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PREFACE TO THE FIRST ENGLISH EDITION

T'ne present volume of our Theoretical Physics deals with the theory of
elanticity,

Being written by physicists, and primarily for physicists, it naturally
inclides not only the ordinary theory of the deformation of solids, but also
some topics not usually found in textbooks on the subject, such as thermal
vonduction and viscosity in solids, and various problems in the theory of
elustic vibrations and waves., On the other hand, we have discussed only
very briefly certain special matters, such as complex mathematical methods
in the theory of elasticity and the theory of shells, which are outside the scope
ol this book.

Uhur thanks are due to Dr. Sykes and Dr. Reid for their excellent trans-
lution of the book.

Maosconw . D. Laxpau
E. M. LiFsuirz

PREFACE TO THE SECOND ENGLISH EDITION

Ad wiLl, as some minor corrections and additions, a chapter on the macro-
seapie theory of dislocations has been added in this edition. The chapter has
lwen written jointly by myself and A, M. Kosevich.

A number of useful comments have been made by G. 1. Barenblatt, V. L.
Chineburg, M, A, Isakovich, I. M. Lifshitz and I. M. Shmushkevich for the
Wissian edition, while the vigilance of Dr. Sykes and Dr. Reid has made it
pusaibile to eliminate some further errors from the English translation.

I should like to express here my sincere gratitude to all the above-named.

Muicon E. M. LirsHiTz

Vil



NOTATION
P density of matter
u  displacement vector
1 ( oy auk) .
uig = —|——+-—| strain tensor
2 8xk axi

o stress tensor
K  modulus of compression
¢ modulus of rigidity
E  Young’s modulus
o  Poisson’s ratio
c;  longitudinal velocity of sound
¢; transverse velocity of sound

c; and ¢; are expressed in terms of K, u or of E, o by formulae given in
§22.
The quantities K, u, E and o are related by
E = 9Kp /(3K + )
o = (3K—-2u))2(3K + )
K= E/3(1-20)
w= E2(1+0)

viit

CHAPTER 1

FUNDAMENTAL EQUATIONS

§1. The strain tensor

THE mechanics of solid bodies, regarded as continuous media, forms the
content of the theory of elasticity.}

Under the action of applied forces, solid bodies exhibit deformation to
some extent, i.e. they change in shape and volume. The deformation of
body is described mathematically in the following way. The position of any
point in the body is defined by its radius vector r (with components xp  x,
x2 = ¥, ¥3 = %) in some co-ordinate system. When the body is dcformed,
every point in it is in general displaced. Let us consider some particular
point; let its radius vector before the deformation be r, and after the deforma-
tion have a different value r’ (with components x';). The displacement of
this point due to the deformation is then given by the vector r’—r, which we
shall denote by u:

u; = x'i— x4 (1.1)

The vector u is called the displacement vector. The co-ordinates &'y of the
displaced point are, of course, functions of the co-ordinates x; of the point
before displacement. The displacement vector #; is therefore also a function
of the co-ordinates »;. If the vector u is given as a function of x;, the defor
mation of the body is entirely determined.

When a body is deformed, the distances between its points change. .t
us consider two points very close together. If the radius vector joining them
before the deformation is dw;, the radius vector joining the same two points
in the deformed body is dx’; = dx;+ du;. The distance between the points
is dl = 4/(dx;®+ dxo?+ dxs?) before the deformation, and dl’: - v/(dv'y™ |
+da's2+ dx's?) after it. Using the general summation rule,f we can write
di2 = dx2, dI'2 = da';2 = (dx;+ dwg)?. Substituting duy = (dy/dxg )y, we
can write

ou; du; Ouy
di'?2 = dI2 42— du; dag + —— —— daeg doy.
axk axk X1

Since the summation is taken over both sufhixes 7 and & in the sccond term
on the right, we can put (9u;/oxg)dxdey - (duy/dx;)de; dxg. In the third

T The basic equations of elasticity theory weve estnblished in the 18203 hy Caveny and by Poreion
1 In accordance with the usual rule, we ot the nign of cummation over vector nnd tensor nutliven
Summation over the values 1, 2, 4 i underood with tespect to all sulbives which appens twice mon
given term.

' 1



2 Fundamental Fquations §1

term, we interchange the suffixes 7 and /. Then d/'? takes the final form
dl'?2 = di2+ 2uy dxg dxg, (12)
where the tensor u;; is defined as

1( ou; OJup Ou 6ul)

Uik 2
These expressions give the change in an element of length when the body is
deformed.
The tensor uy is called the strain tensor. We see from its definition that
it is symmetrical, i.e.

(1.3)
Oxy Ox; Ox; Oxp

Uip = Uki. (14)
This result has been obtained by writing the term 2(0u;/dxx)dx; dig in dI'2
in the explicitly symmetrical form
(ilﬁ"l" %) dx; dxy.
axk 3xi

Like any symmetrical tensor, uy can be diagonalised at any given point.
This means that, at any given point, we can choose co-ordinate axes (the
principal axes of the tensor) in such a way that only the diagonal components
%11, a2, ugs of the tensor u;y; are different from zero. These components, the
principal values of the strain tensor, will be denoted by 1), 4@, u®. It should
be remembered, of course, that, if the tensor uy is diagonalised at any point
in the body, it will not in general be diagonal at any other point.

If the strain tensor is diagonalised at a given point, the element of length
(1.2) near it becomes

dl'z = (Sik + Zuik) dxi dxk
= (14 2u®) dx;2 + (1 + 2u@) dxo? + (1 + 2u®) duwg?.

We see that the expression is the sum of three independent terms. 'This
means that the strain in any volume element may be regarded as composed
of independent strains in three mutually perpendicular directions, namely
those of the principal axes of the strain tensor. Each of these strains is a
simple extension (or compression) in the corresponding direction: the length
dx; along the first principal axis becomes dx'y = /(1+24®)) dxy, and simi-
larly for the other two axes. The quantity 4/(1+2u%)—1 is consequently
equal to the relative extension (dx’;— day)/dx; along the ith principal axis.

In almost all cases occurring in practice, the strains are small. This means
that the change in any distance in the body is small compared with the
distance itself. In other words, the relative extensions are small compared
with unity. In what follows we shall suppose that all strains are small.

If a body is subjected to a small deformation, all the components of the
strain tensor are small, since they give, as we have seen, the relative changes
in lengths in the body. The displacement vector u;, however, may
sometimes be large, even for small strains. For example, let us consider a
long thin rod. Even for a large deflection, in which the ends of the rod move

§1 The strain tensor 3

a considerable distance, the extensions and compressions in the rod itsell
will be small.

Except in such special cases,t the displacement vector for a small defor-
mation is itself small. For it is evident that a three-dimensional body (i.c.
one whose dimension in no direction is small) cannot be deformed in such a
way that parts of it move a considerable distance without the occurrence of
considerable extensions and compressions in the body.

Thin rods will be discussed in Chapter II. In other cases #; is small for
small deformations, and we can therefore neglect the last term in the general
expression (1.3), as being of the second order of smallness. Thus, for small
deformations, the strain tensor is given by

1/0u; ouy .
Uil Z(axk—i—axi). (1.5)
The relative extensions of the elements of length along the principal axes ol
the strain tensor (at a given point) are, to within higher-order quantities,
V({1 +2u®)—1 x u®, ie. they are the principal values of the tensor uy.

Let us consider an infinitesimal volume clement dV, and find its volume
dV" after the deformation. To do so, we take the principal axes of the strain
tensor, at the point considered, as the co-ordinatc axcs. 'I'hen the elements of
length dx;, dxo, dxs along these axes become, alter the deformation, da’y
= (1+u®) dx;, etc. The volume dV is the product dx; dxe dxy, while dI
is dx'; da’a dx’s. Thus dV’ = dV(1+uD)(1+u@)(1 1 ™). Neglecting higher
order terms, we therefore have dV’' = dV(14-u® | «® 1 u®). "T'he sum
uD + 4@ 4 4@ of the principal values of a tensor is well known to he invariant,
and is equal to the sum of the diagonal components wy  uyy | ums | ugy in
any co-ordinate system. Thus

dV’ = dV(1 +uy). (1.0)

We see that the sum of the diagonal components of the strain tensor is the
relative volume change (dV’ —dV)/dV.

It is often convenient to use the components of the strain tensor in spherical
or cylindrical co-ordinates. We give here, for reference, the corresponding
formulae, which express the components in terms of the derivatives of the

components of the displacement vector in the same co-ordinates. In spherical
co-ordinates 7, 8, ¢, we have

" Ouy 1 ou, N ur 1 ouy u, 0 1y
=—— Ugpg = ——+F, Ugyy = ——- | cotv-f -,
i ar’ %y a0 v 7 ysin0 op r r
1/0uy, 1 ou ou uy | ou, (1.7
r\ 08 rsinf 9 or ror a0
1 Ou, Ou u
240 =~ A
rsintd o&p  or r

t Which include, hesides deformations of thin 1oda, those of thin plates to torm eylindiical nutfacen



4 Fundamental Fquations §2

In cylindrical co-ordinates 7, ¢, z,

Oy 1 duy Uy i,
Ury = 57’ Ugy = ;ﬁ"‘_» Uzz = ?z"
1 ou, 8u¢ ou, Ou,
gy = ———+—, Wy, = —F+—, 1.8
; oy op 0z " e or (1.8)
ou u;, 1 0ou,
Qttpy = —2 — 2y T
" or ¥ r 9

§2. The stress tensor

In a body that is not deformed, the arrangement of the molecules corre-
sponds to a state of thermal equilibrium. All parts of the body are in mechani-
cal equilibrium. This means that, if some portion of the body is considered,
the resultant of the forces on that portion is zero.

When a deformation occurs, the arrangement of the molecules is changed,
and the body ceases to be in its original state of equilibrium. Forces there-
fore arise which tend to return the body to equilibrium. These internal
forces which occur when a body is deformed are called internal stresses. If
no deformation occurs, there are no internal stresses.

The internal stresses are due to molecular forces, i.e. the forces of inter-
action between the molecules. An important fact in the theory of elasticity is
that the molzcular forces have a very short range of action. Their effect
extends only to the neighbourhood of the molecule exerting them, over a
distance of the same order as that between the molecules, whereas in the
theory of elasticity, which is a macroscopic theory, the only distances con-
sidered are those large compared with the distances between the molecules.
The range of action of the molecular forces should therefore be taken as zero
in the theory of elasticity. We can say that the forces which cause the internal
stresses are, as regards the theory of elasticity, “near-action” forces, which act
from any point only to neighbouring points. Hence it follows that the forces
exerted on any part of the body by surrounding parts act only on the surface
of that part.

The following reservation should be made here. The above asserioon is
not valid in cases where the deformation of the body results in macroscopic
clectric fields in it (pyroelectric and piezoelectric bodies). We shall not discuss
such bodies in this book, however.

Let us consider the total force on some portion of the body. Firstly, this
total force is equal to the sum of all the forces on all the volume elements in
that portion of the body, i.c. it can be written as the volume integral [ FdV,
where F is the force per unit volume and Fd VP the force on the volume element
dV. Sccondly, the forces with which various parts of the portion considered
act on one another cannot give anything but zero in the total resultant force,
since they cancel by Newron’s third aw. The required total foree can there-
fore be regarded as the sum of the forces exerted on the given portion of the
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body by the portions surrounding it. From above, however, these forces act
on the surface of that portion, and so the resultant force can be represented
as the sum of forces acting on all the surface elements, i.c. as an intepal
over the surface,

Thus, for any portion of the body, each of the three components [ 1 dl’
of the resultant of all the internal stresses can be transformed into an mtepral
over the surface. As we know from vector analysis, the integral of o scalar
over an arbitrary volume can be transformed into an integral over the suiface
if the scalar is the divergence of a vector. In the present casc we have the
integral of a vector, and not of a scalar. Hence the vector Iy must be the
divergence of a tensor of rank two, i.e. be of the form

F; = aaik/axk. .1

Then the force on any volume can be written as an integral over the closed
surface bounding that volume:+

fFidV=f

where df; are the components of the surface element vector df, dirceted (i
usual) along the outward normal.{

The tensor oy, is called the stress tensor. As we see from (2.2), opdfy 18 the
ith component of the force on the surface element df. By taking elements
of area in the planes of xy, yz, zx, we find that the component oy of the stiena
tensor is the ith component of the force on unit area perpendicular to the
xp-axis. For instance, the force on unit area perpendicular to the x axis,
normal to the area (i.e. along the x-axis) is 045, and the tangential forces
(along the y and z axes) are gy, and 0.

The following remark should be made concerning the sign of the force
oirdfe. The surface integral in (2.2) is the force excrted on the volune
enclosed by the surface by the surrounding parts of the body. 'I'he force
which this volume exerts on the surface surrounding it is the same with the
opposite sign. Hence, for example, the force exerted by the internal stressen
on the surface of the body itself is —§oidfy, where the integral is taken over
the surface of the body and df is along the outward normual.

Let us determine the moment of the forces on a portion of the body. 'I'he
moment of the force F can be written as an antisymmetrical tensor of rank
two, whose components are Fyxy— Frx;, where x; are the co-ordinates of the

O o
dV = fﬁﬁik df, (2.2)
axk

t The integral over a closed surface is transformed into one over the volume encloned by the
surface by replacing the surface element df; by the operator d V|ox,.

1 Strictly speaking, to determine the total force on a deformed portion of the bhody we alionld
integrate, not over the old co-ordinates x;, but over the co-ordinates a’y of the ponts of the deformed
body. The derivatives (2.1) should therefore be taken with respect to A7 However, in view ol the
smallness of the deformation, the derivatives with respect to vy and 7 ditler only by higher ordes

quantities, and so the derivatives can be taken with redpect 1o the co ordimmtes x,
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point where the force is applied.} lHence the moment of the forces on the
volume element dV is (Fyxg — Fyx;)dV, and the moment of the forces on the
whole volume is Mg = {(Fyxp— Frx))dV. Like the total force on any volume,
this moment can be expressed as an integral over the surface bounding the
volume. Substituting the expression (2.1) for Fy, we find

oc; d
Mik = f( O.le]c - —Gﬂxi) dV

6xl axl
d —ORX 0 ox;
_ f (caxk—ox i)dV_f(Gﬂﬁ B omi) qv.
axl axl axl

In the second term we use the fact that the derivative of a co-ordinate with
respect to itself is unity, and with respect to another co-ordinate is zero
(since the three co-ordinates are independent variables). Thus 9x/0x; = 81,
where 8y is the unit tensor; the multiplication gives 640k = ok, ox1051 = Ox1.
In the first term, the integrand is the divergence of a tensor; the
integral can be transformed into one over the surface. The result is
Mg = §(0‘“xk— okzxi)dfl—i—f(aki— O'ik)dV. If M3 is to be an integral over the
surface only, the second term must vanish identically, i.e. we must have

ik = Okie (2.3)

Thus we reach the important result that the stress tensor is symmetrical.
The moment of the forces on a portion of the body can then be written
simply as

Mik = J(Fixk — Fkx{) dV = %(quk d akzxi) dfz (24)

It is easy to find the stress tensor for a body undergoing uniform com-
pression from all sides (hydrostatic compression). In this case a pressure of
the same magnitude acts on every unit area on the surface of the body, and its
direction is along the inward normal. If this pressure is denoted by p, a force
—pdf; acts on the surface element df;. This force, in terms of the stress
tensor, must be oypdfy. Writing —pdf; = —pdudfy, we see that the stress
tensor in hydrostatic compression is

g = —pé‘m. (25)

Its non-zero components are simply equal to the pressure.

In the general case of an arbitrary deformation, the non-diagonal com-
ponents of the stress tensor are also non-zero. This means that not only a
normal force but also tangential (shearing) stresses act on each surface
element. These latter stresses tend to move the surface elements relative to
each other.

t The moment of the force F is defined as the vector product F Xr, and we know from vector
analysis that the components of a vector product form an antisymmetrical tensor of rank two as written
here.

§2 The stress tensor 7/

In equilibrium the internal stresses in every volume element must balance,
i.e. we must have Fy = 0. Thus the equations of equilibrium for a deformed
body are

doi[oxy = 0. (2.6)

If the body is in a gravitational field, the sum F+pg of the internal stresses
and the force of gravity (pg per unit volume) must vanish; p is the density | and
g the gravitational acceleration vector, directed vertically downwards. In
this case the equations of equilibrium are

doix/Oxp+pgi = 0. (2.7)

The external forces applied to the surface of the body (which arc the usual
cause of deformation) appear in the boundary conditions on the equations of
equilibrium. Let P be the external force on unit area of the surface of the
body, so that a force P df acts on a surface element df. In equilibrium, this
must be balanced by the force — oy dfy of the internal stresses acting on that
element. Thus we must have P;df—ou dfy = 0. Writing dfy  u; df,
where n is a unit vector along the outward normal to the surface, we find

ouxng = P;. (2.8)

This is the condition which must be satisfied at every point on the surfuace of
a body in equilibrium.

We shall derive also a formula giving the mean value of the stress tensor
in a deformed body.” To do so, we multiply equation (2.6} by a;, and inteprate
over the whole volume:

d01 oo 2
f C’”xde=f-—(f’—’f’5)—dV—faua—-x"dV:0.
X1

X1 X1

The first integral on the right is transformed into a surface integral; in the
second integral we put dxg/dx; = Sp1. The result is §oyxy dfy - [ou dI” 0.
Substituting (2.8) in the first integral, we find §Pxx df = [ou®}” 1oy,
where V is the volume of the body and G the mean value of the stress tensor.
Since oy = o, this formula can be written in the symmetrical form

s = (1)2V) 5f (Pixy + Pyxy) df. (2.9)

Thus the mean value of the stress tensor can be found immediately from the
external forces acting on the body, without solving the equations of cquili
brium.

1 Strictly speaking, the density of a body changes when it s deformed. An allownnee for thin
change, however, involves higher-order quantities in the case of small deformations, nad i theretare
unimportant.
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§3. The thermodynamics of deformation

Let us consider some deformed body, and suppose that the deformation
is changed in such a way that the displacement vector u; changes by a small
amount dx;; and let us determine the work done by the internal stresses in
this change. Multiplying the force F; = doyx/0x by the displacement u; and
integrating over the volume of the body, we have [SR dV = [(90x/dxx)ou; AV,
where 8R denotes the work done by the internal stresses per unit volume.
We integrate by parts, obtaining

f SRAV = j{ﬁ oSty s — f s

dv.

XK

By considering an infinite medium which is not deformed at infinity, we
make the surface of integration in the first integral tend to infinity; then
o = 0 on the surface, and the integral is zero. The second integral can,
by virtue of the symmetry of the tensor o, be written

SRAV = — . fou 88”") dv
f ) U”‘( oxp | o

1J‘ 5 au1;+ auk) av
2] * (axk s

= — foikb‘uik dV

Thus we find
SR = ~oik8um. (31)

This formula gives the work SR in terms of the change in the strain tensor.

If the deformation of the body is fairly small, it returns to its original
undeformed state when the external forces causing the deformation cease
to act. Such deformations are said to be elastic. For large deformations, the
removal of the external forces does not result in the total disappearance of the
deformation; a residual deformation remains, so that the state of the body is
not that which existed before the forces were applied. Such deformations
are said to be plastic. In what follows we shall consider only elastic defor-
mations.

We shall also suppose that the process of deformation occurs so slowly
that thermodynamic equilibrium is established in the body at every instant,
in accordance with the external conditions. This assumption is almost always
justified in practice. The process will then be thermodynamically reversible.

In what follows we shall take all such thermodynamic quantities as the
entropy S, the internal energy &, etc., relative to unit volume of the body,}

1 The following remark should be made here. Strictly speaking, the unit volumes before and after
the deformation should be distinguished, since they in general contain different amounts of matter.

We shall always relate the thermodynamic quantities to unit volume of the undeformed body, i.e.
to the amount of matter thercin, which may occupy a different volume after the deformation. Accord-
ingly, the total energy of the body, for example, is obtained hy integrating  over the volume ol the

undeformed body.

§3 ‘The thermodynamies of deformation 9

and not relative to unit mass as in fluid mechanics, and denote them by the
corresponding capital letters.

An infinitesimal change d & in the internal energy is equal to the differcnee
between the heat acquired by the unit volume considered and the work dR
done by the internal stresses. The amount of heat is, for a reversible process,
TdS, where T is the temperature. Thus d& = TdS—dR; with (R given
by (3.1), we obtain

d€ = TdS +oy dugg. (3.)
This is the fundamental thermodynamic relation for deformed bodies.

In hydrostatic compression, the stress tensor is oix = — pd (2.5). Then
o dugy = —pSir dusy = —p duy. We have seen, however (cf. (1.0)), that the
sum uy; is the relative volume change due to the deformation. If we consides
unit volume, therefore, u;; is simply the change in that volume, and duy s

the volume element dV. The thermodynamic relation then takes its asual Tonmn
d€¢ = TdS—pdV.
Introducing the free energy of the body, F = &— TS, we find the form
dF = —SdT+ oy dugg (5.3)
of the relation (3.2). Finally, the thermodynamic potential @ is defmed e
O = E—-TS—ouuiy = F—opup. (3.1)

This is a generalisation of the usual expression © = &— 15| pl'.} Subuu
tuting (3.4) in (3.3), we find

d® = — SAdT —ux dogg. (3.9)

The independent variables in (3.2) and (3.3) arc respectively S, uy and
T, u;. The components of the stress tensor can be obtained by ditterentiating,
& or F with respect to the components of the struin tensor, for constant
entropy .S or temperature T respectively:

o = (08 [0usr)s = (OF([Ous) . (3.0)

Similarly, by differentiating ® with respect to the components oy, we can
obtain the components u;y:

wip = —(0D)dog) 7. (3.7)

t For hydrostatic compression, the expression (3.4) becomes @ F | puy, IFpopl 1y,
where V =V is the volume change resulting from the delormation. Flence we ace that the definition
of @ used here differs by w terin pl’y lrom the usunl definition @ K| pl.
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§4. Hooke’s law

In order to be able to apply the general formulac of thermodynamics to
any particular case, we must know the free energy I’ of the body as a function
of the strain tensor. This expression is easily obtained by using the fact that
the deformation is small and expanding the free energy in powers of u;. We
shall at present consider only isotropic bodies. The corresponding results
for crystals will be obtained in §10.

In considering a deformed body at some temperature (constant throughout
the body), we shall take the undeformed state to be the state of the body in the
absence of external forces and at the same temperature; this last condition is
necessary on account of the thermal expansion (see §6). Then, for u;; = 0,
the internal stresses are zero also, Le. oy = 0. Since oy = 0F/ouy, it
follows that there is no linear term in the expansion of F in powers of u.

Next, since the free energy is a scalar, each term in the expansion of F
must be a scalar also. Two independent scalars of the second degree can be
formed from the components of the symmetrical tensor u;;: they can be
taken as the squared sum of the diagonal components (u;;2) and the sum of
the squares of all the components (#;:?). IExpanding F in powers of uy, we
therefore have as far as terms of the second order

F = Fo-+ §Au? + pugg?. (+.1)

This is the general expression for the free energy of a deformed isotropic
body. The quantities A and w are called Lamé coefficients.

We have seen in §1 that the change in volume in the deformation is given
by the sum u;;. If this sum is zero, then the volume of the body is unchanged
by the deformation, only its shape being altered. Such a deformation is
called a pure shear.

The opposite case is that of a deformation which causes a change in the
volume of the body but no change in its shape. Each volume element of the
body retains its shape also. We have seen in §1 that the tensor of such a
deformation is u;; = constant X &yz. Such a deformation is called a hydro-
static compression.

Any deformation can be represented as the sum of a pure shear and a
hydrostatic compression. To do so, we need only use the identity

wir = (Uak —§Sewtin) + Skt (4.2)

The first term on the right is evidently a pure shear, since the sum of its
diagonal terms is zero (8; = 3). The second term is a hydrostatic compres-
sion.

As a general expression for the free energy of a deformed isotropic body,
it is convenient to replace (4.1) by another formula, using this decomposition
of an arbitrary deformation into a pure shear and a hydrostatic compression.
We take as the two independent scalars of the second degree the sums of the

§4 Hooke's law I

squared components of the two terns in (4.2). Then ' becomest
F = ,u(uik— %Sikuu)2+%Kuu‘~’. (4.3)

The quantities K and p are called respectively the bulk modulus or modulus of
hydrostatic compression (or simply the modulus of compression) and the sheas
modulus or modulus of rigidity. K is related to the Lamé coeflicients by

K = A+%pu. (1.4)

In a state of thermodynamic equilibrium, the free energy is a minimun.
If no external forces act on the body, then F as a function of u;; must have a
minimum for #;x = 0. This means that the quadratic form (4.3) must be
positive. If the tensor g is such that u;; = 0, only the first term remains
in (4.3); if, on the other hand, the tensor is of the form u;; = constant x &,
then only the second term remains. Hence it follows that a necessary (and
evidently sufficient) condition for the form (4.3) to be positive is that cach
of the coefficients K and p is positive. Thus we conclude that the moduli of
compression and rigidity are always positive:

K>0,p>0. (1.5)

We now use the general thermodynamic relation (3.0) to determine the
stress tensor. To calculate the derivatives 0F/du;z, we write the total difler-
ential dF (for constant temperature):

dF = Kuu dull + Z;L(ui — %u”‘éik) d(uik—— v-},uHSik).

In the second term, multiplication of the first parenthesis by 8;z gives zero,
leaving dF = Kuy duzz+2;¢(uik—§u118ik) duik, or Wl‘iting duyy == S duygy,

dF = [KuuSik+Z;L(uik—%u”&k)] dugy.

Hence the stress tensor is
o = KupSix+ 2u(ug— 38ixun). (1.6)

This expression determines the stress tensor in terms of the strain tensor for
an isotropic body. It shows, in particular, that, if the deformation is a pure
shear or a pure hydrostatic compression, the relation between oy and nyy is
determined only by the modulus of rigidity or of hydrostatic compression
respectively.

It is not difficult to obtain the converse formula which expresses uye in
terms of ax. To do so, we find the sum oy; of the diagonal terms. Since this
sum is zero for the second term of (4.6), we have oy == 3Kuy, or

Uy = (rii/3K. (4.7)

t The constant term Fy is the free energy of the undeformed hody, and is of no further interent.
We shall therefore omit it, for brevity, taking I¥ to be only the free energy of the deformation (the
elastic free energy, na it is called).
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Substituting this expression in (+h0) and so determining g, we find
ug = Suon/IK + (oo — 30umou) 2w, (4.8)

which gives the strain tensor in terms of the stress tensor.

Equation (4.7) shows that the relative change in volume (u;) in any
deformation of an isotropic body depends only on the sum oy of the diagonal
components of the stress tensor, and the relation between u; and oy is
determined only by the modulus of hydrostatic compression. In hydrostatic
compression of a body, the stress tensor is oy = —pSs. Hence we have
in this case, from (4.7),

uig = —p/K. (4.9)

Since the deformations are small, %;; and p are small quantities, and we can
write the ratio u;/p of the relative volume change to the pressure in the
differential form (1/V)(0V[9p);. Thus

1 1 3V)
K_ V(ap T'

The quantity 1/K is called the coefficient of hydrostatic compression (or simply
the coefficient of compression).

We see from (4.8) that the strain tensor u;y, is a linear function of the stress
tensor oge. That is, the deformation is proportional to the applied forces.
This law, valid for small deformations, is called Hooke’s law.t

We may give also a useful form of the expression for the free energy of a
deformed body, which is obtained immediately from the fact that F is quad-
ratic in the strain tensor. According to EULER’s theorem, u;;0F /0wy, = 2F,
whence, since 0F/0u;; = o4, we have

F = %G’ikuik. (4 10)

If we substitute in this formula the u;; as linear combinations of the
components oy, the elastic energy will be represented as a quadratic function
of the o;4. Again applying EULER’s theorem, we obtain 0;40F/d0¢; = 2F, and
a comparison with (4.10) shows that

Ui = aF/aam. (411)

It should be emphasised, however, that, whereas the formula oy, = 9F/u
is a general relation of thermodynamics, the inverse formula (4.11) is applic-
able only if Hookr’s law is valid.

1 HOOKE’s law is actually applicable to almost all clastic deformation. T'he reason is that deforma-
tions usually cease to be clastic when they are still so small that ToOKE s law is a prood approximation.
Substances such as rabber form an exception.

§5 Homogencous deformations b

§5. Homogeneous deformations

Let us consider some simple cases of what are called homogeneous deforma-
tions, i.e. those in which the strain tensor is constant throughout the volume
of the body. For example, the hydrostatic compression already considered
is a homogeneous deformation.

We first consider a simple extension (or compression) of a rod. Iet the
rod be along the z-axis, and let forces be applied to its ends which streteh it
in both directions. These forces act uniformly over the end surfaces of the
rod; let the force on unit area be p.

Since the deformation is homogeneous, i.e. u;; is constant through the
body, the stress tensor oy is also constant, and so it can be determined at once
from the boundary conditions (2.8). There is no external force on the side:
of the rod, and therefore o;m; = 0. Since the unit vector n on the side of the
rod is perpendicular to the z-axis, i.e. 1, = 0, it follows that all the com-
ponents o except o, are zero. On the end surface we have o,m; = p
Ozz = P.

From the general expression (4.8) which relates the components of the
strain and stress tensors, we see that all the components u;; with 7 # £ arc
zero. For the remaining components we find

1(1 1) 1,1 1 .
Upy = Uyy = —=~|— — ——|p, =N\ F-Jp- -
w =t = oo, T /P 3(3K+M)p G-

, or

The component u;, gives the relative lengthening of the rod. The coctli-
cient of p is called the coefficient of extension, and its reciprocal is the modulus
of extension or Young’s modulus, E:

Uz = pJE, (5.2)

where
E = 9Ku/(3K +p). (5.3)
'The components u,, and uy, give the relative compression of the rod in the

transverse direction. The ratio of the transverse compression to the longi-
tudinal extension is called Poisson’s ratio, ot

Ugy = — Olgy, (R‘I)
where
— 1 _ - 5
o = 33K =2p)/(3K +p). (5.5)
t The use of o to denote PorssoN"s ratio and o, to denote the components of the stress tensor can
not lead to ambipuity, since the Lutter always have sullice,
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Since K and p are always positive, Poisson’s ratio can vary between - 1

(for K = 0) and § (for u = 0). T'hus +

—-1<0o<«

(5.6)
Finally, the relative increase in the volume of the rod is
uy = p/3K. (5.7)

The free energy of a stretched rod can be obtained immediately from formula
(4.10). Since only the component o, is not zero, we have F =

1
50z2:Uzz,
whence

F = p%J2F. (5.8)

In what follows we shall, as is customary, use £ and o instead of K and p.
Inverting formulae (5.3) and (5.5), we have}

p = E[2(1+0), K = Ej3(1—20). (5.9)

We shall write out here the general formulae of §4, with the coefficients
expressed in terms of £ and o. The free energy is

= E 2 7 2
= ) (10

"The stress tensor is given in terms of the strain tensor by

E / o S
i = ) ,
ik 1+U\uzk+ o uc)- (5.11)
Conversely,
Uiy = [(1 +U)0ik_UUll8ik]/E- (512)

since formulae (5.11) and (5.12) are in frequent use, we shall give them also
in component form:

E
Opr = m[(l—c)uxx-i—U(Uyy‘Fuzz)]y
= f(1—
M W et ol i)
(5.13)
Ozz = a—*—_i_ o) (———*1 _20)[(1 —U)uzz+0(uxx+uyy)]’
E E E
Opy = T_{_—Guzy, Ozz = muxz, Oyz = i‘_‘{_—guyz»

1: In practic.e, Por1ssoN’s ratio varies only between 0 and 4. 'There are no substances known for
VthCh o < 0, i.e. which would expand transversely when stretched longitudinally. Tt may be men-
Floned t}}at the inequality ¢ > 0 corresponds to A > 0, where A is the Lamé coeflicient appearing
in _(4.'1); in other words, both terms in (4.1), as well as in (4.3), are always positive in practice, although
this is not thermodynamically necessary. Values of o close to } (e.g. for rubber) ('nrr(-sl’mml to n
modulus of rigidity which is small compared with the modulus of compression.

I 'The sccond Lamé coetlicient iz X Fofl(1- - 20)(1-} a).

o Deformations with change of temperature 15

and conversely

1

Ugz = —|ozz—0o(oyy+ azz) ],
E
1

uyy = E[o’yy— O'(O'xx+ Uzz)]’
1 F(5.1)

Uzpy = —[O'zz" O'(Ux:c+ Uyy)]’
E

140 1+o 140
Upy = Opyy Uzz = “E"‘O‘xz: Uyz = —E—be

Let us now consider the compression of a rod whose sides arc fixed in
such a way that they cannot move. The external forces which cause the
compression of the rod are applied to its ends and act along its length, which
we again take to be along the z-axis. Such a deformation is called
unilateral compression. Since the rod is deformed only in the a-direction,
only the component u; of #;; is not zero. Then we have from (5.11)

E E(1—0)
— —_ = - .
Orx Cyy (1 T 0')(1 — za)uzz, Tzz (1 T o)(l — 2”) 2z

Again denoting the compressing force by p (22 = p, which is negative for
a compression), we have

12z = p(1+0)(1=20)/E(1 — o). (5.15)

The coefficient of p is called the coefficient of unilateral compression. 1'or the
transverse stresses we have

Finally, the free energy of the rod is
F = p2(14+0)(1-20)/2E(1—0). (5.17)

§6. Deformations with change of temperature

Let us now consider deformations which are accompanicd by a change
the temperature of the body; this can occur either as a result of the deforma
tion process itself, or from external causes.

We shall regard as the undeformed state the state of the body in the absence
of external forces at some given temperature To. If the body 1s at a tempera
ture T different from Ty, then, even if there are no external forees, it will in
general be deformed, on account of thermal expansion. In the expansion of
the free encrgy I(T), there will therefore be terms linear, as well as quadratic,
in the strain tensor. From the components of the tensor wgg, of rank two,
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we can form only one linear scalar quantity, the sum #;; of its diagonal com-
ponents. We shall also assume that the temperature change 7'— Ty which
accompanies the deformation is small. We can then suppose that the coeffi-
cient of uy in the expansion of F' (which must vanish for 7' = 7)) is simply
proportional to the difference 7'— Ty. Thus we find the free energy to be
(instead of (4.3))

F( T) = Fo( T) — Kot( T— To)ull + ,u(uzk — %8%1!1;)2 + %Kullz, (6.1)

where the coefficient of T— Ty has been written as — K«. The quantities
s K and « can here be supposed constant; an allowance for their tempera-
ture dependence would lead to terms of higher order.

Differentiating F with respect to u;;, we obtain the stress tensor:

O = — Koc(T— T())Biig + Kuydip + Z,u(uik — %Si,cu”). (62)

The first term gives the additional stresses caused by the change in tempera-
ture. In free thermal expansion of the body (external forces being absent),
there can be no internal stresses. Equating oy to zero, we find that u;; is of
the form constant x 8;z, and

Uy = O((T—— To). (63)

But u;; is the relative change in volume caused by the deformation. Thus o
is just the thermal expansion coefficient of the body.

Among the various (thermodynamic) types of deformation, isothermal and
adiabatic deformations are of importance. In isothermal deformations, the
temperature of the body does not change. Accordingly, we must put 7' = T
in (6.1), returning to the usual formulae; the coeflicients K and u may there-
fore be called isothermal moduli.

A deformation is adiabatic if there is no exchange of heat between the
various parts of the body (or, of course, between the body and the surround-
ing medium). The entropy S remains constant. It is the derivative —oF/oT
of the free energy with respect to temperature. Differentiating the expression
(6.1), we have as far as terms of the first order in

S(T) == So(T)+K(ZZtll. (64)

Putting .S constant, we can determine the change of temperature 7'— Ty due
to the deformation, which is therefore proportional to*;;. Substituting this
expression for T'— T in (6.2), we obtain for o;; an expression of the usual
kind,

oir = Kaaundu+ 2u(ug — $8mun), (6.5)

with the same modulus of rigidity u but a different modulus of compression
Kaa. The relation between the adiabatic modulus Kaq and the ordinary
isothermal modulus K can also be found directly from the thermodynamic
formula

’

( 8V) ( aV) TV 9T),2
- -4
S T

ap p “,
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where Cy is the specific heat per unit volume at constant pressure. If 1 is
taken to be the volume occupied by matter which before the deformation
occupied unit volume, the derivatives aV/0T and 9V/dp give the relative
volume changes in heating and compression respectively. 'I'hat is,

(@OV)oT)p = «, (3V/3p)s = —1/Kaa, (AV/)3p)7 = —1/K.

Thus we find the relation between the adiabatic and isothermal moduli to he

I/Kad = 1/K—‘ Taz/Cp, ‘U.a,d = IU,. ((l.(})
For the adiabatic Younc’s modulus and Poisson’s ratio we casily obtain
E o+ ETo2/9C, ,
ad = T T, Gaod = ———————""". (()/)
1-ET«2/9C, 1-ETo?/9C),

In practice, ETa?/Cy is usually small, and it is therefore sufliciently accurate
to put

Euq = E+E2To2/9C,, oaa = 6+ (1+0)ETa2/9C),. (6.8)

In isothermal deformation, the stress tensor is given in terms of the
derivatives of the free energy:

ik — (8F/aum)T.
For constant entropy, on the other hand, we have (see (3.6))
oik = (06 Our)s,

where & is the internal energy. Accordingly, the expression analogous to
(4.3) determines, for adiabatic deformations, not the free encrgy but the in
ternal energy per unit volume:

& = yKaau® + plugr — Sundu). (6.9)

§7. The equations of equilibrium for isotropic bodics

Let us now derive the equations of equilibrium for isotropic solid hodies,
To do so, we substitute in the general equations (2.7)

aaik/axk—i—pgz =0
the expression (5.11) for the stress tensor. We have

- aaik Eo au” ) aum

= — 4 .
0x (1+0’)(1-20) ox; 1+ Oxy

Substituting

1/ 0 Jug
Mg - ( i ),

2Ny v,
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we obtain the equations of cquilibrium in the form
E 02, E 02y
2(1 + o) Oxx? +2(1 + o)(1 — 20) 0x;0x;
These equations can be conveniently rewritten in vector notation. The

quantities 9%u;/dx;% are components of the vector Au, and Ouy/ox; = divu.
Thus the equations of equilibrium become

ddi 2(1+0)
1_zagra wvus= —pg 5

It is sometimes useful to transform this equation by using the vector identity
grad divu = Au-+curl curl u. Then (7.2) becomes

Au+ (7.2)

grad divu — curl curl u

— 40
2(1-o0)
1+0)(1-20
- _ Pg( o)( ) (7.3)
E(1-o0)

We have written the equations of equilibrium for a uniform gravitational
field, since this is the body force most usually encountered in the _theory of
elasticity. If there are other body forces, the vector pg on the right-hand
side of the equation must be replaced accordingly. '

A very important case is that where the deformation of the body is cailused,
not by body forces, but by forces applied to its surface. The equation of
equilibrium then becomes

(1-20)Au+graddivau = 0 7.4)
or
2(1—o0) grad divu—(1-20¢) curl curlu = 0. (7.5)

The external forces appear in the solution only through the boundary con-
ditions. . . .
Taking the divergence of equation (7.4) and using the identity

divgrad = A,
we find
A diva = 0, (7.6)

1.e. div u (which determines the volume change due to the deformation) is' a
harmonic function. Taking the Laplacian of equation (7.4), we then obtain

AAu = 0, (7.7)

i.e. in equilibrium the displacement vector satisfics the biharmonic equqtion.
These results remain valid in a uniform gravitational ficld (since the right-
hand side of cquation (7.2) gives zero on differentiation), but not in the
greneral ease of external forces which vary through the body.,

§7 The equations of equilibrium Jor isotropic bodies 19

The fact that the displacement vector satisfes the biharmonic equation
does not, of course, mean that the general integral of the equations of equili-

brium (in the absence of body forces) i an arbitrary hilnmonie ve tor, «
must be remembered that the function u(x, v, 5) alio wateien the lowey

order differential equation (7.4). It is possible, however, o expues the peneral
integral of the equations of equilibrium in terms of (he denvatives ol an

arbitrary biharmonic vector (see Problem 10).
If the body is non-uniformly heated, an additional term appears in the
equation of equilibrium. The stress tensor must include the term

~ Ko(T— To)S:x
(see (6.2)), and doyx/0x; accordingly contains a term
—KadT/0x; = —[Ea/3(1—20)]07T/ox;.

The equation of equilibrium thus takes the form

3(1-0) . 3(1-20) ,
———graddivu — — " curl curlu = o grad 7. (7.8)
1+o 2(1+0)

Let us consider the particular case of a plane deformation, in which one
component of the displacement vector (uz) is zero throughout the body,
while the components u,, uy, depend only on x and y. The components
Uzz, Uzz, Uy, Of the strain tensor then vanish identically, and therefore so do
the components o, oyz of the stress tensor (but not the longitudinal stress
022 the existence of which is implied by the constancy of the length of the
body in the z-direction).

Since all quantities are independent of the co-ordinate %, the equations of
equilibrium (in the absence of external body-forces) @oyy/én
this case to two equations:

0 reduce 1in

0 0 d 0
92z | 902y _ 0, ny+ vy _ 0. (7.9)
ox oy ox oy
The most general functions oy, Ozy, Oyy satisfying these cquations are of

the form

Ozz = 0%[0y2, Ozy = — 02x/dx0y, ayy == Py, (7.10)

where  is an arbitrary function of x and ¥. It is easy to obtain an equation
which must be satisfied by this function. Such an equation must exist, since the
three quantities 044, 0y, oyy can be expressed in terms of the two quantitics

Uz, #y, and are therefore not independent. Using formulac (5.13), we find,
for a plane deformation,

t The use of the theory of functions of a complex variable provides very powerful methods of
solving plane problems in the theory of clasticity. See N. 1. MuskiLsivaes, Some Rasic Problems
of the Mathematical ‘Uheory of Elastss iy, 2nd English ed., P, Naotdholl, Groningen 1963,
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But

Ouy  Ouy

Ozz+ oyy = AX Uggt+ Uyy = a—x-l-—**- = divu,

and, since by (7.6) div u is harmonic, we conclude that the function y satisfies
the equation

Abx =0, (7.11)

ie. it is biharmonic. This function is called the stress function. When the
plane problem has been solved and the function y is known, the longitudinal
stress o, is determined at once from the formula

02z = oB(tpz+uyy)/(1+ 0)(1=20) = o(ozz+ oyy),
or

Ozz = O/\X- (712)

PROBLEMS

ProBLEM 1. Determine the deformation of a long rod (of length ) standihg vertically in a
gravitational field.

SoLuTION. We take the z-axis along the axis of the rod, and the xy-plane in the plane of
its lower end. The equations of equilibrium are 9oz1/0xs = Ooy¢/dxi = 0, D02/0x = pg.
On the sides of the rod all the components o;x except ¢,z must vanish, and on the upper
end (% = I) 95z = oy; = 05z = 0. The solution of the equations of equilibrium satisfying
these conditions is 0z; = —pg(l—2), with all other o, zero. From o;z we find u;x to be
tzz = uyy = opg(l—2)/E, uz; = —pg(l—2)/E, tzy = uz; = uy: = 0, and hence by inte-
gration we have the components of the displacement vector, uz = opg(l—2)x/E, uy =
opg(l—=2)/E, u, = —(pg[2E){l*—(l—=2)*—o(x%+y®}. The expression for u; satisfies the
boundary condition u; = 0 only at one point on the lower end of the rod. Hence the solution
obtained is not valid near the lower end.

ProBrLEM 2. Determine the deformation of a hollow sphere (of external and internal radii
R, and R)) with a pressure p, inside and p, outside.

SorutioN. We use spherical co-ordinates, with the origin at the centre of the sphere.
The displacement vector u is everywhere radial, and is a function of » alone. Hence curl u=0,
and equation (7.5) becomes grad div u = 0. Hence

1 d(r2u)
divu = — = constant = 3aq,
r2 dr

or u = ar+b/r®. The components of the strain tensor are (see formulae (1.7)) u,, = a—2b/r3,
Uge = Ugy = a+b/r®. The radial stress is

E 2E b
120" Ttor

E
T A ai—aay e Mt Rl =

The constants g and b are determined from the boundary conditions: o,, == —p, at r == R,,
and o,, = —pyatr = R,. Hence we find

PRO =l 120

Rl";l\)ga(fn ”[)3) 11w
RS RS K '

RS RS 2K

a —
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For example, the stress distribution in a spherical shell with a pressuro p; = p inside and
p: = 0 outside is given by

PR3 Ry3 PR3 R

N R23—R13( - _T?)’ 00T Cee = R23~RT3(] N )
For a thin spherical shell of thickness # = R,—R, < R we have approximately
u = pR¥1—0)/2EH, Ogp = Oy = 5pR/h, R

where o,, is the mean value of the radial stress over the thickness of the shell,
The stress distribution in an infinite elastic medium with a spherical cavity (of tadina 1¢)
subjected to hydrostatic compression is obtained by putting R, == R, I&, v, p, 0,

Orr .
3

Py = p:
R3 R
= - 1 —— = e -t .
Tyy P( r3 ) (750 O'¢¢ 1) 1 } 2':!
At the surface of the cavity the tangential stresses %6 = 0gg = —3p/2, Le. they exceed the

pressure at infinity.

ProBLEM 3. Determine the deformation of a solid sphere (of radius K) in its own yn
tational field.

SoruTioN. The force of gravity on unit mass in a spherical body is - -gr/R. Submtituting

this expression in place of g in equation (7.3), we obtain the following cquation for the radial
displacement:

v

El-0) d/1d() .
(1+ o)(1=20) 5(?5 dr ) ~ R
The solution finite for » = 0 which satisfies the condition a,, = 0 for r  # ia
gpR(1-26)14+0) [3—~0 12
10E1—0) ( - ) '

e R

It should be noticed that the substance is compressed (1, <= ) inside a spherical sunbuee of
radius Rv/{(3 —0)/3(140)} and stretched outside it (u,, > 0). The pressute at the contie of
the sphere is (3 —o)gpR/10(1 —a).

ProsrLEM 4. Determine the deformation of a cylindrical pipe (of external and internal 1adn
R, and R,), with a pressure p inside and no pressure outside.}

SoLuTiON. We use cylindrical co-ordinates, with the z-axis along the axis of the Pipe
When the pressure is uniform along the pipe, the deformation is a purely radial diplacoment
#, = u(r). Similarly to Problem 2, we have

. 1 d(ru)
divae = - - = constant == 2q.
r dr

Hence # = ar--b/r. The non-zero components of the strain tensor are (see formulae (1 8))
U,y = dufdr = a-bjr?, u b= ufr = a+bjr®. From the conditions o, O at » R,
and o,, = —p at r = R,, we find

pRlz (1 +(T)(1 —2(r)
a= . , =
Ro2— R2 I R R2

f)R]gRgz 11«

T I'n Problems 4, S and 7 it is assumed that the length of the cylinder v mmintained conntant,
that there ia no Tongitudinal detormntion.

10
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The stress distribution is given by the formulae

pR12 (1 Rgz)

Orr = o o >
Ro2— R;2 72

PR Ry )
Ugp = R———22 _:——Rlz (1 + ,
Oz = 2p O'Rlz/(Rz2 - Rlz).

ProBLEM 5. Determine the deformation of a cylinder rotating uniformly about its axis.

SoruTtioN. Replacing the gravitational force in (7.3) by the centrifugall force pgzr (where
Q is the angular velocity), we have in cylindrical co-ordinates the following equation for the

displacement u, = u(r):

Bl-0) d/1dry)\
(1+o)(1—20) E;(? & )_ pL¥r.

The solution which is finite for » = 0 and satisfies the condition o,, = 0 for r = R is
pQ2(1+ 0)(1-20)

SE(1 o) 7[(3 —20)R2—72].

PRroBLEM 6. Determine the deformation of a non-uniformly heated sphere with a spherically

symmetrical temperature distribution. ‘
SoLuTioN. In spherical co-ordinates, equation (7.8) for a purely radial deformation is

d (1 d(rzu)) _ 3(l+o dT

dr\r2 dr 1—0) dr’
The solution which is finite for » = 0 and satisfies the condition ¢, = 0 for r = R is
g 20-20) r [
u = a}:—li—ioj{_r—lz— f T(r)r2 dr+~%—_:—0c21%dfT(r)r2 dr}.
0

The temperature T'(r) is measured from the value for which the sp.here, if .uni.formly heated,
is regarded as undeformed. In the above formula the temperature in question is taken as that

of the outer surface of the sphere, so that T(R) = 0.

ProeLEM 7. The same as Problem 6, but for a non-uniformly heated cylinder with an
axially symmetrical temperature distribution.
SorutioN. We similarly have in cylindrical co-ordinates

4= 0t ? {; fr T(r)r dr+(1—20)k%fT(r)r dr}.
0 4]

RETE

ProsLEM 8. Determine the deformation of an infinite elastic medium with a given tempera-
ture distribution T'(x, ¥, 2) which is such that the temperature tends to a constant value Ty

at infinity, there being no deformation there.
SorutioN. Equation (7.8) has an obvious solution for which curl a += 0 and

divu = a1 1 )[T(x, v, 2)  Tol/3(1 o).

§7 The cquations of equilthrium for isotropic bodres 23

The vector u, whose divergence is a given function defined in all space and vanishing at
infinity, and whose curl is zero identically, can be written, as we know from vector analysix,
in the form

1 d' 4 u I’ " ’
u(x, y, 2) = — ym gradfj__(f;_y_z__)dy"

where
1= V{E=a+ -y )2+ (- 2)2.
We therefore obtain the general solution of the problem in the form
(1 +0) T~ T,
rad f
122(1— o)

dr, (1)

r

waere TV = T(x’, y', 2’).

If a finite quantity of heat ¢ is evolved in a very small volume at the origin, the teniperature
distribution can be written T—T, = (¢/C)8(x)3()3(2), where C is the specific heat of the
melium. The integral in (1) is then ¢/Cr, and the deformation is given by

_ w(l+o)g =
T Dl 7

PreBLEM 9. Derive the equations of equilibrium for an isotropic body (in the absence of
body forces) in terms of the components of the stress tensor.

SoLuTioN. The required system of equations contains the three equations
Ooup/0xg = 0 (1)

and also the equations resulting from the fact that the six different components of ux are
not independent quantities. 'To derive these equations, we first write down the system of
differential relations satisfied by the components of the tensor usx. It is easy to see that the

quantities
1/0u; Ouy
e = a2
satisfy identi. ally the relations

Py %up, %uy  Pugy,

0x;0%,  Oxdxy 0xp0xy,  Ox;0x;

Here there are only six essentially different relations, namely those corresponding to the fol-
lowing values of £, k, I, m: 1122, 1133, 2233,1123, 2213, 3312. All these are retamed if the above
tensor equation is contracted with respect to [ and m:

uy azuu azukl

i+ — = .
At dxxdx, | Oxidx,

(2)

Substituting here u;x in terms of oy according to (5.12) and using (1), we obtain the re-
quired equations:

Oer,,
(] -1 u)/\um; I ) - 0. (3)
dxpdxy
These equationa remain valid in the presence of external forcen constant thronghout the body.
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Contracting equation (3) with respect to the sulhixes 1 oand k) we hina that Aoy 0, i.e.
01 is 2 harmonic function. 1aking the Laphician ol equation (3), we then find that A Ao - O,
i.e. the components o;x are biharmonic {unctions. "Phese results follow also from (7.6)

and (7.7), since oix and u;x are linearly related.

ProsLeM 10. Express the general integral of the equations of equilibrium (in the absence
of body forces) in terms of an arbitrary biharmonic vector (B. G. GaLirxiN 1930).

Sorution. It is natural to seek a solution of equation (7.4) in the form
u= Af+4grad divf
Hence divu = (1--A4) div Af. Substituting in (7.4), we obtain
(1-20)AAf+[2(1—0)A+1] grad div Af = 0.

From this we see that, if f is an arbitrary biharmonic vector (A Af = 0), then

u=Af grad divf.

T 2(1-0)

Proniem 11, Express the stresses or, 044, Org for a plane deformation (in polar co-ordinates
r, ) as derivatives of the stress function.

SoLuton. Since the required expressions cannot depend on the choice of the initial line
of ¢, they do not contain ¢ explicitly. Ience we can proceed as follows: we transform the
Cartesian derivatives (7.10) into derivatives with respect to 7, ¢, and use the results that
Opp = (UII)¢-0y Ogp = (ayy)¢_u, Oy = (Uzy)¢;o, the angle ¢ being measured from the x-axis.
Thus

1oy 1 9% 0%y 0 (1 ax)
= -t —— = -, = —_- -1,
T o2’ 796 T r2 e or\r 0¢

ProBreM 12. Determine the stress distribution in an infinite elastic medium containing
a spherical cavity and subjected to a homogeneous deformation at infinity.

SoLUTION. A general homogeneous deformation can be represented as a combination of a
homogeneous hydrostatic extension (or compression) and a homogeneous shear. The former
has been considered in Problem 2, so that we need only consider a homogeneous shear.

T.et oi™ be the homogeneous stress field which would be found in all space if the cavity
were absent s in a pure shear 04 = 0. The corresponding displacement vector is denoted
by ut™ and we seck the required solution in the form u = ut® +u®), where the function ut!
arisings from the presence of the cavity is zero at infinity.

Any solution of the biharmonic equation can be written as a linear combination of centrally
cymmetrical solutions and their spatial derivatives of various orders. The functions 7?,
ro 1, 1y are independent centrally symmetrical solutions. Hence the most general form of a
bilarmonic vector u(", depending only on the components of the constant tensor gl
as parameters and vanishing at infinity, is »

O = g0 0 (1)+ Bo O ? (1) Cord® _93 - 1
D = —{~ |- + r.
“ 7t Oxp \7 o 0x;0xE0xI\ 7 o 0x;0x;0%; (1)

Substituting this expression in equation (7.4), we obtain

02y 0 oy 03 1
(1202 22 31— 26)C+ (A+20) o ——~ = 0,
Ox2  Ox; Ox Ox;0x10x; 1
whence A = —4C(1—0). Two further relations between the constants A, I3, (7 are obtained
from the condition at the surfuce of the cavity: (0™ oWy — O for r -+ R (R being the

8 L . . .
§ Fquilibrivm of an elastic medivm bounded by a plane 25

€ Ccavl the origin : $ Cce 2, © A QO mewhat
radius of th, avity, i oat ity centre, und n a unit vect T parallel tor A

Yy . 80 h
lengthy calculatlon, using (1), gives the fOll()Wlllg values: )

B=CRYS, C =5R1+0)2E(7—50).
The final expression for the stress distribution is

5(1-2 3
o1k = om‘m{1+u(£) N 3 5 5 .
7—50 \r 7—50\ 7

15 /R\3 R\2
[ e—

r

15 R\3 R\2
T 27-50) (7) { —t 7(7) }“””(0)”’”’"”""’“ *

15 R\3 R\2
27 50) (7) {1_2“_ (7) }8"’”"””(0)”’”'”'

h'In order to obtain the stress distribution for arbitrary c;z(% (not a pure shear), v;x(" in
this expression must be replaced by 0:(®) —48: 04,(”, and the expression ,

R3
%Ull«)) [Szk + Zg(szk - 3nink)]

corresPonding to a deformation homogeneous at infinity (cf. Problem 2) must be added. We
may give here the general formula for the stresses at the surface of the cavity: '

15

ok = T {(1 — 0)(0i Q= cu@mng — o Onyng) -

+ o Ompmning — o1 Onn S+ oy O (8¢ — nmk)}

Near 1the cavity, the stresses considerably exceed the stresses at infinity, but this extends
ovle; only a short distance (the concentration of stresses). For example, if the medium is
subjected to a homogeneous extension (only o,,(" different from zero), the greatest stress
occurs on the equator of the cavity, where

271506 o
Ozz = ————
# T AT=50)
§8. Equilibrium of an elastic medium bounded by a plane

Let us consider an clastic medium occupying a half-space, i.e. bounded

on one side by an infinite plane, and determine the deformation of the
2
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medium caused by forces applicd to its free surfacef "T'he distribution of
these forces need satisfy only one condition: they must vanish at infinity in
such a way that there is no deformation at infinity. In such a case the equa-
tions of equilibrium can be integrated in a general form.

The equation of equilibrium (7.4) holds throughout the space occupied
by the medium:

grad divu+(1-20)Au = 0. (8.1)

We seek a solution of this equation in the form

u = f+gradg, (8.2)

where ¢ is some scalar and the vector f satisfies LAPLACE’s equation:

Af =0, (8.3)

Substituting (8.2) in (8.1), we then obtain the following equation for ¢:
2(1 —o)A¢p = —divf. (8.4)

We take the free surface of the elastic medium as the xy-plane; the medium
is in > 0. We write the functions f and fy as the z-derivatives of some
functions g, and gy:

[z = 082/0z, fy = 0gy/0z. (8.5)

Since f; and fy are harmonic functions, we can always choose the functions
gz and gy so as to satisfy LAPLACE’s equation:

Agz=0, Agy=0. (8.6)

Equation (8.4) then becomes

21— o)A = — ;;( 8gy fz)

Since gg, gy and f, are harmonic functions, we easily see that a function
$ which satisfies this equation can be written as

gy
. ( o+ 4, (8.7)
(1 — o) ay
where ¢ is again a harmonic function:
A= 0. (8.8)
t The most direct and regular method of solving this problem is to use Founna’s method on
equation (8.1). TIn that case, however, some fairly complicated mlt, taly have to be ealeulated. "The

method given below s hase (| on i number of witificinl devices, hut the calealations are simpler,

§8 Faquilibrium of an elastic medivm bounded by a plane 2

Thus the problem of determining the displacement u reduces to that
of finding the functions gz, gy, f, , all of which satisfy Lariaci’s equation.

We shall now write out the boundary conditions which must be satisticd at
the free surface of the medium (the plane z = 0). Since the unit outward
normal vector n is in the negative z-direction, it follows from the general
formula (2.8) that o;, = —P;. Using for oy the general expression (5.11) and
expressing the components of the vector u in terms of the auxiliary quantitics:
&z 8y, [z and ¢, we obtain after a simple calculation the boundary conditions

[ a;jzx 7= [390{ 21(1 -ZZ)fz 2(1 1—0) (agx * agy) +2g}]z—()
= —2(1+0)P,/E, (8.9)
20, o - s
[aai: 2=0 [av{ 21(1 —2cr)f 2(11—— ) (%4—%) i 2%” 20
= —2(1+ 0)Py/E,
%{fz— (aj_;Jr aaiy) +za‘i}] = 2+ o)PE. (510

The components Py, Py, P, of the external forces applied to the surface e
given functions of the co-ordinates ¥ and y, and vanish at infinity.

The formulae by which the auxiliary quantities gz, gy, f> and s were delined
do not determine them uniquely. We can therefore impose an arbitrary
additional condition on these quantities, and it is convenient to make the
quantity in the braces in equations (8.9) vanish:t

(1-20)f,— ( 8y) 4(1—0)—= (8.11)

Then the conditions (8.9) become simply

02 2(1+ 0% 21+
[ g:v:l - ( U)Px, [ g?!:l - _ ( 77)])” (x_ll))
922 1,_0 E 922 1,0 K
Equations (8.10)~(8.12) suffice to determine completely the harmonic

functions gy, gy, f- and .

For simplicity, we shall consider the case where the free smrface of an
elastic half-space is subjected to a concentrated force F, i.c. onc which i
applied to an area so small that it can be regarded as a point. "I'he cileet of
this force is the same as that of surface forces given by P = Fo(x)5(y), the
origin being at the point of application of the force. If we know the solution
for a concentrated force, we can immediately find the solution for any force
distribution P(x, ). For, if

uy = Gy(x, v, 2)I (8.13)

1 We shall not prove here that this condition can in fact be imposed; this (ollows from the abaence
of contradiction in the result,
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is the displacement due to the action of a concentrated force F applied at
the origin, then the displacement caused by forces P(x, y) is given by the
integral {

“= J-Jsz(x—x', y=y', J)P(x’, ") da’ dy'". (8.14)

We know from potential theory that a harmonic function f which is zero
at infinity and has a given normal derivative 0f/0z on the plane z = 0is
given by the formula

fw, 3, 2) = - :zl_w”[af(xaj 2)]z=0dx’ &

r
where

r = V-3 =y P )
Since the quantities dg,/dz, 9gy/dz and that in the braces in equation (8.10)
satisfy LAPLACE's equation, while equations (8.10) and (8.12) determine the
values of their normal derivatives on the plane & = 0, we have

b, m\ O ltop[PAxy
fz-(_g@r_gﬂ)uiﬁ: “” A3 4y dy
v

ox 0y oz ok
1+o F
-2 (8.15)
anE 7
e 1t Fa By _lto Iy s16
0z nl 7 0z nE 7

where now r = 4/(x%+ 5%+ 22).

The expressions for the components of the required vector u involve the
derivatives of gz, gy with respect to x, y, 2, but not gz, gy themselves. To
calculate 9g,/dx, 9gy/dy, we differentiate equations (8.16) with respect to
x and y respectively:

0%, 1+o Fgx d%gy 1+o0 Fyy
oxdz  wE 1 oyoz  mE 18

Now, integrating over 2 from oo to 2, we obtain

gz 14+ 0 Fux

ox aE r(r+z)
dgy 140 Fyy
oy  oE 'r(r—i—z)'

(8.17)

We shall not pause to complete the remaining calculations, which are
elementary but laborious. We determine f; and 94/0z from equations (8.11),

t In mathematical terms, Gy is the Grern’s tensor for the equations of equilibrinm of a semi-infinite
medium.

§8 Lquilibrivm of an elastic medium bownded by a plane 24

(8.15) and (8.17). Knowing i/dz, it is casy to calculate oys/ox and dfi/dy by
integrating with respect to z and then differentiating with respect to x and y.
We thus obtain all the quantities needed to calculate the displacement vector
from (8.2), (8.5) and (8.7). The following are the final formulae:

1+o([xz (1—2Zo)x 21-o)r+=
Uy = {[— - ]Fz+ P
2aE L3 r(r+=2) r(r+2)
[2r(o7 +2) +2%]x
r3(r+z)2 (el +yFy)},
1+of[yz (1—20)y 2(1—-o)yr+=
Uy = - = F. F. .
Y ZWE{ [73 r{r+z) ] a r(r+ 2) vt (8.18)
[2r(or+2)+22]y
r3(r 4 z)2 (el +yFy)},
1+0{[2(1—U) zz}F 1-2¢ =z P
U, = — _
A " +r3 2t [r(r+z)+ 73](90 zty y)}-

In particular, the displacement of points on the surface of the medium is
given by putting 2 = 0:

140 1( (1-20) 20x

wa= {_ Fot 21— o)+ (xe—i-yFy)},
l+o 1( (1-20)y 20y

4y = sz'?l_ e L 72——(xF};+yFy)}, (8.19)
1401 i

wy = 02 {2(1 — )yt (1-20) ~ (xFat yFy)}.
2nFE v v

PROBLEM

Determine the deformation of an infinite elastic medium when a force F is applied to a
small region in it, }

SOI:,UTION. If we consider the deformation at distances r which are large compared with
the c'hmension of the region where the force is applied, we can suppose that the force is
applied at a point. The equation of equilibrium is (cf. (7.2))

2(1+ o)

Au+ grad divu = — ———E———FS(r), )

1-20

where 8({') = 3(x)3(y)3(), the origin being at the point where the force is applied. We scck
the solution in the form u = u,+u,, where u, satisfies the Poisson-type equation

2(1+0)
Aup = — — ZE5r). (2)
K
t The corresponding problem for an arbitrary infinite anisotropic medium has heen solved by
I. M. Larsuriz and . N. RozeneesviXc (Zhurnal desperimental’ not i teareticheskor frsild 7,783, 1947),

W7
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‘ We then have for w: the equation
grad divu;+(1—20)Au; = — grad div uy. (3)

The solution of equation (2) which vanishes at infinity is wo = (1 + 0)F/2wEr. Taking the
curl of equation (3), we have A curl w1 = 0. At infinity we must have curl uy; = 0. Buta
function harmonic in all space and zero at infinity must be zero identically. Thus curlu; = 0,
and we can therefore write uy = grad ¢. From (3) we obtain grad {2(1 — o) A¢+divue} = 0.
Hence it follows that the quantity in braces is a constant, and it must be zero at infinity; we
therefore have in all space

div ug l+o F d (1)
= — = — . grad |-).
Ad 2(1—o0) 47E(1—0) g 2

If 4 is a solution of the equation A = 1/r, then

5 140 F dy
= ——— F.grad .
47E(1— o) g

Taking the solution ¢ = 3, which has no singularities, we obtain

1+ (Fenn—-F
us = gradé = 8WE(1—U)( 3 ’
where n is a unit vector parallel to the radius vector r. The final result is
l+o (3—40)F+n(n-F)
T 8rB(l-0) r '

On putting this formula into the form (8.13) we obtain the GREEN’s tensor for the equa-
tions of equilibrium of an infinite isotropic medium:?

u

1+0o . 1
Gy = 87T—E(1———0')[(3 — 40‘)bik + n@nk];
1 18 1 0%
" [7 T 41-0) 8xiﬁxk] '

§9. Solid bodies in contact

Let two solid bodies be in contact at a point which is not a singular point
on either surface. Tig. l1a shows a cross-section of the two surfaces near
the point of contact O. The surfaces have a common tangent plane at O,
which we take as the xy-plane. We regard the positive z-direction as being
into either body (i.e. in opposite directions for the two bodies) and denote
the corresponding co-ordinates by % and 2.

1 The fact that the components of the tensor Gk are first-order homogencous functions of the co-

ordinates x, y, 2 is evident from arguments of homogeneity applied to the form of cquation (1), where
the left-hand side is a linear combination of the sccond derivatives of the components of the vector u,
and the right-hand side is a third-order homogencous function (8(ar)  a 35(r)).

T'his property remains valid in the penctal case ol an arbitrny anisotropic medium.

§9 Solid bodies i contact 31

Near a point of ordinary contact with the xy-plane, the equation of the
surface can be written
B = KypX,Xp, (9.1

where summation is understood over the values 1, 2, of the repeated suflixes
%, B (x1= x, x2 = y), and k,, is a symmetrical tensor of rank two, which
characterises the curvature of the surface: the principal values of the tensor
Kupare 1/2Ry and 1/2Rs, where Ry and Ry are the principal radii of curvature
of the surface at the point of contact. A similar relation for the surface of
the other body near the point of contact can be written

3 = K, (9.2)

Let us now assume that the two bodies are pressed together by applicd
forces, and approach a short distance .t Then a deformation occurs near
the original point of contact, and the two bodies will be in contact over a
small but finite portion of their surfaces. Let #, and #', be the components
(along the z and 2’ axes respectively) of the corresponding displacement
vectors for points on the surfaces of the two bodies. The broken lines

(a)

Fic. 1

in Fig. 1b show the surfaces as they would be in the absence of any deformia
tion, while the continuous lines show the surfaces of the deformed bodies; the
letters = and 2’ denote the distances given by equations (9.1) and (9.2). It
is seen at once from the figure that the equation

or (34u)+ (3" +u'z) = b,

(Kocﬂ—l_ Klaﬂ)xax/f+ uz+ u’Z = h) (();)

1t This contact problem in the theory of elasticity wie fst solved by T Tz,
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holds everywhere in the region of contact. At points outside the region of

contact, we have
242 tu,+u', < h

We choose the x and y axes to be the principal axes of the tensor «, 5+ K'g g

Denoting the principal values of this tensor by 4 and B} we can rewrite
equation (9.3) as

Ax?+ By2+uz+u'z; = h. (9.4)

We denote by P,(x, y) the pressure between the two deformed bodies at

points in the region of contact; outside this region, of course P,=0. To

determine the relation between P, and the displacements #,, u’;, we can

with sufficient accuracy regard the surfaces as plane and use the formulae

obtained in §8. According to the third of formulae (8.19) and (8.14), the
displacement u, under the action of normal forces Py(x, y) is given by

1_ 9 P /’ ’

U, = ‘ ff 4> Y) dx" dy’,
E r
1—062p rPAx, y

Uy = ; JVJ‘ A7) ds" dy’,
ok’ r

where o, ¢’ and E, E’ are the Porsson’s ratios and the Youne’s moduli of the
two bodies. Since P, = 0 outside the region of contact, the integration ex-
tends only over this region. It may be noted that, from these formulae, the
ratio u,/u’, is constant:

uglt'y = (1— 0?)E')(1- o'2)E. (9.6)

(9.5)

The relations (9.4) and (9.6) together give the displacements u, u'; at every
point of the region of contact (although (9.5) and (9.6), of course, relate to
points outside that region also).

Substituting the expressions (9.5) in (9.4), we obtain

1/1—o? 1—0’2) PlosY) qwr dy = h—As2—By2. (9.7
TT(E+E' ff r xy—ax v )

t The quantities A and B are relaced to the radii of curvature R,, R,and R}, R’y by

2(A+B) 1—*—1-¥-1+1
" R, Ry R:1 RS

HA- By = (—1— - —1—)2+ (L _ )2+

Ri R R1 R
2 cos 2 1 1 1 1
+2cos2¢|— — — -,
R] Rz Rll R'2
where ¢ is the angle between the normal scctions whose radii of curvature are R, and R',.
The radii of curvature are reparded ns positive il the centre of curvature lies withio the body con-

cerned, and negative in the contny cane.

§9 Solid bodies tn contact 33

This integral equation determines the distribution of the pressure £, over
the region of contact. Its solution can be found by analogy with the following

results of pf)tential theory. The idea of using this analogy arises as follows:
firstly, the integral on the left-hand side of equation (9.7) is of a type com-
monly found in potential theory, where such integrals give the potential of a

charge distribution; secondly, the potential inside a uniformly charged
ellipsoid is a quadratic function of the co-ordinates.

If the ellipsoid x2/a2+y2/62+ 22/c2 = 1 is uniformly charged (with volume
charge density p), the potential in the ellipsoid is given by

¢(x, 3, 2)

:wpabcf{l— R L de .
a+E B+E e @+ OB ENE )

In the limiting case of an ellipsoid which is very much flattened in the
z-direction (¢ — 0), we have

o0

P R ¥ ) d¢
$(, 7) pbcof{l

@€ BiElvi@ g

in pass}ng to the limit ¢ — 0 we must, of course, put & = 0 for points inside
the ellipsoid. The potential ¢(x, y, 2) can also be written as

o) — p da’ dy d2’
| ) v et

where the integration is over the volume of the ellipsoid. In passing to the
limit ¢ — 0, we must put & = 2’ = 0 in the radicand; integrating over =’
between the limits

teV/{l—(¥2/a?) — (y'2/b%)},

dxl dyl xlz ylz
x,9) =2 R A
8 3) = 20 [ [ J(1- 5 - 22),

r = Vi-2) (-5,

we obtain

where

and the integration is over the area inside the cllipse

x'2a4-y"2 b2 - 1.



34 Fundamental Equalions §Y

Equating the two expressions for ¢(x, y), we obtain the identity

dx’ dy’ ) x'2 B Xi)
fj r A/( a? b2

o0

22 2 d¢ 9.8
= %‘ﬂab()[\(l - 2iE - b2+f)\/{(a2+§)(b2+§)§}' (9-8)

Comparing this relation with equation (9.7), we see that the right-hand
sides are quadratic functions of x and y of the same form, and t%le left—.hand
sides are integrals of the same form. We can therefgre fieduce 1r.nmed1ately
that the region of contact (i.e. the region of integration in (9.7)) is bounded
by an ellipse of the form

X2 y2
T = 9.9
Rl Tl (9:9)
and that the function P,(x, y) must be of the form
X2 y2
Py(x,y) = constant x A/(1 — g ﬁ)

Taking the constant such that the integral [[P; dx dy over th.e region of
* contact is equal to the given total force F which moves the bodies together,
we obtain

3F x2 y2
Pyx,y) = 2mbA/(l i ﬁ) (9.10)

This formula gives the distribution of pressure over the area of the {egion. of
contact. It may be pointed out that the pressure at the centre of this region
is 3 times the mean pressure F/mab. . o

Substituting (9.10) in equation (9.7) and replacing the resulting integral
in accordance with (9.8), we obtain

- iy d 2 12
™ (1 P b2+§) ElV{(@@+ )82 +£)E}
= h— Ax?— By?,

where

3/1—-02 1—0'2)
= + .
b 4( E E

This equation must hold identically for all values of x and y inside the
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ellipse (9.9); the coefficients of x and y and the free terms must thercfore be
respectively equal on each side. Hence we find

p=1P f d 9.11)
T Vi@ e g °
PR
J@ i@ oo o)
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Equations (9.12) determine the semi-axes @ and & of the region of contact
from the given force F (4 and B being known for given bodies). 'I'he
relation (9.11) then gives the distance of approach # as a function of the {orce
F. The right-hand sides of these equations involve elliptic integrals.

Thus the problem of bodies in contact can be regarded as completely
solved. The form of the surfaces (i.e. the displacements u,, u';) outside the
region of contact is determined by the same formulae (9.5) and (9.10); the
values of the integrals can be found immediately from the analogy with the
potential outside a charged ellipsoid. Finally, the formulae of §8 enablc us to
find also the deformation at various points in the bodies (but only, of coursc,
at distances small compared with the dimensions of the bodies).

Let us apply these formulae to the case of contact between two spheres of
radii R and R'. Here 4 = B = 1/2R+1/2R’. It is clear from symmctry
that a = b, i.e. the region of contact is a circle. From (9.12) we find the
radius a of this circle to be

a = FU{DRR'|(R+R')}\/3, (9.13)

h is in this case the difference between the sum R+ R’ and the distance be-

tween the centres of the spheres. From (9.10) we obtain the following
relation between F and h:

1 1\713
thZ/S[Dz(E+§7)] ) (9.14)

It should be noticed that % is proportional to F2/3; converscly, the force

b

varies as A%/2, We can write down also the potential energy U of the spheres

in contact. Since —F = —oU/oh, we have
2 RE
U = b5l . (9.15)
5DN R+R'

Finally, it may be mentioned that a relation of the form A = constant x //2/3,
or F = constant x 432, holds not only for spheres but also for other finite
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bodies in contact. This is easily seen from similarity arguments. If we make
the substitution

a? — aa?, b2 - ab?, F — o3/2F,

where o is an arbitrary constant, equations (9.12) remain unchanged. In
equation (9.11), the right-hand side is multiplied by «, and so k& must be
replaced by ok if this equation is to remain unchanged. Hence it follows
that F must be proportional to 43/2.

PROBLEMS
ProBLeM 1. Determine the time for which two colliding elastic spheres remain in contact.
SoLuTioN. In a system of co-ordinates in which the centre of mass of the two spheres is
at rest, the energy before the collision is equal to the kinetic energy of the relative motion
$uv?, where v is the relative velocity of the colliding spheres and p = mym,/(m;+my) their
reduced mass. During the collision, the total energy is the sum of the kinetic energy, which
may be written }uh?, and the potential energy (9.15). By the law of conservation of energy

we have
4 RR’
5DN R+R'’
The maximum approach k, of the spheres corresponds to the time when their relative velocity

h =0, and is he = (u/R)¥504/5.
The time 7 during which the collision takes place (i.e. k varies from 0 to &, and back) is

dh\? /2 2
[L(E) + kA2 = po?, k

Re 1
i AR (1 (00

5T(9/10) \ k% R0

By using the statical formulae obtained in the text to solve this problem, we have neglected
elastic oscillations of the spheres resulting from the collision. If this is legitimate, the velocity
v must be small compared with the velocity of sound. In practice, however, the validity of
the theory is limited by the still more stringent requirement that the resulting deformations
should not exceed the elastic limit of the substance.

ProsLEm 2. Determine the dimensions of the region of contact and the pressure distri-
bution when two cylinders are pressed together along a generator.

SoLuTIOoN. In this case the region of contact is a narrow strip along the length of the
cylinders. Its width 2a and the pressure distribution across it can be found from the formulae
in the text by going to the limit b/a = o0. The pressure distribution will be of the form
P(x) = constant X 4/(1 —x%/a?), where x is the co-ordinate across the strip; normalising
the pressure to give a force F per unit length, we obtain

Substituting this expression in (9.7) and effecting the integration by means of (9.8), we have

4DFF d¢ 8DF
T 3w J (et O 3ma?
[}]
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One of th'e radii 'of curvature of a cylindrical surface is infinite, and the other is the radius
of' the cylinder; in this case, therefore, 4 = 1/2R-+1/2R’, B = 0. We have finally for the
width of the region of contact

A/(16DF RR'
a = . .
3 R+R’)

§10. The elastic properties of crystals

The change in the free energy in isothermal compression of a crystal is, as
with isotropic bodies, a quadratic function of the strain tensor. Unlike what
happens for isotropic bodies, however, this function contains not just two
coefficients, but a larger number of them. The general form of the free cneryry
of a deformed crystal is

F = fumtsrtiim, (10.1)

where Ak is a tensor of rank four, called the elastic modulus tensor. Since
the strain tensor is symmetrical, the product u;zu, is unchanged when the
suffixes ¢, &, or [, m, or 7, [ and k, m, are interchanged. Hence we sce that the
tensor Az, can be defined so that it has the same symmetry propertics:

Aiktm = Agiim = Mgmi = Nmik. (10.2)

A simple calculation shows that the number of different components of a
tensor of rank four having these symmetry properties is in general 21.

In accordance with the expression (10.1) for the free energy, the stress
tensor for a crystal is given in terms of the strain tensor by

o = OF[0uy = Mrtmtim; (10.3)

cf. also the last footnote to this section.

If the crystal possesses symmetry, relations exist between the various
components of the tensor Asgym, so that the number of independent com
ponents is less than 21.

We shall discuss these relations for each possible type of macroscopu
symmetry of crystals, i.e. for each of the crystal classes, dividing these into the
corresponding crystal systems.

(1) Trickinic system. Triclinic symmetry (classes €y and Cj) does not place
any restrictions on the components of the tensor Ajzim, and the system of co
ordinates may be chosen arbitrarily as regards the symmetry. All (he 22|
moduli of elasticity are non-zero and independent. However, the arbitrariness
of the choice of co-ordinate system enables us to imposc additional conditions
on the components of the tensor Ay Since the orientation of the co-ordinate
system relative to the body is defined by three quantities (angles of rotation),
there can be three such conditions; for example, three of the components miy
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be taken as zero. Then the independent quantitics which describe the clastic
properties of the crystal will be 18 non-zero moduli and 3 angles defining the
orientation of the axes in the crystal.

(2) Monoclinic system. Let us consider the class Cj; we take a co-ordinate
system with the xy-plane as the plane of symmetry. On reflection in this
plane, the co-ordinates undergo the transformation x - x, y >y, ¥ > —2.
The components of a tensor are transformed as the products of the corres-
ponding co-ordinates. It is therefore clear that, in the transformation men-
tioned, all components ;g whose suffixes include z an odd number of
times (1 or 3) will change sign, while the other components will remain un-
changed. By the symmetry of the crystal, however, all quantities characterising
its properties (including all components Ajxz,) must remain unchanged on
reflection in the plane of symmetry. Hence it is evident that all components
with an odd number of suffixes z must be zero. Accordingly, the general
expression for the elastic free energy of a crystal belonging to the monoclinic
system is

F = ‘%)\xxxxuxxz + %)\yyyyuyyz + %/\zzzzuzzz + A:caayyu::;a;uyy + Appztipatize +
+ )\yyzzuyyuzz + 2)\xyxyuxy2 + 2tz + ZAyzyz”yzz + 2)\xzxyuxxuxy +
+ 2N yyyattyytiyz + 2 gy zihzylize + A gzytzttyz. (10‘4)

This contains 13 independent coefficients. A similar expression is obtained
for the class Cs, and also for the class Cop, which contains both symmetry
elements (Cy and op). In the argument given, however, the direction of only
one co-ordinate axis (that of 2) is fixed; those of x and y can have arbitrary
directions in the perpendicular plane. This arbitrariness can be used to make
one coefficient, say Azyzz, vanish by a suitable chotce of axes. Then the 13
quantities which describe the elastic properties of the crystal will be 12 non-
zero moduli and one angle defining the orientation of the axes in the xy-plane.

(3) Orthorhombic system. In all the classes of this system (Cgy, D2, D2y) the
choice of co-ordinate axes is determined by the symmetry, and the expression
obtained for the free energy is the same for each class.

Let us consider, for example, the class Dgyp; we take the three planes of
symmetry as the co-ordinate planes. Reflections in each of these planes are
transformations in which one co-ordinate changes sign and the other two
remain unchanged. It is evident therefore that the only non-zero components
Asx1m are those whose suffixes contain each of x, y, & an even number of times;
the other components would have to change sign on reflection in some plane
of symmetry. Thus the general expression for the free energy in the ortho-
rhombic system is

F = Pzaatinn® + 3Ayyyytiyy® + 3ezestted® + Aeayytieatiyy + Aezeatizatize +

+ Ayyzatiyytize + 2Agyaytiay® + 2Agzaztizs® + 2Ayzy ity 2t (10.5)

It contains nine moduli of clasticity.
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(4) Tetragonal system. Let us consider the class Cyy; we take the axis (7
as the z-axis, and the x and y axes perpendicular to two of the vertical
planes of symmetry. Reflections in these two planes signify transformations

x —> —x, ¥y > 2>z
and
x > X, y > =7, 2 =3

all components A;z, with an odd number of like suffixes thercfore vanish.
Furthermore, a rotation through an angle 17 about the axis Cj is the trans-
formation

x =y, v > —ux, z > 2

Hence we have

)\xm:z = )\yyyy; Axxzz = Ayyzz; /\xzxz = /\yzyz-

The remaining transformations in the class Cy, do not give any furthe
conditions. Thus the free energy of crystals in the tetragonal system is

F = %‘)\xxxx(uxzz + uyyz) + %Azzzzuzzz + }\xxzz(uxxuzz + uyyuzz) +
+ Axxyyuxxuyy + 2Ny zytiay® + 2/\xzxz(uxz2 + 1y2). (10.6)

It contains six moduli of elasticity.

A similar result is obtained for those other classes of the tetragonal system
where the natural choice of the co-ordinate axes is determined by synﬁnvlry
(D2g, D4, Dyp). In the classes Cy, Si, Cup, on the other hand, only the choice
of the z-axis is unique (along the axis Cy or Sy). The requirements of symmetry
then allow a further component Ayzzy = —Ayyys in addition to those which
appear in (10.6). These components may be made to vanish hy suitably
(cil(())cgs)ing the directions of the x and y axes, and F then reduces to the form

(5) Rhombohedral system. Let us consider the class Cs,; we take the third
order axis as the 2-axis, and the y-axis perpendicular to one of the vertical
planes of symmetry. In order to find the restrictions imposed on the com
ponents of the tensor Ajy, by the presence of the axis Cj, it is convenicnt
to make a formal transformation using the complex co-ordinates & x| 7y,
n = x—1y, the z co-ordinate remaining unchanged. We transform the
tensor Ajxim to the new co-ordinate system also, so that its suflixes take the
values £, n, 2. It is easy to see that, in a rotation through 27/3 about the
axis C3, the new co-ordinates undergo the transformation ¢& -»> et/
n —>ne 2713, ¥ — z. By symmetry only those components Ay, which are
unchanged by this transformation can be different from zero. 'I'hese com-
ponents are evidently the ones whose suffixes contain ¢ three times, or 3
three times (since (e271/3)3 = ¢27¢ == 1), or ¢ and 7 the same number of times

1 271/3p—2-1/3 — 1 e
(SIHCC e“mtoe - l)v 1.C. /\zzzm AE,,C;/» A((":/:/v ’\C'/A’:y ACZY]ZI /\(_(,(,.'. /\'/r/r/.“
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Furthermore, a reflection in the symmetry plane perpendicular to the y-axis
gives the transformation x >, y > —y, & >3, or £ >, 7 > & Since
Aggez becomes A, ; in this transformation, these two components must be
equal. Thus crystals of the rhombohedral system have only six moduli of
elasticity. In order to obtain an expression for the free energy, we must form
the sum $Akimtentim, in which the suffixes take the values &, #, z; since F
is to be expressed in terms of the components of the strain tensor in
the co-ordinates x, ¥, 2, we must express in terms of these the components
in the co-ordinates £, 5, =. This is easily done by using the fact that the
components of the tensor u;; transform as the products of the corresponding
co-ordinates. For example, since

&2 = (x+1y)2 = x%2—y2+2xy,
it follows that

Consequently, the expression for F is found to be

F = %Azzzzuzzz + ZAEWE”(Uxx + uyy)z + Aggﬂ,v{(uxz - uyy)z + 4uxy2} +

+ ZAgﬂzz(uxx + uyy)uzz + 4‘A£zqz(ux22 + Uyzz) + 4‘A§§§z{(uxx — uyy)uzz - Zuxyuyz}.
(10.7)

This contains 6 independent coeflicients. A similar result is obtained for the
classes D3 and D3g, but in the classes C3and Sg, where the choice of the x and y
axes remains arbitrary, requirements of symmetry allow also a non-zero value
of the difference Agprz— A,z This, however, can be made to vanish by a
suitable choice of the x and y axes.

(6) Hexagonal system. Let us consider the class Cg; we take the sixth-
order axis as the z-axis, and again use the co-ordinates { = x-+1y, 7 = x—1y.
In a rotation through an angle 17 about the z-axis, the co-ordinates ¢, 7
undergo the transformation § -> £em?/3, 5 — ne~7¥/3. Hence we see that only
those components Askun are non-zero which contain the same number of
suffixes £ and 7. These are A;;;2, )‘Enéw Aeenp Aenzas )\Ez,,z Other symmetry
elements in the hexagonal system give no further restrictions. There are
therefore only five moduli of elasticity. The free energy is

F = Paaatie® + 2Ny, (U + thyy)? + gy [(Uaz — thyy)? + 4uay®] +
+ 2 gzt (b + ttyy) + P gzge(z2® + Uy22). (10.8)
Tt should be noticed that a deformation in the xy-plane (for which sz,
tyy and uy are non-zero) is determined by only two moduli of elasticity,
as for an isotropic body; that is, the elastic properties of a hexagonal crystal
are isotropic in the plane perpendicular to the sixth-order axis.
For this reason the choice of axis directions in this plane is unimportant and

does not affect the form of F. The expression (10.8) thercfore applies to all
classes of the hexagonal system.
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(7) Cubic system. We take the axes along the three fourth-order axes of
the cubic system. Since there is tetragonal symmectry (with the fourth-order
axis in the z-direction), the number of different components of the tensor
Atkim is limited to at most the following six: Azgea, Azzzz, Azzzz, Azvayy, Acyry,
Azzzz- Rotations through i about the x and y axes give respectively the
transformations x >x, ¥y > —2, 8 >y, and x > 2, ¥y -y, 2 > —x. 'The
components listed are therefore equal in successive pairs. Thus there remain
only three different moduli of elasticity. The free energy of crystals of the
cubic system is

F = P ppar(ta®+uyy®+ 1)+ Azgyy(Uzatlyy + Uggllzz + Uyylizz) +

+ 22 gyay(tay® + taz® + uy.?). (10.9)

We may recapitulate the number of independent parameters (elastic moduli
or angles defining the orientation of axes in the crystal) for the classes of the
various systems:

Triclinic 21
Monoclinic 13
Orthorhombic

Tetragonal (Cy, Sa, Cap)
Tetragonal (Cyy, Dog, Da, Dap)
Rhombohedral (Cs, S¢)
Rhombohedral (C37), D;;, l);;([)
Hexagonal

Cubic

WU NN O

The least number of non-zero moduli that is possible by suitable choice of
the co-ordinate axes is the same for all the classes in each system:

Triclinic 18
Monoclinic 12
Orthorhombic 9
Tetragonal 6
Rhombohedral 6
Hexagonal 5
Cubic 3

All the above discussion relates, of course, to single crystals. Polycrystalline
bodies whose component crystallites are sufhciently small may be repgarded
as isotropic bodies (since we are concerncd with deformations in regions
large compared with the dimensions of the crystallites). Like any isotropic
body, a polycrystal Las only two moduli of clasticity. It might be thought at
first sight that these moduli could be obtained from those of the individual
crystallites by simple averaging. 'T'his is not so, however. 1f we regard the
deformation of a polycrystal as the result of a deformation of its component
crystallites, it would in principle be necessary to solve the equations of
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equilibrium for every erystallite, taking into account the appropriate boun-
dary conditions at their surfaces of scparation. Hence we see that the relation
between the elastic properties of the whole crystal and those of its component
crystallites depends on the actual form of the latter and the amount of correla-
tion of their mutual orientations. There is therefore no general relation
between the moduli of elasticity of a polycrystal and those of a single crystal
of the same substance.

The moduli of an isotropic polycrystal can be calculated with fair accuracy
from thosc of a single crystal only when the elastic properties of the single
crystal are nearly isotropic.t In a first approximation, the moduli of elasticity
of the polycrystal can then simply be put equal to the “‘isotropic part” of the
moduli of the single crystal. In the next approximation, terms appear which
are quadratic in the small “anisotropic part” of these moduli. It is found]
that these correction terms are independent of the shape of the crystallites
and of the correlation of their orientations, and can be calculated in a general
form.

Finally, let us consider the thermal expansion of crystals. In isotropic
bodies, the thermal expansion is the same in every direction, so that the
strain tensor in free thermal expansion is (see §6) uy = 3a(T— To)8;x, where
o is the thermal expansion coefficient. In crystals, however, we must put

wi; = Soa(T— 1), (10.10)

where a4y is a tensor of rank two, symmetrical in the suffixes 7 and k. Let us
calculate the number of independent components of this tensor in crystals
of the various systems. The simplest way of doing this is to use the result of
tensor algebra that to every symmetrical tensor of rank two there corresponds
a tensor ellipsoid.§ It follows at once from considerations of symmetry that,
for triclinic, monoclinic and orthorhombic symmetry, the tensor ellipsoid has
three axes of different length. Tor tetragonal, rhombohedral and hexagonal
symmetry, on the other hand, we have an ellipsoid of revolution (with its
axis of symmetry along the axes Cy, C3 and Cg respectively). Finally, for cubic
symmetry the ellipsoid becomes a sphere. An ellipsoid of three axes is
determined by three quantities, an ellipsoid of revolution by two, and a
sphere by one (the radius). Thus the number of independent components
of the tensor «;; in crystals of the various systems is as follows: triclinic,
monoclinic and orthorhombic, 3; tetragonal, rhombohedral and hexagonal, 2;
cubic, 1.

Crystals of the first three systems are said to be biaxial, and those of the
second three systems uniaxial. It should be noticed that the thermal expan-
sion of crystals of the cubic system is determined by one quantity only, i.e.
they behave in this respect as isotropic bodies.

t For a “nearly isotropic” cubic crystal (e.g.), the difference Aprrr — Aseyy— 2Agyry Must be small.

T IOM. Livsurrz and L. N.RozeNvsvelG, Zhurnal élsperimental’ noi i teoreticheskol fiziki 16,967, 1946,
L

§ Determined by the equation o paxg I.

§10 The elastic propertics of crystals 43

PROBLEM
Determine the Youns’s modulus of a cubic crystal as a function of direction.

SoLuTION. We take the axes of co-ordinates along the three axes of the fourth order. f.et
the axis of a rod cut from the crystal be in the direction of the unit vector n. 'I'he stross
tensor ok in the extended rod must satisfy the following conditions: when oz is multiplied
by n,, the resulting extension force must be parallel to n (condition at the ends of the rod);
when it is multiplied by a vector perpendicular to n, the result must be zero (condition on the
sides of the rod). Such a tensor must be of the form o;x = pnnx, where p is the extension
force per unit area of the ends of the rod. Calculating the components o1z by means of (1
expression (10.9) for the free energyt and comparing them with the formulae oix == pu,
we find the components of the strain tensor to be

) (c1+2c0)ng2 —co
(c1—ea)(e1+2¢a)

and similarly for the remaining components. Here we have put Azgzz = ¢, Azsyy - -

Uz Ugy = Pn:cny/ 2c3,

Aryzy = Cg-

The relative longitudinal extension of the rod is u = (dI’—dl)/dl, where d!’ is given by
formula (1.2) and dx;/dl = n;. For small deformations this gives 4 = usxnine. The Youna'
modulus is determined by the coefficient of proportionality in p = Eu, and is

c1+¢2 1 2
L T
1 2NC1—C2 3 1—¢C2

E has extremum values in the directions of the edges (i.e. of the co-ordinate axes) and of the
spatial diagonals of the cube.

T In calculating o;x, the following fact must be borne in mind. If we effect the calculation, not
directly from the formulae o35 = Askimuim, but by differentiation of the expression for the frec eneryy
with respect to the components of the tensor u, the derivatives with respect to u;; with i o k pive
twice the values of the corresponding components o;z. This is because the expressions o — 0/
are meaningful only as indicating that dF = o du;x; in the sum o;% dugr, however, the term in the
differential duy for each component with i 3 k of the symmetrical tensor u;;, appears twice.



CHAPTER 11

THE EQUILIBRIUM OF RODS AND PLATES

§11. The energy of a bent plate

IN this chapter we shall study some particular cases of the equilibrium of
deformed bodies, and we begin with that of thin deformed plates. When we
speak of a thin plate, we mean that its thickness is small compared with its
dimensions in the other two directions. The deformations themselves are
supposed small, as before. In the present case the deformation is small if the
displacements of points in the plate are small compared with its thickness.

The general equations of equilibrium are considerably simplified when
applied to thin plates. It is more convenient, however, not to derive these
simplified equations directly from the general ones, but to calculate afresh
the free energy of a bent plate and then vary that energy.

When a plate is bent, it is stretched at some points and compressed at
others: on the convex side there is evidently an extension, which decreases
as we penetrate into the plate, finally becoming zero, after which a gradually
increasing compression is found. The plate therefore contains a neutral
surface, on which there is no extension or compression, and on opposite sides
of which the deformation has opposite signs. The neutral surface clearly
lies midway through the plate.

Fi1c. 2

We take a co-ordinate system with the origin on the neutral surface and the
z-axis normal to the surface. The xy-plane is that of the undeformed plate.
We denote by ¢ the vertical displacement of a point on the neutral surface,
i.e. its 2 co-ordinate (Fig. 2). The components of its displacement in'the
xy-plane are evidently of the second order of smallness relative to {, and can
therefore be put equal to zero. Thus the displacement vector for points on the
neutral surface is

10 = 1, ® = (0, 10 = {(x, y). (11.1)
44
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For further calculations it is necessary to note the following property of
the stresses in a deformed plate. Since the plate is thin, comparatively small
forces on its surface are needed to bend it. These forces are always consider-
ably less than the internal stresses caused in the deformed plate by the ex-
tension and compression of its parts. We can therefore neglect the forces Py
in the boundary condition (2.8), leaving ognr = 0. Since the plate is only
slightly bent, we can suppose that the normal vector n is along the z-axis.
Thus we must have on both surfaces of the plate o4, = 6y, = g;; = 0. Since
the plate is thin, however, these quantities must be small within the plate
if they are zero on each surface. We therefore conclude that the components
Oxzy Oyz, 02z are small compared with the remaining components of the stress
tensor everywhere in the plate. We can therefore equate them to zero and
use this condition to determine the components of the strain tensor.

By the general formulae (5.13), we have

E E
Ozg = Guzx, Ozy = T:;uzy, 0
E
Ozz = m{(l — a)uzz+ G(uxx+ uyy)}.
Equating these expressions to zero, we obtain Juy[0z = — du.fox,
uy|dz = — uy/dy, Uz = — o(Ugz+uyy)/(1—0). In the first two of these

equations #, can, with sufficient accuracy, be replaced by {(x, y):duz/ox - -
— /o, ouyloz = — 0(/dy, whence

Uy = —z 0(/0x, uy = — g 0f/oy. (11.3)
The constants of integration are put equal to zero in order to make
Uy = uy = 0 for 2 = 0.

Knowing u; and u,, we can determine all the components of the strain
tensor:

Ugy = —202([0x2, Uyy = — 02|92, Ugy = — 02[[0x0y,
o 2L 9% (11.4)
(55

Uzz = Uy, = 0 Uzg = — R ~
’ l—o \0x2 9y2

We can now calculate the free energy F per unit volume of the plate, using
the general formula (5.10). A simple calculation gives the expression

e ) 2 oo

The total free energy of the plate is obtained by integrating over the volume.
The integration over x is from - 4k to + $h, where & is the thickness of the
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plate, and that over x, y is over the surface of the plate. 'T'he result is that
the total free energy F, = [FdV of a deformed plate is

o= s (sl

+2(1_a){(;;a%)2_ zié-aa;—g”dx dy;  (11.6)

the element of area can with sufficient accuracy be written as dx dy simply,
since the deformation is small.

Having obtained the expression for the free energy, we can regard the plate
as being of infinitesimal thickness, i.e. as being a geometrical surface, since
we are interested only in the form which it takes under the action of the
applied forces, and not in the distribution of deformations inside it. The

quantity {is then the displacement of points on the plate, regarded as a surface,
when it is bent.

§12. The equation of equilibrium for a plate

"The equation of equilibrium for a plate can be derived from the condition
that its free energy is a minimum. To do s0, we must calculate the variation
of the expression (11.6).

We divide the integral in (11.6) into two, and vary the two parts separately.
The first integral can be written in the form J(A 0% df, where df = dx dy
is a surface element and A = 0%/0x%+ 02/9y2 is here (and in §§13, 14) the
two-dimensional Laplacian. Varying this integral, we have

(a2 df = [arastdr
~ [ Al div gradsy df
= [div(Al gradsy) df— [gradst - grad AL f.

All the vector operators, of course, relate to the two-dimensional co-ordinate
system (¥, y). The first integral on the right can be transformed into an
integral along a closed contour enclosing the plate:t

[div(At gradst) df = § Aln - gradsy) dl

B §88§ dl
= §A _a' H

where 9/9n denotes differentiation along the outward normal to the contour.

t The transformation formula for two-dimensional integrals is exactly analogous to the one for three
dimensions. The volume element dV is replaced by the surface element df (a scalar), and the surface
element df is replaced by a contour element d/ multiplied by the vector nalong the outward normal to
the contour. The integral over df is converted into one over d/ by replacing the operator dfooxe by
nedl. For instance, if 4 is a scalar, we have [ grad ¢ df [YINITA
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In the second integral we use the same transformation to obtain
[grads;- grad ALdf = [div (3¢ grad A ) df- [srnzg df
= §8i(n - grad AL) dI- [srnzgdf
0
e R P
on
Substituting these results, we find that
aA 98¢
sfordr = farana-§o’tan§actia a2y
n

The transformation of the variation of the second integral in (11.6) b
somewhat more lengthy. This transformation is conveniently effected in

y
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components, and not in vector form. We have

2L \2 927 92
M(5) - 55
_ ﬂoﬁfzﬁ_ ﬂaﬁéﬁﬂaﬁ}d
“oxdy 0xdy  ox? oy2 0x2 9y2
The integrand can be written
2mI By oo g
Ox oy\ ox oxdy oy a2/’

i.e. as the (two-dimensional) divergence of a certain vector. The variation
can therefore be written as a contour integral:

02l \2 0% 82§1 . {98L o2 98¢ 02
L 7 ol > 27>
Sf{(axay) Ox? ayzjdf §dlsm {ax 0x0y dy E)xz}Jr
293¢ 92t 8L 02

b drcosol 08 S5 _ L } 12.2
k €08 {ay Oxdy ox 0y? ( )

dy oxdy  Ox oy?

where 0 is the angle hetween the x-axis and the normal to the contour (Fig. 3).



43 The Fguilibrinm of Rods and Plates §12

The derivatives of 8 with respect to x and y are expressed in terms of
its derivatives along the normal n and the tangent 1 to the contour:

d 0 . 0
— = 08— —sinf—,
ox on al

d .0 0
— = sinf— -+ cos f—.
oy on ol

Then formula (12.2) becomes
2rN\2 92 @2
NGs) -~ esn
0x0dy 0x% oy?

08 02 02 02
= 5[; dl—g{Z sin @ cos 6 ¢ — sinzf?—§ — coszﬂ—g} +
on dy?

0x0y 0x2 y
98 02 02 02
+ fﬁ dl—g{sin 0 cos U(—é - —C) + (cos20 — sinzﬁ)wg—}.
ol oy*  0x2 Ox0dy

The second integral may be integrated by parts. Since it is taken along a
closed contour, the limits of integration are the same point, and we have
simply

9 . 020 0% ooy 0%
— § dl 8 — {sm 8 cos 0(—— — —) + (cos26 — sin?f) ——}
ol oyz  Ox? dx0y

Collecting all the above expressions and multiplying by the coeflicients
shown in formula (11.6), we obtain the following final expression for the
variation of the free energy:

SFpy = I-z—fﬁ?’——( f AL df
(1=
- fﬁé}l dl[gi—c—k(l - a)%{sinG cos 6(%22 - —z—g) +

o o 02
+ (cos?6 — sm20)—}] +
Ox0y

8¢ : 02
+3§—dz{gg+(1—a)(zsmecose -
on Oxdy
a2 o2
- sin20—€ - COSZB-——C) }) . (12.3)
dx2 oy?

In order to derive from this the equation of equilibrium for the plate, we
must equate to zero the sum of the variation 8F and the variation 8U of the
potential energy of the plate due to the external forces acting on it. This
latter variation is minus the work done by the external forces in deforming the
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plate. Let P be the external force acting on the plate, per unit arcal and
normal to the surface. Then the work done by the external forces when the
points on the plate are displaced a distance 8 is [P df. "Thus the condition
for the total free energy of the plate to be a minimum is

8Fp— [PSL df = 0. (12.4)

On the left-hand side of this equation we have both surface and congour
integrals. The surface integral is

f {12(?13 (,'z—)Azi—P}Bc df.

The variation 8¢ in this integral is arbitrary. The integral can therefore
vanish only if the coefficient of 8{ is zero, i.e.

En3

AP = .
12(1—02)AC P =0. (125
This is the equation of equilibrium for a plate bent by external forces acying
on it}.

The boundary conditions for this equation are obtained by equating to
zero the contour integrals in (12.3). Here various particular cases have tg he
considered. Let us suppose that part of the edge of the plate is free, 1.¢. no
external forces act on it. Then the variations 8¢ and 89{/on on this parg of
the edge are arbitrary, and their coefficients in the contour integrals muyt e
zero. This gives the equations

aNL 0 . [0 0%
- _5;1_.+(1 - a)ﬁ{cos() smﬁ(gx—z - W) +
+ (sin20 — cos?d) ™ } =0 (12.¢
axay ’ - ))
02 02 02¢
AL+(1- 0):2 sin § cos 08x§y - sin205;§ - coszﬂa—yé} =0, (127

which must hold at all free points on the edge of the plate.

The boundary conditions (12.6) and (12.7) are very complex. Considerable
simplifications occur when the edge of the plate is clamped or supported, If
it is clamped (Fig. 4a), no vertical displacement is possible, and morcover no

t The force I’ may be the result of body forces (e.y. the force of gravity), and is then equal g, o
integral of the body force over the thirkness of the plate. o )
1 The coeflicient ) EF'[12(1 —a® in this equation i called the flexural rigidity or evling, ;o ul

rigidity of the plate.
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bending is possible at the edge. 'I'hc angle through which a given part of the
edge turns from its initial position is (for small displacements () the derivative
9f/on. Thus the variations 8¢ and 89{/on must be zero at clamped edges, so
that the contour integrals in (12.3) are zero identically. The boundary con-
ditions have in this case the simple form

=0, 0jon = 0. (12.8)

The first of these expresses the fact that the edge of the plate undergoes no
vertical displacement in the deformation, and the second that it remains
horizontal. !

() 7 ==

(b) % AN
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It is easy to determine the reaction forces on a plate at a point where it
is clamped. These are equal and opposite to the forces exerted by the plate
on its support. As we khow from mechanics, the force in any direction is
equal to the space derivative, in that direction, of the energy. In particular,
the force exerted by the plate on its support is given by minus the derivative
of the energy with respect to the displacement { of the edge of the plate, and
the reaction force by this derivative itself. The derivative in question, how-
ever, is just the coefficient of 8{ in the second integral in (12.3). Thus the
reaction force per unit length is equal to the expression on the left of equation
(12.6) (which, of course, is not now zero), multiplied by Eh3/12(1—c2).

Similarly, the moment of the reaction forces is given by the expression on
the left of equation (12.7), multiplied by the same factor. This follows at
once from the result of mechanics that the moment of the force is equal to
the derivative of the energy with respect to the angle through which the
body turns. This angle is 9{/dn, so that the corresponding moment is given
by the coeflicient of 98{/0n in the third integral in (12.3). Both these expres-
sions (that for the force and that for the moment) can be very much simplified
by virtue of the conditions (12.8). Since { and 9{/on are zero everywhere on
the edge of the plate, their tangential derivatives of all orders are zero also.
Using this and converting the derivatives with respect to x and y in (12.6)
and (12.7) into those in the directions of n and 1, we obtain the following
simple expressions for the reaction force F and the reaction moment M:

ERs 3¢ do o
= - —[——+——], (12.9)
12(1— o2 n3 " dI on2
EW a2
(12.10)

T2l o) om
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Another important case is that where the plate is supported (Fig. 4b),
i.e. the edge rests on a fixed support, but is not clamped to it. In this case
there is again no vertical displacement at the edge of the plate (i.e. on the
line where it rests on the support), but its direction can vary. Accordingly,
we have in (12.3) 8/ = 0 in the contour integral, but 98{/on # 0. llence
only the condition (12.7) remains valid, and not (12.6). The expression on the
left of (12.6) gives as before the reaction force at the points where the plate is
supported; the moment of this force is zero in equilibrium. The boundary
condition (12.7) can be simplified by converting to the derivatives in the dirce-
tion of n and 1and using the fact that, since { = 0 everywhere on the edge, the
derivatives 9/0l and 92{/0l2 are also zero. We then have the boundary
conditions in the form
02 df a¢

+ ————:0. l'Z.H
on? Gdlan ( )

PROBLEMS

ProsLEM 1. Determine the deflection of a circular plate (of radius R) with clamped cdyes,
placed horizontally in a gravitational field.

SoLuTION. We take polar co-ordinates, with the origin at the centre of the plate. The force
on unit area of the surface of the plate is P == phg. Equation (12.5) becomes A?*{ == 648,
where B = 3pg(1—a?)/16h%E; positive values of { correspond to displacements downward.
Since { is a function of r only, we can put A = ' d(rd/dr)/dr. The general integral is
{ = pritar*+b+cr*log(r/R)+dlog(r/R). In the case in question we must put d - : 0,
since log(r/R) becomes infinite at » =: 0, and ¢ = 0, since this term gives a singularity in
Al atr = 0 (corresponding to a force applied at the centre of the plate; see Problem 3). "I'he
constants a and b are determined from the boundary conditions { = 0, d{/dr = 0 forr - It
The result is { = B(R2—r?)2.

ProBLEM 2. The same as Problem 1, but for a plate with supported edges.

SoLuTioN. The boundary conditions (12.11) for a circular plate are
d2f o d{
dr2 ' rdr

The solution is similar to that of Problem 1, and the result is

{ = B(Rz_,z)(i_:_ng_,z).

ProBLEM 3. Determine the deflection of a circular plate with clamped edges when a forea
f is applied to its centre.

SorutioN. We have A2l = 0 everywhere except at the origin. Integration gives
§ = ar+b+cr?log(r/R),

the log r term agnin being omitted. The total force on the plate is equal to the force f at ity
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centre. The integral of A% over the surface of the plate must therefore be

12(1— UZ)f

R
2 2 dr =
wfrA {dr R

0

Hence ¢ = 3(1 —o?)f{2nEh®. 'The constants a and b are determined from the boundary
conditions. The result is

31—
{= 2xEh3

ProBLEM 4. The same as Problem 3, but for a plate with supported edges.
SoLuTION.

[2(R?—7%)—12log(R/r)].

31— o?)[3+ 0 R
A ) R2—12)— 22 log — |.
$= i [ (RE—1%)—2r Ogr]

1+0o
ProBLEM 5. Determine the deflection of a circular plate suspended by its centre and in a
gravitational field.
SoLuTioN. The equation for { and its general solution are the same as in Problem 1.
Since the displacement at the centre is { = 0, we have ¢ = 0. The constants a and b are
determined from the boundary conditions (12.6) and (12.7), which are, for circular symmetry,

dAES d(d2§ 1% _ d2l odl

—_——t- = 0, —t—-—=0.
dr dr\dsZ2 r dr) dr2 ¢ dr

The result is

R 3+
{ = pr? [72+8R2 log—+2R21 G].
r

+o

ProBLEM 6. A thin layer (of thickness %) is torn off a body by external forces acting against
surface tension forces at the surface of separation. With given external forces, equilibrium is
established for a definite area of the surface separated and a definite shape of the layer
removed (Fig. 5). Derive a formula relating the surface tension to the shape of the
layer removed.}

F1G6. 5

SoruTioN. The layer removed can be regarded as a plate with one edge (the line of separa-
tion) clamped. The bending moment on the layer is given by formula (12.10). The work
done by this moment when the length of the separated surface increases by 8x is

Most|x = Mdxd?L/dx

(the work of the bending force F itself is a second-order quantity). The equilibrium condition
is that this work should be equal to the change in the surface energy, i.c. to 2adx, where « is

+ 'This problem was discussed by I. V. Onrrimov (1930) in connection with a method which he
developed for measuring the surface tension of mica. 'The mensurements which he mmde by this
method were the first direct measurements of the sarface tension of solids,
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the surfacc-tension coctlicient, the factor 2 allowing for the creation of two free surfaces by

the separation. Thus
ER3 ( 625 )2
T aa—op)\a)

§13. Longitudinal deformations of plates

Longitudinal deformations occurring in the plane of the plate, and not
resulting in any bending, form a special case of deformations of thin plates.
Let us derive the equations of equilibrium for such deformations.

If the plate is sufficiently thin, the deformation may be regarded as uniform
over its thickness. The strain tensor is then a function of x and y only (the
xy-plane being that of the plate) and is independent of 2. Longitudinal
deformations of a plate are usually caused either by forces applied to its edges
or by body forces in its plane. The boundary conditions on both surfaces of
the plate are then oyny = 0, or, since the normal vector is parallel to the
z-axis, oy = 0, i.e. 05, = oy, = 0,; = 0. It should be noticed, however,
that in the approximate theory given below these conditions continue to
hold even when the external tension forces are applied to the surfaces of the
plate, since these forces are still small compared with the resulting longi-
tudinal internal stresses (ozz, oyy, ozy) in the plate. Since they arc zero a
both surfaces, the quantities o4,, oy;, 0z must be small throughout the
thickness of the plate, and we can therefore take them as approximately zcro
everywhere in the plate.

Equating to zero the expressions (11.2), we obtain the relations

Uz = — o(Ugg+uyy)/(1-0), Ugy = tyz = 0. (13.1)

Substituting in the general formulae (5.13), we obtain for the non-zcro com-
ponents of the stress tensor

Tgy = 1 — Oz(uxx+ Uuyy),
Oyy = T (uyy + U’ux:v)) ’ (l }'?)
1—o? ‘
E
Oy = 1 o uxy.

It should be noticed that the formal transformation
E —~ E/(1-0%), o —a/(l—0o) (13.3)

converts these expressions into those which give the relation between the
stresses ozz, Oxy, ayy and the strains wgg, #yy, 2, for a plane deformation
(formulac (5.13) with wu,, = 0).

Having thus eliminated the displacement g,

‘elastic plane™)

we can regard the plate as a
two-dimensional medium (an of zero thickness, and take
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the displacement vector u to be a two-dimensional vector with components
uz and uy. If Py and Py are the components of the external body force per
unit area of the plate, the general equations of equilibrium are

7} )
h( U“Jr—?ﬁ) +P, =0,
ox oy

0 d
h( ny*}-*fﬁ) +Py, = 0.
Ox oy

Substituting the expressions (13.2), we obtain the equations of equilibrium in
the form

1 0%, 1 2y 1 0%,
Eh{ + — =+
1—02 022  2(140) 92 2(1—o0) ox0y
1 0% 1 % 1 0%
{ s L x}+ y =0
1-02 9y? 2(140) x2 2(1—0) 0xdy
These equations can be written in the two-dimensional vector form

grad divu—4(1—o¢) curl curlu = — (1-o2)P/E}, (13.5)

}+Px - (13.4)

where all the vector operators are two-dimensional.
In particular, the equation of equilibrium in the absence of body forces is

grad divu—1(1—o) curl curlu = 0. (13.6)

It differs from the equation of equilibrium for a plane deformation of a body
infinite in the z-direction (§7) enly by the sign of the coefficient (in accordance

with (13.3)).1 As for a plane deformation, we can introduce the stress function
defined by

ozz = 0%¢/0y2, Ogy = — 02y/0x0y, oyy = 0%y/ox2,  (13.7)
whereby we automatically satisfy the equations of equilibrium in the form

0oz acrxy“ Ooyz 30yy:0
ox oy a

ox oy

The stress function, as before, satisfies the biharmonic equation, since for
Ax we have

AX = ozt oyy = E(uzstuyy)/(1—0) = {E[(1-0)} divu;

this differs only by a factor from the result for a plane deformation.
It may be pointed out that the stress distribution in a plate deformed by
given forces applied to its edges is independent of the elastic constants of the

{ A deformation homogeneous in the z-direction for which o,y 0,y 07z 0 everywhere is
sometimes called a state of plane stress, as distinct from a plane deformation, for which n,, gy ==
zz - 0 everywhere,

§13 Longitudinal deformations of plates 55

material. For these constants appear neither in the biharmonic cquation
satisfied by the stress function, nor in the formulae (13.7) which determine
the components oy from that function (nor, therefore, in the boundary
conditions at the edges of the plate).

PROBLEMS

ProBLEM 1. Determine the deformation of a plane disc rotating uniformly about an nxis
through its centre perpendicular, to its plane.

SoLuTioN. The required solution differs only in the constant coefficients from the solution
obtained in §7, Problem 5, for the plane deformation of a rotating cylinder. ‘I'he radial
displacement u, = u(r) is given by the formula

— g2
= Q21 0)7’(3+GR2—72).
S8E

1+
This is the expression which gives that of §7, Problem 5, if the substitution (13.3) 4 made.

ProBLEM 2. Determine the deformation of a semi-infinite plate (with a stinpght edgpe)
under the action of a concentrated force in its plane, applied to a point on the ey

F
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SoLuTtioN. We take polar co-ordinates, with the angle ¢ measured from the direction ol
the applied force; it takes values from —(}7--«) to 7 —a, where « is the angle hetween the
direction of the force and the normal to the edge of the plate (Fig. 6). Atevery point of (he
edge except that where the force is applied (the origin) we must have 0pp = 0o,y 0. Uning
the expressions for 044 and o,4 obtained in §7, Problem 11, we find that the stress fine ton
must therefore satisfy the conditions

oy 1 oy
— - = constant, ———- = constant, for ¢ = — (7 +«), (J7— o).
or r 0¢

Both conditions are satisfied if x = #f(¢). With this substitution, the biharmonic equation

{1 0 ( 0 ) 02 ;2 0

——r—]+— =

r or\ or/ 0O¢? X

gives solutions for f(¢) of the forms sin @, cos ¢, ¢ sin ¢, ¢ cos ¢. The first two of these lead (o

stresses which are zero identically. ‘T'he solution which gives the correct value for the foree
applied at the origin is

x = —(F[m)rd sind, opr - (28 ar) cosd, Tpp * 0 Uy = 0, (1)

where I7is the foree per vnit thickness of the plate. For, projecting the internal stresses on
directions parallel and perpendicular to the foree IF, and mtepratings over woamall semicirele
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centred at the origin (whose radius then tends to zero), we obtain

.‘ Ury? COS a\v n_.\v o 5.,

%31. sing d¢ = 0,

i.e. the values required to balance the external force applied at the origin.

Formulae (1) determine the required stress distribution. It is purely radial: only a radial
compression force acts on any area perpendicular to the radius. The lines of equal stress are
the circles » = d cos ¢, which pass through the origin and whose centres lie on the line of
action of the force F (Fig. 6).

The components of the strain tensor are #,, = o,./E, ugy = —o0,,/E, Urg = 0. From these
we find by integration (using the expressions (1.8) for the components ui; in polar co-
ordinates) the displacement vector:

2F (1-0)F
Up = — ﬂl_om?\av cos¢ — ﬂ sin ¢,
20F | 2F ) (1-o)F .
U= — mS&.TﬂIENQ\& m5&+|ﬁ|m_rl\®5$1$ cos ).

Here the constants of integration have been chosen so as to give zero displacement (trans-
lation and rotation) of the plate as a whole: an arbitrarily chosen point at a distance a from the
origin on the line of action of the force is assumed to remain fixed.

Using the solution obtained above, we can obtain the solution for any distribution of forces
acting on the edge of the plate (cf. §8). It is, of course, inapplicable in the immediate neigh-
bourhood of the origin.

aon

|
|
f
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ProBLEM 3. Determine the deformation of an infinite wedge-shaped plate (of angle 2«)
due to a force applied at its apex.

SoruTtioN. The stress distribution is given by formulae which differ from those of Problem
2 only in their normalisation. If the force acts along the mid-line of the wedge (F, in Fig. 7),
we have o,, = —(F; cos ¢)/r(x+14 sin 2a), org = 044 = 0. If, on the other hand, the force
acts perpendicular to this direction (¥, in Fig. 7), then

oy = — (F2 cos d)/r(ee—}% sin 2a).

In each case the angle ¢ is measured from the direction of the force.

PrOBLEM 4. Determine the deformation of a «i
equal and opposite forces It applied at the ends o

i dise (of radius R) compressad by two

Sorution. 'The solution is obtainad by superposing theee intermal stress  distributions.,

o4 = 3T, de. three times the stress ut i

§13 Longitudinal deformations of plates o

Two of these are

Q.ﬁvﬁ_:

|AN.T,\ﬁ\Hv OCma\:‘ QCVS&. = QCV&.? == ;

0@rr, = —(2F/7rg) cos 2. @y, = 0@y, = 0,
where r1, ¢; and 7,, ¢, are the polar co-ordinates of an arbitrary point P with orig*"®
and B respectively. These are the stresses due to a normal force F applied to a poipt !
edge of a half-plane; see Problem 2. The third distribution, o®g = (F/mR)byk, is a WO
extension of definite intensity. For, if the point P is on the edge of the disc, #¢ "V
71 ="2R cos §;, r; = 2R cos ¢y, s0 that o)y, = 0¥rs = —F[mR. Since the direc!on? of
r1 and r, at this point are perpendicular, we see that the first two stress di jons x__E,
a uniform compression on the edge of the disc. These forces can be just tho

uniform tension given by the third system, so that the edge of the disc is free fi o1 str€9% #* !
should be.

at A
the

ibut
anced DY

Fic. 8

H - - . . . . . . it e
ProBLEM 5. Determine the stress distribution in an infinite sheet with a circular V¢

(of radius R) under uniform tension.
SOLUTION. 'The uniform tension of a continuous sheet corresponds to stresses of?) s
a(®yy = {9,y = 0, where T is the tension force. These in turn corresporul to th*
function x{* = §Ty? = }Tr¥sin’$ = }Tr*1—cos 2¢). When there is a circu
(with the centre as the origin of polar co-ordinates 7, ¢), we seek the stress fur
form y = x(W4-xM), ¥V = f(r) +F(r) cos 2¢. The integral of the biharmonic ¢«
is independent of ¢ is of the form f(r) = ar®log r+br*+clogr, and in the integs’
portional to cos 2¢ we have F(r) = dr2-l-er*+g/r*. 'The constants are deterniined

atgenn

conditions ¢y = 0 for = o0 and or, = 0,5 = 0 for r = R. The result is
R2
x® = }TRY ~logr+ (1 — —— | cos 24},
2r
and the stress distribution is given by
R 3R2
q:HwHHllm H+~!iwl cos 2¢ 4,
7 r
R2? 3R4
4 Y
2RZ 3RY |
0,4 = —4T H+,Ha — sin 2¢.

In particular, at the odge of the aperture we have o, ¢ = T 2cos2), and for ¢ -~ | g,
ity (cf. m\. Problem 12).

-~
o
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§14. Large deflections of plates

The theory of the bending of thin plates given in §§11--13 is applicable only
to fairly small deflections. Anticipating the result given below, it may be
mentioned here that the condition for that theory to be applicable is that the
deflection { is small compared with the thickness % of the plate. Let us now
derive the equations of equilibrium for a plate undergoing large deflections.
The deflection { is not now supposed small compared with . It should be
emphasised, however, that the deformation itself must still be small, in the
sense that the components of the strain tensor must be small. In practice,
this usually implies the condition { < /, i.e. the deflection must be small
compared with the dimension / of the plate.

The bending of a plate in general involves a stretching of it.} For small
deflections this stretching can be neglected. For large deflections, however,
this is not possible; there is therefore no neutral surface in a plate undergoing
large deflections. The existence of a stretching which accompanies the
bending is peculiar to plates, and distinguishes them from thin rods, which
can undergo large deflections without any general stretching. This property
of plates is a purely geometrical one. For example, let a flat circular plate be
bent into a segment of a spherical surface. If the bending is such that the
circumference of the plate remains constant, its diameter must increase. If the
diameter is constant, on the other hand, the circumference must be reduced.

The energy (11.6), which may be called the pure bending energy, is only
the part of the total energy which arises from the non-uniformity of the
tension and compression through the thickness of the plate, in the absence
of any general stretching. The total energy includes also a part due to this
general stretching; this may be called the stretching energy.

Deformations consisting of pure bending and pure stretching have been
considered in §§11-13. We can therefore use the results obtained in these
sections. It is not necessary to consider the structure of the plate across its
thickness, and we can regard it as a two-dimensional surface of negligible
thickness.

We first derive an expression for the strain tensor pertaining to the stretch-
ing of a plate (regarded as a surface) which is simultaneously bent and
stretched in its plane. Let u be the two-dimensional displacement vector
(with components u;, u,) for pure stretching; , as before, denotes the trans-
verse displacement in bending. Then the element of length d/ = +/(dx2?+ dy?)
of the undeformed plate is transformed by the deformation into an element
dl’, whose square is given by dI'? = (dx+ duz)2+ (dy + duy)2+ d{2. Putting
here du, = (0us/ox) dx+(0uy/dy) dy, and similarly for du, and d, we
obtain to within higher-order terms dI'? = di2+ 2u,,dx,dx,;, where the
two-dimensional strain tensor is defined as

1 aua+au5) 100 ot 141
Has = 2(axﬂ ax,) 2o, vy D

t An exception is, for instance, the bending of a flat plate into n eylindrical surface.
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(In this and the following sections, Greck suffixes take the two values x and y;
as usual, summation over repeated suffixes is understood.) The terms quad-
ratic in the derivatives of u, are here omitted; the same cannot, of course, Lie
done with the derivatives of {, since there are no corresponding first-order
terms.

The stress tensor o,; due to the stretching of the plate -is given by formul:n
(13.2), in which u,, must be replaced by the total strain tensor given by
formula (14.1). The pure bending energy is given by formula .(11.6), and can
be written | ¥3({) dx dy, where () denotes the integrand in (11.6). TI'he
stretching energy per unit volume of the plate is,. by the geneFal f.ormul:l(-,
3u, 40,5 The energy per unit surface area is obtained by multiplying by #,
so that the total stretching energy can be written [ ¥2(u,,) df, where

lIJ.Z = %hu“ﬂﬂ"xﬂ. (14’?)
Thus the total free energy of a plate undergoing large deflections is
Fp = [{1(0)+ Fa(uep)} df. (14.3)

Before deriving the equations of equilibrium, let us estimate the relative
magnitude of the two parts of the energy. The first derivatives of { arc of
the order of {/I, where [ is the dimension of the plate, and the second dcriva-
tives are of the order of {/I2. Hence we see from (11.6) that 1 ~ ER[2/%.
The order of magnitude of the tensor components wu,, is (2[I%, ar}d S0
W, ~ ER{AJIA. A comparison shows that the neglect of s in the approximate
theory of the bending of plates is valid only if {* < A2

The condition of minimum energy is 8F+ 38U = 0, where U is the poten-
tial energy in the field of the external forces. We shall suppose t}'l’dt the
external stretching forces, if any, can be neglected in comparison with the
bending forces. (This is always valid unless the stretching forces are very
large, since a thin plate is much more easily bent than stretched.) Th(fn we
have for SU the same expression as in §12: U = — [P8{ df, where P’ is the
external force per unit area of the plate. The variation of the integral | 'ty df
has already been calculated in §12, and is

3T d Bk

f 1 = ey
The contour integrals in (12.3) are omitted, since they give only the bound;_l ry
conditions on the equation of equilibrium, and not that equation itsclf, which

is of interest here. . N o
Finally, let us calculate the variation of the integral [ W3 df. The variation
must be taken both with respect to the components of the vector u and with

respect to {. We have

f AL df.

L

8]% df = Ja ? S, df.

t,p

The derivatives of the free energy per unit volume with respect to u,, are
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Caps hen.ce 0%¥2/0u,5 = ho,s Substituting also for u,, the expression (14.1),
we obtain

8[Ws df = h[o,gu, df

~ lhf aﬂ{ Qu, Qouy 9L 9L 98 _a_g_} ¥

Ox, Ox, Oxg Ox, Oxg

or, by the symmetry of o,

szdf hf {88” +§8—Z—£}df.

ox; 0x, Ox,

Integrating by parts, we obtain

do,, @ oL
sf% df = —«hﬂ sua+_(%ﬁ—)sg} df.
0x4 0x4 ox,

The contour integrals along the circumference of the plate are again omitted.
Collecting the above results, we have

SFp1+8U = “{ﬁmgw%(wi) }ac h ";3 ]dfzo.

In order that this relation should be satisfied identically, the coeflicients of
8¢ and Su, must each be zero. Thus we obtain the equations

ER3
12(1— o2)

9 aL
27 b —
A2 x,,( - ) P, (14.4)
30450y = 0. (14.5)

The unknown functions here are the two components #,, uy of the vector

u and the transverse displacement {. The solution of the equations gives both

the form of the bent plate (i.e. the function {(x, ¥)) and the extension resulting

from the bending. Equations (14.4) and (14.5) can be somewhat simplified

by introducing the function x related to o,, by (13.7). Equation (14.4) then
becomes

Ens ( 02y 62§ 92y 02 92y 92

oy? a2 ox? ay? 0x0y O0x0dy

) _ P (146)

Equations (14.5) are satisfied automatically by the expressions (13.7). Hence
another equation is needed; this can be obtained by eliminating u, from the
relations (13.7) and (13.2).

To do this, we proceed as follows. We express #,; in terms of a4, obtaining
from (13.2)

Ugx = (‘Tm—”f’w)/E» Uyy == ("!/rr/’ o)L, Hyy (11 )ogylk

§1+ I:lll‘,'"l' 4/4;/’1’1 frons l'/ /’/cl/r'.\ 01

Substituting here the expression (14.1) for u,,, and (13.7) for o,y we find

the equations
aux+1(a§)2 1 /0%y azx)
ox  2\ox) E(ayz ox2)’
8uy 1 ’35)2 1 (@2)( azx)
— = = —f—2 — o=,
oy Z(By E\ox? dy2
Ouy auy+8§ of 2+ a} Py

dy ox dy E O« @yu

We take 92/9y2 of the first, 02/0x2 of the second, — 9%/dxdy of the third, and
add. The terms in #, and #y then cancel, and we have the equation

82¢ 22 92L \2
A+E— —— —{—) =0 (14.7)
ox2 9y? 0x0dy

Equations (14.6) and (14.7) form a complete system of equations for large
deflections of thin plates (A. FopPL 1907). These equations are very compli-
cated, and cannot be solved exactly, even in very simple cases. It should be
noticed that they are non-linear.

We may mention briefly a particular case of deformations of thin platcs,
that of membranes. A membrane is a thin plate subject to large external
stretching forces applied at its circumference. In this case we can neglect
the additional longitudinal stresses caused by bending of the plate, and
therefore suppose that the components of the tensor o4 are simply equal to
the constant external stretching forces. In equation (14.4) we can then
neglect the first term in comparison with the second, and we obtain the
equation of equilibrium

02

3xaaxﬂ

ho,s +P =0, (14.8)
with the boundary condition that { = 0 at the edge of the membrane. This
is a linear equation. The case of isotropic stretching, when the extension of
the membrane is the same in all directions, is particularly simple. Lct T be
the absolute magnitude of the stretching force per unit length of the edge of
the membrane. Then ho,; = T3,; and we obtain the equation of equili-
brium in the form

TAL+P = 0. (14.9)

PROBLEMS

ProsLEM 1. Determine the deflection of a plate as a function of the force on it when

{>h

SOLUTION. An estimate of the terms in cquation (14.7) shows that x ~ K{® For [ .- &,
the first term in (14.6) is small compared with the second, which is of the order of magnitude
hx/It ~ FhUS I (1 Deing the dimension of the plate). 1f this is comparable with the oxternal
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force P, we have { ~ (I*P/ER)}. lenco, in particular, we see that ¢ is proportional to the
cube root of the force.

ProBLEM 2. Determine the deformation of a circular membrane (of radius R) placed
horizontally in a gravitational field.

SoLuTioN. We have P = pgh; in polar co-ordinates, (14.9) becomes

1d ( dz) pgh
——|r—} = - =
rdr\ dr T

The solution finite for » = 0 and zero for r = R is { = pgh(R?—7*)[4T.

§15. Deformations of shells

In discussing hitherto the deformations of thin plates, we have always
assumed that the plate is flat in its undeformed state. However, deformations
of plates which are curved in the undeformed state (called shells) have
properties which are fundamentally different trom those of the deformations
of flat plates.

The stretching which accompanies the bending of a flat plate is a second-
order effect in comparison with the bending deflection itself. This is seen,
for example, from the fact that the strain tensor (14.1), which gives this
stretching, is quadratic in {. The situation is entirely different in the defor-
mation of shells: here the stretching is a first-order effect, and therefore is
important even for small bending deflections. This property is most easily
seen from a simple example, that of the uniform stretching of a spherical
shell. If every point undergoes the same radial displacement , the length
of the equator increases by 27{. The relative extension is 2rn{[2nR = {|R,
and hence the strain tensor also is proportional to the first power of {. This
effect tends to zero as R — oo, i.e. as the curvature tends to zero, and is
therefore due to the curvature of the shell.

Let R be the order of magnitude of the radius of curvature of the shell,
which is usually of the same order as its dimension. Then the strain tensor
for the stretching which accompanies the bending is of the order of {IR,
the corresponding stress tensor is ~ E{/R, and the deformation energy per
unit area is, by (14.2), of the order of EA({/R)2. The pure bending energy, on
the other hand, is of the order of ER3(2/R4, as before. We see that the ratio of
the two is of the order of (R/A)?, i.e. it is very large. Itshould be emphasised
that this is true whatever the ratio of the bending deflection { to the thickness
h, whereas in the bending of flat plates the stretching was important only
for £ = k.

In some cases there may be a special type of bending of the shell in
which no stretching occurs. For example, a cylindrical shell (open at both
ends) can be deformed without stretching if all the generators remain parallel
(i.e. if the shell is, as it were, compressed along some generator).  Such
deformations without stretching are geometrically possible if the shell has
free edges (i.e. is not closed) or if it is closed but its curvature has opposite
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signs at different points. For cxample, a closed spherical shell cannot be
bent without being stretched, but if a hole is cut in it (the edge of the hole
not being fixed), then such a deformation becomes possible. Since the pure
bending energy is small compared with the stretching energy, it is clear that,
if any given shell permits deformation without stretching, then such defor-
mations will, in general, actually occur when arbitrary external forces act on
the shell. The requirement that the bending is unaccompanied by stretching
places considerable restrictions on the possible displacements u,. 'I'hese
restrictions are purely geometrical, and can be expressed as differential
equations, which must be contained in the complete system of equilibrium
equations for such deformations. We shall not pause to discuss this question
further.

If, however, the deformation of the shell involves stretching, then the
tensile stresses are in general large compared with the bending stresses,
which may be neglected. Shells for which this is done are called membranes.

The stretching energy of a shell can be calculated as the integral

Fpl = %hfuaﬂo‘aﬂ df’ (15])

taken over the surface. Here u,4(, f = 1, 2) is the two-dimensional strain
tensor in the appropriate curvilinear co-ordinates, and the stress tensor o,,
is related to u, 4 by formulae (13.2), which can be written, in two-dimensional
tensor notation, as

0up = E[(1 = oYug+ 08,5, ]/(1— 0?). (15.2)

A case requiring special consideration is that where the shell is subjected
to the action of forces applied to points or lines on the surface and directed
through the shell. These may be, in particular, the reaction forces on the shell
at points (or lines) where it is fixed. The concentrated forces result in a
bending of the shell in small regions near the points where they are applicd;
let d be the dimension of such a region for a force f applied at a point (so that
its area is of the order of d2). Since the deflection { varies considerably over a
distance d, the bending energy per unit area is of the order of EA3{2/d%, and the
total bending energy (over an area ~ d2)is of the order of EA3(2/d2. The strain
tensor for the stretching is again ~ {/R, and the total stretching energy duc to
the concentrated forces is ~ Eh{2d%/R2. Since the bending energy increases
and the stretching energy decreases with decreasing d, it is clear that both
energies must be taken into account in determining the deformation near the
point of application of the forces. The size d of the region of bending is given
in order of magnitude by the condition that the sum of these energics is a
minimum, whence

d ~ \ (hR). (15.3)
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The energy ~ EA2(%/R. Varying this with respect to ¢ and equating the result
to the work done by the force f, we find the deflection £ ~ fR/I5h=.

However, if the forces acting on the shell are sufficiently large, the shape of
the shell may be considerably changed by bulges which form in it. The
determination of the deformation as a function of the applied loads requires
special investigation in this unusual case.}

Let a convex shell (with edges fixed in such a way that it is geometrically
rigid) be subjected to the action of a large concentrated force f along the in-
ward normal. For simplicity we shall assume that the shell is part of a sphere
of radius R. The region of the bulge will be a spherical cap which is almost a
mirror image of its original shape (Iig. 9 shows a meridional section of the
shell). The problem is to determine the size of the bulge as a function of the
force.

The major part of the elastic energy is concentrated in a narrow strip near
the edge of the bulge, where the bending of the shell is relatively large; we
shall call this the bending strip and denote its width by d. This energy may be
estimated, assuming that the radius 7 of the bulge region is much less than R,
so that the angle « € 1 (Fig.9). Thenr = Rsina ~ Ro, and the depth of the

Fic. 9

bulge H = 2R(1—cos o) ~ Ra2. Let { denote the displacement of points on
the shell in the bending strip. Just as previously, we find that the energies of
bending along the meridian and of stretching along the circle of latitudet per
unit surface area are respectively, in order of magnitude, EA3{2?/d* and

t The results given below are due to A. V. PocoreLov (1960). A more precise analysis of the problem
together with some similar ones is given in his book Teortya obolochek pri zakriticheskikh deformatsiyalkh
(Theory of Shells at Supercritical Deformations), Moscow 1965.

+ The curvature of the shell does not affect the bending alongz the meridianin the first approximation,
so that this bending occurs without any general stretching along the meridian, as in the eylindrical
bending of a flat plate.
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ER{2IR2. "The order of magnitude of the displacement £ is in this case deter
mined geometrically: the direction of the meridian changes by an angle ~ o
over the width d, and so { ~ ad ~ rd/R. Multiplying by the arca of the bend-
ing strip (~7d), we obtain the energies Ehidr3/R2d and Ehd33|R1.’
tion for their sum to be a minimum again gives d~4/(hR), and the total
elastic energy is then ~ Ev3(h/R)5/2, ort

constant x E k%2, H32|R. (15.1)

I'he condi

In this derivation it has been assumed that d<7; formula (15.4) is thercefore
valid if the condition

Rhrr <1 (15.5)

holds.

The required relation between the depth of the bulge H and the applied
force f is obtained by equating f to the derivative of the energy (15.4) with
respect to H. Thus we find

H ~ f2R2|E2h5. (15.0)

It should be noticed that this relation is non-linear.

Finally, let the deformation (bulge) of the shell occur under a uniform
external pressure p. In this case the work done is pAV, where AV ~ 11~ 11'R
is the change in the volume within the shell when the bulge occurs. liquating
to zero the derivative with respect to H of the total free energy (the difference
between the elastic energy (15.4) and this work), we obtain

H ~h5E2(Rip2, (15.7)

The inverse variation (H increasing when p decreases) shows that in this case
the bulge is unstable. The value of H given by formula (15.7) corresponds to
unstable equilibrium for a given p: bulges with larger values of // grow of
their own accord, while smaller ones shrink (it is easy to verify that (15.7)
corresponds to a maximum and not a minimum of the total free enerpy).
There is a critical value per of the external load beyond which even small
changes in the shape of the shell increases in size spontaneously. "T'his value
may be defined as that which gives H~ /% in (15.7):

Per~ ER?[R2. (15.%)

We shall add to the above brief account of shell theory only a few simple
examples in the following Problems.

t A more accurate calculation shows that the constant coefficient is 1.2 (1— o) ~3/4,

+ When a bulge is formed, the outer layers of a spherical segment become the inner ones and e
therefore compressed, while the inner layers become the outer ones and are stretched. 'he relative
extension (or compression) ~ h/R, and so the corresponding total energy in the region of the bulge
~ E(h/R)*hr2. With the condition (15.5) it isin fact small in comparison with the enerpry (15.4) i
the bending strip.
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PROBLEMS

ProBLEM 1. Derive the equations of equilibrium for a spherical shell (of radius R) deformed
symmetrically about an axis through its centre.

SoLuTioN. We take as two-dimensional co-ordinates on the surface of the shell the angles
6, ¢ in a system of spherical polar co-ordinates, whose origin is at the centre of the sphere and
polar axis along the axis of symmetry of the deformed shell.

Let P, be the external radial force per unit surface area. This force must be balanced by a
radial resultant of internal stresses acting tangentially on an element of the shell. The con-
dition is

h(o44+ 0pp)/R = Pr. (1)

'This equation is exactly analogous to LAPLACE’s equation for the pressure difference between
two media caused by surface tension at the surface of separation.

Next, let Q;(8) be the resultant of all external forces on the part of the shell lying above the
co-latitude #; this resultant is along the polar axis. The force Q,(#) must be balanced by the
projection on the polar axis of the stresses 2mRhaogg sin § acting on the cross-section 2mRh sin @
of the shell at that latitude. Hence

20Rhoy, sin20 = Q(6). @)

Equations (1) and (2) determine the stress distribution, and the strain tensor is then given
by the formulae

Ugg = (Uao—f’%qs)/E’ Usy = (0¢¢— 00ge)/E, gy = 0. 3)
Finally, the displacement vector is obtained from the equations
1 ¢ du, 1
Ugy = E(E-l_ur)’ Upy = E(u,, cot 0+ uy). “

ProBLEM 2. Determine the deformation under its own weight of a hemispherical shell
convex upwards, the edge of which moves freely on a horizontal support (Fig. 10).

F16.10

SoruTioN, We have Pr = —pgh cos 8, Q. = —2mR2%pgh(1 —cos 0); Q; is the total weight
of the shell above the circle of co-latitude 8. From (1) and (2) of Problem 1 we find

Rpg

Ogg = — ———,
o 1+cos

1
Oy = Rpg(mgs——g‘ — COSs 0).

From (3) we calculate g4 and ugp, and then obtain ug and «, from (4); the constant in the
integration of the first equation (4) is chosen so that for 8 = $m we have 1y = 0. The result
is
R2pg(1+0)( cosf
o E 1 +cos 8
Ripo(1+o 240
P )Il — cos()—cos@log(l—f-cosﬂ)}.
E l 14+¢

The value of u, for # = = gives the horizontal displacement of the support.

+log(1 +cos 9)} ind,

Uy =
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ProBLEM 3. Determine the deformation of a hemispherical shell with clumped edges,
convex downwards and filled with liquid (Iig. 11); the weight of the shell itself can be
neglected in comparison with that of the liquid.

Fie. 11

SoLuTioN. We have

P, = pogR cos ¥, P, = 0,
? 2
0, = ZszfPr cosfsinf df = §nR3pog(1 — cos30),
0

where p, is the density of the liquid. We find from (1) and (2) of Problem 1
R?ppg 1—cos?0 R2ppg —1+43 cos -2 cos?t
Ogg = . (¢ = . - _
T 3h s T ¥ 3h sin26

The displacements are

R3ppg(1+0) . cosd
uy = — 2Eh sm()[l +cos€+10g(1 +cos 0)],
R300s(1 3 cosb”
, = Zposl ¥ o) +")[cose1og(1+cos9)—1+——COq }
3Eh 1+o

For 8 = #n, u, is not zero as it should be. This means that the shell is actually so severely hent
near the clamped edge that the above solution is invalid.

ProBLEM 4. A shell in the form of a spherical cap rests on a fixed support (I'ig. 12). Detes
mine the bending resulting from the weight Q of the shell.

Fig. 12
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SorutioN. The main deformation occurs near the edge, which is bent as shown by the
dashed line in Fig. 12. The displacement uy is small compared with the radial displacement
u, = {. Since { decreases rapidly as we move away from the supported edge, the deformation
can be regarded as that of a long flat plate (of length 2nR sin «). This deformation is composed
of a bending and a stretching of the plate. The relative extension at each point is {/R (R
being the radius of the shell), and therefore the stretching energy is E{*/2R? per unit volume.
Using as the independent variable the distance x from the line of support, we have for the
total stretching energy

F 27 R si Eh 2d
1,p1 = 47 Sin O(Z—‘Iezf X.

The bending energy is

_ ER3 d2g\ 2
Fopt = 20R sino———— f(——-) do
’ 24(1—02) J \ da?

Varying the sum Fy, = F; ,+F, , with respect to {, we obtain

diy 121 —o?)

daxd h2R?

For x — 00, { must tend to zero, and for x = 0 we must have the boundary conditions of
zero mornent of the forces ({”” = 0) and equality of the normal force and the corresponding
component of the force of gravity:

'h3

2nR stnoe——={'"" = .
7R sin alz(l_az)g 0O cosa

The solution which satisfies these conditions is { = Ae X% cos «x, where

[3(1—02)]1/4 , _ Qcota3RY(1— o) 14
“T | There T T [ 8h? ] '

The bending of the shell is
d = {(0)cosa = A cosa.

§16. Torsion of rods

Let us now consider the deformation of thin rods. This differs from all
the cases hitherto considered, in that the displacement vector u may be large
even for small strains, i.e. when the tensor #;y, is small.t For example, when
a long thin rod is slightly bent, its ends may move a considerable distance,
even though the relative displacements of neighbouring points in the rod
are small.

There are two types of deformation of a rod which may be accompanied by
a large displacement of certain parts of it. One of these consists in bending

t The cnly exception is a simple extension of a rod without change of shape, in which case the
vector u is always small if the tensor ugg is small, f.e. if the extension is small.
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the rod, and the other in twisting it. We shall begin by considering the latter
case.

A torsional deformation is one in which, although the rod remains straight,
each transverse section is rotated through some angle relative to those below
it. If the rod is long, even a slight torsion causes sufficiently distant cross-
sections to turn through large angles. The generators on the sides of the rod,
which are parallel to its axis, become helical in form under torsion.

Let us consider a thin straight rod of arbitrary cross-section. We take a
co-ordinate system with the z-axis along the axis of the rod and the origin
somewhere inside the rod. We use also the forsion angle 7, which is the angle
of rotation per unit length of the rod. This means that two neighbouring
cross-sections at a distance dz will rotate through a relative angle d¢p -~ = dx
(so that 7 = d¢/d=). The torsional deformation itself, i.e. the relative dis-
placement of adjoining parts of the rod, is assumed small. The condition
for this to be so is that the relative angle turned through by cross-sections
of the rod at a distance apart of the order of its transverse dimension K in
small, i.e.

TR <€ 1. (16.1)

Let us examine a small portion of the length of the rod near the origin, and
determine the displacements u of the points of the rod in that portion. As
the undisplaced cross-section we take that given by the xy-plane.. When a
radius vector r turns through a small angle 8¢, the displacement of its cnd
is given by

or = 8:1> Xr, (16.2)

where 8¢ is a vector whose magnitude is the angle of rotation and whose
direction is that of the axis of rotation. In the present case, the rotation 13
about the z-axis, and for points of co-ordinate 2 the angle of rotation relative
to the xy-plane is 7z (since = can be regarded as a constant in some region
near the origin). Then formula (16.2) gives for the components uz, 1, of the
displacement vector

Uy = —TZY, Uy = TIX. (16.3)

When the rod is twisted, the points in it in general undergo a displacement
along the z-axis also. Since for 7 = 0 this displacement is zero, it may he
supposed proportional to = when = is small. Thus

Uz = (%, ), (1o.4)

where ¢(x, ) is some function of x and y, called the torsion function. As n
result of the deformation described by formulae (16.3) and (16.4), cach cross-
section of the rod rotates about the z-axis, and also becomes curved instead
of plane. It should be noted that, by taking thc origin at a particular point in
the xy-plane, we “fix”" a certain point in the cross-section of the rod in such a



70 The Equilibrium of Rods and Plates §16

way that it cannot move in that plane (but it can move in the z-direction).
A different choice of origin would not, of course, affect the torsional deforma-
tion itself, but would give only an unimportant displacement of the rod as a
whole.

Knowing u, we can find the components of the strain tensor. Since u is
small in the region under consideration, we can use the formula

U = $(0us0xx + Ouy0xy).
The result is

Uge = Uyy = Ugy = Uz = 0,

gy = y(%”-ﬁ - y), yy = %T(%+x). (16.5)

It should be noticed that #;; = 0; in other words, torsion does not result in
a change in volume, i.e. it is a pure shear deformation.
For the components of the stress tensor we find

Ozx = Oyy = Oz = OUgy = 0,

o o
Ogz = iy, = [.LT(-— — y), oy = 2utly; = prr(———-}-x). (16.6)
ox dy
Here it is more convenient to use the modulus of rigidity u in place of E and
a. Since only oz, and oy, are different from zero, the general equations
of equilibrium doy/0x; = 0 geduce to

aﬂzx 30‘7,,,

= 0. 16.7
ox dy ( )

Substituting (16.6), we find that the torsion function must satisfy the equation
Ay =0, (16.8)

where A is the two-dimensional Laplacian.
It is rather more convenient, however, to use a different auxiliary function
x (%, ), defined by
ogz = 2urdy/dy, Oyz = —2uT0y/0x; (16.9)

this function satisfies more convenient boundary conditions on the circum-
ference of the rod (see below). Comparing (16.9) and (16.6), we obtain

2 o @ 2
LY. S SRS 4 (16.10)

Differentiating the first of these with respect to y, the second with respect to
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x, and subtracting, we obtain for the function y the equation

Ay = —1. (16.11)

To determine the boundary conditions on the surface of the rod, we note
that, since the rod is thin, the external forces on its sides must be small com-
pared with the internal stresses in the rod, and can therefore be put cqual to
zero in seeking the boundary conditions. This fact is exactly analogous to
what we found in discussing the bending of thin plates. Thus we must have
oune = 0 on the sides of the rod; since the z-direction is along the axis,
n, = 0, and this equation becomes

Ozzlz+ Tzyfly = 0.
Substituting (16.9), we obtain

oy ox
—NHy — —N v

oy ox

0.

The components of the vector normal to a plane contour (the circumference
of the rod) are ny; = —dy/dl, ny = dx/dl, where x and y are co-ordinates
of points on the contour and d/ is an element of arc. Thus we have

o . @
X de+ 2 dy = dy = 0,
ox oy

whence x = constant, i.e. yis constant on the circumference. Since only
the derivatives of the function y appear in the definitions (16.9), it is clear
that any constant may be added to y. If the cross-section is singly connccted,
we can therefore use, without loss of generality, the boundary condition

x=0 (16.12)
on equation (16.11).}

),

F1G. 13

For a multiply connected cross-section, however, x will have different
constant values on each of the closed curves bounding the cross-section.

+ The problem of determining the torsion deformation from equation (16.11) with the boundmy

condition (16.12) is formally identical with that of determining the bending of a uniformly londed
plane membrane from cquation (14.9).

It is useful to note also an analogy with fluid mechanics: an equation of the form (16.11) determmen
the velocity distribution v(x, ) for a viscous fluid in a pipe, and the boundary condition (16.17)

corresponds to the condition v 0 at the fixed walls of the pipe (see Fuid Mechanics, §17).
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Hence we can put x = 0 on only onc of these curves, for instance the outer-
most (Co in Fig. 13). The values of x on the remaining bounding curves are
found from conditions which are a consequence of the one-valuedness of the
displacement u, = m)(x, ¥) as a function of the co-ordinates. For, since the
torsion function (%, y) is one-valued, the integral of its differential di round
a closed contour must be zero. Using the relations (16.10), we therefore

have
for=§ (s o)
:_sz( dy—mdx) 2fﬁ(xdy y )
. -
952—);(11 ~ -8, (16.13)

where 0x/0n is the derivative of the function y along the outward normal
to the curve, and .S the area enclosed by the curve. Applying (16.13) to each
of the closed curves C1, Co, ..., we obtain the required conditions.
Let us determine the free energy of a rod under torsion. The energy per
unit volume is
F= lUtlcuik = Oggllzzt+ Oyllyz = (Ux32+ Uyzz)/zl!«

or, substituting (16.9),

Ox\2 [Ox\2
F = 2,(1,7'2{( ) + (w—) ] = Zur?(grady)?,
ox ay

where grad denotes the two-dimensional gradient. The torsional energy
per unit length of the rod is obtained by integrating over the cross-section
of the rod, i.e. it is §C72, where the constant C' = 4u [ (grad x)? df, and is
called the forsional rigidity of the rod. The total elastic energy of the rod is
equal to the integral

Froa = } [ Cr2 ds, (16.14)
taken along its length.
Putting
(grady)? = div(x gradx)—x Ay = div(y grad x)+x

and transforming the integral of the first terminto one along the circumference
of the rod, we obtain

2
c-= 4;‘4)‘;(53? d1+4,LfX d. (16.15)
on

§10 Torsion of rods /3

If the cross-section is singly connccted, the first term vanishes by the
boundary condition x = 0, leaving

C = 4u [ x dxdy. (16.10)

For a multiply connected cross-section (Fig. 13), we put x = 0 on the outa
boundary Cyp and denote by yj the constant values of ¥ on the inner bhoun-
daries Cy, obtaining by (16.13)

C = 4> xSe-+4p [ x dx dy; (16.17)
k.

it should be remembered that, in integrating in the first termy in (16.15), we yo
anti-clockwise round the contour Cy and clockwise round all the others.

Let us consider now a more usual case of torsion, where one of the ends of
the rod is held fixed and the external forces are applied only to the other end
These forces are such that they cause only a twisting of the rod, and no other
deformation such as bending. In other words, they form a couple which twist
the rod about its axis. The moment of this couple will be denoted by Al

We should expect that, in such a case, the torsion angle = 1s constant
along the rod. This can be seen, for example, from the condition that the free
energy of the rod is a minimum in equilibrium. The total energy of a de
formed rod is equal to the sum Froq+ U, where U is the potential cuerpy
due to the action of the external forces. Substituting in (10.14) 7 - d/d=
and varying with respect to the angle ¢, we find

agfc(—j—) de+8U = f AP B U =

dz

or, integrating by parts,
dr
- f Cbp ds+3U +[Crdg] = 0.
2

The last term on the left is the difference of the values at the limits of ante

gration, i.e. at the ends of the rod. One of these ends, say the lower one, 14
fixed, so that 8¢ = O there. The variation 8U of the potential cnerpy 14
minus the work done by the external forces in rotation through an angle o4
As we know from mechanics, the work done by a couple in such a rotation
is equal to the product Md¢ of the angle of rotation and the moment of the
couple. Since there are no other external forces, U == - M8p, and we
have

1
f (,‘;I&/) dz+ [Sp(— M+ Cr)] = 0. (16.18)

The second term on the left has its value at the upper end of the rod. Tn the
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integral over z, the variation 8¢ is arbitrary, and so we must have

] C dr/dz = 0,
ie.
T = constant. (16.19)

Thus the torsion angle is constant along the rod. The total angle of rotation
of the upper end of the rod relative to the lower end is 7/, where [ is the length
of the rod.

In equation (16.18), the second term also must be zero, and we obtain the
following expression for the constant torsion angle:

= M|C. (16.20)

PROBLEMS

(]i?'ROBLEM 1. Determine the torsional rigidity of a rod whose cross-section is a circle of
radius R.

Sorution. The solutions of Problems 1—4 are formally identical with those of problems of
the motion of a viscous fluid in a pipe of corresponding cross-section (see the last footnote
to this section). The discharge Q is here represented by C.

For a rod of circular cross-section we have, taking the origin at the centre of the circle,
x = 3(R*—x*—y?%), and the torsional rigidity is C = }uwR%. For the function ¢ we have,
from (16.10), = constant. A constant ¢y, however, corresponds by (16.4) to a simple dis-
placement of the whole rod along the z-axis, and so we can suppose that ¢ = 0. Thus the
transverse sections of a circular rod undergoing torsion remain plane.

PRI?BLEM 2. The same as Problem 1, but for an elliptical cross-section of semi-axes a
and b.

.SOLUTION. '.I‘he' torsional rigidity is C = mua®?®/(a®+5*. The distribution of longitudinal
displacements is given by the torsion function ¢ = (b? —a®)xy/(b*+a?), where the co-ordinate
axes coincide with those of the ellipse.

.dPROBLEM 3. The same as Problem 1, but for an equilateral triangular cross-section of
side a.

SoruTioN. The torsional rigidity is C = 4/3ua?/80. The torsion function is

$ = y(xv/3+y)(x1/3~y)/6a
the origin being at the centre of the triangle and the x-axis along an altitude.

ProBLEM 4. The same as Problem 1, but for a rod in the form of a long thin plate (of
width d and thickness & < d).

SoruTioN. The problem is equivalent to that of viscous fluid flow between plane parallel
walls. The result is that C = }udh®.

P.I.IOBLEM 5. The same as Problem 1, but for a cylindrical pipe of internal and external
radii R, and R, respectively.

Sorution. The function x = $(R;*—7%) (in polar co-ordinates) satisfies the condition
(16.13) at both boundaries of the annular cross-section of the pipe. From formula (16.17)
we then find C = um(R4—R,%).

ProBLEM 6. The same as Problem 1, but for a thin-walled pipe of arbitrary cross-section.

SoLUTION. Since the walls are thin, we can assume that y varies through the wall thickness
h, from zero on one side to x, on the other, according to the linear law y : = xv/i (v being a
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co-ordinate measured through the wall). Then the condition (16.13) gives x J[./h - S,
where L is the perimeter of the pipe cross-section and S the area which it encloses. ‘The
second term in the expression (16.17) is small compared with the first, and we obtain
C = 4hS3%u/L. If the pipe is cut longitudinally along a generator, the torsional rigidity falls
sharply, becoming (by the result of Problem 4) C = }pLk®.

§17. Bending of rods

A bent rod is stretched at some points and compressed at others. Lines on
the convex side of the bent rod are extended, and those on the concave side
are compressed. As with plates, there is a neutral surface in the rod, which
undergoes neither extension nor compression. It separates the region of
compression from the region of extension.

Let us begin by investigating a bending deformation in a small portion of
the length of the rod, where the bending may be supposed slight; by this we
here mean that not only the strain tensor but also the magnitudes of the dis-
placements of points in the rod are small. We take a co-ordinate system with
the origin on the neutral surface in the portion considered, and the z-axis
parallel to the axis of the undeformed rod. Let the bending occur in the
zx-plane.t

As in the bending of plates and the twisting of rods, the external forces on
the sides of a thin bent rod are small compared with the internal stresscs, and
can be taken as zero in determining the boundary conditions at the sides of the
rod. Thus we have everywhere on the sides of the rod oynr = 0, or, since
ny =0, oganz+ozyny = 0, and similarly for 7 = y, 2. We take a point on
the circumference of a cross-section for which the normal n is parallel to the
x-axis. There will be another such point somewhere on the opposite side
of the rod. At both these points ny = 0, and the above equation gives
o2z = 0. Since the rod is thin, however, o4, must be small everywherc in the
cross-section if it vanishes on either side. We can therefore put oz 0
everywhere in the rod. In a similar manner, it can be seen that all the com
ponents of the stress tensor except o, must be zero. That is, in the bending,
of a thin rod only the extension (or compression) component of the internal
stress tensor is large. A deformation in which only the component o of
the stress tensor is non-zero is just a simple extension or compression (§5).
Thus there is a simple extension or compression in every volume clement of
a bent rod. The amount of this varies, of course, from point to point in cvery
cross-section, and so the whole rod is bent.

It is easy to determine the relative extension at any point in the rod. It
us consider an element of length dz parallel to the axis of the rod and near
the origin. On bending, the length of this element becomes dz’. 'The only
elements which remain unchanged are those which lic in the ncutral surface.
Let R be the radius of curvature of the neutral surface near the origin. "I'he

t In a rod undergoing only small deflections we can suppose that the bending occurs in a single
plane. This follows from the result of differentinl geometry that the deviation of a ulightly bent curve
from a plane (its torsion) is of 0 higher order of smallness than it curvature.
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lengths dz and dz’ can be regarded as clements of ares of circles whose radii
are respectively R and R+x, x being the co-ordinate of the point where
dz’ lies. Hence

R+
de’ = ~

d 14—} q
L = —_— .
<+R)z

The relative extension is therefore (dz’ — dz)/dz = x/R.
The relative extension of the element dz, however, is equal to the com-
ponent u, ., of the strain tensor. Thus

Uz = x/R. (17.1)

We can now find ¢, by using the relation o,, = Eu,, which holds for a
simple extension. This gives

Oz = Ex/R. (17.2)

The position of the neutral surface in a bent rod has now to be determined.

This can be done from the condition that the deformation considered must

be pure bending, with no general extension or compression of the rod. The

total internal stress force on a cross-section of the rod must therefore be

zero, i.e. the integral [ 0., df, taken over a cross-section, must vanish. Using
the expression (17.2) for o,,, we obtain the condition

[xdf = 0. (17.3)
We can now bring in the centre of mass of the cross-section, which is that
of a uniform flat disc of the same shape. The co-ordinates of the centre of
mass are, as we know, given by the integrals [x dff { df, [y df/ [ df. Thus the
condition (17.3) signifies that, in a co-ordinate system with the origin in the
neutral surface, the x co-ordinate of the centre of mass of any cross-section
is zero. 'The neutral surface therefore passes through the centres of mass
of the cross-sections of the rod.
Two components of the strain tensor besides u,, are non-zero, since for a
simple extension we have ugz; = uyy = —ouy,. Knowing the strain tensor,
we can easily find the displacement also:

Uy = OUz[0z = afR, OuyOx = duyloy = — ox/R,
ou; Ouy Oug Oy Ouy Ou,
R I A — =
ox 0z oy  ox oz dy

Integration of these equations gives the following expressions for the com-
ponents of the displacement:

1
Uy = — ﬁ{zz—k o(x2—y2)}

uy = — oxy/R,

(17.4)
1, = x2/R.

The constants of integration have been put cqual to zero; this means that
we “fix’’ the origin.

§17 Bendiug of vods )

It 1s scen from formulac (17.4) that the points initially on a cross-scetion
2z = constant = z¢ will be found, after the deformation, on the surface
z = 2o+u; = 2(l+x/R). We see that, in the approximation used, the
cross-sections remain plane but are turned through an angle relative to their
initial positions. 'The shape of the cross-section changes, however; for
example, when a rod of rectangular cross-section (sides a, b) is bent, the sides
y = * }b of the cross-section become y = +3b-+uy = + {b(1—-ox/R), i.c.
no longer parallel but still straight. The sides x = + %@, however, are bent
into the parabolic curves

1
x= tiatu, = +}a — Eﬁ[zoz-l— o(}a?—y2)]

(Fig. 14).
X
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The free energy per unit volume of the rod is
%Gikuu; = %azzuzz = é‘Exz/RZ.

Integrating over the cross-section of the rod, we have

IE/R?) f a2 df. (17.5)
This is the free energy per unit length of a bent rod. The radius of curvature
R is that of the neutral surface. However, since the rod is thin, R can heie
be regarded, to the same approximation, as the radius of curvature of the
bent rod itself, regarded as a line (often called an “elastic line”).

In the expression (17.5) it is convenicnt to introduce the moment of
inertia of the cross-section. The moment of inertia about the y-axis inits plane
is defined as

1, = jx df, (17.6)
analogously to the ordinary moment of inertia, but with the surface clement
df instead of the mass clement. Then the free energy per unit length of the
rod can be written

VIR (17.7)
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We can also determine the moment of the internal stress forees on a given
cross-section of the rod (the bending moment). A force o,, df = (xE/R) df
acts in the z-direction on the surface element df of the cross-section. Its

moment .about the y-axis is xo;, df. Hence the total moment of the forces
about this axis is

My = (E/R) f x2df = EIJR. (17.8)

Thus the curvature 1/R of the elastic line is proportional to the bending
moment on the cross-section concerned.

T.he magnitude of I, depends on the direction of the y-axis in the cross-
sectional plane. It is convenient to express I, in terms of the principal
moments of inertia. If 6 is the angle between the y-axis and one of the
principal axes of inertia in the cross-section, we know from mechanics that

I, = I cos?0+ I sin®0, (17.9)

where I and I are the principal moments of inertia. The planes through
the z-axis and the principal axes of inertia are called the principal planes of
bending.

If, for example, the cross-section is rectangular (with sides g, b), its centre
of mass is at the centre of the rectangle, and the principal axes of inertia
are parallel to the sides. The principal moments of inertia are

I = a3/12, I = abd3/12. (17.10)

For a circular cross-section of radius R, the centre of mass is at the centre
of the circle, and the principal axes are arbitrary. The moment of inertia
about any axis lying in the cross-section and passing through the centre is

= }nR4, (17.11)

§18. The energy of a deformed rod

In §17 we have discussed only a small portion of the length of a bent rod.
In going on to investigate the deformation throughout the rod, we must
F)egm by finding a suitable method of describing this deformation. It is
important to note that, when a rod undergoes large bending deflections,t
Fhere 1s in general a twisting of it as well, so that the resulting deformation
is a combination of pure bending and torsion.

"I.‘o describe the deformation, it is convenient to proceed as follows. We
dlYlde the rod into infinitesimal elements, each of which is bounded by two
adjacent cross-sections. For each such element we use a co-ordinate system
¢, 1, {, so chosen that all the systems are parallel in the undeformed state
and their {-axes are parallel to the axis of the rod. When the rod is bent, thc:

) t By this, it should be remembered, we mean that the vector u is not small, but the strain tensor
is still small.
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co-ordinate system in each element is rotated, and in general differently in
different elements. Any two adjacent systems are rotated through an infini-
tesimal relative angle.

Let d¢ be the vector of the angle of relative rotation of two systems at a
distance d/ apart along the rod (we know that an infinitesimal angle of rotation
can be regarded as a vector parallel to the axis of rotation; its components
are the angles of rotation about each of the three axes of co-ordinates).

To describe the deformation, we use the vector

Q = dg/d], (18.1)

which gives the “‘rate” of rotation of the co-ordinate axes along the rod. It
the deformation is a pure torsion, the co-ordinate system rotates only about
the axis of the rod, i.e. about the {-axis. In this case, thercfore, the vector
Q is parallel to the axis of the rod, and is just the torsion angle 7 uscd in §16.
Correspondingly, in the general case of an arbitrary deformation we can call
the component Q, of the vector 2 the torsion angle. For a pure bending of the
rod in a single plane, on the other hand, the vector £ has no component L2,
i.e. it lies in the £7-plane at each point. If we take the planc of hending as the
¢l-plane, then the rotation is about the #-axis at every point, i.c. £ is parallel
to the 7-axis.

We take a unit vector t tangential to the rod (regarded as an clastic line).
The derivative dt/d! is the curvature vector of the line; its magnitude 1
1/R, where R is the radius of curvature, and its dircction is that of the
principal normal to the curve. The change in a vector due to an infinitesimal
rotation is equal to the vector product of the rotation vector and the vector
itself. Hence the change in the vector t between two neighbouring points of
the elastic line is given by dt = d¢ X t, or, dividing by dl,

dt/dl = Q xt. (18.2)
Multiplying this equation vectorially by t, we have
Q = txdt/d/+t(t - Q). (18.3)

The direction of the tangent vector at any point is the same as that ol the
{-axis at that point. Hence t-Q = €. Using the unit vector n along the
principal normal (n = R dt/dl), we can thercfore put

Q = tXn/R+t,. (18.4)

The first term on the right is a vector with two components 2, 42,
The unit vector t X n is the binormal unit vector. "T'hus the components L2,
Q, form a vector along the binormal to the rod, whose magnitude equals the
curvature 1/R.

1 Tt may be recalled that any curve in spice s charactersed at enc h point by a curvatnre and w
torsion. 'This torsion (which we shall not use) should not be confused with the torsional deformution,
which s n twisting of & rod about ity axis.
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By using the vector £ to characterise the deformation and ascertaining
its properties, we can derive an expression for the elastic free encrgy of a
bent rod. The elastic energy per unit length of the rod is a quadratic function
of the deformation, i.e., in this case, a quadratic function of the components
of the vector . It is easy to see that there can be no terms in this quadratic
form proportional to Q,Q, and Q,Q,. For, since the rod is uniform along
its length, all quantities, and in particular the energy, must remain constant
when the direction of the positive {-axis is reversed, i.e. when { is replaced
by —{, whereas the products mentioned change sign.

For Q; = Q = 0 we have a pure torsion, and the expression for the
energy must be that obtained in §16. Thus the term in Q2 in the free
energy is $CQ2.

Finally, the terms quadratic in €, and Q, can be obtained by starting from
the expression (17.7) for the energy of a slightly bent short section of the rod.
Let us suppose that the rod is only slightly bent. We take the ¢-plane as
the plane of bending, so that the component €, is zero; there is also no torsion
in a slight bending. The expression for the energy must then be that given
by (17.7), i.e. {EI,/R?. We have seen, however, that 1/R2 is the square of the
two-dimensional vector (€2, Q). Hence the energy must be of the form
$EI.Q 2. For an arbitrary choice of the £ and 7 axes this expression becomes,
as we know from mechanics,

E(I,,Q,2+21,0Q .0,+1,,Q.2),

where I, I,,, I, are the components of the inertia tensor for the cross-
section of the rod. It is convenient to take the ¢ and % axes to coincide with
the principal axes of inertia. We then have simply $E(LQ2+ [,Q,?2), where
I, I» are the principal moments of inertia. Since the coefficients of Q2 and
(2,2 are constants, the resulting expression must be valid for large deflections
also

Finally, integrating over the length of the rod, we obtain the following

expression for the elastic free energy of a bent rod:
Froa = [ (JHEQR+1BLEQ,2+1CQdL. (18.5)

Next, we can express in terms of £ the moment of the forces acting on
a cross-section of the rod. This is easily done by again using the results
previously obtained for pure torsion and pure bending. In pure torsion, the
moment of the forces about the axis of the rod is Cr. Hence we conclude
that, in the general case, the moment M, about the {-axis must be CQ,.
Next, in a slight deflection in the {Z-plane, the moment about the 7-axis 1s
ELL/R. In such a bending, however, the vector & is along the %-axis, so that
1/R is just the magnitude of R, and El/R = EI;Q. Hence we conclude
that, in the general case, we must have ME = LNy, M, = ELQ, (the ¢ and
n axes being along the principal axes of inertia in thc (,mcs s(ctmn) 'hus

§13 The cuergv of a deformed vod S

the components of the moment vector M oare
M, = ELQ,, M,  ElLL, M, Q. (18.0)

The elastic energy (18.5), expressed in terms of the moment of the forees, .

Mp M M .
Froa = f {_: el (15.7)
2LE 261 20

An important case of the bending of rods is that of a slight bending, m
which the deviation from the initial position is cverywhere small compared
with the length of the rod. In this case torsion can be supposed absent, and
we can put £, = 0, so that (18.4) gives simply

£ = tXn/R = txdt/dl. (18.%)

We take a co-ordinate system «x, v, z fixed in space, with the = axis alony: the
axis of the undeformed rod (instead of the system &, 2, £ for cach pomnt m the
rod), and denote by X, Y the co-ordinates x, y for points on the clistic hine,
X and Y give the displacement of points on the line from then poations
before the deformation.

Since the bending is only slight, the tangent vector s almont patallel
to the z-axis, and the difference in direction can be approximately neplected.
The unit tangent vector is the derivative t  dr/dl of the 1adins vector v

of a point on the curve with respect to its tength. Henee
dt/dl = d2r[d]2 ~ d?r/d=?,;

the derivative with respect to the length can be approximately replaced by
the derivative with respect to ». In particular, the x and ¥ components ol
this vector are respectively d2X/dz? and d2Y/ds2. 'The components W, 0,
are, to the same accuracy, equal to Q, Q  and we have from ([8.8)

Q, = —d?Y/d=?, I A (189

Q,

Substituting these expressions in (18.5), we obtain the clastic enerpy ol o
slightly bent rod in the form

dzy d2X\2
Froa = 3E ﬂll( ) |'Ig( ) ) }d.:_ (18.10)
ds? dz?

Here I3 and I are the moments of inertia about the axes of xand y respectively,
which are the principal axes of incrtia.

In particular, for a rod of circular cross-section, Iy - I, 1, and the
integrand is just the sumn of the squared sccond derivatives, which m the
approximation considered is the square of the curvature:

((l X ) ((l“" )")3 |
-4 .
dt Cda® R
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Hence formula (18.10) can be plausibly generalised to the case of slight
bending of a circular rod having any shape (not necessarily straight) in its
undeformed state. To do so, we must write the bending encrgy as

1 1\2
Froa = $EI | |— — —) dz, 18.11
rod = % f( R RO) 2 ( )
where Ry is the radius of curvature at any point of the undeformed rod. This
expression has a minimum, as it should, in the undeformed state (R = Ry),
and for Rg - oo it becomes formula (18.10).

§19. The equations of equilibrium of rods

We can now derive the equations of equilibrium for a bent rod. We again
consider an infinitesimal element bounded by two adjoining cross-sections
of the rod, and calculate the total force acting on it. We denote by F the
resultant internal stress on a cross-section.t The components of this vector
are the integrals of oy over the cross-section:

Fy = [og df. (19.1)

If we regard the two adjoining cross-sections as the ends of the element, a
force F+dF acts on the upper end, and —F on the lower end; the sum of
these is the differential dF. Next, let K be the external force on the rod per
unit length. Then an external force K d/ acts on the element of length dl.
The resultant of the forces on the element is therefore dF + K d/. This must
be zero in equilibrium. Thus we have

dF/dl = — K. (19.2)

A second equation is obtained from the condition that the total moment of
the forces on the element is zero. Let M be the moment of the internal
stresses on the cross-section. This is the moment about a point (the origin)
which lies in the plane of the cross-section; its components are given by
formulae (18.6). We shall calculate the total moment, on the element con-
sidered, about a point O lying in the plane of its upper end. Then the
internal stresses on this end give a moment M+ dM. The moment about O
of the internal stresses on the lower end of the element is composed of the
moment —M of those forces about the origin O’ in the plane of the lower
end and the moment about O of the total force —F on that end. This latter
moment is —dl X —F, where dl is the vector of the element of length of the
rod between O’ and O. The moment due to the external forces K is of a
higher order of smallness. Thus the total moment acting on the element
considered is dM+dIXF. In equilibrium, this must be zero:

dM+dIXF = 0.

t This notation will not lead to any confusion with the free energy, which does not appear in
§§19-21.

§19 The equations of equilthrinm of rods R

Dividing this cquation by d/ and using the fact that dlfdl = t 1s the unit
vector tangential to the rod (regarded as a lince), we have

dM/d! = Fxt. (19.3)

Equations (19.2) and (19.3) form a complete set of equilibrium cquations
for a rod bent in any manner.

If the external forces on the rod are concentrated, i.e. applicd only at
isolated points of the rod, the equilibrium equations at all other points e
much simplified. For K = 0 we have from (19.2)

F = constant, (19.4)

i.e. the stress resuitant is constant along any portion of the rod between
points where forces are applied. The values of the constant arc found from
the fact that the difference Fo—F; of the forces at two points T and 2 s

Fo—F, = — 2K, (19.5)

where the sum is over all forces applied to the segment of the rod hetween
the two points. It should be noticed that, in the difference Fuo |y, the
point 2 is further from the point from which /is measured than is the pomnt 1
this is important in determining the signs in equation (19.5). In particalar,
only one concentrated force f acts on the rod, and is applicd at its free end,
then F = constant = f at all points of the rod. A

The second equilibrium equation (19.3) is also simplificd.  Putting
t = dl/dl = dr/d! (where r is the radius vector from any fixed point to the
point considered) and integrating, we obtain

M = F Xr+ constant, (19.6)
since F is constant.

If concentrated forces also are absent, and the rod is bent by the apphication
of concentrated moments, i.e. of concentrated couples, then T conntant
at all points of the rod, while M is discontinuous at points where couples
are applied, the discontinuity being equal to the moment of the couple.

Let us consider also the boundary conditions at the ends of a hent vod.
Various cases are possible.

The end of the rod is said to be clamped (¥ig. 4a, §12) if it cannot move
either longitudinally or transversely, and moreover its dircction (i.c. the diree
tion of the tangent to the rod) cannot change. In this casc the boundary
conditions are that the co-ordinates of the end of the rod and the unit tangen
tial vector t there are given. The reaction force and moment exerted on the
rod by the clamp are determined by solving the cquations. .

The opposite case is that of a free end, whose position and direction are
arbitrary. In this case the boundary conditions are that the force F oand
moment M must be zero at the end of the rod.

t If a concentrated force Fis npplicd to the free end of the rad, the boundary conditton s -

not F .. 0.
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If the end of the rod is fixed 1o a hinge, it cannot be displaced, but its
direction can vary. In this case the moment of the forces on the freely turning
end must be zero.

Finally, if the rod is supported (Fig. 4b), it can slide at the point of support
but cannot undergo transverse displacements. In this case the direction t of
the rod at the support and the point on the rod at which it is supported are
unknown. The moment of the forces at the point of support must be zero,
since the rod can turn freely, and the force F at that point must be perpen-
dicular to the rod; a longitudinal force would cause a further sliding of the
rod at this point.

The boundary conditions for other modes of fixing the rod can easily be
established in a similar manner. We shall not pause to add to the typical
examples already given.

It was mentioned at the beginning of §18 that a rod of arbitrary cross-
section undergoing large deflections is in general twisted also, even if no
external twisting moment is applied to the rod. An exception occurs when a
rod is bent in one of its principal planes, in which case there is no torsion.
For a rod of circular cross-section no torsion results for any bending (if there
is no external twisting moment, of course). ‘This can be seen as follows. The
twisting is given by the component Q, = -t of the vector Q. Let us
calculate the derivative of this along the rod. To do so, we use the fact that
Q= M,C:

d dQ, dM dt
—(Mt) = C—= = —t+ M. —.
d/ di dl dl
Substituting (19.3), we see that the first term is zero, so that
CdQ,/dl = M-.dt/d].

For a rod of circular cross-section, I} = I = I; by (18.3) and (18.6), we can
therefore write M in the form

M = Elt xdi/dl+tCQ,. (19.7)
Multiplying by dt/d/, we have zero on the right-hand side, so that
dQ,/dl = 0,
whence
(}, = constant, (19.8)

i.e. the torsion angle is constant along the rod. If no twisting moments are
applied to the ends of the rod, then Q, is zero at the ends, and there is no
torsion anywhere in the rod.

For a rod of circular cross-section, we can therefore put for pure bending

d2r

ir
M - Eltxdtjdl = T % .
a1 ™ are

(19.9)

NN The equattons of cquilibrnime of rods 3h
Substituting this in (19.3), we obtain the equation for pure bending of a
circular rod:
dr dr dr
El—%-—— =F (19.10)

. x ———
dldp d/

PROBLEMS

ProBLEM 1. Reduce to quadratures the problem of determining the shape of a 1o ol
circular cross-section bent in one plane by concentrated forces.

SoLuTroN. Let us consider a portion of the rod lying between points where the forces
are applied; on such a portion F is constant. We take the plane of the bent rod as the xy
plane, with the y-axis parallel to the force ¥, and introduce the angle 8 between the tangent
to the rod and the y-axis. Then dx/d] = sin 8, dy/dl = cos 8, where x, y arc the co-ordinates
of a point on the rod. Expanding the vector products in (19.10), we obtain the following
equation for @ as a function of the arc length I: EId%/dl?—Fsin 8 = 0. A fust integration
gives $EI(d#/dl)*-+ F cos 8 = ¢, and

r

L= +/QED |

N —— |
V(- Fcost) M

‘The function 8() can be obtained in terms of elliptic functions. The co~ordimates

X = fsin@dl, ¥ = fcos@dl

e x = ++/[2EI{c1~ F cos §)/FZ]+ constant,
+ /GET) cos 6 df N ant (")
= 1 — - constant.
y= Ve f V(1 F cos )

‘The moment M (19.9) is parallel to the z-axis, and its magnitude is M =- IF1d8/dl.

ProBLEM 2. Determine the shape of a bent rod with one end clamped and the other undes
a force f perpendicular to the original direction of the rod (Fig. 15).

Fic. 15
SorurioN. We have F = constant = f everywhere on the rod. At the clamped end
(Il = 0), 8 = %7, and at the free end (I = L, the length of the rod) M = 0, i.c. 7 0. P'utting

6(L) = 0,, we have in (1), Problem 1, ¢; == f cos 8, and

dn
v (cos Oy (—'os )

o
L VGRS |
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Hence we obtain the equation for 0,: For a small deflection, 84+ 1, and we can write
r dog L ~ /(El|f) (f“__ﬁ_“do $mv/(EI[f)
L=+GEI)| —— ~ J s _poy 27 '
V(3 /f)! V/(cos8o—cos 6) J vV (0o — 62)

i.e. 84 does not appear. This shows that, in accordance with the result of §21, Problem 3,

The shape of the rod is given by the solution in question exists only for f > #?EI/4L?, i.e. when the rectilinear shape ceases

x = 4/(2EI|f) [4/(cos O} — 1/(cos 0y — cos 6)}, to be stable.
in
cos 0 do
¥ = VIEIR) J +/(cos B —cos )

ProBLEM 3. The same as Problem 2, but for a force f parallel to the original direction of

the rod.
")
| Fic. 17
.’%// f
e ProBLEM 4. The same as Problem 2, but for the case where both ends of the rod are sup-
r ported and a force f is applied at its centre. The distance between the supports is L,.
i SoLution. We take the co-ordinate axes as shown in Fig. 17. The force I is constant on
: each of the segments AB and BC, and on each is perpendicular to the dircction of the rod at
the point of support 4 or C. The difference between the values of F on 45 and B( is f,
e x and so we conclude that, on AB, F sin 8, = —1f, where 8, is the angle between the y-axis
T and the line AC. At the point 4 (I = 0) we have the conditions 8§ = = and M — 0, i.c.
0’ = 0, so that on AB
F1c. 16
SorutioN. We have F = —f; the co-ordinate axes are taken as shown in Fig. 16. The : im dé Mo
boundary conditions are § = 0 for [ = 0, 8’ = 0 for [l = L. Then l = El'sinfo , = A/M?_’
f y/cost f
I} 6
= B [ "
= 2 T aav . i
] 4/(cos 8 —cos bp) Elsinfy
y = [————] 4/cosf db.
where f
0o = O(L) ,
is given by The angle 8, is determined from the condition that the projection of AB on the straight line

AC must be 3L,, whence

9,
do
L = v/GEI)) f e r—t L |Blsindy Foos(9-0o)
0 bo = A/ f ) aing

de.

For x and ¥ we obtain

8, lying between 0 and } the derivative df/df, (f being regarded as a tunction
x = A/(2ZEI/f)[7/(1 = cos 8y) — 4/(cos 8 — cos § For some value 8, lying o 0 ! arde '
\/( /f)[\ ( 0) \/( 0)]’ of 8,) passes through zero to positive values. A further decrease in 8, i.e. increase in the
P deflection, would mean a decrease in f. This means that the solution found here becotnes
EID cos @ d@ unstable, the rod collapsing between the supports.
y= \/( / f) \/(C()SO— cos 0(;5 Prosrem 5. Reduce to quadratures the problem of three-dimensional hending of a rod
0 under the action of concenteated forces.
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SoLuTION. Let us consider a segment of the rod between points where forces are applied,
on which F = constant. Integrating (19.10), we obtain

r
El—%X—— = Fxr+cF; (D

the constant of integration has been written as a vector ¢F parallel to F,. si.nce, by appro-
priately choosing the origin, i.e. by adding a constant vector to r, we can ehmm?te any vector
perpendicular to F. Multiplying (1) scalarly and vectorially by l." (the prime denotlr?g
differentiation with respect to ), and using the fact that t’»1”" = 0 (since 1'% = 1), we obtain
Ferxr'+cFer' =0, EIr” = (FXr)xr'+cFXr'. In components (with Fhe z-axis parallel
to F) we obtain (xy’ —yx)+ezx’ = 0, Elz” = — F(xx’+1v"). Using cylindrical polar co-
ordinates 7, ¢, =, we have

rip ez’ = 0, EIz" = — Fyr', (2)
The second of these gives
¥ = F(A—r2)2E], 3)
where A is a constant. Combining {2) and (3) with the identity »'2 42§23 4-2"2 = 1, we find
rdr

dr = V[P = (72t 2)(A — r2)2F2 4 E212]

and then (2) and (3) give

F (A—r?)r dr
7= 2E1f V/[r2— F2(r2 4 2)(A — r2)2/4 E212]
, cF (A—r2) dr
? = T 2E ry/[12— F2(r2+ () (A — r2)2 /4 E2]?]

which gives the shape of the bent rod.

ProBLEM 6. A rod of circular cross-section is subjected to torsion (with torsion angle 7)
and twisted into a spiral. Determine the force and moment which must be applied to the
ends of the rod to keep it in this state.

SoLuTioN. Let R be the radius of the cylinder on whose surface the spiral lies (and along
whose axis we take the z-direction) and « the angle between the tangent to the spiral and a
plane perpendicular to the z-axis ; the pitch % of the spiral is related to wand R bva = 27R tan .
The equation of the spiral is x = R cos ¢, y = Rsin ¢, 2 = ¢R tan o, where ¢v. is t.he angle
of rotation about the z-axis. The element of length is dI = (R/cos a)dé. Substituting these
expressions in (19.7), we calculate the components of the vector M, a.nd then the force F
from formula (19.3); F is constant everywhere on the rod. The rt?sult is that the force .F is
parallel to the z-axis and its magnitude is F = F; = (Cr/R) sin a—(EI/R?) cos? o sin «.
‘The moment M has a z-component M, = Cr sin «a-+(EI/R) cos® @ and a #-component, along
the tangent to the cross-section of the cylinder, My = FR.

ProsrEm 7. Determine the form of a flexible wire (whose resistance to bending can be
neglected in comparison with its resistance to stretching) suspended at two points and in a
gravitational field.

SorLutioN. We take the plane of the wire as the xy-plane, with the y-axis vurriA(:ally down-
wards. In equation (19.3) we can neglect the term dM/d/, since M is propnrrmgul to Ef.
Then FXt = 0, i.e. F is parallel to t at every point, and we can put F == /e, Equation (19.2)

then gives
d r(lx) 0 d 'I,(l,)’) )
;11( o, ‘ (Il( al 7

§20 Small deflections of rods 89

where g is the weight of the wire per unit length; hence F da/dl = ¢, Fdy/dl = ¢l, and so
F = 1/(e?+¢**), so that dx/dl = Af\/(A* %), dy/dl = If /(A2 412, where A - c/q.
Integration gives x = 4 sinh—*(l/4), y = V{(A*+1*), whence y = A cosh (x/A), i.c. the
wire takes the form of a catenary. The choice of origin and the constant 4 are determined
by the fact that the curve must pass through the two given points and have a given length,

§20. Small deflections of rods

The equations of equilibrium are considerably simplified in the important
case of small deflections of rods. This case holds if the direction of the
vector t tangential to the rod varies only slowly along its length, i.e. the deriva-
tive dt/d/ is small. In other words, the radius of curvature of the bent rod is
everywhere large compared with the length of the rod. In practice, this
condition amounts to requiring that the transverse deflection of the rod js
small compared with its length. It should be emphasised that the deflection
need not be small compared with the thickness of the tod, as it had to be in
the approximate theory of small deflections of plates given in §§11-12.4

Differentiating (19.3) with respect to the length, we have

M dF gt 2ol
ae T g Xy (20-1)

The second term contains the small quantity dt/d/, and so can usually be
neglected (some exceptional cases are discussed below). Substituting in the
first term dF/dl = —K, we obtain the equation of equilibrium in the form

d2M/dI2 = txK. (20.2)

We write this equation in components, substituting in it from (18.6) and

(18.9)
M= —ELY", M, = ELX", M, =0, (20.3)

where the prime denotes differentiation with respect to 3. The unit vector t
may be supposed to be parallel to the z-axis. Then (20.2) gives

ELXW K, = 0, ELhYW_K, = 0. (20.4)

These equations give the deflections X and Y as functions of z, i.c. the shape
of a slightly bent rod.

The stress resultant F on a cross-section of the rod can also be expressed in
terms of the derivatives of X and Y. Substituting (20.3) in (19.3), we obtain

Fy = —FKLX", Fy= —-ELY", (20.5)

We see that the second derivatives give the moment of the internal stresses,
while the third derivatives give the stress resultant, The force (20.5) is
called the shearing force. If the bending is due to concentrated forces, the
shearing force is constant along each segment of the rod between points

t We shall not give the complex theory of the hendimg of rods which are not steaight when un-
deformed, but only conuider ane mnple exsmmple (see Problemn 8 and 9y,

4
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where forces are applied, and has a discontinuity at cach of these points
equal to the force applied there.

The quantities Els and EI; are called the flexural rigidities of the rod in
the ¥z and yz planes respectively.}

If the external forces applied to the rod act in one plane, the bending takes
place in one plane, though not in general the same plane. The angle between
the two planes is easily found. If « is the angle between the plane of action of
the forces and the first principal plane of bending (the xz-plane), the equa-
tions of equilibrium become XV = (K/IE) cos o, YV) = (K[/LE) sin «.
The two equations differ only in the coefficient of K. Hence X and Y are
proportional, and Y = (XIp/l1)tan . The angle § between the plane of
bending and the xz-plane is given by

tan6 = (/1) tana. (20.6)

For a rod of circular cross-section I} = Iy and « = 6, i.e. the bending occurs
in the plane of action of the forces. The same is true for a rod of any cross-
section when « = 0, i.e. when the forces act in a principal plane. The magni-
tude of the deflection { = 4/(X2+ Y?2) satisfies the equation

EIfaw = K, I = Iilp/+/(112 cosa+ Io2 sina). (20.7)
The shearing force F is in the same plane as K, and its magnitude is
F = —EI{'". (20.8)
Here I is the * >ffective” moment of inertia of the cross-section of the rod.
We can writ. down explicitly the boundary conditions on the equations of
equilibrium for a slightly bent rod. If the end of the rod is clamped, we must

have X = Y = 0 there, and also X’ = Y’ = 0, since its direction cannot
change. Thus the conditions at a clamped end are

X=Y=0, X =Y =0. (20.9)

The reaction force and moment at the point of support are determined from
the known solution by formulae (20.3) and (20.5).

When the bending is sufficiently slight, the hinging and supporting of a
point on the rod are equivalent as regards the boundary conditions. The
reason is that, in the latter case, the longitudinal displacement of the rod at
its point of support is of the second order of smallness compared with the

t An equation of the form
DXW.-K, =0 (20.4a)

also describes the bending of a thin plate in certain limiting cases. Let a rectangular plate (with
sides a, b and thickness k) be fixed along its sides a (parallel to the y-axis) and bent along its sides b
(parallel to the z-axis) by a load uniform in the y-direction. In the general casc of arbitrary a and b,
the two-dimensional equation (12.5), with the appropriate boundary conditions at the fixed and free
edges, must be used to determine the bending. In the limiting case a 3> b, however, the deformation

may be regarded as uniform in the y-direction, and then the two-dimensional equilibrium equation
becomes of the form (20.4a), with the flexural rigidity replaced by D . Elfaf12(1 %), Equation
(20.4a) is also applicable to the opposite limiting case a -< b, when the plate can be reparded as a
rod of length b with a narrow rectangular cross-section (n rectangle of sides a and B); in this case,

however, the flexural rigidity is 1) Ty = IhPaf12.

§20 Small deflections of rods 9l

transverse deflection, and can therefore be neglected. 'The boundary con-
ditions of zero transverse displacement and moment give

X=Y=0, X'=Y" =0 (20.10)

The direction of the end of the rod and the reaction force at the point of
support are obtained by solving the equations.

Finally, at a free end, the force F and moment M must be zero. According
to (20.3) and (20.5), this gives the conditions

XI/ — YII —_ O’ X/II — YI/I — O- (2‘).] l)

If a concentrated force is applied at the free end, then F must be equal to this
force, and not to zero.

It is not difficult to generalise equations (20.4) to the case of a rod of
variable cross-section. For such a rod the moments of incrtia /; and /[, are
functions of 2. Formulae (20.3), which determine the moment at any cross
section, are still valid. Substitution in (20.2) now gives

d2 ; &2y dz ;42X
E (1 ) - K,, E_(I ) — K, (20.12)

a2\ dg? dz2\" 7 de?

in which I and I» must be differentiated. The shearing force 1s

d d2x d dzy o
Fp= —E——(Ig ) F, = —Ev(llm-—;-). (20.13)
dz dz2 2

Let us return to equations (20.1). Our neglect of the sccond term on the
right-hand side may in some cases be illegitimate, even if the bending is
slight. The cases involved are those in which a large internal stress resultant
acts along the rod, i.e. F is very large. Such a force is usually caused by a
strong tension of the rod by external stretching forces applicd to its ends.
We denote by T the constant lengthwise stress F'z. If the rod is strongly
compressed instead of being extended, T' will be negative. In expanding the
vector product F xdt/d! we must now retain the terms in 7', but those i I,
and F, can again be neglected. Substituting X", Y, 1 for the components
of the vector dt/d], we obtain the equations of equilibrium in the form

LEXW_TX"-K,; =0,
LEYW -TY" - Ky = (.
The expressions (20.5) for the shearing force will now contain additional

terms giving the projections of the force 7' (along the vector £) on the v and
y axes :

(20.14)

Fy = —ElLX"+TX, Fy= —ELY"+TY". (20.15)

These formulae can also, of course, be obtained direetly from (19.3).
Tn some cases a large foree 7' can result from the bending itself, even if
no stretching forces are applied. Let us consider a rod with both ends



92 The Fygulibyvam of Rods and Plates 520

clamped or hinged to fixed supports, so that no longitudinal displacement is
possible. Then the bending of the rod must result in an extension of i,
which leads to a force 7 in the rod. It is easy to estimate the magnitude of the
deflection for which this force becomes important. The length L + AL of the
bent rod is given by

L
L+AL = [/(1+X2+Y"?) dz,
0

taken along the straight line joining the points of support. For slight bending
the square root can be expanded in series, and we find

L
AL =} f (X"24 Y"2) dz.
0

The stress force in simple stretching is equal to the relative extension multi-
plied by Youne’s modulus and by the area .S of the cross-section of the rod.
Thus the force T is

T——ESfLX'2 Y2y d 20.16
= op XY ax (20.16)

If 3 is the order of magnitude of the transverse bending, the derivatives
X’ and Y’ are of the order of 8/L, so that the integral in (20.16) is of the
order of 82/L, and T' ~ ES(8/L)2. The orders of magnitude of the first and
second terms in (20.14) are respectively EI8/L4 and T8/L% ~ ES8/LA. The
moment of inertia [ is of the order of #4, and S ~ A2, where % is the thickness
of the rod. Substituting, we easily find that the first and second terms in
(20.14) are comparable in magnitude if § ~ 4. Thus, when a rod with fixed
ends is bent, the equations of equilibrium can be used in the form (20.4) only
if the deflection is small in comparison with the thickness of the rod. If §
is not small compared with % (but still, of course, small compared with L),
equations (20.14) must be used. The force T in these equations is not known
a priori. It must first be regarded as a parameter in the solution, and then
determined by formula (20.16) from the solution obtained; this gives the
relation between T and the bending forces applied to the rod.

The opposite limiting case is that where the resistance of the rod to bending
is small compared with its resistance to stretching, so that the first terms in
equations (20.14) can be neglected in comparison with the second terms.
Physically this case can be realized either by a very strong tension force T or
by a small value of EI, which can result from a small thickness 2. Rods under
strong tension are called strings. In such cases the equations of cquilibrium
are

TX" 1Ky 0, Ty 1Ky 0. (20.17)

§2() Small {/r‘f/ll’t'll‘“ll,\' of rods 93

The ends of the string are {ixed, in the scnse that their co-ordinates are given,
i.e.

X=Y=0. (20.18)

The direction of the ends cannot be decided arbitrarily, but is given by the
solution of the equations.

In conclusion, we may show how the equations of equilibrium of a slightly
bent rod may be obtained from the variational principle, using the expression
(18.10) for the elastic energy:

Froa = 3E [ {LY"2+ LX""%} ds.

In equilibrium the sum of this energy and the potential energy duc to the
external forces K acting on the rod must be a minimum, i.c. we must have
8Froa— [(Kz8X+ Ky3Y) dz = 0, where the second term is the work done
by the external forces in an infinitesimal displacement of the rod. In varying
Froq, we effect a repeated integration by parts:

P[x2ds = [ X78X" d
= [X"8X']— [ X"3X" dx
= [X"8X"]— [X""8X]+ [ X®5X ds,
and similarly for the integral of Y"’2. Collecting terms, we obtain
| (BLY® — K,)8Y +(ELX— K,)3X] ds+

+EL[(Y"8Y - Y"'8Y)]+ EL[(X"8X - X"6X)] -- 0.

The integral gives the equilibrium equations (20.4), since the variations 8.X
and 3Y are arbitrary. The integrated terms give the boundary conditions on
these equations; for example, at a free end the variations 8X, 3V, 8.\, a}”
are arbitrary, and the corresponding conditions (20.11) are obtained. Also,
the cocfficients of 6X and 8Y in these terms give the expressions (20.5) for
the components of the shearing force, and those of X’ and 8}’ yive the
expressions (20.3) for the components of the bending moment.

Finally, the equations of equilibrium (20.14) in the presence of a tension
force T can be obtained by the same method if we include in the enerpy a
term TAL = }T [ (X"2+ Y'2) dz, which is the work done by the force T over a
distance Al equal to the extension of the rod.

PROBLEMS

Prourim 1. Determine the shape of a rod (of length £} bent by its own weight, for vanioun
modes of support at the ends.
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SoruTIoN. The required shape is given by a solution of the equation () = ¢/I1, where
¢ is the weight per unit length, with the appropriate boundary conditions at its ends, as shown
in the text. The following shapes and maximum displacements are obtained for various
modes of support at the ends of the rod. The origin is at one end of the rod in each case.

(2) Both ends clamped:
{ = q3%(z—1)%[24E1,  [(}]) = ql*/384EI.
(b) Both ends supported:
{ = qu(3— 202+ B)24E],  [(3]) = Sqlt[384EL
(c) One end (2 = I) clamped, the other supported:
{ = q2(223— 3122+ [3)/48E1, {(0-42]) = 0-0054ql4/EL

(d) One end (= = 0) clamped, the other free: |

[ = g22(=2—4lu+612)24EL,  (I) = ql4/3EL

ProBLEM 2. Determine the shape of a rod bent by a force f applied to its mid-point.

SorLuTioN. We have {(") = 0 everywhere except at # = 3I. The boundary conditions
at the ends of the rod (z = 0 and 2 = [) are determined by the mode of support; at 2 = i,
{, ¢’ and {” must be continuous, and the discontinuity in the shearing force F = —EI{"”’
must be equal to f.

The shape of the rod (for 0 € 2 < 4/) and the maximum displacement are given by the
following formulae:

(a) Both ends clamped:
{ = f22(31—42)/48EI,
(b) Both ends supported:
L = fx(312—4z*)[48EI,  ((}]) = fI3/48EL

The rod is symmetrical about its mid-point, so that the functions {(2) in 3/ < =z < [ are
obtained simply by replacing z by [—=z.

{(31) = fI3/192EL

ProBrLEM 3. The same as Problem 2, but for a rod clamped at one end (2 = 0) and free
at the other end (2 = [), to which a force f is applied.

SorLutioN. At all points of the rod F = constant = f, so that {"” = —f/EI. Using the
conditions { = 0, {’ = 0 for 2 = 0, [ = 0 for 2 = [/, we obtain

{ = f2%(31—2)/6EI, {1y = fI3/3EL

ProsLEM 4, Determine the shape of a rod with fixed ends, bent by a couple at its
mid-point.

SoLuTtioN. At all points of the rod {{") = 0, and at 2 = }{ the moment M = EI{”’ has
a discontinuity equal to the moment m of the applied couple. The results are:

(a) Both ends clamped:
{ = ma2(1-22)/8EIl for 0 < 2 < 1,
{ = —m(l—2)2[1-2(I—2)]/8EIl for }l < z £ L
(b) Both ends hinged:
{ = m2(12—422)[24F1] for 0 < z < §,
{ = —m(l—2)[2—4(—2)2)/24E1l for }] < = < L

§20 Small deflections of rods 95

The rod is bent in opposite directions on the two sides of 2 ~= 3L

ProBLEM 5. ‘I'he same as Problem 4, but for the case where one end is clamped and the
other end free, the couple being applied at the latter end.

SoLuTioN. At all points of the rod M = EI{” = m,and at 2 == O we have { == 0, {* - 0.
The shape is given by { = mz?*2EI.

ProBLEM 6. Determine the shape of a circular rod with hinged ends stretched by a forca
T and bent by a force f applied at its mid-point.

SoLuTION. On the segment 0 < 2z < 4/ the shearing force is }f, so that (20.15) givens the
equation

U —TU|EI = —fJ2EL.

The boundary conditions are { = {” = 0 for 2 =0 and I; {’ = 0 for & = §/ (since [’ 1n
continuous). The shape of the rod (in the segment 0 < z < #l) is given by

f sinh kz
B —Z_T(z Ok cosh 3kl

For small k this gives the result obtained in Problem 2 (b). For large kit becomes { - (/27T
i.e., in accordance with equations (20.17), a flexible wire under a force [ takes the form of
two straight pieces intersecting at z = 3.

4 ), k = +/(T/EI).

If the force T is due to the stretching of the rod by the transverse force, it must he deter-
mined by formula (20.16). Substituting the above result, we obtain the equation
1 [3 1 h21 2l 3 nhlkl] 8E2[3
—]—=+-—tanh“-Rl — —tanh =
k12 2 2 Rl2 f2s’

which determines T as an implicit function of f.

PrOBLEM 7. A circular rod of infinite length lies in an elastic substance, i.c. wh(-n.it in
bent a force K = —a{ proportional to the deflection acts on it. Determine the shape of the
rod when a concentrated force f acts on it.

SoLuTioN. We take the origin at the point where the force f is applied. The equation

EI{t™) = —al holds everywhere except at z = 0. The solution must satisfy the condition
{=0atz= 4+, and at & = 0 {’ and {”’ must be continuous; the difference between the
shearing forces F = —EI{" for z - 0+ and # - 0 — must be f. The required solution

o \1/4
¢ e/1#l[cosBlz| +sinflz]], B = <4E1) '

~ $BEI

ProBLEM 8. Derive the equation of equilibrium for a slightly bent thin circular 1ol which,
in its undeformed state, is an arc of a circle and is bent in its plane by radial forces.

SoLuTioN. Taking the origin of polar co-ordinates r, ¢ at the centre of the circle, we wiite
the equation of the deformed rod as r = a+ {($), where a is the radius of the arc and { a sl
radial displacement. Using the expression for the radius of curvature in polar co-ordinaten,
we find as far as the first order in {

1 2—7rr'" +2r"2 1 ¢+

R (r2+4r'2)3/2 " a a?

where the prime denotes differentiation with respect to ¢. According to (18.11), the eluntic
bending energy is

1

0 do
F 11‘1¢ S D Elfg e df
‘rog = 13 1. _— = ) - B l ),
rod = 2 .[( R a) a df 2a3 . (
0

0
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¢o being the angle subtended by the arc at its centre, "The equation of equilibrium is obtained
from the variational principle

do

8 Froa — f $tKya dd =
0
where K, is the external radial force per unit length, with the auxiliary condition

do
Jrdg =

which is, in this approximation, the statement of the fact that the total length of the rod is
unchanged, i.e. it undergoes no general extension. Using LAGRANGE’s method, we put

do
8Froa— f aKSL g+ au j S dgp = 0,

0

where « is a constant. Varying the integrand in Fioq and integrating the 8" term twice by
parts, we obtain

f {-g—(z; + 20+ L) — aKy + aa}sg dp+

EI r ’ EI ’ [ZZANN
F L~ + T80 =
a a
Hence we find the equation of equilibriumt

EI{{M+20" + {)ja*— Ky+a = 0, 1)

the shearing force F = —EI({’+{”)/a® and the bending moment M = EI({+{")/a%;
cf. the end of §20. The constant « is determined from the condition that the rod as a whole
is not stretched.

ProBLEM 9. Determine the deformation of a circular ring bent by two forces f applied
along a diameter (Fig. 18).

t In the absence of external forces, Ky - 0 and a - - 0; the non-zero solutions of the resulting
homogeneous equation correspond to a simple rotation or translation of the whole rod.

§21 The stability of elastic systems v/

SoLUTION. Integrating equation (1), Problem 8 along the circumference of the ring, we
have 2maa = | K,add —= 2f. We have cquation (1) with K, cverywhere except at
¢ =0and ¢ = m:

{0420 + L+ fad | = 0.

The required deformation of the ring is symmetrical about the diatmeters A1 and €', undd
so we must have {’ = 0 at 4, B, C and D. The differcnce in the shearing forces for ¢ » 0
must be f. The solution of the equation of equilibrium which satisfics these condition: i

;= fgj( —chos¢>~—7r cos¢—~s1n¢) 0<d <o

In particular, the points 4 and B approach through a distance

o+l =2 (7 - )

§21. The stability of elastic systems

The behaviour of a rod subject to longitudinal compressing forces is the
simplest example of the important phenomenon of elastic instability, hi
discovered by L. EULER.

In the absence of transverse bending forces Ky, K, thc cquations of
equilibrium (20.14) for a compressed rod have the cvident solution
X = Y = 0, which corresponds to the rod’s remaining straight under a
longitudinal force |T|. This solution, however, gives a stable cquilibrinm
of the rod only if the compressing force |7 is less than a certain critical value
Ter. For |T| < T, the straight rod is stable with respect to any small pertur-
bation. In other words, if the rod is slightly bent by some small force, it will
tend to return to its original position when that force ceases to act.

If, on the other hand, |T'| > T, the straight rod is in unstable cquilibrinm.
An infinitesimal bending suffices to destroy the equilibrium, and a lauge
bending of the rod results. It is clear that, if this is so, the compressed rod
cannot actually remain straight.

The behaviour of the rod after it ceases to be stable must satisfy the cqua
tions for bending with large deflections. 'The value T of the critical load,
however, can be obtained from the equations for small deflections. For
|T| = Ter, the straight rod is in neutral equilibrium. This means that, hesiden
the solution X = Y = 0, there must also be states where the rod is slightly
bent but still in equilibrium. Hence the critical value of 7', is the value of
|T| for which the equations

ELXW4|T|X” =0, ELYWL[T[¥" =0 (21.1)

have a non-zcro solution. "I'his solution gives also the nature of the deforma-
tion of the rod immediately after it ceases to be stable.
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The following Problems give some typical cases of the loss of stability in
various elastic systems.

PROBLEMS
ProBLEM 1. Determine the critical compression force for a rod with hinged ends.

SoLUTION. Since we are seeking the smallest value of [T for which equations (21.1) have
a non-zero solution, it is sufficient to consider only the equation which contains the smaller
of I; and I,. Let I, < I;. Then we seek a solution of the equation ELXUI4|T|X"” = 0
in the form X = A+4Bz+Csinkz+D cos kz, where k = +/(|T|/ElL,). 'The non-zero
solution which satisfies the conditions X = X" = 0 for 2 = 0 and z = [ is X = Csin kz,
with sin k[ = 0. Hence we find the required critical force to be T, = #*EL/I2. On ceasing
to be stable, the rod takes the form shown in Fig. 19a.

Yz

Fic. 19

ProBLEM 2. The same as Problem 1, but for a rod with clamped ends (Fig. 19b).

SorutioN. T¢r = 4m2EL/[I%

ProsrLEM 3. The same as Problem 1, but for a rod with one end clamped and the other
free (Fig. 19¢).

SoLuTION. Ty = w2EL[41%.

ProBLEM 4. Determine the critical compression force for a circular rod with hinged ends
in an elastic medium (see §20, Problem 7).

SoLuTioN. The equations (21.1) must now be replaced by EIX(W 4 |T| X"+ «X = 0.
A similar treatment gives the solution X = A sin nnz/l,

N )
T (” 2Rl

where n is the integer for which T, is least. When « is large, n > 1, i.e. the rod exhibits
several undulations as soon as it ceases to be stable.

PROBLEM 5. A circular rod is subjected to torsion, its ends being clamped. Determine
the critical torsion beyond which the straight rod becomes unstable.

SoLuTION. The critical value of the torsion angle is determined by the appearance of
non-zero solutions of the equations for slight bending of a twisted rod. To derive these
equations, we substitute the expression (19.7) M = EItx dt/dl+4 Crt, where 7 is the constant
torsion angle, in equation (19.3). This gives

d2t

dt
Elt X— + Cro— — FXt = 0.
XEtirg %

§21 The stability of clastic systems 4yl

We differentiate; since the hending is not Large, £ may be regarded as a constant vector 4,
along the axis of the rod (the z-axis) in ditferentinting the first and third terms. Sinee alio
dF/dl = 0 (there being no external forces except at the ends of the rod), we obtain

Elt xdat C o 0
X T T

or, in components,
7
Y o X = 0,
X4 Y™ = 0,

where k = Cr/E]. Taking as the unknown function ¢ = X+iY, we obtain £0) {0,
We seek a solution which satisfies the conditions £ = 0, ¢ =0 forx = Oand 5 [, in the
form ¢ = a(1+ixz—et*?)+bz®, and obtain as the compatibility condition of the equntions
for @ and b the relation etk = (2+ikl)/(2 —ixl), whence $«l = tan p«l. 'The smallest 100t
of this equation is §xl = 449, so that 7., = 8-98EI/Cl.

ProBLEM 6. The same as Problem 5, but for a rod with hinged ends.
SorutioN. In this case we have ¢ = a(l —et%z—}«%2?) + bz, where « is given by
eixl = 1, ie. «l = 2m.
Hence the required critical torsion angle is 7o, = 2=EI/CL.
ProBLEM 7. Determine the limit of stability of a vertical rod under its own weight, the
ower end being clamped.

SorurioN. If the longitudinal stress F, = T varies along the rod, {f/dl # 0 in the
first term of (20.1), and equations (20.14) are replaced by

LEXW (TX'Y - K, = 0,
LEY®™—(TY'Y —K, = 0.
In the case considered, there are no transverse bending forces anywhere in the rod, and

T = —q(l—=), where ¢ is the weight of the rod per unit length and 2 is measured from the
lower end. Assuming that I, < I, we consider the equation

LEX" = TX' = —q(l—-2)X’;

for z = I, X’ = 0 automatically. The general integral of this equation for the function
u=Xis

u = p¥aj_i(n)+8Ji(n)],
n = §V[e(l—2P/EL].

The boundary conditions X’ = 0 for 2 = 0 and X" = 0 for 2 = [ give for the function
u(m) the conditions u = 0 for 1 = 7y = 3+4/(ql*/EL), w'n'"® = 0 for n = 0. In order to natinly
these conditions we must put & = 0 and J_4(no) = 0. The smallest root of this equation
is no = 1:87, and so the critical length is I, = 1-98(J<1,/q)"/*.

where

ProBLEM 8. A rod has an elongated cross-section, so that I3+ I, One end iy climpod
and a force f is applied to the other end, which is free, so as to bend it in the principal x3-plane
(in which the flexural rigidity 1s /£1,). Determine the critical force fo, nt which the rod bent
in a plane becomes unstable and the rod is bent sideways (in the ya-plane), at the same time
undergoing torsion.
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SoruTiON. Since the rigidity EJ, is large compared with /51, (and with the torsional
rigidity C),1 the instability as regards sideways bending occurs while the deflection in the
xz-plane is still small. To determine the point where instability sets in, we must form the
equations for slight sideways bending of the rod, retaining the terms proportional to the
products of the force f in the xz-plane and the small displacements. Since there is a concen-
trated force only at the free end of the rod, we have F = f at all points, and at the free end
(z == I) the moment M = 0; from formula (19.6) we find the components of the moment
relative to a fixed systern of co-ordinates x, vy, 2: My = 0, My = (I—2)f, M, = (Y—=Y,)f,
where Y, == Y(I). Taking the components along co-ordinate axes £, 9, { fixed at each point
to the rod, we obtain as far as the first-order terms in the displacements Mg = $(I—23)f,
M” = (I—2)f, My = (I~2)fdY/dz+f(Y—Y,), where ¢ is the total angle of rotation of a
cross-section of the rod under torsion; the torsion angle 7 = dé/dz is not constant along
the rod. According to (18.6) and (18.9), however, we have for a small deflection

M, = —ELY", M, =ELX", M;=C¢;
comparing, we obtain the equations of equilibrium
ELX" = (I-2)f, ELY" = —¢(I-2)f,
C$' = (I-2)f Y +(Y = Yo)f.

The first of these equations gives the main bending of the rod, in the xz-plane; we require
the value of f for which non-zero solutions of the second and third equations appear. Eliminat-
ing Y, we find

¢+ R(—2)2 ¢ = 0, k2 = f}ELC.
The general integral of this equation is

¢ = av/(I—2)[i[ik(l— 2)P]+bv/(I- =) 4[Ek(I - 2)*].

At the clamped end (= = 0) we must have ¢ = 0, and at the free end the twisting moment
C¢’ = 0. From the second condition we have a = 0, and then the first gives J—3(3k[%) = 0.
The smallest root of this equation is 4kI* = 2-006, whence for = 4-01+/(ELC)/I2.

t For example, for a narrow rectangular cross-section of sides 5 and h (b> h), we have
EI = bWE[12, El, = BRE/12, C = b*u[3.

CHAPTER III

ELASTIC WAVES

§22. Elastic waves in an isotropic medium

Ir motion occurs in a deformed body, its temperature is not in general
constant, but varies in both time and space. This considerably complicates
the exact equations of motion in the general case of arbitrary motions.

Usually, however, matters are simplified in that the transfer of heat from
one part of the body to another (by simple thermal conduction) occurs very
slowly. If the heat exchange during times of the order of the period of
oscillatory motions in the body is negligible, we can regard any part of the
body as thermally insulated, i.e. the motion is adiabatic. In adiabatic defor
mations, however, oy is given in terms of u;; by the usual formulac, the
only difference being that the ordinary (isothermal) values of E and o must be
replaced by their adiabatic values (see §6). We shall assume in what follows
that this condition is fulfilled, and accordingly E and o in this chapter will be
understood to have their adiabatic values.

In order to obtain the equations of motion for an elastic medium, we must

equate the internal stress force Ooyr/0xx to the product of the acceleration
ii; and the mass per unit volume of the body, i.e. its density p:
pii; = OoyfOxy. (22.1)

This is the general equation of motion.
In particular, the equations of motion for an isotropic elastic mediun can

be written down at once by analogy with the equation of equilibrium (7..2).
We have

E
pl = Au-t+ rad div u. (20.2)
2(1+0) 2(1+0)(1—-20) &
Since all deformations are supposed small, the motions considered m the
theory of elasticity are small elastic oscillations or elastic waves. We shall
begin by discussing a plane clastic wave in an infinite isotropic medinm, 1.

a wave in which the deformation u is a function only of one co-ordinate
(%, say) and of the time. All derivatives with respect to y and = in cquations
(22.2) are then zero, and we obtain for the components of the vector u the
equations

0%u, 1 0%u, 0%, 1 02u,
N N A (22.3)

a2 ot o I oo
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(the equation for u, is the same as that for u,)); heret

~ E(l-0) B E
o= Jamronzy " maey 224

Equations (22.3) are ordinary wave equations in one dimension, and the
quantities ¢; and ¢; which appear in them are the velocities of propagation of
the wave. We see that the velocity of propagation for the component #, is
different from that for uy and u,.

Thus an elastic wave is essentially two waves propagated independently.
In one (u;) the displacement is in the direction of propagation; this is called
the longitudinal wave, and is propagated with velocity ¢;. In the other wave
(uy, u) the displacement is in a plane perpendicular to the direction of propa-
gation; this is called the transverse wave, and is propagated with velocity ;.
It is seen from (22.4) that the velocity of longitudinal waves is always greater
than that of transverse waves: we always have]

a > '\/(4/3)63 (225)

The velocities ¢; and ¢; are often called the longitudinal and transverse veloci-
ties of sound.

We know that the volume change in a deformation is given by the sum of
the diagonal terms in the strain tensor, i.e. by u; = div u. In the transverse
wave there is no component u, and, since the other components do not
depend on y or z, divu = 0 for such a wave. Thus transverse waves do not
involve any change in volume of the parts of the body. For longitudinal
waves, however, divu # 0, and these waves involve compressions and
expansions in the body.

The separation of the wave into two parts propagated independently with
different velocities can also be effected in the general case of an arbitrary
(pot plane) elastic wave in an infinite medium. We rewrite equation (22.2) in
terms of the velocities ¢; and ¢;:

4 = ¢2Au+(c2—¢?) grad divu. (22.6)
‘We then represent the vector u as the sum of two parts:
u = w+uy, (22.7)
of which one satisfies
divu; =0 (22.8)
and the other satisfies
curl y; = 0. (22.9)

‘We know from vector analysis that this representation (i.e. the expression of

t We may give also expressions for ¢; and ¢ in terms of the moduli of compression and rigidity
and the Lamé coefficients: ¢; =~ A/{ QK | 4)[3p} = /AL 210ph 0 (pfp).
1 Since o actually varies only between 0 and § (vee the second footnote to §5), we always have

£ > '\/2(1.
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a vector as the sum of the curl of a vector and the gradient of a scalar) is
always possible.
Substituting u = w;+u; in (22.6), we obtain

4+, = 2 A(u+ )+ (2 — ) grad div u,. (22.10)
We take the divergence of both sides. Since div u; = 0, the result is
divii; = 2 A divu+{c2—c®) A divay,

or div(li;~c2Aw) = 0. The curl of the expression in parentheses is also
zero, by (22.9). If the curl and divergence of a vector both vanish in all
space, that vector must be zero identically. Thus
azul ZA 0 (,)., l])
- — (] u; = U. Lod
o2
Similarly, taking the curl of equation (22.10) we have, since the curl ol
and of any gradient are zero, curl (ii;—c2A u) - 0. Since the diverpenee
of the expression in parentheses is also zero, we obtain an cquation ot the
same form as (22.11):

—a?Awg = 0. (2212)

Equations (22.11) and (22.12) are ordinary wave cquations in three dimen
sions. Each of them represents the propagation of an clastic wave, with
velocity ¢; and ¢; respectively. One wave (u,) does not involve a change in
volume (since divu; = 0), while the other (u;) is accompuanicd by volume
compressions and expansions.

In a monochromatic elastic wave, the displacement vector is

u = ref{ug(r)e-ivt}, (220
where ug is a function of the co-ordinates which satisfies the equation
2 Aug+ (6‘12—— Ctz) grad div up+ w?uy - - 0, (22 1)

obtained by substituting (22.13) in (22.6). The longitudinal and transverse
parts of a monochromatic wave satisfy the equations

Au+k2u; = 0, Awg+ kfug== 0, (21

where k; = w/c;, by = wfe; are the wave numbers of the longitudinal and
transverse wavces.

Finally, let us consider the reflection and refraction of a plane mono
chromatic elastic wave at the boundary between two different clastic media.
It must be borne in mind that the nature of the wave is in general changed
when it is reflected or refracted. If a purely transverse or purely longitudinal
wave is incident on a surlace of separation, the result is a mixed wave con-
taining both transverse and longitudinal parts. The nature of the wave
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remains unchanged (as we see from symmetry) only when it is incident
normaliy on the surface of separation, or when a transverse wave whose
oscillations are parallel to the plane of separation is incident (at any angle).

The relations giving the directions of the reflected and refracted waves can
be obtained immediately from the constancy of the frequency and of the
tangential components of the wave vector.t Let 6 and 6 be the angles of
incidence and reflection (or refraction) and ¢, ¢’ the velocities of the two waves.

Then

sin @ ¢ 22,16
sing’ ¢ (22.16)
For example, let the incident wave be transverse. Then ¢ = ¢ is the
velocity of transverse waves in medium 1. For the transverse reflected wave
we have ¢’ = ¢4 also, so that (22.16) gives § = @', i.e. the angle of incidence
is equal to the angle of reflection. For the longitudinal reflected wave,
however, ¢’ = ¢p1, and so
siné a1

sin §’ a1
For the transverse part of the refracted wave ¢’ = ¢0, and for a transverse
incident wave

sin § a1

sin 8’ s
Silarly, for the longitudinal refracted wave

SiIl 0' (47

PROBLEMS

ProBLEM 1. Determine the reflection coefficient for a longitudinal monochromatic wave
incident at any angle on the surface of a body (with a vacuum outside).}

Fic. 20
SoruTioN. When the wave is reflected, there are in general both longitudinal and trans-
verse reflected waves. It is clear from symmetry that the displacement vector in the trans-
verse reflected wave lies in the plane of incidence (Fig. 20, where ny, n; and n; are unit

t See Fluid Mechanics, §65. The arguments given there are applicable in their entirety.

} The more general case of the reflection of sound waves from a solid-Tigquid interface, and the
similar problem of the reflection of a wave incident frony a liquid on to s solid, are diseussed by .. M.
BrekHOVSKIKU, Waves in Lavered Media, §1, Acadenic 'reqn, New Youk 1960,

‘ ] o medi 05
§22 Folastie soaees fn an tsolvopic mediom |

[ i ’ inci itudi flected and transverse
i i i opagation of the incident, longitudinal re 1
vectors in the direction of propaga - ' neverse
reflected waves, and u,, u;, u; the corresponding displacement vectorfzj.t fThg to‘;cil ;il p
, , o1y T
ment in the body is given by the sum (omitting the common fact‘or e or brevity

u = Aongetber + Aynyeisit + Aga X ngetker,

i i i lane of incidence. The magnitudes of the wave

is a unit vector perpendicular to the p nce. :
whetlc.)‘:‘saare ko = k; = wfcy, ke = ofct, and the angles of incidence 8, and of rfﬁﬂectlon 01;
Zfire relatedoby 8, = 8,, sin 0; = (ci/cy) sin 0. For the components of the strain tensor a

the boundary we obtain
Ugy = ik()(A() + Al) C08290 + Z'Atkt CcoS 91; sin 95, Uy = zko(A() -+ Al),
Ugy = lko(A() - Al) sin fp cos fo+ %lAtkt (COSZHt — sin20,;),

tor. The components of the stress tensor can be

i itti ommon exponential fac h :
o e thes . which can here be conveniently written

calculated from the general formula (5.11),
o = 2pclug+ p(ei® — 2¢2)uudik-
The boundary conditions at the free surface of the medium are ogxnx = 0, whence
Cgz = Oyx = 0,

giving two equations which express A, and A: in terms of A,. The result is

¢ sin 20 sin 260 — ¢;2 cos? ZQL
Uctz sin 26; sin 20p + ;2 cos? 20, ’

2ci¢; sin 200 cos 20

) N . P - e
¢ sin 26, sin 200+ ¢;% cos? 20,

4 =

Ay =

8 0 we have A; = —A4,, A: = 0, i.e. the wave is reflected as a purely lonp;imdin:n:
- . ’ ~, 1 x » N, .
Fof/ ° The ratio of the energy flux density components normal to tl’}e surf;.iLe in the re Eg (‘1( (1
:vr?d?ncident longitudinal waves is Ry = | A/ A,|% The corresponding ratio for the reflectec

transverse wave is
cicosfy | Ay ‘2
¢y cosbp | Ao

The sum of R; and Rq is, of course, 1. | “
ProBLEM 2. The same as Problem 1, but for a transverse incident wave (with the ouclla

tions in the plane of incidence).t o o
SoLuTioN. The wave is reflected as a transverse and a longitudinal wave, with ¢
¢ sin 8; = ¢y sin 8. The total displacement vector 1s

u = a Xngdoeiker + nyAdetkrs +a X nydether.

” By

The expressions for the amplitudes of the reflected waves are

4, ¢ sin 26; sin 260 — ;% cos? 200

= N P ]
Ay ¢ sin 20; sin 200+ i cos® 200

A 2¢c0 sin 20¢ cos 20y

Ao e sin 20, sin 200+ ¢ cos? 20

OH¢ o arc i i b e et ¢ (SR L cly relled na A
wav ntinely retlects
 1f the sl | | lien t pla incidence, i

wave of the swme kind, and o IN] |
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ProBLEm 3. Determine the characteristic frequencies of radial vibrations of an elastic
phere of radius R.

SoruTtioN. We take spherical polar co-ordinates, with the origin at the centre of the spherc.
For radial vibrations, u is along the radius, and is a function of 7 and ¢ only. Hence curlu = 0.
We define the displacement “potential” ¢ by u, = u = 9¢/0r. The equation of motion,

expressed in terms of ¢, is just the wave equation c;2 ¢ = ¢, or, for oscillations periodic in
time (~etwt),

Ad = i ﬁ(rzajé) = — k2, k= wfa. (1)

2 or\ or

The solution which is finite at the origin is ¢ = (A[r) sin kr (the time factor is omitted). The
radial stress is

Oyy = P{(Clg - ZCtz)uii + ZCtzurr}

> p{mz ~2e2) A+ z@%"}

or, using (1),

Ol = — b — e |r (2)
The boundary condition”o,(R) = 0 leads to the equation
tan kR 1
ER 1—(kRa20)2 3)

whose roots determine the characteristic frequencies @ = kc; of the vibrations.

ProBLEM 4. Determine the frequency of radial vibrations of a spherical cavity in an infinite
elastic medium for which ¢; > ¢ (M. A. Isakovicu 1949).

SorLuTioN. In an infinite medium, radial oscillations of the cavity are accompanied by the
emission of longitudinal sound waves, leading to loss of energy and hence to damping of the
oscillations. When ¢; 3> ¢; (i.e. K > p), this emission is weak, and we can speak of the charac-
teristic frequencies of oscillations with a small coefficient of damping.

We seek a solution of equation (1), Problem 3, in the form of an outgoing spherical wave
¢ = Ae*rlr, k = w/¢; and, using (2), obtain from the boundary condition or(R) = 0 the
result (kRc/er)? = 4(1 —ikR). Hence, when ¢; > ¢;,

2ct Gt
o y(l_l-_).
R (44

The real part of w gives the characteristic frequency of oscillation; the imaginary part gives
the damping coefficient. In an incompressible medium (e1—>o0) there would of course be no
damping. These vibrations are specifically due to the shear resistance of the medium (r #0).
It should be noticed that they have kR = 2¢s/e; < 1, i.e. the corresponding wavelength is
large compared with R; it is interesting to compare this with the result for vibrations of an
elastic sphere, where with ¢; > ¢; the first characteristic frequency is given by (3): kR = =.

§23. Elastic waves in crystals

The propagation of elastic waves in anisotropic media, i.e. in crystals, is
more complicated than for the case of isotropic media. To investigate such
waves, we must return to the general cquations of motion pii; = doy/ox
and use for oy the general expression (10.3) o == Xippmtipm. According to
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what was said at the beginning of §22, A always denotes the adiabatic
moduli of elasticity. - ‘
Substituting for o4 in the equations of motion, we obtain

. N Oum 0 0 ( oy aum)
PUL = Aiklm o = 5M\EIm x5 \ oz %,
azul azum
= A —_—-l_lA' T .
5 ”‘”"axkaxm 2k 0x1.0x;

Since the tensor Ajgym is symmetrical with respect to the suflixes £ and m
we can interchange these in the first term, which then becomes identical
with the second term. Thus the equations of motion are
02u,,
iy = " 250
Uy = }\ilcl . (
P " axkaxl

Let us consider a monochromatic elastic wave in a crystal. We can neck
a solution of the equations of motion in the form 10:"™ ", where the
10; are constants, the relation between the wave vector k and the treguency o
being such that this function actually satisfics equation (23.1). Dilferentiation
of u; with respect to time results in multiplication by 7o, and diflcrentia
tion with respect to x leads to multiplication by /. Henee theabove subr
tution converts equation (23.1) into pw?u; = Ajgpmkekat,. Pattingug oy,
we can write this as

(pwzsim—)\zklmkkkl)um = (. (3.2

This is a set of three homogeneous equations of the first degree lor the
unknowns #g, #y, %z Such equations have non-zero solutions only if the
determinant of the coefficients is zero. Thus we must have

[Askimbrky— pa?8im| = 0. (23.3)

This is a cubic equation in w2 It has three roots, which are i peneral
different. Each root gives the frequency as a function of the wave vector k|

Substituting each in turn in equation (23.2), we obtain cquation: piving
the components of the corresponding displacement g (since the equations
are homogeneous, of course, only the ratios of the three components wy e
obtained, and not their absolute values, so that all the u; can e multiphed
by an arbitrary constant). o

The velocity of propagation of the wave (the group velocity) 1s piven by the
derivative of the frequency with respect to the wave vector. Inan isotiopie
body, the frequency is proportional to the magnitude of k, and so the direc
tion of the velocity U = 9w/dk is the same as that of k. In crystals th
relation does not hold, and the direction of propagation of the wave 1 there
fore not the same as that of its wave vector.

) V . . . . . - . 2 — (TR}
t In an isotropic body, equation (23.3) gives the result previously obtained: one root @ ]

L P
and two coincident 1oota w* - o 1.
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It is seen from equation (23.3) that w is a homogencous function, of degree
one, of the components k;; if the unknown quantity is taken as the ratio w/k,
the coefficients in the equation do not depend on k. Hence the velocity of
propagation dw/0k is a homogeneous function, of degree zero, of k;. T'bus
the velocity of a wave is a function of its direction, but not of its frequency.

Since there are three possible relations between w and k for any direction
in the crystal, there are in general three different velocities of propagation
of elastic waves. These velocities are the same only in a few exceptional
directions.

In an isotropic medium, purely longitudinal and purely transverse waves
correspond to two different velocities of propagation. In a crystal, on the
other hand, to each velocity of propagation there corresponds a wave in which
the displacement vector has components both parallel and perpendicular
to the direction of propagation.

Finally, we may notice the following. For any given wave vector k in a
crystal there can be three waves, with different frequencies and velocities of
propagation. It is easy to see that the displacement vectors u in these three
waves are mutually perpendicular. For, when k is given, equation (23.3) may
be regarded as determining the principal values pw? of a tensor of rank two,
Aikimkrki, which is symmetrical with respect to the suffixes 7, m.t Equations
(23.2) then give the principal axes of this tensor, which we know are mutually
perpendicular.

PROBLEM

Determine the frequency as a function of the wave vector for elastic waves propagated in «
crystal of the hexagonal system.

SoLuTioN. The non-zero components of the tensor Aitim in the co-ordinates X, ¥, % are
related to those in the co-ordinates & 1, z (see §10) by
Apzaz = )\yyyy = a+b, szyy = a—>b, Axy:vy = b,

)\xxzz = )‘yyzz =, szxz = /\yzyz = d, )\zzzz = f,
where we have put

Aﬁvév = 4a, )‘557771 = 8b, Agyzz = 2¢, )\EZTIZ = 2d.

The z-axis is along the sixth-order axis of symmetry; the directions of the x and y axes are
arbitrary. We take the xz-plane such that it contains the wave vector k. Then kz = ksin 8,
ky = 0, k; = k cos 8, where 0 is the angle between k and the z-axis. Forming the equation
(23.3) and solving it, we obtain three different dependences of w on k:

® = k(b sin20 + d cos?6)/p,
E2
w2, 3% = é—{(a +0) sin®0+ f cos?0+ d + \/([(a+b—d) sin20 + (d—f) cos]2 1
)

+4(c+ d)? sin?0 cos?6)}.

t By the symmetry of the tensor Airtm, we have Appnloky Meomtbadee  Mpueifenks. The Tntter
expression differs from Ayppihikr only by the naming of the suflixes £ oand I, wo that the fensor
Aikimbrky has the symmetry stated.
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§24. Surface waves
A particular kind of elastic waves are those propagutvcd near the surlace
of a body without penetrating into it (Rayleigh waves). We write the equation
of motion in the form (22.11) and (22.12):
a—Zli--cZAu=0, (4.1)
or2
where u is any component of the vectors u;, us, and ¢ is the C()l"'(‘s])t)lulill;:
velocity ¢; or ¢, and seek solutions corresponding to these surfiace waves.
The surface of the elastic medium is supposed plane and of infinite extent.
We take this plane as the xy-plane; let the medium be in z < 0.
Let us consider a plane monochromatic surface wave propag:lt(f(l alongr the
x-axis. Accordingly u = eitkz-vif(z). Substituting this expression i (1. 1), we
obtain for the function f(z) the equation

d? w?
-2y
ds? c?
If k22— w?/c < 0, this equation gives a periodic function f, i.c. we obtuin

an ordinary plane wave which is not damped inside the b.mly; We must
therefore suppose that k2 — w?/c2 > 0. Then the solutions for [ are

Jf(z) = constant x exp( + A/ [kz — 50—2] z)

c2

The solution with the minus sign would correspond to an unlimilmlv nerease
in the deformation for 2 - — co. This solution is clearly impossible, and
so the plus sign must be taken. . ) _

Thus we have the following solution of the equations of motion:

u = constant x elk%—whegkz, ()

where
K = /(k2— 0?/c?). 4
It corresponds to a wave which is exponentially damped towards the interio
of the medium, i.e. is propagated only near the surface. 'I'he quantity

determines the rapidity of the damping. _

The true displacement vector u in the wave is the sum of the veetors uy andd
u;, the components of each of which satisfy the cquatmn.(flll‘.l) with ¢ ¢
for u; and ¢; for u;. For volume waves in an infinite medium, the two pats
are independently propagated waves. Tor surface waves, l\mwvv('r, thi
division into two independent parts is not possible, on account ol the l)()lAll)(I;‘H y
conditions. 'T'he displacement vector w must he a definite linear combination
of the vectors u; and w,. Tt should also he mentioned that these latter vectors
have no longer the simple significance of the (lispl:fu-mvnl components
parallel and perpendicular to the direction of propagation.
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To determine the lincar combination of the vectors u; and u; which gives
the true displacement u, we must use the conditions at the boundary of the
body. These give a relation between the wave vector k and the frequency o,
and therefore the velocity of propagation of the wave. At the free surface
we must have oyzm; = 0. Since the normal vector n is parallel to the z-axis,

it follows that o,, = oyz = 0z, = 0, whence
Ugy = 0, Uy, = O, U(uxx+uyy)+(1—0)uzz = 0. (24.4’)

Since all quantities are independent of the co-ordinate ¥, the second of
these conditions gives

1 (Ouy  Ou,
=~ | —4—) = }0uy/oz = 0.
Uyz 2(824‘ ay) 10uy/0z
Using (24.2), we therefore have

uy = 0. (24.5)

Thus the displacement vector u in a surface wave 1s in a plane through the
direction of propagation perpendicular to the surface.

The transverse part u; of the wave must satisfy the condition (22.8)
divwa; = 0, or

aum Butz 0

ox dx
‘The dependence of wy, and #:z on x and 3z is determined by the factor
ettring, where i is given by the expression (24.3) with ¢ = ¢, i.e.

K = A/(R2— w?)c?).

Hence the above condition leads to the equation

kit + xuy, = 0, or Uzt = ~ sfik.
Thus we can write
Uy = KaetkT+Kz—iot, Uty = —ikaetkztrz—iot, (24.6)

where a is some constant.
The longitudinal part u; satisfies the condition (22.9) curlu; = 0, or

aum 6ulz

o2 ox

3

whence
ki, — kg = 0 (i = V[R2— w?[c2]).
Thus we must have
wy = kbetkatxz—tot U = —ikghethzirz—tot (24.7)

where b is a constant.

§24 Surface waees 11

We now use the first and third conditions (24.4). Expressing wy in terms
of the derivatives of u;, and using the velocities ¢;, ¢;, we can write these
conditions as

aux auz _
x| ox

’

(24.8)
ou, Ouy
2— + {2 —26%)— = 0.
@ 0z a2 )ax
Here we must substitute #, = %z~ sy, %z = Ui+, The result is that
the first condition (24.8) gives
a(k?+ Ktz) + 2bki; = 0. (24.9)
The second condition leads to the equation
2acPrk + b[c2(12 — k2)+ 2¢,2k2] = 0.
Dividing this equation by ¢;2 and substituting
k2—k2 = —o?le? = —(K2— k@)cdlcd,
we can write it as
2aizk+b(R2 + k2) = 0. (24.10)

The condition for the two homogeneous equatioqs (24.9) and (24._1())
to be compatible is (k2+ x;2)2 = 4k2k;x; or, squaring and substituting
the values of «;2 and x;2,

4 2 2 ’
282 — fiz-) = 16k4(k2 - -“’—) (kz - ‘) (24.11)
o2 2 ot
From this equation we obtain the relation between w and k. It is convenient
to put
o = k¢, (M1

k8 then cancels from both sides of the equation, and, expanding, we obtian
for ¢ the equation

o @\ _ 24,13
§s~8§4+8§2(3—2;l—2-)—16(1 - ~—2) = 0. ( )

a

Hence we see that ¢ depends only on the ratio ¢;/c;, which is :1)con.~at:u'n

i i 5 SSON's
characteristic of any given substance and in turn depends only on Poisson
ratio:

ala = V(1= 20)/2(1- o)}
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The quantity ¢ must, of course, he real and positive, and ¢ < 1 (so that
xg and «y are real). Equation (24.13) has only one root satisfying these con-
ditions, and so a single value of £ is obtained for any given value of ctfer.

Thus, for both surface waves and volume waves, the frequency is pro-

portional to the wave number. The proportionality coefficient is the velocity
of propagation of the wave,

U=t (24.14)

This gives the velocity of propagation of surface waves in terms of the
velocities ¢; and ¢; of the transverse and longitudinal volume waves. The
ratio of the amplitudes of the transverse and longitudinal parts of the wave
is given in terms of ¢ by the formula

a 2-£2
= (24.15)
b 2v(1-£7)
The ratio ¢;/e; actually varies from 1/4/2 to 0 for various substances,
corresponding to the variation of ¢ from 0 to ; ¢ then varies from 0-874 to
0-955. Fig. 21 shows a graph of ¢ as a function of o.

7-00

0-95 %

: e

0-90 /
/

0-85

1/4 1/2
ag

Fic. 21

PROBLEM

A plane-parallel slab of thickness # (medium 1) lies on an elastic half-space (medium 2).
Determine the frequency as a function of the wave number for transverse waves in the slab
whose direction of oscillation is parallel to its boundaries.

SorLuTioN. We take the plane separating the slab from the half-space as the xy-plane,
the half-space being in z < 0 and the slab in 0 < 2z < 4. In the slab we have

Unl =z = 0,  wy = flz)etkz—oD,
and in medium 2 a damped wave:
Ups = Ugz = 0, Uys = Aerszellez—o), ke = 1/ (k% — w?/ci?).

For the function f(2) we have the equation

f”—l— tqu = 0, K] == \/((“2/(_-“2_]32)
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(we shall scc below that x,® >» 0), whenee f(z) - Bsin w2z | Ccos k20 At the free sarface
of the slab (2 = h) we must have o4 == 0, i.c. Juy,/0z =~ 0. At the boundinry between the
two media (z = 0) the conditions are uy; = 1y, p0uyy/0z == pyduy,/0z, py and gy being the
moduli of rigidity for the two media. From these conditions we find three equations for
A, B, C, and the compatibility condition is tan gk = pyue/pyr. This cquation pives o
as an implicit function of &; it has solutions only for real «; and 3, and so ¢2 - @/l - 1.

Hence we see that such waves can be propagated only if ¢2 > ca.

§25. Vibration of rods and plates

Waves propagated in thin rods and plates are fundamentally different
from those propagated in a medium infinite in all directions. Ilere we are
speaking of waves of length large compared with the thickness of the rod or
plate. If the wavelength is small compared with this thickness, the rod or
plate is effectively infinite in all directions as regards the propagation of the
wave, and we return to the results obtained for infinite media.

Waves in which the oscillations are parallel to the axis of the rod or the
plane of the plate must be distinguished from those in which they are pes
pendicular to it. We shall begin by studying longitudinal waves in rods.

A longitudinal deformation of the rod (uniform over any cross-scction), v.\'i'l I
no external force on the sides of the rod, is a simple extension or compression,
Thus longitudinal waves in a rod are simple extensions or compressions
propagated along its length. In a simple extension, however, only lh.("(‘mnr—
ponent o, of the stress tensor (the z-axis being along the rod) is different
from zero; it is related to the strain tensor by o, = Fuz,  Foufox
(see §5). Substituting this in the general equation of motion pii; « = do.pfdxy,
we find

02%u, p 0%u,
022 E o1

This is the equation of longitudinal vibrations in rods. We sce that itisan
ordinary wave equation. The velocity of propagation of longitudinal waves
in rods is

~ 0. (25.1)

vV (E/p). (25.2)
Comparing this with the expression (22.4) for ¢;, we scc that it is less than
the velocity of propagation of longitudinal waves in an infinite medium,
Let us now consider longitudinal waves in thin plates. The equations of
motion for such vibrations can be written down at once by substituting
— phd2u,|0t2 and — pho?uy[012 for P, and Py in the cquilibrium equations
(13.4):

p 02uy 1 0%, } 1 0%u, . 1 ~’u,,
E a2 1—o ax2  2(140) 2 2(1—0a)dxdy’ 2523
p 0%uy 1 0y, 1 *uy 1 Py

A R T .
I or 1 —o? ay?‘ 2(] bo) oa 2(] —a) dxdy
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We take the case of a plane wave propagated along the x-axis, i.c. a wave in
which the deformation depends only on the co-ordinate x, and not on y.
"Then equations (25.3) are much simplificd, becoming

0%y E o2, %u, E 2y

a2 p(l-c?) a2 o2 2p(lto) a2

=0. (254)

We thus again obtain wave equations. The coefficients are different for Uy
and u,. The velocity of propagation of a wave with oscillations parallel to the
direction of propagation (uy) is

VIE/p(1-o?)]. (25.5)

The velocity for a wave (u,) with oscillations perpendicular to the direction
of propagation (but still in the plane of the plate) is equal to the velocity ¢; of
transverse waves in an infinite medium.

Thus we see that longitudinal waves in rods and plates are of the same
nature as in an infinite medium, only the velocity being different; as before,
it is independent of the frequency. Entirely different results are obtained for
bending waves in rods and plates, for which the oscillations are in a direction
perpendicular to the axis of the rod or the plane of the plate, i.e. involve
bending.

The equations for free oscillations of a plate can be written down at once
from the equilibrium equation ( 12.5). 'To do so, we must replace — P by the
af:celeration ¢ multiplied by the mass ph per unit area of the plate. This
gives

82§+ ER? . 0 )
Patz 12(1_02)A Z - ’ ( 5.6)

where A is the two-dimensional Laplacian.
Let us consider a monochromatic elastic wave, and accordingly seek a
solution of equation (25.6) in the form

{ = constant x efk-r—ot), (25.7)

where the wave vector k has, of course, only two components, k5 and k,.
Substituting in (25.6), we obtain the cquation

—pw?+ ER2RA12(1 — 02) = 0.

Hence we have the following relation between the frequency and the wave
number:

@ REER12p(1 — o)), (25.8)

- . . . i
I'hus the frequency is proportional to the square of the wave number, whereas
o wiaves nan inhinite medium it is proportional to the wave number itsell.

§25 Vibration of rods and plates s

Knowing the relation between the frequency and the wave number, we can
determine the velocity of propagation of the wave from the formula

U = dw/dk.

The derivatives of k2 with respect to the components kg, &y arce respectively
2kg, 2ky. The velocity of propagation of the wave is thercfore

U = ky/{ER/3p(1 ~ 0?)}. (25.9)

It is proportional to the wave vector, and not a constant as it is for waves in
a medium infinite in three dimensions.t
Similar results are obtained for bending waves in thin rods. "I'he bending
deflections of the rod are supposed small. The cquations of motion are
obtained by replacing — K, and — Ky in the cquations of cquilibrivnm for a
slightly bent rod (20.4) by the product of the acceleration X or ¥ .nd the
mass p.S per unit length of the rod (S being its cross-scctional area). 1hon
pSX = EIya4X/8z4, pS Y .- ILavy foat, (" 1y
We again seek solutions of these equations in the form
X = constant x et(kz—ot) Y = constant x elths wn,

Substituting in (25.10), we obtain the following rclations between the fre
quency and the wave number:

= K2/(ELpS),

for vibrations in the x and y directions respectively. 'I'he corresponding
velocities of propagation are

U@ = 2ky/(EL[pS),

w = E2\/(El[pS), (25.11)

U® = 2kv/(EL/pS). (25.12)

Finally, there is a particular case of vibration of rods called torsional
vibration. The corresponding equations of motion are derived by equating
Co7/0z (see §18) to the time derivative of the angular momentum of the rod
per unit length. This angular momentum is plo$/dt, where o/t i the
angular velocity (¢ being the angle of rotation of the cross-scction considered)
and I = [(x2+32) df is the moment of inertia of the cross-scction about its
centre of mass; for pure torsional vibration each cross-section of the tod
performs rotary vibrations about its centre of mass, which remains at rest.
Putting = = 0¢/0z, we obtain the equation of motion in the form

Corpazt = plovg[ore. (25.13)

t The wave number k. 2w[A, where X is the wavelength, Tlence the velocity of propagation
should incrense without limit as A tends to zero, “'his physically impossible tenult is obtained heenune
formula (25.9) is not valid for shott waves,
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Hence we see that the velocity of propagation of torsional oscillations along
the rod is

V/(Clel). (25.14)

PROBLEMS

ProBLEM 1. Determine the characteristic frequencies of longitudinal vibrations of a rod
of length I, with one end fixed and the other free.

SoLuTiON. At the fixed end (¥ = 0) we must have 1, = 0, and at the free end (z = I)
0z = Eu;z = 0, ie. 0u,/02 = 0. We seck a solution of equation (25.1) in the form

u; = A cos(wt+ o) sin kz,

where k = w+/(p/E). From the condition at z = [ we have cos &l = 0, whence the charac-
teristic frequencies are

o = /(Ep)2n+1)m/2i,
n being any integer.

ProBLEM 2. The same as Problem 1, but for a rod with both ends free or both fixed.
SoLurioN. In either case w = +/(E/p) nn/l.

ProsLEM 3. Determine the characteristic frequencies of vibration of a string of length .
SoLuTION. The equation of motion of the string is

2X  pS #2X

= 0;
022 T or2

cf. the equilibrium equation (20.17). The boundary conditions are that X = 0 for 3 = 0
and I. The characteristic frequencies are w = 1/(pS/T)nx/l.

ProOBLEM 4. Determine the characteristic transverse vibrations of a rod (of length /) with
clamped ends.

SorutioN. Equation (25.10), on substituting X = X(2) cos(wt-+«), becomes
d4Xo/det = KXy,
where «* = w®*pS/EI,. The general integral of this equation is
Xo = A cos kz+ B sin kz+ C cosh kz+ D sinh xz.

The constants 4, B, C and D are determined from the boundary conditions that X = dX/dz
= 0 for 2 = 0 and l. The resultis

Xo = A{(sin sl ~sinh «l)(cos xz — cosh xz)—
— (cos xl— cosh «l)(sin kz —sinh «z)},

and the equation cos«l cosh«l = 1, the roots of which give the characteristic frequencics
The smallest characteristic frequency is

224 /Ery

Wmin = 2 pS .

ProBLEM 5. The same as Problem 4, but for a rod with supported ends.
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SoLuTION. In the same way as in Problem 4, we obtain X, == A4 sin «2, and tl}o frequencies
are given by sinkl = 0, i.e. ¥k = nn/l(n = 1, 2, ...). The smallest frequency is

9-87 (EI,
WOmin = —;— [—

2 A oS

ProBrLEM 6. The same as Problem 4, but for a rod with one end clamped and the othet
free.

SorLurioN. We have for the displacement
Xo = A{(cos xl+ cosh «l)(cos kz— cosh «z)
+ (sin «/ —sinh «I)(sin k2 —sinh «2)}

(the clamped end being at z = 0 and the free end at z = I}, and for .the characteristic (re
quencies the equation cos«! cosh«l/+1 = 0. The smallest frequency is

Wmin = lz A/pS .

ProBLEM 7. Determine the characteristic vibrations of a rectangular plate of sides a and b,
with its edges supported.

SorutioN. Equation (25.6), on substituting { = {(x, ) cos(wt+a), bhecomes

Ao~ kil = 0,

where x* = 12p(1 —o®)w?/Eh?. We take the co-ordinate axes along the sides of the plate.
The boundary conditions (12.11) become { = 0%{/9x® = 0 for x = 0 and g,

L =02 =0
for y = 0 and b. The solution which satisfies these conditions is
Lo = A sin(mmx/a) sin(nmy[b),

where m and 7 are integers. The frequencies are given by

P E 2[m2+ nz]
©= ’\/12/)(1—0'2) 2 Bl

ProBLEM 8. Determine the characteristic frequencies for the vibration of a rectungulag
membrane of sides a and b.

SoLuTioN. The equation for the vibration of a membrane is TAL == pht{; cl. the u,ufh
brium equation (14.9). The edges of the membrane must be fixed, so that { 0. 'I'le
corresponding solution for a rectangular membrane is

{ = A sin(mnx/a) sin(nwy/b) cos wl,

where the characteristic frequencies are given by

" T (m'“’ n"’)
[ . - W
ph \a® D2

m and 1 hoing integers.



118 Ilastic 1Vaves §20

ProBLEM 9. Determine the velocity of propagation of torsional vibrations in a rod whose
cross-section is a circle, an ellipse, or an cquilateral triangle, and in a rod in the form of a
long thin rectangular plate.

SoruTioN. For a circular cross-section of radius R, the moment of inertia is [ == §nR4;
C is given in §16, Problem 1, and we find the velocity to be 4/(j/p), which is the same as the
velocity ¢;.

Similarly (using the results of §16, Problems 2 to 4), we find for a rod of elliptical cross-
section the velocity [2ab/(a®+b2)]14/(p/p), for one with an equilateral triangular cross-section
4/ (31/5p), and for one which is a long rectangular plate (22/d)+/(u/p). All these are less than cy.

PI.{OBLEM 10. The surface of an incompressible fluid of infinite depth is covered by a thin
ela§t1c plate: Determine the relation between the wave number and the frequency for waves
which are simultaneously propagated in the plate and near the surface of the fluid.

SOLUT'ION. We take the plane of the plate as = = 0, and the x-axis in the direction of
propagation of the wave; let the fluid be in # << 0. The equation of motion of the plate alone
would be
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poh = —
o2 12(1—o?) ox?’

wherfe Po is the volume density of the plate. When the fluid is present, the right-hand side

f’f this equation must also include the force exerted by the fluid on unit area of the plate,

i.e. the pressure p of the fluid. The pressure in the wave, however, can be expressed in

terms of the velocity potential by p = —pd¢/9t (we neglect gravity). Hence we obtain
02 ER 04 o¢
s SR . o
ot 12(1— o?) axt otl, o

Next, the normal component of the fluid velocity at the surface must be equal to that of the
plate, whence

oLjot = [04/oz]; ~o. (2
The potential ¢ must satisfy everywhere in the fluid the equation

2P 24

—+— = 0.

ox2  0z2 3

We seek [ in the form of a travelling wave { = [ ei*z-#0¢t; accordingly, we take as the
solution of equation (3) the surface wave ¢ = ¢yeilkz-wtekz, which is damped in the interior
of the fluid. Substituting these expressions in (1) and (2), we obtain two equations for ¢,
and {,, and the compatibility condition is

B kS
" 12(1—02) p+hpok

w2

§26. Anharmonic vibrations

The whole of the theory of elastic vibrations given above is approximate
to the extent that any theory of clasticity is so which is based on Hoor's
law. It should be recalled that the theory hegins from an expansion of the
elastic encrgy as a power series with respect to the strain tensor, which
includes terms up to and inclading the second order. "T'he components of
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the stress tensor are then linear functions of those of the strain tensor, and
the equations of motion are linear.

The most characteristic property of elastic waves in this approximation is
that any wave can be obtained by simple superposition (i.e. as a linear com-
bination) of separate monochromatic waves. Each of these is propagated
independently, and could exist by itself without involving any other motion.
We may say that the various monochromatic waves which are simultancously
propagated in a single medium do not interact with one another.

These properties, however, no longer hold in subsequent approximations.
The effects which appear in these approximations, though small, may be of
importance as regards certain phenomena. They are usually called anharmonic
effects, since the corresponding equations of motion are non-linear and do
not admit simple periodic (harmonic) solutions.

We shall consider here anharmonic effects of the third order, arising from
terms in the elastic energy which are cubic in the strains. It would he too
cumbersome to write out the corresponding equations of motion in their
general form. However, the nature of the resulting effects can be ascertained
as follows. The cubic terms in the elastic energy give quadratic terms in the
stress tensor, and therefore in the equations of motion. Let us suppose that
all the linear terms in these equations are on the left-hand side, and all the
quadratic terms on the right-hand side. Solving these cquations by the
method of successive approximations, we omit the guadratic terms in the
first approximation. This leaves the ordinary linear equations, whose solution
ug can be put in the form of a superposition of monochromatic travelling
waves: constant xe"® " with definite relations between o and k. On
going to the second approximation, we must put u = ug+uy and retain only
the terms in ug on the right-hand sides of the equations (the quadratic terms).
Since ug, by definition, satisfies the homogeneous linear equations obtained
by putting the right-hand sides equal to zero, the terms in uy on the Ieft-hand

sides will cancel. The result is a set of inhomogeneous lincar equations for the
components of the vector uy, where the right-hand sides contain only known
functions of the co-ordinates and time. These functions, which are obtaimed

by substituting ug for u in the right-hand sides of the original cquations, are
sums of terms each of which is proportional to

e~k . r—~(w,— )8l

or
il ) r—(o k0]

where wy, we, ki, ko are the frequencies and wave vectors of any two mono-
chromatic waves in the first approximation.

A particular integral of lincar equations of this type is a sum of terms
containing similar exponential factors to those in the free terms (the right-
hand sides) of the equations, with suitably chosen coeflicients. Bach such
term corresponds to a travelling wave with frequency w1 e and wave
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vector k + ko Frequencies equal to the sum or difference of the frequencies
of the original waves are called combination frequencies.

Thus the anharmonic effects in the third order have the result that the set
of fundamental monochromatic waves (with frequencies wy, wg, ... and wave
vectors ki, ke, ...) has superposed on it other “waves” of small intensity,
whose frequencies are the combination frequencies such as wj+ ws, and
whose wave vectors are such as kj + ko. We call these ‘“waves” in quotation
marks because they are a correction effect and cannot exist alone except in
certain special cases (see below). The values w; + ws and k; + ks do not in
general satisfy the relations which hold between the frequencies and wave
vectors for ordinary monochromatic waves.

It is clear, however, that there may happen to be particular values of wy, kg
and wg, ko such that one of the relations for monochromatic waves in the
medium considered also holds for w;+ wy and ky + ks (for definiteness, we
shall discuss sums and not differences). Putting w3 = w1+ wg, k3 = k;+ky,
we can say that, mathematically, w3 and k3 then correspond to waves which
satisfy the homogeneous linear equations of motion (with zero on the right-
hand side) in the first approximation. If the right-hand sides in the second
approximation contain terms proportional to e®*"“% then a particular
integral will be a wave with the same frequency and an amplitude which
increases indefinitely with time.

Thus the superposition of two monochromatic waves with values of w1, ky
and wg, ky whose sum ws, ks satisfies the above condition leads, by the
anharmonic effects, to resonance: a new monochromatic wave (with para-
meters ws, ks) is formed, whose amplitude increases with time and eventually
is no longer small. It is evident that, if a wave with ws, ks is formed on super-
position of those with wy, ky and wy, ks, then the superposition of waves with
w1, ki and w3, ks will also give a resonance with ws = w3— wi, ko = ky—kj,
and similarly we, ko and w3, ks lead to wy, k.

In particular, for an isotropic body w and k are related by w = ¢k or
w = ¢k, with ¢; > ¢;. It is easy to see in which cases either of these relations
can hold for each of the three combinations

w1, kl; ws, k2; w3z = 01+ ws, k3 = k1+k2.

If k; and ko are not in the same direction, k3 < k;+ ks, and so it is clear that
resonance can then occur only in the following two cases: (1) the waves with
w1, k1 and wg, ko are transverse and that with ws, ks longitudinal; (2) one of
the waves with wy, ky and ws, ks is transverse and the other longitudinal, and
that with ws, kg is longitudinal. If the vectors k; and ke are in the same
direction, however, resonance is possible when all three waves are longi-
tudinal or all three are transverse.

The anharmonic effect involving resonance oceurs not only when several
monochromatic waves are superposed, but also when there is only one wave,
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¢ are the components of the force per unit volume of
Ppear the same as before, and so the equations of

POty = oy /oy, (26.3)

—_———

t We here use ¢

he inte
o rnal energy &, and not the free energy

F, since adiabatic vibrations jre
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where pg is the density of the undeformed body, and the components of the
tensor ok are now given by (26.2), with & correct to the required accuracy.
The tensor oy is no longer symmetrical.}

PROBLEM

Write down the general expression for the elastic energy of an isotropic body in the third
approximation.

Sorution. From the components of a symmetrical tensor of rank two we can form two
quadratic scalars (u1x® and uy,?) and three cubic scalars (113, #amex® and witgug;y). Hence the

most general scalar containing terms quadratic and cubic in wx, with scalar coefficients
(since the body is isotropic), is

6 = puy?+ (3K — Ipyuy? + Y Auguguy + Buguy + 3Cuy;

the coeflicients of u;x? and u;,® have been expressed in terms of the moduli of compression
and rigidity, and 4, B, C are three new constants. Substituting the expression (26.1) for
usx and retaining terms up to and including the third order, we find the elastic energy to be

aui auk 2 aul 2
& = it o) +@K=3)(r) +
Oxy  Oxg Oxy
aui au; aul aul au¢ 2
e M 2 R B R ) o)
Oxy Ox; Oxy Ox; \ Oy,

12 A A P A

1 4 Ouy Jug duy B ou; Ouy ouy C( ouy )3.

E axl axi axk axi ax; ax,

t It should be emphasised that o,k is no longer the momentum flux density (the stress tensor).
In the ordinary theory this interpretation was derived by integrating the body force density
Oo¢x/Oxx over the volume of the body. This derivation depended on the fact that, in performing the
integration, we made no distinction between the co-ordinates of points in the body before and after
the deformation. In subsequent approximations, however, this distinction must be made, and the
surface bounding the region of integration is not the same as the actual surface of the region considered
after the deformation.

It has been shown in §2 that the symmetry of the tensor oyt is due to the conservation of angular

momentum. This result no longer holds, since the angular momentum density is not xguy — xgiyg
but (s u)ux — (xpt+ur)i,.

CHAPTER 1V

DISLOCATIONS+

§27. Elastic deformations in the presence of a dislocation

EvastIc deformations in a crystal may arise not only by the action of external
forces on it but also because of internal structural defects present in the erystal.
The principal type of defect that influences the mechanical propertics of ery
stals is called a dislocation. The study of the properties of dislocations on the
atomic or microscopic scale is not, of course, within the scopc of this book ; we
shall here consider only purely macroscopic aspects of the phenomenon s it
affects elasticity theory. For a better understanding of the physical significance
of the relations obtained, however, we shall first give two simple examples to
show what is the nature of dislocation defects as regards the structure of the
crystal lattice. -
Let us imagine that an “extra” half-plane is put into a crystal lattice ol
which a cross-section is shown in Fig. 22; in this diagram, the added half-pline
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Fic. 22

is the upper half of the yz-plane. The edge of this half-planc (the =-axis, at
right angles to the plane of the diagram) is then called an edge dislocation. In
the immediate neighbourhood of the dislocation the crystal lattice is preatly
distorted, but even at a distance of a few lattice periods the crystal planes it
together in an almost regular manner. The deformation nevertheless exists
even far from the dislocation. It is clearly seen on going round a closed cireuit
of lattice points in the xy-plane, with the origin within the circuit: if the

t ‘This chapter was written jointly with A. M. Kotvienr,

1723
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displacement of each point from its position intheideal latticeisdenoted by the
vector u, the total increment of this vector around the circuit will not be zero,
but equals one lattice period in the x-direction.

Another type of dislocation may be visualised as the result of “cutting” the
lattice along a half-plane and then shifting the parts of the lattice on either
side of the cut in opposite directions to a distance of one lattice period parallel
to the edge of the cut (then called a screw dislocation). Such a dislocation
converts the lattice planes into a helicoidal surface, like a spiral staircase
without the steps. In a complete circuit round the dislocation line (the axis of
the helicoidal surface) the lattice point displacement vector increment is one
lattice period along that axis. Figure 23 shows a diagram of such a cut.

Fic. 23

Macroscopically, a dislocation deformation of a crystal regarded as a
continuous medium has the following general property; after a passage round
any closed contour L which encloses the dislocation line D, the elastic
displacement vector wu receives a certain finite increment b which is equal to
one of the lattice vectors in magnitude and direction; the constant vector b is
called the Burgers vector of the dislocation concerned. This property may be
expressed as

3u,~
duy = Q—dxx = — by, (27.1)
8xk
L
where the direction in which the contour is traversed and the chosen direction
of the tangent vector T to the dislocation line are assumed to be related by the
corkscrew rulet (Fig. 24). The dislocation line itself is a line of singularities of
the deformation field.

It is evident that the Burgers vector b is necessarily constant along the dis-
location line, and also that this line cannot simply terminate within the crystal:
it must either reach the surface of the crystal at both ends or (as usually hap-
pens in actual cases) form a closed loop.

t The simple cases of edge and screw dislocations mentioned above corresapond to straight lines D
with © | b and « || b. We may also note that in the representation given by Fig, 22 edpe dislocationa
with opposite directions of b differ in that the “cxtrn®* cryatal il plane lieas above or below the xa-
plane; such dislocations ave said 1o have opposite sins.
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The condition (27.1) significs, therefore, that in the presence of a dislocation
the displacement vector is not a single-valued function of the co-ordinates,
but receives a certain increment in a passage round the dislocation line.

L
Fic. 24

Physically, of course, there is no ambiguity: the increment b denotes an addi-
tional displacement of the lattice points equal to a lattice vector, and this docs
not affect the lattice itself.

In the subsequent discussion it is convenient to use the notation

so that the condition (27.1) becomes

fﬁwik dx; = —b. (27.3)
L

The (unsymmetrical) tensor @y is called the distortion tensor. 1ts symmetrical
part gives the ordinary strain tensor:

wir = $(wix + Wri)- (27.4)

According to the foregoing discussion the tensors wyx and wk, and therelore
the stress tensor oy, are single-valued functions of the co-ordinates, unhike
the function u(r).

The condition (27.3) may also be written in a differential form. "T'o do so,
we transform the integral round the contour L into onc over a surlace .Sy,
spanning this contour:}

CWmk
§wmk dxy, = feilm m—dfi-
E)xl

S,

The constant vector by is written as an integral over the same surface by

t The transformation is made, according to Stoxes’ theorem, by replacing dvm by the opeiator
dfieum 9/ 8xy, where eam is the antisymmetric unit tensor.
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means of the two-dimensional delta function -

by = f rbeS(E)df;, (27.5)

St

where § is the two-dimensional radius vector taken from the axis of the dis-
location in the plane perpendicular to the vector T at the point considered.

Since the contour L is arbitrary, the integrals can be equal only if the inte-
grands are equal:

eitm 01mi|0x; = —7:bS(E). (27.6)

This is the required differential form.+

The displacement field u(r) around the dislocation can be expressed in a
general form if we know the GreEN’s tensor Gix(r) of the equations of equilib-
rium of the anisotropic medium considered, i.e. the function which determines
the displacement component ; produced in an infinite medium by a unit
force applied at the origin along the xz-axis (see §8). This can easily be done
by using the following formal device.

Instead of seeking many-valued solutions of the equations of equilibrium,
we shall regard u(r) as a single-valued function, which undergoes a fixed
discontinuity b on some arbitrarily chosen surface Sp, spanning the dislocation
loop D. Then the strain tensor formally defined by (27.4) will have a delta-
function singularity on the “surface of discontinuity’:

uiS) = Y(nbr+ npb;)8(0), (27.7)

where [ is a co-ordinate measured from the surface Sp along the normal n
(which is in the direction relative to © shown in Fig. 24).

Since there is no actual physical singularity in the space around the dis-
location, the stress tensor oy, must, as already mentioned, be a single-valued
and everywhere continuous function. The strain tensor (27.7), however, is
formally related to a stress tensor i = Xigim w1, which also has a
singularity on the surface Sp. In order to eliminate this we must define ficti-
tious body forcesdistributed over the surface Sp with acertain density f(S). The
equations of equilibrium in the presence of body forces are o/ éxy, + fi9 =0
(cf. (2.7)). Hence it is clear that we must put

30-.k(S) 3ul (S)
S = — E;xk = - Aﬁdmﬁt—. (27.8)

Thus the problem of finding the many-valued function u(r) is equivalent to
that of finding a single-valued but discontinuous function in the presence of

1 To avoid misunderstanding it should be noted that on the dislocation line itself (¢-

» 0), which is
a line of singularities, the representation of the wix as the derivatives (27.2) is no longer n

renningful.

, A o
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body forces given by formulae (27.7) and (27.8). We can now use the formula
uy(r) = f(}'ij(r—r')fj(‘s)(r')d V.

We substitute (27.8) and integrate by parts; the integration with the delta
function is then trivial, giving

a ’ cr PR
wir) = —)\;klmbmfn,—a;cGi,-(r—r Ydf”. (27

Sp

This solves the problem.t ' -

The deformation (27.9) has its simplest form far from the closed (h':;lm»;n on
loop. If we imagine the loop to be situated near the origin, then at distinces
large compared with the linear dimensions of the loop we have

ui(r) = —)\jklmdlmaGﬁ(r)/axk, (27.10)
where
dix = Sibg, Si = fﬂidf= %eiszf;xkdxl, (7.1
Sp D

and e;x; is the antisymmetric unit tensor. The axial vector S has components
equal to the areas bounded by the projections of the loop D) on planes perpen
dicular to the corresponding co-ordinate axes; the tensor dy; may be f‘;ullul the
dislocation moment tensor. 'The components of the tensor ( Sy are lirst m(l«’-r
homogeneous functions of the co-ordinates x, y, & (scc §8, .I’rnl)l('m), We
therefore see from (27.10) that u;~ 1/72, and the corresponding sticss fiekl
Oik ™~ 1/1’3. ) ) ,

It is also easy to ascertain the way in which the clastic stresses vary with
distance near a straight dislocation. In cylindrical po];u: (‘()—()f‘(lln;ll(':a w0,
(with the z-axis along the dislocation line) the deformation will depend only
on r and ¢. The integral (27.3) must, in Particular, be unclr;my‘ml by an
arbitrary change in the size of any contour in th_c xy-planc which leaves the
shape of the contour the same. It is clear that this can be truc only il all Ilui
wir~ 1/r. The tensor u;x, and therefore the stresses oy, will be proportiona
to the same power, 1/r.1

t The tensor Gy; for an anisotropic medium has been derived in the paper by 1. M Ibln Ay m;-:
L. N. RozenTsvelG quoted in §8, Problem. This tensor is in general very l'lnll]\hl:ul('d. Fora nulmp,'x
dislocation, which corresponds to a two-dimensional problem of elasticity theory, it 1y e mmpler (o

4 - .

lve the equations of equilibrium directly. ) o A
soi Attent?on is drawn to a certain analogy between the clastic deformation ficld round a dindocation
line and the magnetic fiecld of constant line currents. The current is replaced hy the urgern ve ||nl|,
which must be constant along the dislocation line, like the current. Similar analogics will nlso be veadhily
seen in the relations given Lelow. However, quite apart from the entirely dlllru'n‘l nutute of the :wu
physical effects, these annlogies are not far-renching, becnuse the tensor character of the correnponding
quantities is different.
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Although we have hitherto spoken only of dislocations, the formulac de-
rived are applicable also to deformations caused by other kinds of defect in
the crystal structure. Dislocations are linear defects; there exist also defects in
which the regular structure is interrupted through a region near a given
surface.t Such a defect can be macroscopically described as a surface of dis-
continuity on which the displacement vector u is discontinuous but the stresses
o) are continuous, by virtue of the equilibrium conditions. If the discontinuity
b is the same everywhere on the surface, the resulting strain is just the same as
that due to a dislocation along the edge of the surface. The only difference is
that the vector b is not equal to a lattice vector. However, the position of the
surface Sp discussed above is no longer arbitrary; it must coincide with the
actual physical discontinuity. Such a surface of discontinuity involves a certain
additional energy which may be described by means of an appropriate surface-
tension coefficient.

PROBLEMS

ProsLEM 1. Derive the differential equations of equilibrium for a dislocation deformation
in an isotropic medium, expressed in terms of the displacement vector.}

SoLuTION. Interms of the stress tensor or strain tensor the equations of equilibrium have the
usual form douc/8xx = 0 or, substituting o from (5.11),

auik + a 8”11 0 1
axk 1-2¢ 8xz - ()

To convert to the vector u we must use the differential condition (27.6). Multiplying (27.6)
by eixn and summing over ¢ and %, we obtain§

&‘wnk 6wkk

= o= —(tXb).3(E). (2)

3xk- axn
Writing (1) in the form
%(%Uik %E)wm n g 370” -0
axk 6xk 1-2¢ ax,-

and substituting (2), we find
awki 1 220”
+ =
330}5 1—-2¢ &‘Ci

Now changing to u in accordance with (27.2), we find the required equation for the multi-
valued function u(r):

(zxb):5(E).

1 .
Au+l—_—2—; grad div u = vXb5(E). 3)

t A well-known example of a defect of this type is a narrow twinned layer in a crystal.

1 The physical meaning of this and other problems relating to an isotropic medium is purely
conventional, since actual dislocations by their nature occur only in erystals, i.e. in anisotropic media.
Such problems have illustrative value, however.

§ Using also the formula enmenn = 6ubmu— binBmx.
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ProprEm 2. Determine the deformation near a straight serew distocation in an isotropie
medium.
SoLuTioN. We take cylindrical polar co-ordinates z, r, ¢, with the z-axis along the disloca

tion line; the Burgers vector is by = by = 0, b, = b. It is evident from symmectry that the
displacement u is parallel to the z-axis and is independent of the co-ordinate z. 'T'he cquation
of equilibrium (3), Problem 1, reduces to Au; = 0. The solution which satislics the condition
(27.1) ist u; = bd/2n. The only non-zero components of the tensors wg and o are .y,
b/4rr, 6,6 = pb/2mr, and the deformation is therefore a pure shear.

The free energy of the dislocation (per unit length) is given by the integral

pb2 rdr
C4nl) oy

which diverges logarithmically at both limits. As the lower limit we it take the order of
magnitude of the interatomic distances (~b), at which the deformation is Luge and the mura
scopic theory is inapplicable. The upper limit is determined by a ditmenzston ol the order ot the
length L of the dislocation. Then F' = (pb?/47) log (L[b). The energy of the detarmmtion i the
“‘core’’ of the dislocation near its axis (in a region of cross-scctional arci ~ H%) can be entuniate d
as ~ ub?. When log (L/b) >> 1 this energy is small in comparison with that ol the elasta
deformation field.{

)

ProsLEM 3. Determine the internal stredses in an anisotropic medium near a sorew detoca
tion which is perpendicular to a plane of symmetry of the crystal.

SoLuTioN. We take co-ordinates x, ¥, 2 so that the z-axis is along the dislocation line, and
again write b, = b. The vector u again has only the component u; == u(x, v). Since the ay
plane is a plane of symmetry, all the components of the tensor Aigim arc zero which contam the
suffix # an odd number of times. Thus only two components of the tensor oy are non-zero:

ou Ju
02z = Agzaz—+ Azzyz—s
ay

ox
ou ou

Oyz = Ayzwz—+ Ayzyz—-

Ox dy

We define a two-dimensional vector ¢ and a two-dimensional tensor Ayp: o ey gt
Auzgz (@ = 1, 2). Then ox = Azgdufdxg, and the equation of equilibrium becomen div o - -4
The required solution of this equation must satisfy the condition (27.1): § grad « - dl - &

In this form, the problem is the same as that of finding the magnctic induction and magnetn
field (represented by ¢ and grad «) in an anisotropic medium of magnette penmenbiday ALy
near a straight current of strength I = ¢b/4n. Using the solution dertved i clectiody s,
we obtain§

b )‘a/feﬂ’/zx*/
Opp = ———

B 2m NN gy

where || is the determinant of the tensor Aqg.

1 In all the problems on straight dislocations we take the vector « in the negative z-direction,

1 These estimates are general ones and are valid in order of magnitude for any dislocntion (nnd not
only for a screw dislocation).

It should be noted that in prictice the values of log (1./bY are usually not very large, nnd the eneigy
of the “core” is therefore a considerable fraction of the total enerpy of the dislocation.

§ See Electrodynamics of Continpous Media, §29, Problem 5.
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ProBLEM 4. Determine the deformation near a straight cdge dislocation in an 1sotropic
medium.

SoLuTIoN. Let the z-axis be along the dislocation line, and the Burgers vector be by = b,
by = b, = 0. It is evident from the symmetry of the problem that the d{splacgment vector
lies in the xy-plane and is independent of 2, so that the problem is a two-dlmc?nsmnal one. In
the rest of this solution all vectors and vector operations are two-dimensional in the xy-plane.

We shall seek a solution of the equation

Au+ grad div u = —bj3(r)

1-20

(see Problem 1; j is a unit vector along the y-axis) in the form u = u®+w, Vyhere ul®isa
vector with components #(®; = b[2m, ul®y = (b/27) log r; these are the 1mag1nary.and real
parts of (b/27) log (x+1iy), » and ¢ being polar co-ordinates in the gy-plane. .ThIS vector
satisfies the condition (27.1). The problem therefore reduces to finding the smgle-va.lued
function w. Since, as is easily verified, div ut® = 0, Aut® = bjd(r), it follows that w satisfies
the equation

AW+ grad div w = —26§5(r).

1-2¢

This is the equation of equilibrium under forces concentrated along the z-ax’is with volume
density Ebjd(r)/2(1 + o) ; cf. §8, Problem, equation (1). By means of the GREEN’s tensor found
in that problem for an infinite medium, the calculation of w is reduced to that of the integral

b Tr(3—40) tq ,
= 2 +—=1dz2,
Y Sr(1-0) Oﬂ R R

R=/(2+5").

The result is

b 1 x
Uy = ——{tan‘12+—~— o4 },

2 x 2(1—0) x2+y2
- 1 x2
= ‘z‘b'{”zlaiz—) o8 V49450 )
The stress tensor calculated from this has Cartesian components
y(3x2+5%)
oyy = Y2 —y%)
(x2+y2)2
(%% —y?)

and polar components
Opr = Oy = —(bD]r) sin ¢,
org = (bD]r) cos ¢,
where D = p/27(1— o).
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ProBLEM 5. An infinity of identical parallel straight edge dislocations in an isotropie
medium lie in one plane perpendicular to their Burgers vectors and at cqual distances fi npatt.
Find the shear stresses due to such a “dislocation wall’” at distances large compared with A

SoLutioN. Let the dislocations be in the yz-plane and parallel to the z-axis. According fo

the results of Problem 4, the total stress due to all the dislocations at the point (v, y) is given by
the sum

x2— (y = nh)?

O':vy(x, y) = beZ_ W

This may be written in the form

Opy = — bD% [J(a, B+a—

o

oJ(a, B)J ’

where

o0

1
Ja, B) = Zm o = xlh, B = y/h.

i = —00

According to PoIssoN’s summation formula

if(n) = i ff(x)e2nikxdx,

N =00 k=—olw
we find }
|
Tode S Remikeg
/ J(o, B) = f——— +2re Z ez”ikﬂf—~£—
/ 2+ é w2 g
~o k=1 -
7 27—
= —+— > e ?7kxcos 2nkp.
P

k=1

When « = x/h>> 1 only the first term need be retained in the sum over k, and the renult 14
bx
Ory = 47r2Dl—2e—2"1/h cos(2my/h).
1

Thus the stresses decrease exponentially away from the wall.

§28. The action of a stress field on a dislocation

Let us consider a dislocation loop D in a ficld of clastic stresses o)
created by given external loads, and calculate the force on the loop in such a
field.

According to the general rules, this must be done by finding the work SR
done by internal stresses in an infinitesimal displacement of the loop D. 1¢
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Su;y is the change in the strain tensor duce to this displacement, we have from

@1t
SR = — foik(@Suide.

Since the distribution of the stresses o is assumed independent of the
position of the dislocation, we can take the difference symbol & outside the
integral. Using also the symmetry of the tensor og(@ and the equation of
equilibrium do4;(®/0x; = 0, we can write

OR = —Sfogk(e)uide

oy
= - SJ‘ o' —dV
Z)xi

Il

0
— Sf—— (aik(e)uk)dV. (28. 1)
0x;

As explained in §27, we shall regard the displacement u as a single-valucd
function having a discontinuity on some surface Sp spanning the line D. Then
the volume integral in (28.1) can be transformed into an integral over a closed
surface consisting of the upper and lower surfaces of the cut Sp, joined by a
tubular lateral surface of infinitesimal width enclosing the line D. The values
of the continuous quantities o;x(® are the same on both surfaces, butthe values
of u differ by a given amount b. We therefore obtain}

OR = "blcsfaik(e>dfi- (28.:’,)
Sp

Let each element of length dl of the dislocation be displaced by an amount
8r. This displacement causes a change in the area of the surface Sp, the
elementary change being 6f = dr X di, i.e. 8fi = eimndxmdly = eimndxprull.
The work (28.2) therefore becomes a line integral round the dislocation loop:

SR = — §bk€imn0ki(e)8xm7ndl,

D

where = is the tangent vector to D.
The coefficient of 8x,, in the integrand is minus the force fr on unit length

t To avoid misunderstanding we must emphasise that sug in this formulais tobetaken (inaccordmn s
with the sense of this quantity in (3.1)) as the total (geometrical) change in the deforinat ion following an
infinitesimal movement of the dislocation. Tt comprises both elustic aud plastic (sce §29) parta,

t The integral over the tubular lateral surface of rdiug p vanishes an p 0, since the ug become
infinite more slowly thun 1/
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of the dislocation line. T'hus

fi = Cumrrkoun b (28.3)

(M. PracH and J. S. Kozmrer 1950). We may note that the foree £is perpens
dicular to the vector =, i.e. to the dislocation line, and also to the vector
o9 by.

The plane which is defined by the vectors T and b at cach point of the dis-
location is called the slip plane of the corresponding element of the dislocation;
for every element this plane of course touches the slip surface of the whole
dislocation, which is a cylindrical surface with generators parallcl to the Bur-
gers vector b of the dislocation. The distinctive physical property of the slip
plane is that it is the only one in which a comparatively easy mechanical dis-
placement of the dislocation is possible.t For this reason it is of interest to
determine the force (28.3) on this plane.

Let « be a vector normal to the dislocation line in the slip planc. "Then (he
required force component (f,, say) is f, = «ifi = ewwrrcitibpmo '), o1

f 1= vioum b, (2%.1)
where v = k X7 is a vector normal to the slip plane. Since the vectors b and v
are perpendicular, we see that the force f, is determined by only one compo

nent 0;5,(@ if two of the co-ordinate axes are taken along these vectors.
The total force acting on the whole dislocation loop is

_ F;= eiklbm§ o1 Pdxg. (28.5)
D

This is zero except for a non-uniform stress field; when o7, (@ = constant,
the integral is §dxy = 0. If the stress field varies only slightly over the Toop,
we can write

8glm(e)
F; = egbm————Oxpdag,
Oxp

the loop being regarded as situated near the origin . This force can be expresed
in terms of the dislocation moment d; defined by (27.11):
F; = dkla(rkl(e)/axi. (8.6)

PROBLEMS

Prosrem 1. Find the force of interaction between two parallel screw dislocations in an
isotropic medium.

+ This fact follows from the microscopic form of a dislocation defect. FFor example, to move the
edge dislocation shown in Iigz. 22 in its slip plane (the xz-planc) comparatively slipht movenents ol the
atoms are suflicient, which make crystad planes farther and farther from the yx plane (but stall paallel oo
it) into “extra’ plancs.

The movement of the dislocation in other directions can occur only hy dilfusion procennen. ot
example, the dislocation shown in Fig. 22 can move in the ya plane only when atone leave the !
half-plane by ditfusion. Sucha procens encbe of practi al importance only at fniely high tempernataren.

‘extin'’
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SoLuTION. ‘The force per unit length acting on one dislocation in the stress ficld due to the
other dislocation is determined from formula (28.4), using the results of §27, Problem 2. [t is
a radial force of magnitude f = pb1b,/2=r. Dislocations of like sign (b;hy - 0) repel, while
those of unlike sign (b1, < 0) attract.

ProBLEM 2. A straight screw dislocation lies parallel to the plane free surface of an iso-
tropic medium. Find the force acting on the dislocation,

SoruTIoN. Let the yz-plane be the surface of the body, and let the dislocation be parallel to
the z-axis with co-ordinates x = xg, v = 0.

"The stress field which leaves the surface of the medium a free surface is described by the sum
of the fields of the dislocation and its image in the yz-plane, considered to lie in an infinite

medium:
/Lb[ y y ]
Ogxz = — - ,
2rl(x—x0)2+y2  (x+x0)2+)?
,ub[ x—xp x+xp ]
O'yz = — haned -
2l (x—x0fty® | (vx0P4y?

Such a field exerts a force on the dislocation considered which is equal to the attraction excrted
by its image, 1.e. the dislocation is attracted to the surface of the medium by a force
f = pb*dmxe.

ProeLEM 3. Find the force of interaction between two parallel edge dislocations in an
isotropic medium which are in parallel slip planes.

SoLuTioN. Let the slip planes be parallel to the xz-plane and let the 2-axis be parallel to the
dislocation lines; as in §27, Problem 4, we put 7, = —1, by = b. Then the force on unit length
of the dislocation in the field of elastic stresses oix has components fz = bogy, fy = —bo ..
In the case considered, oir is determined by the expressions derived in §27, Problem 4. If one
dislocation is along the z-axis, it exerts on the other dislocation (passing through the point
{x,9, 0)) a force whose polar components are fr = bibyD/r, fo = (b1b.D/r) sin 2¢, I)
#/27(1 — ¢). The component of this force in the slip plane is fx = (b1boD[r) cos ¢ cos 24,
which is zero when ¢ = 47 or }m. The former position corresponds to stable equilibrium when
b1b, > 0, the latter when b1b, < 0.

§29. A continuous distribution of dislocations

If a crystal contains several dislocations at the same time which arc a
relatively short distances apart (although far apart compared with the lattice
constant, of course), it is useful to treat them by means of an averaging process:
we consider ‘‘physically infinitesimal” volume elements in the crystal with
large number of dislocation lines through each.

An equation which expressed a fundamental property of dislocation defornma
tions can be formulated by a natural generalisation of equation (27.0). We
define a tensor p; (the dislocation density tensor) such that its integral over a
surface spanning any contour L is equal to the sum b of the Burgers vectorn
of all the dislocation lines embraced by the contour:

fPik(Vi = by. (29.1)

Sh

The continuous functions py deseribe the distribution of dislocations in the
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crystal. "T'his tensor now replaces the expression on the right of equation

(27.6):

eilma'wmk/ 0xyp = — pik. (2‘).}’.)
This equation shows that the tensor p;x must satisfy the condition’
3[)@],;/3961 =0; (29.3)

for a single dislocation, this condition simply states that the Burgers veetor is
constant along the dislocation line.

When the dislocations are treated in this way, the tensor w;; becomes a
primary quantity describing the deformation and determining the strain ten
sor through (27.4). A displacement vector wu related to zo; by the definition
(27.2) cannot exist; this is clear from the fact that with such a definition the
left-hand side of equation (29.2) would be identically zcro throughout the
crystal.

So far we have assumed the dislocations to be at rest. Let us now see how a
set of equations may be formulated so as to allow in principle clastic deforma
tions and stresses in a medium where dislocations are moving it a piven nan
nert (E. KRONER and G. RIEDER 1956).

Equation (29.2) is independent of whether the dislocations are at rest or in
motion. The tensor w;y still determines the elastic deformation; its symmetri -
cal part is the elastic strain tensor, which is related to the stress tensor in the
usual way, by HOOKE’s law.

This equation, however, is now insufficient for a complete formulation of
the problem. The full set of equations must also determine the velocity v of
the points in the medium.

It must be borne in mind that the movement of dislocations causes not only
a change in the elastic deformation but also a change in the shape of the erystal
which does not involve stresses, i.e. a plastic deformation. '}'he motion of dis
locations is in fact a mechanism of plastic deformation. "T'his is clearly illustia
ted by Fig. 25, where the passage of the edge dislocation from left 1o 1iyhi
causes the part of the crystal above the slip planc to be shifted to the right by
one lattice period; since the lattice 1s then regular, the crystal remains un
stressed. Unlike an elastic deformation, which is uniquely defined by the
thermodynamic state of the body, a plastic deformation depends on the process
which occurs. In considering dislocations at rest we have no need to distin
guish elastic and plastic dcformations, since we are concerned only with
stresses which are independent of the previous history of the erystal.

Let w be the geometrical displacement vector of points in the medium,
measured, say, from their position hefore the deformation process hegrins; its

1t We shall not discuss heve the problen of determinimg this motion itself from the forces applied to
the body. "T'he solution ol kuchu probleny requitenw detmited ntudy of the nucroscopie mechaninm of the
motion of dislocations and then retmndation by vinoun delectn, which must take account of the
conditions ocout g i oactual ceyataln
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|16

[f the “total distortion” tensor Wi = Oug|0x; 18 Substituting in the definition (294) vog b oy
w H o

“Oi, WO G WIS it as
ained by subtracting

time dervative a V.

its “plastic part” w0 s obt ' '
formed from the vector u, its plastic part’” i, T

Fic. 25

Dy - .
i ic di ion” hich is the same as the tensor wix 1
from Wiy the “elastic distortion™ tensor, w

(29.2). We use the notation
—jiie = Jwi®V[0t; (29.4)
cal part of jii gives the rate of variation of the plastic deformation

he symmetri ¢ rate of ion ¢ ‘
—y ™) in an inlinitesimal time interval 8¢ is

tensor: the change in 7y

ik + .5

o) = —‘};(]ik’{']ki)&- 29 )

. . . hout

We may note, in particular, that, if a plastic deformation occ.urz\zgr};. ¢

destroying the continuity of the body, the trace of the te?iii]ézéy (Whi.Ch
astic def ; : i ression o

plastic defornition cuses no extension or comp ol

1 Mresses -.L'.'”‘,
would always mvolve the appearance of internal stresses), i Kk

. ) T
therefore iy a0 a0,

, 1 it (29.6)
f Ay
an equation which rclates the rates of change of the elastic and plastic deforma-
tions. Here the ji must be regarded as given quantities which must satisfy
conditions ensuring the compatibility of equations (29.6) and (29.2). These
conditions are found by differentiating (29.2) with respect to time and sub-
stituting (29.6), and are

dpin mi
eum == 0. 29.7
ot Gitm Jxy ( )

"The complete set of equations is given by (29.2) and (29.6), together with the
dynamical equations

pOi = Do/ Oxy,

(29.8)

where oy = Aipipmttim = Aikim@im. The tensors pir and j;; which appear in
these equations are given functions of the co-ordinates (and time) which
describe the distribution and movement of the dislocations. These functions
must satisfy the compatibility conditions of equations (29.2) with one another
and with (29.6), which are given by (29.3) and (29.7).

The condition (29.7) may be regarded as a differential expressionof the “law
of conservation of the Burgers vector” in the medium: integrating bhoth sides
of this equation over a surface spanning some closed line L, detining by (201
the total Burgers vector b of the dislocations cmbraced by L, and using
STOKES’ theorem, we obtain

71_;— — PJipadx;.
L

The form of this equation shows that the integral on the right gives the “flux”
of the Burgers vector through the contour L per unit time, i.e. the Burgers
vector carried across L by moving dislocations. We may therefore call j; the
dislocation flux density tensor.

In particular, it is clear that for an isolated dislocation loop the tensor j;; has
the form

(29.9)

Jik = eumpicVm
= eummV mbrd(8), (29.10)

pux being given by (27.6), and V being the velocity of the dislocation line at a
particular point on it. The flux vector through the element dl of the contour
L is jixdl; and is proportional to dl.e %V - V.dl X7, i.e. the component of V
in a direction perpendicular to hoth dland «©; from geometrical considerations
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it is evident that this is corrcct, since only that velocity component causes the
dislocation to intersect the element dl.

We may note that the trace of the tensor (29.10) is proportional to the com-
ponent of the velocity of the dislocation along the normal to its slip plane. It
has been mentioned above that the absence of any inelastic change in density
of the medium is ensured by the condition j; = 0. We see that for an indivi-
dual dislocation this condition signifies motion in theslip plane, in accordance
with the previous discussion of the physical nature of the movement of dis-
locations; see the last footnote to §28.

Finally, let us consider the case where dislocation loops are distributed in
the crystal in such a way that their total Burgers vector (denoted by B) is zero.t

Fic. 26

This condition signifies that integration over any cross-section of the body
gives

f pirdfi = 0. (29.11)

From this it follows that the dislocation density in this case can be written as
pik = eamOPmy/0x; (29.12)

(F. Kroupa 1962); then the integral (29.11) becomes an integral along a con-
tour outside the body, and is zero. It may also be noted that the expression
(29.12) necessarily satisfies the condition (29.3).

It is easy to see that the tensor P thus defined represents the dislocation
moment density in the deformed crystal, and may therefore be called the
““dislocation polarisation”: the total dislocation moment Dy, of the crystal is,

by definition,
Dy = z Sibr = teqm Z bk§xldxm
D

= Jz‘ (Eilmxlpmkd v,

1 The presence of a dislocation involves a certain hending of the cryatal, as shown diagranumatically
in Fig. 26 (greatly exaggerated). 'The condittion B 0 means that theve i no nae toscopic hending of
the crystal as a whole,
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where the summation 15 over all dislocation loops and the integration is ovel
the whole volume of the erystal. Substituting (29.12), we obtain

1 ) dI )qlc .
D=4 e’ilm(/'nu)qxzf)""dI/

OXp
Py, or
= %f m( L Tvz‘lf)dV
8xi ()x'"l,

and, after integrating by parts in each term,
Dy = szde (29.13)

The dislocation flux density is given in terms of the same tensor 17 by
Jie = — 3Pik/3t. (29 11)

This is easily seen, for example, by calculating the integral [ji; dI” over an
arbitrary part of the volume of the body, using the expression (29.10), to yive
a sum over all dislocation loops within that volume. We may note that the
expression (29.14) together with (29.12) automatically satisfics the condition
(29.7).

A comparison of (29.14) with (29.4) shows that Sew;®D &P I we
agree to regard the plastic deformation as absent in the state with 7’ 0,
then w;p®D = Pik,’i' and

Wik = Wi —wip®) = Bul,/(’)xL — Py, (29.14)

where uy, 1s again the vector of the total geometrical displacement from the
position in the undeformed state. Equation (29.6) is then satisficd wdentically,
and the dynamical equation (29.8) becomes

Pl — Nitim O%m | Oxk0%1 = — Xigeam Py [ Oy (20 10)

Thus the determination of the elastic deformation duc to maoving dislocationn
with B = 0 reduces to a problem of ordinary elasticity theory with hody forces
distributed in the crystal with density —Xgim@Ppm/0xr (A, M. Komvien
1963).

§30. Distribution of interacting dislocations

Let us consider a large number of similar straight dislocations Iy
parallel in the same slip plane, and derive an cquation to determine the
cquilibrium distribution. Let the z-axis be parallel to the dislocations, and
the xz-plane be the slip plane.

t It is assumed that the entire deformation process occurs with B 2 2 0. "Uhin point musat be crphia
sised, since there is a fundamental ditference between the tensors Pooand v whevewn £ mon lun
tion of the state of the hody, the tensorve, @ i not, bhut depends on the procenn whieh bas hrought the
body into that state.,
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We shall supposc {or definiteness that the Burgers vectors of the disloca-
tions are in the x-direction. "I'hen the foree in the slip plane on unit length of
a dislocation is boyy, where oy is the stress at the position of the dislocation.

The stresses created by one straight dislocation (and acting on another
dislocation) decrease inversely as the distance from it. The stress at a point x
due to a dislocation at a point &’ is therefore bD/(x— ), where D is a constant
of the order of the elastic moduli of the crystal. It may be shown that this
constant 1) is positive, i.e. two like dislocations in the same slip plane repel
each other.}

Let p(x) be the line density of dislocations on a segment (a1, az) of the
x-axis; p(x)du is the sum of the Burgers vectors of dislocations passing through
points in the interval dx. Then the total stress at a point x on the x-axis due to
all the dislocations is given by the integral

oay(®) = —D f 220 (30.1)

For points in the segment (a1, ag) this integral must be taken as a principal
value in order to exclude the physically meaningless action of a dislocation on
itself.

If the crystal is also subjected to a two-dimensional stress field o,,(@)(x, y)
in the xy-plane, caused by given external loads, each dislocation will be sub-
jected to a force &(ogy + p(x)), where for brevity p(x) denotes oy (@(x, 0). The
condition of equilibrium is that this force should be zero: oyy+p = 0, i.e.

P f PEE_ P w(x), (30.2)

E—x D

where P denotes, as usual, the principal value. This is an integral equation to
determine the equilibrium distribution p(x). It is a singular equation with a
Cauchy kernel.

The solution of such an equation is equivalent to a problem in the theory of
functions of a complex variable which may be formulated as follows.

Let €(z) denote a function defined throughout the complex z-plane (cut
from a; to ag) as the integral

G
Q(z) = fpg j- (30.3)

Let Q*(x) and Q(x) denote the limiting values of Q(x) on the upper and lower
edges of the cut. They are cqual to similar integrals along the segment (aay, az)

T Tor an isotropic medium this as heen proved o 808, Probleny 3
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with an indentation my the form of an mbmitesonal semicncle below or above
the point & a respectively, e,

{3

0 l(‘v) ) PJ I,(é-‘)dé:

ar

Fiamp(v). (30.h)

1f p(&) satisfies equation (30.2), the principal value of the integral is w{x), and
we therefore have

QF (x) + Q(x) = 20(x}, (30.1)
Ot (x) — Q(x) = 2mp(x). (30.0)

Thus the problem of solving equation (30.2) is equivalent to that of finding an
analytic function Q(z) with the property (30.5); p(x) is then piven by (30 0)

The physical conditions of the problem in question also require that ) 0,
this follows because far from the dislocations (x> + o) the streses oy, ot
be zero (by the definition (30.3), ozy(x) = —DQ(a) outside the epment
(ab a2))-

Let us first consider the case where there are no external stresses (p(ay (),
and the dislocations are constrained by some obstacles (lttice defects) at the
ends of the segment (a1, a2). When w(x) = 0 we have from (30.5) £ 1(y)
—Q~(x), i.e. the function Q(z) must change sign in a passage round cach of
the points a1, ao. This condition is satisfied by any function of the form

_ P(z)
Vi(es—2)(z—a)]’
where P(z) is a polynomial. The condition Q(c0) = 0 means that we nued
take P(z) = 1 (apart from a constant coeflicient), so that
1
Q(z) = . (30 1)
V(a—2)(z—a)]

(30.7)

Q(2)

The required function p(x) will, according to (30.6), have the sime form. "T'he
coefficient is determined from the condition

&

fp(§)d§ = I3, (30.9)

ay

where B is the sum of the Burgers vectors of all the dislocations, and so we have
I

/| (ae (v a)]

We see that the dislocations pile ap towands the obstacles at the ends of the

p(v) (30,10}
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segment, with density inversely proportional (o the sqguare root of the distance
from the obstacle. The stress outside the segment (ay, az) increases in the same
manner as the ends of the segment are approached, e.g. for x> as

BD
Vi(x—as)(az—an)]

In other words, the concentration of dislocations at the boundary leads to a
stress concentration beyond the boundary.

Let us now suppose that under the same conditions (obstacles at the fixed
ends of the segment) there is also an external stress field p(x). Let Qo(z)

denote a function of the form (30.7), and let us rewrite equation (30.5)
divided by Q¢+ = — Qg™ as

Ogy =

Q) Q) _ 2u(x)
Q0+(x) Q(r(x) Qo+(x) )

A comparison of this with (30.6) shows that

OF) 17 o dt
Qule)  im) Q(E) €5

+inP(z), (30.11)

where P(z) is a polynomial. A solution which satisfies the condition Q(o0)
=0 is obtained by taking as Q¢(z) the function (30.8) and putting P(z) = C,
a constant. The required function p(x) is hence found by means of (30.6), and
the result is

(123

1

. A0 L@z &) an)
P = = Pi OV Ila— B a))— +

. C
V(a2 —x)(x—a1)]

"The constant C'is determined by the condition (30.9). Here also p(x) increases
as (a2 — x) /2 when x—az (and similarly when x—a;), and a similar concentra-
tion of stresses occurs on the other side of the boundary.

If there is an obstacle only on one side (at a3, say) the required solution
must satisfy the condition of finite stress for all x < as, including the point x -
ay; the position of the latter point is not known beforchand and must be deter-
mined by solving the problem. With respect to €(z) this means that Q(a))
must be finite. Such a function (satisfying also the condition Q(c0)  0) is
obtained from the same formula (30.11) by taking for Q4(x) the function

(30.12)
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VI0(E—-a)/(as =)}, which is also of the form (30.7), and putting {(z) 01
(30.11). 'T'he result is

g
1 - »— & w(E)dE
p(x) = — — : a'PJ axd “L(t)( . (30.13)
m2N ag—x b—ay E-x
{53
When x—a1, p(x) tends to zero as 4/(x—ai). The total stress o, (x) | p(v)

tends to zero according to a similar law on the other side of the point «;.

Finally, let there be no obstacle at either end of the scgment, and let the
dislocations be constrained only by external stresses p(x). 'I'he corresponding,
() is obtained by putting in (30.11) Qo(2) = /[(a2—=)(z- a))], (=) 0.
The condition Q(o0) = 0, however, here requires the fulfilment of a further
condition: taking the limit as z—oco in (30.11), we find

w(g)dt
J Vi@=HE-a)]

=0. (30.14)

The function p(x) is given by

w(£) d¢

30015
wf(s*(l[)l & ( )

y

) = v l(aa- )P f T

the co-ordinates a; and as of the ends of the segment being determined by the
conditions (30.9) and (30.14).

PROBLEM

Find the distribution of dislocations in a uniform stress ficld p(x) = po over a nepment
with obstacles at one or both ends.

SoruTioN. When there is an obstacle at one end (a,) the calculation of the integral (301 1)
gives

Po [x—a1

plx) = —

aDN as—x

The condition (30.9) determines the length of the segment occupied by dislocations s ay,
2BD/Pg. Beyond the obstacle there is a concentration of stresses near it according to

az—ai

ozy = Po .
X—ds

For a segment of length 2L bounded by two obstacles we take the origin of v at the midpori
and obtain from (30.12)

] I)()
x) - B
P) /(L% A7) (l) v )
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§31. Equilibrium of a crack in an clastic medium

The problem of the equilibrium of a crack is somewhat distinctive among
the problems of elasticity theory. From the point of view of that theory, a
crack is a cavity in an elastic medium, which exists when internal stresses arc¢
present in the medium and closes up when the load is removed. The shape and
size of the crack depend considerably on the stresses acting on it. The mathe-
matical feature of the problem is therefore that the boundary conditions are
given on a surface which is initially unknown and must itself be determined in
solving the problem.}

Let us consider a crack in an isotropic medium, of infinite length and uni-
form in the z-direction and in a plane stress field o4(9(x, y); this is a two-
dimensional problem of elasticity theory. We shall suppose that the stresses
are symmetrical about the centre of the cross-section of the crack. Then the
outline of the cross-section will also be symmetrical (Fig. 27). Let its length be
2L and its variable width A(x); since the crack is symmetrical, A(—x) = h(x)

We shall assume the crack to be thin (k< L). Then the boundary conditions
on its surface can be applied to the corresponding segment of the x-axis. Thus
the crack is regarded as a line of discontinuity (in the xy-plane) on which the
normal component of the displacement u, = + 1k is discontinuous.

Instead of A(x) we define a new unknown function p(x) by the formulae

L

M) = [ol)ds, (=) = —pla). (3L1)

z

The function p(x) may be conveniently, though purely formally, interpreted
as a density of straight dislocations lying in the z-direction and continuously
distributed along the x-axis, with their Burgers vectors in the y-direction.]
It has been skown in §27 that a dislocation line may be regarded as the edge of
a surface of discontinuity on which the displacement u has a discontinuity b.
In the form (31.1) the discontinuity % of the normal displacement at the point

t The quantitative theory of cracks discussed here is due 1o G L Banenneare (1959).
1 It is for this reason that the theory of eracka 1 dewcribed here in the chapter on dislocations,
although physically the phenomena are quite ditlerent.
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x1s regarded as the suny ol the Burgers vectors ol all the dislocations Ty 1o
the right of that point; the equation p( ) p(x) sinities that the dis

locations to the right and to the left of the point a0 have opposite sigmes
By means of this representation we can write down immediately anexpression

for the normal stresses (oy,) on the x-axis. These consist of the stresees

ayy(9(x, 0) resulting from the external loads (which for brevity we denote by

p(x)) and the stresses oy, D (x) due to the deformation causcd by the crack

Regarding the latter stresses as being due to dislocations distributed over the
segment (— L, L), we obtain (similarly to (30.1))

d
oyyD(x) = Df lt) E (31.2)
£~
for points in the segment ( — L, L) itself, the integral must be taken asa pone
pal value. For an isotropic medium,
E
# (313

T 2a(l—0) | An(l—o¥)

see §28, Problem 3. The stresses o4y due to such dislocations in an isotropie
medium are zero on the x-axis.

The boundary condition on the free surface of the crack, applicd (as alveady
mentioned) to the corresponding segment of the x-axis, requires that the
normal stresses oyy = 04" + p(x) should be zero. This condition, however,
needs to be made more precise, for the following reason.

Let us make the assumption (which will be confirmed by the resalt) tha
the edges of the crack join smoothly near its ends, so that the surfaces approach
very closely. Then it is necessary to take into account the forces of moleculn
attraction between the surfaces; the action of these forces extends to a distance
ro large compared with interatomic distances. These forces will be ol impor
tance in a narrow region near the end of the crack where /i ry; the lenpth ol
this region will be denoted by d in order of magnitude, and will he estimated
later.

Let G be the force of molecular cohesion per unit arca of the crack,
depends on the distance / between the surfaces.t When these forees are talen
into account, the boundary condition becomes

oy +p(x)— G = 0. (31.1)

It is reasonable to suppose that the shape of the crack near its end is deter
mined by the nature of the cohesion forces and does not depend on the external
loads applied to the body. Then, in finding the shape of the main part of the

crack from the external forces p(x), the quantity ¢ becomes a given function
G(x) independent of p(a) (over the region d, outside which it is unimportant).

T In the macroscopic theory, the tunction GEe) 1o e repanded an moreanimg smoothly, an Loy
decreases, up (o a maxinom value at the end ol the cock
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Substituting oy, " from (31.2) in (31.4), we thus obtain the following
integral equation for p(x):

L
aOde 11
Iif[, = P~ () = o) (3L5)

Since the ends of the crack are assumed not fixed, the stresses must remain
finite there. This means that, in solving the integral equation (31.5), we now
have the last of the cases discussed in §30, for which the solution is given by
(30.15). With the origin at the midpoint of the segment (— L, L) this formula
becomes

L
1 o)  d¢

- _ P 31.6

pl) = = V(L) _fMLZ—fz) — (316)
The condition (30.14) must be satisfied, which in this case gives
L L
f px)dx 3 G(x)dx —0 (31.7)
V(E=) )
0

(where the integrals from — L to L have been replaced by integrals from 0 to
L, using the symmetry of the problem). Since G(x) is zero except in the range
L —x~d, in the second integral we can put L2~ x2~2I(L —x); the condition
(31.7) then becomes

P(x)dx M
= , (31.8)
| VIR Vel
where M denotes the constant
d
G(é)d¢
M= , 31.9
7o (31.9)

0

which depends on the medium concerned. This constant can be expressed in
terms of the ordinary macroscopic properties of the body, its elastic moduli
and surface tension o; as will be shown later, the relation is

M=/[maE[(1~ o?)]. (31.10)

The equation (31.8) determines the length 272, of the erack from the given
stress distribution p(x). Tor example, for a erack widened by concentrated

§3 Pyl of a crack i an elastic medim 17
forces fapplicd to the midpoints of the sides (P(x)  fo(x)) we hind

21 - 2 M2
= f2(1— o2)mals. (30.11)

It must be remembered, however, that stable cequilibrium of a crack 15 not
possible for every distribution p(x). For instance, with uniforn widlenrge
stresses (p(x) = constant = po) (31.8) gives

2L = 4MP n2py
= 40(E/7T(1—0‘2)j)()2. (31 12)

This inverse relation (L decreasing when pg increases) showes that the e -
unstable. The value of I, determined by (31.12) corresponds to unetabl
equilibrium and gives the “critical” crack length: lonper ik, prrow Spon
taneously, but shorter ones close up, a result first devived by A A Grion
(1920).

Letusnowreturntotheconsiderationof theshapeof thecrack. Whenf, .
the region L — £~ d is the most important in the integral in (31.6)."I'he eyl
can then be replaced by its limiting value as x->/.; the result is pooconstant .

x 4/(L—x), whencet
h(x) = constant x(L—x)32 (L x~d). (31.13)

We see that over the terminal region d the two sides of the crack in fact join
smoothly. The value of the coefficient in (31.13) depends on the properties of
the cohesion forces and can not be expressed in terms of the ordiniry macio
scopic parameters.}

For the part farther from the end, where d<L —x< 1., the repion £ 8
is again the most important in the integral in (31.6), and w(E)~ GO
addition to putting L2—x2~2L(L—x), L2— E2I(L &), we cm here
replace £ —x by L—x, obtaining p = M/a2D/(L—x), where A is the s
constant as in (31.9), (31.10). Hence

h(x) = 2Mr/(L—x)[a2D  (d<L—x-<L). (111

"Thus the end of the crack has a shape independent of the applicd forees (and
therefore of the length of the crack) throughout the range 1. x-- 1.- when
L — x> d the shape is given by (31.14), and when I, — x ~d it has an infinitely

1 In order to proceed to the limit we must first divide the integral in (31.6) into two aintepiln with
numerators w(£)— w(l.) and w(L.); the second integral makes no contribution to the himiting valae

1 An estimate of the cocflicient in (31.13) grives a value of the order of vafd, where a is the dimennmn
of an atom (using « ~ all, M ~ Ea). An estimate of the lenpth o 1w obtained from the condition
h(d) ~ ro, whence d ~ ro®fa = ry. It should he mentioned, however, that in practice the sequeed
inequalities are satisfied only by a small marein, so that the resulting shape of the termmml progection
of the crack is not to he taken as exuct.



148 Daslocations §31

sharp projection (31.13) (Vig. 28). ‘T'he shape of the remainder of the crack
does depend on the applied forces.

If we ignore details, of the order of the radius of the action of the cohesion
forces, the crack therefore has a smooth outline with ends rounded according
to the parabolas (31.14), and this shape is entirely determined by the applied
forces and the ordinary macroscopic parameters. The small (~d) terminal
projections which actually occur are of fundamental significance, however,
since they ensure that the stresses remain finite at the ends of the crack.

The stresses caused by the crack on the continuation of the x-axis are given
by formula (31.2). At distances x— L such that d<x— L <L, we havet

Oyy X oyy€ =~ Mlms/(x—L). (31.15)
The increase in the stresses as the edge of the crack is approached continues
according to this law up to distances x— L ~ d, and oy, then drops to zero at
the point x = L.

It remains to derive the formula (31.10) already given above, which relates
the constant M to the ordinary macroscopic quantities. T'o do this, we writc
down the condition for the total free energy to be a minimum by equating to
zero its variation under a change in the length L.

Firstly, when the length of the crack increases by 8L the surface energy at
its two free surfaces increases by 8Fgyr = 208L. Secondly, the “opening” of
the crack end reduces the elastic energy Fe by 1[oyy(x)n(x)dx, where y(x) 1s
the difference in width between the displaced and undisplaced crack shapes.
Since the shape of the crack end is independent of its length, n(x) = A(x— L)
—h(x). The stress oyy = 0 for x<L, and A(x) = 0 for x> L. Hence

L+8L

8F o= — %Sf(fyy(x)h(x —8L)dx.

L

t The integral is easily calculated direetly, hut it 3 not necesny to do this il we use the relation
between the functions p{a) for v - 1oand uw(”') for a £, which i evident Trom the sesalts of  §30,

§31 Pguilibeium of a crack fnan elastic medm 14

Substituting (31.14) and (31.15), we find
L+3L
M? L+6L—x
sFa= — [ [

m3D
L

8L
M Wy dy

M2
= — 8L
22D
Finally, the condition 8Fgyrt+ 8Fe1 = 0 gives the relation A7 uu D), and

hence we have (31.10).+

t It may be noted that the theory described above, including the relation (8 TOV s facCappdi abid
as it stands only to ideally brittle bodies, i.e. those which renuin Tineardy elesiic up (o o fune o (I
glass and fused quartz. In bodies which exhibit plasticity the Formation of the oy be o cnnpanied
by plastic deformation at its ends.



CHAPTER V

THERMAL CONDUCTION AND VISCOSITY IN SOLIDS

§32. The equation of thermal conduction in solids

dNOON—'UNgO'Ile heating of a solid does not cause convection as it generally
es in fluids. Hence the transfer of heat is effected in solids by thermal
conduct1or.1 alone. The processes of thermal conduction in solids Zre th .
fore described by somewhat simpler equations than those for fluid lfre_
they are complicated by convection. S e
. Theheflilatlon of therma.l conduction i1-1 a solid can be derived immediately
rom the law of conservation of energy in the form of an “equation of

tinuity for hc_‘at”. The amount of heat absorbed per unit time in unit lcon-
of the body 1s 7'9.5/0t, where S is the entropy per unit volume 'lihivsonlimi
‘blc I)I‘ll equal to »-r.div q, where q is the heat flux density. 'I:his flux citS

almost :nl\_v:uys be written as — « grad 7, i.e. it is proportional to the t .
ture pradient (« being the thermal conductivity). Thus e

T9S/ot = div(x grad T). (32.1)
According to formula (6.4), the entropy can be written as
S = So(T)+ Kowy,

:;vhgr;: o 1sCI the thenrnal expansion coefficient and Sy the entropy in the
t Jlr e (;)';fme state. We shall suppose that, as usually happens, the tempera-
e differences in the body are so small that quantities such as «, «, etc

b y -

may be regarded as constants. The i
. . n equation (32.1), aft ituti
the above expression for .S, becomes (1), after substiution of

8Sg aua
T "
Py +aKT Py =k AT.

According to a well-known formula of thermodynamics, we have

Cp—Cy = Ka?T,

whence
aKT = (Cp—Cy)/e.

The time derivative of S, i

f So can be written as (aSojaT) - (979
¢ time Wiv _ i as (0l 1), where the
dcrlvatlw‘.aS(,/r?I s taken for gy diva 0, e, at constant vol S
therefore is equal to €T, h e and

10
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The resulting equation of thermal conduction is

oT +Cp—Cv 0 di AT 327
o R, Vu P . WJa.e:
" ot « o ‘ e

In order to obtain a complete system of equations, it is necessary to add un
equation describing the deformation of a non-uniformly heated body. This ix
the equilibrium equation (7.8):

2(1—o) grad diva—(1- 20) curl curlu = 3«(1+0) grad T. (32.3)

From equation (32.3) we can in principle determine the deformation of the
body for any given temperature distribution. Substituting the expression for
div u thus obtained in equation (32.2), we derive an equation giving the
temperature distribution, in which the only unknown function is T (%, ¥, 2, 1)

For example, let us consider thermal conduction in an infinite solid in
which the temperature distribution satisfics only one condition: at infinity,
the temperature tends to a constant value Ty, and there is no deformation.
In such a case equation (32.3) leads to the following relation between divu
and T (see §7, Problem 8):

1+o

diva = 7 W(T—T).
e 3(1—0)“( "

Substituting this expression in (32.2), we obtain

(1+6)Cp+2(1—20)Cy 3T
31-0) ot

which is the ordinary equation of thermal conduction.

An equation of this type also describes the temperature distribution alony,
a thin straight rod, if one (or both) of its ends is free. 'T'he temperature may
be assumed constant over any transverse cross-section, so that 7" is a function
only of the co-ordinate % along the rod and of the time. The thermal expan
sion of such a rod causes a change in its length, but no departure from staipht
ness and no internal stresses. Hence it is clear that the derivative J5[df
the general equation (32.1) must be taken at constant pressure and, mnce
(3S]ot)p = Cp|T, the temperature distribution will satisfy the one dimen
sional thermal conduction equation CpdT/0t = k02T 0x?.

It should be mentioned, however, that the tempcrature distribution 1 a
solid can in practice always be determined, with suflicient accuracy, by a
simple thermal conduction equation. The reason is that the sccond tetm on
the left-hand side of equation (32.2) is a correction of order (€7, ' )]C,
relative to the first term. In solids, however, the difference between the two
specific heats is usually very small, and if it is neglected the cquation of
thermal conduction in solids can always be written

KA]‘, (‘)“)

arfor xAT, (42.5)
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where x is the thermometric conductivity, defined as the ratio of the ther-
mal conductivity « to some mean specific heat per unit volume C.

§33. Thermal conduction in crystals

In an anisotropic body, the direction of the heat flux q’is not in general
that of the temperature gradient. Hence, instead of the formula

q= —«xgradT

relati‘ng q to the temperature gradient, we have in a crystal the more general
relation

qe = — w0 T[Oxg. (33.1)

The tensor «i, of rank two, is called the thermal conductivity tensor of the

crystal. In accordance with (33.1), the equation of thermal conduction (32.5)
has also a more general form,

aT 2
T @

Py K’k—_axiaxk . (33.2)

A gen'eral theorem can be stated: the thermal conductivity tensor is
symmetrical, i.e.

kil = K. (33.3)

This I‘ek.ltiOI.l, which we shall now prove, is a consequence of the symmetry
of the kinetic coefficients.}

The rate of increase of the total entropy of the body by irreversible pro-
cesses of thermal conduction is

divg
T

Stot = —

. 1
dV=—fd 4 4y f cgrad—
v + qgradeV.

The first integral, on being transformed into a surface integral, is seen to be
zero. Thus

b

. 1 .grad T
St = | q-grad—av — — [LEBECT
tot fq gra T |4 f T2 dv.
or
S = 1 oT
In accordance with the general definition of the kinetic coefficients,] we

t See Statistical Physics, §122.
1 We here use the definition given in Flusd Mechanics, §58.

34 Vascostty of solids I

can deduce from (33.4) that i the case considered the coeflicients 79y m
T2 1 0T
gi = —TPreue| 7y
73 axk

are kinetic coefficients. Hence the result (33.3) follows immediately from the
symmetry of the kinetic coefficients.
The quadratic form

oT oT oT

—_— g = K{fg——
Qiaxi ik axi axk

must be positive, since the time derivative (33.4) of the entropy e be
positive. The condition for a quadratic form to be positive i (it the cryren

values of the matrix of its coefficients are positive. Hence all the prncpal
values of the thermal conductivity tensor s are always posttive, thin
evident also from simple considerations regarding the dircction o the et
flux.

The number of independent components of the tensor wyy dependon the
symmetry of the crystal. Since the tensor «x is symmet ical, thise numibey an
evidently the same as the number for the thermal cxpansion tensor ({10,
which is also a symmetrical tensor of rank two.

§34. Viscosity of solids

In discussing motion in elastic bodies, we have so far assumed that the
deformation is reversible. In reality, this process is thermodynamically
reversible only if it occurs with infinitesimal speed, so that thermodynanic
equilibrium is established in the body at every instant. An actual motion,
however, has finite velocities; the body is not in equilibrinm at every inutant,
and therefore processes will take place in it which tend to return it to cqquih
brium. The existence of these processes has the result that the maotion
irreversible, and, in particular, mechanical energyt is dissipated, ultimately
into heat.

The dissipation of energy occurs by two means. Firstly, when the tempera
ture at different points in the body is different, irreversible processes of thernul
conduction take place in it. Secondly, if any internal motion oceurs the
body, there are irreversible processes arising from the finite veloeny of
that motion. This means of energy dissipation may be referred to, s in
fluids, as internal friction or wviscosity.

In most cases the velocity of macroscopic motions in the body is so small
that the energy dissipation is not considerable. Such “almost irreversable”
processes can be deseribed by means of what is called the dissipative function. |

t By mechanical energy we here mean the sion of the kinetic energy of the mucioacopie motion i
the elastic body and ity (clastic) potentinl energy wrising hrom the deformmtion,
1 See Statistical Phvsacs, §123.
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If we have a mechanical system whose motion involves the dissipation of
energy, this motion can be described by the ordinary equations of motion,
with the forces acting on the system augmented by the dissipative forces o1
frictional forces, which are linear functions of the velocities. These forces
can be written as the velocity derivatives of a certain quadratic function 'V’
of the velocities, called the dissipative function. The frictional force f,
corresponding to a generalised co-ordinate g, of the system is then given by
fo = —0¥/04,. The dissipative function ¥ is a positive quadratic form in
the velocities §,. The above relation is equivalent to

B = — > fabd (34.1)

where 8¥' is the change in the dissipative function caused by an infinitesimal
change in the velocities. It can also be shown that the dissipative function is
half the decrease in the mechanical energy of the system per unit time.

It is easy to generalise equation (34.1) to the case of motion with friction
in a continuous medium. The state of the system is then defined by a con-
tinuum of generalised co-ordinates. These are the displacement vector u at
each point in the body. Accordingly, the relation (34.1) can be written in
the integral form

8 [Wav = — [fdidv, (34.2)

where f; are the components of the dissipative force vector f per unit volume
of the body; we write the total dissipative function for the body as [ 1" d},
where ¥ is the dissipative function per unit volume.

Let us now determine the general form of the dissipative function ¥ for
deformed bodies. The function W', which describes the internal friction,
must be zero if there is no internal friction, and in particular if the body
executes only a general translatory or rotary motion. In other words, the dis-
sipative function must be zero if it = constantor it = Q X r. This means that it
must depend not on the velocity itself but on its gradient, and can contain only
such combinations of the derivatives as vanish when @1 = Q X r. Thesc are
the sums

axk axi ’

i.e. the time derivatives #;; of the components of the strain tensor.t T'hus
the dissipative function must be a quadratic function of . T'he most
general form of such a function is

Y = dniamtatipn,. (31.3)

t Cf. the entirely analogous arguments on the viscosity of Huida in Fluid Mechanics, §15.

§35 The absorption of sound 1 soluds Ihh
T'he tensor 5, of tank Tour, may be called the wuscosity Zensor. 1t has the
ikt , A ;

following evident symmetry propertics:

Wikl = Nomik 5 kil = ikml- (»;‘I.‘I)

The expression (34.3) is exactly analogous to the expression (10.1) fot the
free energy of a crystal: the elastic modulus tensor is replaced by the tenson
Dikim, and u;x by x. Hence the results obtained in §10 for the tensor Ay,
in crystals of various symmetries are wholly valid for the tensor win alio

In particular, the tensor 7;xm in an isotropic body has only two independent
components, and V' can be written in a form analogous to the expresaron
(4.3) for the elastic energy of an isotropic body:

W = n(i— $Sutin)® + 3L, (M)

where % and { are the two coeflicients of viscosity. Since 'I” 1 ponativ
function, the coefficients # and { must be positive.

The relation (34.2) is entirely analogous to that for the clastic free cnerpy,
S[F AV = — [ Fidu; dV, where Iy = 0oy,/0xy; is the force per it volume
Hence the expression for the dissipative force f; in terms of the tensor gy
can be written down at once by analogy with the expression for I terms
of u;z. We have

f,; = 6a/ik/8xk, (31.6)
where the dissipative stress tensor o’y is defined by
U’ik = allf/adik == "’]'zikhnﬂhu- (31.7)

The viscosity can therefore be taken into account in the cquations of motion
by simply replacing the stress tensor oy in those cquations by the sum
oik+ ik

In an isotropic body,

U,ik = 21](125](;-— {;8,,;5111;) + LS. (V15

This expression is, as we should expect, formally identical with that for the
viscosity stress tensor in a fluid.

§35. The absorption of sound in solids

The absorption of sound in solids can be calculated in a manner entirely
analogous to that used for fluids.} Tlere we shall give the calenlations for an
isotropic body. The thermal-conduction part of the enerpy  dusipation
Fmeen is given by the integral - («/T) [ (grad T)* dF. Onaccount of viscosty,
an amount of energy 2Y is dissipated per unit time and volume, so that the
total viscosity part of Fuea is —2 1" dV. Using the expression (B1.5), we

t Sce Finid Mechames, K77
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therclore have

- w o . .

P 7J(mudTVdV~2q’@m~i&mm2dV-§JmﬁdV.(35“

To calenlate the temperature gradient, we use the fact that sound oscilla-
tions are adiabatic in the first approximation.  Using the expression (6.4) lol
the entropy, we can write the adiabatic condition as So(1') + Koy = So(T),
where Ty s the temperatare in the undeformed state. Expanding the ditfer-
cnce So(T)  So(To) in powers of T Ty, we have as far as the first-order
termeas ,\'“('I‘) S()('I'“) (’I‘ 1'()) i)S()/i).Tﬁ = (,‘1,(1'— 1‘())/T0. The derivative

ol the entropy s taken for w0, 1.e. at constant volume. Thus
T Ty -~ ToKuy/C,.

Usmg also the relations K20 Ko == C K 4q4/Cp and Kag/p = ci2— 4¢3,

we can rewrtte this result as

o Top(c?—4c2/3
(A PR i%w (35.2)

/‘1)

Lot us st consider the absorption of transverse sound waves. T'he

thermal conduction cannot result in the absorption of these waves (in the

appioxination constdered). For, in a transverse wave, we have g = 0, and

therctore the temperature in it is constant, by (35.2). Let the wave be propa-
pated along the x-axiss then

e O,y wgy cos(he o ol), u, = ug, cos(kx — wt),

and the only  non-zero components  of the deformation  tensor are
"y deatgy slex - ol), wyy < - Lk, sin(kax — wi).

Weshall consider the energy dissipation per unit volume of the body; the
(time) average valae of this quantity is, from (35.1),

I’Anu-('h o 227}(’)4(”()]/2 | 7’()22)/€t2)

where we have put & wfe. "The total mean energy of the wave is twice
the mcan kinctic energy, e,

I P ‘ TERL I AN
for unit volume we have
F .Al:/uu""(ll(),/“" ] II();”).
The sound absorption coeflicient 1 detined a5 the eatio of the mean cnergy

decapation to twice the mean cnerpy Hux i the wave; this quantity griven
y &
the manner of vination of the wave anplitude with distance, "The amplitude
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decreases as ¢~ 7%, 'T'hus we {ind the following expression for the absorption
coeflicient for transverse waves:

e = §|Emeenl[oF = 0?/2p63. (35.3)

In a longitudinal sound wave u; = ugcos(kx—wt), uy = u; = 0. A
similar calculation, using formulae (35.1) and (35.2), gives

w? [(4 +Z)+ KToczpzch(l 4¢2\2 354
"= 2pc? ?7 Cp? 3CIE) ] (354)

These formulae relate, strictly speaking, only to a completely isotropic and
amorphous body. They give, however, the correct order of magnitude for
the absorption of sound in anisotropic single crystals also.

The absorption of sound in polycrystalline bodies exhibits peculiar proper-
ties. If the wavelength A of the sound is small in comparison with the
dimensions a of the individual crystallites, then the sound is absorhed
each crystallite in the same way as in a large crystal, and the absorption
coefficient is proportional to w?.

If A » a, however, the naturc of the absorption s diflcrent. Tn I
wave we can assume that each crystallite is subject toa wolonly detobuted
pressure. However, since the crystallites are anisotropie, and o e the
boundary conditions at their surfaces of contact, the renulting defornmation .
not uniform. It varies considerably (by an amount of the wame order e
itself) over the dimension of a crystallite, and not over one wavelength v i a
homogeneous body. When sound is absorbed, the rates of change ol the
deformation (1) and the temperature gradients arc of importance. Of
these, the former are still of the usual order of magnitude. The temperature
gradients within each crystallite are anomalously large, however. Hence the
absorption due to thermal conduction will be large compared with that due to
viscosity, and only the former need be calculated.

Let us consider two limiting cases. 'The time during which the temperature
is equalised by thermal conduction over distances ~ a (the relaxation time
for thermal conduction) is of the order of a%fy. Let us first assume that
w < y/a2. This means that the relaxation time is small compared with the
period of the oscillations in the wave, and so thermal equilibrium is nearly
cstablished in each crystallite; in this case we have almost isothermal oscilla-
tions.

Let 7' be the temperature difference in a crystallite, and T’ the corres-
ponding difference in an adiabatic process. The heat transferred by thermal
conduction per unit volume is —divg = «A T’ ~ «T'Ja. The amount of
heat evolved in the deformation is of the order of T4'C ~ wTo’C, where
C is the specific heat. Tquating the two, we obtain 7' ~ To'wa?|x. The
temperatare varies by an amount of the order of 7" over the dimension of
the crystallite, and so its gradient is of magnitude ~ T'/a. IYinally, T is
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tound from (352), with wy ~ ke ~ antfe (1 betng the amplitude of the
displacement vector):

Ty ~ Topciou/C (35.5)

m obtaining orders of maguitude, we naturally negleet the difference between
the various velocities of sound. Using these results, we can caleulate the
energry dissipated per unit volume:

k K d T)Z K T’)Z
‘max ~ ——(gra ~ —|—].
o ~ (e (-

Dividing this by the energy flux & ~ cpw?u?, we find the damping coeflicicnt
to be

y ~ Toa?pca’w?[xC for o < y/a® (35.6)

(C. ZrNer 1938). Comparing this expression with the general expressions
(35.3) and (35.4), we can say that, in the case considered, the absorption of
sound by a polycrystalline body is the same as if it had a viscosity

n ~ Top?cta?/yC,

which is much larger than the actual viscosity of the component crystallites.
Next, let us consider the opposite limiting case, where w > x/a®. In other
words, the relaxation time is large compared with the period of oscillations
i the wave, and no noticeable equalisation of the temperature differences
due to the deformation can occur in one period. It would be incorrect,
however, to suppose that the temperature gradients which determine the
absorption of sound arc of the order of 1y'/a. This assumption would take
mito account only thermal conduction in cach crystallite, whereas heat ex-
changre between neighbouring erystallites must be of importance in the case in
question (ML AL Isakovien 1948). 1f the erystallites were thermally insulated
the temperature differences occurring at their boundaries would be of the
same order Ty as those within cach individual crystallite. In reality, however,
the boundary conditions require the continuity of the temperature across
the sarface separating two crystallites. We therefore have “temperature
waves" propagated away from the boundary into the crystallite; these are
damped ata distanee] 5 ~ ((y/o). In the case under consideration & - a,
e the main temperature gradient is of the order of T8 and occurs over
distances small compared with the total dimension of a crystallite. "T'he cor
responding fraction of the volume of the erystallite is ~ a3 taking the ratio

| 1y be recalled tha, il o theroally conducting medinm 4 bounded by the plane v 0, at
which the excem tempetature vanes proodaally according w77 Ty'e 101 then the tempernture
dietnibution i the medim e grven by the “temperatunre wave” 1 Tye tmt ¢ (11 iy (@f2x); peo

Flusd Mechany, 1))
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of this to the total volume ~ %, we find the mean energy dissipation

a3 Tad'

mech ~ |

- w (To'\2a% kT2
(5)

Substituting for Ty’ the expression (35.5) and dividing by ¢£ ~ cpw?u?, we
obtain the required absorption coefficient:

y ~ Tapcr/(xw)/aC for w > y/a. (35.7)

It is proportional to the square root of the frequency.t

Thus the sound absorption coefficient in a polycrystalline body varies as
w? at very low frequencies (w < x/a?); for y/a% € w < c/a it varies as 1/ w,
and for w > c/a it again varies as w2

Similar considerations hold for the damping of transverse waves in thin
rods and plates (C. ZENER 1938). If % is the thickness of the rod or plate,
then for A > & the transverse temperature gradicent is important, and the
damping is mainly due to thermal conduction (sce the Problems). If .'ll:?'n
w < x/h?, the oscillations may be regarded as isothcrmal, and therelore, in
determining (for example) the characteristic frequencics of vibrations of the
rod or plate, the isothermal values of the moduli of clasticity must be used.

PROBLEMS

ProBLEM 1. Determine the damping coefficient for longitudinal vibrations of a rod.

SoLutioN. The damping coefficient for the vibrations is defined as f - - [I:,‘,,,(;‘|,| 128
the amplitude of the vibrations diminishes with time as e—/4¢.

In a longitudinal wave, any short section of the rod is subject to simple extension or com-
pression; the components of the strain tensor are u,, = 0u,[dz, ttzz = uyy = ~a3d3u2./ Oz.
We put 4, = u, cos kz cos wt, where k = w/+/(Eyq/p). Calculations similar to those given
above lead to the following expression for the damping coefficient:

w? n 3612 — 4(,‘;2 €6t2 KTO(.zp2
B == + + =i
2013 (e —c?)e® (a2 —c)(BaZ—4c?) 9Cy

Here we have written Ej ¢ and a4 in terms of the velocities ¢;, ¢t by means of formulae (22.4).

PrROBLEM 2. The same as Problem 1, but for longitudinal oscillations of a plate.

Sorution. For waves whose direction of oscillation is parallel to that of their propagation
(the x-axis, say) the non-zero components of the strain tensor are
Ugpr = Olg[Ox, Uz, = —[oaa/(1— 044)]0us/0x;

see (13.1). The velocity of propagation of these waves is v/[F,q/p(1 —034%]. A calculation
gives

8 w? {77 3+ 4t — 6c2¢s? Les? ke To?p2(1+ aad)z}

- 2013 PP —c?) ¥ cP) 9C,2

t The same frequency dependence oo tound for the abaorpiion of sound propagated in a fluid near
anolid wall (in o pipe, o wstance); see Flund Mechames, Y17, Pooblenms.
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For waves whose direction of oscillation is perpendicular to the direction of propagation,
uy = '0, and the damping is caused only by the viscosity 5. In this case the damping coethi
cient is § = nw?/2pc?. This applies also to the damping of torsional vibrations of 1ods.

ProBLEM 3. Determine the damping coefficient for transverse vibrations of a rod (with
frequencies such that w > x/h?% where A is the thickness of the rod).

Sorurron. The damping is due mainly to thermal conduction. According to §17, wo have
for each volume element in the rod w#z; = %/R, tizz = uyy = —ozqx/R (for bending in the
xz-plane); for w > y/h®, the vibrations are adiabatic. For small deflections the radius ol
curvature R = 1/X", so that u;; = (1 —2054)xX"’, the prime denoting differentiation with
respect to z. The temperature varies most rapidly across the rod, and so (grad 1)
~(0T/09x)®. Using (35.1) and (35.2), we obtain for the total mean energy dissipation in the
rod —(«To?Eyq?S/9C,?) [ X'? dz, where S is the cross-sectional area of the rod. The mean
total energy is twice the potential energy Eyqly [ X% dz. The damping coefficient is

B = kTo®SEaq/181,C,2.

ProsrEM 4. The same as Problem 3, but for transverse vibrations of a plate.
SoLuTiON. According to (11.4), we have for any volume element in the plate

1= 2040 3%
Uy = — ———3—
ln‘Uad axz

for bending in the xz-plane. The energy dissipation is found from formulae ( 35.1) and (5.7)
and the mcan total encrgy is twice the expression (11.6). The damping coefficient is

_ 2cTaPEaq 14 oaa  2cTo?p  (3c2—4c?)e
3G 1—oaa 3G (2—cP)?

ProbLEM 5. Determine the change in the characteristic frequencies of transverse vibrations
of a rod due to the fact that the vibrations are not adiabatic. The rod is in the form of u
long plate of thickness . The surface of the rod is supposed thermally insulated.

SoLutioN. Let Tya(x, £) be the temperature distribution in the rod for adiabatic vibra
tions, and T'(x, t) the actual temperature distribution; x is a co-ordinate across the thickneus
of the rod, and the temperature variation in the yz-plane is neglected. Since, for 7" = T,
there is no heat exchange between various parts of the body, it is clear that the thermal con
duction equation must be

2 T 02T
) T

For periodic vibrations of frequency o, the differences 750 = Ta—7T%, 7 = T'— 1 from
the equilibrium temperature T’y are proportional to e7*@¢, and we have 7/ +iwr/y = fwry4/y,
the prime denoting differentiation with respect to x. Since, by (35.2), 7aq is proportional
to uy;, and the components u;5 are proportional to x (see §17), it follows that 73q = Ax, whete
A is a constant which need not be calculated, since it does not appear in the final result. '1'he
solution of the equation 7’-+iwr/xy = iwAx/y, with the boundary condition 7/ - (0 fwm
x = 43Ah( the surface of the rod being insulated), is

-

sin ke )
.

! (v e cos Leh (v (ef2)-

The moment AL, ol the tternal wtiess torces o rod bent i the v plane i compoyed of
the othermal puot My, Gre the value Lo cothenmal bendings) aad the pint due to the

§36 Hugphly viscous fluids (6]

non-uniform heating of the rod. 1f My ,q is the moment in adiabatic bending, the second
part of the moment is reduced from My yd-—My,1s0 in the ratio

th ih
14+ f(w) = f 2T dz/f 27gq dz.
~th ~th

Defining the Younc’s modulus E,, for any frequency w as the coefficient of proportionuhity
between My and Iy/R (see (17.8)), and noticing that Eaq—F = E*1a®/9C, (see (0.8); I
the isothermal Young's modulus), we can put

E, = E+[1+f(0)]E2To2/9C,.

A calculation shows that f(w) = (24/R*h*)($kh—tan bkh). For @ » o0 we obtam f — 1,
which is correct, since Ew = Eyq, and for @ — 0, f == 0 and [, - [

The frequencies of the characteristic vibrations are proportiotal 1o the aquue voot of the
Youne’s modulus (see §25, Problems 4-6). Ience

'

N Y At
w = WY [1 —i—j(w()) 18 | R

< I'
where w, are the characteristic frequencics for adiabatic vibiatwnn. "Fhin value ol v ia
complex. Separating the real and imaginary parts (« - @’ {1}, we bl the chanectenat

frequencies
ETa?2 1 sinhé sind

o = wo[l —
3C, & coshétcosté

and the damping coeflicient

8 2ETua?y [1 1 sinh £+sin f]

kIO 2 B E cosh £+ cos‘g

where £ = h+/(wo/2x).

For large ¢ the frequency o tends to w,, as it should, and the damping coetlicient (o
2ETo2x[3C,4h3, in accordance with the result of Problem 3.

Small values of ¢ correspond to almost isothermal conditions; in this case

) & on (BT
18Cp ~ o Lidhad),

and the damping coefficient 8 = ET«2h2w2[180C x.

wgwo(l —

§36. Highly viscous fluids

For typical fluids, the Navier—Stokes equations arce valid if the pertods of
the motion are large compared with times characterising the molecules. "Fhin,
however, is not true for very viscous fluids. In such fluids, the usual equations
of fluid mechanics become invalid for much larger periods of the motion.
There are viscous fluids which, during short intervals of time (though these
are long compared with molecular times), behave as solids (for instance,
glycerine and resin). Amorphous solids (for instance, glass) may be regarded
as a limiting case of such fluids having a very large viscosity.

The propertics of these fluids can be deseribed by the following method,
due to Maxwenn. They are elastically deformed during short intervals of time.
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When the delormation censes, shear stresses renain in them, although thee
are damped in the course of time, so that after 2 sufliciently Tongr time almaon
no internal stress remains in the (uid. Letr be of the order of the time dus iy
which the stresses are damped (sometimes called the Maxzoellian relaxation
time). Let us suppose that the fluid is subjected to some variable external foreer.,
which vary periodically in time with frequency w. If the period e is lpe
compared with the relaxation time 7, i.e. wr < 1, the fluid under consideration
will behave as an ordinary viscous fluid. If, however, the frequency o is suth
ciently large (so that wr > 1), the fluid will behave as an amorphous solid.

In accordance with these “intermediate” properties, the fluids in question
can be characterised by both a viscosity coefficient  and a modulus of
rigidity p. It is easy to obtain a relation between the orders of magnitude of
7, p and the relaxation time 7. When periodic forces of sufficiently smull
frequency act, and so the fluid behaves like an ordinary fluid, the stress tensor
is given by the usual expression for viscosity stresses in a fluid, i.e.

Ol = 27]121]¢ = ——Ziwnuik.

In the opposite limit of large frequencies, the fluid behaves like a solid, and
the internal stresses must be given by the formulae of the theory of elasticity,
Le. oy = 2pusx; we are speaking of pure shear deformations, i.e. we assumc
that u; = o5 = 0. For frequencies w ~ 1/7, the stresses given by these
two expressions must be of the same order of magnitude. Thus nufAr ~ puf,
whence

N ~ T 30.1)
This is the required relation.

Finally, let us derive the equation of motion which qualitatively describes
the behaviour of these fluids. To do so, we make a very simple assumption
concerning the damping of the internal stresses (when motion ceascs):
namely, that they are damped exponentially, i.e. dog/dt = —oy/r. In a
solid, however, we have o = 2pusk, and so doyg/dt = 2udugr/dt. It is casy
to see that the equation

doy Lo du
det T # dt

gives the correct result in both limiting cases of slow and rapid motions, and
may therefore serve as an interpolatory equation for intermediate cascs.
For example, in periodic motion, where u;; and o depend on the time

(3()_?,)

through a factor ¢!, we have from (36.2) —twoig+ ot = - 2dwpuy,
whence
2
oy = (30.3)
1+i/wr

For wr > 1, this formula gives oy = 2pug, i.c. the usual expression for
solid bodies, while for wr < 1 we have oy
usual expression for a fluid of viscosity jir.
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