and the Euler angles and their derivatives are all functions of time. These equations
could also be derived, or checked as in Exercise 8.5, by applying eqn (8.240) directly
to the inertial components of ω(t) in eqns (8.230 – 8.232).

8.36 Exercises
Exercise 8.1 Consider a rotation R[
n̂] with 
 = 30◦ and a fixed axis n̂ that lies in the first
octant and makes the same angle with each of the coordinate axes.

(a) Find numerical values for all nine components of the matrix R [
n̂]. [Note: It is much
better to write the matrix elements in exact forms like, e.g.,

√
3/2, rather than in terms of

decimals.]
(b) Verify numerically that your matrix is a proper, orthogonal matrix.
(c) Check numerically, that TrR[
n̂] = 1 + 2 cos 
 for your matrix, as is required by eqn
(8.149).
(d) Check numerically that R [
n̂][n] = [n] where [n] is the column vector of components
of n̂. Why is this equation true?

Exercise 8.2 Consider a plane mirror. Denote the unit vector normal to its surface and point-
ing out into the room by n̂. Let an operator M convert a general vector V in front of the mirror
into its reflected image V(M) = MV behind the mirror. The matrix M of this operator was
found in Exercise 7.3.

(a) Consider the operator R[π n̂] that rotates vectors by 180◦ about the normal to the mirror.
Find a general expression for its matrix elements Ri j [π n̂] in terms of the components ni of
vector n̂.
(b) Show that M = T R [π n̂] = R [π n̂]T where T is the matrix of the total inversion oper-
ator T = −U discussed in Section 8.6. Mirror reflection is thus equivalent to total inversion
followed or preceded by rotation by 180◦ about the normal to the surface of the mirror.
(c) Use the result (b) to argue that M must be an improper rotation operator.



EXERCISES 199

Exercise 8.3 Suppose that a rotation operator is defined by the Euler angles

α = 45◦ β = 30◦ γ = −45◦ (8.273)

(a) Write the numerical values of all nine matrix elements and the matrix R [α, β, γ ]. [Note:
It is much better to use exact forms such as, e.g.,

√
2/3, rather than decimals. Please do it that

way.]
(b) Use the result of Exercise 7.1 to check that your matrix is orthogonal.
(c) By the Euler Theorem, there must be some fixed-axis rotation such that, for some 
 in
the range 0 ≤ 
 ≤ π and some axis n̂

R [
n̂] = R [α, β, γ ] (8.274)

Find the numerical value of angle 
 by the condition that the traces of both sides of eqn
(8.274) must be the same.
(d) The axis vector n̂ for this rotation has components (−1, 1, 0)/

√
2. Verify that

R [α, β, γ ][n] = [n].
(e) Denoting ê(R)

3 = R[α, β, γ ]ê3, verify that ê3 × ê(R)
3 = ηn̂ where η is a positive number.

Why is that so? What would it mean if η turned out to be a negative number?

Exercise 8.4 Use the results of the Theorem 8.23.1 repeatedly to prove the second equality
in eqn (8.208) of Theorem 8.26.2.

Exercise 8.5 Use the passive transformation rule
[
ω′

] = R T[α, β, γ ] [ω]
from eqn (8.240),

and the inertial system components ωi of ω from eqns (8.230 – 8.232), to obtain the compo-
nents ω′i of ω in the body system stated in eqns (8.270 – 8.272).

Exercise 8.6 Use eqn (8.252) to show that the angular velocity in eqn (8.188) can also be
written as

ω = 
̇n̂ + sin 


〈
dn̂
dt

〉
b
− (1 − cos 
) n̂ ×

〈
dn̂
dt

〉
b

(8.275)

Exercise 8.7 Use eqns (8.104, 8.140) to show that fixed axis rotations and infinitesimal rota-
tions are related by

R[d
n̂] = RI [d
n̂] + o(d
) (8.276)

Exercise 8.8 This exercise refers to Sections 8.30 through 8.32.

(a) The rotation matrix has been defined throughout the chapter by its expression in the
unrotated êi basis, Ri j = êi · Rêj . Show that its expression in terms of the rotated basis,
R′

i j = ê′i ·Rê′j , obeys R′
i j = Ri j and hence that R has the same matrix in either basis.

(b) From eqn (8.70), one obtains the matrix equation W = (d R /dt) R T where the matrices
are expressed in the unrotated basis. Show that the matrix of the angular velocity operator W
in the rotated basis is

W ′ = R T d R
dt

(8.277)

(c) In eqn (8.78) the matrix elements of the angular velocity operator W in the unrotated
basis are written in terms of the components of the angular velocity vector ω in that basis
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as Wi j = ∑3
k=1 εik jωk where ω = ∑3

k=1 ωk êk . Show that the matrix elements of W in the
rotated basis have the same relation to the components ω′k in that basis

W ′
i j =

3∑
k=1

εik jω
′
k where ω =

3∑
k=1

ω′k ê′k (8.278)

[Hint: Use ê′i · ê′j × ê′k = εi jk = êi · êj × êk and the transformation rule eqn (8.235).]

Exercise 8.9 In eqn (7.160) of Exercise 7.8, the matrix representing an operator in the spher-
ical basis was related to the standard Cartesian operator by the equation

F (sp) = T F T † (8.279)

(a) Apply that transformation to the matrices defined in eqn (8.200) to find R (sp)[γ ê3],
R (sp)[β ê2], and R (sp)[αê3].
(b) Check your work by comparing your R (sp)[β ê2] to the matrix with components d1

mm′(β)

as listed in the page titled “Clebsch-Gordan Coefficients, Spherical Harmonics, and d Func-
tions” in S. Eidelman et al. (2004) “Review of Particle Physics,” Phys. Lett. B 592, 1. (That
reference uses θ in place of β.)
(c) Equation (8.201) defines the matrix R [α, β, γ ] representing a general rotation parameter-
ized in terms of Euler angles. Show that the matrix R (sp)[α, β, γ ] representing this rotation
in the spherical basis can be written as

R(sp)

mm′ [α, β, γ ] = eiαmd1
mm′(β)eiγ m′

(8.280)

This matrix, often denoted as D1
mm′ [α, β, γ ], is used to represent rotations of state vectors

of angular momentum � = 1 in quantum theory. See, for example, Chapter 12 of Shankar
(1994).

Exercise 8.10 In eqn (8.138) it was shown that a rotation by angle 
 about a fixed axis n̂ can
be written as

R[
n̂] = exp
(

n̂ · �J

)
(8.281)

where �J is the vector with operator components defined in eqn (8.135).

(a) Prove that the commutation relations eqn (8.127) imply that, for two unit vectors n̂1 and
n̂2, [

(n̂1 · �J ), (n̂2 · �J )
]

c
= (

n̂1 × n̂2
) · �J (8.282)

Exercise 8.11 In Sections 8.14 and 8.15 we demonstrated that infinitesimal rotations com-
mute. This result can be expressed as[

R[εn̂1],R[εn̂2]
]

c = o(ε) as ε → 0 (8.283)

where n̂1 and n̂2 are any two unit vectors. [Recall that the symbol o(ε) means that the quantity
is of smaller order than ε. See the definitions in Section D.11.]
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(a) We now want to carry the calculation of the commutator to quadratic order. Use eqn
(8.282) and

R[εn̂1] = U + ε
(

n̂1 · �J
)
+ ε2

2

(
n̂1 · �J

)2 + o(ε2) (8.284)

together with a similar definition for n̂2, where �J is defined in eqn (8.135), to prove that[
R[εn̂1],R[εn̂2]

]
c = ε2 (

n̂1 × n̂2
) · �J + o(ε2) (8.285)

(b) If we denote by �V the change in vector V due to rotation by angle ε about axis n̂,
demonstrate that

�V = V(R) − V = (
R[εn̂] − U

)
V (8.286)

(c) Now denote the cumulative change in V resulting from successive rotations, first about
axis n̂2 and then about axis n̂1, as

�V(1,2) =
(
R[εn̂1]R[εn̂2] − U

)
V (8.287)

and denote �V(2,1) as the change produced by the same two rotations but with the order
reversed. Prove that the difference between these two changes is

�V(1,2) −�V(2,1) =
[
R[εn̂1],R[εn̂2]

]
c V (8.288)

=
(
R[ε2(n̂1 × n̂2) · �J ] − U

)
V + o(ε2)

Thus the difference between the changes produced by pairs of rotations in opposite orders
is, to second order in ε, equal to the change produced by a rotation about an axis parallel to
(n̂1 × n̂2).
(d) Suppose that we first rotate successively about the x followed by the y axis. And then
we start again and rotate successively about the y followed by the x axis. Show that the
difference between the changes produced by two procedures is, to second order, equal to the
change produced by a rotation about the z axis.

Exercise 8.12 Complete the proof of Theorem 8.26.1.

Exercise 8.13 Under the conditions β �= 0 and (α + γ ) �= 0 stated in Section 8.27, verify
eqns (8.212 – 8.214).

Exercise 8.14 Find Euler angles α, β, γ for the following rotations:

(a) Rotation by π/3 radians about an axis n̂ = (
ê1 + ê2

)
/
√

2.

(b) Rotation by π radians about an axis n̂ =
(
(
√

3 − 1) ê1 + (
√

3 + 1) ê2

)
/
√

8.

(c) Rotation by π/3 radians about an axis n̂ = (
ê1 + ê2 + ê3

)
/
√

3.

Exercise 8.15 Use the methods of Section 8.18 to derive the matrix R [β ê2] in eqn (8.200).
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ROTATIONAL DYNAMICS

The successful description of rigid-body motion is one of the triumphs of Newtonian
mechanics. Having learned in the previous chapter how to specify the position and
orientation of a rigid body, we now study its natural motion under impressed external
forces and torques. The dynamical theorems of collective motion from Chapter 1 will
be extended by use of the rotation operators whose properties were developed in
Chapter 8.

9.1 Basic Facts of Rigid-Body Motion
The center of mass R of a rigid body obeys the same formulas as those summarized
in Section 1.15 of Chapter 1 for any collection of point masses,

dP
dt

= F(ext) where P = MV and V = dR
dt

(9.1)

The orbital angular momentum formulas are also the same,

dL
dt

= τ
(ext)
o where L = R × P and τ

(ext)
o = R × F(ext) (9.2)

The spin angular momentum of a rigid body is the same as that defined in Section
1.11. It is

S =
N∑

n=1

ρn × mnρ̇n (9.3)

and obeys the equation of motion derived in Section 1.13,

dS
dt

= τ
(ext)
s where τ

(ext)
s =

N∑
n=1

ρn × f(ext)
n (9.4)

where ρn = rn − R is the relative position vector defined in eqn (1.33).
The difference between a rigid body and a general collection of point masses is

the relation
ρ̇n = ω× ρn (9.5)

that holds only for rigid bodies. This important formula for the time derivatives of
the relative position vectors was initially stated in Section 8.12 and then re-derived
in Section 8.34 using the concept of body derivative.

The application of eqn (9.5) allows the formulas for S and its time derivative to
be expressed in a very useful operator form, in which the properties of the rigid body

202
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itself are contained in an operator I called the inertia operator or inertia tensor. The
exact form of this operator depends on the details of the experimental situation being
treated. We begin with the case of a freely moving rigid body.

9.2 The Inertia Operator and the Spin
Consider a rigid body moving freely in empty space, for example a tumbling asteroid.
Applying eqn (9.5) to the definition of S in eqn (9.3) and expanding the triple vector
product gives

S =
N∑

n=1

mnρn ×
(
ω× ρn

) = N∑
n=1

mn
{(

ρn · ρn

)
ω− ρn

(
ρn · ω

)}
(9.6)

Section 8.34 describes the body system of coordinates ê′i (t) that move with the
rigid body. Expressed in terms of components in that system,

S =
3∑

i=1

S′i ê′i ρn =
3∑

i=1

ρ′ni ê′i ω =
3∑

i=1

ω′i ê′i (9.7)

and eqn (9.6) becomes

S′i =
N∑

n=1

mn

⎧⎨⎩(
ρ′ 2n1 + ρ′ 2n2 + ρ′ 2n3

)
ω′i − ρ′ni

3∑
j=1

ρ′njω
′
j

⎫⎬⎭
=

3∑
j=1

N∑
n=1

mn

{(
ρ′ 2n1 + ρ′ 2n2 + ρ′ 2n3

)
δi j − ρ′niρ

′
nj

}
ω′j (9.8)

where ω′i =
∑3

j=1 δi jω
′
j has been used.

Introducing the definition

I (cm)′
i j =

N∑
n=1

mn

{(
ρ′ 2n1 + ρ′ 2n2 + ρ′ 2n3

)
δi j − ρ′niρ

′
nj

}
(9.9)

allows eqn (9.8) to be written as

S′i =
3∑

j=1

I (cm)′
i j ω′j (9.10)

The discussion of the equivalence of operators, matrices, and components in Sec-
tion 7.8 can now be invoked to write

S = I(cm)ω (9.11)

where I(cm) is that operator whose matrix elements in the body system are given by
eqn (9.9). This operator will be called the center-of-mass inertia operator. Often it is
also called the center-of-mass inertia tensor.

An important feature of this inertia operator is that its matrix elements in the body
system are not time varying.
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Lemma 9.2.1: Constancy of Matrix Elements
The body-system matrix elements

I (cm)′
i j = ê′i · I(cm)ê′j (9.12)

of the operator I(cm) are constants, obeying

d I (cm)′
i j

dt
= 0 (9.13)

Proof: In Section 8.8, and again in Section 8.34, we saw that the components ρ′ni of
the relative position vectors in the body system are constants, with

ρ′ni (t) = ρ′ni (0) and hence
dρ′ni

dt
= 0 (9.14)

But the expression for I (cm)′
i j in eqn (9.9) contains only the components ρ′ni , and hence

I (cm)′
i j must also be constant. �

9.3 The Inertia Dyadic
Like any operator equation, eqn (9.11) can also be written in dyadic form. The last
expression in eqn (9.6) can be written as

S =
N∑

n=1

mn
{(

ρn · ρn

)
ω− ρn

(
ρn · ω

)}
=

N∑
n=1

mn
{(

ρn · ρn

)
�− ρnρn

} · ω = �
(cm) · ω (9.15)

where the center-of-mass inertia dyadic is defined by

�
(cm) =

N∑
n=1

mn
{(

ρn · ρn

)
�− ρnρn

}
(9.16)

This same dyadic can also be derived from the component expression eqn (9.9) us-
ing the definition of a dyadic in terms of its matrix elements from eqn (7.52), applied
here using basis vectors and matrix elements from the body system,

�
(cm) =

3∑
i=1

3∑
j=1

ê′i I (cm)′
i j ê′j (9.17)

An equivalent matrix equation can also be written. If we denote by [S′] and [ω′]
the column vectors of components of S and ω in the body system, then

[S′] = I(cm)′ [ω′] (9.18)

where the matrix elements of matrix I(cm)′ are those given in eqn (9.9).
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9.4 Kinetic Energy of a Rigid Body
The total kinetic energy of any collection, including a rigid body, is given in Section
1.14 as

T = To + TI where To = 1

2
MV 2 and TI = 1

2

N∑
n=1

mn ρ̇n · ρ̇n (9.19)

Using eqn (9.5), this last expression may be rewritten for a rigid body as

TI = 1

2

N∑
n=1

mn ρ̇n ·
(
ω× ρn

) = 1

2

N∑
n=1

mn
(
ρn × ρ̇n

) · ω = 1

2
S · ω (9.20)

where eqn (9.3) was used. Expanding S using eqn (9.11) then gives

TI = 1

2
ω ·

(
I(cm)ω

)
= 1

2

3∑
i=1

3∑
j=1

I (cm)′
i j ω′iω′j (9.21)

which expresses the internal kinetic energy in terms of the angular velocity and the
inertia operator.

9.5 Meaning of the Inertia Operator
The diagonal matrix elements of the matrix I(cm)′ are called moments of inertia. For
example, consider the element with i = j = 3,

I (cm)′
33 =

N∑
n=1

mn

{(
ρ′ 2n1 + ρ′ 2n2 + ρ′ 2n3

)
δ33 − ρ′n3ρ

′
n3

}
=

N∑
n=1

mn

(
ρ′ 2n1 + ρ′ 2n2

)
(9.22)

which is the sum of each mass mn multiplied by its perpendicular distance from a
line parallel to ê′3 and passing through the center of mass.46 The other two diagonal
elements have similar expressions in terms of perpendicular distances from the other
coordinate axes.

The off-diagonal elements of I(cm)′ are called products of inertia. For example, the
element with i = 1 and j = 3 is

I (cm)′
13 =

N∑
n=1

mn

{(
ρ′ 2n1 + ρ′ 2n2 + ρ′ 2n3

)
δ13 − ρ′n1ρ

′
n3

}
= −

N∑
n=1

mnρ′n1ρ
′
n3 (9.23)

The other off-diagonal elements are similar.

46If we imagine the body system of coordinates to have its origin at the center of mass of the body, this
is the distance of mn from the ê′3 axis. It is the moment of inertia about that axis that would be measured
by an observer standing at the center of mass.
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9.6 Principal Axes
From eqn (9.9), we notice that, by construction, the inertia matrix is real and sym-
metric, with

I (cm)′
j i = I (cm)′

i j (9.24)

As discussed in Section 7.12, any real symmetric operator in a three-dimensional
space has three real, mutually orthogonal, and normalized eigenvectors V(k) for k =
1, 2, 3 obeying the standard eigenvector equation

I(cm)V(k) = λkV(k) (9.25)

These three, orthonormal eigenvectors are called the principal axes of the rigid body.
The corresponding real eigenvalues are the three solutions λ1, λ2, λ3 of the cubic
equation ∣∣∣∣∣∣∣∣∣

(
I (cm)′
11 − λ

)
I (cm)′
12 I (cm)′

13

I (cm)′
21

(
I (cm)′
22 − λ

)
I (cm)′
23

I (cm)′
31 I (cm)′

32

(
I (cm)′
33 − λ

)
∣∣∣∣∣∣∣∣∣ = 0 (9.26)

Since the matrix elements I (cm)′
j i are all constant in time, the eigenvalues will also be

constants.
The eigenvectors may be expanded in the body system as

V(k) =
3∑

i=1

V (k)′
i ê′i (9.27)

where the components V (k)′
i of the kth eigenvector are found by solving the equation⎛⎜⎜⎜⎝

(
I (cm)′
11 − λk

)
I (cm)′
12 I (cm)′

13

I (cm)′
21

(
I (cm)′
22 − λk

)
I (cm)′
23

I (cm)′
31 I (cm)′

32

(
I (cm)′
33 − λk

)
⎞⎟⎟⎟⎠

⎛⎜⎝ V (k)′
1

V (k)′
2

V (k)′
3

⎞⎟⎠ = 0 (9.28)

and applying the normalization condition to obtain unit eigenvectors with V̂
(k) ·V̂(k) =

1. Since the eigenvalues and matrix elements are all constant in time, the components
V (k)′

i will also be constant. The three eigenvectors now form an orthonormal set, with

I(cm)V̂
(k) = λkV̂

(k)
and V̂

(k) · V̂
(l) = δkl (9.29)

for all k, l = 1, 2, 3.
Now suppose that we choose a new set of basis vectors ê′′i equal to the eigenvectors

just found,

ê′′i = V̂
(i)

(9.30)

for i = 1, 2, 3, where possibly the indices of the eigenvectors may need to inter-
changed, or one eigenvector replaced by its negative, to make sure that the ê′′i form
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a right-handed set of basis vectors. Expressed in this new system, the inertia operator
will have a matrix I(cm)′′ defined by its matrix elements

I (cm)′′
i j = ê′′i ·

(
I(cm)ê′′j

)
(9.31)

But by eqns (9.25, 9.30), I(cm)ê′′i = λi ê
′′
i and hence, using the orthonormality of the

new basis vectors,
I (cm)′′
i j = ê′′i ·

(
λj ê

′′
j

)
= λjδi j (9.32)

The eigenvalues will be denoted, for j = 1, 2, 3, by

λj = I (cm)′′
j (9.33)

and will be called the principal moments of inertia of the rigid body. Thus, in the ê′′i
system, the matrix corresponding to the inertia operator will be

I(cm)′′ =
⎛⎜⎝ I (cm)′′

1 0 0

0 I (cm)′′
2 0

0 0 I (cm)′′
3

⎞⎟⎠ with I (cm)′′
i j = I (cm)′′

j δi j (9.34)

Warning: Change of Notation
In subsequent work, unless explicitly stated otherwise, we will assume that any body
system of coordinates used is already a principal axis system of the center-of-mass
inertia operator. We assume that the task of finding principal axes, if necessary, has
already been done. However, for notational simplicity, the double prime denoting the
principal axis system above will be replaced by a single prime. The effect is that,
dropping the double prime now, we will assume any body system to have a diagonal
center-of-mass inertia matrix with

I(cm)′ =
⎛⎜⎝ I (cm)′

1 0 0

0 I (cm)′
2 0

0 0 I (cm)′
3

⎞⎟⎠ with I (cm)′
i j = I (cm)′

j δi j (9.35)

Thus all products of inertia such as in eqn (9.23) will vanish, and the principal mo-
ments of inertia will be given by eqn (9.9) with i= j ,

I (cm)′
i =

N∑
n=1

mn

{(
ρ′ 2n1 + ρ′ 2n2 + ρ′ 2n3

)
− ρ

′ 2
ni

}
(9.36)

Use of the principal axis system leads to a considerable simplification. For exam-
ple, eqn (9.10) becomes

S′i =
3∑

j=1

I (cm)′
i j ω′j =

3∑
j=1

I (cm)′
j δi jω

′
j = I (cm)′

i ω′i (9.37)

for each individual value i = 1, 2, 3, which says that each component of the spin is
just the corresponding component of the angular velocity multiplied by the principal
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moment of inertia,47

S′1 = I (cm)′
1 ω′1 S′2 = I (cm)′

2 ω′2 S′3 = I (cm)′
3 ω′3 (9.38)

The expression for the internal kinetic energy in eqn (9.21) also simplifies, to a
single sum over the squares of the angular velocity components multiplied by the
principal moments of inertia,

TI = 1

2
ω ·

(
I(cm)ω

)
= 1

2

3∑
i=1

3∑
j=1

I (cm)′
i j ω′iω′j =

1

2

3∑
i=1

3∑
j=1

I (cm)′
j δi jω

′
iω

′
j =

1

2

3∑
i=1

I (cm)′
i ω

′ 2
i

(9.39)
When expressed in terms of principal axis unit vectors, the center-of-mass inertia

dyadic defined in eqn (9.17) also has a simple form. It becomes

�
(cm) =

3∑
i=1

3∑
j=1

ê′i I (cm)′
j δi j ê

′
j =

3∑
i=1

ê′i I (cm)′
i ê′i (9.40)

9.7 Guessing the Principal Axes
We know that any rigid body will have a system of principal axes. If necessary, we
can choose three arbitrary body-fixed axes, calculate the inertia matrix, and then go
through the procedure to find the principal axis eigenvectors. But in many situations
of interest, the directions of the principal axes can be guessed (with certainty) from
the symmetry of the rigid body. We give here several rules that can be used.

Lemma 9.7.1: The Plane-Figure Theorem
If the rigid body is flat and of negligible thickness (a plane figure), then the unit vec-
tor perpendicular to the plane will be a principal axis. Moreover, when the other two
principal axes are found, the principal moments of inertia will obey the relation

I (cm)′
3 = I (cm)′

1 + I (cm)′
2 (9.41)

where we assume for definiteness that the perpendicular to the plane was chosen to be
ê′3.

Proof: The proof begins by noting that all products of inertia involving the perpen-
dicular direction will vanish. Assuming the perpendicular to be ê′3, eqn (9.9) gives, for
i = 1, 2,

I (cm)′
i3 = −

N∑
n=1

mnρ′niρ
′
n3 (9.42)

But ρ′n3 = 0 was assumed for all n values, hence I (cm)′
13 = I (cm)′

23 = 0 and the inertia

47Readers accustomed to seeing the Einstein summation convention should note that no sum over i is
intended or implied in eqn (9.37).
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matrix has the form ⎛⎜⎝ I (cm)′
11 I (cm)′

12 0

I (cm)′
21 I (cm)′

22 0

0 0 I (cm)′
33

⎞⎟⎠ (9.43)

Thus the vector ê′3, which has components (0, 0, 1), will be an eigenvector and hence
a principal axis, as was to be proved.

The equality in eqn (9.41) can now be proved. With ρ′n3 = 0, the three principal
moments of inertia in eqn (9.36) become

I (cm)′
1 =

N∑
n=1

mnρ′ 2n2 I (cm)′
2 =

N∑
n=1

mnρ′ 2n1 I (cm)′
3 =

N∑
n=1

mn

(
ρ′ 2n1 + ρ′ 2n2

)
(9.44)

from which eqn (9.41) follows. �

Lemma 9.7.2: The Symmetry Rule
Suppose there is a symmetry plane passing through the center of mass of a rigid body such
that, for each mass mn on one side of the plane, there is a mirror-image mass mp = mn

on the other side. Then the perpendicular to the symmetry plane will be a principal axis.

Proof: The proof is similar to that of the Plane Figure Theorem. Assume ê′3 chosen to
be the perpendicular to the symmetry plane, so that the symmetry plane is the ê′1-ê′2
plane. Then the sum in eqn (9.42) will vanish because each term of the form mnab
will be matched by a term mpa(−b) that cancels it. Thus, the inertia matrix will have
the form shown in eqn (9.43) and so ê′3 will once again be an eigenvector and hence
a principal axis, as was to be proved. �

Lemma 9.7.3: Figures of Rotation
For any figure of rotation (such as might be turned on a lathe), the symmetry axis and
any two unit vectors perpendicular to it, and to each other, will be the principal axes.
Also, if we assume for definiteness (and according to the usual custom) that ê′3 is along
the symmetry axis, then

I (cm)′
1 = I (cm)′

2 (9.45)

Proof: Note that any plane containing the symmetry axis of the figure will be a sym-
metry plane of the sort described in the Symmetry Rule above. Thus any unit vector
perpendicular to the symmetry axis will be a principal axis. Choose two perpendicu-
lar vectors from this set. With these as two of the principal axes, the only remaining
direction is the symmetry axis itself. Hence the symmetry axis must also be a prin-
cipal axis, as was to be proved. Rotating the rigid body by 90◦ about the symmetry
axis will move ê′1 into ê′2 but will not change the mass distribution. Hence eqn (9.45)
follows. �

Lemma 9.7.4: Cuboids
For any cubiod (a body with six rectangular faces), the perpendiculars to the faces will
be principal axes.
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Proof: This rule follows from application of the symmetry rule with planes of sym-
metry parallel to the faces and cutting the cubiod into two equal parts. �

For a continuous mass distribution with a mass density D, eqn (9.36) may be
generalized to

I (cm)′
i =

∫
dm

{(
ρ
′ 2
1 + ρ

′ 2
2 + ρ

′ 2
3

)
− ρ

′ 2
i

}
(9.46)

where ρ = r−R is the location of mass element dm = D d3ρ relative to the center of
mass, and the integration is over the whole of the rigid body.

9.8 Time Evolution of the Spin
Assume now that the body axes ê′i are the principal axes of the center-of-mass iner-
tia operator I(cm). These ê′i will be called the principal axis system. We continue the
treatment of the tumbling asteroid introduced in Section 9.2 by considering the rate
of change of its spin.

From eqn (9.38), in the principal axis system the spin takes the form

S =
3∑

i=1

I (cm)′
i ω′i ê

′
i (9.47)

Its rate of change may be calculated using the body derivative introduced in Section
8.33,

dS
dt

=
〈

dS
dt

〉
b
+ ω× S (9.48)

where 〈
dS
dt

〉
b
=

3∑
i=1

d S′i
dt

ê′i =
3∑

i=1

I (cm)′
i ω̇′i ê

′
i (9.49)

where ω̇′i = dω′i/dt and the constancy of I (cm)′
i from Lemma 9.2.1 was used.

The equation of motion for S from eqn (9.4) then becomes

τ
(ext)
s = dS

dt
=

3∑
i=1

I (cm)′
i ω̇′i ê

′
i + ω× S (9.50)

Expanding this equation in terms of components in the body system gives, for i =
1, 2, 3,

τ ′si = I (cm)′
i ω̇′i +

3∑
j=1

3∑
k=1

εi jkω
′
j S′k = I (cm)′

i ω̇′i +
3∑

j=1

3∑
k=1

εi jkω
′
j I (cm)′

k ω′k (9.51)

where eqn (A.15) was used to expand the cross product and eqn (9.38) was used to
get the second equality.
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Equation (9.51) is often written in a slightly modified form,

I (cm)′
i ω̇′i =

3∑
j=1

3∑
k=1

εik j I (cm)′
k ω′kω′j + τ ′si (9.52)

When each i = 1, 2, 3 component is written out, these equations have a symmetry
which makes them easy to remember

I (cm)′
1 ω̇′1 = ω′2ω′3

(
I (cm)′
2 − I (cm)′

3

)
+ τ ′s1 (9.53)

I (cm)′
2 ω̇′2 = ω′3ω′1

(
I (cm)′
3 − I (cm)′

1

)
+ τ ′s2 (9.54)

I (cm)′
3 ω̇′3 = ω′1ω′2

(
I (cm)′
1 − I (cm)′

2

)
+ τ ′s3 (9.55)

Each successive formula is gotten by a cyclic permutation of the integers 123 relative
to the previous one.

Equations (9.53 – 9.55), like many others in this subject, are called the Euler
equations. They give a set of coupled differential equations for the components ω′i of
the angular velocity vector relative to the body system of coordinates.

9.9 Torque-Free Motion of a Symmetric Body
Imagine now that the tumbling asteroid is replaced by a spaceship or other object
(such as the Earth, or a football) with rotational symmetry about some axis. Taking
the symmetry axis to be ê′3 as is conventional, it follows from Lemma 9.7.3 that such
objects have two equal principal moments of inertia I (cm)′

1 = I (cm)′
2 �= I (cm)′

3 . Bodies

with I (cm)′
1 = I (cm)′

2 will be referred to as symmetric rigid bodies.

Assume further that the symmetric body is moving with τ
(ext)
s = 0. The Euler

equations of Section 9.8 can then be solved exactly for the angular velocity and spin
as functions of time. Although the torque-free symmetric body is a simple case, the
motion is surprisingly complicated.

We begin by assuming I (cm)′
1 = I (cm)′

2 and writing the Euler equations eqns (9.53
– 9.55) as

I (cm)′
1 ω̇′1 = ω′2ω′3

(
I (cm)′
1 − I (cm)′

3

)
(9.56)

I (cm)′
1 ω̇′2 = ω′3ω′1

(
I (cm)′
3 − I (cm)′

1

)
(9.57)

I (cm)′
3 ω̇′3 = 0 (9.58)

It follows at once from the third equation that ω′3 is a constant equal to its value at
time zero, ω′3 = ω′30. Then the other two equations can be rewritten as

ω̇′1 = −�0ω
′
2 ω̇′2 = �0ω

′
1 (9.59)
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where the constant �0 is defined by

�0 = ω′30

(
I (cm)′
3 − I (cm)′

1

)
I (cm)′
1

(9.60)

Throughout this and the following sections, we will assume for definiteness that
the principal axis directions have been chosen so that ω′30 > 0. Then �0 > 0 when

I (cm)′
3 > I (cm)′

1 , as happens for oblate bodies like a thin circular disk, a thin square, or

the Earth. But �0 < 0 when I (cm)′
3 < I (cm)′

1 , as happens for prolate bodies like a long
rod, a long stick of square cross section, or an American or Rugby football.

The first of eqn (9.59) can be differentiated and the second substituted into it to
give

ω̈′1 = −�2
0ω

′
1 (9.61)

which has the general solution

ω′1 = A cos (�0t + δ) (9.62)

where A ≥ 0 and −π < δ ≤ π are constants of integration to be determined at time
zero. The other component is then

ω′2 = − ω̇′1
�0

= A sin (�0t + δ) (9.63)

The angular velocity vector is thus completely determined from its initial values. It is

ω = A
{
cos (�0t + δ) ê′1 + sin (�0t + δ) ê′2

}+ ω′30ê′3 = An̂(t)+ ω′30ê′3 (9.64)

where the unit vector n̂(t) is defined by

n̂(t) = cos (�0t + δ) ê′1 + sin (�0t + δ) ê′2 (9.65)

As seen by an observer in the body system, the vector n̂ will rotate in a right-handed
sense about the symmetry axis ê′3 when I (cm)′

3 > I (cm)′
1 and in the opposite sense when

I (cm)′
3 < I (cm)′

1 .
The spin angular momentum can also be written. Using eqn (9.38) and the as-

sumed equality I (cm)′
1 = I (cm)′

2 , it is

S = I (cm)′
1

(
ω′1ê′1 + ω′2ê′2

)+ I (cm)′
3 ω′30ê′3 = I (cm)′

1 An̂(t)+ I (cm)′
3 ω′30ê′3 (9.66)

It is seen that ω and S appear to rotate together about the symmetry axis ê′3. Their
components perpendicular to the symmetry axis are both parallel to the same unit
vector n̂(t). The sign of A in eqn (9.62) has been chosen so that δ = 0 will place both
ω and S in the ê′1-ê′3 plane at time zero.
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The constant magnitude of S is found from eqn (9.66) to be

S0 = ‖S‖ =
√(

I (cm)′
1 A

)2 +
(

I (cm)′
3 ω′30

)2
(9.67)

Since we know that a torque free rigid body has dS/dt = 0, we know that S must
be a constant vector relative to inertial space, both in magnitude and direction. We
exploit this constancy of S by choosing the space-fixed, inertial coordinate system êk

such that S = S0ê3.
Since S is an absolute constant, the time variation of the components of S in eqn

(9.66) must be due to the motion of the unit vectors ê′i , and hence of the rigid body in
which they are embedded and whose orientation they define. Note that the solution
with A = 0 is trivial, with S, ω, and ê′3 all aligned and all constant in time. We will
assume the interesting case A > 0 from now on.

The angle θω3′ between the vector ω and the symmetry axis ê′3 can be determined
from

cos θω3′ = ê′3 · ω
‖ω‖ = ω′30√

A2 + ω
′ 2
30

(9.68)

and is a constant. The angle θ33′ between the vector S and the symmetry axis can be
similarly determined from

cos θ33′ = ê′3 · S
‖S‖ = I (cm)′

3 ω′30√(
I (cm)′
1 A

)2 +
(

I (cm)′
3 ω′30

)2
(9.69)

and is also a constant.
The assumptions that ω′30 > 0 and A > 0 imply that 0 ≤ θω3′ ≤ π/2 and 0 ≤ θ33′ ≤

π/2. It follows from eqns (9.68, 9.69) that I (cm)′
3 > I (cm)′

1 , as for the Earth, implies

that θ33′ < θω3′ . And I (cm)′
3 < I (cm)′

1 , as for a football, implies the opposite inequality
θ33′ > θω3′ .

The motion of the torque-free symmetric body can be understood by a geometric
construction. A space-fixed right circular cone, called the space cone, is drawn with
its symmetry axis along S and its surface defined by the path of ω. A body-fixed right
circular cone called the body cone, is drawn with its symmetry axis along ê′3 and its
surface defined by the path of ω relative to the body system. The half angle of the
body cone is thus θω3′ . These two cones are placed so that ω is always along their line
of intersection, which makes the body cone roll on the space cone without slipping.
The body cone carries the body system of coordinates with it as it rolls, and thus
illustrates the motion of the body. The two cases, for I (cm)′

3 > I (cm)′
1 and I (cm)′

3 < I (cm)′
1 ,

are shown in Figures 9.1 and 9.2. In cases like the Earth, the body cone encloses the
space cone. In cases like the football, the body cone rolls on the outside of the space
cone.

A great deal of qualitative information can be extracted from the results of this
section. We now estimate some magnitudes of interest. For example, the Earth has a
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ê′1

ê′2

ê′3 n̂

Body cone

α

β0

ê′3

ω

ê′1

ê3

ω

ê′2

ê3

ê1

ê2

Space cone

q̂

FIG. 9.1. For an oblate object like the Earth, �0 > 0. In the figure at the left, the body cone
rolls without slipping on the space cone, carrying the ê′i axes with it. The angular velocity
ω is along the line of contact of the two cones, and the Euler angle α increases steadily.
The figure on the right shows the motion from the viewpoint of an observer standing on
the Earth at the north pole. The unit vector n̂ appears to move counter-clockwise, with the
perpendicular components of ê3 and ω lined up with it.

ê3
ω

ê′3

ê1

ê2

α

ê′1

β0

ê′2

Body cone
ê′1

ê′2

ê′3

ê3

ω
n̂

Space cone

q̂

FIG. 9.2. For a prolate object such as a football, �0 < 0. In the figure on the left, the Euler angle
α increases steadily as the body cone rolls without slipping on the space cone, carrying
the ê′i axes with it. The figure on the right shows the motion from the viewpoint of an
observer riding on the nose of the football. The unit vector n̂ appears to move in a clockwise
direction, with the perpendicular components of ω and ê3 lined up with it.

small positive value of the ratio (I (cm)′
3 − I (cm)′

1 )/I (cm)′
1 . To a body-system observer, the

ê′3 axis appears fixed and the vectors S and ω (listed here in order of their angle from
ê′3) appear to rotate about it in a positive sense with an angular rate �0 > 0 that is
slow compared to the total angular velocity ‖ω‖ ≈ 2π/(1 day). The angle θ33′ is only
slightly smaller than θω3′ and hence the space cone is small compared to the body
cone, as is shown in Figure 9.1.
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For another example, a thin rod has a ratio (I (cm)′
3 − I (cm)′

1 )/I (cm)′
1 that is negative,

and slightly greater than −1. A body-system observer sees the symmetry axis ê′3 as
fixed and the vectors ω and S (listed here in order of their angle from ê′3) appear to
rotate about it in a negative sense, with an angular rate �0 < 0 that is nearly as large
in magnitude as the total angular velocity ‖ω‖. The angle θ33′ is considerably larger
than θω3′ and hence the space cone is large compared to the body cone, as shown.

When tidal torques are ignored, the Earth is approximately a torque-free symmet-
ric rigid body of the sort described here. If we assume an ideal case in which it is
perfectly rigid and torque free, we can imagine the three vectors ê′3, ω, and S to be
drawn with a common origin at the center of the Earth and their lines extended out
through the surface of the Earth. These lines would all pierce the snow at or near the
north pole. The vector ê′3 defines the north pole, the geometric symmetry axis of the
Earth, and would appear fixed to a polar observer standing in the snow. The trace of
the other two vectors would appear to rotate in concentric circles around the north
pole in a positive sense, with a common radius direction n̂(t). They would make one
complete circuit in a time T� = 2π/�0. This time can be calculated from the known
oblateness of the Earth.

T� = 2π

�0
= 2π

ω30

I (cm)′
1

I (cm)′
3 − I (cm)′

1

∼= I (cm)′
1

I (cm)′
3 − I (cm)′

1

days ∼= 306 days (9.70)

The Earth’s symmetry axis apparently does have a periodic variation, called the
Chandler wobble, that can be associated with the effect calculated here. It has a small
amplitude: The circles in the snow mentioned above would be of the order of 5 meters
in radius. Also, it has a period of approximately 423 days and appears to be damped.
Because of the damping, it is not simply a relic of the Earth’s creation with some
nonzero A value as the above analysis would suggest, but must be sustained by some
present energy source not included in our analysis here.

9.10 Euler Angles of the Torque-Free Motion

The motion of the symmetric rigid body in Section 9.9 can also be described by es-
tablishing an inertial coordinate system with its ê3 axis along the fixed direction of
the spin S, and then using Euler angles α, β, γ to describe the orientation of the body-
fixed ê′i unit vectors relative to this inertial system. The motion of the body is then
seen from the viewpoint of an inertial observer, perhaps someone watching a football
pass as it spirals, or someone viewing the Earth’s wobble from space.

In the present section, we assume the results derived in Section 9.9, but re-express
them in terms of these Euler angles.

In terms of the Euler angles, the body symmetry axis ê′3 will have spherical polar
coordinates 1, β, α relative to inertial axes êk , as was noted in eqn (8.265). The Euler
angle β is the angle between ê3 and ê′3 and therefore must be constant here, equal to
the constant angle 0 ≤ θ33′ ≤ π/2 calculated in eqn (9.69). Thus β = β0 = θ33′ .
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Equations (8.270 – 8.272) with β = β0 and β̇ = 0 give the body system compo-
nents of the angular velocity in terms of the Euler angles. The angular velocity is

ω = −α̇ sin β0 cos γ ê′1 + α̇ sin β0 sin γ ê′2 + (α̇ cos β0 + γ̇ ) ê′3 (9.71)

Equating the three components of this vector to the components of ω in eqn (9.64)
gives

−α̇ sin β0 cos γ = A cos (�0t + δ) (9.72)

α̇ sin β0 sin γ = A sin (�0t + δ) (9.73)

α̇ cos β0 + γ̇ = ω′30 (9.74)

It follows from eqns (9.72, 9.73) that α̇ and γ̇ are constants with α̇ = α̇0 and γ̇ =
γ̇0, and that γ̇0 = −�0. Then eqn (9.74) shows that α̇0 must be a positive constant,
α̇0 > 0. With these conditions established, eqns (9.72 – 9.74) together imply that

α̇0 sin β0 = A α̇0 cos β0 = I (cm)′
3 ω′30

I (cm)′
1

γ = −�0t − δ+π α = α̇0t +κ (9.75)

where the constant κ is determined from the initial conditions.
We now can express the vectors S, ê′3, and ω in the inertial system relative to which

the Euler angles are defined. These expressions will be consistent with the geometrical
constructions in Figures 9.1 and 9.2, and will show them from the inertial viewpoint.

The magnitude of the spin S may be calculated in terms of Euler angles using eqns
(9.67, 9.75). It is

S0 = ‖S‖ = I (cm)′
1 α̇0 (9.76)

Since the spin vector S is constant for a torque-free body, and since the ê3 axis of the
inertial system is defined to be along the direction of this vector, the spin vector will
at all times be equal to ê3 times its magnitude, or

S = I (cm)′
1 α̇0ê3 (9.77)

The body symmetry vector ê′3 can be found from eqn (8.266). It is

ê′3 = sin β0 q̂(t)+ cos β0 ê3 (9.78)

where
q̂(t) = cos(α̇0t + κ) ê1 + sin(α̇0t + κ) ê2 (9.79)

is a unit vector that rotates about ê3 in the positive sense. The expression for ω in
terms of inertial system unit vectors will be derived in Exercise 9.8.

To an inertial system observer viewing the Earth, the spin S is constant and along
the ê3 axis. The symmetry axis of the body ê′3 is at angle β0 from the ê3 axis, and
rotates about it in a positive sense, with a rate α̇0 > 0 that is slightly larger than ‖ω‖.
The third Euler angle γ represents a rotation about the symmetry axis of the body
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that is combined with the rotation already provided by α. It moves in a retrograde
sense, with γ̇0 < 0 but small compared to ‖ω‖. The vectors ω and ê′3 lie on opposite
sides of ê3 and are both in the plane defined by ê3 and q̂(t).

To an inertial observer viewing the long rod or the football, the spin S is constant
and along the ê3 axis. The symmetry axis of the body ê′3 is at angle β0 from the ê3 axis,
and rotates about it in a positive sense, with a rate α̇0 > 0 that is much smaller than
‖ω‖. The third Euler angle γ moves in a positive sense, with γ̇0 > 0 and a magnitude
only slightly smaller than ‖ω‖. The vectors ω and ê′3 are on the same side of ê3 and
are both in the plane defined by ê3 and q̂(t).

9.11 Body with One Point Fixed
In Section 9.8, we considered a rigid body moving freely in empty space, like a tum-
bling asteroid. The motion of its center of mass was therefore governed by the same
laws of motion as for any collection of masses, rigid or not.

We now consider another class of interesting cases, ones in which the rigid body
is not floating freely but has one of its points constrained to be fixed. Examples are a
top spinning with its point set into a depression that holds it fixed, a gyroscope with
a point along its symmetry axis held fixed, etc.

Suppose that a point P of a rigid body is constrained to be at rest. Place an inertial
coordinate system with its origin at that fixed point. Then the motion of the rigid body
can be derived from the time evolution of the total angular momentum J relative to
this inertial system, as given in Axiom 1.5.1,

dJ
dt

= τ(ext) where J =
N∑

n=1

rn × mnvn = L + S (9.80)

where L and S are defined in Section 1.11, and τ(ext) is the total external torque
relative to the origin of coordinates as defined in Section 1.5.

We want to find an operator I that maps the angular velocity ω into J, similar to
the operator I(cm) defined for the spin in Section 9.2. Since an operator expression for
the spin, S = I(cm)ω, has already been derived in Section 9.2, an obvious approach is
to find an operator expression for the orbital angular momentum L and then to use
J = L + S to find J.

From eqns (9.1, 9.2),
L = R × MV (9.81)

where V = dR/dt is the velocity of the center of mass R, and M is the total mass of
the body. This is the same definition as for the tumbling asteroid, or for any collection
of point masses. But, when one point of the body is fixed at the origin of coordinates,
both ends of R are now fixed relative to the rigid body, and so vector R must move
with the body.

To derive an expression for L, let us begin by supposing that we have already
found the principal axes of the rigid body relative to its center of mass, as discussed
in Section 9.6. Then there is already a body-fixed coordinate system with principal
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axis unit vectors ê′i and its origin at the center of mass. The vector R can be expanded
in that body system as

R =
3∑

i=1

R′
i ê
′
i where R′

i = ê′i · R (9.82)

Since both the unit vectors ê′i and R are now embedded in the same rigid body,
the components R′

i will all be constants with d R′
i/dt = 0. Hence the body derivative

of R defined in Section 8.33 vanishes,〈
dR
dt

〉
b
=

3∑
i=1

d R′
i

dt
ê′i = 0 (9.83)

and the total time derivative reduces to

V = dR
dt

=
〈

dR
dt

〉
b
+ ω× R = ω× R (9.84)

The orbital angular momentum L then becomes

L = R × MV = MR × (ω× R) = M
{

R2ω− R (R · ω)
}

(9.85)

Writing this equation out in terms of components in the body system gives

L ′i = M

⎧⎨⎩(
R
′ 2
1 + R

′ 2
2 + R

′ 2
3

)
ω′i − R′

i

3∑
j=1

R′
jω

′
j

⎫⎬⎭ =
3∑

j=1

I (orb)′
i j ω′j (9.86)

where the orbital inertia matrix in the body system is defined by

I (orb)′
i j = M

{(
R
′ 2
1 + R

′ 2
2 + R

′ 2
3

)
δi j − R′

i R′
j

}
(9.87)

Corresponding to the last expression in eqn (9.86), there is an operator equation

L = I(orb)ω (9.88)

where I(orb) is the operator whose matrix elements in the body system are given
by eqn (9.86). Notice that, since the R′

i are constants, as was discussed above, the

matrix elements I (orb)′
i j will also be constant in time and have zero time derivatives.

The operator equation in eqn (9.88) may also be written as the equivalent dyadic
equation

L = �
(orb) · ω where �

(orb) = M
(

R2
�− RR

)
(9.89)

With the orbital angular momentum L now determined, the total angular momen-
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tum J may be written as

J = L + S = I(orb)ω+ I(cm)ω =
(
I(orb) + I(cm)

)
ω = Iω (9.90)

where the total inertia operator is defined by

I = I(orb) + I(cm) (9.91)

In terms of components in the body system, we have

J ′i =
3∑

j=1

I ′i jω
′
j (9.92)

for i = 1, 2, 3, where

I ′i j = M
{(

R
′ 2
1 + R

′ 2
2 + R

′ 2
3

)
δi j − R′

i R′
j

}
+ I (cm)′

j δi j (9.93)

The delta function appears in the last term because the body system is assumed to
be a principal axis system for the center of mass momentum operator I(cm). If the
body system is not the center of mass principal axis system, then this term will be
replaced by the non-diagonal matrix I (cm)′

i j . Equation(9.93) will be referred to as the
translation of pivot theorem since it expresses the inertia tensor about a fixed point
displaced from the center of mass.

The dyadic equivalent to operator I can also be written. It is

� = �
(orb) + �

(cm) = M
(

R2
�− RR

)
+ �

(cm) (9.94)

where �
(cm) is the dyadic expressed in the center of mass principal axis system by eqn

(9.40).
In eqn (9.20), the internal kinetic energy TI was given in terms of the spin and

the angular velocity. The same can be done for the orbital kinetic energy To for rigid
bodies moving with one point fixed. Starting with the definition in eqn (9.19), and
using eqn (9.84),

To = 1

2
MV 2 = 1

2
MV · V = 1

2
MV · ω× R = 1

2
R × MV · ω = 1

2
ω · L (9.95)

Combining this result with eqn (9.20) then gives

T = To + TI = 1

2
ω · L + 1

2
ω · S = 1

2
ω · J = 1

2
ω · (Iω) (9.96)

where eqn (9.90) was used. Expanding the last expression on the right in eqn (9.96)
in the body basis gives

T = 1

2

3∑
i=1

3∑
j=1

I ′i jω
′
iω

′
j (9.97)

which is the same as eqn (9.21) for the internal kinetic energy TI, but with the center-
of-mass inertia matrix I (cm)′

i j now replaced by the total inertia matrix I ′i j .
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9.12 Preserving the Principal Axes
An unfortunate feature of eqn (9.93) is that, although the matrix I (cm)′ is diagonal by
the assumption that the center of mass principal axis system is being used, the matrix
I ′ may not be. Moving the reference point from the center of mass to fixed point P
may introduce non-diagonal terms. If so, then the whole calculation of the principal
axes will have to be done again.

However, there is a class of important special cases in which the center of mass
principal axes are preserved. If the vector R from the fixed point to the center of mass
happens to lie along one of the ê′i directions, then all products of inertia in eqn (9.87)
will vanish. For example, suppose that R = Rê′3. Then R′

1 = R′
2 = 0 and R′

3 = R with
the result that

I ′i j = M R2 (
δi j − δi3δj3

)+ I (cm)′
j δi j (9.98)

Thus i �= j implies that I ′i j = 0 and the diagonal elements become

I ′11 = M R2 + I (cm)′
1 I ′22 = M R2 + I (cm)′

2 I ′33 = I (cm)′
3 (9.99)

In general, when R is along one of the center of mass principal axis ê′k the principal
axes of the problem are unchanged, the principal moments of inertia along the axes
perpendicular to ê′k have M R2 added to them, and the principal moment of inertia
along ê′k itself is unchanged.

Assume now that we have preserved the center of mass principal axes, or other-
wise found principal axes that make the total inertia operator I diagonal, and are
now using a principal axis system of the total inertia operator. The formulas for the
total angular momentum and the total kinetic energy then become simpler, just as
the formulas for the spin angular momentum and the internal kinetic energy did in
Section 9.6.

The relation
J = Iω (9.100)

is expressed in component form in eqn (9.92). If the body system is the principal axis
system for I then, for i = 1, 2, 3,

I ′i j = I ′jδi j and hence J ′i =
3∑

j=1

I ′jδi jω
′
j = I ′i ω′i (9.101)

Just as in eqn (9.37), we emphasize that there is no sum implied in this last equation.
Each component of J ′i is just the corresponding component of ω′i multiplied by the
principal moment of inertia I ′i ,

J ′1 = I ′1ω′1 J ′2 = I ′2ω′2 J ′3 = I ′3ω′3 (9.102)

In this same principal axis system, the total kinetic energy in eqn (9.97) simplifies to
a single sum

T = 1

2

3∑
i=1

3∑
j=1

I ′jδi jω
′
iω

′
j =

1

2

3∑
i=1

I ′i ω
′ 2
i (9.103)
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9.13 Time Evolution with One Point Fixed
The time evolution of the spin was calculated in Section 9.8. The same methods used
there for the spin equation of motion dS/dt = τ

(ext)
s can also be used for the total

angular momentum equation of motion dJ/dt = τ(ext). Just replace S by J , and τs by
τ , and I (cm) by I throughout.

Assuming that we are now using body axes that are principal axes for the total
inertia operator I, the Euler equations analogous to eqns (9.53 – 9.55) are

I ′1ω̇′1 = ω′2ω′3
(
I ′2 − I ′3

)+ τ ′1 (9.104)

I ′2ω̇′2 = ω′3ω′1
(
I ′3 − I ′1

)+ τ ′2 (9.105)

I ′3ω̇′3 = ω′1ω′2
(
I ′1 − I ′2

)+ τ ′3 (9.106)

where the torque components are defined by τ ′i = ê′i · τ(ext).

9.14 Body with One Point Fixed, Alternate Derivation
An operator expression for the total angular momentum J of a rigid body moving
with one point fixed can also be derived directly, without reference to L and S. The
operator I obtained will be the same as that derived in Section 9.11.

The basic definition of the total angular momentum of any collection, including a
rigid body, is

J =
N∑

n=1

rn × mnvn (9.107)

where vn = drn/dt and rn is the vector from the fixed point P (which is taken as the
origin of the inertial coordinate system) to the mass mn .

Assume that some body-fixed system of coordinates has been defined. Since all
of the vectors rn connect two points of the same rigid body, their components in this
body system of coordinates must be constants, just as the components of R were in
Section 9.11. Thus the body derivatives vanish, 〈drn/dt〉b = 0, and

vn = drn/dt = ω× rn (9.108)

Hence

J =
N∑

n=1

mnrn × (ω× rn) (9.109)

Now using the same pattern found in Section 9.2, but with ρn replaced everywhere
by rn , the components of J in the body fixed system of coordinates can be reduced to

J ′i =
3∑

j=1

I ′i jω
′
j (9.110)
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where

I ′i j =
N∑

n=1

mn

{(
r ′ 2n1 + r ′ 2n2 + r ′ 2n3

)
δi j − r ′nir

′
nj

}
(9.111)

Thus
J = Iω (9.112)

where operator I is the operator whose matrix elements in the body system are I ′i j .
The dyadic form of I is

� =
N∑

n=1

mn {(rn · rn)�− rn rn} (9.113)

The matrix I ′ defined in eqn (9.111) can be diagonalized to find a principal axis
system for the total inertia tensor I. The result will be the same (except for possible
degeneracy of eigenvectors) as that obtained by the more indirect route taken in
Sections 9.11 and 9.12.

9.15 Work–Energy Theorems
In Section 1.16 we showed that the rate of change of the total kinetic energy T of a
rigid body can be written as

dT

dt
=

N∑
n=1

f(ext)
n · vn (9.114)

Using eqn (9.108), in the case of a rigid body with one point fixed at the origin of an
inertial coordinate system this result can be written as

dT

dt
=

N∑
n=1

f(ext)
n · ω× rn =

(
N∑

n=1

rn × f(ext)
n

)
· ω = τ(ext) · ω (9.115)

where the definitions in eqns (1.17, 1.18) have been used. Thus an external torque
that is always perpendicular to the angular velocity vector will do no work, and will
not change the total kinetic energy of the rigid body.

A similar result holds for the internal kinetic energy TI and the torque τ
(ext)
s defined

in eqn (1.49). Starting again from the result in Section 1.16,

dTI

dt
=

N∑
n=1

f(ext)
n · ρ̇n (9.116)

the rate of change of the internal kinetic energy can be written using eqn (9.5) as

dTI

dt
=

N∑
n=1

f(ext)
n · ω× ρn =

(
N∑

n=1

ρn × f(ext)
n

)
· ω = τ

(ext)
s · ω (9.117)
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9.16 Rotation with a Fixed Axis
There is a class of problems in which the rigid body is constrained even more severely
than simply by having one point fixed. It might be constrained to rotate about a fixed
axis, as on a lathe. Examples of this sort are often used in elementary textbooks to
introduce students to “rotary motion.” However, it is instructive to see precisely how
these elementary results fit into the general theory being presented here.

Imagine that a fixed axis passes through the rigid body and is rigidly connected to
it. If the angle of rotation about the fixed axis is denoted 
, then eqn (8.197) gives at
once that

ω = 
̇n̂ or in component form ω′i = 
̇n′i for i = 1, 2, 3 (9.118)

where n̂ is a constant unit vector, along the fixed axis and pointing in the direction
related to the positive direction of 
 by a right-hand rule. Taking the origin of an
inertial coordinate system to be some point on the fixed axis, eqn (9.112) then gives
the angular momentum as

J = Iω = 
̇In̂ (9.119)

Note that I is an operator and that in general J will not point in the same direction
as ω.

If, for example, a lathe is running and constraining 
̇ to have a given value, or
if 
 is otherwise known as a function of time, then ω is known. The torques acting
on the rigid body can be calculated by putting the known components of ω from eqn
(9.118) into the Euler equations, eqns (9.104 – 9.106), and solving for the torque
components.

However, there is another class of problem in which the motor of the lathe is
assumed to be disconnected, so that the rigid body moves freely about the fixed axis.
An example might be a rear wheel of a front-wheel-drive automobile. The angle 


then becomes a free dynamical variable. A differential equation for that variable can
be derived that depends only on the component of torque parallel to the fixed axis n̂.

Dotting n̂ from the left onto both sides of eqn (9.80) gives

d

dt

(
n̂ · J

) = n̂ · dJ
dt

= n̂ · τ(ext) (9.120)

where the constancy of n̂ allows it to be taken inside the time derivative. Then, intro-
ducing eqn (9.119) gives

d

dt

(
n̂ · 
̇In̂

) = n̂ · τ(ext) or In
̈ = τn (9.121)

where the definitions

In = n̂ · (In̂
)

and τn = n̂ · τ(ext) (9.122)

have been introduced.
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The In will be shown below to be the moment of inertia about the fixed rotation
axis. It will be shown to be a constant, as has already been assumed in deriving eqn
(9.121). The torque term τn is the component of the external torque parallel to the
axis. In elementary textbooks, the expression τn = In
̈ from eqn (9.121) is sometimes
referred to as the, “F equals MA of rotary motion.”

The quantity In is easiest to understand if the dyadic expression in eqn (9.103) is
used,

In = n̂ · (In̂
) = n̂ · � · n̂

=
N∑

n=1

mn
{(

rn · rn
)

n̂ · � · n̂ − (
n̂ · rn

) (
rn · n̂

)}
=

N∑
n=1

mn
{(

rn · rn
)− (

n̂ · rn
) (

rn · n̂
)}

(9.123)

If we decompose each rn into a vector rn‖ = n̂
(
n̂ · rn

)
parallel to n̂ and a vector rn⊥

perpendicular to n̂, in the manner described in Section A.2, the expression in the last
of eqn (9.123) reduces to

In =
N∑

n=1

mn ‖rn⊥‖2 (9.124)

This expression is the sum of each mass multiplied by its perpendicular distance from
the rotation axis, which is the definition of the moment of inertia about that axis.
Since both the origin of coordinates on the axis, and the masses mn are embedded
rigidly in the same rigid body, all dot products in eqn (9.123) will be constants. Hence
In is constant, as was asserted above.

In the special case that the fixed axis happens to pass through the center of mass of
the rigid body, the above analysis will still hold, but with J, I, �, I, rn, τ(ext) replaced
by S, I(cm), �(cm), I (cm),ρn, τ

(ext)
s , respectively.

Returning to the general case, there is an interesting relation between In and
I (cm)
n , called the parallel axis theorem. Using the translation of pivot theorem from

eqn (9.94),

In = n̂ · � · n̂ = M
{

R2 − (
n̂ · R

)2
}
+ n̂ · �(cm) · n̂ = M R2⊥ + I (cm)

n (9.125)

where R = R‖ + R⊥ decomposes R into vectors parallel and perpendicular to n̂.
The moment of inertia In about an axis n̂ is equal to the moment of inertia I (cm)

n

about a parallel axis passing through the center of mass, plus the total mass times the
perpendicular distance between the two axes.

9.17 The Symmetric Top with One Point Fixed
Although the Euler equations eqns (9.104 – 9.106) are correct, they are less useful
than they might be because the variables ω′i in them are not good generalized coor-
dinates in the Lagrangian sense described in Chapter 2. They are not even the time
derivatives of good generalized coordinates.
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However, a Lagrangian theory of rigid-body motion is possible, since, when used
to specify the orientation of a body-fixed system of unit vectors, the Euler angles α,
β, γ are good generalized coordinates. To demonstrate this from the Jacobian deter-
minant condition of eqn (2.27) would be a daunting task indeed, since a rigid body
with one point fixed has some 1025 degrees of freedom and

(
1025 − 3

)
independent

constraints. The “goodness” of the Euler angles must be established by going back to
the property behind the Jacobian determinant condition: bi-uniqueness. The general-
ized coordinates are “good” if they, together with the constraints, uniquely determine
the Cartesian coordinates of each of the point masses, and if conversely the Carte-
sian coordinates of all the point masses determine them uniquely. This bi-uniqueness
condition is satisfied by the Euler angles.

Thus a reduced Lagrangian may be written using the usual formula L = T − U
where, after the constraints are applied, the (highly) reduced Lagrangian is

L(α, β, γ, α̇, β̇, γ̇ , t) = T (α, β, γ, α̇, β̇, γ̇ )−U (α, β, γ ) (9.126)

We wish to apply these Lagrangian methods to the motion of a symmetric top moving
with a point on its symmetry axis fixed.

β

α

g

ê1

ê2

ê3

γ

ê′3

FIG. 9.3. A symmetric top spins with one point fixed, at the origin of an inertial coordinate
system êi . The Euler angle γ represents the spin of the top about its symmetry axis ê′3.

We assume that the symmetric top is a body of revolution in the sense of Lemma
9.7.3 so that its symmetry axis, taken conventionally to be ê′3, and any two axes per-
pendicular to the symmetry axis, are principal axes of the center of mass inertia oper-
ator. Assume moreover that the top moves with a fixed point that is on the symmetry
axis. Then, according to the analysis in Section 9.12, the center of mass principal axes
will be preserved and will also be the principal axes of the total inertia tensor. Then
the principal moments of inertia will obey I ′1 = I ′2 �= I ′3.

The force of gravity is assumed to be acting in a downward direction on the top.
An inertial coordinate system with its origin at the fixed point of the top is defined
with its ê3 axis upwards, so that g = −gê3. As shown in Exercise 1.11 for a general
collection, the potential energy of a rigid body in a uniform gravitational field is given
by U = −Mg · R where R points to its center of mass. Here, the vector R is along the
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ê′3 direction with R = R ê′3, where R is the constant magnitude of R. Thus

U (α, β, γ ) = −M
(−gê3

) · (R ê′3
) = MgRê3 · ê′3 = MgR cos β (9.127)

since, as noted in Section 8.35, the spherical polar coordinates of ê′3 relative to the
inertial system are (1, β, α).

The kinetic energy can be obtained from eqn (9.103). Setting I ′1 = I ′2 this equation
reduces to

T = 1

2

3∑
i=1

I ′i ω
′ 2
i = 1

2
I ′1

(
ω
′ 2
1 + ω

′ 2
2

)
+ 1

2
I ′3ω

′ 2
3 (9.128)

The angular velocity components in terms of the Euler angles and their derivatives
are given in eqns (8.270 – 8.272). Substituting these and simplifying gives

T = 1

2
I ′1

(
α̇2 sin2 β + β̇2

)
+ 1

2
I ′3 (α̇ cos β + γ̇ )2 (9.129)

Thus the reduced Lagrangian is

L(α, β, γ, α̇, β̇, γ̇ , t) = 1

2
I ′1

(
α̇2 sin2 β + β̇2

)
+ 1

2
I ′3 (α̇ cos β + γ̇ )2−MgR cos β (9.130)

The variables α and γ are seen to be ignorable. So we deal with them first. The
reduced Lagrange equation for γ is

d

dt

(
∂L

∂γ̇

)
− ∂L

∂γ
= 0 (9.131)

which simplifies to
(α̇ cos β + γ̇ ) = constant (9.132)

It will simplify later formulas if this constant is defined in terms of another constant
A such that

α̇ cos β + γ̇ = I ′1 A

I ′3
(9.133)

Since eqn (8.272) gives ω′3 = (α̇ cos β + γ̇ ), eqn (9.132) implies that ω′3 is a constant,
equal to its value at time zero, ω′3 = ω′30. The constant A in eqn (9.133) can be
determined at time zero by the condition

A = I ′3 (α̇0 cos β0 + γ̇0)

I ′1
= I ′3ω′30

I ′1
(9.134)

The reduced Lagrange equation for α is

d

dt

(
∂L

∂α̇

)
− ∂L

∂α
= 0 (9.135)
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which simplifies to

I ′1α̇ sin2 β + I ′3 (α̇ cos β + γ̇ ) cos β = constant (9.136)

Again, this constant is defined in terms of another constant B such that

I ′1α̇ sin2 β + I ′3 (α̇ cos β + γ̇ ) cos β = I ′1 B (9.137)

Inserting eqn (9.133) and canceling the common I ′1 factors, this becomes

α̇ sin2 β + A cos β = B (9.138)

The constant B is thus determined from the conditions at time zero as

B = α̇0 sin2 β0 + A cos β0 (9.139)

where A is determined from eqn (9.134).
The variable β is not ignorable. Its Lagrange equation involves a second time

derivative of β and will be bypassed in favor of the generalized energy theorem that
provides a first order differential equation for the same variable. The reduced gener-
alized energy function defined in eqn (3.82) is

H = α̇
∂L

∂α̇
+ β̇

∂L

∂β̇
+ γ̇

∂L

∂γ̇
− L

= 1

2
I ′1

(
α̇2 sin2 β + β̇2

)
+ 1

2
I ′3 (α̇ cos β + γ̇ )2 + MgR cos β (9.140)

Since ∂L(α, β, γ, α̇, β̇, γ̇ , t)/∂t = 0 here, eqn (3.83) shows that the reduced general-
ized energy function is a constant equal to its value at time zero,

1

2
I ′1

(
α̇2 sin2 β + β̇2

)
+ 1

2
I ′3 (α̇ cos β + γ̇ )2 + MgR cos β

= 1

2
I ′1

(
α̇2

0 sin2 β0 + β̇2
0

)
+ 1

2
I ′3 (α̇0 cos β0 + γ̇0)

2 + MgR cos β0 (9.141)

Due to the constancy of ω′3 noted in eqn (9.132), the terms involving I ′3 cancel. Mul-
tiplying through by 2/I ′1 then gives

α̇2 sin2 β + β̇2 + 2MgR

I ′1
cos β = C (9.142)

where C is a constant given in terms of conditions at time zero as

α̇2
0 sin2 β0 + β̇2

0 +
2MgR

I ′1
cos β0 = C (9.143)

Equation (9.138) can be solved for α̇ as

α̇ = B − A cos β

sin2 β
(9.144)
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and used to eliminate α̇ from eqn (9.142), giving

(B − A cos β)2

sin2 β
+ β̇2 + 2MgR

I ′1
cos β = C (9.145)

This equation can now be solved for β̇2

β̇2 = C − 2MgR

I ′1
cos β − (B − A cos β)2

sin2 β
(9.146)

and simplified further by the usual substitution u = cos β, which implies that(
1 − u2

) = sin2 β and −u̇/
√

1 − u2 = β̇, and gives

u̇2 = f (u) =
(

C − 2MgR

I ′1
u

)(
1 − u2

)
− (B − Au)2 (9.147)

Equation (9.147) is a differential equation for the variable u = cos β and can be
solved by writing

du

dt
= ±√

f (u) and hence t =
∫ t

0
dt ′ = ±

∫ u

u0

du′√
f (u′)

= F(u, u0) (9.148)

and then inverting function F to get u as a function of time.
The general solution in eqn (9.148) involves elliptic integrals. For our purposes

here, it will suffice to extract some generalities about the motion. The physical range
of u = cos β is between −1 and +1. A plot of the cubic function f (u) versus u will
have f (±∞) = ±∞ and f (±1) < 0. Thus f (u) must have one zero in the unphysical
region u > 1. There must be two other zeroes u1 < u2 in the physical region, with
f (u) ≥ 0 for u1 ≤ u ≤ u2 since u̇2 in eqn (9.147) cannot be negative. The points u1

and u2 are called the turning points of the β motion. The β value will oscillate back
and forth between these points. Note that smaller values of u correspond to the larger
values of β and hence to lower positions of the top. Thus the top is lower at u1 than
it is at u2.

The oscillation of β is called the nutation of the top. While that nutation is in
progress, the α variable is also changing with time. The change of α with time is
called the precession of the top. Equation(9.144) gives

α̇ = A

1 − u2

(
B

A
− u

)
(9.149)

Thus the direction48 of the α motion depends on the relative values of u and (B/A).
If (B/A) > u2 then α̇ > 0 always (direct precession). If (B/A) < u1 then α̇ < 0 always
(retrograde precession). If u1 < (B/A) < u2 then α̇ < 0 during the upper part of the
nutation cycle and α̇ > 0 for the lower part. The precession will then be stationary
at the value us = (B/A). The result of this last case will be a series of loops of the
symmetry axis, one loop per nutation cycle.

48We assume that the top is initially spun in a right-hand sense about axis ê′3 so that A > 0. If A were
negative, the precession directions stated here would all be reversed.



THE INITIALLY CLAMPED SYMMETRIC TOP 229

9.18 The Initially Clamped Symmetric Top

There is one special case in which the analysis of Section 9.17 simplifies somewhat:
The top whose symmetry axis is clamped at time zero so that α̇0 = β̇0 = 0.49 When
the top is initially clamped, the various constants defined in Section 9.17 become

B = A cos β0 C = 2MgR

I ′1
cos β0 A = I ′3γ̇0

I ′1
(9.150)

and it is useful to define another constant

ψ0 = I ′1 A2

4MgR
= I ′3

I ′1

(
I ′3γ̇ 2

0 /2

2MgR

)
(9.151)

which is a rough measure of the speed of the top. Except for the factor (I ′3/I ′1), which
is usually near unity, it is the ratio of the kinetic energy of the initial spin to the
maximum range of the potential energy values. For a fast top, this parameter should
therefore be very large.

For an initially clamped top with these parameters, eqn (9.147) becomes the prod-
uct of a linear and a quadratic factor

u̇2 = f (u) = 2MgR

I ′1
(u0 − u) g(u) (9.152)

where u0 = cos β0 and

g(u) = 1 − u2 − 2ψ0 (u0 − u) (9.153)

One zero of f (u) is seen from eqn (9.152) to be the initial value, u2 = u0. The other
turning point is that solution to the quadratic equation g(u1) = 0 that lies in the
physical range −1 ≤ u1 ≤ 1. It is

u1 = ψ0 −
√

ψ2
0 − 2ψ0u0 + 1 (9.154)

Then, completing the square of the expression in the square root, the difference u0−u1

may be written

u0 − u1 = |ψ0 − u0|
⎛⎝√

1 + 1 − u2
0

(ψ0 − u0)
2
− ψ0 − u0

|ψ0 − u0|

⎞⎠ (9.155)

This expression is seen to be essentially positive, which shows that u0 = u2 is the
upper turning point. When released from its clamp, the top falls until it reaches u1 at
which point it turns in its β motion and returns to u0 to begin another nutation cycle.

49The third angle γ carries the spin of the top, and is not clamped. The γ̇0 is often very large, in fact.
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The value of the precession rate α̇ is found from eqn (9.149). For the initially
clamped top, this becomes

α̇ = A
u0 − u

1 − u2
(9.156)

Thus at the upper nutation turning point u2 = u0, the precession rate is zero. At the
lower point u1, the precession rate is positive. The symmetry axis of the top therefore
executes a series of cusps, stopping its precession at the upper turning point and
maximizing it at the lower turning point. Equation (9.155) can be used to write the
precession rate at u1 as

α̇1 = A |ψ0 − u0|
1 − u2

1

⎛⎝√
1 + 1 − u2

0

(ψ0 − u0)
2
− ψ0 − u0

|ψ0 − u0|

⎞⎠ (9.157)

If a fast top is assumed, eqn (9.157) can be expanded in powers of the small, dimen-
sionless quantity ψ−1

0 . If terms up to and including quadratic order in this quantity
relative to unity are retained throughout, the approximate value is

α̇1 = 2
MgR

I ′3γ̇0

(
1 − 2u2

0

ψ2
0

+ · · ·
)

(9.158)

9.19 Approximate Treatment of the Symmetric Top
In beginning textbooks, the precession of a rapidly spinning top is treated approx-
imately. The total angular momentum is assumed to be constant in magnitude and
directed along the symmetry axis. Thus

J ≈ I ′3γ̇0 ê′3 (9.159)

In our exact treatment, this approximation is equivalent to assuming γ̇ is a constant
equal to its initial value γ̇0, and that γ̇ � α̇, β̇. Then the gravitational torque is calcu-
lated from

τ(ext) = R × (−Mgê3
) = MgR sin β ê′′′2 (9.160)

where ê′′′2 is a unit vector lying in the ê1-ê2 plane and making an angle α with the ê2

axis.50 It is the result of rotating the ê2 axis by angle α in the right-hand sense about
axis ê3.

The elementary treatments ignore nutation and assume β = β0 for all time. Ignor-
ing nutation, one can then calculate the time derivative of J as

dJ
dt

∼= I ′3γ̇0
d ê′3
dt

∼= I ′3γ̇0 sin βα̇ê′′′2 (9.161)

where eqn (8.266) has been used. Equating eqns (9.160, 9.161), and canceling the

50In Section 8.35, the ê′′′i unit vectors are the result of rotating the inertial system unit vectors êi by Euler
angles α, β but not yet by γ . They are the next to last stage of the progression from the inertial to the
rotated system.
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common sin β factor then gives a constant precession rate

α̇ ∼= MgR

I ′3γ̇0
(9.162)

It is interesting to compare this approximate result with the values of α̇ obtained
in Section 9.18 for an initially clamped top in the fast-top limit. The precession rate
α̇1 at the lower turning point is given by eqn (9.158). It is twice the approximate
value in eqn (9.162). However, the precession rate at the upper turning point is zero,
α̇2 = α̇0 = 0. So, in some rough sense, the elementary value might be thought of as
an average between zero and a value twice too large. A careful treatment, however,
would require a time average of α̇ over the nutation cycle, and not a simple average
of its values at the turning points.

9.20 Inertial Forces
We put aside the dynamics of rigid bodies now and consider the problem of rotating,
translating coordinate systems in general. The moving system considered now may
or may not be the body system of a rigid body. An observer sitting on or in a rigid
body and using its ê′i system as his reference system (an astronaut riding on an aster-
oid) might be an example. Or, the moving system could be defined by the walls of a
spacecraft which is accelerating and tumbling, or by the walls of a laboratory on the
rotating earth.

An observer doing mechanics experiments in a laboratory that is translating and
rotating with respect to inertial space will experience anomalies due to his non-
inertial reference system. If the observer is unaware of the source of these anoma-
lies, he may attribute them to forces acting on the masses in his experiments. These
“forces” are called inertial forces, or sometimes fictitious forces.

o

o′

ê1

ê2

ê3

ê′1

s

ω

b

r

ê′3

ê′2

FIG. 9.4. A translating and rotating coordinate system o′ has its origin at vector displacement
b relative to an inertial system o. A mass is located at r relative to the inertial system and
at s relative to the moving system.

Let us suppose that an observer is using a reference system whose origin is lo-
cated at b(t) relative to the origin of some inertial system, where b(t) is some general
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function of time. And let his basis vectors ê′i (t) be rotating such that their position at
time t relative to some standard position at time zero is given by a rotation operator
R(t) with an associated angular velocity vector ω(t). The vector b(t) may point to the
location of the center of mass of a rigid body as in the example of the astronaut, but
it need not. It can be any displacement, just as R(t) can be any rotation.

The position of a mass m relative to the origin of the inertial system will be denoted
by r and the position of the same mass relative to the origin of the moving system by
s. Thus

r = b + s v = db
dt

+ u
d2r
dt2

= d2b
dt2

+ d2s
dt2

(9.163)

where the inertial velocity and the velocity relative to the moving origin are denoted

v = dr
dt

u = ds
dt

(9.164)

Now assume that the observer is not only measuring position relative to a moving
origin, but is also expressing his vectors relative to moving unit vectors ê′i . Thus

s =
3∑

i=1

s′i ê
′
i where s′i = ê′i · s (9.165)

and, using the body derivative developed in Section 8.33,

u = ds
dt

=
〈

ds
dt

〉
b
+ ω× s = ub + ω× s (9.166)

where the body derivative will be denoted by ub. It can be expanded as

ub =
〈

ds
dt

〉
b
=

3∑
i=1

ds′i
dt

ê′i (9.167)

and is the velocity that the observer actually measures. Note that ub is not only mea-
sured relative to a moving origin, but also is calculated as if the moving coordinate
unit vectors were fixed.

The next time derivative may now be taken,

d2s
dt2

= d

dt

(
ds
dt

)
= d

dt
(ub + ω× s) = dub

dt
+ dω

dt
× s + ω× ds

dt
(9.168)

Each of the time derivatives in the last expression on the right may also be expanded
using body derivatives. The first one becomes

dub

dt
=

〈
dub

dt

〉
b
+ ω× ub = ab + ω× ub (9.169)

where we have denoted

ab =
〈

dub

dt

〉
b
=

3∑
i=1

d2s′i
dt2

ê′i (9.170)

This is the acceleration that the observer would compute if he were operating in
complete ignorance of the fact that both his origin and his basis vectors are moving.
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Also

ω̇ = dω

dt
=

〈
dω

dt

〉
b
+ ω× ω =

〈
dω

dt

〉
b

(9.171)

shows that there is no difference between the inertial and body derivative of the
angular velocity vector itself.

Putting the results of eqns (9.166, 9.169) into eqn (9.168) then gives the second
time derivative of s entirely in terms of body derivatives

d2s
dt2

= ab + ω× ub + ω̇× s + ω× (ub + ω× s)

= ab + ω̇× s + 2ω× ub + ω× (ω× s) (9.172)

Now suppose that an experiment consists of observing the motion of a mass m
acted on by net real force f, which may be composed of contact forces, gravity, spring
forces, electromagnetic forces, etc. Then, using eqn (9.163), Newton’s second law in
the inertial system gives

f = m
d2r
dt2

= m
d2b
dt2

+ m
d2s
dt2

= m
d2b
dt2

+ m
{
ab + ω̇× s + 2ω× ub + ω× (ω× s)

}
(9.173)

The mass times acceleration measured by the observer in the moving system will thus
be

mab = f − m
d2b
dt2

− mω̇× s − 2mω× ub − mω× (ω× s)

= f + f(trans) + f(ang) + f(cor) + f(cent) (9.174)

where the inertial forces and their names are:

f(trans) = −m
d2b
dt2

Translation of origin force (9.175)

f(ang) = −mω̇× s Change of angular velocity force (9.176)

f(cor) = −2mω× ub Coriolis force (9.177)

f(cent) = −mω× (ω× s) Centrifugal force (9.178)

Notice that all of these inertial forces are proportional to the mass m of the particle.
This proportionality comes from the fact that these “forces” are actually correction
terms that appear when mab is used in place of ma = m

(
d2r/dt2

)
in Newton’s second

law.
A person driving a car that is rapidly accelerating forward will feel that the trans-

lation-of-origin inertial force is pushing her backwards into the car seat. Relative to
inertial space, what is really happening is that the back of the seat of the car is pressing
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forwards on her with a real force, to give her the acceleration she needs to keep up
with the accelerating car.

A person sitting facing forward on the bench of a merry-go-round that is rapidly
speeding up will feel that the change-of-angular-velocity force is pushing her back-
wards into the seat. The real, inertial effect is similar to the accelerating car.

Even when the angular acceleration is constant, a person on the merry-go-round
will feel that a centrifugal force is pushing him outwards from the center so that he
has to grab onto the pole to resist being thrown outwards. To see that the centrifugal
force is outwards, use the expansion formula for triple cross products to write

f(cent) = mω2 {
s − ω̂

(
ω̂ · s

)} = mω2s⊥ (9.179)

where s has been decomposed as s = s‖ + s⊥, into vectors parallel and perpendicular
to ω using the method in Section A.2. What is really happening, relative to inertial
space, is that in the absence of any forces, the rider would leave the merry-go-round
and go off on a tangent line with a constant, straight-line velocity. His grabbing the
pole provides the centripetal (inward) force that is required to keep him moving in a
circle.

The Coriolis force is more subtle. It is a velocity-dependent inertial force that
acts only on objects that are moving relative to the moving system, and always acts
at right angles to ub. It can be understood by considering the merry-go-round once
again. Suppose that a person riding on it throws a ball radially outwards relative to
the merry-go-round system. The centrifugal inertial force will appear to accelerate the
ball outwards, but will not change its apparent radial direction relative to the thrower.
The Coriolis force, however, will appear to deflect the ball in a direction opposite
to the direction of rotation of the merry-go-round. What is happening inertially is
that the tangential velocity imparted to the ball as it is thrown is smaller than the
tangential velocity of the region of the merry-go-round into which the ball flies. Thus
the ball lags behind. The thrower attributes this lag to a Coriolis inertial force.

9.21 Laboratory on the Surface of the Earth

Assume that a coordinate system at the center of the earth with its unit vectors point-
ing toward fixed stars is approximately an inertial system. Consider a translating and
rotating reference system with its origin on the surface of the Earth at latitude λ. For
definiteness, assume that the moving system unit vectors are

ê′1 = South ê′2 = East ê′3 = Up (9.180)

One immediate difference between this special case and the general theory of
Section 9.20 is that the vector b, which was there taken to be free to move in a
general way, is now constrained to move with the Earth. Assuming the Earth to be
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ê2

ê3
ê′1

ê′2

ω

λ

sb

ê′3

ê1

FIG. 9.5. The origin of the o′ system is fixed to the surface of the Earth at north latitude λ. The
o system at the center of the Earth is assumed to be inertial.

spherical, it is
b = R⊕ê′3 (9.181)

where R⊕ is the radius of the Earth. Hence

db
dt

= R⊕
d ê′3
dt

= R⊕ω× ê′3 = ω× b (9.182)

The angular velocity of the Earth can be found from eqn (8.197), assuming that the
Earth rotates about the fixed axis ê3 with constant angular speed ω0,

ω = ω0ê3 = ω0
(− cos λê′1 + sin λê′3

)
(9.183)

which gives
db
dt

= ω0 R⊕ cos λê′2 (9.184)

Thus
d2b
dt2

= ω0 R⊕ cos λ
d ê′2
dt

= ω0 R⊕ cos λω× ê′2 = ω× db
dt

(9.185)

Combining eqns (9.182, 9.185) then gives

d2b
dt2

= ω× (ω× b) = −ω2
0

{
b − ω̂

(
ω̂ · b

)} = −ω2
0b⊥ (9.186)

where, again using the decomposition given in Section A.2, b⊥ is the component of
b = b‖ + b⊥ that points directly away from the symmetry axis of the earth ω̂. Thus
the translation of origin inertial force from eqn (9.175) is

f(trans) = mω2
0b⊥ = m R⊕ω2

0 cos λb̂⊥ (9.187)

where b̂⊥ is the unit vector formed from b⊥.
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It is useful to write the real force f as a vector sum of the gravitational force mg
and all other forces f(NG) where the superscript stands for Not Gravitational. Then, as-
suming that the angular velocity of the Earth is approximately constant, the observer
in the Earth laboratory will find that

mab = f(NG) + m
(

g + R⊕ω2
0 cos λb̂⊥

)
− 2mω× ub − mω× (ω× s) (9.188)

The last term, the centrifugal inertial force from the rotation of the laboratory frame,
is usually negligible and will be dropped. The term containing the gravitational force
and the translational inertial force can be written as mge, where

ge = g + R⊕ω2
0 cos λb̂⊥ (9.189)

is called the effective gravitational acceleration. It is the vector sum of the actual
gravitational force of attraction towards the center of the Earth and a term pointing
outwards from the Earth’s rotation axis and due to the centripetal acceleration of the
origin of coordinates as the Earth rotates. Then, finally, only the Coriolis inertial force
remains, and

mab = f(NG) + mge − 2mω× ub (9.190)

An approximate calculation of the figure of the earth, called the geoid, can be
made by initially assuming the Earth spherical as we have done and then calculating
ge. To first order, the oceans of the Earth should have surfaces perpendicular to ge

leading to a slight bulge at the equator, which is in fact observed.
Notice that, in the northern hemisphere, a wind from the north with ub = ubê′1 will

be deflected to the west by the Coriolis force, while a wind from the south (opposite
sign) will be deflected to the east. Similar deflections occur for east and west winds.
This pattern is thought to be responsible for the weather pattern in which low pressure
areas (with winds rushing in) in the northern hemisphere have winds circulating in
a right-handed sense about the up axis. In the southern hemisphere, the direction of
circulation is reversed.

The Coriolis force is usually negligible in laboratories on the surface of the Earth.
However, if one designed a space station similar to the one in the film “2001 – A Space
Odyssey” with rotation of a large toroidal ring providing an artificial gravity from the
translation of origin inertial force, the Coriolis deflections could be troublesome in
ordinary life. Exercise 9.5 considers such a space station.

9.22 Coriolis Force Calculations
The Coriolis inertial force is often small compared to other forces, such as gravity.
This lends itself to an iterative approach.

A zeroth-order calculation is first done for the motion of the system with Coriolis
forces ignored. The velocity ub is calculated from that zeroth-order result, and applied
in eqn (9.177) to find a zeroth-order approximation to the Coriolis force f(cor). This
approximate Coriolis force is then used to repeat the calculation for the motion of the
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system, yielding a first-order approximation to the motion. This first-order approxi-
mation is often sufficient, at least for estimates. But, if necessary, the iteration can be
repeated to second and higher orders.

For example, consider a projectile fired in a southerly direction from the surface
of the Earth. With the Coriolis force ignored, the zeroth-order trajectory would be

s = v0t cos αê′1 +
(

v0t sin α − 1

2
get2

)
ê′3 (9.191)

where v0 is the muzzle velocity of the cannon and α is its angle from horizontal. The
zeroth-order body derivative is

ub =
〈

ds
dt

〉
b
= v0 cos αê′1 + (v0 sin α − get) ê′3 (9.192)

which is used to write the zeroth-order Coriolis force as

f(cor) = −2mω× ub = −2mω0 {v0 sin (α + λ)− get cos λ} ê′2 (9.193)

After two integrations with the zeroth-order Coriolis force included, the first-order
trajectory is found to be

s = v0t cos αê′1−ω0t2
(

v0 sin (α + λ)− 1

3
get cos λ

)
ê′2+

(
v0t sin α − 1

2
get2

)
ê′3 (9.194)

As shown in Exercise 9.11, assuming α = 45◦ gives a first-order deflection at impact
that is to the west in the whole of the northern hemisphere and in the southern
hemisphere down to λ ≈ −20◦.

9.23 The Magnetic – Coriolis Analogy
Suppose that we have a set of particles located at radius vectors rn(t) relative to
the origin of some inertial system of coordinates, where n = 1, . . . , N . Suppose that
these particles have masses mn and electrical charges q(ch)

n . If an external electric field
E(r, t) and a uniform and static external magnetic induction field B(r, t) = B0 are
present, these particles will be acted on by the Lorentz forces

fn = q(ch)
n E(rn, t)+ q(ch)

n

c
vn × B0 (9.195)

where vn is the velocity of the nth particle relative to inertial space.
There is a striking analogy between the magnetic part of eqn (9.195) and the

Coriolis force in a rotating coordinate system, given by eqn (9.177). Each involves the
cross product of a uniform vector with a particle velocity. If we transform eqn (9.195)
to a rotating coordinate system, this analogy allows us to use a suitably chosen ω to
cancel the magnetic part of the Lorentz force.
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To exploit the analogy, consider that the motion of the particles under the force
eqn (9.195) is now referred to a rotating system of coordinates. Assume that the re-
sults of Section 9.20 are applied with b = 0 so that the inertial and rotating origins
coincide, vn = un , and rn = sn . The equations of motion in the rotating system are
then

mn(an)b = f(other)
n + q(ch)

n E(rn, t)+ q(ch)
n

c
{(un)b + ω× rn} × B0 − 2mnω× (un)b

− mnω× (ω× rn) (9.196)

which may be written as

mn(an)b = f(other)
n + q(ch)

n E(rn, t)−
(

q(ch)
n

c
B0 + 2mnω

)
× (un)b

− q(ch)
n

c
B0 × (ω× rn)− mnω× (ω× rn) (9.197)

where f(other) represents forces other than electromagnetic, and (un)b = 〈drn/dt〉b and
(an)b are the same body derivatives as defined in eqns (9.167, 9.170) but now applied
to the nth mass.

If we assume that all of the particles have the same charge to mass ratio,
q(ch)

n /mn = χ independent of n, then the term in eqn (9.197) containing the body
velocities (un)b can be eliminated by choosing ω equal to what we will call the Lar-
mour angular velocity

ωL = − χ

2c
B0 (9.198)

Then the equation of motion in the rotating system becomes

mn(an)b = f(other)
n + q(ch)

n E(rn, t)+ mnωL × (ωL × rn) (9.199)

Note that the centrifugal inertial force does not cancel. The combination of the mag-
netic and centrifugal forces gives an effective force that is centripetal (tending toward
the center rather than away from it). If certain cases, this centripetal effective force
will be small, which leads to the following result, which we state as a theorem.

Theorem 9.23.1: Larmour Theorem
A system of charged particles with a uniform charge to mass ratio χ is placed in a uni-
form, external magnetic field B0. If one chooses the Larmour angular frequency as in eqn
(9.198), and if the maximum centripetal force magnitude maxn

(
mnω2

Lrn
)

is negligible
compared to other forces, then the problem can be solved by solving the related problem

mn(an)b = f(other)
n + q(ch)

n E(rn, t) (9.200)

in the rotating system and then transforming the result back to the inertial system.

In other words, the motion with the magnetic field is approximately the same as
the motion without it, but rotated by the Larmour angular velocity. Notice that, for
positive charges, the direction of the Larmour rotation ωL is opposite to the direction
of B0.
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9.24 Exercises
Exercise 9.1 Consider a flat (negligible thickness), uniform piece of rigid metal of mass m,
cut in the shape of a 45◦ right triangle. Its center of mass is on the symmetry line from the
90◦ vertex and is one-third of the way up from the base.

(a) Guess the principal axis directions, and calculate the three principal moments of inertia
relative to the center of mass.
(b) Check that your answers to part (a) obey the plane-figure theorem.

(D, 0, 0)

m1

ê′1

ê′2

ê′3

m3 m2

m4 (0, 0,
√

2D)

(− D
2 ,

√
3D
2 , 0)(− D

2 ,−
√

3D
2 , 0)

FIG. 9.6. Illustration for Exercise 9.2.

Exercise 9.2 Masses m1 = m2 = m3 = m4 = m are located at the Cartesian coordinates
shown. These masses are at the points of a regular tetrahedron. The four triangular faces are
equilateral and identical.

(a) Use vector methods to check that distance 12 equals distance 23.
(b) Find the center of mass vector R.
(c) Write out the four vectors ρn = rn − R for n = 1, 2, 3, 4.
(d) The inertia operator is I(cm), with a matrix I(cm)′ in the ê′i system defined by the matrix
elements

I (cm)′
i j =

4∑
n=1

mn

{(
ρ
′2
n1 + ρ

′2
n2 + ρ

′2
n3

)
δi j − ρ

′
niρ

′
nj

}
(9.201)

Calculate the six independent moments and products of inertia in eqn (9.201) and write the
matrix I(cm)′ .

Exercise 9.3 A projectile is thrown vertically upward from the surface of the Earth. Its initial
upward speed is v0. It reaches a maximum height, and then falls back to the ground.

(a) Calculate its first-order vector Coriolis deflection.
(b) The same projectile is now dropped from rest, its initial height being the same as the
zeroth-order maximum height reached in part (a). Show that its first-order Coriolis deflection
is in the opposite direction, and one-quarter as large, as that calculated in part (a).

Exercise 9.4 A square stick of mass m has square sides a and length b. With the origin of
body-fixed coordinates at the center of mass, the principal axes of the stick are the symmetry
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ê3
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FIG. 9.7. Illustration for Exercise 9.4.

axes and the principal moments of inertia are I (cm)′
1 = I (cm)′

2 = m(a2 + b2)/12 and I (cm)′
3 =

ma2/6. A thin, massless rod is driven through the center of the stick, making an angle θ0
with the stick’s long axis. It is glued to the stick rigidly. The massless rod is suspended in
frictionless bearings that hold it vertical (along the ê3 space-fixed axis). Using an external
motor, it is then rotated about that vertical axis with constant angular velocity ω0 = ω0ê3.

(a) Write an expression for the angular velocity vector of the stick expressed in the body-fixed
system ê ′i .
(b) Write an expression for S, the spin angular momentum vector of the stick, expressed in
the body-fixed system.
(c) Write an expression for the kinetic energy of the stick. How much work per second must
the motor provide to keep the angular velocity constant?
(d) Write an expression for the vector torque τs exerted on the system by the bearings and
motor, also expressed in the body-fixed system.

ê1

ê2

ê′1

ê′2

ê′3 = ê3

ω0

FIG. 9.8. Illustration for Exercise 9.5.
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Exercise 9.5 Imagine a space station something like that in the film 2001: A wheel rotates
about its symmetry axis with fixed angular velocity ω0, and with the living quarters on its
outer rim. The centrifugal inertial force provides an effective “gravity” in which the astronauts
live.

(a) If the outer rim of the wheel (at the feet of the astronaut pictured) has a radius of r0, what
must the magnitude of the angular velocity ω0 be in order to produce an effective gravity of
ge? [Note: Assume that the living quarters are small compared to r0 and so just calculate the
effective gravity at that radius.]
(b) An astronaut drops a marble from a “height” h, so that it would land on her right toe in
the absence of Coriolis forces. Write an expression for the (vector!) first-order displacement
of the actual landing point from her right toe. [This expression must be in terms of the given
parameters r0, ω0, h. For simplicity, take the right toe to be at moving-system coordinates
(r0, 0, 0).]
(c) Evaluate the displacement found in part (b) numerically, with r0 = 500 m, ge = 9.8 m/s2,
h = 180 cm. By what distance will the marble miss the toe? Could you decrease this distance
by changing ω0 so that the effective gravity is smaller?

Exercise 9.6 The famous quarterback Joe Minnesota is drafted into the astronaut corps and
sent into orbit to test Euler’s equations for a torque-free rigid body. He throws a pointed,
near-ellipsoid of revolution [an American football] that has principal axes ê′i and principal

moments of inertia I (cm)′
1 =I (cm)′

2 =γ I0, and I (cm)′
3 =I0 where γ > 1 and I0 are given con-

stants. Assume that no torques act on this football after it is thrown, and that it behaves as a
rigid body.

(a) Suppose that at t=0 the initial components of the angular momentum vector ω relative to
the body-fixed principal-axis system are ω′1=a, ω′2=0, ω′3=b where a, b are given, positive
constants. What are the values of ω′i (i = 1, 2, 3) for all future times?
(b) Consider the spin angular momentum vector S. What are the values S′i (i = 1, 2, 3), the
components of the spin angular momentum relative to the body-fixed principal axes, for a
general time t > 0?
(c) Suppose that space-fixed axes êi are chosen so that the initial spin angular momentum is
along the ê3 axis, that is S = S0ê3 at t = 0. What is the value of the constant S0?
(d) What are the polar angles (call them α, β) of the symmetry axis of the football ê′3 relative
to this space-fixed system? [For simplicity, assume α0=0 at t=0.]

Exercise 9.7 This exercise uses Lagrangian mechanics to derive the inertial forces discussed
in Section 9.20. Suppose that we have a single particle in three dimensions with a Lagrangian

L(s, ṡ, t) = 1

2
m (v · v)−U (s, t) (9.202)

where the position and velocity are expressed in an inertial coordinate system as

r = x ê1 + yê2 + zê3 and v = ẋ ê1 + ẏê2 + żê3 (9.203)

where the s-system coordinates are defined to be s1 = x , s2 = y, and s3 = z.

(a) Now switch to another coordinate system with the same origin, but rotating with respect
to the inertial one with a constant angular velocity ω. Call it the ê′i system. In this system, the
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position and body derivative will be

r = x ′ê′1 + y′ê′2 + z′ê′3 and ub = ẋ ′ê′1 + ẏ′ê′2 + ż′ê′3 (9.204)

where the q-system coordinates are defined to be q1 = x ′, q2 = y′, and q3 = z′. Show that
eqn (9.202) becomes

L(q, q̇, t) = 1

2
m (ub · ub)+ mub · ω× r + 1

2
m (ω× r) · (ω× r)−U (q, t) (9.205)

(b) Show that the Lagrange equations in the q-system,

d

dt

(
∂L(q, q̇, t)

∂ q̇k

)
− ∂L(q, q̇, t)

∂qk
= 0 (9.206)

may be multiplied by the unit vectors ê′k and added to obtain the equivalent vector expression,〈
d

dt

(
∂L(q, q̇, t)

∂ub

)〉
b
− ∂L(q, q̇, t)

∂r
= 0 (9.207)

where the gradients are now to be interpreted in terms of the body system unit vectors. For
example,

∂L(q, q̇, t)

∂r
= ê′1

∂L

∂x ′
+ ê′2

∂L

∂y′
+ ê′3

∂L

∂z′
(9.208)

(c) Use vector methods (i.e. do not write everything out in terms of components) to show that
the equations of motion derived from eqn (9.207) are the same as eqn (9.174).

Exercise 9.8 This exercise continues the discussion in Section 9.10.

(a) Use the expressions in eqns (8.230 – 8.232) to write the angular velocity ω of the torque-
free symmetric body in terms of the Euler angles and unit vectors q(t) and ê3.

(b) Define a parameter � = (I (cm)′
3 − I (cm)′

1 )/I (cm)′
1 . Show that −1 ≤ � ≤ 1, with the

negative extreme being a long rod (extreme prolate) and the positive extreme being a flat,
symmetric disk (extreme oblate).
(c) Express ω in terms of �, α̇0, β0, q̂, ê3 only.
(d) Show that the half angle of the body cone θ3ω is given by

cos θ3ω = 1 +� sin2 β0√
1 +�(2 +�) sin2 β0

(9.209)

(e) Give arguments verifying the statements made in the last two paragraphs of Section 9.10.

Exercise 9.9 A thin, uniform disk of mass m and radius a has two extra point masses, each
of mass κm, placed just inside its rim on diametrically opposite sides. The disk rolls without
slipping down an inclined plane of angle η. Gravity acts downwards. The disk is supported
by massless, frictionless shaft and side wheels which keep it perpendicular to the plane’s sur-
face. The center of mass of the disk is at R = X ê1 + Y ê2 + aê3.

(a) Show that the principal axes are the ê′i shown in Figure 9.9, and calculate the principal
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η

R

g

ê′1

ê′2

ê′3

m

κmκm

α

ê3

ê′3

ê1

ê2

ê1

ê3

FIG. 9.9. Illustration for Exercise 9.9.

moments of inertia.
(b) Use Euler angles and X , Y , Z to write a reduced Lagrangian for this problem, including
the holonomic constraints β = π/2 and Z = a.
(c) Write the Lagrange equations, including the tractable, non-holonomic constraints for
rolling without slipping.
(d) Solve for the motion of the disk in the case κ = 0. Suppose the disk is at the origin at time
zero with the values α0 = π/2, γ0 = 0, γ̇0 = 0, X0 = Y0 = 0 but α̇0 > 0. Find α, γ , X , Y as
functions of time. Show that X returns to zero at times tn = πn/α̇0 where n = 1, 2, 3, . . ..

Exercise 9.10 This exercise shows the connection between the inertia operator I derived in
Section 9.14 and the same operator I = I(orb) + I(cm) derived in the previous Sections 9.11
and 9.12. Substitute rn = R + ρn into the dyadic expression eqn (9.113), and use Lemma
1.9.1 to obtain eqn (9.94), � = �

(orb) + �
(cm).

Exercise 9.11 This exercise continues the example in Section 9.22.

(a) Derive eqn (9.194) from eqn (9.193).
(b) Write an expression for the deflection y′(t f ) of the projectile at the zeroth order time of
impact t f = (2v0 sin α)/ge.
(c) Assuming α = 45◦, show that this deflection is to the west in the whole of the northern
hemisphere and in the southern hemisphere for λ � −20◦.
(d) If the zeroth order range of the projectile was 10 km and α = 45◦, find the magnitude of
the first order Coriolis deflection with λ = 40◦ in the northern hemisphere.

Exercise 9.12 Imagine a charged, symmetric rigid body consisting of particles of mass mn

and charge q(ch)
n . Let the center of mass of the body be at rest in an inertial system in which a

uniform magnetic induction field B0 acts. Assume that the magnetic part of the Lorentz force
eqn (9.195) is the only external force acting on the top.

(a) Using the vectors ρn and ρ̇n defined in Section 1.9 show that the external torque defined
in Section 1.12 is

τ(ext)
s =

N∑
n=1

q(ch)
n

c
ρn ×

(
ρ̇n × B0

)
(9.210)
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(b) In electrodynamics texts, this torque is written as

τ(ext)
s = µ× B0 where µ =

N∑
n=1

q(ch)
n

2c

(
ρn × ρ̇n

)
(9.211)

is the magnetic moment of the system. Show that the difference between eqns (9.210, 9.211)
may be written as � · B0 where the dyadic is

� = d

dt

{
N∑

n=1

q(ch)
n

2c

(
ρnρn − ρ2

n�

)}
(9.212)

which will average to zero for periodic or bounded motions of the top.
(c) Accepting the form in eqn (9.211), and assuming that the masses have a uniform charge
to mass ratio (q(ch)

n /mn = χ not a function of n) show that µ = (χ/2c)S where S is the spin
angular momentum defined in Section 1.11. The quantity χ/2c is called the gyromagnetic
ratio.
(d) Use eqn (1.52), with the assumption that the body is rapidly spinning so that S = Sê′3
remains true with constant spin magnitude S (the same approximation made in Section 9.19)
to show that S precesses with the Larmour angular velocity ωL derived in Section 9.23 and
therefore verifies the Larmour theorem, Theorem 9.23.1.
(e) The electron has magnetic moment µ = g(−e/2mc)S where e is the absolute value of the
charge of the electron, m is its mass, and the number g is predicted by the Dirac equation of
quantum theory to be exactly 2 (radiative corrections raise it slightly). Show (using classical
mechanics, although the same result can be obtained in quantum theory) that when placed in
a uniform magnetic field, an electron precesses with an angular velocity ωe = (e/mc)B0.
(f) Show that a classical model of the electron as spinning matter with a uniform charge
to mass ratio is untenable because the Larmour theorem would predict a rate of precession
disagreeing with experiment.

Exercise 9.13 A sphere of radius r0 and a right, circular cylinder of radius a and height h
both have the same mass M .

(a) The sphere and the cylinder have the same center-of-mass principal moments of inertia
I (cm)′
k . Given r0, what must be the values of a and h? What is the ratio a/h?

(b) If the sphere is made from material of mass density ρs , what must be the mass density ρc

of the cylinder? Show that your answer is independent of r0.

Exercise 9.14 A right circular cone of mass M , radius a, and height h has principal moments
of inertia relative to a pivot at its point

I ′1 = I ′2 =
3

20
M

(
a2 + 4h2

)
I ′3 =

3

10
Ma2 (9.213)

Its center of mass is distance 3h/4 from its point. Use the translation of pivot theorem, eqn
(9.93), to find the center-of-mass principal moments of inertia I (cm)′

k of the cone without
doing any further integrations. (See also Section 9.12.)
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Exercise 9.15
(a) Use the symmetry rule, Lemma 9.7.2, and the symmetry of the object to show that an
equal-sided, regular tetrahedron has at least three non-coplanar eigenvector directions, each
of which must have the same eigenvalue.
(b) Argue from the linearity of the eigenvalue equation I(cm)V(k) = λkV(k) that any vector
is an eigenvector, with that same eigenvalue. And hence show that any three orthogonal unit
vectors may be used as center-of-mass principal axes of the tetrahedron, and that the three
corresponding principal moments of inertia will be equal.
(b) Show that this same result holds for any of the five regular Platonic solids: tetrahedron,
cube, octahedron, icosahedron, dodecahedron.

Exercise 9.16 A right, circular cone of mass M , radius a and height h rolls without slipping
on a horizontal table. The point of the cone is fixed to the table surface by a frictionless pivot.
There is an inertial coordinate system êi with origin at the pivot, and ê3 perpendicularly
upwards from the table surface. Gravity g = −gê3 acts downwards. Assume that the cone
rolls steadily in the right-hand sense about ê3, making one circuit in T seconds.

(a) Use Euler angles and Section 8.29 to find the components ωi of the angular velocity vector
ω relative to the inertial system.
(b) State why the angular velocity of the cone must always be parallel or anti-parallel to the
line of contact between the cone and the table. Show that your ω from (a) does indeed have
this property.
(c) Use the results of Section 8.35 to find the components ω′i of the angular velocity vector
relative to the body principal axes of the cone. Use these in the Euler equations of motion
from Section 9.13 to calculate the net torque that must be applied to the cone to sustain its
motion.
(d) Demonstrate that this torque does not change the total kinetic energy of the cone, and
hence that kinetic energy is a conserved quantity in this problem.

Exercise 9.17 A cube of mass M and side a is glued to a massless stick, with the stick
perpendicular to a face of the cube. The distance from the far end of the stick to the center of
mass of the cube is R > a.

(a) Suppose the far end of the stick to be fixed. What are the principal axes and principal
moments of inertia relative to this fixed pivot?
(b) Now suppose that the cube is glued to the stick as before, but after being rotated by 37◦
relative to the stick. Assume the distance R is the same as before. How would the principal
axes and principal moments of inertia differ from those of part (a)?
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SMALL VIBRATIONS ABOUT EQUILIBRIUM

A number of interesting mechanical systems have one or more essentially stable equi-
librium configurations. When disturbed slightly, they vibrate about equilibrium in
characteristic patterns called normal modes. We present the Lagrangian theory of
these small vibrations for the simple case of systems with a finite number of degrees
of freedom.

The theory introduced here has wide application. For example, the normal mode
oscillations of crystalline solids underlie both the overtone structure of a church bell
and the definition of phonons in solid state physics. A similar formalism leads to
photons as the quanta of modes of the electromagnetic field.

10.1 Equilibrium Defined
An equilibrium point in the configuration space of a mechanical system is a set of
values q(e)

1 , q(e)
2 , . . . , q(e)

D for all of its generalized coordinates, such that the initial
conditions qi (0) = q(e)

i and q̇i (0) = 0 at time zero will make the system remain at rest
at that point for all future times.

For example, a marble placed at rest at the bottom of a spherical bowl will remain
there forever. A marble placed at rest, and very carefully, on the top of a sphere will
also remain there so long as no forces other than gravity act, as will a marble placed
on a flat, level table top.

ConditionalStable Unstable

FIG. 10.1. Three categories of equilibrium points.

These examples illustrate the three types of equilibrium point. The first is called
stable, since a small displacement of the marble would lead to a small vibration about
the equilibrium point. The second is called unstable. Any disturbance of the marble
will make it roll off the sphere with increasing speed. The third is called conditional.
If the marble is displaced slightly to another point, but still placed at rest, it will stay
at the new point and neither return to the first one nor move away. One important
feature of the theory presented here is that it gives a systematic method for detecting
stable, conditional, and unstable modes.

246
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10.2 Finding Equilibrium Points
Assume now, as will be done throughout this chapter, that the q-system of coordinates
is related to an inertial s-system by equations si = si (q) that do not depend explicitly
on the time, and that all forces are derived from a potential V (q) which also does not
depend explicitly on time. Also, we assume either that the system does not have any
constraints, or that the constraints are holonomic, do not depend explicitly on time,
and have been eliminated by the method of Section 3.8 to yield a reduced Lagrangian.

From Section 2.7, the Lagrangian of such a system is of the form

L = L(q, q̇) = T2 −U = 1

2

D∑
i=1

D∑
j=1

mi j (q)q̇i q̇j −U (q) (10.1)

and the Lagrange equations are

d

dt

(
∂L(q, q̇)

∂ q̇k

)
− ∂L(q, q̇)

∂qk
= 0 (10.2)

which can be written out as

d

dt

⎛⎝ D∑
j=1

mkj (q)q̇j

⎞⎠− 1

2

D∑
i=1

D∑
j=1

∂mi j (q)

∂qk
q̇i q̇j + ∂U (q)

∂qk
= 0 (10.3)

D∑
j=1

ṁk j (q)q̇j +
D∑

j=1

mkj (q)q̈j − 1

2

D∑
i=1

D∑
j=1

∂mi j (q)

∂qk
q̇i q̇j + ∂U (q)

∂qk
= 0 (10.4)

Theorem 4.1.1, and Theorem 4.5.1 for the reduced case, showed the matrix m to
be nonsingular and hence to have an inverse. If all q̇k are set zero at a point, then the
inverse matrix m−1 can be used to solve eqn (10.4) for the q̈ at that same point.

q̈j = −
D∑

k=1

m−1
jk

∂U (q)

∂qk
(10.5)

It follows that all of the q̈j will vanish, and the point will thus be an equilibrium point,
if and only if all ∂U (q)/∂qk are also zero at that point.

Thus q(e) is an equilibrium point if and only if, for all i = 1, . . . , D,

∂U (q)

∂qi

∣∣∣∣
q=q(e)

= 0 (10.6)

These are D equations in D unknowns and hence can be solved for the q(e)
i for all

i = 1, . . . , D. The point defined by eqn (10.6) satisfies the definition of equilibrium
in Section 10.1 because the conditions qi (0) = q(e)

i and q̇i (0) = 0 for all i = 1, . . . , D
imply that q̈i (0) = 0 for all i values, with the result that the q never change.
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10.3 Small Coordinates
Now assume that an equilibrium point has been found. We are interested in studying
systems in which the generalized coordinates are only slightly displaced from their
equilibrium values. Thus the quantities ri defined, for all i = 1, . . . , D, by

ri = qi − q(e)
i or, equivalently qi = q(e)

i + ri (10.7)

are assumed to be small, and are called the small coordinates. Their time derivatives
ṙi = q̇i are also assumed to be of the same order of smallness. For oscillatory solutions,
this amounts to an assumption that all frequencies of vibration are finite.

It is clear by inspection that the ri are a good system of generalized coordinates
satisfying eqn (2.59). Thus, the Lagrangian in eqn (10.1) may be transformed to the
r-system

L = L(r, ṙ) = L(q(r), q̇(r, ṙ)) = 1

2

D∑
i=1

D∑
j=1

mi j (q
(e) + r)ṙi ṙ j −U (q(e) + r) (10.8)

with the assurance that the Lagrange equations in the r-system will be valid.
Approximate equations of motion may be obtained by using the Taylor series to

expand eqn (10.8) to second order in the small coordinates and their time derivatives

L(r, ṙ) = L(r, ṙ)|r,ṙ=0 +
D∑

i=1

∂L(r, ṙ)

∂ri

∣∣∣∣
r,ṙ=0

ri +
D∑

i=1

∂L(r, ṙ)

∂ṙi

∣∣∣∣
r,ṙ=0

ṙi

+ 1

2

D∑
i=1

D∑
j=1

∂2L(r, ṙ)

∂ri∂rj

∣∣∣∣
r,ṙ=0

ri rj +
D∑

i=1

D∑
j=1

∂2L(r, ṙ)

∂ri∂ṙ j

∣∣∣∣
r,ṙ=0

ri ṙj

+ 1

2

D∑
i=1

D∑
j=1

∂2L(r, ṙ)

∂ṙi∂ṙ j

∣∣∣∣
r,ṙ=0

ṙi ṙ j + o(h2) (10.9)

where h = maxi {ri , ṙi }. Denoting the constant first term by

Le = L(r, ṙ)|r,ṙ=0 = −U (q(e)) (10.10)

and noting that the linear terms vanish identically due to the equilibrium condition
eqn (10.6), the expansion in eqn (10.9) becomes

L(r, ṙ) = Le + 1

2

D∑
i=1

D∑
j=1

(
Ti j ṙi ṙj − Vi jri rj

)+ o(h2) (10.11)

where the constant matrices T and V are defined by their matrix elements

Ti j = ∂2L(r, ṙ)

∂ṙi∂ṙ j

∣∣∣∣
r,ṙ=0

= mi j (q
(e) + r)

∣∣∣
r=0

= mi j (q
(e)) (10.12)
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Vi j = − ∂2L(r, ṙ)

∂ri∂rj

∣∣∣∣
r,ṙ=0

= ∂2U (q(e) + r)

∂ri∂rj

∣∣∣∣∣
r=0

= ∂2U (q)

∂qi∂qj

∣∣∣∣
q=q(e)

(10.13)

By construction, T and V are real, symmetric matrices.
The Lagrange equations in the r-system are

d

dt

(
∂L(r, ṙ)

∂ṙk

)
− ∂L(r, ṙ)

∂rk
= 0 (10.14)

Using these equations with the approximate Lagrangian of eqn (10.11) gives the ap-
proximate equations of motion, for all i = 1, . . . , D,

D∑
j=1

(
Ti j r̈j + Vi jrj

)+ o(h) = 0 (10.15)

Since the Lagrangian was expanded up to and including quadratic order, these equa-
tions are correct to linear order in the small coordinates.

10.4 Normal Modes
The task of small vibrations theory is to solve the linearized, approximate equations of
motion eqn (10.15) for the small coordinates ri as functions of time. Equation (10.15)
is a set of coupled, second-order differential equations. They can be decoupled by
making yet another Lagrangian change of variables, from the r-system to a ρ-system
called the system of normal coordinates. The variable ρk will be called the kth normal
coordinate. The natural time evolution of the system produced by ρk will be referred
to as motion in the kth normal mode.

The required transformation is linear. Introducing the constant coefficients Cik the
transformation is

ri =
D∑

k=1

Cikρk and hence ṙi =
D∑

k=1

Cik ρ̇k (10.16)

Introducing these definitions into the Lagrangian of eqn (10.11), and dropping the
constant Le term, gives

L(ρ, ρ̇) = 1

2

D∑
i=1

D∑
j=1

{
Ti j

(
D∑

k=1

Cik ρ̇k

)(
D∑

l=1

Cil ρ̇l

)
− Vi j

(
D∑

k=1

Cikρk

)(
D∑

l=1

Cilρl

)}

= 1

2

D∑
k=1

D∑
l=1

⎧⎨⎩
⎛⎝ D∑

i=1

D∑
j=1

Cik Ti j Cjl

⎞⎠ ρ̇k ρ̇l −
⎛⎝ D∑

i=1

D∑
j=1

Cik Vi j Cjl

⎞⎠ ρkρl

⎫⎬⎭
(10.17)

where the o(h2) term will now be omitted, with the understanding that the equations
are approximate to that order.
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It is useful to write eqn (10.17) in matrix form. Define column vectors by

[r ] =

⎛⎜⎜⎜⎝
r1

r2
...

rD

⎞⎟⎟⎟⎠ and [ρ] =

⎛⎜⎜⎜⎝
ρ1

ρ2
...

ρD

⎞⎟⎟⎟⎠ (10.18)

with the obvious extension to their time derivatives, and let the D × D matrices
T , V , C be defined by their sets of matrix elements Ti j , Vi j , Ci j , respectively. Then
eqn (10.16) becomes

[r ] = C [ρ] and [ṙ ] = C [ρ̇] (10.19)

and the Lagrangian in eqn (10.17) can be written as

L(ρ, ρ̇) = 1

2

(
[ρ̇]T CT T C [ρ̇] − [ρ]T CT V C [ρ]

)
(10.20)

In Section 10.5, we will describe a method for finding a particular matrix C that
reduces T to the unit matrix U , and V to a diagonal matrix F with matrix elements
Fi j = θiδi j .

CT T C = U and CT V C = F (10.21)

Then eqn (10.20) becomes

L(ρ, ρ̇) = 1

2

(
[ρ̇]T U [ρ̇] − [ρ]T F [ρ]

)
= 1

2

D∑
k=1

(
ρ̇2

k − θkρ
2
k

)
(10.22)

The Lagrange equations in the ρ-system then give the equations of motion

ρ̈k + θkρk = 0 (10.23)

for k = 1, . . . , D. These equations have solutions that depend on the sign of the real
constants θk . The most general solutions for the three possibilities can be written

ρk =
⎧⎨⎩

Ak cos ωk t + Bk sin ωk t for θk > 0 with ωk = √
θk

Ak + Bkt for θk = 0
Ak cosh γk t + Bk sinh γk t for θk < 0 with γk = √−θk

(10.24)

where the constants Ak, Bk are to be determined from the initial conditions at time
zero. The meanings of these three solutions will be discussed in Section 10.6.

10.5 Generalized Eigenvalue Problem
The matrix C that performs the reductions in eqn (10.21) can be found using the
generalized eigenvalue methods from Appendix C.
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With the substitutions of the real, symmetric small-vibration matrices V and T
for the matrices A and g of that appendix, the generalized eigenvector equation in
eqn (C.16) becomes

V [z(k)] = θk T [z(k)] (10.25)

The theory of Appendix C requires that T , which is being substituted for g there,
must be a positive definite matrix. But that positive definiteness has already been
proved earlier, in our discussion of Hamiltonian mechanics. It is proved in Theorem
4.1.1, and in Theorem 4.5.1 for the reduced case.

So the whole theory of Appendix C can now be applied to the present problem.
The eigenvalues θk in eqn (10.25), all of which will be real, are the D solutions of eqn
(C.18)

|V − θ T | = 0 (10.26)

and the corresponding eigenvectors [z(k)] are the solutions of eqn (C.17)

{V − θk T } [z(k)] = [0] (10.27)

The generalized inner product defined in Section C.2 becomes

[x] • [y] = [x]T T [y] =
D∑

i=1

D∑
j=1

xi Ti j yj (10.28)

The eigenvector solutions are then normalized by using

1 = [z(k)] • [z(k)] = [z(k)]T T [z(k)] =
D∑

i=1

D∑
j=1

z(k)
i Ti j z

(k)
j (10.29)

and, by Theorem C.3.2, D eigenvectors can always be found that are orthonormal in
the generalized sense given in eqn (10.29)

[z(k)] • [z(l)] = δkl (10.30)

Solution of the generalized eigenvalue problem produces the matrix C defined in
eqn (C.29) by

Cik = z(k)
i (10.31)

Then, still with the substitutions of matrices V and T for the matrices A and g , eqn
(C.32) proved in Theorem C.5.1 is identical to our desired result, eqn (10.21).

The reader may consult Appendix C for more detailed information about solution
of the generalized eigenvalue problem.
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10.6 Stability
At the beginning of this chapter, we spoke of stable, conditional, and unstable systems.
Now, after seeing the general solution, we must speak more specifically of stable,
conditional, and unstable modes. If θk > 0, then mode k is stable and has an oscillatory
time evolution. The conditional zero frequency modes with θk = 0 will remain small
provided that the Bk of that mode is zero. But when θk < 0, the mode solution involves
hyperbolic functions and will increase exponentially with time for any nonzero Ak or
Bk . These are the unstable modes.

A system is unconditionally stable only if all of its modes are stable. Otherwise,
there will be some initial conditions in which a conditional or unstable mode will
cause the system to run away to infinity. One strength of the method presented here
is that the stability of a complex system can be determined simply by solving eqn
(10.26) for the eigenvalues. If all of them are positive, the system is stable.

If either of the coefficients Ak or Bk of mode k is nonzero, then we say that mode
k is excited. Which modes are excited, and by how much, depends on the initial con-
ditions at time zero. The determination of Ak and Bk from the initial conditions will
now be considered.

10.7 Initial Conditions
Equation (10.16) gives the general solution for the time evolution of the small coor-
dinates ri in terms of the normal coordinates ρk given by eqn (10.24). We now show
how to derive the general solution from the initial conditions at time zero.

As a preliminary to treating the initial conditions, we use the definition Cik = z(k)
i

from eqn (10.31) to write the solution eqn (10.16) as

ri =
D∑

k=1

z(k)
i ρk (10.32)

where ρk is one of eqn (10.24). Introducing the column eigenvector [z(k)] defined by

[z(k)] =

⎛⎜⎜⎜⎜⎝
z(k)

1

z(k)
2
...

z(k)
D

⎞⎟⎟⎟⎟⎠ (10.33)

and using eqn (10.18), eqn (10.32) may be written in matrix form as

[r ] =
D∑

k=1

[z(k)]ρk (10.34)

This equation may be inverted, solved for ρk as functions of the ri , by using the
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generalized inner product defined in eqn (10.28),

[z(k)] • [r ] = [z(k)] •
D∑

l=1

[z(l)]ρl =
D∑

l=1

δklρl = ρk (10.35)

where the orthogonality relation eqn (10.30) was used.
The inverse eqn (10.35) is true at all times. But it is particularly useful to consider

it at time zero. Then, using eqn (10.24),

Ak = ρk(0) = [z(k)] • [r(0)] and Dk = ρ̇k(0) = [z(k)] • [ṙ(0)] (10.36)

where

Dk =
⎧⎨⎩

ωk Bk for θk > 0
Bk for θk = 0
γk Bk for θk < 0

(10.37)

give the coefficients Ak and Bk in terms of the small coordinates ri (0) and velocities
ṙi (0) at time zero.

With the determination of the coefficients Ak and Bk , the problem is now com-
pletely solved. In matrix form, the solution is

[r ] =
∑
θk>0

[z(k)] (Ak cos ωk t + Bk sin ωk t)

+
∑
θk=0

[z(k)] (Ak + Bkt)+
∑
θk<0

[z(k)] (Ak cosh γk t + Bk sinh γk t) (10.38)

10.8 The Energy of Small Vibrations
Since the chain of transformation equations from an inertial s-system to the final
ρ-system of normal modes does not depend explicitly on the time, and since the
constraints, if any, were also assumed not to be explicit time functions, it follows from
the discussion in Section 2.16 that the generalized energy function in the ρ-system
will be equal to the total energy. Using the Lagrangian L(ρ, ρ̇) from eqn (10.22) in
the definition of the generalized energy in eqn (2.76) gives at once that

H(ρ, ρ̇) = V (q(e))+ 1

2

D∑
k=1

(
ρ̇2

k + θkρ
2
k

)
(10.39)

where the Le term from eqn (10.10) has now been restored. Using the solutions in
eqn (10.24), the generalized energy function can be expanded as a sum over the
stable, conditional, and unstable modes as

H(ρ, ρ̇) = V (q(e))+ 1

2

∑
θk>0

ω2
k

(
A2

k + B2
k

)
+ 1

2

∑
θk=0

B2
k +

1

2

∑
θk<0

γ 2
k

(
−A2

k + B2
k

)
(10.40)

Note that an initial displacement of an unstable mode may decrease the energy, as
would be expected from the example of the sphere with a marble on top.
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The Hamiltonian in the normal mode system may also be found, using the tech-
niques of Chapter 4. Since pk = ∂L(ρ, ρ̇)/∂ρ̇k = ρ̇k , it is

H(ρ, p) = V (q(e))+ 1

2

D∑
k=1

(
p2

k + θkρ
2
k

)
(10.41)

Equation (10.41) is important in quantum mechanics. The classical normal mode
analysis separates the stable modes (which are to be quantized) from the conditional
and unstable ones. The coefficients ρk, pk of the stable modes are replaced by quan-
tum operators and eqn (10.41) becomes the Hamiltonian operator of a quantum sys-
tem. Each mode is thus a quantum mechanical harmonic oscillator. In solids, the
quanta of these mode oscillators are called phonons, in electrodynamics they are
called photons. The zero-frequency conditional modes must be dealt with separately.
Their quanta are sometimes referred to as Goldstone bosons.

10.9 Single Mode Excitations

Under some initial conditions, only one of the D possible modes will be excited.
Assume the kth mode to be the one excited, so that Al = 0 and Bl = 0 for all l �= k.
Then, taking the excited mode to be a stable one, the solution in eqn (10.38) will take
the form

[r ] = [z(k)] (Ak cos ωk t + Bk sin ωk t) (10.42)

where the sum has collapsed to the single index k of the excited mode. In component
form, eqn (10.42) says that, for all i = 1, . . . , D,

ri = z(k)
i (Ak cos ωk t + Bk sin ωk t) (10.43)

In a single mode excitation, all of the small coordinates ri are seen to oscillate
with the same frequency ωk . Also, the ratios of the various small coordinates will be
constant in time, and equal to the ratios of corresponding components of the kth
eigenvector [z(k)]. Thus, for all i, j values, and all times t ,

ri (t)

rj (t)
= z(k)

i (Ak cos ωk t + Bk sin ωk t)

z(k)
j (Ak cos ωk t + Bk sin ωk t)

= z(k)
i

z(k)
j

(10.44)

These ratios give what can be thought of as the pattern of the kth mode, how much
and in what direction each coordinate moves relative to the others. Often, the fre-
quency and pattern of a mode are all that are needed to answer a particular question
about the system. In those cases, the step of normalizing the eigenvectors, as in eqn
(10.29), is not necessary since the ratios in eqn (10.44) will be the same whether
[z(k)] is normalized or not.
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The initial conditions that will result in the single mode excitation of a particular
mode k can be derived from eqn (10.36). Choose

ri (0) = αz(k)
i and ṙi (0) = βz(k)

i (10.45)

for all i values, with α, β chosen to be small but arbitrary constants. Then, by con-
struction,

[r(0)] = α[z(k)] and [ṙ(0)] = β[z(k)] (10.46)

and eqn (10.36) will give

Al = [z(l)] • [r(0)] = [z(l)] • α[z(k)] = αδlk (10.47)

Bl = 1

ωl
[z(l)] • [ṙ(0)] = 1

ωl
[z(l)] • β[z(k)] = 1

ωk
βδlk (10.48)

which vanish for all l �= k. The result is a single mode excitation of the kth mode with

ri = z(k)
i

(
α cos ωk t + β

ωk
sin ωk t

)
(10.49)

as was desired.
Taking a case with all masses at rest at time zero as an example, a pure-mode exci-

tation of the single mode k results when all of the masses of the system are displaced
by small amounts, in exactly the pattern of the ratios given in eqn (10.44), held in
those positions, and then released from rest. Then eqn (10.45) will hold for some α,
and the β will be zero since all of the ṙi (0) are assumed to vanish. Thus the single
mode vibration of eqn (10.49) will be obtained, with β = 0.

10.10 A Simple Example
Let a rod be driven horizontally into a wall with two beads threaded onto it. Assume
that there is no friction between the beads and the rod. The larger bead m1 = 2m
is closer to the wall and is connected to the wall by a horizontal, massless spring
of force constant γ κ and rest length a. The γ here is a dimensionless constant that
characterizes the relative strength of the two springs. Another massless, horizontal
spring, of force constant κ and rest length a, connects m1 to a smaller bead m2 = m.
Taking generalized coordinates q1, q2 to be the distances of the two beads from the
wall, the reduced Lagrangian of the system is L = T (q̇)−U (q) where

T (q̇) = 1

2

(
m1q̇2

1 + m2q̇2
1

)
(10.50)

U (q) = 1

2
γ κ (q1 − a)2 + 1

2
κ (q2 − q1 − a)2 (10.51)

Equation (10.6) becomes, for i = 1, 2,

0 = ∂U (q)

∂q1

∣∣∣∣
q=q(e)

= κ
{
γ

(
q(e)

1 − a
)
−

(
q(e)

2 − q(e)
1 − a

)}
(10.52)

0 = ∂U (q)

∂q2

∣∣∣∣
q=q(e)

= κ
(

q(e)
2 − q(e)

1 − a
)

(10.53)
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m1 m2κ, aγ κ, a

q1

q2

FIG. 10.2. Simple small-vibrations example.

The second of these equations implies that q(e)
2 = q(e)

1 + a. Putting that result in the
first gives q(e)

1 = a. Thus the equilibrium point is determined by the two values

q(e)
1 = a and q(e)

2 = 2a (10.54)

To determine the matrix T , the first step is to find the required matrix elements
mi j (q). Equating eqn (10.50) to the first term in eqn (10.1),

1

2

(
m1q̇2

1 + m2q̇2
1

)
= 1

2

2∑
i=1

2∑
j=1

mi j (q)q̇i q̇j (10.55)

from which one obtains mi j (q) = miδi j . Then, from eqn (10.12),

Ti j = mi j (q
(e)) = miδi j (10.56)

and hence

T =
(

m1 0
0 m2

)
(10.57)

The step in eqn (10.56), evaluating mi j (q) at the equilibrium point q(e), is not really
necessary in this simple example, but is included here because it will be necessary in
more complicated cases.

The matrix V is found from eqn (10.13). Thus, for i, j = 1, 2,

V11 = ∂2U (q)

∂q2
1

∣∣∣∣∣
q=q(e)

= (γ + 1)κ V12 = ∂2U (q)

∂q1∂q2

∣∣∣∣
q=q(e)

= −κ

V21 = ∂2U (q)

∂q2∂q1

∣∣∣∣
q=q(e)

= −κ V22 = ∂2U (q)

∂q2
2

∣∣∣∣∣
q=q(e)

= κ (10.58)

and hence

V =
(

(γ + 1)κ −κ

−κ κ

)
(10.59)

As in the determination of T , the step of evaluating the second partial derivatives in
eqn (10.58) at the equilibrium point q(e) is not necessary in this simple example, since
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the second derivatives are already constants. But it is included here because it will be
an essential step in more complicated examples.

Note also that the evaluation of V21 was not really necessary once V12 was found,
since second partial derivatives give the same result in either order. In general prob-
lems, it will be sufficient to calculate the Vi j for the diagonal elements and those
above the diagonal. Those below the diagonal are then determined by this symmetry
of V .

The eigenvalues of the generalized eigenvalue problem may now be found from
eqn (10.26). First note that

V − θ T =
(

(γ + 1)κ −κ

−κ κ

)
− θ

(
2m 0
0 m

)
= κ

{(
(γ + 1) −1
−1 1

)
− θm

κ

(
2 0
0 1

)}
= κ

(
(γ + 1 − 2φ) −1

−1 (1 − φ)

)
(10.60)

where we have now set m1 = 2m and m2 = m to their given values, and have defined
a dimensionless quantity φ related to the eigenvalues θ by

φ = θm

κ
so that θ = κ

m
φ (10.61)

The eigenvalues are the two roots of the determinant equation

0 = |V − θ T | = κ2
∣∣∣∣ (γ + 1 − 2φ) −1

−1 (1 − φ)

∣∣∣∣ (10.62)

Since κ �= 0 by assumption, the roots can be found by setting the determinant on the
right equal to zero. The two roots are

φ1 = 1

4

(
γ + 3 −

√
γ 2 − 2γ + 9

)
φ2 = 1

4

(
γ + 3 +

√
γ 2 − 2γ + 9

)
(10.63)

Taking γ = 1 for simplicity from this point forward, the two roots become

φ1 = 1 −
√

2

2
φ2 = 1 +

√
2

2
(10.64)

and, from eqn (10.61), the actual eigenvalues are

θ1 = κ

m

(
1 −

√
2

2

)
θ2 = κ

m

(
1 +

√
2

2

)
(10.65)

The eigenvectors are now calculated using eqn (10.27), which may be written
here, for k = 1, 2, as

{V − θk T } [z(k)] = κ

(
2(1 − φk) −1

−1 (1 − φk)

)(
z(k)

1

z(k)
2

)
= 0 (10.66)

where γ = 1 is still being assumed.
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For k = 1, eqn (10.66) gives⎛⎝√
2 −1

−1

√
2

2

⎞⎠(
z(1)

1

z(1)
2

)
= 0 (10.67)

which expands to the two equations

√
2z(1)

1 − z(1)
2 = 0 and − z(1)

1 +
√

2

2
z(1)

2 = 0 (10.68)

The two equations are redundant. Solving either of them gives the ratio z(1)
2 /z(1)

1 = √
2

and hence the eigenvector

[z(1)] = N (1)

(
1√
2

)
(10.69)

where the N (k) are normalization factors not yet determined.
A similar method for the mode k = 2 gives

[z(2)] = N (2)

(
1

−√2

)
(10.70)

The reader should now verify that these two eigenvectors are orthogonal in the gen-
eralized sense, as required by eqn (10.30). They must satisfy

0 = [z(1)] • [z(2)] = [z(1)]T T [z(2)] (10.71)

using the generalized definition of inner product defined in eqn (10.28).
At this point in the calculation, we already know the frequency and pattern of

each of the normal modes. In a pure mode-1 pattern, both masses would vibrate at
the frequency

ω1 =
√

θ1 =
√

κ

m

(
1 −

√
2

2

)1/2

(10.72)

Equation (10.69) shows that mass m2 would vibrate in phase with m1 with an ampli-
tude

√
2 times as great, since for all times, eqn (10.44) gives

r2(t)

r1(t)
= z(1)

2

z(1)
1

=
√

2

1
(10.73)

for a pure mode 1 excitation. A similar pattern results from a pure mode 2 excitation,
but with

√
2 replaced by −√2.

As described in Section 10.9, inspection of eqn (10.69) shows that the system
could be put into a pure mode-1 vibration by displacing mass m1 by a small distance
α from its equilibrium position, displacing mass m2 by

√
2α in the same direction, and

then releasing both masses from rest. The two masses would then continue to vibrate
in the mode-1 pattern, both with frequency ω1.
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In a pure mode-2 pattern, the higher-frequency mode here, both masses would
vibrate at the frequency

ω2 =
√

θ2 =
√

κ

m

(
1 +

√
2

2

)1/2

(10.74)

eqn (10.70) shows that mass m2 would vibrate exactly out of phase with m1 with an
amplitude

√
2 times as great. The system can be put into a pure mode-2 pattern by

following a similar prescription to that just described for mode-1. Inspection of eqn
(10.70) shows that a pure mode-2 vibration will be produced if one displaces mass
m1 by α and mass m2 by −√2α in the opposite direction.

To find the small vibrations of the system for arbitrary initial conditions, it is nec-
essary to find the normalization constants N (k) for the two modes, using eqn (10.29)
with k = 1, 2. That calculation yields

N (1) = N (2) = 1

2
√

m
(10.75)

The equality of these two factors is because of the simplicity of this example. In more
complex problems, the normalizing factors will not generally be the same for the
different modes.

As an example of a solution involving a particular initial condition, suppose that
at time zero the mass m2 is displaced by a small distance α while the mass m1 is
held fixed at its equilibrium position and not allowed to move. Then both masses are
released from rest. Thus, the column vectors of initial conditions to be used in eqn
(10.36) are

[r(0)] =
(

0
α

)
and [ṙ(0)] =

(
0
0

)
(10.76)

with the results that B1 = B2 = 0 and

A1 = [z(1)] • [r(0)] = N (1)
(

1
√

2
) ( 2m 0

0 m

)(
0
α

)
= α

√
2m

2
(10.77)

A2 = [z(2)] • [r(0)] = N (2)
(

1 −√2
) ( 2m 0

0 m

)(
0
α

)
= −α

√
2m

2
(10.78)

The general solution from eqn (10.38) is then

[r ] = [z(1)]A1 cos ω1t + [z(2)]A2 cos ω2t

= α
√

2

4

{(
1√
2

)
cos ω1t −

(
1

−√2

)
cos ω2t

}
(10.79)

In terms of components, this is

r1 = α
√

2

4
(cos ω1t − cos ω2t) (10.80)

r2 = α

2
(cos ω1t + cos ω2t) (10.81)

For this initial condition, both normal modes are excited simultaneously. The resulting
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motion can look quite complicated. Only two different frequencies of vibration are
present, but neither periodicity may be obvious to the untrained eye. Certainly, pure
mode vibrations are prettier and less interesting.

10.11 Zero-Frequency Modes
In the simple example of Section 10.10, the parameter γ that gives the strength of
the first spring relative to the second one was chosen to be one. Here, let us consider
a different choice. What if the first spring is decreased in strength until γ = 0. Then
the pair of masses would be in a sense floating freely, disconnected from the wall.

The first thing one would notice about such a problem is that the two eqns (10.52,
10.53) would become redundant. They would both determine that q(e)

2 = q(e)
1 + a,

but they would not determine the value of q(e)
1 . Physically, it is obvious why this is so.

If the two masses are placed at rest anywhere on the rod, but separated by distance
a equal to the rest length of the remaining spring, they will stay there forever. Any
arbitrary q(e)

1 choice then leads to a valid equilibrium point.
If we set γ = 0 in eqn (10.63), the two eigenvalues become

θ1 = 0 and θ2 = 3k

2m
(10.82)

and the eigenvectors can be calculated by the same technique as in Section 10.10.
They are

[z(1)] = N (1)

(
1
1

)
and [z(2)] = N (2)

(
1
−2

)
(10.83)

where of course the N (k) normalization factors will be found to be different from
those in Section 10.10.

The pattern of the zero-frequency mode is seen from the first of eqn (10.83) to be
simply a translation of both masses without changing the distance between them. The
pattern of mode-2 can be shown to be a vibration with the center of mass of the two
masses fixed. The small vibrations method has automatically separated the motion
into the same collective and internal form that was seen in Chapter 1.

The general solution from eqn (10.38) will now be

[r ] = [z(1)] (A1 + B1t)+ [z(2)] (A2 cos ω2t + B2 sin ω2t) (10.84)

where ω2 = √
3k/2m and where the Ak, Bk will be determined using the same meth-

ods as in Section 10.10, but now using the eigenvectors from eqn (10.83).
It is characteristic of systems with zero-frequency modes that the equilibrium

points turn out to be under determined, as in this example. The condition for the
equilibrium point to be uniquely determined is that the matrix V must be nonsingu-
lar. But if the problem has n zero-frequency modes, that matrix will have rank (D−n),
and n of the components q(e)

i will have to be chosen arbitrarily. In the present exam-
ple, one can verify that the choice γ = 0 does make the matrix V in eqn (10.59)
become singular.
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Notice that the zero-frequency mode with B1 �= 0 in eqn (10.84) would lead to
displacements of the ri that become infinitely large. This would violate the condition
that the ri must be small. But the small vibrations theory can still give useful results,
even in the presence of zero-frequency modes, provided that the Bk are all zero. For
example, if all masses are taken to be at rest at time zero, then eqns (10.36, 10.37)
imply that Bk = 0 for all k values.

10.12 Exercises

x

y

g
θ1

θ2

a

a

m

m

FIG. 10.3. Illustration for Exercise 10.1.

Exercise 10.1 Consider the double pendulum from Exercise 3.1. Assume that the sticks both
have length a and the masses have the same value m.

(a) Write the reduced Lagrangian with free variables q1 = θ1 and q2 = θ2.
(b) Find values q(e)

k that give a stable equilibrium point.
(c) Find the constant matrices T and V used to write the Lagrangian of small vibrations in
terms of small displacements.
(d) Find the normal frequencies and the associated column vectors [z(1)] and [z(2)]. Draw
diagrams showing the pattern of vibration for each of the two normal modes.
(e) Suppose that mass m2 is displaced by small angle α at time zero while mass m1 is held at
its equilibrium point. The masses are released from rest. Show that there is no time t at which
the masses will have these same positions again while at rest.

Exercise 10.2 Suppose that two equal masses m1 = m2 = m, where m is a given constant,
are constrained to move along the centerline of a narrow, frictionless, horizontal, circular-
toroidal tube of given constant radius R0. The two masses are connected by elastic cords that
are also constrained to lie along the centerline of the tube. Assume that the toroidal tube is
very narrow, so that the masses and cords are all at radius R0. Assume that there is no friction
between the cords and the walls of the tube, and that the cords behave as ideal springs of
zero rest length. That is, assume that the tension τ in each cord is τ = ks where k is the
force constant of that cord and s is its length. Assume that the two cords have force constants
k1 = 3k and k2 = k, where k is a given constant.

(a) Find the equilibrium angles θ
(0)
1 and θ

(0)
2 .

(b) Find the constant matrices T and V used to write the Lagrangian of small vibrations in
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m1

θ1

θ2

k1

k2

m2

FIG. 10.4. Illustration for Exercise 10.2.

terms of small displacements.
(c) Find the frequencies of the normal modes of small vibration about equilibrium.
(d) For each frequency, find the un-normalized column vector that represents the pattern of
vibration in that mode. Show by a diagram and a sentence or two exactly what the pattern of
each mode is.

m1 m2

m3

k, 0 k, 0

k, a

q2

q1

q3

FIG. 10.5. Illustration for Exercise 10.3.

Exercise 10.3 Three beads, connected by massless springs, slide without friction on two hor-
izontal, rigid wires whose vertical separation is D. Ignore gravity, which plays no role here.
The two upper beads have m1 = m2 = m and the lower bead has mass m3 = 2m, where
m is some given constant. All springs have force constant k. The two diagonal springs have
zero rest length, while the horizontal one has rest length a. Assume that the springs remain
in straight lines between the masses.

(a) Taking the distances q1, q2, q3 from the wall as your generalized coordinates, write the
Lagrangian for this problem.
(b) Find the equilibrium values q(e)

1 , q(e)
2 , q(e)

3 for the coordinates. You may take q(e)
1 as arbi-
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trary, and derive the other two in terms of it.
(c) Write the matrices T and V for the small vibrations problem.
(d) Find the frequencies ωk for the three normal modes.
(e) Solve for the eigenvectors [z(k)] corresponding to these normal modes. Find the normal-
ization constants for these eigenvectors, and check that they are orthonormal in the sense
[z(k)] • [z(l)] = δkl .
(f) Suppose that at time zero all masses are at rest. Masses m1 and m3 are at their equilibrium
positions, but m2 is displaced by a small amount α from its equilibrium position. Find the
constants A1, A2, A3, B1, B2, B3 and write an expression for each small coordinate r1, r2, r3
as a function of time for all t > 0.

Exercise 10.4 Suppose I have a small vibrations problem whose eigenvectors are the column
vectors [z(k)]. I want to excite only the lth mode so that all the masses and objects vibrate
with the single frequency ωl . How can I do that? Explain your answer using the formalism
developed in the text.

Exercise 10.5 Show that a pure mode vibration with the pattern given by the second of eqn
(10.83) would produce a motion with the center of mass at rest.

m1

q2

m2

q3

q1

b

m3

Helical spring

FIG. 10.6. Figure for Exercise 10.6.

Exercise 10.6 Three beads of mass m1 = m3 = m and m2 = 2m slide without friction on
a horizontal wire. They are connected by two massless springs of force constant k and rest
length a. A helical spring of force constant γ k and zero rest length is attached to the middle
mass. The distances of the masses from the wall are q1, q2, and q3 as shown. The center point
of the helical spring is distance b from the wall.

(a) Taking q1, q2, and q3 as your generalized coordinates, write the Lagrangian for this sys-
tem.
(b) Find the equilibrium values q(e)

1 , q(e)
2 , q(e)

3 for the three masses.
(c) Find the T and V matrices and use them to solve for the frequencies of the normal modes.
(d) Find the un-normalized eigenvectors of the normal modes. Find the frequencies and un-
normalized eigenvectors for the specific case when γ = 3. Draw a rough diagram showing
the pattern of each pure mode in this case.
(e) Show that in the limit γ → 0 one of the normal mode frequencies goes to zero. Show that
the pattern for that mode becomes a rigid-body translation of the system, with the inter-mass
distances fixed. Show that in the γ → 0 limit each of the other two modes leaves the center
of mass at rest.
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11

LAGRANGIAN MECHANICS WITH TIME AS A COORDINATE

In traditional analytical mechanics, it is assumed that the system traces out a path
(one-dimensional curved line) in a D dimensional configuration space that is defined
by writing each of the generalized coordinates as a function of the absolute, Newto-
nian time. Thus, for all k = 1, . . . , D, one writes the equation of motion as qk = qk(t).
This is the approach that was used throughout Part I of the book when traditional
Lagrangian and Hamiltonian mechanics were introduced.

But more advanced topics, such as canonical transformations and Hamilton–Jacobi
theory, are simplified if Lagrangian and Hamiltonian theory are recast in what we will
call an extended form. The time becomes the zeroth generalized coordinate q0 = t ,
and its conjugate momentum p0 becomes the negative of the traditional generalized
energy function H . There are then (D + 1) extended Lagrange equations, the extra
Lagrange equation being equivalent to the traditional generalized energy theorem.

The extended theory thus combines the traditional Lagrange equations and gener-
alized energy theorem into a single set of equations, and restores the symmetry of the
mathematical system in the sense discussed in Chapter 5. The traditional Lagrangian
methods are analogous to the “coordinate parametric method” in the calculus of vari-
ations, described in Section 5.14. The extended Lagrangian theory is analogous to the
recommended “general parametric method” presented from the beginning of Chapter
5. The generalized energy theorem of traditional Lagrangian theory, which had been
a separate equation analogous to the “second form” of the Euler–Lagrange equations
derived in Theorem 5.14.3, gets restored to its proper place as just another of the ex-
tended Lagrange equations, which now form a complete set of equations appropriate
to the problem.

Besides the simplifications mentioned above, there is another motivation for use of
the extended theory. It is now some hundred years since Einstein’s 1905 relativity pa-
pers. Special relativity is now an accepted part of classical mechanics. The use of time
as a coordinate is essential so that, for example, the Lorentz transformation will not be
excluded when we define canonical transformations. The extended Lagrangian the-
ory of the present chapter will be essential in Chapter 16 where covariant Lagrangian
mechanics is discussed.

However, consistency with special relativity is only one argument for use of the
extended theory. It could as well have been introduced in the nineteenth century,
before relativity, motivated by the mathematical elegance it brings to the treatment
of canonical transformations and other advanced topics.

267
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11.1 Time as a Coordinate
Time is to be removed from its role as a universal background parameter, and elevated
to the status of a coordinate with q0 = t . When time is a coordinate, the path of the
system must be specified by introducing a new background parameter, which will be
denoted by β. This parameter is not specified initially, except for the condition that
it must be monotonically varying along the path of the system. Since time always
advances, this condition is equivalent to requiring that dβ/dt is always finite and
nonzero. Thus, the system traces out a path in an augmented (D + 1) dimensional
configuration space defined, for all k = 0, . . . , D, by writing the equations of motion
as qk = qk(β), including q0 = q0(β) which is the same as t = t (β).

The idea of the extended method is that the monotonic parameter β is not to be
specified until the end of a calculation, after all partial derivatives have been taken
and the final differential equations of motion have been derived. Then it can be cho-
sen at will, using whatever definition will make those differential equations simple.
This eventual choice of β will depend on the nature of the mechanical system being
studied. For example, one possible choice is just to set β equal to the Newtonian time
t at the end. But, in special relativity, another possible (and covariant) choice is to set
β equal to the proper time along the world line of some particle.

11.2 A Change of Notation
From this point forward in the book, we will make a notational change and use the
dot over a quantity to denote its total derivative with respect to β rather than t ,
so that q̇k = dqk/dβ, including the case k = 0 for which ṫ = dt/dβ = dq0/dβ =
q̇0. We will continue to refer to q̇k as a generalized velocity, just as we did in the
traditional Lagrangian theory, even though (as there) its units may not always be
distance divided by time. Derivatives with respect to time, when needed, will either
be written out explicitly or denoted by a prime. For example, the chain rule for total
derivatives gives the relations

q ′k =
dqk

dt
= q̇k

ṫ
= q̇k

q̇0
(11.1)

In this and subsequent chapters, the notation of using a single unsubscripted vari-
able to stand for a whole set of variables will be modified to include q0 in the sets.
Thus q = q0, q1, q2, . . . , qD is a set of (D + 1) coordinates. And q̇ = q̇0, q̇1, q̇2, . . . , q̇D

is the set of (D + 1) generalized velocities.
Another new notation will be q[k] to denote all of the (D + 1) variables except qk .

This same notation will also be applied to other sets, such as generalized velocities or
momenta. Thus, for example,

q̇[3] = q̇0, q̇1, q̇2, q̇4, q̇5, . . . , q̇D and q[0] = q1, q2, q3, q4, q5, . . . , qD (11.2)

This notation will make it easier to compare the extended Lagrangian function to the
traditional one.51

51The notations introduced here are similar to those used for the calculus of variations in Chapter 5.
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11.3 Extended Lagrangian

The traditional Lagrangian defined in Chapter 2 can be written in the new notation
as

L = L
(
q[0], q ′[0], t

)
(11.3)

where q[0] is the set defined in eqn (11.2), and q ′[0] denotes the set of traditional
generalized velocities

q ′[0] = q ′1, q ′2, . . . , q ′D = dq1

dt
,

dq2

dt
, . . . ,

dqD

dt
(11.4)

Motivation for selecting the form of the extended Lagrangian can be found in the
action integral of Hamilton’s Principle. The definition in eqn (6.4) can be rewritten
using β as the integration parameter instead of t . Introducing the notation of the
present chapter, the action integral becomes

I =
∫ t2

t1
L

(
q[0], q ′[0], t

)
dt =

∫ β2

β1

L

(
q[0],

q̇[0]
ṫ

, t

)
ṫdβ (11.5)

where eqn (11.1) was used to replace q ′[0] by the set

q ′[0] =
q̇[0]

ṫ
= q̇1

ṫ
,

q̇2

ṫ
, . . . ,

q̇D

ṫ
(11.6)

where now q̇k = dqk/dβ. Equation (11.5) suggests the following definition.

Definition 11.3.1: Extended Lagrangian
Starting from the traditional Lagrangian in eqn (11.3), the extended Lagrangian L is
defined by

L (q, q̇) = ṫ L
(
q[0], q ′[0], t

) = ṫ L

(
q[0],

q̇[0]
ṫ

, t

)
= q̇0L

(
q[0],

q̇[0]
q̇0

, q0

)
(11.7)

where the last expression in eqn (11.7) introduces the definition q0 = t .

This same definition can also be motivated by examining the prescription in eqn
(5.111) for converting from the “coordinate parametric” variational method to the
“general parametric” one in the calculus of variations. The identifications g → L,
x1 → t , x[1] → q, f → L lead at once to eqn (11.7).

An important property of L (q, q̇) is that, by construction, it is homogeneous of
degree one in the set of generalized velocities q̇. We state this as a lemma for future
reference.

Lemma 11.3.2: Homogeneity of Extended Lagrangian
The extended Lagrangian L(q, q̇) is homogeneous of degree one in the set of generalized
velocities q̇.
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Proof: Let us denote by λq̇ the set λq̇0, λq̇1, . . . , λq̇D in which each generalized ve-
locity is multiplied by the same nonzero number λ. It follows from the definition in
eqn (11.7) that

L (q, λq̇) = λq̇0L

(
q[0],

λq̇[0]
λq̇0

, q0

)
= λL (q, q̇) (11.8)

since the λ factors cancel from the terms inside L. Using the definition in Section D.31,
this implies that L (q, q̇) is homogeneous of degree one in the set q̇ = q̇0, q̇1, . . . , q̇D. �

11.4 Extended Momenta
The generalized momenta in the extended theory are defined as

pk = pk(q, q̇) = ∂L (q, q̇)

∂ q̇k
(11.9)

for k = 0, . . . , D. This definition is similar to eqn (2.68) for the traditional Lagrangian
theory, except that q̇k now denotes differentiation with respect to β, and an additional
momentum p0 has been added.

For k �= 0, the generalized momenta defined in eqn (11.9) are the same functions
as the traditional momenta defined in eqn (2.68), simply re-expressed in terms of the
new variables q, q̇. Applying the definition in eqn (11.9) to eqn (11.7) gives, for k �= 0,

pk(q, q̇) = ∂L (q, q̇)

∂ q̇k
= q̇0

D∑
l=1

∂L
(

q[0], q ′[0], t
)

∂q ′l

∂q ′l
∂ q̇k

= q̇0

∂L
(

q[0], q ′[0], t
)

∂q ′k
1

q̇0
=

∂L
(

q[0], q ′[0], t
)

∂q ′k
(11.10)

where eqn (11.1) has been used to write ∂q ′l/∂ q̇k = δkl(1/q̇0). The last expression on
the right of eqn (11.10) is exactly the traditional momentum defined in eqn (2.68). In
the notation of the present chapter, that equation is

pk
(
q[0], q ′[0], t

) = ∂L
(

q[0], q ′[0], t
)

∂q ′k
(11.11)

Thus, for k �= 0,

∂L (q, q̇)

∂ q̇k
= pk(q, q̇) = pk

(
q[0], q ′[0], t

) = ∂L
(

q[0], q ′[0], t
)

∂q ′k
(11.12)

as was asserted.
For k = 0, the momentum defined by eqn (11.9) is the negative of the traditional

generalized energy function H defined in Section 2.15. Applying the definition in eqn
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(11.9) to eqn (11.7) and using eqn (11.11) gives

p0(q, q̇) = ∂L (q, q̇)

∂ q̇0
= L

(
q[0], q ′[0], t

)+ q̇0

D∑
l=1

∂L
(

q[0], q ′[0], t
)

∂q ′l

∂q ′l
∂ q̇0

= L
(
q[0], q ′[0], t

)− q̇0

D∑
l=1

pk
(
q[0], q ′[0], t

) q̇l

q̇2
0

= L
(
q[0], q ′[0], t

)− D∑
l=1

pl
(
q[0], q ′[0], t

)
q ′l = −H

(
q[0], q ′[0], t

)
(11.13)

where H(q[0], q ′[0], t) is the traditional generalized energy function defined in Section
2.15, rewritten in the notation of the present chapter. Thus

∂L (q, q̇)

∂ q̇0
= p0 (q, q̇) = −H

(
q[0], q ′[0], t

)
(11.14)

as was asserted.
We conclude this section with two more lemmas of importance.

Lemma 11.4.1: Homogeneity of Momenta
The generalized momenta pk(q, q̇) are all homogeneous of degree zero in the generalized
velocities.

Proof: Since Lemma 11.3.2 proved that L (q, q̇) is homogeneous of degree one in
the generalized velocities, it follows from Theorem D.32.1 that the partial derivatives
in eqn (11.9) must be homogeneous of degree zero. Thus it must be true that, using
the same notation λq̇ as used in the proof of Lemma 11.3.2,

pk (q, λq̇) = λ0 pk (q, q̇) = pk (q, q̇) (11.15)

This fact can also be seen by inspection of eqns (11.12, 11.14), noting that the ex-
pressions on the right side of these equations contain generalized velocities only as
ratios like q ′k = q̇k/q̇0 from which the λ would cancel. �
Lemma 11.4.2: Extended Lagrangian and Momenta
The extended Lagrangian can be written in terms of the generalized velocities and mo-
menta as

L (q, q̇) =
D∑

k=0

pk(q, q̇)q̇k (11.16)

Proof: Since Lemma 11.3.2 proved that L (q, q̇) is homogeneous of degree one in
the q̇, the Euler Condition of Theorem D.31.1 applied to the present case implies that

L (q, q̇) =
D∑

k=0

q̇k
∂L (q, q̇)

∂ q̇k
(11.17)

The theorem then follows from the definition in eqn (11.9). �
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11.5 Extended Lagrange Equations
The extended Lagrange equations combine the traditional Lagrange equations and
generalized energy theorem into one set of equations. We first state the extended
Lagrange equations, and then prove their equivalence to the traditional formulas.

Definition 11.5.1: Extended Lagrange Equations
The extended Lagrange equations are, for k = 0, . . . , D,

d

dβ

(
∂L (q, q̇)

∂ q̇k

)
− ∂L (q, q̇)

∂qk
= Q(NP)

k (11.18)

where

Q(NP)
k = ṫ Q(NP)

k Q(NP)
0 = −

D∑
l=1

Q(NP)
l q̇l (11.19)

for k = 1, . . . , D, where Q(NP)
k are the non-potential generalized forces introduced in

eqn (2.37).

When there are no non-potential forces, then the extended Lagrange equations in
eqn (11.18) of course reduce to the standard form

d

dβ

(
∂L (q, q̇)

∂ q̇k

)
− ∂L (q, q̇)

∂qk
= 0 (11.20)

The equivalence of eqn (11.18) to the traditional Lagrange equations and gener-
alized energy theorem is proved in the following theorem.

Theorem 11.5.2: Equivalence of Extended Lagrange Equations
The extended Lagrange equations for k �= 0 are equivalent to the traditional Lagrange
equations, eqn (2.52). The extended Lagrange equation for k = 0 is equivalent to the
generalized energy theorem, eqn (2.78).

Proof: First consider the case k �= 0. The traditional Lagrange equation from Section
2.9 can be written in our present notation as

d

dt

⎛⎝∂L
(

q[0], q ′[0], t
)

∂q ′k

⎞⎠−
∂L

(
q[0], q ′[0], t

)
∂qk

= Q(NP)
k (11.21)

Multiplying through by ṫ = dt/dβ and using eqn (11.19) then gives

d

dβ

⎛⎝∂L
(

q[0], q ′[0], t
)

∂q ′k

⎞⎠− ṫ
∂L

(
q[0], q ′[0], t

)
∂qk

= Q(NP)
k (11.22)

But, from eqn (11.12)

∂L
(

q[0], q ′[0], t
)

∂q ′k
= pk

(
q[0], q ′[0], t

) = pk(q, q̇) = ∂L (q, q̇)

∂ q̇k
(11.23)
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Thus definition eqn (11.7) may be used to write eqn (11.22) as

d

dβ

(
∂L (q, q̇)

∂ q̇k

)
− ∂L (q, q̇)

∂qk
= Q(NP)

k (11.24)

which is eqn (11.18) for the case k �= 0, as was to be proved.
For the case k = 0, the generalized energy theorem, eqn (2.78) of Theorem 2.15.1,

can be written in our present notation as

d H
(

q[0], q ′[0], t
)

dt
= −

∂L
(

q[0], q ′[0], t
)

∂t
+

D∑
l=1

Q(NP)
l q ′l (11.25)

Multiplying through by ṫ = dt/dβ and using eqn (11.19) then gives

d H
(

q[0], q ′[0], t
)

dβ
= −ṫ

∂L
(

q[0], q ′[0], t
)

∂t
−Q(NP)

0 (11.26)

But eqn (11.14) gives

−H
(
q[0], q ′[0], t

) = p0 (q, q̇) = ∂L (q, q̇)

∂ q̇0
(11.27)

Thus, using definition eqn (11.7) and multiplying through by minus one, equation
eqn (11.26) becomes

d

dβ

(
∂L (q, q̇)

∂ q̇0

)
− ∂L (q, q̇)

∂q0
= Q(NP)

0 (11.28)

which is eqn (11.18) for the case k = 0, as was to be proved. �

11.6 A Simple Example
The transition from traditional to extended Lagrange theory can be illustrated starting
from the Lagrangian in eqn (2.66). In our current notation, it is

L
(
q[0], q ′[0], t

) = 1

2
m

(
r ′ 2 + r2θ ′ 2 + r2 sin2 θφ′ 2

)
− 1

2
kr2 (11.29)

Following the recipe in eqn (11.7), each time derivative q ′k = dqk/dt is to be replaced
by q̇k/ṫ and the resulting equation is to be multiplied by ṫ . Thus

L (q, q̇) = ṫ

{
1

2
m

((
ṙ

ṫ

)2

+ r2
(

θ̇

ṫ

)2

+ r2 sin2 θ

(
φ̇

ṫ

)2
)
− 1

2
kr2

}

= m

2ṫ

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
− ṫ

2
kr2 (11.30)
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The generalized momenta are defined in eqn (11.9). In this example, they are

For k = 0 p0 = ∂L (q, q̇)

∂ ṫ
= − m

2ṫ2

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
− 1

2
kr2 (11.31)

= −
{

1

2
m

(
r ′ 2 + r2θ ′ 2 + r2 sin2 θφ′ 2

)
+ 1

2
kr2

}
For k = 1 pr = ∂L (q, q̇)

∂ṙ
= m

ṙ

ṫ
= mr ′ (11.32)

For k = 2 pθ = ∂L (q, q̇)

∂θ̇
= m

r2θ̇

ṫ
= mr2θ ′ (11.33)

For k = 3 pφ = ∂L (q, q̇)

∂φ̇
= m

r2 sin2 θφ̇

ṫ
= mr2 sin2 θφ′ (11.34)

where eqn (11.1) has been used to write the last expression on the right in each
case. Note that, for k �= 0, these generalized momenta are indeed just the same as the
traditional ones that would be derived from eqn (2.66) using the traditional definition
in eqn (2.68). And for k = 0, the p0 is just the negative of the traditional generalized
energy function H that would be derived from eqn (2.76) for this example.

The extended Lagrange equations, eqn (11.18), are

For k = 0
d

dβ

(
∂L (q, q̇)

∂ ṫ

)
− ∂L (q, q̇)

∂t
= 0

or
d

dβ

{
m

2ṫ2

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
+ 1

2
kr2

}
= 0 (11.35)

For k = 1
d

dβ

(
∂L (q, q̇)

∂ṙ

)
− ∂L (q, q̇)

∂r
= 0

or
d

dβ

(
mṙ

ṫ

)
− mr θ̇2

ṫ
− mr sin2 θφ̇2

ṫ
+ ṫ kr = 0 (11.36)

For k = 2
d

dβ

(
∂L (q, q̇)

∂θ̇

)
− ∂L (q, q̇)

∂θ
= 0

or
d

dβ

(
mr2θ̇

ṫ

)
− mr2 sin θ cos θφ̇

ṫ
= 0 (11.37)

For k = 3
d

dβ

(
∂L (q, q̇)

∂φ̇

)
− ∂L (q, q̇)

∂φ
= 0 or

d

dβ

(
mr2 sin2 θφ̇

ṫ

)
= 0 (11.38)

By repeated use of eqn (11.1), the equations with k = 1, 2, 3 can be shown to be
identical to the corresponding eqn (2.67). The equation with k = 0 is identical to
the generalized energy theorem eqn (2.78) applied to this example. Note that both t
and φ are ignorable coordinates, in the sense described in Section 2.13. Thus their
conjugate momenta p0 and pφ , respectively, are constants of the motion. In the case
of p0, this implies the constancy of the generalized energy function H = −p0.
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11.7 Invariance Under Change of Parameter
The choice of parameter β might seem to introduce an arbitrary element into me-
chanics. The whole development above could as well be done with some other mono-
tonic parameter, say θ . But, although the generalized velocities and the extended
Lagrangian would then be different, the resulting Lagrange equations would have the
same form as the ones derived above and would be equivalent to them. This equiv-
alence of form and content is often expressed by saying that the extended Lagrange
equations are form invariant under a change of parameter. So the arbitrariness is only
apparent.

Suppose that an alternate monotonic parameter θ = θ (β) is introduced, with
dθ/dβ �= 0. Denoting q̃k = dqk/dθ , the generalized velocities with the two different
parameter choices are related by

q̇k = q̃k
dθ

dβ
or, equivalently, q̃k = q̇k

dβ

dθ
(11.39)

Even though the generalized velocities and the Lagrangians are different, the gen-
eralized momenta pk defined in eqn (11.9) will be the same no matter what parame-
ter is chosen. Since, by Lemma 11.4.1, the generalized momenta are homogeneous of
degree zero in the generalized velocities, the replacement of β by θ will not change
them. From eqn (11.15) with λ = dθ/dβ,

pk(q, q̇) = pk

(
q, q̃

dθ

dβ

)
=

(
dθ

dβ

)0

pk (q, q̃) = pk (q, q̃) (11.40)

This equality of these two momenta can also be derived from the work in Section
11.4, which proves that both of these momenta are equal to the traditional momenta
and generalized energy functions, which are obviously independent of the choice of
β or θ .

The Lagrange equations with parameter θ are

d

dθ

(
∂L̃ (q, q̃)

∂ q̃k

)
− ∂L̃ (q, q̃)

∂qk
= Q̃(N P)

k (11.41)

where, using eqn (11.7), the Lagrangian L̃ in terms of parameter θ is now defined in
the same way as L was in terms of β,

L̃ (q, q̃) = t̃ L
(
q[0], q ′[0], t

) = t̃ L

(
q[0],

q̃[0]
t̃

, t

)
= t̃ L

(
q[0],

q̃[0]
q̃0

, q0

)
(11.42)

where we used q̃k/q̃0 = q ′k to get the second equality.
The Lagrange equations in eqn (11.41) are equivalent to the ones in eqn (11.18)

in the following sense.

Theorem 11.7.1: Invariance Under Parameter Change
Functions qk(θ) are a solution to eqn (11.41) if and only if qk(β) = qk(θ(β)) are a
solution to eqn (11.18).
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Proof: Using the definitions in eqns (11.7, 11.9), the Lagrange equations, eqn (11.41),
may be written as

dpk (q, q̃)

dθ
− t̃

∂L
(

q[0], q ′[0], q0

)
∂qk

= Q̃(NP)
k (11.43)

Multiplying through by dθ/dβ and using eqn (11.40), this becomes

dpk (q, q̇)

dβ
− ṫ

∂L
(

q[0], q ′[0], q0

)
∂qk

= Q(NP)
k (11.44)

which can be rewritten as

d

dβ

(
∂L (q, q̇)

∂ q̇k

)
− ∂L (q, q̇)

∂qk
= Q(NP)

k (11.45)

which is eqn (11.18). Thus, qk = qk(θ) will reduce the left side of eqn (11.41) to zero
if and only if qk = qk(β) = qk(θ(β)) reduces the left side of eqn (11.45) to zero, as
was to be proved. �

11.8 Change of Generalized Coordinates
The extended Lagrange equations are also form invariant under coordinate transfor-
mations with β unchanged, including a larger class of Lagrangian coordinate transfor-
mations than those considered in Chapter 2. The advantage of the extended theory
is that, since time is now a coordinate, it is allowed to transform in the same way
as the other generalized coordinates. The form invariance of the extended Lagrange
equations is stated in the following theorem.

Theorem 11.8.1: Invariance Under Coordinate Change
Let new generalized coordinates r0, r1, . . . , rD be defined, for all k = 0, . . . , D, by

qk = qk(r0, r1, . . . , rD) (11.46)

where the following (D + 1) × (D + 1) Jacobian determinant condition is assumed to
hold ∣∣∣∣∂q

∂r

∣∣∣∣ �= 0 where
(

∂q

∂r

)
kl
= ∂qk (r)

∂rl
(11.47)

for all k, l = 0, . . . , D. Let the extended Lagrangian in the r-system be the same function
as L (q, q̇), but expressed in terms of the r-system coordinates and generalized velocities

L (r, ṙ) = L (q(r), q̇(r, ṙ)) (11.48)

Also let the generalized non-potential forces in the r-system be defined by

R(NP)
l =

D∑
k=0

Q(NP)
k

∂qk (r)

∂rl
(11.49)
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Then the Lagrange equations in the q-system

d

dβ

(
∂L (q, q̇)

∂ q̇k

)
− ∂L (q, q̇)

∂qk
= Q(NP)

k (11.50)

hold if and only if equations of the same form hold in the r-system

d

dβ

(
∂L (t, ṙ)

∂ṙk

)
− ∂L (r, ṙ)

∂rk
= R(NP)

k (11.51)

Proof: The proof of this theorem is very similar to the proofs of the invariance of
the traditional Lagrange equations in Sections 2.9 and 2.10, but with the addition of
coordinate q0 and the substitution of β for t as the parameter. It will not be repeated
here. �
The traditional Lagrangian coordinate transformations treated in Chapter 2 are in-
cluded in the extended transformation theory as a special case. If q0 = r0 is assumed,
then the Jacobian condition eqn (11.47) becomes identical to the condition in eqn
(2.59).

The most important example of the new extended transformation theory is of
course the Lorentz transformation of special relativity. If we define q0 = t , q1 = x ,
q2 = y, q3 = z and r0 = t ′, r1 = x ′, r2 = y′, r3 = z′, then the standard Lorentz
transformation

t = �

(
t ′ + V

c2
x ′
)

x = �
(
V t ′ + x ′

)
y = y′ z = z′ (11.52)

satisfies eqn (11.47) and is acceptable in the extended theory. This transformation
would not be possible in the traditional Lagrangian mechanics. The traditional theory
is tied to the Newtonian conception of absolute time, in which time is an invariant
parameter that is not allowed to transform.

11.9 Redundancy of the Extended Lagrange Equations
The (D + 1) extended Lagrange equations are redundant, as is proved in the lemma
below. With this lemma, the extended Lagrangian theory gives the conditions for the
correctness of a custom of long standing in Lagrangian mechanics.

For example, in the problem of the symmetric top in Section 9.17, we solved two
of the traditional Lagrange equations, the ones for Euler angles α and γ . We then
moved to the generalized energy theorem to get a third equation. (In the extended
Lagrangian theory this would be the extended Lagrange equation with k = 0.) We
then solved for the motion of the top without even writing the Lagrange equation for
the Euler angle β.

One might wonder if this omitted equation is actually satisfied by the solution
we found. The answer is given by Lemma 11.9.1. The Euler angle β has a nonzero
time derivative at all except isolated turning points of the motion. Thus the Lagrange
equation for that angle is satisfied automatically and we were justified in not checking
it.
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Lemma 11.9.1: Redundancy of Extended Lagrange Equations
If some solution q = q(β) satisfies all of the extended Lagrange equations, eqn (11.18),
except the one with index l, and if q̇l �= 0, then the extended Lagrange equation for index
l is satisfied automatically.

Proof: The proof closely parallels the proof of Theorem 5.7.3 in the calculus of vari-
ations. The homogeneity of L proved in Lemma 11.3.2 implies that

0 =
D∑

k=0

∂L(q, q̇)

∂ q̇k
q̇k − L(q, q̇) (11.53)

Taking the total derivative of both sides with respect to β then gives

0 =
D∑

k=0

{
q̇k

d

dβ

(
∂L(q, q̇)

∂ q̇k

)
+ ∂L(q, q̇)

∂ q̇k
q̈k − ∂L(q, q̇)

∂ q̇k
q̈k − ∂L(q, q̇)

∂qk
q̇k

}

=
D∑

k=0

q̇k

{
d

dβ

(
∂L(q, q̇)

∂ q̇k

)
− ∂L(q, q̇)

∂qk

}
(11.54)

Thus, assuming the extended Lagrange equations satisfied for k �= l,

q̇l

{
d

dβ

(
∂L(q, q̇)

∂ q̇l

)
− ∂L(q, q̇)

∂ql

}
= −

D∑
k=0
(k �=l)

q̇kQ(NP)
k = q̇lQ(NP)

l (11.55)

where the definitions in eqn (11.19) have been used to get the last equality. Since
q̇l �= 0 by assumption, it can be cancelled, leading to the extended Lagrange equation
for the index l, as was to be proved. �

11.10 Forces of Constraint

Extended Lagrangian mechanics is most useful as a tool for advanced theoretical de-
velopment. It is not intended for the mundane task of calculating the equations of
motion in constraint problems. However, it is interesting to see how easily the La-
grangian theory of constraints can be translated into the extended form in which
time is a coordinate.

The definition of a holonomic constraint in eqn (3.1) of Chapter 3 becomes, in our
current notation,

0 = Ga
(
q[0], t

) = Ga(q) (11.56)

for a = 1, . . . , C . Theorem 3.4.1 demonstrated that when the only non-potential
forces are constraint forces that do no virtual work, in the traditional sense defined by
the vanishing of the δW (cons) defined in eqn (3.10), then these forces can be written
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in the form, for k = 1, . . . , D,

Q(NP)
k = Q(cons)

k =
C∑

a=1

λa
∂Ga

(
q[0], t

)
∂qk

(11.57)

This result can be used to derive a similar expression for the extended generalized
forces Q(NP)

k = Q(cons)
k defined in eqn (11.19).

Theorem 11.10.1: Extended Forces of Constraint
If the only non-potential forces are constraint forces that do no virtual work in the tradi-
tional sense used in Chapter 3, then the non-potential forces of the extended Lagrangian
theory are, for all k = 0, . . . , D, given by

Q(NP)
k = Q(cons)

k =
C∑

a=1

λ̃a
∂Ga (q)

∂qk
(11.58)

where λ̃a = ṫλa .

Proof: For k �= 0, putting eqn (11.57) into the definitions in eqn (11.19) gives

Q(NP)
k = Q(cons)

k = ṫ Q(cons)
k =

C∑
a=1

ṫλa
∂Ga

(
q[0], t

)
∂qk

(11.59)

as was to be proved.
Following the same procedure for k = 0 gives

Q(NP)
0 = Q(cons)

0 = −
D∑

l=1

Q(cons)
l q̇l = −

C∑
a=1

λa

D∑
l=1

∂Ga
(
q[0], t

)
∂ql

q̇l =
C∑

a=1

ṫλa
∂Ga

(
q[0], t

)
∂t

(11.60)
as was to be proved. The last equality in eqn (11.60) was obtained by using eqn
(11.56) to write52

0 = dGa
(
q[0], t

)
dβ

=
D∑

l=1

∂Ga
(
q[0], t

)
∂ql

q̇l + ∂Ga
(
q[0], t

)
∂t

ṫ (11.61)

�
Equation (11.58) can now be used in eqn (11.18) to obtain the extended Lagrange

equations in the presence of constraints. When the only non-potential forces are con-
straint forces that do no virtual work in the traditional sense, the extended Lagrange
equations become

d

dβ

(
∂L (q, q̇)

∂ q̇k

)
− ∂L (q, q̇)

∂qk
=

C∑
a=1

λ̃a
∂Ga (q)

∂qk
(11.62)

for k = 0, . . . , D. Together with eqn (11.56), these are (D + C + 1) equations in the
(D + C + 1) unknowns q0, q1, . . . , qD, λ̃1, . . . , λ̃C and so can be solved in principle.

52For more detail, see the proof of the generalized energy theorem with constraints in Theorem 3.13.1.
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Equation (11.62) is very similar in form to the traditional Lagrange equations with
constraints given in eqn (3.27). The main difference is that now the generalized en-
ergy theorem of eqn (3.78) is included as one of the extended Lagrange equations. It
is eqn (11.62) with k = 0.

The traditional definition of virtual displacements and virtual work from Sections
3.2 and 3.3 can also be translated into extended form. When time is a coordinate,
the definition of a virtual displacement must be generalized to allow nonzero time
displacements. The virtual displacements δqk are now taken to be differentials of
the (D + 1) generalized coordinates that are arbitrary and independent except for
the condition δGa(q) = 0 which ensures that the constraints are not violated. This
condition can be written as

0 = δGa(q) =
D∑

k=0

∂Ga (q)

∂qk
δqk =

D∑
k=1

∂Ga (q)

∂qk

(
δqk − dqk

dt
δt

)
(11.63)

To obtain the last equality, the δq0 = δt term has been removed from the sum and
written explicitly using eqn (11.61).

The notation δ instead of d for the differentials in virtual displacements is to re-
mind us that they are not to be taken as the actual motion of the system produced by
differential change dβ. They are assumed to be arbitrary and independent, except for
the constraints, even though each of the qk is actually a function of β.

The virtual work of constraint forces when time is a coordinate can be defined as

δW (cons) =
D∑

k=0

Q(cons)
k δqk (11.64)

where the quantities Q(cons)
k are the same as those defined in eqn (11.19), except with

the superscript (NP) replaced by (cons) since the only non-potential forces acting are
the constraint forces.

The definition of virtual work with time as a coordinate in eqn (11.64) is equiv-
alent to the traditional one defined in Section 3.3. To see this, put the definitions in
eqn (11.19) into eqn (11.64), again with the superscript (NP) replaced by (cons)

δW (cons) =
D∑

k=1

Q(cons)
k δqk +Q0δq0

=
D∑

k=1

ṫ Q(cons)
k δqk −

D∑
l=1

Q(cons)
l q̇lδq0 = ṫ

D∑
k=1

Q(cons)
k

(
δqk − dqk

dt
δt

)
(11.65)

The traditional virtual displacement at fixed time used in Chapter 3 should be
identified with the expression (δqk − (dqk/dt)δt) in the present section. If we denote
the differentials at fixed time from Chapter 3 by δt qk to distinguish them from the δqk
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being used here, then setting

δt qk =
(

δqk − dqk

dt
δt

)
(11.66)

for all k = 1, . . . , D makes eqn (11.63) become identical to the traditional expres-
sion in eqn (3.5). Also, eqn (11.65) and the traditional expression eqn (3.10) become
identical except for a ṫ factor, which is of no importance since it is never zero and the
only use of δW (cons) is to be set equal to zero. Thus the two definitions of virtual work
are equivalent, as was asserted.

The interpretation of eqn (11.66) is that, when time is a coordinate and so δt �= 0,
the traditional definition of virtual displacement is obtained by subtracting off the
effect of δt to obtain a displacement δt qk at fixed time. The extended definition in
eqn (11.64) is equivalent to the traditional definition of δW (cons) because it does that
subtraction automatically.

For extended Lagrangian theory, a theorem very similar to the traditional Theorem
3.4.1 can be proved. The following theorem reaches the same conclusion as Theorem
11.10.1 above, but does so with no dependence on traditional Lagrangian theory of
Chapter 3.

Theorem 11.10.2: Form of Forces of Constraint
Given the constraints defined by eqns (11.56, 11.63), the virtual work defined in eqn
(11.64) is zero, δW (cons) = 0, if and only if, for all k = 0, . . . , D, the generalized forces
of constraint have the form

Q(cons)
k =

C∑
a=1

λ̃a
∂Ga (q)

∂qk
(11.67)

Proof: The proof is very similar to that in Theorem 3.4.1 and will not be repeated
here. �

11.11 Reduced Lagrangians with Time as a Coordinate
Just as was proved for traditional Lagrangian theory in Theorem 3.8.1, holonomic
constrains that do no virtual work can be used to reduce the number of degrees of
freedom of extended Lagrangian systems. There are two ways that this can be done.

First, one might reduce the degrees of freedom using the traditional methods of
Section 3.8 to obtain a reduced traditional Lagrangian L̄. Then the transition to the
extended theory in Definition 11.3.1 can be done starting from the traditional reduced
L̄ Lagrangian instead of the full Lagrangian. Then the extended Lagrangian theory
goes forward just as if the eliminated degrees of freedom had never existed.

Alternately, the transition to the extended theory can be done first, exactly as
stated in Definition 11.3.1, starting from the full traditional Lagrangian L to obtain
the full extended Lagrangian L. Then the constraints can be used to reduce the num-
ber of degrees of freedom in the context of the extended Lagrangian theory.

This second method is the subject of the following theorem, which is analogous to
Theorem 3.8.1 for the traditional Lagrangian theory.
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Theorem 11.11.1: Reduced Lagrangians With Time as a Coordinate
In the theory with time as a coordinate, a reduced Lagrangian L̄(q( f ), q̇( f )) can be ob-
tained by solving the constraint equations Ga(q) = 0 from eqn (11.56) for the bound
variables as functions of the free ones, thus obtaining q(b)

l = q(b)
l (q( f )) and from it

q̇(b)
l = q̇(b)

l (q( f ), q̇( f )), and then making the substitution

L̄(q( f ), q̇( f )) = L
(

q( f ), q(b)(q( f )), q̇( f ), q̇(b)(q( f ), q̇( f ))
)

(11.68)

This reduced Lagrangian will be homogeneous of degree one in the reduced set of general-
ized velocities q̇( f ). If the forces of constraint do no virtual work, the extended Lagrange
equations in the reduced variable set will then be

d

dβ

(
∂L̄(q( f ), q̇( f ))

∂ q̇k

)
− ∂L̄(q( f ), q̇( f ))

∂qk
= 0 (11.69)

for all of the (D + 1 − C) index values k corresponding to the free variables.

Proof: The proof of this theorem is the same as that in Theorem 3.8.1, with the
substitution of L̄ for L̄ and the addition of the variables q0 and q̇0.

The homogeneity of L̄ follows from fact that, in the extended Lagrangian theory
with time as a coordinate, the derivatives of the bound variables have the simple
linear form

q̇(b)
l =

∑
free k

∂q(b)
l (q( f ))

∂q( f )
k

q̇( f )
k (11.70)

which preserves the homogeneity when the substitution in eqn (11.68) is made. �
One interesting property of the method of Theorem 11.11.1 is that it is possible

in some systems for the time q0 to be chosen as one of the bound variables. Then
the reduced Lagrangian L̄ will not contain the time or its derivative. Such a case is
examined in Exercise 11.6.

Note that the homogeneity of the reduced Lagrangian L̄ proved in Theorem 11.11.1
means that Lemmas 11.3.2, 11.4.1, 11.4.2, and 11.9.1 that were proved for the full
Lagrangian L also apply to L̄.

11.12 Exercises
Exercise 11.1 Write out the proof of Theorem 11.8.1 in detail.

Exercise 11.2 In Section 2.10 it was stated that the traditional transformation between any
two systems of good generalized coordinates had to obey the D × D determinant condition
|∂q(r1, . . . , rD, t)/∂r | �= 0.

(a) Show that this condition, plus the identity transformation for the time r0 = q0 = t
assumed by the traditional theory, together imply the condition eqn (11.47) required for co-
ordinate transformations in the extended Lagrangian theory.
(b) Explain why the extended transformation theory therefore includes the traditional trans-
formation theory as a special case, but is more general.
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Exercise 11.3 Demonstrate that the standard Lorentz transformation of eqn (11.52) satisfies
the condition in eqn (11.47) and therefore is a legitimate extended Lagrangian transformation.

Exercise 11.4 A harmonic oscillator in three dimension has the traditional Lagrangian

L
(
q[0], q ′[0], q0

) = 1

2
m

(
x ′ 2 + y′ 2 + z′ 2

)
− 1

2
k
(

x2 + y2 + z2
)

(11.71)

where x ′ = dx/dt , etc.

(a) Write the extended Lagrangian L(q, q̇) for this system.
(b) Write the generalized momentum p0 and show that it is the negative of the traditional
generalized energy function H(q[0], q ′[0], t).
(c) Use the extended Lagrange equation for k = 0 to show that the time is an ignorable
coordinate, and that the energy of the system is a conserved quantity.
(d) Find the generalized momenta pk for k = 0, . . . , 3 and use them to verify eqn (11.16) for
this system.

Exercise 11.5
(a) Starting from the traditional Lagrangian for a system of charged particles in a given elec-
tromagnetic field, as shown in eqn (2.103), write the extended Lagrangian L.
(b) Show that p

0
= ∂L/∂ ṫ is the negative of the generalized energy function eqn (2.105).

Exercise 11.6 Suppose a single mass m is constrained to lie on the frictionless floor of a
rising elevator, so that its z-coordinate obeys the constraint z = at2. Assume that gravity acts
downwards in the negative z-direction.

(a) Write the full traditional and extended Lagrangians for this problem.
(b) Select q0 = t to be the bound coordinate and x , y, z to be the free ones. Write the reduced
Lagrangian L̄ as derived in Section 11.11.
(c) Use this L̄ to write the three extended Lagrange equations. Show that the x and y Lagrange
equations are simple, and reduce dx/dt and dy/dt to constants. Argue that the third Lagrange
equation is redundant and is automatically satisfied whenever the first two are.

Exercise 11.7 In the proof of Lemma 11.9.1, use eqn (11.19) to derive the last equality in
eqn (11.55).

Exercise 11.8 In Exercise 2.7 we considered two traditional Lagrangians L and L ′ related by
a gauge transformation. (Note that the prime here does not mean differentiation with respect
to time.)

(a) Write the extended Lagrangians for these two cases, and show that

L′ = L+ q(ch)

c

dχ(q)

dβ
(11.72)

(b) Derive the canonical momenta p
0
, p and p′

0
, p′ from the two extended Lagrangians in

eqn (11.72).
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(c) Use the result of (b) to show that

p′
0
= p

0
+ q(ch)

c

∂χ

∂t
p′ = p + q(ch)

c

∂χ

∂r
(11.73)

(d) Show that(
p

0
+ q(ch)


)
=

(
p′

0
+ q(ch)
′) and

(
p − q(ch)A/c

)
=

(
p′ − q(ch)A′/c

)
(11.74)

and hence that these expressions are gauge invariant. Why must an expression like(
p − q(ch)A/c

)
be independent of the gauge of the electromagnetic field?

(e) Show that any solution qk = qk(β) that solves the extended Lagrange equations with L
also solves the extended Lagrange equations with L′.
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HAMILTONIAN MECHANICS WITH TIME AS A COORDINATE

Chapter 11 used the traditional Lagrange equations of Chapter 2 as the basis for an
extended Lagrangian theory in which time is treated as a coordinate. This extended
theory combined the Lagrange equations and the generalized energy theorem into
one set of equations.

In the present chapter, we will do the same with the traditional Hamilton equa-
tions of Chapter 4. The traditional Hamilton equations, including the Hamiltonian
form of the generalized energy theorem, will be combined into one set of extended
Hamilton equations in which time is treated as a coordinate.

The extended Hamilton theory developed in this chapter is of fundamental impor-
tance for the more advanced topics in mechanics. It is used in Chapter 16 to write the
relativistically covariant Hamiltonian, which is then used to derive the Klein–Gordon
equation of relativistic quantum mechanics. And the extended Hamilton equations
provide the basis for our discussion of canonical transformations in Chapter 17.

12.1 Extended Phase Space
The objective of extended Hamiltonian theory is to write the equations of motion in
terms of an extended set of phase-space variables that includes the new coordinate
q0 = t and its conjugate momentum p0 defined in Section 11.4. When the new coordi-
nates are included, the phase space becomes (2D+2)-dimensional, with the canonical
coordinates

q, p = q0, q1, . . . , qD, p0, p1, . . . , pD (12.1)

Solutions to the traditional Hamilton equations of Chapter 4 gave the equations of
motion of the system as a trajectory through the traditional phase space, in the form
qk = qk(t) and pk = pk(t) for k = 1, . . . , D. The equations of motion of extended
Hamiltonian theory will give the phase-space trajectory as functions of the new pa-
rameter β introduced in Section 11.1, qk = qk(β) and pk = pk(β) for k = 0, . . . , D,
where the phase space now includes the two new coordinates q0 and p0.

12.2 Dependency Relation
From the viewpoint of extended Lagrangian mechanics, the (2D + 2) variables q, p
of the extended phase space defined above are not independent. They have a single
dependency relation among them, in the sense treated in Section D.29. We begin by
examining this dependency, since the function that describes it will also play the role
of the extended Hamiltonian in our extended theory.

285
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In extended Lagrangian theory, the generalized momenta are those defined in
eqns (11.9, 11.14)

pi (q, q̇) = ∂L(q, q̇)

∂ q̇i
p0(q, q̇) = ∂L(q, q̇)

∂ q̇0
= −H

(
q[0], q ′[0], t

)
(12.2)

for i = 1, . . . , D, where q ′k = dqk/dt = q̇k/q̇0 and the traditional generalized energy
function H(q[0], q ′[0], t) has been written in the notation of Section 11.2, which we will
continue to use in the present chapter.

In Theorem 4.1.1 it was proved that the D-rowed square matrix defined, for i, j =
1, . . . , D, by (

∂p[0]
∂q ′[0]

)
i j

= ∂pi (q[0], q ′[0], t)

∂q ′j
(12.3)

was nonsingular, and hence that the equations pk = pk(q[0], q ′[0], t) could be inverted
to give q ′k = q ′k(q[0], p[0], t). The traditional generalized energy function was then
rewritten in terms of the traditional phase-space variables q[0], p[0], t , and was there-
after referred to as the Hamiltonian.

This change of variables does not change the function, however. The traditional
Hamilton is the same function as the generalized energy, and is defined as the com-
pound function

H = H
(
q[0], p[0], t

) = H
(
q[0], q ′[0](q[0], p[0], t), t

)
(12.4)

Thus the second of eqn (12.2) can be written as the identity

p0(q, q̇) = −H
(
q[0], p[0](q, q̇), q0

)
(12.5)

where t has now been replaced by q0.

As is customary (see Section D.29), we express this dependency among the ex-
tended phase-space variables q, p by defining a dependency function K(q, p) and
setting it equal to zero.

Thus, we write the dependency relation as

K(q, p) = 0 where K(q, p) = p0 + H
(
q[0], p[0], q0

)
(12.6)

12.3 Only One Dependency Relation

It is important, particularly when we want to derive the extended Hamilton equa-
tions from Hamilton’s Principle in Chapter 13, to establish that there is only one de-
pendency relation among the extended phase-space variables, as is proved in the
following lemma and theorem.
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Lemma 12.3.1: Rank of Transformation Matrix
The (D + 1)-rowed square matrix defined by(

∂p

∂ q̇

)
i j
= ∂pi (q, p)

∂ q̇j
= ∂2L (q, p)

∂ q̇j∂ q̇i
(12.7)

for i, j = 0, . . . , D, is singular and has rank D:∣∣∣∣∂p

∂ q̇

∣∣∣∣ = 0 and Rank

(
∂p

∂ q̇

)
= D (12.8)

Proof: First, to prove the singularity. The homogeneity of the pk proved in Lemma
11.4.1 and the Euler Condition of Theorem D.31.1 together imply that

0 =
D∑

l=0

q̇l
pk (q, q̇)

∂ q̇l
=

D∑
l=0

(
∂p

∂ q̇

)
kl

q̇l (12.9)

where the last expression is written in the form of a matrix multiplication. But at least
one of the q̇l is nonzero, since it is always true that q̇0 = (dt/dβ) �= 0. Thus Corollary
B.19.2 implies that the matrix (∂p/∂ q̇) is singular, as was to be proved.

The proof that (∂p/∂ q̇) has rank D then consists of demonstrating that, though
singular, it has a nonzero D-rowed critical minor. The matrix (∂p/∂ q̇) may be written
out as

(
∂p

∂ q̇

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂p0

∂ q̇0

∂p0

∂ q̇1
· · · ∂p0

∂ q̇D

∂p1

∂ q̇0

∂p1

∂ q̇1
· · · ∂p1

∂ q̇D

...
...

...
...

∂pD

∂ q̇0

∂pD

∂ q̇1
· · · ∂pD

∂ q̇D

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(12.10)

Removing the first row and the first column of this matrix leaves a D-rowed square
matrix consisting of all rows and columns with nonzero indices. Section 11.4 demon-
strated that, for k �= 0, the extended momenta pk in this matrix are identical to the
traditional ones defined in Section 2.12. Hence, except for nonzero ṫ factors on each
matrix element, this matrix is the same as the matrix written above in eqn (12.3) and
proved nonsingular in Theorem 4.1.1. Thus this D-rowed matrix is nonsingular and
its determinant constitutes a D-rowed critical minor for the matrix in eqn (12.10), as
was to be proved. �
Theorem 12.3.2: One Dependency Relation
Considered as functions of the extended Lagrangian variables q0, q1, . . . , qD,

q̇0, q̇1, . . . , q̇D the phase-space coordinates listed in eqn (12.1) have exactly one depen-
dency relation of the sort defined in Section D.29.
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Proof: Apply Theorem D.29.1 to the present problem, with M = N = (2D + 2), the
functions fk replaced by the set q, p, and the variables xi by the set q, q̇. The number
of dependency relations then depends on the rank of the matrix (∂ f/∂x), which here
has the block form ⎛⎜⎜⎜⎝ U 0(

∂p

∂q

) (
∂p

∂ q̇

)
⎞⎟⎟⎟⎠ (12.11)

in which the matrix is written as four (D + 1) × (D + 1) blocks. The U is the unit
matrix, 0 is the null matrix, (∂p/∂q) is a matrix defined similarly to eqn (12.7) but
using q rather than q̇, and the lower-right block (∂p/∂ q̇) is the matrix written in eqn
(12.10) above.

It follows from the discussion of the determinants of partitioned matrices in Sec-
tion B.15 that the determinant of the matrix in eqn (12.11) is the same as the deter-
minant of its lower, right-hand block (∂p/∂ q̇), which determinant was proved zero
in Lemma 12.3.1. Also, it follows from that same lemma that the matrix that would
remain when the p0 row and the q̇0 column were removed from eqn (12.11) would
be nonsingular. Thus eqn (12.11) is a (2D+ 2)-rowed square matrix of rank (2D+ 1).

If the rank of the matrix eqn (12.11) is r , then Theorem D.29.1 proves that the
number of dependency relations among the q, p will be M − r = 2D+2− r . Since we
have shown that the rank of this matrix is r = 2D + 1, one less than the dimension of
the matrix, it follows that M − r = 1 and that there is one and only one dependency
relation, as was to be proved. �

12.4 From Traditional to Extended Hamiltonian Mechanics

The principal objective of extended Hamiltonian theory is to write the equations of
motion of the system in a form that treats all of the variables of phase space on an
equal footing. This was also the objective of the traditional Hamiltonian theory de-
veloped in Chapter 4. The difference is that the extended phase space includes a new
pair of canonically conjugate coordinates, the time q0 and its conjugate momentum
p0.

In the extended Hamiltonian theory, the momenta pk (including p0), which are
derived quantities in extended Lagrangian theory, are now to be considered as in-
dependent coordinates in phase space. This freeing of the momenta in Hamiltonian
mechanics means that the Lagrangian identities, eqn (12.2), no longer apply in Hamil-
tonian theory. The same relations will be recovered, however, not as identities but as
consequences of the Hamilton equations of motion at the end of the calculation.

In particular, it is important to note that the dependency relation eqn (12.6) is no
longer to be assumed in advance. In Lagrangian mechanics, K(q, p) = 0 is an identity.
But in Hamiltonian mechanics, K(q, p) is to be treated as just another phase-space
function whose value is determined by the Hamilton equations of motion.
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In Chapter 11, the extended Lagrangian theory was obtained by converting the
traditional Lagrange equations to a parametric form. Similarly, extended Hamilto-
nian mechanics is obtained by converting the traditional Hamilton equations to a
parametric form that uses derivatives with respect to an arbitrary monotonic parame-
ter β rather than with respect to the time as in traditional theory, and that includes the
Hamiltonian form of the generalized energy theorem as one of the extended Hamilton
equations. This conversion is most transparently accomplished if we define the depen-
dency function K(q, p) itself to be the extended Hamiltonian function and write the
extended Hamilton equations in terms of it.

Definition 12.4.1: Standard Extended Hamiltonian
We define the standard extended Hamiltonian to be the function that appeared in the
dependency relation of eqn (12.6).

K(q, p) = p0 + H
(
q[0], p[0], q0

)
(12.12)

Just as for the extended Lagrangian, this definition is not unique. Several different
forms are possible, but the simplest one is this standard function. We next use this
extended Hamiltonian to state the extended Hamilton equations.53

Definition 12.4.2: Extended Hamilton Equations
With the extended Hamiltonian K(q, p) defined in eqn (12.12), the extended Hamilton
equations are

q̇k = ∂K(q, p)

∂pk
and ṗk = −∂K(q, p)

∂qk
(12.13)

for all k = 0, . . . , D, where the dot denotes differentiation with respect to parameter β.

An immediate consequence of the extended Hamilton equations is that

dK
dβ

=
D∑

k=0

(
∂K(q, p)

∂qk
q̇k + ∂K(q, p)

∂pk
ṗk

)
=

D∑
k=0

(− ṗk q̇k + q̇k ṗk) = 0 (12.14)

Thus the relation K = 0, which was an identity in Lagrangian mechanics, is obtained
as a consequence of the Hamilton equations of motion, provided that we choose K
to be zero at some initial value of β.54 We will assume throughout that this initial
condition has been specified. Thus the relation

K(q, p) = 0 or p0 = −H
(
q[0], p[0](q, q̇), q0

)
(12.15)

is recovered, not as an identity but as a consequence of the Hamilton equations of
motion. Note that the condition K(q, p) = 0 must not be applied until after all partial
derivatives in eqn (12.13) have been taken. It may then be applied to simplify our
equations if necessary.

53What we call the extended Hamilton equations are referred to by Lanczos (1970) as “the parametric
form of the canonical equations.” See also Rund (1966).

54Choosing some nonzero constant for K at time zero would be equivalent to a trivial redefinition of the
traditional Hamiltonian. The value zero is the simplest choice and will be adopted here.
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12.5 Equivalence to Traditional Hamilton Equations

We now prove that these extended Hamilton equations are equivalent to a combina-
tion of the traditional Hamilton equations, and the traditional Hamiltonian form of
the generalized energy theorem.

Theorem 12.5.1: Equivalence of Extended Hamilton Equations
Let the extended Hamiltonian K(q, p) be defined as in eqn (12.12). Then the extended
Hamilton equations, eqn (12.13), when k = 0 are equivalent to the traditional Hamilto-
nian form of the generalized energy theorem. And the extended Hamilton equations, eqn
(12.13), when k �= 0 are equivalent to the traditional Hamilton equations.

Proof: Expressed in our present notation, the traditional Hamilton equations in eqn
(4.21) are

q ′k =
∂ H

(
q[0], p[0], q0

)
∂pk

p′k = −∂ H
(
q[0], p[0], q0

)
∂qk

(12.16)

and the traditional Hamiltonian form of the generalized energy theorem, the third of
eqn (4.21), is

d H

dt
= H ′ = ∂ H

(
q[0], p[0], q0

)
∂q0

(12.17)

where, as throughout this chapter, the prime indicates differentiation with respect to
the time.

First consider the k = 0 case. Then, eqn (12.13) becomes

q̇0 = 1 ṗ0 = −∂ H
(
q[0], p[0], q0

)
∂q0

(12.18)

The derivative q̇0 = dt/dβ, which here has the value one, can never be zero, since both
the time t and parameter β vary monotonically along the system path in configuration
space. Combining the two equations in eqn (12.18) and writing t for q0 therefore gives

dp0

dt
= ṗ0

q̇0
= −∂ H

(
q[0], p[0], q0

)
∂t

(12.19)

But, from eqn (12.15), p0 = −H
(
q[0], p[0], q0

)
. Hence eqn (12.19) becomes

−d H

dt
= −∂ H

(
q[0], p[0], q0

)
∂q0

(12.20)

which is eqn (12.17), as was to be proved.
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When k �= 0, eqn (12.13) become

q̇k = ∂ H
(
q[0], p[0], q0

)
∂pk

and ṗk = −∂ H
(
q[0], p[0], q0

)
∂qk

(12.21)

Again using the first of eqn (12.18), these become

dqk

dt
= q̇k

q̇0
= ∂ H

(
q[0], p[0], q0

)
∂pk

and
dpk

dt
= ṗk

q̇0
= −∂ H

(
q[0], p[0], q0

)
∂qk

(12.22)
which are eqn (12.16), as was to be proved. �

The privileged treatment of q0 = t in the first of eqn (12.18) is due to the simple
form chosen for the extended Hamiltonian eqn (12.12). As will be shown in Section
12.8, other choices of K are possible that treat some other coordinate ql similarly, or
that have no particular coordinate with a unit derivative.

12.6 Example of Extended Hamilton Equations
Consider the simple example of a three dimensional harmonic oscillator in Section
2.3. In the notation of the present chapter, the traditional Lagrangian function is

L

(
q[0],

dq[0]
dt

, q0

)
= 1

2
m

(
x ′ 2 + y′ 2 + z′ 2

)
− 1

2
k
(

x2 + y2 + z2
)

(12.23)

where we have written q0, q1, q2, q3 = t, x, y, z for clarity, and we continue to use the
notation x ′ = dx/dt , etc. The extended Lagrangian is defined in eqn (11.7). It is

L(q, q̇) = m

2ṫ

(
ẋ2 + ẏ2 + ż2

)
− ṫ

2
k
(

x2 + y2 + z2
)

(12.24)

Using the methods of Chapter 4, the traditional Hamiltonian function is found to
be

H
(
q[0], p[0], q0

) = 1

2m

(
p2

x + p2
y + p2

z

)
+ 1

2
k
(

x2 + y2 + z2
)

(12.25)

The extended Hamiltonian is then defined in eqn (12.12) to be

K(q, p) = p0 + 1

2m

(
p2

x + p2
y + p2

z

)
+ 1

2
k
(

x2 + y2 + z2
)

(12.26)

and the extended Hamilton equations are

ṫ = ∂K(q, p)

∂p0
ẋ = ∂K(q, p)

∂px
ẏ = ∂K(q, p)

∂py
ż = ∂K(q, p)

∂pz
(12.27)

and

ṗ0 = −∂K(q, p)

∂t
ṗx = −∂K(q, p)

∂x
ṗy = −∂K(q, p)

∂y
ṗz = −∂K(q, p)

∂z
(12.28)
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12.7 Equivalent Extended Hamiltonians
We have introduced an arbitrary monotonic parameter β and used it to write the
extended Hamilton equations (including the Hamiltonian form of the generalized
energy theorem) in a parametric form. The solutions to the extended Hamilton equa-
tions, eqn (12.13), will be referred to as phase-space trajectories.

The parameter β may be any quantity that is assumed to vary monotonically along
the system path. This parameter independence results from the fact that the right-
hand sides of the extended Hamilton equations, eqn (12.13), do not contain β explic-
itly. Sets of coupled differential equations of this type can be reduced to a smaller set
with parameter β eliminated, as is discussed in detail in Section D.36. For example,
if we know that q̇l �= 0 in some region, then we can write a set of 2N + 1 equa-
tions by dividing each of eqn (12.13) by q̇l , giving, for all j = 0, . . . , D, j �= l, and
k = 0, . . . , D,

dqj

dql
= q̇j

q̇l
= ∂K(q, p)/∂pj

∂K(q, p)/∂pl
= Aj (q, p)

dpk

dql
= ṗk

q̇l
= −∂K(q, p)/∂qk

∂K(q, p)/∂pl
= Bk(q, p)

(12.29)
The number of equations has been reduced by one, and the parameter β is gone. The
independent variable in now ql . Theorem D.36.2 demonstrates that, given initial val-
ues q(0)

j and p(0)
k at some value q(0)

l of the new independent variable, these equations
have a unique solution. For all j, k = 0, . . . , D, j �= l, we have

qj = qj (ql) and pk = pk(ql) (12.30)

which define a unique relation among the phase-space variables q, p.
This unique relation eqn (12.30) among the 2N + 2 phase-space variables defines

the phase-space trajectory of the system. Such a trajectory determines completely the
physical behavior of the system, and hence constitutes a unique solution to the me-
chanics problem. It does not matter physically how qj , for example, is related to the
parameter β. Only the relations among the phase-space variables q, p themselves are
physically meaningful. Since the Hamilton equations exist only to predict system be-
havior, two different Hamiltonians that imply the same phase-space trajectory will be
taken to be equivalent.

Note to the Reader: Two extended Hamiltonians and sets of extended Hamilton
equations are equivalent if and only if they produce the same phase-space trajectory
and hence the same system behavior.

Theorem D.36.2 (which the reader is advised to study) also shows that we may, if
it is convenient in a particular context, reintroduce the parameter β into eqn (12.30)
and so write them in parametric form qk = qk(β) and pk = pk(β), for all k = 0, . . . , D.
However, it will still be true that the phase-space trajectory depends only on D + 1
arbitrary initial values, not on D + 2 as the parametric form might suggest.

In Section 11.7, we showed that the extended Lagrange equations are invariant
under a change of parameter from β to any other monotonic parameter θ . In the
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extended Hamiltonian theory, such a change of parameter would have the effect of
introducing a uniform multiplicative factor dθ/dβ into eqn (12.13) since, for exam-
ple, q̇k = (dqk/dθ)(dθ/dβ). These factors would cancel from eqn (12.29) and hence
the phase-space trajectory defined would be the same no matter which parameter
was used. In the extended Hamiltonian theory, invariance under change of parameter
means that the same phase-space trajectory is obtained no matter what the monotonic
parameter β may be.

12.8 Alternate Hamiltonians
Theorem 12.5.1 used the standard Hamiltonian K(q, p) defined in eqn (12.12) to
prove the extended Hamilton equations equivalent to the traditional results. It might
seem that nothing has been accomplished except the introduction of a parameter β

which has just been shown to be removable. But the point of introducing β and writ-
ing eqn (12.13) has been to obtain equations that treat all of the 2N + 2 phase-space
coordinates q, p on an equal footing. The standard Hamiltonian eqn (12.12) leads to
q̇0 = 1 and hence treats time in a privileged way. But there are other Hamiltonians
that are equivalent to the standard one in the sense defined in Section 12.7, that do
not have this simple relation between t and β. Two cases of interest are proved in the
following lemmas.

Lemma 12.8.1: Multiplication by Nonzero Function
If an alternate extended Hamiltonian is defined by Ka(q, p) = g(q, p)K(q, p), where
g(q, p) is any phase-space function that is known to be nonzero, then K(q, p) = 0 from
eqn (12.15) holds if and only if Ka(q, p) = 0 holds. The extended Hamilton equations
with Ka(q, p) are equivalent to those with K(q, p).

Proof: The extended Hamilton equations with the alternate Hamiltonian Ka(q, p) =
g(q, p)K(q, p) are

q̇k = ∂Ka(q, p)

∂pk
and ṗk = −∂Ka(q, p)

∂qk
(12.31)

We show that these equations are equivalent to the standard extended Hamilton equa-
tions, eqn (12.13).

Consider the first of eqn (12.31) for a particular k value. The partial derivative is

∂Ka(q, p)

∂pk
= g(q, p)

∂K(q, p)

∂pk
+ ∂g(q, p)

∂pk
K(q, p) (12.32)

But now, after the partial derivatives are all taken, we can use eqn (12.15) to write
K(q, p) = 0. Thus eqn (12.32) reduces to

∂Ka(q, p)

∂pk
= g(q, p)

∂K(q, p)

∂pk
(12.33)

Similarly,
∂Ka(q, p)

∂qk
= g(q, p)

∂K(q, p)

∂qk

If we now choose some coordinate with q̇l �= 0 and form the ratios in eqn (12.29),
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the nonzero g(q, p) factors will cancel. Hence the functions Aj (q, p) and Bk(q, p) in
eqn (12.29) will be the same whether K or Ka is used for the extended Hamiltonian.
The two extended Hamiltonians will produce identical phase-space trajectories and
therefore are equivalent. �

We now present the second way in which an alternate extended Hamiltonian can
be formed.

Lemma 12.8.2: Solution for an Alternate Momentum
Suppose that there is a range of β values for which some particular generalized velocity q̇l

is nonzero. Then, the dependency relation K(q, p) = 0 can be solved for pl = pl(q, p[l])
and rewritten as

Kb(q, p) = 0 where Kb(q, p) = pl − pl(q, p[l]) (12.34)

and K(q, p) = 0 if and only if Kb(q, p) = 0. The extended Hamilton equations with Kb

are equivalent to the standard equations in eqn (12.13).

Proof: First, we prove that the dependency relation can be written in the form eqn
(12.34). Since q̇l �= 0 by assumption, eqn (12.13) gives

∂K (q, p)

∂pl
= q̇l �= 0 (12.35)

By the implicit function theorem, Theorem D.26.1 with the identifications N = 1,
f → K, y1 → pl , and x → q, p[l], this is the necessary and sufficient condition for
the equation K(q, p) = 0 to be solved for pl giving pl = pl(q, p[l]).

The extended Hamilton equations with Kb are

q̇k = ∂Kb(q, p)

∂pk
and ṗk = −∂Kb(q, p)

∂qk
(12.36)

To show them equivalent to the standard extended Hamilton equations of eqn (12.13),
we make use of eqn (D.103), with the same identifications as above, to write for all
k = 0, . . . , D

∂Kb

∂qk
= −∂pl(q, p[l])

∂qk
=

(
∂K
∂pl

)−1
∂K
∂qk

(12.37)

and for all k �= l
∂Kb

∂pk
= −∂pl(q, p[l])

∂pk
=

(
∂K
∂pl

)−1
∂K
∂pk

(12.38)

Also
∂Kb

∂pl
= 1 =

(
∂K
∂pl

)−1
∂K
∂pl

If we now form the ratios in eqn (12.29), the nonzero (∂K/∂pl)
−1 factors will cancel.

Hence the functions Aj (q, p) and Bk(q, p) will be the same whether K or Kb is used
for the extended Hamiltonian. The two extended Hamiltonians will produce identical
phase-space trajectories and therefore are equivalent. �
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12.9 Alternate Traditional Hamiltonians

The traditional Hamilton equations treat the time t in a special way. It is an interesting
curiosity that Hamilton equations of the traditional form can also be derived that treat
some other variable specially.

For ranges of β with q̇l �= 0, an alternate traditional Hamiltonian H (l) can be
defined by

H (l) (q[l], p[l], ql
) = −pl(q, p[l]) (12.39)

where pl(q, p[l]) is the function defined in Lemma 12.8.2. Then the alternate extended
Hamiltonian Kb may also be written in a form parallel to eqn (12.12)

Kb(q, p) = pl + H (l) (q[l], p[l], ql
)

(12.40)

The traditional Hamiltonian defined in eqn (12.39) can be used to write the tradi-
tional Hamilton equations in an alternate form. They are, for i = 0, . . . , (l − 1), (l +
1), . . . , D,

dqi

dql
= ∂ H (l)

(
q[l], p[l], ql

)
∂pi

dpi

dql
= −∂ H (l)

(
q[l], p[l], ql

)
∂qi

(12.41)

These equations can be proved by starting from eqn (12.36), and using the same
chain of logic used in Theorem 12.5.1, but now with index 0 replaced by index l.
Such alternate traditional Hamiltonians are discussed, for example, in Corben and
Stehle (1960).

12.10 Not a Legendre Transformation

It might seem that Hamilton equations with time as a coordinate could have been
derived by the same technique as was applied to derive the traditional Hamiltonian
H in Chapter 4. Since we already have an extended Lagrangian L(q, q̇) from Chapter
11, we might try to make a Legendre transformation to an extended Hamiltonian H
by the rule

H(q, q̇) =
D∑

k=0

∂L(q, q̇)

∂ q̇k
q̇k − L(q, q̇) =

D∑
k=0

pk(q, q̇)q̇k − L(q, q̇) (12.42)

where the definition of pk from eqn (11.9) has been introduced. We would then ex-
press H(q, q̇) in terms of the correct variable set as H(q, p), leading to Hamilton
equations

q̇k = ∂H(q, p)

∂pk
ṗk = −∂H(q, p)

∂qk
(12.43)

However, this procedure fails on two counts.
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First, as was proved in Lemma 11.4.2, the fact that L(q, q̇) is homogeneous of
degree one55 in the generalized velocities implies that the H(q, q̇) in eqn (12.42) is
identically zero. We emphasize that

∑D
k=0 pk(q, q̇)q̇k is exactly the same function of the

variables q, q̇ as L(q, q̇) is. Thus, not only is H(q, q̇) equal to zero, but all of its partial
derivatives with respect to qk and q̇k are also zero. We can denote this by writing
H ≡ 0. Thus the Legendre transformation method fails at its first step. The function
H(q, q̇) cannot be written.

Second, even if a function H(q, q̇) could be found, we could not carry out the next
step in the Legendre transformation by writing it in terms of q, p and thus transform-
ing it into a correct Hamiltonian H(q, p). To make that change of variables, the equa-
tions defining the momenta in terms of the coordinates and velocities pk = pk(q, q̇)

would have to be solved for the q̇k giving q̇k = q̇k(q, p), which could then be substi-
tuted into H(q, q̇) to give the Hamiltonian as H(q, p) = H(q, q̇(q, p)). But solving for
the q̇ is not possible. The necessary and sufficient condition for it is that the (D + 1)-
rowed square matrix (∂p/∂ q̇) defined in eqn (12.7) must be nonsingular. But that
matrix was proved singular in Lemma 12.3.1.

Thus the extended Hamiltonian theory cannot be obtained by a Legendre trans-
formation from the extended Lagrangian theory. Rather, we have used the traditional
Hamiltonian function H(q[0], q ′[0], t) to define an extended Hamiltonian K(q, p) di-
rectly, as in eqn (12.12). The extended Hamilton equations eqn (12.13) then deter-
mine the phase-space trajectory of the system. The Lagrangian identity between p0

and −H(q[0], q ′[0], t) is not assumed in the extended Hamiltonian theory. It is, as it
were, “forgotten”. Thus, unlike H(q, q̇) ≡ 0, the extended Hamiltonian K(q, p) is not
identically zero. It has nonzero partial derivatives and is set equal to zero at the end
of the calculation as a consequence of the Hamilton equations of motion.56

12.11 Dirac’s Theory of Phase-Space Constraints
A theory of primary phase-space constraints developed by Dirac is closely related to
our extended Hamiltonian theory. Since the reader may already have encountered
Dirac’s ideas, or will in the future, it will be useful to discuss his formalism here.

Dirac believed that the route from classical to quantum mechanics required a
Hamiltonian that could be used to derive something like a Schroedinger equation,
much as is done in our Section 4.7 or in his derivation of the Dirac equation to be de-
scribed in Section 16.15. The identical vanishing of the H(q, q̇) defined in eqn (12.42)
was therefore a problem. Dirac (1964) addressed this problem by creating what he

55As was discussed in Section 5.15 in the context of the calculus of variations, the homogeneity of
L(q, q̇) is a consequence of the completeness of the set of extended Lagrange equations. No equations have
been left out that could be recovered by a “second form” of the Euler–Lagrange equations. Thus, in the
Lagrangian context, H(q, q̇) vanishes because it is not needed. The reader might look again at the example
in Section 5.6. If she tries to define a “second form” of the Euler–Lagrange equations in that example using
the prescription h = ẋ(∂ f/∂ ẋ)+ ẏ(∂ f/∂ ẏ)+ ż(∂ f/∂ ż)− f she will find the result to be identically zero, just
as in eqn (12.42), and for the same reason.

56In Dirac (1964), the same distinction is made. The H is said to be strongly zero, while K is said to be
weakly zero.
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called a “generalized Hamiltonian formalism” with modified Hamilton equations, and
phase-space constraints in the form φm(q, p) = 0. Dirac’s formalism is intended to in-
clude complex problems such as Hamiltonian theory in the curved spaces of general
relativity. We will present only enough of it to understand its relation to the extended
Hamiltonian theory that we have developed in this chapter.

Let us suppose for a moment that we have a Hamiltonian function H(q, p), such
as the one proved not to exist in Section 12.10, as well as N phase-space constraints
φm(q, p) = 0. Dirac uses Hamilton’s Principle and the calculus of variations to derive
the equations

q̇k = ∂H
∂pk

+
N∑

m=1

λm
∂φm

∂pk
ṗk = − ∂H

∂qk
−

N∑
m=1

λm
∂φm

∂qk
(12.44)

Except for our assumption that H ≡ 0, his derivation is similar to the one we give in
Section 13.4. He rewrites these Hamilton equations by defining an effective Hamilto-
nian

Heff(q, p, λ) = H(q, p)+
N∑

m=1

λmφm(q, p) (12.45)

in which the constraints and their Lagrange multipliers have been incorporated into
Heff.57 The result is that eqn (12.44) now take the standard Hamiltonian form58

q̇k = ∂Heff

∂pk
ṗk = −∂Heff

∂qk
(12.46)

But, of course, H does vanish identically, as discussed in Section 12.10. Thus we are
left with only the constraint functions

Heff(q, p, λ) =
N∑

m=1

λmφm (12.47)

Dirac makes a distinction between primary and secondary constraints, and be-
tween first-class and second-class constraint functions. He says that the primary con-
straints, “are consequences merely of the equations that define the momentum vari-
ables.” It is clear that our function K(q, p) defined in eqn (12.12) is exactly the sort of
primary constraint that Dirac’s intends, since it derives from the Lagrangian definition
of p0. Dirac defines secondary constraints as those that emerge from a consistency
condition among the primary ones. He defines a first-class constraint function as one
whose Poisson bracket with all of the other constraint functions is itself weakly zero.
Otherwise the function is second-class.

57This incorporation procedure is the same as is often done in Lagrangian mechanics and the calculus of
variations, as discussed in Section 3.6.

58Dirac actually writes the effective Hamilton equations in an Poisson bracket form, similar to our eqn
(12.60). But the two ways of writing the Hamilton equations are equivalent.
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The reader is referred to the cited reference for details of these distinctions. For
our purposes here, they are unnecessary since we have proved in Section 12.3 that
there is one and only one dependency relation in our theory. Thus K(q, p) = 0 is a
primary, first-class constraint, and the only one present.

It follows that, setting φ1 = K for the single constraint, Dirac’s eqn (12.47) be-
comes simply

Heff(q, p, λ) = λ1K(q, p) (12.48)

and his effective Hamilton equations eqn (12.46) reduce to

q̇k = λ1
∂K(q, p)

∂pk
and ṗk = −λ1

∂K(q, p)

∂qk
(12.49)

The multiplier λ1 cannot be zero, since that would imply that ṫ = 0 in contradiction
to the monotonic variation of both t and β. A nonzero λ1 cancels from eqn (12.29)
and so eqn (12.49) are equivalent to the standard extended Hamilton equations eqn
(12.13). Dirac’s result is therefore equivalent to our extended Hamilton equations,
eqn (12.13).

It seems, at least in the context of the extended Hamiltonian theory presented in
this chapter, that the principal difference between Dirac’s approach and the one we
have used here is that we refer to K as a dependency function and an extended Hamil-
tonian, while Dirac would refer to the same K as a primary, first-class constraint that
appears in an effective Hamiltonian. The resulting equations of motion are equivalent
in either case.

By basing his treatment on the calculus of variations, Dirac also assumes implic-
itly that any equation of motion derived from Hamilton’s Principle, using a consistent
Lagrangian and well-defined constraints, must be true. But we see in Theorems 6.2.1
and 13.1.2 that there are cases in which a physically incorrect equation can be de-
rived from Hamilton’s Principle with constraints. Thus, while it is interesting to derive
the extended Hamilton equations from the calculus of variations, as Dirac has done
and as we do in Theorem 13.4.1, it is important that we have proved them to be
correct in Theorem 12.5.1 using a proof that is entirely independent of the calculus
of variations.

12.12 Poisson Brackets with Time as a Coordinate
In extended Hamiltonian mechanics, all quantities of physical interest are assumed to
be expressed as functions of the phase-space variables. For example,

f = f (q, p) = f (q0, q1, . . . , qD, p0, p1, . . . , pD) (12.50)

The extended Poisson bracket of two such functions can be defined in the same way
as in Section 4.6, but now with the additional variables q0 and p0.

Definition 12.12.1: Extended Poisson Brackets
In the theory with time as a coordinate, the extended Poisson bracket of two phase-space
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functions f (q, p) and g (q, p) is another phase-space function defined by

[ f, g] =
D∑

k=0

(
∂ f (q, p)

∂qk

∂g(q, p)

∂pk
− ∂g(q, p)

∂qk

∂ f (q, p)

∂pk

)
(12.51)

The properties in eqn (4.54) through eqn (4.57) follow from the anti-symmetry of the
Poisson bracket, and so hold also for this extended definition. They are, with f , g,
and h any phase-space functions,

[ f, g] = −[g, f ] [ f, f ] = 0 (12.52)

[ f, (αg + βh)] = α[ f, g] + β[ f, h] [ f, gh] = g[ f, h] + [ f, g]h (12.53)

and the Jacobi identity

[ f, [g, h]] + [h, [ f, g]] + [g, [h, f ]] = 0 (12.54)

The derivative of a function f with respect to β can be found from its Poisson
bracket. If f = f (q, p) is some phase-space function and K (q, p) is the extended
Hamiltonian, then

ḟ = [ f,K] (12.55)

To see this, apply the chain rule,

ḟ = d f

dβ
=

D∑
k=0

(
∂ f (q, p)

∂qk
q̇k + ∂ f (q, p)

∂pk
ṗk

)
(12.56)

and then the extended Hamilton equations, eqn (12.13) to get

ḟ =
D∑

k=0

(
∂ f (q, p)

∂qk

∂K(q, p)

∂pk
− ∂ f (q, p)

∂pk

∂K(q, p)

∂qk

)
= [ f,K] (12.57)

as was asserted.
It follows from eqn (12.55) that quantity f is a conserved quantity or constant of

the motion, defined as a quantity with ḟ = 0, if and only if it has a vanishing Poisson
bracket with the extended Hamiltonian function K. Equation (12.55) does not require
the additional ∂ f (q, p)/∂t term that was needed in eqn (4.52) using the traditional
Hamiltonian. This is because any time dependence of f is already included by making
the time be a phase-space variable q0.

The Poisson bracket technique for calculating ḟ also allows new constants of the
motion to be found.

Theorem 12.12.2: Poisson’s Theorem
If phase-space functions f (q, p) and g(q, p) are constants of the motion, then the phase-
space function [ f, g] is also a constant of the motion.

Proof: The proof is left to the reader as Exercise 12.3. �
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The derivative of f with respect to some coordinate with q̇l �= 0 can also be found.
For example, to calculate d f/dt we can use the same equation eqn (12.55) applied to
the simple phase-space function t = q0. Then

ṫ = [q0,K] = ∂K(q, p)

∂p0
(12.58)

and so
d f

dt
= ḟ

ṫ
= [ f,K]
[q0,K] (12.59)

As in the traditional case, the extended Hamilton equations eqn (12.13) can be
written as Poisson bracket expressions. They are

q̇k = [qk,K] and ṗk = [pk,K] (12.60)

And an extended set of fundamental Poisson brackets can also be defined. They are,
for all k, l = 0, . . . , D,

[qk, ql ] = 0 [qk, pl ] = δkl [pk, pl ] = 0 (12.61)

Phase-space functions in extended Hamiltonian theory can be written as functions
of the entire set of independent phase-space coordinates q0, q1, . . . , qD, p0, p1, . . . , pD.
We might be concerned that the same physical quantity could be written in two
different ways, for example as f = f

(
g(p0), q, p

)
, or f = f

(
g(−H), q, p

)
where

H = H(q[0], p[0], q0), which might lead to different values for ḟ in eqn (12.55). But
Exercise 12.2 shows that the same value of ḟ is obtained no matter which way f is
written.

12.13 Poisson Brackets and Quantum Commutators

In classical mechanics, the introduction of phase space and the Hamiltonian formal-
ism can be thought of simply as a mathematical technique that re-expresses Newton’s
second law in a particularly elegant manner, but that adds nothing to its physical
basis. The situation is different in quantum mechanics, however. The canonical mo-
menta59 of phase space determine the wave length of a quantum wave, which in turn
governs the pattern of wave interference phenomena. Thus phase space is given a
new physical significance beyond that found in classical theory.

The fundamental difference between classical and quantum mechanics is that the
latter is a wave theory, with particle interference and superposition phenomena that
are unknown in the classical mechanics of particles. The connection between the

59Note that, as discussed initially in Section 2.17, when a magnetic field acts on charged particles, the
canonical momentum p is different from the particle momentum p. In those cases, it is the canonical
momentum that governs interference phenomena and appears in the quantum uncertainty principle.
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particle variables of classical mechanics and wave variables of quantum mechanics
was originally stated in the early wave mechanics by the deBroglie relations

E = h̄ω px = h̄kx py = h̄ky pz = h̄kz (12.62)

between the classical variables E, p and the angular frequency ω and wave vector k of
a matter wave. (The vector k points in the direction of wave travel and its magnitude
k is related to the wave length λ of the wave by k = 2π/λ.) A plane wave in wave
mechanics is then of the form

ψ0 = a exp {i (k · r − ωt)} = a exp {(i/h̄) (p · r − Et)} (12.63)

The motivation for the definition p̂ = −i h̄ (∂/∂r), used for example in eqn (4.67)
and Exercise 12.1, is then that the plane wave eqn (12.63) is an eigenvector of this
operator

p̂ψ0 = −i h̄
∂

∂r
ψ0 = h̄kψ0 = pψ0 (12.64)

where we have introduced the common notation of using the classical variable with
a hat over it to represent the corresponding quantum operator.60 Using this same
notation, the position operators in Schroedinger theory are identical to the classical
variables, hence x̂ = x , etc. In the extended Hamiltonian theory, we can also introduce
the operator t̂ = t , and the zeroth momentum operator p̂0 = −i h̄∂/∂t that obeys the
eigenvalue equation

p̂0ψ0 = −i h̄
∂

∂t
ψ0 = −h̄ωψ0 = −Eψ0 (12.65)

corresponding to the definition p0 = −H .
It follows that the commutators of the quantum operators have an algebraic struc-

ture that closely resembles the fundamental Poisson brackets of the classical variables
in eqn (12.61). For any wave function ψ , the commutators of the quantum operators
acting on ψ are, for k, l = 0, 1, 2, 3,61

[̂qk, q̂l ]cψ = 0 [̂qk, p̂l ]cψ = i h̄δklψ [ p̂k, p̂l ]cψ = 0 (12.66)

where we denote q̂0 = t̂ , q̂1 = x̂ , etc. Since the wave function ψ is arbitrary, these
imply the operator equations

[̂qk, q̂l ]c = 0 [̂qk, p̂l ]c = i h̄δkl [ p̂k, p̂l ]c = 0 (12.67)

which have the same structure as the Poisson bracket relations eqn (12.61) except for
the addition of the reduced Planck constant h̄ as a scale factor with units of action, and
the addition of i due to the complex space used for quantum mechanical operators.

60A wide hat will be used for quantum operators, to distinguish them from Cartesian unit vectors that
are denoted by a narrow hat. Thus p̂ is a unit vector, and p̂ is a quantum operator.

61Recall that, we use a subscript c on the bracket symbol “]” to denote a commutator of two operators.
Thus [̂qk , p̂l ]c is the commutator of two operators, while [qk , pl ] as in eqn (12.61) is the Poisson bracket of
two phase-space functions.
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This analogy between Poisson brackets and quantum commutators can also be
used to state the Ehrenfest theorem of Section 4.8 in a form analogous to eqn (4.58).
Assuming the simple form for the traditional Hamiltonian given in eqn (4.61), it
follows from the general rules of commutators described in Section 7.1 that, for
i = 1, 2, 3, the Ehrenfest relations in eqn (4.71) may be written as

i h̄
d

dt
〈̂qi 〉 =

〈[̂qi , Ĥ ]c
〉

i h̄
d

dt
〈 p̂i 〉 =

〈[ p̂i , Ĥ ]c
〉

(12.68)

where Ĥ is the traditional quantum Hamiltonian operator defined as

Ĥ = p̂2
x + p̂2

y + p̂2
z

2m
+U (̂x, ŷ, ẑ, t) (12.69)

Again, except for the addition of the i h̄ factors and the necessity to take expectation
values, these have the same structure as the Poisson bracket form of the traditional
Hamilton equations in eqn (4.58).

The transition from classical to quantum mechanics by the replacement of phase-
space variables q, p by quantum operators q̂, p̂ leads at once to the Schroedinger
equation, as seen, for example, in Exercise 12.1. However, despite the above noted
motivations for it, this transition can appear to be more of a recipe than a funda-
mentally motivated theory. It is justified ultimately by its great success as a predictor
of experimental results. The close analogies between classical phase-space variables
and quantum operators, such as the analogy between Poisson brackets and quantum
commutators presented in this section, suggest that any future theory that seeks to
understand why particles sometimes behave as waves must also confront the funda-
mental origin of particle mass and momentum.

12.14 Exercises
Exercise 12.1 Suppose we have a traditional Lagrangian for a single particle of mass m

L = m

2

(
x ′2 + y′2 + z′2

)
−U (x, y, z, t) (12.70)

where x ′ = dx/dt , etc.

(a) Write the traditional Hamiltonian H(q[0], p[0], t), the extended Lagrangian L(q, q̇), and
the standard form of the extended Hamiltonian K(q, p) for this case.
(b) Show that the Schroedinger equation derived in Section 4.7 can also be derived by putting
the quantum substitutions

p0 →−i h̄
∂

∂t
px →−i h̄

∂

∂x
py →−i h̄

∂

∂y
pz →−i h̄

∂

∂z
(12.71)

into the dependency relation K(q, p) = 0.
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Exercise 12.2
(a) If f is defined as the compound function f = f (g(q, p), q, p), show that

[ f,K] = [ f,K]|g +
∂ f (g, q, p)

∂g
[g,K] (12.72)

where [ f,K]|g is the Poisson bracket evaluated as if g were a constant.
(b) Define f1 and f2 as two phase-space functions that differ only in the dependency of g on
either p0 or −H(q, p[0]),

f1 = f
(
g(p0), q, p

)
f2 = f

(
g
(−H(q, p[0])

)
, q, p

)
(12.73)

Show that the application of eqn (12.15) after all partial derivatives are taken gives

f1 = f2 and [ f1,K] = [ f2,K] (12.74)

(c) Explain why this proves the assertion made in the last paragraph of Section 12.12.

Exercise 12.3
(a) Use the Jacobi identity, eqn (12.54) to prove Theorem 12.12.2.
(b) Consider the case of a single mass with phase-space variables q, p
= t, x, y, z, p0, px , py, pz . The vector angular momentum of the particle is L = r × p.
Derive the Poisson bracket relations[

Lx , L y
] = Lz

[
Lz, Lx

] = L y
[
L y, Lz

] = Lx (12.75)

(c) Make a short argument supporting the following proposition if true, or opposing it if
false: Any single particle system in which any two of Lx , L y , and L y are conserved must
also conserve the third one.

Exercise 12.4 Consider a system of a single particle of mass m with traditional Lagrangian

L(q[0], q̇[0], t) = 1

2
m

(
x ′ 2 + y′ 2 + z′ 2

)
− 1

2
k
(

x2 + y2
)

(12.76)

where x ′ = dx/dt , etc.

(a) Write the traditional Hamiltonian H(q[0], p[0], t), the extended Lagrangian L(q, q̇), and
the standard form of the extended Hamiltonian K(q, p) for this system.
(b) Use the extended Hamilton equations to demonstrate that Lz is conserved for this system,
but Lx and L y are not. Does this contradict the result of Exercise 12.3?

Exercise 12.5 Consider again the case of a single mass with phase-space variables q, p
= t, x, y, z, p0, px , py, pz treated in Exercise 12.3

(a) State why no system of canonical phase-space coordinates q, p can contain both Lx and
L y .
(b) Show that [L2, Lk] = 0 where L2 = L · L and k = x, y, z. State why a set of canonical
phase-space coordinates could contain both L2 and Lz .
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Exercise 12.6 A single projectile of mass m moving in two dimensions has the traditional
Lagrangian

L = 1

2
m

(
x ′ 2 + z′ 2

)
− mgz (12.77)

where x ′ = dx/dt , etc.

(a) Write the traditional Hamiltonian H(q[0], p[0], t), the extended Lagrangian L(q, q̇), and
the standard extended Hamiltonian K(q, p) for this system.
(b) Assuming that ẋ(t=0) > 0 at time zero, and hence for all future times, write the alternate
extended Hamiltonian Kb in eqn (12.34) with the momentum px playing the role of pl . Show
that the extended Hamilton equations with Kb imply that ẋ = 1.
(c) Derive an alternate traditional Hamiltonian H (l) (t, z, p0, pz, x) as described in Section
12.9. Use it to write out the alternate traditional Hamilton equations eqn (12.41). Show from
these equations that p0 and px are conserved quantities, with dp0/dx = 0 and dpx/dx = 0.

Exercise 12.7 Consider now a single particle of mass m and charge q(ch) moving in a given
electromagnetic field.

(a) Starting with the traditional Lagrangian eqn (2.103) with N=1, write the traditional Hamil-
tonian H(q[0], p[0], t), the extended Lagrangian L, and the standard form of the extended
Hamiltonian K for this case.
(b) Show that the only difference between this K and that of a free particle is that p0 is re-

placed by
(

p
0
+ q(ch)


)
and p is replaced by

(
p − q(ch)A/c

)
. In quantum texts this is often

referred to as “the gauge-invariant substitution”. (See Exercise 11.8 for proof of its gauge
invariance.)
(c) Show that putting the quantum substitutions

p
0
→−i h̄

∂

∂t
p

x
→−i h̄

∂

∂x
p

y
→−i h̄

∂

∂y
p

z
→−i h̄

∂

∂z
(12.78)

into K leads to the same Schroedinger equation as was derived in Exercise 4.7.

Exercise 12.8 Show that the definitions p̂0 = −i h̄∂/∂t and p̂ = −i h̄ (∂/∂r) imply eqn
(12.66).
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HAMILTON’S PRINCIPLE AND NOETHER’S THEOREM

Hamilton’s Principle has already been treated in the context of traditional Lagrangian
and Hamiltonian mechanics. The reader should review Chapter 6 since many of the
ideas there also apply when time is a coordinate.

In this chapter, we present extended forms of Hamilton’s Principle and the phase
space Hamilton’s principle based on the extended Lagrangian and Hamiltonian meth-
ods developed in Chapters 11 and 12.

We also present Noether’s theorem, a method for using symmetries of the ex-
tended Lagrangian to identify quantities that are conserved during the motion of the
system. Noether’s theorem is a powerful technique for discovering conserved quanti-
ties in complex Lagrangian systems. We present the basics of the method in the simple
context of Lagrangian systems with a finite number of degrees of freedom.

13.1 Extended Hamilton’s Principle

The extended action function is defined as

I = I (δa, [q], [η]) =
∫ β2

β1

L (q, q̇) dβ (13.1)

Putting eqn (11.7) into this definition gives∫ β2

β1

L (q, q̇) dβ =
∫ β2

β1

L
(
q[0], q ′[0], t

)
ṫdβ =

∫ t (2)

t (1)

L
(
q[0], q ′[0], t

)
dt (13.2)

The last expression in this equation is the same as the traditional action function in
eqn (6.4), but now expressed in the notation introduced in Section 11.2 in which
q ′k = dqk/dt = q̇k/q̇0. The only difference between the extended action function and
the traditional one is that eqn (13.1) is written in a form that uses β as the integra-
tion parameter and hence allows q0 to be varied along with the other generalized
coordinates.

Both the traditional and the extended Hamilton’s Principles are an application of
the calculus of variations to mechanics. The traditional Hamilton’s Principle used the
coordinate parametric method of Section 5.14. The extended Hamilton’s Principle
uses the general parametric method presented in the body of Chapter 5.

The general parametric method in the calculus of variations in Chapter 5 will be
applied in the present chapter with the variable set x1, . . . , xN used there replaced
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by the set q0, . . . , qD. Thus there are now N = D + 1 independent variables. Equa-
tion (5.3) defining the varied path in the calculus of variations now includes a variable
with k = 0, giving

q0 (β, δa) = q0(β)+ η0(β)δa or, equivalently, t (β, δa) = t (β)+ η0(β)δa (13.3)

In the traditional theory, time is not varied and there is no function η0. We can now
state the extended Hamilton’s Principle, as the following theorem.

Theorem 13.1.1: Extended Hamilton’s Principle
With the action integral I defined as in eqn (13.1), and assuming variations that vanish
at the end points, the first-order variation δ I vanishes for arbitrary δqk if and only if
the qk (β) of the chosen path are a solution to the Lagrange equations, eqn (11.18), with
Q(NP)

k = 0. That is, δ I = 0 if and only if, for k = 0, . . . , D,

d

dβ

(
∂L (q, q̇)

∂ q̇k

)
− ∂L (q, q̇)

∂qk
= 0 (13.4)

on the unvaried path.

Proof: Replacing x by q, and replacing the f (x, ẋ) by L(q, q̇), Theorem 5.5.1 proves
the present theorem. �

The extended Hamilton’s Principle can also be applied in an obvious way to sys-
tems with holonomic constraints. We state the relevant theorem.

Theorem 13.1.2: Extended Hamilton’s Principle with Constraints
With I defined as in eqn (13.1), and variations that vanish at the end points but are
otherwise arbitrary except for the holonomic constraints given by eqn (11.56)

0 = Ga (q) (13.5)

for a = 1, . . . , C , then the first-order variation δ I about a chosen unvaried path vanishes,
δ I = 0, if and only if the qk(β) of the chosen path are a solution to the Lagrange
equations in eqn (11.62)

d

dβ

(
∂L (q, q̇)

∂ q̇k

)
− ∂L (q, q̇)

∂qk
=

C∑
a=1

λ̃a
∂Ga (q)

∂qk
(13.6)

for k = 0, . . . , D. Equations (13.5, 13.6) are D + C + 1 equations in the D + C + 1
unknowns q0, q1, . . ., qD, λ̃1,. . ., λ̃C and can be solved for them.

Equations (13.6) are the correct equations of motion if and only if the forces of
constraint do no virtual work.

Proof: This theorem follows from Theorem 5.9.1 with the replacement of variables
x by q, the substitution of L for f and Ga(q) for Ga(x). Theorem 11.10.2 proves
that the right side of eqn (13.6) is correct if and only if the forces of constraint do no
virtual work. �
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Note to the Reader: It is important to realize that the correctness of eqn (13.6)
in mechanics depends on the condition that the forces of constraint do no virtual
work. If the virtual work is nonzero, then eqn (13.6) will be false. But δ I = 0 and
eqn (13.5) will still imply eqn (13.6). Thus it is possible for Hamilton’s Principle to
imply a false equation. The reader might look at a similar note following Theorem
13.1.2 for more information.

13.2 Noether’s Theorem
In previous uses of the action function, eqn (13.1), the variations δqk have been as-
sumed to be arbitrary except possibly for some constraints. Then δ I = 0 has been
proved equivalent to the condition that the unvaried path satisfies the Lagrange equa-
tions, and hence is the classical path of system motion.

But another use of eqn (13.1) begins by setting the unvaried path to be the clas-
sical path and also setting the variations δqk to be specific functions, at least one of
which must be nonzero at the end points. These δqk are chosen so that the integral
I (δa, [q], [η]) on the varied path has the same value as the integral I (0, [q], [η]) on
the unvaried path to first order, so that δ I = 0. Such a choice of the δqk reveals what
is called a symmetry of the Lagrangian system. The variational calculus can then be
used to derive a constant of the motion associated with that symmetry. The method
is described in the following theorem.62

Theorem 13.2.1: Noether’s Theorem
Taking the unvaried path to be the classical path, select particular functions ηk(β) defined
in Section 5.2 so that, to first order in the scale parameter δa,

I (δa, [q], [η]) = I (0, [q], [η])+ o(δa) (13.7)

and therefore δ I = 0. At least one of the selected ηk(β) must be nonzero at the end points,
so that the δqk = ηk(β)δa do not all vanish there. Then the expression

D∑
k=0

pk(q, q̇)δqk = δa
D∑

k=0

pk(q, q̇)ηk(β) (13.8)

with the selected functions ηk(β), will be a constant of the motion.

62E. Noether (1918) “Invariante Variationsprobleme,” Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen,
Math-phys. Klasse, 235. English translation, M. A. Tavel (1971) Transport Theory and Statistical Physics,
1(3), 183.

Noether’s original paper contained two theorems. The first theorem (the global theorem) assumed that
the δqk are obtained from transformations, such as rotations for example, that form a group parameterized
by a set of constant coefficients. The second theorem (the local theorem) allowed transformations whose
groups were parameterized by non-constant functions. It has been suggested that Noether’s global theorem
and her local theorem are of independent importance, and could with justice be referred to as Noether’s
“first” and “second” theorems. See K. Brading and H.R. Brown, “Symmetries and Noether’s Theorems” in
Brading and Castellani (2003).

The theorem we call “Noether’s Theorem” corresponds to the first, or global, theorem. The redundancy
of the extended Lagrange equations, of which we give a direct proof in Lemma 11.9.1, is used by Noether
as an example consequence of her second theorem.
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Proof: Making the identifications x → q, f → L, the integral eqn (5.17) becomes
identical to eqn (13.1). The development in Section 5.4 can then be applied. Of par-
ticular interest is eqn (5.25), which now becomes

δ I =
D∑

k=0

(
∂L (q, q̇)

∂ q̇k
δqk (β)

)∣∣∣∣β2

β1

−
∫ β2

β1

D∑
k=0

{
d

dβ

(
∂L (q, q̇)

∂ q̇k

)
− ∂L (q, q̇)

∂qk

}
δqk (β) dβ

(13.9)
Since the unvaried path was chosen to be the classical path, the Lagrange equation,
eqn (13.4), is satisfied on the unvaried path. Thus the integrand is identically zero
and eqn (13.9) reduces to

δ I =
D∑

k=0

(
∂L (q, q̇)

∂ q̇k
δqk (β)

)∣∣∣∣β2

β1

= δa
D∑

k=0

pk
(
q(β2), q̇(β2)

)
ηk(β2)− δa

D∑
k=0

pk
(
q(β1), q̇(β1)

)
ηk(β1) (13.10)

Since the end points β1, β2 are arbitrary and δa is nonzero, the assumed choice of the
δqk = ηk(β)δa to make δ I = 0 implies that the expression in eqn (13.8) has the same
value at any two β values, as was to be proved. �
A theorem similar to Theorem 13.2.1 can also be proved in traditional Lagrangian me-
chanics. But, due to the complexity of varying the time t when time is also being used
as an integration variable, the proof of the theorem can be several pages long. The
same result is obtained here, with much less effort, by using the extended Lagrangian
approach in which the variation of q0 = t is no different from the variation of any
other coordinate. The proof of Noether’s Theorem just given required only one short
paragraph, and is an almost trivial corollary of the extended Hamilton’s Principle.

13.3 Examples of Noether’s Theorem
Noether’s Theorem is rather abstract, so we present several examples. First, consider
the Lagrangian in eqn (11.30). Then eqn (13.1) becomes

I (δa, [q], [η]) =
∫ β2

β1

{
m

2ṫ

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
− ṫ

2
kr2

}
dβ (13.11)

Since the integrand in eqn (13.11) does not contain the letter t explicitly, we can
select variations ηk = δk0C0 where C0 is some constant. Thus ηk = 0 for k �= 0.
Since C0 is assumed to be a constant, the variations for k = 0 are δt = C0δα, and
δṫ = δaη̇0 = 0. Then eqn (13.7) will hold because the selected variation will change
neither the integrand nor the range of integration. It follows from Noether’s Theorem
that

D∑
k=0

pk(q, q̇)ηk(β) = p0(q, q̇)C0 (13.12)

is a constant of the motion. Thus the momentum p0(q, q̇) is conserved. Examination
of eqn (11.31) shows that p0 is the negative of the traditional generalized energy
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function, so we have proved the conservation of that function. Thus symmetry under
uniform time translation at fixed values of the other coordinates implies conservation
of energy.

For another example, consider the same Lagrangian and note that eqn (13.11) also
does not contain the variable φ explicitly. Therefore, we can choose ηk = δk3C3 where
C3 is some constant. Then eqn (13.7) will again be satisfied, and Nother’s theorem
will predict the constant of the motion

D∑
k=0

pk(q, q̇)ηk(β) = p3(q, q̇)C3 (13.13)

Thus the momentum p3 = pφ is a conserved quantity. Symmetry under rotation about
the z-axis implies conservation of pφ , which is equal to the z-component of the angular
momentum.

Of course, both p0 and pφ had already been recognized as constants of the motion
in Section 11.6, since the corresponding variables t and φ are ignorable. A more in-
teresting example is to treat the same problem as in Section 11.6, but using Cartesian
coordinates. Then it will not be so obvious that there is a constant of the motion like
pφ .

In Cartesian coordinates, the extended Lagrangian becomes, with q0 = t , q1 = x ,
q2 = y, and q3 = z,

L (q, q̇) = m

2ṫ

(
ẋ2 + ẏ2 + ż2

)
− ṫ

2
k
(

x2 + y2 + z2
)

(13.14)

and eqn (13.1) is thus

I (δa, [q], [η]) =
∫ β2

β1

{
m

2ṫ

(
ẋ2 + ẏ2 + ż2

)
− ṫ

2
k
(

x2 + y2 + z2
)}

dβ (13.15)

The obvious spherical symmetry of this integrand suggests that it is unchanged by a
rotation. Consideration of eqn (8.32), the matrix for rotation about the z-axis, for a
small angle θ = δa suggests that we might choose η0 = 0, η1 = −y, η2 = x , and
η3 = 0. Then, to first order in δa,(

x (R) − x
)
= δx = −yδa and

(
y(R) − y

)
= δy = xδa (13.16)

agrees with the rotation produced by eqn (8.32), since the cosine function becomes
just the number 1 and sin(δa) = δa to this order.

The reader can easily verify, either by direct computation or by noticing that eqn
(13.14) can be written as

L (q, q̇) = m

2ṫ
(ṙ · ṙ)− ṫ

2
k (r · r) (13.17)

which contains dot products invariant under rotations, that to first order in δa the
integrand in eqn (13.15) is unchanged by this choice of the ηk , and that eqn (13.7)
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is therefore satisfied. Then Noether’s theorem implies that there is a constant of the
motion given by

D∑
k=0

pk(q, q̇)ηk(β) = −px y + py x (13.18)

which is the z-component of the angular momentum, the same quantity as the pφ

proved constant earlier using spherical polar coordinates.
The appropriate choice of the ηk to make δ I = 0 reveals a symmetry of the La-

grangian system. The value of the Noether theorem is that it allows symmetries to be
translated into conserved quantities. The last example was the most interesting be-
cause rotational symmetry produced a conserved quantity even though none of x, y, z
was an ignorable coordinate.

13.4 Hamilton’s Principle in an Extended Phase Space
In Section 6.4, a phase-space form of Hamilton’s Principle was developed in the con-
text of traditional Hamiltonian mechanics. The reader should refer to that section for
background. A similar phase-space Hamilton’s Principle will be presented here, but
using the extended theory in which time is a coordinate.

In the extended theory, the phase-space action function is defined by substituting
eqn (11.16) into the definition in eqn (13.1). It is

I =
∫ β2

β1

Ldβ =
∫ β2

β1

D∑
k=0

pkq̇kdβ (13.19)

Here, as in Section 6.4, the idea is to write a variational principle that varies all of the
canonical coordinates q and p of phase space independently. In the extended phase
space, this set includes the two new variables q0 and p0.

The variational calculus of Chapter 5 will be applied with N = (2D + 2), and
the variables x1, . . . , xN used there defined to be the whole of the set q0, . . . , qD,

p0, . . . , pD listed in eqn (12.1). The function f (x, ẋ) introduced in Section 5.3 will
then be identified with the integrand F(q, p, q̇, ṗ) in eqn (13.19), which will be con-
sidered to be a function of the variables q, p and their derivatives

F(q, p, q̇, ṗ) =
D∑

k=0

pkq̇k (13.20)

Just as in the traditional theory of Section 6.4, the definition eqn (11.9) relating
the canonical momenta to the coordinates and velocities is to be forgotten here. The
momenta pk are taken to be independent of the coordinates. For example, the defini-
tion of coordinate variation in eqn (5.5) becomes the two equations

δqk = δa θk(β) and δpk = δa χk (β) (13.21)

which hold for all k = 0, . . . , D, where we have replaced the shape function η by the
two independent sets of shape functions θ and χ .
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The phase space Hamilton’s Principle also requires application of the dependency
relation K(q, p) = 0 from eqn (12.6). From the viewpoint of the calculus of variations,
this dependency relation is a constraint on the variations δq and δp. However, this
constraint is not of the same sort as was discussed in Chapter 3. Those constraints
were enforced by forces of constraint in particular mechanical systems. The constraint
K(q, p) = 0 is unrelated to forces. It is a kinematic rather than a dynamic constraint.

We now prove the extended form of the phase-space Hamilton’s Principle.

Theorem 13.4.1: Extended Hamilton’s Principle in Phase Space
Given the phase space action integral

I =
∫ β2

β1

Ldβ =
∫ β2

β1

D∑
k=0

pkq̇kdβ =
∫ β2

β1

F(q, p, q̇, ṗ)dβ (13.22)

with F(q, p, q̇, ṗ) defined in eqn (13.20), the first order variation δ I will be zero for all
δq and δp that vanish at the end points but are otherwise arbitrary and independent
except for the single constraint

0 = K(q, p) = p0 + H
(
q[0], p[0], q0

)
(13.23)

if and only if the extended Hamilton equations, eqn (12.13),

q̇k = ∂K(q, p)

∂pk
and ṗk = −∂K(q, p)

∂qk
(13.24)

are satisfied on the unvaried path.

Proof: With the identifications x → q, p, f (x, ẋ, ) → F(q, p, q̇, ṗ), G1(x) → K(q, p),
and setting C = 1, the premises in Theorem 5.9.1 become identical to those of
the present theorem. With the same substitutions, the Euler-Lagrange equations eqn
(5.66) become the two equations

d

dβ

(
∂ F(q, p, q̇, ṗ)

∂ q̇k

)
− ∂ F(q, p, q̇, ṗ)

∂qk
= λ1

∂K(q, p)

∂qk
(13.25)

d

dβ

(
∂ F(q, p, q̇, ṗ)

∂ ṗk

)
− ∂ F(q, p, q̇, ṗ)

∂pk
= λ1

∂K(q, p)

∂pk
(13.26)

which are to hold for all k = 0, . . . , D. Evaluating the left-hand sides gives

q̇k = (−λ1)
∂K(q, p)

∂pk
and ṗk = − (−λ1)

∂K(q, p)

∂qk
(13.27)

The Lagrange multiplier λ1 is not determined. But it is known that it must be nonzero,
because a zero value would imply that 0 = q̇0 = ṫ , in contradiction to the monotonic
variation of both β and t along any system path. Thus the multiplier cancels from eqn
(12.29) that determines system trajectories. The same trajectory is obtained no matter
what nonzero value of λ1 is used. Thus eqn (13.27) are equivalent to the standard
Hamilton equations, as was to be proved. �
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13.5 Exercises
Exercise 13.1
(a) Apply Noether’s theorem to the extended Lagrangian L in eqn (13.14), with the variational
choice

δr = (
R[δ
 n̂] − U

)
r = δ
 n̂ × r (13.28)

where n̂ is an arbitrary unit vector. Thus prove that the angular momentum vector J is a
constant of the motion for this system.
(b) Would the same be true for

L = m

2ṫ

(
ẋ2 + ẏ2 + ż2

)
− ṫq(ch)Q(ch)

4π
√

x2 + y2 + z2
(13.29)

where q(ch) is the charge of a particle moving in the electric field of another charge Q(ch)

fixed at the origin of coordinates?

Exercise 13.2 Suppose that a system of N point masses has a potential function

U (r1, . . . , rN ) =
N∑

n=1

n−1∑
n′=1

f (rn − rn′) (13.30)

Use Noether’s theorem to prove that the total momentum vector P is a constant of the motion.

Exercise 13.3 Show that eqns (13.25, 13.26) reduce to eqn (13.27), as asserted in Theorem
13.4.1.
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RELATIVITY AND SPACETIME

When it was proposed at the start of the twentieth century, special relativity was revo-
lutionary and controversial. Now, some hundred years later, the consensus in physics
is that, at least in local spaces where the effects of curvature are negligible, standard
special relativity will reliably predict the outcome of any experiment to which it is
applied. The Lorentz transformation is considered a symmetry of nature, and new
theories are crafted with Lorentz invariance as a necessary feature.

In the early twenty-first century, the remaining task is to better understand the
implications of the special and general theories of relativity, to incorporate them fully
into our theoretical understanding. In particular, the task of unifying relativity and
quantum theory is incomplete, and a quantum theory of gravity remains elusive. This
book attempts to prepare the reader for this process of incorporation by at least pre-
senting elementary Lagrangian and Hamiltonian mechanics, and the theory of canon-
ical transformations, in a way that uses time as a coordinate and so does not exclude
special relativity from the outset.

In the present chapter, we introduce the ideas of special relativity with the assump-
tion that it is an established theory whose experimental efficacy is unquestioned. We
attempt to help the reader understand that theory more deeply, to see what the rela-
tivistic effects may be telling us about the world and the nature of spacetime. Those
who are familiar with elementary special relativity from earlier study may find Sec-
tion 14.5, which analyzes relativity from a surveyor’s viewpoint, to be an interesting
counterpoint to their previous reading.

14.1 Galilean Relativity
The relativity principle of Newtonian physics underlies all discussions of relativity,
so we begin with it. This relativity principle is commonly called Galilean relativity,
although the same ideas are found in the Principia, and in works before Galileo. Cer-
tainly, Galileo gave a detailed and poetic statement of it in a book of wide influence,
the Dialog Concerning the Two Chief World Systems (Galilei, 1632).

Galileo uses the example of passengers in a ship, below decks, with no view out-
side. Galileo’s protagonist Salviati asks his listeners to imagine that “there are with
you some flies, butterflies, and other small flying animals. Have a large bowl of water
with some fish in it; hang up a bottle that empties drop by drop into a wide vessel
beneath it.” The behaviors of all these things are to be observed with the ship stand-
ing still in harbor. Salviati then tells his audience to “have the ship proceed with any
speed you like, so long as the motion is uniform and not fluctuating this way and that.

313
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You will discover not the least change in all the effects named, nor could you tell from
any of them whether the ship was moving or standing still.”

Although Galileo made enormous discoveries, such as that the trajectory of a pro-
jectile can be considered as simultaneous independent horizontal and vertical mo-
tions, his physics was still tied to the Earth. He believed that an initially horizontal
unforced motion would continue in a circular path parallel to the surface of the Earth
forever.63 So, when Galileo speaks of a ship at rest or in uniform motion, he means
with reference to the Earth.

Newton’s physics was free of such earthly constraints. He held that an unforced
motion would continue in a straight line with constant speed, forever. In the Scholium
of the Principia, Newton uses the same ship analogy as used by Galileo. But the refer-
ence for determining rest and constant velocity is plainly stated to be absolute space
rather than the Earth.

The Galilean relativity principle, modified to refer to Newton’s absolute space, can
be translated into a modern idiom as follows.

Definition 14.1.1: Galilean Relativity Principle
Consider a closed room with walls sufficient to prevent the detection of signals from
outside it. No experiment performed entirely inside such a room can detect whether the
room is at rest or moving with constant velocity relative to absolute space.

In Newtonian physics, both the room and the objects in it are moving in an exter-
nal absolute space. Distances measured relative to this space are compounded, using
what we now refer to as the rules of vector addition. Using Figure 14.1, and assuming
for simplicity that the two coordinate systems coincide at time zero and are oriented
with their relative velocity along both x-axes, the relations between measured dis-
tances and times are

t = t ′ x = V t ′ + x ′ y = y′ z = z′ (14.1)

where V = V ê1 = V ê′1 is the constant velocity of the S′ system relative to the S
system.

Equation (14.1) is called the Galilean coordinate transformation. Time transforms
identically, t = t ′, because in Newtonian physics time is taken to be an absolute
quantity. Taking differentials and dividing by dt = dt ′ leads at once to the Galilean
velocity transformation formula. Denoting vx = dx/dt , v′x = dx ′/dt ′, etc., it is

vx = V + v′x vy = v′y vz = v′z (14.2)

Since V is constant, another time derivative then shows that acceleration is invariant.
With ax = dvx/dt , a′x = dv′x/dt ′, etc., the transformation of acceleration is

ax = a′x ay = a′y az = a′z (14.3)

Hence, in the Newtonian model of point masses acted on by forces, the Galilean
relativity principle holds if the forces and masses are also invariant. If f = f ′ and

63See the discussion in Chapter IV of Koyré (1957).
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S S′
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x ′

y′

x

V
x ′, y′, z′, t ′

x, y, z, t

FIG. 14.1. A closed room moves with constant velocity V relative to a fixed coordinate system
S. The S and S′ axes coincide at time zero.

m = m′, then eqn (14.3) implies that the equation of motion relative to the body-
fixed coordinates, f ′ = m′a′, is the same whether the room is at rest with V = 0 or
moving at constant-velocity.

In Newtonian physics, coordinate systems moving uniformly with respect to ab-
solute space are called inertial reference systems. The second law f = ma holds when
distances are measured with respect to any inertial system. And the Galilean relativ-
ity principle says that no local experiment can distinguish between different inertial
systems.

14.2 Conflict with the Aether

The nineteenth century discovery that light is a transverse electromagnetic wave sug-
gested that some medium, which came to be called the aether, must exist in which that
wave propagates. Waves, after all, are not things; they are states of collective motion
of something else. For example, a wave in the ocean is not itself a physical thing but
rather a propagating collective motion of the surface water. And the transversality of
the light waves suggested strongly that the medium had to have a rigid structure, be
something like a crystal of solid material. And yet, this medium of propagation was
invisible, unobserved except for the existence of the waves. One nineteenth century
observer64 commented wryly that, “For more than two generations the main, if not
the only, function of the word ’aether’ has been to furnish a nominative case to the
verb ‘to undulate’.”

There is an obvious conflict between the aether and the Galilean principle of rel-
ativity: An observer in a closed room can do experiments with light waves. It was
assumed in the nineteenth century that matter moved through the aether with no
resistance and that the aether was all pervasive, filling all of the Newtonian absolute
space and presumably at rest relative to it. So, no matter how closed the room was
in Definition 14.1.1, it would be impossible to exclude the aether. Moreover, the fact

64From Lord Salisbury’s presidential address to the British Association in 1894 as quoted in the Encyclo-
pedia Brittanica, 1911 edition, under entry AETHER.
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that an observer in the room could even do experiments with light proved that aether
must be present in the room to act as the propagation medium.

But measurement of the speed of light within a room would allow an observer
there to measure his own velocity relative to the aether and therefore assumedly with
respect to absolute space. This is a direct violation of the Galilean relativity principle,
which asserts that V cannot be detected by experiments done entirely inside a closed
room. Using eqn (14.2) and the assumption that all light propagates with a speed c
relative to an aether that is at rest in absolute space, the speed of light relative to
the room should be c − V in the forward direction of the room’s motion, and c + V
in the backward direction. The analogy is to a helicopter (the closed room) flying
over a lake (the aether). If water waves on the lake’s surface have speed c relative
to the lake and the helicopter has speed V relative to the lake, then the waves will
appear to the pilot to move at speed c − V in the direction of the helicopter’s motion
as the helicopter partially overtakes them. Thus measurement of the speed of light
in different directions inside the closed room could allow V to be determined, which
would violate Definition 14.1.1.

At the end of the nineteenth century, it became technically possible to detect the
speed of a room on the Earth relative to the aether, using the Michelson–Morley inter-
ferometer. The experiment failed to detect this motion, even though the aether theory
predicted an effect well within the detection limits. This null result was a severe crisis
for the aether theory.

14.3 Einsteinian Relativity
The conflict between the Galilean relativity principle and electrodynamics is not lim-
ited to light waves in an aether. Also, the Maxwell equations governing the basic
dynamics of electric and magnetic fields are not form invariant under the Galilean
transformation, eqn (14.1). Lorentz65 used the requirement that the Maxwell equa-
tions must be form invariant under transformations from the aether system to other
inertial systems to derive what is now called the Lorentz transformation. Under the
same conditions as eqn (14.1), the transformation equations derived by Lorentz are

ct = �(ct ′ + Bx ′) x = �(Bct ′ + x ′) y = y′ z = z′ (14.4)

where c is the speed of light relative to the aether, and B = V/c, � = (1 − B2)−1/2

are unitless constants derived from the constant relative speed V of the two systems.
But, since he shared the common view that the Newtonian time was absolute, Lorentz
referred to the transformed time t ′ in the moving system as “local time” as opposed
to t which he called the “true time.”

Einstein’s great contribution was to extend the Newtonian concept of time. He
realized that the transformation of Lorentz could be re-derived from the Galilean

65H.A. Lorentz (1904) “Electromagnetic Phenomena in a System Moving with any Velocity Less than that
of Light,” Proceedings of the Academy of Sciences of Amsterdam, 6. English translation reprinted in Einstein,
Lorentz, Minkowski and Weyl (1923).
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relativity principle provided that: (1) The time t ′ is not less “true” than t , but is the
time actually measured by suitably synchronized physical clocks at rest in the moving
system, and (2) The Galilean relativity principle is assumed to include the assertion
that the speed of light in any direction has the same value c when measured in either
the S or the S′ system.

After an introduction describing the synchronization of clocks, Einstein’s first 1905
paper states two axioms.66 They are:

1. The Principle of Relativity: The laws by which the states of physical sys-
tems undergo change are not affected, whether these changes of state be re-
ferred to the one or the other of two systems of coordinates in uniform trans-
latory motion.
2. The Principle of the Constancy of the Velocity of Light: Any ray of light
moves in the “stationary” system of coordinates with the determined velocity
c, whether the ray be emitted by a stationary or a moving body.

The first axiom is very close to being the Galilean relativity principle, simply translated
into coordinate language.67 It differs from Definition 14.1.1 principally in its careful
avoidance of the idea of an absolute space.

Einstein’s second axiom is curious. An aether theorist of Einstein’s day would have
had no difficulty in accepting it, for the aether theory says that the velocity of light is
determined relative to the aether, and is not affected by the speed of the source of the
disturbance. The analogy is for the pilot of the helicopter mentioned above to throw
a stone in the lake. The speed of the water ripples (the light) relative to the lake (the
aether) does not depend on the velocity of the stone (the light source).

It is only in connection with a strict interpretation of Axiom 1 that the Principle of
the Constancy of the Velocity of Light has relevance. Ten paragraphs into his article,
Einstein states that relevance, “light (as required by the constancy of the velocity of
light, in combination with the principle of relativity) is also propagated with velocity
c when measured in the moving system.”

To carry out the derivation of the Lorentz transformation, Einstein makes some
plausible auxiliary assumptions. He uses the same simplified geometry as in Figure
14.1, and assumes that the three moving coordinate axes (which are perpendicular
when viewed in the S′ system by construction) appear perpendicular, and parallel to
the S system axes, when viewed from the stationary S system. He uses a particular
method for synchronizing co-moving clocks, and also assumes that the transforma-
tion equations must be linear. A number of good treatments of the derivation of the
Lorentz transformation from Einstein’s axioms can be found in the literature, so it will
not be repeated here. However, probably the clearest and most careful derivation is

66A. Einstein (1905) “On the Electrodynamics of Moving Bodies” Annalen der Physik, 17. Translated in
Einstein, Lorentz, Minkowski and Weyl (1923).

67In A. Einstein (1916) “The Foundation of the General Theory of Relativity,” Annalen der Physik, 49,
Einstein says that this postulate, “is also satisfied by the mechanics of Galileo and Newton.”
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that given by Einstein himself, in his original paper. The reader is urged to study at
least the first four sections of Einstein’s 1905 article.

One important point about Einstein’s approach is that he presents special relativity
as what is called a Principle Theory. He begins with axioms rather than experiments or
deductions from other theories. With such a theory, experimental verification is cru-
cial. And special relativity has been abundantly verified. But there is then a lingering
question as to why those axioms are true, and what physical effects underlie them.

14.4 What Is a Coordinate System?

The Lorentz transformation is a transformation between coordinate systems. But the
interesting question is how even one of these coordinate systems can be set up. The
nineteenth century image of a coordinate system as three perpendicular sticks, with
an observer at their intersection holding a clock, is not adequate. Among other prob-
lems, the finite speed of light would lead to a time delay between a distant event68

and its observation by the observer at the origin.
To avoid these systematic time-delay errors, it is necessary to have many station-

ary observers (human or robot), each equipped with a synchronized clock, placed
throughout the region of observation. Each observer makes observations only in his
immediate local neighborhood, whose size is small enough to make time delays neg-
ligible. These clocks and observers form an observer team, which replaces the single
observer of nineteenth century physics.69

Aside from the nontrivial problem of synchronizing all of the clocks, it is important
to realize the essential level of abstraction that is introduced by the use of an observer
team instead of a single observer. Because observations are made by a team, the
combined result of their observations is never what is actually seen by any single
observer. The observers in the team make only local observations, which consist of the
x, y, z address of the observer and the time t of the observed local event as measured
on that observer’s clock. These are the unprocessed raw data.

After the experiment is over, all of these scattered observations are reported back
to some central data collector, say the observer at the origin. She may use the collected
data to construct something like a motion picture or video animation, possibly a stere-
ographic one, consisting of a sequence of frames, each frame labeled with a different
value of reported time. She places in the animation frame labeled with a particular
value of t only those reported events whose local observer assigned that particular
time to them. She then projects these frames on a screen in a time sequence, perhaps
in slow motion to help the viewer. Viewing this motion picture is the closest that we
can come to “seeing” in a coherent way what happened in the experiment.

68An event in relativity theory is a point in both space and time. It can be thought of as the very brief
flash of a very small flash bulb. Analysis of experiments in relativity is aided by breaking them down into a
succession of events.

69Other schemes to eliminate the time-delay problem can be imagined. But they will be equivalent to the
one presented here, which has the virtue that it illustrates clearly the issues raised.
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When pondering the seemingly strange features of special relativity, the reader
should remember that our truest picture of spatiotemporal reality is this artificially
constructed composite, assembled after the fact from the separate observations of a
team of observers.

In the following section, we consider the physical steps required to set up a coor-
dinate system. The process is presented as a survey, a series of experiments. The end
result is a team of observers, each with a definite address and a synchronized clock,
ready to make observations.

14.5 A Survey of Spacetime

One way to understand better what a coordinate system is, and what lies behind
the success of special relativity, is to imagine a coordinate system as the end result
of a series of experiments—a survey of spacetime. Let us imagine that a group of
twenty-third century physicists and engineers, carrying instrumentation sufficient to
detect the very small corrections due to relativistic effects at small speeds, is sent to
an empty region of space far from significant masses, where special relativity should
apply. Imagine that they conduct a survey in which they confront the effects predicted
by Einstein’s special relativity theory, and are forced to work around them to establish
a coordinate system.

In describing this imaginary task, we assume the experimental efficacy of standard
special relativity, that the effects predicted by it will certainly be observed experimen-
tally. Experimental results that the survey group will certainly observe due to their be-
ing predicted by standard special relativity70 will be marked with the acronym “SR”.
As discussed in the introduction to this chapter, there is currently no doubt that the
predictions of standard special relativity are correct. So, in this imaginary exercise,
rather than starting with the principle of relativity and deriving the relativistic effects
such as time dilation and Lorentz contraction, we reverse the order. We begin with
the effects and show how they force a survey team to arrive at a coordination of
spacetime which has the principle of relativity as one of its features.

A possible source of caution for any approach of this sort is that rods and clocks—
taken to be primitive things in the survey described—are anything but simple ob-
jects. Any treatment of spacetime using rods and clocks faces this essential circularity:
Space and time cannot be defined without rods and clocks, but the theory of rods and
clocks (electromagnetism and quantum theory) cannot even be begun until space and
time are defined. We can argue only that the general success of physics as a theoret-
ical and experimental enterprise suggests that this circularity is benign and does not
lead to paradox.

70Standard special relativity is taken here to include the axiom that (when possible inertial forces are
taken account of) sufficiently local and brief measurements by a moving observer will yield values iden-
tical to those that would be obtained in an inertial coordinate system relative to which the observer is
instantaneously at rest.
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14.5.1 Space Frame

The survey group’s first task is to establish a framework with respect to which position
and velocity can be defined. Imagine the group to be equipped with measuring rods
which are assembled into a cubical grid with equal cells of some standard length and
with right-angle corners defined by, for example, use of 3-4-5 right triangles. Con-
struction of such a grid is treated by a number of authors, all of whom seem to feel it
to be straightforward, so we will not dwell on this stage here.71 Assume the grid to be
arbitrarily oriented but non-accelerating and non-rotating, as controlled by placing
small test masses at rest at three or more non-linear points and observing them not to
drift relative to the grid. Imagine also that the survey group has chosen an initial state
of motion for the grid such that the local flux distribution of the three-degree cosmic
radiation field will appear to have no low-order spherical harmonics, indicating that
the inertial grid is co-moving with the local expansion of the universe. Choosing some
arbitrary vertex in the grid as the origin point (0, 0, 0), any other point may be given
an address (x, y, z) by counting along three perpendicular directions from the origin
and setting, for example, x = nx�0 where �0 is the standard length of rods in the grid,
and nx is the number of y-z planes pierced. Finer position gradations can be made by
interpolation between vertices, using any signal whose speed is independent of posi-
tion and direction (as in the acoustic spark chamber, for example). We assume also
that the three coordinate directions are chosen to make a right-handed coordinate
system.

x

z

y

FIG. 14.2. Cubical grid used by the S group to set spatial locations. The circles represent the
clocks (only those on the y-z plane are shown) that will be placed at each vertex.

Suppose that the length �� of a rod is determined by laying it out along one of
the coordinate directions and counting the number of standard rods along its length.
It will be observed (SR) that the Pythagorean rule

�� =
√

�x2 +�y2 +�z2 (14.5)

holds when this same rod is placed at rest between any two points in the grid regard-

71For example, see Bridgman (1962) or Taylor and Wheeler (1992).
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less of their location (homogeneity) and relative orientation (isotropy) where, e.g.,
�x is the difference in the x-values of the ends of the rod. Homogeneity in time will
also be observed, so that the �� for a static stick arrangement agrees with eqn (14.5)
no matter when it is measured.

14.5.2 Clocks

Now the survey group introduces standard clocks. Clocks for our purposes are physi-
cal devices that tick regularly so that the passage of time can be measured by t = nt T0

where T0 is the standard tick time and nt is the number of ticks since some arbitrary
zero of time for that particular clock.

The accuracy of standard clocks of a given type could be estimated by placing a
group of identical clocks side-by-side and comparing the time interval they record be-
tween a pair of local events. The variance of these measurements could be taken to be
a measure of the intrinsic accuracy of clocks of that type. Prospective new generations
of clocks are taken to be successful if they pass this mutual consistency test to some
new level of accuracy, and also if they agree with the previous generation’s clocks to
within the accuracy of that previous generation.

A clock that measures time by exploiting a natural cyclic process of some sort, with
care taken to isolate the process and avoid interfering with its regularity, is taken to
be a good clock. It would, of course, always be possible to make a bad clock from
a good one by, for example, adding or subtracting a bit from its counter after every
n counts. If all clocks were submitted to this same “cooking” (where n might even
be chosen differently at different spatial locations relative to the cubical grid, or at
different times if a common zero of time were defined in some way), then they all
would still pass the above accuracy test when placed together. But they would not be
good clocks for our purposes. The statements we make about the behavior of standard
clocks below refer to good clocks.

14.5.3 Round-Trip Light Speed

Let the survey group place a good, standard clock at any vertex A of the grid, and
send a light pulse from that point to some other vertex B, from which it is reflected
back to A. The total round-trip time �t of the light pulse can be used to define the
round-trip speed of light c as

c = 2��

�t
(14.6)

where �� is the Pythagorean distance between the clock and the reflecting vertex.
This speed will be observed (SR) to be the same regardless of the location of the clock
and the other vertex. Homogeneity in time will also be observed, the same value c
being obtained no matter when the measurement is begun. Notice that only one clock
was used in the light speed determination, so only the average round-trip light speed
is measured directly.
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14.5.4 The One-Way Speed of Light: Unknown but Static

The formula eqn (14.6) makes sense because we believe that a light pulse actually
propagates from A to B and back during the time interval �t . Although (since we do
not yet have synchronized clocks at A and B ) we cannot yet measure the time �tab

that the light pulse takes to go from A to B, nor the time �tba that it takes to return
from B to A, we can assume that any future determination of those quantities must
have the property �t = �tab +�tba necessary for consistency with eqn (14.6).

This consistency condition, together with the isotropy and homogeneity (both spa-
tial and temporal) observed for the two-way speed defined in eqn (14.6), can be used
by the survey group to establish that both �tab and �tba , and hence the correspond-
ing speeds, cab = ��/�tab and cba = ��/�tba , must be static quantities. That is, even
though we do not yet have a method of determining �tab, we know that its eventual
value must be found to be the same regardless of when the initial pulse leaves A. And
a similar statement can be made for �tba .

To derive the static nature of these one-way times, suppose that the survey group
places a clock at A and another one at B. These clocks are not synchronized. A pulse
of light is emitted from A, is reflected from B, is re-reflected from A, and so on. Due
to the homogeneity, isotropy, and static nature of the round-trip speed of light in
eqn (14.6), we know that the round trip times for all ABA paths (measured by the
clock at A) and also for all BAB paths (measured by the clock at B) will be the same:
�t = 2��/c. If we denote the initial departure from A by index 1, the first reflection
at B by index 2, the next reflection at A by index 3, etc., we have

2��/c = �t12
ab +�t23

ba = �t34
ab +�t45

ba = · · · (14.7)

for all round trips beginning and ending at A, and

2��/c = �t23
ba +�t34

ab = �t45
ba +�t56

ab = · · · (14.8)

for all round trips beginning and ending at B. Combining these equations we obtain

�t12
ab = �t34

ab = �t56
ab = · · · and �t23

ba = �t45
ba = �t67

ba = · · · (14.9)

which demonstrates that �tab is always the same, no matter how long the experiment
is run. The same is true for �tba . Thus these are static quantities.

14.5.5 Standard Clocks at Rest but Separated

Imagine that the survey group tests a collection of standard clocks to make sure that
they tick at the same rate when placed together, for example by comparing their
recorded time intervals between a pair of local events. Now the clocks are dispersed
and placed at rest at the various vertices of the cubic grid. The survey group can
determine that they still tick at the same equal rate as they did before dispersal.
Note that these clocks were not synchronized initially, and are not assumed to be
synchronized after their final placement.
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To establish the common ticking rate of a clock at A with one at B, imagine a pulse
of light to be emitted from A at time ta1 and another one at a later time ta2, both
measured by the stationary clock at A which thus records the time interval (ta2 − ta1)

between these emissions.

Using the static, one-way transit time �tab derived in Section 14.5.4, the pulses
arrive at B separated by the time interval (tb2 − tb1) = (ta2 +�tab2)− (ta1 +�tab1) =
(ta2 − ta1), where the static nature of �tab was used to cancel �tab2 and �tab1. Thus if
the clock at B records times tb1 and tb2 for the arrival of the two pulses there, the group
will observe (SR) that (tb2 − tb1) agrees with the quantity (ta2 − ta1). This establishes
that the clock at B is ticking at the same rate as the one at A, even though the two
clocks are not synchronized.

Note that these standard clocks do not yet define an extended time-measurement
system, since they are not yet synchronized. But synchronization is just the setting
of the zero point of the clock’s counter. Even without synchronization, the group has
established a distributed set of clocks that are known to tick at the same rate and so
define a common measure of time interval at any fixed vertex throughout the grid.

14.5.6 Proper Velocity

If some method of clock synchronization were already in place, the group could define
the velocity of a moving object by observing a distance traveled relative to the grid
and dividing that number by the elapsed time measured from a pair of clocks at the
beginning and end of the travel.

But such a measurement would require the use of at least two observers, and
synchronization of two separated clocks has not yet been accomplished. So, the survey
group reverts to another velocity definition that will prove useful, the proper velocity.
An observer riding on or with a moving object carries a clock. As he moves, he looks
at the cubical grid and counts the number of sticks of the grid that he passes during an
elapsed time �τ measured on the moving clock. This interval �τ is called the “self” or
“proper” time interval, since it is measured on on that single, moving clock carried by
the observer. Then the x-component of the proper velocity, for example, is defined as
ux = �x/�τ , where �x is the number of y-z planes pierced by the motion times their
standard separation �0 and �τ is the elapsed time measured by the moving clock.
(We assume that, by using finer gradations of the grid, this quantity can be measured
to any desired accuracy and treated as a continuous variable in the usual way.)

The proper speed is defined as u = ��/�τ . The Pythagorean theorem of eqn
(14.5) then gives

u =
√

u2
x + u2

y + u2
z (14.10)

The survey group will observe (SR) that the proper speed defined in this way can
range from zero to infinity. (In the Minkowskian language to be introduced in Chapter
15, proper velocity is the spatial part of the velocity fourvector.)
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14.5.7 Discovery of Time Dilation

Temporarily synchronizing two standard clocks at rest at the same location, and then
moving one of them around a closed circuit and back to the original location, the sur-
vey group will discover that the two clocks have lost their synchronization. Turning
this observation into a controlled experiment, they place a standard clock at rest at
point A of the grid, and let another clock move around some closed (but not neces-
sarily circular) path, returning periodically to A. They let the moving clock maintain
a constant proper speed u. The time between successive crossings of point A is �taa

according to the fixed clock at A, and �τaa according to the moving clock. They find
(SR) that these quantities are always related by the formula

�taa = �τaa

√
1 + u2/c2 (14.11)

where c is the round-trip speed of light defined above.
The question now arises as to the source of this time difference. Is its motion dis-

torting the moving clock, or is the motion of the moving clock distorting the fixed
one? The group answers this question by doing two experiments at the same time,
with two moving clocks whose different trajectories both pass through A, each exper-
iment using the same fixed clock at A. If the presence of a moving clock upsets the
running of the stationary one, then a second moving clock in the same vicinity should
upset the relation eqn (14.11) for the first one. But the presence of the second mov-
ing clock has no such effect (SR). Also, the group may observe, using the techniques
defined above, that the stationary clock at A continues to tick at the same rate as all
the other stationary clocks distributed throughout the grid. The conclusion is that the
moving clock is the one affected by the motion, and not the stationary one.

A
�taa

dτ

u

M

FIG. 14.3. Moving clock M moves on a closed path starting and ending at fixed clock A. The
time for one cycle is �taa on the fixed clock. Clock M records interval dτ while its proper
speed is u.

The next question is whether the moving clock accumulates its distortion contin-
uously during its motion. To test the hypothesis that it is continuously distorted, the
group does a series of experiments in which the moving clock has varying proper
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speed. The result in all cases is correctly reproduced by (SR)

�taa =
∮ A

A

√
1 + u2/c2 dτ (14.12)

where dτ is a differential time interval on the moving clock measured at an instant
at which the proper speed is u. The conclusion is that time intervals dτ measured
on a moving clock are at each instant distorted by the current value of the factor√

1 + u2/c2 and hence eqn (14.12) implies the differential relation

dt = dτ

√
1 + u2/c2 (14.13)

between the proper time interval dτ actually measured on a moving clock, and what
we may call a corrected or undistorted time interval dt .

After this correction, a clock moving in any closed path starting and ending at
a stationary clock at A will agree with that stationary clock as to the time elapsed
during the transit.

�taa =
∮ A

A
dt =

∮ A

A

√
1 + u2/c2dτ (14.14)

The corrected time interval dt in eqn (14.13) removes the distortion of the moving
clock coming from its motion and reduces it to consistency with the stationary ones.
The survey group has thus discovered how to measure the standard time interval dt
using moving clocks.

Some caution is required here, however. To derive a differential relation such as
eqn (14.13) from a closed integral relation such as eqn (14.12), one must eliminate
the possibility of an integrable contribution to the right-hand side of eqn (14.13) of
the form d
 where 
(x, y, z) is some single-valued function of position in the grid.
Such a contribution would integrate out of eqn (14.12), and could not be detected by
any of the closed-path experiments.

The survey group may reasonably use a symmetry argument to eliminate this pos-
sibility. The survey is taking place far from any significant gravitating objects, in a
cubical grid which is in free fall. The survey group has even taken the precaution of
choosing a state of motion which makes the local flux of the three-degree cosmic ra-
diation field appear to be maximally isotropic on the sky. Any maximum or minimum
of function 
(x, y, z) would select a particular place in the grid as special, in contra-
diction to the apparent homogeneity of the local space. And any nonzero gradient of
function 
(x, y, z) would define a particular spatial direction, in contradiction to the
apparent isotropy. The survey group can find no physical source of such a violation
of homogeneity and isotropy and so will conclude that any such function 
(x, y, z)
would have to be a constant, and hence that d
 would be zero.

Still, the presumed total homogeneity and isotropy of the local environment re-
main conjectures by the survey group.
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14.5.8 Corrected Velocity from Corrected Time Interval

A moving clock was used above to define its own proper velocity u = dr/dτ , with
components ux , uy, uz . The corrected time interval of eqn (14.13) can then be used
by the survey group to define what we will call a corrected velocity v.

v = dr
dt

= dr
dτ

dτ

dt
= u√

1 + u2/c2
(14.15)

and a corresponding corrected speed v = u/
√

1 + u2/c2. These two speeds are thus
related by √

1 + u2/c2
√

1 − v2/c2 = 1 (14.16)

so that eqn (14.15) may also be written in inverse form as

u = v√
1 − v2/c2

= γ v (14.17)

where the notation

γ = 1√
1 − v2/c2

=
√

1 + u2/c2 (14.18)

has been introduced.72 As the proper speed ranges from zero to infinity, the corrected
speed ranges from zero to c, the round-trip speed of light.

Note that the survey group has derived the corrected velocity v without making
any use of synchronized clocks. All measurements up to this point have been quite
independent of clock synchronization and have depended only on the experimentally
determined rates of ticking of clocks in various states of motion.

14.5.9 Discovery of Lorentz Contraction

The survey group may suspect that, since clocks are distorted by motion, possibly
measuring sticks such as those used in the grid might also be affected. Possible dis-
tortion of dimensions perpendicular to the motion is easily tested. Imagine the group
to make a square hole in a metal plate, and a metal cube that just passes through
the hole at perpendicular incidence and near zero speed. If they now pass the cube
through the hole at higher and higher proper velocities, they will see no change in
the tolerance of its passage through the hole. They conclude that dimensions perpen-
dicular to a velocity are unchanged by it.

The dimension along the motion is more difficult to measure. If there were a
system of synchronized clocks available, which at this point there is not, the group
could simply observe the leading and trailing ends of the moving cube at some single
synchronized time. In the absence of such a system of synchronized clocks, the survey
must resort to a more indirect method.

72Note that this γ is not the same quantity as the constant � appearing in the Lorentz transformation
eqn (14.13). The � is a function of V , the constant relative velocity of the S and S′ systems. But γ is a
variable quantity that changes as the clock’s velocity changes.
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u

A

�t (LT)
A

FIG. 14.4. A cube of rest dimension L0 moves past a fixed clock A. The cube has proper speed u
as measured by a clock riding on the cube (not shown). The clock A records a time interval
�t(LT)

A required for the cube to pass over it.

Imagine the moving cube to be carried, at constant proper velocity perpendicular
to one face, past a fixed clock at A. The time interval taken by the cube to pass A is
measured by the clock fixed at A to be �t(LT)

A , the time interval between passage of
the Leading and Trailing faces. In addition to this fixed clock, now imagine another,
separate and not synchronized, clock to be attached to the moving cube. The proper
speed of the cube u can be measured using that attached clock in the manner de-
scribed above. The group then uses eqn (14.15) to remove the error caused by the
motion of the attached clock and so calculate the corrected speed of the moving cube
v. The length of the cube, in the dimension along the line of its velocity, is then de-
fined to be its corrected velocity multiplied by the time interval �t(LT)

A required for it
to pass by the fixed clock at A.

L = v�t (LT)
A (14.19)

If the sides of the cube measured at rest are L0, it will be observed (SR) that

L = L0√
1 + u2/c2

= L0

√
1 − v2/c2 (14.20)

Note that the clock at A requires no correction, since it is a standard clock at rest in
the grid.

14.5.10 Synchronization of Distant Clocks

The survey group has now dealt with two of the major impediments to its survey:
Time dilation and Lorentz contraction. And it has done this without as yet having a
synchronized system of clocks at different locations in the cubical grid. We now come
to clock synchronization as the last step.

First, we note that the survey group already has a system of clocks distributed
throughout the grid, ones that they know to be ticking at the same standard rate. In
a sense, dt is already defined. All that is required to finish the job is to find some
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systematic way of setting the zero of time for these stationary standard clocks. The
most natural way is to make use of eqn (14.13), the general formula for correcting
the time interval of a clock moving with the self-measured proper speed u.

To synchronize a clock at B with one at A, the procedure is as follows: Carry a
standard clock M from A to B. At the instant of M’s departure, reset M to the value
ta0 read currently on the clock at A. Record M’s proper speed u during the whole trip,
continuously calculating the accumulated corrected time

�tab =
∫ B

A
dt =

∫ B

A

√
1 + u2/c2dτ (14.21)

where dτ is the small time increment measured by the moving clock M and u is its
instantaneous proper speed. At the instant when the clock M reaches B, the stationary
clock at B is reset to the time tb = ta0+ �tab. This procedure has the merit that
slow clock transport is not required, which might appeal to the survey group on the
grounds of efficiency.

14.5.11 Internal Consistency of Synchronization

Using the above synchronization method, every stationary clock will be found to be
already synchronized with itself when M is carried around a closed path beginning
and ending at that clock. For if the clock M is carried to B and then returned to A,
possibly by a different return path, the total elapsed corrected time will be as given
earlier by eqn (14.14)

�taa =
∮ A

A

√
1 + u2/c2dτ =

∫ B

A

√
1 + u2/c2dτ +

∫ A

B

√
1 + u2/c2dτ (14.22)

and the clock at A at that instant will thus be found to agree already with the value
ta = ta0+ �taa that would be calculated to synchronize it.

Since ta0+ �taa = ta0 + �tab + �tba = tb+ �tba , this return of clock M back to A
establishes the reflexivity and path independence of the synchronization procedure.
For if clock B is synchronized with clock A using the outgoing path, then it is also
true that clock A will be found to be already synchronized with clock B using any of
many possible return paths, which may be different in both position and proper-speed
profile. Thus not only does “B synchronized with A” imply “A synchronized with B,”
proving reflexivity, but also the synchronization of A with B is found true using any
return path, proving path independence.

Transitivity also follows. If clock B is synchronized with clock A, and clock C is
synchronized with clock B, then clock C will be found to be synchronized with clock
A.

14.5.12 Two Limiting Cases

The above general method of clock synchronization has two limiting cases of interest.
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Slowly-Moving Clock In the first limiting case, the transported clock M is moved very
slowly, with u � c. Then eqn (14.21) may be expanded as

�tab =
∫ B

A

(
1 + u2

2c2
+ · · ·

)
dτ = �τab +

∫ B

A

(
u2

2c2
+ · · ·

)
d�

u
(14.23)

where the relation dτ = d�/u, which follows from the definition u = d�/dτ , has been
used in the last integral. If the total path length between A and B through which clock
M is carried is �, and the maximum proper speed is umax, then in the umax/c → 0 limit
the last term in eqn (14.23) is of order (umax/c)(�/c). Thus �tab = �τab plus a term
which can be made as small as needed by a suitably small choice of umax.

This slow-clock method of synchronization has the advantage that no calculations
are needed to get �tab since it can just be read off the moving clock directly: �tab =
�τab to whatever accuracy desired. When clock M arrives at B, the stationary clock
there should just be set to ta0 +�τab. The disadvantage of this method is, of course,
that the synchronization process might be very slow if high accuracy is needed.

Rapidly Moving Clock In the second limit, the clock M is transported with a very
large proper speed u � c. Then eqn (14.21) may be expanded

�tab =
∫ B

A

(
1 + c2

2u2
+ · · ·

)
u

c
dτ = �

c
+

∫ B

A

(
c2

2u2
+ · · ·

)
d�

c
(14.24)

where the relation d� = udτ , which follows from the definition u = d�/dτ , has been
used, and � is the total length of the path through which M is carried. If we denote
the minimum proper speed by umin, then in the c/umin → 0 limit, the last term in
eqn (14.24) is of order (c/umin)(�/umin), which can be made as small as needed by a
suitably large choice of umin.

Upon arrival of the clock M at point B, the clock there should be set to ta0 + �/c.
With this method of synchronization, it is not even necessary to read the time on the
moving clock. Only the path length � and the round-trip speed of light c are needed.

14.5.13 The One-way Speed of Light

The survey group can now determine the one-way speed of light between points A
and B by transporting a moving clock M in a straight line between these points at
very high proper speed u. They will find (SR) that a light pulse leaving A at the
same instant will arrive at B at almost the same instant as the moving clock, with
the agreement getting better the higher u is. (Of course u can never be infinite, only
approach it as a limit.) Thus, according to eqn (14.24), the synchronized clocks at A
and B will record a limiting common travel time �tab = �/c for both M and the light
pulse, where now � is the Pythagorean distance between A and B. It follows that the
one-way speed of the light pulse is the same as the two-way speed, cab = �/�tab = c.
A similar argument applies between any two clocks. So the one-way speed of light
between B and A is also cba = c.

This result can be used as an alternate method of clock synchronization, one that
gives the same results as those in the previous subsections, but may be simpler to
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implement: The time-signal method. Simply send a light pulse from A at ta0 and, at
the instant of its arrival at B, set the clock at B to the value tb = ta0 + �/c, where � is
the Pythagorean distance between the two clocks.

The clock synchronization method used by Einstein in his 1905 paper is closely
related to this time-signal method. It follows from the time signal method that when
a light pulse leaves A at ta1, is reflected from B at tb and returns to A at time ta2, the
three times are related by

tb = 1

2
(ta1 + ta2) (14.25)

which was used by Einstein as a definition of tb.

14.5.14 Lorentz Contraction by Another Method

Now that the clocks at each vertex of the cubic grid are synchronized, the survey
group can do an alternate experiment to determine the Lorentz contraction of a cube
that is moving with constant proper velocity perpendicular to one face. Two observers
fixed in the grid observe the location of a corner of the leading and trailing faces of
the cube at the same instant of time, as measured on their two synchronized clocks.
Calculating the distance between the two points using the Pythagorean theorem, they
will find (SR) that the measurement agrees with eqn (14.20).

14.5.15 Coordinate Time and Velocity

In Section 14.5.7, the “corrected” time interval dt between two events on a moving
object was written in terms of the proper time interval dτ between those two events
as read by a clock moving with the object. This was done before the stationary clocks
at the vertices of the grid were synchronized. But, since this corrected time interval
has now been used to determine the synchronization of the stationary grid clocks,
it follows that the same time interval dt would also be measured by these vertex
clocks. (Of course, two of them would be needed since two events on a moving object
take place at different points of the grid.) We will now refer to time read on the
synchronized, stationary vertex clocks as the coordinate time in the S system. The
“corrected” time intervals and coordinate time intervals are therefore identical, and
in later chapters will usually be referred to simply as intervals of coordinate time.

The synchronized clocks at the vertices of the grid may now be used to define
what will be called the coordinate velocity of a moving object. Consider two events
on the moving object. They will be separated in the grid by a vector displacement
dr and by a time interval dt measured by two different but synchronized stationary
clocks. The coordinate velocity is then defined by v = dr/dt . Since the corrected
and coordinate time intervals are equal, the “corrected” velocity v of a moving object
defined in Section 14.5.8 will be the same as this coordinate velocity. Thus, in later
chapters, the “corrected” velocity will usually be referred to as the coordinate velocity.

It follows that the earlier formulas, relating proper time interval and velocity to
corrected time interval and velocity, also apply to coordinate time interval and coor-
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dinate velocity. Thus, for example,

dt = γ dτ and v = γ u where γ =
√

1 + u2/c2 = 1/

√
1 − v2/c2 (14.26)

relate the proper time interval dτ and velocity u to the coordinate time interval dt
and velocity v.

14.5.16 Universality

The survey group will also have observed another important phenomenon that de-
serves to be emphasized: universality. It will be found (SR) that any sort of good clock,
carried along with a standard moving clock M and initially synchronized with M at
the start of the travel, will remain synchronized with M to within its own accuracy.
Quartz watches, radioactive decays, elementary particle lifetimes, even presumably
human hearts, will all be observed to participate equally in the time-dilation effects.

Universality will also be observed (SR) in Lorentz contraction. Equal-sized, rigid
cubes of diverse materials placed side-by-side will be observed to remain congruent
when they move with the same constant proper velocity.

The group has now finished its survey. The cubical grid and observers holding
synchronized clocks at each vertex form an observer team (in the sense described in
Section 14.4) adequate for determination of the t, x, y, z coordinates of any event.
The survey described here has not been based on axioms or other preconceptions
about the nature of the surveyed spacetime. Special relativistic effects such as time
dilation and Lorentz contractions have been encountered as surprising complications
that had to be worked around, and the final coordinate system (observer team) has
incorporated these relativistic effects in a conservative way. The resulting coordinate
system is identical to one that could have been derived from Einstein’s axioms.

14.6 The Lorentz Transformation
As discussed in Section 14.4, the important and difficult problem was to create even
one coordinate system, which we now assume has been done as described in Section
14.5 or in some equivalent way. If we consider that a second survey group establishes
another coordinate system using exactly the same process as in Section 14.5, we will
find that the Lorentz transformation between two systems is already implicit in the
results of the first survey.

Suppose a second survey to be done. The second survey group uses sets of stan-
dard rods and clocks identical to the first one. They use exactly the same sequence of
experiments as the first survey did, with identical interpretations of them. The only
difference is that we will assume the second survey to have slightly mismeasured the
isotropy of the three-degree background radiation, and hence to have built a cubical
grid that is moving uniformly relative to the first one. However, we will assume that
the second survey group is unaware of this error, and will do its survey using exactly
the same assumptions as used by the first survey.

The original survey will be referred to as S, and the second survey as S′. To simplify
the algebra, we make the usual assumption that the origin of the second grid has
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coordinate velocity V = V ê1 as measured by the S system, that the second survey
group has accidently chosen its own x ′-axis along this same direction, and that its
y′-axis is such that points on the y′-axis have x = V t and z = 0 for all time t . We also
assume that the moving-system origin is accidently chosen so that it passes the origin
of the rest system at rest-system time t = 0, and that both S and S′ are right-handed
systems.

As the S′ group goes through the steps listed in Section 14.5, we can use the
already established S coordinate system to verify that the S′ group will obtain exactly
the same experimental outcomes as the S group did. We give a brief summary of this
process.

14.6.1 Second System – Space Frame

Following the procedure detailed in Section 14.5.1, the S′ group assigns the address
(x ′, y′, z′) where

x ′ = n′x�0 y′ = n′y�0 z′ = n′z�0 (14.27)

to a vertex that is (n′x , n′y, n′z) counts from an S′-system origin. The lengths �0 are those
values stamped on the sides of the standard rods, just as they were for the original
survey.

According to eqn (14.20) with v = V , the S group will observe the standard rods
along the x ′-axis of the moving system to be contracted to � = √

1 − (V/c)2�0 while
those along the y′- and z′-axes will have their uncontracted length �0. The S group
might question the use of the marked length �0 in the first of eqn (14.27), since rods
in the x ′ direction are actually contracted. But S will understand this S′ coordinate
definition, since the universality noted in Section 14.5.16 implies that everything S′
might compare to these rods is itself contracted by the same factor and so the con-
traction is invisible to S′. Equation (14.27) is in fact the first notable example of the
S′ group’s insistence on using exactly the same methods as S used.

Given eqn (14.27), vertex (x ′, y′, z′) will, at S time t , be assigned the S-system
address (x, y, z) where y = y′ and z = z′, but

x = V t + n′x� = V t + n′x
√

1 − (V/c)2�0 = V t +
√

1 − (V/c)2 x ′ (14.28)

Thus the S group will obtain the last three Lorentz transformation equations

x ′ = �(x − V t) y′ = y z′ = z (14.29)

where
� = 1√

1 − (V/c)2
(14.30)

The S group will also verify the S′ group’s discovery of the Pythagorean theorem.
The universality of Lorentz contraction implies that the x ′ dimension of both the
measured rod and the rods of the S′ grid will be shortened by the same factor. Thus
if the experiment were prepared first with S′ at rest relative to S (in which state we
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already know the Pythagorean theorem to hold), and then accelerated gently to its
final situation while the S′ group slept, the numbers �n′x , �n′x , �n′x would not change
and the S′ group would observe eqn (14.5) to remain true.

14.6.2 Second System – Clocks and Two-Way Light Speed

The S′ group now introduces standard clocks and carries out the experiments de-
scribed in Sections 14.5.2 through 14.5.5. Using the established S coordinate system,
we can verify that the S′ group will obtain exactly the same results as the S group did.

For example, S will verify that all clocks at rest in the S′ system tick at the same
rate, since those clocks all have the same speed V and thus obey

dt = dt ′|x ′y′z′√
1 − V 2/c2

(14.31)

where dt ′|x ′y′z′ is a time interval measured on a clock at rest in S′ at address x ′, y′, z′.
Also, the experiment in which the S′ group measures the two-way speed of light

to be static, homogeneous, and isotropic according to the formula

c′ = 2��′

�t ′|x ′y′z′ (14.32)

will be verified by the S system, which will view it as what is called a light clock. If a
light signal moves from a clock A′ to a clock B′ and back, both clocks being at rest in
S′, the S system will calculate the total transit time to be

�t = 2��′

c
√

1 − V 2/c2
(14.33)

where the Lorentz contraction formula eqn (14.20) has been used, along with the
Pythagorean theorem in the S′ system

��′ =
√

(�x ′)2 + (�y′)2 + (�z′)2 (14.34)

Using eqn (14.31) to write �t ′|x ′y′z′ =
√

1 − V 2/c2�t and putting this result into eqn
(14.32) then gives

c′ = 2��′

�t
√

1 − V 2/c2
= c (14.35)

where eqn (14.33) was used to get the final equality. This verifies the S′ result that c′
is homogeneous and isotropic and also demonstrates that c′ = c. The two-way speeds
of light in the two systems are numerically identical. Henceforward, we will denote
this common value as c, with no primes.
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14.6.3 Second System – Proper Velocity

Following the path of the first survey in Section 14.5.6, the second survey group
now uses the proper time �τ read from a moving clock to define the proper velocity.
The x ′-component of the proper velocity, for example, is defined as u′x = �x ′/�τ ,
where �x ′ is the number of y′-z′ planes pierced by the motion times their standard
separation, and �τ is the elapsed time measured by the moving clock. The proper
speed is defined as u′ = ��′/�τ , and the Pythagorean theorem in the S′ system then
gives

u′ =
√

u′ 2x + u′ 2y + u′ 2z (14.36)

The S group can use results already obtained in the S′ survey to derive a transfor-
mation law between proper velocities in the two systems. Dividing the differentials of
eqn (14.29) by the proper time interval dτ and using dt/dτ = √

1 + u2/c2 from eqn
(14.26), gives

u′x = �

(
ux − V

√
1 + u2/c2

)
u′y = uy u′z = uz (14.37)

Defining γ = √
1 + u2/c2 and γ ′ = √

1 + u ′2/c2, eqn (14.37) implies the following
relation that will be of use later

γ = �

(
γ ′ + V u′x

c2

)
(14.38)

It follows from these equations that u/c → ∞ if and only if u′/c → ∞. Since a
light pulse was demonstrated in the S system to have an infinite u value, it follows
that the same light pulse viewed from S′ has an infinite u′ value also.

14.6.4 Second System – Time Dilation

Still following the example of the first survey, the S′ group observes that a clock
moving in a closed circuit beginning and ending at the same point A′ of the S′ system
obeys

�t ′a′a′ =
∮ A′

A′

√
1 + u′ 2/c2 dτ (14.39)

where �t ′a′a′ is the time interval of one cycle as measured by a clock fixed at A′ and dτ

is the proper time interval of the moving clock at the instant when its proper speed is
u′. The S′ group then follows the same line of reasoning as outlined in Section 14.5.7
of the S group’s survey. They conclude that the moving clock is distorted by its motion,
and that the time interval dt ′ corrected for this distortion is

dt ′ =
√

1 + u′ 2/c2 dτ (14.40)

As did the S group, the S′ group use symmetry arguments to discount the possibility
that the true relation might be

dt ′ =
√

1 + u′ 2/c2 dτ + d
′ (14.41)
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where 
′(x ′, y′, z′) is some single-valued function of position in the S′ system that in-
tegrates out of eqn (14.39). Like the S group, they argue from the apparent isotropy
and homogeneity of the local space—plus their precaution (failed, as we know)
of choosing a state of motion from which the three-degree radiation field appears
isotropic—that no such 
′(x ′, y′, z′) term is present in eqn (14.41).

The S group verifies eqn (14.39) but not eqn (14.40). Multiplying eqn (14.38)
through by dτ and using the definition u′x = dx ′/dτ gives

dt = γ dτ = �

(
γ ′dτ + V dx ′

c2

)
(14.42)

where the relation dt = γ dτ from eqn (14.26) has also been used. Using eqn (14.42),
together with dt ′|x ′y′z′ =

√
1 − V 2/c2 dt from eqn (14.31), the S group derives the

relation

dt ′|x ′y′z′ =
√

1 + u′ 2/c2 dτ + V dx ′

c2
(14.43)

which illustrates that the correction rule eqn (14.40) does not bring the proper time
interval dτ into agreement with the time interval dt ′|x ′y′z′ shown on the clocks fixed
in S′. (Note that the S system time interval dt is used in intermediate steps in this
derivation, but is absent from the final result. Equation (14.43) represents the time
interval that elapses on a clock fixed in S′ while a moving clock measures time interval
dτ and moves an S′-distance dx ′.) According to the S group, the S′ group is not in an
isotropic space but in one marked by a velocity V relative to the truly isotropic S
system. The function 
′ thus was incorrectly assumed to be a constant. Its actual
form is found by the S group to be


′ = V x ′

c2
(14.44)

Nonetheless, we are here considering the case in which the S′ survey group is
ignorant of its error and persists in using the definition of dt ′ given in eqn (14.40).
The S′ group is assumed to do exactly as the S group did, including the using of eqn
(14.40) exactly as S used eqn (14.13).

14.6.5 Second System – Velocity and Lorentz Contraction

Having adopted the measurement of dt ′ from eqn (14.40), the S′ group continues
the program followed by the S group in Sections 14.5.8 and 14.5.9. They define a
corrected velocity

v′ = dr′

dτ

dτ

dt ′
= u′√

1 + u′ 2/c2
(14.45)

and a corresponding corrected speed v′ = u′/
√

1 + u′2/c2 such that

u′ = v′√
1 − v′2/c2

= γ ′v′ (14.46)



336 RELATIVITY AND SPACETIME

where
γ ′ = 1√

1 − v′2/c2
=

√
1 + u′2/c2 (14.47)

The S′ group then uses this corrected velocity to measure the length of a cube, in
the dimension oriented along the line of its velocity, to be

L ′ = v′�t ′ lt
A = L ′0√

1 + u′ 2/c2
= L ′0

√
1 − v′ 2/c2 (14.48)

where L ′0 is the side of the cube when at rest in S′.
The S system will verify these experimental results to be correct provided that one

accepts the strange (to the S group) definition of time interval dt ′ being used by the
S′ group.

14.6.6 Second System – Clock Synchronization

The second survey group now follows the S procedures of Sections 14.5.10 through
14.5.13 to synchronize standard clocks fixed at the vertices of the S′ grid. A clock at
B′ is synchronized with one at A′ by carrying a moving clock M from A′ to B′. Clock M
is first synchronized with the clock at A′. If it leaves A′ at time t ′a0, then at the instant
of arrival at B′ the clock there is reset to t ′b = t ′a0+ �t ′ab where

�t ′ab =
∫ B′

A′
dt ′ =

∫ B′

A′

√
1 + u′ 2/c2dτ (14.49)

where dτ is the small time increment measured by the moving clock and u′ is its
instantaneous proper speed.

The S′ group will find the same consequences (internal consistency, limiting cases,
one-way speeds of light) as found earlier by the S group. In particular, the one-way
speed of light between two clocks A′ and B′ fixed in S′ will be found to be

c′ab = c = c′ba (14.50)

just as for the S system. These results will be the same as for the S system because
they follow directly from eqn (14.49).

14.6.7 Second System – Emergence of the Lorentz Transformation

The S group observes that the S′ synchronization process implies the standard Lorentz
transformation between the two systems, again provided one follows the S′ group’s
use of the definition of dt ′ in eqn (14.40). Using this definition, eqn (14.42) can be
written as

dt = �

(
dt ′ + V dx ′

c2

)
(14.51)

If a clock M is carried from the origin of S′ to the point x,′ y,′ z′, starting at the instant
when the origins of S and S′ cross (an event taken to be at the arbitrary zero of time
in both systems), then according to eqn (14.49) the clock at x,′ y,′ z′ will be reset



THE PRINCIPLE OF RELATIVITY 337

to t ′ = ∫ x ′y′z′
o′ dt ′ at the instant of M’s arrival. Integrating each term of eqn (14.51)

between these same limits thus gives

t = �

(
t ′ + V x ′

c2

)
(14.52)

Substituting this result into eqn (14.29) and solving for x, y, z then gives the trans-
formation between the coordinates of the two surveys

ct = �
(
ct ′ + Bx ′

)
x = �

(
Bct ′ + x ′

)
y = y′

z = z′ (14.53)

where B = V/c and � = √
1 − B2. We will refer to this as the standard Lorentz

transformation. It holds when the axes of the two systems are aligned as described at
the beginning of Section 14.6.

14.6.8 Second System – Coordinate Time and Velocity

The discussion of coordinate time and velocity in Section 14.5.11 applies also to the
S′ system developed by the second survey. The time measured by the synchronized
clocks placed at the vertices of the S′ grid will be referred to as the coordinate time
in the S′ system. Since the “corrected” time interval dt ′ obtained in Section 14.6.4
has been used to determine the synchronization of clocks at the vertices of the S′
grid, it follows that two events on an object moving relative to the S′ grid will have a
corrected time difference equal to their coordinate time difference.

The coordinate velocity of an object moving relative to the S′ system can also be
defined, by considering two events on the object. They will occur at two points of
the S′ grid with vector displacement dr′ and time interval dt ′ as measured by two
different but synchronized vertex clocks. The coordinate velocity in the S′ system
is then defined as v′ = dr′/dt ′. As in the S system, this velocity is identical to the
corrected velocity defined in Section 14.6.5.

It follows that the equations relating the proper time interval and proper velocity
to the corrected time interval and corrected velocity apply also to the coordinate time
interval and coordinate velocity. Thus, like eqn (14.26) in the S system, we have

dt ′ = γ ′dτ and v′ = γ ′u′ where γ ′ =
√

1 + u′2/c2 = 1/

√
1 − v′2/c2

(14.54)
relating the proper time interval dτ and proper velocity u′ to the coordinate time
interval dt ′ and coordinate velocity v′ in the S′ system.

14.7 The Principle of Relativity
Since the effects predicted by standard special relativity were assumed in the first sur-
vey, Section 14.5, and since the coordinate system produced by that survey was then
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S S′
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x ′

y′

x

V

dτ

cdt, dx, dy, dz

cdt ′, dx ′, dy′, dz′

FIG. 14.5. Two flashes of a strobe light on a moving clock are separated by proper time dτ on
the moving clock, by dt = γ dτ on the S system clocks, and by dt ′ = γ ′dτ on the S′ system
clocks.

used to predict the effects encountered by the second survey, it is not too surprising
that the standard Lorentz transformation in eqn (14.53) has emerged at the end of
the process. The benefit of considering the Lorentz transformation as the end product
of experimental surveys is that we get some insight into how it emerged.

The two survey groups have followed exactly the same experimental procedures to
establish systems S and S′. One crucial common procedure was the assertion by each
group that it was the one at rest in a locally homogeneous, isotropic space. Hence
each group used a symmetry argument to infer a differential relation, eqn (14.13)
for the S survey and eqn (14.40) for the S′ survey, from an experimentally measured
integral one. The surprising result is that, in both cases, this assertion of homogeneity
and isotropy suffices to produce a system that is indeed homogeneous and isotropic
in all of its internally measured properties like speeds of light, etc.

Moreover, these two systems seem truly indistinguishable. Inverting the set of
equations, eqn (14.53), using Cramer’s rule for linear equations, yields an inverse
transformation which differs only by the exchange of primed and unprimed coordi-
nates and the replacement of V by −V (and hence B by −B),

ct ′ = � (ct − Bx)

x ′ = � (−Bct + x)

y′ = y

z′ = z (14.55)

There is nothing internal to the two systems, nor in the transformation between them,
to prevent us from viewing S′ as the rest system, and S as a system moving along its
negative x ′ axis direction with speed V in the opposite direction.

Thus Einstein’s two principles are recovered, at least as far as the outcomes of the
two surveys are concerned. Each group may assert that it is at rest in an isotropic,
homogeneous space and the other group therefore cannot be. But there is no local
experimental way to decide between these assertions.
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14.8 Lorentzian Relativity
As we noted above, Lorentz derived his transformation from the requirement that
the Maxwell equations must have the same form in both the S and S′ systems. After
Einstein’s 1905 paper, Lorentz also abandoned the absolute Newtonian time but tried
to hold on to the concept of an aether.73 His idea was that the relativistic effects
encountered by the S survey group were due to physical interactions of clocks and
cubes with the background aether. The details of the S survey, in particular the fact
that the time-dilation factor

√
1 + u2/c2 is the same as the Lorentz contraction factor,

are then responsible for the principle of relativity and the equivalence of the S and S′
systems.

Lorentz thus views time dilation of clocks moving relative to the aether to be due
to a physical action of the aether on a moving clock. His approach makes relativity
a physical theory (albeit with mysterious and unknown mechanisms of interaction),
rather than just a statement of principles.

However, Lorentz’s view did not prevail. By the 1930s the consensus was that
the aether was an unnecessary and unobservable intellectual construct. The problem
it was meant to solve, the provision of a medium within which light waves could
propagate, was resolved by assuming that the electric and magnetic fields themselves
were “things” on the same footing as real particles. Light was then viewed as a wave
resulting from the interaction and mutual reinforcement of these real field objects.
The aether was relegated to the dustbin of history, with other failed concepts such
as phlogiston or N-rays. In Einstein’s magisterial phrase, from his first 1905 paper,
“the phenomena of electrodynamics as well as of mechanics possess no properties
corresponding to the idea of absolute rest.”

However, while the relativistic revolution was destroying the concept of the aether,
another revolution was underway that offers some support to the Lorentzian program:
quantum mechanics. The quantum theory of electrons and photons makes essential
use of the concept of a vacuum state. This is the state of nature when everything re-
movable is removed, and when all quantum fields are in their ground states. Due to
the uncertainty principle, the quantum vacuum state has nonzero energy. At present,
calculations of the energy density of the vacuum state give infinite answers. But its
physical reality is demonstrated experimentally by the Casimir effect, in which finite
changes in the vacuum energy can be observed. Also, each species of elementary par-
ticle in the standard model gives rise to what are called vacuum fluctuations in which
particles are spontaneously created and destroyed. It seems, in sum, that empty space
has become quite a busy place, with much in it that is undeniably physically real.

The physicality of the vacuum state of quantum mechanics opens the possibility
that the Lorentzian approach to relativity might be reconsidered, with the aether re-
placed by a physical substance that we might call by a more neutral term, the physical
vacuum. It might be that the relativistic effects are due to interactions of clocks and
cubes with the same physical vacuum that is also the arena for the vacuum state of

73See, for example, the last chapter of Lorentz (1952).
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quantum mechanics.

14.9 Mechanism and Relativity
There is a tradition in physics that goes back to Descartes’ arguments with the Aris-
totelian physics that preceded him. Called the mechanist tradition, it holds that phys-
ical objects have only a small number of intrinsic properties and that these properties
can be described geometrically or mathematically. This was in opposition to the Aris-
totelian propensity to treat each new phenomenon as the emergence of another as
yet unobserved (or occult, as in hidden) property of the objects. Descartes’ mechanics
also had the idea of proximate interaction. Things interact by collision, or by contact.
Thus Leibniz ridiculed Newton’s idea of a gravitational attraction acting between dis-
tant masses, calling it “occult”.

A modern statement of the mechanist tradition might be the assumption that phys-
ical effects have physical causes, and that those physical causes must act locally. Thus
the field picture of electrodynamics states that, rather than two electric charges acting
on each other at a distance, the charges produce an electric field that fills the space
between them and acts locally on each charge. The idea of field propagation at less
than the speed of light, combined with local interactions, is sometimes referred to as
Einstein locality.

We might ask whether the mechanist tradition is consistent with special relativity.
In particular, is there an explanation for the time dilation of a moving clock that is
local and involves the interaction of physical objects?

To explore this question, let us return to a very early stage in the first survey, when
we had only a cubical grid, a standard clock A at some fixed vertex of that grid and a
standard clock M free to move about in the grid. If M is carried around some closed
path starting and ending at A, the elapsed time �taa measured on the stationary clock
and the elapsed time �τaa measured on the moving clock are related by eqn (14.12),
so that

�taa =
∮ A

A

√
1 + u2/c2 dτ and �τaa =

∮ A

A
dτ (14.56)

We note that this equation summarizes an experimental result that does not depend
on such choices as the definition of coordinate time made later in the S survey. There
is little room for doubt that the difference between �taa and �τaa =

∮ A
A dτ , the cycle

time measured on the moving clock M, is a real effect that is independent of any
elements that could be considered arbitrary. We argued in Section 14.5.7 that this
difference must be due to a distortion of the running of clock M, and not of clock A.
Let us now seek a physical cause of this distortion.

First consider the hypothesis that M is distorted by its motion relative to the other
physical objects of the experiment, the rods and the fixed clock at A. This can be
disproved by setting up multiple sets of physical grids and multiple clocks at various
points in them or even moving freely in random ways. According to standard special
relativity (SR), the distortion of M relative to the original grid and the original clock
A will not be affected. Equation (14.56) will be unchanged. If a physical interaction
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between M and the grid or between M and A were the cause of M’s distortion, we
would expect that similar physical interactions with the other grids and clocks would
also distort M. But no such extra distortion will be observed.

Possibly the distortion of M is due to the forces that must be applied to it to
make it move in a non-inertial path? Those forces are indeed physical and are applied
locally to M. However, we can set up an experiment in which M travels out from A
on a straight, inertial path with no forces acting on it, then circles around on the
arc of some circle and returns to A again along another straight, inertial path. Then
M will experience forces only during the circular part of its path. On its outward
leg, M may not have experienced any acceleration since its distant past. Or, if M
is constructed, for example, from a swarm of decaying muons, it may never have
experienced an acceleration at all, having been emitted with its present momentum
value. Yet these inertial portions of M’s path contribute their fair share to the integral
in eqn (14.56), regardless. The hypothesis that forces are the source of the distortion
of M does not work out in detail. One can even imagine an experiment with no forces
on the clocks at all, with an inertial, force-free outbound clock transferring its elapsed
time count locally to an inertial, force-free inbound one as they pass each other. The
conclusion is that the distortion of M is not due to whatever agent it is that produces
the accelerations necessary to maintain its motion.

Mechanism requires that this physical effect, the dilation of the moving clock, must
be due to some local interaction between the clock and some other physical thing. The
mechanist tradition in physics will allow occult phenomena, those that just happen,
as a temporary expedient but is not satisfied until physical causes are found for them.
The question is: What is the physical thing with which a dilated clock is interacting?

One response has been to consider the metric field gµν of general relativity to be
a physical thing, an idea akin to the reification of the electric field. The metric field
is present in all of space and thus could interact locally with moving clocks. As men-
tioned in Section 14.8, another possibility would be to revive Lorentzian relativity,
but with the aether replaced by a physical vacuum filling all space. The time dilation
of clocks would be a consequence of the local interaction between the clocks and
that physical vacuum. Then the metric field of general relativity would not be consid-
ered a thing in itself, but rather a way of representing local properties of the physical
vacuum.

14.10 Exercises
The questions in these exercises should be answered using the standard Lorentz transforma-
tion eqn (14.53) and its inverse eqn (14.55), together with the axiom noted in the footnote on
page 319.

Exercise 14.1
(a) Suppose that two events take place at the same S′ location but different times. Show that
the time intervals between these events in the S and S′ systems are related by dt = �dt ′.
What is the proper time interval dτ between these events?
(b) Suppose that two events (event A at the end nearest to the origin, and event B at the other
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end) take place at the ends of a stick of length ��′ which is at rest in S′ and aligned parallel
to the x ′-axis. Suppose that these two events are simultaneous as seen by the S system. Find
the distance x ′b − x ′a and the time interval t ′b − t ′a between them as seen by the S′ system.
(c) State why that the distance (xb − xa) is a good measure of the length of the stick � as
seen by the S system. Show that it obeys the standard Lorentz contraction formula �� =√

1 − V 2/c2��′.

Exercise 14.2
(a) Show that eqns (14.15, 14.17) are equivalent, and that either of them implies eqn (14.16).
(b) Use standard special relativity to predict the experimental result eqn (14.12).

Exercise 14.3 Show, using the standard Lorentz transformation, that the definition of the
length of a moving object in eqn (14.19) implies the experimental result eqn (14.20).

Exercise 14.4 Suppose that a light clock is set up, consisting of a stick of length ��′ at rest
in the S′ system but not parallel to any of the axes. There are mirrors at each end of the stick
and one cycle of the light clock is the round-trip time of a light pulse that is reflected back
and forth between them. Calculate the round trip cycle time of the light clock �t as seen by
the S system, and thus verify eqn (14.33).

Exercise 14.5 Prove that eqn (14.37) implies eqn (14.38).

Exercise 14.6 Use Cramer’s rule (not assuming the principle of relativity, which is what
we’re seeking to prove) to show that eqn (14.53) implies the inverse eqn (14.55).

Exercise 14.7 Discuss the following questions.

(a) If time dilation is due to an interaction of clocks with a physical vacuum, then why is time
dilation universal? Why does that dilation have exactly the same magnitude for all sorts of
moving clocks, with presumably different interaction modes?
(b) If there is no physical vacuum, then what is the physical mechanism responsible for time
dilation? Is one needed?
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FOURVECTORS AND OPERATORS

The previous Chapter 14 discussed some of the philosophical questions raised by
special relativity. The present chapter develops techniques that allow relativistically
covariant calculations to be done in an elegant manner.

We introduce what will be called fourvectors. These are analogous to the famil-
iar vectors in three-dimensional Cartesian space (which will now be referred to as
threevectors) used throughout the earlier chapters of the text. The difference is that,
in additional to the three spatial components, fourvectors will have an additional ze-
roth component associated with time. This additional component allows us to deal
with the fact that the Lorentz transformation of special relativity transforms time as
well as spatial coordinates.

The theory of fourvectors and operators is presented using an invariant notation.
Rather than considering a fourvector to be only a set of components in some basis, we
will consider it to be something that models some physical property of the experiment
under study and is independent of the choice of coordinate system.

The reader is already familiar with this sort of notation because, for example in
discussing rotations in Chapter 8, we have used threevector equations wherever pos-
sible, rather than writing out component equations in a particular basis. We are here
extending to relativity (with fourvectors) the same techniques that made the theory
of rotations (with threevectors) tractable. The reader is urged to think of fourvector
equations in this invariant way.

The present chapter can only give the barest introduction to the vast subject of
fourvectors and tensors in special and general relativity. We introduce the subject
here in the simple context of special relativity, and present enough of it to allow the
reader to understand the special relativistic generalization of mechanics in Chapter
16.

15.1 Fourvectors
Sections 8.30 and 8.31 treated passive rotations in ordinary three-dimensional Carte-
sian spaces. We saw there that any threevector, for example the differential spatial
displacement threevector dr connecting two spatially separated points, can be ex-
panded in either an original o system or a rotated o′ system, according to the rule

dx ê1 + dyê2 + dzê3 = dr = dx ′ê′1 + dy′ê′2 + dz′ê′3 (15.1)

where the differential components and basis vectors in the two systems are related by
the orthogonal transformations eqns (8.235, 8.240).

343
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From eqn (8.234), the basis threevectors obey

êi · êj = δi j and ê′i · ê′j = δi j (15.2)

It follows that the square of the Pythagorean distance d� between the two points is
given by a form invariant74 expression (d�)2 = dr · dr where

(dx)2 + (dy)2 + (dz)2 = dr · dr = (dx ′)2 + (dy′)2 + (dz′)2 (15.3)

Minkowski75 noted that a similar formalism can be introduced in special relativity
by the addition of a time coordinate to the original three coordinates of Newtonian
space. We can define components, basis fourvectors, and an inner product of pairs of
fourvectors—leading to an invariant quantity analogous to eqn (15.3).

The differential displacement between two events in special relativity can be repre-
sented by its coordinates cdt, dx, dy, dz in an S system and its corresponding coordi-
nates cdt ′, dx ′, dy′, dz′ in the S′ system (assumed, at least in this introductory section,
to have the same standard configuration as that described in Section 14.6). Taking the
differentials of the standard Lorentz transformation, eqn (14.53), the transformation
between the coordinate differentials is found to be

cdt = �

(
cdt ′ + V

c
dx ′

)
dx = �

(
V

c
cdt ′ + dx ′

)
dy = dy′

dz = dz′ (15.4)

As the reader can verify, the following quadratic expression is form invariant under
this transformation of coordinates

−(cdt)2 + (dx)2 + (dy)2 + (dz)2 = −(cdt ′)2 + (dx ′)2 + (dy′)2 + (dz′)2 (15.5)

Acting by analogy with Cartesian threevectors, we seek to define a displacement
fourvector dr in relativity theory such that its inner product with itself dr · dr will
reproduce the form invariant quantity in eqn (15.5). Following the pattern of eqn
(15.1), we introduce basis fourvectors êµ and write76

dr = dx0 ê0 + dx1 ê1 + dx2 ê2 + dx3 ê3 (15.6)

where x0 = ct , x1 = x , x2 = y, x3 = z. This fourvector dr models the relativistic

74Recall that a quantity or expression is called invariant if it has the same numerical value in two dif-
ferent coordinate systems. A form (short for algebraic form) is an algebraic expression written in terms of
coordinates. Thus an expression that has both the same algebraic form and the same numerical value when
expressed in two different coordinate systems is called an invariant form, or a form invariant expression.
Such expressions are also often referred to by the shorter term invariants.

75H. Minkowski (1908) “Space and Time,” Address at the 80th assembly of German Natural Scientists
and Physicians. English translation in Einstein, Lorentz, Minkowski and Weyl (1923).

76We follow the established convention of using superscripts for the indices of fourvector components
and subscripts for the indices of basis fourvectors. Note also that fourvectors will be set in bold sans serif
type to distinguish them from threevectors that are set in bold serif.
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interval between two events. It is an invariant object of the sort mentioned in the
introduction to this chapter.

To see what the basis fourvectors mean, we consider an example from three di-
mensional space and then the analog in relativity. We know that in the threevector
case, the meaning of the basis vector ê1 is that a threevector displacement dr = dx ê1

connects two points with the same y and z coordinates but differing x . Analogously,
the meaning of the basis fourvector ê1 is that a fourvector displacement dr = dx1 ê1

connects two events that have the same y, z, and t coordinates. Hence the two events
connected by dx1 ê1 are also simultaneous in the S system.

Basis fourvectors can also be introduced in the S′ system. These are defined by
the requirement that the fourvector displacement dr defined in eqn (15.6) can also be
written as an expansion in terms of the S′ basis fourvectors

dr = dx ′ 0 ê′0 + dx ′ 1 ê′1 + dx ′ 2 ê′2 + dx ′ 3 ê′3 (15.7)

Thus, in analogy to eqn (15.1), we now have

dx0 ê0+ dx1 ê1+ dx2 ê2+ dx3 ê3 = dr = dx ′ 0 ê′0+ dx ′ 1 ê′1+ dx ′ 2 ê′2+ dx ′ 3 ê′3 (15.8)

For rotations of threevectors, the basis vectors appearing in eqn (15.1) were re-
quired to transform by an orthogonal matrix. In the fourvector case, the transfor-
mation law for the basis vectors can be obtained by substituting the inverse of eqn
(15.4) into eqn (15.8) and using the fact that the differentials dxµ are independent
quantities that can be set nonzero one at a time. The result is

ê0 = �

(
ê′0 −

V

c
ê′1

)
ê1 = �

(
−V

c
ê′0 + ê′1

)
ê2 = ê′2
ê3 = ê′3 (15.9)

Just as was done for threevectors, we can interpret the expansions in eqn (15.8)
by saying that the same fourvector displacement dr is represented by its components
in either the S or the S′ systems

dr : (cdt, dx, dy, dz)S dr : (cdt ′, dx ′, dy′, dz′)S′ (15.10)

We make the distinction of using the symbol “:” rather than “=” in eqn (15.10). As
discussed in Section A.5 for the threevector case, it is not correct to set the fourvector
dr equal to its components. The same fourvector dr is represented by different sets of
components in the two systems. The two sets are related, of course, by the Lorentz
transformation in eqn (15.4).
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15.2 Inner Product
The inner product (also called the dot product) in the space of fourvectors can now
be defined. But because of the minus sign on the time entry in eqn (15.5), an inner
product that will reproduce that expression cannot have the standard Cartesian form.
We adopt the definition that the basis fourvectors have inner products given, for all
µ, ν = 0, 1, 2, 3, by

êµ · êν = gµν (15.11)

where gµν are the matrix elements of a four-rowed diagonal matrix g defined as

g =

⎛⎜⎜⎝
−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1

⎞⎟⎟⎠ (15.12)

It follows from eqns (15.9, 15.11) that basis vectors in the S′ system have the same
inner product

ê′µ · ê′ν = gµν (15.13)

with the same matrix g in both eqns (15.11 and 15.13). This g is the matrix of what is
called the Minkowski metric. We also define the inner product to be a linear operation,
just it was in Cartesian three space.

With the fourvector dr defined as in eqn (15.6), and the inner product of basis
fourvectors as defined in eqn (15.11), we may now use the assumed linearity of dot
products to write

dr · dr =
⎛⎝ 3∑

µ=0

dxµ êµ

⎞⎠ ·
(

3∑
ν=0

dxν êν

)
=

3∑
µ=0

3∑
ν=0

dxµdxν êµ · êν

=
3∑

µ=0

3∑
ν=0

dxµdxνgµν = −(cdt)2 + (dx)2 + (dy)2 + (dz)2 (15.14)

with a similar expression, but with primed components and basis vectors substituted
for the unprimed ones, when dr is expanded in the S′ system

dr · dr =
⎛⎝ 3∑

µ=0

dx ′µ ê′µ

⎞⎠ ·
(

3∑
ν=0

dx ′ ν ê′ν

)
=

3∑
µ=0

3∑
ν=0

dx ′µdx ′ ν ê′µ · ê′ν

=
3∑

µ=0

3∑
ν=0

dx ′µdx ′ νgµν = −(cdt ′)2 + (dx ′)2 + (dy′)2 + (dz′)2 (15.15)

Note the absence of a prime on gµν in eqn (15.15). This matrix is the same in both
systems.
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The form invariant expression in eqn (15.5) may now be written using the fourvec-
tor formalism, as the dot product of two displacement fourvectors expanded indiffer-
ently in either the S or the S′ coordinate system

−(cdt)2+ (dx)2+ (dy)2+ (dz)2 = dr ·dr = −(cdt ′)2+ (dx ′)2+ (dy′)2+ (dz′)2 (15.16)

Thus, following Minkowski, we have successfully defined a system of fourvector dis-
placements dr whose dot product reproduces the Lorentz invariant expression eqn
(15.5).

15.3 Choice of Metric
The choice of Minkowski matrix in eqn (15.12) has a certain degree of arbitrariness.
We could as well have used its negative, with diagonal elements (1,−1,−1,−1). Un-
fortunately, about half of the physics community uses our choice, and the other half
uses the other.77 And once a researcher adopts one or the other convention, it is diffi-
cult to change because a large number of signs, and imaginary versus real quantities
in quantum field theory, depend on the choice.

A choice must be made, however, and for an analytical mechanics book like this
one that choice is strongly influenced by the desire to have the threevector parts
of fourvectors behave algebraically just as threevectors have behaved in the earlier
chapters. With the metric in eqn (15.12), the spatial basis fourvectors with i, j =
1, 2, 3 obey êi · êj = δi j which is the same as eqn (15.2). Thus, we may write the
fourvector dr as

dr = dx0 ê0 + dr (15.17)

where the spatial part of dr is written as the threevector

dr = dx ê1 + dy ê2 + dz ê3 (15.18)

with the assurance that dr · dr ≥ 0, as has been true for threevectors throughout the
discussion in earlier chapters.78 This allows us to make use of our earlier treatments
of threevectors and operators with no changes, with just the replacement of the basis
vectors êi for i = 1, 2, 3 by the corresponding basis fourvectors êi .

15.4 Relativistic Interval
We saw in the case of Cartesian threevectors that the quantity dr · dr has an invariant
geometric meaning: It is the square of the spatial Pythagorean distance between the

77For example Misner, Thorne and Wheeler (1973) and Weinberg (1995) use our convention, while
Bjorken and Drell (1964) and Jackson (1975) use the other.

78The spatial, threevector part of the fourvector dr will be denoted by the same typeface dr as we have
used throughout the text for Cartesian threevectors. Strictly speaking, eqn (15.18) is both a threevector
(since it is invariant under spatial rotations at fixed time) and a fourvector (since it is composed of unit
fourvectors). Note that fourvectors like dr are invariant objects under Lorentz transformations, but the
spatial parts dr are not. If we transform to a coordinate system S′, the same fourvector as in eqn (15.17)
becomes dr = dx ′ 0 ê′0 + dr′, with both dx0 �= dx ′ 0 and dr′ �= dr.



348 FOURVECTORS AND OPERATORS

two points that are connected by dr. We now investigate the meaning of the analogous
fourvector dot product dr · dr in special relativity.

The invariant expression in eqn (15.16) can be positive or negative. We consider
first the cases in which it is negative. If the two events connected by dr are like the
successive flashes of a quickly flashing strobe light moving at less than the speed of
light (imagine successive flashes of the navigation lights of a passing rocket ship),
then eqn (15.16) can be written in terms of the coordinate velocity of the moving
object, v in the S system and v′ in the S′ system. Factoring cdt from the left side of
eqn (15.16) and cdt ′ from the right side, and using dx/dt = vx , etc., one obtains

−
(

1 − v2

c2

)
c2(dt)2 = dr · dr = −

(
1 − v′2

c2

)
c2(dt ′)2 (15.19)

Then either eqn (14.26) in the S system or eqn (14.54) in the S′ system can be used
to write

dr · dr = −c2(dτ)2 (15.20)

where dτ is the proper time interval between events as read on a clock being carried
along with the strobing object, as defined in Section 14.5 and shown in Figure 14.5.
This proper time interval is a property of the moving clock and is independent of any
particular choice of coordinate system. Thus dτ is an invariant quantity, as it must be
since it is written here as the dot product of two fourvectors.

Two events like the successive flashes of a moving strobe light just considered are
called timelike separated. The fourvector interval between such events has a negative
dot product with itself, and its value is related to the proper time interval measured
on a clock moving with the strobing object. From eqn (15.20),

dτ =
√
−dr · dr

c2
for timelike separation (15.21)

In the opposite case, if the dr connecting two events has dr · dr > 0, then the two
events are called spacelike separated. Then, in analogy to the proper time for timelike
separated events, an invariant distance d� between the two events can be defined by

d� = √
dr · dr for spacelike separation (15.22)

The intermediate case is when dr is a null vector, with dr·dr = 0. The two events in
this case are called lightlike separated. As can be seen by considering the v → c limit
of eqn (15.19), such a dr connects successive events occurring on something moving
with the speed of light. As we saw in Section 14.5, this is the ultimate attainable
speed, corresponding to proper speed u equal to infinity. Two successive events on
the wave front of a light wave would have a null displacement vector

dr · dr = 0 for lightlike separation (15.23)

Exercise 15.6 shows that for any two timelike separated events, there is some
coordinate system relative to which the two events appear to be at the same spatial
point. Exercise 15.7 shows that for any two spacelike separated events, there is some
coordinate system relative to which the two events are simultaneous.
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15.5 Spacetime Diagram
It has become customary to plot events in special relativity on what is called a spacetime
diagram, in which one or two spatial coordinates (but not more due to the limitations
of our primate sense apparatus) are plotted horizontally and x0 = ct is plotted verti-
cally. An event is a mathematical point in such a diagram.

If we plot the successive strobe events of the passing rocket ship discussed in
Section 15.4, we find that these events can be connected by a continuous line, called
the world line of the strobe light. These world lines play the same role in relativity
theory that particle trajectories as a function of time play in Newtonian physics. They
give a complete description of the locus of the moving object at various epochs.

A

C

B
ct

x

y

D

FIG. 15.1. Spacetime diagram showing, on the left, the world line drawn through successive
flashes of a strobe light. The event A on the right is the origin of a light cone, shown as
dashed lines. Event B is in the forward light cone of A, event C is in the backward light
cone of A. Event D is outside the light cone of A and is not causally connected to it.

The spacetime diagram can also be used to define what is called a forward or
backward light cone associated with a given event. As shown in the Figure 15.1, event
B is in the forward light cone of event A if the displacement fourvector drAB connect-
ing these two events obeys drAB · drAB < 0 and tB > tA. That is, it consists of all of the
events B later than event A that are timelike separated from event A. In that case, a
physical object moving at less than the speed of light can actually be present at both
event A and event B. (Note that an object can reach any location B from location A.
The question is, can it get there in time?) Note that the world line of an object that
is present at event A in a spacetime diagram will always remain within the forward
light cone of event A.

The backwards light cone of event A is all of those events C such that A is in the
forward light cone of C. This is the same as saying that drCA · drCA < 0 and tC < tA.

Exercise 15.6 shows that any event B in the forward light cone of event A viewed
in a spacetime diagram of the S system will still be in the forward light cone of A when
viewed in any S′ system connected to it by a proper Lorentz transformation. Thus the
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temporal order of timelike separated events is an invariant. Exercise 15.7 shows that
the same is not true for spacelike separated events. For them, even if tB > tA, there
will be some system S′ in which t ′B = t ′A and another system S′′ in which t ′′B < t ′′A with
the temporal order reversed.

Since no signal can propagate at greater than light speed, it is also true that the
forward light cone of event A contains all of the events B that A can possibly influ-
ence. And that the backward light cone of event A contains all of those events C that
can possibly influence A. We say that events within the light cones of A are causally
connected to A, while those outside cannot be. Two events A and D that are spacelike
separated are outside each other’s light cones and cannot be causally connected.

15.6 General Fourvectors

We have so far treated only one fourvector, the differential displacement between
two events dr. But, just as in ordinary Cartesian three space where force, velocity,
acceleration are all threevectors, there are many other fourvectors. The displacement
dr is in a sense the template fourvector that defines the class.

Suppose we define a mathematical object A in fourvector notation by specifying a
set of four components A0, A1, A2, A3 in the S system and writing79

A = A0 ê0 + A1 ê1 + A2 ê2 + A3 ê3 (15.24)

Then A will actually be a fourvector provided that its components in the S and S′
systems can be shown to be related by the same Lorentz transformation as eqn (15.4)
(note that we are still assuming the standard configuration here)

A0 = �

(
A′ 0 + V

c
A′ 1

)
A1 = �

(
V

c
A′ 0 + A′ 1

)
A2 = A′ 2

A3 = A′ 3 (15.25)

Just as in the case of dr in Section 15.1, this transformation law insures that the same
fourvector A can be expressed in the S′ system using the primed coordinates and basis
fourvectors, as

A = A′ 0 ê′0 + A′ 1 ê′1 + A′ 2 ê′2 + A′ 3 ê′3 (15.26)

For example, we can define a spacetime position or radius fourvector r as the dis-
placement vector between the origin of coordinates and an event with coordinates

79Recall that we denote fourvectors by bold sans serif type, and matrices by normal sans serif type. Thus
A is a fourvector, and A is a matrix.
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(ct , x , y, z)S in the S system and (ct ′, x ′, y′, z′)S′ in the S′ system. It can be written as

ct ê0+x ê1+y ê2+z ê3 = ct ê0+r = r = ct ′ ê′0+r′ = ct ′ ê′0+x ′ ê′1+y′ ê′2+z′ ê′3 (15.27)

where
r = x ê1 + y ê2 + z ê3 and r′ = x ′ ê′1 + y′ ê′2 + z′ ê′3 (15.28)

are the radius threevectors, the spatial parts of r, in the two systems. The fact that
r is a fourvector follows directly from comparison of eqn (15.25) with the Lorentz
transformation in eqn (14.53).

If A and B are any fourvectors, it follows from the transformation equations eqn
(15.25) and the same reasoning that led to eqn (15.16), that the quantity A · B is an
invariant form, with the expansion in the S and S′ systems given by

A · B =
⎛⎝ 3∑

µ=0

Aµ êµ

⎞⎠ ·
⎛⎝ 3∑

µ=0

Bν êν

⎞⎠ = −A0 B0 + A1 B1 + A2 B2 + A3 B3

=
⎛⎝ 3∑

µ=0

A′µ ê′µ

⎞⎠ ·
⎛⎝ 3∑

µ=0

A′ ν ê′ν

⎞⎠ = −A′ 0 B′ 0 + A′ 1 B′ 1 + A′ 2 B′ 2 + A′ 3 B′ 3

(15.29)

Like the displacement fourvector dr, general fourvectors can be timelike, space-
like, or lightlike, depending on the value and sign of A · A. A timelike fourvector A
can also be forward timelike (A · A < 0 and A0 > 0) or backward timelike (A · A < 0
and A0 < 0).

15.7 Construction of New Fourvectors
An interesting way to form new fourvectors is by construction from previous fourvec-
tors and invariant quantities. For example, the quantity dτ defined in eqn (15.21) is
an invariant. Dividing each term in the expansion of dr in eqn (15.8) through by the
same quantity dτ gives

dx0

dτ
ê0 + dx1

dτ
ê1 + dx2

dτ
ê2 + dx3

dτ
ê3 = dr

dτ
= dx ′ 0

dτ
ê′0 +

dx ′ 1

dτ
ê′1 +

dx ′ 2

dτ
ê′2 +

dx ′ 3

dτ
ê′3

(15.30)
Thus we can define a new fourvector u = dr/dτ by giving its components in the S
system as

u0 = cdt

dτ
u1 = dx

dτ
u2 = dy

dτ
u3 = dz

dτ
(15.31)

with the same definitions in the S′ system

u′ 0 = cdt ′

dτ
u′ 1 = dx ′

dτ
u′ 2 = dy′

dτ
u′ 3 = dz′

dτ
(15.32)

(Note the lack of primes on the dτ and c. They are invariants with the same value for
any coordinate system.)
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With these definitions, the transformation equation for the components of u can
be obtained by dividing each of eqn (15.4) through by dτ to obtain

cdt

dτ
= �

(
cdt ′

dτ
+ V

c

dx ′

dτ

)
dx

dτ
= �

(
V

c

cdt ′

dτ
+ dx ′

dτ

)
dy

dτ
= dy′

dτ

dz

dτ
= dz′

dτ
(15.33)

Comparison of these transformation equations with eqn (15.25), with u substituted
for A, proves that the components of u do transform correctly and that u is indeed a
fourvector.

The fourvector u is called the fourvector velocity. In the S system it can be written
as

u = u0 ê0 + u1 ê1 + u2 ê2 + u3 ê3 = u0 ê0 + u (15.34)

where the spatial part of u is the threevector

u = u1 ê1 + u2 ê2 + u3 ê3 (15.35)

This u is the same as the proper velocity threevector that was used extensively in the
survey of spacetime in Section 14.5. Using the definition of coordinate velocity v from
eqn (14.26), the fourvector u can also be written as

u = γ c ê0 + γ v (15.36)

where γ = 1/
√

1 − v2/c2 = √
1 + u2/c2.

This process can be repeated, taking differentials of uµ and dividing again by dτ

to construct what is called the fourvector acceleration w, defined by its components
in the S system as

w0 = du0

dτ
= cd2t

dτ 2
w1 = du1

dτ
= d2x

dτ 2
w2 = du2

dτ
= d2 y

dτ 2
w3 = du3

dτ
= d2z

dτ 2

(15.37)
and similar definitions for primed components in the S′ system. Taking second deriva-
tives in eqn (15.33), the components of this fourvector acceleration are easily shown
to satisfy the transformation condition eqn (15.25).

We will return to the fourvector velocity and fourvector acceleration in Chapter
16 when the covariant form of mechanics is developed.

15.8 Covariant and Contravariant Components
We have so far written all fourvector components with a superscript index and all
basis fourvectors with a subscript index. Quantities with superscripts are called con-
travariant and those with subscripts covariant.
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This introduction of upper and lower indices is needed because the presence of
matrix g in the definition of the inner product of two fourvectors introduces a com-
plication into relativity theory that was absent in ordinary threevector algebra. A
method has evolved for dealing with this complication by defining two sets of S sys-
tem components for every fourvector: its contravariant components (the one we have
used above) and its covariant components. (There are also two sets in the S′ system,
and indeed in any coordinate system.)

However, the manipulation of these contravariant and covariant indices can itself
prove a challenge. One author refers to “index gymnastics.” We introduce the meth-
ods here even though they are scarcely needed in the examples treated in this book.
It is hoped that they will be easier to understand in the present context, and that
familiarity with them will prove useful when the reader moves on to more advanced
topics such as general relativity.

The general fourvector has been written with contravariant components Aµ. We
define a set of covariant components Aµ for the same fourvector A by a rule, called
“lowering the index”

Aµ =
3∑

ν=0

gµν Aν (15.38)

The inner products like A · A can then be written in an alternate form involving one
covariant and one contravariant component and only one sum

A · A = −(A0)2 + (A1)2 + (A2)2 + (A3)2 =
3∑

µ=0

3∑
ν=0

gµν Aµ Aν =
3∑

µ=0

Aµ Aµ (15.39)

Often, the last expression on the right of eqn (15.39) is written without an explicit
summation sign, using what is called the Einstein summation convention: Any term
that contains the same Greek index (here µ) on a contravariant and a covariant ob-
ject is automatically to be summed over that index from 0 to 3. In our treatment of
fourvectors here, we will write our sums using this Einstein index convention, but
will continue to write the summation signs explicitly, as we have done throughout the
text.

Indices can also be raised. The matrix g has an inverse, g−1. In the simple
Minkowski space of special relativity, g is in fact its own inverse since ( g )2 = U
where U is the four-rowed identity matrix with diagonal elements (1, 1, 1, 1). In gen-
eral relativity, the inverse of g will still exist, but will not have such a simple form.

We define a contravariant metric with gµν defined as the µν element of the inverse
matrix g−1. It follows that g−1 g = U = g g−1, or in component form,

3∑
α=0

gµαgαν = δµ
ν =

3∑
α=0

gναgαµ (15.40)

The indexed quantity δ
µ
ν is defined to have the value one whenever µ = ν and the

value zero otherwise. It is the four-dimensional generalization of the Kroeneker delta
function defined in Section A.5.
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Using this inverse gµν , the covariant components Aµ defined in eqn (15.38) can
be raised again, using the rule called “raising the index”

Aµ =
3∑

ν=0

gµν Aν (15.41)

The reader can show that this operation recovers the original contravariant compo-
nents.

In special relativity, the Minkowski matrix g is diagonal. In general relativity the
matrix g will not in general be diagonal but will still be symmetric, with gνµ = gµν

and gνµ = gµν . So it makes no difference which index of g is summed. And the dot
product of two fourvectors will be independent of their order. For example,

A · B = B · A êµ · êν = gµν = gνµ = êν · êµ (15.42)

Basis fourvectors can also have their indices raised and lowered, by the rules80

êµ =
3∑

ν=0

gµν êν êµ =
3∑

ν=0

gµν êν (15.43)

A general fourvector A can thus be expanded in a basis in two equivalent ways

3∑
µ=0

Aµ êµ = A =
3∑

µ=0

Aµ êµ (15.44)

Dot products with contravariant (covariant) basis fourvectors can be used to recover
the contravariant (covariant) components of fourvectors, since

êµ · êν = δµ
ν and hence Aµ = êµ · A and Aµ = êµ · A (15.45)

All of the formulas in this section apply equally well in the S′ system. One simply
places primes on the components like A′µ and A′µ and on the basis vectors like ê′µ

and ê′µ(but not on the Kroeneker delta or the metric, as noted above).

80In advanced treatments of general relativity, in which it is often useful to work without introducing an
explicit metric, a dual vector space can be defined, consisting of what are called oneforms. These oneforms
act on fourvectors to produce a number, which is called their contraction. A common notation, for example
in Misner, Thorne and Wheeler (1973), for the contraction of a oneform σ with a fourvector A is <σ, A>.
If a metric is now introduced, which allows dot products to be defined, then for every oneform σ there is
a uniquely associated fourvector v defined by < σ, A >= v · A for any A. Basis oneforms ωµ in the dual
space are also introduced, which contract with fourvectors according to < ωµ, A >= Aµ. Comparison of
this result with the second equation in eqn (15.45) shows that the basis oneform ωµ is uniquely associated
with the contravariant basis fourvector êµ since < ωµ, A >= êµ · A. The contravariant basis vector êµ is
indeed a fourvector and not a oneform, but it plays the same algebraic role as ωµ.
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15.9 General Lorentz Transformations
In the space of Cartesian threevectors, we saw in Section 8.3 that a general rotation
operator can be defined as one that preserves the value of three-dimensional dot
products, as seen, for example, in the invariant expression eqn (15.3). In an analogous
way, a general Lorentz transformation is defined as one that preserves dot products
of fourvectors and hence leads to the invariant expression eqn (15.16).

A general linear transformation between differential quantities dxµ representing
the interval dr in the S system and dx ′µ representing it in the S′ system will be de-
noted as

dxµ =
3∑

α=0

Mµ
αdx ′α or [dx] = M [dx ′] (15.46)

where the second expression is in matrix form, with the µα matrix element of matrix
M denoted by Mµ

α, and [dx] denoting a four rowed column vector consisting of the
four components of dr.

Definition 15.9.1: General Lorentz Transformation
A general Lorentz transformation is a linear coordinate transformation, written as in
eqn (15.46), that obeys the condition

3∑
µ=0

3∑
ν=0

Mµ
α Mν

βgµν = gαβ or, in equivalent matrix form, M T g M = g (15.47)

Lemma 15.9.2: Invariance of Inner Product
Definition 15.9.1 implies and is implied by the invariance of dr · dr, where this inner
product is expanded in the S and S′ systems as

3∑
µ=0

3∑
ν=0

dxµdxνgµν = dr · dr =
3∑

µ=0

3∑
ν=0

dx ′µdx ′ νgµν (15.48)

Proof: Using eqn (15.46), and changing the dummy indices of the second expres-
sion, eqn (15.48) becomes

3∑
µ=0

3∑
ν=0

3∑
α=0

3∑
β=0

Mµ
α Mν

βdx ′αdx ′βgµν =
3∑

α=0

3∑
β=0

gαβdx ′αdx ′β (15.49)

or, in matrix form,
[dx ′]T M T g M [dx ′] = [dx ′]T g [dx ′] (15.50)

Since the differentials dx ′µ are arbitrary continuous variables, and both g and
M T g M are symmetric matrices, this condition holds if and only if M T g M = g ,
which is the same as eqn (15.47). Thus, dr · dr is invariant if and only if Definition
15.9.1 is satisfied. �
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It follows from eqn (15.47) that the Lorentz transformation matrix M has a non-
zero determinant and hence an inverse M−1. To avoid confusion between the “−1”
superscript and contravariant indices, we will denote M−1 as M . Thus, defining Mµ

ν

to be the µν matrix element of M ,

3∑
α=0

Mµ
α Mα

ν = δµ
ν =

3∑
α=0

Mµ
α Mα

ν or M M = U = M M (15.51)

which can be used to write relations inverse to eqn (15.46)

dx ′µ =
3∑

ν=0

Mµ
νdxν or [dx ′] = M [dx] (15.52)

The transformation rule for fourvector components in eqn (15.46) implies a trans-
formation rule for the basis fourvectors. The covariant basis fourvectors in the S and
S′ systems must be related in a way that makes the expansion of dr in the two systems
equivalent, such that

3∑
µ=0

dxµ êµ = dr =
3∑

µ=0

dx ′µ ê′µ (15.53)

This equation is true for general dxµ if and only if the following transformation equa-
tions hold for the covariant basis fourvectors

êµ =
3∑

ν=0

Mν
µ ê′ν ê′µ =

3∑
ν=0

Mν
µ êν (15.54)

Since the transformation coefficients Mµ
α in eqn (15.46) are constants, the trans-

formation rules for the radius fourvector r defined in eqn (15.27) are the same for the
differential fourvector displacement dr. Thus we can write the transformation rules
for the components xµ of the radius fourvector r by simply replacing dxµ by xµ, etc.,
in the formulas of this section.

Note that the transformation rules in this section are generalizations of those de-
rived earlier. Equations (15.4, 15.9) assumed the standard configuration for the S
and S′ systems, with the x-axes aligned, etc. The equations of this section are more
general, and apply to any Lorentz transformation, not just the standard one.

15.10 Transformation of Components
By the definition of fourvectors, the transformation rules derived in Section 15.9 for
the template fourvector dr must apply also to any fourvector A. Thus A is a fourvector
if and only if

Aµ =
3∑

α=0

Mµ
ν A′ ν and A′µ =

3∑
ν=0

Mµ
ν Aν (15.55)

These equations are to be considered as the generalization of the transformation rules
in eqn (15.25), which assumed the special case of standard Lorentz transformations.
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If we apply the results from eqns (15.38, 15.41) for the raising and lowering of
indices to eqn (15.55), we obtain a transformation rule for quantities with covariant
indices. Applying gµν and gµν gives

Aµ =
3∑

α=0

gµα Aα =
3∑

α=0

3∑
β=0

3∑
ν=0

gµα Mα
βgβν A′ν (15.56)

Equation (15.47) implies that

M = g−1 M T g (15.57)

or, in component form,

Mν
µ =

3∑
α=0

3∑
β=0

gνβ Mα
βgαµ =

3∑
α=0

3∑
β=0

gµα Mα
βgβν (15.58)

where the order of terms has been changed to get the last equality. (Note that the
symmetry of the g allowed us also to exchange the indices on gβν and gµα.) Thus the
transformation of covariant indices in eqn (15.56) can be written as

Aµ =
3∑

ν=0

Mν
µ A′ν and the inverse A′µ =

3∑
ν=0

Mν
µ Aν (15.59)

which shows that covariant components transform by the same rule as the covariant
basis fourvectors in eqn (15.54).

In a similar way, we can show that the contravariant basis fourvectors transform
by the same rule as contravariant components in eqn (15.55).

êµ =
3∑

ν=0

Mµ
ν ê′ ν ê′µ =

3∑
ν=0

Mµ
ν êν (15.60)

It follows from the transformation rules in this section that any sum involving
the product of a covariant and a contravariant quantity will automatically be form
invariant under Lorentz transformations. For example, expressions such as

3∑
µ=0

Aµ Bµ = A · B =
3∑

µ=0

A′µ B′
µ and

3∑
µ=0

dxµêµ = dr =
3∑

µ=0

dx ′µê′µ (15.61)

are form invariant. This is the main utility of the formalism of upper and lower indices.
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15.11 Examples of Lorentz Transformations
We now give some examples of Lorentz transformations satisfying Definition 15.9.1.

15.11.1 The Standard Lorentz Transformation

The special case in which the coordinate axes of the S and S′ systems are parallel, and
the relative velocity is along the x-axis of each of them, is described in Section 14.6.
This is referred to as the standard Lorentz transformation. Inspection of eqn (15.4)
(or, equivalently, of eqn (14.53) for the radius fourvector r) shows that the matrix
M st for this special case has the form

M st =

⎛⎜⎜⎝
� �B 0 0

�B � 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ where � = 1/
√

1 − B2 and B = V/c

(15.62)
where V is the constant relative velocity of the two systems. From either eqn (15.57)
or Cramer’s rule, the inverse matrix is found to be

M st =

⎛⎜⎜⎝
� −�B 0 0

−�B � 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ (15.63)

Note that in this simple case the matrix M st is symmetric, with M T
st = M st. General

Lorentz transformation matrices are not symmetric, however, as the next example
shows.

15.11.2 Rotations at Fixed Time

Threevector rotations of coordinates of the sort described in Section 8.3, with the
extra condition that time is not transformed, are a special case of Lorentz transforma-
tions. For them, the matrix M rot has the form

M rot =

⎛⎜⎜⎝
1 0 0 0
0 R11 R12 R13

0 R21 R22 R23

0 R31 R32 R33

⎞⎟⎟⎠ (15.64)

where the 3×3 sub-matrix R is the orthogonal transformation matrix of a rotation in
three-dimensional space, as discussed in Section 8.3. The reader can verify that, due
to the orthogonality condition R T R = U = R R T, this matrix M rot does satisfy the
condition Definition 15.9.1 and is therefore a Lorentz transformation.

15.11.3 General Boosts

If one begins with the standard Lorentz transformation and then applies the same
proper rotation matrix R to both the S and S′ coordinate systems, the result is what
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is called a boost in a general threevector direction V. Boosts are sometimes called
Lorentz transformations without rotation, but a more accurate term would be Lorentz
transformations with identical rotation in both systems.

S′

S x

x ′

y′

y

Vt

ct, x, y, z
ct ′, x ′, y′, z′

FIG. 15.2. Geometry of a boost in a general direction V. The origins of S and S′ coincide at
t = 0 = t ′. The diagram is somewhat schematic since the S′ axes, which would appear to be
perpendicular as seen by S′, would not appear perpendicular as seen by S, due to Lorentz
contraction.

To derive the matrix M bst for such a boost, we begin by writing the standard
Lorentz transformation eqn (14.53) in threevector form as81

ct = �
{

ct ′ + B
(

V̂
′ · r′

)}
r ∼

{
r′ −

(
V̂
′ · r′

)
V̂
′}+ �

{
Bct ′V̂

′ +
(

V̂
′ · r′

)
V̂
′}

(15.65)

where V̂
′ = ê′1, r = x ê1 + y ê2 + z ê3, and r′ = x ′ ê′1 + y′ ê′2 + z′ ê′3.

Now assume that the S and S′ coordinate systems are rotated by the same proper
rotation matrix R . Equations (15.65) are expressed as threevector relations, and
hence are form invariant under such rotations. But the unit threevector V̂

′
will now

have different components. It will now be V̂
′ = α1 ê′1 + α2 ê′2 + α3 ê′3, where (α1)

2 +
(α2)

2 + (α3)
2 = 1. The resulting transformation of coordinates can then be expanded

from eqn (15.65) as

ct = �
{
ct ′ + B

(
α1x ′ + α2 y′ + α3z′

)}
x = {

x ′ − (
α1x ′ + α2 y′ + α3z′

)
α1

}+ �
{

Bct ′α1 +
(
α1x ′ + α2 y′ + α3z′

)
α1

}
y = {

y′ − (
α1x ′ + α2 y′ + α3z′

)
α2

}+ �
{

Bct ′α2 +
(
α1x ′ + α2 y′ + α3z′

)
α2

}
z = {

z′ − (
α1x ′ + α2 y′ + α3z′

)
α3

}+ �
{

Bct ′α3 +
(
α1x ′ + α2 y′ + α3z′

)
α3

}
(15.66)

81The notation a ∼ b′ used here means that the threevector a has the same components in the S system
as the threevector b′ has in the S′ system. We do not use an equal sign because the basis fourvectors in
the two systems are not equal. For example, a displacement �ê1 would connect two events simultaneous
in S. Those same two events would not be simultaneous in S′ and hence could not be connected by any
displacement of the form �′ê′1. Thus �ê1 ∼ �ê′1 but �ê1 �= �ê′1.
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The matrix of a general boost can be read from eqn (15.66). It is

M bst =

⎛⎜⎜⎝
� �Bα1 �Bα2 �Bα3

�Bα1 N11 N12 N13

�Bα2 N21 N22 N23

�Bα3 N31 N32 N33

⎞⎟⎟⎠ where Ni j = δi j + (� − 1) αiαj

(15.67)
with the inverse matrix is given (using the same Ni j elements) by

M bst =

⎛⎜⎜⎝
� −�Bα1 −�Bα2 −�Bα3

−�Bα1 N11 N12 N13

−�Bα2 N21 N22 N23

−�Bα3 N31 N32 N33

⎞⎟⎟⎠ (15.68)

It follows (see Exercise 15.11) that a point at rest in the S′ system will appear to the
S system to be moving with a threevector velocity V = V (α1 ê1 + α2 ê2+α3 ê3), and
that a point at rest in the S system will appear to the S′ system to be moving with
threevector velocity (−V′) where V′ = V (α1 ê′1 + α2 ê′2+α3 ê′3). Thus V ∼ V′. The
threevector r⊥ perpendicular to V and the threevector r′⊥ perpendicular to V′ will
have the same components in the two systems. Thus r⊥ ∼ r′⊥.

Boosts are also called velocity transformations. They are completely specified once
the threevector V = V

(
α1 ê1 + α2 ê2 + α3 ê3

)
is chosen.

15.12 Gradient Fourvector

A function f (ct, x, y, z) has a differential given by the chain rule

d f = ∂ f

∂(ct)
d(ct)+ ∂ f

∂x
dx + ∂ f

∂y
dy + ∂ f

∂z
dz (15.69)

A gradient fourvector ∂ f is defined by the condition that this differential be repro-
duced by

d f = dr · ∂ f = dr · ∂ f

∂r
where dr =

3∑
µ=0

dxµêµ (15.70)

The notation ∂ f = ∂ f/∂r is similar to that discussed in Section A.11, and should be
used with the same cautions.

Inspection of eqn (15.69) shows that a gradient fourvector satisfying eqn (15.70)
is written most simply by using contravariant basis vectors, and covariant components
defined as ∂µ f = ∂ f/∂xµ

∂ f = ∂ f

∂r
= ê0 ∂ f

∂(ct)
+ ê1 ∂ f

∂x
+ ê2 ∂ f

∂y
+ ê3 ∂ f

∂z
=

3∑
µ=0

êµ ∂ f

∂xµ
=

3∑
µ=0

êµ
∂µ f (15.71)
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It follows from this definition that

dr · ∂ f =
⎛⎝ 3∑

µ=0

dxµ êµ

⎞⎠ ·
(

3∑
ν=0

êν ∂ f

∂xν

)
=

3∑
µ=0

3∑
ν=0

dxµ ∂ f

∂xν
êµ · êν

=
3∑

µ=0

3∑
ν=0

dxµ ∂ f

∂xν
δν
µ =

3∑
µ=0

dxµ ∂ f

∂xµ
= d f (15.72)

as required.
Like any fourvector, the same gradient fourvector can also be written using con-

travariant components and covariant basis vectors, as

∂ f = ∂ f

∂r
=

3∑
µ=0

êµ∂µ f where ∂µ f =
3∑

ν=0

gµν ∂ f

∂xν
= ∂ f

∂xµ

(15.73)

Thus the gradient can also be written as

∂ f = ∂ f

∂r
= − ê0

∂ f

∂(ct)
+ ê1

∂ f

∂x
+ ê2

∂ f

∂y
+ ê3

∂ f

∂z
= − ê0

∂ f

∂(ct)
+ ∂ f

∂r
(15.74)

To prove that the quantity ∂ f truly is a fourvector, we must check its transfor-
mation properties. If a function is defined in the S and S′ systems by f (ct, x, y, z) =
f (ct ′, x ′, y′, z′) then the chain rule gives

∂ ′µ f = ∂ f

∂x ′µ
=

3∑
ν=0

∂ f

∂xν

∂xν

∂x ′µ
=

3∑
ν=0

∂ν f Mν
µ (15.75)

which matches the second of eqn (15.59) for the inverse transformation of covariant
components. Thus ∂ f is a fourvector.

15.13 Manifest Covariance

If an expression relating physical variables can be written entirely in terms of fourvec-
tors and invariants, it is said to be manifestly covariant. The exclusive use of manifestly
covariant expressions in physics guarantees the consistency of the resulting theory
with special relativity. If a manifestly covariant expression is correct when written out
in terms of coordinates in some system, say the S′ system, then it is guaranteed to be
correct when written out in any coordinate system.

For example, consider the fourvector expression K = mw, where m is an invariant
quantity. In the S′ system, it takes the form K ′ ν = mw′ ν . Assume that we know
this expression to be correct. Since K ′ ν and w′ ν are components of a fourvector, we
may apply the same fourvector transformation from eqn (15.55) to both sides of this
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expression to obtain the second equality

3∑
ν=0

Mµ
ν K ′ ν = m

3∑
ν=0

Mµ
νw

′ ν and hence K µ = mwµ (15.76)

which shows that the same expression is also correct in the S system. This example
illustrates the general rule stated in the following note.

Note to the Reader: If a manifestly covariant expression is true in one coordinate
system, then it is automatically true in all coordinate systems obtained by proper
Lorentz transformations. Thus, use of manifestly covariant expressions guarantees
consistency with special relativity.

The elegance of the fourvector formalism, however, should not seduce us into
believing that an expression must be true just because it is written in manifestly co-
variant form. A manifestly covariant expression might be false in all systems! For ex-
ample, assuming the above expression to be true, we could also write the manifestly
covariant expression K = mβ (w ·w) w where β is assumed to be some invariant con-
stant. But this expression would be false. The fourvector notation is just an elegant
language, and like any language can be used to make both true and false statements.

15.14 Formal Covariance
In Section 15.6 we saw how new fourvectors like u can be derived by combining old
fourvectors and invariant quantities like dτ . But another way to make fourvectors is,
as it were, by fiat.

We could, for example, define a new fourvector n̂ by giving its components in the
S′ system as n̂ : (1, 0, 0, 0)S′ . Then we could use the Lorentz transformation rule eqn
(15.55) to define the components of n̂ in some other system. Thus, its components in
the S system would be n̂ : (M0

0, M1
0, M2

0, M3
0)S where the Mµ

ν are the elements of
the transformation matrix between the two systems.

We can then use this fourvector in a covariant expression, for example r · n̂ = θ

where θ is some invariant quantity. Such an expression uses the formalism of covari-
ance (fourvectors and scalars) but violates the spirit of the principle of relativity. The
vector n̂ by definition has a particular form in a particular coordinate system S′. Its
components in another system cannot be found unless we know the transformation
from our current system to that special system S′. Such equations are called formally
covariant. They use the covariant formalism to express an essentially nonrelativistic
idea since they contain elements (here n̂) that single out one particular coordinate
system for special treatment.

15.15 The Lorentz Group
We saw in Section 8.7 that threevector rotations form a group. We now show that the
same is true for Lorentz transformations.
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As for rotations, the product of two Lorentz transformations is defined to mean
successive transformation. Thus, if M denotes a Lorentz transformation and N de-
notes another, their product C = M N is defined to mean the application of N and
then the application of M to the result. Taking Nµ

ν to be the transformation matrix
from S′ to S′′ and Mµ

ν to be the transformation matrix from S to S′, the transformation
C = M N from S to S′′ has the matrix C where

Cµ
ν =

3∑
α=0

Mµ
α Nα

ν or, in matrix form, C = M N (15.77)

A set of objects, often called a set of group elements, is said to form a group if an
ordered binary operation called group multiplication of the elements is defined, and
the standard group axioms listed below are satisfied. The common usage is to say
that the objects form a group under that particular group multiplication. We show
that Lorentz transformations form a group, under group multiplication defined as
successive transformation.

1. The first axiom is closure. The group product of two elements must be an ele-
ment in the same group. The product of two Lorentz transformations must also
be a Lorentz transformation. Closure is proved by showing if M and N obey
eqn (15.47) of Definition 15.9.1 then C does also, as follows from the matrix
relation

C T g C = N T M T g M N = N T g N = g (15.78)

2. There must be an identity element U in the group such that pre- or post-
multiplication of any object by that identity does not change the object, U M =
M = MU . The identity transformation, with matrix U where Uµ

ν = δ
µ
ν satis-

fies this condition. It also satisfies definition eqn (15.47) since U T g U = g is
trivially true. Thus the identity is a member of the group, as required.

3. Every object M in the group must have an inverse M in the group, such that
pre- or post-multiplication of that object by its inverse yields the identity object,
M M = U = M M . The inverse transformation M defined in Section 15.9 sat-
isfies this condition, as shown by eqn (15.51). The inverse is also a member of
the group, as is demonstrated by multiplying both sides of eqn (15.47) from the
left by M Tand from the right by M which gives

g = M T M T g M M = M T g M (15.79)

This proves that M also satisfies eqn (15.47), and is hence also a Lorentz trans-
formation and a member of the group.

4. Group multiplication must be associative. As for rotations, the associativity of
group multiplication is a trivial consequence of its definition.

If the product of a pair of elements gives a result independent of their order, the
group is said to be Abelian. Like rotations, Lorentz transformations form a non-Abelian
group. In general M N �= N M .
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We have already made use of the fact that Lorentz transformations form a group
under successive application, in Section 15.11.3 when we multiplied two rotations
and a standard Lorentz transformation to form a general boost. Due to the group
property of Lorentz transformations, we know that this boost is also a Lorentz trans-
formation.

15.16 Proper Lorentz Transformations and the Little Group
The following are Lorentz transformations and hence members of the Lorentz group:
time reversal with M tr = g ; parity or spatial inversion with M par = −g ; and total
inversion with M inv = −U . Together with the identity U , these elements define a
four-element, abelian subgroup called the Little Group.

A subgroup is a subset of group elements such that there are closure, an identity,
and inverses within the subgroup. The reader can easily verify that the product of any
pair of these four elements yields another one of the four, proving subgroup closure.
The identity element U is a member of the subgroup by definition. And each element
of the subgroup is its own inverse. Also the reader can verify that the product of
any pair of the four elements is the same regardless of the order in which they are
multiplied, verifying that the subgroup is abelian.

If a Lorentz transformation has matrix M with M0
0 ≥ 1 and determinant |M | =

+1 then it will be called a proper Lorentz transformation. Such transformations, (1)
preserve the direction of time and, (2) preserve the right-handed sense of the spatial
basis fourvectors êi for i = 1, 2, 3. Every Lorentz transformation can be written as the
product of a proper Lorentz transformation and a member of the Little Group.

Note that the standard Lorentz transformation and the general boost in Section
15.11 are proper Lorentz transformations. The rotation at fixed time is a proper
Lorentz transformation if the 3 × 3 sub-matrix R in eqn (15.64) is a proper rotation
matrix in the sense described in Section 8.6.

Proper Lorentz transformations form a subgroup of the Lorentz group. Subgroup
closure is proved in Exercise 15.13, which establishes that the product of any two
proper Lorentz transformations is a proper Lorentz transformation. The identity U is
a proper Lorentz transformation, and hence the subgroup contains an identity. And
it follows from eqn (15.57) that the inverse of a proper Lorentz transformation will
also be a proper Lorentz transformation. Thus all the group axioms are satisfied and
proper Lorentz transformations form a subgroup. The subgroup of proper Lorentz
transformations is said to be continuously connected to the identity U since, by The-
orem 15.17.2, one can begin with any proper Lorentz transformation and pass con-
tinuously to the limits 
 → 0 and V → 0, arriving at the identity transformation
U .

15.17 Parameterization
The most general proper Lorentz transformation can be written as the product of a
boost and a rotation. To demonstrate how this is done, we first need a preliminary
result.
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Lemma 15.17.1: A Relation Among Matrix Elements
Let M be the matrix of any Lorentz transformation. Then the matrix elements of M obey
the following two identities

(
M0

0

)2 −
3∑

i=1

(
Mi

0

)2 = 1 =
(

M0
0

)2 −
3∑

i=1

(
M0

i

)2
(15.80)

The proof of this lemma is in Exercise 15.9. We now state the main theorem.82

Theorem 15.17.2: Lorentz Transformation as Product of Boost and Rotation
Let M be the matrix of any proper Lorentz transformation. Then there are a unique
boost M bst and a unique proper rotation M rot such that

M = M bst M rot (15.81)

It follows that a general Lorentz transformation can be parameterized uniquely by six
numbers: The three components of the threevector 
n̂ (from the Euler theorem of Section
8.20) that specify the proper rotation M rot and the three components of the threevector
velocity V = V V̂ which are shown in Section 15.11.3 to specify the boost M bst uniquely.

Proof: According to the transformation law eqn (15.55) applied to fourvector r, a
point at rest at the origin of the S′ system with coordinates

(
ct ′, 0, 0, 0

)
S′ will be

represented in the S system by the four coordinates
(
M0

0ct ′, M1
0ct ′, M2

0ct ′, M3
0ct ′

)
S

and will therefore appear to have threevector velocity

V =
3∑

i=1

Vi êi with components Vi = cMi
0/M0

0 (15.82)

It follows from Lemma 15.17.1 that this vector has magnitude V = √
V · V ≤ c.

Define M bst to be the boost determined by this velocity V.
Apply the inverse of this boost, M bst, to M to get a new matrix X defined by

X = M bst M (15.83)

Performing the matrix multiplication shows that X0
0 = 1. The matrix X is a product

of Lorentz transformations and hence, by the group properties in Section 15.15, is a
Lorentz transformation. Thus Lemma 15.17.1 applies and can be used to show that
Xi

0 = X0
i = 0 for i = 1, 2, 3. Thus X is a Lorentz transformation of the type given in

Section 15.11.2, a rotation at fixed time. Since X0
0 = 1 and |X | = ∣∣M bst

∣∣ |M | = 1,

X is also a proper rotation. Defining M rot = X and multiplying eqn (15.83) from the
left by M bst then gives eqn (15.81), which proves the theorem.

To prove the uniqueness of this factorization, suppose that some other boost M (∗)
bst

and rotation M (∗)
rot can be found so that M = M (∗)

bst M (∗)
rot. It follows from this equation

82This theorem and its proof are adapted from Wichmann (1974).
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and eqn (15.81) that M bst M (∗)
bst = M rot M (∗)

rot. The right side of this equation is the
product of two proper rotations, and hence a proper rotation. Thus the matrix prod-

uct on the left must also be a proper rotation and hence have
(

M bst M (∗)
bst

)0

0
= 1.

Carrying out the matrix multiplication, this condition implies

1 = 1 − (
V · V(∗)) /c2√

1 − V 2/c2
√

1 − V (∗)2/c2
(15.84)

Since
(
V · V(∗)) ≤ V V (∗), this equation can be satisfied if and only if V = V(∗). Since

a boost is completely determined by the choice of V, this proves that the two boosts
are the same and hence proves uniqueness. �

15.18 Fourvector Operators
In Chapter 7, we developed the formalism of linear operators that map threevectors
into other threevectors. Operators in the space of fourvectors can be defined similarly.
Let

C = FA (15.85)

map fourvector A into another fourvector C. We assume this operation to be linear,
so that

F (αA+ βB) = αFA+ βFB (15.86)

Using this linearity, as well as the assumed linearity of dot products, it follows that
eqn (15.85) can be written out in terms of components in a particular coordinate
system, say the S system, by writing

Cµ = êµ · C = êµ ·
{
F

(
3∑

ν=0

Aν êν

)}
=

3∑
ν=0

Fµ
ν Aν (15.87)

where
Fµ

ν = êµ · (F êν

)
(15.88)

are the matrix elements of the matrix F that represents F in the S coordinate system.
This result can also be written as the matrix equation [C] = F [A].

Operators like F are a particular example of a general class of mathematical ob-
jects called tensors. Since the matrix elements of operators have two indices, they are
called tensors of rank two. Tensors of other ranks can also be defined. Fourvectors
can be considered as tensors of rank one, for example. Tensors are an indispensable
tool in general relativity, but their development here would take us too far afield.
The reader can consult a number of excellent texts, particularly Misner, Thorne and
Wheeler (1973), which uses an invariant approach similar to the one we have used.

Like fourvectors, the operator F is considered to be an invariant object that models
some physical property that is independent of our particular choice of coordinate
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system. The same operator F can thus be represented by its matrix elements in any
coordinate system. In the S′ system, F is represented by

F ′ µ
ν = ê′µ ·

(
F ê′ν

)
(15.89)

Using eqn (15.54), the relation between the matrix elements of F in the S and S′
coordinate systems can be written as

Fµ
ν =

3∑
α=0

3∑
β=0

Mµ
α F ′ α

β Mβ
ν and F ′ µ

ν =
3∑

α=0

3∑
β=0

Mµ
α Fα

β Mβ
ν (15.90)

in which the upper index transforms as a contravariant and the lower index as a
covariant quantity.

The indices of Fµ
ν can be raised and lowered in the usual manner, giving, for

example, equivalent components of F like

Fµν =
3∑

α=0

gµα Fα
ν or Fµν =

3∑
α=0

Fµ
αgαν (15.91)

The invariant trace and determinant of fourvector operators can also be defined.
The trace is

Tr F =
3∑

µ=0

Fµ
µ = TrF =

3∑
µ=0

F ′ µ
µ = Tr F ′ (15.92)

and the determinant is
|F | = det F = ∣∣F ′∣∣ (15.93)

The invariance of these quantities follows from the matrix form of eqn (15.90),

F = M F ′ M and F ′ = M F M (15.94)

together with M M = U from eqn (15.51).

15.19 Fourvector Dyadics
The dyadic formalism of Section 7.6 can also be extended to the space of fourvectors.
We present the formalism very briefly here, assuming that the reader has already
understood the more extensive treatment of dyadics in the earlier section.

We define a dyadic � associated with the F by

� =
3∑

µ=0

3∑
ν=0

êµ Fµ
ν êν (15.95)

Then the action of F on fourvector A in eqn (15.87) can also be written as a dyadic
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dot product

FA = � · A =
3∑

µ=0

3∑
ν=0

êµFµ
ν êν · A =

3∑
µ=0

3∑
ν=0

êµFµ
ν Aν =

3∑
µ=0

êµCµ = C (15.96)

This result is analogous to the action of dyadics in the space of threevectors presented
in Section 7.6. The matrix associated with a dyadic can be recovered by the rule

Fµ
ν = êµ · � · êν (15.97)

which can be derived from eqn (15.95) by use of eqn (15.45).
Dyadics, like operators, are invariant objects. The same dyadic � can also be ex-

panded in the S′ system as

� =
3∑

µ=0

3∑
ν=0

ê′µF ′ µ
ν ê′ ν where F ′ µ

ν = ê′µ · � · ê′ν (15.98)

Thus, as was noted for threevectors and operators in Chapter 7, we have four
equivalent ways of presenting the same information:

C = FA C = � · A Cµ =
3∑

ν=0

Fµ
ν Aν [C] = F [A] (15.99)

The latter two expressions involve components in a particular basis, here the S system.
They would take the same form (with primes added) in the S′ system

C ′µ =
3∑

ν=0

F ′ µ
ν A′ ν [C ′] = F ′[A′] (15.100)

15.20 Wedge Products
One particular dyadic of importance is what is called the wedge product � of two
fourvectors A and B. It is denoted as A∧B and defined as the difference of two dyads

� = A ∧ B = AB− BA (15.101)

It follows from eqn (15.97) that the matrix of the wedge product in the S system is

W µ
ν = Aµ Bν − Bµ Aν (15.102)

which of course can have its indices raised or lowered as needed. By construction, the
wedge product has the properties

A ∧ B = −B ∧ A A ∧ A = 0 C ∧ (αA+ βB) = αC ∧ A+ βC ∧ B (15.103)

The wedge product of two fourvectors is analogous to the cross product of two
threevectors (See Exercise 15.14). In three-dimensional Cartesian spaces, the cross
product of two threevectors is a unique threevector orthogonal to the plane they
define. But in four dimensions, the space perpendicular to the plane defined by two
fourvectors is itself two dimensional. Hence, it is not possible to represent a cross
product by a single fourvector.
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15.21 Scalar, Fourvector, and Operator Fields
A scalar field is a function which assigns a particular number to each event. Since
events can be specified in an invariant way by the radius fourvector r, a scalar field
can be written as f = f (r). This function can be written out in terms of components
in different coordinate systems. In the S and S′ systems, for example,

f (ct, x, y, z) = f (r) = f
(
ct ′, x ′, y′, z′

)
(15.104)

where we have followed the convention discussed in Section D.5, using the same
letter f to represent the function expressed in different coordinate systems. If the
functional form of f (ct, x, y, z) is known, and if f is known to be a scalar field,
then eqn (15.104) and the Lorentz transformation eqn (14.53) for the components of
fourvector r can be used to calculate f

(
ct ′, x ′, y′, z′

)
.

Fourvector fields are functions that assign a particular fourvector to each event.
They can be written as A(r). Thus, in the S and S′ systems,

3∑
µ=0

Aµ(ct, x, y, z) êµ = A(r) =
3∑

µ=0

A′µ(ct ′, x ′, y′, z′) ê′µ (15.105)

where the components are related by eqn (15.55)

Aµ(ct, x, y, z) =
3∑

ν=0

Mµ
ν A′ ν(ct ′, x ′, y′, z′) (15.106)

Field operators F(r) and dyadic fields �(r) are also useful. They can be written in
dyadic form in the S and S′ systems as

3∑
µ=0

3∑
ν=0

êµ Fµ
ν(ct, x, y, z) êν = �(r) =

3∑
µ=0

3∑
ν=0

ê′µF ′µ
ν(ct ′, x ′, y′, z′) ê′ ν (15.107)

where the matrix elements transform according to the rule derived from eqn (15.90)

Fµ
ν(ct, x, y, z) =

3∑
α=0

3∑
β=0

Mµ
α F ′α

β(ct ′, x ′, y′, z′) Mβ
ν (15.108)

Note that transforming a field is a two-step process. Using fourvector fields as an
example, first one evaluates the right side of eqn (15.106). The resulting expression
is Aµ(ct ′, x ′, y′, z′), a component in the S system as desired, but is still expressed in
terms of S′ system coordinates. The second step is to substitute the inverse Lorentz
transformation eqn (14.55) into this expression to write it in terms of the correct
S coordinates, as Aµ(ct, x, y, z). Transformation of field operators follows a similar
two-step process.
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15.22 Manifestly Covariant Form of Maxwell’s Equations

In the following Chapter 16, we will consider the relativistic generalization of me-
chanics, including manifestly covariant Lagrangian and Hamiltonian methods. In that
chapter, we will use the example of a charged point mass moving in an external, given
electromagnetic field. The fourvector formulation of electromagnetism to be used
there will be outlined here as an example, to help the reader see how a manifestly
covariant theory can be developed. Since the Lorentz transformation was initially
derived by Lorentz as the transformation theory leaving Maxwell’s equations form
invariant, we expect that a fourvector formulation of Maxwell’s equations should be
possible.

We begin with the threevector electrical current density

J(ct, x, y, z) = ρ(ct, x, y, z) v(ct, x, y, z) (15.109)

derived from the charge density ρ(ct, x, y, z) and the flow velocity field of that charge
v(ct, x, y, z). These quantities obey the differential equation of charge conservation83

∇ · J + ∂ρ

∂t
= 0 (15.110)

To put this expression in manifestly covariant form, we note that an observer moving
with the flow of charge can draw an averaging sphere of radius ε containing charge
q(ch)
ε and thus define a comoving charge density ρ(0) = q(ch)

ε /
(
4πε3/3

)
. It is taken as

an axiom that the electric charge q(ch)
ε has the same value in any reference system.

An inertial observer team, relative to which the comoving observer has coordinate
velocity v, will thus observe a charge density modified only by the Lorentz contraction
of the averaging sphere

ρ = ρ(0)γ where γ = 1/

√
1 − v2/c2 (15.111)

leading to an observed current density J = ρv = ρ(0)γ v. Comparing these results
to the definition of the fourvector velocity u in Section 15.6, we see that the charge
density and the current density threevector can be combined to form a fourvector
defined by

J = cρê0 + J = ρ(0)u (15.112)

This J is a fourvector since u has already been shown to be a fourvector in Section
15.6, and because ρ(0) (sometimes called the proper density) is independent of any
particular observer team and hence is an invariant, much like the time dτ measured
on a comoving clock was found to be an invariant. With the fourvector J, the con-
servation of electric charge in eqn (15.110) can be expressed in manifestly covariant

83The current density and equation of charge conservation are derived, for example, in Wangsness
(1986).
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form as the vanishing of a fourvector divergence defined by

∂ · J =
3∑

µ=0

∂µ Jµ = ∂(cρ)

∂ct
+∇ · J = 0 (15.113)

The Maxwell equations in threevector form are84

∇ · B = 0 ∇ × E + 1

c

∂B
∂t

= 0 (15.114)

∇ · E = ρ ∇ × B − 1

c

∂E
∂t

= 1

c
J (15.115)

where we assume that the electric field E (ct, x, y, z) and magnetic induction field
B (ct, x, y, z) are in a vacuum, except possibly for the presence of charge density ρ

and current density J.
The two homogeneous Maxwell equations, eqn (15.114), are turned into iden-

tities by the introduction of a potential 
(ct, x, y, z) and a threevector potential
A (ct, x, y, z). The electric and magnetic threevector fields in terms of these poten-
tials are

E = −1

c

∂A
∂t

−∇
 and B = ∇ × A (15.116)

Substituting these definitions into eqn (15.115), and assuming the Lorentz gauge con-
dition

∇ · A + 1

c

∂


∂t
= 0 (15.117)

the two inhomogeneous Maxwell equations become

1

c2

∂2


∂t2
−∇2
 = ρ

1

c2

∂2A
∂t2

−∇2A = 1

c
J (15.118)

The differential operators on the left sides of eqn (15.118) can be written as the
divergence of a gradient fourvector. Taking the first of these equations as an example,
we can write

�2
 = ∂ · (∂
) =
⎛⎝ 3∑

µ=0

∂µêµ

⎞⎠ ·
(

3∑
ν=0

∂ν
êν

)
= − 1

c2

∂2


∂t2
+ ∇2
 (15.119)

where the notation �2
, usually referred to as the d’Alembertian operator �2 acting
on 
, has been introduced for this expression.

84We use Heaviside-Lorentz electrostatic units. The fields E and B have the same units, and factors of 4π

do not appear in Maxwell’s equations.
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We now attempt to construct a fourvector potential A by enumerating its compo-
nents in the inertial system as

A = 
 ê0 + A = 
 ê0 + A1 ê1 + A2 ê2 + A3 ê3 (15.120)

The Lorentz gauge condition eqn (15.117) can then be written in manifestly covariant
form as the vanishing of the divergence of A

∂ · A = 0 (15.121)

And the two eqn (15.118) become the single fourvector equation

−�2A = 1

c
J (15.122)

As can be verified by examination of eqn (15.119), the operator �2 is a form in-
variant differential operator. Also, J was shown above to be a fourvector, due to the
assumed invariance of electric charge. Hence, every equation of which A is a solution
is itself in a manifestly covariant form. It follows that a fourvector solution to these
equations can be found. We conclude, therefore, that A is a fourvector field.

The electromagnetic fields themselves cannot be cast into a simple fourvector
form. Rather, one defines what is called the electromagnetic field tensor F defined
by writing its associated dyadic � as a wedge product

� = ∂ ∧ A =
3∑

µ=0

3∑
ν=0

êµ Fµ
ν êν (15.123)

where, modifying the standard notation eqn (15.102) slightly to place the differential
operator ∂ν to the left of Aµ in the second term, the matrix of � and F has matrix
elements

Fµ
ν = ∂µ Aν − ∂ν Aµ (15.124)

Evaluating these matrix elements using eqn (15.116), matrix F is

F =

⎛⎜⎜⎝
0 Ex Ey Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

⎞⎟⎟⎠ (15.125)

The Lorentz threevector force f acting on a point charge q(ch) in a given electro-
magnetic field is

f = q(ch)E + q(ch)

c
v × B (15.126)

Like the threevector velocity v, the threevector force f cannot be used directly as the
spatial part of a fourvector. But, also like the velocity, there is a fourvector that is
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closely related to it. A fourvector K can be defined by dotting the electromagnetic
field dyadic � onto the fourvector velocity u. It is

K = q(ch)

c
� · u = K 0 ê0 + γ f where K 0 = γ

c
f · v (15.127)

and f is the Lorentz threevector force from eqn (15.126). The reader can verify the
equalities in eqn (15.127) by actually carrying out the indicated matrix multiplication
using eqn (15.125). The fourvector K is called the Minkowski force.

15.23 Exercises
Exercise 15.1 Use eqn (15.4) to prove the form invariance in eqn (15.5).

Exercise 15.2 Given fourvectors a and b that are both forward timelike,

(a) Prove that a · b < 0.
(b) Prove that a+ b is also forward timelike.
(c) Prove that the same results remain true when the word “forward” is replaced by the word
“backward” throughout.

Exercise 15.3 Suppose that fourvector a is timelike, and a · b = 0.

(a) Prove that fourvector b is spacelike.
(b) Argue that, since basis fourvector ê0 is timelike, the basis vectors êi for i = 1, 2, 3 must
be spacelike. Show that they are.
(c) The converse to (a) is not true. A fourvector orthogonal to a spacelike vector is not neces-
sarily timelike. Give an example that demonstrates this.

Exercise 15.4 Suppose that a = a0 ê0 + a is forward timelike.

(a) Find the V defining a boost to a system S′ in which a′ = 0.
(b) Show that the time unit vector of S′ is given by ê′0 = a/

√−a · a.

Exercise 15.5 Suppose that b = b0 ê0 + b is spacelike, with b0 > 0.

(a) Find a V defining a boost to a system S′ in which b′ 0 = 0.
(b) Find a Lorentz boost to a system S′ in which b′ 0 < 0.

Exercise 15.6 Suppose that two events A and B are connected by dr = rB− rA. Assume that
dr is forward timelike, so that B is within the forward light cone of A and tB > tA.

(a) If S′ is any coordinate system obtained from S by a proper Lorentz transformation, show
that the temporal order of events A and B is still t ′B > t ′A.
(b) Show that a boost from S can always be found to a system S′ in which A and B are at the
same spatial location.

Exercise 15.7 Suppose that two events A and B have spacelike separation dr = rB− rA with
tB > tA.

(a) Show that a boost from S can always be found to a system S′ in which A and B are
simultaneous.
(b) Show that there is a boost to a system S′ in which the temporal order of the spacelike-
separated events is reversed, with t ′B < t ′A.



374 FOURVECTORS AND OPERATORS

Exercise 15.8 Prove that eqn (15.53) is true for general dxµ if and only if eqn (15.54) holds.

Exercise 15.9 Use M T g M = g from eqn (15.47) of Definition 15.9.1 to prove Lemma
15.17.1.

Exercise 15.10 Prove that M rot defined in eqn (15.64) is a Lorentz transformation satisfying
Definition 15.9.1.

Exercise 15.11 Consider a boost from S to S′ parameterized by the threevector V, as dis-
cussed in Section 15.11.3.

(a) Show that a point at rest in S′ has threevector velocity V as seen from S.
(b) Show that a point at rest in S has a threevector velocity −V′ as seen from S′, where
V ∼ V′.

Exercise 15.12
(a) Prove that any Lorentz transformation matrix M can be written as M = Z M prop where
M prop is a proper Lorentz transformation and Z is one of the U , M tr, M par, M inv defined
in Section 15.16.
(b) Show from (a) that any Lorentz transformation is continuously connected to some member
of the Little Group.

Exercise 15.13 In Section 15.16 we defined a proper Lorentz transformation as one with
M0

0 ≥ 1 and |M | = 1.

(a) Use Lemma 15.17.1 and the Schwartz inequality A ·B ≤ AB to prove that the product of
two proper Lorentz transformations is a proper Lorentz transformation.
(b) Show that the proper Lorentz transformations form a subgroup of the Lorentz group.

Exercise 15.14 This exercise shows that a wedge product of two fourvectors includes the
cross product of their threevector spatial parts. Suppose that A = A0 ê0+A and B = B0 ê0+
B. Define the threevectors C = A × B and D = A0B − B0A.

(a) Show from eqn (15.102) that� = A ∧ B has the matrix

W =

⎛⎜⎜⎝
0 Dx Dy Dz

Dx 0 Cz −Cy

Dy −Cz 0 Cx

Dz Cy −Cx 0

⎞⎟⎟⎠ (15.128)

(b) If Y = � · X where X = X0 ê0 + X, show that Y = Y 0 ê0 + Y where Y 0 = D · X and
Y = DX0 − C × X.

Exercise 15.15
(a) Use eqn (15.94) to prove the invariance of TrF and detF stated in eqns (15.92, 15.93).
(b) Use eqns (15.93, 15.125) to prove that (E · B)2 = (E′ · B′)2.
(c) Use eqn (15.92) and the square of eqn (15.125) to prove that E2 − B2 = E ′2 − B′2.

Exercise 15.16
(a) Assuming a standard Lorentz transformation, use eqns (15.90, 15.125) to derive the trans-
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formation rules for the electric and magnetic fields:

Ex = E ′
x Ey = �

(
E ′

y +
V

c
B′

z

)
Ez = �

(
E ′

z −
V

c
B′

y

)
(15.129)

Bx = B′
x By = �

(
B′

y −
V

c
E ′

z

)
Bz = �

(
B′

z +
V

c
E ′

y

)
(15.130)

(b) Show that the results in (a) can be written for general boosts as

E‖ ∼ E′‖ E⊥ ∼ �

(
E′⊥ −

1

c
V′ × B′⊥

)
(15.131)

B‖ ∼ B′‖ B⊥ ∼ �

(
B′⊥ +

1

c
V′ × E′⊥

)
(15.132)

where E‖ and E⊥ are the components of E parallel and perpendicular to V, respectively, with
similar definitions for the other fields.
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RELATIVISTIC MECHANICS

It was apparent from its beginning that special relativity, developed as the invariance
theory of electrodynamics, would require a modification of Newton’s laws of motion.
This chapter discusses that modified theory. The relativistically modified mechanics
is presented and then recast into a fourvector form that demonstrates its consistency
with special relativity. Traditional Lagrangian and Hamiltonian mechanics can incor-
porate these modifications. But the transition to a manifestly covariant Lagrangian
and Hamiltonian mechanics requires use of the extended Lagrangian and Hamilto-
nian methods of Chapters 11 and 12.

16.1 Modification of Newton’s Laws
In the same paper in which the Lorentz transformation is presented, Lorentz also
derived a modified form for the momentum of a moving electron. The Newtonian
form of the second law, f = dp/dt with p = mv was to be replaced by85

f = dp
dt

with p = mγ v = mv√
1 − v2/c2

(16.1)

where γ = 1/
√

1 − v2/c2 is the same time-dilation and Lorentz contraction factor as
was defined in eqn (14.26) and m is a constant, independent of the velocity of the
particle. Lorentz also noted that eqn (16.1) is equivalent to

f = m‖a‖ + m⊥a⊥ (16.2)

where a‖ is the component of a parallel to v, and a⊥ is the component of a perpendic-
ular to v. The so-called longitudinal and transverse masses are, respectively,

m‖ = γ 3m and m⊥ = γ m (16.3)

At the end of his first 1905 paper,86 Einstein also derived a modified form for Newton’s
second law. It is similar to that of Lorentz, but differs in defining the transverse mass
as m⊥ = γ 2m.

85Lorentz, H.A. (1904) “Electromagnetic Phenomena in a System Moving with any Velocity Less than that
of Light,” Proceedings of the Academy of Sciences of Amsterdam, 6. English translation in Einstein, Lorentz,
Minkowski and Weyl (1923). On page 23 the electron is modeled as a sphere of charge of radius R with
electromagnetic mass e2/6πc2 R and momentum G = (e2/6πc2 R)βv where his β is the same as our γ . We
suppress a factor � which Lorentz sets to one at the end of his development.

86Einstein, A. (1905) On the Electrodynamics of Moving Bodies, Annalen der Physik, 17. English translation
in Einstein, Lorentz, Minkowski and Weyl (1923).
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In our development here, we will take eqn (16.1) to be an established fact of
nature. It applies, for example, when f is the Lorentz force on a point particle of
charge q(ch) and mass m, leading to

q(ch)E + q(ch)

c
v × B = f = d

dt

(
mv√

1 − v2/c2

)
(16.4)

This is one of the most thoroughly tested formulas in physics. It underlies the cal-
culation of particle trajectories in all modern particle accelerators, for example, and
hence is tested at a range of speeds up to nearly the speed of light.87

In the same 1905 paper, Einstein also noted that eqn (16.2) would require a modi-
fication of the work–energy theorem. In our derivation of the Newtonian work–energy
theorem in Section 1.2, the rate of doing work was shown to be equal to the rate of
change of the Newtonian kinetic energy

f · v = d (mv)

dt
· v = dT

dt
where T = 1

2
mv2 (16.5)

If, following Einstein, one retains f · v as the definition of the rate of doing work but
adopts the modified definition of momentum in eqn (16.1), or equivalently uses eqn
(16.2), then the rate of doing work is equal to the time derivative of a new quantity
E , called the relativistic energy.

f · v = d (γ mv)

dt
· v = d E

dt
where E = γ mc2 = mc2√

1 − v2/c2
(16.6)

Making the reasonable definition that kinetic energy T should be zero when the par-
ticle is at rest, the modified kinetic energy can be defined as

T = E − E0 where E0 = mc2 (16.7)

is a constant called the rest energy. Thus f · v = dT/dt still holds, but with a modified
definition of T .

The mass m is also sometimes called the rest mass of the particle. This usage dates
to a time when, as in eqn (16.3) for example, it was common to speak of masses
that varied with the velocity of the particle. The modern convention, which we follow
here, is to use only the single constant mass m, referred to simply as “the mass” of the
particle.

Exercise 16.4 shows that the p in eqn (16.1) and the T in eqn (16.7) reduce to the
Newtonian expressions in the limit v/c → 0.

87A common joke is that eqn (16.4) is also politically invariant, since the ring of the Large Hadron Collider
at the CERN laboratory crosses the border between France and Switzerland.
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16.2 The Momentum Fourvector
After introducing the fourvector notation, Minkowski88 also showed how to use it to
express the modified relativistic mechanics. The threevector momentum p defined in
eqn (16.1) and the relativistic energy E defined in eqn (16.6) can be combined into a
fourvector momentum p = mu.

Since the fourvector velocity u was shown in eqn (15.36) to be

u = dr
dτ

= γ cê0 + γ v (16.8)

we can write

p = mu = mγ cê0 + mγ v = E

c
ê0 + p (16.9)

where p0 = E/c with E defined in eqn (16.6), and the spatial part p is the same
threevector momentum as defined in eqn (16.1). Adding the axiom that the mass m
must be a Lorentz invariant makes this p the product of an invariant and a fourvector
and hence a fourvector.

Masses are never negative. So, for particles of nonzero mass, both the fourvector
velocity u and the fourvector momentum p are forward timelike vectors. Dotting u
with itself gives

u · u = dr
dτ

· dr
dτ

= dr · dr

(dτ)2
= −c2 (16.10)

where eqn (15.21) was used to get the last equality. Thus

p · p = −m2c2 (16.11)

which may be used to get the special-relativistic relation between momentum and
relativistic energy

E =
√

p2c2 + m2c4 (16.12)

where here p = √
p · p is the magnitude of the threevector momentum p.

16.3 Fourvector Form of Newton’s Second Law
Lorentz’s modified form of Newton’s second law in eqn (16.1) is not yet in fourvector
form. It is a threevector equation, and involves a derivative with respect to coordinate
time. However, if we multiply both sides of it by γ we obtain an expression that is the
derivative of the spatial part of fourvector p defined in eqn (16.9) with respect to
invariant proper time dτ

γ f = γ
dp
dt

= dp
dτ

(16.13)

where γ = dt/dτ was used.

88H. Minkowski (1908) Space and Time, Address at the 80th assembly of German Natural Scientists and
Physicians. English translation in Einstein, Lorentz, Minkowski and Weyl (1923).
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In a similar way, Einstein’s modification of the work energy theorem in eqn (16.6)
can be multiplied through by γ /c and written as a derivative with respect to proper
time

γ

c
(f · v) = γ

c

d E

dt
= d(E/c)

dτ
(16.14)

If we now define the fourvector Minkowski force K by

K = γ

c
(f · v) ê0 + γ f (16.15)

we see that eqns (16.13, 16.14) can be combined with the definition of p in eqn (16.9)
to write the manifestly covariant form of Newton’s second law

K = dp
dτ

(16.16)

Since m is assumed to be constant along the world line of a particle, eqn (16.16) can
also be written as

K = m
du
dτ

= mw (16.17)

where w is the fourvector acceleration defined in eqn (15.37).
The definition in eqn (16.15) implies certain transformation rules for f that may

not be satisfied for all forces that have been used in Newtonian physics. If not, those
forces would not be consistent with special relativity. The K would not actually be a
fourvector, despite the form in which it is written, and eqn (16.13) would be false in
some coordinate systems.

But when f is the Lorentz force of electrodynamics given in eqns (15.126, 16.4), it
follows from eqn (15.127) that

K = γ
f · v

c
ê0 + γ f = q(ch)

c
� · u (16.18)

which displays K as an invariant q(ch) times the dot product of a fourvector dyadic
� and a fourvector u, and therefore certainly a fourvector. So we have at least one
fourvector Minkowski force, that derived from the Lorentz force of electrodynamics.

One interesting feature of covariant mechanics is that the fourvector acceleration
has a zero dot product with the fourvector velocity. The vanishing of this dot product
does not imply that their spatial parts are orthogonal, however, due to the presence
of the time parts of both fourvectors. To see the vanishing dot product, we use eqn
(16.10) to write

w · u = du
dτ

· u = 1

2

d

dτ
(u · u) = 1

2

d

dτ

(
−c2

)
= 0 (16.19)

It follows from this result and eqn (16.17) that

K · u = 0 (16.20)

When written out, this identity simply restates the modified work–energy theorem
eqn (16.6).
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16.4 Conservation of Fourvector Momentum
The identification of the relativistic energy E with the zeroth component of the
fourvector momentum p = (E/c) ê0 + p suggests that both E and p are conserved
in particle collisions and emissions. This suggestion is born out by experiment, and
has become one of the foundation axioms of special relativity.

One consequence of the conservation of fourvector momentum, however, is that
the mass m is not generally a conserved quantity, a marked departure from Newtonian
theory. In a second paper89 in 1905, Einstein considered the example of a particle at
rest emitting equal light pulses in two opposite directions (see Exercise 16.6). If the
total energy of the emitted light is L, he concluded that, “If a body gives off energy L
in the form of radiation, its mass diminishes by L/c2.”

Einstein’s conclusion applies also to energy given off as the kinetic energy of mas-
sive particles. For example, if a stationary nucleus of mass m0 decays into an alpha
particle with mass mα and a residual nucleus of mass m1, then conservation of rela-
tivistic energy, with the kinetic energies defined using eqn (16.7), gives

m0c2 = E0 = Eα + E1 = mac2 + Tα + m1c2 + T1 (16.21)

The total kinetic energy of the decay products is thus equal to c2 times the mass deficit

Tα + T1 = (m0 − mα − m1) c2 (16.22)

The general result Ttotal = |�m| c2 for fission and fusion reactions is the basis of
the atomic and hydrogen bombs. In a more benign application, the alpha decay of
plutonium-238 provided power for the Cassini probe that reached Saturn in 2004, as
estimated in Exercise 16.13.

16.5 Particles of Zero Mass
The relation, eqn (16.12), between relativistic energy and momentum simplifies in
the extreme relativistic limit p � mc. Then

E = pc

√
1 +

(
mc

p

)2

→ pc and T = E − mc2 = pc

(√
1 + (mc/p)2 − mc

p

)
→ pc

(16.23)
The relativistic energy is dominated by the kinetic energy of the particle and the
distinction between relativistic and kinetic energy disappears. It also follows from
pc/E = v/c (see Exercise 16.4) that v/c → 1 in this limit.

There is a class of elementary particles for which the relation E = pc holds exactly,
and for low as well as high energies. For example, the deBroglie relations of quantum
theory give energy E = h̄ω and momentum p = h̄k for the photon, the quantum of
light, where the angular frequency ω and wave vector k are those of a light wave

89Einstein, A. (1905) “Does the Inertia of a Body Depend Upon its Energy-Content?” Annalen der Physik,
17. English translation in Einstein, Lorentz, Minkowski and Weyl (1923).
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and hence obey ω/k = c. It follows that E = pc, a relation that can also be derived
from classical electrodynamics by considering the Poynting vector and the momentum
density of a light wave.

Such particles can be brought into the relativistic formalism by setting m = 0 in
eqn (16.12). They are called zero-mass particles. Particles of zero mass are assumed to
have m = 0 and speeds always equal to the speed of light. They are, in a sense, like
massive particles always at their extreme relativistic limit. Hence, the definitions in
eqns (16.1, 16.6) are indeterminate and cannot be used. The fourvector momentum
of zero mass particles is found by specifying p and using E = pc to write

p = E

c
ê0 + p = p ê0 + p (16.24)

where p = ‖p‖. The momentum of a zero-mass particle is therefore lightlike, with
p · p = 0.

The fourvector momentum of photons, or other particles of zero mass, is included
in the conservation of momentum. For example, if the decaying nucleus in Section
16.4 also produced a gamma ray (an energetic photon), as it often does, then eqn
(16.22) would be modified only by the addition of a term Tphot = Ephot = pphotc to
its left-hand side.

16.6 Traditional Lagrangian
The traditional Lagrangian theory of Chapter 2 can be made consistent with the mod-
ified mechanics of Section 16.1. Our original derivation of Lagrangian mechanics in
Section 2.2 was based on the identity

∂T

∂v
= mv = p where T = 1

2
mv2 (16.25)

Then the Newtonian form of the second law could be written in Lagrangian form

d

dt

(
∂T

∂v

)
= f (16.26)

Introducing a potential with f = −∂U/∂r and defining L = T − U then led to the
standard Lagrange equation

d

dt

(
∂L

∂v

)
− ∂L

∂r
= 0 (16.27)

A similar path can be followed in the relativistic case. We note that the modi-
fied form of the momentum in eqn (16.1) is obtained when the T of eqn (16.25) is
replaced by −mc2

√
1 − v2/c2 so that

∂

∂v

(
−mc2

√
1 − v2/c2

)
= mv√

1 − v2/c2
= p (16.28)

The modified Newton’s second law in eqn (16.1) then can be written in Lagrangian
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form as
d

dt

{
∂

∂v

(
−mc2

√
1 − v2/c2

)}
= f (16.29)

Again introducing the potential, and defining

L = −mc2
√

1 − v2/c2 −U (16.30)

leads to the same standard Lagrange equation, eqn (16.27).90

We will develop covariant Lagrangian and Hamiltonian mechanics here using the
slightly more complicated problem of a point mass m with charge q(ch) moving in a
given, external electromagnetic field. We assume that the electromagnetic field contri-
butions of q(ch) itself can be ignored. The potential U in eqn (16.30) will be replaced
by the velocity-dependent potential U (vel) derived in Section 2.17, and the Lagrangian
will be

L = −mc2
√

1 − v2/c2 −U (vel) = −mc2
√

1 − v2/c2 − q(ch)
(r, t)+ q(ch)

c
v · A(r, t)

(16.31)
Since the Lorentz force is shown in Section 2.17 to be

f = d

dt

(
∂U (vel)

∂v

)
−

(
∂U (vel)

∂r

)
(16.32)

the relativistic equation of motion eqn (16.29) will still be in the standard Lagrangian
form, eqn (16.27).

With this Lagrangian, the generalized threevector canonical momentum is

p = ∂L

∂v
= mv√

1 − v2/c2
+ q(ch)

c
A = p + q(ch)

c
A (16.33)

where p is the same modified momentum defined in eqn (16.1). As in the Newtonian
case in eqn (2.104), the canonical momentum threevector p is seen to be the vector
sum of a particle term p and a field term (q(ch)/c)A. The difference is that the particle
momentum, which was mv in the Newtonian case, is now a threevector p = γ mv that
agrees with the modified definition of momentum in eqn (16.1).

The generalized energy H can be derived. Using the definition in eqn (2.76), it is

H = p · v − L = mc2√
1 − v2/c2

+ q(ch)
 = E + q(ch)
 (16.34)

The particle term, which was mv2/2 in the Newtonian case in eqn (2.105), is replaced
by a term E that agrees with the modified definition of particle energy in eqn (16.6).

90Notice that here, for the first time, the Lagrangian does not have the form T −U . Lagrangians can take
any form that makes the Lagrange equations reproduce the correct equations of motion.
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16.7 Traditional Hamiltonian
The generalized energy can be converted to the Hamiltonian by the techniques in
Chapter 4. Using eqn (16.12) (which applies to the particle momentum p rather than
the canonical momentum p) to write the Hamiltonian in terms of the correct phase
space variables gives

H = E + q(ch)
 =
√

p2c2 + m2c4 + q(ch)
 =
√∥∥∥pc − q(ch)A

∥∥∥2 + m2c4 + q(ch)


(16.35)
where eqn (16.33) has been solved for p = p − (q(ch)/c)A and substituted into eqn
(16.35) to obtain the final equality. The Hamilton equations are then

dr
dt

= ∂ H

∂p
and

dp

dt
= −∂ H

∂r
(16.36)

16.8 Invariant Lagrangian
The traditional Lagrange and Hamilton equations just derived are covariant in the
sense that they reproduce the relativistically modified equations of motion. But it is
advantageous to write Lagrangian and Hamiltonian mechanics in a manifestly co-
variant form in which only invariants and fourvectors appear in the equations. The
consistency with special relativity is then apparent by inspection.

The first step to a manifestly covariant Lagrangian mechanics is to convert the
traditional Lagrangian of eqn (16.31) to the extended form, using the techniques of
Chapter 11. If, as there, we let all of the generalized coordinates be functions of some
general, monotonically increasing parameter β, and define ṙ = dr/dβ, etc., then the
extended Lagrangian L is defined in eqn (11.7) as

L = ṫ L = −mc2
√

ṫ2 − (
ṫv

)2
/c2 − q(ch) ṫ
+ q(ch)

c

(
ṫv

) · A

= −mc
√

(cṫ)2 − (ṙ · ṙ)− q(ch)

c
(cṫ)
+ q(ch)

c
ṙ · A (16.37)

where the last expression has been rewritten using ṫv = (dt/dβ)(dr/dt) = ṙ. We
assume that, at the end of the calculation, the parameter β will be chosen to be an
invariant quantity, as can always be done.

The radius fourvector defining events on the world line of the particle is

r =
3∑

µ=0

xµêµ = ct ê0 + r

where x0 = ct , x1 = x , x2 = y, and x3 = z. Taking its derivative with respect to the
invariant β gives another fourvector

ṙ = cṫ ê0 + ṙ (16.38)

Using this fourvector and recalling from eqn (15.120) that A = 
 ê0 + A is also a



384 RELATIVISTIC MECHANICS

fourvector, the extended Lagrangian, eqn (16.37), can be written as91

L = −mc

√√√√−
3∑

µ=0

gµν ẋµ ẋν + q(ch)

c

3∑
µ=0

ẋµ Aµ

= −mc
√
−ṙ · ṙ+ q(ch)

c
ṙ · A (16.39)

Since this expression involves only dot products of fourvectors, and the invariants m,
c, and q(ch), the extended Lagrangian L is an invariant under Lorentz transformations,
as desired.

16.9 Manifestly Covariant Lagrange Equations
We have obtained an extended Lagrangian that is manifestly form invariant under
Lorentz transformations. The next step is to write the extended Lagrange equations
themselves.

From eqn (11.18) the extended Lagrange equations can be written as

d

dβ

(
∂L
∂ ṫ

)
− ∂L

∂t
= 0

d

dβ

(
∂L
∂ ṙ

)
− ∂L

∂r
= 0 (16.40)

In Section 15.12 we defined the fourvector gradient operator ∂ as

∂ = ∂

∂r
=

3∑
µ=0

êµ ∂

∂xµ
= ê0 ∂

∂ct
+ ∂

∂r
(16.41)

We now define another fourvector gradient, this time with respect to the dotted com-
ponents of ṙ. Define

∂

∂ ṙ
=

3∑
µ=0

êµ ∂

∂ ẋµ
= ê0 ∂

∂cṫ
+ ∂

∂ ṙ
(16.42)

The transformation properties of this fourvector follow from those of ṙ.
Multiplying the first of eqn (16.40) by ê0

/c and adding it to the second, the four
Lagrange equations can now be combined into the following single fourvector La-
grange equation

d

dβ

(
∂L
∂ ṙ

)
− ∂L

∂r
= 0 (16.43)

The parameter β and the extended Lagrangian L are invariants, and the gradient

91In Chapter 5 on the calculus of variations, and also in Chapter 11 on extended Lagrangian theory, we
made a point of requiring that the parameter β must remain unspecified until the end of the calculation,
after all partial derivatives have been taken. A premature choice of β violates the spirit of the method and
can lead to error. Manifestly covariant Lagrangian theory is a prime example of the problems that could
result. If we prematurely took β equal to the proper time τ measured along the world line of the particle,
then eqn (16.39) would collapse to L = −mc2 + (q(ch)/c)u · A which would lead to nonsense results. This
error is analogous to prematurely taking β equal to the arc length s in a calculation like that in Section 5.6,
which also would lead to nonsense.
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operators are fourvectors. Thus this equation exhibits Lagrange’s equations in a man-
ifestly covariant form.

Since we are using the extended Lagrangian L, we are now free to transform the
time. (As described in Section 11.8, the Lagrangian L is then simply rewritten in terms
of the new coordinates.) In some situations, it will be useful to transform to a new
set of generalized coordinates q(rel) = ct, x, y, z which we refer to as the “relativistic
coordinates.” The original canonical coordinates q(sta) = t, x, y, z will be referred
to as “standard coordinates.” The advantage is that the relativistic coordinates will
then be identical to the contravariant components xµ of the position fourvector r =∑3

µ=0 xµêµ.92 Of course, the only difference is that q(rel)
0 = cq(sta)

0 and the zeroth
canonical momenta are related by p(rel)

0
= ∂L/∂(cṫ) = (1/c)∂L/∂ ṫ = p(sta)

0
/c. We may

sometimes use the relativistic coordinates without writing the explicit superscripts
(rel) or (sta). It will be clear, either from context or from a specific statement, which
system of coordinates is being used.

16.10 Momentum Fourvectors and Canonical Momenta
From the definition in eqn (11.9), and using eqn (16.37), the canonical momentum
conjugate to the coordinate t in standard coordinates is p(sta)

0
where

p(sta)

0
= ∂L

∂ ṫ
= −

(
mc2√

1 − v2/c2
+ q(ch)


)
= −

(
E + q(ch)


)
(16.44)

The other three components of canonical momentum, for i = 1, 2, 3, are the same in
both the (rel) or (sta) coordinates. They are

p
i
= ∂L

∂ q̇i
= mvi√

1 − v2/c2
+ q(ch)

c
Ai = pi + q(ch)

c
Ai (16.45)

If we multiply eqn (16.44) by ê0
/c and eqn (16.45) by êi and add them, we obtain

p = (p(sta)

0
/c)ê0 +

3∑
i=1

p
i
êi = −1

c

(
E + q(ch)


)
ê0 +

3∑
i=1

(
pi + q(ch)

c
Ai

)
êi (16.46)

Since the co- and contravariant quantities are related by ê0 = −ê0 and Ai = Ai for
i �= 0, etc., eqn (16.46) may be rewritten as

p = 1

c

(
E + q(ch)


)
ê0 +

3∑
i=1

(
pi + q(ch)

c
Ai

)
êi = p+ q(ch)

c
A (16.47)

where we have introduced the Minkowski momentum fourvector p defined in eqn
(16.9) and the fourvector A defined in eqn (15.120). Since it is the sum of two

92In Lagrangian mechanics, the different generalized coordinates (and generalized momenta) often have
different units. However, all components of a fourvector must have the same units. These unit distinctions
become less important when, as is often done in relativistic quantum theory, one uses a unit system in
which the numerical value of the speed of light is unity. However, in an introductory treatment it seems
best to retain the distinctions and use “normal” units.
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fourvectors, and since c and q(ch) are invariants, p will also be a fourvector. It will
be referred to as the canonical momentum fourvector. Thus the canonical momentum
fourvector p is the sum of a particle term p and a field term

(
q(ch)A/c

)
, where the

particle term p agrees with the Minkowski momentum definition in eqn (16.9).
This same canonical momentum fourvector p defined in eqn (16.47) can also be

obtained directly from the extended Lagrangian, eqn (16.39), without using explicit
coordinates, as

p = ∂L
∂ ṙ

= mcṙ√−ṙ · ṙ +
q(ch)

c
A = mu+ q(ch)

c
A = p+ q(ch)

c
A (16.48)

where eqn (16.142) was used. Notice that the canonical momentum fourvector p is
independent of the choice of β, as was proved in general in Section 11.7.

If we were to use the relativistic coordinates introduced at the end of Section 16.9,
eqn (16.46) would become

p = p(rel)
0

ê0 +
3∑

i=1

p
i
êi (16.49)

which shows another advantage of the relativistic coordinates. When they are used,
the canonical momenta p(rel)

µ
= ∂L/∂xµ are identical to the covariant components of

the canonical momentum fourvector.

16.11 Extended Hamiltonian
In Section 12.10 we discussed the impossibility of obtaining an extended Hamilto-
nian function by the traditional Legendre transformation method used in Chapter 4.
The extended Lagrangian L is homogeneous of degree one in the generalized coordi-
nates q̇k and hence the prospective Hamiltonian function H defined in eqn (12.42) is
identically zero.

The same thing happens in the covariant theory being considered here. If we try
to define H by the usual Legendre transformation rule

H(r, ṙ) = ṙ · ∂L
∂ ṙ

− L (16.50)

the function H will be identically zero since

ṙ · ∂L
∂ ṙ

= ṙ · p = mcṙ · ṙ√−ṙ · ṙ +
q(ch)

c
ṙ · A = L (16.51)

This failure of the traditional Legendre transformation has caused some authors to
reject the invariant Lagrangian L and to try to modify it in various ways. But, as is
explained in detail in Section 12.10, the extended Hamiltonian theory is not obtained
from a Legendre transformation. The extended theory uses the relation between the
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zero component of canonical momentum p
0

and the traditional Hamiltonian H to
write a dependency relation involving a dependency function K that also serves as
the extended Hamiltonian function.

Using the standard definition of extended Hamiltonian from eqn (12.12), and con-
tinuing to use the standard coordinates q(sta) = t, x, y, z,

K = p
0
+ H = p

0
+

√∥∥∥pc − q(ch)A
∥∥∥2 + m2c4 + q(ch)
 (16.52)

where the traditional Hamiltonian from eqn (16.35) has been introduced. In terms of
this extended Hamiltonian, the Hamilton equations are those given in eqn (12.13)

ṫ = ∂K
∂ p

0

ṙ = ∂K
∂p

ṗ
0
= −∂K

∂t
ṗ = −∂K

∂r
(16.53)

16.12 Invariant Hamiltonian
Our objective is to write the Hamilton equations in a manifestly covariant manner,
involving only fourvectors and invariants. The presence of the square root in eqn
(16.52) makes this difficult to do. The most direct route is to use an alternate Hamil-
tonian Ka as defined in Section 12.8 to rationalize the square root.

To define an alternate Hamiltonian, we first must find a nonzero phase space
function g(q, p), as demonstrated in Lemma 12.8.1. Consider the candidate function

g(q, p) = 1

c2

{
−

(
p

0
+ q(ch)


)
+

√∥∥∥pc − q(ch)A
∥∥∥2 + m2c4

}

= 1

c2

(
E +

√
p2c2 + m2c4

)
= 2E

c2
(16.54)

where eqn (16.44) was used. Since the relativistic energy E of a massive particle is
positive and never zero, this g will be suitable. Then, the alternate Hamiltonian Ka is
defined as

Ka = g(q, p)K = 1

c2

{
−

(
p

0
+ q(ch)


)
+

√∥∥∥pc − q(ch)A
∥∥∥2 + m2c4

}

×
{(

p
0
+ q(ch)


)
+

√∥∥∥pc − q(ch)A
∥∥∥2 + m2c4

}

= −
(−p0

c
+ q(ch)

c



)2

+
∥∥∥∥∥p − q(ch)

c
A

∥∥∥∥∥
2

+ m2c2 (16.55)

where p
0
= −p0 was used. Since p

0
here is the standard canonical momentum p(sta)

0
,

the canonical momentum fourvector defined in Section 16.10 may be used to write
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eqn (16.55) as

Ka =
(

p− q(ch)

c
A

)
·
(

p− q(ch)

c
A

)
+ m2c2 (16.56)

which is composed only of invariants m, c, q(ch) and the dot product of two fourvec-
tors. Thus Ka is a Lorentz invariant quantity, as desired.

16.13 Manifestly Covariant Hamilton Equations
Lemma 12.8.1 shows that the extended Hamilton equations with alternate Hamilto-
nian Ka are equivalent to those with K in eqn (16.53). The Hamilton equations retain
the form given in eqn (16.53), with only the substitution of Ka for K. Thus we have
the extended Hamilton equations

ṫ = ∂Ka

∂ p(sta)
0

ṙ = ∂Ka

∂p
ṗ(sta)

0
= −∂Ka

∂t
ṗ = −∂Ka

∂r
(16.57)

where we have used the superscript (sta) to emphasize that the standard coordinates
q = t, x, y, z are being used. Since the zeroth component of the canonical momentum
fourvector p is p

0
= p(rel)

0
= p(sta)

0
/c, and since the zeroth component of the position

fourvector r is x0 = ct , eqn (16.57) may be written in terms of fourvector components
as

ẋ0 = ∂Ka

∂ p
0

ṙ = ∂Ka

∂p
ṗ

0
= −∂Ka

∂x0
ṗ = −∂Ka

∂r
(16.58)

We now define a new fourvector ṗ = ∑3
µ=0 ṗ

µ
êµ analogous to ṙ in eqn (16.38).

Also we define a new gradient fourvector operator similar to ∂/∂r but taking deriva-
tives with respect to components of p

∂

∂p
=

3∑
µ=0

êµ ∂

∂ pµ
=

3∑
µ=0

êµ

∂

∂ p
µ

(16.59)

These definitions allow us to write eqn (16.58) in a manifestly covariant form, as
desired

ṙ = ∂Ka

∂p
ṗ = −∂Ka

∂r
(16.60)

It is interesting to examine the first of eqn (16.58). Using eqn (16.56), it is

d(ct)

dβ
= ∂Ka

∂ p
0

= 2

(
p0 − q(ch)

c



)
= 2E

c
= 2γ mc = 2mc

dt

dτ
(16.61)

where we have used E = γ mc2 from eqn (16.6) and dt/dτ = γ from eqn (14.26).
The nonzero differential dt may be cancelled, giving

dτ

dβ
= 2m and hence τ = τ0 + 2mβ (16.62)

where we have made the usual choice of taking β = 0 at the initial point of the
trajectory, at which the proper time is set to an arbitrary value τ0. Equation (16.62)



THE KLEIN–GORDON EQUATION 389

suggests that the parameter β can be taken to be an invariant quantity like τ and
m are. If, as will be done in Chapter 17, the Lorentz transformation is considered to
be a canonical transformation (see Exercise 17.2), then Theorem 17.12.1 shows β

to be an invariant by definition since that parameter is not transformed in canonical
transformations.

16.14 The Klein–Gordon Equation
One of the recipes for passing from classical to quantum mechanics is the replacement
of the generalized energy and the canonical93 momenta of a particle by differential
operators, as in

p(sta)

0
→−i h̄

∂

∂t
p

x
→−i h̄

∂

∂x
p

y
→−i h̄

∂

∂y
p

z
→−i h̄

∂

∂z
(16.63)

Since, as seen in Section 16.10, the canonical momentum fourvector and the gradient
fourvector are

p = −(p(sta)

0
/c) ê0 + p and

∂

∂r
= −ê0

∂

∂ct
+ ∂

∂r
(16.64)

the four substitutions in eqn (16.63) can be expressed as a single fourvector substitu-
tion

p →−i h̄
∂

∂r
(16.65)

One can attempt to write a traditional Schroedinger equation by making these
substitutions in the traditional Hamiltonian, eqn (16.35), giving

i h̄
∂ψ

∂t
= H

(
q, p →−i h̄

∂

∂q

)
ψ

=
{√(

−i h̄c
∂

∂r
− q(ch)A

)
·
(
−i h̄c

∂

∂r
− q(ch)A

)
+ m2c4 + q(ch)


}
ψ (16.66)

However, this differential equation involves the square root of a differential operator
and is difficult to apply.94

In Section 4.7, the Schroedinger equation is written by equating i h̄∂ψ/∂t to the
traditional Hamiltonian. Equation (16.66) uses that same method. But that is not
the only way to obtain a quantum mechanical wave equation. It is not necessary to
use the traditional Hamiltonian, or to have a Hamiltonian like the H that was proved
identically zero in Section 12.10. To obtain a quantum wave equation, it is sufficient to
have a dependency relation among the phase space variables into which the substitutions

93It is important to realize that it is the components of the canonical momentum p that are replaced by
quantum operators. Thus the uncertainty principle of quantum mechanics refers to the canonical and not
the particle momenta. Of course, for a free particle these distinctions disappear.

94Dirac proposed a method for linearizing the square root, leading to the Dirac equation to be discussed
in Section 16.15.
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eqn (16.63) can be made. The result will be a manifestly covariant wave equation. We
now use this method to derive the Klein–Gordon equation.

The invariant Hamiltonian Ka in eqn (16.56) defines a dependency relation in the
extended phase space. It is written by equating Ka to zero, as in

Ka(q, p) =
(

p− q(ch)

c
A

)
·
(

p− q(ch)

c
A

)
+ m2c2 = 0 (16.67)

Substituting the quantum differential operator eqn (16.65) for the canonical fourvec-
tor momentum p in this dependency relation, and introducing a wave function �,
leads at once to the Klein–Gordon equation{(

−i h̄
∂

∂r
− q(ch)

c
A

)
·
(
−i h̄

∂

∂r
− q(ch)

c
A

)
+ m2c2

}
� = 0 (16.68)

which is a manifestly covariant differential equation for �.
For a free particle with no electromagnetic fields acting, the Klein–Gordon equa-

tion reduces to{(
−i h̄

∂

∂r

)
·
(
−i h̄

∂

∂r

)
+ m2c2

}
� = 0 or

(
−�2 + m2c2

h̄2

)
� = 0 (16.69)

where �2 is the same d’Alembertian operator as is defined in eqn (15.119). The quan-
tity h̄/mc is often called the reduced Compton wavelength.

The Klein–Gordon equation in the form presented here can be applied to charged
bose particles of zero spin. For details and for other related equations, the reader
should consult Bjorken and Drell (1964) and Weinberg (1995).

16.15 The Dirac Equation
Another relativistic wave equation, this one useful for Fermi particles of half-integer
spin such as the electron, was developed by Dirac. His original motivation was to
avoid a difficulty with probability conservation by writing a first-order differential
equation that would be equivalent to the second-order Klein–Gordon equation. Dirac’s
method (Dirac, 1935) began with the substitution of the quantum operators eqn
(16.63) into the non-covariant Hamiltonian for a free particle, eqn (16.35), giving

i h̄
∂ψ

∂t
=

√(
−i h̄

∂

∂r

)
·
(
−i h̄

∂

∂r

)
+ m2c4 ψ (16.70)

The square root on the right was then linearized by the introduction of matrix coef-
ficients, and the resulting equation was recast into a manifestly covariant form and
shown to imply the Klein–Gordon equation.

Since we already have the free particle Klein–Gordon equation in manifestly co-
variant form in eqn (16.69), we can obtain Dirac’s result by a direct route. A set
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of matrices can be found, usually called the gamma matrices, which obey the anti-
commutation relations

1

2

(
γ µγ ν + γ νγ µ

) = gµν U (16.71)

where U is the unit matrix. We then write a formal fourvector with matrix coefficients
as

γ = γ 0 ê0 + γ 1 ê1 + γ 2 ê2 + γ 3 ê3 (16.72)

From eqn (16.71), the gamma matrices obey (γ µ)2 = gµµ U , and γ µγ ν = −γ νγ µ

for µ �= ν. Taking the determinants of both sides of these expressions shows that
the gamma matrices must have even dimension. The smallest dimension for which
suitable gamma matrices can be found is four, which we now assume.

Using these gamma matrices, the Klein–Gordon equation, eqn (16.69), can be fac-
tored as {

γ ·
(
−i h̄

∂

∂r

)
+ imc U

}{
γ ·

(
−i h̄

∂

∂r

)
− imc U

}
[�] = 0 (16.73)

where the wave function [�] is now a column vector with four rows. The free particle
Dirac equation is the right-hand factor of eqn (16.73) equated to zero{

γ ·
(
−i h̄

∂

∂r

)
− imc U

}
[�] = 0 or, equivalently,

(
γ · ∂

∂r
+ mc

h̄
U

)
[�] = 0

(16.74)
To see that the factorization in eqn (16.73) is equivalent to the Klein–Gordon equa-

tion, use eqn (16.71) to write(
γ · ∂

∂r

)2

=
⎛⎝ 3∑

µ=0

γ µ∂µ

⎞⎠(
3∑

ν=0

γ ν∂ν

)
=

3∑
µ=0

3∑
ν=0

gµν∂µ∂ν U = U
∂

∂r
· ∂

∂r
(16.75)

Using this result to multiply out the factors, eqn (16.73) becomes{(
−i h̄

∂

∂r

)
·
(
−i h̄

∂

∂r

)
+ m2c2

}
[�] = 0 (16.76)

It follows from this equation that if [�] satisfies the Dirac equation, eqn (16.74), then
each of its four components must satisfy the Klein–Gordon equation.

To establish the manifest covariance of the Dirac equation, we must first consider
the transformation properties of [�] and the gamma matrices. A 4 × 4, nonsingular
transformation matrix D (M) can be found that depends on the Lorentz transforma-
tion M from the S to S′ systems and satisfies the conditions

γ µ =
3∑

ν=0

Mµ
ν D γ ν D−1 (16.77)

and D (M N ) = D (M) D (N ) where M, N are two Lorentz transformations. The ma-
trices D are said to form a representation of the Lorentz group. The transformation
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rule for the Dirac wave function is [�] = D [� ′]. Using eqn (15.59) to transform the
covariant components of ∂/∂r, these definitions imply that,⎛⎝ 3∑

µ=0

γ µ ∂

∂xµ
+ mc

h̄
U

⎞⎠ [�] = 0 if and only if

⎛⎝ 3∑
µ=0

γ µ ∂

∂x ′µ
+ mc

h̄
U

⎞⎠ [� ′] = 0

(16.78)
which establishes the form invariance of the Dirac equation.

The Dirac wave equation has four components, which are used to represent two
states of electron spin for each of two signs of the electron energy. Since the Klein–
Gordon equation, eqn (16.68), can be obtained from its free particle form eqn (16.69)
by the replacement of (−i h̄∂/∂r) by

(
−i h̄∂/∂r− q(ch)A/c

)
, Dirac conjectured that the

correct wave equation for an electron in an electromagnetic field would follow from
the same substitution in eqn (16.74), giving{

γ ·
(
−i h̄

∂

∂r
− q(ch)

c
A

)
− imc U

}
[�] = 0 (16.79)

Positive energy solutions of this equation reproduce the energy spectrum of the hy-
drogen atom. For details, the reader is referred to Bethe and Jackiw (1968), Bjorken
and Drell (1964), and Weinberg (1995).

16.16 The Manifestly Covariant N -Body Problem
The reader will be disappointed to learn that relativistic mechanics does not have
a theory of collective motion that is as elegant and complete as the one presented
in Chapter 1 for Newtonian mechanics. Even the definition of the total fourvector
momentum P of a system of point particles presents difficulties.

We will present the relativistic theory of collective motion using particles that
interact only at what Synge (1955) calls “point catastrophes.” A system of masses
moves independently except for point collisions among them. We assume that these
collisions are impulsive and conserve all components of the fourvector momentum.
This model, though obviously limited in its physical reality, has the advantage of
presenting the important issues very clearly. A more physical model would require
fields, and would require a level of mathematical complexity that would obscure the
points we need to make.

We give only the outlines of the covariant theory of collective motion here. The
reader is referred to Synge (1955), and particularly to Møller (1972), for more detail.

16.16.1 Problems With the Total Momentum

As can be seen from Figure 16.1, each of the particles mn , where n = 1, . . . , N , has its
own world line between collisions. We want to give a manifestly covariant definition
of the total momentum of this collection. The immediate problem is to devise some
coordinate-system-independent way of deciding when the momentum values should
be collected and added to give the sum P.
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It seems that the momenta should be collected simultaneously. But simultaneity
is relative, and so we have to ask which coordinate system should be used to define
it.95 Choice of one particular system will lead to a theory that selects that system for
special treatment and hence is only formally covariant.

x

ct

S

�(ê, θ)

p2 p3
p4

ê

p1

(a)

ê

S′ x ′

ct ′

p2 p4p1

�(ê, θ)

p3

(b)

FIG. 16.1. The momenta pn are collected at events at which the hyperplane of simultaneity
�(ê, θ) (grey line) crosses the world lines of the four particles. A collision event with two
particles entering and three emerging is shown on the left. Figure (a) is in a general system
S. Figure (b) is in the system S′ in which ê′0 = ê. In (b), the coordinate time of the S′ system
is equal to θ and the four events are simultaneous, with t ′n = t ′.

The problem of simultaneity is addressed by defining what we call a three di-
mensional hyperplane of simultaneity �

(
ê, θ

)
cutting across the world lines of the

particles. Events r are in this hyperplane if they satisfy the equation

−r · ê = cθ (16.80)

where ê is an arbitrary, forward timelike, unit fourvector that defines the orientation
of the hyperplane, and θ will be called the epoch parameter. We will define the notation

95A similar point is made in Section 5.7 of Rindler (1977).
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rn ⊂ �(ê, θ) to mean that −rn · ê = cθ so that event rn on the world line of mass mn

is in the hyperplane of simultaneity.
Since the orientation unit fourvector ê is forward timelike, Exercise 15.4 shows

that a coordinate system S′ can always be found in which ê : (1, 0, 0, 0)S′ . Thus, the
time unit vector of S′ will be equal to the chosen orientation unit vector, ê′0 = ê. It
follows that events rn will be in the hyperplane if and only if they are simultaneous in
S′ and have t ′n = t ′, the coordinate time of the S′ system.

To understand the epoch parameter θ , consider a clock moving along a world line
parallel to ê and passing through the origin (the dotted line segment in Figure 16.1).
Let that world line intersect the hyperplane at event r. Then θ is the proper time read
on that clock, integrated from the origin event to r. That clock will be at rest at the
spatial origin of the S′ system and will measure the coordinate time t ′ of that system.

The considerations above may be summarized as follows: When the relativity of
simultaneity is taken into account, the total momentum is not a simple fourvector,
but rather must be defined as a fourvector function of an arbitrary orientation unit
fourvector ê and an invariant epoch parameter θ ,

P(ê, θ) =
N∑

n=1
rn⊂�(ê,θ)

pn (16.81)

The choice of ê determines the system S′ in which the simultaneous collection of
momenta is to be performed. In the system S′ with ê′0 = ê, the components of P will
be

P ′µ =
N∑

n=1
t ′n=t ′=θ

p′µn (16.82)

The fourvector expanded as P = P ′ 0 ê′0 + P′ for one choice of ê will in general not
be the same as the fourvector similarly expanded with another choice. Any theory
using such a total momentum will require a specific choice of ê and hence will be
only formally covariant.

16.16.2 Isolated Systems

Fortunately, there is a wide class of situations in which the total momentum simplifies.
If we assume, as he does, that the collection of N particles in Synge’s point catastro-
phe model forms an isolated system, with no forces or other sources of momentum
change acting on the system from outside it, then the fourvector momentum P will
be constant and independent of both ê and θ .

To see the constancy of P for isolated systems, consider that if no outside influ-
ences are present, then the only source of momentum change for a particle is collision
with some other particle. Thus the particles are force-free and have constant fourvec-
tor momenta between collisions. Since, in addition, the total fourvector momentum
of the colliding particles coming into any vertex is by assumption equal to the total
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fourvector momentum of the particles leaving it, the same fourvector P will be ob-
tained no matter when the plane of simultaneity intersects the particle world lines. In
fact, the number of particles N need not be a constant. It makes no difference if two
particles enter a collision and three exit, so long as the total fourvector momentum is
conserved at the vertex. For isolated systems, the total momentum P is independent
of both the orientation and the location of the plane of simultaneity, and hence is not
a function of ê or of θ .

Thus, for isolated systems, the components of the constant fourvector P can be
written using simultaneous collection in any frame. The same fourvector will result
regardless of the choice. It follows that these components will satisfy the standard
fourvector transformation rule from eqn (15.55)

Pµ =
3∑

ν=0

Mµ
ν P ′ ν (16.83)

For the rest of this section, we assume that the collection is an isolated system.

16.16.3 Rest Frame of the Collection

The constant fourvector momentum P is the sum of forward timelike fourvectors
pn . Exercise 15.2 shows that P is also forward timelike. Thus a positive, constant,
invariant quantity M can be defined by writing

M2c2 = −P · P (16.84)

By analogy to eqn (16.11), this M will be called the invariant mass of the collection.
Since P is timelike, Exercise 15.4 shows that there will always be some coordinate

system in which the spatial part of P vanishes. Let us call that system the rest frame of
the collection, and denote it as S′′. If (see Exercise 15.4) we define a forward timelike
unit fourvector by êP = P/Mc, then this rest frame S′′ will have a time basis vector
given by ê′′0 = êP .

In the S′′ frame, P′′ = 0 and hence

P = E ′′

c
ê′′0 where E ′′ =

N (t ′′)∑
n=1

t ′′n=t ′′

E ′′
n (16.85)

Also, the invariant mass M is related to the total energy in the S′′ system by E ′′ = Mc2.
The vanishing of P′′ implies that the threevector momenta sum vectorially to zero in
the S′′ system

0 = P′′ =
N (t ′′)∑
n=1

t ′′n=t ′′

p′′n (16.86)

This S′′ system will be useful when we define the center of mass/energy of the collec-
tion.
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16.16.4 Manifestly Covariant Center of Mass/Energy

The center of mass of a collection was defined in Chapter 1 as the mass-weighted
average point. In Newtonian physics, this is

R = 1

M

N∑
n=1

mnrn (16.87)

An attempt to define the same sort of quantity in the relativistic case faces two imme-
diate problems: The first is the simultaneity problem already encountered in Section
16.16.1. The second is that, as discussed in Section 16.4, the masses mn of the par-
ticles are not conserved in collisions. If two particles collide, the particles emerging
from the collision may have a total mass different from the total mass of the original
two. Thus, if center of mass is defined using mass as the weighting factor, there will
be impulsive, discontinuous changes in its location during particle collisions, leading
to faster-than-light jumps.

To avoid discontinuous jumps in the center of mass location, we must define it
using a weighting factor that is conserved in collisions. The most natural such quantity
is the relativistic energy. For this reason, we will refer to the fourvector center of
mass/energy rather than simply the center of mass as in Newtonian physics.

A manifestly covariant definition of the center of mass/energy can be written as

R = 1

M2c2

N (θ)∑
n=1

rn⊂�(êP ,θ)

(−P · pn) rn (16.88)

Notice that we have used the unit fourvector êP = P/Mc defined in Section 16.16.3
to define the orientation of the plane of simultaneity. Thus R is a fourvector function
of the total momentum fourvector P and the invariant epoch parameter θ . By using
the previously determined total momentum fourvector P to define êP and hence the
orientation of the plane of simultaneity, we have avoided writing a merely formally
covariant expression. The P and hence êP represent invariant physical properties of
the isolated collective system and are not merely chosen arbitrarily.

The fourvector definition eqn (16.88) takes its simplest form when written in
terms of components in the rest system of the collection S′′. Then, as the reader can
verify from eqn (16.85), it becomes

R = 1

E ′′
N (t ′′)∑
n=1

t ′′n=t ′′

E ′′
n rn (16.89)

The “center of mass” is really a center of relativistic energy, hence our reference to it
as the center of mass/energy. It follows from eqn (16.89) that the world line of the
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center of mass/energy is

R = ct ′′ ê′′0 + R′′ where R′′ = 1

E ′′
N (t ′′)∑
n=1

t ′′n=t ′′

E ′′
n r′′n (16.90)

16.16.5 Velocity of the Center of Mass/Energy

We expect that the center of mass/energy should be at rest in the rest system of the
collection. We now show that this is the case. In the S′′ system, êP = ê′′0, and the
epoch parameter θ is equal to the coordinate time t ′′. Thus we may write

dR′′

dθ
= dR′′

dt ′′
= 1

E ′′
d

dt ′′

⎛⎜⎜⎝ N (t ′′)∑
n=1

t ′′n=t ′′

E ′′
n r′′n

⎞⎟⎟⎠ (16.91)

If the plane of simultaneity (which is the plane of constant t ′′ in this system) passes
the vertex of a particle collision, the sum in brackets will not change. The colliding
particles are all at the same spatial location, and the sum of the energies out equals
the sum in. So, we need only consider regions between collisions. In these regions,
the E ′′

n are constants, and so

dR′′

dθ
= 1

E ′′
N (t ′′)∑
n=1

t ′′n=t ′′

E ′′
n

dr′′n
dt ′′

= 1

E ′′
N (t ′′)∑
n=1

t ′′n=t ′′

γ ′′n mnc2v′′n =
c2

E ′′
N (t ′′)∑
n=1

t ′′n=t ′′

p′′n = 0 (16.92)

where eqn (16.86) was used to get the last equality. In this expression

γ ′′n =
√

1 − (
v′′n

)2
/c2 is the time dilation factor of the nth mass, v′′n is its coordinate

velocity, and the definitions E ′′
n = γ ′′n mnc2 and p′′n = γ ′′n mnv′′n from Section 16.1 were

used. Thus, since dR′′/dθ = 0, we have from eqn (16.90) that

dR
dθ

=
d
(

ct ′′ ê′′0
)

dt ′′
= c ê′′0 =

P
M

and so P = M
dR
dθ

(16.93)

The center of mass/energy is at rest in the S′′ system and hence its world line is
parallel to the ê′′0 unit vector. The proper time interval dτR =

√−dR · dR/c along this
world line is equal to dt ′′. Thus dt ′′ = dθ = dτR and we may write eqn (16.93) as a
manifestly covariant equation

P = M U where U = dR
dτR

(16.94)

The U is the fourvector velocity of the center of mass/energy. This formula reproduces
for collections the definition of the fourvector momentum of a single point particle in
eqn (16.9). It is analogous to eqn (1.40) in the Newtonian theory of collective motion.



398 RELATIVISTIC MECHANICS

16.16.6 Angular Momenta

In Minkowski space, angular momenta are represented as dyadic wedge products.
Thus, the total angular momentum � of the collection can be written as

� =
N (θ)∑
n=1

rn⊂�(êP ,θ)

rn ∧ pn (16.95)

In analogy with the Newtonian case, we can also define orbital and spin angular
momenta by

� =
N (θ)∑
n=1

rn⊂�(êP ,θ)

R ∧ pn = R ∧ P (16.96)

� =
N (θ)∑
n=1

rn⊂�(êP ,θ)

(rn − R) ∧ pn (16.97)

so that, by construction
� = �+ � (16.98)

This relation is the analog of eqn (1.43) in Newtonian physics.
In the rest frame of the collection, P = (E ′′/c) ê′′0, R = ct ′′ ê′′0 + R′′, and rn =

ct ′′ ê′′0 + r′′n where, as shown in Section 16.16.3, the spatial part R′′ is a constant.
Using these values, and Exercise 15.14, the matrices of these dyadics in this system
can be written as

L ′′ = − E ′′

c

⎛⎜⎜⎝
0 R′′ 1 R′′ 2 R′′ 3

R′′ 1 0 0 0
R′′ 2 0 0 0
R′′ 31 0 0 0

⎞⎟⎟⎠ S ′′ =

⎛⎜⎜⎝
0 0 0 0
0 0 S′′3 −S′′2
0 −S′′3 0 S′′1
0 S′′2 −S′′1 0

⎞⎟⎟⎠ (16.99)

where the S′′i are components of the threevector S′′ defined by

S′′ =
N (θ)∑
n=1

t ′′n=t ′′

(
r′′n − R′′)× p′′n (16.100)

Equation (16.98) then gives

J ′′ =

⎛⎜⎜⎝
0 −(E ′′/c)R′′ 1 −(E ′′/c)R′′ 2 −(E ′′/c)R′′ 3

−(E ′′/c)R′′ 1 0 S′′3 −S′′2
−(E ′′/c)R′′ 2 −S′′3 0 S′′1
−(E ′′/c)R′′ 3 S′′2 −S′′1 0

⎞⎟⎟⎠ (16.101)

It follows from these matrices that � · P = 0 since, in the S′′ system, this product
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becomes the matrix equation⎛⎜⎜⎝
0 0 0 0
0 0 S′′3 −S′′2
0 −S′′3 0 S′′1
0 S′′2 −S′′1 0

⎞⎟⎟⎠
⎛⎜⎜⎝

E ′′/c
0
0
0

⎞⎟⎟⎠ = 0 (16.102)

Some authors use the condition � · P = 0 together with eqn (16.97) to define the
center of mass/energy R. Our definition is equivalent to theirs.

Since we are assuming an isolated system, we expect that the angular momenta
should be constants. For L ′′, this constancy follows immediately from the fact that R′′
and E ′′ are constants. For S ′′, the constancy can be seen by differentiating the three-
vector S′′ in eqn (16.100) with respect to t ′′. The passage of the plane of simultaneity
across vertices of particle collision will not change S′′, by the same argument as used
above in deriving eqn (16.92). Between collisions, dp′′n/dt ′′ = 0 and hence

dS′′

dt ′′
=

N (θ)∑
n=1

t ′′n=t ′′

{
v′′n × p′′n +

(
r′′n − R′′)× dp′′n

dt ′′

}
=

N (θ)∑
n=1

t ′′n=t ′′

(
v′′n × mnγ ′′v′′n

) = 0 (16.103)

It follows that S′′ is a constant threevector, and hence by eqn (16.99) that S ′′ is a
constant matrix. The constancy of J ′′ then follows from eqn (16.98).

Since dτR = dt ′′ in the rest frame of the collection, these matrix results imply the
manifestly covariant expressions

d�

dτR
= 0

d�

dτR
= 0

d�

dτR
= 0 (16.104)

The angular momenta of an isolated system are conserved, as was expected.

16.17 Covariant Serret–Frenet Theory
The derivation of the Serret–Frenet formulae for a curve in three dimensions, given
in Section A.12, generalizes easily to world lines considered as curves in Minkowski
space. The three orthonormal Serret–Frenet vectors of Section A.12 generalize to four
orthonormal (in the sense of the Minkowski metric) Serret–Frenet fourvectors defined
along the world line.96

Suppose that a timelike world line is specified by writing t, x, y, z as functions of
some monotonic parameter β

r(β) = ct (β) ê0 + x(β) ê1 + y(β) ê2 + z(β) ê3 (16.105)

For the purposes of deriving the Serret–Frenet vectors, the arc length ds along this
world line can be defined as cdτ where τ is the proper time measured by a clock

96Our treatment follows that in Section 2.7 of Synge and Schild (1969).
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carried along the line starting from some specified zero point. Then

ds = cdτ = √−dr · dr =
√
−ṙ · ṙ dβ and ṡ =

√
−ṙ · ṙ (16.106)

It follows that

f̂0 = dr
ds

= ṙ
ṡ
= ṙ√−ṙ · ṙ (16.107)

is a unit vector. We assume that both β and s increase in the direction of increasing
t so that f̂0 is a forward timelike unit vector obeying f̂0 · f̂0 = −1. By construction, f̂0

is tangent to the world line and points in the direction of increasing t . It is called the
unit tangent fourvector.

Just as in the three dimensional case, we next differentiate the unit tangent vector,
obtaining d f̂0/ds. Differentiating the expression f̂0 · f̂0 = −1 with respect to s proves
that (d f̂0/ds) · f̂0 = 0, from which it follows (Exercise 15.3) that d f̂0/ds is spacelike.
The first curvature ρ1 and the Serret–Frenet vector f̂1 are then defined by

ρ1 =
√

d f̂0

ds
· d f̂0

ds
and

d f̂0

ds
= ρ1 f̂1 (16.108)

Thus f̂1 is a spacelike unit vector obeying f̂1 · f̂1 = +1.
Differentiating the expressions f̂1 · f̂1 = +1 and f̂1 · f̂0 = 0 with respect to s shows

that d f̂1/ds has zero dot product with f̂1, and obeys (d f̂1/ds) · f̂0 = −ρ1. It follows
that the fourvector

(
(d f̂1/ds)− ρ1 f̂0

)
has a zero dot product with f̂1 and f̂0, and is

spacelike. The second curvature ρ2 and the second spacelike Serret–Frenet vector f̂2

are then defined by

ρ2 =
√√√√(

d f̂1

ds
− ρ1f̂0

)
·
(

d f̂1

ds
− ρ1f̂0

)
and

d f̂1

ds
= ρ1 f̂0 + ρ2f̂2 (16.109)

Continuing, we now consider d f̂2/ds. Differentiating the expressions f̂2 · f̂2 = +1,
f̂2 · f̂1 = 0, and f̂2 · f̂0 = 0 with respect to s shows that d f̂2/ds has a zero dot product
with f̂2 and f̂0, but obeys (d f̂2/ds) · f̂1 = −ρ2. Thus the fourvector

(
(d f̂1/ds)+ ρ2f̂1

)
is spacelike and has zero dot product with f̂2, f̂1, and f̂0. The third curvature ρ3 and
third spacelike Serret–Frenet vector f̂3 may then be defined by

ρ3 = ±
√√√√(

d f̂2

ds
+ ρ2f̂1

)
·
(

d f̂2

ds
+ ρ2f̂1

)
and

d f̂2

ds
= −ρ2f̂1 + ρ3 f̂3 (16.110)

The curvatures ρ1 and ρ2 are taken to be non-negative. The sign of the curvature ρ3

(which determines the direction of f̂3) must be chosen to make the spacelike triad
f̂1, f̂2, f̂3 right handed.
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The final step is to take the derivative d f̂3/ds. Differentiating f̂3 · f̂3 = +1 and
f̂3 · f̂µ = 0 for µ = 0, 1, 2 with respect to s then shows that

(
(d f̂3/ds)+ ρ3 f̂2

)
is a

spacelike vector having zero dot products with each of the four unit vectors f̂µ for
µ = 0, 1, 2, 3. It follows that this vector must be null, leading to the final result

d f̂3

ds
= −ρ3f̂2 (16.111)

By construction, the Serret–Frenet vectors are orthonormal (in the sense of the Min-
kowski metric) and obey

f̂µ · f̂ν = gµν (16.112)

for µ, ν = 0, 1, 2, 3, where gµν is the Minkowski metric defined in eqn (15.12).
The derivatives in eqns (16.108 – 16.111) may be summarized by the single dyadic

equation
d f̂µ
ds

= � · f̂µ (16.113)

where
� = ρ1

(
f̂0 ∧ f̂1

)
− ρ2

(
f̂1 ∧ f̂2

)
− ρ3

(
f̂2 ∧ f̂3

)
(16.114)

Using the relation between dyadics and matrices described in Section 15.19 gives eqn
(16.113) in the alternate matrix form

d f̂µ
ds

=
3∑

ν=0

f̂ν Fν
µ where Fν

µ =

⎛⎜⎜⎝
0 ρ1 0 0
ρ1 0 −ρ2 0
0 ρ2 0 −ρ3

0 0 ρ3 0

⎞⎟⎟⎠
νµ

(16.115)

16.18 Fermi–Walker Transport
The quadrad of unit vectors f̂µ can be thought of as defining the walls of a small room
that is being carried along the world line. The room has fourvector velocity u = cf̂0

defined by the unit tangent to the world line. In general, it may be accelerating and
also rotating. We say that the room is being Serret–Frenet transported along the world
line as β increases.

But we need a covariant definition of a different small room, one transported
along the same world line but without the rotation. Such a room is said to be Fermi–
Walker transported along the world line. The non-rotating room may be defined by a
quadrad of unit fourvectors ĝµ that obey the same transportation law as eqn (16.113)
but with the ρ2 and ρ3 terms omitted. This quadrad is defined by

dĝµ

ds
= ρ1

(
f̂0f̂1 − f̂1f̂0

)
· ĝµ and ĝ0 = f̂0 = u

c
(16.116)

with the initial condition that ĝµ(β=0) = f̂µ(β=0). It is often seen in the literature in
an equivalent form (Exercise 16.17) where u and w are the fourvector velocity and
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acceleration, respectively,

dĝµ

dτ
= 1

c2

{
u
(
w · ĝµ

)−w
(
u · ĝµ

)}
(16.117)

Fermi–Walker transport can also be written as a dyadic multiplication

dĝµ

ds
= � · ĝµ where � = ρ1f̂0 ∧ f̂1 = 1

c3
u ∧w (16.118)

The Fermi–Walker transportation law, eqn (16.116), produces only those changes
in the quadrad ĝµ necessary to, (1) keep ĝ0 equal to u/c so that the transported
room shares the velocity of the world line at each β value, and (2) keep the quadrad
orthonormal. Thus, for all β it remains true (Exercise 16.17) that

ĝµ · ĝν = gµν (16.119)

It is assumed in the special theory of relativity that a small room being Fermi–
Walker transported along some world line is undergoing pure translation with no
rotation. A small gyroscope with its axis aligned with one of the spacelike vectors ĝi ,
and all acceleration applied at its center of mass so no torques act on it, will remain
aligned with this same ĝi axis for all time.97

For any β value, the orthonormal spacelike Serret–Frenet vectors f̂1, f̂2, f̂3 span the
same three-dimensional subspace as the orthonormal spacelike Fermi–Walker vectors
ĝ1, ĝ2, ĝ3. It follows that there must be an orthogonal rotation matrix R connecting
them, as in the two equivalent expressions

f̂i =
3∑

j=1

ĝj Rji and ĝj =
3∑

i=1

f̂i RT
i j (16.120)

The matrix R represents the rotation of the f̂i basis vectors as seen in a room defined
by the ĝi .

To obtain the apparent angular velocity of this rotation, differentiate the first of
eqn (16.120) and use eqns (16.113, 16.118), and the second of eqn (16.120) to write

� · f̂i = d f̂i

ds
=

3∑
j=1

(
dĝj

ds
Rji + ĝj

d Rji

ds

)
=

3∑
j=1

(
� · ĝj

)
Rji +

3∑
j=1

3∑
k=1

f̂k RT
k j

d Rji

ds

(16.121)
The angular velocity matrix of the “rotated” basis f̂i relative to the “fixed” basis ĝi can

97See Chapter 6 of Misner, Thorne and Wheeler (1973). The plausible assumptions must be made that
the center of mass of a gyroscope is at its center and that its spin can be represented by a threevector S,
even though the definitions of center of mass and spin in Sections 16.16.4 and 16.16.6 are established only
for isolated and hence non-accelerated systems.
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be expressed in the f̂i system as (see Exercise 8.8)

�′
i j =

(
R T d R

dτ

)
i j
=

3∑
k=1

εik jω
′
k (16.122)

Using the linearity of dyadic multiplication, eqn (16.121) then becomes

(�− �) · f̂i = 1

c

3∑
k=1

f̂k�
′
ki =

1

c
ωSF × f̂i (16.123)

from which one obtains the angular velocity vector of the Serret–Frenet system as
seen from the Fermi–Walker system

ωSF =
3∑

i=1

ω′i f̂i = c
(
ρ3f̂1 + ρ2 f̂3

)
(16.124)

The rate of change of the Serret–Frenet vectors with respect to proper time τ , as seen
from a room defined by the non-rotating Fermi–Walker vectors, is then given by the
threevector cross product

d f̂i

dτ

∣∣∣∣∣
ĝ

= ωSF × f̂i (16.125)

where i = 1, 2, 3, and the subscript ĝ indicates that the derivatives are taken as if the
Fermi–Walker vectors ĝµ were constants.

The Serret–Frenet basis fourvectors are easy to calculate since they are obtained
by a simple process of repeated differentiation along a world line. And the second of
eqn (16.120) can then be used to write the Fermi–Walker basis vectors ĝj . In some
simple cases, this allows the Fermi–Walker basis fourvectors to be found explicitly, as
is done in the next section. But, even when Ri j cannot be found in closed form, the
angular velocity ωSF in eqn (16.124) can still provide useful information.

16.19 Example of Fermi–Walker Transport
The Serret–Frenet vectors can be used in some cases to calculate the Fermi–Walker
basis vectors ĝµ explicitly, as we now illustrate.

Suppose that a point is moving in a circle of radius a in the x-y plane of some
inertial reference system, with fixed angular velocity ω. Taking the parameter β to
be the coordinate time t , the world line can be viewed as a cylindrical spiral in the
ct, x, y spacetime diagram

r(t) = ct ê0 + a cos(ωt) ê1 + a sin(ωt) ê2 (16.126)

The threevector velocity has constant magnitude v = ωa, and the arc length is s =
cτ = ct/γ where the Lorentz factor is γ = (

1 − (ωa/c)2
)−1/2. The Serret–Frenet
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vectors for this world line (Exercise 16.16) are f̂3 = ê3 and

f̂0 = γ
(
ê0 − aω

c
sin(ωt) ê1 + aω

c
cos(ωt) ê2

)
(16.127)

f̂1 = −
(

cos(ωt) ê1 + sin(ωt) ê2

)
(16.128)

f̂2 = γ
(
−aω

c
ê0 + sin(ωt) ê1 − cos(ωt) ê2

)
(16.129)

and the curvatures are

ρ1 = γ 2aω2

c2
ρ2 = γ 2ω

c
ρ3 = 0 (16.130)

The Fermi–Walker vectors can be calculated by noticing that, since ρ3=0, and
ρ2 is constant, eqn (16.124) reduces to a rotation at a fixed rate about a fixed axis,
ωSF = cρ2 f̂3 = cρ2ĝ3. The rotation R defined by eqn (16.120) thus can be obtained by
integration, as in Section 8.18. It is R = R [φĝ3] where the angle is φ = cρ2τ = γωt .
The second of eqn (16.120) then reduces to

ĝ1 = cos(γωt) f̂1−sin(γωt) f̂2 ĝ2 = sin(γωt) f̂1+cos(γωt) f̂2 ĝ3 = f̂3 (16.131)

Putting the Serret–Frenet vectors from eqns (16.128, 16.129) into eqn (16.131), and
recalling that ĝ0 = f̂0 by definition, gives the Fermi–Walker vectors in terms of the
inertial unit vectors. They are ĝ3 = f̂3 = ê3 and

ĝ0 = γ
(
ê0 − aω

c
sin(ωt) ê1 + aω

c
cos(ωt) ê2

)
(16.132)

ĝ1 =
γ aω

c
sin (γωt) ê0 −

(
cos (γωt) cos(ωt)+ γ sin (γωt) sin(ωt)

)
ê1

−
(

cos (γωt) sin(ωt)− γ sin (γωt) cos(ωt)
)

ê2 (16.133)

ĝ2 = −γ aω

c
cos (γωt) ê0 −

(
sin (γωt) cos(ωt)− γ cos (γωt) sin(ωt)

)
ê1

−
(

sin (γωt) sin(ωt)+ γ cos (γωt) cos(ωt)
)

ê2 (16.134)

If one assumes v � c and expands these equations (Exercise 16.18) in powers of
the small quantity (γ − 1) ≈ v2/2c2, the leading term in ĝ1 will be

ĝ1 ≈ − cos (ωTt) ê1 + sin (ωTt) ê2 (16.135)

where
ωT = (γ − 1) ω ≈ a2ω3/2c2 (16.136)

A small, torque-free gyroscope transported along the spiral world line will remain
aligned, for example, with the non-rotating ĝ1 unit vector. It will thus appear to the
inertial system to be rotating in a negative sense about the ê3 axis with small, con-
stant angular velocity ωT. This retrograde rotation is called Thomas precession. When
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applied to the small “gyroscope” consisting of the spin of the electron in the hydrogen
atom, it reduces by a factor of two the effective spin-orbit coupling between the spin
and orbital angular momenta.98 (See Exercise 16.19 for a discussion of this effect in
the context of the Bohr model.)

16.20 Exercises

Exercise 16.1 Prove that eqn (16.1) implies eqn (16.2), where a‖ = v̂
(
v̂ · a

)
and a⊥ = a −

a‖ are the components of a parallel and perpendicular, respectively, to the current velocity
threevector v.

Exercise 16.2 Prove that

d

dt

(
mc2√

1 − v2/c2

)
= v · d (γ mv)

dt
(16.137)

as is asserted in eqn (16.6).

Exercise 16.3 Use eqn (16.11) and the definitions of E and p to derive eqn (16.12).

Exercise 16.4 The following exercise considers the Newtonian limits of relativistic quanti-
ties. Take δ > 0 to be a small positive number. The meaning of the order symbol o is discussed
in Section D.11.

(a) Show that, as (v/c) → 0,

p = mv√
1 − v2/c2

= mv
(

1 + v2

2c2
+ o

(
(v/c)(4−δ)

))
(16.138)

and hence
p

mc
= v

c

(
1 + v2

2c2
+ o

(
(v/c)(4−δ)

))
(16.139)

(b) Show that, as (v/c) → 0,

T = E − mc2 = mc2√
1 − v2/c2

− mc2 = 1

2
mv2

(
1 + 3

4

(v

c

)2 + o
(
(v/c)(4−δ)

))
(16.140)

T = E − mc2 =
√

p2c2 + m2c4 − mc2 = p2

2m

(
1 − 1

4

( p

mc

)2 + o
(
(v/c)(4−δ)

))
(16.141)

(c) Show that (v/c) = (pc/E) exactly, for all v/c.

98This factor of two had to be put in by hand in the nonrelativistic treatment of the hydrogen atom that
preceded the development of the Dirac equation. It is discussed in many introductory quantum texts. See,
for example, Section 17.3 of Shankar (1994).
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Exercise 16.5
(a) Prove the fourvector equivalents of the identities proved for threevectors in Section A.11.
Prove that

∂

∂r

(
r · C) = C and

∂

∂ ṙ

(
ṙ · C) = C (16.142)

(b) Show that

∂

∂ ṙ

(√
−ṙ · ṙ

)
= ṙ√−ṙ · ṙ and

∂

∂ ṙ

(q

c
ṙ · A

)
= q

c
A (16.143)

which were used in eqn (16.48).

Exercise 16.6
(a) Use conservation of fourvector momentum to show that an isolated electron cannot emit
a single photon.
(b) An excited atom at rest in S emits two photons of energies E1 and E2. Denote the mass of
the atom before the emissions by m0 and the mass after by m. Show that, in the case in which
the photons emerge in exactly opposite directions, the atom’s mass is decreased by the ratio

m

m0
=

√(
1 − 2E1

m0c2

)(
1 − 2E2

m0c2

)
(16.144)

(c) Show that if it also happens that E1 = E2, then the change in the atom’s mass �m =
m − m0 is given by

�m = − E1 + E2

c2
(16.145)

Exercise 16.7 Use eqn (16.37) and the definitions of E and p to verify the results stated in
eqns (16.44, 16.45).

a

b

φ

φ

x

ct

FIG. 16.2. Figure for Exercise 16.8. The fourvectors a and b have zero relativistic dot product. The
dotted line is the projection of the light cone onto the x-ct plane.

Exercise 16.8 Suppose that a = a0 ê0+a1 ê1 is forward timelike, and that b = b0 ê0+b1 ê1
has b · a = 0.

(a) Show that, when drawn on a spacetime diagram, a makes an angle φ with the forward
light cone where

tan φ = a0 − a1

a0 + a1
(16.146)

(b) Show that b makes the same angle φ with the forward light cone, but on the opposite side.
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(c) Plot a and b schematically on a spacetime diagram for the case a1 < 0. (Figure 16.2
shows the case a1 > 0.)
(d) Show that 0 < φ < π/2 with the end values approached as a approaches the lightlike
limits

(∣∣a1
∣∣ /a0

) → 1.

Exercise 16.9 Figure 16.1 shows the hyperplane of simultaneity defined in Section 16.16.1
when ê : (e0, e1, 0, 0)S .

(a) Show that two events in the hyperplane have a separation dr that has a zero dot product
with ê. Show, using Exercise 16.8, that the plane and the orientation vector ê make equal
angles above and below the light cone, as shown.
(b) Show that if a clock has a world line parallel to e and passing through the origin event,
then θ is the proper time measured on that clock as it moves from the origin event to r.
(c) Show that if S′ is a system in which ê : (1, 0, 0, 0)S′ then the coordinate time t ′ in system
S′ is equal to θ .

x ′

y′

x

y

S

S′

Vt

ct, r

ct ′, r′

m

FIG. 16.3. Figure for Exercise 16.10. The particle m has coordinate velocity v = dr/dt as seen from
S and v′ = dr′/dt ′ as seen from S′. The systems S and S′ are connected by a boost of threevector
velocity V.

Exercise 16.10 Suppose that a particle has threevector velocity v′ as seen from the S′ system
and v as seen from S. Assume S and S′ related by a general boost parameterized by the
threevector velocity V between the systems.

(a) Show that

v‖ ∼
V′ + v′‖(

1 + V v′‖/c2
) v⊥ ∼ v′⊥

�
(

1 + V v′‖/c2
) (16.147)

where v‖ = V̂
(

V̂ · v
)

is the component of v parallel to V and v⊥ = v− v‖ is the component

perpendicular to V, with similar definitions in the S′ system.

Exercise 16.11
(a) Show that when a boost has threevector parameter V : (V, 0, 0)S , it reduces to the standard
Lorentz transformation defined in Section 15.11.1.
(b) Show that for a standard Lorentz transformation, the velocity addition in Exercise 16.10
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reduces to

vx = V + v′x(
1 + V v′x/c2

) vy =
v′y

�
(

1 + V v′x/c2
) vz = v′z

�
(

1 + V v′x/c2
) (16.148)

(c) Suppose that the particle is a photon with v′ = c and v′ = c(cos φ′ ê′1 + sin φ′ ê′2). Show
that v = c and v = c(cos φ ê1 + sin φ ê2) where

cos φ = cos φ′ + V/c

1 + V cos φ′/c
and sin φ = sin φ′/�

1 + V cos φ′/c
(16.149)

(d) If φ′ = π/2, show that cos φ = V/c and sin φ = √
1 − V 2/c2.

Exercise 16.12 Referring to Exercise 16.10, we make the following definitions: V/c =
tanh H , v‖/c = tanh η, and v′‖/c = tanh η′. The quantities H, η, η′ are called rapidities
or rapidity measures.

(a) Show that the matrix eqn (15.62) of the standard Lorentz transformation can be written as

M st =

⎛⎜⎜⎝
cosh H sinh H 0 0
sinh H cosh H 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ (16.150)

(b) Show that when a general boost is performed as in eqn (16.147), the rapidities add, with
η = H + η′.
(c) Show that the velocity transformation in eqn (16.147) can be written as

v‖ = cV̂ tanh η = cV̂ tanh
(
H + η′

)
v⊥ ∼ v′⊥

(
1

cosh H + sinh H tanh η′

)
(16.151)

Exercise 16.13 The power source of the Cassini spacecraft uses small cylinders of 238Pu (in
the form of plutonium dioxide) to produce heat. The half life of 238Pu is 87.7 years, decaying
predominantly by alpha decay to 234U. Taking the masses to be m238 = 238.049560 amu,
mα = 4.002603 amu, and m234 = 234.040952 amu, calculate how many grams of 238Pu are
required to produce 1 watt of power.

Exercise 16.14 This exercise treats what is called hyperbolic motion. Suppose that, at any
instant, a point mass m has threevector acceleration a′ = gê′1 in a system S′ in which m is
instantaneously at rest, where g is a given constant.

(a) Derive the following values for the given fourvector dot products,

w ·w = g2 w · u = 0 u · u = −c2 (16.152)

where u is the velocity fourvector, and w is the acceleration fourvector.
(b) Consider a fixed system S relative to which the mass m has threevector velocity v = v1ê1.
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Assume that S and S′ are related by a standard Lorentz transformation. Prove that, relative to
this S system, the mass has velocity fourvector components

u0 = c cosh
(gτ

c

)
u1 = c sinh

(gτ

c

)
u2 = u3 = 0 (16.153)

where initial condition u1 = 0 at τ = 0 is assumed and τ is the proper time along the world
line of the mass.
(c) Integrate again, assuming that t = 0 and x = x0 at τ = 0, to obtain the following
coordinates for the mass as seen from the S system

x = x0 + c2

g

{
cosh

(gτ

c

)
− 1

}
ct = c2

g
sinh

(gτ

c

)
(16.154)

(d) Prove that the threevector velocity relative to the S system is v = ê1c tanh (gτ/c) and that
the dilation factor γ = dt/dτ is γ = cosh (gτ/c).
(e) Show that, still relative to the S system, the position of the mass can be expressed as a
function of the coordinate time t as follows,

x = x0 + c2

g

⎛⎝√
1 +

(
gt

c

)2

− 1

⎞⎠ (16.155)

(f) Show that the threevector force f on the mass, as measured relative to the S system, must
be f = mgê1, and that the threevector velocity is v = (gt/γ ) ê1 where the time dilation factor

is γ =
√

1 + (gt/c)2.

Exercise 16.15 Show that [�] = D [� ′] and eqn (16.77) imply the form invariance of the
Dirac equation shown in eqn (16.78).

Exercise 16.16
(a) Apply the method of Section 16.17 to the example world line in eqn (16.126). Show that
your results agree with eqns (16.127 – 16.130).
(b) Verify that your vectors f̂µ obey eqn (16.112).

Exercise 16.17
(a) Use the definitions in Section 15.7 to show that the Fermi–Walker transport law eqn
(16.116) can be written as eqn (16.117).
(b) Show that the definition ĝ0 = f̂0 gives a dĝ0/ds that is a solution to the Fermi–Walker
transport law in eqn (16.116).
(c) Show that the dyadic � defined in eqn (16.118) has the property that b ·� = −� ·b for any
fourvector b. Show that d(ĝµ · ĝν)/ds = 0 follows. Show that the assumed initial condition

that the ĝµ are equal to the f̂µ at β=0 then implies that ĝµ · ĝν = gµν for all β.

Exercise 16.18
(a) The quantity � = γ − 1 will be small when the velocity along a world line is small
compared to the speed of light. Substitute γ = �+1 into eqns (16.132 – 16.134) and simplify
the resulting equations (now depending on � and not on γ ).
(b) Show that, considering � to be a small quantity, the leading term in the expansion of ĝ1
in powers of � is that given in eqn (16.135).
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Exercise 16.19 In its simplest form, the Bohr model of the hydrogen atom consists of an
electron of mass m and charge −e moving in a plane, circular orbit around a fixed proton
of charge e. The nth Bohr orbit is defined by its orbital angular momentum Ln = nh̄. One
assumes that, except for this quantization of angular momentum, the orbits are classically
determined.

(a) Show that, in the Newtonian limit, the radius, speed, and total energy of the nth Bohr orbit
are: rn = (h̄/αmc)n2, vn = αc/n, and En = −α2mc2/2n2 where α = e2/4π h̄c ≈ (1/137)

is the Sommerfeld fine structure constant.
(b) Let an observer ride on the electron, in a small laboratory that is Fermi–Walker transported
along its world line. Use Exercise 15.16 to find the magnetic induction field B0 = B0ĝ3 (in
the instantaneous rest frame of the electron) that results from the electron’s motion through
the electric field of the proton. Assuming small velocities and keeping only leading order
terms in vn/c, use this B0 and the results of Exercise 9.12 to derive a rate of precession for
the electron spin in its own rest frame ωe =

(
α4mc2ĝ3

)
/
(
h̄n5

)
. This precession results from

the interaction (called the spin-orbit interaction) between the electron’s intrinsic magnetic
moment and the local B0 coming from its orbital motion.
(c) Show that for every n value, the Thomas angular velocity calculated approximately in eqn
(16.136) is retrograde from the direction of ωe, and has magnitude ωT = ωe/2. The effective
rate of precession of the electron spin as seen by inertial observers thus will be ωeff = ωeffê3
where ωeff = ωe − ωT = ωe/2. The quantum mechanical treatment of the hydrogen atom,
before the Dirac equation was developed, required a spin-orbit interaction term to be added to
the Schroedinger equation in order to predict the fine structure correctly. But, just as the Bohr
model predicts, the spin-orbit term had to be reduced by a factor of two to get experimental
agreement. The factor of two is called the Thomas factor.
(d) Should we be surprised, or should we not be surprised, that the Thomas precession ωT and
the electromagnetic precession ωe of the electron spin in each orbit of the Bohr atom differ
by exactly a factor of two? 99

Exercise 16.20 Suppose that a is an arbitrary fourvector and that 
 = a · b is known to be
an invariant, where b = b0ê0 + b is a set of quantities written in fourvector form.

(a) Demonstrate that b is indeed a fourvector.
(b) The phase of a plane wave may be written as 
 = k · r − ωt . Assume that the phase of
a wave is a quantity obtained by counting wave crests and hence is a relativistic invariant.
Since r = ct ê0 + r is a fourvector, show that k = (ω/c) ê0 + k must also be a fourvector.
(c) Show that the deBroglie relations in eqn (12.62) may be written as p = h̄k.

99The Bohr model correctly predicts the Rydberg energy α2mc2/2 and the Thomas factor. However, in spite of
spawning corporate logos with electrons in orbit around nuclei, it is plainly an incorrect model: (1) The lowest state
n = 1 has angular momentum L1 = h̄, whereas the Schroedinger theory predicts L = 0 for the ground state. (2)
Motion in a plane violates the uncertainty principle since it would require �z�pz = 0.
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CANONICAL TRANSFORMATIONS

The extended Lagrange equations were shown in Section 11.8 to be form invariant
under coordinate transformations in which the new generalized coordinates, includ-
ing the new time coordinate, are functions of the old coordinates and time. This was
a generalization of the traditional Lagrangian invariance proof of Section 2.10 which
did not allow the time to transform along with the other coordinates.

We now consider a broader class of transformations, called canonical transforma-
tions, which transform the whole of the extended phase space in a more general way.
Each new canonical coordinate or momentum is allowed to be a function of all of the
previous phase-space coordinates, including the previous canonical momenta. Thus
the new position and time variables may depend, through their dependence on the
momenta, on the old velocities as well as the old positions.

The Lagrange equations will not in general be form invariant under such trans-
formations. But canonical transformations will preserve the form of the extended
Hamilton equations developed in Chapter 12. In fact, as will be proved later in this
chapter, canonical transformations are the most general phase-space transformations
that preserve the extended Hamilton equations.

There are several equivalent definitions of canonical transformations. We present
three of them here, the Poisson Bracket Condition, the Direct Condition, and the
Lagrange Bracket Condition. And each of these three conditions has two forms, a
long one which is written out in terms of partial derivatives, and a symplectic one
consisting of a single matrix equation. We begin with the long form of the Lagrange
Bracket Condition, and then, after introducing some necessary notation, derive the
long and symplectic forms of all three.

Since we are now operating in an extended phase space in which the time is
the transformable canonical coordinate q0, the definition of canonical transformation
includes the Lorentz transformation of special relativity.

17.1 Definition of Canonical Transformations

We begin with the (2D + 2) phase-space canonical coordinates listed in eqn (12.1)

q, p = q0, q1, . . . , qD, p0, p1, . . . , pD (17.1)

and then transform to a new set of (2D + 2) coordinates

Q, P = Q0, Q1, . . . , Q D, P0, P1, . . . , PD (17.2)

411
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using transformation equations of the form

Qk = Qk (q, p) = Qk (q0, q1, . . . , qD, p0, p1, . . . , pD) (17.3)

Pk = Pk (q, p) = Pk (q0, q1, . . . , qD, p0, p1, . . . , pD) (17.4)

for k = 0, . . . , D.
In order to be a canonical transformation, the transformation equations must sat-

isfy certain conditions. The motivation for these conditions will become clear as the
chapter progresses. We begin with the most common, and in general the most useful,
condition and then prove the other conditions equivalent to this one.

Definition 17.1.1: Poisson Bracket Condition – Long Form
The transformation q,p → Q,P defined by eqns (17.3, 17.4) is a canonical transforma-
tion if and only if the three equations

[Qk, Ql ]qp = 0 [Qk, Pl ]qp = δkl [Pk, Pl ]qp = 0 (17.5)

are satisfied for all k, l = 0, . . . , D, where the Poisson brackets in eqn (17.5) are those
defined in eqn (12.51) with f and g replaced by the various Q,P coordinates.

For example, the middle equation in eqn (17.5) can be written out as

[Qk, Pl ]qp =
D∑

k′=0

(
∂ Qk(q, p)

∂qk′
∂ Pl(q, p)

∂pk′
− ∂ Pl(q, p)

∂qk′
∂ Qk(q, p)

∂pk′

)
= δkl (17.6)

We attach the subscript qp here to emphasize that these brackets are to be evaluated
using partial derivatives with respect to the q,p system of canonical coordinates.

17.2 Example of a Canonical Transformation
The special case of a transformation in which the Qk depend only on the qk is called a
canonical transformation of the Lagrangian type. Suppose that such a transformation
also has a simple linear form, with

Qi =
D∑

k=0

aikqk Pi =
D∑

k=0

bik pk (17.7)

for i = 0, . . . , D, where a and b are constant matrices. Then, as done in Exercise
17.1, eqn (17.5) can be used to show that this transformation is canonical if and only
if a b T = U . The Lorentz transformation is such a special case, and is treated in
Exercise 17.2.

17.3 Symplectic Coordinates
Before continuing with canonical transformations, we must now digress to introduce
some necessary notation. The development of canonical transformations will be sim-
plified by the adoption of a single symbol for all of the canonical coordinates in eqn
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(17.1). Define the coordinates γi for i = 0, . . . , (2D + 1) by

γk = qk and γD+1+k = pk (17.8)

for k = 0, . . . , D. Hence

γ0, γ1, . . . , γD, γD+1, γD+2, . . . , γ2D+1 = q0, q1, . . . , qD, p0, p1, . . . , pD (17.9)

or, in a shortened form, γ = q,p. These γi will be referred to as the symplectic coordi-
nates of phase space.

A similar definition is made for the Q,P coordinates.

�k = Qk and �D+1+k = Pk (17.10)

for k = 0, . . . , D, so that

�0, �1, . . . , �D, �D+1, �D+2, . . . , �2D+1 = Q0, Q1, . . . , Q D, P0, P1, . . . , PD (17.11)

or � = Q,P.
The transformation equations, eqns (17.3, 17.4), can then be expressed as a single

equation. For all i = 0, . . . , (2D + 1),

�i = �i (γ ) = �i (γ0, γ1, . . . , γD, γD+1, γD+2, . . . , γ2D+1) (17.12)

and we can then define a (2D + 2)× (2D + 2) Jacobian matrix of this transformation
J by writing its matrix elements as

Ji j = ∂�i (γ )

∂γj
(17.13)

for all i, j = 0, . . . , (2D + 1). By construction, this matrix will have the form of four
(D + 1)× (D + 1) blocks

J =

⎛⎜⎜⎜⎜⎝
(

∂ Q

∂q

) (
∂ Q

∂p

)
(

∂ P

∂q

) (
∂ P

∂p

)
⎞⎟⎟⎟⎟⎠ (17.14)

where the four block matrices are defined, for all k, l = 0, . . . , D, by(
∂ Q

∂q

)
kl
= ∂ Qk(q, p)

∂ql

(
∂ Q

∂p

)
kl
= ∂ Qk(q, p)

∂pl(
∂ P

∂q

)
kl
= ∂ Pk(q, p)

∂ql

(
∂ P

∂p

)
kl
= ∂ Pk(q, p)

∂pl
(17.15)

Derivatives with respect to the general parameter β will be denoted with a dot
above the symbol, as was done in Chapters 11 and 12, and will be referred to as
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generalized velocities of symplectic space. Thus γ̇i = dγi/dβ. It will be useful to
define column vectors of these derivatives as

[
γ̇
] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ̇0
...

γ̇D

γ̇D+1
...

γ̇2D+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎝ [
q̇
]

[
ṗ
]
⎞⎟⎠ (17.16)

where the last column vector expresses the (2D+2)-rowed column vector [γ̇ ] in block
form, in terms of the two (D + 1)-rowed column vectors

[q̇] =
⎛⎜⎝ q̇0

...

q̇D

⎞⎟⎠ and [ ṗ] =
⎛⎜⎝ ṗ0

...

ṗD

⎞⎟⎠ (17.17)

Functions of phase-space variables can also be rewritten as functions of the γ ,
with f = f (γ ) = f (q, p) obtained by simple substitution of the definition eqn (17.8)
into f (q, p). Then gradient column vectors can be defined as

[
∂ f

∂γ

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f (γ )

∂γ0

...

∂ f (γ )

∂γD

∂ f (γ )

∂γD+1

...

∂ f (γ )

∂γ2D+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
[

∂ f

∂q

]
[
∂ f

∂p

]
⎞⎟⎟⎟⎟⎠ (17.18)

where the last column vector expresses the (2D + 2)-rowed column vector in block
form, in terms of the two (D + 1)-rowed column vectors

[
∂ f

∂q

]
=

⎛⎜⎜⎜⎜⎝
∂ f (q, p)

∂q0
...

∂ f (q, p)

∂qD

⎞⎟⎟⎟⎟⎠ and
[
∂ f

∂p

]
=

⎛⎜⎜⎜⎜⎝
∂ f (q, p)

∂p0
...

∂ f (q, p)

∂pD

⎞⎟⎟⎟⎟⎠ (17.19)
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Definitions like eqns (17.16 – 17.19) will also be made for the Q,P variables, so that

[
�̇
] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̇0
...

�̇D

�̇D+1
...

�̇2D+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎝[
Q̇
]

[
Ṗ
]
⎞⎟⎠ (17.20)

and

[
∂ f

∂�

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f (�)

∂�0

...

∂ f (�)

∂�D

∂ f (�)

∂�D+1

...

∂ f (�)

∂�2D+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
[

∂ f

∂ Q

]
[

∂ f

∂ P

]
⎞⎟⎟⎟⎟⎠ (17.21)

with definitions of the constituent blocks similar to those in eqns (17.17, 17.19).
A phase-space function f is assumed to be represented by f (q, p) or f (Q, P) in

the q,p or Q,P systems of coordinates, respectively. These representations are related
by the equations100

f (Q, P) = f
(
q(Q, P), p(Q, P)

)
f (q, p) = f

(
Q(q, p), P(q, p)

)
(17.22)

or, in symplectic notation

f (�) = f
(
γ (�)

) = f
(
γ0(�), . . . , γ2D+1(�)

)
f (γ ) = f

(
�(γ )

) = f
(
�0(γ ), . . . , �2D+1(γ )

)
(17.23)

Thus, for example, f (γ ) can be obtained by starting with f (�) and then simply sub-
stituting �i = �i (γ ) from eqn (17.12) into it. As discussed in Section D.5, the function
f (Q, P) = f (q, p), or f (�) = f (γ ) in symplectic notation, is considered to be the
same function, just expressed in the two different coordinate systems.

The main use of this symplectic notation is to write the transformations of various
quantities in a simple matrix form, as for example in the following lemma.

100It is proved in Section 17.7 that, for canonical transformations, the equations �i = �i (γ ) can always
be inverted to give γi = γi (�).
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Lemma 17.3.1: Transformation of Symplectic Quantities
Given the definitions in eqns (17.8 – 17.21), it follows that

[
�̇
] = J

[
γ̇
]

and
[

∂ f

∂γ

]
= J T

[
∂ f

∂�

]
(17.24)

Proof: The chain rule and eqn (17.13) give

d�i

dβ
=

2D+1∑
j=0

∂�i (γ )

∂γj

dγj

dβ
=

2D+1∑
j=0

Ji j
dγj

dβ
(17.25)

which is the first of eqn (17.24) in component form, as was to be proved.
The chain rule and eqn (17.13) also give

∂ f (γ )

∂γi
=

2D+1∑
j=0

∂ f (�)

∂�j

∂�j (γ )

∂γi
=

2D+1∑
j=0

J T
i j

∂ f (�)

∂�j
(17.26)

which is the second of eqn (17.24) in component form, as was to be proved. �

17.4 Symplectic Matrix
The extended Hamilton equations and the definition of Poisson brackets can be writ-
ten in useful matrix forms if we use the symplectic coordinates defined in Section
17.4 and a matrix s , which will be referred to as the symplectic matrix and is defined
as follows.

Definition 17.4.1: Symplectic Matrix
The (2D + 2)× (2D + 2) symplectic matrix s is defined as the block matrix101

s =
(

0 +U
−U 0

)
(17.27)

where 0 is the (D+1)× (D+1) null matrix (all zeroes) and U is the (D+1)× (D+1)

unit matrix.

For example, when D = 1, the s is

s =

⎛⎜⎜⎝
0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ (17.28)

This matrix has a number of interesting properties.

101If we extend the definition of the Kroeneker delta function to include positive, negative, and zero
integers, then the matrix elements of s can be written as si j = δi( j−D−1) − δi( j+D+1) for all i, j =
0, . . . , (2D + 1).
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Lemma 17.4.2: Properties of Symplectic Matrix
The symplectic matrix s is skew-symmetric and orthogonal. Its determinant is +1.

Proof: By construction s has the property s T = − s and hence is skew-symmetric.
Direct multiplication of s by itself shows that s s = −U where U now is the (2D +
2)× (2D + 2) unit matrix. Thus

s T s = (− s ) s = U = s (− s ) = s s T (17.29)

which shows that s is orthogonal, as was to be proved. To evaluate the determinant,
note that (D+ 1) exchanges of rows (0 with D+ 1, then 1 with D+ 2, and so on) will
reduce | s | to the determinant

| s | = (−1)(D+1)

∣∣∣∣−U 0
0 +U

∣∣∣∣ = (−1)(D+1)(−1)(D+1) = +1 (17.30)

as was to be proved. �

17.5 Standard Equations in Symplectic Form

The motivation for the introduction of symplectic coordinates will now become clearer.
Among other uses, they allow the Hamilton equations, and the Poisson bracket of two
functions, to be written as simple matrix expressions.

The extended Hamilton equations are given in eqn (12.13). They are

q̇k = ∂K(q, p)

∂pk
and ṗk = −∂K(q, p)

∂qk
(17.31)

for all k = 0, . . . , D. These equations can be written in symplectic form.

Lemma 17.5.1: Hamilton Equations in Symplectic Form
Both of the extended Hamilton equations, eqn (17.31), can be written in symplectic form
as the single equation [

γ̇
] = s

[
∂K
∂γ

]
(17.32)

Proof: Expanded in block form using eqns (17.16, 17.18, 17.27), eqn (17.32) be-
comes ⎛⎜⎜⎜⎝

[
q̇
]

[
ṗ
]
⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝ 0 +U

−U 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

[
∂K
∂q

]
[
∂K
∂p

]
⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
+

[
∂K
∂p

]
−

[
∂K
∂q

]
⎞⎟⎟⎟⎟⎠ (17.33)

Equating each matrix element on both sides of eqn (17.33) reproduces eqn (17.31),
as was to be proved. �
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The definition of the extended Poisson bracket of two phase-space functions is
given in eqn (12.51). It is

[ f, g]qp =
D∑

k=0

(
∂ f (q, p)

∂qk

∂g(q, p)

∂pk
− ∂g(q, p)

∂qk

∂ f (q, p)

∂pk

)
(17.34)

where we have added the subscript qp here to emphasize that the partial derivatives
are to be taken with respect to the variables of the q, p system. This quantity can also
be written in symplectic notation.

Lemma 17.5.2: Poisson Brackets in Symplectic Form
The extended Poisson bracket defined in eqn (17.34) can be written as

[ f, g]qp =
[

∂ f

∂γ

]T
s

[
∂g

∂γ

]
(17.35)

Proof: When expanded in block form, using eqns (17.18, 17.27), eqn (17.35) be-
comes

([
∂ f

∂q

]T [
∂ f

∂p

]T
)⎛⎜⎜⎜⎝ 0 +U

−U 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

[
∂g

∂q

]
[

∂g

∂p

]
⎞⎟⎟⎟⎟⎠ =

([
∂ f

∂q

]T [
∂ f

∂p

]T
)⎛⎜⎜⎜⎜⎝

+
[

∂g

∂p

]
−

[
∂g

∂q

]
⎞⎟⎟⎟⎟⎠

=
[

∂ f

∂q

]T [
∂g

∂p

]
−

[
∂ f

∂p

]T [
∂g

∂q

]
(17.36)

When written out in terms of components using eqn (17.19), this becomes eqn (17.34),
as was to be proved. �

17.6 Poisson Bracket Condition
The symplectic notation will allow easy matrix proofs of the equivalence of the various
conditions for a transformation to be canonical. This avoids what would otherwise
be pages of formulas involving sums of partial derivatives. To begin, we restate the
Poisson Bracket Condition from Section 17.1 in symplectic form.

Lemma 17.6.1: Poisson Bracket Condition – Short Form
The Poisson Bracket Condition for the transformation102 to be canonical is equivalent to
the single equation

J s J T = s (17.37)

Thus the transformation is canonical if and only if this equation is satisfied.

102For the remainder of this chapter, the transformation defined in eqns (17.3, 17.4), or alternately in eqn
(17.12), will be referred to simply as “the transformation.”
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Proof: The three equations of the Poisson bracket condition in eqn (17.5) can be
combined into the single equation [

�i , �j
]

qp = si j (17.38)

for all i, j = 0, . . . , (2D + 1), where the definitions in eqn (17.11) have been used.
Using Lemma 17.5.2 with f , g replaced by �i , �j , this may be written as

[
∂�i

∂γ

]T

s
[
∂�j

∂γ

]
=

(2D+1)∑
k=0

(2D+1)∑
l=0

∂�i (γ )

∂γk
skl

∂�j (γ )

∂γl
= si j (17.39)

Introducing the definition of the Jacobian matrix from eqn (17.13) and using Jjl =
J T

l j , this becomes

(2D+1)∑
k=0

(2D+1)∑
l=0

Jikskl J T
l j = si j (17.40)

which is just eqn (17.37) written out in terms of components. �

17.7 Inversion of Canonical Transformations

The matrix form of the Poisson bracket condition allows us to prove that canonical
transformations are invertible.

Lemma 17.7.1: Nonsingularity of Jacobian Matrix
The Jacobian matrix of a canonical transformation is nonsingular. Its determinant is ±1.
Thus eqns (17.3, 17.4) can be inverted, giving

qk = qk (Q, P) = qk (Q0, Q1, . . . , Q D, P0, P1, . . . , PD) (17.41)

pk = pk (Q, P) = pk (Q0, Q1, . . . , Q D, P0, P1, . . . , PD) (17.42)

or, in the equivalent symplectic form, eqn (17.12) can be inverted to give

γi = γi (�) = γi (�0, �1, . . . , �D, �D+1, �D+2, . . . , �2D+1) (17.43)

Proof: Taking the determinant of both sides of eqn (17.37) and using the result
| s | = 1 from Lemma 17.4.2,∣∣∣ J

∣∣∣ ∣∣∣ s
∣∣∣ ∣∣∣ J T

∣∣∣ = ∣∣∣ s
∣∣∣ and hence | J |2 = 1 (17.44)

with the result | J | = ±1, as was to be proved. It follows from the inverse function
theorem, Theorem D.24.1, that eqn (17.12) can be inverted to give eqn (17.43), as
was to be proved. �
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Since the Jacobian matrix J is nonsingular, it has an inverse J−1. The matrix
elements of that inverse matrix are therefore

J−1
i j = ∂γi (�)

∂�j
(17.45)

and it can be written in a block form similar to that in eqn (17.14) for the original
transformation,

J−1 =

⎛⎜⎜⎜⎜⎝
(

∂q

∂ Q

) (
∂q

∂ P

)
(

∂p

∂ Q

) (
∂p

∂ P

)
⎞⎟⎟⎟⎟⎠ (17.46)

where the four block matrices are defined, for all k, l = 0, . . . , D, by(
∂q

∂ Q

)
kl
= ∂qk(Q, P)

∂ Ql

(
∂q

∂ P

)
kl
= ∂qk(Q, P)

∂ Pl(
∂p

∂ Q

)
kl
= ∂pk(Q, P)

∂ Ql

(
∂p

∂ P

)
kl
= ∂pk(Q, P)

∂ Pl
(17.47)

The nonsingularity of the Jacobian matrix J has an important consequence. Since
both t and the parameter β vary monotonically, the time parameter always has ṫ �= 0
along any system trajectory. But after a canonical transformation, the new variables
Q, P may have no easily identifiable connection to the monotonically varying time
coordinate t . However, we do know that at least one of them must have a nonzero
derivative at any system point.

Lemma 17.7.2: Non-Vanishing Derivatives of Q and P
After the most general canonical transformation, there will always be at least one mem-
ber of the set Qk, Pk for k = 0, . . . , D which has a nonzero derivative with respect to
parameter β.

Proof: Since J is nonsingular and has a inverse J−1, the first of eqn (17.24) may be
used to write

[γ̇ ] = J−1[�̇] (17.48)

If all of the quantities Q̇k, Ṗk were zero, then [�̇] would be the null column vector.
Then eqn (17.48) would imply that [γ̇ ] = [0] in contradiction to q̇0 = ṫ �= 0. Thus at
least one of the Q̇k, Ṗk must be nonzero. �

17.8 Direct Condition
The inverse J−1 that was proved to exist in Lemma 17.7.1 figures in the second of
the conditions for a transformation to be canonical, the Direct Condition.

Lemma 17.8.1: Direct Condition – Short Form
The transformation is canonical if and only if J−1 exists and

J−1 = − s J T s (17.49)
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Proof: First prove that eqn (17.49) implies eqn (17.37). Multiplying both sides of
eqn (17.49) from the left by J and from the right by s gives

J J−1 s = − J s J T s s (17.50)

Since J J−1 = U and s 2 = −U from Lemma 17.4.2, eqn (17.50) reduces to eqn
(17.37), as was to be proved.

Conversely, assume that eqn (17.37) holds. Then Lemma 17.7.1 has shown that
J−1 exists. Multiply eqn (17.37) from the left by s J−1 to give

s J−1 J s J T = s J−1 s and hence − J T = s J−1 s

Multiplying both sides from the left and right by s and once again using s 2 = −U
then gives eqn (17.49), as was to be proved. �

The Direct Condition also has a long form. We derive it here from the symplectic
short form just presented.

Lemma 17.8.2: Direct Condition – Long Form
The transformation is canonical if and only if it is invertible, so that eqns (17.41, 17.42)
can be written, and the following four equalities hold for all k, l = 0, . . . , D:

∂qk(Q, P)

∂ Ql
= ∂ Pl(q, p)

∂pk

∂qk(Q, P)

∂ Pl
= −∂ Ql(q, p)

∂pk
(17.51)

∂pk(Q, P)

∂ Ql
= −∂ Pl(q, p)

∂qk

∂pk(Q, P)

∂ Pl
= ∂ Ql(q, p)

∂qk
(17.52)

Proof: Using eqns (17.14, 17.27, 17.46), eqn (17.49) may be written as⎛⎜⎜⎜⎜⎝
(

∂q

∂ Q

) (
∂q

∂ P

)
(

∂p

∂ Q

) (
∂p

∂ P

)
⎞⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎝ 0 +U

−U 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

(
∂ Q

∂q

)T (
∂ P

∂q

)T

(
∂ Q

∂p

)T (
∂ P

∂p

)T

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝ 0 +U

−U 0

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
(

∂ P

∂p

)T

−
(

∂ Q

∂p

)T

−
(

∂ P

∂q

)T (
∂ Q

∂q

)T

⎞⎟⎟⎟⎟⎠ (17.53)

Equating the upper left blocks in the first and last matrices in this expression gives(
∂q

∂ Q

)
=

(
∂ P

∂p

)T

(17.54)

which, when written out, is the first of eqn (17.51). The other three equations in eqns
(17.51, 17.52) are obtained by equating the other corresponding blocks, as was to be
proved. �
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As written, the left sides of eqns (17.51, 17.52) are functions of Q, P and the
right sides of q, p. Thus, eqns (17.3, 17.4) or eqns (17.41, 17.42) must be used to
write both sides as functions of the same variable set before the equalities can be
checked.

17.9 Lagrange Bracket Condition
The third condition is the Lagrange Bracket Condition. We prove its symplectic form
first.

Lemma 17.9.1: Lagrange Bracket Condition – Short Form
The transformation is canonical if and only if

J T s J = s (17.55)

Proof: We prove that this equation implies and is implied by eqn (17.49). First as-
sume that eqn (17.49) holds. Then multiplying both sides of eqn (17.49) from the left
by s and from the right by J gives

s J−1 J = − s 2 J T s J (17.56)

Since J J−1 = U and s 2 = −U from Lemma 17.4.2, the eqn (17.56) reduces to eqn
(17.55) as was to be proved.

Conversely, assume that eqn (17.55) holds. Then an argument similar to that in
the proof of Lemma 17.7.1 shows that J has an inverse. Multiply eqn (17.55) from
the left by s and from the right by J−1 to obtain

s J T s J J−1 = s 2 J−1 (17.57)

which reduces similarly to eqn (17.49), as was to be proved. �
The long form of the Lagrange Bracket Condition can also be obtained.

Lemma 17.9.2: Lagrange Bracket Condition – Long Form
The transformation is canonical if and only if{

γi , γj
}

Q,P = si j (17.58)

for all i, j = 0, . . . , (2D + 1) where the expressions in eqn (17.58) are called Lagrange
Brackets and are defined by

{
γi , γj

}
Q,P =

D∑
k=0

(
∂ Qk(q, p)

∂γi

∂ Pk(q, p)

∂γj
− ∂ Qk(q, p)

∂γj

∂ Pk(q, p)

∂γi

)
(17.59)

In the q, p notation, eqn (17.58) becomes

{qk, ql}Q,P = 0 {qk, pl}Q,P = δkl {pk, pl}Q,P = 0 (17.60)

for all k, l = 0, . . . , D.
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Proof: When written out in terms of components, using the definition in eqn (17.13),
eqn (17.55) becomes

(2D+1)∑
k=0

(2D+1)∑
l=0

∂�k(γ )

∂γi
skl

∂�l(γ )

∂γj
= si j (17.61)

Performing the sum over l using the definitions in eqns (17.27, 17.59), this becomes
eqn (17.58). �

Corollary 17.9.3: Lagrange and Poisson Brackets
The Poisson and Lagrange brackets of canonical transformations obey the identity

(2D+1)∑
k=0

{γk, γi }Q,P

[
�k, �j

]
qp = δi j (17.62)

for all i, j = 0, . . . , (2D + 1).

Proof: Using eqns (17.38, 17.58), the left side of eqn (17.62) becomes

(2D+1)∑
k=0

ski sk j =
(2D+1)∑

k=0

sT
iksk j =

(
s T s

)
i j
= δi j (17.63)

where the last equality follows from the orthogonality of s proved in Lemma 17.4.2. �

17.10 The Canonical Group

In Section 8.7 we discussed the concept of groups of transformations and showed that
rotations form a group. We now apply the same ideas to canonical transformations.

The first requirement is to define what is meant by group multiplication. Just as
for rotation operators and Lorentz transformations, we define multiplication to mean
repeated application. If A and B are canonical transformations, then a multiplication
C = AB will mean that B is applied and then A is applied to the result. Thus if
B : q, p → Q, P is the transformation from q, p to Q, P and A : Q, P → X, Y is the
transformation from Q, P to X, Y , then C : q, p → X, Y will be the transformation
from q, p to X, Y that is the cumulative effect of these two successive transformations.
Canonical transformations form a group under this form of group multiplication be-
cause they satisfy the same axioms as those listed in Section 8.7.

1. The first property of groups is closure. If A and B are canonical, then C = AB
must also be canonical. To see that this is true, consider the Jacobian matrix
defined as in eqn (17.13) for each of the transformations. Let �i be the sym-
plectic coordinate of the system with coordinates Xk and momenta Yk , defined
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similarly to the definition of �i in eqn (17.10). Then, using the chain rule,

∂�i (γ )

∂γj
=

(2D+1)∑
k=0

∂�i (�)

∂�k

∂�k(γ )

∂γj
or J (C) = J (A) J (B) (17.64)

in matrix form. Then the short form of the Poisson bracket condition in eqn
(17.37) is satisfied for transformation C since

J (C) s
(

J (C)
)T = J (A) J (B) s

(
J (B)

)T (
J (A)

)T = J (A) s
(

J (A)
)T = s

(17.65)
where we have used the assumption that both J (A) and J (B) satisfy this condi-
tion. Thus the product of two canonical transformations is a canonical transfor-
mation and the group property of closure is established.

2. Continuing as in Section 8.7, the next property is the existence of an identity. In
the case of canonical transformations, the identity is the transformation Qk = qk

and Pk = pk whose Jacobian matrix is just the identity matrix J = U . This
matrix satisfies the Poisson bracket condition, eqn (17.37), since U s U T = s
follows from the definition of U . Thus the identity transformation is canonical,
which establishes the existence of an identity for the group.

3. Every member of a group, that is every canonical transformation in our case,
must have an inverse that is also a member of the group. We have seen in Sec-
tion 17.7 that canonical transformations are invertible and so have an inverse.
We must now show that this inverse is canonical. Suppose that a transformation
is canonical with a Jacobian matrix J satisfying the Poisson bracket condition
eqn (17.37). Taking the inverse of both sides of eqn (17.37) gives(

J T
)−1

s−1 J−1 = s−1 or
(

J−1
)T

s
(

J−1
)
= s (17.66)

where we used the result from Section 17.4 that s−1 = − s . Thus the inverse
transformation, with Jacobian transformation matrix J−1 satisfies the Lagrange
bracket condition in eqn (17.55) and therefore is canonical and a member of the
group.

4. The fourth required property is associativity. As in the case of rotations, it fol-
lows at once from our definition of multiplication as successive application.

17.11 Form Invariance of Poisson Brackets
We are familiar with the fact that the dot product of two vectors in a three-dimensional
Cartesian space is unchanged by rotation of the coordinates of that space. In phase
space, the Poisson bracket of two phase-space functions has a similar property. In fact,
canonical transformations can be defined as the most general phase-space transfor-
mations that leave the extended Poisson brackets invariant.

To examine this invariance, we must first define the Poisson bracket in terms of
the transformed variables Q, P.
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Definition 17.11.1: Poisson Bracket in the Q,P System
The definition of the Poisson bracket of two phase-space functions f (Q, P) and g(Q, P)

in the transformed Q, P system of coordinates uses the same form as eqn (17.34), but
with Q, P substituted for q, p. It is

[
f, g

]
Q P =

D∑
k=0

(
∂ f (Q, P)

∂ Qk

∂g(Q, P)

∂ Pk
− ∂g(Q, P)

∂ Qk

∂ f (Q, P)

∂ Pk

)
(17.67)

where the subscript Q P indicates that the partials here are taken with respect to the
transformed variable set.

The definition eqn (17.67) can also be written in symplectic form. Using the defi-
nition in eqn (17.21), the Poisson bracket in the Q, P system can be written as

[
f, g

]
Q P =

[
∂ f

∂�

]T

s
[

∂g

∂�

]
(17.68)

The proof is the same as in Lemma 17.5.2, and will not be repeated here.
The expressions in eqns (17.67, 17.68) have the same form as eqns (17.34, 17.35),

respectively. The only difference is the substitution of Q, P for q, p. The following
theorem shows that they also have the same value. Such expressions, in which the
same algebraic form in two systems yields the same value, are called form invariant
expressions.

Theorem 17.11.2: Form Invariance of Poisson Brackets
The Poisson bracket of any two phase-space functions is form invariant[

f, g
]

Q P = [
f, g

]
q,p (17.69)

if and only if the transformation q, p → Q, P is canonical.

Proof: First, assume eqn (17.69) and prove the transformation canonical. Since eqn
(17.69) is assumed to hold for any phase-space functions, choose f = Qi and g = Qj .
Then

0 = [
Qi , Qj

]
Q P = [

Qi , Qj
]

qp (17.70)

where the first equality follows trivially from eqn (17.67) when the partial derivatives
of the Qi , Qj are taken with respect to the Q, P system. This equation is identical
to the first of eqn (17.5), the Poisson bracket condition for the transformation to be
canonical. The other two equations in eqn (17.5) are proved similarly. Thus the trans-
formation is canonical, as was to be proved.

Conversely, assume that the transformation is canonical and prove that eqn (17.69)
holds. Substituting the transformation equations, eqn (17.24), the symplectic form in
eqn (17.35) becomes

[
f, g

]
qp =

[
∂ f

∂γ

]T

s
[

∂g

∂γ

]
=

(
J T

[
∂ f

∂�

])T

s
(

J T
[

∂g

∂�

])
=

[
∂ f

∂�

]
J s J T

[
∂g

∂�

]
(17.71)

Since the transformation is assumed canonical, eqn (17.37) holds. Substituting this
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result and using eqn (17.68) then gives

[
f, g

]
qp =

[
∂ f

∂�

]T

s
[

∂g

∂�

]
= [

f, g
]

Q P (17.72)

as was to be proved. �

17.12 Form Invariance of the Hamilton Equations
We come now to the most important property of canonical transformations: They
preserve the form of the extended Hamilton equations.

The present section proves two related theorems. First, we prove that a canonical
transformation from a q, p system in which the extended Hamilton equations hold
produces a Q, P system in which extended Hamilton equations of the same form
hold, and with the same extended Hamiltonian K. And, second, we prove that the
equivalence of the Hamilton equations in the two systems is a sufficient condition for
the transformation between them to be canonical.

Together, these two theorems imply that a transformation is canonical if and only
if it preserves the form of the extended Hamilton equations. This result is an example
of the superiority of the extended approach to Hamiltonian theory. It allows us to
state that canonical transformations in the extended phase space are the most general
phase-space transformations that preserve the extended Hamilton equations. A sim-
ilar result could not be proved in the traditional theory, since multiplication of the
time by a constant and division of the traditional Hamiltonian by that same constant
preserves the traditional Hamilton equations (see Exercise 17.3). But such a trans-
formation is not canonical in the traditional theory because it modifies time. In the
extended theory, time is allowed to transform and such problem cases are included in
the general definition of canonical transformations.

Before presenting the two theorems, however, it will be useful to emphasize the
relation between canonical transformations and the extended Hamiltonian theory.
Canonical transformations are nonsingular, invertible transformations between two
independent sets of Hamiltonian variables q, p → Q, P. They treat all of these
variables equally. But, as noted in Section 12.4, the q, p are subject to a condition,
K(q, p) = 0, that is to be applied at the end of the calculation, after the partial deriva-
tives of the Hamilton equations have been taken. When a canonical transformation is
done, the new variables simply inherit that condition. It becomes K(Q, P) = 0, where
K(Q, P) is the same function (in the sense discussed in Section D.5) as K(q, p), but
expressed in the new variable set.

Theorem 17.12.1: Canonical Transformation Implies Invariance
If the extended Hamilton equations from eqn (17.31)

q̇k = ∂K(q, p)

∂pk
and ṗk = −∂K(q, p)

∂qk
(17.73)

hold in the q, p system, and if the transformation q, p → Q, P is canonical, then the
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extended Hamilton equations

Q̇k = ∂K(Q, P)

∂ Pk
and Ṗk = −∂K(Q, P)

∂ Qk
(17.74)

hold in the Q, P system, where the extended Hamiltonian K(Q, P) is the same function
as the K(q, p) used there, simply re-expressed in terms of the Q, P coordinates by making
the substitution

K(Q, P) = K(q(Q, P), p(Q, P)) (17.75)

The parameter β is not transformed. It is the same in eqns (17.73, 17.74).

Proof: Since Lemma 17.7.1 proved the Jacobian transformation matrix J to be non-
singular, canonical transformations are invertible and the substitution in eqn (17.75)
can always be done.

We have shown in Lemma 17.5.1 that eqn (17.73) is equivalent to the symplectic
form of the Hamilton equations in eqn (17.32). Similarly, both of the extended Hamil-
ton equations, eqn (17.74), can be written in symplectic form as the single equation

[
�̇
] = s

[
∂K
∂�

]
(17.76)

So we only need to prove the equivalence of the two symplectic forms, that

[
γ̇
] = s

[
∂K
∂γ

]
is equivalent to

[
�̇
] = s

[
∂K
∂�

]
(17.77)

The inverse of the nonsingular matrix J may be used to write the transformation
rules in eqn (17.24) as

[γ̇ ] = J−1 [
�̇
]

and
[
∂K
∂γ

]
= J T

[
∂K
∂�

]
(17.78)

Applying these rules to the first of eqn (17.77) gives

J−1 [
�̇
] = s J T

[
∂K
∂�

]
(17.79)

Multiplying both sides by J then gives

[
�̇
] = J s J T

[
∂K
∂�

]
(17.80)

Substituting the symplectic form of the Poisson Bracket Condition from eqn (17.37)
then gives the second of eqn (17.77), as was to be proved. �

The converse proof states that any transformation that preserves the form of the
extended Hamilton equations must be canonical.
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Theorem 17.12.2: Invariance Implies Canonical Transformation
If a transformation is invertible so that K(Q, P) can be defined by eqn (17.75), and if
eqn (17.73) are equivalent to eqn (17.74) for any extended Hamiltonian and any choice
of initial conditions, then the transformation q, p → Q, P is canonical.

Proof: As in Theorem 17.12.1, we will work entirely with the symplectic forms of
the Hamilton equations.

By assumption, the first and second equations in eqn (17.77) are both true. As-
suming the transformation invertible, and using the same transformations as in the
proof of Theorem 17.12.1, the first of eqn (17.77) can be written as eqn (17.80). Sub-
tracting the second of eqn (17.77) from this equation then gives

0 =
(

J s J T − s
) [

∂K
∂�

]
=

(
J s J T − s

) (
J−1

)T
[
∂K
∂γ

]
(17.81)

The second equality used eqn (17.24) and the assumption that the transformation is
invertible and hence has a nonsingular Jacobian matrix J .

Assuming an extended Hamiltonian of the standard form in eqn (12.12), the col-
umn vector

[
∂K/∂γ

]
has an i = (D + 1) component that is always equal to one. But

the components from 0 to D are partial derivatives with respect to the qk , which are
shown by eqn (17.73) to be related to the ṗk . The potential and initial conditions can
be chosen so that these quantities are nonzero one at a time. Also, the components
from i = (D + 2) to (2D + 1) are partial derivatives with respect to the pk for k �= 0,
and produce the generalized velocities q̇k . By suitable choice of the initial conditions,
these values can also be set to be nonzero one at a time. Thus, eqn (17.81) holds for
all of a linearly independent set of column vectors

[
∂K/∂γ

]
. Since any column vector

can be expanded in such a set, it follows that

0 =
(

J s J T − s
) (

J−1
)T

(17.82)

Applying J T from the right on both sides then gives eqn (17.37), the symplectic Pois-
son Bracket Condition for the transformation to be canonical, as was to be proved.

It was shown in Section 12.8 that the extended Hamiltonian is not unique. Lemma
12.8.1 showed that it can be multiplied by any non-vanishing function g(q, p). How-
ever, such a modification of K will not affect the proof given here, since the function
g will cancel from eqn (17.81). The proof here also applies with the modification in
Lemma 12.8.2, with the nonzero q̇0 replaced by the assumedly nonzero q̇l described
there. �

17.13 Traditional Canonical Transformations
In many textbooks, the definition of canonical transformation is still the traditional
one based on the Newtonian absolute time. The traditional definition implicitly in-
cludes the condition Q0 = q0 = t which requires that time not transform. Thus the
Lorentz transformation of special relativity is not considered canonical. The extended
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definition presented here corrects this omission by allowing the time to transform
along with the other coordinates of extended phase space. And the extended defini-
tion also includes the traditional one as a special case.

The traditional form of canonical transformations defines the transformation, for
k = 1, . . . , D, as

T = Q0 = q0 = t Qk = Qk(q[0], p[0], t) Pk = Pk(q[0], p[0], t) (17.83)

Note that the new coordinates and moment are allowed to depend on the time t = q0

but not explicitly on the original Hamiltonian −p0. The necessary conditions for the
transformation to be canonical in the traditional sense are then, for all k, l = 1, . . . , D,

[Qk, Ql ]
(trad) = 0 [Qk, Pl ]

(trad) = δkl [Pk, Pl ]
(trad) = 0 (17.84)

where the superscript (trad) denotes the traditional definition of Poisson bracket in
the q, p system as given in eqn (4.53).

The traditional theory is rendered unnecessarily complicated by its privileged
treatment of the time. Equations (17.83) do not completely specify the transfor-
mation. The traditional Hamiltonian function does transform, but that transforma-
tion is not included in eqn (17.83). If we denote the traditional Hamiltonian in the
q, p system by h(q[0], p[0], t) and the traditional Hamiltonian in the Q, P system by
H(Q[0], P[0], T ), then the implicit transformation equation of the traditional theory is

H = h + g(q[0], p[0], t) or P0 = p0 − g(q, p[0]) (17.85)

where the function g must be a solution to the equations, for k = 1, . . . , D,

∂ Qk(q[0], p[0], t)

∂t
= [

Qk, g
](trad) ∂ Pk(q[0], p[0], t)

∂t
= [

Pk, g
](trad) (17.86)

The implicit transformation eqn (17.85) is required in the traditional theory in order
to secure the correctness of the Hamilton equations in both the q[0], p[0] system using
h and the Q[0], P[0] system using H .

The following theorem proves the traditional theory to be a special, restricted case
of the extended definition of canonical transformation in the present chapter.

Theorem 17.13.1: Restricted Canonical Transformations
A traditional canonical transformation defined by eqns (17.83, 17.85, 17.86) and satis-
fying the traditional condition eqn (17.84) is canonical in the extended sense defined by
the extended Poisson bracket condition eqn (17.5).

Proof: In the following, we assume Q0 = q0, eqns (17.83, 17.85, 17.86), and the
traditional conditions eqn (17.84). These are shown to imply each of the extended
Poisson bracket conditions eqn (17.5).

When k �= 0, the condition Q0 = q0 implies that [Q0, Qk]qp = ∂ Qk/∂p0 and
[Q0, Pk]qp = ∂ Pk/∂p0. Thus the extended Poisson bracket conditions [Q0, Qk]qp = 0
and [Q0, Pk]qp = 0 are satisfied because the transformation has the form in eqn
(17.83) in which Q and P do not depend explicitly on p0.
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The condition Q0 = q0 implies that [Q0, P0]qp = ∂ P0/∂p0. Thus the extended
Poisson bracket condition [Q0, P0]qp = 1 is satisfied because the function g defined in
eqn (17.85) is of the general form g = g(q, p[0]) and hence has ∂g/∂p0 = 0.

When k �= 0, eqn (17.85) implies that [Qk, P0]qp = (∂ Qk/∂q0 − [Qk, g](trad)) and
[Pk, P0]qp = (∂ Pk/∂q0 − [Pk, g](trad)). Thus eqn (17.86) implies that the extended
Poisson bracket conditions [Qk, P0]qp = 0 and [Pk, P0]qp = 0 are satisfied.

When k, l �= 0, then [Qk, Ql ]qp = [Qk, Ql ](trad) = 0, [Qk, Pl ]qp = [Qk, Pl ](trad) =
δkl , and [Pk, Pl ]qp = [Pk, Pl ](trad) = 0, which completes the proof. �

The extended definition of canonical transformation used in this book thus in-
cludes the traditional definition as a special case. In addition to its inclusion of the
Lorentz transformation, the extended definition also has the advantage of simplic-
ity. Unlike the traditional definition, the extended definition has no implicit, unstated
conditions like eqns (17.85, 17.86) to complicate it. Treating time as a transformable
coordinate allows all the required conditions for the transformation to be canonical
to be included in the necessary and sufficient conditions eqn (17.5).

17.14 Exercises
Exercise 17.1 Consider a canonical transformation with constant coefficients, defined by

Qi =
D∑

k=0

aikqk or, in matrix form, [Q] = a [q] (17.87)

Pi =
D∑

k=0

bik pk or, in matrix form, [P] = b [p] (17.88)

for i = 0, . . . , D, where the elements aik and bik of the matrices a and b are all constants.

(a) If the matrix a is given, find a general expression for the matrix b .
(b) Canonical transformations of this type are of particular importance in quantum theory
because the quantum substitution pk →−i h̄∂/∂qk implies and is implied by the substitution
Pk →−i h̄∂/∂ Qk . Prove this implication.
(c) If the matrix a is

a =
(

1 −2
3 4

)
(17.89)

find the numerical value of each element of the matrix b .

Exercise 17.2 Consider a Lorentz transformation q, p → Q, P . The canonical coordinates
q are x0, x1, x2, x3 where the xµ are the contravariant components of r. The canonical
momenta p are p

0
, p

1
, p

2
, p

3
where the p

µ
are the covariant components of the canonical

momentum fourvector p defined in Section 16.10. Similarly identifying the Q, P with the
primed fourvector components, x ′µ and p′

µ
, use the transformation rules eqns (15.55, 15.59)

to prove that the Lorentz transformation is canonical. (Note that in this exercise we are using
the “relativistic coordinates” discussed at the end of Section 16.9.)
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Exercise 17.3 Suppose a system to have a traditional Hamiltonian h(q[0], p[0], t). We make
a transformation to new coordinates Qi = qi and Pi = pi , for i = 1, . . . , D, but T = at and
H = h/a where a is some constant scaling parameter.

(a) Show that this scaling transformation preserves the form of the traditional Hamilton equa-
tions, i.e., that, for i = 1, . . . , D

d Qi

dT
= ∂ H(Q[0], P[0], T )

∂ Pi
and

d Pi

dT
= −∂ H(Q[0], P[0], T )

∂ Qi
(17.90)

(b) This scaling transformation is not canonical in traditional theory since it transforms the
time. However, show that it is canonical with the extended definition of canonical transfor-
mation used in this chapter. Show that Q0 = aq0 and P0 = p0/a, with the other coordinates
and momenta transforming identically, is a canonical transformation.

Exercise 17.4 A transformation q, p → Q, P is defined, for all i = 0, . . . , D, by

Qi = qi cos θi + api sin θi (17.91)

Pi = −qi

a
sin θi + pi cos θi (17.92)

where θ0, θ1, θ2, . . . , θD are independent, constant parameters, and a is a given constant hav-
ing appropriate units. (Note that no summation convention is being used here. For example,
Q2 and P2 depend only on q2, p2, and the constant parameter θ2.) Use the Poisson-bracket
condition to show that this transformation is canonical for any set of θi values.

Exercise 17.5 Referring to Exercises 2.4 and 2.5, define the q variables to be t, x1, y1, z1,

x2, y2, z2, the p variables to be p0, p1x , p1y, p1z,p2x , p2y, p2z the Q variables to be
Q0, x, y, z,X, Y, Z and the P variables to be P0, px , py, pz,Px , Py, Pz , where p = µ(dr/dt)
and P = M(dR/dt).

(a) With the assumption P0 = p0 and Q0 = q0, prove that the transformation from q, p to
Q, P is canonical.
(b) Show that this is a canonical transformation of the type discussed in Exercise 17.1, and
that the standard quantum substitutions

p1 →−i h̄
∂

∂r1
and p2 →−i h̄

∂

∂r2
(17.93)

in the q, p system imply the quantum substitutions

p →−i h̄
∂

∂r
and P →−i h̄

∂

∂R
(17.94)

in the Q, P system.

Exercise 17.6 Suppose that a system of two masses as described in Exercise 17.5 has a tra-
ditional Hamiltonian

H(q[0], p[0], t) = p1 · p1

2m1
+ p2 · p2

2m2
+U (r) (17.95)

in the q, p system, where r = r2 − r1.
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(a) Write the extended Hamiltonian K(q, p) in the q, p system, and use the transformation
equations to express the same extended Hamiltonian in the Q, P system as K(Q, P).
(b) Show that K(Q, P) can be written as K = P0 + HR(R, P)+ Hr (r, p) where HR depends
only on the variables R, P and the Hr depends only on the variables r, p. Such systems are
called separable.
(b) Use the extended Hamilton equations to show that P0 and P are conserved. Is Hr a con-
served quantity?
(c) Use K(Q, P) to write the Schroedinger equation in the Q, P system, making use of the
quantum substitutions in eqn (17.94) and P0 →−i h̄(∂/∂ Q0) = −i h̄(∂/∂t).

Exercise 17.7 Section 2.14 demonstrated that each product qk pk for k = 1, . . . , D has units
of action.

(a) Demonstrate from the definition in Section 11.4 that the product q0 p0 also has units of
action.
(b) Using Definition 17.1.1 or otherwise, demonstrate that, for all k = 0, . . . , D, each product
Qk Pk after any canonical transformation will have the units of action.

Exercise 17.8 Consider the following four transformations

#1 : Q0 = −p0 Q1 = p1 + aq1 P0 = bq0 P1 = cp1

#2 : Q0 = q0 Q1 = −p1/a P0 = bp0 P1 = −p1 + cq1

#3 : Q0 = −p0 Q1 = q1/a P0 = bq0 P1 = −q1 + cp1

#4 : Q0 = q0 Q1 = q1 − ap1 P0 = bp0 P1 = cq1 (17.96)

In each case, assume that a is given and find the b and c that will make the transformation
canonical. (Note that the a, b, c may be different in each case.)

Exercise 17.9 Consider a transformation of phase-space variables defined by

Q0 = q0 Q1 = p1 Q2 = q2 P0 = p0 P1 = (−q1 − 3q2) P2 = (−3p1 + p2)

(17.97)
(a) Using any method you want, verify that this transformation is canonical.
(b) Write out the 6 × 6 Jacobian matrix J defined in eqn (17.14).

Exercise 17.10 A system with one degree of freedom has a traditional Hamiltonian

H
(
q[0], p[0], t

) = a2

2mp2
1

+ mω2q2
1 p4

1

2a2
(17.98)

(a) Write the extended Hamiltonian K(q, p) for this system.
(b) Consider the transformation q, p → Q, P defined as

Q0 = q0 = t Q1 = bq1 p2
1 P0 = p0 P1 = − a

p1
(17.99)

Assuming the constant a given, for what value of b is this transformation canonical?
(c) Use this transformation with your chosen value of b to write the extended Hamiltonian in
terms of the Q, P variables, as in eqn (17.75).
(d) Write the extended Hamilton equations in the Q, P system and solve them for the system
trajectory.
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Exercise 17.11 Consider the transformation

Q0 = bq2
0 Q1 = q1 Q2 = aq0 + q2

P0 = p0 − ap2

2bq0
P1 = p1 P2 = p2 + c (aq0 + q2)

2 (17.100)

For what values of the constants a, b, c is this a canonical transformation?

Exercise 17.12 Consider a canonical transformation that has Q0 = q0.

(a) Show that it must have ∂ P0/∂p0 = 1, as well as ∂ Qi/∂p0 = 0 and ∂ Pi/∂p0 = 0 for all
i �= 0.
(b) Show that if either ∂ Qi/∂q0 �= 0 or ∂ Pi/∂q0 �= 0 for any i �= 0, then at least one of
∂ P0/∂qi and ∂ P0/∂pi must be nonzero for some i �= 0.
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GENERATING FUNCTIONS

In Chapter 17, several conditions were given that could be used for testing trans-
formations to see whether they were canonical or not. But no methods, other than
trial and error, were given for actually creating the canonical transformations to be
tested. The present chapter supplies methods for creating transformations that will
automatically be canonical.

Canonical transformations can be created by first choosing what are called gen-
erating functions. Using one of these generating functions in the formalism to be de-
scribed will generate a transformation that will be canonical by construction. The
generating functions can be quite general, leading to a wide selection of possible
canonical transformations.

And not only does every generating function lead to a canonical transformation,
the converse is also true. Given any canonical transformation, a generating function
can always be found that will generate it.

18.1 Proto-Generating Functions
Before treating actual generating functions, we must first relate canonical transfor-
mations to the existence of an intermediate function f (q, p) that will be called a
proto-generating function.

Theorem 18.1.1: Existence of Proto-Generating Function
A transformation q, p → Q, P is canonical if and only if there exists a phase-space
function f (q, p) such that

d f (q, p) =
D∑

k=0

pkdqk −
D∑

k=0

Pk(q, p)d Qk(q, p) (18.1)

In this expression, both sides are considered as functions of the q, p variable set. Thus
the theorem is equivalent to the assertion that the right side of eqn (18.1) is a perfect
differential when expanded in that set of variables.

Proof: First, we define a matrix t in a manner analogous to the definition of s in
eqn (17.27),

t =
(

0 0
U 0

)
(18.2)

so that s = t T − t . Using the elements of this matrix, the right side of eqn (18.1)

434
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may be written as
2D+1∑
i=0

2D+1∑
j=0

(
γi ti j dγj − �i (γ )ti j d�j (γ )

)
(18.3)

where the definitions q, p = γ and Q, P = � have been adopted from Section 17.3.
The chain rule and the definition in eqn (17.13) give

d�j (γ ) =
2D+1∑
k=0

∂�(γ )

∂γk
dγk =

2D+1∑
k=0

Jjkdγk (18.4)

and hence, when expanded completely into differentials in the q, p system, eqn (18.3)
becomes

2D+1∑
k=0

⎛⎝2D+1∑
i=0

γi tik −
2D+1∑
i=0

2D+1∑
j=0

�i (γ )ti j Jjk

⎞⎠ dγk =
2D+1∑
k=0

Akdγk (18.5)

where the definition

Ak =
2D+1∑
i=0

γi tik −
2D+1∑
i=0

2D+1∑
j=0

�i (γ )ti j Jjk (18.6)

has been introduced. Applying Theorem D.20.1, this expression is a perfect differen-
tial and a potential function f (q, p) = f (γ ) exists satisfying d f = ∑2D+1

k=0 Akdγk , if
and only if, for all k, l = 0, . . . , (2D + 1),

∂ Ak(γ )

∂γl
= ∂ Al(γ )

∂γk
(18.7)

When written out, eqn (18.7) becomes

tlk −
2D+1∑
i=0

2D+1∑
j=0

(
∂�i (γ )

∂γl
ti j Jjk + �i (γ )ti j

∂ Jjk

∂γl

)

= tkl −
2D+1∑
i=0

2D+1∑
j=0

(
∂�i (γ )

∂γk
ti j Jjl + �i (γ )ti j

∂ Jjl

∂γk

)
(18.8)

Again using eqn (17.13), and cancelling the terms in ∂ Jjk/∂γl = ∂ Jjl/∂γk , this be-
comes

tlk −
2D+1∑
i=0

2D+1∑
j=0

Jil ti j Jjk = tkl −
2D+1∑
i=0

2D+1∑
j=0

Jik ti j Jjl (18.9)

which in matrix form is

t T −
(

J T t J
)T = t −

(
J T t J

)
(18.10)
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which reduces to
J T

(
t T − t

)
J =

(
t T − t

)
(18.11)

Since s = t T − t , this becomes
J T s J = s (18.12)

which is the Lagrange Bracket Condition from the transformation to be canonical,
as proved in Lemma 17.9.1. Thus the proto-generating function f (q, p) exists if and
only if the transformation is canonical, as was to be proved.103 �

18.2 Generating Functions of the F1 Type
The proto-generating function f (q, p) is defined as a function of the q, p set of phase-
space coordinates. However, generating functions themselves are always defined as
functions of one category of variable from the q, p set and one from the Q, P set.
The simplest case is a function of the form F1(q, Q), which depends on an old and
a new coordinate. Aside from the requirement that it be continuously differentiable,
the only restriction placed on this function is that the matrix m defined by

mi j = ∂2 F1(q, Q)

∂qi∂ Qj
(18.13)

for all i, j = 0, . . . , D must be nonsingular, with |m | �= 0.
A transformation q, p → Q, P is derived from F1(q, Q) by beginning with the

following rules, which must hold for all k = 0, . . . , D,

pk = pk(q, Q) = ∂ F1(q, Q)

∂qk
Pk = Pk(q, Q) = −∂ F1(q, Q)

∂ Qk
(18.14)

These will be referred to as the “F1 rules.”
The derivation is a two step process. To begin, the first of eqn (18.14) is solved

for Qk as a function of q, p. By Theorem D.24.1, the inverse function theorem, the
condition that pk = pk(q, Q) can indeed be solved for Qk is that the matrix whose i jth
element is ∂pi (q, Q)/∂ Qj must be nonsingular. But this matrix is seen to be identical
to the matrix m defined in eqn (18.13), and hence is nonsingular by assumption.
Thus Qk = Qk(q, p) can always be found.

Then this result can be substituted into the second of eqn (18.14) to give

Pk = Pk(q, p) = Pk
(
q, Q(q, p)

)
(18.15)

as a compound function. Thus a complete transformation is constructed, having the
same form as that described in eqns (17.3, 17.4).

The inverse transformation can also be derived from the same generating func-
tion. The second of eqn (18.14) is solved for qk = qk(Q, P). Again using the inverse
function theorem, this can be done if and only if the matrix whose elements are

103This proof is adapted from Volume II of Desloges (1982).
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∂ Pi (q, Q)/∂qj is nonsingular. But that matrix is −m T and hence is nonsingular by
assumption, so qk = qk(Q, P) can always be found. This result is then substituted
into the first of eqn (18.14) to obtain

pk = pk(Q, P) = pk
(
q(Q, P), Q

)
(18.16)

as a compound function. The completed transformation has the same form as the
inverse transformation described in eqns (17.41, 17.42).

Thus both the transformation and its inverse are well defined. We now prove that
the transformation is canonical.

Lemma 18.2.1: Canonical Transformation From F1

The transformation and inverse defined by an F1 generating function and eqn (18.14)
are canonical.

Proof: We prove the transformation canonical. Its inverse will also be canonical, as
demonstrated in Section 17.10 (item 3).

We prove the transformation canonical by demonstrating the existence of a correct
proto-generating function. Define

f (q, p) = F1
(
q, Q(q, p)

)
(18.17)

Then

d f = d F1 =
D∑

k=0

∂ F1(q, Q)

∂qk
dqk+

D∑
k=0

∂ F1(q, Q)

∂ Qk
d Qk =

D∑
k=0

pkdqk−
D∑

k=0

Pkd Qk (18.18)

where the F1 rules in eqn (18.14) were used to get the last equality. Equation (18.18)
has the same form as eqn (18.1), and hence Theorem 18.1.1 proves that the transfor-
mation is canonical. �

In spite of the generality of F1 itself, the canonical transformations generated by
F1 functions are not completely general, as seen in the following lemma.

Lemma 18.2.2: Limitation of F1 Transformations
Any canonical transformation generated by an F1 function must have |∂ Q(q, p)/∂p| �= 0
where (∂ Q(q, p)/∂p) is the matrix whose elements are (∂ Q(q, p)/∂p)i j = ∂ Qi (q, p)/∂pj .

Proof: We have shown above that the matrix
(
∂2 F1(q, Q)/∂q∂ Q

) = (∂p(q, Q)∂ Q)

is nonsingular. This allowed pk = pk(q, Q) to be solved for Qk = Qk(q, p). We can
now apply the consequence of the inverse function theorem in eqn (D.94) to obtain
(∂ Q(q, p)/∂p) = (∂p(q, Q)∂ Q)−1. Thus (∂ Q(q, p)/∂p) is the inverse of a nonsingular
matrix and hence is nonsingular, as was to be proved. �
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18.3 Generating Functions of the F2 Type
Another important case is a generating function of the form F2 = F2(q, P), which
depends on the old coordinates and the new momenta. It too can be a general contin-
uously differentiable function, being restricted only by the condition that the matrix
n defined by

ni j = ∂2 F2(q, P)

∂qi∂ Pj
(18.19)

must be nonsingular, with | n | �= 0. The transformation is derived from the “F2 rules”
which are

pk = pk(q, P) = ∂ F2(q, P)

∂qk
Qk = Qk(q, P) = ∂ F2(q, P)

∂ Pk
(18.20)

The first of eqn (18.20) is solved for Pk = Pk(q, p). By Theorem D.24.1, this can be
done if the matrix whose elements are ∂pi (q, P)/∂ Pj is nonsingular. But this matrix is
the same as n defined in eqn (18.19) and hence is nonsingular by assumption. Thus
the solution for Pk = Pk(q, p) is always possible. This result is then substituted into
the second of eqn (18.20) to give

Qk = Qk(q, p) = Qk
(
q, P(q, p)

)
(18.21)

as a compound function. Thus a complete transformation is defined, having the same
form as eqns (17.3, 17.4).

As in the F1 case, the inverse transformation can also be derived directly from the
F2 generating function. The method is similar. The second of eqn (18.20) is solved
for qk = qk(Q, P). By the inverse function theorem, this can always be done provided
that the matrix whose elements are ∂ Qi (q, P)/∂qj is nonsingular. But this matrix is
seen to be the same as n T, which is nonsingular by assumption. Thus the solution
for qk = qk(Q, P) is always possible. The rest of the inverse transformation then is
obtained by substituting this result into the first of eqn (18.20) to get

pk = pk(Q, P) = pk
(
q(Q, P), P

)
(18.22)

as a compound function. The completed transformation has the same form as the
inverse transformation eqns (17.41, 17.42).

The proof that the transformations generated by F2 are canonical is only slightly
different from Lemma 18.2.1.

Lemma 18.3.1: Canonical Transformation From F2

The transformation and inverse defined by the F2 generating function and eqn (18.20)
are canonical.

Proof: We prove the transformation canonical. Its inverse then will also be canonical,
as demonstrated in Section 17.10 (item 3),
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Define

f (q, p) = F2(q, P(q, p))−
D∑

k=0

Qk(q, p)Pk(q, p) (18.23)

It follows that

d f =
D∑

k=0

∂ F2(q, P)

∂qk
dqk +

D∑
k=0

∂ F2(q, P)

∂ Pk
d Pk −

(
D∑

k=0

Qkd Pk +
D∑

k=0

Pkd Qk

)

=
D∑

k=0

pkdqk −
D∑

k=0

Pkd Qk (18.24)

where the F2 rules eqn (18.20) and some cancellation of terms were used to get the
last equality. Equation (18.24) has the same form as eqn (18.1). Therefore a proto-
generating function exists with and, by Theorem 18.1.1, the transformation is canon-
ical. �
As for the F1 case, the canonical transformations generated by F2 are not completely
general.

Lemma 18.3.2: Limitation of F2 Transformations
Any canonical transformation generated by an F2 function must have |∂ P(q, p)/∂p| �= 0
where (∂ P(q, p)/∂p) is the matrix whose elements are (∂ P(q, p)/∂p)i j = ∂ Pi (q, p)/∂pj .

Proof: The proof is similar to that of Lemma 18.2.2. �

18.4 Examples of Generating Functions
We start with two very simple examples of the use of the F1 and F2 generating func-
tions. Suppose that an F1 is defined as

F1(q, Q) =
D∑

k=0

qk Qk (18.25)

The matrix m in eqn (18.13) is then just the unit matrix and so is nonsingular as
required. The F1 rules in eqn (18.14) give, for all k = 0, . . . , D, that

pk = Qk Pk = −qk (18.26)

Thus the new momenta are the negative of the old coordinates, and the new coordi-
nates are the old momenta. The reader can verify that this transformation, though it
may seem bizarre, does preserve the form of the extended Hamilton equations.

A second simple example uses an F2 given by

F2(q, P) =
D∑

k=0

qk Pk (18.27)

The matrix n in eqn (18.19) is just the unit matrix and so is nonsingular. The F2 rules
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give, for all k = 0, . . . , D,
pk = Pk Qk = qk (18.28)

This is just the identity transformation, with the new coordinates and momenta equal
to the old ones.

A more interesting example is

F2(q, P) =
D∑

k=0

gk(q)Pk (18.29)

Now the matrix n is a equal to a matrix with elements ∂gi (q)/∂qj , which will there-
fore be assumed to be nonsingular. Applying the F2 rules gives

pk =
D∑

l=0

∂gl(q)

∂qk
Pl Qk = gk(q) (18.30)

This is seen to be a transformation of the Lagrangian type, in which the new coor-
dinates depend only on the old coordinates and not on the old momenta. Since the
matrix (∂g/∂q) is nonsingular by assumption, the first of eqn (18.30) can be inverted
to give

Qk = Qk(q) Pk =
D∑

l=0

∂ql(Q)

∂ Qk
pl (18.31)

where we have now replaced gk by Qk , which is equal to it. In the second of eqn
(18.31), one will of course take the partial derivatives and then express the result in
terms of the q, p variable set to obtain Pk = Pk(q, p).

The transformation in eqn (18.31) is exactly what would be predicted by the ex-
tended Lagrangian theory of Chapter 11. If we have an extended Lagrangian L(q, q̇)

and define a Lagrangian in the Q system by the usual rule104

L(Q, Q̇) = L
(
q(Q), q̇(Q Q̇)

)
(18.32)

then, according to Lagrangian theory, the canonical momenta in the two systems will
be related by

Pk = ∂L(Q, Q̇)

∂ Q̇k
=

D∑
l=0

∂L(q, q̇)

∂ q̇l

∂ q̇l(Q, Q̇)

∂ Q̇k
=

D∑
l=0

pl
∂ql(Q)

∂ Qk
(18.33)

where Lemma 2.8.1 was used to get the final equality. Equation (18.33) agrees exactly
with the second of eqn (18.31).

In Lagrangian theory, the transformation of the momenta was implicit. The theory
of canonical transformations makes that transformation explicit, but the result is the

104The Lagrangian transformation here is the same as in Section 11.8 with the notational substitution
r → Q.
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same in this case. It follows that Lagrangian transformations of the type discussed in
Section 11.8 are a special case of the more general canonical transformations. Note
that, although the Qk depend only on the q variables in Lagrangian transformations,
the Pk in general do depend on both the q and p variables.

18.5 Other Simple Generating Functions

There are two other simple generating functions of some utility found in the litera-
ture.105 Their definitions and use follow the same pattern as for the F1 and F2 so the
relevant formulas will simply be stated here without detailed proof.106

The generating function F̃1(p, P) must have
∣∣∂2 F̃1(p, P)/∂p∂ P

∣∣ �= 0. The rules for
this function are

qk(p, P) = ∂ F̃1(p, P)

∂pk
Qk(p, P) = −∂ F̃1(p, P)

∂ Pk
(18.34)

It can be used to define the proto-generating function

f (q, p) = −F̃1 (p, P(q, p))+
D∑

k=0

qk pk −
D∑

k=0

Qk(q, p)Pk(q, p) (18.35)

The canonical transformations generated by the F̃1 must have |∂ P(q, p)/∂q| �= 0.

The generating function F̃2(p, Q) must have
∣∣∂2 F̃2(p, Q)/∂p∂ Q

∣∣ �= 0. The rules
for this function are

qk(p, Q) = ∂ F̃2(p, Q)

∂pk
Pk(p, Q) = ∂ F̃2(p, Q)

∂ Qk
(18.36)

It can be used to define the proto-generating function

f (q, p) = −F̃2
(

p, Q(q, p)
)+ D∑

k=0

qk pk (18.37)

The canonical transformations generated by the F̃2 must have |∂ Q(q, p)/∂q| �= 0.

105One author commented wryly that, “The number of generating functions in the literature ranges from
four to 4N ” (Arnold, 1978). We describe four simple types of generating functions, the F1, F2, F̃1, and F̃2.
But, as will be shown in Section 18.9, all canonical transformations can be generated by one or more of
the 2N different mixed generating functions F , where N = D + 1 is the number of different values of the
binary number α defined in eqn (18.38).

106The numbering of the simple generating functions is arbitrary. Our numbering of the F1 and F2 func-
tions agrees with that in Arnold (1978) and Goldstein, Poole and Safko (2002). Our F̃1 and F̃2 functions are
related to the negatives of Goldstein’s F4 and F3, respectively. (Of course, these authors use the traditional
definitions in which time does not transform.)
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18.6 Mixed Generating Functions
Canonical transformations can also be produced by generating functions that are a
particular mixture of the F1 and F2 types. They will be referred to as mixed generating
functions. They are important because canonical transformation exist that do not have
generating functions of the F1, F2, F̃1, or F̃2 type. But, as we prove in Section 18.9
below, any canonical transformation will have at least one mixed generating function
that generates it.

Mixed generating functions can be characterized by first selecting an arbitrary
binary number α consisting of (D + 1) binary digits,

α = αD · · ·α1α0 (18.38)

Each of the αk digits is either a one or a zero. These digits are assumed independent of
each other. Thus 2(D+1) different numbers α are possible, each producing a different
canonical transformation. Also define αk = 1 − αk to be the complement of the digit
αk . It is zero when αk is one, and one when αk is zero. Thus

α2
k = αk α2

k = αk αkαk = 0 and αk + αk = 1 (18.39)

for all k values.
After choosing α, we define variables Xk and Yk by the rule, for all k = 0, . . . , D,

Xk = αk Qk − αk Pk and Yk = αk Qk + αk Pk (18.40)

so that αk = 0 makes Xk, Yk = Qk, Pk and αk = 1 makes Xk, Yk = −Pk, Qk .
A mixed generating function F(q, Y ) can be any differentiable function of q, Y ,

except for the condition that the matrix o whose i jth matrix element is

oi j = ∂2 F(q, Y )

∂qi∂Yj
(18.41)

must be nonsingular with |o | �= 0. A transformation can then be defined by what will
be called the “F rules” which are

pk = pk(q, Y ) = ∂ F(q, Y )

∂qk
Xk = Xk(q, Y ) = ∂ F(q, Y )

∂Yk
(18.42)

Note that these rules resemble the F1 rules when αk = 1 and the F2 rules when
αk = 0. The F1 rules in eqn (18.14) would result from the choice α = 11 · · · 1 for the
binary number α defined in eqn (18.38), so that αk = 1 for all k. The F2 rules in eqn
(18.20) would result from the choice α = 00 · · · 0 so that αk = 0 for all k. These are
the simplest choices, and show that the F1 and F2 generating functions above are just
special cases of the mixed ones being discussed here. In general mixed generating
functions, however, some of the binary digits αk can be zero and others one.

A transformation can be obtained from the F rules by solving the first of eqn
(18.42) for Yk = Yk(q, p). By Theorem D.24.1, the inverse function theorem, this is
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possible if and only if the matrix whose i jth matrix element is ∂pi (q, Y )/∂Yj is non-
singular. But this matrix is the same as o defined in eqn (18.41) and so is nonsingular
by assumption. The solution for Yk = Yk(q, p) is therefore always possible. Then this
result is substituted into the second of eqn (18.42) to obtain

Xk = Xk(q, p) = Xk
(
q, Y (q, p)

)
(18.43)

as a compound function. One thus obtains transformation equations in the form

Xk = Xk(q, p) Yk = Yk(q, p) (18.44)

that can be translated back into equations for Q, P as functions of q, p by use of the
inverses of eqn (18.40), which are

Qk = αk Xk + αkYk Pk = −αk Xk + αkYk (18.45)

Thus a well-defined transformation of coordinates is obtained, of the same standard
form as eqns (17.3, 17.4).

The inverse transformation can also be obtained, again following a pattern similar
to that used for F1 and F2. The second of eqn (18.42) is solved for qk = qk(X, Y ).
Again using the inverse function theorem, this solution is possible if the matrix whose
i jth matrix element is ∂ Xi (q, Y )/∂qj is nonsingular. But this matrix is equal to o T,
which is nonsingular by assumption, and so the solution is always possible. This equa-
tion is then substituted into the first of eqn (18.42) to obtain

pk = pk(X, Y ) = pk
(
q(X, Y ), Y

)
(18.46)

as a compound function. One thus obtains transformation equations in the form

qk = qk(X, Y ) pk = pk(X, Y ) (18.47)

which can then be translated into functions of Q, P by use of eqn (18.40).
We now show that the transformation and its inverse are canonical.

Lemma 18.6.1: Canonical Transformation From F
For every choice of binary number α, the transformation and inverse obtained by use of
an F generating function and eqn (18.42) are canonical.

Proof: We prove the transformation canonical. Its inverse then will also be canonical,
as demonstrated in Section 17.10 (item 3).

Use the F generating function to define the proto-generating function

f (q, p) = F(q, Y (q, p))−
D∑

k=0

αk Xk(q, p)Yk(q, p) (18.48)
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It follows that that

d f =
D∑

k=0

∂ F(q, Y )

∂qk
dqk +

D∑
k=0

∂ F(q, Y )

∂Yk
dYk −

(
D∑

k=0

αkYkd Xk +
D∑

k=0

αk XkdYk

)

=
D∑

k=0

pkdqk −
D∑

k=0

Pkd Qk (18.49)

where the F rules in eqn (18.42) and the definitions in eqn (18.40) were used to get
the last equality. Equation (18.49) agrees with eqn (18.1), and hence Theorem 18.1.1
shows that the transformation is canonical, as was to be proved. �

An alternate way of writing mixed generating functions simply writes F out as a
function of q and a mixture of Q and P variables. Suppose that the k values having
αk = 1 are k0, k1, . . . , kM and those having αk = 0 are k(M+1), k(M+2), . . . , kD. Then
F(q, Y ) becomes

F = F(q0, . . . , qD, Qk0 , . . . , QkM , Pk(M+1)
, . . . , PkD ) (18.50)

The F1 rules are applied for k values with Q dependencies, and the F2 rules for those
with P dependencies. Thus, the F-rules become

pi = ∂ F

∂qi
Pka = − ∂ F

∂ Qka

Qkb =
∂ F

∂ Pkb

(18.51)

where i = 0, . . . , D, a = 0, . . . , M , b = (M + 1), . . . , D, and the F is that function
defined in eqn (18.50). The advantage of this notation is that the number α is not
needed to specify the function. However, in writing a new generating function, the α

notation is useful at the start, for example to test whether o is or is not singular.

18.7 Example of a Mixed Generating Function
As an example, suppose that D = 3 and that we want to exchange the role of coor-
dinates and momenta for the first two variables but make no change in the last two.
Then we can choose α = 0011 and

F =
3∑

k=0

qkYk (18.52)

The matrix o defined in eqn (18.41) will then be the unit matrix and hence nonsin-
gular as required. The F rules in eqn (18.42) will give

pk = Yk Xk = qk (18.53)

With the chosen α, these equations can be written out using eqn (18.40) with α0 =
α1 = 1 and α2 = α3 = 0, giving

p0 = Q0 −P0 = q0 p1 = Q1 −P1 = q1

p2 = P2 Q2 = q2 p3 = P3 Q3 = q3 (18.54)

as desired.
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Using the alternate notation of eqn (18.50), the generating function in eqn (18.52)
becomes

F = q0 Q0 + q1 Q1 + q2 P2 + q3 P3 (18.55)

from which eqn (18.54) can be derived by use of eqn (18.51).

18.8 Finding Simple Generating Functions
A chosen generating function can be used to produce a canonical transformation.
However, what if we already have the canonical transformation and want to find a
generating function that would produce it? This converse problem is now treated.
Every canonical transformation has some generating function that generates it.

Given any canonical transformation, the first step in finding a generating function
is to find the proto-generating function f (q, p) defined in Theorem 18.1.1. As proved
there, such a function can always be found. A method for doing so is described in
Theorem D.20.1. We assume now that f (q, p) has been found.

Now we must examine the Jacobian matrix J for the given canonical transforma-
tion, considering it in the block form given in eqn (17.14),

J =

⎛⎜⎜⎜⎜⎝
(

∂ Q

∂q

) (
∂ Q

∂p

)
(

∂ P

∂q

) (
∂ P

∂p

)
⎞⎟⎟⎟⎟⎠ (18.56)

The next step depends on the singularity or nonsingularity of the blocks of this Jaco-
bian matrix. We consider the four simple cases in which one or more of the F1, F2,
F̃1, F̃2 generating functions are adequate.

First the F1 case. If the block (∂ Q/∂p) has a nonzero determinant, then, by The-
orem D.24.1, the transformation equation Qk = Qk(q, p) can be solved for pk =
pk(q, Q). Putting this result into f (q, p) then gives the desired generating function as
a compound function

F1(q, Q) = f (q, p(q, Q)) (18.57)

The differential of this F1 is found from eqn (18.1). It is

d F1 = d f =
D∑

k=0

pkdqk −
D∑

k=0

Pkd Qk (18.58)

Thus this function obeys the correct F1 rules in eqn (18.14).
It also passes the test that the matrix m defined in eqn (18.13) must be nonsin-

gular. After an exchange of order of the partial derivatives, that matrix can be written
as

mi j = ∂2 F1(q, Q)

∂ Qj∂qi
= ∂pi (q, Q)

∂ Qj
=

(
∂ Q

∂p

)−1

i j
(18.59)

which is nonsingular by the assumption that (∂ Q/∂p) is.
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This result may be combined with Lemma 18.2.2 to obtain the following neces-
sary and sufficient condition: There is an F1 generating function which generates the
original transformation if and only if (∂ Q/∂p) is nonsingular.

The other cases are similar. We will quote only the necessary and sufficient condi-
tion for each of them, and the method of constructing the generating function from
f (q, p).

The F2 case: If the block (∂ P/∂p) of the matrix J is nonsingular, then the trans-
formation equation Pk = Pk(q, p) can be solved for pk = pk(q, P). The generating
function F2(q, P) is then obtained by putting this result into the expression for F2

derived from eqn (18.23),

F2(q, P) = f (q, p(q, P))+
D∑

k=0

Qk
(
q, p(q, P)

)
Pk (18.60)

An F2 function can be used if and only if the block (∂ P/∂p) is nonsingular.
The F̃1 case: If the block (∂ P/∂q) of the matrix J is nonsingular, then the trans-

formation equation Pk = Pk(q, p) can be solved for qk = qk(p, P). The generating
function F̃1(p, P) is then obtained by putting this result into the expression for F̃1

derived from eqn (18.35),

F̃1 (p, P) = − f (q(p, P), p)+
D∑

k=0

qk(p, P)pk −
D∑

k=0

Qk
(
q(p, P), p

)
Pk (18.61)

An F̃1 function can be used if and only if the block (∂ P/∂q) is nonsingular.
The F̃2 case: If the block (∂ Q/∂q) of the matrix J is nonsingular, then the trans-

formation equation Qk = Qk(q, p) can be solved for qk = qk(p, Q). The generating
function F̃2(p, Q) is then obtained by putting this result into the expression for F̃2

derived from eqn (18.37),

F̃2 (p, Q)) = − f
(
q(p, Q), p

)+ D∑
k=0

qk(p, Q)pk (18.62)

An F̃2 function can be used if and only if the block (∂ Q/∂q) is nonsingular.

18.9 Finding Mixed Generating Functions
In Section 18.8 we found a simple generating function when any block of eqn (18.56)
is nonsingular.107 Unfortunately, it can happen that all four of the blocks of J are
singular, so that no simple generating function can be used. However, regardless of
the singularity or nonsingularity of any of the blocks of eqn (18.56), there will always

107Note that these nonsingularity conditions need not be exclusive. Canonical transformations often can
be generated by more than one of the simple generating functions. However, there are cases in which one
and only one of the simple forms can be used (see Exercise 18.9).
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be a mixed generating function, of the sort described in Section 18.6, that generates
the original canonical transformation.

Assume as before that a proto-generating function f (q, p) has been found. To find
the mixed generating function, write variables Xk and Yk defined in eqn (18.40) as
functions of the original variables q, p,

Xk = Xk(q, p) = αk Qk(q, p)−αk Pk(q, p) Yk = Yk(q, p) = αk Qk(q, p)+αk Pk(q, p)

(18.63)
and choose (by inspection or by trial and error) the arbitrary binary number α defined
in eqn (18.38) such that the matrix (∂Y/∂p) whose elements are(

∂Y

∂p

)
i j
= ∂Yi (q, p)

∂pj
(18.64)

is nonsingular.108

It follows from the nonsingularity of the matrix in eqn (18.64) that Yk = Yk(q, p)

from eqn (18.63) can be solved for pk = pk(q, Y ). The generating function then is ob-
tained by solving eqn (18.48) for F and substituting pk = pk(q, Y ) into the resulting
expression,

F(q, Y ) = f (q, p(q, Y ))+
D∑

k=0

αk Xk
(
q, p(q, Y )

)
Yk (18.65)

By using eqn (18.1) for d f , and then substituting eqn (18.45) and using eqn (18.39),
the differential of this function is found to be

d F = d f +
D∑

k=0

(αk XkdYk + αkYkd Xk) =
D∑

k=0

pkdqk +
D∑

k=0

XkdYk (18.66)

Thus the function obeys the correct F rules in eqn (18.42). It also passes the test that
the matrix o defined in eqn (18.41) must be nonsingular. After an exchange of orders
of partial differentiation, that matrix becomes

oi j = ∂2 F(q, Y )

∂Yj∂qi
= ∂pi (q, Y )

∂Yj
=

(
∂Y

∂p

)−1

i j
(18.67)

Due to the nonsingularity of the matrix in eqn (18.64), this matrix o is nonsingular, as
required. Thus F is a legitimate generating function and, using the methods discussed
in Section 18.6 for mixed generating functions, the original canonical transformation
can be obtained.

Note to the Reader: A transformation can be generated by a mixed generating
function if and only if the transformation is canonical.

108The proof that such an α always can be found requires an excursion into the algebra of symplectic
spaces. It is given in Theorem E.10.1.
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18.10 Finding Mixed Generating Functions—An Example
Suppose we have a system with D = 2 degrees of freedom and a canonical transfor-
mation defined as

Q0 = q0 P0 = p0 Q1 = p1 P1 = (−q1 − 3q2) Q2 = q2 P2 = (−3p1 + p2)

(18.68)
For this transformation, the Jacobian matrix J written in the block form of eqn
(18.56) is

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝ 1 0 0
0 0 0
0 0 1

⎞⎠ ⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠
⎛⎝ 0 0 0

0 −1 −3
0 0 0

⎞⎠ ⎛⎝1 0 0
0 0 0
0 −3 1

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18.69)

where the four blocks have been indicated. Using eqn (17.37), or some other test, the
reader may verify (as already done in Exercise 17.9) that the transformation is indeed
canonical.

The first step to finding a generating function is to find the proto-generating func-
tion f (q, p) whose existence is proved by Theorem 18.1.1. It must be a solution to
the equation that results when eqn (18.68) are substituted into eqn (18.1),

d f =
2∑

k=0

pkdqk −
2∑

k=0

Pkd Qk

= {p0dq0 + p1dq1 + p2dq2} − {p0dq0 − (q1 + 3q2) dp1 + (−3p1 + p2) dq2}
= p1dq1 + 3p1dq2 + (q1 + 3q2) dp1 (18.70)

Using the method outlined in the proof of Theorem D.20.1,

f = C +
∫ (q1,0,0)

(0,0,0)

p1dq1 +
∫ (q1,q2,0)

(q1,0,0)

3p1dq2 +
∫ (q1,q2,p1)

(q1,q2,0)

(q1 + 3q2) dp1

= C + 0 + 0 + (q1 + 3q2) p1 (18.71)

Note that integrations along the dq0, dp0, dp2 directions have been omitted since the
coefficients of these differentials are zero. Thus, dropping the unnecessary constant
C , the proto-generating function is

f (q, p) = (q1 + 3q2) p1 (18.72)

Now, if the upper right block (∂ Q/∂p) of matrix J were nonsingular, we could
express eqn (18.72) as a function of q, Q and thus define an F1 function like eqn
(18.57). Also, if the lower right block (∂ P/∂p) were nonsingular, we could express
eqn (18.72) as a function of q, P and use it to define an F2 function like eqn (18.60),
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and so on. But in this example, all of the blocks of J are singular and therefore a
mixed generating function must be sought.

Since the first and last variables have Qk = qk while the middle one has Q1 = p1,
a good guess is that an α = 010 might work, which will be of F2 type for k = 0, 2 and
of F1 type for k = 1. With that choice, eqn (18.63) becomes

X0 = Q0 = q0 X1 = −P1 = (q1 + 3q2) X2 = Q2 = q2

Y0 = P0 = p0 Y1 = Q1 = p1 Y2 = P2 = −3p1 + p2 (18.73)

where the second equality in each expression has been obtained by using eqn (18.68).
The matrix (∂Y/∂p) is therefore

(
∂Y

∂p

)
=

⎛⎝1 0 0
0 1 0
0 −3 1

⎞⎠ (18.74)

which has determinant equal to +1 and hence is nonsingular. Using the values of αk

and its complement αk from the choice α = 010, the mixed generating function from
eqn (18.65) is then

F(q, Y ) = f
(
q, p(q, Y )

)+ X0
(
q, p(q, Y )

)
Y0 + X2(q, p(q, Y ))Y2

= q0Y0 + (q1 + 3q2) Y1 + q2Y2 (18.75)

The original canonical transformation can be derived from this function, using the
chosen α = 010 and the methods of Lemma 18.6.1, as the reader may verify.

In the alternate notation discussed at the end of Theorem D.20.1, the mixed gen-
erating function eqn (18.75) becomes

F = q0 P0 + (q1 + 3q2) Q1 + q2 P2 (18.76)

So the original canonical transformation can also be derived by using this function
and eqn (18.51), as may also be verified.

18.11 Traditional Generating Functions
The theory of canonical transformations was originally developed in the nineteenth
century, before relativity had introduced the possibility that time might be something
other than an absolute, un-transformable parameter. Thus the traditional canonical
transformation theory does not allow time to transform, and the traditional generat-
ing functions make the same assumption.

The canonical transformations and generating functions found in most current
textbooks are still the traditional versions. Since the reader will certainly have en-
countered these books, it will be useful to compare our treatment of canonical trans-
formations and generating functions to the traditional one. The traditional gener-
ating functions and canonical transformations can be derived as a special case of
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our methods—the case in which time is not allowed to transform and the restriction
Q0 = q0 is applied.

First, consider the case of F2 generating functions. A canonical transformation
with the restriction Q0 = q0 assumed can be derived from

F2(q, P) = q0 P0 + F̄2(q, P[0]) (18.77)

where F̄2(q, P[0]) is the traditional generating function, and where we are continu-
ing to use the notation, introduced in Section 11.2, in which P[0] = P1, P2, . . . , PD

denotes all of the Pk variables except P0. The F2 rules in eqn (18.20) then give, for
k = 0,

p0 = P0 + ∂ F̄2(q, P[0])
∂q0

Q0 = q0 (18.78)

and, for k = 1, . . . , D,

pk = ∂ F̄2(q, P[0])
∂qk

Qk = ∂ F̄2(q, P[0])
∂ Pk

(18.79)

In Section 12.2, it was shown that the traditional Hamiltonian is the negative of the
zeroth momentum variable. If we follow the notation of the present chapter in which
old variables are lower case and new ones upper case, we can write this as

p0 = −h(q[0], p[0], q0) (18.80)

and the same relation in the Q, P system as

P0 = −H(Q[0], P[0], Q0) (18.81)

Equation (18.78) then becomes

H = h + ∂ F̄2(q, P[0])
∂q0

Q0 = q0 (18.82)

With the replacement of q0 by t , eqns (18.79, 18.82) correspond to the traditional
formulas found in other texts.109

In the case of general mixed generating functions, the pattern is similar. We can
define canonical transformations with Q0 = q0 by restricting the choice of α in eqn
(18.38) to binary numbers with α0 = 0 and hence a zero in the first digit, as in
α = αD · · ·α10, and writing the generating function

F(q, Y ) = q0Y0 + F̄(q, Y[0]) (18.83)

Then the F rules in eqn (18.42) give, for k = 0,

p0 = P0 + ∂ F̄(q, Y[0])
∂q0

Q0 = q0 (18.84)

109For example, see Chapter 9 of Goldstein, Poole and Safko (2002). They use K for the new Hamiltonian
and H for the old one, and, of course, have no bar over the F2.
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and, for k = 1, . . . , D,

pk = ∂ F̄(q, Y[0])
∂qk

Xk = ∂ F̄(q, Y[0])
∂Yk

(18.85)

As before, eqn (18.84) may be written

H = h + ∂ F̄(q, Y[0])
∂q0

(18.86)

Then eqns (18.85, 18.86) are the same as the traditional form110 of the mixed gener-
ating functions.

The traditional F̄1 generating functions are related to mixed generating functions
with the special choice α = 1 · · · 10. In the alternative notation of eqns (18.50, 18.51),
the mixed generating function

F(q, P0, Q[0]) = q0 P0 + F̄1(q, Q[0]) (18.87)

will lead to Q0 = q0 with the other quantities transforming by the traditional F̄1 rules

Q0 = q0 H = h + ∂ F̄1(q, Q[0])
∂q0

(18.88)

pk = ∂ F̄1(q, Q[0])
∂qk

Pk = −∂ F̄1(q, Q[0])
∂ Qk

(18.89)

Traditional forms related to our F̃1 and F̃2 functions can be treated similarly.

18.12 Standard Form of Extended Hamiltonian Recovered
In Section 12.2, we began by writing a phase-space dependency function in the form
K(q, p) = 0 where

K(q, p) = p0 + H
(
q, p[0]

)
(18.90)

This same function was used as the standard extended Hamiltonian. In Section 12.8,
we showed how to write other, extended Hamiltonians equivalent to this standard
one.

Now imagine that a general canonical transformation has been done. We have
seen in Section 17.12 that the extended Hamiltonian is invariant under canonical
transformations. The extended Hamiltonian in the new system is the same function,
and is obtained simply by substitution to write it in terms of the new Q, P variables

K(Q, P) = K
(
q(Q, P), p(Q, P)

)
(18.91)

It follows from the canonical transformation procedure that, even if we begin with the
standard form in eqn (18.90), after a canonical transformation the extended Hamil-
tonian K(Q, P) will not in general have the same standard form.

110See Chapter 77 of Desloges (1982). Goldstein, Poole and Safko (2002) mention mixed generating
functions but give few details.
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However, it is always possible to write an extended Hamiltonian in the Q, P vari-
able set that is equivalent to eqn (18.91) but that recovers the standard form. To see
this, we note that Lemma 17.7.2 proves that at least one of the derivatives Q̇k, Ṗk

must be nonzero. And Exercises 18.4 and 18.5 demonstrate that the variables Q, P
may be relabeled (and the exchange Ql , Pl → Pl ,−Ql made for particular l values if
necessary) by use of trivial canonical transformations. It is therefore always possible
to relabel and exchange the variables in such a way that Q̇0 �= 0 for the coordinate
labeled with the zero index.

Assume now that the relabelling and exchanges have been done if necessary so
that Q̇0 �= 0. One of the extended Hamilton equations is then

∂K(Q, P)

∂ P0
= Q̇0 �= 0 (18.92)

which (by the implicit function theorem, Theorem D.26.1) is the condition for the de-
pendency relation K(Q, P) = 0 to be solved for P0 and hence written in the standard
form

K(st) (Q, P) = P0 + H (st) (Q, P[0]
) = 0 (18.93)

The particular function H (st) obtained will depend on the details of the process.
The equivalence of the extended Hamilton equations with K(st) (Q, P) to those with
K(Q, P) follows from the same argument used in Lemma 12.8.2. Thus the standard
form is recovered.

The results of this section have the important consequence that proofs in canonical
transformation theory may assume the standard form eqn (18.93) for the extended
Hamiltonian, and the condition Q̇0 �= 0, with no loss of generality. The variable Q0

will not in general be related to the time variable t , but the standard form is recovered
nonetheless.

18.13 Differential Canonical Transformations
Differential canonical transformations (sometimes called infinitesimal canonical trans-
formations) are those that differ from the identity transformation only by a differen-
tial scale factor δa that can approach zero as a limit. (This use of δa is similar to that
in the calculus of variations in Section 5.1.) Since eqn (18.27) generates the identity,
we may write the generating function of differential canonical transformations in the
general form

F2(q, P) =
D∑

k=0

qk Pk + δa G(q, P) (18.94)

where G(q, P) is an arbitrary function of its stated variables, called the generator of
differential canonical transformations. Applying the F2 rules from eqn (18.20) gives

pk = Pk + δa
∂G(q, P)

∂qk
Qk = qk + δa

∂G(q, P)

∂ Pk
(18.95)

Since the partial derivatives in each of eqn (18.95) are already multiplied by the small
quantity δa, in the limit δa → 0 we may write the differential canonical transforma-
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tion as

Qk = qk + δa
∂G(q, p)

∂pk
+ o(δa ) Pk = pk − δa

∂G(q, p)

∂qk
+ o(δa ) (18.96)

18.14 Active Canonical Transformations
Section 8.30 discussed active and passive rotations. In summary, active rotations
change the system orientation while passive rotations only change the variables in
terms of which an unchanged system orientation is expressed. A similar pattern holds
for canonical transformations.

All canonical transformations treated up to now have been passive. Physical quan-
tities are represented by phase-space functions f (q, p) whose values are not changed
by passive canonical transformations. They are simply re-expressed in terms of new
variables, according to the standard rule

f (Q, P) = f
(
q(Q, P), p(Q, P)

)
(18.97)

The extended Hamiltonian function K(q, p) follows this same rule, as seen in eqn
(18.91).

We now consider active use of the same canonical transformations. In active
canonical transformations, the transformation equations

Qk = Qk(q, p) Pk = Pk(q, p) (18.98)

are assumed to define new values for the variables q, p, without changing the coor-
dinate system in which the phase-space functions are expressed. The values of the
coordinates q, p are changed, with changes �qk and �pk defined by

�qk = Qk(q, p)− qk �pk = Pk(q, p)− pk (18.99)

In the general case, this definition of active canonical transformations might not
prove useful because, for example, the canonical transformation might be one that ex-
changes the role of coordinates and momenta. But it is very useful for the differential
canonical transformations defined in Section 18.13 where it leads to �qk = δqk+o(δa)

and �pk = δpk+o(δa) where the differential changes in the coordinates q, p are given
by111

δqk = δa
∂G(q, p)

∂pk
δpk = −δa

∂G(q, p)

∂qk
(18.100)

An immediate consequence is that the change � f in the value of a phase-space func-
tion f (q, p) is given by � f = δ f + o(δa) where the differential change δ f is

δ f = δa
D∑

k=0

(
∂ f

∂qk
δqk + ∂ f

∂pk
δpk

)
= δa

D∑
k=0

(
∂ f

∂qk

∂G

∂pk
− ∂ f

∂pk

∂G

∂qk

)
= δa [ f, G]

(18.101)
where the last expression is the Poisson bracket as defined in Definition 12.12.1.

111The general relation between differences like �qk and differentials like δqk is discussed in Section
D.12.
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For an example, consider a system consisting of a single particle in three di-
mensions using Cartesian coordinates, and a generating function equal to the z-
component of angular momentum,

G = xpy − ypx (18.102)

In this case, eqn (18.100) gives

δx = −δa y δy = δa x δpx = −δa py δpy = δa px (18.103)

which are the same changes as are produced by an active rotation by differential angle
δa about the z-axis (see Exercise 18.7). Thus the z-component of angular momentum
generates rotations about the z-axis.

18.15 Phase-Space Analog of Noether Theorem
Noether’s theorem, discussed in Section 13.2, allows symmetries of an extended La-
grangian system to be used to discover conserved quantities. The definition of active
differential canonical transformations in Section 18.14 allows us to extend the same
idea to phase space and Hamiltonian mechanics.

We define a symmetry in Hamiltonian mechanics to be an active differential canon-
ical transformation that does not change the differential value of the extended Hamil-
tonian K(q, p), considered as a phase-space function. Applying eqn (18.101) to the
extended Hamiltonian K(q, p) gives the differential change in its value due to a trans-
formation generated by G as

δK = δa [K, G] (18.104)

If δK = 0 for a particular generator G, then we say that G generates a symmetry of
the extended Hamiltonian system.

But G(q, p) is just an ordinary phase-space function and so represents some prop-
erty of the physical system, leading to the following theorem.

Theorem 18.15.1: Phase-Space Symmetry Theorem
If G generates a symmetry of the system, then G is a constant of the motion (i.e. is
conserved) and the physical quantity it represents will remain constant as the system
evolves.

Proof: We have proved in Section 12.12 that the rate of change of a phase-space
function is given by its Poisson bracket with the extended Hamiltonian. Thus, substi-
tuting G for f in eqn (12.55) gives

Ġ = [G,K] = −[K, G] (18.105)

where the anti-symmetry of the Poisson bracket has been used. If G generates a sym-
metry of the system, then eqn (18.104) and δK = 0 together imply that [K, G] = 0
and hence that Ġ = 0. Thus the generator G of a symmetry of the system will be a
conserved quantity. �
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As an example of the phase-space symmetry theorem, consider a system of one
particle in a Cartesian space with extended Hamiltonian

K = p0 +
p2

x + p2
y + p2

z

2m
+ 1

2
k
(

x2 + y2 + z2
)

(18.106)

Since this equation can also be written as K = p0 + (p · p) /2m + k (r · r) /2, which in-
volves only dot products of threevectors, the rotation generated by eqn (18.102) will
not change the value of K, and hence that δK = 0 for this canonical transformation. It
follows that G = xpy− ypx will be a constant of the motion, and that the z-component
of angular momentum will be a conserved quantity.

18.16 Liouville Theorem
An important example of the active differential canonical transformations developed
in Section 18.14 uses the extended Hamiltonian itself as the generator. If G = K then
eqn (18.101) becomes

δ f = δa [ f,K] = δa
d f

dβ
(18.107)

where eqn (12.55) has been used. Thus K generates the natural evolution of the sys-
tem. In the δa → 0 limit, the value f + δ f is the value of physical quantity f at the
epoch β + δa . This evolution can also be seen from eqn (18.100), which becomes

δqk = δa
∂K(q, p)

∂pk
= δa q̇k δpk = −δa

∂K(q, p)

∂qk
= δa ṗk (18.108)

Thus the natural evolution of the system point in phase space can be reproduced as an
active differential canonical transformation generated by the extended Hamiltonian
K.

Consider now an integral defining the “volume” V of phase space contained within
a region defined by some boundary,

V =
∫

dq0 dq1 . . . dqD dp0 dp1 . . . dpD (18.109)

This phase-space volume will remain constant as the system evolves.

Theorem 18.16.1: Liouville Theorem
If a volume in phase space V is defined as in eqn (18.109), then as the system evolves
the boundaries of the region will change but the integral over the evolving region will be
constant.

Proof: The natural evolution of the system has been shown to be an active differen-
tial canonical transformation. Lemma D.22.4 with f = 1 implies that the integral in
eqn (18.109) transforms as∫

dQ0 dQ1 . . . dQ D dP0 dP1 . . . dPD =
∫

dq0 dq1 . . . dqD dp0 dp1 . . . dpD

∣∣∣∣∂(Q, P)

∂(q, p)

∣∣∣∣
(18.110)

when a canonical transformation changes the variables from q, p to Q, P. But the
Jacobian in eqn (18.110) is the same as the determinant of the matrix J , which was
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shown in eqn (17.44) to have absolute value unity

∂(Q, P)

∂(q, p)
= | J | = ±1 (18.111)

Therefore the two integrals in eqn (18.110) are equal. In the active canonical trans-
formation, however, the variables Q, P are just the values of q, p at epoch β + δa
and hence their integral in eqn (18.110) is the same as the integral in eqn (18.109) at
β + δa. The equality of these two integrals proves that V is a constant. �

This theorem has an important consequence when one considers what may be
called Hamiltonian flow problems. These consider a large set of identical systems,
all of which obey the same extended Hamilton equations but generally with different
initial conditions. Each system is represented by a point in phase space, which we may
call a system point. Since any point in extended phase space has a unique trajectory
passing through it, these system points will evolve along unique and non-intersecting
trajectories. Therefore, if one defines a region in phase space by defining a boundary,
the number of system points inside that boundary will be constant. (If a point reached
a boundary, it could never cross it.) Thus a density function of system points per unit
phase-space volume, ρ = N/V, will have constant numerator and denominator and
thus be a constant of the motion.

18.17 Exercises
Exercise 18.1
(a) Demonstrate that each term of the F1, F2, F̃1, F̃2, and F generating functions must have
the units of action.
(b) Show that the product XkYk of the variables defined in eqn (18.40) will have units of
action regardless of the choice of the binary number α.

Exercise 18.2
(a) Write an F2 generating function that will generate the general Lorentz transformation
treated in Exercise 17.2.
(b) Demonstrate that this F2 does indeed generate both the Lorentz transformation and its
inverse.

Exercise 18.3 Consider the canonical transformation in Exercise 17.4.

(a) Find the proto-generating function f (q, p) which obeys eqn (18.1),

d f =
D∑

k=1

pkδqk −
D∑

k=1

Pkd Q (18.112)

[Hint: f (q, p) = ∑D
k=1 fk(qk, pk) where each fk(qk, pk) is found by integrating d fk =

pkdqk − Pkd Qk in the qk, pk plane.]
(b) Use f (q, p) to derive an F1(q, Q) generating function. What are the conditions on the
θi for this generating function to be valid? Use it to re-derive the canonical transformation in
Exercise 17.4.
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(c) Use f (q, p) to derive an F2(q, P) generating function. What are the conditions on the θi

for this generating function to be valid? Use it to re-derive the canonical transformation in
Exercise 17.4.

Exercise 18.4 Let k0, k1, . . . , kD be any rearrangement of the integers 0, 1, 2, . . . , D.

(a) Show that

F2(q, P) =
D∑

i=0

qki Pi (18.113)

satisfies |n | �= 0 for the matrix defined in eqn (18.19), and hence is a legitimate F2 generating
function.
(b) Find the canonical transformation generated by this generating function, and hence show
that any rearrangement of the variables qk is a canonical transformation provided that the
same rearrangment is applied to the pk variables.

Exercise 18.5 Let α = αDαD−1 · · ·α0 be the binary number as discussed in Section 18.6.

(a) Show that the mixed generating function

F(q, Y ) =
D∑

k=0

qkYk (18.114)

has the effect of making the exchange Qk = pk and Pk = −qk for those index values k with
αk = 1 while acting as the identity with Qk = qk and Pk = pk for those k with αk = 0.

Exercise 18.6 Section 18.4 gave the example of the generating function
F2(q, P) = ∑D

k=0 gk(q)Pk that generated transformations of the Lagrangian type, defined as
transformations with Qk = Qk(q) only. Now consider a generating function

F2(q, P) =
D∑

k=0

qk fk(P) (18.115)

(a) What condition must be imposed on the matrix with elements ∂ fk(P)/∂ Pl in order for
this to be a legitimate generating function?
(b) Show that in this transformation, the new momenta Pk are functions only of the old
momenta p.
(c) Is this transformation of the Lagrangian type? If so why, if not why not?

Exercise 18.7
(a) Verify that eqn (18.103) follow from generating function eqn (18.102).
(b) Show that the relations in eqn (18.103) are the same as would result from active rotation
by angle δa about the z-axis. That is, show that

r + δr = R[δa ê3]r + o(δα) p + δp = R[δa ê3]p + o(δa) (18.116)

where R[δa ê3] is the fixed-axis rotation operator defined in Section 8.17 and 8.18.
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Exercise 18.8 The Hamilton-Jacobi theory to be presented in Chapter 19 allows us to find
generating functions that simplify particular Hamiltonians. The harmonic oscillator in one
dimension has an extended Hamiltonian in the q, p system

K(q, p) = p0 + p2
1

2m
+ 1

2
mω2q1 (18.117)

Sections 19.8 and 19.9 provide the generating function (see Exercise 19.7)

F2(q, P) = q0 (P0 − P1)+ mωq1

2

√
2P1

mω2
− q2

1 + P1

ω
arcsin

⎛⎝q1

√
mω2

2P1

⎞⎠ (18.118)

(a) Find the transformed momenta P0(q, p) and P1(q, p), and demonstrate that, when ex-
pressed in the Q, P system, the extended Hamiltonian becomes simply K(Q, P) = P0.
(b) Show that all of the coordinates and momenta of the Q, P system are constants of the
motion, except for Q0 = q0 = t .
(c) Use the inverse relation q1(Q, P) derived from the generating function to give a general
solution for q1 as a function of time and suitable contants to be determined at time zero.

Exercise 18.9 Consider the following four canonical transformations transformations

#1 : Q0 = −p0 Q1 = p1 + aq1 P0 = q0 P1 = p1/a

#2 : Q0 = q0 Q1 = −p1/a P0 = p0 P1 = −p1 + aq1

#̃1 : Q0 = −p0 Q1 = q1/a P0 = q0 P1 = −q1 + ap1

#̃2 : Q0 = q0 Q1 = q1 − ap1 P0 = p0 P1 = q1/a (18.119)

(a) Write out the Jacobi matrix J in the form given in eqn (18.56) for each of these transfor-
mations.
(b) Verify that, of the four simple generating functions, #1 can only be generated by an F1,
#2 only by an F2, #̃1 only by an F̃1, and #̃2 only by an F̃2.

Exercise 18.10 Consider the canonical transformation #̃2 in eqn (18.119).

(a) Find the proto-generating function f (q, p) and use it to write a generating function
F̃2(p, Q). Verify your work by re-deriving eqn (18.119) from your generating function.
(b) Using the same f (q, p) as in part (a), choose an appropriate binary number α = α1α0 and
write a mixed generating function F(q, Y ) for this canonical transformation. Again, verify
your work by re-deriving #̃2 in eqn (18.119) from your generating function.

Exercise 18.11 Consider the gauge transformation treated in Exercises 2.7, 11.8, and 12.7.
Let the p

0
, p before the gauge transformation be the p variables, and the p′

0
, p′ after the

gauge transformation be the transformed P variables, where q = t, x, y, z and the p
0

and
p′

0
are the “standard” momenta discussed at the end of Section 16.9. Assume that a gauge

transformation makes no change in the coordinates, so that Qk = qk .

(a) Use the Poisson bracket conditions to prove that this transformation is canonical.
(b) Find an F2 generating function, and demonstrate that it does generate the transformation.
(c) Use the standard Hamiltonian K(q, p) from Exercise 12.7 and the simple substitution
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rule eqn (17.75) to write the extended Hamiltonian K(Q, P). Put the K(Q, P) into a form
that contains the gauge-transformed fields 
′ and A′ but not the gauge function χ .
(d) The form invariance of the traditional Hamilton equations under gauge transformations
was derived with some labor in Exercise 4.6. Show that the form invariance of the extended
Hamilton equations under gauge transformations follows at once from Theorem 17.12.1.

Exercise 18.12 Consider a system consisting of a single mass with phase-space variables
q, p= t, x, y, z, p0, px , py, pz . Let n̂ be an arbitrary, constant unit vector.

(a) Show that the differential generating function G = n̂ · p generates a translation δr = δa n̂
with no change in p.
(b) Show that the differential generating function G = −n̂ · r generates a change of momen-
tum δp = δa n̂ with no change in position.

Exercise 18.13 Consider a system consisting of a single mass with phase-space variables
q, p= t, x, y, z, p0, px , py, pz . Let the generating function be G = n̂ · L where L = r × p
is the angular momentum vector and n̂ is an arbitrary, constant unit vector.

(a) Show that the differential changes of position and momentum are

δr = δa n̂ × r δp = δa n̂ × p (18.120)

(b) Show that the generating function G = n̂ · L̂ generates a differential rotation of r and p
by angle δa about axis n̂.

Exercise 18.14 In Section 17.10 we showed that canonical transformations form a group,
with group multiplication defined as successive transformation. We now show that this group
is not Abelian. (The product of two canonical transformations does depend on their order.)
Suppose that we make two successive active, differential canonical transformations, first with
generator G2 and then with generator G1, as in

q, p
G2→ Q̄, P̄

G1→ Q, P (18.121)

(a) Define �q(2)
k = Q̄k − qk , with similar definitions for the p variables. Use eqn (18.95) to

prove that, when terms up to quadratic order in δa are retained,

�q(2)
k = δa

∂G2(q, P̄)

∂ P̄k
= δa

∂G2(q, p)

∂pk
− (δa)2

D∑
l=0

∂2G2(q, p)

∂pk∂pl

∂G2(q, p)

∂ql
+ o

(
(δa)2

)

�p(2)
k = −δa

∂G2(q, P̄)

∂qk
= −δa

∂G2(q, p)

∂qk
+ (δa)2

D∑
l=0

∂2G2(q, p)

∂qk∂pl

∂G2(q, p)

∂ql
+ o

(
(δa)2

)
(18.122)

(Recall that o
(
(δa)2

)
means that the dropped terms are of order smaller than (δa)2 as δa →

0. See the definitions in Section D.11.)
(b) Define �q(1,2)

k = Qk − qk where Qk is the final value in eqn (18.121). Define �q(2,1)
k

similarly, but with the order of application of G1 and G2 reversed. Make similar definitions
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for the p variables. Show that

�q(1,2)
k −�q(2,1)

k = (δa)2 ∂

∂pk

[
G1(q, p), G2(q, p)

]+ o
(
(δa)2

)
�p(1,2)

k −�p(2,1)
k = −(δa)2 ∂

∂qk

[
G1(q, p), G2(q, p)

]+ o
(
(δa)2

)
(18.123)

Thus two successive canonical transformations produce a different result when their order of
application is reversed.
(c) Compare eqn (18.123) with eqn (18.100). Show that, not only do the canonical transfor-
mations in reversed order produce different changes, but (when the calculation is carried to
second order) the difference itself is a differential canonical transformation generated by a
generating function G = [G1, G2] equal to the Poisson bracket of G1 and G2.
(d) Write a short paragraph justifying the following statement (or demolishing it if you dis-
agree): Since Lx generates rotations about the x-axis, L y generates rotations about the y-axis,
and Lz generates rotations about the z-axis, the Poisson bracket of Lx and L y must be Lz (as
is shown by direct calculation in eqn (12.75)), due to the structure of the rotation group as
demonstrated in Exercise 8.11.

Exercise 18.15
(a) Show that the transformation of coordinates in eqn (18.40) and the inverse relation in eqn
(18.45) may be written in matrix form as⎛⎝ [X ]

[Y ]

⎞⎠ = A

⎛⎝ [Q]

[P]

⎞⎠ ⎛⎝ [Q]

[P]

⎞⎠ = A−1

⎛⎝ [X ]

[Y ]

⎞⎠ (18.124)

where A is the matrix defined in eqn (E.27).
(b) Verify that matrix A is both canonical and orthogonal, i.e., that it satisfies both s =
A T s A and A T = A−1.

Exercise 18.16 It is asserted that the canonical transformation in Exercise 17.11 can be de-
rived from the generating function

F2(q, P) = bq2
0 P0 + q1 P1 + (aq0 + q2) P2 − c

3
(aq0 + q2)

3 (18.125)

(a) Verify that this function does generate eqn (17.100).
(b) Use the F2 from eqn (18.125) to derive the inverse canonical transformation, giving q, p
as functions of Q, P .
(c) The “direct conditions” for a transformation to be canonical (see Lemma 17.8.2) assert,
among other relations, that ∂ P2 (q, p) /∂q0 = −∂p0 (Q, P) /∂ Q2 when both sides are writ-
ten in terms of some common sets of coordinates. Verify that this relation is true for the
present transformation.
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HAMILTON–JACOBI THEORY

The Hamilton–Jacobi theory is the apotheosis of Lagrangian and Hamiltonian me-
chanics: Action functions encode all of the possible trajectories of a mechanical sys-
tem satisfying certain criteria. These action functions are the solutions of a non-
linear, first-order partial differential equation, called the Hamilton–Jacobi equation.
The characteristic equations of this differential equation are the extended Hamilton
equations defined in Chapter 12. Solution of a class of mechanics problems is thus
reduced to the solution of a single partial differential equation.

Aside from its use as a problem solving tool, the Hamilton–Jacobi theory has
particular importance because of its close relation to the Schroedinger formulation
of quantum mechanics. We discuss that connection, and the Bohm hidden variable
model and Feynman path integral method that are derived from it.

19.1 Definition of the Action
The trajectory of a mechanical system in configuration space112 is typically specified
by giving an initial value q(1) = q(1)

0 , q(1)
1 , . . . , q(1)

D for all of the generalized coordi-
nates, together with the set of initial generalized velocities q̇(1). However, except in
special cases that can be dealt with by partitioning the configuration space, a tra-
jectory can also be specified by giving initial and final values of q. We assume here
that there is a unique trajectory q = q(β), called the classical path, that solves the
Lagrange equations and passes through the points and times q(1) and q(2).

The first Hamilton–Jacobi action function S1
(
q(1), q(2)

)
is defined as the line inte-

gral of the extended Lagrangian along the unique classical path between the specified
endpoints,

S1

(
q(2), q(1)

)
=

∫ q(2)

q(1)

L(q, q̇) dβ (19.1)

Although this integral resembles that used to define the action function of Hamilton’s
Principle I (δa, [q], [η]) in eqn (13.1), there is an important difference. The Hamil-
ton’s Principle action was an integral over varied and unvaried paths, taking different
values as the path was varied. The Hamilton–Jacobi action function in eqn (19.1) is
by definition always taken over the unique classical path (path that is a solution of
the Lagrange equations) linking the end points.

112In this chapter, we continue to use the extended Lagrangian and Hamiltonian methods in which the
zeroth generalized coordinate is the time, and the zeroth component of the momentum is the negative of
the traditional Hamiltonian function. We also continue to use the notation q for the set of all generalized
coordinates and q[0] for the set that includes all except q0 = t .
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Using the definition of L from eqn (11.7), the action S1 may be written equiva-
lently in terms of the traditional Lagrangian function, as

S1

(
q(2), q(1)

)
=

∫ q(2)

q(1)

L

(
q[0],

dq[0]
dt

, t

)
ṫ dβ =

∫ q(2)
[0] ,t (2)

q(1)
[0] ,t (1)

L

(
q[0],

dq[0]
dt

, t

)
dt (19.2)

where the integral is taken along the assumedly unique classical path connecting the
end points and times. This traditional form is sometimes useful in model problems.

19.2 Momenta from the S1 Action Function
Using the expression for L from Lemma 11.4.2, the action can also be written as

S1

(
q(2), q(1)

)
=

∫ q(2)

q(1)

D∑
k=0

pk(q, q̇)q̇kdβ =
∫ q(2)

q(1)

D∑
k=0

pk(q, q̇) dqk (19.3)

It might seem obvious from this expression that the partial derivatives of S1 with
respect to the coordinate qk would give the momentum pk . However, care is required
because the definition of S1 includes the requirement that the integral must be along
the classical path between its endpoints. The partial derivative with respect to q(2)

k is

∂S1
(
q(2), q(1)

)
∂q(2)

k

=

lim
δq(2)

k →0

⎧⎨⎩ S1

(
q(2)

0 , . . . , q(2)
k + δq(2)

k , . . . , q(2)
D , q(1)

)
− S1

(
q(2)

0 , . . . , q(2)
k , . . . , q(2)

D , q(1)
)

δq(2)
k

⎫⎬⎭
= lim

δq(2)
k →0

1

δq(2)
k

(∫ q(2)+δq(2)

q(1)
k

L(q, q̇) dβ −
∫ q(2)

q(1)

L(q, q̇) dβ

)
(19.4)

The first integral is along the classical path from q(1) to q(2) + δq(2), which is not the
same as the classical path between q(1) and q(2) used in the second integral.

The difference of integrals in eqn (19.4) can be evaluated by using the technique
used in the proof of Noether’s theorem in Section 13.2. The classical path from q(1) to
q(2)+δq(2) can be considered a “varied” path, in the sense of the calculus of variations,
relative to the “unvaried” classical path from q(1) to q(2). The first-order difference of
the integrals is then the same as the first-order variation of the integral δ I under this
change of path. The results of Section 5.4 can then be applied, with the result

δ I =
(

D∑
k=0

∂L (q, q̇)

∂ q̇k
δqk (β)

)∣∣∣∣∣
β2

β1

−
∫ β2

β1

D∑
k=0

{
d

dβ

(
∂L (q, q̇)

∂ q̇k

)
− ∂L (q, q̇)

∂qk

}
δqk (β) dβ

(19.5)
Since the Lagrange equations hold on the unvaried classical path, the integral term
is identically zero. Since only the kth coordinate of the upper limit is varied here,
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β1 β β2

q(1)
k

qk

Unvaried Path
(a classical path)

q(2)
k

q(2)
k + δq(2)

k

(another classical path)
Varied Path

FIG. 19.1. Use of the calculus of variations to calculate ∂S1/∂qk . The varied path is another
classical path, but with an end point incremented by δq(2)

k .

evaluation of the integrated term gives

∂S1
(
q(2), q(1)

)
∂q(2)

k

= lim
δq(2)

k →0

δ I

δq(2)
k

= lim
δq(2)

k →0

1

δq(2)
k

(
∂L (q, q̇)

∂ q̇k
δqk (β)

)∣∣∣∣β2

= pk

(
q(2), q̇(2)(q(2), q(1))

)
= p(2)

k

(
q(2), q(1)

)
(19.6)

where we have made use of the fact that q̇(2) depends on the path by which the upper
end point was reached, and hence is a function of variables q(2), q(1) that determine
that path.

A similar argument applies when the lower end point is varied. In summary, the
partial derivatives for any k = 0, 1, . . . , D are

p(2)
k

(
q(2), q(1)

)
= ∂S1

(
q(2), q(1)

)
∂q(2)

k

and p(1)
k

(
q(2), q(1)

)
= −∂S1

(
q(2), q(1)

)
∂q(1)

k
(19.7)

The first of these momenta, for example, may be read as, “the kth momentum at the
point and time q(2) of that particular motion that reached point and time q(2) from a
beginning at point and time q(1).” Even in those cases where qk is an ignorable coor-
dinate so that pk is constant along any particular classical path, these p(2)

k

(
q(2), q(1)

)
will still vary as q(1) and q(2), and hence the chosen classical path, are changed. The
momenta p(1)

k

(
q(2), q(1)

)
have a similar meaning.

The momenta with k = 0 deserve special attention. Since the momenta in eqn
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(19.6) are derived from the Lagrangian function, the identity eqn (12.5) holds and

∂S1
(
q(2), q(1)

)
∂q(2)

0

= p(2)
0

(
q(2), q(1)

)
= −H

(
q(2)
[0] , p(2)

[0] (q
(2), q(1)), q(2)

0

)
(19.8)

∂S1
(
q(2), q(1)

)
∂q(1)

0

= −p(1)
0

(
q(2), q(1)

)
= H

(
q(1)
[0] , p(1)

[0] (q
(2), q(1)), q(1)

0

)
(19.9)

For example, the first of these can be read as, “the negative of the value of the tradi-
tional Hamiltonian function at q(2) for that particular motion that reached q(2) from
a beginning at q(1).” Like the other momenta, the traditional Hamiltonian function
will vary with q(1) and q(2) even in those cases in which it is conserved along any
particular system path.

19.3 The S2 Action Function
An action function that depends on the initial momenta p(1)

[0] rather than the initial

positions q(1)
[0] can be derived by a Legendre transformation that exchanges the role of

these two quantities. Following the pattern in Section D.30, with f → S1, g → −S2,
x → q[0], u →−p[0], we define

S2

(
q(2), q(1)

)
= S1

(
q(2), q(1)

)
−

D∑
i=1

q(1)
i

∂S1
(
q(2), q(1)

)
∂q(1)

i

= S1 +
D∑

i=1

q(1)
i p(1)

i (19.10)

Since a classical path also may be specified by its initial momenta and final posi-
tion, the equations p(1)

i = p(1)
i

(
q(2), q(1)

)
for i = 1, . . . , D can be inverted to give

q(1)
i = q(1)

i

(
q(2), p(1)

[0] , q(1)
0

)
. This equation is substituted into eqn (19.10) to give the

compound function,

S2

(
q(2), p(1)

[0] , q(1)
0

)
= S2

(
q(2), q(1)

[0] (q
(2), p(1)

[0] , q(1)
0 ), q(1)

0

)
(19.11)

The rules of the Legendre transformation then give, for k = 0, 1, . . . , D, and i =
1, . . . , D,

p(2)
k

(
q(2), p(1)

[0] , q(1)
0

)
=

∂S2

(
q(2), p(1)

[0] , q(1)
0

)
∂q(2)

k

(19.12)

p(1)
0

(
q(2), p(1)

[0] , q(1)
0

)
= −

∂S2

(
q(2), p(1)

[0] , q(1)
0

)
∂q(1)

0

(19.13)

q(1)
i

(
q(2), p(1)

[0] , q(1)
0

)
=

∂S2

(
q(2), p(1)

[0] , q(1)
0

)
∂p(1)

i

(19.14)

Equation (19.12) may be read as, “the momentum at point and time q(2) of that
particular motion that reached q(2) from a beginning at time q(1)

0 with initial momenta
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p(1)
[0] .” Equation (19.14) gives, “the place q(1)

[0] that the motion must have started from

at time q(1)
0 in order that the initial momentum p(1)

[0] would carry it to q(2)
[0] at time q(2)

0 .”
For the case k = 0, the momenta become

∂S2

(
q(2), p(1)

[0] , q(1)
0

)
∂q(2)

0

= p(2)
0

(
q(2), p(1)

[0] , q(1)
0

)
= −H

(
q(2)
[0] , p(2)

[0] (q
(2), p(1)

[0] , q(1)
0 ), q(2)

0

)
(19.15)

∂S2

(
q(2), p(1)

[0] , q(1)
0

)
∂q(1)

0

= −p(1)
0

(
q(2), p(1)

[0] , q(1)
0

)
= H

(
q(1)
[0] (q

(2), p(1)
[0] , q(1)

0 ), p(1)
[0] , q(1)

0

)
(19.16)

with similar meanings.

19.4 Example of S1 and S2 Action Functions
The abstractions of the previous sections can be illustrated by the simple example of
a mass m moving in three dimensions with no applied forces. Then we know that
the momenta between starting point r(1), t (1) and ending point r(2), t (2) will have the
constant values,

p0 = −m
∥∥r(2) − r(1)

∥∥2

2
(
t (2) − t (1)

)2
p = m

(
r(2) − r(1)

t (2) − t (1)

)
(19.17)

Hence eqn (19.3) can be used to give

S1

(
q(2), q(1)

)
= S1

(
r(2), t (2), r(1), t (1)

)
=

∫ (2)

(1)

(p0dt + p · dr) = m
∥∥r(2) − r(1)

∥∥2

2
(
t (2) − t (1)

)
(19.18)

where we use the notation q0 = t , q1 = x , q2 = y, q3 = z and r = x ê1 + yê2 + zê3.
One can then verify, for example, that the first of eqn (19.7), written in vector

form as

p(2) = ∂S1

∂r(2)
= m

(
r(2) − r(1)

t (2) − t (1)

)
(19.19)

is indeed the momentum at point and time 2 of that particular motion that reached
that point from point and time 1.

The S2 function can also be derived for this same example. Using the definition
eqn (19.10) and then substituting the correct variables as indicated in eqn (19.11)
gives

S2

(
r(2), t (2), p(1), t (1)

)
= S1 + r(1) · p(1) = p(1) · r(2) −

∥∥p(1)
∥∥2

2m

(
t (2) − t (1)

)
(19.20)
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Then
p(2) = ∂S2

∂r(2)
= p(1) (19.21)

which is correct since the momentum is constant along the classical path of a free
particle. The second of eqn (19.14) becomes

r(1) = ∂S2

∂p(1)
= r(2) − p(1)

m

(
t (2) − t (1)

)
(19.22)

which is correct since p(1)/m is the constant velocity of the particle.

19.5 The Hamilton–Jacobi Equation
A phase space dependency function K(q, p) was introduced in Chapter 12. This same
function serves as the extended Hamiltonian, as is shown in Section 12.4. The natural
motion of the mechanical system in both the extended Lagrangian and Hamiltonian
theories is such that K(q, p) = 0 remains true on all trajectories. Hence, the momenta
p(2)

k defined in either eqn (19.7) or eqn (19.12) must obey

K
(

q(2), p(2)
)
= 0 (19.23)

Substituting the definitions of p(2)
k from these equations thus gives the first-order,

partial differential equation

K
(

q(2),
∂Sl

∂q(2)

)
= 0 (19.24)

where l is either 1 or 2, depending on the Sl chosen. For example, using the standard
definition of K from eqn (12.12) gives

∂Sl

∂t (2)
+ H

(
q(2)
[0] ,

∂Sl

∂q(2)
[0]

, t (2)

)
= 0 (19.25)

We will now change notation in this chapter and drop the superscript “(2)” on the
upper limits of the Hamilton–Jacobi action. Thus we will write the action functions as
S1

(
q, q(1)

)
or S2

(
q, p(1)

[0] , q(1)
0

)
with the understanding that the q is actually what we

have called q(2), the upper limit of a classical trajectory from q(1). Then eqns (19.24,
19.25) may be written in a slightly less cluttered form as

K
(

q,
∂S

∂q

)
= 0 or

∂S

∂t
+ H

(
q[0],

∂S

∂q[0]
, t

)
= 0 (19.26)

which is now considered as a partial differential equation for an unknown function
S(q) which may or may not be one of the Sl considered above. This is the Hamilton–
Jacobi equation.

The Hamilton–Jacobi equation has been derived from two of its solutions, S1 and
S2. But now that we have a partial differential equation we can find other solutions.
The question of interest to us will be the relation of these more general solutions to
the problems of mechanics.
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19.6 Hamilton’s Characteristic Equations
The Hamilton–Jacobi equation is a first-order partial differential equation, since only
first partial derivatives appear in it. It is non-linear, since the traditional Hamiltonian
contains a term quadratic in the momenta p, which leads to terms such as (∂S/∂qk)

2.
For example, using the standard form of the extended Hamiltonian for a single par-
ticle moving under the influence of a potential U and restricting ourselves for clarity
to systems of one degree of freedom (with D = 1), the Hamilton–Jacobi equation is

0 = K(q, p) = K
(

q,
∂S

∂q

)
= ∂S

∂t
+ 1

2m

(
∂S

∂x

)2

+U (x, t) (19.27)

A solution to the Hamilton–Jacobi equation S = 
(t, x) can be thought of as defin-
ing an integral surface 0 = F(t, x, S) = 
(t, x) − S in a (D + 2)-dimensional space
whose coordinates are t, x, S. That integral surface can be found by first finding a
system of curves, called characteristic curves, that lie entirely in it. A unique charac-
teristic curve passes through each point t, x, S of the integral surface, and the system
of these curves can be used to define the integral surface (see Figure 19.2).

These characteristic curves can be found by solving a set of ordinary, first-order,
coupled differential equations called the characteristic equations, which we now de-
rive. Denoting ∂
/∂qk = pk , the condition that K(q, p) must remain zero along any
characteristic curve leads to the condition

0 = δK = p0δt + p1δx − δS (19.28)

where δr : (δt, δx, δS) can be visualized as a differential displacement vector along
the characteristic curve starting from t, x, S, and n : (p0, p1,−1) can be thought of
as a normal vector to the integral surface at that point. Thus the characteristic curve
element δr obeys a Cartesian orthogonality condition δr · n = 0. It follows from eqn
(19.28) that δr lies in a plane that is perpendicular to n and contains the point t, x, S.

The components of the normal vector n must be determined from the Hamilton–
Jacobi equation K(q, p) = 0. However, that determination is incomplete. Assuming
for definiteness that ∂K/∂p0 �= 0, and using the implicit function theorem in Section
D.26, we can solve the Hamilton–Jacobi equation for p0 = p0(t, x, p1). But the value
of p1 is not determined. We say that, with p1 as the free parameter and t, x, S fixed,
there is a one-parameter family of possible normal vectors n : (p0(t, x, p1), p1,−1) and
hence a one-parameter family of possible planes.

Using the elements of the theory of surfaces outlined in Section D.37, we can now
find the envelope of the one-parameter family of planes parameterized by p1. The
curve of intersection of successive planes as p1 varies is found by writing eqn (19.28)
for p1 + dp1 and p1 − dp1 as dp1 → 0, as described in Section D.37. The curve of
intersection is the solution of eqn (19.28) together with

0 = ∂p0(t, x, p1)

∂p1
δt + δx = −∂K/∂p1

∂K/∂p0
δt + δx (19.29)

where eqn (D.103) was used to get the last equality. The envelope is the surface swept
out by the curve of intersection as the parameter p1 varies. Since the generating
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surfaces are differently-oriented planes all of which pass through t, x, S, the envelope
is a cone with its vertex at that point. It is called a Monge cone.

The characteristic curve δr through t, x, S is defined to be along one of the curves
of intersection just found. Since δr also satisfies eqn (19.28), it will also lie in the
integral surface. This combination of conditions means that the Monge cone must
touch the integral surface, with δr lying along the line of contact. Defining a parame-
ter β that is to vary along the characteristic curve by δβ = δt/(∂K/∂p0), eqn (19.29)
becomes the first two characteristic equations

δt

δβ
= ∂K(q, p)

∂p0

δx

δβ
= ∂K(q, p)

∂p1
(19.30)

To complete the specification of the characteristic curves, it is necessary to find ex-
pressions for δp0 and δp1. Since t and x are the independent variables, the Hamilton–
Jacobi equation K(q, p) = 0 continues to hold when these variables are independently
incremented. Hence, incrementing t at fixed x gives

0 = ∂K
∂t

+ ∂K
∂p0

∂p0(q)

∂t
+ ∂K

∂p1

∂p1(q)

∂t
= ∂K

∂t
+ δt

δβ

∂p0(q)

∂t
+ δx

δβ

∂p0(q)

∂x
= ∂K

∂t
+ δp0

δβ
(19.31)

where eqn (19.30) and the fact that ∂p1(q)/∂t = ∂p0(q)/∂x were used to get the
next-to-last equality. A similar equation is obtained when x is incremented at fixed t ,
giving

0 = ∂K
∂x

+ ∂K
∂p0

∂p0(q)

∂x
+ ∂K

∂p1

∂p1(q)

∂x
= ∂K

∂x
+ δt

δβ

∂p1(q)

∂t
+ δx

δβ

∂p1(q)

∂x
= ∂K

∂x
+ δp1

δβ
(19.32)

Taking the limit δβ → 0, and assembling eqns (19.30 – 19.32), we obtain the set of
characteristic equations

ṫ = ∂K
∂p0

ẋ = ∂K
∂p1

ṗ0 = −∂K
∂t

ṗ1 = −∂K
∂x

(19.33)

We recognize these characteristic equations as identical to the extended Hamilton
equations of Definition 12.4.2.113 Because of this identity, the Hamilton equations
are frequently referred to as Hamilton’s characteristic equations. As demonstrated in
Section D.36, these equations have a solution that is unique once initial values of
q and p are specified. Thus there is one and only one characteristic curve passing
through each point of the integral surface.114 In Section 19.10, we give an example

113A fifth characteristic equation is Ṡ = p0(∂K/∂p0)+ p1(∂K/∂p1), obtained by putting eqn (19.33) into
eqn (19.28). However, since the unknown S does not appear explicitly in K(q, p), eqn (19.33) can always
be solved independently, without using this equation for Ṡ. It will be used, however, when the solution for
S is desired, as in the Cauchy problem in Section 19.10. From Lemma 11.4.2, the characteristic equation
for Ṡ can also be written as Ṡ = p0 ṫ + p1 ẋ = L, which is consistent with the definition of S1 in eqn (19.1).

114More detail about first-order partial differential equations, and proofs of the assertions made in this
chapter, can be found in Courant and Hilbert (1962). That text, though definitive, is not particularly acces-
sible. The reader might wish to begin by studying our Sections D.36 and D.37, and then an introductory
treatment such as Chapter 10 of Ford (1955).
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in which the Hamilton–Jacobi equation is solved by use of Hamilton’s characteristic
equations.

However, one great contribution of Hamilton and Jacobi was to realize that this
traditional order of solution can be reversed. Instead of solving the characteristic
equations in order to find an integral of the Hamilton–Jacobi equation, one can solve
the Hamilton–Jacobi equation directly (using methods to be discussed presently) and
use it to find the characteristic curves, that is, to solve the Hamilton equations. This
provides us with another tool for solving these equations and thus finding the phase-
space trajectories of physical systems.

19.7 Complete Integrals
First-order partial differential equations of the form K(q, p, S) = 0, where pi =
∂S/∂qi and at least one of the partial derivatives ∂K/∂pk is assumed to be nonzero,
have solutions depending on (D+ 1) arbitrary constants of integration a0, a1, . . . , aD.
These are called complete integrals. In Section 19.8 we give a method for obtain-
ing them. In this section, we show that complete integrals can be used to solve the
extended Hamilton equations and hence determine the phase-space trajectories of
physical systems.

Complete integrals may be written as

S = 
(q0, q1, . . . , qD, a0, a1, . . . , aD) = 
(q, a) (19.34)

To be a legitimate complete integral, eqn (19.34) must satisfy a consistency condition.
Denoting ∂
/∂ai = 
ai and ∂2
/∂ai∂qj = 
ai qj , the (D + 1)× (D + 2) matrix⎛⎜⎝ 
a0 
a0q0 · · · 
a0qD

...
...

...
...


aD 
aDq0 · · · 
aDqD

⎞⎟⎠ (19.35)

must have rank (D + 1). This is the condition for the equations pi = 
qi and eqn
(19.34) to be solvable for ai (q, p, S), which can be then substituted back into eqn
(19.34) to form a well-defined differential equation (not unique) of which eqn (19.34)
is the solution. It also ensures that the constants a0, a1, . . . , aD are truly independent
in the sense that they cannot be combined into a smaller number of constants yielding
the same function 
.

The Hamilton–Jacobi equation is a special case, because it is of the form K(q, p) =
0 and therefore contains the unknown function S only in the form of its partial deriva-
tives pi = ∂S/∂qi . Therefore, in the Hamilton–Jacobi case, one of the constants of
integration is always additive. If S is a solution, so is S + α for any constant α. Thus,
complete integrals of the Hamilton–Jacobi equation are of the form

S = φ(q, a[0])+ a0 (19.36)

where we use the notation a[0] to denote all of the constants except the additive one
a0. It follows that eqn (19.35) has rank (D + 1), and the complete integral is therefore
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legitimate, if and only if the D × (D + 1) matrix

M =
⎛⎜⎝ φa1q0 · · · φa1qD

...
...

...

φaDq0 · · · φaDqD

⎞⎟⎠ (19.37)

has rank D. We assume now that, using the methods of Section 19.8 or otherwise,
a complete integral of the Hamilton–Jacobi equation has been found satisfying this
condition.

A complete integral of the Hamilton–Jacobi equation can be used to define trajec-
tories in phase space which are solutions to the extended Hamilton equations. One
introduces a set of new constants b1, . . . , bD and writes

bj = ∂φ(q, a[0])
∂aj

pi = ∂φ(q, a[0])
∂qi

(19.38)

where i = 0, . . . , D, j = 1, . . . , D and the second equation simply repeats the def-
inition of pi . Let us suppose that one of the D-rowed critical minors of eqn (19.37)
is the one obtained by expunging the column with derivatives with respect to ql . In
general, l may have any value. In the following, for simplicity we will assume that the
coordinates and momenta have been relabeled if necessary so that the index l can be
chosen to be the index 0. (This can always be done without loss of generality, as is
shown in Section 18.12.)

Separating out the dependency on this q0, the first of eqn (19.38) may be written
as

bj = ∂φ(q, a[0])
∂aj

= bj (q0, q[0], a[0]) (19.39)

The D × D matrix with elements ∂bj/∂qk = ∂2φ/∂aj∂qk for j, k = 1, . . . , D is a
D-rowed critical minor of M and therefore is nonsingular. By the inverse function
theorem (Theorem D.24.1), this is the necessary and sufficient condition for eqn
(19.39) to be solved for the q[0] giving, for k = 1, . . . , D,

qk = qk(q0, b, a[0]) (19.40)

Writing the second of eqn (19.38) as pi = pi (q0, q[0], a[0]) and substituting eqn (19.40)
into that expression, gives, for i = 0, . . . , D,

pi = pi
(
q0, q[0](q0, b, a[0]), a[0]

) = pi (q0, b, a[0]) (19.41)

Thus we have all q, p except q0 expressed as functions of q0, which defines a definite
trajectory in phase space.

We now can prove that the trajectory defined by eqns (19.40, 19.41) satisfies
Hamilton’s characteristic equations.

Theorem 19.7.1: Solution of Hamilton Equations
The trajectory defined by eqns (19.40, 19.41) was extracted from complete integral eqn
(19.36). This trajectory is a solution of the Hamilton equations, eqn (12.13).



COMPLETE INTEGRALS 471

Proof: Since the bj in eqn (19.39) are constants, and since K
(
q, ∂φ(q, a[0])/∂q

) = 0
for any values of a[0],

0 = dbj

dβ
=

D∑
i=0

Mji q̇i and 0 = ∂K
∂aj

=
D∑

i=0

Mji
∂K(q, p)

∂pi
(19.42)

where it is assumed that the second of eqn (19.38) is substituted for p after the partial
is taken. The matrix M with matrix elements Mji = ∂2φ(q, a[0])/∂aj∂qi from eqn
(19.37) has been used. This matrix is a D × (D + 1) matrix of rank D and hence,
as discussed in Section B.19, these two homogeneous linear equations have solutions
that are unique up to undetermined multipliers λ1 and λ2. For i = 0, . . . , D, these
solutions may be written as

q̇i = λ1ci (q, a[0]) and
∂K(q, p)

∂pi
= λ2ci (q, a[0]) (19.43)

where the ci are functions of the matrix elements of M and hence of q, a[0].
By assumption, at least one of the ∂K(q, p)/∂pi is nonzero. Since by Lemma 17.7.2

at least one of the set q̇i , ṗi must be nonzero in any system, it follows from eqn (19.40)
that q̇0 must also be nonzero. Hence both of the λ1 and λ2 multipliers are nonzero,
with the result that, for i = 0, . . . , D,

q̇i = λ
∂K(q, p)

∂pi
(19.44)

where λ = λ1/λ2 is also nonzero.
Since the S in eqn (19.36) is by assumption an integral of the differential equation,

the relation K
(
q, ∂φ(q, a[0])/∂q

) = 0 holds for any values of the q. Thus, for i =
0, . . . , D,

0 = ∂K(q, p)

∂qi
+

D∑
k=0

∂2φ(q, a[0])
∂qk∂qi

∂K(q, p)

∂pk
(19.45)

where again it is assumed that the second of eqn (19.38) is substituted for p after the
partial is taken. Equations (19.44, 19.45) may now be used to evaluate the derivative
of the second of eqn (19.38), giving

ṗi =
D∑

k=0

∂2φ(q, a[0])
∂qk∂qi

q̇k =
D∑

k=0

∂2φ(q, a[0])
∂qk∂qi

λ
∂K(q, p)

∂pk
= −λ

∂K(q, p)

∂qi
(19.46)

In summary, we have obtained the equations

q̇i = λ
∂K(q, p)

∂pi
and ṗi = −λ

∂K(q, p)

∂qi
(19.47)

As is discussed in Section 12.7, for nonzero λ these equations are equivalent to the
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extended Hamilton equations eqn (12.13),

q̇i = ∂K(q, p)

∂pi
and ṗi = −∂K(q, p)

∂qi
(19.48)

in the sense that any trajectory that solves one also solves the other. Thus the trajec-
tory defined by eqns (19.40, 19.41) is a solution to the Hamilton equations. �

19.8 Separation of Variables
The use of complete integrals to solve the Hamilton equations is of practical value
only if some independent method is available for finding these complete integrals in
the first place. For example, the S1 and S2 functions of Section 19.4 are complete
integrals, but we had to know the trajectory already in order to set up the integral to
calculate them. So they would be of little practical value for problem solving.

A standard method for finding complete integrals is the separation of variables. It
is probably best explained by giving an example. Suppose that a single mass m moves
in three dimensions under a uniform gravitational field g = −gê3. The extended
Hamiltonian for this problem is, using q0, q1, q2, q3 = t, x, y, z,

K = p0 +
p2

x + p2
y + p2

z

2m
+ mgz (19.49)

and the Hamilton–Jacobi equation is

∂S

∂t
+ 1

2m

{(
∂S

∂x

)2

+
(

∂S

∂y

)2

+
(

∂S

∂z

)2
}
+ mgz = 0 (19.50)

We separate variables by using the trial solution

S(t, x, y, z) = T (t)+ X (x)+ Y (y)+ Z(z) (19.51)

which allows eqn (19.50) to be written as{
dT

dt

}
+

{
1

2m

(
d X

dx

)2
}
+

{
1

2m

(
dY

dy

)2
}
+

{
1

2m

(
d Z

dz

)2

+ mgz

}
= 0 (19.52)

Each of the terms in curly brackets in eqn (19.52) depends on only a single variable.
Since the variables t, x, y, z are independent, we may hold t, x, y constant while z is
allowed to vary. But, as z varies, the last expression in curly brackets must remain
constant because of the constraint imposed by eqn (19.52) with constant values for
the other variables. A similar argument can be applied to each of the terms in curly
brackets, with the result that{

dT

dt

}
= a4

{
1

2m

(
d X

dx

)2
}
= a1

{
1

2m

(
dY

dy

)2
}
= a2

{
1

2m

(
d Z

dz

)2

+ mgz

}
= a3

(19.53)
where the constants must satisfy the relation a1 + a2 + a3 + a4 = 0.
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Performing integrations of the ordinary differential equations in eqn (19.53) and
putting the results into eqn (19.51) gives the complete integral S(q, a) = a0+φ(q, a[0]),
where

φ(q, a[0]) = −(a1 + a2 + a3)t + ε1

√
2ma1 x + ε2

√
2ma2 y + ε3

√
8

9mg2 (a3 − mgz)3/2

(19.54)
and the εi are factors of ±1 coming from arbitrary choices of the signs of square roots
in the integration.

Since the method of separation of variables has given us a complete integral, we
may now use the methods of Section 19.7 to solve for the system trajectory. The first
of eqn (19.38) gives

b1 = −t + ε1

√
m

2a1
x b2 = −t + ε2

√
m

2a2
y b3 = −t − ε3

√
2

mg2 (a3 − mgz)1/2

(19.55)
from which one may calculate the trajectory. In particular, the equation for z is z =
z0 + v30t − gt2/2 where

v30 = −gb3 and z0 = a3

mg
− gb2

3

2
= 1

mg

(
a3 − mv2

30

2

)
(19.56)

19.9 Canonical Transformations
The extraction of a phase-space trajectory from a complete integral in Section 19.7
can also be viewed as a canonical transformation. In Courant and Hilbert (1962),
this is referred to as a “new method” for proving that the trajectory defined by eqns
(19.40, 19.41) is a solution of the Hamilton equations.

The new method makes a canonical transformation from the variable set q, p to a
new set Q, P all but one of which will be constant. We assume that the phase-space
variables have been relabeled if necessary so that q̇0 �= 0. Also, for simplicity and
without loss of generality, we assume that the extended Hamiltonian is in standard
form. (See Section 18.12.)

Define an F2 generating function of the sort described in Section 18.3 by making
the substitution aj → Pj in the function φ(q, a[0]) and writing

F2(q, P) = q0 P0 + φ(q, P[0]) (19.57)

Since matrix M from eqn (19.37) has rank D, it follows that the matrix
(
∂2 F2/∂q∂ P

)
defined in eqn (18.19) will be nonsingular, which is the condition for F2 to be a legiti-
mate generating function. The F2 rules in eqn (18.20) then become, for j = 1, . . . , D,

p0 = ∂ F2

∂q0
= P0 + ∂φ(q, P[0])

∂q0
Q0 = ∂ F2

∂ P0
= q0 (19.58)

pj = ∂ F2

∂qj
= ∂φ(q, P[0])

∂qj
Qj = ∂ F2

∂ Pj
= ∂φ(q, P[0])

∂ Pj
(19.59)

Since the complete integral is a solution of the Hamilton–Jacobi equation by assump-
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tion, we have

K
(

q,
∂φ(q, P[0])

∂q

)
= ∂φ(q, P[0])

∂q0
+ H

(
q,

∂φ(q, P[0])
∂q[0]

)
= 0 (19.60)

Thus the first of eqn (19.58) can be written as

P0 = p0 + H

(
q,

∂φ(q, P[0])
∂q[0]

)
= p0 + H

(
q, p[0]

) = K(q, p) (19.61)

where the first of eqn (19.59) was used. As explained in Theorem 17.12.1, in canon-
ical transformations the extended Hamiltonian in the new variables Q, P is always
the same function as K(q, p), simply expressed in the new variable set by direct sub-
stitution. Hence eqn (19.61) implies

K(Q, P) = K
(
q(Q, P), p(Q, P)

) = P0 (19.62)

As proved in Theorem 17.12.1, the Hamilton equations are form invariant under
canonical transformations. Thus the Hamilton characteristic equations are satisfied in
the original q, p system if and only if they hold in the Q, P system with the extended
Hamiltonian K(Q, P) = P0. With that extended Hamiltonian, they are

Q̇0 = ∂K(Q, P)

∂ P0
= 1 Q̇ j = ∂K(Q, P)

∂ Pj
= 0 Ṗi = −∂K(Q, P)

∂ Qi
= 0 (19.63)

for i = 0, . . . , D and j = 1, . . . , D.
We have already defined the aj = Pj as constants, and may now define the Qj =

bj to be constants also. Then eqn (19.63) hold by construction and hence, by form
invariance, the Hamilton equations hold also in the original q, p system, which is
what we wished to establish.

The method is essentially to make a canonical transformation from the variables
q, p to new variables that are constants, except for Q0 = q0. In the traditional pre-
sentation of this method, in Courant and Hilbert (1962) for example, the time q0

is not considered a variable. The traditional Hamiltonian in the transformed system
vanishes and all of the remaining coordinates Q[0], P are constant. In the extended
theory, however, Lemma 17.7.2 has shown that in any system of canonical coordi-
nates, at least one of the Q, P must have a non-vanishing derivative. Since we are
assuming that the variable labeled q0 is the non-constant one, and are hence using
the standard form of the extended Hamiltonian, that single non-constant coordinate
is Q0 = q0.

Since we have made the substitutions Pj → aj , Qj → bj , Q0 = q0, the second F2

transformation rule in eqn (19.59) may be written, for j = 1, . . . , D, as

bj = ∂ F2

∂aj
= ∂φ(q, a[0])

∂aj
(19.64)

which is identical to the first of eqn (19.38). Due to these same substitutions, the first
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F2 transformation rule in eqn (19.59) may be written as

p0 = ∂ F2

∂q0
= P0 + ∂φ(q, a[0])

∂q0
pj = ∂ F2

∂qj
= ∂φ(q, a[0])

∂qj
(19.65)

Since, after all partials are taken, we can set P0 = K(Q, P) = 0, these two equations
together are identical to the second of eqn (19.38). Thus the trajectory derived from
the F2 generating function will be identical to the trajectory derived earlier from eqn
(19.38) directly.

19.10 General Integrals
The complete integrals described so far in this chapter are the main tools for actual
problem solution using Hamilton–Jacobi methods. However, the Hamilton–Jacobi
equation has other solutions that are of great theoretical interest. In particular, the
general integrals are the ones most closely related to the Schroedinger wave function
of quantum mechanics.

General integrals are those solutions of the Hamilton–Jacobi equation that do not
depend explicitly on a set of integration constants. The most interesting ones for our
purposes are those that solve what is called a Cauchy problem, in which one specifies
the value of S on some chosen initial surface. If the initial surface is chosen properly,
the general integral is then uniquely determined.

As we did for separation of variables, it is probably most useful to introduce gen-
eral integrals by means of a simple example that can be generalized by the reader.
We consider the same projectile problem as in Section 19.8, but now restricted to one
dimension. Calling the vertical dimension x , and denoting q0 = t and q1 = x , the
extended Hamiltonian and resulting Hamilton–Jacobi equation are

K(q, p) = p0 + p2
1

2m
+ mgx

∂S

∂t
+ 1

2m

(
∂S

∂x

)2

+ mgx = 0 (19.66)

Suppose that we want a general integral that solves the Hamilton–Jacobi equation
and passes through the initial surface C1 (now a one-dimensional surface, or curve,
since D = 1) denoted by introducing a new monotonic parameter τ and writing

t (τ ) = 0 x(τ ) = τ S(τ ) = ατ (19.67)

Because of the simplicity of this example, we can plot the initial curve C1 and the
eventual integral surface in a three-dimensional diagram with axes t, x, S as shown
in Figure 19.2.

The general integral sought can be written as S = 
(t, x). It will be useful to
think of it in implicit form as F(t, x, S) = 
(t, x) − S = 0, which can be viewed
geometrically as a surface in t, x, S space called an integral surface. (See Section D.37
for a discussion of surfaces in three dimensions.) The quantities p0 = ∂ F/∂t , p1 =
∂ F/∂x , and −1 = ∂ F/∂S are then components of a “vector” in this space that is
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S

FIG. 19.2. General integral surface S for simple projectile. The initial curve is the line at the
right edge of the surface. The characteristic curves (solutions to Hamilton equations) spread
out from that line and lie in the integral surface. The time t is in seconds, the distance x is
in units of g(1 sec)2, the action S is in units of mg2(1 sec)3. The parameter α defining the
initial curve in eqn (19.67) is chosen arbitrarily to be α = 2mg(1 sec).

normal to the integral surface. (If we imagine a small plane tangent to the surface at
each point, then this vector is the normal to that tangent plane.)

The τ is some parameter that varies monotonically along the initial curve. Al-
though it is convenient to express the result parametrically as we have done, clearly
eqn (19.67) is stating that S has the value αx along the x-axis at t = 0. But one
should not conclude from this example that the “initial” curve must necessarily be at
time zero. Any initial curve that is not itself a characteristic curve may be used.

The first step toward the general integral is to determine initial values p0(τ ) and
p1(τ ) at each τ along the initial curve C1. These quantities must satisfy the equation

0 = d F

dτ
= p0(τ )

dt

dτ
+ p1(τ )

dx

dτ
− d S(τ )

dτ
(19.68)

and the Hamilton–Jacobi equation

p0(τ )+ p2
1(τ )

2m
+ mgx(τ ) = 0 (19.69)

Equation (19.68) says that the p0(τ ) and p(τ ) must be chosen such that the initial
curve (dt/dτ, dx/dτ, d S/dτ) lies in the integral surface F = 0. Equation (19.69) says
that these same momenta must satisfy the Hamilton–Jacobi equation along C1. In
our example, eqn (19.68) becomes p1(τ ) − α = 0. Substituting this result into the
Hamilton–Jacobi equation gives p0(τ )+ α2/2m +mgx(τ ) = 0 with the result that the
momenta at each τ of the initial curve are determined to be

p0(τ ) = −
(

α2

2m
+ mgτ

)
and p1(τ ) = α (19.70)

For any τ value, eqns (19.67, 19.70) together determine what may be called an initial
patch, a small plane containing a small piece of the initial curve and having a normal
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(p0(τ ), p1(τ ),−1) that satisfies the Hamilton–Jacobi equation at that point. The set of
all such patches as τ varies along C1 is called an initial strip. This initial strip is the
launching pad for our general integral.

Patches

τ

β

β

β

β

FIG. 19.3. As β increases, the characteristic curves branch out from points on the initial curve
C1 (heavy line parameterized by τ). These characteristic curves are in, and define, the
integral surface. The patches along the initial curve are also shown. Together they make
the initial strip.

The next step in finding the general integral is to write the characteristic equations
of the problem and solve them. The characteristic differential equations are defined
by the condition that their solutions, called characteristic curves, always lie in integral
surfaces. We want to define a family of characteristic curves, with each curve in the
family starting at some particular point τ on the initial curve C1. As can be seen
from Figure 19.3, as parameter τ varies this family of characteristic curves will sweep
out a surface in the space t, x, S. Since characteristic curves always lie in integral
surfaces by definition, the surface swept out will define the general integral that we
are seeking.

The characteristic equations of the Hamilton–Jacobi equation are the extended
Hamilton equations, eqn (12.13), plus the additional equation mentioned in the foot-
note on page 468. In the present example, they reduce to

ṫ = ∂K
∂p0

= 1 ẋ = ∂K
∂p1

= p1

m
ṗ0 = −∂K

∂t
= 0 ṗ1 = −∂K

∂x
= −mg (19.71)

together with

Ṡ =
D∑

k=0

pk
∂K
∂pk

= p0 + p2
1

m
(19.72)

where in all cases the dot indicates differentiation with respect to some parameter β

that varies monotonically along the characteristic curves. Performing the integrations
using the initial conditions from the initial patches defined in eqns (19.67, 19.70), we
obtain a family of characteristic curves, with each one beginning at a particular point
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τ of the initial curve C1 and moving out from there as β advances,

t (τ, β) = β x(τ, β) = τ + α

m
β − 1

2
gβ2

p0(τ, β) = −
(

α2

2m
+ mgτ

)
p1(τ, β) = α − mgβ (19.73)

S(τ, β) = (α − mgβ) τ + α2

2m
β − αgβ2 + 1

3
mg2β3 (19.74)

Note that the derivatives of these quantities with respect to β satisfy the characteristic
equations, eqns (19.71, 19.72), and that their values when β = 0 reduce to the values
on the initial curve C1 as given by eqns (19.67, 19.70).

The S(τ, β) in eqn (19.74) is our general integral. However, the coordinates τ, β

are inconvenient. We would like to have S as a function of t and x . To accomplish this
change of variable, the equations

t (τ, β) = β x(τ, β) = τ + α

m
β − 1

2
gβ2 (19.75)

from eqn (19.73) can be solved for τ(t, x) and β(t, x). By the inverse function theorem
(Theorem D.24.1), the condition for this inversion to be possible in some neighbor-
hood of C1 is that the determinant

� =

∣∣∣∣∣∣∣∣∣
∂t (τ, β)

∂τ

∂t (τ, β)

∂β

∂x(τ, β)

∂τ

∂x(τ, β)

∂β

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

∂t (τ, β)

∂τ

∂K
∂p0

∂x(τ, β)

∂τ

∂K
∂p1

∣∣∣∣∣∣∣∣∣ (19.76)

must be nonzero in the limit β → 0. In our example, � = −1 and the inversion gives

β(t, x) = t τ(t, x) = x − αt

m
+ 1

2
gt2 (19.77)

Substitution of this result into eqn (19.74) then gives the general integral in its final
form, which is the shaded surface shown in Figure 19.2,

S (t, x) = αx −
(

mgx + α2

2m

)
t + α

2
gt2 − mg2

6
t3 (19.78)

The reader can verify that this expression solves the Hamilton–Jacobi equation for all
t, x values, and that as t → 0 it reduces to value αx prescribed in eqn (19.67) on the
initial curve. Thus a unique solution to the Cauchy problem has been found.

One feature of integrals to the Hamilton–Jacobi equation is that when the tradi-
tional Hamiltonian has the simple form eqn (19.27), the projections of the character-
istic curves onto three-dimensional Cartesian space x, y, z will be lines perpendicular
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to surfaces of constant S. This is because ẋ = p1/m, etc., and hence one has the
proportionality

ẋ : ẏ : ż = p1 : p2 : p3 = ∂S

∂x
: ∂S

∂y
: ∂S

∂z
(19.79)

This perpendicularity is not visible in Figure 19.2, however, since D = 1 and only the
x-axis is present.115

The simple example given here can be generalized in a straightforward way to
D ≥ 2. The geometrical ideas become more difficult to visualize, however. It is useful
to do the manipulations required while keeping in mind the analogy to the simple
case D = 1. When D ≥ 2, the initial curve becomes a D-dimensional initial surface,
in a D + 2-dimensional space with coordinates q0, q1, . . . , qD, S. The initial surface is
parameterized by D parameters τ1, . . . , τD. The generalizations of eqns (19.68, 19.69)
are

D∑
i=0

pi (τ )
dqi (τ )

dτj
− d S (τ )

dτj
= 0 p0(τ )+ H

(
q(τ ), p[0](τ )

) = 0 (19.80)

for all j = 1, . . . , D, where τ stands for the set of parameters τ1, . . . , τD.
The characteristic equations are the extended Hamilton equations, eqn (12.13),

plus the extra equation

Ṡ =
D∑

i=0

pi
∂K(q, p)

∂pi
(19.81)

They are to be solved for a D-parameter family of characteristic curves of the form

qi = qi (τ1, . . . , τD, β) pi = pi (τ1, . . . , τD, β) S = S(τ1, . . . , τD, β) (19.82)

where each characteristic curve begins on the initial surface at a point with parame-
ters τ1, . . . , τD. If the determinant

� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂q0

∂τ1
· · · ∂q0

∂τD

∂q0

∂β

...
...

...
...

∂qD−1

∂τ1
· · · ∂qD−1

∂τD

∂qD−1

∂β

∂qD

∂τ1
· · · ∂qD

∂τD

∂qD

∂β

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(19.83)

is nonzero (otherwise, the choice of initial surface should be modified until it is) then

115The relation in eqn (19.79) is not valid for charged particles in the presence of a magnetic induction
field.
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FIG. 19.4. Contour plot of the mono-energetic integral for the simple projectile in two dimen-
sions. The heavy lines are contours of constant W . The lighter lines are projections onto
the x-y plane of the characteristic curves (solutions to the Hamilton equations). The initial
curve is the x-axis with W = αx , as shown in eqn 19.87. The x and y coordinates are in
units of g(1 sec)2. The constants are chosen to be α = mg(1 sec) and E = 10mg2(1 sec)2

the first of eqn (19.82) can be solved for

τj = τj (q0, . . . , qD) β = β(q0, . . . , qD) (19.84)

which can be substituted into the last of eqn (19.82) to give the general integral

S = S(q0, . . . , qD) = S
(
τ1(q0, . . . , qD), . . . , τD(q0, . . . , qD), β(q0, . . . , qD)

)
(19.85)

19.11 Mono-Energetic Integrals
In the special case in which the traditional Hamiltonian does not depend explicitly
on the time, there is yet another interesting class of integrals of the Hamilton–Jacobi
equation. These are integrals that have only a trivial time dependence, and that de-
pend on a non-additive constant, the energy E . We will call these mono-energetic
integrals. They are like the general integrals in the sense that they do not depend on
a complete set of integration constants, as the complete integrals of Section 19.7 do.
And yet they are not completely general, since the characteristic curves that generate
them are assumed all to have the same energy.

When the traditional Hamiltonian is not an explicit function of time, then the en-
ergy (more precisely the value of the traditional Hamiltonian, but we will continue
here to use the term energy) is conserved along any one of the characteristic curves
(phase-space trajectories) of any integral. But this does not mean that all of the char-
acteristic curves in a truly general integral surface necessarily have the same energy.
The energy will generally be different from curve to curve, as in Figure 19.2 for ex-
ample.116 But all characteristic curves in the mono-energetic integrals must have the
same energy E , by definition.

116For an even simpler example, consider the use of the S1 action function in Section 19.2. We emphasized
there that, despite its conservation along any particular curve, the traditional Hamiltonian H = −∂S1/∂t(2)

defined in eqn (19.8) will be different if different trajectories are chosen (e.g. different endpoints q(2) while
keeping the same t(2) value).
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The mono-energetic integral is obtained by beginning the process of separation
of variables described in Section 19.8 but only carrying it one step. If the traditional
Hamiltonian does not depend on the time explicitly, then the partial separation S =
T (t)+ W (q[0]) reduces the Hamilton–Jacobi equation, eqn (19.26), to

S = −Et + W (q[0], E) and E = H

(
q[0],

∂W (q[0], E)

∂q[0]

)
(19.86)

where a constant energy value E is to be selected arbitrarily. A dependency of W on
the constant E has been introduced to make clear that different E choices will lead
to different solutions.

The function W (q[0], E) is called Hamilton’s characteristic function, and the second
equation in eqn (19.86) is sometimes called the time-independent Hamilton–Jacobi
equation. We will refer to it as the mono-energetic Hamilton–Jacobi equation.

As an example, using a technique analogous to that in Section 19.10, a mono-
energetic integral can be found for the simple projectile problem in two dimensions
(D = 2 with coordinates x , y and gravity acting in the negative y direction) with the
Cauchy initial curve

x(τ ) = τ y(τ ) = 0 W (τ ) = ατ (19.87)

The mono-energetic Hamilton–Jacobi equation for this case is

E = 1

2m

{(
∂W

∂x

)2

+
(

∂W

∂y

)2
}
+ mgy (19.88)

One obtains an initial patch with momenta

p1(τ ) = α p2(τ ) =
√

2m E − α2 (19.89)

Carrying out the calculation (Exercise 19.4) leads to

W (τ, β, E) = ατ + α2β

m
− 1

3mg

{(√
2m E − α2 − mgβ

)3 −
(√

2m E − α2
)3

}
(19.90)

where

τ(x, y) = x − αβ

m
β(x, y) =

√
2m E − α2

mg

⎛⎝1 −
√

1 − 2m2gy

2m E − α2

⎞⎠ (19.91)

Figure 19.4 shows a contour plot of the resulting W (x, y, E), obtained when eqn
(19.91) is substituted into eqn (19.90), together with the projection onto the x-y
plane of the characteristic curves (solutions of the Hamilton characteristic equations).
Note that the characteristic curves are perpendicular to the contours of constant W ,
as predicted by eqn (19.79).
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19.12 The Optical Analogy
The work of Hamilton (Hamiltonian, Hamilton equations, Hamilton’s Principle, the
Hamilton–Jacobi equation) to which analytical mechanics owes such a debt began as
a study of the analogy between mechanics and optics.117 In Hamilton’s analogy, the
characteristic curves of the mono-energetic Hamilton–Jacobi equation play the role
of optical rays.

The ray approximation in optics can be obtained by substituting trial functions,
like E(r, t) = E0(r) exp i (W(r)− ωt) for the electric field, into the Maxwell equa-
tions.118 Assuming a monochromatic field with angular frequency ω, and taking a
short wavelength limit, one obtains the relation

n = ‖�W‖ =
√(

∂W
∂x

)2

+
(

∂W
∂y

)2

+
(

∂W
∂z

)2

(19.92)

where n = n(r) is the index of refraction of the medium. The function W is called
the eikonal. The optical rays are then defined to be perpendicular to iso-surfaces of
W and hence to obey

�W = n
dr
ds

= nt̂ (19.93)

where s is the arc length along the ray and t̂ is the unit tangent vector discussed in
Section A.12.

The optical ray model is monochromatic with only a trivial time dependence. Its
analog in analytical mechanics is the mono-energetic Hamilton–Jacobi theory. The
mechanical analog of the eikonal function W is Hamilton’s characteristic function W .

In three dimensions x, y, z the mono-energetic Hamilton–Jacobi equation, eqn
(19.86), becomes

E = 1

2m

{(
∂W

∂x

)2

+
(

∂W

∂y

)2

+
(

∂W

∂z

)2
}
+U (x, y, z) (19.94)

Writing this as √(
∂W

∂x

)2

+
(

∂W

∂y

)2

+
(

∂W

∂z

)2

= √
2m (E −U ) (19.95)

and comparing to eqn (19.92) shows that the expression
√

2m (E −U ) is the mechan-
ical analog of the index of refraction n.

Thus surfaces of constant W are the analogs of surfaces of constant eikonal in op-
tics, and the characteristic curves (solutions of Hamilton equations) are the analog of

117Hamilton was an Irish patriot who initially would publish only in little-read Irish journals. His ideas
on optics were later developed by Jacobi into a general theory of first-order partial differential equations.
Although Jacobi gave profuse credit to Hamilton, there was a sentiment among his contemporaries that
Hamilton’s actual ideas on optics were neglected. See Hankins (1980).

118See Chapter 3 of Born and Wolf (1980).
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optical rays. Although interesting in its own right, this analogy is only partial. On the
optical side, one is not using the full Maxwell equations but only a monochromatic,
short-wavelength approximation to them. And on the mechanical side, the mono-
energetic action function in eqn (19.86) is only a subclass of possible Hamilton–Jacobi
action functions. (For example, S1 and the general integral S in eqn (19.78) are not
of this form.) A more interesting analogy for our purposes here is the one between
analytical mechanics and another wave theory: quantum mechanics. This analogy is
pursued in Section 19.14.

19.13 The Relativistic Hamilton–Jacobi Equation

The manifestly covariant extended Hamiltonian for a particle in an external electro-
magnetic field was written in eqn (16.56) as

Ka =
(

p− q(ch)

c
A

)
·
(

p− q(ch)

c
A

)
+ m2c2 (19.96)

The covariant components of the canonical momentum fourvector p are derived in
Section 16.10. They are related to the partial derivatives of the Hamilton–Jacobi ac-
tion function as

p
0
= 1

c

∂L(q, q̇)

∂ ṫ
= 1

c

∂S

∂t
and p = ∂L(q, q̇)

∂ ṙ
= ∂S

∂r
(19.97)

which can be summarized as the fourvector equation

p = ∂S

∂r
= ∂S (19.98)

where the fourvector gradient ∂S is defined in Section 15.12. The invariant Hamilton–
Jacobi equation is obtained by substituting this relation into eqn (19.96), and apply-
ing the dependency relation Ka = 0, giving(

∂S

∂r
− q(ch)

c
A

)
·
(

∂S

∂r
− q(ch)

c
A

)
+ m2c2 = 0 (19.99)

Since the Hamilton–Jacobi action is defined by a manifestly covariant differential
equation, a solution can be found such that S itself is a Lorentz scalar field of the sort
discussed in Section 15.21.

19.14 Schroedinger and Hamilton–Jacobi Equations

Soon after Schroedinger’s pioneering papers, it was noticed that the Schroedinger
equation of nonrelativistic quantum mechanics could be decomposed into two real-
valued, coupled, partial differential equations, one of which bears a close resemblance



484 HAMILTON–JACOBI THEORY

to the Hamilton–Jacobi equation.119 Several decades later, this idea was revived by
David Bohm as the basis of a re-interpretation of quantum mechanics.120

Define the real field functions R > 0 and S by writing the normalized Schroedinger
wave function in polar form as

�(r, t) = R(r, t) exp (iS(r, t)/h̄) (19.100)

With that substitution, the Schroedinger equation of eqn (4.65) reduces to the two
real-valued differential equations

∂S
∂t

+ 1

2m

{(
∂S
∂x

)2

+
(

∂S
∂y

)2

+
(

∂S
∂z

)2
}
+U +Uqm = 0 (19.101)

∂
(
R2

)
∂t

+� ·
(R2�S

m

)
= 0 (19.102)

The first of these equations is identical to the Hamilton–Jacobi equation except for
the addition of a term that Bohm calls the quantum potential Uqm . Its definition

Uqm(r, t) = − h̄2

2m

�2R(r, t)

R(r, t)
(19.103)

has the effect of raising the effective potential in regions where R2 reaches max-
imum values. Since the probability distribution function in quantum mechanics is
P = �∗� = R2, the second equation, eqn (19.102), can be written as

∂P
∂t

+� · J = 0 (19.104)

which has the form of a conservation equation for probability, with J = (�S/m)P
playing the role of a probability current density.121

The Bohm interpretation of quantum mechanics considers the characteristic curves
of the Hamilton–Jacobi equation, eqn (19.101), (including the added quantum po-
tential Uqm) to be real phase-space trajectories of the quantum particle. Soon after
Bohm’s papers appeared, there was a telling exchange of letters between Bohm and
Otto Halpern.122 Halpern criticized Bohm’s approach because the Schroedinger wave
function and eqn (19.100) provide only a general field function S(r, t), and fail to
provide a set of constants of integration. It would therefore be impossible to apply
the techniques of Sections 19.7 or 19.9 to extract a trajectory from it. Bohm conceded

119See Section 2.3 of Jammer (1974). In his original papers, Schroedinger quoted Hamilton–Jacobi theory
in a heuristic derivation of the Schroedinger equation.

120Bohm, D. (1952) Phys. Rev. 85, p. 166 and p. 180.
121Those unfamiliar with this form for conservation equations might review the analogous equation in

electrodynamics. A useful introduction is Chapter 12 of Wangsness (1986).
122Halpern, O. (1952) Phys.Rev. 87, p. 389 and Bohm, D. (1952) Phys. Rev. 87, p. 389.
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the point, but replied that it was nonetheless true that the momenta p = ∂S/∂r de-
fine trajectories along which the Hamilton characteristic equations are satisfied (of
course when the Uqm is included). Translated into the language of the present chap-
ter, Halpern’s criticism was that Bohm’s method does not provide a complete integral,
and Bohm’s reply was that it does provide a general integral whose associated char-
acteristic curves are valid phase-space trajectories.

19.15 The Quantum Cauchy Problem
The analogy between the Schroedinger and Hamilton–Jacobi equations is so close that
one could in principle, if not as a practical method, solve the Schroedinger equation
in simple cases using only the methods of classical analytical mechanics and Bohm’s
quantum potential. We present only an outline of a possible method here.

To exploit the analogy in this way, first use eqn (19.104) to write the rate of change
of P along any characteristic curve. Assuming a Hamilton–Jacobi equation of the form
eqn (19.101), the rate of change of P(r, t) is

dP
dβ

= ∂P
∂t

ṫ + ṙ ·�P = ∂P
∂t

+ p
m
·�P = −P

m
�2 S (19.105)

where p = �S and eqn (19.104) were used to get the last equality, and where we
have taken β = t . Now consider an iterative procedure in which one first solves the
Cauchy problem entirely classically, with no quantum potential, given some initial
strip assignment such as that in eqn (19.67). This zeroth-order calculation gives a
general integral S(0)(r, t) like that in eqn (19.78). Then assign some initial probabil-
ity distribution along the initial strip, writing P = P(τ ) for some arbitrarily chosen
probability distribution function P. Expressing �2S(0) in terms of α, β using equations
like eqn (19.75) and putting that result into eqn (19.105), one can then integrate that
equation to obtain P(0)(τ, β). Inverse functions like eqn (19.77) can be used to con-
vert this probability distribution function to P(0)(r, t). Then R(0) = √

P(0) and eqn
(19.103) allow a quantum potential U (0)

qm to be calculated.
The next iteration repeats the solution of the Cauchy problem, but now with the

quantum potential U (0)
qm included. The result is a general integral S(1)(r, t) from which

first-order values P(1)(r, t) and U (1)
qm can be obtained. The process is then repeated. If

the iteration process converges adequately, the result will be a self-consistent solution
of the quantum Cauchy problem consisting of a general integral S(r, t), probability
assignment P(r, t) and quantum potential Uqm which solve eqns (19.101, 19.102),
and hence the quantum Schroedinger equation. This solution will, by construction,
have a general integral that includes the chosen initial strip, and that has the chosen
initial probability distribution along it.

The literature on the Bohm model typically works in the opposite logical direction,
however. One first solves the Schroedinger equation by the usual methods of quantum
mechanics. Then one uses eqn (19.100) to extract S(r, t) and P(r, t) = √

R that
satisfy eqns (19.101, 19.102) by construction. The characteristic curves defined by
solving the extended Hamilton equations (with the quantum potential Uqm included
in the Hamiltonian) are then taken to be possible trajectories of the quantum particle.
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19.16 The Bohm Hidden Variable Model
The Bohm interpretation seeks to reduce quantum mechanics to an underlying stra-
tum of classical quantities called hidden variables. The hidden variables are those
describing the particle trajectories determined by the Hamilton–Jacobi theory with
the added quantum potential. There are in general many possible trajectories, with
the particle in one or the other of them. The quantum potential is taken to be a real,
physical potential that has the effect of pushing the particle trajectories into paths
consistent with the quantum mechanical result.

The Bohm interpretation is persuasive because of the close analogy between the
Schroedinger equation and Hamilton–Jacobi theory, as detailed in Sections 19.14 and
19.15. It has a rich literature, which the reader may consult. Besides reviews by Bohm
himself (Bohm, 1980; Bohm and Hiley, 1993), one may also consult a recent review
of the subject in Holland (1993).

The Bohm hidden variable model may be criticized on several grounds, however.
First, measurement of a variable in quantum mechanics results in what is called the
collapse of the wave function. The fields P and S change discontinuously in such
a collapse, and therefore so does the quantum potential. Thus a measurement at
one physical point could lead to an instantaneous change in the quantum potential
everywhere, a violation of the relativistic principle that nothing real can propagate at
speeds faster than the speed of light.

Another serious problem has to do with the reality of the particle trajectories that
are at the core of the Bohm interpretation. If these trajectories are real, with the
particle occupying one or the other of them, then we might expect that the probability
of occupation of a given trajectory would be constant as the particle moves along it.
But as eqn (19.105) has shown, the probability of occupation of a trajectory is not
constant as β increases.123 A given trajectory may begin with a high probability of
occupation and evolve into a low-probability region, or vice versa. The idea that the
different particle trajectories are assigned classical probabilities124 of occupation and
carry that assigned probability with them is therefore untenable. This leads to some
doubt about the physical reality of the trajectories.

A third problem has to do with the interpretation of the quantum potential. Quan-
tum mechanics is a wave theory. The application of Fourier analysis to this wave the-
ory predicts that any wave that is localized in space must consist of the superposition

123In later work (D. Bohm and J.V. Vigier (1954) Phys. Rev. 96, p. 208), Bohm introduced the idea that
the probability distribution undergoes a stochastic process that converges to the quantum value P. The fact
remains, however, that the quantum value to which it converges is not conserved along individual particle
trajectories.

Another possibility would be to abandon the idea of individual trajectories and to assign probabilities to
bundles of trajectories forming flux tubes, much like the treatment of steady currents in electrodynamics.
But even then, the flux of probability out of a tube would equal the flux into it only in the static case with
∂P/∂t = 0.

124Given a set of mutually exclusive possibilities (here occupation of particle trajectories), classical
Bayesian probability theory assigns a probability measure (a number between zero and one) to each pos-
sibility, to represent our knowledge or lack of knowledge about the system. These are sometimes called
“ignorance probabilities”.
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of many momentum values. The result is that a localized wave will spontaneously
broaden, an effect known in quantum theory as the spread of the wave function. This
phenomenon is reproduced in the Bohm theory by the quantum potential, which has
the effect of raising the effective potential in regions where the probability distribu-
tion has peaks. It is an unproved assertion that this “potential” actually represents
dynamical “forces” moving the particle trajectories this way and that. It is possible
that it is simply a kinematical term that replicates the spread of the wave function, an
effect actually coming from the wave nature of matter rather than from real forces.

Despite these objections, the Bohm hidden variable model deserves attention be-
cause it is at least asking the right questions. How can a wave theory (quantum me-
chanics) be reconciled with a theory of discrete particle trajectories (Hamiltonian
analytical mechanics)?

19.17 Feynman Path-Integral Technique
Richard Feynman developed a technique for solving the Schroedinger equation by
means of action integrals.125 To understand his work, we must begin with a descrip-
tion of quantum mechanical propagators. The Schroedinger equation is equivalent to
an integral equation linking the wave function at time t to the wave function at some
initial time t (1). This integral equation can be written

�(x, t) =
∫ ∞

−∞
U (x, t; x (1), t (1)) �(x (1), t (1)) dx (1) (19.106)

where, for simplicity, we restrict ourselves to one-dimensional problems and nonrel-
ativistic quantum mechanics. The kernel of this integral equation, U (x, t; x (1), t (1)), is
called the propagator.

Feynman showed that the propagator can be written in terms of the same action
function I as was used in stating Hamilton’s principle in eqn (6.4),

U (x, t; x (1), t (1)) =
∑

all paths P

B exp
(

i IP (x, t; x (1), t (1))/h̄
)

(19.107)

where

IP (x, t; x (1), t (1)) =
∫ x,t

x (1),t (1)

L(x,
dx

dt
, t) dt (19.108)

and where B is a smoothly varying function that can be determined. The integral
defining each IP is to be taken along some specific varied path P connecting the
end points. In Hamilton’s principle, and in the calculus of variations in general, these
varied paths are important only for comparison with the unvaried path. But in the
Feynman method all varied paths are significant and all contribute to the sum over
“all paths.”

125See Feynman and Hibbs (1965). A brief, accessible introduction is Chapter 8 of Shankar (1994).
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q(2)
k

β1 β2β

qk

q(1)
k

Classical Path

Other Paths
(included in sum)

FIG. 19.5. Illustration of Feynman’s sum over “all paths”. In simple cases, most of the contri-
bution to the sum comes from paths close to the classical path (shown as solid line).

If the potential appearing in the Schroedinger equation is not too complicated,
the main contributions to the sum over all paths come from those near to the classical
path. In this case, the sum in eqn (19.107) reduces to

U (x, t; x (1), t (1)) = A exp
(

i S1(x, t, x (1), t (1))/h̄
)

(19.109)

where S1 is the integral of the Lagrangian L along the unique classical path between
the given end points. This integral is identical to the Hamilton–Jacobi action function
S1 defined earlier in eqn (19.1). The A is again a slowly varying quantity that can be
determined.

It follows that the S1 action function of Hamilton–Jacobi theory can be used to
write the quantum mechanical propagator, up to a function A that must be deter-
mined. For example, the propagator for a free particle in one dimension is obtained
from eqn (19.18) as

U (x, t; x (1), t (1)) = A exp

(
i

h̄

m(x − x (1))2

2(t − t (1))

)
(19.110)

The Feynman method illustrates once again the close connection between quan-
tum mechanics and Hamilton–Jacobi theory. The method is generally considered to
be a calculational device, analogous to the Huygens–Fresnel construction in optics,
and not an alternate interpretation of quantum mechanics. Suitably generalized, it
has proved an extremely valuable tool in advanced quantum theory.

19.18 Quantum and Classical Mechanics
From the ubiquitous use of the Hamiltonian in quantum theory, to Schroedinger’s
original invocation of Hamilton–Jacobi theory in his derivation of the equation that
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bears his name, to the Bohm model and Feynman method, there is obviously a close
connection between analytical mechanics and quantum mechanics. Some feel that
this connection is too close, that quantum mechanics is all too familiar. Rather than
being strange, quantum mechanics is not strange enough.

The sense of surprise that quantum mechanics so closely resembles classical ana-
lytical mechanics comes from the one essential and irreducible difference between the
two theories: quantum mechanics is a wave theory and classical particle mechanics is
not. The Schroedinger equation is a linear wave equation with a superposition prin-
ciple. This wave nature of matter in quantum theory is completely alien to classical
particle mechanics.

For example, in quantum mechanics if �1 and �2 are solutions of the Schroedinger
equation, then � = α�1+β�2 is also an equally valid solution. But classical mechan-
ics has no such concept as the superposition of two phase-space trajectories. If we
decompose � according to eqn (19.100), we find that the quantum mechanical prob-
ability distribution function is

P = α2P1 + β2P2 + αβ
√
P1P2 cos

(S1 − S2

h̄

)
�= α2P1 + β2P2 (19.111)

where we assume for simplicity that the α, β are real numbers chosen so that � is
normalized. The cosine term is due to wave interference between the two quantum
wave functions. Attempts to reduce quantum mechanics to a system of trajectories
with an assigned probability distribution over them are blocked by such interference
effects. The probabilities do not add in a classical manner. In the two-slit interference
experiment, for example, the probability distribution P with both slits open is not the
renormalized sum of the two probability distributions, each with one slit open and
the other closed. In spite of the closeness of the classical-quantum analogies, wave
interference phenomena remain inaccessible to classical analytical mechanics.

This book is written in the hope that a reader may one day emerge from the
thicket of classical-quantum analogies with ideas for a more comprehensive theory of
matter—one that explains why an electron propagates as a wave while still requiring
for its description classical variables like spin, momentum, and mass, variables that
seem more appropriate for rocks and planets than for waves.

19.19 Exercises
Exercise 19.1 A projectile of mass m moves in three dimensions under the influence of a
uniform gravitational force mg = −mgê3 acting downwards in the negative-z direction. The
traditional Lagrangian is thus L = (m/2) ‖dr/dt‖2 − mgz.

(a) Show that the classical path between end points and times r(1), t (1) and r(2), t (2) is given
by

r(t) = r(1) + v(1)
(

t − t (1)
)
− 1

2
g
(

t − t (1)
)2

(19.112)

where

v(1) = r(2) − r(1)

t (2) − t (1)
+ g

2

(
t (2) − t (1)

)
(19.113)
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(b) Use eqn (19.2) to derive S1
(
r(2), t (2), r(1), t (1)

)
.

(c) Show that the partial derivatives in Section 19.2 using this S1 have the values that you
would expect from elementary mechanics.

Exercise 19.2
(a) For the same system as Exercise 19.1, perform the Legendre transformation as described
in Section 19.3 to derive the S2 action function.
(b) Show that the partial derivatives in Section 19.3 using this S2 have the values that you
would expect from elementary mechanics.

Exercise 19.3 (a) Verify that the general solution in eqn (19.78) satisfies the Hamilton–Jacobi
equation eqn (19.66).
(b) Verify that this general solution contains the initial curve eqn (19.67).

Exercise 19.4
(a) Following the pattern in Section 19.10, carry out the details of the solution of the Cauchy
problem for the mono-energetic integral in Section 19.11.
(b) Verify that the solution in eqns (19.90, 19.91) satisfies the mono-energetic Hamilton–
Jacobi equation eqn (19.88) and contains the initial curve eqn (19.87).

Exercise 19.5
(a) Use eqn (19.1) and Lemma 11.4.1 to demonstrate that, since the free-particle momenta
are constant along any particular trajectory, the S1 action function for a single free particle
may be written as

S1(q
(2), q(1)) =

3∑
k=0

pk

(
q(2)

k − q(1)
k

)
(19.114)

(b) Writing the constant momenta pk in terms of the end values q(2)
k and q(1)

k , and using
the relativistic coordinates with q0 = ct described at the end of Section 16.9, show that
S1(q(2), q(1)) for a single free particle may be written as the Lorentz scalar expression

S1(r(2), r(1)) = −mc
√
− (

r(2) − r(1)
) · (r(2) − r(1)

)
(19.115)

(c) Dropping the superscript (2) on the upper limit, as was done in Section 19.5, demonstrate
that eqn (19.115) is a solution of the covariant Hamilton–Jacobi equation eqn (19.99) when
q(ch) = 0.

Exercise 19.6
(a) Show that the gauge transformation defined in Exercise 2.7 and Exercise 11.8 may be
written as the Lorentz covariant expressions

A′ = A+ ∂χ and hence p′ = p+ q(ch)

c
∂χ (19.116)

where ∂χ = ∂χ/∂r is the fourvector gradient as defined in Section 15.12 and p is the canon-
ical momentum fourvector defined in Section 16.10.
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(b) Show that if S is a solution of eqn (19.99), then

S′ = S + q(ch)χ

c
(19.117)

is a solution of the same equation with A replaced by the gauge transformed potential A′.

Exercise 19.7 A harmonic oscillator in one dimension has the extended Hamiltonian

K(q, p) = p0 + p2
1

2m
+ 1

2
mω2q1 (19.118)

(a) Write the Hamilton–Jacobi differential equation for the action function S.
(b) Use the method of separation of variables to find a complete solution to the Hamilton–
Jacobi equation involving one non-additive constant a1.
(c) Identify your a1 with the momentum P1 as described in Section 19.9 and derive the gen-
erating function F2(q, P) that appears in Exercise 18.8.

Exercise 19.8 Substitute eqn (19.100) into the nonrelativistic Schroedinger equation in eqn
(4.65)

i h̄
∂

∂t
ψ = −h̄2

2m
∇2ψ +Uψ (19.119)

and verify the results in eqn (19.101, 19.102, 19.103).

Exercise 19.9 Consider a one-parameter family of planes parameterized by α as in

0 = F(x, y, z, α) = ax cos α + ay sin α + bz (19.120)

where a2 + b2 = 1 and constants a, b are positive and nonzero.

(a) Show that these planes all pass through the origin of coordinates.
(b) Using the methods of Section D.37, find the curve of intersection of this family of planes
for a given value of α. Show that for z > 0 it is a line having spherical polar coordinates
θ = arctan(b/a), φ = π + α, and r varying.
(c) Find the envelope of this family of planes. For z > 0 show that it is a right circular cone
of half angle θ .
(d) Find the curve of intersection and the envelope for the region with z < 0. Show that the
full envelope consists of two cones, one inverted and one upright, with their common vertex
at the origin of coordinates.

Exercise 19.10 In Section 19.8 we used separation of variables to find a complete integral of
the Hamilton–Jacobi equation for a simple projectile.

(a) Use eqn (19.54) and the methods of Section 19.9 to write an F2 generating function for
this system.
(b) Use this F2 generating function to verify eqn (19.56), and also to find the evolution of the
other variables x, y, p0, px , py, pz as functions of q0 = t and the constant coordinates Qj

and Pi .
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APPENDIX A

VECTOR FUNDAMENTALS

The reader is assumed to be familiar with threevectors in Cartesian, spherical-polar,
and cylindrical-polar coordinates. We summarize here some basic facts that will be
used throughout the text. Even those who feel secure with vector algebra should read
this material, since some ideas familiar to them may be presented here in a novel way.

A.1 Properties of Vectors
The interval between two points in three-dimensional space can be thought of as a
directed line running from the first to the second point. This displacement can be rep-
resented graphically by an arrow whose direction is the same as the displacement and
whose length is proportional to the represented distance. The properties of vectors in
general are abstracted from these displacement vectors. For example, two vectors are
added by placing the tail of the second addend at the head of the first. The sum is
then the vector from the tail of the first to the head of the second.

B
A + B

A

C
C − D

D

FIG. A.1. Addition and subtraction of displacement vectors.

Associated with every vector V is its norm or magnitude V , a non-negative number
which is zero only when the vector is the null vector. A vector can be multiplied by a
number α. The result is a vector having magnitude |α|V , and the same direction as V,
unless α is negative in which case the product has the opposite direction. Each vector
has an associated unit vector V̂ = V/V = (1/V )V, a vector of unit norm. The unit
vector has no units, these being carried by the magnitude V . The formula V = V V̂
can be thought of as factoring V into a magnitude V times a pure direction V̂.

Vector equations must balance, that is they must be of the form V = W where
both sides are vectors. Equations like V = 3 are meaningless. The only exception is
that the null vector, which strictly should be written 0, is universally written as the
scalar 0. Thus V = 0 is permitted.

A.2 Dot Product
The arrow representing a vector can be moved about in diagrams without changing
the vector represented, so long as the direction and length are kept fixed. Two such

495
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vectors define a plane, as can be seen graphically by so moving them until their arrows
are tail-to-tail.

The dot product of two vectors is defined as

V · W = V W cos θVW (A.1)

where θVW is the smaller angle between the two vectors drawn in the plane that they
define. It is symmetric: W · V = V · W. The magnitude or norm of a vector can be
expressed in terms of the dot product of V with itself,

‖V‖ = V = √
V · V. (A.2)

Two vectors are orthogonal if and only if their dot product vanishes.
If n̂ is any unit vector, the perpendicular projection of vector V onto the direction

of n̂ is Vn = V cos θvn = V · n̂. Using this projection, V can be decomposed into the
sum of two vectors, V‖ parallel to n̂, and V⊥ perpendicular to it,

V = V‖ + V⊥ (A.3)

where
V‖ = Vn n̂ = (

V · n̂
)

n̂ and V⊥ = V − (
V · n̂

)
n̂. (A.4)

V
V⊥

n̂

V‖

θvn

FIG. A.2. Projections parallel and perpendicular to n̂.

A.3 Cross Product
The cross product of V and W, denoted C = V × W, is another vector C whose
direction is perpendicular to the plane defined by V and W, with the sense of the
perpendicular being the direction of the thumb of one’s right hand when the fingers
are curled from V to W. The magnitude of C is C = V W sin θVW, where θVW is the
smaller angle between the two vectors. This definition implies that the cross product
of two parallel or anti-parallel vectors is zero, and that W × V = −V × W.

A.4 Linearity
Simple geometrical proofs show that the definitions of scalar multiplication, dot prod-
uct, and cross product all imply the property of linearity (here α, β are scalars),

α (W + X) = αW + αX (A.5)

V ∗ (αW + βX) = αV ∗ W + βV ∗ X (A.6)

where the * symbol stands for either · or ×.
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An important consequence of this linearity is that the product rule for differentia-
tion applies to vector products. If vectors V and W are functions of some variable β,
then

d

dβ
(V ∗ W) = dV

dβ
∗ W + V ∗ dW

dβ
(A.7)

where the * symbol again stands for either · or ×. A similar product rule applies to
products of scalars and vectors.

A.5 Cartesian Basis
We denote the mutually orthogonal, unit basis vectors of a Cartesian coordinate sys-
tem as ê1, ê2, ê3. (This triad of vectors is often denoted î, ĵ, k̂ in other texts.) The three
vectors are “normalized”, by which we mean that they are unit vectors, and are often
referred to as an “orthonormal” basis. The orthonormality of the basis unit vectors
implies

êi · êj = δi j (A.8)

where the Kroeneker delta function δi j defined by eqn (A.8) is 1 when i= j and 0
otherwise.

The component Vi = V · êi = V cos θi (where θi is the angle between V and êi ) is
the projection of V onto the direction of êi , and cos θi is often called the ith direction
cosine of V. Any vector V can be expanded in the êi basis as

V =
3∑

i=1

Vi êi , where Vi = V · êi (A.9)

are its components. The two equations in eqn (A.9) are often combined as

V =
3∑

i=1

(
V · êi

)
êi or V =

3∑
i=1

êi
(
êi · V

)
(A.10)

where the equivalence of the two forms is due to the symmetry of dot products and
to the fact that scalars and vectors can be written in any order.

We sometimes define a vector by listing its components, as in

V : {V1, V2, V3}o (A.11)

which states that vector V has components V1, V2, V3 relative to some orthonormal
basis ê1, ê2, ê3 labeled as basis o. The same vector V can have quite different compo-
nents V ′

1, V ′
2, V ′

3 relative to a different orthonormal basis ê′1, ê′2, ê′3 labeled as o′,

V : {V ′
1, V ′

2, V ′
3

}
o′ (A.12)

so we use the colon rather than an equal sign in these expressions to avoid the mis-
take of equating the vector to its components. Components depend on the coordi-
nate system; invariant objects like vectors do not. Equations like V = {V1, V2, V3} are
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therefore incorrect. Although it may seem a small matter, this distinction, like the
above-mentioned prohibition of V = 3, can avoid a good deal of grief.

The Cartesian basis vectors are assumed to be a right-handed system, by which we
mean that ê1 × ê2 = ê3 with the above definition of cross products. It is convenient to
define what is called the Levi-Civita function εi jk by

εi jk =
(
êi × êj

) · êk = êi ·
(
êj × êk

)
(A.13)

The second equality may be verified directly in all cases, assuming a right-handed
system, with the results that ε123 = ε312 = ε231 = 1 and ε213 = ε321 = ε132 = −1, and
that εi jk vanishes if any pair of the i, j, k is equal. Note that exchange of any pair of
indices of εi jk changes its sign. Since cyclic permutation of three indices is equivalent
to two exchanges, this implies that εi jk = εki j = εjki for any choice of indices i, j, k.
Expanding the cross product of two basis vectors using eqn (A.10) gives

(
êi × êj

) = 3∑
k=1

((
êi × êj

) · êk
)

êk =
3∑

k=1

εi jk êk . (A.14)

It follows from linearity eqn (A.6), using eqn (A.14) and the interchangeability of
finite sums, that

C = V × W =
3∑

i=1

3∑
j=1

Vi Wj êi × êj =
3∑

k=1

⎛⎝ 3∑
i=1

3∑
j=1

εi jk Vi Wj

⎞⎠ êk (A.15)

or, in other words,

C =
3∑

k=1

Ck êk where Ck =
3∑

i=1

3∑
j=1

εi jk Vi Wj (A.16)

This same linearity, applied now to dot products, gives

V · W =
3∑

i=1

3∑
j=1

Vi Wj êi · êj =
3∑

i=1

3∑
j=1

Vi Wjδi j =
3∑

i=1

Vi Wi . (A.17)

from which we also derive an equation for the magnitude in terms of components,

‖V‖ = V = √
V · V =

√√√√ 3∑
i=1

V 2
i (A.18)

A.6 The Position Vector
Position in space will be indicated by vector r from the origin of coordinates to the
denoted point. This position vector is also often referred to as the radius vector. The
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Cartesian coordinates x1, x2, x3 (which we occasionally also refer to as x, y, z ) of a
point in space are the dot products of this vector with the Cartesian unit vectors êi ,

r =
3∑

i=1

xi êi where xi = r · êi (A.19)

It might make more sense to use ri rather than xi in the preceding equation, but we
bow here to the general custom.

A.7 Fields
Scalar and vector fields are functions of the position vector. For example, the temper-
ature in a room is a scalar quantity that varies from place to place (and also in time,
of course, although we ignore that here). We denote such a scalar field by writing
T = T (r). The wind velocity is an example of a vector field. At every point it has
a particular intensity and direction. We write it as v = v(r). A constant vector can
be thought of as as a particular case of a vector field, a “uniform” vector field that
happens not to vary as r varies.

A.8 Polar Coordinates

φ

zr
θ

(x1, x2, x3)

ê3

ê2

ê1

ρ

FIG. A.3. Spherical polar and cylindrical polar coordinates.

Cylindrical polar coordinates ρ, φ, z and spherical polar coordinates r, θ, φ are defined
in terms of Cartesian coordinates x1, x2, x3 by

x1 = r sin θ cos φ = ρ cos φ (A.20)

x2 = r sin θ sin φ = ρ sin φ (A.21)

x3 = r cos θ = z (A.22)
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or, inversely, by

ρ =
√

x2
1 + x2

2 (A.23)

φ = arctan

(
x2

x1

)
(A.24)

z = x3 (A.25)

r =
√

x2
1 + x2

2 + x2
3 (A.26)

θ = arccos

⎛⎝ x3√
x2

1 + x2
2 + x2

3

⎞⎠ (A.27)

where 0 ≤ θ ≤ π and the quadrant of φ is determined by the equations

x1 = ρ cos φ and x2 = ρ sin φ (A.28)

where ρ is a positive quantity. The position of a point can then be specified by giving
the three numbers x1, x2, x3 (Cartesian coordinates), the three numbers ρ, φ, z (cylin-
drical polar coordinates), or the three numbers r, θ, φ (spherical polar coordinates).

φ̂

θ̂

ρ̂ê1

ẑ
φ̂

r̂

ê3

ê2

φ

r

ρ

z

P

θ

FIG. A.4. Illustration of unit vectors. Point P has Cartesian components x1, x2, x3.

The basis unit vectors of polar coordinates point in the directions that the denoted
point moves when the corresponding polar coordinates are incremented individually,

ρ̂ = ê1 cos φ + ê2 sin φ (A.29)

φ̂ = −ê1 sin φ + ê2 cos φ (A.30)

ẑ = ê3 (A.31)

r̂ = ρ̂ sin θ + ẑ cos θ (A.32)

θ̂ = ρ̂ cos θ − ẑ sin θ (A.33)
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Inverse relations can be derived from these, as

ê1 = ρ̂ cos φ − φ̂ sin φ (A.34)

ê2 = ρ̂ sin φ + φ̂ cos φ (A.35)

ê3 = ẑ (A.36)

ρ̂ = r̂ sin θ + θ̂ cos θ (A.37)

ẑ = r̂ cos θ − θ̂ sin θ (A.38)

The orthonormal basis vectors of cylindrical polar coordinates are ρ̂, φ̂, ẑ. The or-
thonormal basis vectors of spherical polar coordinates are r̂, θ̂, φ̂. The position vector
in the three systems, Cartesian, cylindrical polar, and spherical polar, is

r = x1ê1 + x2ê2 + x3ê3 (A.39)

r = ρ ρ̂+ z ẑ (A.40)

r = r r̂ (A.41)

The differential of position dr is written in the three systems by

dr = dx1ê1 + dx2ê2 + dx3ê3 (A.42)

dr = dρ ρ̂+ ρ dφ φ̂+ dz ẑ (A.43)

dr = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂ (A.44)

Dividing each term of these three equations by dt will also give the velocity vector
v = dr/dt ,

v = ẋ1ê1 + ẋ2ê2 + ẋ3ê3 (A.45)

v = ρ̇ ρ̂+ ρ φ̇ φ̂+ ż ẑ (A.46)

v = ṙ r̂ + r θ̇ θ̂ + r sin θ φ̇ φ̂ (A.47)

where the dots denote total derivatives of the coordinates with respect to time.
The orthonormal basis vectors of Cartesian coordinates are constants; they do not

vary with r. The orthonormal basis vectors of spherical polar and cylindrical polar
coordinates are nonuniform vector fields. We know them only when we know the
position r being referred to. The differential changes in the polar coordinate basis-
vector fields when the coordinates are incremented are

d r̂ = θ̂ dθ + φ̂ sin θ dφ (A.48)

d θ̂ = −r̂ dθ + φ̂ cos θ dφ (A.49)

dφ̂ = −ρ̂ dφ = −
(

r̂ sin θ + θ̂ cos θ
)

dφ (A.50)

dρ̂ = φ̂ dφ (A.51)

from which one can read partial derivatives such as ∂ θ̂/∂φ = φ̂ cos θ , etc., by letting
one coordinate at a time be varied on the right-hand sides of the equations.
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A.9 The Algebra of Sums
Sums in this book will use explicit summation signs. The Einstein summation conven-
tion (automatic summation over repeated indices) will not be used.

The reader is assumed familiar with the rules of manipulation of multiple sums.
These rules closely mirror similar rules for multiple integrals. For example, the factor-
ization in

3∑
i=1

3∑
j=1

aikbi j ck = ck

3∑
i=1

aik

3∑
j=1

bi j (A.52)

resembles that in∫ a

0
dx

∫ a

0
dy f (x, z) g(x, y) h(z) = h(z)

∫ a

0
dx f (x, z)

∫ a

0
dy g(x, y). (A.53)

Sums that differ only by the universal change of dummy indices are equal, as in

3∑
i=1

3∑
j=1

aikbi j ck =
3∑

l=1

3∑
m=1

alkblmck . (A.54)

The order of finite sums can be exchanged so long as the range of indices summed
over is kept the same, as in

3∑
i=1

i∑
j=1

aikbi j ck =
3∑

j=1

3∑
i= j

aikbi j ck . (A.55)

Sums involving the Kroeneker delta are used frequently, the result usually being the
collapse of a sum to a single value as in

3∑
j=1

δi j Wj = Wi . (A.56)

A.10 Miscellaneous Vector Formulae
It follows from eqn (A.13) and the linearity of dot and cross products that the triple
scalar product of three vectors is

A · (B × C) =
3∑

i=1

3∑
j=1

3∑
k=1

Ai Bj Ck êi ·
(
êj × êk

) = 3∑
i=1

3∑
j=1

3∑
k=1

Ai Bj Ckεi jk (A.57)

with the same result when dot and cross are exchanged,

(A × B) · C = A · (B × C) (A.58)

Both of these expressions are equal to the determinant of a matrix that has the
components of the vectors as its columns. To see this, apply the definition of determi-
nant in eqn (B.37) with Ai1 = Ai , Aj2 = Bj , and Ak3 = Ck and note that εi jk is zero
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for permutations in which any two of its indices are equal. Hence

(A × B) · C = A · (B × C) =
∣∣∣∣∣∣

A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣ . (A.59)

Determinant properties 1 and 4 from Section B.11, then show that the triple scalar
product is zero if any two vectors in it are parallel, and that it changes sign under any
exchange of vectors.

The triple vector product of three unit vectors êi ×
(
êj × êk

)
can be seen (by ex-

amination of all twenty-seven possible cases) to be zero unless either i = j or i = k,

and in those cases to be

êi ×
(
êj × êk

) = êjδik − êkδi j . (A.60)

The linearity of dot and cross products then gives what is sometimes called the “bac-
cab” expansion,

A × (B × C) =
3∑

i=1

3∑
j=1

3∑
k=1

Ai Bj Ck êi ×
(
êj × êk

) = B (A · C)− C (A · B) . (A.61)

The product
(
êi × êj

) · (êk × êl
)

can be seen by inspection to be zero except when
the pair i j matches the pair kl. In those cases, it is seen (again by examining all the
possibilities) that (

êi × êj
) · (êk × êl

) = δikδjl − δilδjk . (A.62)

The linearity of cross and dot products then gives

(A × B) · (C × D) = (A · C) (B · D)− (A · D) (B · C) . (A.63)

Applying eqn (A.14) to eqn (A.62) allows a useful identity to be derived,

3∑
m=1

εi jmεklm = δikδjl − δilδjk (A.64)

from which it also follows that

3∑
l=1

3∑
m=1

εilmεklm = 2δik . (A.65)

It should be mentioned that all of the formulas in this section and Section A.5 have
exactly the same form in Cartesian, cylindrical polar, and spherical polar coordinates.
If one replaces ê1, ê2, ê3 in formulas by the orthonormal triad f̂1= r̂, f̂2= θ̂, f̂3= φ̂ of
spherical polar coordinates or the orthonormal triad ĝ1= ρ̂, ĝ2= φ̂, ĝ3= ẑ of cylindri-
cal polar coordinates, the formulas for expansions of vectors, dot and cross products,
etc., retain exactly the same forms.
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A.11 Gradient Vector Operator
The gradient vector operator is defined as

∇ =
3∑

i=1

êi
∂

∂xi
= ∂

∂r
(A.66)

The second equality gives a useful alternate notation which lists explicitly the quantity
with respect to which the differentiation is done.

If f= f (x, y, z, t) is a time-varying scalar field function of position r=r(t) which is
itself a function of time, then the chain rule of partial differentiation yields

d f

dt
= v ·∇ f + ∂ f (x, y, z, t)

∂t
= v · ∂ f

∂r
+ ∂ f (x, y, z, t)

∂t
(A.67)

where we have written out the functional dependence of f to emphasize the meaning
of the time partial derivative. The v here is the velocity vector defined by

v =
3∑

i=1

ẋi êi where ẋi = dxi

dt
(A.68)

If C is any vector which is not a function of r (e.g. it might be a constant vector),
then a useful identity is

C = ∇ (C · r) = ∂

∂r
(C · r) (A.69)

A gradient with respect to velocity components can also be defined

∇v =
3∑

i=1

êi
∂

∂ ẋi
= ∂

∂v
(A.70)

Then, if C is any vector which is not a function of v, an identity similar to eqn (A.69)
holds,

C = ∇v (C · v) = ∂

∂v
(C · v) (A.71)

It follows from eqn (A.71) that

∂

∂v
v2 = ∂

∂v
(v · v) = 2v (A.72)

since the product rule for differentiation considers one of the v factors to be a constant
like C in each differentiation.

The notations ∂/∂r for ∇, and ∂/∂v for ∇v, are very useful since they allow one to
list explicitly the variables being differentiated with respect to. However, they must
be used carefully. The expression ∂ f/∂r for ∇ f is correct when f is a scalar function.
But ∂A/∂r with a vector A would be ambiguous and should be avoided. Instead, one
should write a divergence ∇ · A as (∂/∂r) · A and a curl ∇ × A as (∂/∂r)× A.
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A.12 The Serret–Frenet Formulae
In mechanics, we pay special attention to motion along a line, the path of a point
mass for example. A line may be defined parametrically by letting each component xi

depend on some parameter, such as the time t (or some other parameter that varies
continuously and monotonically as the point moves along the line). Denoting the
monotonic parameter by β, we have

x1 = x1 (β) x2 = x2 (β) x3 = x3 (β) (A.73)

which together define r = r (β) . The differential of r is

dr = dr
dβ

dβ. (A.74)

The arc-length measured from some point on the curve in the sense of increasing β is
usually denoted by the letter s. Since

ds =
∥∥∥∥ dr

dβ

∥∥∥∥ dβ, (A.75)

we may define a unit vector t̂, called the unit-tangent vector, by

t̂ = dr
ds

= dr/dβ

ds/dβ
= dr/dβ

‖dr/dβ‖ . (A.76)

This unit tangent vector is a function of position along the line, always tangent to it
at the current point r(β), and always pointing in the direction of increasing β and s.

t̂

ê1

n̂
ê2

ê3

s

b̂

FIG. A.5. Serret–Frenet vectors along a curve.

The derivative of t̂ may be used to define a non-negative magnitude ρ and a unit
vector n̂. Define ρ =

∥∥∥d t̂/ds
∥∥∥ and n̂ = (1/ρ)(d t̂/ds) so that

d t̂
ds

= ρ n̂ (A.77)

Vector n̂ is called the unit normal vector. It varies with r, but remains always perpen-
dicular to t̂, as can be seen by differentiating the expression t̂ · t̂ = 1 with respect
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to s. Magnitude ρ is called the curvature, and its inverse 1/ρ is called the radius of
curvature. A third unit vector b̂ can now be defined by b̂ = t̂ × n̂, so that t̂, n̂, b̂ form
a right-handed, mutually orthogonal triad of unit vectors. Vector b̂ is called the unit
bi-normal vector.

The derivatives of b̂ and n̂ can be calculated in turn. Taking the derivatives of the
expressions b̂ · b̂ = 1 and b̂ · t̂ = 0 with respect to s shows that db̂/ds is perpendicular
to both b̂ and t̂. Its remaining component along n̂ is denoted by −κ,

db̂
ds

= −κ n̂ (A.78)

where κ is a positive or negative quantity called the torsion. Differentiating the iden-
tity n̂ = b̂ × t̂ with respect to s and using eqns (A.77, A.78) then gives

dn̂
ds

= −ρ t̂ + κ b̂ (A.79)

As β increases, a nonzero ρ always makes the triad of unit vectors rotate in a right-
hand sense about b̂. If κ is positive(negative), the triad also rotates in a right(left)-
hand sense about t̂, as for example in a right(left)-handed helix. A curve is planar if
and only if its torsion κ vanishes. Bi-normal vector b̂ is then constant and perpendic-
ular to the plane of the curve. If we denote the three unit vectors by ĝk where ĝ1 = t̂,
ĝ2 = n̂, and ĝ3 = b̂, eqns (A.77, A.78, A.79) may be summarized as

d ĝk

ds
= ω× ĝk where ω = κ t̂ + ρ b̂ (A.80)

Equations (A.76) through (A.79) are called the Serret–Frenet formulae.126 One
interesting use of them is to expand a general vector field V (r) evaluated at a given
point r(β) along the curve in terms of the orthogonal basis at that point, as in

V (r(β)) = Vt t̂ + Vn n̂ + Vb b̂ (A.81)

where
Vt = t̂ · V (r(β)) Vn = n̂ · V (r(β)) Vb = b̂ · V (r(β)) (A.82)

in direct analogy to eqn (A.9). Then the rate of change in V as we move distance ds
along the curve can be written as

dV
ds

= dVt

ds
t̂ + Vt

d t̂
ds

+ dVn

ds
n̂ + Vn

dn̂
ds

+ dVb

ds
b̂ + Vb

db̂
ds

=
(

dVt

ds
t̂ + dVn

ds
n̂ + dVb

ds
b̂
)
+ ω× V (A.83)

where the Serret–Frenet formulae in the form of eqn (A.80) were used. If the deriva-
tives of components dVt/ds, dVn/ds, and dVb/ds all vanish at all points along the

126For more detail, see Chapter I of Struik (1961).
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curve, that is if V (r) = c1 t̂ + c2n̂ + c3b̂ along the curve, where the three ci are con-
stants, then the value of the vector field V (r) along the curve is entirely determined
by its value at some initial point. We can say that such a vector field is in some sense
rigidly attached to the curve and is carried along with it. Such a vector field would not
be uniform, of course, not even for points along the curve, because the unit vectors
themselves are nonuniform vector fields.

A point of inflection is a point on the curve with ρ = 0 but dρ/ds �= 0. At points
of inflection the sense of n̂ and hence b̂ may change discontinuously. At such points,
a vector such as V (r) = c1 t̂ + c2n̂ + c3b̂ would be discontinuous.

In the special case in which parameter β is the time t, eqn (A.75) becomes ds =
‖v‖ dt where v is the velocity vector v = dr/dt , and ‖v‖ = v is its magnitude, the
speed of motion along the line. Then eqn (A.76) becomes

t̂ = dr
ds

= (dr/dt)

(ds/dt)
= v

v
(A.84)

And eqn (A.77) becomes

ρ n̂ = d t̂
ds

= 1

v

d

dt

(v
v

)
= 1

v2
a − 1

v3
v

dv

dt
= 1

v2

(
a − t̂

dv

dt

)
(A.85)

where a = dv/dt is the acceleration vector. Solving for a then gives the acceleration

a = dv

dt
t̂ + v2

(1/ρ)
n̂ (A.86)

broken down into its tangential and normal components along the curve. If we imag-
ine a particle of mass m moving along a curve under the influence of a force field
f (r, t), Newton’s second law gives

f
(
r(t), t

) = ma = m
dv

dt
t̂ + mv2

(1/ρ)
n̂ (A.87)

We note that f has no component in the b̂ direction. This is not because the curve of
particle motion lacks torsion. Particles often move in helices, for example. It is rather
because the natural motion r(t) of a mass under a force field f (r, t) will always adjust
itself to keep f

(
r(t), t

)
confined to its t̂, n̂ plane. This is in turn a consequence of

the remarkable simplicity Newton’s second law, which contains only the acceleration
vector a.



APPENDIX B

MATRICES AND DETERMINANTS

We summarize here some of the standard properties of matrices and determinants
that are used throughout the text. Proofs not given here can be found in most surveys
of linear algebra, for example Birkhoff and MacLane (1977), Mirsky (1961), and
Strang (1998).

B.1 Definition of Matrices

An M× N matrix is a rectangular array of numbers placed in M rows and N columns.
These numbers are called matrix elements and are indexed by subscripts i j where
i = 1, . . . , M is the row index and j = 1, . . . , N the column index. Thus a 3×4 matrix
A would be written as

A =
⎛⎝ A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

⎞⎠ (B.1)

If all of the matrix elements Ai j are real numbers, then A is a real matrix. If one or
more of the matrix elements are complex numbers, the matrix is a complex matrix.

B.2 Transposed Matrix

The transpose of an M × N matrix A is an N × M matrix denoted as A T or Ã . It is
defined by listing its matrix elements for all values i = 1, . . . , M and j = 1, . . . , N ,

AT
i j = Aji (B.2)

where AT
i j denotes the i jth matrix element of the matrix A T. For example, if

B =
(

1 2 3
4 5 6

)
then B T =

⎛⎝1 4
2 5
3 6

⎞⎠ (B.3)

By definition, the transpose of the transpose is just the original matrix,(
A T

)T = A (B.4)

508
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B.3 Column Matrices and Column Vectors
A special case of importance is the M × 1 matrix called a column matrix. Since these
matrices are often used to represent the components of a vector, they are also called
column vectors. They are denoted by enclosing their label in square brackets and sup-
pressing the second subscript of their matrix elements,

[V ] =

⎛⎜⎜⎜⎝
V1

V2
...

VM

⎞⎟⎟⎟⎠ (B.5)

The transpose of an M × 1 column matrix is a 1 × M row matrix or row vector,

[V ]T = (
V1 V2 · · · VM

)
(B.6)

The column vector all of whose matrix elements are zeroes is called the null vector
and is denoted by [0], although sometimes it is also denoted by just the scalar 0,

[0] =

⎛⎜⎜⎜⎝
0
0
...

0

⎞⎟⎟⎟⎠ (B.7)

B.4 Square, Symmetric, and Hermitian Matrices
If M = N , the matrix is called an N -rowed square matrix. The transpose of a square
matrix is also a square matrix, with the same number of rows. The transpose of a
square matrix can be thought of as a reflection of the matrix elements about the
diagonal from upper left to lower right. Thus, if

A =
⎛⎝1 2 3

4 5 6
7 8 9

⎞⎠ then A T =
⎛⎝ 1 4 7

2 5 8
3 6 9

⎞⎠ (B.8)

If a square matrix S is equal to its transpose, then it is said to be symmetric. Such
symmetric matrices have

S T = S and hence ST
i j = Sji = Si j (B.9)

for all i j values. For example,

S =
⎛⎝ 1 2 3

2 5 6
3 6 9

⎞⎠ (B.10)

is a real, symmetric matrix.
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If the square matrix C is equal to the negative of its transpose, then it is called
anti-symmetric or skew-symmetric,

C = −C T and hence Ci j = −Cji (B.11)

The diagonal elements of anti-symmetric matrices are zeroes. For example,

C =
⎛⎝ 0 −2 3

2 0 −6
−3 6 0

⎞⎠ (B.12)

is a real, anti-symmetric matrix with N = 3.
The complex conjugate of a complex matrix H is the matrix all of whose matrix

elements are complex conjugated. Thus H ∗ has matrix elements H∗
i j where * denotes

complex conjugation.
The Hermitian conjugate of a complex matrix H is denoted H †and is defined by

H † =
(

H T
)∗ = (

H ∗ )T
and hence H†

i j = H∗
j i (B.13)

where H†
i j denotes the i jth matrix element of the matrix H †.

For complex matrices, the concept of symmetric matrices is generalized to that
of Hermitian matrices. A square matrix is Hermitian if it is equal to its Hermitian
conjugate,

H † = H and hence H†
i j = H∗

j i = Hi j (B.14)

for all i j values. A matrix that is both Hermitian and real is therefore symmetric, since
complex conjugation has no effect on real numbers.

Anti-Hermitian matrices can also be defined, by analogy to the anti-symmetric
matrices above. A matrix G is anti-Hermitian if

G † = −G (B.15)

B.5 Algebra of Matrices: Addition
Two matrices are equal if and only if they have the same number of rows and columns
and all of their matrix elements are equal. Thus if A and B both are M × N matrices
then

A = B if and only if Ai j = Bi j (B.16)

for all possible values i = 1, . . . , M and j = 1, . . . , N .
A matrix may be pre- or post-multiplied by a number α. If the matrix A has matrix

elements Ai j then the matrix α A has matrix elements αAi j . Note that each matrix
element is multiplied by α. Thus, using the matrix of eqn (B.1) as an example,

A α = α A =
⎛⎝αA11 αA12 αA13 αA14

αA21 αA22 αA23 αA24

αA31 αA32 αA33 αA34

⎞⎠ (B.17)

Matrices of the same number of rows and columns may be added. The result will
be a matrix also of the same type. Each matrix element of the sum is just the sum of
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the corresponding matrix elements of the addends. Thus, if A and B both are M × N
matrices then

C = A + B if and only if Ci j = Ai j + Bi j (B.18)

for all possible values i = 1, . . . , M and j = 1, . . . , N .
For example, with M = N = 2,

A =
(

A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
(B.19)

give

C = A + B =
(

A11 + B11 A12 + B12

A21 + B21 A22 + B22

)
(B.20)

A null matrix 0 is defined as the matrix all of whose elements are zeroes. It has
the property that

0 + A = A = A + 0 (B.21)

for all matrices A . The null matrix 0 is often denoted by just the number 0.
Matrix addition is associative,

A + (
B + C

) = ( A + B )+ C (B.22)

B.6 Algebra of Matrices: Multiplication
Matrices may also be multiplied by each other. If A is an M × N matrix and B is
an N × P matrix, then C = A B is an M × P matrix with matrix elements for all
i = 1, . . . , M and j = 1, . . . , P given by

Ci j =
N∑

k=1

Aik Bkj (B.23)

Notice that the second index of A and the first index of B are both set equal to k and
then summed over k = 1, . . . , N . This is possible only if the number of columns in A
is the same as the number of rows in B .

A useful graphical device is to write the two matrices down in the order in which
they are to be multiplied. Then run a left-hand finger over the i th row of A and si-
multaneously run a right-hand finger over the j th column of B , imagining the matrix
elements touched to be multiplied and added. The result will be Ci j .

It follows from eqns (B.2, B.23) that the transpose of a matrix product is a product
of the transposes in reverse order,(

A B
)T = B T A T (B.24)

Matrices A and B can often be multiplied in either order, A B or B A , but the
resulting matrix products will in general be different. We say that matrix multiplica-
tion is in general not commutative. If two particular matrices happen to give the same
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product when they are multiplied in opposite orders, then we say that they commute.
Only square matrices with the same number of rows can commute. For such matrices,
the commutator of the two matrices is defined as

[A , B ]c = A B − B A (B.25)

The two matrices commute if and only if their commutator is the null matrix. (The
subscript c is to distinguish commutators from Poisson brackets.)

Matrix multiplication is associative. Thus

A
(

B C
) = ( A B ) C (B.26)

Besides noncommutativity, another important difference between the algebra of
matrices and the algebra of numbers concerns null products, sometimes called divi-
sors of zero. For numbers, αβ=0 implies that either α = 0 or β = 0, or both. However,
for matrices A B = 0 is possible even when both A and B are non-null.

B.7 Diagonal and Unit Matrices
The matrix elements with the same row and column indices Aii are called diagonal
elements. A square matrix whose only nonzero elements are the diagonal ones is
called a diagonal matrix. Thus

D =
⎛⎝ 1 0 0

0 3 0
0 0 7

⎞⎠ (B.27)

is a three-rowed diagonal matrix.
A diagonal matrix whose diagonal elements are all ones is called the unit matrix.

For example, the unit matrix with N = 3 is

U =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠ (B.28)

As can be see from eqn (B.23) and the fact that Ui j = δi j , the Kroeneker delta, pre- or
post-multiplication of any matrix A by U leaves it unchanged,

U A = A = A U (B.29)

A diagonal matrix all of whose diagonal elements are equal is called a scalar ma-
trix. Thus, for some number α,

S =
⎛⎝α 0 0

0 α 0
0 0 α

⎞⎠ (B.30)

is a scalar matrix with N = 3. Pre- or post-multiplication of any square matrix A by
a scalar matrix of the same size has the same effect as multiplying A by the diagonal
number. Thus, if the diagonal elements of scalar matrix S are all equal to the number
α,

S A = α A = A S (B.31)
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B.8 Trace of a Square Matrix
The trace of an N -rowed square matrix A is denoted Tr A and is defined as the sum
of the diagonal elements,

Tr A =
N∑

i=1

Aii (B.32)

The trace of a product of matrices is unchanged by a cyclic permutation of them.
Thus, for example,

Tr
(

A B C
) = Tr

(
C A B

) = Tr
(

B C A
)

(B.33)

B.9 Differentiation of Matrices
Suppose that each matrix element of an M×N matrix is a function of some parameter
β. Thus Ai j = Ai j (β) and A = A (β). Then d A (β)/dβ is defined as that matrix whose
matrix elements are d Ai j (β)/dβ. If

A =
(

A11 A12 A13

A21 A22 A23

)
then

d A
dβ

=

⎛⎜⎜⎜⎜⎝
d A11

dβ

d A11

dβ

d A11

dβ

d A11

dβ

d A11

dβ

d A11

dβ

⎞⎟⎟⎟⎟⎠ (B.34)

Note that each matrix element is individually differentiated.
The product rule holds for matrix products. If

C = A B then
d C
dβ

= d A
dβ

B + A
d B
dβ

(B.35)

as can be seen by applying the ordinary rules of differentiation to eqn (B.23). Note
that the order of the factors in the matrix product must be preserved as the product
rule is applied.

B.10 Determinants of Square Matrices
The determinant of an N -rowed square matrix A is a single number, calculated from
the elements of the matrix and denoted det A or |A |.

The rule for calculating the determinant uses the idea of a permutation
(k1, k2, . . . , kN ) of the integers (1, 2, . . . , N ). For example, for N = 3, two such per-
mutations might be (3,1,2) and (1,3,2). Each such permutation is either even or odd.
If an even(odd) number of exchanges is required to go from (1, 2, . . . , N ) to the final
arrangement (k1, k2, . . . , kN ), then the permutation is even(odd). In the above exam-
ple, (3,1,2) is even and (1,3,2) is odd. The function ε(k1, k2, . . . , kN ) is defined to be
+1 for even permutations and −1 for odd ones.
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The determinant is defined as a sum of products of elements Ai j . Each product
in this sum has one matrix element chosen from each row, with the choices of col-
umn being given by the permutation (k1, k2, . . . , kN ). The sum is over all N ! possible
permutations,

|A | =
∑

(k1,k2,...,kN )

ε(k1, k2, . . . , kN )A1k1 A2k2 · · · ANkN (B.36)

Alternately, the same determinant can be written using one element from each column
and permutations of the rows, as

|A | =
∑

(k1,k2,...,kN )

ε(k1, k2, . . . , kN )Ak11 Ak22 · · · AkN N (B.37)

If A has N = 2,
|A | = A11 A22 − A12 A21 (B.38)

If N = 3,

|A | = A11 A22 A33 + A12 A23 A31 + A13 A21 A32

− A13 A22 A31 − A11 A23 A32 − A12 A21 A33 (B.39)

which can be remembered by a simple mnemonic device: Starting at the upper left,
diagonals down to the right from each element of the first row give the positive prod-
ucts. Then, starting again at the lower left, diagonals up and to the right from each
element of the last row give the negative products. However, this mnemonic fails
for N = 4 or greater, and one of the expansion theorems listed below becomes the
method of choice for evaluating the determinant.

B.11 Properties of Determinants
We list here some of the important properties of the determinants of square matrices.
The proofs can be found in any standard text on linear algebra.

1. If any two rows of the matrix are exchanged, or any two columns of the matrix
are exchanged, the new determinant is −1 times the old one.

2. If any row(column) of the matrix is all zeroes, then the determinant is zero.
3. If any row(column) of the matrix is multiplied by any constant α and then added

to any other row(column), the value of the determinant is unchanged.
4. If any two rows(columns) are identical, or can be made identical by multiplying

all of the elements in one of them by the same number, then the determinant is
zero.

5. Transposing a matrix does not change its determinant. For any square matrix,∣∣A T
∣∣ = ∣∣A

∣∣.
6. The determinant of a diagonal matrix is equal to the product of its diagonal

elements. That is, if Ai j = λiδi j , then |A | = λ1λ2 · · · λN .
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7. The determinant of the unit matrix is the number one, |U | = 1.
8. The determinant of the null matrix is the number zero, |0 | = 0.
9. If an N -rowed square matrix A is multiplied by a number α, then its determi-

nant is multiplied by αN , that is |α A | = αN |A |
10. The determinant of a product is the product of the determinants. If C = A B

then
∣∣C

∣∣ = |A | |B |, which can be generalized to the product of any number of
square matrices.

11. A matrix whose determinant is zero is called a singular matrix. If A B = 0
then |A | |B | = 0. Hence A B = 0 implies that at least one of A or B must be
singular.

B.12 Cofactors
Let A be any N -rowed square matrix. Suppose that we delete all elements in its ith
row and all elements in its jth column and collect the remaining matrix elements
into a new matrix, preserving their relative orders. The result will be an (N − 1)-
rowed square matrix, which we denote by A (i j). The N -rowed square matrix a is
then defined by letting its i jth matrix element be the determinant of A (i j) multiplied
by a factor of plus or minus one,

ai j = (−1)i+ j
∣∣∣A (i j)

∣∣∣ (B.40)

The quantity ai j is called the cofactor of the matrix element Ai j and the matrix a is
called the matrix of cofactors. For example, if

A =
⎛⎝ 1 2 3

4 5 6
7 8 9

⎞⎠ (B.41)

then

A (23) =
(

1 2
7 8

)
and a23 = (−1)5(−6) = 6 (B.42)

with the other elements of a defined similarly.
The matrix of cofactors has the property that

N∑
k=1

Aikajk = δi j |A | =
N∑

k=1

Aki ak j (B.43)

where δi j is the Kroeneker delta function.

B.13 Expansion of a Determinant by Cofactors
If we set i = j and use the first equality in eqn (B.43), then we obtain an expansion
for |A | by cofactors along its ith row. Each element Aik of the ith row is multiplied
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by the determinant
∣∣∣A (ik)

∣∣∣ and the factor (−1)i+k , and then summed over k,

|A | =
N∑

k=1

Aikaik =
N∑

k=1

(−1)i+k Aik

∣∣∣A (ik)
∣∣∣ (B.44)

Notice that the (−1)i+k factors can be remembered easily since they have the pattern
of a checkerboard.

Similarly, the determinant can also be calculated by expansion along its i th col-
umn, using the second equality in eqn (B.43),

|A | =
N∑

k=1

Aki aki =
N∑

k=1

(−1)i+k Aki

∣∣∣A (ki)
∣∣∣ (B.45)

These expansion theorems allow the determinant of any N -rowed matrix to be
reduced to a sum whose terms involve only determinants of size N−1. This expansion
becomes particularly useful when one precedes it by a judicious use of Property 3 of
Section B.11 to make several of the elements along a particular row(column) become
zeroes.

Modern computer algebra systems automate the numerical, and even the sym-
bolic, evaluation of large determinants. But these expansion theorems remain impor-
tant. For example, the proof of Theorem D.23.1 in Appendix D makes use of them.

B.14 Inverses of Nonsingular Matrices
The inverse of an N -rowed square matrix A , if it exists, is denoted A−1 and is defined
by the property

A−1 A = U = A A−1 (B.46)

where U is the N -rowed unit matrix.

Theorem B.14.1: Matrix Inverses
A square matrix A has an inverse if and only if |A | �= 0, that is if and only if A is
nonsingular.

Proof: First we assume that the inverse exists and prove that |A | �= 0. Taking the
determinant of both sides of the left equality of eqn (B.46) gives∣∣∣A−1

∣∣∣ ∣∣∣A
∣∣∣ = ∣∣∣U

∣∣∣ = 1 (B.47)

Thus both |A | and
∣∣A−1

∣∣ must be nonzero.
Conversely, assume that |A | �= 0 and define A−1 by giving its matrix elements

A−1
i j = 1

|A |aji (B.48)

where ai j are the cofactors defined in Section B.12. It then follows from the second
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equality in eqn (B.43) that, for all i j ,

(
A−1 A

)
i j
=

N∑
k=1

A−1
ik Ak j = 1

|A |
N∑

k=1

aki Ak j = 1

|A |δj i |A | = δi j = Ui j (B.49)

and hence that A−1 A = U as was to be proved. Similarly, the first equality in eqn
(B.43) proves that A A−1 = U for the product in reverse order. �

This theorem for the existence of matrix inverses is of great importance in La-
grangian mechanics and in the general calculus of many variables.

B.15 Partitioned Matrices

A matrix may be divided into partitions, each of which is itself a matrix. This is best
seen by an example, which can be generalized to more complicated cases. Suppose
that we have a 5× 5 matrix E that is composed of four partitions: A 3× 3 matrix A ,
a 3 × 2 matrix B , a 2 × 3 matrix C , and a 2 × 2 matrix D ,

E =

⎛⎜⎜⎜⎜⎝
A11 A12 A13 B11 B12

A21 A22 A23 B21 B22

A31 A32 A33 B31 B32

C11 C12 C13 D11 D12

C21 C22 C23 D21 D22

⎞⎟⎟⎟⎟⎠ (B.50)

It follows from the basic definitions in Section B.10 that the determinants of par-
titioned matrices containing null partitions can sometimes be written in terms of the
determinants of their non-null parts. For example, if the matrix B is a null matrix
(all zeroes) then |E | = |A | |D |, which does not depend on the elements Ci j . Also, if
matrix C is a null matrix (all zeroes) then |E | = |A | |D |, which does not depend on
the elements Bi j .

If both B and C are null matrices, then the matrix is what is called a block diag-
onal matrix. For example,

F =

⎛⎜⎜⎜⎜⎝
A11 A12 A13 0 0
A21 A22 A23 0 0
A31 A32 A33 0 0
0 0 0 D11 D12

0 0 0 D21 D22

⎞⎟⎟⎟⎟⎠ (B.51)

is a block diagonal matrix with two blocks of different size. Then |F | = |A | |D |, a
result that can be generalized to block matrices with any number of diagonal blocks.

One extremely important example of the partitioning of matrices is to consider
each of the N columns of an M × N matrix to be an M × 1 column vector. Thus the
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3 × 4 matrix in eqn (B.1) can be written as

A =
⎛⎝⎛⎝ A11

A21

A31

⎞⎠ ⎛⎝ A12

A22

A32

⎞⎠ ⎛⎝ A13

A23

A33

⎞⎠ ⎛⎝ A14

A24

A34

⎞⎠⎞⎠ (B.52)

where we have put brackets around the columns to emphasize the partitioning.
An M × N matrix can also be partitioned in a similar way into row vectors. Each

of the M rows can be considered to be a 1 × N row vector.
The multiplication of two matrices, each of which is partitioned into square blocks

of the same dimension, can be done by the standard rule eqn (B.23) with numbers
replaced by blocks. For example, if the blocks A k , B k , C k , and D k are all N × N
square matrices, then(

A 1 B 1

C 1 D 1

)(
A 2 B 2

C 2 D 2

)
=

(
A 1 A 2+ B 1 C 2 A 1 B 2+ B 1 D 2

C 1 A 2+ D 1 C 2 C 1 B 2+ D 1 D 2

)
(B.53)

B.16 Cramer’s Rule
Suppose that we wish to solve a system of N linear equations in N unknowns, of the
form

A11x1 + A12x2 + · · · + A1N xN = b1

A21x1 + A22x2 + · · · + A2N xN = b2

...
...

AN1x1 + AN2x2 + · · · + AN N xN = bN (B.54)

where Ai j and bi are given numbers, and the xj are the unknowns to be solved for.
Defining an N × N square matrix by

A =

⎛⎜⎜⎜⎝
A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

...

AN1 AN2 · · · AN N

⎞⎟⎟⎟⎠ (B.55)

and column vectors by

[x] =

⎛⎜⎜⎜⎝
x1

x2
...

xN

⎞⎟⎟⎟⎠ and [b] =

⎛⎜⎜⎜⎝
b1

b2
...

bN

⎞⎟⎟⎟⎠ (B.56)

eqn (B.54) can be written in matrix form as A [x] = [b]. If A is nonsingular, the
solution is obtained by applying A−1 to both sides of this equation to get

[x] = A−1[b] (B.57)

Cramer’s rule is a method of getting that same solution without the labor of cal-
culating the inverse of A directly. To apply it, define matrix A ( j) to be matrix A
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partitioned into its columns in the style of eqn (B.52), but with the j th column re-
placed by the column vector [b]. Then, for all j = 1, . . . , N , the matrix elements of
[x], in other words the solution, are given by

xj =
∣∣A ( j)

∣∣
|A | (B.58)

Thus, for example,

x1 =

∣∣∣∣∣∣∣∣∣
b1 A12 · · · A1N

b2 A22 · · · A2N
...

...
...

bN AN2 · · · AN N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
...

AN1 AN2 · · · AN N

∣∣∣∣∣∣∣∣∣

(B.59)

B.17 Minors and Rank

Starting from an M × N matrix A , suppose that we delete any M − R rows (which
need not be contiguous). We then delete any N − R columns (which also need not
be contiguous). Collecting all elements that remain, and re-assembling them without
changing their relative orders, gives an R × R square matrix m , where of course
R ≤ min {M, N }. The determinant of this matrix |m | is called an R-rowed minor of
A .

The rank of matrix A is denoted R( A ). It is the largest value of R for which there
exists a nonzero R-rowed minor of A . A nonzero minor with R = R( A ) is called a
critical minor of A . By the definition of R( A ), all minors with R > R( A ) will be zero.

As an example, starting from the 3 × 4 matrix in eqn (B.1), we may delete rows 3
and 4, and columns 1 and 3. The corresponding two rowed minor of A is then

|m | =
∣∣∣∣ A12 A14

A22 A24

∣∣∣∣ (B.60)

If it happens that (A12 A24 − A14 A22) �= 0, then |m | is a two rowed nonzero minor of
A , and that matrix must have rank R( A ) of at least two. To see if its rank is possibly
more than two, we would have to investigate its three rowed minors to see if at least
one of them is nonzero. If so, the rank of the matrix would be three, the maximum
possible value for a 3 × 4 matrix.

If an N -rowed square matrix is nonsingular, then its determinant itself constitutes
a critical minor with R = N . Thus it has rank R( A ) = N . On the other hand, if a
square non-null matrix A is singular, it must have 0 < R( A ) < N .
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B.18 Linear Independence

Consider the set of M × 1 column vectors [V (1)], [V (2)], . . . , [V (N )]. If there exist N
numbers α1, α2, . . . , αN , not all zero, such that

α1[V (1)] + α2[V (2)] + · · · + αN [V (N )] = [0] (B.61)

where [0] is the null column vector containing M zeroes, then this set of column
vectors is linearly dependent (LD). Otherwise, we say that the set of column vectors is
linearly independent (LI).

The following properties relate to linear independence and the rank of matrices.

1. If eqn (B.61) implies that α1 = α2 = · · · = αN = 0, then the set of vectors is LI.
Otherwise the set is LD.

2. The maximum number of M × 1 column vectors that can appear in any LI set is
M . We say that general M × 1 column vectors form a vector space of dimension
M . Any particular set of M LI column vectors is said to span this space and form
a basis for it. Any M × 1 column vector [V ] can be expanded in this basis as
[V ] = α1[V (1)] + · · · + αM [V (M)].

3. A test for the linear independence of the column vectors in eqn (B.61) is to as-
semble them into an M×N matrix, like, for example, eqn (B.52). Call this matrix
A . Then the column vectors are linearly independent if and only if R( A ) = N .

4. Conversely, suppose we have any M×N matrix A of rank R( A ). If we partition
it into N column vectors, we can always find R( A ) of them, and not more than
R( A ) of them, that are linearly independent.

5. A square matrix is nonsingular if and only if all of its columns(rows) are linearly
independent.

6. Statements similar to the above can also be made for sets of 1 × N row vectors
(V (1)), (V (2)), . . . , (V (M)).

B.19 Homogeneous Linear Equations

Equation (B.54) with b1 = b2 = · · · = bN = 0 is called a set of N homogeneous
equations for the N unknowns x1, x2, . . . , xN . These homogeneous equations may be
written in matrix form as

A [x] = [0] (B.62)

It follows at once from eqn (B.57) that eqn (B.62) and |A | �= 0 imply [x] = A−1[0] =
[0]. If the square matrix A is nonsingular, then the only solution to eqn (B.62) is
the trivial one [x] = [0] in which xi = 0 for i = 1, . . . , N . The following theorem
generalizes eqn (B.62) to the case of M equations in N unknowns.
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Theorem B.19.1: Homogeneous Linear Equations
If A is an M × N matrix, then the homogeneous linear equations

A11x1 + A12x2 + · · · + A1N xN = 0

A21x1 + A22x2 + · · · + A2N xN = 0

...
...

AM1x1 + AM2x2 + · · · + AM N xN = 0 (B.63)

will have k linearly independent solutions, [x] = [c(i)] for i = 1, . . . , k, if and only if
matrix A has rank R = N − k. The general solution, when it exists, can then be written
in the form

[x] = λ1[c(1)] + · · · + λk[c(k)] (B.64)

where the λi may take any values.

The proof of this theorem can be found in Chapter 5 of Mirsky (1961). The case in
which R = N − 1, so that k = 1, is noteworthy because its general solution [x] =
λ1[c(1)] has the property that the ratios xj/xl = c(1)

j /c(1)
l of the unknowns to some

nonzero xl are uniquely determined functions of the matrix elements Ai j .
The following corollary applies to square matrices.

Corollary B.19.2: Homogeneous Equations with Square Matrices
For square matrices with M = N eqn (B.63) has a nontrivial solution with [x] �= [0] if
and only if A is singular with |A | = 0. This result can also be stated: A matrix A is
nonsingular with |A | �= 0 if and only if A [x] = 0 implies the trivial solution [x] = 0.

B.20 Inner Products of Column Vectors

An inner product of two real, M-rowed column vectors may be defined by analogy
with the dot product of vectors in Cartesian three space. If [x] = (x1, . . . , xM )T and
[y] = (y1, . . . , yM )T are two such column vectors, then we define

[x] · [y] = [x]T[y] =
M∑

i=1

xi yi (B.65)

It follows that

[x] · [y] = [y] · [x] and that [x] �= [0] implies [x] · [x] > 0 (B.66)

If [x] · [y] = 0, then we say that [x] and [y] are orthogonal.
If each member of a set of vectors [V (1)], [V (2)], . . . , [V (N )] is orthogonal to all the

others, then this set is LI. If there are M mutually orthogonal vectors in the set, then it
spans the space of M × 1 column vectors and any column vector [V ] can be expanded
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as

[V ] = α1[V (1)] + α2[V (2)] + · · · + αM [V (M)] (B.67)

where, for i = 1, . . . , M ,

αi = [V (i)] · [V ]√
[V (i)] · [V (i)] (B.68)

Conversely, if we are given any LI set of column vectors [V (1)], [V (2)], . . . , [V (N )],
we can always construct a mutually orthogonal set by the Schmidt orthogonalization
procedure. Starting from an arbitrary member of the set, which for simplicity we may
take to be the first one [V (1)], define

[W (1)] = [V (1)]

[W (2)] = [V (2)] − [V (2)] · [W (1)]
[W (1)] · [W (1)] [W

(1)]

[W (3)] = [V (3)] − [V (3)] · [W (1)]
[W (1)] · [W (1)] [W

(1)] − [V (3)] · [W (2)]
[W (2)] · [W (2)] [W

(2)] (B.69)

and so on, following the same pattern until [W (N )] is reached. Then the set
[W (1)], [W (2)], . . . , [W (N )] will be mutually orthogonal by construction.

Any non-null column vector can be normalized. If [y] is the original vector, the
corresponding normalized vector is defined by

[x] = 1√[y] · [y] [y] (B.70)

which has the property [x] · [x] = 1. If the vectors of a set [V (1)], [V (2)], . . . , [V (N )]
of mutually orthogonal vectors are all normalized, it is called an orthonormal set and
obeys the orthonormality condition

[V (k)] · [V (l)] = δkl (B.71)

for all k, l = 1, . . . , N .
If [V (1)], [V (2)], . . . , [V (M)] are an orthonormal set, then [V (k)] · [V (k)] = 1 and so

eqn (B.67) can be written as

[V ] =
M∑

k=1

[V (k)]
{
[V (k)] · [V ]

}
(B.72)

where [V (k)] is post-multiplied by the scalar αk = [V (k)] · [V ] to enhance the clarity
of the expression. The αk is called the component of [V ] in the orthonormal basis
[V (1)], [V (2)], . . . , [V (M)]. Such an orthonormal basis is often referred to as a complete
orthonormal set.
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B.21 Complex Inner Products
For complex column vectors, the inner product must be generalized. It becomes

[x]∗ · [y] = [x]†[y] =
M∑

i=1

x∗i yi (B.73)

Then [y]∗ · [x] = {[x]∗ · [y]}∗ and, as for real vectors, [x]∗ · [x] > 0 for any non-null
column vector [x].

All results of the previous Section B.20 apply also to complex column vectors when
all inner products there are replaced by the generalized ones, adding an * to the left-
hand vectors of the products. Thus, for example, in an orthonormal basis obeying

[V (k)]∗ · [V (l)] = δkl (B.74)

for all k, l = 1, . . . , N , eqn (B.72) becomes

[V ] =
M∑

k=1

[V (k)]
{
[V (k)]∗ · [V ]

}
(B.75)

and the component becomes αk = [V (k)]∗ · [V ].

B.22 Orthogonal and Unitary Matrices
A real, square matrix M is orthogonal if it is nonsingular and its transpose is its
inverse. Then

M−1 = M T and so M T M = U = M M T (B.76)

As may be seen by writing out the second of eqn (B.76) as a sum, if an N -rowed
real, square matrix is partitioned into its N columns(rows), the resulting column(row)
vectors will be an orthonormal set obeying eqn (B.71) if and only if the matrix is
orthogonal.

Theorem B.22.1: Proof of Orthogonality
To prove a matrix orthogonal, it is sufficient to show either that M T M = U or that
M M T = U .

Proof: It follows from the first stated condition that

1 = |U | =
∣∣∣M T M

∣∣∣ = ∣∣∣M T
∣∣∣ ∣∣∣M

∣∣∣ = ∣∣∣M
∣∣∣2 (B.77)

and hence that |M | = ±1. Thus M is nonsingular and has an inverse. Applying its
inverse to M T M = U then proves that

M T = M T M M−1 = U M−1 = M−1 (B.78)

which is the condition for M to be orthogonal. A similar argument demonstrates the
sufficiency of the second stated condition. �
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The generalization to complex matrices involves the Hermitian conjugate in place
of the transpose. A matrix D is unitary if it is nonsingular and its Hermitian conjugate
is its inverse. Then

D−1 = D † and so D † D = U = D D † (B.79)

As may be see by writing out the second of eqn (B.79) as a sum, the columns(rows)
of a square, complex matrix are an orthonormal set and obey eqn (B.74) if and only
if the matrix is unitary. Notice that the generalized definition of inner product must
be used for the complex vectors coming from complex, unitary matrices.

The above theorem applies also to unitary matrices, with a similar proof.

Theorem B.22.2: Proof of Unitarity
To prove a matrix unitary, it is sufficient to show either that D † D = U or that D D † =
U .

Proof: For unitary matrices, eqn (B.77) becomes

1 =
∣∣∣U

∣∣∣ = ∣∣∣D † D
∣∣∣ = ∣∣∣D †

∣∣∣ ∣∣∣D
∣∣∣ = ∣∣∣D

∣∣∣∗ ∣∣∣D
∣∣∣ (B.80)

which shows that, for some real number θ , |D | = exp (iθ) �= 0. The rest of the proof
is the same as for orthogonal matrices. �

B.23 Eigenvalues and Eigenvectors of Matrices

An N -rowed square matrix A , is said to have an eigenvalue λk and corresponding
eigenvector [x (k)] if

A [x (k)] = λk[x (k)] (B.81)

where the λk are simply numbers multiplying the vectors on the right side. Equation
(B.81) may be rewritten as

( A − λk U ) [x (k)] = [0] (B.82)

where U is the unit matrix, and [0] is the null column vector (all zeroes). As noted
in Section B.19, this equation will have a nontrivial solution [x (k)] �= [0] if and only if
the matrix multiplying [x (k)] is singular. Thus the condition for this singularity,

|A − λ U | = 0 (B.83)

is an N th order polynomial equation in λ. It is called the characteristic equation. Its N
roots,

λ1, λ2, . . . , λN (B.84)

are the eigenvalues, the values of λ that will give nontrivial eigenvector solutions.
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Equation (B.83) in expanded form is∣∣∣∣∣∣∣∣∣
(A11 − λ) A12 · · · A1N

A21 (A22 − λ) · · · A2N
...

...
. . .

...

AN1 AN2 · · · (AN N − λ)

∣∣∣∣∣∣∣∣∣ = 0 (B.85)

Each of its roots λk is substituted into eqn (B.82) to obtain the homogeneous equation
for the components x (k)

i of the kth eigenvector. In expanded form, this equation is

(A11 − λk) x (k)
1 + A12x (k)

2 + · · · + A1N x (k)
N = 0

A21x (k)
1 + (A22 − λk) x (k)

2 + · · · + A2N x (k)
N = 0

...
...

AN1x (k)
1 + AN2x (k)

2 + · · · + (AN N − λk) x (k)
N = 0 (B.86)

If the eigenvalue λk is unique, then eqn (B.86) can be solved for a unique set of
ratios x (k)

i /x (k)
1 of the ith component to some nonzero one, here taken to be the first

one although in practice some other one may be used. The component x (k)
1 can then

be determined from the normalization condition [x (k)]∗ · [x (k)] = 1. But, even after
normalization, the eigenvectors are not completely determined. Equation (B.81) is
linear in the eigenvectors; if [x (k)] is a normalized eigenvector corresponding to λk ,
so is eiθ [x (k)] where θ is any real number.

If some eigenvalue λk is not unique, that is if that root of the characteristic equa-
tion has multiplicity κ > 1, then that eigenvalue is said to be degenerate. As will be
shown below, there is a large class of matrices called normal matrices for which eqn
(B.86) for a κ-fold root will have κ linearly independent solutions, each one a set of
ratios of the sort just described. Either by a lucky guess in the original determination,
or by the use of the Schmidt orthogonalization procedure of Section B.20, these κ

linearly independent solutions can be made to produce κ mutually orthogonal ones
(of course, using the complex inner product of Section B.21 when the eigenvectors
are complex).

B.24 Eigenvectors of Real Symmetric Matrix

The eigenvalue problem for real, symmetric matrices is a special case of great impor-
tance in mechanics. For example, it is used to find principal axes of rigid bodies. In
the present section, we will assume that the matrix A is an N -rowed, real, symmetric
matrix, and that the techniques of Section B.23 are being used to find its eigenvalues
and eigenvectors. We begin with two lemmas, and then state the main theorem.

Lemma B.24.1: Real Eigenvalues
All eigenvalues of a real, symmetric matrix are real numbers.



526 MATRICES AND DETERMINANTS

Proof: Multiply eqn (B.81) from the left by [x (k)]† to obtain

[x (k)]† A [x (k)] = λk[x (k)]†[x (k)] (B.87)

Now take the Hermitian conjugate of eqn (B.81) and multiply it from the right by
[x (k)] which gives

[x (k)]† A †[x (k)] = λ∗k [x (k)]†[x (k)] (B.88)

But A is both real and symmetric, and hence A † = A . Then, subtracting eqn (B.88)
from eqn (B.87) gives

0 = (λk − λ∗k)[x (k)]†[x (k)] (B.89)

Since, for a nontrivial solution,

[x (k)]†[x (k)] =
N∑

i=1

x (k)∗
i x (k)

i > 0 (B.90)

it follows that (λk − λ∗k) = 0 and so λk is real. �

Since the eigenvalues are all real, and since the matrix elements of A are real by
assumption, we assume from now on that the eigenvectors have been chosen to be
real column vectors. Also, we will assume that the eigenvectors have been normalized
so that each of them obeys [x (k)] · [x (k)] = 1.

Lemma B.24.2: Orthogonal Eigenvectors
For a real, symmetric matrix, the eigenvectors corresponding to two distinct eigenvalues
λk �= λl will be orthogonal.

Proof: Multiply eqn (B.81) from the left by [x (l)]T to obtain

[x (l)]T A [x (k)] = λk[x (l)]T[x (k)] (B.91)

Now take the transpose of eqn (B.81), but with k replaced by l. Multiply this from the
right by [x (k)] to obtain

[x (l)]T A T[x (k)] = λl [x (l)]T[x (k)] (B.92)

Subtract eqn (B.92) from eqn (B.91), and use A T = A to obtain

0 = (λk − λl) [x (l)]T[x (k)] = (λk − λl) [x (l)] · [x (k)] (B.93)

where the definition of inner product from Section B.20 has been used. Since, by
assumption, (λk − λl) �= 0 it follows that [x (l)] · [x (k)] = 0 and so the two eigenvectors
are orthogonal. �

The main theorem may now be stated.
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Theorem B.24.3: Complete Orthonormal Set of Eigenvectors
A real, N -rowed, symmetric matrix A has real eigenvalues λk and N real, normalized,
mutually orthogonal eigenvectors [x (k)],

A [x (k)] = λk[x (k)] where [x (k)] · [x (l)] = δkl (B.94)

for all k, l = 1, . . . , N .

Proof: The reality of the eigenvalues and eigenvectors has already been proved in
B.24.1. If all N of the eigenvalues are distinct, then the existence of N mutually
orthogonal eigenvectors has also been established, by B.24.2. But some eigenvalue
roots of eqn (B.83) may be degenerate, so a more general proof is required.

The proof is by induction, and exploits the symmetry of A . The theorem is trivially
true for matrices with N = 1. We assume the theorem true for N − 1 and prove it true
for N . Thus it will be proved true for any N .

Let [x (1)] be some real, normalized eigenvector of A with eigenvalue λ1 so that

A [x (1)] = λ1[x (1)] (B.95)

Let [y(2)], . . . , [y(N )] be N − 1 normalized and mutually orthogonal vectors, all of
which are also orthogonal to [x (1)]. Then [x (1)] is also orthogonal to each of the vectors
A [y(2)], . . . , A [y(N )]. To see this, take the transpose of eqn (B.95) and multiply it from
the right by [y(l)] to obtain

[x (1)]T A T[y(l)] = λ1[x (1)]T[y(l)] = λ1[x (1)] · [y(l)] = 0 (B.96)

where l = 2, . . . , N . But by assumption A T = A and hence eqn (B.96) may be written

[x (1)] ·
(

A [y(l)]
)
= 0 (B.97)

Since both [y(l)] and A [y(l)] are orthogonal to [x (1)] we can consider the eigen-
value problem separately in the N−1 dimensional space spanned by [y(2)], . . . , [y(N )].
Define the (N − 1)-rowed, square, symmetric matrix B by

Blm = [y(l)]T A [y(m)] (B.98)

for l, m = 2, . . . , N . By the induction hypothesis, the theorem is true for (N − 1)-
rowed matrices. So N − 1 normalized and mutually orthogonal (N − 1)× 1 eigenvec-
tors [z(2)], [z(3)], . . . , [z(N )] can be found that obey

B [z(k)] = λk[z(k)] and [z(k)] · [z(k′)] = δkk′ (B.99)

for k, k′ = 2, . . . , N .
Now the original eigenvector [x (1)] and the vectors

[x (k)] =
N∑

l=2

z(k)
l [y(l)] (B.100)

for k = 2, . . . , N , are N normalized and mutually orthogonal eigenvectors of A , as
was to be proved. �
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B.25 Eigenvectors of Complex Hermitian Matrix
Proofs very similar to those in Section B.24 show that any N -rowed, square, complex,
Hermitian matrix H has real eigenvalues and N mutually orthogonal eigenvectors.
The difference is that the eigenvectors are now complex, so the complex inner product
of eqn (B.73) must be used. In the present section, we assume that the eigenvalues
and eigenvectors of an N -rowed, complex, Hermitian matrix H are being found by
the techniques of Section B.23.

We state, without further proof, some results for Hermitian matrices correspond-
ing to those of Section B.24 for real, symmetric ones:

1. A Hermitian matrix has real eigenvalues.
2. If two eigenvalues are unequal λk �= λl , then the corresponding eigenvector

solutions are orthogonal, [x (k)]∗ · [x (l)] = 0.
3. A complex, N -rowed, Hermitian matrix H has real eigenvalues λk and N nor-

malized, mutually orthogonal eigenvectors [x (k)] such that, for all k, l = 1, . . . , N ,

H [x (k)] = λk[x (k)] where [x (k)]∗ · [x (l)] = δkl (B.101)

Another theorem of importance, stated without proof, is:

Theorem B.25.1: Common Eigenvectors
Two complex (or real) N -rowed Hermitian matrices H 1 and H 2 have a common set of
N mutually orthogonal eigenvectors [x (k)], such that

H 1[x (k)] = λk[x (k)] and H 2[x (k)] = γk[x (k)] (B.102)

if and only if they commute,
[H 1, H 2]c = 0 (B.103)

Note that the real eigenvalues λk, γk are in general different, even though the eigenvectors
are the same.

B.26 Normal Matrices
Since N -rowed real symmetric and complex Hermitian matrices both have N mutually
orthogonal eigenvectors, one might wonder if other species such as orthogonal or
unitary matrices do also. The answer is yes. The general rule is that an N -rowed
matrix has N mutually orthogonal eigenvectors if and only if it commutes127 with
its Hermitian conjugate. Such matrices are called normal matrices. By definition, a
matrix is normal if and only if the matrix and its Hermitian conjugate commute,

[A , A †]c = A A † − A † A = 0 (B.104)

127The commutator of two matrices is defined as [A , B ]c = A B − B A . See the analogous definition for
operators in Section 7.1. If the commutator vanishes, the two matrices are said to commute.
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Theorem B.26.1: Eigenvectors of Normal Matrices
The N -rowed, square matrix A has N mutually orthogonal eigenvectors [x (k)] with

A [x (k)] = λk[x (k)] where [x (k)]∗ · [x (l)] = δkl (B.105)

for all k, l = 1, . . . , N , if and only if it is normal.

Proof: To prove that eqn (B.104) implies the existence of N mutually orthogonal
eigenvectors, note that any square matrix A can be written as a sum of two Hermitian
matrices as

A = A R + i A I where A R = 1

2

(
A + A †

)
and A I = −i

2

(
A − A †

)
(B.106)

By Theorem B.25.1, the two Hermitian matrices will have a common set of N mutu-
ally orthogonal eigenvectors if and only if

0 = [A R, A I ]c = 1

2i
[A , A †]c (B.107)

where the second equality follows from the definitions in eqn (B.106). A vector [x (k)]
that is a common eigenvector of A R, A I with eigenvalues λk, γk , respectively, will be
an eigenvector of A with eigenvalue (λk + iγk), which completes the proof. The proof
of the converse, that the existence of a set of N orthonormal eigenvectors satisfying
eqn (B.105) implies eqn (B.104), follows immediately from eqn (B.119) of Section
B.27 and the fact that any two diagonal matrices commute. �

The eigenvalue and eigenvectors of normal matrices are found using the same
techniques as described in Section B.23 and used earlier for real symmetric and com-
plex Hermitian matrices. The eigenvalues of normal matrices are derived from the
same determinant condition as in eqn (B.85). The eigenvalues of normal matrices
may in general be complex rather than real, but the eigenvector solutions are still
obtained from eqn (B.86). And the following lemma remains true.

Lemma B.26.2: Orthogonality of Eigenvectors of Normal Matrix
If a normal matrix A has two unequal eigenvalues λk �= λl , then the corresponding
eigenvectors will be orthogonal, [x (k)]∗ · [x (l)] = 0. Two complex eigenvalues are consid-
ered unequal if either their real or their imaginary parts differ.

Since complex conjugation has no effect on real matrices, the condition for a real
matrix to be normal reduces to

[A , A T]c = A A T − A T A = 0 (B.108)

Then examination of the conditions in eqns (B.104, B.108) shows that real symmetric,
real anti-symmetric, real orthogonal, complex Hermitian, complex anti-Hermitian,
and complex unitary matrices are all normal.
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B.27 Properties of Normal Matrices
Normal matrices have a complete orthonormal set of eigenvectors. A number of im-
portant results follow from this fact. We present some of these results here, assuming
that the eigenvectors and eigenvalues may be complex. But the same formulas may
also be used for real, symmetric matrices with real eigenvectors and eigenvalues by
ignoring the complex conjugation signs “*”, replacing all Hermitian conjugate signs
“†” by transpose signs “T”, and replacing the word “unitary” by the word “orthog-
onal.” Thus the results of the present section apply in particular to real symmetric,
real anti-symmetric, orthogonal, complex Hermitian, complex skew-Hermitian, and
complex unitary matrices.

Given a normal, N -rowed matrix A and its N orthonormal eigenvectors [x (k)], let
us define a matrix D whose columns are the eigenvectors. The matrix elements of D
are therefore

Dik = x (k)
i (B.109)

for i, k = 1, . . . , N , and so

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x (1)
1 x (2)

1 · · · x (N )
1

x (1)
2 x (2)

2 · · · x (N )
2

...
...

...
...

x (1)
N x (2)

N · · · x (N )
N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(B.110)

As was discussed in Section B.22, since its columns are an orthonormal set of vectors
this D will be a unitary matrix. But it is useful here to prove its unitarity directly.
From the orthonormality of the [x (k)] in eqn (B.105),

(
D † D

)
kl
=

N∑
i=1

D†
ki Dil =

N∑
i=1

D∗
ik Dil

=
N∑

i=1

x (k)∗
i x (l)

i = [x (k)]†[x (l)] = [x (k)]∗ · [x (l)] = δkl (B.111)

Since the unit matrix has Ukl = δkl , this proves that all matrix elements of D † D are
identical to those of U and hence that

D † D = U (B.112)

As proved in B.22.2, this is sufficient to prove D unitary.
Since D is unitary, it follows also that U = D D †. In terms of the components,

this can be written

Ui j = δi j =
(

D D †
)

i j
=

N∑
k=1

x (k)
i x (k)∗

j =
(

N∑
k=1

[x (k)][x (k)]†
)

i j

(B.113)
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It follows that

U =
N∑

k=1

[x (k)][x (k)]† (B.114)

which expands the unit matrix in terms of eigenvectors. This expansion is called a
resolution of unity. Applying this expression to an arbitrary vector [V ] gives

[V ] = U [V ] =
N∑

k=1

[x (k)][x (k)]†[V ] =
N∑

k=1

[x (k)]
(
[x (k)]∗ · [V ]

)
(B.115)

which should be compared to eqn (B.75).
Now consider the matrix E defined by the matrix product

E = D † A D (B.116)

Expanding this product and using eqn (B.105) gives

Ekl =
N∑

i=1

N∑
j=1

D†
ki Ai j Djl =

N∑
i=1

N∑
j=1

x (k)∗
i Ai j x (l)

j

= [x (k)]† A [x (l)] = [x (k)]∗ · λl [x (l)] = δklλl (B.117)

Thus E is a diagonal matrix with the eigenvalues of A as its diagonal elements. We
say that D reduces A to the diagonal matrix E

E =

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λN

⎞⎟⎟⎟⎠ (B.118)

Equation (B.116) can be inverted, using the unitarity of D to write

A = D E D † (B.119)

which can be written out as an expansion of A in terms of its eigenvalues and eigen-
vectors

Ai j =
N∑

k=1

N∑
l=1

Dik Ekl D†
l j =

N∑
k=1

N∑
l=1

x (k)
i δklλl x

(l)∗
j =

N∑
k=1

x (k)
i λk x (k)∗

j (B.120)

In matrix notation, this equation becomes

A =
N∑

k=1

[x (k)]λk[x (k)]† (B.121)

which is referred to as an eigen-dyadic expansion of matrix A in terms of its eigenvec-
tors and eigenvalues.

Equation (B.119) also allows the trace and determinant of a normal matrix to be
found from its eigenvalues.
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Theorem B.27.1: Trace and Determinant of Normal Matrices
If matrix A is an N -rowed, normal matrix (either real or complex), with eigenvalues
λ1, λ2, . . . , λN then its trace and determinant are

Tr A = λ1 + λ2 + · · · + λN and |A | = λ1λ2 · · · λN (B.122)

Proof: From eqn (B.119), and the invariance of the trace under cyclic permutations
discussed in Section B.8, it follows that

Tr A = Tr
(

D E D †
)
= Tr

(
E D † D

)
= Tr E = λ1 + λ2 + · · · + λN (B.123)

From eqn (B.119), and Properties 5 and 11 of Section B.11, it follows that∣∣∣A
∣∣∣ = ∣∣∣D E D †

∣∣∣ = ∣∣∣D
∣∣∣ ∣∣∣E

∣∣∣ ∣∣∣D †
∣∣∣ = ∣∣∣E

∣∣∣ = λ1λ2 · · · λN (B.124)

�

Equation (B.119) also allows the characteristic equation of normal matrix A to
be expressed in terms of the eigenvalues corresponding to its N mutually orthogonal
eigenvectors.

Theorem B.27.2: Form of Characteristic Equation
If matrix A is an N -rowed, normal matrix (either real or complex), with eigenvectors
[x (1)], [x (2)], . . . , [x (N )] and corresponding eigenvalues λ1, λ2, . . . , λN then the charac-
teristic equation eqn (B.83) is

0 = |A − λ U | = (λ1 − λ) (λ2 − λ) · · · (λN − λ) (B.125)

with one factor for each eigenvector, regardless of the uniqueness or degeneracy of that
eigenvalue.

Proof: Using eqn (B.119) and the unitarity of D ,∣∣∣A − λ U
∣∣∣ = ∣∣∣D E D † − λ D U D †

∣∣∣ = ∣∣∣D ( E − λ U ) D †
∣∣∣

=
∣∣∣D

∣∣∣ ∣∣∣E − λ U
∣∣∣ ∣∣∣D †

∣∣∣ = ∣∣∣E − λ U
∣∣∣ (B.126)

But both E and U are diagonal matrices, so

|E − λ U | = (λ1 − λ) (λ2 − λ) · · · (λN − λ) (B.127)

which establishes eqn (B.125). �

Theorem B.27.2 establishes that, for normal matrices, the multiplicity of a partic-
ular eigenvalue in the characteristic equation is equal to the number of orthogonal
eigenvectors having that eigenvalue. Thus eqn (B.86) for a degenerate eigenvalue λk

with multiplicity κ will always yield κ mutually orthogonal eigenvector solutions, as
was asserted at the end of Section B.23.
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B.28 Functions of Normal Matrices
Matrix functions of normal matrices may be defined by using the dyadic expansion in
eqn (B.121) of the previous Section B.27.

Let A be an N -rowed normal matrix with eigenvalues λk and mutually orthogonal
eigenvectors [x (k)], for k = 1, . . . , N . Let f = f (z) be a complex function of the
complex variable z that is well defined when z is equal to any one of the λk . Then the
matrix function F = f ( A ) may be defined as

F = f ( A ) =
N∑

k=1

[x (k)] f (λk)[x (k)]† (B.128)

This definition has several useful consequences:

1. The matrix F is also a normal matrix.
2. The eigenvectors [x (k)] of A are also eigenvectors of F . The corresponding

eigenvalues of matrix F are f (λk). That is,

F [x (k)] = γk[x (k)] where γk = f (λk) (B.129)

3. As may be seen by repeated use of eqn (B.121) using the orthonormality of
the eigenvectors, if f (z) = zn for any positive integer n, then F = A n where
A n = A A · · · A︸ ︷︷ ︸

n times

.

4. It follows from consequence 3 and the resolution of unity in eqn (B.114) that,
when f (z) has a power-series expansion f (z) = a0 + a1z + a2z2 + · · · and all λk

lie in the circle of convergence of the power series, then the power series

F = a0 U + a1 A + a2 A 2 + · · · (B.130)

converges to the same F as that defined in eqn (B.128).
5. A characteristic equation like eqn (B.83) is used to find the eigenvalues λk of

any N -rowed normal matrix A . As proved by the last theorem in Section B.27,
this characteristic equation may be written as

0 = |A − λ U | = (λ1 − λ) (λ2 − λ) · · · (λN − λ) (B.131)

where the λ1, λ2, . . . , λN are the eigenvalues corresponding to its N eigenvec-
tors. As may be seen by repeated use of eqns (B.114, B.121), using the orthonor-
mality of the eigenvectors, the normal matrix itself satisfies its own characteris-
tic equation. With A substituted for the unknown λ, and λk U for the numbers
λk ,

0 = (λ1 U − A ) (λ2 U − A ) · · · (λN U − A ) (B.132)

6. It follows from consequence 5 that the N th power A N of any N -rowed square,
normal matrix A may be written as a polynomial p( A ) of degree (N − 1) con-
taining only powers of A less than N , so that A N = p( A ). Thus, for any
N -rowed square, normal matrix, the power series eqn (B.130) can be reduced
to an expression containing only powers of A up to and including A (N−1).



APPENDIX C

EIGENVALUE PROBLEM WITH GENERAL METRIC

The theory of small vibrations in Chapter 10 requires a generalization of the matrix
eigenvalue methods of Appendix B. The generalized eigenvalue equation is of the
form

A [z(k)] = θk g [z(k)] (C.1)

where column vector [z(k)] is an eigenvector of matrix A with eigenvalue θk . The
only difference between this equation and the standard eigenvalue expression in eqn
(B.81) is the presence of a positive-definite matrix g on the right side of eqn (C.1).
The matrix g also serves as a metric, allowing a generalization of the inner products
of two column vectors.

C.1 Positive-Definite Matrices
The real, symmetric N × N matrix g is called a positive definite matrix if, for any real
column vector [x],

[x] �= [0] implies that [x]T g [x] > 0 (C.2)

Lemma C.1.1: Eigenvalues of a Positive-Definite Matrix
A real symmetric matrix is positive definite if and only if all of its eigenvalues are nonzero,
positive numbers. Such a matrix is nonsingular.

Proof: Suppose that the matrix g is positive definite and has eigenvalues γk and
eigenvectors [y(k)]. If we choose the arbitrary column vector in eqn (C.2) to be the kth
normalized eigenvector of g , then

0 < [y(k)]T g [y(k)] = γk[y(k)]T[y(k)] = γk (C.3)

which shows that γk cannot be zero or negative.
Conversely, assume all γk > 0 and let [x] be an arbitrary non-null column vector.

Since a real symmetric matrix g is a normal matrix, it follows from eqn (B.121) and
the orthonormality and hence completeness of its eigenvectors [y(k)] that

[x]T g [x] = [x]T
(

N∑
k=1

[y(k)]γk[y(k)]T
)
[x] =

N∑
k=1

γk

(
N∑

i=1

y(k)
i xi

)2

> 0 (C.4)

as was to be proved.
If a real symmetric matrix is positive definite, it follows from the just-proved posi-

tive definiteness of its eigenvalues and from Theorem B.27.1 that |g | = γ1 · · · γN > 0.
Therefore the matrix is nonsingular. �

534
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Note that the condition |g | > 0 is a necessary but not a sufficient condition for g
to be positive definite. For example, a 4 × 4 diagonal matrix with diagonal elements
(1,−1, 1,−1) has a positive determinant but is not a positive definite matrix.

Since the γk are all positive, we can define the following real, symmetric matrices,

g =
N∑

k=1

[y(k)]γk[y(k)]T (C.5)

g 1/2 =
N∑

k=1

[y(k)]√γk[y(k)]T (C.6)

g−1/2 =
N∑

k=1

[y(k)] 1√
γk
[y(k)]T (C.7)

g−1 =
N∑

k=1

[y(k)] 1

γk
[y(k)]T (C.8)

The first of these, eqn (C.5), is just an application of the dyadic eqn (B.121) to the
matrix g . The others are defined by analogy. By construction, these matrices have the
following properties,

g 1/2 g 1/2 = g g−1/2 g−1/2 = g−1 g−1/2 g 1/2 = U = g 1/2 g−1/2

(C.9)

C.2 Generalization of the Real Inner Product

If g is an M-rowed, real, symmetric, positive-definite matrix, a generalized inner
product of two M × 1 column vectors may be defined by

[x] • [y] = [x]T g [y] =
M∑

i=1

M∑
j=1

xi gi j yj (C.10)

This inner product has properties similar to that of the ordinary real inner product in
Section B.20, that

[x] • [y] = [y] • [x] and that [x] �= [0] implies [x] • [x] > 0 (C.11)

This generalized inner product also has other properties similar to those in Sec-
tion B.20. If a set of M × 1 vectors [V (1)], [V (2)], . . . , [V (M)] is orthonormal in the
generalized sense,

[V (k)] • [V (l)] = δkl (C.12)

for all k, l = 1, . . . , M , then that set if LI and forms a basis for the space of M × 1
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vectors. Any vector [V ] can be expanded as

[V ] = β1[V (1)] + β2[V (2)] + · · · + βM [V (M)] (C.13)

where the components are, for k = 1, . . . , M , given by

βk = [V (k)] • [V ] (C.14)

If a set of vectors [V (1)], [V (2)], . . . , [V (N )] is initially LI but not orthogonal, a mu-
tually orthogonal set [W (1)], [W (2)], . . . , [W (N )] can be found by a generalization of
the Schmidt orthogonalization procedure outlined in Section B.20,

[W (1)] = [V (1)]

[W (2)] = [V (2)] − [V (2)] • [W (1)]
[W (1)] • [W (1)] [W

(1)] (C.15)

and so on, following the pattern of eqn (B.69), but with the ordinary inner product
“·” replaced by the generalized one “•” throughout. The vectors can then be normal-
ized, again using the generalized inner product, so that they become a generalized
orthonormal set obeying [W (i)] • [W ( j)] = δi j for all i, j values.

C.3 The Generalized Eigenvalue Problem
In the Lagrangian theory of small vibrations, we are asked to solve a generalized
eigenvalue problem, to find eigenvectors [z(k)] and eigenvalues θk that are solutions
of

A [z(k)] = θk g [z(k)] (C.16)

where A is a real, symmetric matrix, and g is a real, symmetric, positive-definite
matrix. This equation can be rewritten as

( A − θk g ) [z(k)] = [0] (C.17)

and the eigenvalues found from

|A − θ g | = 0 (C.18)

These equations differ from the standard eigenvalue equations in B.23 only by the
replacement of the unit matrix U by a positive definite matrix g .

Before stating and proving the main theorem, we present a preliminary result.

Lemma C.3.1: Transformed Eigenvector Problem
Equation (C.16) is true if and only if

B [x (k)] = θk[x (k)] (C.19)

where

[x (k)] = g 1/2[z(k)] [z(k)] = g−1/2[x (k)] B = g−1/2 A g−1/2 (C.20)

and the definitions in Section C.2 have been used for g 1/2 and g−1/2.
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Proof: Substituting the second of eqn (C.20) into eqn (C.19) gives

A g−1/2[x (k)] = θk g g−1/2[x (k)] (C.21)

Then pre-multiplying both sides by by g−1/2 and using eqn (C.9) gives eqn (C.16).
Conversely, substituting the first and last of eqn (C.20) into eqn (C.16) gives

g−1/2 A g−1/2 g 1/2[z(k)] = θk g 1/2[z(k)] (C.22)

Pre-multiplying both sides by g
1
2 and using eqn (C.9) then gives eqn (C.19). Thus the

two equations are equivalent, as was to be proved. �
We now state the main theorem.

Theorem C.3.2: Generalized Eigenvector Theorem
If A is an N -rowed, real, symmetric matrix and g is a real, symmetric, positive definite
matrix of the same size, then the eigenvalue equation

A [z(k)] = θk g [z(k)] (C.23)

has N real eigenvalues θ1, θ2, . . . , θN , and N real eigenvectors [z(1)], [z(2)], . . . , [z(N )]
that are normalized and mutually orthogonal according to the generalized inner product
of Section C.2,

[z(k)] • [z(l)] = δkl (C.24)

Proof: Since the matrix B defined in the last of eqn (C.20) is real and symmetric,
we know from Theorem B.24.3 that it has N real eigenvalues and N real eigenvectors
[x (k)] that obey the ordinary definition of orthonormality [x (k)] · [x (l)] = δkl . And
the above Lemma C.3.1 proves that for each of these [x (k)], the vector [z(k)] defined
in the second of eqn (C.20) is a generalized eigenvector of matrix A obeying eqn
(C.23). Thus there are N generalized eigenvectors. It only remains to investigate their
generalized orthogonality.

Substituting the first of eqn (C.20) into [x (k)] · [x (l)] = δkl gives

δkl = [x (k)] · [x (l)] = [x (k)]T[x (l)] = [z(k)]T g 1/2 g 1/2[z(k)] = [z(k)]T g [z(k)] = [z(k)] • [z(l)]
(C.25)

which establishes eqn (C.24). Thus the theorem is proved. �

C.4 Finding Eigenvectors in the Generalized Problem
We now know that a real, symmetric matrix A has N generalized eigenvectors. To
find them, the procedure is similar to the ordinary eigenvector solution. Written out,
eqn (C.18) is ∣∣∣∣∣∣∣∣∣

(A11 − θg11) (A12 − θg12) · · · (A1N − θg1N )

(A21 − θg21) (A22 − θg22) · · · (A2N − θg2N )
...

...
. . .

...

(AN1 − θgN1) (AN2 − θgN2) · · · (AN N − θgN N )

∣∣∣∣∣∣∣∣∣ = 0 (C.26)

which can be solved for θ1, θ2, . . . , θN . We know from Section C.3 that these eigenval-
ues will all be real.
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The eigenvector(s) corresponding to a particular eigenvalue are found from eqn
(C.17) which may be written as

(A11 − θk g11) z(k)
1 + (A12 − θk g12) z(k)

2 + · · · + (A1N − θk g1N ) z(k)
N = 0

(A21 − θk g21) z(k)
1 + (A22 − θk g22) z(k)

2 + · · · + (A2N − θk g2N ) z(k)
N = 0

...
...

(AN1 − θk gN1) z(k)
1 + (AN2 − θk gN2) z(k)

2 + · · · + (AN N − θk gN N ) z(k)
N = 0 (C.27)

Just as for the ordinary eigenvector solution, if the eigenvalue is unique, then these
equations can be solved for a unique set of ratios z(k)

i /z(k)
1 . The value of z(k)

1 can then
be obtained from the normalization condition,

[z(k)] • [z(k)] = 1 (C.28)

If the eigenvalue is a multiple root of degeneracy κ then there will be κ LI roots of
eqn (C.27). These can be made orthogonal in the generalized sense by using the gen-
eralized Schmidt orthogonalization procedure outlined in eqn (C.15). The resulting
set of eigenvector solutions will then obey the orthonormality condition eqn (C.24).

C.5 Uses of the Generalized Eigenvectors
The main use of the generalized eigenvalue problem is simultaneously to reduce the
matrix A to a diagonal matrix, and the matrix g to the unit matrix. Let us define a
matrix C whose kth column is the kth eigenvector from the generalized eigenvalue
problem of Section C.3,

Cik = z(k)
i (C.29)

so that

C =

⎛⎜⎜⎜⎜⎜⎝
z(1)

1 z(2)
1 · · · z(N )

1

z(1)
2 z(2)

2 · · · z(N )
2

...
...

...
...

z(1)
N z(2)

N · · · z(N )
N

⎞⎟⎟⎟⎟⎟⎠ (C.30)

Theorem C.5.1: Reduction to Diagonal Form
Let U be the unit matrix, and define F to be a diagonal matrix whose diagonal elements
are the eigenvalues of the generalized eigenvalue problem of Section C.3,

F =

⎛⎜⎜⎜⎝
θ1 0 · · · 0
0 θ2 · · · 0
...

...
. . .

...

0 0 · · · θN

⎞⎟⎟⎟⎠ (C.31)

With C the matrix defined in eqn (C.29), it follows that

C T g C = U and C T A C = F (C.32)
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Proof: To prove the first of eqn (C.32), use eqn (C.29) to write eqn (C.24) as

δkl = [z(k)] • [z(l)] =
N∑

i=1

N∑
j=1

z(k)
i gi j z

(l)
j =

N∑
i=1

N∑
j=1

Cik gi j Cjl =
(

C T g C
)

kl
(C.33)

Thus C T g C has the same matrix elements as the unit matrix Ukl = δkl and so the
two are equal, as was to be proved.

To prove the second of eqn (C.32), replace k by l in eqn (C.23) and then multiply
both sides of it from the left by [z(k)]T to obtain

[z(k)]T A [z(l)] = θl [z(k)]T g [z(l)] = θl [z(k)] • [z(l)] = θlδkl = Fkl (C.34)

Thus

Fkl =
N∑

i=1

N∑
j=1

z(k)
i Ai j z

(l)
j =

N∑
i=1

N∑
j=1

Cik Ai j Cjl =
(

C T A C
)

kl
(C.35)

holds for every value of kl and so the two matrices are equal, as was to be proved. �



APPENDIX D

THE CALCULUS OF MANY VARIABLES

We summarize here some standard results from the calculus of many variables. These
theorems will be invoked frequently throughout the text. In particular, the reader
should review this material before beginning the chapter on Lagrangian methods.
More background on this topic can be found in many standard calculus texts; a partic-
ularly accessible source is the two volumes of Courant (1936a,b). The mathematical
appendices of Desloges (1982) are also very useful.

D.1 Basic Properties of Functions

A function y of the set of variables x1, x2, . . . , xN will be written in either of the two
equivalent forms,

y = y(x1, x2, . . . , xN ) or y = y(x) (D.1)

In the second form, the single unsubscripted variable x denotes the whole set, x =
x1, x2, . . . , xN . Note that the same letter y is used to denote both quantity and func-
tion. Whereas a calculus book might write y = f (x), we write y = y(x). This notation
has the advantage of clarity and alphabetic economy. It will be clear from context
when letters like y denote the function and when they denote the value of the func-
tion. Usually, a letter on the left of an equal sign denotes the value, the same letter
before the (x) denotes the function that produces that value.

D.2 Regions of Definition of Functions

Functions are assumed to be single valued for all x1, x2, . . . , xN in a region R. A simple
example of such a region is an open rectangle R⊥ defined byak < xk < bk for k =
1, . . . , N , where the ak < bk are some constants.

The region R is connected if any two points in R can be joined by a curve lying
entirely in R. The region is simply connected if it is connected, and if every closed
curve lying entirely in R can be continuously shrunk to a point without leaving R. For
example, the interior of a ball is simply connected, the interior of a doughnut is not.

Region R is called open if, for every point in R, there is some (possibly quite small)
open rectangle lying entirely in R and containing the point. Such an open rectangle
will be called an open neighborhood of the point x and will be denoted Nx . See Chapter
I of Spivak (1965) for more definitions.

540
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D.3 Continuity of Functions
The definition of continuity is similar to that for functions of one variable.128 Define
an arbitrary increment hk for each variable xk for k = 1, . . . , N . Then function y is
continuous at point x if, for every possible choice of the hk ,

lim
θ→0

y(x1 + θh1, x2 + θh2, . . . , xN + θhN ) = y(x1, x2, . . . , xN ) (D.2)

For example, there is no assigned value of y (0, 0) for which y = y (x1, x2) =(
x2

1 − x2
2

)
/
(
x2

1 + x2
2

)
would be continuous at the point x1 = 0, x2 = 0, since the

left side of eqn (D.2) would have the limit +1 when h1 = 1, h2 = 0 but the limit −1
when h1 = 0, h2 = 1.

D.4 Compound Functions
Suppose we have a function

y = y(x1, x2, . . . , xN ) (D.3)

and each of the x1, x2, . . . , xN is a function of another set of variables r1, r2, . . . rM as
in

xk = xk(r1, r2, . . . , rM ) (D.4)

Then y is a compound function of the variables r . This compound function y =
y(r1, r2, . . . , rM ) is defined by direct substitution of the xk of eqn (D.4) into eqn (D.3).
This substitution will be denoted by

y = y(r1, r2, . . . , rM ) = y
(
x1(r1, r2, . . . , rM ), x2(r1, r2, . . . , rM ), . . . , xN (r1, r2, . . . , rM )

)
(D.5)

or, in a somewhat shorter notation,

y = y(r) = y
(
x1(r), x2(r), . . . , xN (r)

)
(D.6)

or, even more simply,
y = y (r) = y

(
x(r)

)
(D.7)

D.5 The Same Function in Different Coordinates
A scalar field T is often represented by functions of different kinds of coordinates. For
example,

T = T (r) = TC(x1, x2, x3) = Tc(ρ, φ, z) = Ts(r, θ, φ) (D.8)

where the subscripts refer to Cartesian, cylindrical polar, and spherical polar coor-
dinates, respectively. Of course, eqn (D.8) contains the implicit assumption that the
various coordinates in it must be linked by the relations in Section A.8, and so rep-
resent the same point r. The function denoted TC(x1, x2, x3) is plainly not the same

128Definitions, and proofs of theorems stated here without proof, may be found in Chapter II of Courant
(1936b).
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function of its arguments x1, x2, x3 as Ts(r, θ, φ) is of its arguments r, θ, φ. For exam-
ple, suppose TC(x1, x2, x3) = ax2/x1 which leads to Ts(r, θ, φ) = a tan φ. But they both
represent the same underlying scalar field function T = T (r). The almost universal
custom in physics texts is to omit the subscripts “C”, “c”, and “s” in eqn (D.8) and
write simply

T = T (r) = T (x1, x2, x3) = T (ρ, φ, z) = T (r, θ, φ) (D.9)

The argument list of a function is taken as an adequate label for it.
The various functions in eqn (D.9) are thought of as the same function. The value

T is really a function of the underlying field point r and is only being represented in
Cartesian, cylindrical polar, or spherical polar form. This physics custom is especially
evident in Lagrangian and Hamiltonian mechanics where one sees expressions such as
L(s, ṡ, t) = L(q, q̇, t) for functions expressing the same underlying physical quantity
in terms of different variable sets.

We will follow the physics custom in this book, and in fact have already done so by
using the same letter y to denote both y(x1, x2, . . . , xN ) and the compound function
y(r1, r2, . . . , rM ) in Section D.4 above. Note that the different functional forms in eqn
(D.9) can be defined as compound functions. For example, T (r, θ, φ) may be derived
from T (x1, x2, x3) by

T (r, θ, φ) = T
(
x1(r, θ, φ), x2(r, θ, φ), x3(r, θ, φ)

)
(D.10)

D.6 Partial Derivatives
Lagrangian mechanics makes extensive use of partial derivatives. Given a function
y = y(x1, x2, . . . , xN ), a partial derivative with respect to variable xk is defined as

∂y(x1, x2, . . . , xN )

∂xk

= lim
hk→0

{
y (x1, x2, . . . , xk−1, xk + hk, xk+1, . . . , xN )− y (x1, x2, . . . , xN )

hk

}
(D.11)

which says to take an ordinary derivative with respect to xk as if variables
x1, x2, . . . , xk−1,xk+1, . . . , xN were constants. It does not say that they are constants,
only that they are to be treated as such in calculating the derivative.

Partial derivatives thus depend on the list of variables as well as on the variable
being differentiated with respect to, since only that list tells what to hold constant
as y is differentiated. The often-seen notation ∂y/∂xk is inherently ambiguous, unless
one happens, as here, to know from context what list of variables is intended. In this
text we will give the list of variables in all partial derivatives whenever there is any
cause for doubt as to what that list might be, often using the shorthand form like
∂y(x)/∂xk in which x stands for the whole list x1, x2, . . . , xN .

One should note that the list of variables x = x1, x2, . . . , xN in a partial derivative
is just to indicate those variables to be treated as constants when a derivative is taken.
It does not indicate that y necessarily depends on each member of the list in every
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case. Thus, we might have y = 2x1 + x3 as the function, even though the list is
x1, x2, . . . , x5. In this case ∂y(x)/∂x2 = 0, ∂y(x)/∂x4 = 0, and ∂y(x)/∂x5 = 0 for all x
values.

Conversely, as discussed in Corollary D.10.2 in Section D.10 below, if ∂y(x)/∂xn =
0 for all x values in region R, then y does not depend on xn , and we may choose to ex-
punge xn from the list of variables and write y = y(x1, x2, . . . , xn−1, xn+1, . . . , xN ). For
example, the list of variables for the above function might be shortened to x1, x2, x3,
with x4 and x5 dropped but the x2 retained.

Partial derivatives are themselves functions of the same variable list x1, x2, . . . , xN

as was the function y being differentiated. Thus second and higher derivatives can
be taken by repeated application of rules like eqn (D.11). If they exist, these higher
derivatives are denoted by expressions like

∂

∂xj

(
∂y(x)

∂xk

)
= ∂2 y(x)

∂xj∂xk

∂

∂xi

(
∂2 y(x)

∂xj∂xk

)
= ∂3 y(x)

∂xi∂xj∂xk
(D.12)

D.7 Continuously Differentiable Functions

If all first partial derivatives of a function y = y(x1, x2, . . . , xN ) exist and are con-
tinuous functions of x , then the function y itself is continuous. Such functions are
called continuously differentiable. If all partial derivatives up to and including the nth
order exist and are continuous functions of x , the function is called continuously dif-
ferentiable to nth order. Unless specifically stated otherwise, we will assume that all
functions used in the present text are continuously differentiable to any order.

D.8 Order of Differentiation

If the second partial derivatives exist and are continuous functions for all x in R (i.e.
if y(x) is continuously differentiable to second order), then the order of the second-
order partial derivatives is unimportant since, for all i, j ,

∂2 y(x)

∂xi∂xj
= ∂2 y(x)

∂xj∂xi
(D.13)

Generalizing, if y is continuously differentiable to nth order, then all partial deriva-
tives of that order or less are also independent of the order in which they are taken.

D.9 Chain Rule

Let y be a compound function of r as defined in eqn (D.5). Assume that all partial
derivatives of the form ∂y(x)/∂xk and ∂xk(r)/∂rj exist. Then the partial derivatives
of y with respect to the r variables exist and may be written using what is called the
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chain rule of partial differentiation,

∂y(r1, r2, . . . , rM )

∂rj
=

N∑
k=1

∂y(x1, x2, . . . , xN )

∂xk

∂xk(r1, r2, . . . , rM )

∂rj
(D.14)

or, in shorter but equivalent notation,

∂y(r)

∂rj
=

N∑
k=1

∂y(x)

∂xk

∂xk(r)

∂rj
(D.15)

D.10 Mean Values
Theorem D.10.1: The Mean Value Theorem
Suppose that a function y = y(x1, x2, . . . , xN ) is continuously differentiable in a region
R and has partial derivatives ∂y(x)/∂xk = gk(x). Let hk be increments added to xk and
assume that point (x1 + ηh1, x2 + ηh2, . . . , xN + ηhN ) lies in region R for all η in the
range 0 ≤ η ≤ 1. Then

y(x1 + h1, x2 + h2, . . . , xN + hN )− y(x1, x2, . . . , xN )

=
N∑

k=1

hk gk(x1 + θh1, x2 + θh2, . . . , xN + θhN ) (D.16)

for some θ in the range 0 < θ < 1.

Corollary D.10.2: Constancy of Functions
If ∂y(x)/∂xk = 0 for all k = 1, . . . , N and for all x in R, then function y(x) is constant
in that region.

Corollary D.10.3: Non-dependence on Variables
If a function y = y(x1, x2, . . . , xN ) has ∂y(x)/∂xn = 0 for some n and for all x in
R, then function y(x) does not depend on the variable xn and so can be written as
y = y(x1, x2, . . . , xn−1, xn+1, . . . , xN ) in that region.

D.11 Orders of Smallness
We often want to compare two functions as a variable approaches some limit L. A
useful notation is found in Chapter I of Titchmarsh (1939). It is

f (x) = o
(
φ(x)

)
as x → L which means lim

x→L

(
f (x)

φ(x)

)
= 0 (D.17)

In words, “Function f is of smaller order than φ as x approaches L.”
The following notation is also used.

f (x) = g(x)+ o
(
φ(x)

)
as x → L which means lim

x→L

(
f (x)− g(x)

φ(x)

)
= 0

(D.18)
In words, “The difference between f and g is of smaller order than φ as x approaches
L.”
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For example, with L = 0,

1 − cos x = o(x) and sin x = x + o(x2) as x → 0 (D.19)

and, with L = ∞,

ln x = o(x) and xn = o
(
ex) as x →∞ (D.20)

D.12 Differentials
If y = y(x) is a function of one variable, the change in y as the independent variable
is incremented from x to x + dx is �y = y(x + dx) − y(x). The increment dx in
this expression is not assumed to be small. It may take any value. Assuming that the
function is differentiable and has a finite derivative at x , the differential dy at point x
is defined as the linear approximation to �y based on the tangent line to the curve at
point x ,

dy = dy(x)

dx
dx (D.21)

Note to the Reader: This definition of the differential, and that in Section D.13,
avoid any use of phrases like “infinitesimally small” or “infinitesimal”. The differ-
ential dy should be thought of as a function of two variables, the point x and the
increment dx , both of which can take any value.

The approximation of �y by dy may be good or bad, of course. But we are guar-
anteed that the difference between the two vanishes for small enough dx . More pre-
cisely, it follows from the definition of the derivative that
limdx→0 {(�y − dy) /dx} = 0, or equivalently, that �y = dy + o(dx) as dx → 0. In
other words, the difference between �y and dy is of smaller order than dx , as dx
approaches zero.

D.13 Differential of a Function of Several Variables
The definition of differential can be extended to functions of more than one variable.
Our definition of this differential follows that of pages 66–69 of Courant (1936b).
Note that he calls it the total differential.

If y = y(x1, x2, . . . , xN ) and each variable is independently incremented from xk

to xk + dxk for all k = 1, . . . , N , then the change in y is

�y = y(x1 + dx1, x2 + dx2, . . . , xN + dxN )− y(x1, x2, . . . , xN ) (D.22)

and the differential dy is defined as as the linear approximation to �y given by

dy =
N∑

k=1

∂y(x)

∂xk
dxk (D.23)

As in the one variable case, the increments dxk may be large or small. If the set
x1, x2, . . . , xN is a set of independent variables, then the dxk are independent and
may take any values.
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In the many-variable case, just as for the functions of one-variable discussed above,
the approximation of �y by dy may be good or bad. Define h = maxk{|dxk |}. If y(x)

is a continuously differentiable function of x , then the mean value theorem, Theorem
D.10.1, implies that

lim
h→0

(
�y − dy

h

)
= 0 or equivalently �y = dy + o(h) as h → 0 (D.24)

where �y and dy are defined in eqns (D.22, D.23).
The differential in eqn (D.23) is well defined for any values of dxk . Nonetheless,

since eqn (D.24) says that, as h = maxk{|dxk |} goes to zero, the difference between
�y and dy if of smaller order than h, it is also legitimate to think of the differential as
the small change in the value of y as the independent variables are incremented by
small amounts. The differential is often used heuristically in this way.

D.14 Differentials and the Chain Rule

The differential of a compound function may be constructed by direct substitution. As
in Section D.4, suppose we have a function y = y(x1, x2, . . . , xN ) whose differential is

dy =
N∑

k=1

∂y(x)

∂xk
dxk (D.25)

and suppose that each xk is in turn a function of r so that, for for k = 1, . . . , N ,

xk = xk(r1, r2, . . . , rM ) and dxk =
M∑

j=1

∂xk(r)

∂rj
drj (D.26)

Substituting eqn (D.26) into eqn (D.25), gives

dy =
N∑

k=1

∂y(x)

∂xk

M∑
j=1

∂xk(r)

∂rj
drj =

M∑
j=1

∂y(r)

∂rj
drj (D.27)

where the chain rule eqn (D.15) was used to obtain the last equality. But the last
expression in eqn (D.27) is precisely the differential of the compound function y =
y(r1, r2, . . . , rM ). This example illustrates that differentials provide a clear and correct
notation for manipulating the chain rule of partial differentiation.

D.15 Differentials of Second and Higher Orders

The first order differential defined in eqn (D.23) is itself a function of the variables
x1, . . . , xN , dx1, . . . , dxN . Thus, the second-order differential may be defined as the
differential of the first-order differential, using the same increments. Writing eqn



TAYLOR SERIES 547

(D.23) using an operator formalism as

dy =
N∑

k=1

∂y(x)

∂xk
dxk =

(
dx1

∂

∂x1
+ · · · + dxN

∂

∂xN

)
y(x) (D.28)

we may define

d2 y =
(

dx1
∂

∂x1
+ · · · + dxN

∂

∂xN

)2

y(x)

=
(

dx1
∂

∂x1
+ · · · + dxN

∂

∂xN

)(
dx1

∂

∂x1
+ · · · + dxN

∂

∂xN

)
y(x)

=
N∑

i=1

N∑
j=1

dxi dxj
∂2 y(x)

∂xi∂xj
(D.29)

assuming that the second-order partial differentials exist. Generalizing to nth order
gives

dn y =
(

dx1
∂

∂x1
+ · · · + dxN

∂

∂xN

)n

y(x)

=
N∑

k1=1

· · ·
N∑

kn=1

dxk1 · · · dxkn

∂n y(x)

∂xk1 · · · ∂xkn

(D.30)

where we assume that the partial differentials to nth order exist.

D.16 Taylor Series
The Taylor theorem may be thought of as a generalization of the mean value theorem
of Section D.10.

Theorem D.16.1: Taylor Series
If function y(x1, . . . , xN ) is continuously differentiable to (n + 1)st order, then

y(x1 + dx1, . . . , xN + dxN ) = y(x1, . . . , xN )+ dy + 1

2!d
2 y + · · · + 1

n!d
n y + Rn (D.31)

where all of the differentials dy, d2 y, etc., are to be evaluated using the same increments
dxk and where the remainder Rn is

Rn = 1

(n + 1)!
N∑

k1=1

· · ·
N∑

kn+1=1

dxk1 · · · dxkn+1 gk1...kn+1 (x1 + θdx1, . . . , xN + θdxN )

(D.32)
where

gk1...kn+1(x) = ∂n+1 y(x)

∂xk1 · · · ∂xkn+1

(D.33)

and θ is some number in the range 0 < θ < 1.
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D.17 Higher-Order Differential as a Difference
Suppose that the conditions of the Taylor theorem of Section D.16 apply, and define
the difference �y as

�y = y(x1 + dx1, . . . , xN + dxN )− y(x1, . . . , xN ) (D.34)

Then inspection of eqns (D.31, D.32) shows that

�y = dy + 1

2!d
2 y + · · · + 1

n!d
n y + o(hn) (D.35)

where h = maxk {|dxk |} for 1 ≤ k ≤ N .

D.18 Differential Expressions
Given N functions ak(x) of the set of independent variables x1, x2, . . . , xN , we may
form differential expressions like

N∑
k=1

ak(x) dxk (D.36)

which may or may not be the actual differential of some function. These expressions
may be manipulated by the usual rules of algebra (think of the dxk simply as finite
increments).

We adopt the usual convention that an equality involving differential expressions
includes the implicit assumption that it holds for all possible dxk values. Since the
increments dxk of independent variables x1, x2, . . . , xN can take any values, it follows
that the dxk may be set nonzero one at a time, which leads to the following Lemmas.

Lemma D.18.1: Zero Differential Expressions
The differential expression is zero

N∑
k=1

ak(x) dxk = 0 (D.37)

if and only if ak(x) = 0 for all k = 1, . . . , N .

Lemma D.18.2: Equal Differential Expressions
Two differential expressions are equal,

N∑
k=1

ak(x) dxk =
N∑

k=1

bk(x) dxk (D.38)

if and only if ak(x) = bk(x) for all k = 1, . . . , N .
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Lemma D.18.3: Differential Expression and Differential
It follows from eqn (D.38) together with the definition of the differential in eqn (D.23)
that, if we are given a function f = f (x1, x2, . . . , xN ) of the independent variables
x1, x2, . . . , xN and a differential expression

∑N
k=1 ak(x) dxk , the equality

d f =
N∑

k=1

ak(x) dxk (D.39)

holds if and only if ∂ f (x)/∂xk = ak(x) for all k = 1, . . . , N .

Note to the Reader: Not all differential expressions can be set equal to the differen-
tial of a function, as was assumed in the previous Lemma. Those that can are called
perfect differentials and are discussed in Section D.20.

Lemma D.18.4: Zero Differential
It follows from Lemma D.18.1 that a function f = f (x1, x2, . . . , xN ) of the indepen-
dent variables x1, x2, . . . , xN will have d f = 0 at a point x1, x2, . . . , xN if and only if
∂ f (x)/∂xk = 0 for all k = 1, . . . , N at that point.

In some cases of interest, the variables x will be functions of another set of vari-
ables r = r1, r2, . . . , rM as in the discussion of compound functions in Section D.4. In
that case, using the chain rule from Section D.14, the differential expression becomes

N∑
k=1

ak(x) dxk =
N∑

k=1

ak(x)

M∑
j=1

∂xk(r)

∂rj
drj =

M∑
j=1

Aj (r) drj (D.40)

where

dxk =
M∑

j=1

∂xk(r)

∂rj
drj and Aj (r) =

N∑
k=1

ak(x)
∂xk(r)

∂rj
(D.41)

In some applications, it is important to know if the Lemmas above still apply to the
differential expression

∑N
k=1 ak(x) dxk when one assumes only that the r variables are

independent.

Theorem D.18.5: Compound Differential Expressions
Let the variables r be assumed to be independent so that the increments drj can be set
equal to zero one at a time in eqn (D.40). Then Lemmas D.18.1 through D.18.4 will
continue to hold for the differential expression

∑N
k=1 ak(x) dxk if and only if M = N and

the determinant condition ∣∣∣∣∂x(r)

∂r

∣∣∣∣ �= 0 (D.42)

is satisfied.

Proof: Theorem D.24.1 below shows that the determinant condition in eqn (D.42) is
the necessary and sufficient condition for the transformation x → r to be invertible.
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Thus, one can use the inverse matrix from Section D.25 to write

drj =
N∑

k=1

(
∂x(r)

∂r

)−1

jk
dxk (D.43)

from which a choice of the independent increments drj can be found that will make
the dxk have any value desired. Thus the dxk are also arbitrary and independent, and
can be set nonzero one at a time, which is the condition needed. �

D.19 Line Integral of a Differential Expression

A curve can be defined in region R by making each xk be a function of some mono-
tonically varying parameter β, so that xk = xk(β) for k = 1, . . . , N . The integral

I01 =
∫ β1

β0

N∑
k=1

ak
(
x(β)

) dxk(β)

dβ
dβ (D.44)

is called a line integral of the differential expression
∑N

k=1 ak(x) dxk along a portion
of that curve.

The line integral in eqn (D.44) is often denoted more simply, as just the integral of
a differential expression with integration along a particular curve being understood.
Thus, one often sees I01 denoted as

I01 =
∫ 1

0

N∑
k=1

ak(x) dxk or even I01 =
∫ 1

0
�a · d �x (D.45)

where the latter form treats the differential expression as a dot product of two vectors
in an N-dimensional Cartesian space with the xk as its coordinates.

D.20 Perfect Differentials

Differential expressions
∑N

k=1 ak(x) dxk for which a function f exists satisfying d f =∑N
k=1 ak(x) dxk are called perfect differentials. Line integrals and perfect differentials

are treated in Chapter V of Courant (1936b) and Appendix 11 in Volume I of Desloges
(1982).

The function f is sometimes called a potential function since the ak(x) can be
derived from it by partial differentiation in a way analogous to the derivation of the
electric field components from the electric potential. A condition for

∑N
k=1 ak(x) dxk

to be a perfect differential is given by the following theorem.

Theorem D.20.1: Condition for a Perfect Differential
Assume the variables x1, x2, . . . , xN to lie in an open rectangle R⊥. Given a set of contin-
uously differentiable functions ak(x) for k = 1, . . . , N , there exists a potential function
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f = f (x1, x2, . . . , xN ) such that the following two equivalent conditions are satisfied,

∂ f (x)

∂xk
= ak(x) for all k = 1, . . . , N or d f =

N∑
k=1

ak(x) dxk (D.46)

if and only if, for all x in R⊥ and all pairs of indices i, j = 1, . . . , N ,

∂ai (x)

∂xj
= ∂aj (x)

∂xi
(D.47)

Proof: First we prove that eqn (D.46) implies eqn (D.47). For if an f exists satisfying
eqn (D.46), then, using eqn (D.13) gives

∂ai (x)

∂xj
= ∂2 f (x)

∂xj∂xi
= ∂2 f (x)

∂xi∂xj
= ∂aj (x)

∂xi
(D.48)

To prove that eqn (D.47) implies eqn (D.46) we construct a suitable f explicitly.
Starting from some arbitrary point x (0)

1 , x (0)
2 , . . . , x (0)

N , we perform a line integral along
a series of straight line segments, first along x1, then along x2, etc., until the final point
1 at x1, x2, . . . , xN is reached. Such a path will lie entirely in R⊥, and the integral I10

will be the sum of the integrals along its segments. Along the jth segment, all xi for
i �= j are held constant but xj varies as xj = β, giving dxk(β)/dβ = δjk . Inserting this
result into eqn (D.44), and setting f (x1, x2, . . . , xN ) equal to the integral I10 gives

f (x1, x2, . . . , xN ) =
N∑

j=1

∫ xj

x (0)
j

aj (x1, x2, . . . , xj−1, β, x (0)
j+1, . . . , x (0)

N ) dβ (D.49)

Since any point x can be reached by this integration, the function f is defined for all
x in R⊥.

The partial derivatives of this f may be written as

∂ f (x)

∂xi
= ai (x1, x2, . . . , xi , x (0)

i+1, . . . , x (0)
N )

+
N∑

j=i+1

∫ xj

x (0)
j

∂aj (x1, x2, . . . , xj−1, β, x (0)
j+1, . . . , x (0)

N )

∂xi
dβ (D.50)

With xj temporarily replaced by β, the assumption stated in eqn (D.47) implies that

∂aj (x1, x2, . . . , xj−1, β, x (0)
j+1, . . . , x (0)

N )

∂xi
= ∂ai (x1, x2, . . . , xj−1, β, x (0)

j+1, . . . , x (0)
N )

∂β
(D.51)
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Thus
∂ f (x)

∂xi
= ai (x1, x2, . . . , xi , x (0)

i+1, . . . , x (0)
N )

+
N∑

j=i+1

∫ xj

x (0)
j

∂ai (x1, x2, . . . , xj−1, β, x (0)
j+1, . . . , x (0)

N )

∂β
dβ

∂ f (x)

∂xi
= ai (x1, x2, . . . , xi , x (0)

i+1, . . . , x (0)
N )

+
N∑

j=i+1

ai (x1, x2, . . . , xj−1, xj , x (0)
j+1, . . . , x (0)

N )

−
N∑

j=i+1

ai (x1, x2, . . . , xj−1, x (0)
j , x (0)

j+1, . . . , x (0)
N )

∂ f (x)

∂xi
= ai (x1, x2, . . . , xN ) (D.52)

which shows that the f constructed in eqn (D.49) does have the required property
eqn (D.46). �

The line integral eqn (D.49) used in this proof is of great practical use. It will be
used, for example, to compute generating functions for canonical transformations.

The theorem proved in this section (but not, of course, the proof of it given here)
remains true even when open rectangle R⊥ is replaced by a more general region R
which is only assumed to be open and simply connected. See Chapter V of Courant
(1936b) for details.

D.21 Perfect Differential and Path Independence
An alternate, and equivalent, condition for a differential expression to be a perfect
differential is that its line integral between two end points be independent of the
particular choice of the path between them.

Theorem D.21.1: Path Independence
Assume a given set of functions ak(x) for k = 1, . . . , N , continuously differentiable in
an open and simply connected region R. The differential expression

∑N
k=1 ak(x) dxk is a

perfect differential with a potential function f satisfying the equivalent conditions eqn
(D.46),

∂ f (x)

∂xk
= ak(x) for all k = 1, . . . , N or d f =

N∑
k=1

ak(x)dxk (D.53)

if and only if the line integral between any two points in R

I01 =
∫ β1

β0

N∑
k=1

ak
(
x(β)

) dxk(β)

dβ
dβ (D.54)

depends only on x at the endpoints of the integration x1(β0), x2(β0), . . . , xN (β0)
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and x1(β1), x2(β1), . . . , xN (β1) and is therefore independent of the path xk(β) taken be-
tween those endpoints.

Proof: First assume eqn (D.53) and prove the path independence of eqn (D.54). If a
potential function f exists, then eqn (D.54) becomes

I01 =
∫ β1

β0

N∑
k=1

∂ f (x)

∂xk

dxk

dβ
dβ =

∫ β1

β0

d f (x)

dβ
dβ = f

(
x(β2)

)− f
(
x(β1)

)
(D.55)

which depends only on the value of f at the end points and hence is independent of
the path, as was to be proved. For proof of the converse, see Chapter V of Courant
(1936b). �

It follow from Theorem D.21.1 that integration along any path between the points
x (0)

1 , x (0)
2 , . . . , x (0)

N and x1, x2, . . . , xN would have given the same integral as the par-
ticular path used in the proof of Theorem D.20.1.

The path independence of line integrals between any two points is equivalent to
the vanishing of line integrals around closed paths. The following Corollary is given
without proof.

Corollary D.21.2: Closed Paths
The line integral I01 between any two points is independent of the path if and only if the
line integral around any closed path is zero.

D.22 Jacobians
Suppose that we are given yk = yk(x1, x2, . . . , xN , z1, z2, . . . , zP ) = yk(x, z) for k =
1, . . . , N , where P may have any non-negative value, including the value zero (which
would indicate that the extra z variables are absent). Then we may form an N × N
matrix of partial derivatives denoted (∂y(x, z)/∂x) and defined by(

∂y(x, z)

∂x

)
i j
= ∂yi (x1, x2, . . . , xN , z1, z2, . . . , zP )

∂xj
(D.56)

This matrix is called the Jacobian matrix, and its determinant is called the Jacobian
determinant, or simply the Jacobian. It is variously denoted. We give here the two
forms we will use, and the determinant itself,

∂ (y1, y2, . . . , yN )

∂ (x1, x2, . . . , xN )
=

∣∣∣∣∂y(x, z)

∂x

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂y1(x, z)

∂x1

∂y1(x, z)

∂x2
· · · ∂y1(x, z)

∂xN

∂y2(x, z)

∂x1

∂y2(x, z)

∂x2
· · · ∂y2(x, z)

∂xN
...

...
...

...

∂yN (x, z)

∂x1

∂yN (x, z)

∂x2
· · · ∂yN (x, z)

∂xN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(D.57)

The first form, which is the traditional one, does not specify the list of variables to be
held constant when the partial derivatives are taken. It is implicit in the notation that
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all of the variables listed in the denominator are on that list, but there may be others,
as here. Usually the intended list is obvious, but in cases of doubt we will modify the
traditional notation and use expressions like

∂
(
y1(x, z), y2(x, z), . . . , yN (x, z)

)
∂ (x1, x2, . . . , xN )

(D.58)

in which the list is explicitly stated. Jacobians are treated in Volume I, Appendix 3 of
Desloges (1982) and in Chapter III of Courant (1936b).

Lemma D.22.1: Jacobian of a Compound Function
If the variables xi are themselves functions of another set of variables r , as well as of the
same extra variables z as above, xi = xi (r1, r2, . . . , rN , z1, z2, . . . , zP ) for i = 1, . . . , N ,
then the compound functions yk(r1, r2, . . . , rN , z1, z2, . . . , zP ) may be defined by

yk = yk(r1, r2, . . . , rN , z1, z2, . . . , zP ) = yk
(
x1(r, z), x2(r, z), . . . , xN (r, z), z1, z2, . . . , zP

)
(D.59)

Then the Jacobians obey the relation∣∣∣∣∂y(r, z)

∂r

∣∣∣∣ = ∣∣∣∣∂y(x, z)

∂x

∣∣∣∣ ∣∣∣∣∂x(r, z)

∂r

∣∣∣∣ (D.60)

or, in the traditional notation,

∂ (y1, y2, . . . , yN )

∂ (r1, r2, . . . , rN )
= ∂ (y1, y2, . . . , yN )

∂ (x1, x2, . . . , xN )

∂ (x1, x2, . . . , xN )

∂ (r1, r2, . . . , rN )
(D.61)

Proof: The chain rule of partial differentiation gives

∂yk(r, z)

∂ri
=

N∑
j=1

∂yk(x, z)

∂xj

∂xj (r, z)

∂ri
(D.62)

which may be written as a matrix equation(
∂y(r, z)

∂r

)
=

(
∂y(x, z)

∂x

)(
∂x(r, z)

∂r

)
(D.63)

Equating the determinant of both sides of eqn (D.63) gives eqn (D.60), as was to be
proved. �
Lemma D.22.2: Jacobian of an Augmented Variable Set
If yk = yk(x1, x2, . . . , xN , z1, z2, . . . , zP ) = yk(x, z) for k = 1, . . . , N as before, the

following identity holds

∂ (y1, y2, . . . , yN , z1, z2, . . . , zP )

∂ (x1, x2, . . . , xN , z1, z2, . . . , zP )
= ∂ (y1, y2, . . . , yN )

∂ (x1, x2, . . . , xN )
(D.64)

Proof: The left expression in eqn (D.64) is the determinant of an (N + P)× (N + P)

matrix whose last P rows consist of N zeroes followed by an element of the P × P
identity matrix. Its determinant is thus the determinant of the N × N upper left-hand
block, which is the right expression in eqn (D.64). �
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Lemma D.22.3: Jacobian of an Inverse Function
If a set of functions yk = yk(x1, x2, . . . , xN , z1, z2, . . . , zP ) can be solved for x , giving
xi = xi (y1, y2, . . . , yN , z1, z2, . . . , zP ) then∣∣∣∣∂y(x, z)

∂x

∣∣∣∣ ∣∣∣∣∂x(y, z)

∂y

∣∣∣∣ = 1 (D.65)

or, in traditional form,

∂ (y1, y2, . . . , yN )

∂ (x1, x2, . . . , xN )

∂ (x1, x2, . . . , xN )

∂ (y1, y2, . . . , yN )
= 1 (D.66)

Proof: As is proved in Theorem D.24.1 below, the necessary and sufficient condition
for yk = yk(x, z) to be solved for xi = xi (y, z) is the determinant condition∣∣∣∣∂y(x, z)

∂x

∣∣∣∣ �= 0 (D.67)

Then, as discussed in Section D.25, the following matrix equation holds(
∂y(x, z)

∂x

)(
∂x(y, z)

∂y

)
= U (D.68)

where U is the N × N unit matrix. Taking the determinant of both sides gives eqn
(D.65). �
Lemma D.22.4: Change of Variable in an Integral
Given a set of continuously differentiable functions yk = yk(x1, x2, . . . , xN ) for k =
1, . . . , N , whose Jacobian does not vanish in the range of integration,

∂ (y1, y2, . . . , yN )

∂ (x1, x2, . . . , xN )
=

∣∣∣∣∂y(x)

∂x

∣∣∣∣ �= 0 (D.69)

the multiple integral

I =
∫

dyN · · ·
∫

dy2

∫
dy1 f (y1, y2, . . . , yN ) (D.70)

may be transformed into an integral over the variables x

I =
∫

dxN · · ·
∫

dx2

∫
dx1 f (x1, x2, . . . , xN )

∂ (y1, y2, . . . , yN )

∂ (x1, x2, . . . , xN )
(D.71)

where the compound function f (x1, x2, . . . , xN ) is

f (x1, x2, . . . , xN ) = f
(
y1(x), y2(x), . . . , yN (x)

)
(D.72)

and the limits of integration in eqn (D.71) are chosen so that x ranges over the inverse
image of the range of y.

In practice, these limits of integration in eqn (D.71) are usually chosen so that the two
integrals would have the same value, including the same sign, for the case in which
f is replaced by the number 1.
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D.23 Global Inverse Function Theorem
We often need to invert a set of functions like yi = yi (x1, x2, . . . , xN , z1, z2, . . . , zP )

where i = 1, . . . , N , that is, to solve them for the variables xj = xj (y1, y2, . . . , yN ,

z1, z2, . . . , zP ). The following global and local inverse function theorems are of great
importance.

The inverses proved by the present theorem are called global, because the same,
unique inverse functions apply to the whole of an open rectangle. This open rectangle
may be indefinitely large. For example, in the transformation from plane polar coordi-
nates ρ, φ to plane Cartesian coordinates x, y, the open rectangle might be 0 < ρ < ∞
and −π < φ < π .

Theorem D.23.1: The Global Inverse Function Theorem
Assume that all points x1, x2, . . . , xN , z1, z2, . . . , zP lie in an open rectangle R⊥, and that

yi = yi (x1, x2, . . . , xN , z1, z2, . . . , zP ) (D.73)

for i = 1, . . . , N , are a set of continuously differentiable functions of the stated variables.
If for all x, z in R⊥, the Jacobian determinant

∂ (y1, y2, . . . , yN )

∂ (x1, x2, . . . , xN )
=

∣∣∣∣∂y(x, z)

∂x

∣∣∣∣ (D.74)

is nonzero and has a persistent, nested set of critical minors,129 then functions
yi = yi (x1, x2, . . . , xN , z1, z2, . . . , zP ) can be solved for the inverse functions
xj = xj (y1, y2, . . . , yN , z1, z2, . . . , zP ) for j = 1, . . . , N so that

x1 = x1(y1, y2, . . . , yN , z1, z2, . . . , zP )

...
...

xN = xN (y1, y2, . . . , yN , z1, z2, . . . , zP ) (D.75)

These inverse functions will be unique and continuously differentiable in the range cov-
ered by variables y, z as variables x, z range over R⊥.

Proof: This proof is adapted from Volume II, Appendix 18 of Desloges (1982). The
proof is by induction. First prove the theorem for N = 1. Then prove that, if the
theorem is true for N = K − 1, it must be true for N = K . It follows that the theorem
must be true for any integer N .

For N = 1, (∂y(x, z)/∂x) = ∂y1(x1, z)/∂x1. By assumption, this partial derivative
is nonzero in a range of values a1 < x1 < b1. Considering the z variables as fixed
parameters, the inverse function theorem of ordinary one-variable calculus applies.
Since ∂y1(x1, z)/∂x1 is continuous and nonzero, it must have the same sign throughout
the range. Thus y1(x1, z) is monotonic and has a unique inverse x1 = x1(y1, z). Since

129“Persistent” here means that the nonzero Jacobian determinant in eqn (D.74) must have the same N−1
rowed critical (i.e. nonzero) minor throughout R⊥. “Nested” means that this persistent N−1 rowed critical
minor must, in turn, have the same N − 2 rowed critical minor throughout R⊥, etc.
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∂x1(x1, z)/∂y1 = (∂y1(x1, z)/∂x1)
−1 it follows that x1 = x1(y1, z) is also a continuously

differentiable function.

For N = K , the Jacobian determinant is

∂ (y1, y2, . . . , yK )

∂ (x1, x2, . . . , xK )
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂y1(x, z)

∂x1

∂y1(x, z)

∂x2
· · · ∂y1(x, z)

∂xK

∂y2(x, z)

∂x1

∂y2(x, z)

∂x2
· · · ∂y2(x, z)

∂xK
...

...
...

...

∂yK (x, z)

∂x1

∂yK (x, z)

∂x2
· · · ∂yK (x, z)

∂xK

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(D.76)

Since by assumption this determinant is nonzero, it must have a critical (K −1) rowed
minor. By assumption, the same minor is nonzero for all x, z in R⊥. For simplicity (and
without loss of generality since the functions and variables can be relabeled in any
way) we assume that this is the minor with the first row and first column removed.
Then

∂ (y2, . . . , yN )

∂ (x2, . . . , xN )
=

∣∣∣∣∣∣∣∣∣∣

∂y2(x, z)

∂x2
· · · ∂y2(x, z)

∂xK
...

...
...

∂yK (x, z)

∂x2
· · · ∂yK (x, z)

∂xK

∣∣∣∣∣∣∣∣∣∣
�= 0 (D.77)

By the induction assumption, the theorem is true for N = K − 1. So eqn (D.77), and
its assumed persistent nested critical minors, imply that inverse functions exist of the
form

x2 = x2(x1, y2, . . . , yK , z) (D.78)
...

...

xK = xK (x1, y2, . . . , yK , z)

where the set z1, z2, . . . , zP is now being represented by the single unsubscripted let-
ter z. Substitute eqn (D.78) into y1 to obtain the compound function
y1 = y1(x1, y2, . . . , yK , z) defined by

y1 = y1(x1, y2, . . . , yK , z) = y1 (x1, x2(x1, y2, . . . , yK , z), . . . , xK (x1, y2, . . . , yK , z), z)
(D.79)

We now show that this function can be solved for x1. Using the chain rule and eqn
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(D.79), the partial derivative ∂y1(x1, y2, . . . , yK , z)/∂x1 can be expanded as

∂y1(x1, y2, . . . , yK , z)

∂x1
= ∂y1(x, z)

∂x1
+

K∑
i=2

∂y1(x, z)

∂xi

∂xi (x1, y2, . . . , yK , z)

∂x1

= ∂y1(x, z)

∂x1
+

K∑
i=2

∂y1(x, z)

∂xi

∂(xi , y2, . . . , yK , z1, z2, . . . , zP )

∂(x1, y2, . . . , yK , z1, z2, . . . , zP )

(D.80)

where eqn (D.64) has been used. Now multiply each term in eqn (D.80) by the Jaco-
bian determinant

∂(x1, y2, . . . , yK , z1, z2, . . . , zP )

∂(x1, x2, . . . , xK , z1, . . . , zP )
= ∂(y2, . . . , yK )

∂(x2, . . . , xK )
(D.81)

and use eqn (D.61) to obtain

∂y1(x1, y2, . . . , yK , z)

∂x1

∂(y2, . . . , yK )

∂(x2, . . . , xK )

= ∂y1(x, z)

∂x1

∂(y2, . . . , yK )

∂(x2, . . . , xK )
+

K∑
i=2

∂y1(x, z)

∂xi

∂(xi , y2, . . . , yK , z1, z2, . . . , zP )

∂(x1, x2, . . . , xK , z1, z2, . . . , zP )
(D.82)

But eqn (D.64) and the usual rules for sign change when rows or columns of a deter-
minant are exchanged, show the last Jacobian determinant in eqn (D.82) to be

∂(xi , y2, . . . , yK , z1, z2, . . . , zP )

∂(x1, x2, . . . , xK , z1, z2, . . . , zP )
= (−1)(i+1) ∂(y2, . . . , yK )

∂(x1, x2, xi−1, xi+1, . . . , xK )
(D.83)

Thus

∂y1(x1, y2, . . . , yK , z)

∂x1

∂(y2, . . . , yK )

∂(x2, . . . , xK )

= ∂y1(x, z)

∂x1

∂(y2, . . . , yK )

∂(x2, . . . , xK )
+

K∑
i=2

(−1)(i+1) ∂y1(x, z)

∂xi

∂(y2, . . . , yK )

∂(x1, x2, xi−1, xi+1, . . . , xK )

(D.84)

The right side of eqn (D.84) is just the Jacobian determinant
∂ (y1, y2, . . . , yK ) /∂ (x1, x2, . . . , xK ) evaluated using expansion by cofactors along its
first row. Thus eqn (D.82) becomes

∂y1(x1, y2, . . . , yK , z)

∂x1

∂(y2, . . . , yK )

∂(x2, . . . , xK )
= ∂ (y1, y2, . . . , yK )

∂ (x1, x2, . . . , xK )
(D.85)

Since both
∂ (y1, y2, . . . , yK )

∂ (x1, x2, . . . , xK )
�= 0 and

∂(y2, . . . , yK )

∂(x2, . . . , xK )
�= 0 (D.86)
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by assumption, this proves that the partial derivative

∂y1(x1, y2, . . . , yK , z)

∂x1
�= 0 (D.87)

Since R⊥ is an open rectangle, eqn (D.87) will hold for any fixed values of
y2, . . . , yK , z1, z2, . . . , zP and for all a1 < x1 < b1 where a1 and b1 are the least
and greatest value of x1 in the open rectangle. Thus, by the same reasoning as was
used for the case N = 1 above, y1 = y1(x1, y2, . . . , yK , z) may be inverted to yield the
unique, continuously differentiable inverse function x1 = x1(y1, y2, . . . , yK , z). Substi-
tuting that equation into eqn (D.78) gives the desired result: xi = xi (y1, y2, . . . , yK , z)
for all i = 1, . . . K .

Since the truth of the theorem for N = K − 1 proves its truth for N = K , the
theorem must be true for any N . �

D.24 Local Inverse Function Theorem
In many cases, global inverses provided by Theorem D.23.1 are not needed, and in-
deed may not be available. In these cases, we can still define local inverse functions.
These local inverses will be proved to exist only in some open neighborhood Nx,z

surrounding point x, z.
Local inverses are important because they may exist at points of a wider class of

regions than the R⊥ assumed in Theorem D.23.1. And, of course, if a global inverse
does exist in a region, then local inverses will exist at each point of that region also.

Theorem D.24.1: The Local Inverse Function Theorem
Assume that point x1, x2, . . . , xN , z1, z2, . . . , zP lies in an open region R, and that

yi = yi (x1, x2, . . . , xN , z1, z2, . . . , zP ) for i = 1, . . . , N (D.88)

are continuously differentiable functions of the stated variables. If the Jacobian determi-
nant

∂ (y1, y2, . . . , yN )

∂ (x1, x2, . . . , xN )
=

∣∣∣∣∂y(x, z)

∂x

∣∣∣∣ (D.89)

is nonzero at the point x, z, then there is some open neighborhood Nx,z of this point
in which functions yi = yi (x1, x2, . . . , xN , z1, z2, . . . , zP ) can be solved for the inverse
functions

xj = xj (y1, y2, . . . , yN , z1, z2, . . . , zP ) (D.90)

for j = 1, . . . , N . These inverse function will be unique and continuously differentiable
in the range covered by variables y, z as variables x, z vary over Nx,z .

Proof: Since R is open, every point x, z is in some open neighborhood Nx,z which
is contained entirely in R. Since the function y is assumed to be continuously differ-
entiable, the Jacobian eqn (D.74), and all of its minors, are continuous functions of
x, z. Thus, since the Jacobian (and hence a set of nested minors) are nonzero at x, z
by assumption, we may shrink the open neighborhood Nx,z until these determinants
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are nonzero over the whole of Nx,z . Since, by definition, the open neighborhood is a
(possibly small) open rectangle, the conditions of Theorem D.23.1 are satisfied, and
the local inverse functions exist, as was to be proved. A direct proof of this theorem,
not based on the global inverse function theorem, is given on page 152 of Courant
(1936b). �

D.25 Derivatives of the Inverse Functions
If inverse functions, from either the global or local inverse function theorems, exist
at some point x, z, then the partial derivatives of the inverse functions xj can be
expressed in terms of the partial derivatives of the original functions yi at that point.

Substituting eqn (D.90) into eqn (D.88) gives the compound function

yi (y, z) = yi
(
x1(y, z), . . . , xN (y, z), z

)
(D.91)

The chain rule then gives

δi j = ∂yi (y, z)

∂yj
=

N∑
k=1

∂yi (x, z)

∂xk

∂xk(y, z)

∂yj
(D.92)

which in matrix form is

U =
(

∂y(x, z)

∂x

)(
∂x(y, z)

∂y

)
(D.93)

where U denotes the N × N identity matrix. It follows that both product matrices are
nonsingular and that (

∂x(y, z)

∂y

)
=

(
∂y(x, z)

∂x

)−1

(D.94)

and hence that, for any i, j

∂xj (y, z)

∂yi
=

(
∂y(x, z)

∂x

)−1

j i
(D.95)

which expresses the partials of xj with respect to the yi as functions of the partials of
the original functions yi (x, z).

Similarly, applying the chain rule to the differentiation of eqn (D.91) with respect
to zn gives

0 = ∂yi (y, z)

∂zn
= ∂yi (x, z)

∂zn
+

N∑
k=1

∂yi (x, z)

∂xk

∂xk(y, z)

∂zn
(D.96)

which leads to the matrix equation(
∂x(y, z)

∂z

)
= −

(
∂y(x, z)

∂x

)−1 (
∂y(x, z)

∂z

)
(D.97)

and hence
∂xj (y, z)

∂zn
= −

N∑
i=1

(
∂y(x, z)

∂x

)−1

j i

∂yi (x, z)

∂zn
(D.98)

which expresses the partials of xj with respect to the zn in terms of the partials of the
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original functions yi (x, z).

D.26 Implicit Function Theorem
It often happens that a set of functions yj = yj (x1, x2, . . . , xP ), for j = 1, . . . , N , is
not given directly, but rather in implicit form. One defines other functions fi (x, y), for
i = 1, . . . , N , and requires all x, y values to be those that will make these fi identically
zero,

0 = f1(x1, x2, . . . , xP , y1, y2, . . . , yN )

...
...

0 = fN (x1, x2, . . . , xP , y1, y2, . . . , yN ) (D.99)

The following theorem gives the conditions under which such identities actually spec-
ify the implicit functions yj .

Theorem D.26.1: Implicit Function Theorem
Assume that fi (x1, x2, . . . , xP , y1, y2, . . . , yN ) for i = 1, . . . , N , are continuously differ-
entiable functions. If the Jacobian determinant

∂ ( f1, f2, . . . , fN )

∂ (y1, y2, . . . , yN )
=

∣∣∣∣∂ f (x, y)

∂y

∣∣∣∣ (D.100)

is nonzero at point x, y, then there is an open neighborhood Nxy of the point x, y in
which the identities

0 = fi (x1, x2, . . . , xP , y1, y2, . . . , yN ) (D.101)

for i = 1, . . . , N , can be solved for the implicit functions yj = yj (x1, x2, . . . , xP ) for
j = 1, . . . , N . These functions will be unique and continuously differentiable in the open
neighborhood.

Proof: Apply the local inverse function theorem, Theorem D.24.1, to solve
fi = fi (x1, x2, . . . , xP , y1, y2, . . . , yN ) for yj = yj ( f1, . . . , fN , x1, . . . , xP ). Then apply
the identity to set fi = 0 for each i , and so obtain

yj (x1, x2, . . . , xP ) = yj (0, 0, . . . , 0, x1, x2, . . . , xP ) (D.102)

which are the desired functions. �

D.27 Derivatives of Implicit Functions
Applying eqn (D.98) of Section D.25 with the replacements y → f , x → y, z → x ,
and f then set equal to zero, gives the partial derivatives of the implicit functions in
terms of the partial derivatives of the fi . Thus, for all j = 1, . . . , N and n = 1, . . . , P,

∂yj (x)

∂xn
= −

N∑
i=1

(
∂ f (x, y)

∂y

)−1

j i

∂ fi (x, y)

∂xn
(D.103)
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D.28 Functional Independence
Consider the M continuously differentiable functions of N variables
fk(x1, x2, . . . , xN ) for k = 1, . . . , M . These functions are functionally dependent and
have a dependency relation at point x if there is a continuously differentiable function
F with at least one nonzero partial derivative ∂ F( f )/∂ fi �= 0 for which

0 = F( f1, f2, . . . , fM ) (D.104)

holds identically in an open neighborhood Nx of point x .
If the functions have no dependency relation at point x , they are said to be func-

tionally independent at that point. We now give a condition for a set of functions fk to
be functionally independent.

Theorem D.28.1: Condition for Functional Independence
Consider M continuously differentiable functions of N variables, fk(x1, x2, . . . , xN ) for
k = 1, . . . , M . Let the M × N matrix (∂ f (x)/∂x) be defined by its matrix elements(

∂ f (x)

∂x

)
ki
= ∂ fk(x1, x2, . . . , xN )

∂xi
(D.105)

If, for some x , the rank r of this matrix is r = M (which is possible only if M ≤ N since
r cannot be greater than N), then the functions fk are functionally independent at x .

Proof: We show that the existence of a dependency relation implies that r < M , and
therefore that r = M implies functional independence. Differentiating an assumed
dependency relation eqn (D.104) with respect to xi using the chain rule gives

0 =
M∑

k=1

∂ F( f )

∂ fk

∂ fk(x)

∂xi
(D.106)

Defining an M × 1 column vector [∂ F( f )/∂ f ] by[
∂ F( f )

∂ f

]
=

(
∂ F( f )

∂ f1

∂ F( f )

∂ f2
· · · ∂ F( f )

∂ fM

)T

(D.107)

we may rewrite eqn (D.106) as the matrix equation

0 =
(

∂ f (x)

∂x

)T [
∂ F( f )

∂ f

]
(D.108)

By assumption the column vector
[
∂ F( f )/∂ f

]
will have at least one nonzero element.

Thus Corollary B.19.2 requires that the matrix in eqn (D.108), and hence its trans-
pose (∂ f (x)/∂x), must have rank less than M . Since the existence of a dependency
relation implies r < M , it follows that r = M at point x implies the non-existence of
a dependency relation, as was to be proved. �
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D.29 Dependency Relations
When functions are functionally dependent, there may be one or more dependency
relations among them. It is often important to know how many dependency relations
there are, as specified in the following theorem.

Theorem D.29.1: Dependency Relations
Consider M continuously differentiable functions,

fk(x1, x2, . . . , xN ) (D.109)

of N variables x = x1, x2, . . . , xN . Consider again the M × N matrix (∂ f (x)/∂x) defined
by its matrix elements in eqn (D.105). If at the point x the rank r of this matrix is r < M ,
then there are M − r functionally independent dependency relations among the fk which
hold in an open neighborhood Nx of point x ,

0 = F (1) ( f1, . . . , fM )

...
...

0 = F (M−r) ( f1, . . . , fM ) (D.110)

For a proof of this theorem, see Volume I, Appendix 14 of Desloges (1982).

D.30 Legendre Transformations
We often have a function like f (x1, . . . , xM , y1, . . . , yN ) = f (x, y) that is important
mainly because its partial derivatives yield desired functions ui = ui (x, y) and wj =
wj (x, y), as in

∂ f (x, y)

∂xi
= ui (x, y) and

∂ f (x, y)

∂yj
= wj (x, y) (D.111)

for i = 1, . . . , M and j = 1, . . . , N .
It is sometimes useful to have a different, but related, function

g(x1, . . . , xM , w1, . . . , wN ) = g(x, w) (D.112)

whose partial derivatives are

∂g(x, w)

∂xi
= −ui (x, w) and

∂g(x, w)

∂wj
= yj (x, w) (D.113)

again for i = 1, . . . , M and j = 1, . . . , N . Notice that the roles of yj and wj are inter-
changed in the last partial derivatives in eqns (D.111, D.113), while the partials with
respect to xi yield the same function ui , except for the minus sign and its expression
in the new x, w variable set. This transformation from f to g is called a Legendre
transformation.
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The Legendre transformation is effected by defining g to be

g(x, y) =
N∑

j=1

yj
∂ f (x, y)

∂yj
− f (x, y) =

N∑
j=1

yjwj (x, y)− f (x, y) (D.114)

But the g in eqn (D.114) is not yet expressed in the correct set of variables x, w. In
order to complete the Legendre transformation, we must prove that the functions
wj = wj (x, y) defined in the second of eqn (D.111) can be inverted to give yj =
yj (x, w). By Section D.24, the condition for this inversion to be possible is that∣∣∣∣∂w(x, y)

∂y

∣∣∣∣ �= 0 (D.115)

where the matrix (∂w(x, y)/∂y) is defined by(
∂w(x, y)

∂y

)
jk
= ∂wj (x, y)

∂yk
= ∂2 f (x, y)

∂yk∂yj
(D.116)

In general, eqn (D.115) must be proved in each individual case to which the Legendre
transformation is to be applied. Assume now that this has been done.

The inverse function yj = yj (x, w) then allows us to write g as a compound func-
tion of the variable set x, w as

g(x, w) = g
(
x, y(x, w)

) = N∑
j=1

yj (x, w)wj − f
(
x, y(x, w)

)
(D.117)

Now consider the differential of function g. Equation (D.114) gives

dg =
N∑

j=1

(
yj dwj + wj dyj

)− d f

=
N∑

j=1

(
yj dwj + wj dyj − ∂ f (x, y)

∂yj
dyj

)
−

M∑
i=1

∂ f (x, y)

∂xi
dxi

=
N∑

j=1

yj dwj −
M∑

i=1

ui dxi (D.118)

where the second of eqn (D.111) has been used to cancel the dyj terms, and the first
of eqn (D.111) has been used to get the ui . We know from eqn (D.117) that g(x, w)

exists and is well defined, and hence has the differential

dg =
N∑

j=1

∂g(x, w)

∂wj
dwj +

M∑
i=1

∂g(x, w)

∂xi
dxi (D.119)

Equations (D.118, D.119) are two expressions for the same differential dg and
hence equal to each other. Since |∂w(x, y)/∂y| �= 0 by assumption, Theorem D.18.5
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shows that the differentials dw, dx may be considered as arbitrary and independent.
Thus the equality of eqns (D.118, D.119) implies the equality of each of the coeffi-
cients of the differentials dwj and dxi in the two equations. Thus eqn (D.113) holds,
as desired.

D.31 Homogeneous Functions
Let f (x1, x2, . . . , xN , z1, z2, . . . , zP ) = f (x, z) be a continuously differentiable func-
tion of the stated variables, defined over a region R. Function f (x, z) is homogeneous
of degree k in the set of variables x1, x2, . . . , xN if and only if, for some k and any
positive number λ > 0,

f (λx1, λx2, . . . , λxN , z1, z2, . . . , zP ) = λk f (x1, x2, . . . , xN , z1, z2, . . . , zP ) (D.120)

An alternate, and equivalent, definition of homogeneous functions is given in the
following theorem, whose proof can be found in Chapter II of Courant (1936b).

Theorem D.31.1: Euler Condition
Function f (x, z) is homogeneous of degree k in the set of variables x1, x2, . . . , xN as
defined in eqn (D.120) if and only if

N∑
i=1

xi
∂ f (x, z)

∂xi
= k f (x, z) (D.121)

D.32 Derivatives of Homogeneous Functions
In Lagrangian mechanics, it is important also to consider the homogeneity of the
partial derivatives of homogeneous functions.

Theorem D.32.1: Derivatives of Homogeneous Functions
Function f is homogeneous of degree k + 1 in the set of variables x1, x2, . . . , xN , that is

f (λx1, λx2, . . . , λxN , z1, z2, . . . , zP ) = λ(k+1) f (x1, x2, . . . , xN , z1, z2, . . . , zP ) (D.122)

if and only if all partial derivatives ∂ f (x, z)/∂xi = gi (x, z) for i = 1, . . . , N are homo-
geneous of degree k, that is

gi (λx1, λx2, . . . , λxN , z1, z2, . . . , zP ) = λk gi (x1, x2, . . . , xN , z1, z2, . . . , zP ) (D.123)

Proof: First, we assume eqn (D.122) and prove eqn (D.123). Taking partial deriva-
tives, and using eqn (D.122) gives

gi (λx, z) = ∂ f (λx, z)

∂ (λxi )
= 1

λ

∂

∂xi
f (λx, z)

= 1

λ

∂

∂xi

(
λ(k+1) f (x, z)

)
= λk ∂ f (x, z)

∂xi
= λk gi (x, z) (D.124)

which establishes eqn (D.123).
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Conversely, assume eqn (D.123) and prove eqn (D.122). Equation (D.123) can be
written

∂ f (λx, z)

∂ (λxi )
= λk ∂ f (x, z)

∂xi
(D.125)

Hence
1

λ

∂

∂xi
f (λx, z) = ∂

∂xi
λk f (x, z) (D.126)

and so
∂

∂xi

(
f (λx, z)− λ(k+1) f (x, z)

)
= 0 (D.127)

It follows from Corollary D.10.2 that f (λx, z) − λ(k+1) f (x, z) = C . Setting λ = 1
proves that the constant C = 0, which is equivalent to eqn (D.122). �

D.33 Stationary Points
For functions of one variable f = f (x), maxima, minima, and points of inflection
(collectively called stationary points) are those points at which d f (x)/dx = 0.

For functions of many variables, stationary points may be defined similarly as
points at which, for all k = 1, . . . , N ,

∂ f (x1, x2, . . . , xN )

∂xk
= 0 (D.128)

Since the variables x and hence their differentials dxk for k = 1, . . . , N are assumed
independent, Lemma D.18.4 implies that this definition may be stated more simply,
and equivalently, as

d f = 0 (D.129)

Since we know that this differential approximates the difference � f when the differ-
entials dxj are small, it is also valid to say that the extremum is a point such that f is
constant to first order for small excursions from it in any direction.

In one sense, the many variable case is much more complex than the single vari-
able one. A function of many variables may have maxima in some variables, minima
in others, etc. We avoid this complexity here by assuming that it will be clear from
context in most practical examples whether the stationary point is a maximum, mini-
mum, or some more complicated mixture of the two.

D.34 Lagrange Multipliers
Often, we want to find the stationary points of a function f (x) given certain con-
straints on the allowed values of x1, x2, . . . , xN and their differentials. These con-
straints are expressed by defining a functionally independent set of functions Ga and
setting them equal to zero, 0 = Ga(x1, x2, . . . , xN ) for a = 1, . . . , C .

For example, with

f (x) =
√

x2
1 + x2

2 + x2
3 (D.130)

defined to be the distance from the origin in a three-dimensional Cartesian space, eqn
(D.128) gives a stationary point at (0, 0, 0), obviously a minimum. But suppose that
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we want the stationary points of f subject to the constraint that x lie on a plane at
distance � from the origin, which can be expressed by

0 = G1(x) = αx1 + βx2 + γ x3 −� (D.131)

where constants α, β, γ obey α2+β2+γ 2 = 1. The Lagrange multiplier theorem gives
an elegant method for solving such problems.

Theorem D.34.1: Lagrange Multiplier Theorem
Let the values of the independent variables x1, x2, . . . , xN in some open region R be
constrained by equations of the form

0 = Ga(x1, x2, . . . , xN ) (D.132)

for a = 1, . . . , C , where the Ga are continuously differentiable functions. Assume that
the C × N Jacobian matrix g defined by

gak =
(

∂G(x)

∂x

)
ak
= ∂Ga(x1, x2, . . . , xN )

∂xk
(D.133)

has rank C so that the functions Ga are functionally independent and represent C inde-
pendent constraints.

A continuously differentiable function f (x1, x2, . . . , xN ) has a stationary point at x ,
subject to these constraints, if and only if there exist Lagrange multipliers λa = λa(x)

such that, at the stationary point,

∂ f (x)

∂xk
=

C∑
a=1

λagak (D.134)

for all k = 1, . . . , N .

Proof: The necessary and sufficient condition for a stationary point is that d f = 0
subject to the constraints on the possible dxk values given by the vanishing of the
differentials of eqn (D.132)

0 = dGa =
N∑

k=1

gakdxk (D.135)

for all a = 1, . . . , C . Since the matrix g defined in eqn (D.133) has rank C , it must
have an C-rowed critical minor. The variables x can be relabeled in any way, so we
lose no generality by assuming that this critical minor is the determinant containing
the C rows and the last C columns. Call the corresponding matrix g (b) so that g(b)

aj =
ga (N−C+ j) for a, j = 1, . . . , C . By construction, the determinant of this matrix is a
critical minor, and so

∣∣g (b)
∣∣ �= 0. In the following, we will also use the shorthand

notations x ( f ) for what will be called the free variables x1, . . . , xN−C and x (b) for the
bound variables xN−C+1, . . . , xN . And x will continue to denote the full set of variables
x1, x2, . . . , xN .
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Using these notations, eqn (D.135) may be written with separate sums over the
free and bound variables

0 = dGa =
N−C∑
i=1

gai dx ( f )
i +

C∑
j=1

g(b)
aj dx (b)

(N−C+ j) (D.136)

Since g (b) is nonsingular, it has an inverse g (b)−1, which may be used with eqn
(D.136) to write the bound differentials dx (b) in terms of the free ones.

dx (b)
(N−C+ j) = −

C∑
a=1

N−C∑
i=1

g(b)−1
ja gai dx ( f )

i (D.137)

The differential d f can also be written with separate sums over the free and bound
variables

d f =
N∑

k=1

∂ f (x)

∂xk
dxk =

N−C∑
i=1

∂ f (x)

∂xi
dx ( f )

i +
C∑

j=1

∂ f (x)

∂x(N−C+ j)
dx (b)

(N−C+ j) (D.138)

Substituting eqn (D.137) into this expression gives

d f =
N−C∑
i=1

∂ f (x)

∂xi
dx ( f )

i −
C∑

j=1

∂ f (x)

∂x(N−C+ j)

C∑
a=1

N−C∑
i=1

g(b)−1
ja gai dx ( f )

i

=
N−C∑
i=1

(
∂ f (x)

∂xi
−

C∑
a=1

λagai

)
dx ( f )

i (D.139)

where the λa in the last expression are defined, for a = 1, . . . , C , as

λa =
C∑

j=1

∂ f (x)

∂x(N−C+ j)
g(b)−1

ja (D.140)

The solution, eqn (D.137), for the bound differentials dx (b) reduces eqn (D.135)
to an identity. Hence no constraint is placed on the free differentials dx ( f ). Setting
these free differentials nonzero one at a time in eqn (D.139), the condition d f = 0 for
x to be a stationary point implies and is implied by

∂ f (x)

∂xi
−

C∑
a=1

λagai = 0 (D.141)

for all i = 1, . . . , (N −C), which establishes the theorem for those values of the index.
For indices in the range (N − C + 1), . . . , N , with the same choice of λa as de-

fined in eqn (D.140), the eqn (D.134) is satisfied identically at all points, including
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the stationary one. To demonstrate this, let j = 1, . . . , C and use eqn (D.140) to write

∂ f (x)

∂x(N−C+ j)
−

C∑
a=1

λaga(N−C+ j)

= ∂ f (x)

∂x(N−C+ j)
−

C∑
a=1

C∑
l=1

∂ f (x)

∂x(N−C+l)
g(b)−1

la ga(N−C+ j)

= ∂ f (x)

∂x(N−C+ j)
−

C∑
l=1

∂ f (x)

∂x(N−C+l)
δl j = ∂ f (x)

∂x(N−C+ j)
− ∂ f (x)

∂x(N−C+ j)
= 0

(D.142)

Thus eqn (D.134) holds for all index values if and only if x is a stationary point, as
was to be proved. �

Note that the N equations of eqn (D.134) together with the C equations of eqn
(D.132), are N + C equations in the N + C unknowns x1, x2, . . . , xN , λ1, . . . , λC , and
so can be solved to find the stationary points.

D.35 Geometry of the Lagrange Multiplier Theorem
When applied to the simple example in eqns (D.130, D.131) of Section D.34, the three
equations of the Lagrange multiplier condition eqn (D.134) can be written as a single
vector equation, the equality of two gradient vectors,

∇ f = λ1∇G1 (D.143)

Since, as described in Section D.37, vector ∇G1 = αê1 + β ê2 + γ ê3 is perpendicular
to the surface of constraint G1 = 0, eqn (D.143) says that ∇ f must be in the same or
opposite direction, and so also perpendicular to that constraint surface.

If we denote by dr = dx1ê1 + dx2ê2 + dx3ê3 the differential displacement vector
whose Cartesian components are the differentials dxi , the chain rule gives

d f = dr ·∇ f and dG1 = dr ·∇G1 (D.144)

The constraint G1 = 0, and hence dG1 = 0, constrains the vector dr to have a zero
dot product with ∇G1, and so to be perpendicular to the perpendicular to the surface
of constraint. Thus dr must lie in the surface of constraint.

If there were no constraint, the condition for f to have a stationary point would
simply be that

0 = d f = dr ·∇ f (D.145)

Since without a constraint the displacement dr can take any direction, eqn (D.145)
implies that ∇ f = 0, which is equivalent to the three equations of eqn (D.128).

However, with the constraint, eqn (D.145) does not imply that ∇ f = 0, but only
that ∇ f must have no components in possible dr directions. Since dr can lie anywhere
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in the surface of constraint, this means that ∇ f must be perpendicular to that surface,
in other words that ∇ f must be parallel or anti-parallel to ∇G1, as eqn (D.143) states.

If another constraint were added, then eqn (D.143) would become

∇ f = λ1∇G1 + λ2∇G2 (D.146)

Adding the second constraint further restricts the possible directions of dr and hence
increases the possible directions that ∇ f can have while still maintaining the condi-
tion dr ·∇ f = 0.

D.36 Coupled Differential Equations
A basic theorem of one-variable calculus is that a first-order differential equation
dx/dβ = f (β, x), with the initial condition that x = b when the independent variable
is β = β0, has a unique solution x = x(β, b). That result is generalized to a set of N
functions of β by the following theorem.

Theorem D.36.1: Coupled Differential Equations
Consider a set of N unknown functions xi for i = 1, . . . , N obeying the coupled, first-
order differential equations

dx1

dβ
= f1(β, x1, . . . , xN )

...
...

dxN

dβ
= fN (β, x1, . . . , xN ) (D.147)

and the initial conditions that xi = bi when the independent variable is β = β0 (where
bi for i = 1, . . . , N are arbitrarily chosen constants). Assume that the functions fi are
continuously differentiable. These equations have a unique solution depending on β and
the set of constants b1, . . . , bN . The solution is the set of equations

xi = xi (β, b1, . . . , bN ) (D.148)

for i = 1, . . . , N . The same solution can also be written in implicit form by solving eqn
(D.148) for the b and writing

bi = φi (β, x1, . . . , xN ) for i = 1, . . . , N (D.149)

where the φi are functionally independent, and are called integrals of the set of differen-
tial equations.

The proof of this standard theorem can be found, for example, in Chapter 6 of Ford
(1955). Note that the initial value of the independent variable β0 is not included in
the list of constants upon which the xi depend. It is simply the value of β at which
the integration constants bi are specified.

The special case in which the functions fi in eqn (D.147) do not depend explicitly
on β is of great importance in analytical mechanics.
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Theorem D.36.2: Sets of Equations Without the Independent Variable
Consider the set of differential equations which are the same as eqn (D.147) but with the
independent variable β not appearing explicitly in the functions fi

dxi

dβ
= fi (x1, . . . , xN ) for i = 1, . . . , N (D.150)

for i = 1, . . . , N . Assume that N ≥ 2 and that there is some index l for which fl �= 0 in
some region of interest. For simplicity, but without loss of generality, assume the variables
relabeled so that l = 1. Given the initial conditions that, for j = 2, . . . , N , xj = bj when
x1 = b1, these equations have a unique solution

xj = xj (x1, b2, . . . , bN ) (D.151)

for j = 2, . . . , N , in which the role of independent variable has been assumed by x1 and
the number of arbitrary integration constants has been reduced by one.

This solution also can be written in implicit form by solving eqn (D.151) for the b
and writing

bj = φj (x1, . . . , xN ) (D.152)

for j = 2, . . . , N . The φj are the functionally independent integrals of eqn (D.150). There
are only N − 1 integrals φj , and they do not depend explicitly on β.

Proof: Assuming f1 �= 0, divide the last N − 1 of eqn (D.150) by the first one, giving

dxj

dx1
= dxj/dβ

dx1/dβ
= f j (x1, . . . , xN )

f1(x1, . . . , xN )
= Aj (x1, . . . , xN ) (D.153)

for j = 2, . . . , N . The functions Aj defined in eqn (D.153) are continuously differ-
entiable, and hence Theorem D.36.1 can be applied with f → A, the replacement
β → x1 for the independent variable, and the range of unknown functions now run-
ning from x2 to xN . The theorem follows immediately. �
Note that the initial value x1 = b1 for the new independent variable is not included
among the arbitrary integration constants b2, . . . , bN . As in the original theorem with
β0, it is simply the value of the new independent variable x1 at which the arbitrary
integration constants xj = bj , for j = 2, . . . , N , are specified.

The variable β has disappeared from the solutions, eqns (D.151, D.152). Instead
of having all the xi as functions of some β, we have solutions with all of the xj for
j �= 1 given as functions of one of them, the x1.

But sometimes, even under the conditions of Theorem D.36.2, it is convenient to
have a solution with all of the unknowns written as functions of β. Such a parametric
expression can always be found, as is shown in the following Corollary.

Corollary D.36.3: Recovery of the Parameter
Assume that the conditions in Theorem D.36.2 hold. Using solutions eqn (D.151), a set
of functions

xi = xi
(
(β − β0), b1, . . . , bN

)
(D.154)

for i = 1, . . . , N , can always be found that are solutions of the original equations, eqn
(D.150). They depend only on the difference (β − β0) as indicated. Thus no generality is
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lost by simply taking β0 = 0, as is frequently done. The solutions in eqn (D.154) can be
constructed to obey the initial conditions that β = β0 implies xi = bi for all i = 1, . . . , N .

Proof: The first of eqn (D.150) is

dx1

dβ
= f1(x1, x2, . . . , xD) = f1

(
x1, x2(x1, b2, . . . , bN ), . . . , xN (x1, b2, . . . , bN )

)
(D.155)

where eqn (D.151) has been used to get the last equality. Thus we have a differential
equation with one unknown function x1

dβ = dx1

f1
(
x1, x2(x1, b2, . . . , bN ), . . . , xN (x1, b2, . . . , bN )

) (D.156)

Integrating, with x1 assigned the value b1 at β = β0,

β − β0 =
∫ x1

b1

dx1

f1
(
x1, x2(x1, b2, . . . , bN ), . . . , xN (x1, b2, . . . , bN )

)
= F(x1, b2, . . . , bN )− F(b1, b2, . . . , bN ) (D.157)

Denoting by F−1 the inverse to function F for fixed values of the constants b then
gives

x1 = F−1 (
F(b1, b2, . . . , bN )+ β − β0

) = x1
(
(β − β0), b1, . . . , bN

)
(D.158)

which has, by construction, the value x1 = b1 when β = β0. Substituting this x1 into
the solutions eqn (D.151) then gives

xj = xj

(
x1

(
(β − β0), b1, . . . , bN

)
, b2, . . . , bN

)
= xj

(
(β − β0), b1, . . . , bN

)
(D.159)

for j = 2, . . . , N . Since the solutions eqn (D.151) have the property that x1 = b1

implies xj = bj , the xj defined in eqn (D.159) must taken those same values bj when
β = β0. Equations (D.158, D.159) are the desired eqn (D.154) and the corollary is
proved. �
A note of caution: Even though eqn (D.154) does write the solution to eqn (D.150) in
a form that appears to have N arbitrary integration constants b1, . . . , bN , the b1 is not
actually an integration constant. It is the initial value of the independent variable x1

in solution eqn (D.151).

D.37 Surfaces and Envelopes
A two-dimensional surface in three dimensions may be written either as

z = φ(x, y) or F(x, y, z) = 0 (D.160)

Any surface in the first form can be written in the second form as F (x, y, z) =
φ(x, y) − z = 0. The second form is preferable since it often leads to simpler expres-
sions. For example, writing the unit sphere as F(x, y, z) = x2 + y2 + z2 − 1 = 0 avoids
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the need to use different signs of a square root for the upper and lower hemispheres
as the first form would require.

The differential change in F resulting from differential displacement dr is given
by the chain rule as d F = dr · ∇F , which is maximum when dr‖∇F and zero when
dr⊥∇F . Since a small displacement along the surface keeps F=0 and so must have
d F = 0, it follows that vector ∇F is perpendicular to the surface at point x, y, z. The
tangent plane touching the surface at r thus consists of the points r′ where(

r′ − r
) ·∇F = 0 (D.161)

and ∇F is normal to the tangent plane.
Consider now what is called a one-parameter family of surfaces, defined by

F(x, y, x, a) = 0 (D.162)

where each different value of parameter a in general gives a different surface. Often
(but not always) the two surfaces with parameter values a+da and a−da in the limit
da→0 will intersect in a curved line called a curve of intersection. This is also called
a characteristic curve by some authors, but we use the term “curve of intersection”
from Courant and Hilbert (1962) to avoid confusion with other curves in the theory
of partial differential equations that are also called characteristic curves.

The curve of intersection lies in both surfaces and hence obeys both F(x, y, z, a +
da) = 0 and F(x, y, z, a − da) = 0. But these two equations are satisfied if and only if
both

F(x, y, z, a+da)+F(x, y, z, a−da) = 0 and F(x, y, z, a+da)−F(x, y, z, a−da) = 0
(D.163)

Taking the limit da→0, the curve of intersection can therefore be defined as the solu-
tion of the two equations

F(x, y, z, a) = 0 and
∂ F(x, y, z, a)

∂a
= 0 (D.164)

It is the intersection of the surfaces F = 0 and G = 0 where

G(x, y, z, a) = ∂ F(x, y, z, a)

∂a
(D.165)

As an example, consider the family of spheres F = x2 + y2 + z2 − a2 = 0. Since
the surfaces in this family are concentric spheres, the surfaces with a + da and a − da
never intersect and so there is no curve of intersection.

A better example for our purposes is the family of unit spheres with center at point
a on the z-axis, F = x2 + y2 + (z − a)2 − 1 = 0. Then ∂ F/∂a = 2 (z − a) = 0 shows
that the curve of intersection for a given a is the intersection of the plane z=a with
the sphere x2 + y2 + (z − a)2 − 1 = 0. It is a unit circle lying in a plane parallel to the
x-y plane and at height z=a. This circle is also the equator of the sphere for that a
value.
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A suitable one-parameter family of surfaces has a curve of intersection for every
value of a. The envelope of the one-parameter family is a surface defined as the set
of all points of all possible curves of intersection. It may be thought of as the surface
swept out by the curve of intersection as a is varied. It is found by solving the second
of eqn (D.164) for a as a function of x, y, z and substituting this a(x, y, z) into the first
of eqn (D.164), thus eliminating a between the two equations. For a given value of
a, the surface F = 0 and the envelope are in contact along the curve of intersection
defined by that a value.

In the above example, the envelope is got by using ∂ F/∂a = 2 (z − a) = 0 to get
a(x, y, z) = z and then substituting that a into F = x2+ y2+(z − a)2−1 = 0 to obtain
x2 + y2 − 1 = 0. The envelope is thus a right circular cylinder of unit radius with its
symmetry line along the z-axis. This envelope is the surface swept out by all of the
curves of intersections (circles of unit radius at height a) as a is varied. For any value
of a, the sphere is in contact with the envelope along the equator of the sphere. The
sphere thus contacts the envelope along the curve of intersection for that a value.



APPENDIX E

GEOMETRY OF PHASE SPACE

In Section 18.9, we asserted without proof that a binary number α can always be
found that will make the matrix (∂Y/∂p) defined in eqn (18.64) nonsingular. Proof of
that fact requires an excursion into the geometry of phase space.

In the present reference chapter we define general abstract linear vector spaces
and state some of their important properties. We then apply the general theory to
define a vector space in phase space, and prove some theorems of importance for the
theory of canonical transformations.

E.1 Abstract Vector Space
A linear vector space is a set of objects called vectors that obey the following axioms,
abstracted from the properties of the three-dimensional Cartesian displacement vec-
tors defined in Appendix A. In the following, we will denote vectors in an abstract
vector space by the same bold, serif typeface as has been used for the special case of
Cartesian threevectors.

E.1.1 Axioms
1. Closure under addition and scalar multiplication: If v and w are any vectors,

then addition is defined by some rule such that v + w is also a vector. If α is
any scalar (assumed here to be real numbers) and v any vector, then scalar
multiplication is defined by some rule such that αv and vα are also vectors.

2. Commutativity: v + w = w + v and αv = vα.
3. Associativity of addition: (u + v)+ w = u + (v + w).
4. Associativity of scalar multiplication: (αβ)v = α(βv).
5. Existence of additive identity: There is a vector � such that every vector v satis-

fies the equation v +� = v. Vector � is also referred to as the null vector.
6. Existence of additive inverse: For every vector v, there is a vector denoted −v

that is a solution of the equation v + (−v) = �.
7. Linearity in scalars: (α + β)v = αv + βv.
8. Linearity in vectors: α(v + w) = αv + αw.
9. Multiplication by one: 1v = v.

E.1.2 Derived properties
The axioms130 can be used to prove the following additional properties of linear vector
spaces:

130See Chapter 2 of Mirsky (1961) or Chapter 7 of Birkhoff and MacLane (1977). Different texts differ as
to which are the axioms and which are the derived properties. However, there is general agreement that
linear vector spaces do satisfy the whole list of axioms and derived properties given here.

575
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1. The additive identity is unique: If v + u = v for all vectors v, then u = �.
2. The additive inverse is unique: If v + u = �, then u = −v.
3. Law of cancellation: v + u = v + w implies u = w.
4. Unique solution: If u satisfies the equation v + u = w then u = w + (−v).
5. Multiplication of a vector by scalar zero: 0v = �.
6. Multiplication of additive identity by a scalar: α� = �.
7. Multiplication by a negative number: (−1)v = −v.
8. Inverse of the inverse: −(−v) = v.
9. Simplified notations: Since the above axioms and additional properties imply

that αv + β(−w) = αv + (−β)w, we need not be so careful about placement of
the minus sign. Both of these equal expressions are commonly denoted simply
as αv − βw. Thus the solution in derived property 4 is written u = w − v. Also,
properties 5 and 6 allow one to drop the distinction between the scalar 0 and
the additive identity �. The equation in axiom 5 becomes v + 0 = v. Leading
zeros are usually dropped; for example, 0 − v is written −v.

E.1.3 Linear independence and dimension

The set of vectors v1, v2, . . . , vr is linearly dependent (LD) if and only if there exist
scalars α1, α2, . . . , αr , not all zero, such that

α1v1 + α2v2 + · · · + αr vr = 0. (E.1)

In the opposite case, the set is linearly independent (LI) if and only if eqn (E.1) implies
that α1 = α2 = · · · = αr = 0.

The vector space has dimension N if and only if it contains an LI set of N vectors,
but every set in it with more than N vectors is LD. The dimension of a linear vector
space is often indicated by labeling the space as VN .

Let e1, e2, . . . , eN be any LI set of N vectors in a vector space VN of dimension N .
Such an LI set is called a basis for the vector space, and is said to span it. Any vector
x in VN can be expanded as

x =
N∑

i=1

xi ei = x1e1 + x2e2 + · · · + xN eN . (E.2)

The numbers xi are called components of vector x relative to this basis. For a given
basis, the components xi of a vector x are uniquely determined.

A vector space may have many different bases. But all of these bases will have the
same number of LI vectors in them. And the vector space can be specified uniquely by
listing any one of its bases.

Vector equations are equivalent to equations between components (in a given ba-
sis). The equation u = αv + βw is true if and only if ui = αvi + βwi is true for all
i = 1, . . . , N . This latter relation is often written as an equation of column matrices.
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If one defines

[v] =

⎛⎜⎜⎜⎝
v1

v2
...

vN

⎞⎟⎟⎟⎠ (E.3)

with a similar definition for other vectors, the equality of components may be written
as [u] = α[v] + β[w].

Any LI set of vectors x1, x2, . . . , xm for m ≤ N can be extended to a basis in VN .
If e1, e2, . . . , eN is some known basis for VN then vectors ekm+1 , ekm+2 , . . . , ekN can be
selected from it so that x1, . . . , xm ,ekm+1 , ekm+2 , . . . , ekN is an LI set of N vectors and so
forms a basis in VN .

E.2 Subspaces
A subspace of VN is a linear vector space all of whose member vectors are also mem-
bers of VN . Denoting a subspace as �, it follows from the closure axiom for vector
spaces that if x and y are members of �, then (αx + βy) must also be a member of �.
Thus subspaces are different from subsets in set theory. If one constructs a subspace
by listing a set of vectors, then the subspace must also contain all linear sums of those
vectors and not just the vectors in the original list.

Subspaces may be specified by listing an LI set of vectors that spans the space. For
example, if VN has a basis e1, . . . , eN then the set of all vectors x = αe1 + βe4 + γ e5,
where α, β, γ may take any values, forms a subspace.

Subspaces may also be specified by stating some criterion for the inclusion of
vectors in the subspace. For example, the set of threevectors with components (0, y, z)
forms a subspace of V3, but the set with components (1, y, z) does not since the sum
of two such vectors does not have a 1 as its first component.

The null vector is a member of every subspace. If � contains only the null vector,
then we write � = 0.

E.2.1 Linear Sum and Intersection

If � and � are subspaces of VN , then we define their linear sum (� + �) as the set of
all vectors x = r + s where r ∈ � (which is read as “r is a member of �”) and s ∈ �.
The linear sum (�+ �) of two subspaces is itself a subspace of VN .

If � and � are subspaces of VN , then we define their intersection (�∩�) as the set
of all vectors x that are members of both subspaces, x ∈ � and x ∈ �. The intersection
(� ∩ �) of two subspaces is itself a subspace of VN .131

Subspaces are vector spaces. Just as was done for VN , the dimension NR of � is
defined as the number of vectors in the largest LI set it contains, and this set then

131It might appear that a distributive rule would hold for linear sums and intersections, but it does not.
In general � ∩ (�+ �) �= � ∩ � + � ∩ �. For example, consider vectors in the Cartesian x-y plane V2. Let
� be the one-dimensional subspace with Cartesian components (r, r), � with (s, 0), and � with (0, t). Then
�∩� = 0 and �∩� = 0, so (� ∩ �+ � ∩ �) = 0. But �∩ (�+ �) = � since (�+ �) spans the whole of V2.
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forms a basis for �. The notation dim(�) = NR will also be used, meaning that the
dimension of � is NR . This notation can be used to write the dimension rule,

dim (�+ �) = dim (�)+ dim (�)− dim (� ∩ �) (E.4)

If (� ∩ �) = 0 then we say that � and � are disjoint. Two subspaces are disjoint
when their only common vector is the null vector.

In the special case in which (�+ �) = VN and (� ∩ �) = 0, we say that � and
� are complementary subspaces or complements relative to VN . This complementarity

relation will be denoted �
VN⇐⇒ �. Complementary subspaces are disjoint and their

linear sum is the whole of the space VN . Since the empty subspace (consisting only
of the null vector) has zero dimension by definition, the dimension rule gives N =
NR + NS for complements.

If � and � are complements, and if � has a basis r1, . . . rNR and � has a basis
s1, . . . , sNS , then the set r1, . . . , rNR ,s1, . . . , sNS is an LI set and forms a basis for VN . It
follows that every vector x ∈ VN can then be written as x = r + s where r and s are
unique vectors in � and �, respectively.

Conversely, suppose that VN has some basis e1, e2, . . . , eN and we segment that
basis into two disjoint LI sets of vectors, say e1, . . . , en and en+1, . . . , eN . Then if we
define � to be the subspace spanned by e1, . . . , en and define � to be the subspace
spanned by en+1, . . . , eN , it follows that � and � are complements relative to VN .

Every subspace � has some subspace � such that � and � are complements. But
this � is not unique. So it is incorrect to speak of “the” complement of a given sub-
space.

The notation � ⊃ � means that every x ∈ � is also a member of �. We say that �
contains �. Hence (�+ �) ⊃ �, (�+ �) ⊃ �, � ⊃ (� ∩ �), � ⊃ (� ∩ �).

E.3 Linear Operators
A linear operator A in vector space VN operates on vectors x ∈ VN and produces other
vectors y ∈ VN . We write this operation as y = Ax. The assumed linearity property is

A (αx + βy) = αAx + βAy (E.5)

It follows that, for a given basis e1, . . . , eN , there is a unique N -rowed square matrix
A associated with each operator A. Since any x ∈ VN may be expanded in the basis,
as x = x1e1 + · · · + xN eN it follows from linearity that

y = Ax = A (x1e1 + · · · + xN eN ) = x1Ae1 + · · · + xNAeN (E.6)

But Aek is also a vector in VN and hence may also be expanded in the basis, as

Aek =
N∑

i=1

ei Aik (E.7)
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where the matrix elements Aik are uniquely determined. Then

N∑
i=1

yi ei = y =
N∑

k=1

xk

N∑
i=1

ei Aik =
N∑

i=1

(
N∑

k=1

Aik xk

)
ei (E.8)

together with the uniqueness of the expansion of y in the basis implies that

yi =
N∑

k=1

Aik xk or, in matrix form, [y] = A [x] (E.9)

E.3.1 Nonsingular Operators

Since canonical transformations are nonsingular, we will be interested here in nonsin-
gular operators. By definition, an operator A is nonsingular if it satisfies the condition
that Ax = 0 only when x = 0.

An operator A is nonsingular if and only if it possesses an inverse. For nonsingular
operators, the equation y = Ax can be solved uniquely for x. This inverse relation is
denoted as x = A−1y where the operator A−1 is called the inverse of A. The inverse
A−1 is also nonsingular.

In matrix form, the definition of a nonsingular operator translates to the require-
ment that A [x] = 0 only when [x] = 0. In Corollary B.19.2, such nonsingular matrices
were shown to have a nonzero determinant and hence to possess an inverse matrix
A−1. If A is the matrix of A in some basis, then A−1 is the matrix of the inverse
operator A−1.

E.3.2 Nonsingular Operators and Subspaces

If � is a subspace of VN and A is a nonsingular linear operator, then A� is also
subspace. It consists of all vectors y = Ax where x ∈ �. The following properties hold
for nonsingular operators acting on subspaces

A (�+ �) = ((A�)+ (A�)) A (� ∩ �) = ((A�) ∩ (A�)) (E.10)

If r1, . . . , rNR are a basis in � then Ar1, . . . ,ArNR are an LI set and form a basis in
A�. Thus, nonsingular operators also have the property

dim(A�) = dim(�) (E.11)

It follows from eqns (E.10, E.11) that if � and � are complements and A is non-
singular, then A� and A� are also complements

�
VN⇐⇒ � if and only if (A�)

VN⇐⇒ (A�) (E.12)
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E.4 Vectors in Phase Space
A set of values for the variables q0, . . . , qD,p0, . . . , pD of extended phase space de-
fines a point in what is called a differentiable manifold. We want to establish a linear
vector space such that the differentials of these variables dq0, . . . , dqD,dp0, . . . , dpD

are components of vectors in an abstract linear vector space of dimension 2D + 2.132

Introducing basis vectors q0, . . . , qD,p0, . . . , pD a typical vector may be written as

dγ = dq0q0 + · · · + dqDqD + dp0p0 + · · · + dpDpD (E.13)

We may also use the symplectic notation introduced in Section 17.3 to write eqn
(E.13) as

dγ = dγ0γ0 + · · · + dγ(2D+1)γ(2D+1) (E.14)

where q0, . . . , qD =γ0, . . . , γD and p0, . . . , pD =γ(D+1), . . . , γ(2D+1).
So far in this chapter, we have made no mention of inner products of vectors.

The natural definition for the inner product in phase space is what will be called
the symplectic inner product, or symplectic metric. It can be defined by defining the
products of the basis vectors to be, for i, j = 0, . . . , (2D + 1),

γi ◦ γ j = si j (E.15)

where si j are the matrix elements of the symplectic matrix s defined in Section 17.4.
We use the small circle between the vectors rather than the usual dot to emphasize
that this is not the standard Cartesian form of the inner product.

Inner products or metrics introduced into linear vector spaces are required to obey
certain properties.

1. Linearity: x · (αy + βz) = αx · y + βx · z.
2. Non-degeneracy: x · y = 0 for all x ∈ VN if and only if y = 0.
3. Symmetry: x · y = y · x
4. Positive definiteness: If x �= 0 then x · x > 0.

The inner product defined in eqn (E.15) is assumed to have the first property. It has
the second property since the matrix s is nonsingular. But it does not satisfy prop-
erties 3 and 4. Equation (E.15) therefore does not define a proper metric but what
is referred to in mathematics texts as a structure function. However, we will continue
to refer to it as a metric, following the somewhat looser usage in physics. (The in-
ner product of two timelike or lightlike fourvectors in Minkowski space, for example,
violates property 4 and yet gi j is generally called a metric.)

132In modern differential geometry, a curve through a given point of the manifold is defined by writing
γi = γi (β) for each coordinate i = 0, . . . , (2D + 1). Then the derivatives dγi (β)/dβ, taken at the given
point, are used as the components of what is called a tangent vector. The differentials that we use for vector
components are related to these tangent vectors by dγi = (dγi (β)/dβ) dβ. In either case, the geometrical
idea is that the dγ is to represent an arbitrary displacement starting from some point of the manifold. Since
we have used differentials (in the sense of the word defined in Section D.12) throughout this text, we
will continue to use them here. Those more familiar with the differential-geometric notation may mentally
replace the dqk , etc., by components of the corresponding tangent vectors.
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Using the assumed linearity of the inner product, we can write the inner product
of any two vectors as

dγ ◦ dφ =
2D+1∑
i=0

2D+1∑
j=0

dγi si j dφj (E.16)

from which it follows that properties 3 and 4 above are replaced by:
3′. Anti-symmetry: dγ ◦ dφ = −dφ ◦ dγ

4′. Nullity: dγ ◦ dγ = 0 for every vector dγ.

E.5 Canonical Transformations in Phase Space
In Section 17.3 a canonical transformation q, p → Q, P was written in symplectic
coordinates as γ → �. Then a (2D + 2)× (2D + 2) Jacobian matrix with components
Ji j = ∂�i (γ )/∂γj was defined. It follows from the chain rule that the differentials of
the symplectic coordinates transform with this Jacobian matrix J just as the deriva-
tives were shown to do in eqn (17.24)

d�i =
2D+1∑

j=0

Ji j dγj (E.17)

In discussing canonical transformations in phase space it is simplest to adopt the
active definition of canonical transformations discussed in Section 18.14. Thus the
transformation of differentials in eqn (E.17) is assumed to transform the vector dγ in
eqn (E.14) into a new vector

d
 = J dγ =
2D+1∑
i=0

d�iγi (E.18)

in the same basis. As is always the case for active transformations, the vector dγ is
transformed into a new vector d
 while the basis vectors γi are not transformed.

The symplectic inner product defined in Section E.4 has the following important
property.

Theorem E.5.1: Invariance of Symplectic Inner Product
The symplectic inner product is invariant under canonical transformations. If J is the
operator of any canonical transformation and dγ and dφ are any two phase-space vec-
tors, then

(J dγ) ◦ (J dφ) = dγ ◦ dφ (E.19)

Proof: Writing eqn (E.19) in component form, we want to prove that

2D+1∑
i=0

2D+1∑
j=0

(
2D+1∑
k=0

Jikdγk

)
si j

(
2D+1∑
l=0

Jjldφl

)
=

2D+1∑
k=0

2D+1∑
l=0

dγk

(
J T s J

)
kl

dφl (E.20)
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is equal to
2D+1∑
k=0

2D+1∑
l=0

dγkskldφl (E.21)

The Lagrange bracket condition, eqn (17.54), states that any canonical transformation
has J T s J = s , which proves the present theorem. �

E.6 Orthogonal Subspaces
If two phase-space vectors have a zero inner product dγ ◦ dφ = 0 then we will say
that they are orthogonal. But we must note that “orthogonality” in a vector space
with a symplectic metric will not have the same geometrical meaning as in the space
of threevectors. For example, as seen in property 4′ of Section E.4, every vector is
orthogonal to itself! We will adopt the notation dγ ⊥ dφ to indicate that the vectors
are orthogonal and obey dγ ◦ dφ = 0. Thus dγ ⊥ dγ for every vector dγ.

This idea of orthogonality can be extended to subspaces. If we have two subspaces
� and � then we will write � ⊥ � if dr ◦ ds = 0 for every dr ∈ � and ds ∈ �. Also a
subspace can be self-orthogonal, with � ⊥ �, which means that dx ◦ dy = 0 for every
dx and dy in �.

It follows from Theorem E.5.1 that mutual- and self-orthogonality of subspaces
is invariant under canonical transformations. If, as we did in Section E.3, we denote
by J� the set of all vectors dx = J dr where dr ∈ �, then it follows that for any
canonical transformation J and any subspaces � and �

� ⊥ � if and only if (J�) ⊥ (J �) (E.22)

Thus, in the special case in which � = �, we also have that

� ⊥ � if and only if (J�) ⊥ (J�) (E.23)

Lemma 17.7.1 proved that the matrix of any canonical transformation is nonsin-
gular. Hence eqn (E.11) applies to canonical transformations, with the result that

dim (J�) = dim (�) (E.24)

for any subspace �.

E.7 A Special Canonical Transformation
In Section 18.6 we defined a transformation (linear, with constant coefficients) from
the variables Q, P to the new variables X, Y . Taking the differentials of the defining
eqn (18.40) it can be written as

d Xk = αkd Qk − αkd Pk and dYk = αkd Qk + αkd Pk (E.25)

If we define symplectic coordinates d�0, . . . , d�(2D+1) = d Q0, . . . , d Q D,d P0, . . . , d PD

as was done in Section 17.3 and also define d�0, . . . , d�(2D+1) = d X0, . . . , d X D,
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dY0, . . . , dYD using a similar pattern, then eqn (E.25) may be written as

d�i =
2D+1∑

j=0

Ai j d�j or d� = Ad
 (E.26)

where the (2D + 2)× (2D + 2) matrix A is composed of diagonal (D + 1)× (D + 1)

blocks a and ā . These blocks are defined in terms of the αk binary digits in eqn
(18.38) by ai j = δi jαi and āi j = δi j ᾱj . The matrix A is

A =
(

ā −a
a ā

)
(E.27)

As the reader may verify, the matrix A is both canonical (obeying the definition eqn
(17.37), for example) and orthogonal. Thus the operator A in nonsingular, and de-
fines an active canonical transformation. The inverse matrix is

A−1 =
(

ā a
−a ā

)
(E.28)

E.8 Special Self-Orthogonal Subspaces
Before proving the main theorems of this chapter, we require some preliminary defi-
nitions and lemmas.

1. Define a subspace � to be all vectors of the form dγ(q) = ∑D
i=0 dqi qi . As can be

confirmed using eqn (E.16), � ⊥ �. Since � is spanned by (D+ 1) basis vectors,
dim (�) = D + 1.

2. Define a subspace � to be all vectors of the form dγ(p) = ∑D
i=0 dpi pi . As can be

confirmed using eqn (E.16), � ⊥ �. Since � is spanned by (D + 1) basis vectors,
dim (�) = D + 1.

3. Given any canonical transformation J , define a subspaces � = J� and � =
J�. It follows from the results in Section E.6 that � ⊥ �, � ⊥ �, and
dim(�) = D + 1 = dim(�).

4. Given any canonical transformation J , and the special canonical transformation
A for any choice of the αk , define subspaces � = A� = AJ� and � = A� =
AJ�. It follows from the results in Section E.6 that � ⊥ �, � ⊥ �, and
dim(�) = D + 1 = dim(�).

5. Given the special canonical transformation A for any choice of the αk , define
the subspaces � = A−1� and � = A−1�. It follows from the results in Section
E.6 that � ⊥ �, � ⊥ �, and dim(�) = D + 1 = dim(�).

6. By construction �∩� = 0 and �+� = V(2D+2) where V(2D+2) denotes the whole
of the vector space, of dimension (2D + 2). Thus � and � are complements

relative to V(2D+2), denoted �
V(2D+2)⇐⇒ �. It then follows from eqn (E.12) that the

following pairs are also complements: �
V(2D+2)⇐⇒ �, �

V(2D+2)⇐⇒ �, �
V(2D+2)⇐⇒ �.
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7. Define an operator S whose associated matrix is s , the symplectic matrix. Then,
as can be verified by writing out the component equation, � = S�. From the def-
initions 5 (� = A−1� and � = A−1�) it follows that � = A−1SA� = ATSA� =
S� where we used the orthogonality of A to write A−1 = A T and the La-
grange bracket condition eqn (17.54) to write A T S A = S for the canonical
transformation A .

The scheme of subspace relations can be summarized as

�
A−1←− �

J−→ �
A−→ �

S ↓ S ↓
�

A−1←− �
J−→ �

A−→ �

(E.29)

where subspaces in the upper row and the corresponding subspaces in the lower row
are all complements.

The following lemma will also be required.

Lemma E.8.1: Maximum Dimension of Self-Orthogonal Subspace
If � is any self-orthogonal subspace, with � ⊥ �, then �∩ (S�) = 0 and NR = dim(�) ≤
(D + 1).

Proof: The operator S defined in property 7 above is nonsingular and is a canoni-
cal transformation. Its nonsingularity is proved in Section 17.4. As is proved in eqn
(17.29), S is also orthogonal, with S−1 = ST. Thus SSST = S, which shows that S
satisfies the Poisson bracket condition eqn (17.37) and is a canonical transformation.

Let dx be any vector in � ∩ (S�), so that dx is in both � and S�. Since dx ∈ �, it
follows that Sdx is in S�. But dx is also in S�. Hence both dx and Sdx are in S�.

It follows from eqn (E.23) that S� ⊥ S�. Hence dx ◦ Sdx = 0 must hold. Writing
this equation out in terms of components and using ( s )2 = −U gives

0 =
2D+1∑
i=0

2D+1∑
j=0

dxi si j

(
2D+1∑
k=0

sjkdxk

)
= −

2D+1∑
i=0

(dxi )
2 (E.30)

which implies dxi = 0 for every i value. Hence dx is the null vector, which implies
that � ∩ (S�) = 0.

Since S is a nonsingular operator, eqn (E.11) implies that dim(S�) = dim(�) =
NR . It then follows from the dimension rule eqn (E.4) that

dim (�+ (S�)) = dim(�)+ dim(S�) = 2NR (E.31)

But every subspace in V(2D+2) must have a dimension less than or equal to (2D + 2).
Thus 2NR ≤ (2D + 2) and so NR ≤ (D + 1) as was to be proved. �
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E.9 Arnold’s Theorem
The following theorem allows us to prove that every canonical transformation has a
mixed generating function.

Theorem E.9.1: Arnold’s Theorem
If � is any self-orthogonal subspace of dimension (D + 1), there is some choice of the
binary digits αk used to define A in Section E.7 such that � and the self-orthogonal
subspace � defined in property 5 of Section E.8 are disjoint,

� ∩ � = 0 (E.32)

Proof: The proof first gives a definite procedure for choosing the αk values. We then
prove that the resulting � has the property eqn (E.32).133

Starting with � and the self-orthogonal subspace � defined in property 2 of Sec-
tion E.8, consider the intersection �∩�. This intersection is a self-orthogonal subspace
since (� ∩ �) ⊂ � and � is self-orthogonal. Denote the dimension of � ∩ � by n. It
thus has a basis consisting of an LI set of vectors x0, . . . , x(n−1). Since (�∩�) ⊂ �, this
basis can be extended to a basis for � by adding vectors pkn , . . . , pkD selected from
the full � basis p0, . . . , pD as needed. Then

x0, . . . , x(n−1), pkn , . . . , pkD (E.33)

are (D + 1) linearly independent vectors that form a basis for �.
Choose the binary digits αk so that 1 = αk0 = · · · = αk(n−1)

and 0 = αkn = · · · =
αkD where k0, . . . , k(n−1) are all those indices not selected for the pki in eqn (E.33).
(The k0, . . . , kD are therefore an arrangement of the integers 0, 1, . . . , D.) With this
definition of the αk , the definitions in Section E.7 may be used to verify that the
(D + 1)-dimensional subspace � = A−1� will be spanned by the basis

qk0 , . . . , qk(n−1)
, pkn , . . . , pkD (E.34)

Using this definition of �, we now proceed to the proof of eqn (E.32).
Inspection of eqn (E.34) shows that the intersection � ∩ � is a self-orthogonal

subspace of dimension (D + 1 − n) spanned by p̂kn
, . . . , p̂kD

. Also, we have already
seen that �∩� is a self-orthogonal subspace of dimension n spanned by x0, . . . , x(n−1).
Thus, eqn (E.33) shows that � has a basis consisting of a basis of � ∩ � concatenated
with a basis of � ∩ �. It follows from the discussion in Section E.2.1 that � ∩ � and
� ∩ � are complements relative to � and that

� = (� ∩ �)+ (� ∩ �) and (� ∩ �) ∩ (� ∩ �) = 0 (E.35)

Since (� ∩ �) ⊂ � and � is self-orthogonal, it follows that (� ∩ �) ⊥ �. Similarly,
(� ∩ �) ⊥ �. Also, since � ∩ � and � ∩ � are both contained in the self-orthogonal

133This theorem and its proof are derived from Chapters 8 and 9 of Arnold (1978).
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subspace �, it follows that (� ∩ �) ⊥ (� ∩ �). Similarly, (� ∩ �) ⊥ (� ∩ �) since � is
self-orthogonal. Therefore

(� ∩ �) ⊥ {(� ∩ �)+ (� ∩ �)} = � (E.36)

where eqn (E.35) was used to get the last equality.
Now � is a self-orthogonal subspace of dimension (D + 1). If � ∩ � �= 0, and if it

is not true that (� ∩ �) ⊂ �, then there will be a vector not in � that is symplectically
orthogonal to all vectors in �. This would constitute a self-orthogonal subspace of
dimension (D+2) which is proved impossible by Lemma E.8.1. Thus, whether �∩� =
0 or not, it is true that

(� ∩ �) ⊂ � (E.37)

Thus, using eqn (E.35),

(� ∩ �) = (� ∩ �) ∩ � = (� ∩ �) ∩ (� ∩ �) = 0 (E.38)

as was to be proved. �

E.10 Existence of a Mixed Generating Function
In Section 18.9 we demonstrated that every canonical transformation can be gener-
ated by a mixed generating function F(q, Y ). A crucial point in that demonstration
was the assertion, without proof, that the binary number α defined in Section 18.6
can always be chosen so that the matrix (∂Y/∂p) defined in eqn (18.64) is nonsingu-
lar. Using Arnold’s theorem, we can now provide the proof of this assertion.

Theorem E.10.1: Existence of Mixed Generating Function
Assuming a general canonical transformation q, p → Q, P, the variables X, Y were
defined in eqn (18.63) as

Xk = Xk(q, p) = αk Qk(q, p)−αk Pk(q, p) Yk = Yk(q, p) = αk Qk(q, p)+αk Pk(q, p)

(E.39)
The digits αk of the binary number α = αD · · ·α1α0 used in this definition can always
be chosen so that (D + 1)-dimensional square matrix (∂Y/∂p) defined by its matrix ele-
ments (

∂Y

∂p

)
i j
= ∂Yi (q, p)

∂pj
(E.40)

will have a nonzero determinant and hence be nonsingular.

Proof: As in Theorem E.9.1, we continue to use the subspace definitions from Sec-
tion E.8. From Arnold’s theorem, we know that there is some choice of α such that
�∩� = 0. Multiplying by the nonsingular operator A defined in Section E.7 and using
eqn (E.10) gives

0 = A (� ∩ �) = (A�) ∩ (A�) = � ∩ � (E.41)

By its definition in property 4 of Section E.8, � = AJ�, where � is the subspace
defined in property 2, consisting of vectors of the form dγ(p) = ∑D

i=0 dpi pi . Using the
definition of symplectic coordinates from eqn (E.26), vectors in � are
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d�(p) =
2D+1∑
i=0

d�
(p)
i γi =

D∑
i=0

(
d X (p)

i qi + dY (p)
i pi

)
(E.42)

where the components come from the matrix equation

[d�(p)] =
( [d X (p)]
[dY (p)]

)
= A J

( [0]
[dp]

)
(E.43)

Now suppose that at least one of the dpi is nonzero, so that [dp] �= 0. If [dY (p)] = 0
in that case, it would follow that a vector in � would be of the form

∑D
i=0 d X (p)

i qi .
But such a vector is entirely expressed in the q0, . . . , qD basis and therefore is a vector
in �. This is impossible, since, by eqn (E.41), there are no vectors in both � and �.
Therefore it is impossible to have [dp] �= 0 and [dY (p)] = 0.

Examination of eqn (E.39) shows that we can also use the chain rule and eqn
(E.40) to write [dY (p)] as

[dY (p)] =
(

∂Y

∂p

)
[dp] (E.44)

We have proved above that [dY (p)] = 0 implies [dp] = 0. By Corollary B.19.2, this
is the necessary and sufficient condition for (∂Y/∂p) in eqn (E.44) to be nonsingular
and have a nonzero determinant. Thus |∂Y/∂p| �= 0 as was to be proved. �
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Abstract vector spaces, 575
and phase space, 580
canonical transformations, 581
derived properties, 575
linear independence and dimension, 576
linear operators in, 578
linear sum and intersection, 577
nonsingular operators, 579
self-orthogonal subspaces, 583
subspaces, 577
symplectic orthogonality, 582

Active and passive rotations, 191
Aether, 315
Angular velocity vector, 166

addition of angular velocities, 171
body components, 198
from Euler angles, 190
geometric meaning, 167
inertial components, 191

Arnold’s theorem, 585

Body cone, 213
Body derivative, 194
Body system of coordinates, 162
Bohm hidden-variable model, 483, 486

Calculus of variations, 88
brachistochrone problem, 100
constraints, 102, 105
Euler-Lagrange equations, 94
general- vs coordinate-parametric, 111
homogeneity, 98
parameter independence, 99
paths in N-dimensional space, 89
reduction of degrees of freedom, 106–108
redundancy of Euler-Lagrange equations, 99
second form, 110
variation of a line integral, 92
variation of coordinates, 90
variation of functions, 91

Canonical transformations, 411
active and passive, 453
commutation relations of, 459
direct condition, 420
form invariance of Hamilton equations, 426
form invariance of Poisson brackets, 424
generating functions, 434
group properties, 423
in abstract phase space, 581
invertability, 419
Jacobian matrix, 413
Lagrange bracket condition, 422

Poisson and Lagrange brackets, 423
Poisson bracket condition, 412, 418
special, 582
traditional, 428

Center of mass, 11
and angular momentum, 14
and momentum, 13
and torque, 15
and work-energy theorem, 16
as a point particle, 17
fixed in rigid body, 154
relativistically covariant definition, 396

Center of mass inertia operator, 203
Centrifugal inertial force, 233
Chain rule, 543, 546
Chandler wobble of Earth, 215
Change-of-angular-velocity inertial force, 233
Characteristic curves, 467
Characteristic strips, 477
Chosen, or unvaried, path, 89
Classical limit, 84
Collections, 6

as point particles, 17
manifestly covariant theory, 392

angular momenta, 398
center of mass, 396
hyperplane of simultaneity, 393
isolated systems, 394
problems with total momentum, 392
rest frame of collection, 395
velocity of center of mass, 397

special results for rigid bodies, 17
with sub-collections, 21

Collective variables, 6
Column vectors, 508

complex inner product, 523
generalized real inner product, 535
inner product and orthogonality, 521
linear independence, 520
orthonormal basis, 522
Schmidt orthogonalization, 522, 536

Commutator, 124, 512
of rotations, to second order, 200
of two canonical transformations, 459

Compound functions, 541
Configuration space, 24, 268
Continuity of functions, 541
Continuously differentiable functions, 543
Coordinate parametric method, 108
Coriolis inertial force, 233

analogy to magnetic force, 237

591
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approximate calculation, 236
in a space station, 241

Covariant and contravariant components, 352
transformation rules for, 356

Cramer’s rule, 73, 518
Critical minor of a matrix, 519
Cross products, 496

and wedge products, 374
invariance under rotation, 159

Curve of intersection, 467, 573

d’Alembertian operator, 371
deBroglie relations, 300, 410
Degenerate eigenvalue spectrum, 525
Degrees of freedom, 25
Dependency relations, 563
Determinants, 128, 513

as product of eigenvalues, 141, 532
expansion by cofactors, 515
of transpose and product, 128
properties of, 514

Differential canonical transformations, 452
commutator to quadratic order, 459

Differential equations, systems of, 570
Differentials, 545

and differences, 548
differential expressions, 548
in abstract phase space, 580
line integral of differential expression, 550
of functions of many variables, 545
of second and higher order, 546
perfect differentials, 550

Dirac equation, 390
Dirac notation for complex operators, 146
Dirac’s theory of phase space constraints, 296
Dyadics, 130

center of mass inertia dyadic, 204
dyad and dyadic defined, 130
equivalent to operators and matrices, 133
fourvector, 367
relation to Dirac notation, 146
resolution of unity dyadic, 133
total inertia dyadic, 219

Effective gravitational acceleration, 236
Ehrenfest theorem, 84
Eigenvectors and eigenvalues

finding eigenvectors, 524, 537
generalized eigenvalue problem, 534, 536
of Hermitian matrices, 528
of linear operators, 136
of matrices, 524
of normal operators, 140
of real anti-symmetric operators, 137
of real symmetric operators, 137
of real, symmetric matrix, 525

Einstein locality, 340

Einsteinian relativity, 316
Energy

conservation, 11
potential and total, 11
relativistic, 377

Envelope, 467, 574
Equilibrium points, 246, 247
Ether, see Aether
Euler angles, 185

and angular velocity, 190
in reverse order, 188
in spherical basis, 200
passive use of, 196
relation to angle and axis, 188

Euler equations of motion, 211, 221
Euler theorem, 179

parameterization of rotation operators, 183
Event, 318
Expectation value, 83
Exponential operator function, 145
Extremum paths, 94

Fermat’s principle, 95
Fermi-Walker transport, 401, 403
Feynman path-integral method, 487
Fixed-axis rotations, 174

expansion in closed form, 176
geometrical interpretation, 177

Form invariance, 344, 425
Formal covariance, 362
Fourvectors, 343

acceleration, 352
by construction, 351
co- and contra-variant components, 352
differential displacement, 344
dyadics, 367
fields: scalar, vector, and operator, 369
fourvector and proper velocities, 352
fourvector form of deBroglie relations, 410
general, 350
gradient fourvector, 360
inner or dot product, 346
Maxwell’s equations, 370
Minkowski force, 379
momentum, 378
operators, 366
radius fourvector, 350
timelike, lightlike, and spacelike, 348, 351
wedge products, 368

Functional independence, 562
Functions of many variables, 540

compound functions, 541
continuity, 541
continuously differentiable, 543
dependency relations, 563
derivatives of inverse functions, 560
differential equations, systems of, 570
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differential expressions, 548
differentials of, 545
functional independence, 562
homogeneous functions, 565
implicit function theorem, 561
inverse function theorem, 556, 559
Jacobians, 553
Legendre transformations, 563
line integrals, 550
mean value theorem, 544
orders of smallness, 544
partial derivatives, 542, 543
path independence, 552
perfect differentials, 550
regions of definition, 540
Taylor series, 547

Galilean relativity, 313, 315
Gauge transformation, 43, 283, 304, 458, 490
General parametric method, 88
Generalized coordinates

extended, with time as a coordinate, 268
good, 28
in general q-system, 27
in s-system, 24

Generalized eigenvector problem, 534, 537
generalized inner product, 535

Generalized energy, 36, 270
as a momentum, 271
condition for conservation, 38
generalized energy theorem

Hamiltonian form, 76, 290
Lagrangian form, 37, 273
with constraints, 61

Generalized forces, 25, 29, 272
Generalized momenta, 25, 35, 270
Generalized velocities, 25, 29, 268
Generating functions, 434

differential, 452
existence of mixed generating function, 586
finding F1 or F2 generating functions, 445
finding mixed generating functions, 446, 448
mixed generating functions, 442, 444
of Lagrangian transformations, 440
of the F1 type, 436
of the F2 type, 438
of the other simple types, 441
proto-generating functions, 434
the inverse problem, 445
traditional, 449

Geodesic, 105
Gradient vector operator, 504
Group

Abelian, 161
axioms, 160
canonical group, 423
Lie algebra of rotation group, 174

little group of Lorentz group, 364
Lorentz group, 362
rotation group, 160

Gyromagnetic ratio, 244

Hamilton’s principle, 117, 305
failure for systems with friction, 120, 307
Lagrangian form, 118, 305
phase space form, 120, 310
with constraints, 118, 306

Hamilton-Jacobi theory, 461
Bohm hidden-variable model, 484, 486
canonical transformations, 473
Cauchy problem, 475
complete integrals, 469
definition of action, 461
Feynman path integral, 487
general integrals, 475
Hamilton-Jacobi equation, 466
mono-energetic integrals, 480
optical analogy, 482
quantum Cauchy problem, 485
relativistically covariant, 483
Schroedinger equation, 483
separation of variables, 472

Hamiltonian, extended
alternate Hamiltonians, 293
definition of extended Hamiltonian, 289
dependency relation, 285
Dirac theory of constraints, 296
equations in symplectic form, 417
equivalence to traditional theory, 290
equivalent extended Hamiltonians, 292
form invariance of Hamilton equations, 426
generality of the standard form, 451
Hamilton equations, 289
not by a Legendre transformation, 295
phase space with time as coordinate, 285
relativistically invariant Hamiltonian, 387

Hamiltonian, traditional
alternate traditional Hamiltonians, 295
Hamilton equations, 75
Hamiltonian vs generalized energy, 74
ignorable coordinates, 77
phase space, 71
Poisson brackets, 80
quantum analog of Hamilton equations, 84
reduced Hamiltonian, 78
relativistic modification, 383
Schroedinger equation, 82
with constraints, 78
with electromagnetic fields, 86
with non-potential forces, 78

Hermitian matrices, 510
Homogeneous functions, 565
Homogeneous linear equations, 520
Hyperbolic motion, 408



594 INDEX

Implicit function theorem, 561
Inertia dyadic

about a fixed point, 218
about center of mass, 204

Inertia operator
about a fixed point, 219
about center of mass, 203
body with one point fixed, alternate, 221
figures of rotation, 209
guessing the principal axes, 208
moments and products of inertia, 205
parallel axis theorem, 224
principal axes, 206
principal moments of inertia, 207
the symmetry rule, 209
translation of pivot theorem, 219

Inertia tensor, see Inertia operator
Inertial forces, 231

centrifugal and Coriolis forces, 233
Lagrangian treatment, 242
on the surface of the Earth, 234

Inertial systems, 4, 315
Infinitesimal rotations, 170

commutation of, 172
fundamental generators of, 172

Integral surface, 467, 475
Invariant notation, 343
Inverse function theorem, 556, 559, 560
Inverse of a matrix, 516

Jacobi identity, 81, 299
Jacobi-integral function, 36
Jacobians, 553

Kinetic energy, orbital and internal, 16
Klein-Gordon equation, 389
Kroeneker delta function, 158, 497

Laboratory on surface of Earth, 234
Lagrange multipliers, 102, 566, 569
Lagrangian constraints, 46

alternate Lagrangian notation, 53
form of constraint forces, 50
generalized energy theorem, 61
holonomic constraints, 46
in extended Lagrangian theory, 278
Lagrange equations with constraints, 52
real vs virtual work, 62
recovery of forces of constraint, 59, 60
reduced Lagrange equations, 54, 55, 57, 58
tractable non-holonomic constraints, 63
virtual displacements, 47
virtual work, 48

Lagrangian, extended, 269
covariant Lagrange equations, 384
equivalence to traditional theory, 272
forces of constraint, 281

gauge invariance, 283
generalized coordinates, 268
generalized energy as a momentum, 270
generalized energy theorem, 273
generalized momenta, 270
generalized velocities, 268
homogeneity of Lagrangian, 269
homogeneity of momenta, 271
invariance under coordinate change, 276
invariance under parameter change, 275
Lagrange equations, 272
Lagrange equations with constraints, 279
Lorentz transformation, 277
reduced Lagrangians, 281
redundancy of Lagrange equations, 277
relativistically invariant Lagrangian, 383

Lagrangian, traditional, 24
configuration space, 24
equivalent Lagrangians, 42
gauge transformations, 43
generalized energy, 36
generalized energy vs the energy, 37
generalized momenta in q-system, 35
ignorable coordinates, 35
in general q-system, 30
in s-system, 26
invariance under coordinate change, 32, 33
Lagrange equation in s-system, 27
Lagrange equations in q-system, 32
particle vs generalized momenta, 40
relativistic modification, 381
separable, 42
units of generalized coordinates, 36
velocity dependent potentials, 38

Larmour theorem, 238
Law of angular momentum, 9
Law of momentum, 8, 9
Legendre transformations, 563
Leibniz, 4
Levi-Civita function, 158, 498
Light clock, 333
Light cone, forward and backward, 349
Lightlike fourvectors, 348, 351
Line integral of differential expression, 550
Linear independence and matrix rank, 520
Linear operators, 123

addition and multiplication, 127
anti-symmetric operator as cross product, 129
center of mass inertia operator, 203
commutator, 124
complex, 134
determinant and trace, 127, 128, 141
eigen-dyadic expansion of, 142
eigenvectors and eigenvalues, 136

of normal operators, 140
of real anti-symmetric operators, 137
of real symmetric operators, 137
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equivalent to matrices and dyadics, 133
exponential function, 145
fourvector operators, 366
functions of normal operators, 143
Hermitian and unitary, 135
inverses, 129
linearity defined, 123
matrices associated with, 125
normal operators, 140
operator functions as power series, 144
product rule for derivatives, 134
reduction to diagonal operators, 141
symmetric and anti-symmetric operators, 129
transpose of a product, 125
underdetermination of eigenvectors, 138
uniqueness of eigen-dyadics, 143

Liouville theorem, 455
Little group, 364
Lorentz contraction, 326, 336
Lorentz transformation, 316, 337

and rotation, 358
as a canonical transformation, 430
as product of boost and rotation, 365
general, 355
general boosts, 358
invariance of Lagrange equations, 277
Lorentz group, 362
of E and B fields, 375
parameterization, 364
standard, 358

Lorentzian relativity, 316, 339

Mach’s principle, 5
Manifest covariance, 361
Matrices, 508

addition, 510
cofactors, 515
column, 508
determinant, 513
diagonal, unit, and scalar, 512
eigenvectors and eigenvalues, 524
inverse, 516
multiplication, 511
orthogonal and unitary, 523
partitioned, 517
positive definite, 534
product rule for differentiation, 513
rank, 519
symmetric and Hermitian, 509
trace, 513
transpose, 508

Maupertuis, 117
Maxima and minima, 566
Maxwell’s equations in fourvector form, 370
Mean value theorem, 544
Mechanist tradition, 340
Minkowski force, 373, 379

Minkowski space, 344
choice of metric, 347

Mirror reflection, 198
Moments and products of inertia, 205, 207

continuous mass distributions, 210
Momentum-energy relation, 378
Monge cone, 468

N-body theory, see Collections
Newton’s Laws of Motion, 3
Newton’s second law, 5

equivalent to Hamilton’s principle, 119
for elementary rotary motion, 224
fourvector form, 378
in traditional Hamiltonian form, 76
in traditional Lagrangian form, 26
relativistic modification, 376

Noether’s theorem, 307
phase space analog, 454

Normal modes, 249
Normal operators and matrices, 140, 528

determinant and trace, 141, 532
eigen-dyadic expansion of, 142, 531
functions of, 143, 533
properties of normal matrices, 530
reduced to diagonal operator, 141
uniqueness of eigen-dyadics, 143

Oneforms, 354
Open neighborhood of a point, 540
Operators, see Linear operators
Orbital angular momentum

of collections, 14
rate of change, 15

Orders of smallness, 544

Parallel and perpendicular projections, 149, 496
Parallel axis theorem, 224
Partial derivatives, 542, 543
Perfect differentials, 550
Phase space

abstract vector space, 580
canonical transformations in, 411
extended, with time as coordinate, 285
traditional, 71

Plane figure theorem, 208
Point particles, 3
Poisson brackets

and quantum commutators, 300
extended, with time as a coordinate, 298
form invariance, 424
fundamental Poisson brackets, 82, 300
in symplectic space, 418
traditional, 80

Polar coordinates, 501
Positive definite matrices, 534
Principal axes, 206
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preserving when one point fixed, 220
principal axis system of coordinates, 210

Principal moments of inertia, 207
Principle of relativity, 337
Projection operators, 149
Pure modes, 254

Quantum mechanics
Bohm hidden-variable model, 484, 486
Bohr model, 410
classical and quantum mechanics, 488
classical limit, 84
commutators and Poisson brackets, 300
deBroglie relations, 300, 410
Dirac equation, 390
Dirac notation, 146
Dirac theory of phase space constraints, 296
Ehrenfest theorem, 84
Feynman path-integral method, 487
Klein-Gordon equation, 389
Schroedinger equation, 82, 484

with electromagnetic fields, 87, 304
spin of the electron, 244, 410

Rank of a matrix, 519
Rapidity, 408
Relative coordinates and velocities, 12
Relativistic mechanics, 376

canonical vs fourvector momenta, 382, 385
covariant Hamilton equations, 388
covariant Lagrange equations, 384
Fermi-Walker transport, 401
fourvector form of second law, 378
fourvector momentum, 378
hyperbolic motion, 408
invariant Hamiltonian, 387
invariant Lagrangian, 383
modification of second law, 376
momentum conservation, 380
momentum-energy relation, 378
Newtonian limit, 405
relativistic mass and energy, 377
traditional Hamiltonian, 383
traditional Lagragian, 381
velocity addition formula, 407
zero mass particles, 380

Relativistic space and time, 313
clock synchronization, 327, 336
clocks, 321
coordinate system, 318
coordinate time and velocity, 330, 337
corrected velocity, 325, 335
Lorentz contraction, 326, 336
Lorentzian relativity, 339
mechanism and relativity, 340
one-way speed of light, 321, 329, 336
principle of relativity, 337

proper velocity, 323, 334
relativistic interval, 347
slowly- and rapidly-moving clocks, 329
space frame, 319, 332
standard Lorentz transformation, 337
survey, 331
time dilation, 323, 334
two-way speed of light, 321, 333
universality, 331

Resolution of unity, 133
Rest mass and energy, 377
Rigid bodies, 152, 202

and passive rotations, 195
as collections, 17
basic kinematics of rigid bodies, 161
body system of coordinates, 162
motion with one fixed point, 217
rotated by rotation operators, 163
rotation with a fixed axis, 223
the body derivative, 194
time evolution of spin, 211
velocities of constituent masses, 168

Rotation group, 160
Rotation operators, 155

active and passive rotations, 191
angular velocity, 166, 171, 190
as rotators of rigid bodies, 163
associated rotation matrices, 157
derivative of parameterized operator, 184
equivalent definitions of, 155
Euler angles, 185, 188, 190, 196
Euler theorem, 179
fixed axis rotations, 174

eigen-dyadic expansion, 178
eigenvectors and eigenvalues, 178
expansion in closed form, 176
geometrical interpretation, 177
inverse, 178

fundamental generators of rotations, 173
infinitesimal rotations, 170
invariance of cross products, 159
Kroeneker and Levi-Civita functions, 158
parameterization by axis and angle, 183
passive rotations

matrix elements of operators, 193
passive use of Euler angles, 196
the body derivative, 194
vector components, 192

proper and improper rotations, 158
rotation of a fixed axis rotation, 182
rotation of fundamental generators, 181
rotation of other operators, 181
time derivative of a product, 189
time derivative of rotation operators, 164
velocities of rigid body masses, 168

Same function in different coordinates, 541
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Savio’s theorem, 169
Schmidt orthogonalization, 522, 536
Schroedinger equation, 82, 302

and Hamilton-Jacobi equation, 484
with electromagnetic fields, 87, 304

Serret-Frenet theory
in calculus of variations, 97
in Cartesian three space, 505
in Minkowski space, 399

Single particle theorems, 5
Small vibrations, 246

approximate Lagrangian, 248
energy of, 253
equilibrium points, 247
general solution, 252
generalized eigenvalue problem, 250
initial conditions, 252
Lagrangian formulation, 247
normal modes and coordinates, 249
single mode excitations, 254
small coordinates, 248
zero frequency modes, 260

Space cone, 213
Spacelike fourvectors, 348, 351
Spacetime diagrams, 349
Spherical basis, 149, 150
Spin angular momentum

of a rigid body, 203
of collections, 14
rate of change, 15
time evolution for rigid body, 211

Stationary points, 566
Structure function vs metric, 580
Surfaces and envelopes, 572
Symmetric rigid body

definition, 211
electrically charged, 243
torque-free motion, 211, 215

Symmetric top, 224, 228
elementary and approximate analysis, 230
fast top approximation, 229
initially clamped, 229

Symmetry rule for principal axes, 209
Symplectic

coordinates, 412
gradients, 414
Hamilton equations, 417
inner product, invariance, 581
matrix, 416, 580
metric in abstract phase space, 580
Poisson brackets, 418
symplectic inner product, 580
transformations, 416

Synge’s point catastrophe model, 392

Taylor series, 547
Thomas precession, 404

Time dilation, 323, 334
Timelike fourvectors, 348, 351
Torque, orbital and spin, 15
Total angular momentum

of collections, 14
of rigid body with one point fixed, 219

Trace, 128, 513
as sum of eigenvalues, 141, 532

Translation of pivot theorem, 219
Translation-of-origin inertial force, 233
Transpose, 124, 508

of a product, 125, 511

Unvaried path, 89

Variations, see Calculus of variations
Varied path, 89
Vectors, 495, see also Column vectors, Abstract

vector spaces
Cartesian basis, 497
complex, 134
complex spherical basis, 149
cross product defined, 496
dot products, 495
gradient vector operator, 504
linearity of products, 496
properties of polar coordinates, 501
real and complex inner product, 136
scalar and vector fields, 499
triple scalar and cross products, 502

Velocity transformations, 360
Virtual displacement, 47
Virtual work, 48

virtual vs real work, 49, 62

Wedge products, 368, 374
Work-energy theorem

collections, 10
Hamiltonian, 76, 290
Lagrangian, 37, 273
relativistic, 377
rigid body, 17, 222
single particle, 6

World line, 349

Zero frequency modes, 252, 260
Zero mass particles, 380


	Contents
	Dedication
	Preface
	Acknowledgments
	PART I: INTRODUCTION: THE TRADITIONAL THEORY
	1 Basic Dynamics of Point Particles and Collections
	1.1 Newton’s Space and Time
	1.2 Single Point Particle
	1.3 Collective Variables
	1.4 The Law of Momentum for Collections
	1.5 The Law of Angular Momentum for Collections
	1.6 “Derivations” of the Axioms
	1.7 The Work&#8211;Energy Theorem for Collections
	1.8 Potential and Total Energy for Collections
	1.9 The Center of Mass
	1.10 Center of Mass and Momentum
	1.11 Center of Mass and Angular Momentum
	1.12 Center of Mass and Torque
	1.13 Change of Angular Momentum
	1.14 Center of Mass and the Work&#8211;Energy Theorems
	1.15 Center of Mass as a Point Particle
	1.16 Special Results for Rigid Bodies
	1.17 Exercises

	2 Introduction to Lagrangian Mechanics
	2.1 Configuration Space
	2.2 Newton’s Second Law in Lagrangian Form
	2.3 A Simple Example
	2.4 Arbitrary Generalized Coordinates
	2.5 Generalized Velocities in the q-System
	2.6 Generalized Forces in the q-System
	2.7 The Lagrangian Expressed in the q-System
	2.8 Two Important Identities
	2.9 Invariance of the Lagrange Equations
	2.10 Relation Between Any Two Systems
	2.11 More of the Simple Example
	2.12 Generalized Momenta in the q-System
	2.13 Ignorable Coordinates
	2.14 Some Remarks About Units
	2.15 The Generalized Energy Function
	2.16 The Generalized Energy and the Total Energy
	2.17 Velocity Dependent Potentials
	2.18 Exercises

	3 Lagrangian Theory of Constraints
	3.1 Constraints Defined
	3.2 Virtual Displacement
	3.3 Virtual Work
	3.4 Form of the Forces of Constraint
	3.5 General Lagrange Equations with Constraints
	3.6 An Alternate Notation for Holonomic Constraints
	3.7 Example of the General Method
	3.8 Reduction of Degrees of Freedom
	3.9 Example of a Reduction
	3.10 Example of a Simpler Reduction Method
	3.11 Recovery of the Forces of Constraint
	3.12 Example of a Recovery
	3.13 Generalized Energy Theorem with Constraints
	3.14 Tractable Non-Holonomic Constraints
	3.15 Exercises

	4 Introduction to Hamiltonian Mechanics
	4.1 Phase Space
	4.2 Hamilton Equations
	4.3 An Example of the Hamilton Equations
	4.4 Non-Potential and Constraint Forces
	4.5 Reduced Hamiltonian
	4.6 Poisson Brackets
	4.7 The Schroedinger Equation
	4.8 The Ehrenfest Theorem
	4.9 Exercises

	5 The Calculus of Variations
	5.1 Paths in an N-Dimensional Space
	5.2 Variations of Coordinates
	5.3 Variations of Functions
	5.4 Variation of a Line Integral
	5.5 Finding Extremum Paths
	5.6 Example of an Extremum Path Calculation
	5.7 Invariance and Homogeneity
	5.8 The Brachistochrone Problem
	5.9 Calculus of Variations with Constraints
	5.10 An Example with Constraints
	5.11 Reduction of Degrees of Freedom
	5.12 Example of a Reduction
	5.13 Example of a Better Reduction
	5.14 The Coordinate Parametric Method
	5.15 Comparison of the Methods
	5.16 Exercises

	6 Hamilton’s Principle
	6.1 Hamilton’s Principle in Lagrangian Form
	6.2 Hamilton’s Principle with Constraints
	6.3 Comments on Hamilton’s Principle
	6.4 Phase-Space Hamilton’s Principle
	6.5 Exercises

	7 Linear Operators and Dyadics
	7.1 Definition of Operators
	7.2 Operators and Matrices
	7.3 Addition and Multiplication
	7.4 Determinant, Trace, and Inverse
	7.5 Special Operators
	7.6 Dyadics
	7.7 Resolution of Unity
	7.8 Operators, Components, Matrices, and Dyadics
	7.9 Complex Vectors and Operators
	7.10 Real and Complex Inner Products
	7.11 Eigenvectors and Eigenvalues
	7.12 Eigenvectors of Real Symmetric Operator
	7.13 Eigenvectors of Real Anti-Symmetric Operator
	7.14 Normal Operators
	7.15 Determinant and Trace of Normal Operator
	7.16 Eigen-Dyadic Expansion of Normal Operator
	7.17 Functions of Normal Operators
	7.18 The Exponential Function
	7.19 The Dirac Notation
	7.20 Exercises

	8 Kinematics of Rotation
	8.1 Characterization of Rigid Bodies
	8.2 The Center of Mass of a Rigid Body
	8.3 General Definition of Rotation Operator
	8.4 Rotation Matrices
	8.5 Some Properties of Rotation Operators
	8.6 Proper and Improper Rotation Operators
	8.7 The Rotation Group
	8.8 Kinematics of a Rigid Body
	8.9 Rotation Operators and Rigid Bodies
	8.10 Differentiation of a Rotation Operator
	8.11 Meaning of the Angular Velocity Vector
	8.12 Velocities of the Masses of a Rigid Body
	8.13 Savio’s Theorem
	8.14 Infinitesimal Rotation
	8.15 Addition of Angular Velocities
	8.16 Fundamental Generators of Rotations
	8.17 Rotation with a Fixed Axis
	8.18 Expansion of Fixed-Axis Rotation
	8.19 Eigenvectors of the Fixed-Axis Rotation Operator
	8.20 The Euler Theorem
	8.21 Rotation of Operators
	8.22 Rotation of the Fundamental Generators
	8.23 Rotation of a Fixed-Axis Rotation
	8.24 Parameterization of Rotation Operators
	8.25 Differentiation of Parameterized Operator
	8.26 Euler Angles
	8.27 Fixed-Axis Rotation from Euler Angles
	8.28 Time Derivative of a Product
	8.29 Angular Velocity from Euler Angles
	8.30 Active and Passive Rotations
	8.31 Passive Transformation of Vector Components
	8.32 Passive Transformation of Matrix Elements
	8.33 The Body Derivative
	8.34 Passive Rotations and Rigid Bodies
	8.35 Passive Use of Euler Angles
	8.36 Exercises

	9 Rotational Dynamics
	9.1 Basic Facts of Rigid-Body Motion
	9.2 The Inertia Operator and the Spin
	9.3 The Inertia Dyadic
	9.4 Kinetic Energy of a Rigid Body
	9.5 Meaning of the Inertia Operator
	9.6 Principal Axes
	9.7 Guessing the Principal Axes
	9.8 Time Evolution of the Spin
	9.9 Torque-Free Motion of a Symmetric Body
	9.10 Euler Angles of the Torque-Free Motion
	9.11 Body with One Point Fixed
	9.12 Preserving the Principal Axes
	9.13 Time Evolution with One Point Fixed
	9.14 Body with One Point Fixed, Alternate Derivation
	9.15 Work&#8211;Energy Theorems
	9.16 Rotation with a Fixed Axis
	9.17 The Symmetric Top with One Point Fixed
	9.18 The Initially Clamped Symmetric Top
	9.19 Approximate Treatment of the Symmetric Top
	9.20 Inertial Forces
	9.21 Laboratory on the Surface of the Earth
	9.22 Coriolis Force Calculations
	9.23 The Magnetic &#8211; Coriolis Analogy
	9.24 Exercises

	10 Small Vibrations About Equilibrium
	10.1 Equilibrium Defined
	10.2 Finding Equilibrium Points
	10.3 Small Coordinates
	10.4 Normal Modes
	10.5 Generalized Eigenvalue Problem
	10.6 Stability
	10.7 Initial Conditions
	10.8 The Energy of Small Vibrations
	10.9 Single Mode Excitations
	10.10 A Simple Example
	10.11 Zero-Frequency Modes
	10.12 Exercises


	PART II: MECHANICS WITH TIME AS A COORDINATE
	11 Lagrangian Mechanics with Time as a Coordinate
	11.1 Time as a Coordinate
	11.2 A Change of Notation
	11.3 Extended Lagrangian
	11.4 Extended Momenta
	11.5 Extended Lagrange Equations
	11.6 A Simple Example
	11.7 Invariance Under Change of Parameter
	11.8 Change of Generalized Coordinates
	11.9 Redundancy of the Extended Lagrange Equations
	11.10 Forces of Constraint
	11.11 Reduced Lagrangians with Time as a Coordinate
	11.12 Exercises

	12 Hamiltonian Mechanics with Time as a Coordinate
	12.1 Extended Phase Space
	12.2 Dependency Relation
	12.3 Only One Dependency Relation
	12.4 From Traditional to Extended Hamiltonian Mechanics
	12.5 Equivalence to Traditional Hamilton Equations
	12.6 Example of Extended Hamilton Equations
	12.7 Equivalent Extended Hamiltonians
	12.8 Alternate Hamiltonians
	12.9 Alternate Traditional Hamiltonians
	12.10 Not a Legendre Transformation
	12.11 Dirac’s Theory of Phase-Space Constraints
	12.12 Poisson Brackets with Time as a Coordinate
	12.13 Poisson Brackets and Quantum Commutators
	12.14 Exercises

	13 Hamilton’s Principle and Noether’s Theorem
	13.1 Extended Hamilton’s Principle
	13.2 Noether’s Theorem
	13.3 Examples of Noether’s Theorem
	13.4 Hamilton’s Principle in an Extended Phase Space
	13.5 Exercises

	14 Relativity and Spacetime
	14.1 Galilean Relativity
	14.2 Conflict with the Aether
	14.3 Einsteinian Relativity
	14.4 What Is a Coordinate System?
	14.5 A Survey of Spacetime
	14.6 The Lorentz Transformation
	14.7 The Principle of Relativity
	14.8 Lorentzian Relativity
	14.9 Mechanism and Relativity
	14.10 Exercises

	15 Fourvectors and Operators
	15.1 Fourvectors
	15.2 Inner Product
	15.3 Choice of Metric
	15.4 Relativistic Interval
	15.5 Spacetime Diagram
	15.6 General Fourvectors
	15.7 Construction of New Fourvectors
	15.8 Covariant and Contravariant Components
	15.9 General Lorentz Transformations
	15.10 Transformation of Components
	15.11 Examples of Lorentz Transformations
	15.12 Gradient Fourvector
	15.13 Manifest Covariance
	15.14 Formal Covariance
	15.15 The Lorentz Group
	15.16 Proper Lorentz Transformations and the Little Group
	15.17 Parameterization
	15.18 Fourvector Operators
	15.19 Fourvector Dyadics
	15.20 Wedge Products
	15.21 Scalar, Fourvector, and Operator Fields
	15.22 Manifestly Covariant Form of Maxwell’s Equations
	15.23 Exercises

	16 Relativistic Mechanics
	16.1 Modification of Newton’s Laws
	16.2 The Momentum Fourvector
	16.3 Fourvector Form of Newton’s Second Law
	16.4 Conservation of Fourvector Momentum
	16.5 Particles of Zero Mass
	16.6 Traditional Lagrangian
	16.7 Traditional Hamiltonian
	16.8 Invariant Lagrangian
	16.9 Manifestly Covariant Lagrange Equations
	16.10 Momentum Fourvectors and Canonical Momenta
	16.11 Extended Hamiltonian
	16.12 Invariant Hamiltonian
	16.13 Manifestly Covariant Hamilton Equations
	16.14 The Klein&#8211;Gordon Equation
	16.15 The Dirac Equation
	16.16 The Manifestly Covariant N-Body Problem
	16.17 Covariant Serret&#8211;Frenet Theory
	16.18 Fermi&#8211;Walker Transport
	16.19 Example of Fermi&#8211;Walker Transport
	16.20 Exercises

	17 Canonical Transformations
	17.1 Definition of Canonical Transformations
	17.2 Example of a Canonical Transformation
	17.3 Symplectic Coordinates
	17.4 Symplectic Matrix
	17.5 Standard Equations in Symplectic Form
	17.6 Poisson Bracket Condition
	17.7 Inversion of Canonical Transformations
	17.8 Direct Condition
	17.9 Lagrange Bracket Condition
	17.10 The Canonical Group
	17.11 Form Invariance of Poisson Brackets
	17.12 Form Invariance of the Hamilton Equations
	17.13 Traditional Canonical Transformations
	17.14 Exercises

	18 Generating Functions
	18.1 Proto-Generating Functions
	18.2 Generating Functions of the F1 Type
	18.3 Generating Functions of the F2 Type
	18.4 Examples of Generating Functions
	18.5 Other Simple Generating Functions
	18.6 Mixed Generating Functions
	18.7 Example of a Mixed Generating Function
	18.8 Finding Simple Generating Functions
	18.9 Finding Mixed Generating Functions
	18.10 Finding Mixed Generating Functions&#8212;An Example
	18.11 Traditional Generating Functions
	18.12 Standard Form of Extended Hamiltonian Recovered
	18.13 Differential Canonical Transformations
	18.14 Active Canonical Transformations
	18.15 Phase-Space Analog of Noether Theorem
	18.16 Liouville Theorem
	18.17 Exercises

	19 Hamilton&#8211;Jacobi Theory
	19.1 Definition of the Action
	19.2 Momenta from the S[sub(1)] Action Function
	19.3 The S[sub(2)] Action Function
	19.4 Example of S[sub(1)] and S[sub(2)] Action Functions
	19.5 The Hamilton&#8211;Jacobi Equation
	19.6 Hamilton’s Characteristic Equations
	19.7 Complete Integrals
	19.8 Separation of Variables
	19.9 Canonical Transformations
	19.10 General Integrals
	19.11 Mono-Energetic Integrals
	19.12 The Optical Analogy
	19.13 The Relativistic Hamilton&#8211;Jacobi Equation
	19.14 Schroedinger and Hamilton&#8211;Jacobi Equations
	19.15 The Quantum Cauchy Problem
	19.16 The Bohm Hidden Variable Model
	19.17 Feynman Path-Integral Technique
	19.18 Quantum and Classical Mechanics
	19.19 Exercises


	PART III: MATHEMATICAL APPENDICES
	A: Vector Fundamentals
	A.1 Properties of Vectors
	A.2 Dot Product
	A.3 Cross Product
	A.4 Linearity
	A.5 Cartesian Basis
	A.6 The Position Vector
	A.7 Fields
	A.8 Polar Coordinates
	A.9 The Algebra of Sums
	A.10 Miscellaneous Vector Formulae
	A.11 Gradient Vector Operator
	A.12 The Serret&#8211;Frenet Formulae

	B: Matrices and Determinants
	B.1 Definition of Matrices
	B.2 Transposed Matrix
	B.3 Column Matrices and Column Vectors
	B.4 Square, Symmetric, and Hermitian Matrices
	B.5 Algebra of Matrices: Addition
	B.6 Algebra of Matrices: Multiplication
	B.7 Diagonal and Unit Matrices
	B.8 Trace of a Square Matrix
	B.9 Differentiation of Matrices
	B.10 Determinants of Square Matrices
	B.11 Properties of Determinants
	B.12 Cofactors
	B.13 Expansion of a Determinant by Cofactors
	B.14 Inverses of Nonsingular Matrices
	B.15 Partitioned Matrices
	B.16 Cramer’s Rule
	B.17 Minors and Rank
	B.18 Linear Independence
	B.19 Homogeneous Linear Equations
	B.20 Inner Products of Column Vectors
	B.21 Complex Inner Products
	B.22 Orthogonal and Unitary Matrices
	B.23 Eigenvalues and Eigenvectors of Matrices
	B.24 Eigenvectors of Real Symmetric Matrix
	B.25 Eigenvectors of Complex Hermitian Matrix
	B.26 Normal Matrices
	B.27 Properties of Normal Matrices
	B.28 Functions of Normal Matrices

	C: Eigenvalue Problem with General Metric
	C.1 Positive-Definite Matrices
	C.2 Generalization of the Real Inner Product
	C.3 The Generalized Eigenvalue Problem
	C.4 Finding Eigenvectors in the Generalized Problem
	C.5 Uses of the Generalized Eigenvectors

	D: The Calculus of Many Variables
	D.1 Basic Properties of Functions
	D.2 Regions of Definition of Functions
	D.3 Continuity of Functions
	D.4 Compound Functions
	D.5 The Same Function in Different Coordinates
	D.6 Partial Derivatives
	D.7 Continuously Differentiable Functions
	D.8 Order of Differentiation
	D.9 Chain Rule
	D.10 Mean Values
	D.11 Orders of Smallness
	D.12 Differentials
	D.13 Differential of a Function of Several Variables
	D.14 Differentials and the Chain Rule
	D.15 Differentials of Second and Higher Orders
	D.16 Taylor Series
	D.17 Higher-Order Differential as a Difference
	D.18 Differential Expressions
	D.19 Line Integral of a Differential Expression
	D.20 Perfect Differentials
	D.21 Perfect Differential and Path Independence
	D.22 Jacobians
	D.23 Global Inverse Function Theorem
	D.24 Local Inverse Function Theorem
	D.25 Derivatives of the Inverse Functions
	D.26 Implicit Function Theorem
	D.27 Derivatives of Implicit Functions
	D.28 Functional Independence
	D.29 Dependency Relations
	D.30 Legendre Transformations
	D.31 Homogeneous Functions
	D.32 Derivatives of Homogeneous Functions
	D.33 Stationary Points
	D.34 Lagrange Multipliers
	D.35 Geometry of the Lagrange Multiplier Theorem
	D.36 Coupled Differential Equations
	D.37 Surfaces and Envelopes

	E: Geometry of Phase Space
	E.1 Abstract Vector Space
	E.2 Subspaces
	E.3 Linear Operators
	E.4 Vectors in Phase Space
	E.5 Canonical Transformations in Phase Space
	E.6 Orthogonal Subspaces
	E.7 A Special Canonical Transformation
	E.8 Special Self-Orthogonal Subspaces
	E.9 Arnold’s Theorem
	E.10 Existence of a Mixed Generating Function


	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z




