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Preface 

During the last quarter of the Twentieth Century, the study of nonlinear 
and complex systems has experienced unprecedented development. In the 
following pages, we present a first approach to  standard results and recent 
advances in this field, applied to phenomena at  our scale in our surround- 
ing world. The pretext chosen is mainly instabilities in out-of-equilibrium 
systems, and more specifically the transition to turbulence in flowing fluids. 
It should however be clear that the methods used are of fully general use. 

The book is based on lecture notes for a short optional course given to 
second-year students in an engineering school, Ecole Nationale Supkrieure 
de Techniques Avanckes, in Paris. This school is devoted to the training 
of high level engineers in fields including applied mathematics, mechanics 
and hydrodynamics, electronics,. . . , oceanography, and management. At 
the time of the course, students have not yet chosen their specialty, so the 
course has to  be sufficiently general and without too specific requisites. Ac- 
cordingly, the book should be of interest to nearly any science-oriented un- 
dergraduate student and, potentially, to everybody wanting to  learn about 
recent advances in the field of applied nonlinear dynamics. Technicalities 
are not completely avoided but they are explained as simply as possible 
using heuristic arguments and specific worked examples, while openings on 
different topics can be gained by solving exercises at  the end of each chapter 
using the same methods as those explained in the text. 

At first, the problem of chaos that one has to face very early in this 
field may seem abstract and difficult. Even if the treatment of examples 
is not complete, the reader should get a concrete and operational mastery 
of concepts and techniques to be used from them. As far as the difficulty 
is concerned, our aim is to transmit the knowledge rather informally and 
without full mathematical rigor. With respect to  mathematics and physics, 
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only basic understanding is required, at the level of what is currently known 
after one or two years of undergraduate training. In mathematics, this does 
not go further than elementary algebraic calculus, basic notions of linear 
algebra and ordinary differential calculus. As far as physics is concerned, 
it should suffice to follow one’s intuition and to admit a few fundamental 
equations without discussion. So, adaptation of the approach to any other 
field of interest should thus be envisaged without excessive anxiety. 

A first brief chapter situates the context of the study, that of evolu- 
tionary problems involving a specific independent variable called time, dis- 
tinguishing discrete systems governed by finite sets of ordinary differential 
equations and continuous media described by partial differential equations. 
It serves as an introduction to the rest of the book, explaining in particular 
that continuous media driven out of equilibrium may experience instabili- 
ties inducing structures that further break down, leading to turbulence. 

The second chapter is devoted to a preliminary study of dynamical 
systems with a small number of  degrees of freedom. The archetype of such 
systems is the oscillator which serves to introduce the first manifestations 
of nonlinear effects, e.g. the occurrence of self-oscillations or the relation 
between amplitude and frequency. 

The way to complex behavior is then apparently left a t  a too early stage, 
before the occurrence of chaos. In Chapter 3 we indeed turn to a specific 
but particularly simple and intuitive physical problem, the stability of a 
fluid layer heated from below and entering a convection regime. The first 
part of the chapter is devoted to the analysis of the instability mechanism 
and an approximate determination of the threshold. In the second part, 
a description is given of the “death” of the so-formed dissipative structure 
(pattern of convection rolls) and of the steps toward turbulence. 

After this detour, we come back to the mathematics of the transition 
within the dynamical systems framework. A preliminary step of the reduc- 
tion of the dynamics has to be performed, resting on the distinction between 
driving and enslaved modes, and on elimination of the latter modes. The 
emergence of complexity is then analyzed as a result of the increase of the 
number of driving modes. This is done in two steps. The first one consti- 
tutes the last part of Chapter 4 where we introduce scenarios of transition 
to temporal chaos and present some of the tools used to identify it and 
measure its amount from an empirical point of view. However, as already 
observed when studying convection, confinement effects play an important 
role, and all that precedes relates to the case when they are strong enough 
to  freeze the spatial structure of the modes. Otherwise, scenarios relevant 
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to extended systems, the second step, involve large scale modulations and 
spatio-temporal chaos, both introduced in Chapter 5. 

In common language, the third element of the title, turbulence, refers to 
the irregular, highly fluctuating, behavior of most of the flows surrounding 
us (the opposite situation of so-called laminar flows is rather exceptional). 
This problem is tackled in two steps. Instability and transition of open 
flows is examined in Chapter 6 .  By contrast with systems considered in 
Chapter 3, where the fluid remained confined to  an enclosure, it now cir- 
culates from upstream to downstream, the consequences of which will be 
sketchily discussed. In Chapter 7, we consider developed turbulence, again 
along two paths. First we analyze the different scales, from the largest 
where energy is injected eddies by instability mechanisms to  the smallest 
where it is consumed via viscous dissipation. In a second instance, we turn 
to the statistical problem of predicting the average properties of a given 
turbulence flow, of utmost practical interest for an engineer. 

Chapter 8 recapitulates the results and opens the perspective toward 
a complex dynamical system of contemporary interest, the climate of the 
Earth, and the problem of understanding/modeling its past and present 
trends. 

A first appendix is devoted to a summary of linear algebra results that 
are useful throughout the book. As far as the understanding of nonlinear 
phenomena is concerned, the recourse to computers has been of consider- 
able help a t  different levels. This is the reason why a second appendix, 
introducing hands-on computer sessions, is devoted to elementary methods 
that can be developed, with sufficient common sense and no superfluous 
specialization, to extract useful information from numerical simuIations 
of simple, even simplistic, but well-designed generic models of nonlinear 
dynamics and pattern formation. The course is completed by laboratory 
sessions on topics, the theory of which is considered in some exercises. 

Palaiseau, June 2004. 
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Not at ions. 

Here are some indications about the conventions that, with as few excep- 
tions as possible, we will be using throughout. First, upper-case bold letters 
will denote points in the spaces that will be considered, e.g. X E X, X will 
most often be a real vector space Rd. Components will be XI, X2, ..., Xd, 

collectively denoted {Xi}. We will also possibly use the bold and normal 
upper-case Greek letters in the same context. 

For operators working in these spaces, we will use the bold ‘cal’ TEX 
font, e.g. 3, and for their components the normal ‘cal’ font with indices, 
e.g. Fi, hence Y = 3 ( X )  and y3 = Fj({Xi}), i , j  = 1,. . . , d .  

In the case of a linear operator, e.g. C, we will rather write Y = CX. In 
general, we will not distinguish the operator from the matrix that represents 
it in a given basis, C will denote, with little ambiguity, either the operator 
or the matrix with elements l j j l .  The above equation would then read 
in developed form: y3 = Cil j iXi .  Some elements of linear algebra are 
recalled in Appendix A. 

With respect to differentiation, for the ordinary derivative with respect 
to some variable U we will use d( ...)I dU. With respect to  time t, we 
usually prefer dots surmounting the variable, one for each differentiation 
order: dX/dt 3 X and d2X/dt2 X .  A short-hand notation for the 
partial derivative with respect to variable X, a( . . . ) /aX,  will be ax(...). 

Points in physical space will usually be noted x with coordinates x, y, z ,  
corresponding unit vectors % , g , i ,  and partial derivatives d,, a,, 8,. In the 
same way, a velocity vector will be noted V or v with components V,, V,, V, 
or v,, v,, v,. On some occasions we will rather take xj, vj,  and a,, , 
j = 1 , 2 , 3  allowing us to use the Einstein convention of implicit sum over 
repeated indices. 

The complex conjugate of a complex number 2 = 2, +iZi, Re(2) = Zr, 
Zm(Z) = Zi, will be noted as Z*. 

For quantities that play the role of control parameters, we will not follow 
the convention used in fluid mechanics to take two letters, e.g. ‘Re’ for 
the Reynolds number of a given flow, ‘Ra’ for the Rayleigh number in 
convection, etc., but a simple ordinary letter, upper or lower case, most 
usually R or T ,  to stress the fact that control parameters are ordinary 
variables (ambiguities will be raised on a case-by-case basis). 

Numerical illustrations have most often been obtained using MATLAB. 
We will occasionally use some of its conventions. 
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Chapter 1 

Introduction and Overview 

In a linear world, the effects being always proportional to their causes, 
everything would be “simple” since the tools that would allow us to rep- 
resent it as a superposition of elementary states are rather well mastered. 
Unfortunately the world is “complex.” As a matter of fact, we often ob- 
serve effects which saturate in spite of an increase of their causes, or which 
go in different and somehow unexpected ways. All this is ascribed to non- 
linearities. Of course, if we succeed in determining the state of a nonlinear 
system, we immediately try to go back to a problem that we know how to  
handle by linearizing the dynamics around it and treating small departures 
from it by a perturbative approach, and next to reproduce this scheme as 
far as possible in order to  reach other fully nonlinear states, eventually “far 
from” the initial one. 

Most recently, our science of intrinsically nonlinear phenomena has 
made much progress (even though it rests in part on the use of linear 
tools) and investing this knowledge further in applications is of primary 
interest. The aim of these lecture notes is therefore to  introduce the reader 
to  this breakthrough by taking the problem of macroscopic instabilities as 
a pretext. In thermodynamic systems close to equilibrium the response 
to excitations is essentially linear, i. e. proportional to the (sufficiently 
small) amplitude of the applied stress with a proportionality factor called 
a susceptibility. As a consequence of linearity, the regime that develops 
is unique. When the applied stress increases, the system is driven farther 
from equilibrium and nonlinearities can no longer be neglected. This opens 
the possibility of bifurcations towards different regimes that can coexist 
and compete. As a result of such “catastrophes,” losing reference to the 
initial state the dynamics becomes increasingly complicated, typically from 
“laminar” to  “turbulent flow.” 

1 
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1.1 Dynamical Systems as a Context 

In order to study the causes of the complexity induced by nonlinearities, we 
will concentrate our attention on problems defined in terms of the evolution 
of a set of state variables functions of a single independent variable called 
t ime  (the general concept of dynamical system). Mechanical systems in 
the ordinary sense obviously belong to this class. Their archetype is the 
oscillator, and in its simplest linear expression, the harmonic oscillato9 
(Figure 1.1, left) 

m X  = F = -kX  = 0 ,  (1.1) 

where X measures the departure from the equilibrium length of the spring, 
m is the mass attached to its end, and F is the restoring force, here taken 
proportional to X via the stiffness coefficient k. As a result the oscillation 
period is independent of the amplitude: T = TO = 2.rr/wo, with w; = k / m .  

At this stage’ nonlinearities can introduce themselves in two ways. First 
it is easy to imagine that the stiffness coefficient may not be a constant but 
rather a function of X itself. Assuming k = ko(1 + ax2) leads to what 
is known as the D u f i n g  oscillator. Another possibility comes from the 
existence of mechanical constraints. The ideal rigid pendulum,  a mass m at 
the end of a weightless rod of length 1 and revolving around a horizontal axis 
in the gravity field, is a good example (Figure 1.1, right). Parameterizing 
its position by the angle 8 it forms with the vertical axis, one obtains: 

J e  + m g l  sin 8 = 0 ,  (1.2) 

where J = m12 is the moment of inertia and -mgl sin 8 the torque exerted 
by its weight. The nonlinearity built in the sine function is a consequence 
of the topological constraint keeping the mass rigidly at a constant dis- 
tance from the rotation axis and plays a role in case of large deviations. 
As an outcome, several equilibrium positions exist. The ‘down’ position 
is a stable equilibrium point, with small amplitude oscillations around it 
governed by the same equation as the harmonic oscillator. The ‘up’ posi- 
tion is unstable and the pendulum departs from it upon perturbations of 
any amplitude, even infinitesimal. Furthermore low energy states oscillate 
around the ‘down’ position with a period depending on the energy, while a t  
larger energies, the system rotates always in the same direction, accelerat- 
ing and slowing down periodically as it passes through the ‘down’ and ‘up’ 

lAs indicated at the end of the preface, when the independent variable is time, dif- 
ferentiation is denoted by dots on top of dependent variables. 
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Fig. 1.1 Left: Linear spring. Right: Rigid pendulum. 

positions, respectively. The behavior of nonlinear oscillators will be further 
considered in Chapter 2. 

Such mechanical examples can serve us to introduce a geometrical de- 
scription of the dynamics in a space called the phase space, here with coor- 
dinates the positions X or 0 and the momenta mX or Jd ,  and to account for 
the dynamics in terms of trajectories in that space. In practice, any system 
involving a finite set of dependent variables serving to characterize its state, 
its state variables, governed by differential equations, belongs to the class 
we consider here. Examples are intensities and potential differences in an 
electrical circuit (Chapter 2, §2.3.1.2), concentrations of reactants in chem- 
istry (Exercise 1.5.1), population densities in ecology (Exercise 1.5.2),. . . 
In analytical mechanics, a pair ‘position + conjugate momentum’ is called 
a degree of freedom. In a more general context, what is called a degree of 
freedom is simply a state variable. 

In general, it is advantageous to write down the dynamical equations as 
a system of first order differential equations 

X j  = 3 j  ( { X i ( t ) ;  i = 1 , .  . . , d } ,  t )  , j = 1 , .  . . , d ,  

where the integer d is, in this context, called the dimension of the system.2 
Using the notations X and F for the sets {Xj,j = 1 . .  . d } ,  and {3j,j = 
1 . .  . d}, we have thus: 

x = 3 ( X ,  t )  . (1.3) 

2Accordingly, the dimension of the phase space is twice the number of degrees of 
freedom in analytical mechanics whereas otherwise it is just the number of state variables. 
In the following we will try to avoid ambiguities arising from this terminology. See later, 
Chapter 2, 52.1.2. 
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For a system such as (1.3) time is a cont inuous variable. By contrast, 
a discrete-t ime system is defined as an iteration that we can write in the 
form 

Xj,k+l = @j ( {Xi ,k ; i  = 1 , .  . . , d }  ,k) , j = 1 , .  . . , d .  

or, formally: 

For such a system, time is the discrete index k that serves to monitor the 
evolution. While appearing as a topic in itself in mathematics, the study 
of discrete-time dynamical systems turns out to be essential in physics and 
engineering owing to their occurrence as a result of the stroboscopic analysis 
of periodically forced continuous-time dynamical systems, or of a PoincarC 
section in self-oscillating systems. They can also introduce themselves as 
the outcome of modeling effort of specific phenomena, e.g. seasonal counts 
in population dynamics. All this will be considered in detail in Chapter 4. 

Systems considered here all carry out the intuitive concept of de te rmin -  
i s m  which imply the prediction of a state at time t or lc beyond some time t o  
or ICo at which some initial condition is specified. This init ial  value problem 
presents itself formally or explicitly as a computational problem, directly 
if it is defined as an iteration (1.4) or indirectly through some numerical 
approximation for a continuous-time system (1.3), e.g. Euler extrapolation, 

since analytical integration is rarely possible. See Appendix B, fjB.1, for an 
introduction. 

Resuming the geometrical perspective introduced above, we are now in- 
terested in the properties of trajectories followed by the system in its phase 
space. This study rapidly points to the key role played by the concept of 
stability taken in the broad sense of resistance t o  perturbat ions.  In practice, 
this vague definition refers to two different viewpoints: 

The first one, rather quantitative, applies to specific trajectories: the so- 
lutions found, which depend on initial conditions, have to withstand small 
perturbations imposed either at the start or during the subsequent evolu- 
tion, owing to unavoidable disturbances, either intrinsic (thermodynamic 
fluctuations) or extrinsic (noise). From this first viewpoint, only stable so- 
lutions (that resist) are physically observable. Further, a sufficiently large 
set of experimental conditions should make them attainable. 
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The second viewpoint is mode qualitative. It refers to the very defini- 
tion of the system itself: when compared to the real world, any abstract 
implementation is intrinsically blurred with numerous approximations and 
its control parameters are not determined with infinite precision. Accord- 
ingly, in order to be of help, the analytical model must be robust, i.e. its 
predictions must not be too sensitive to these different sources of inaccu- 
racy. This property indeed fails at bifircation points  where the system 
experiences qualitative changes of behavior. At such points one says that 
it is structurally unstable: the nature of the state depends sensitively on 
the perturbation. 

It can be easily understood that these two facets of the term ‘stability’ 
are equally important for the applications. They will be at the heart of the 
most abstract part of the course, first in Chapter 2 and next in Chapter 4 
where we will give a more precise meaning to  the word ‘prediction’ when the 
considered system evolves chaotically, that is to  say in a way unpredictable 
in the long term in spite of short term determinism,  due to an instability 
of trajectories that is the essence of chaos. 

1.2 Continuous Media as a Subject 

Dynamical systems considered up to now were endowed with a supposedly 
small number of dependent variables, thus living in spaces of low enough di- 
mensions. Once the microscopic structure of matter has been recognized, in 
principle one should turn to  the study of systems made of a large number of 
components at the molecular scale, each with its own degrees of freedom in 
the mechanical sense. However a refined description of the microscopic con- 
figurations is generally useless (due to chaos at this scale) and our ignorance 
of dynamical details can be circumvented by adopting a statistical point of 
view from which the less probable (specific initial condition) evolves into 
the most probable (equilibrium compatible with conservation laws), found- 
ing the thermodynamic approach. In this framework, microscopic variables 
are replaced by average quantities such as energy, entropy, temperature or 
pressure. 

In practice, global thermodynamic equilibrium is not of much interest 
since it accounts for a world eaten by the worm of the equiprobability of 
microscopic states, and in some sense completely dead. On the contrary, 
an inhomogeneous world traversed by various fluxes making it alive (which 
by the way allows us to study it!) is much richer and more interesting. We 
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are indeed confronted to a large class of transport processes in media that 
are out of equilibrium on a macroscopic scale and there is a wide range 
of time and space scales for which the concept of continuous medium is 
appropriate, that is to say the description of a system according to which its 
state variables are functions of the position in physical (three-dimensional) 
space, X(x, t ) ,  governed by partial differential equations: 

atx = S(X,  vx, t )  . (1.6) 

From a mathematical perspective, such systems are infinite-dimensional 
since we need to specify the value of these variables at every point in space. 
On the other hand the validity of the description relies on the definition 
of a mesoscopic scale inbetween the microscopic (molecular) level and the 
(macroscopic) size of the system taken as a whole. The concept of material 
point and the assumption of local equilibrium make sense precisely on this 
intermediate scale, sufficiently small to be considered as infinitesimal but 
large enough to contain as many molecules as necessary for the laws of 
thermodynamic to be relevant. 

Equations such as (1.6) are in general derived from the macroscopic 
balance of extensive thermodynamic variables, say 2, that, in differential 
form, read 

where pz is the density of 2, J, its flux, and C, a source term that cancels 
when 2 is a conserved quantity (momentum, energy). The simplest example 
is the Fourier heat equation governing thermal diffusion: 

C&T = x V 2 T ,  (1.8) 

governing the temperature field in a solid submitted to moderate gradients. 
It derives from the Fourier law 

that links the heat flux to the temperature gradient through the thermal 
conductivity x. Quantity C in (1.8) is the specific heat defined through 
the thermodynamic relation 6U = C6T. Inserting this into the balance 
equation for the internal energy atp, + V . JQ = 0, where prr is the cor- 
responding density obtained as the limit of bU/6V as the volume element 
6V + 0, immediately yields (1.8). 
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The quantity K = x / C  is the thermal diffusivity. Dimensionally, this 
coefficient is homogeneous to [LI2/[T] ,  like the diffusivity D appearing in 
the Fick law governing molecular diffusion. In this context, an important 
quantity is the time scale T for diffusive relaxation over a typical space scale 
L, directly obtained from the dimensional relation above as r = C 2 / & .  The 
relaxation of T is examined in the most elementary case in Exercise 1.5.3 
which further illustrates a rare situation where one can find an analytic 
transform allowing the exact linearization of a parent nonlinear problem. 

Equation (1.8) is indeed linear provided that the specific heat C and the 
thermal conductivity x are constant, which is reasonable not to far from 
equilibrium. The Fourier law (1.9) is the prototype of a phenomenological 
relation linking a flux (the effect) to a gradient (the cause) at a linear level. 
In practice, the validity range of such linear law is generally rather wide, 
because constraints that we are able to apply to continuous media are usu- 
ally weak when compared to molecular interactions. As counter-examples 
one could cite electronic systems containing active elements with threshold 
effects (diodes), or chemically reacting media, and a for t io r i  biological sys- 
tems. However, in macroscopic media strong nonlinearities can in fact arise 
from global considerations. This is particularly the case in fluid systems 
where macroscopic flow deeply affects the transport properties, rendering 
a locally linear medium effectively nonlinear. 

So, in hydrodynamics the concept of the material  p o i n t  transforms itself 
into that of f luid particle,  the position of which becomes a function of time: 

It is most often useful to pass from this Lagrangian description, to an 
Euler ian  approach in terms of velocity field:3 

d d  
( v Z 7 v y , v Z )  ($Z:M, ZyM, Z Z M )  . 

The two descriptions are linked by the definition of the material  derivative 
measuring the evolution of any physical quantity 2 attached to the fluid 
particle as it is followed during its motion: 2 = 2 (zM, yM, z M ,  t ) .  Mathe- 
matically, material differentiation is thus a total differentiation with respect 
to time, $2, that is: 

$2 = at2 + a,z &EM + ayz &yM + a,z $ZM = at2 + v * vz .  (1.10) 

3Here we no longer denote time differentiation by dots but come back with explicit 
derivatives in order to avoid ambiguities. 
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This relation allows a simple expression of the balance equation in differ- 
ential form provided that the flux of 2 is properly split into an irreversible 
diffusive part and a reversible part linked to the macroscopic motion: 

Jz  = Jz,diff + PZV * 

When studying the mechanism of natural convection in fluids originally at 
rest we will demonstrate the role of a global nonlinearity played by the 
advection term in spite of its apparent linearity in pa,  but before consid- 
ering this example, let us recapitulate the equations governing the motion 
of a simple Newtonian fluid, i.e. a single component fluid with a constant 
viscosity. The first one is the continuity equation accounting for the con- 
servation of matter. In full generality it reads: 

& p + V . J ,  = O ,  

(no source term). Noticing that diffusion of matter within itself does not 
make sense, we get J, = pv which leads to 

& p +  v .  v p  + p V  . v = & p +  p v  . v = 0.  (1.11) 

In the following we will consider incompressible flows characterized by 
&p = 0, so that the continuity equation more simply reads 

v . v  = 0 .  (1.12) 

On the other hand, for an incompressible fluid the compression viscosity 
drops out and there only remains a shear viscosity which, for an isotropic 
Newtonian fluid, relates the viscous stress tensor to  the rate of strain in a 
linear way: 

r.' a j  - - p(8iV.j + 8j.i) 7 

where p is the dynamical viscosity. 
conservation equation, this relation leads to  the Navier-Stokes equation 

Once inserted into the momentum 

p ( & + v . V ) v =  - V p + p V % .  (1.13) 

The kinematic viscosity u = p / p  is the transport coefficient accounting for 
the diffusive relaxation of velocity gradients (Stokes law). At the inviscid 
limit (u -+ 0) the Navier-Stokes equation is called the Euler equation. 
The opposite limit where the viscous dissipation dominates is called the 
Stokes approximation. Finally if the heating generated by viscous friction 
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is negligible, energy conservation yields the heat equation (1.8) where &T 
is just replaced by ZT (at + v . V)Tl hence: 

&T + v. VT = ~ G V ’ T .  (1.14) 

1.3 From Simple to Complex 

In a narrow vicinity of thermodynamic equilibrium, the response of a con- 
tinuous system is simply proportional to the strength of applied constraints 
and displays the same symmetries, stationary or periodic in time, uniform 
or periodic in space, for example. However, far from equilibrium, when 
nonlinearities can no longer be neglected] the system can bifurcate towards 
solutions that breaks some of these symmetries. 

The nature of the regime that develops depends on the value of control 
parameters measuring the relative intensity of the different contributions 
to the dynamics. In fluid mechanics, it will most often be the Reynolds 
number defined as R = U e / u  where U and e represent a typical velocity 
and a length scale both characteristic of the flow under consideration while 
u, the kinematic viscosity introduced above, is a fluid’s property. In line 
with what has been said about the thermal diffusion time, it is enlightening 
to analyze the Reynolds number as the ratio of the viscous relaxation time 
over the length e ,  rv = e2/u,  to the advection time required to carry velocity 
fluctuations over the same distance, T, = e / U .  When the Reynolds number 
R = rv/Ta is small, viscosity has time to wipe out inhomogeneities, whereas 
when it is large, thermodynamic dissipation is too slow and the mechanical 
contribution of advection dominates. 

The study of the stability of a given regime called the base state rests 
on the definition of perturbations, i.e. departures from this state, and their 
subsequent evolution. Figure 1.2 illustrate the general situation. Below a 
value of the control parameter R denoted R,, ‘g’ for global, the base state 
is unconditionally stable: whatever the shape and the amplitude of the 
perturbation, it decays and the system returns to its base state (sufficient 
condition of stability). Above a second value R,, ‘cl for critical, the system 
is sensitive to at least one unavoidable perturbation and unconditionally 
departs from the base state. The determination of Re appeals to the so- 
called linear stability theory dealing with the evolution of fluctuations that 
are mathematically infinitesimal. It is indeed sufficient that there exist such 
a perturbation that is amplified for the base state to be unstable. It may 
happen that R, coincide with R,, in which case R 2 R, is a necessary and 
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Fig. 1.2 
Reynolds number. 

Stability of the base state as a function of some control parameter R,  e.g. the 

sufficient condition of instability but in general the interval [Rg, Rc] has a 
finite width, which defines a range of conditional stabil i ty:  the stability of 
the base state depends on the shape and amplitude of the (finite amplitude) 
perturbations to which it is submitted. Most of the time this fundamentally 
nonlinear problem remains unsolved. 

In some favorable cases, one can succeed in computing the state that 
sets in above the threshold of the p r i m a r y  instability by a perturbation 
method. This so-obtained state is then promoted as a new base state, the 
stability of which is of interest. This state can in turn become unstable 
with respect to a secondary instability that complicates the dynamics, and 
so on up to a chaotic state which, for fluid systems, is usually called turbu-  
lent.  In this perspective, turbulence is considered as resulting from various 
modes at the end of a cascading process. Instead of staying at this formal 
viewpoint let us rather examine a particularly simple and intuitive concrete 
mechanism responsible for the instability of a liquid layer heated from below 
and initially at rest. 

1.3.1 

Let us consider a layer of fluid at rest presenting a density stratification 
due to heating from below (Figure 1.3). A temperature difference AT = 
Tb - Tt > 0 is thus applied between the bottom ‘b’ and the top ‘t’ of the 
layer. Since, with few exceptions, the density decreases with increasing 
temperature and this stratification with heavier fluid on top of lighter fluid 
is potentially unstable in a vertical gravity field (like the ‘up’ position of 
the pendulum). 

When AT is small, the fluid stays at rest since the gravitational poten- 
tial energy that would be gained by moving the heavier fluid to the bottom 
is not sufficient to counterbalance the energy loss by dissipation in that 
motion. More precisely, as long as the fluid is at rest, the heat transfer 
is entirely carried out by conduct ion.  The temperature profile in the base 

Thermal convection: the instability mechanism 
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m 

Fig. 1.3 Left: Instability mechanism of thermal convection. Right: Convection cells 
with wavelength A, = 2 n / k , .  

state To(z) is obtained from the Fourier equation (1.14) that simply reduces 
itself to d2To/dz2 = 0 since v E 0, hence To(z) = Tb-pz, where p = AT/h 
is the applied temperature gradient, h being the height of the layer. 

Let us suppose a fluctuation localized inside a tiny droplet marked with 
a slightly higher temperature (perturbation 0 > 0). Since this bubble of 
hotter fluid is surrounded with colder denser fluid, it experiences an upward 
differential buoyancy force which makes it moving up, encountering ever 
colder fluid, which reinforce the motion: this is the destabilizing part of 
the mechanism. However, two stabilizing processes tend to  oppose this 
process. First, the so-induced velocity tends naturally to decay owing to 
viscous friction. Second, thermal diffusion aims at  ironing out the horizontal 
temperature gradient accompanying fluctuation 6'. The fluid layer stays at  
rest as long as dissipation dominates but convection develops when the 
destabilization is sufficient, i.e. when AT is larger than some critical value 
AT, called the instability threshold. 

On the other hand, the stabilizing dissipative processes are diffusive in 
essence, so that their efficiency depends on the horizontal space dependence 
of the velocity and temperature modulations. Damping is fast on small 
scales and slow on large scales. It thus depends on the length-scale of the 
perturbation and it turns out that the onset of the instability corresponds 
to some optimum scale. For dimensional reasons this scale is of the order 
of the height h, as implied by the sketch in the left part of Figure 1.3. 
Accordingly the bifurcated convection state often sets in as a system of 
periodic rolls, with spatial period A, M 2h, as illustrated in its right part. 
The quantity Ic, = 27r/X, which appears when representing the plan-form 
in Fourier series is called the critical wavevector. The pattern formed has 
been called a dissipative structure by Prigogine [Glansdorff and Prigogine 
(1971)l. 
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1.3.2 

Here we account for the dynamics of convection close to  the threshold by 
heuristic arguments that could be entirely supported by a rather complex 
detailed theoretical approach yielding the concrete value of the coefficients 
that we will introduce phenomenologically. 

The space-time coherence introduced in the system by the instability 
mechanism allows us to describe the evolution of the convecting layer using 
a simple variable A(t )  measuring the amplitude of convection. We thus 
assume that, as far as their horizontal dependence is concerned, the velocity 
and temperature fields can be taken in the form 

(vz, 0) 0: A(t )  sin(kx)  , (1.15) 

where A plays the role of an effective degree offreedom and k, is the critical 
wavevector introduced earlier. We are now interested in the phenomeno- 
logical derivation of an evolution equation for this amplitude. 

At the infinitesimal stage, the perturbation is governed by a differential 
equation that should read 

Nonlinear convection and dynamical systems 

&A = u A ,  (1.16) 

where coefficient u accounts for the growth rate, negative below the thresh- 
old (damping) and positive beyond (amplification). Let us define a reduced 
control parameter T = (AT - ATc)/ATc and assume that the behavior of 
CJ as a function of r is not singular, so that its expression can be restricted 
to the first term of its Taylor expansion in powers of T :  

u = ? - / T o ,  (1.17) 

where 70, homogeneous to a time, characterizes of the natural evolution of 
relevant fluctuations. 

Equation (1.16) where u is given by (1.17) accounts for the evolution 
of coupled velocity-temperature fluctuations as long as the amplitude A is 
sufficiently small. This does not raise difficulties when T < 0 since A decays 
but when T > 0, in the unstable domain, it is exponentially amplified and 
does not stay small for a long time. In order to model the nonlinear effects, 
we will assume that (1.16) remains valid but that u has to  be corrected 
and becomes a function of A itself. Noticing that the change ‘ A  -A’ 
corresponds to a change of the spinning direction of the rolls (or to a trans- 
lation of the structure by X,/2) and that the physics of the problem should 
not be sensitive to such a change, we are led to assume that the effective 

2)
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growth rate (T,R is an even function of A. At lowest order of an expansion 
in powers of A, it can be taken as: 

Cetf = ( r  - g A 2 ) / T 0  7 (1.18) 

where g is called the Landau  constant .  In the simple case considered here, 
g is a positive quantity, i.e. g = 1/A2, A measuring the typical ampli- 
tude at which nonlinearities become effective. The experiments show (and 
the theory demonstrates) that the convection mechanism is indeed self- 
limiting, so that the effective growth rate decreases when the amplitude of 
convection increases. The nonlinear model accounting for convection in the 
neighborhood of the threshold then reads: 

TO$A = F,(A) = T A  - 9 A 3 .  (1.19) 

Its study is elementary and will be resumed later in a more general context. 
Here it is our first example of effective dynamical  s y s t em.  It governs a simple 
scalar variable A representing the macroscopic evolution of our system. 
Upon rescaling t by T and A by A, equation (1.19) can be recast in a 
universal form: 

A = r A - A3 . (1.20) d t  

The evolution of A from an initial value A0 = for r = 0.1 is illustrated 
in Figure 1.4. As long as r A  >> A3 the growth remains exponential, which 
appears graphically linear on the lin-log plot in the left part of the figure. 
When A increases, the slope of the curve (T,R decreases. Ultimately, A 
saturates to a value A,  = fi. Taking a negative initial value would have 
led to  -A,, owing to the symmetry of the equation. The graph giving the 
nontrivial state as a function of the control parameter, depicted in the right 
part of Figure 1.4, is called a bifurcation diagram. 

In the terminology of dynamical systems, variable A is the degree of 
f r e e d ~ m . ~  Accordingly, the real axis is here the phase space,  while F,(A) is 
the vector  field defined on this space that governs the dynamics. Stationary 
solutions A, are called fixed po in t s ,  a stable fixed point being a simple ex- 
ample of attractor .  The transition ‘conduction + convection’ is continuous 
with a stable nontrivial A, tending to zero as the threshold is approached 
from above. One then speaks of a supercritical bifurcation. Owing to the 
shape of the graph in Figure 1.4 (right), it is further called a f o rk  bifurcation. 
Equation (1.20) is thus the n o r m a l  f o r m  for a supercritical fork bifurcation. 

4Remember that we have left the field of analytical mechanics, see Note 2, p. 3 

10-3
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A 

Fig. 1.4 Left: Evolution of the amplitude A as a function of time for model (1.20) with 
r = 0.1 (lin-log plot). Right: Bifurcation diagram giving the amplitude A of the steady 
state as a function of r .  Conventionally, the unstable state A = 0 for T > 0 is indicated 
by dashes while a continuous thick line is used for the stable states, A = 0 for r < 0 and 
A = A. = *&for r > 0. 

In the opposite case, i e .  g < 0 in (1.19), the nontrivial solution appears 
below the threshold and is unstable, the bifurcation is then subcritical, and 
equation (1.20) has to be further completed to yield a meaningful model. 
This abstract approach will be resumed in Chapter 2 and 4. 

Convection rolls that develop beyond the threshold of the first insta- 
bility can themselves become unstable with respect to other mechanisms. 
One thus has to study the flow that results from the superposition of the 
saturated pr imary  mode to the initial base state, using a similar but tech- 
nically much more complicated approach. Secondary modes can then be 
detected yielding, upon saturation, new base states ready for subsequent 
destabilization as the control parameter is further increased. 

The convecting layer is a continuous medium described by field vari- 
ables. The reduction of the dynamics to a single scalar variable A,  or a 
small set of similar variables when other instabilities have taken place, calls 
for justifications that will be examined in Chapter 4 as a precondition to 
the use of the concept of chaos for interpreting the increasing complexity 
of the dynamics all along the cascade of instabilities leading to turbulence. 
This approach will be all the more relevant when there are few convection 
cells, well confined by lateral walls at distances of the order of the height h 
itself. Its limitations will also have to be studied when conf inement  effects 
by far-apart lateral boundaries are too weak (Chapter 5). 
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1.3.3 

Natural convection has been the subject of many academic studies since it 
offers an ideal testing ground for ideas developed in nonlinear dynamics. 
However, systems of interest in engineering studies often display a supple- 
mentary feature: they involve open flows characterized by the existence of 
a mean current from upstream to downstream. Whereas the linear stability 
theory of open flows has a long history, dating back to the end of the Nine- 
teenth Century, difficulties linked to this specific feature have delayed the 
nonlinear approach. Rather than a thorough account of results obtained in 
this field, Chapter 6 should thus be considered as a preliminary presenta- 
tion aiming at better situating the problem in a nonlinear perspective and 
making its study easier. 

Purely kinetic effects play an important role in open flows and can by 
themselves already be at the origin of instabilities. Accordingly, a first 
distinction can be made between flows that are mechanically unstable  and 
those that are mechanically stable. The former display an inflection point 
in the base velocity profile which makes them unstable in the absence of 
viscous dissipation according to Rayleigh’s cr i ter ion.  Their prototype is 
the mix ing  layer  illustrated in Figure 1.5 (left). By contrast, mechanically 
stable flows may become unstable only due to subtle feedbacks involving a 
transfer of momentum of viscous origin. A good example is given by the 
Blasius boundary layer  flow depicted in Figure 1.5 (right). This classifica- 
tion will affect the whole process of transition to turbulence in an important 
way (Chapter 6, $6.2). 

A second distinction has to be made from the very existence of a global 
flow of matter entering the region of interest and leaving it at the outlet, 

Stability and instability of open flows 

Fig. 1.5 Typical open flows. Left: Mixing layer created at the merging of two fluid 
veins with different velocities and maintained separated upstream by a splitting plate. 
Right: Boundary layer developing along a plate at some distance of its leading edge. 
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Fig. 1.6 
Marseilles). 

Karmin vortex street emitted by a cylinder (courtesy P. Le Gal, IRPHE, 

which makes implicit reference to a frame rigidly attached to  the labora- 
tory (obstacle, rigid wall). An important difference indeed appears between 
instabilities said to  be convective, those that develop along the flow but are 
evacuated downstream and do not succeed in going upstream, and insta- 
bilities called absolute that are sufficiently intense to develop in spite of 
the global downstream transport. In the first case, the systems behaves 
as a noise amplifier and the result downstream essentially depends on the 
level of background fluctuations (residual turbulence). In the second case, 
one has rather to deal with a genuine self-sustained oscillator analogous to  
those studied in Chapter 2. 

However, the situation is even more complicated by the fact that the in- 
tensity of instability mechanisms may vary in space. This is due to the fact 
that the velocity profile usually evolves downstream as a consequence of vis- 
cous dissipation that tends to smooth out the velocity gradients present at  
the entrance of the flow. Depending on the local intensity of the mechanism 
(linked to  the magnitude of the shear) one can observe a change of the char- 
acter of the mode usually from absolute to convective, hence the possibility 
of bifurcated states localized in a given region of space and usually called 
global modes.  The wake of a blunt body inserted in an otherwise uniform 
stream is such an example (Figure 1.6). A recirculation takes place close 
to the obstacle, rendering the overall downstream transport locally suffi- 
ciently weak that regularly shed vortices can develop and stay attached to 
it (KArmAn vortex street). 

The understanding of this combined problem ‘convective/absolute + 
local/global + linear/nonlinear’ has made great progress recently but it 
requires sophisticated mathematical tools, especially in complex analysis, 
that would bring us far beyond the limited purpose of the present notes. 
The problem will just be evoked at a physically intuitive level in Chapter 6 .  
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In the above presentation the instabilities were tacitly assumed to be 
linear and supercritical. It may however happen that the bifurcation is 
subcritical and that several different flow regimes coexist in some range of 
control parameter, the bifurcated state saturating only “far from” the base 
state as for the plane channel flow. The base state may also happen to 
remain stable against infinitesimal fluctuations so that the nontrivial (tur- 
bulent) regime cannot be reached by perturbation. Examples are the pipe 
Poiseuille flow and the plane Couette flow. Though these flows are known 
to be linearly stable for all Reynolds numbers, they are expected to be- 
come turbulent as the shear rate increases beyond all limit. The transition 
indeed happens and take a rather explosive turn: turbulent bursts devel- 
oping intermittently from localized finite amplitude perturbations show up 
during the process, coexist with still laminar flow and then merge to fill the 
systems with fully developed turbulence. Figure. 1.7 displays such a tur- 
bulent spot in plane Couette flow. It shows that the pocket of turbulence 
is not structureless but, on the contrary, present a streamwise streaky pat- 
tern. This type of structure turns out to be omnipresent in turbulent wall 
flows. Their production and sustainment mechanisms are still the subject 
of current research (Chapter 6, 56.3.4). 

Fig. 1.7 
in plane Couette flow (courtesy S. Bottin and 0. Dauchot, GIT, CE Saclay). 

Mature turbulent spot induced by a localized perturbation of finite amplitude 

1.3.4 Beyond the transition: filly developed turbulence 

Problems considered up to now all relate to the steps of the cascade leading 
from a simple and regular base state to a complex and irregular flow still 
partly ordered but chaotic, that may not yet be called turbulent. It seems 
indeed important to understand the steps of the laminar-turbulent transi- 
tion just sketched in a deterministic framework. The underlying aim is of 
course to control it as best as we can, delay it if it is harmful, or advance it 
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if we need better mixing. However it turns out that beyond the transition 
we have to  change our mind and take a fully statistical viewpoint. As a 
matter of fact, when we pull the considered system (flow) ever farther from 
equilibrium, more and more degrees of freedom become excited and it no 
longer makes sense to focus on their individual dynamics, like when passing 
from few-body systems well described by analytical mechanics to gases for 
which the thermodynamic approach is more appropriate. 

This remark could lead to understand developed turbulence as a new 
macroscopic state of matter at  a scale where the fluid would have transport 
properties very different from those of ordinary fluids in their laminar state 
where molecular chaos still control diffusion. Things are unfortunately less 
simple. The usual distinction between microscopic and macroscopic scales 
works well for thermodynamics because there is a wide gap between them, 
the precise reason for which the concept of material point (or fluid particle) 
makes sense. By contrast, in turbulence, relevant scales belong to a con- 
tinuous range from the size of the flow domain to small scales. While the 
smallest eddies seem to evolve randomly like molecules in a gas, they are 
still coupled and, in fact, driven by the scales above them so that no de- 
coupling is truly legitimate. 

In Chapter 7, we will approach the theory of turbulence in a very prelim- 
inary way only, without trying to compete with numerous excellent books 
dealing with it, from conceptual problems to applications. Our limited aim 
will be to illustrate the idea of an inert ial  cascade (cf. Fig. 1.8) trans- 
ferring energy from large scales where instability mechanisms generate the 
eddies, down to the smallest scales where viscosity successfully irons out 
the fluctuations. It is not difficult to catch an idea about this transfer by 
the advection term v . Vv of the Navier-Stokes equations. Considering an 
eddy motion locally described by a simple trigonometric line 21, N sin(lcz), 
we get sin(lcz)a, sin(lcz) = ksin(kz) cos(lcz) = iksin(2kz) that presents 

production transfer dissipathn 

Fig. 1.8 
fluctuating eddies are blurred by viscous dissipation. 

Illustration of the Kolmogorov cascade from large scales to small scales where 
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itself as a source term in the evolution equation for a mode with a spa- 
tial scale half of the initial one. The result of this transfer is a repartition 
of energy according to the celebrated kP5l3  Kolmogorov law that will be 
derived heuristically. 

In a second part, we will turn to  the concrete problem of predicting the 
lowest order statistics of specific turbulent flows, obtaining the so-called 
Reyno lds  averaged equations governing the mean flow, which immediately 
opens the problem of the closure of the statistical description. As a matter 
of fact, the averaging of primitive equations introduces new higher order 
statistical quantities called the Reynolds  stresses that remains to be eval- 
uated in one way or another. We will then exploit the already mentioned 
analogy between the kinetic theory of gases and the statistical theory of 
turbulence to introduce a disputable but heuristically valuable approach 
to  turbulent flows resting on the concept of eddy dif fusivity patterned on 
that of molecular dif fusivity (see Figure 1.9). This will serve us to  make a 
first evaluation of the average properties of a turbulent flow, taking the tur- 
bulent boundary layer as an example, and obtaining the classical KBrmBn 
logarithmic law. The main shortcoming of this approach derives from the 
absence of scale decoupling mentioned above but we will not do much more 
than mentioning it, suggesting further that progress can be obtained in 
concrete situations by numerical simulations, and observing that the latter 
always imply the crucial step of sub-grid-scale modeling, i. e. the modeling 
of smallest scales that cannot be explicitly accounted for in the numerics. 

Fig. 1.9 Visualization of a turbulent flow downstream a grid. The fluid passing through 
a given mesh is seeded with a tracer that demonstrates turbulent diffusion in the flow. 
After a color picture by J.L. Balint, M. Ayrault and J.P. Schon (Ecole Centrale de Lyon), 
courtesy M. Lesieur, in “La turbulence d6veloppCe,” La Recherche, no 139 (1982), with 
permission. 
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1.4 Conclusion 

Numerous books develop the topics to be touched upon. A partial list 
is given in the bibliography. At the risk of repetition, let us emphasize 
that we have tried to present a first approach to current problems, using a 
wide range of techniques, linear, nonlinear, deterministic, statistical, each 
with its own qualities and limitations, in order to lucidly face complicated 
situations encountered in our familiar environment, industrial or natural. 
Accordingly, in the concluding chapter we will evoke the problem of the 
Earth’s climate as a concentration of the kind of topics examined at one or 
another moment, with special reference to the predictability problem and 
modeling issues involved in this nonlinear dynamical system with heteroge- 
nous space-time scales. Appendix A recalls some elementary and not so 
elementary results of linear algebra, while Appendix B works in roughly 
the same direction by giving rudiments of numerical simulation techniques 
expected to be of help in the understanding of complex processes (provided 
that we are able to build simplified models with valuable metaphoric value). 

1.5 Exercises 

1.5.1 Chemical reactions 

Chemical kinetics is a field that has contributed much to the development of 
applied nonlinear dynamics in out-of-equilibrium systems. Here we consider 
a simplistic kinetic model introduced by Prigogine and Lefever in 1968, 
called the Bruxellator and accounting for a hypothetical reaction between 
two components A and B with two end products C and D, four steps and two 
intermediate compounds X and Y. Concentrations A and B of reactants A 
and B are the control parameters whereas those X and Y of the intermediate 
species X and Y are the variables. The global reaction: 

can be decomposed into successive steps: 
A + B  + C + D  

A + X, B + X  + Y + C ,  
2 X s - Y  + 3 x ,  X + D. 

Assuming that the kinetic constants of each reaction is equal to 1, write 
down the equations for each step and show that the reaction is governed by 

X = A - ( B  + l ) X  + X ’ Y ,  

This system will be further studied in Exercise 4.6.7. 

Y = B X  - X 2 Y  
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Elements of chemical kinetics. Consider: 

X n i A i  -+ X n : A i  

an elementary step between reactants Ai with concentration Ai [if specie 
Ai is absent from the left (right) hand side then ni = 0 (n: = O ) ] .  The 
reaction rate corresponding to this step measures the number of reacting 
collisions per unit time. A collision is the meeting at a single physical point 
of all the components on the 1.h.s. producing all those of the r.h.s. in 
the proportions given by the stoichiometric coefficients. The probability 
for reactant Ai to be there is proportional to the concentration and, if one 
neglects the correlations between species, one expects the probability of 
the collision as a product of individual probabilities and thus a reaction 
rate k ni A?, involving only participants on the 1.h.s. and where k is the 
corresponding rate constant. When such a reaction takes place, the number 
of molecules of component Ai varies by n: - ni, so that one gets: 

Ai = (n: - ni)k A:' . 
i 

The total variation of the concentration of a given specie Ai for a compound 
reaction is the sum of the variations at each step. 

An oscillatory reaction, discovered by Belousov in the fifties and further 
studied by Zhabotinsky in the sixties (BZ reaction) has been the subject 
of intense laboratory work. It corresponds to the oxydization of a organic 
reducer (malonic acid) by BrO, ions with a redox couple (e .9 .  Ce3+/Ce4+) 
as a catalyst. It involves about 15 chemical species coupled by an equivalent 
number of intermediate reaction steps. Simplified models of this reaction 
have been devised with only 5 steps and 3 intermediate variables (Field et 
Noyes, 1974). 

1.5.2 Prey-predator systems 

Prey and predators interact in much the same way as the molecules consid- 
ered in the previous exercise. The dynamics of the population X of some 
specie X is usually described in terms of an effective growth rate: 

x = (Y&X (1.21) 

where the expression of (Y,E accounts for the balance between birth and 
death, which depends on control parameters and the population itself. 
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1) Assume that the effective growth rate is simply proportional to the 
amount of available food and interpret the different terms appearing in 
a , ~  = a - P X ,  where a and ,B are two positive constants. The correspond- 
ing evolution equation is usually called the (continuous-time) logistic eqva- 
t ion.  What is the meaning of quantity X ,  = a / P .  Derive the solution X ( t )  
of this ‘limited growth’ model starting with initial condition X = X O  > 0 
at t = 0 by explicit time integration for X O  < X ,  and X O  > X,. Extract 
the long-term behavior ( t  4 co). Observe also that the evolution of X here 
is the same as that of A2 where A is governed by (1.19) for r > 0, apart 
from scale changes on X and t to be determined [see Figure 1.4 (left) that 
would correspond to the case X O  < X,] .  
2) In the model considered above, X is the population of a predator X and 
the available food is determined by the population Y of its prey Y ,  the food 
is thus not indefinitely available and the term -,BX is no longer necessary. 
A simple assumption is that the growth of the population is associated 
with a food consumption that is proportional to the presence of prey (the 
equivalent of a ‘reactive collision’ in chemistry) and that its decay is due to  
some natural death rate. Argue in favor of expression 

a& = CU‘Y - Lug 

for a , ~  in (1.21). What should be the signs of the constants a’ and ao. 
3) In order to close the system we need to write down an equation for the 
effective growth rate of Y .  By arguments similar to previous ones, justify 
the expression 

Y = y Y  - 6 X Y .  

This coupled system will be studied in Exercise 2.5.12. 
Try to  generalize the approach to describe more complicated prey-predator 
models, called Loth-Volterra systems, by changing the assumptions, e.g. 
that the growth of the prey is also limited by competition for food. 

1.5.3 Digusion equation 

We are interested in the decay of a solution to the diffusion equation [e.g. 
the heat equation (l.S)] in space dimension one: 

(1.22) 

starting from some initial condition &(x). 
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1) Determine by substitution the relation between the growth rate s and 
the wavevector k of a periodic fluctuation taken in the form 8 ~ ( x ,  t )  = 
6exp(st) exp(ilcz) and derive its evolution as time goes on. 
2) Adding boundary conditions 8(0,  t )  = 8(l ,  t )  = 0, solve the evolution 
problem formally for a solution starting with an initial condition that can 
be expanded as a sine series: d(z ,  0) = Cr=p=, 8,, sin(rnz/C). Extract its 
asymptotic solution in the limit t + 00. 

3) Going back to the infinite medium, consider functions 8 that are taken 
in the form 

8(z, t )  = exp(aw(z, t ) )  . (1.23) 

Derive the partial differential equation governing w(z,  t ) ,  and next that 
governing v = &w. Find the value of a bringing this equation in the form 

a,v + vdxv = Icdxxv (1.24) 

called the Burgers e q ~ a t i o n . ~  The inverse of function change (1.23), called 
the Hopf-Cole transformation, offers an exact analytical way to linearize 
(1.24) and to put it back in the form (1.22). 

~~ ~ 

5J.M. Burgers, The nonlinear diffusion equation (Reidel, 1974), see U. Frisch & 
J. Bec, “Burgulence,” in [Lesieur et al. (2001)l for a recent review. 
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Chapter 2 

First Steps in Nonlinear Dynamics 

In this chapter we consider the dynamics of systems with a very small 
number of variables, as a prerequisite to the study of chaos, postponed to 
Chapter 4 after an examination of convection in Chapter 3, which will give 
us a physical motivation. 

2.1 From Oscillators to Dynamical Systems 

2.1.1 First definitions 

Newtonian mechanics is the archetype of deterministic dynamical theories. 
Governed by an equation of the form 

where X represents the position of a particle with mass m submitted to a 
force F ,  it accounts for processes that are invariants under a change of the 
arrow of time. 

A traditional example of linear system is the harmonic oscallator 
(Fig. 1.1, left, p. 3) that describes the motion of a mass attached to an 
ideal spring with a restoring force proportional to the extension F = -kX 
(Hooke’s law). This elastic force, of internal origin, derives from a potential: 

depicted in Figure 2.1 (left). Here we have 

m X  + k X  = 0.  

25 



26 Instabilities, Chaos and Turbulence 

Fig. 2.1 
in the phase plane, the plane of variables Xi E X and X z  P. 

Left: Potential for the harmonic oscillator. Right: Vector field and trajectories 

The evolution is uniquely determined when initial conditions are specified: 

X = X(O) and X =V(O) at t = 0 .  

(In the following, we will systematically use the superscript ‘(0)’ to  denote 
initial conditions.) The solution then reads: 

Right now, it turns out advantageous to substitute a geometrical description 
(Fig. 2.1, right) to this analytical description. So, let us consider trajectories 
in the phase space where coordinates are the position X and the momentum 

P = mV = m X .  (2.3) 

Equation (2.2) now reads 

One can trace back the origin of this representation from the need to turn 
a high order differential equation into a first order differential system. On 
general grounds, this is done by introducing the successive derivatives as 
intermediate variables. For example, equation: 

dnX/dtn = F(dn-lX/dtn-lX,.  . . , X ,  X ,  X ;  t )  (2.5) 

is reduced to a first order system by setting X1 ;= X, Xz X, . .  ., 
X, 3 dn-lX/dtn-l, which yields: 

x1 = x2, x a  = x 3 , .  . . , X n  = F ( X n , .  . . ,x3,xz,x1; t )  . 
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This operation is preliminary to any numerical implementation in view of 
simulation (Appendix B). 

There is a slight disadvantage to start from mechanics’ for an intro- 
duction of basic concepts of the theory of dynamical systems since New- 
ton’s equations endow the phase space with a specific structure and give 
it an even number of dimensions, d = 2 n .  As seen above, this space is 
indeed constructed as the product of the configuration space (variables X i ,  
i = 1,. . . , n) and of the m o m e n t u m  space (variables Pi, i = 1,. . . , n), each 
pair of conjugate variables (X i ,Pi )  forming a degree of freedom. In the 
general case when the state of a system is specified using a supposedly suf- 
ficient number of variables, no longer grouped by pairs, we will call any of 
these state variable a ‘degree of freedom’. Accordingly, the ‘phase space’ 
will then be the space where these variables “live” and the dimension of 
this space will just be the number of these variables. In agreement with 
the intuitive concept of de te rmin i sm,  the dimension d is also exactly the 
number of conditions necessary to specify any evolution uniquely. A way to  
avoid ambiguities would be to keep the terms ‘phase space’ and ‘degrees of 
freedom’ to  mechanics in a strict sense and to use state  variables and state  
space in all other cases, which we will not do since the risk of confusion is 
limited. 

Anyway, let us consider the general case of a phase space X with di- 
mension d spanned by d variables { X I , .  . . , Xd}  z X. The evolution of the 
so-defined variables is governed by a system that symbolically reads 

x = 3 ( X ;  t )  , (2.6) 

where 3 is a set of d functions representing the components of a vector  
field defined on X that specifies the “velocity” of the point representing the 
system in its phase space. 

When the properties of 3 guarantee the existence and uniqueness of the 
solution to the initial value problem, in practice when the vector field 3 is 
C1 (differentiable with continuous first derivative), one says that it defines 
a flow on phase space. 

When t is explicitly absent from the definition of 3, the system is said to 
be a u t o n o m o u s ,  otherwise it is forced. In practice, among forced systems, 
only periodically forced systems will be of interest to us, i.e. systems such 
that 3 ( X ;  t + T )  s F ( X ;  t )  for some minimal time interval T called the 
period. Within this class one often distinguishes parametric  forcing for 

lSee later, 52.1.2, for a brief presentation of the formalism of analytical mechanics. 
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which the expression of 3 changes in time, e.g. 
oscillator (Mathieu equation): 

the parametric linear 

X + (1 + a sin(wt>>x = 0, T = 27r/w, 

from external forcing where an otherwise autonomous system is submitted 
to a periodic force independent of its state, i.e. 

X + x = fsin(wt). 

Noisy systems can be understood as particular forced systems with a 
random forcing. In case of additive noise, this defines the so-called Langevin 
equation 

x = F(X) + E ( t ) ,  

where E ( t )  is a random vector function. Quite different tools of statistical 
essence are then required which will not be introduced here since we want 
to stick to the deterministic point of view. 

During its evolution, the system follows a phase space trajectory starting 
at X(O) when t = and obtained by integration of (2.6): 

t 
X(t) = X(O) + l(o) F(X(t'); t ') dt' 

The orbit is the set of points in X visited by the system in the course of a 
given trajectory. The description of a system's dynamics in terms of sets 
of orbits, called its phase portrait, as a function of its control parameters ,  
is the field of qualitative dynamics .  

Relation (2.7) allows us to define a map of X onto itself. Upon specifying 
an integration time T ,  we get a time-T m a p  

t+r 
X(t + T )  5 +r (X(t)) = X(t) + 1 dt' F(X(t');  t ' ) ,  

and, starting with an initial condition X(O), we obtain a discrete sampling 
of the trajectory, XO = 

The time-T map is really interesting only when T corresponds to some 
characteristics of the system. The most important case corresponds to pe- 
riodic forcing with period T = T ,  in which case performs a stroboscopic 
analysis of the dynamics, i.e. takes pictures of the system at the period 
of a strobe signal in phase with the forcing. Later we will see another re- 
lated way to arrive at such discrete-time systems as already mentioned in 

x('), XI = ' P ~ ( X O ) ,  ~2 = + r ( ~ l ) , .  . . , 
+r(Xk)*. . 



2. First Steps in Nonlinear Dynamics 29 

Chapter 1, p. 4. The concepts of trajectories and phase portraits transpose 
immediately to  systems written as first-order iterations Xk+l = +(Xk; k). 

From a practical viewpoint the determination of the trajectory issued 
from some initial condition X(O) by numerical integration can be viewed 
as resulting from the iteration of a map +T integrating the field 3 over a 
time interval r = At chosen from accuracy considerations specific to the 
numerical scheme (cf. Appendix B). 

For the moment, let us consider autonomous systems and especially the 
simple case of the harmonic oscillator. Its phase space is the plane ( X ,  P) 
isomorphic to R2. The right part of Figure 2.1 displays the corresponding 
vector field.2 In this representation, trajectories follow elliptic orbits. 

On general grounds it turns out useful to scale the variables as much 
as possible in order to cast the system into its most universal form, hid- 
ing its specificities inside the details of the variable change. Here such a 
transformation simply yields 

x 1  = x2, x 2  = - X I .  (2.8) 

Reversibility is one of the fundamental characteristics of ideal mechan- 
ical systems (ie. without friction). The change ‘ t  I+ -t’ indeed leaves the 
Newton equations invariant. This property is associated to energy conser- 
vation. Defining E = $ X ;  + $ X i  and computing dE/dt  using (2.8) one 
can check that E is a constant of motion. Things are different for a damped 
system that dissipates its energy. At a linear stage, the introduction of a 
viscous friction proportional to the rate of change of the variable leads to 

x + 2 7 x  + x = 0 ,  (2.9) 

where 7 > 0 measures the strength of the damping. Here the change 
t C )  t/wo has been performed in order to  normalize the period of the ideal 
oscillator to 27r. 

Trajectories are obtained in parametric form as 

X ( t )  = Xexp(-vt) cos(wt - cp), 

where X and cp can be computed from the initial conditions X(O) and 
at t = 0 by identification, and where w = (1 - q2)l/’ corresponds 

to the angular frequency of a damped oscillation only when the friction is 

2Here it has been obtained using the MATLAB macro quiver, explicitly: 
X=[-O. 8 : O .  1 :O. 81 ; U=ones( 1 ,  size(X.2)) ; P=X’ ; FX=P*U; FP=-U’*X; 
quiver (X,P,FX,FP). 
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e- 

-0.8 
-0.8 

Fig. 2.2 
17 = 0.5. Left: Damped oscillator (17 > 0). Right: Driven oscillator (17 < 0). 

Vector field of the non-ideal linear oscillator in its phase plane ( X I ,  X z )  for 

sufficiently weak, i.e. when 77 < 1 (the over-damped case 77 > 1 will be 
considered as an exercise). In the phase plane, equation (2.9) reads 

XI = xz , x 2  = -277x2 - XI, (2.10) 

and the orbits now take the aspect of spirals converging towards the origin, 
see Figure 2.2 (left) that displays the corresponding vector field. The instan- 
taneous dissipation rate of the total energy, still defined as E = $(Xl+Xi ) ,  
is now given by dE/dt = -2qXi < 0. 

For an excited system that would receive energy from the exterior world 
by viscous driving, thus governed by (2.9) but with 77 < 0, the integration 
of the vector field would give diverging spiral trajectories easily imagined 
from the vector field depicted in Figure 2.2 (right). 

In fact, when defining a state physically, one never considers a mathe- 
matical point in phase space but rather a small, physically infinitesimal do- 
main around this point. This remark suggests we focus on the future of sets 
of systems that at a given time belong to volume elements in phase space 
(surface elements in the specific two-dimensional case of interest here). For 
a general dynamical system (2.6) defined on a d-dimensional phase space 
X, one then shows that the local evolution rate of the volume A of an in- 
finitesimal domain around some point X is given by the divergence of the 
vector field 3 computed at this point (cf. Exercise 2.5.1): 

(2.11) 

For an ideal oscillator (2.8), one immediately obtains that the divergence is 
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Fig. 2.3 
sipative system. 

Evolution of volumes in phase space. Left: Conservative system. Right: Dis- 

zero: the surface of a small surface element is thus conserved (Fig. 2.3, left). 
This property can be generalized to all frictionless mechanical systems, 
that are called conservative for that reason. The same calculation for the 
damped oscillator leads to div 3 = -2q < 0, thus to an indefinite erosion of 
areas (Fig. 2.3, right). This reduction is characteristic of dissipative systems 
whose permanent regimes, asymptotic states at the limit t + 00 after the 
damping out of transients, are described by attractors. 

As suggested above, the phase space volumes give a measure of the 
number of accessible states. Asymptotically the damped oscillator always 
ends at its rest position X I  = X2 G 0, a single state whatever the initial 
energy. The attractor is here a fixed point in phase space, ‘fixed point’ 
because the orbit of the trajectory starting there is just reduced to that 
point. By anticipation, we can say that it is a stable fixed point since 
trajectories starting in its vicinity converge to it as t tends to infinity. By 
contrast, the fixed point at the origin of the phase space associated to 
an driven oscillator in not an attractor but a repellor, it is unstable and 
trajectories move apart from it. 

General systems are not conservative. They can be fueled in energy in 
some regions of their phase space while dissipating it in other regions. This 
feature, that cannot be achieved in the framework of linear systems with 
constant coefficients (sign of d i v 7  fixed once for all), will turn out to be 
essential to the existence of self-sustained oscillations and more complicated 
time behavior. 
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2.1.2 Formalism of analytical mechanics 

In order to ease the solution to some exercises, we give here an introduction 
to the analytical formalism of classical mechanics that allows one to pass 
from the Newton equations (second order in time) to the Hamilton equa- 
tions (first order in time) giving to the intermediate variables so-introduced 
their status of conjugate momenta to the generalized coordinates. 

For a system of n N  (subscript ‘N’ for Newton) material points with 
masses mi and positions Xi E (xi, yi, z i )  submitted to forces fi deriving 
from a potential V({Xi}; t ) ,  the Newton equations read: 

, n N ) .  (2.12) 

The kinetic energy is defined by: 

1 nN 
2 .  

7 = - C m i ( x z ) 2 ,  
z= 1 

and one easily checks that the total energy 

is conserved. But this so-called Newtonian formulation makes the 
treatment of systems with constraints somehow awkward. The Lagrangian 
formalism answers this problem by introducing n~ (‘L’ for Lagrange) gen- 
eralized  coordinate^.^ Let 

be the change of variables from the Xis to the q j s  expressing the constraints. 
The Lagrangian is then defined by 

L = L ( q , q )  = 7 - V ,  

so that (2.12) can be rewritten as a set of Lagrange equations: 

(2.14) 

3 n ~  < TZN and sometimes << TIN,  think of a solid body with many ( n ~ )  rigidly linked 
particles and characterized just by the position of its center of mass (three coordinates) 
and its orientation (three Euler angles). 
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At this stage, the system is still governed by second order differential equa- 
tions. One then defines the momenta p { p j }  conjugated to the coordi- 
nates q =_ { q j }  by: 

and the Hamiltonian by: 

(2.15) 

(2.16) 

The dynamical equations (2.14) then turn into the Hamilton equations: 

(2.17) 

The phase space X is the Cartesian product of the configuration space with 
coordinates qj and the momentum space with coordinates p j ,  thus with 
dimension d = 272~. The vector field governing the dynamics then reads 

(2.18) 

expressions that provide it with a so-called ‘symplectic’ structure insuring 
the conservation of phase space volumes automatically ( d i v F  0, the 
Liouville theorem). 

2.1.3 Gradient systems 

Above, we spoke of ‘forces deriving from a potential’ in a strictly mechan- 
ical framework. Unfortunately, there is a risk of confusion when using the 
word ‘derive’ and ‘potential’ without care, because in some branches of dy- 
namical systems theory, they have a somewhat different meaning that now 
warrants specification. 

To do so, let us first consider an autonomous systems with a single real 
variable X: 

x = 3 ( X ) .  (2.19) 

Defining 4 from 3 by 
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we can rewrite (2.19) as: 

X = -dG/dX, (2.20) 

where 4 presents itself as a ‘potential’ from which the vector field 3 can 
be ‘derived’. In higher dimensions, the natural extension of (2.20) for a 
function of several variables G(X1,. . . , Xd) through 

Xi = 3 j ( X I , .  . . ,Xd )  = -aG/aXj ,  j = 1,. . . , d ,  (2.21) 

defines a large class of systems called gradient flows. It is also said that such 
systems are ‘relaxational’. The origin of the latter term is to be found in the 
remark that (2.20) immediately leads to G being a monotonicly decreasing 
function of time: 

4 = (dG/dX) X = - (dG/dX)’ 5 0 .  (2.22) 

Accordingly, the system evolves from almost all initial conditions so as to 
‘relax’ toward one of the local minima of 6 where its stops asymptotically. 
In the d-dimensional case, the vector field F is seen from (2.21) to be 
everywhere perpendicular to the level curves of 4 so that: 

4 = Cj  (aG/axj)Xj = -cj (aG/axj)2 5 0 ,  (2.23) 

which again expresses the ‘relaxation’ toward one of its local minima. 

6 = -ax1 - :(bX; + cX%) + a(X:  + X;)’, with a = 3/2, b = 13/4, 
c = 5/4. The absolute minimum 9 = -5.5 is a t  M1 = (2,O). There is 
a relative minimum G N -0.14 a t  M2 = (-1.5,0), a relative maximum 
6 E 0.36 at  M3 = (0.5,0), while points S1 and S2 at (-3/4, f0.83),  later 
called saddle points, belong to the level line G = 0.171875.. . . 

In mathematics, gradient flows appear in the theory of elementary catas- 
trophes (see, e.g. [Poston and Stewart (1978)l). In thermodynamics, they 
offer a good framework for the Landau theory of phase transitions, see later 
the remark on p. 127 and also [Stanley (1988)l. 

Now, if X = 3 ( X )  derives from a potential G in the sense of (2.21), the 
components of 3 fulfill the relations: 

Figure 2.4 displays the level lines of a two dimensional potential4 

aFj /ax j I  = a3il /axj, V j ,  j’ , (2.24) 

4For more detail, see P. M. & L. Tuckerman, “Phenomenological modeling of the first 
bifurcations of the spherical Couette flow,” J. Physique 48 (1987) 1461-1469. 
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-1 0 1 x,3 
-2 

Fig. 2.4 
curves of the potential G from which it derives. 

For a gradient flow, the vector field 7 is everywhere perpendicular to the level 

as results from the Schwartz identity: 

a2Gpxjaxjt = a2Gfaxj,axj. 
Conditions (2.24) are consequently necessary to  the existence of a poten- 
tial. In the general case, the components of the vector field F do not fulfill 
such conditions and one can expect an evolution that is richer than a “sim- 
ple” relaxation towards a local minimum of some putative 6. This is of 
course the case of ideal mechanical systems for which the total energy is 
a constant of the motion so that the vector field given by the Hamilton 
equations is everywhere parallel to the surfaces of constant total energy 
in phase space (Figure 2.1, right). For profound reasons to  be discussed 
later, we will have to wait for the study of three-dimensional systems before 
any dynamics more complicated than a relaxation towards fixed points or 
periodic oscillations can be observed. 

2.2 Stability and Linear Dynamics 

The first piece of information of interest about the regime attained by a 
given system under specific conditions relates to  its stability, i.e. the way it 
reaches the state and responds to  perturbations. In practice one can only 
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exceptionally determine the response to perturbations of arbitrary ampli- 
tude. Except for Lyapunov functions generalizing the potentials introduced 
in Section 2.1.3 (see also Exercise 2.5.2), we have no tools to attack the 
problem in full generality and we must restrict ourselves to a study of the 
evolution of infinitesimal perturbations, for which all the resources of linear 
analysis are available. 

2.2.1 

In what follows, we are mainly interested in specific time-independent states 
of autonomous systems: 

Formulation of the linear stability problem 

x = F(X)  . (2.25) 

These states are thus solutions to: 

3 ( X f )  = 0 (2.26) 

and are represented by fixed points in phase space, hence the subscript ‘f’ 
serving to denote them. Equation (2.26) is the formal writing of a system 
of d nonlinear equations with d unknowns that has a discrete and finite set 
of solutions in general. 

In out-of-equilibrium macroscopic systems, especially continuous media, 
it is natural to first consider the solution that belongs to the thermodynamic 
branch, defined as the branch of solutions that can be followed from ther- 
modynamic equilibrium by continuity, but what will be said also holds for 
any other time-independent solution, even if it is more difficult to obtain. 

Let Xf be the fixed point of interest. Inserting X = Xf + XI in (2.25), 
one expands that equation in powers of XI. Noting that order 0 is identically 
fulfilled by the fixed point condition and keeping only first order terms, one 
gets: 

&XI = LX’ . (2.27) 

The (Jacobian) operator L resulting from this linearization is represented 
by a matrix with elements 

all partial derivatives being evaluated at the fixed point Xf as indicated by 
the notation. In this context, the linear stability problem amounts to an 
integration of equation (2.27) and thus to the evaluation of the action of op- 
erator exp(tL) on some initial condition Infinitesimal perturbations 
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are said to live in the tangent space at the fixed point. Their evolution is 
governed by the tangent dynamics (2.27). 

A simple way to justify the introduction of the exponential of operator 
C consists in considering the scalar equation X = aX with X ( 0 )  = X(O), 
in writing recursively 

t 
X(t)  = X(O) + aX(t')dt' 

and in integrating explicitly all what can be integrated. This yields: 

The extension of this approach to solving (2.27) involves what is precisely 
defined as the exponential exp(tL), 2.e. the limit of a power series. In 
general, the solution of (2.27) rests on turning L to its diagonal form, or 
more precisely to its Jordan normal form. See Appendix A, sA.2, for a 
reminder. 

2.2.2 Two-dimensional linear systems 

We first turn to the case of two variables since it contains the essentials of 
nontrivial aspects of the problem and allows us to introduce the core of the 
terminology. The extension to dimension d will be alluded to in the next 
subsection. Thus consider the linear dynamical system: 

(2.28) 
(2.29) 

with initial condition, X j  = X j o ) ,  j = 1,2 ,  at t = 0 as a generalization of 
the harmonic oscillator studied previously. Since this system can be studied 
for itself and not as a tangent problem, we have dropped the primes indi- 
cating that its variables originally measured the departures from the fixed 
point of some primitive nonlinear system and forgotten that the coefficients 
derive from the evaluation of some Jacobian operator L by changing the 
notations to anonymous as. Solutions to (2.28, 2.29) are searched in the 
form 

xi = Xi exp(st). 
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By mere substitution, this leads to an eigenvalue problem: 

sX1 = ~ 1 1 x 1  + alzX2, 

sx, = a,1X, + a,&, 

that has nontrivial solutions X $ 0 only if the the growth rate s satisfies 
the compatibility condition: 

s2 - (all + a221 s + a11a22 - a12a21 = 0 , (2.30) 

also called the characteristic equation. In full generality, this quadratic 
equation has two roots, distinct or not, real or complex conjugate (see 
Appendix A, Exercise A.4, p. 348). 

Eigen-solutions corresponding to eigenvalues either positive or complex 
with positive real part depart exponentially fast from the origin. In the 
negative case they converge to  it. 

The general solution is a superposition of eigen-solutions. Hence when 
both roots are negative or complex with negative real parts, the origin is 
said to be linearly stable whereas it is sufficient that one of the roots be 
real and positive or complex with positive real part to  render the origin 
instable, which immediately yields a universal classification. 

2.2.2.1 Two real distinct roots 

Without changing notations, in the eigen-basis we have: 

2. - s .  - 3 ~ j  + xj(t) = xj"' exp(sjt) ,  j = 1,2, 

and we can distinguish two sub-cases: 

i) The two roots have the same sign (s1sz > 0): the origin is called 
a node, stable when s1 and sz are negative, unstable in the opposite 
case. Orbits around the origin have a parabolic shape obtained by elim- 
ination of t between the different components of the solution, here be- 
tween X,(t) = Xj"'exp(s1t) and X,(t) = Xio'exp(s2t), which yields 
Xz/Xi0) = (X1/X,(o))"z/"l with a positive exponent sz/s1. They open 
in the direction of XI or XZ according to the relative magnitude of s1 and 
s2, see Figure 2.5(a). 

ii) The two roots have opposite signs (s1sz < 0): the origin is a saddle, 
stable along the direction of the negative root and unstable along the other 
one and thus always unstable. Orbits have a hyperbolic shape as depicted 
in Figure 2.5(b). 
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Fig. 2.5 Real roots s1 and 5 2 .  (a) Stable Node, s2 < s1 < 0. (b) Saddle, 5 2  < 0 < 51. 

2.2.2.2 

Let us write the roots as s = u f iw. In such a case there are no real 
eigenvectors but by a linear variable change one can cast the system into 
the form 

A pair of complex conjugate roots 

XI = ux1+ w x z  , 
X 2  = -wx1+ aX2, 

(2.31) 

(2.32) 

which, by integration, leads to 

x l ( t )  = exp(ut) [xio) cos(wt) + xio) sin(wt)] , 

~ z ( t )  = exp(ut) [ - xio) sin(wt) + xio) cos(wt)] . 

(2.33) 

(2.34) 

Trajectories thus spiral around the origin that is called a spiral point, or 
a focus, stable or unstable according to the sign of the real part u, see 
Figure 2.6(a). 

In the marginal case u = 0, the fixed point is called a center or an elliptic 
point, Figure 2.6(b). This is of course the case of the harmonic oscillator 
considered previously. One immediately observes that this property is not 
robust. The introduction of a damping or a driving, as weak as they could 
be, converts the center into a focus, stable or unstable [cf. (2.9): eigenvalues 
s = -r]fi(l-r]’)’/’, pure imaginary only for r] = 01. In such a point of the 
space of control parameters, the system is said to be structurally unstable. 
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Fig. 2.6 Complex roots s = (r * zw. (a) Focus. (b) Center (u = 0). 

2.2.2.3 Double roots 

The last case is when the characteristic equation has (real) double roots, 
which happens when (all - a 2 ~ ) ~  + 4a12a21 = 0. Usually, the system has 
only one eigen-direction so that is cannot be cast into diagonal form by a 
linear variable change but only into what is called its Jordan normal form, 
here: 

X I  =sx1+x2, 

x 2  = s x 2 .  
(2.35) 
(2.36) 

Integrating (2.36) one gets X2(t) = Xio) exp(st), which is further inserted 
in (2.35) that now reads: 

Xl - sxl = xio) exp(st) , (2.37) 

which point out the resonant character of the right hand side since it evolves 
at the same rate as that defined by the left hand side. Equation (2.37) 
is easily integrated by the Lagrange method of variation of the constant: 
solving the homogeneous problem, one gets XI = X exp(st), where X is an 
integration constant. Assuming that this “constant” is now a function of 
time, X(t)  and introducing this expression into (2.37) one gets 

which leads to 

X = xi0) t + xp , 
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Fig. 2.7 Double real root. (a) Improper node. (b) Star (diagonalizable case). 

and thus to 

x1 (t) = (xio) + x J O )  t) exp(st) (2.38) 

where the second, sub-dominant, term inside the parentheses is called a 
secular term.5 

This fixed point is called an improper node. The corresponding phase 
portrait is displayed in Figure 2.7(a) which shows that it is indeed inter- 
mediate between a node and a focus. 

When the eigenvalue is double but the system still diagonalizable, which 
occurs when the operator C is symmetric, all directions in the plane 
(X1,Xz)  are eigen-directions, which is another limit case of a node called 
a star, see Figure 2.7(b). 

2.2.3 

Let us come back to a d-dimensional system linearized around one of its 
fixed points Xf. At the linear stage, the general solution of the perturba- 
tion problem can be expressed as a superposition of solutions corresponding 
to each eigenvalue s j ,  with dominant exponential behavior exp(sjt). These 
eigenvalues can be ordered by decreasing value of their real part, and while 
in the short term one may observe a complicated evolution of generic per- 
turbations made of arbitrary superpositions of eigenmodes, due to linear 

Stabili ty of a t ime-independent regime 

5The word originates from the Nineteenth Century studies of the period of planets 
by perturbation methods, when corrections to the relative position of the planets were 
found to show up on time scales of the order of hundreds of years. 
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Fig. 2.8 Stability of the fixed point Xf of a hypothetical 5-dimensional system X = 
3 ( X ) :  The operator L obtained by linearization of 3 around Xf has 5 real or complex 
eigenvalues and Xf can be linearly stable (a), unstable against a stationary mode (b), 
unstable against an oscillatory mode (c). Instability against several modes is also possible 
but one is usually interested in the first instability of a state, i .e. the transition from 
(a) to (b) or (c), which can be achieved by varying just one control parameter in a 
sufficiently limited range. 

interferences between them (cf. sA.3, p. 343), in the long term only the 
contribution corresponding to the eigenvalue with largest real part survives. 

The considered base state associated to the fixed point is thus linearly 
stable if all the eigenvalues have negative real parts, Figure 2.8(a), and 
linearly unstable if at  least one of the eigenvalues has positive real part, 
Figure 2.8(b,c). When the unstable root is real, the corresponding unstable 
mode is said to be stat ionary,  Figure 2.8(b), and when it is complex, one 
speaks of oscil latory mode, Figure 2.8(c). 

Here we have made use of the concept of asymptot ic  stabil i ty,  the ampli- 
tude of the perturbation tending to zero as t increases. When the eigenvalue 
is zero or has zero real part, the corresponding mode is marginal  or neutral .  
Linear theory then does not allow us to draw any conclusion about the sta- 
bility of the base state and nonlinearities have to  be taken into account. 
Methods with a more global flavor have to be used, in the spirit of the 
energy method introduced in Exercise 2.5.2. In the long time limit, pertur- 
bations evolve more slowly than exponentially, generally as some power of 
time. They may relax, in which case the base state is still asymptotically 
stable, or grow, in which case it is unstable. This type of situation can 
be dealt with using the concept of orbital stability which is weaker than 
that of asymptotic stability since it only requires that the perturbed state 
can permanently depart, but in a controlled way, from the base state, thus 
remaining in its vicinity. A typical example is that of an elliptic point in a 
mechanical system, locally equivalent to a harmonic oscillator: trajectories 
circle around the fixed point without approaching it as would be the case is 
the eigenvalue had negative real part and the fixed point be asymptotically 
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stable. So, an elliptic point with purely imaginary eigenvalue, marginal at  
a linear level, can be orbitally stable or unstable a t  the nonlinear stage. 

The persistent occurrence of purely imaginary eigenvalues often results 
from symmetry conditions and especially the invariance of the dynamics 
upon time reversal, which is characteristic of mechanics. One can indeed 
observe that reversibility implies an exchange ‘s H -s’ upon the change 
‘t -t’, and thus either to complex conjugation in case of purely imaginary 
roots or an exchange ‘stable H unstable’ within a pair of real eigenvalues.6 

Otherwise the presence of neutral modes must be considered as acciden- 
tal: since the system usually depends on control parameters, this circum- 
stance only occurs at  specific locations in the parameter space. At such 
points the system is said to be structurally unstable since a slight modifi- 
cation of its definition can turn the considered fixed point from stable to 
unstable. It is ready for a bifurcation associated with a qualitative change 
of its phase portrait. 

The breadth of possibilities increases with the dimension of the system 
but the terminology introduced for two-dimensional systems can be ex- 
tended straightforwardly. For example, one still speaks of a node when all 
the eigenvalues are real and have the same sign. In the same way, a fixed 
point can be called a saddle-focus if it has a pair of complex conjugate 
eigenvalues with real parts of one sign and its other eigenvalues real with 
the opposite sign. The case of a three-dimensional system is considered in 
Exercise 2.5.3. 

2.3 Two-dimensional Nonlinear Systems 

In this section we study the dynamics of autonomous nonlinear systems 
that evolve in a two-dimensional phase space. In a first instance, we take 
an essentially qualitative view point and use what precedes to  draw phase 
portraits. Then we attack the problem of the explicit quantitative determi- 
nation of the period of oscillators, presenting several methods in a compu- 
tational perspective that is however indispensable to the classical nonlinear 
culture. 

~~ ~ 

‘The existence of quadruples &u * i w  is not ruled out in the general case, but the 
symmetry does not change the fact that the system is unstable since, within a quadruple, 
there is always a pair of roots with positive real parts, see Exercise 2.5.4. 
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2.3.1 Two examples of oscillators 

2.3.1.1 T h e  rigid p e n d u l u m  

The first classical example of nonlinear oscillator that we consider is the 
simple rigid p e n d u l u m  already introduced in Section 1.1, see Figure 1.1 
(right) on p. 3. The potential energy from which the external gravity force 
can be derived, V ( 8 )  = mg(1 - cose), is illustrated in Figure 2.9 (left). 
After a convenient choice of the time unit (the angular frequency of small 
oscillations being given by w i  = g / l ,  one performs the change t t /wo ) ,  the 
evolution equation can be written as a two-dimensional first order system: 

8 = p ,  + = - s i n e .  (2.39) 

The corresponding phase space (8; 'p} is a cylinder 9' x R, where S1 is the 
unit circle (the one-dimensional sphere, hence the letter 'S') parameterized 
by the cyclic variable 0, i.e. 8 + 277 = 8 (the interval [-T, +T[ is made 
periodic by identifying -77 with +T). On the other hand 'p E R can take 
its values from --oo to +oo. This cylinder being open along the generatrix 
8 = 77, one obtains a reduced representation of the phase space as an band 
of width 277 in the 8 direction and infinite length in the cp direction, with 
identification of the sides at 8 = fx. 

As already noticed, it is here the geometrical constraint fixing the dis- 
tance of the mass to the rotation axis that generates the nonlinearity. The 
global character of this constraint is reflected in the topological structure 

Eseparatrix 

Fig. 2.9 
representation with indication of bounded states, the separatrix, and passing orbits. 

Left: Potential energy of the rigid pendulum. Right: Phase portrait in reduced 
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of the phase space. Nonlinearities reveal themselves when large amplitude 
motions are considered, whereas linearization remains legitimate close to 
the origin. Classically, the distinction is made between passing trujecto- 
ries at sufficiently high energy and bounded trajectories at low energy, see 
Figure 2.9 (right). 

Fixed points of the system are given by 'p = 0 and 8 = kx, k E W. The 
study of the dynamics close to these points is a straightforward application 
of the linear approach developed in previous sections. So, it appears that 
point (0 = 0,cp = 0) is a center with eigenvalues f i  and corresponds to 
the small-oscillation regime. By contrast, the point (0 = fn , ' p  = 0) is 
a saddle with eigenvalues f 1. Specific trajectories called separutrices link 
one of these points to the other, thus separating the domain of bounded 
orbits from that of passing orbits. 

Breaking the Hamiltonian character of the dynamics, we now consider 
the effect of viscous friction. The second equation of (2.39) is therefore 
completed by a term proportional to the angular velocity cp = 4: 

yj = -rpp - sine. 

This case is further illustrated in Figure 2.10 using an extended represen- 
tation that no longer takes advantage of the limitation to the periodized 
interval [-T, x[. As a matter of fact, this representation makes it easier to 
understand how the pendulum returns to its rest position after a certain 
number of complete turns around the axis, a number that depends on the 
initial energy. 

?o passing phase 

1 i  

Fig. 2.10 
portrait in extended representation. 

Damped pendulum. Left: Decay of a high energy trajectory. Right: Phase 
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It can be observed that the centers persist but are converted into stable 
spiral points. On the other hand unstable points at 8 = f ( 2 k  + 1)n do 
not change their nature but trajectories that emerge from them along their 
unstable direction miss the next point and spiral towards the foci, whereas 
trajectories that arrive to them along their stable direction need a slightly 
larger energy than in the conservative case, as expected. Other similar 
systems are proposed to  the study in Section 2.5. 

2.3.1.2 Van der Pol oscillator 

Examples of oscillatory processes are numerous in fields other than mechan- 
ics, from electronics (the case we consider now) to  ecology (prey-predator 
systems, Exercise 2.5.12) or economics (expansion-recession cycles, see [An- 
derson et al. (1988)I). 

In the RLC circuit described in Figure 2.11, the Joule effect in resistor 
R, accounting for dissipation, is described by a standard ohmic voltage- 
intensity relation, UA - UB = RI .  The other elements, the coil with induc- 
tance L and the capacitor with capacity C introduce the equivalent of an 
inertia at the origin of oscillations by setting the intensity and the voltage 
out of phase: the charge of the capacitor is given by Q = C(Uc  - U G ) ,  with 
Q = s Id t  while, when submitted to a varying intensity, the coil responds 
by building a voltage difference UB - UC = L I .  

A 

Fig. 2.11 Sketch of the RLC circuit modeling the van der Pol oscillator. Connec- 
tion (1) is a simple short circuit. Connection (2) is through an active dipole with 
a voltage-intensity characteristic displaying a range of negative resistance (negative- 
resistance dipole = nrd, the gray line corresponds to an ordinary ohmic resistor). 
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For a series circuit we get: 

(2.40) u = UA - UG = - i- RQ+ LQ.  

The capacitor discharge after closing the loop along ( l ) ,  i.e. UA = UG, is 
then given by: 

Q 
C 

R .  1 
L LC Q + -Q + -Q = 0 .  

This equation governs a damped linear oscillator oc exp( -iwt) with a com- 
plex angular frequency w solution to: 

w 2 f i y w - w , 2 = 0 ,  

where the resonance angular frequency wo is given by w i  = 1/LC and the 
damping factor y by y = R/L. 

The energy initially stored in the capacitor is dissipated in the resistor, 
at the origin of the damping. If one succeeds in injecting energy in the 
system so as to compensate the losses, one can obtain self-sustained oscil- 
lations. To achieve this aim, the circuit is closed on a negative-resistance 
dipole [loop (2)]. This “active element” is concretely implemented with an 
operational amplifier that draws its energy from an external electric supply 
maintaining the whole system in a permanent out-of-equilibrium state. 

The voltage-intensity relation accounting for the active element is sup- 
posed to be ohmic but with a negative resistance coefficient. In practice, 
saturation effects come and limit the validity of the “anomalous” Ohm law 
so that we may take (cf. Fig. 2.11, right): 

U G ~  - U A ~  = -RoI + b13 with Ro > 0 and b > 0 .  

Using I = Q as a variable rather than Q itself, the equation governing the 
circuit then reads: 

ki + R I  + (1 /C)  1 Idt] + [-RoI + b13] = 0 ,  

or, upon differentiation with respect to time: 

Li’+ [(R - Ro) + 3b12] I + I / C  = 0 .  (2.41) 

As long as R > Ro the coefficient of I is positive and dissipation plays 
a normal role: oscillations are damped. This is no longer the case when 
R < Ro: a small perturbation (i.e. such that 3b12 is negligible when com- 
pared to IR - Rol) is amplified and the oscillation develops. As soon as 
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the amplitude of the oscillation is large enough, the nonlinear dissipation 
term plays a normal role and stops the divergence. Decreasing R, we can 
therefore control the bifurcation from a time-independent steady state (os- 
cillatory perturbations are damped) towards the regime of self-sustained 
oscillations. 

Performing the changes I ++ X and t I+ t /wo  in equation (2.41) we get 
one of the forms of the van der Pol model 

X - ( r  - gX2)k + x = 0 ,  (2.42) 

where r 0; Ro - R is the control parameter and where g > 0 is a mea- 
sure of the strength of nonlinearities that could have been suppressed by 
a rescaling of X, ending with g = 1. Figure 2.12 presents the results of 
the numerical integration of (2.42) for two different initial conditions in the 
quasi-harmonic regime (top line) or strongly anharmonic regime (middle 
line). In both cases one can observe that orbits spirals toward a closed 
curve called a limit cycle, either from the inside or from the outside de- 
pending on the initial condition. This special orbit is nearly elliptical in 
the first case and rather quadrangular in the second. To them correspond 
nearly sinusoidal or on the contrary highly anharmonic oscillations, which 
is also illustrated in the Fourier spectra that have a higher level of harmon- 
ics in the second case than in the first. The bottom graphs in Figure 2.12 
illustrate the deformation of the limit cycles as the parameter T is varied 
from 0.1 to 2.0. 

The van der Pol limit cycle is an example of attractor that is not trivially 
reduced to a single point (as was the case for the damped pendulum). It 
should be noted that, by contrast with ideal mechanical oscillators that 
do not have attractors and for which the amplitude of the motion is fixed 
by the total energy (kinetic+potential) in the initial condition, here it is 
the competition between the destabilization by energy injection and the 
dissipation that fully determines the characteristics (amplitude and period) 
of the regime achieved beyond the instability threshold. 

In Chapter 4 we will come back to the description of this bifurcation 
when r changes from negative to positive values. For the moment let us 
determine in an approximate way the amplitude of the cycle in the quasi- 
harmonic regime, close to the threshold. 

Inserting X 21 X, cos(t) in equation (2.42) we get 

-x, cos(t) + (r - gX; cos2(t)) X, sin(t) + X, cos(t) = 0 .  
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Fig. 2.12 Van der Pol oscillator (2.42) for T = 0.1 (quasi-harmonic, first line) and T = 1.0 
(strongly anharmonic, second line), both with g = 1. Left: Phase portraits showing the 
convergence toward a limit cycle indicated by a dashed line. Middle: Corresponding 
time series of the intensity signal. Right: Corresponding Fourier spectra (lin-log plot of 
the modulus of the Fourier amplitudes Fu squared). Bottom: Limit cycles for increasing 
values of control parameter T .  

Let us restrict to a first harmonic approximation. It consists in demanding 
that the equation be identically fulfilled for terms in sin(t) and cos(t), with- 
out worrying about higher harmonics generated by the nonlinearities. It is 
easily observed that the compensation is automatic for the cosine terms. 
For the sine terms, using the classical formulas cos2(t) = ;(l+cos(2t)) and 
cos(2t) sin(t) = i(sin(3t) - sin(t)), neglecting the sin(3t) term, we get: 

(r - a g X i )  sin(t) = 0 ,  
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which leads to: 

r - $ g X z  = 0 that is X ,  = 2 m .  (2.43) 

This relation fixes the amplitude of the cycle and it can further be checked 
that the amplitude of term in sin(3t) generated by the nonlinearities is of 
order X A ,  hence - r3I2 << r1I2 for r small, thus justifying the expression 
‘quasi-harmonic’, see Figure 2.12 (top-right). 

Plotting X ,  as a function of r ,  we get exactly the same bifurcation 
diagram as for A,  in Figure 1.4 (right), p. 14, but restricted to its upper 
branch, which makes sense since the change t e t + 7r (legitimate since the 
system is autonomous) brings the branch X, < 0 on top of the other one. 

Getting the result this way is rather crude. In order to  improve the 
solution, one should try to fulfill the equation harmonic by harmonic (a 
special case of the so-called Galerkin method). This would lead to an infinite 
nonlinear algebraic system, the lowest order consistent truncation of which 
is precisely (2.43). Here, an additional implicit assumption has been that 
the nonlinearities did not change the angular frequency. This property 
turns out to be correct at  lowest order in r for the van der Pol model 
but not necessarily in other cases, which opens the problem of the general 
determination of the period of nonlinear oscillators to be examined now. 

2.3.2 

2.3.2.1 The Dufing oscillator: period from a direct computation 

Let us come back to the special case of the harmonic oscillator and note that 
the linear relation between the restoring force and the elongation may not 
stay indefinitely valid. In general the microscopic characteristics of the elas- 
tic forces induce nonlinearities. If the spring is “hard” the force necessary 
to obtain a specific elongation grows faster than just being proportional to 
it and we can assume F = -kX(1 + c X 2 )  with c > 0. (The opposite case 
of a “soft” spring with c < 0 is studied as part of Exercise 2.5.7.) In the 
absence of friction, choosing the time scale so that the angular frequency 
of the unperturbed oscillator is equal to 1, we get: 

Amplitude and phase of nonlinear oscillators 

X + X + c X 3 = 0 ,  (2.44) 

which called the Dufing oscillator. 
As long as the amplitude is small, the nonlinear term is negligible and 

the harmonic approximation is satisfactory. When the amplitude increases, 
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the oscillator “feels” the effects of the nonlinearity and the motion becomes 
anharmonic. The period and the shape of the orbits change progressively. 
However, as long as the amplitude remains small enough, corrections to  the 
linear solution may be obtained using perturbat ion methods.  

Here the case is particularly simple. Let us multiply (2.44) by X and 
rewrite the result as 

(2.45) 

The quantity between the brackets is clearly the total energy, the sum of 
the kinetic energy and the potential energy V(X) = i X 2  + i c X 4  from 
which the elastic restoring force derives. Integrating (2.45) we obtain 

iXz  + V(X) = E ,  

called a f i r s t  integral of (2.44). The differential order of the problem has 
indeed decreased by one since we can rewrite this equation as 

X = f J 2 ( E  - V(X)) , (2.46) 

provided that the quantity under the root sign be non-negative. The con- 
dition V(Xt) = E defines the t u rn ing  po in t s  of the problem, which corre- 
spond to points with maximal elongation and zero velocity, whereas the 
region ‘1x1 > Xt’ is forbidden7 since it corresponds to a negative kinetic 
energy. 

In the case of the nonlinear spring considered here, we get 

i X ~ + ~ c X ~ = E ,  

which, for c small enough, yields: 

X, M m(1- &E) , 

so that the maximum elongation for a hard spring is reduced when com- 
pared to that of a harmonic oscillator with the same energy. 

The system oscillates between its two turning points. The period can 
thus be computed by integration of (2.46) between them: 

dX Xt 1 
-T 2 = Lxt J2(E - V(X)) (2.47) 

The value of this integral, analytically defined as a ‘complete elliptic integral 
of the first kind’ can be found in tables or numerically computed. Here it is 

‘(in classical mechanics, not in quantum mechanics) 
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more interesting to find its expression at low energy when c small, and thus 
for Xt << 1. Performing the variable change X = Xt sin(cp) and using the 
parity of the quantity to be integrated, through an expansion truncated at 
first order we get: 

a / 2  
T - 4 L  [1-icXt(l+sin2cp)]dcp, 

hence 

27r 
T 

T N 27~ (1 - acE) or w = - N 1 + acE (2.48) 

For a hard spring the period therefore decreases when the energy increases, 
which is easily understood by writing X + c X 3  = X (1 + cX2) and observ- 
ing that (1 + c X 2 )  plays the role of an effective elastic constant, the average 
value of which is always larger than that of the reference linear oscillator. 

After this example of explicit calculation from (2.47), made possible 
by the Hamiltonian context (see also Exercise 2.5.10) let us examine three 
methods for obtaining the value of the period in cases where nonlinear 
and/or dissipative effects can be considered as perturbations to a harmonic 
oscillator with intensities scaled by some small parameter. 

2.3.2.2 Averaging method 

In this first method, it is assumed that the amplitude of the oscillations is 
modulated on a long time scale that allows one to determine an effective 
equation for the modulation by averaging. Its intuitive simplicity makes 
it a reasonable first choice but it cannot easily be improved beyond lowest 
order. As a result we re-obtain the approximate solution to the van der Pol 
problem previously derived but here with a bonus. 

To explain the method let us come back to the weakly damped linear 
oscillator (2.9) rewritten here with E = 277: 

X + X = - - E X ,  (2.49) 

with initial conditions 

The solution reads 

(2.50) 
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with w2 = 1 - is2, A(O) = l/w, 'p(O) = arctan(~/2w). This expression can 
be written as X ( t )  = A( t )  cos(t + 'p(t))  where A( t )  0: exp(-at/2) appears 
as the average of the amplitude over a pseudo-period, which varies slowly 
provided that E << 1. On the other hand, the argument of the cosine, 
w t  - ' p (O) ,  can be written as t + p(t) with p(t) = (w - 1)t - 'p('), a quantity 
that is also slowly varying since w - 1 - $'. 

The problem is now to generalize these notions of average amplitude 
A ( t )  and phase 'p(t) ,  supposed to be sufficiently slowly varying, when the 
system presents itself as a second order differential equation close to that 
governing the ideal linear oscillator, i.e. when it can be written as: 

x + x = -&f(X,X) , & <( 1. (2.51) 

The solution is searched in the form: 

X ( t )  = A ( t )  cos(t + 'p(t))  , (2.52) 

where A( t )  and p(t) are two unknown functions of time. Differentiating 
this expression we get: 

X = - A  sin(t + 'p) + [A  cos(t + 'p) - ~ c i ,  sin(t + 'p)] . (2.53) 

In the absence of modulation ( A  E 0, ci, E 0), we would have: 

X = -Asin(t + 'p) , 

so that it appears natural to reduce the freedom introduced in replacing the 
original unknown X by the two unknowns A and 'p by forcing the quantity 
between the brackets to cancel identically. The first equation linking A to 
'p is therefore: 

A cos(t + 'p) - A+ sin(t + 'p) = 0 .  (2.54) 

Differentiating (2.52) once more and taking (2.54) into account we get 

X = - A  cos(t + 'p) - [A  sin(t + 'p) + A$ cos(t + 'p)] 

that we insert in (2.51) to obtain 

Asin(t + 'p) + Aci,cos(t + 'p) = &g(A,'p) ,  (2.55) 

where g(A,'p)  E f ( X , X )  = f(Acos(t + 'p), -Asin(t + 'p)). In order to 
isolate A and ci, we can combine (2.54) and (2.55) using the usual trigono- 
metric relations: computing ( 2 . 5 4 ) ~  cos(t + 'p) + ( 2 . 5 5 ) ~  sin(t + 'p) and 
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( 2 . 5 5 ) ~  cos(t + cp) - (2.54) x sin(t + cp), we obtain: 

A = ~ f ( A c o s ( t  + cp), -Asin(t + cp)) sin(t + cp), (2.56) 

A$ = Ef(Acos(t + cp), -Asin(t + cp)) cos(t + cp). (2.57) 

Up to now, everything is exact and one can notice that (2.56, 2.57) would 
result from a change to  cylindrical coordinates X = A cos(O), Y = Asin(O), 
8 = -t - 'p, in a phase plane where the unperturbed second-order equation 
X + X = 0 would be replaced by a system of two first order equations' 

The approximation comes in as soon as one assume that A(t) and cp(t) 
are slowly variable on the short time scale T 2~ 27r. If this is the case, we can 
integrate the above equations over an approximate period while considering 
A and cp as constants, which leads to 

x =Y, Y = -x. 

A = & 1 2 "  f(Acos(t), -Asin(t)) sin(t) dt , 

f(Acos(t), -Asin(t)) cos(t) d t .  

(2.58) 

(2.59) 

Let us apply these formulas to the van der Poi oscillator, a non- 
conservative system here taken in the form 

X-&(l-x');ir+X=o. (2.60) 

This equation is slightly different from (2.42) where the scaling of variable 
X was more adapted to the problem of the bifurcation when T goes through 
zero. The scaling chosen here is such that the nonlinearity contributes to  the 
solution when X - U ( 1 )  and is valid only for E > 0. With f = -(l-Xz)X, 
we get: 

A=5L2" (1 - A2 cos'(t)) Asin2(t) dt = $&A (1 - + A 2 )  , 

(1 - A2 cos2(t)) A sin(t) cos(t) dt = 0 .  

The second equation shows that there is no correction to  the angular fre- 
quency (at least at this order) which implicitly justifies the choice made 
when developing the first harmonic approximation on p. 49. By contrast, 

8The minus signs in the definition of 0 arise from the fact that the so-defined two- 
dimensional vector field generates trajectories that rotate clockwise, opposite to the 
trigonometric convention. 
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the first equation governing the amplitude (the bonus alluded at the begin- 
ning of the section) is non-trivial and may serve us to  study the convergence 
towards the limit cycle corresponding to A,  = 2 which nothing but (2.43) 
in the scales turning (2.42) in the form (2.60). 

2.3.2.3 The Poincark-Lindstedt method 

The second method considered here is called the Poincark-Lindstedt ex- 
pansion. The solution is now assumed to be periodic with some unknown 
period close to  that of the reference oscillator, and both the period and the 
solution are searched through an expansion in powers of E .  For simplicity, it 
is explained in the linear case but can easily be applied when nonlinearities 
are present (Exercise 2.5.11). 

Let us consider two harmonic oscillators with nearly equal angular fre- 
quencies, the first one is governed by Y + Y = 0, with angular frequency 
w y  = 1, and the second one by X + (1 - E)X = 0, with angular frequency 
wx = (1 - E ) ~ / ~ .  Starting with identical initial conditions are Y = X = 1, 
Y = X = 0, they will progressively drift out of phase. Choosing the first 
oscillator as a reference, one can interpret this phase shift as the result of 
secular terms that appear already in the first order expansion of the soh-  
tion for the second oscillator X ( t )  = cos(wxt). From wx M 1 - $&, one gets 
cos(wxt) = cos(t) cos (id) - sin(t) sin ($ct), so that for sufficiently short 
times such that $&t << 1, with cos ($&) N 1 and sin (!j&t) N !pt, one finds 
cos(wt) = cos(t) + $&t sin(t), which points out the secular term correction 
explicitly (cf. p. 41). It is not difficult to obtain this solution directly from 
the equation by a perturbation expansion to which we now turn. 

For the second oscillator, the problem reads: 

X + X = & X  

and the solution is searched for as a power expansion in E :  

x = xo +&XI +&2XZ + . . . 
We are led to a series of simple linear problems: 

($ + 1)Xo = 0 ,  

(& + 1)Xl = xo, 
($7 + 1)X2 = x1, 

- ... - ...  

(2.61) 

(2.62) 

(2.63) 

(2.64) 
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The solution to (2.62) with initial conditions X = 1, X = 0 is nothing but 
X O  = cos(t) so that the inhomogeneity in the problem for XI just contains 
a term that is resonant with the left hand side. A special solution to (2.63) 
is obtained by identification as X I  = t sint, which is indeed responsible 
for the secular growth of the phase shift at the considered order. 

Any expansion obtained in this way has thus a limited validity in time. 
One says that it is non-uniform. The aim of the rest of this section and 
the next one is to obtain a uniformly valid expansion. Here the origin of 
the discrepancy is obvious: we must correct the clock and pass from the 
original time t to a new one T for which secular terms would be absent. 
This is precisely the essence of the Poincari-Lindstedt method. 

Let US set T = w t  and look for the relation between T and t in the form 
of an expansion of w in powers of the small perturbation parameter E :  

w = 1 + EW1 + E2W2 + . . . (2.65) 

Denoting differentiation with respect to variable T as 6, we get & X  = 
w & X  and $ X  w 2 $ X ,  and thus 

[ ( l  +EW1 +E2W2 + .. .)$ + 11 (XO +EX1 +E2X2 + .. . )  

= & ( X o  +EX1 + E 2 X 2  + 1 .  . )  

leading to a new series of linear problems 

($2 + 1 ) X o  = 0 ,  

(;t;. d2 + 11x1 = xo - 2Wl&XO, 

(2.66) 

(2.67) 

(p d2 + 1 ) X 2  = X I  - (w: + 2 ~ 2 )  $Xo - 2 w i $ X 1 ,  (2.68) 
- ... - .  

The structure of (2.66, 2.67, . . . ) is similar to that of (2.62, 2.63, . . . ), 
except that inhomogeneities on the right hand side now contain free pa- 
rameters that can be fixed so as to “kill” all the resonant terms that gen- 
erate secular terms at the origin of the time non-uniformity in the initial 
expansion. This operation is an application of the Fredholm alternative 
stipulating that, when the kernel of a linear operator C is non-trivial, the 
problem CX = F has solutions only if the right hand side F is orthogonal 
to the kernel of the adjoint operator Lt of C (see appendix A, sA.3.2). 

Here the unperturbed problem (2.66) is self-adjoint. Its kernel is gener- 
ated by the trigonometric lines COS(T) and sin(T). Inserting X O  = COS(T) in 
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(2.67) we get on the right hand side F1 = (1 + 2wl) C O S ( T ) .  The Fredholm 
alternative imposes us to  cancel the coefficient of C O S ( T ) ,  i.e. w1 = -:. At 
second order we gets F 2  = (wf + 2w2) C O S ( T )  that yields w2 = -$wf = -;, 
and so on. In this way, by reconstructing w from its expansion we ob- 
tain w = 1 - $E - i ~ ~ ,  which is the beginning of the Taylor expansion of 
w = (1 - E)~/ ’ ,  as expected from the direct calculation. In Exercise 2.5.11 
the method is applied to the Duffing oscillator as a typical example of a 
nonlinear system. 

2.3.2.4 

The Poincar6-Lindstedt method does not allow for amplitude and phase 
modulations that were essential in the averaging method. We are thus 
led to  the last and most general approach called the method  of mult iple  
scales that lifts the restrictions of both previous methods by introducing a 
hierarchy of time scales. 

The natural relevance of the PoincarkLindstedt method is to Hamilto- 
nian systems with a single degree of freedom in the mechanical sense, i.e. 
two-dimensional dynamical systems for which energy conservation implies 
the periodicity of bounded states, a key feature of the direct calculation 
above, p. 51. Difficulties appear for non-conservative systems since the oc- 
currence of strict periodicity is then a much less trivial matter. In order to  
understand how to escape this problem, let us consider again the damped 
oscillator. 

Solution (2.50) 0: Re {exp[(-$ + iw)]} can of course be written as 
cc Re {exp[i(w + i$~)t]} ,  where w+i$, though a complex quantity, can be 
understood as the angular frequency of some oscillation. In much the same 
way as turning to  amplitude and phase in the averaging method comes to 
a change for cylindrical coordinates, the natural extension of the Poincar6- 
Lindstedt method thus suggests to change from a Cartesian parameteriza- 
tion of the phase space to complex one. As a matter of fact, using (2.65) 
and applying the previous procedure to (2.49) without assuming that w is 
a real quantity, one gets at  first order 

T h e  me thod  of mult iple  scales 

instead of (2.67). Injecting the complex solution XO = Aexp(it) in this 
equation, one finds the compatibility condition 2wl - i = 0 ,  i.e. w = 
1 + W ~ E  = 1 + i i~ ,  which correctly accounts for the expected damping at  
this order. 
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However, already in this simple problem, we may note the existence of 
two different time scales: the damping time of order 1 / ~ ,  and another time 
scale, the inverse of the frequency shift, of order 1/c2 >> 1 / ~  when E << 1. 
This suggests to lay the most general method on a hierarchy of time scales, 
suitable to correct the lack of synchronization between a reference linear 
oscillator and the nonlinear system at hand. The aim of this strategy is to 
make the approximation uniformly valid in time, much like the introduction 
of leap years helps us to adjust the calendar according to a complicated 
algorithm that is more and more complicated as longer and longer periods 
of time are considered. 

Let us look for the solution of the problem in the form 

2 X(t)  = X(to,tl,tz,.  . . )  with to  = t , tl = E t ,  t 2  = E t , .  . . 

For E small enough, the time scale measured by t l  is indeed slow with respect 
to that by t o  since when t o  varies by a quantity O(1), the arguments of X 
in t l ,  t2,. . . vary by O(E),  O ( E ~ ) , .  . . 

The differentiation with respect to time is then given by 

a d - d  - &40 + &t,at, + &t,at, + . . . 
= at, + E a t ,  + E2dt2 + . . . , 

since dto/dt E 1, dtl/dt = E,. . . . In the same way the second derivative 
reads: 

6 = at; + 2Eat,at, + E2 (at: + 2at,at,) + . . . . 
The solution is taken in the form 

X(t)  =Xo(to,t1,t2 ,... )fEXl(tO,tl , tZ,  . . .)+.. .  , 
and we have to insert these expansions in the motion equation and isolate 
the different orders in E .  Here we consider the specific cases of the Duff- 
ing and van der Pol oscillators as two complementary illustrations of the 
method. 

The Duffing Oscillator: 
We have: 

x + x  = -EX3, 

so that at order EO we find 

(at; + 1)Xo = 0 ,  
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the solution of which reads: 

At order c1 we obtain: 

The strategy is to find conditions on A0 and cpo such that the r.h.s., which 
expands as: 

contains no term in resonance with the 1.h.s. Clearly only the cos(3(to+cpo)) 
term on the last line is naturally non-resonant, while the terms on the 
previous line are. We thus get two conditions, one from cosine, the other 
from the sine (the kernel is two-dimensional): 

that can both be integrated. The second condition means that A0 does not 
depend on tl and thus, at best, on t 2 ,  t 3 , .  . . , i.e. A0 = Ao(t2, .  . . ). The 
first equation in turn gives the lowest order correction to the phase: 

The non-resonant part can then be computed, if one wants to stop at this 
order, the full solution can be reconstructed by setting ti = E t  in the 
result (compare with the output of the PoincarB-Lindstedt method used in 
Exercise 2.5.11). 

The van der Pol oscillator 
The first steps of the computation do not change. At order E~ we get: 
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the right hand side of which expands as 

(1 - A: cos2(to + cpo)) ( - Ao sin(to + PO)) + 2 ( a t , ~ 0 )  sin(t0 + cpo) 

+2AO(&,PO) cos(t0 + Po) 
= ( - -Ao(~ - +A:) + 2at,A0) sin(t0 +PO) + ~Ao(&,Po)  cos(t0 +PO) 

++A; sin (3(to + 9 0 ) )  . 
The conditions that annihilate the resonant terms now read: 

-Ao(1- Ai/4) + 2dt1Ao = 0 ,  

2Aodt1cpo = 0.  

The second condition, &,cpO = 0, hence cpo = pO(t2,. . . ), shows as before 
that there is no correction to the angular frequency at this order. On the 
other hand, the first equation is seen to govern the evolution of Ao, like 
in the averaging method, except for the presence of the factor E that is 
incorporated in the definition of t l  and would reappear if we were to come 
back to the independent variable t. 

The method of multiple scales can be pursued at higher order in a 
completely systematic way. The price to be paid is increasingly heavy 
computations that are greatly eased by the use of formal algebra softwares 
such as MAPLE or MATHEMATICA. It can be adapted to treat the problem 
of periodically forced nonlinear oscillators, consult e.g. [Nayfeh and Mook 
(1979)l for further reference. 

2.4 What Next? 

The notion of determinism implemented in time-continuous dynamical sys- 
tems considered up to now implies that a unique trajectory goes through 
any regular point in phase space (trajectories do not intersect since a given 
state cannot have several pasts and futures). The consequence is of utmost 
importance for two-dimensional systems which experience a strong topo- 
logical constraint, so that their behavior remain “simple” in a sense to be 
reexamined in Chapter 4. In higher dimensions, by contrast, trajectories 
have enough space to wind one around each other, which is ultimately at 
the origin of “complicated” behavior. Before considering this problem, we 
examine in the next chapter how high dimensional systems, especially con- 
tinuous media, may behave as effective low dimensional systems so as to 
render the tools that we have begun to introduce of great practical use. 
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2.5 Exercises 

2.5.1 

Consider a continuously differentiable (C') two-dimensional map 

Evolution of volumes in phase space 

1) Determine the transform of a phase space element [X1,X1 + 6x11 x 
[X,, X2 + 6x21 under map Q and compute its surface at  lowest significant 
order [Hint: Figure 2.131. 
2) Assuming that B is the time-.r map of some continuous-time system 

over an infinitesimal time interval r = bt, compute Q from 3 and infer that 
the variation of phase space volumes is locally given by the divergence of 
the vector field F, formula (2.11). 

Fig. 2.13 
Exercise 2.5.1, first part. 

Transformed domain [X1,Xi + 6x11 x [Xz,Xz + 6x21 under map 9. 
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2.5.2 

The energy method is an example of global method for studying stability 
problems without reference to  specific perturbations, e.g. infinitesimal ones. 

1) As a preliminary, consider the linear system V = -pV and check that 
the “kinetic energy” E = i V 2  is governed by: 

The energy method and its application 

E = - p v 2  5 0 ,  

which implies a monotonic return to equilibrium, illustrating the concept 
of asymptotic stability. 
2) Consider next the oscillator defined as 

x = Y + x & G - F ,  Y = -x + YJx-2+yz, 

where the nonlinear terms come and modify a marginally stable dynamics 
in the neighborhood of the origin (a center) and for which the weaker notion 
of orbital stability has been introduced. 

2a) Define E = ; ( X 2  + Y 2 ) ,  compute &E and conclude that the trivial 
solution is orbitally unstable. [Answer: g E  = ( X 2  + Y 2 ) 3 / 2  > 0 for any 

2b) Determine the evolution of 2 = &!? (distance to  the origin) start- 
ing from some initial condition Zo > 0 at t = 0 and show that that Z 
diverges at t ,  = 1/20,  i.e. the corresponding trajectory spirals away to  
infinity in a finite time. 
3) We now search to  extend the concept of energy used up to  now, in such 
a way that the study of its variations allows one to decide about stability or 
instability of a given state, conveniently taken as the origin of coordinates: 

0 Definition: Let G(X) be a function of point X in phase space X, taking 
its values in R’, definite positive, i.e. such that G(0) = 0 and G(X # 0) > 0 
(in practice a definite positive quadratic form). A sufficient condition of 
asymptotic stability, is that the amplitude of the perturbation, as measured 
by G decreases in the course of time and tends to zero as t goes to infinity. 
This will be the case if 4 = Cj &,G X j  = C j  ax,G 3j is negative definite 
as a function of X E X taking its values in R, such that o(0) = 0 and 
G(X # 0) < 0. Such a G is called a Lyapanov f ~ n c t i o n . ~  

( X , Y )  # (O,O)).I 

’This definition can be extended to the case of continuous media described in terms 
of fields (velocity, temperature, concentration,. . . ), in which case the Lyapunov function 
becomes a functional of the fields. 
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Application: Consider the system defined as: 

X = X Y - X 3 ,  
Y = -Y - 2 x 2 .  

Show that the origin is the unique fixed point and further that it is 
marginally stable. Since no conclusion can be drawn at the linear stage, by 
generalizing the energy E to a function in the form: 

q x ,  Y )  = ; (ax2 + BY2) , 
determine the conditions under which E is a Lyapunov function, thus prov- 
ing the asymptotic stability of this state. 

2.5.3 

As a useful preliminary to Exercise 3.3.3 in Chapter 3, consider a real, 
three-dimensional, linear dynamical system in the form 

Linear stability and bifurcations in dimension three 

3 

j=l 

1) Recall the relations between the coefficients and the roots of its charac- 
teristic equation written as s3 + us2 + bs + c = 0. Further identify all the 
possible non-degenerate or degenerate cases (real or complex nature of the 
roots, their sign or the sign of their real part, simple and multiple roots). 
Write down the Jordan normal form of the operator corresponding to each 
situation (see Appendix A, 5A.2 for a reminder) [Answer: see Fig. A.l(b)]. 
2) When the control parameters vary, the eigenvalues of the system move 
in the complex plane. Determine the remarkable relations fulfilled by the 
coefficients of the characteristic equation in the marginal cases and sketch 
the spectrum of the operator in the complex plane before, at, and after a 
stationary bifurcation (s = 0) or an oscillatory bifurcation (%(s) = 0). 
[Answer: see Fig. 2.14.1 

2.5.4 Coupled linear oscillators 

Consider the following system of two coupled oscillators 

X + X = Y ,  
Y + R 2 Y  = - c x .  
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oscillatory 
stationary bifurcation ' bifurcation 

0 
I 
I 

stable 

I 

real spectrum 1 complex spectrum 

Fig. 2.14 Typical bifurcations in the three-dimensional case, Exercise 2.5.3. 

Find the equation governing the angular frequencies of the eigenmodes 
taken as ( X ,  Y) = (Xo,  Yo) exp(iwt), observe that the solutions appear as 
pairs of opposed eigenvalues. Determine the domain in the plane of param- 
eters R2 and c where the eigenmodes are stable. [Hint: remember that for a 
mechanical system, stability means orbital stability, with purely imaginary 
eigenvalues.] 

2.5.5 Logistic equation 

Reexamine the limited growth model (logistic equation) introduced in 
Chapter 1, Exercise 1.5.2 about population dynamics. Study the stabil- 
ity of its two fixed points and draw its phase portrait. 

2.5.6 Dynamical systems and solitons 

1) Consider a dynamical system with a single degree of freedom in the sense 
of analytical dynamics (a pair of conjugate variables) with a force deriving 
from the potential 

x2 x3 
V ( X )  = -- + - 

2 3  
(2.69) 
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1.5, I 

. .  

-’40 -0.5 0:o 0.5 l :o i . 5  ’ 
Fig. 2.15 
Right: Profile of the soliton corresponding to the separatrix on the left part. 

Left: Phase portrait of the system with a force deriving from potential (2.69) 

la) Write down the second order differential equation governing X (mass 
m = 1) and then the first order system for X and P = X .  Find the fixed 
points, compute their eigenvalues and eigenvectors (if any). Sketch the 
phase portrait in the phase plane ( X ,  P )  [Answer: Figure 2.15, left]. 

lb )  Draw the graph of the potential V ( X )  and determine the energy 
corresponding to the separatrix, the special trajectory that limits the do- 
main of orbits bounded around the minimum of the potential. Find the 
turning point and the equation accounting for this trajectory. Determine 
its solution by identification with 

X(t)  = Xo/ Cosh2(t/7). 

Why is this form “natural”? 
lc) Sketch the phase portrait of the system when perturbed by the in- 

troduction of a weak viscous friction, taking the weakly damped pendulum 
as an example. 
2) The Korteweg-de Vries equation reads: 

This is a non-dissipative equation with a nonlinearity of hydrodynamic 
type, identical to that of the Burgers equation considered in Chapter 1, 
Exercise 1.5.3. It is integrable and its solution can be expressed in terms of 
a superposition of interacting solitons. Here we are interested in a solution 
with a single soliton such that h + 0 when x + &XJ moving without 
deformation at speed c,  and thus only function of the combination < = x-ct. 
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2a) Determine the equation in governing such a moving solution (make 
the substitutions 8, t-) d/d[ and at t-) -cd/d[). Integrate this equation 
and find the value of the integration constant that corresponds to  the soliton 
solution. 

2b) By appropriate variable changes put this equation in the form con- 
sidered in the first part of the exercise and deduce the analytical expression 
of the soliton. Discuss the relation between the speed, the height, and the 
width of the soliton [Hint: Figure 2.15, right]. 

2.5.7 

1) Consider the system 

Variants of the Dufing oscillator 

X + X ( a + X 2 )  = F ,  

where a is a coefficient with unspecified sign for the moment, and F a 
quantity playing the role of an external force. 

l a )  Find the potential from which the dynamics can be derived in the 
sense of mechanics, i.e. V such that m X  = -aV /aX ,  and the time in- 
dependent response to a force 0 < F << 1 (observe that the roots of an 
equation in the form x 3  - px + q = 0 with q << 1 and p N 1 are approxi- 
mately given by px N q for x “small” and x3 N px for x “large.” 

lb )  Discuss the dynamics in the phase plane ( X , Y  X )  as a function 
of the sign of parameter a.  Locate the fixed points and determine their 
stability properties (when solving the linearized problems, neglect the non- 
linearities for the “small” solution and the constant term for the “large” 
one). Draw a few typical orbits. In which sense can one speak of the system 
as of an oscillator. 
2) Consider now 

X + X + cX3 = 0 with c < 0 (soft spring). 

2a) Find the elastic potential from which the dynamics can be derived 
and discuss the behavior of the system in its phase plane as above. 

2b) For which set of initial conditions is the system a physically well 
posed one (bounded orbits)? How should one correct the model in order 
to avoid the divergence of some trajectories? Interpret this limitation by 
considering the theory leading to the approximate expression (2.48) for the 
angular frequency of small oscillations when c > 0 and assuming that it is 
still valid for large amplitude orbits when c < 0. 
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2.5.8 Carriage with a spring 

Consider the mechanical system built with an ideal spring of equilibrium 
length l o  fixed by one of its ends at point P as described in Figure 2.16(a). 
Its other end is attached at M to a small carriage with mass m sliding along 
a horizontal line forming the 2 axis. Point P is at a distance el from this 
axis. The intensity of the restoring force is proportional to the elongation 

1) Determine the components of the forces exerted on the carriage at ab- 
scissa X and the corresponding equation of motion. Taking as length 
unit, as time unit, and setting C1 = XCO, rewrite this equation in 
dimensionless form as a system of two equations for X and Y = 2. 
2) Compute the potential V ( X )  from which the force F ( X )  derives, ie. 
F(X) = -aV /aX .  Find the fixed points as a function of A, study their 
stability by linearizing the system. 
3) Sketch the phase portraits in the two cases X < 1 and X > 1. What 
can be said from the trajectory issued from the vicinity of the origin along 
the unstable direction in the case X < 1. Using the fact that the system is 
frictionless, determine the corresponding turning point quantitatively. 

IFI = q e  - eo). 

2.5.9 

Consider now a carriage sliding along a rail in the form of a hoop with 
radius a, itself rotating around a vertical diameter (cf. Fig. 2.16b). The 
rotation period if T = 2 ~ / w .  The motion is governed by the following 

Carriage sliding on a rotating hoop 

Fig. 2.16 Left: Spring and carriage sliding along a horizontal rail. Right: Carriage 
sliding along a rail in the form of a hoop further rotating around a vertical diameter. 
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Fig. 2.17 Phase portrait of the hoop system for u2 = 0.8 (left) and u2 = 1.25 (right). 

equation: 

d28 
dt2 

a- = -gsin(8) + aw2 cos(8) sin(8) 

where g is the gravitational acceleration. 
1) Justify this equation by taking advantage of the elements of analytical 
mechanics recalled in 52.1.2. To this aim, compute first the gravitational 
potential energy and then the kinetic energy resulting from the superposi- 
tion of the two independent rotation motions, around the axis and within 
the plane of the hoop. Set the equation in the form of a two-dimensional 
differential system for 8 and cp = 4. 
2) Find the fixed points and study their stability as a function of the an- 
gular speed w. Sketch the phase portraits in the different cases [Answer: 
Figure 2.171. 
3) Examine the effects of a slight viscous friction proportional to  cp. 

2.5.10 

Consider a strongly anharmonic oscillator with a restoring force deriving 
from the potential 

Period of an oscillator in a quartic potential 

V ( X )  = vo + ;x4. 
From equation (2.47) giving the period of an oscillator, show without ex- 
plicit calculation that one gets T 0; Ea with an exponent a to be deter- 
mined (perform the change of variables that applies the interval between 
the turning points onto [--1,1]). 
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2.5.11 Averaging and Poincad-Lindstedt methods 

The Duffing oscillator is taken in the form 

($ + l )X  = - E X 3 .  

1) Extract the relation between the amplitude and the angular frequency 
of the oscillator by making use of equation (2.59) for the phase. What is 
the meaning of equation (2.58) for the amplitude. 
2) Following the PoincarC-Lindstedt method (§2.3.2.3), derive the complete 
solution at first order in E starting from the initial condition X(O) = A, 
X ( O )  = 0 at t = 0. Using expansions (2.61-2.65), show first that at the 
relevant order the problem simply reads 

and next that the elimination of resonant terms leads to the same result 
as the first order Taylor expansion of the solution obtained by a direct 
calculation (2.48). [Observe that, at lowest order, the averaging method and 
the PoincarkLindstedt method involve exactly the same computations.] 
3) Find the complete solution at first order, once the F’redholm alternative 
is fulfilled. 

2.5 .1 2 Prey-predator system 

Consider the system derived in Chapter 1, Exercise 1.5.2: 

x = Fx ( X ,  Y) = ((Y‘Y - a o ) X ,  (2.70) 

Y = Fy(X,Y) = (p  - y X ) Y ,  (2.71) 

in the physical quadrant X 2 0, Y 2 0 ( X  and Y are population counts). 
1) Draw a qualitative phase portrait by studying the vector field along 
lines defined by Fx(X, Y) = 0 and Fy (X, Y) = 0 (vertical and horizontal 
isoclines respectively). Search and study the characteristics of the fixed 
points (roots of 3 x ( X ,  Y) = 0 = 3% (X, Y)). 
2) Show that the quantity 

H ( X ,  Y) = (Y’Y - (Yo log(Y) -I- y x  - p log(X) 

is conserved along a trajectory and that H displays a minimum at the 
nontrivial fixed point. 
3) Consider the successive intersections of a trajectory with line Y = (YO/& 
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and conclude from the behavior of H that all trajectories are periodic orbits. 
Notice that they are not limit cycles and explain why the elliptic character 
of the non-trivial fixed point is a deficiency of the model. Try to  correct 
it by considering the most general model of the form 3x = XFx(X, Y), 
3 y  = YFy(X,Y) ,  at most quadratic in X and Y. In particular find 
the conditions to  be fulfilled in order to reproduce the qualitative features 
characteristic of a prey-predator system. 



Chapter 3 

Life and Death of Dissipative 
Structures 

In this transition chapter we focus on the emergence of convection and how 
patterns that have developed further disaggregate. This rather intuitive ex- 
ample helps us to introduce a few general ideas and techniques to analyze 
instabilities (53.1). The theory that allows us to interpret their disorgani- 
zation, presented here from a purely phenomenological perspective ($3.2) 
will be reexamined later (Chaps. 4 and 5), in continuity what has begun to 
be formalized in Chapter 2. 

3.1 Emergence of Dissipative Structures 

3.1.1 Qualitative analysis of the instability mechanism 

Let us go back in more detail on the idea previously introduced (Fig. 1.3, 
p. 11) to explain the onset of convection. The two parts of the mechanism, 
instability due to differential buoyancy and stability through dissipation 
(viscous relaxation and heat diffusion) will first be qualitatively analyzed 
through an argument in terms of characteristic t imes .  

Let us consider a horizontal layer (height h) of fluid heated from below 
(Fig. 3.1): 

Tb = Tt + AT > Tt 

(‘b’ for ‘bottom’ and ‘t’ for ‘top’). The fluid is initially at rest in a regime 
of pure conduction. The temperature profile is linear 

To(z) = Tb - Pz with P = A T / h ,  

and the notations imply that the temperature gradient ,8 is positive in the 
case of heating from below. 

71 



72 Instabilities, Chaos and &TbUhCe 

Tt 2 

f 

Fig. 3.1 Left: Geometry of the convection experiment. Right: Profiles of temperature 
T ( z ) ,  density p(z)  and gravitational potential energy U,(z) for a fluid particle at altitude 
t, indicating the tendency to restore a stable density stratification with heavy fluid at 
the bottom. 

The corresponding density distribution is given by the equation of state 
that, in first approximation, reads: 

where Tref is a reference temperature, pref = p(Tref), and a is the thermal 
expansion coefficient (1/273 for an ideal gas), hence po(z) = p(To(z)). 

A first characteristic time, a transport time q,, can be defined from 
the buoyancy (hence subscript ‘b’). Assume a fluid particle experiencing 
a temperature fluctuation B at some height z, ie. T ( z )  = To(z) + 8, from 
(3.1) the differential force to which it is submitted is pga0. The quantity 
ga8 is thus an acceleration, homogeneous to a length divided by the square 
of a time. Natural scalings are h for lengths and AT for temperatures. We 
can thus define the time 3 through: 

Physically, 3 is the typical time a hot (cold) bubble would take to  move 
up (down) over a distance h with a constant acceleration due to thermal 
expansion. 

Dissipative processes, viscous friction (Stokes law, kinematic viscosity 
Y = p / p )  and thermal conduction (Fourier law, thermal diffusivity K = x /C  
where x is the thermal conductivity and C the specific heat) are diffusive 
in essence. The relaxation times associated with these processes can be 
deduced from the form of a diffusion equation, &q o( V2q, in which the 
proportionality coefficient is the diffusivity, homogeneous to  [el2 [ t ] - l ,  hence 
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here: 

2 
Y = h / r V ,  K. = h2/7g. 

(See also Exercise 1.5.3.) 

the stabilizing processes can be estimated by forming the ratio: 
The result of the competition between the destabilizing mechanism and 

called the Rayleigh number. By construction, it is a dimensionless number. 
Convection develops when the buoyancy is more effective (q, short) than 
the dissipative processes (rv and re long) and thus when R is large. This 
strictly dimensional analysis is qualitative and cannot help us to determine 
the value of AT necessary to induce convection. It is the reason why we go 
one step further and develop a more quantitative model of the instability. 
The detailed analysis is the subject of Exercise 3.3.2. 

3.1.2 Simplified model 

In order to study the stability of the base flow, here the fluid at rest 
(VO 0) in a regime of pure conduction with linear temperature profile 
(To(z) - -pz,  p = AT/h),  we must derive the equations governing small 
perturbations around this state, a temperature fluctuation 8 defined by 
T = To(z) + 8 and a velocity fluctuation v. We thus insert the full solution 
into the primitive equations (here: Navier-Stokes + continuity + Fourier in 
a fluid), expand these equations in powers of the perturbations, and finally 
keep only the first order terms (linear stability theory). 

The analysis of the mechanism (Chap. 1, 81.3.1) points out a direct 
coupling of the horizontal modulations of the temperature fluctuation with 
the vertical velocity component. Accordingly, we assume that a model 
involving just 8 and v,, depending only on the horizontal coordinate x and 
time t ,  will capture the physics. 

Equation for the vertical velocity 

po(z)  = p ( T ~ ( z ) )  through (3.1). The differential buoyancy 
The unperturbed temperature field TO ( z )  induces a density distribution 

-g (P  - P O )  = -g[P(To + 8) - P(To)] M Poad 

generated by a temperature fluctuation, where the minus sign comes from 
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the fact that the vertical unit vector is oriented up while the force is directed 
down, then appears as an external force term in the z component of the 
Navier-Stokes equation: 

a,v, = uax2vu, + a g e ,  (3.3) 

the first term on the r.h.s. corresponding to viscous diffusion (only along 
z). The term v . Vv is of higher order since there is no velocity at order 
zero. Also, one can notice that 9 > 0 implies &v, > 0, i.e. an upward 
acceleration as guessed intuitively. 

Heat equation 
The Fourier equation must be written for a fluid particle (cf. p. 7) since, 

as already mentioned, it is its advection in a spatially varying temperature 
field that plays the essential role in the feedback loop, hence: 

ZT d = &T + v * VT = dZ2T.  

Expanding the term v . VT to first order (linearization) we find: 

w%[To(.z) + 81 = v*azTo(z) = -vzP , 
which comes from the temperature field at order zero. This leads to: 

ate = ndx28 + pv, . (3.4) 

Remarks 
Lateral boundary conditions have not yet been specified. Here, we tac- 

itly assume that we deal with a horizontally unbounded layer, or at least 
that the horizontal dimensions are large when compared to the sole char- 
acteristic length in the problem: the height h of the layer. Moreover, the 
horizontal velocity component and the pressure are absent from the prob- 
lem at this stage. In fact they are only indirectly coupled to vz and 8 by the 
need to insure the continuity of the fluid and the closing of flow lines. The 
model is thus highly simplified. This deficiency will impede us to determine 
the critical wave-length that will thus be fixed by dimensional considera- 
tions. Anyway, we shall now illustrate the extension to continuous media 
of the stability analysis introduced at the beginning of the previous chapter 
using the simplified model (3.3, 3.4). 
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3.1.3 Normal mode analysis, general perspective 

The system formed by Eqs. (3.3, 3.4) is typical of linear stability problems 
in continuous media, i.e. a system of linear partial differential equations 
(with constant coefficients in the simplest case). It presents itself as an 
initial value problem for the perturbations that we write formally as: 

atv = L,(a,, . . . ) V ,  (3.5) 

where V represents the set of perturbations. The linear operator L,, here 
solved for at and first order in time, contains spatial partial derivatives 
(az,. . . )  and also depends on a set of control parameters denoted as r. In 
general, the instability can be controlled using a single quantity that can be 
varied from the outside (for convection, it is simply the applied temperature 
gradient p), all other parameters of the system being kept fixed. 

Problem (3.5) is linear. Its solution can therefore be searched by means 
of a superposition: 

V(X, t )  = c AnXn(x, t) 

X(X, t) = exp(s t )k(x) ,  (3.7) 

sX(x) = L,X(x) . (3.8) 

(3.6) 
n 

that is further introduced in the differential problem. Setting: 

and inserting this assumption in (3.5), we get 

The stability study then comes to an eigenvalue problem. The states X(x)  
are called the normal modes of the problem. These modes have spatial 
structures that are the mathematical expression of the physical coherence 
of the processes at work in the system. 

The nature of the spectrum of L,. depends on the applied boundary con- 
ditions (Exercise 3.3.1). When the system is unbounded in some directions 
of space, the spectrum is formed with continuous branches, indexed by as 
many continuous “separation” parameters as unbounded directions. For 
example if the mechanism singles out a specific direction (‘vertical’ in the 
case of convection), and if the system is invariant under translations in two 
complementary directions (‘horizontal’), performing a Fourier transform, 
one looks for normal modes in the form: 

X n ( Z , y ,  e x ~ ( i ( k z ~  + kyy))%(z) 1 (3.9) 
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which defines the wavevector k l  = (kz, ky) as a separation parameter. Un- 
der the substitution VI = (ax, 8,) I-) i k l ,  the operator C, = C,(a,, . . . )  
is transformed into an ordinary differential operator in z,  the only remain- 
ing independent variable, i.e. CT( ikx ,  ik,, d/dz). The wavevector k l  thus 
serves to  label the eigenmode branches in addition to  a discrete index re- 
lated to the confinement direction z. Equation (3.8) has nontrivial solutions 
provided that the growth-rate and the wavevector k l ,  introduced in (3.7) 
and (3.9) fulfill a compatibility condition 

= sn (T ,  k l )  (3.10) 

called the dispersion relation. 
Before developing this approach on the simplified model of convection 

in Section 3.1.4, let us note a few points relative to  confinement effects to 
be re-examined at the beginning of Chapter 4. 

When the system is rotationally invariant in the plane orthogonal to  
the direction in which the mechanism is operating, then s, can only depend 
on k = lkll and not on its orientation. 

When the system is bounded in two space directions, e.g. y and z,  
translationally invariant in the last one x, the continuous component k, is 
replaced by a discrete index. 

When the system is bounded in all three directions, i.e. when its size 
is of the order of the scale over which the instability mechanism is oper- 
ating in all directions, the spectrum loses its last continuous dependence 
on k and becomes fully discrete. The eigenvalues are all distinct, except 
for degeneracies linked to physical symmetries.’ A situation close to  that 
considered in the previous chapter is recovered but with infinite series of 
eigenvalues and normal modes to acknowledge the fact that we deal with 
continuous media with infinitely many degrees of freedom. 

Assumption (3.6) brings us back to the formulation initially introduced 
at the end of Section 2.2, p. 35. Considering the evolution of the solution 
corresponding to a “pure” mode with index n and amplitude A,  (supposed 
to be infinitesimal) we have 

V = A n X n ( x ,  t) = A:) exp(s,t)X,(x) , 
where A:) is the initial condition for the amplitude of mode n. Let us 
recall that the eigenvalue is a priori complex since the spectrum is entirely 

‘In this case the spatial structure of the normal modes is specific to the geometry 
considered and mirrors spatial resonance properties of the mechanism with the shape of 
the set-up. 
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real only when the operator can be made self-adjoint for some well-chosen 
scalar product (see Appendix A). 

Let us consider the case of an unbounded system with a single continu- 
ous separation parameter k and write s n ( k , r )  = U , ( ~ , T )  - i w , ( k , r ) .  Given 
T and k, we can order the modes by decreasing values of their real part 
un(k, r ) ,  which allows us from definition (3.7) to distinguish between stable 
normal modes with u, < 0 (damped) and unstable modes with B,  > 0 
(amplified). The dissipative character of the medium implies that modes 
with the shortest wave-lengths are strongly damped, i.e. un(k) + -00 

when k + 00. 

The system bifurcates against a given mode n with wavevector k when, 
upon variation of the control parameter T ,  this mode goes from stable to 
unstable. The marginal conditions for this modes, superscript ‘(m)’, are 
defined by the condition un(k , r )  = 0, that makes it neutral, which can be 
written as: 

T = T p ( k )  

when solved for T .  Let us suppose that, as in convection, increasing the 
stress corresponds to increasing the control parameter T ,  the marginal 
curve for some mode n usually reaches its minimum for some k = k p )  
called the critical wavevector for that mode. The corresponding value of T ,  

rn - - T n  (m) (kt)) is the corresponding threshold. 
Now, according to the general discussion about stability in the previous 

chapter, linear instability takes place as soon as one normal mode becomes 
unstable. Accordingly, the linear instability threshold rC is the minimum 
over n of all the so-defined r k ) ,  achieved for, say, n = n,. The wavevector 
of that mode called the critical wavevector of the instability, hence charac- 
terized by the set n,, T ,  = ~g), Ic,  = kk). 

Apart from its growth properties, the rest of the time dependence of 
a mode depends on the value of w , ( k , r ) .  When w, = 0, the mode is 
said to be stationary, whereas when w, # 0, one speaks of an oscillatory 
mode. The value of the angular frequency at threshold, wc = wnc (kc ,  rC) ,  
thus allows one to distinguish stationary from oscillatory instabilities. The 
classification of instabilities according to the spatio-temporal structure of 
their critical mode will be reexamined in 53.1.6. 



78 Instabilities, Chaos and lhrbulence 

3.1.4 Back to the model 

Let us come back to the simplified model (3.3, 3.4). We assume that the 
fluid layer is unbounded in the x direction so that, according to  (3.7-3.9), 
solutions are searched in the form {vz, 0) = {V, 0 )  exp(st) exp(ikx). We 
obtain: 

sv = -vk2V + a g o ,  

so = - K k 2 0  + pv, 
which is in fact a homogeneous algebraic system of two equations for two 
unknowns: 

(s + vk2)V - a g o  = 0 ,  

- p v + ( s + K k 2 ) o  = o .  
The system has non-trivial solutions only if its determinant cancels: 

(S + v k 2 ) ( s  + r;k2) - a g p  = s2 + (vk2 + d 2 ) s  + ~ v k ~  - agp = 0 .  (3.11) 

This compatibility condition linking the growth-rate s and the wavevector 
k of the perturbation is here the expression taken by the dispersion relation 
(3.10). We get a single branch (and thus no discrete index as alluded to 
above) since the differential problem in t has been replaced by an algebraic 
system, due to our neglect of the z-dependence of the fluctuations. 

If the real part of s(k) is negative, the mode is damped and the layer 
is stable against a perturbation with wavelength A = 21r/k.  Otherwise the 
fluctuation is amplified and the mode k is unstable. 

Let us try to determine the threshold from (3.11). Here it is a quadratic 
equation in s that can have two real or complex roots.2 The discriminant 

A = ( v k 2  + K L ~ )  + 4 [agp  - ( v k 2 )  ( rck2)] = ( vk2  - &k2)  + 4agP 

can be negative, and the corresponding solutions of (3.11) have non-zero 
imaginary parts, only when p is sufficiently large and negative, ie. accord- 
ing to our conventions, in case of strong heating from above, but in this 
case the modes are always damped since the sum of the roots 

s = -; (vk2 + K k 2 )  (3.12) 

'Let 5-1,' be the two roots, one has 0 = (s - s1)(s - 5 2 )  = s2 - (sl + 5')s + slsZ = 
s2  - Ss + P where S is the sum of the roots and P their product. The discriminant is 
A = S' - 4P and the roots are s1,2 = s* = i(S f 6). 
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is then negative. This analysis thus confirms the intuition according to  
which heating must be from below in order to have an instability. Moreover, 
if there is an instability, it can only be stationary, with two real roots, 
one positive, the other negative since their sum is negative. In order to 
determine the sign of the roots we have just to  consider their product 

P = (uk2)(dc2)  - f f g p .  (3.13) 

The change of sign takes place at  /3 = /3(")(k) with 

m k 4  
ffg 

/3(")(k) = - . (3.14) 

As long as /3 < /3("), the product is positive and the two roots negative, 
mode k is stable. When p > /3("), it becomes negative and one of the roots 
is positive, the mode is unstable, convection sets in. The value /3 = /3(")(k) 
of the applied temperature gradient thus here defines the marginal  stability 
condi t ion that makes mode k neutral. One can observe that the negativity 
of the sum and the positivity of the product, the two stability factors, come 
from the stabilizing dissipative processes and that the instability factor 
involves a term in /3 arising from the advection of the temperature field. 

Let us come back to the marginal stability curve described by (3.14). It 
accounts for an increase of the marginal temperature gradient as k4 for k 
large, which expresses the growing efficiency of the stabilizing mechanisms 
as the scale of the fluctuations decreases (Fig. 3.2, left). If we trust in this 
relation, the longer the wavelength, the lower the threshold. However we 
should not conclude that the fluid layer is unstable at k = 0 for /3 = 0, 
i.e. AT = 0. As a matter of fact, this low-k behavior is an artifact of the 
one-dimensional model which neglects the z-dependence of the fluctuations 
and the associated dissipation processes: viscous damping by the horizontal 
component of the flow that closes the streamlines can no longer be neglected 
as k -+ 0 (Fig. 3.2, right), hence the corrected argument valid for k small. 

Let us keep v, as a reference since it is directly involved in the insta- 
bility mechanism. We can estimate the order of magnitude of v, from the 
continuity equation 

a,v, + d,v, = 0 .  

Boundary conditions on v, are a t  the horizontal plates, a distance h apart, 
and imply a t-dependence such that dzv, - v,/h and therefore ku, - v,/h 
or v, - v,/kh. But the presence of v, imposes us to take the x-component 
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Fig. 3.2 Left: For X = 2a/k << h,  viscous dissipation associated with the horizontal 
shear &u, (black arrows) and thermal diffusion (undulated arrows) combine their effects 
to prevent convection, while the vertical shear &uz (gray arrows) can be neglected. 
Right: When X >> h the horizontal shear (gray arrows) becomes negligible while the 
vertical shear (black arrows) becomes dominant. 

of the Navier-Stokes equation into account. We can simplify it as: 

- k p / p  - vv,/h2 2~ 0 ,  

and introduce the so-evaluated pressure in the equation for v,, which yields: 

atv, = -a,p/p + v (az2 + aZz) v, + a g e .  (3.15) 

A sketchy analysis of the space dependence of the different perturbations 
then shows that, once expressed in terms of v, using the continuity equa- 
tion, & p / p  goes as vv,/k2h4, so that the pressure term dominates those 
involving v, on the r.h.s. of (3.15). As a matter of fact, it diverges as 
k-2  when k + 0, while the second term tends to zero as k2 and the third 
one does not vary with k. We thus arrive at an effective equation for v, 
replacing (3.3): 

atv, = - ~ ( i / h ~ k ~ ) v ,  + a g e ,  

only valid in the limit k <( l / h  (the minus sign expresses the fact that it is 
indeed a damping term). In this limit, it suffices to replace -k2 by - l /h2 
in the heat equation (3.4) to account for the dominant dissipative process. 
A stability analysis parallel to that leading to (3.14) yields: 

6v/(h6k2) - agp(m) = 0 ,  

so that the marginal stability condition for small wavevectors reads: 

(3.16) 

thus showing a divergence as l / k 2  for k + 0 that can be demonstrated 
through a detailed calculation (Exercise 3.3.2, see Fig. 3.16, p. 109). 
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Fig. 3.3 Marginal stability curve from the semi-quantitative argument. 

Inbetween the divergence as k4 for k >> l / h  and as l / k 2  for k << l / h ,  
we must find a minimum corresponding to some optimum between the 
stabilizing effects of different origins and the destabilizing buoyancy force. 
This optimum is achieved for some intermediate value of the wavevector 
that, for dimensional reasons, can only be related to the thickness of the 
layer (Fig. 3.3). Assuming that the diameter of the convection cells is, at 
threshold, of the order of h, i.e. 

. 2x x - - = -  
A, h ' c -  

and inserting this value of the critical wavevector in the expression of p,,, we 
get the instabili ty threshold beyond which the convection regime develops, 
in the form of regular structures with typical wavelength A, = 27r/kc F 2h. 
The estimation of  the threshold from (3.14) gives 

4 R c - x  , 
where we have used the expression (3.2) of the Rayleigh number. 

The semi-quantitative argument developed so far stresses on the physics 
of the processes at stake. The threshold value turns out to be grossly 
underestimated because a large part of the dissipating processes is badly 
evaluated, but it remains reasonable as an order of magnitude. We should 
however notice that the model, how simplified it could be, reproduces the 
two main characteristics of the instability: its stationary character and the 
general shape of the marginal stability curve with a correct asymptotic 
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behavior for k << k, and k >> k,. Similar simplified analyses will be devel- 
oped as exercises to study the effects of molecular diffusion on convection 
in binary mixtures (Exercise 3.3.3), the stability of an angular momentum 
stratification in a cylindrical shear experiment (Taylor-Couette instability, 
Exercise 3.3.5), or the emergence of spatial structures in reaction-diffusion 
systems (Turing instability, Exercise 3.3.4). 

3.1.5 

The study of linear dynamics of the fluctuations in the neighborhood of 
the threshold is best developed by first turning equations (3.3, 3.4) into 
dimensionless form. In order to do this, we have to choose length, time, 
and temperature scales. The thickness h of the layer is the obvious natural 
length scale. The thermal diffusion time over the distance h, 7 0  = h2/n ,  
being retained as the time scale (the alternate possibility would be the 
viscous time T,, = h2/u) ,  the velocity scale then reads h/re = n/h.  Since it 
is preferable to keep AT as the control parameter, the composite quantity3 
rcu/crgh3 is taken as the temperature scale. Performing the changes x hx, 
t c-) rot ,... in (3.3, 3.4) we obtain 

Vicinity of the threshold: linear stage 

A second dimensionless number has been introduced: 

(3.17) 

(3.18) 

(3.19) 

It is called the Prandtl number and characterizes the physical properties 
of the fluid, specifying which of the viscous diffusion (T,, = h2/u)  or the 
thermal diffusion (To defined above) is the dominant relaxation process. 

In gases P is of the order of unity and varies little with the nature of 
the gas since momentum (7,) is transported by the molecules themselves at  
the same rate as energy (To). In condensed fluids this number can largely 
vary. For example, in liquid metals (e.g. mercury) it is very small, typically 
< lo-’, since energy is efficiently transported by conduction electrons while 
atoms must be moved to smooth out velocity fluctuations, hence To << rU. 
In isolating fluids, thermal diffusion mainly involves molecular vibrations 

3From expression (3.2) for the Rayleigh number, it is easily checked that it is homo- 
geneous to a temperature. 



3. Life and Death of Dissipative Structures 83 

that keep the same order of magnitude whatever the fluid, while the viscos- 
ity can vary by large amounts. P is of the order of 2-10 in water or alcohol, 
102-104 in silicon oils depending on the polymerization degree (length of 
molecules), and essentially infinite for the Earth mantle which is extraor- 
dinarily viscous and in which convection develops on geological times only. 

In the limit P >> 1, the flow adjusts itself to the temperature field 
instantaneously, which can be understood from the consideration of equa- 
tion (3.17) written as 

P-latv, N o = axxvz + 8 ,  

showing that IJ,  is merely obtained by integrating 8 over space. The dynam- 
ics is therefore simplified since we have just one relevant scalar field. On 
the contrary, when P is small, the inertia of the fluid cannot be neglected 
and a full hydrodynamic problem is recovered, with the vector nature of 
the velocity field and the incompressibility condition playing a crucial role. 

Let us stay in the limit P >> 1 and consider the critical mode ( v z ,  8) N 

sin(k,z) with k, N 7r ( r / h  if the physical dimension is restored). Within 
the framework of the simplified model we get: 

and upon insertion in (3.18): 

ate = 4 8  + RV, = (-2 + ~ 1 2 )  8 .  

Dividing both members of this equation by n2 and defining: 

R - R, 
and T = -, 1 

To =I - 
IT2 RC 

with here R, = 7r4 (but this value is only anecdotal) we simply get: 

(3.20) 

Toate = r 8.  (3.21) 

The coefficient TO therefore presents itself as a characteristic evolution time 
(T~ /T’  in physical units) for convection, while T measures the relative dis- 
tance to the threshold and is of course our control parameter. 

Defining A as the amplitude of the most unstable convection mode and 
setting: 

8 0; A ( t )  sin(k,z) , (3.22) 
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we get from (3.21) the linear evolution equation for A 

A = u A ,  (3.23) 

where u = T / T ~  is its effective growth-rate. The corresponding time T = 
1/u = T O / T  therefore diverges as T-' close to the threshold (r << l), a 
phenomenon called the critical slowing-down. Amplitude A plays the role 
of an effective degree of freedom for the fluid layer as a whole. 

Result (3.23) is valid much more generally than suggested by the deriva- 
tion above on the special case P -+ 00, and indeed holds in the vicinity of 
any linear instability. This is a consequence of the fact that ,  a priori, u 
is a non-singular function of the parameters, and thus can be expanded 
in Taylor series. Since the condition that defines the threshold r, = 0 is 
precisely (T = 0, generically the expansion begins with its first order term 
u = r d,.ulc, hence the observed behavior of u as a function of r .  

The argument just produced can be repeated for a value of k different 
from the critical value Ic,  provided that we replace the threshold R, by the 
corresponding marginal value R(m)(k ) .  As long as k stays sufficiently close 
to k,, the natural characteristic evolution time has no reason to be very 
different from TO,  so that we can write a t  lowest order 

R - R(") (k) 
R(") (k) ' 

rou(k) = (3.24) 

On the other hand, any curve in the vicinity of an extremum is generically 
equivalent to  a parabola. The marginal curve close to its minimum at 
(k,, R,) is not an exception so that, for k = k, + 6k and 6k/k, < 1, we can 
write 

= 6," 6k2, R(")(k) - R, 
RC 

(3.25) 

where Ei presents itself as the square of a characteristic length, the co- 
herence length, which accounts for the curvature of the marginal stability 
curve at  threshold. 

3.1.6 Classification of unstable modes 

One can arrange (3.24) and (3.25) together to write down the real part of 
the dispersion relation in the condensed form: 

(3.26) 2 
ToU(k)  21 T - (z (k - k c )  . 
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When the minimum of the marginal stability curve is reached for k, # 0, 
case considered up to now of convection in a simple fluid, one says that the 
instability is cellular. Otherwise, it may happen that the most unstable 
mode is for k, = 0, the instability is then termed homogeneous. This 
situation, which occurs for example when convection takes place between 
horizontal plates that are bad thermal conductors, is often difficult to treat 
since the system is then sensitive to lateral boundary conditions and/or 
any kind of slowly varying perturbations, while when k,  # 0, each cell with 
width X,/2 plays its own game, without worrying about lateral boundaries 
as soon as they are sufficiently far apart, say three or four wavelengths. 

From a temporal viewpoint, Rayleigh-BCnard convection in a simple 
fluid is a stationary instability, the imaginary part w ( k )  of the dispersion 
relation is identically zero. In other cases, the instability may be oscillatory 
with w, # 0, where w, is the angular frequency at  threshold. When the 
instability sets in with k,  # 0 and w, # 0, the critical mode is in fact a wave 
propagating a t  some phase velocity c since, factoring out k,  one can write 
exp (i(k,x - w,t) exp (ik,(z - c t ) ) ,  as systematically done in Chapter 6. 

The real part n of the eigenvalue of the marginal mode is well approxi- 
mated by (3.26) in the neighborhood of the threshold ( r , ,  k,). In the same 
way, its imaginary part w ( k )  can be expanded as: 

W ( k )  = W ,  &Wl, f 6k &Wlc -k i 6 k 2  akkwlc , (3.27) 

where derivatives with respect to r or k are computed at threshold. 
Considering this expansion in more detail, let us notice first that the 

coefficient of 6k (third term on the r.h.s.) corresponds to the group velocity 
of the waves. This can be seen by looking at a wave packet formed by 
superposition of elementary waves written as V(x, t )  = 1 A ( k )  exp(i(kx - 
wt)  dk, where A(k)  is the amplitude of mode k presenting a peak around 
some wavevector k = ko. Setting wo = w(ko) ,  we get: 

v ( X ,  t )  = exp(i(kox - W o t )  A(k0 -k 6 k )  eXp[ihk(X - & W l k o t )  + 0 ( 6 k 2 ) ) ]  d6k. 1 
In the long time limit (t >> l / w o ) ,  V is negligible everywhere except where 
the argument of the exponential is zero (‘stationary phase’ approximation) 
since elsewhere the rapid oscillations of the complex exponential “kill” the 
signal. This happens when x / t  = dkWlko which shows that this quantity is 
precisely the velocity of the wavepacket’s peak. In the same way, the coef- 
ficient of 6k2 in (3.27) accounts for the dispersion of wavepackets, i.e. their 
smearing out due to changes in phase velocity. In a non-dispersive medium, 
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the phase velocity is independent of the wavevector, i.e. & ( w / k )  = 0 ,  so 
that cg G &w = w / k  z c and of course 8kkw 

The Taylor-Couette instability of a fluid sheared between two coaxial 
cylinders rotating at different angular speeds (Exercise 3.3.5) is also cel- 
lular and stationary. In chemistry, the Belousov-Zhabotinsky reaction is 
an example of oscillatory homogeneous instability. Finally, in some cir- 
cumstances, convection in binary fluid mixture develops in the form of 
dissipative waves (Exercise 3.3.3). 

0. 

3.2 Disintegration of Dissipative Structures 

The study of the transition to turbulence of structures generated by an 
instability mechanism consists of several steps. The first one is the deter- 
mination of equilibria achieved beyond threshold. The next relates to the 
destabilization of such equilibria, and so on. The game is then repeated 
up to a point where the regime obtained is completely irregular. In this 
section we begin with a simple modeling of nonlinear effects in convection, 
53.2.1. A brief account of experimental observations about the transition 
is then given in 53.2.2, where we point out the role of geometrical effects. 
This leads to a fundamental distinction between confined systems for which 
the concept of temporal chaos is relevant, 53.2.3, and extended systems for 
which the disorganization in space is as important as the irregularity in 
time, i.e. spatio-temporal chaos, $3.2.4. We conclude the chapter by a brief 
presentation of convection in the post-transitional regime where the con- 
cept of developed turbulence begins to make sense, 53.2.5. Here we mostly 
stay at a phenomenological level, deferring the introduction of theoretical 
tools to subsequent chapters. 

3.2.1 

Relation (3.22) defines a variable A measuring the intensity of the pertur- 
bation to the base state. At steady state, we thus expect A = 0 below 
threshold and A # 0 above. In the theory of thermodynamic phase transi- 
t ions A would be called an order parameter [Stanley (1988)l. However, Eq. 
(3.23) is valid only as long as A stays infinitesimal and must be completed 
to account for the range r > 0. In order to get Eq. (1.19), p. 13, we just 
postulated heuristically that convection was a self-limiting process and we 

Simplified model of nonlinear convection 
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replaced ff in (3.23) by an effective value,4 

ueff = T ~ - ' ( T  - gA2) with g > 0 .  

Beyond threshold, for T > 0 ( R  > Rc) ,  several processes indeed come 
and limit the growth of A. First the dissipation increases, and second 
the destabilizing force decreases since part of the heat is transported by 
the flow, so that the bulk effective temperature gradient that governs the 
conductive part of the heat flux decreases below its nominal value ,B. 

It is of course possible to derive an accurate model of nonlinear evolution 
from the primitive equations in a systematic way. Here we rather continue 
to develop a heuristic formulation, guided by the result to be obtained. We 
no longer assume that P >> 1 but restrict ourselves to the consideration of 
the most unstable linear mode. On more general grounds than for (3.22), we 
then take {wz, B }  = {V( t ) ,  @(t)}  sin(lc,z), where V et 0 are two amplitudes 
functions of time. Injecting this assumption in (3.17, 3.18) we obtain: 

v = P ( 0  - 2 V ) ,  
O=RV-7r20.  

(3.28) 

(3.29) 

Let us now try to complete (3.28, 3.29) with nonlinear terms arising from 
the advection of the fluctuations v V v  and vV8. In the spirit of a first 
harmonic approximation now developed in space and not in time as for 
the van der Pol oscillator, p. 49, we guess that the terms that contribute 
are those resonating with the postulated dependence in sin(lc,z). From 
the continuity equation drvx + dzwz = 0, assuming v, c( sin(k,z) one gets 
v, K cos(kcz), so that, in the equation for wz, the advection term v+d,v, + 
w,dzv, varies as sin2(kcz) = f(1 - cos(2kCz)), i.e. produces nothing in 
resonance with sin(lc,z). Averaging over the thickness of the layer and over 
a wavelength, we thus expect a negligible contribution from these terms to 
(3.28) that remains unchanged at  this order. 

The problem is different for (3.29). As a matter of fact, a parallel argu- 
ment would also imply no complementary term, but this would not reflect 
the fact that, as indicated above, part of the heat is transported by the 
convection motion. The corresponding flux is easily identified to  the prod- 
uct w,8. As discussed in Sec. 3.1.2, below threshold, the destabilizing part 
of the convection mechanism relies on the advection, due to differential 

4Notation g introduced to measure the intensity of nonlinear couplings is traditional. 
In the context of convection it should not be mistaken with the gravitational acceleration, 
but the risk is limited. 
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buoyancy, of temperature fluctuations in a purely conductive temperature 
gradient. Above threshold, since part of the heat is transported by con- 
vection, differential buoyancy has to  be appreciated with respect to a con- 
ductive temperature gradient Peff which is decreased by the contribution of 
convection from its nominal value P evaluated from the applied tempera- 
ture. That contribution, w,B c( sin2(k,x), produces (i) a second harmonic 
component c( cos(2kCx) that averages to zero over a fluctuation wavelength 
but also (ii) a term at k = 0 that precisely corresponds to the correction 
to the averaged temperature profile. 

Let us consider this correction as a variable in itself, call it P and look 
for its governing equation. A simple calculation then yields: 

\ii = V O  - bP, (3.30) 

where the first term on the right hand side is the source term issued from 
space-independent part of w,B and the second term accounts for its diffusive 
relaxation according to the Fourier law, at  a decay rate b that could be 
computed explicitly. 

On the other hand, the argument sketched above is implemented by 
subtracting the convective contribution P from the nominal Rayleigh num- 
ber R to  form an effective Rayleigh number  re^ replacing it in (3.29). This 
yields: 

0 = (R - P)V - 7r20. (3.31) 

Equations (3.28, 3.31, 3.30) generalize the linear model derived previ- 
ously. They form the celebrated Lorenz model that played such an impor- 
tant role in the development of ideas about chaos since 1963, when Lorenz 
first derived it5 by truncating a Galerkin expansion of the hydrodynamic 
equations on a trigonometric function basis, and further pointed out its 
“non-periodic” properties (see Appendix B, sB.4.2, p. 373). 

Let us first show how this model allows us to recover the effective Landau 
equation (1.19) introduced in Chapter 1, extending (3.23) to the nonlinear 
regime. As noticed earlier, close to the threshold, the dynamics of the sys- 
tem is very slow. Its evolution rate is proportional to  r = (R-  R,)/R, << 1. 
But equation (3.30) shows that the natural relaxation time of correction 9 
remains U(1). We can thus assume that P rapidly relaxes towards a vaIue 
V O / b ,  itself slowly varying at  a rate O(r ) .  Let us insert this value in (3.31) 

5E.N. Lorenz, “Deterministic non-periodic flow,” J .  Atm. Sc. 20 (1963) 130-141. 
The original expression of the system is recovered by appropriate rescalings of time, 
variables V, 0, and *, and parameter R. 
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and admit that V = 0/7r2 for all times, which, from (3.28), is true only in 
the limit P + 00. We get: 

6 = [(R/7r2) - 7r2]0 - O3 I 7r4 b ,  

that we rewrite as: 

(3.32) 

This equation is therefore exactly (1.19), p. 13, i.e.: 

T O A  = T A  - gA3 ,  (3.33) 

with 0, the amplitude of the temperature modulation playing the role of the 
effective variable A, TO = l/n2, r = ( R  - R,)/R,, R, = 7r4, and g = l/b7r6. 

Obtaining the effective model (3.33) is an example of reduction by adia- 
batic e l iminat ion of enslaved variables. Here variables V and 9 are enslaved 
to  0: At every instant their values are fixed by that of 0 A according 
to  relations V = 0/7r2 and 9 = 02 /b7r2 .  This step plays an essential role 
in the study of nonlinear dissipative systems. 

Equation (3.33) accounts for the bifurcation from the conduction branch 
corresponding to the trivial solution A 0 towards the convection branch 
associated to  the pair of (here time-independent) nontrivial solutions. 
These bifurcated solutions,  A(*) = fa, are given by the condition 
A = 0, and therefore correspond to fixed po in t s  of (3.33). Quantity g being 
positive, they appear for T > 0 so that the bifurcation is supercritical. All 
this has already been presented in the introductory chapter, see Figure 1.4 
p. 14, and will be extended to general systems involving a single stationary 
mode in Chapter 4, especially in Exercise 4.6.3, p. 169. 

We have previously stated without justification that the bifurcated so- 
lutions corresponding to  convection beyond threshold are stable. Let us 
show how this arises from (3.33) using tools introduced in Chapter 2. Set- 
ting A = +a + A‘, we easily get the equation for perturbation A’ by 
substitution. After simplification we get 

70A’ = -2rA‘,  (3.34) 

so that A’ decays for T > 0. In fact this is valid only close enough to the 
threshold, before new instabilities have any chance to set in. 

The previous argument indeed only holds as long as R M R,. When 
R >> R,, the relaxation time of 0 and V towards their equilibrium values, 
derived from (3.34), infinite a t  threshold, shortens as T increases and rapidly 



90 Instabilities, Chaos and Turbulence 

becomes of the order of magnitude of !P’s relaxation time. Adiabatic elimi- 
nation of the latter is then no longer legitimate: !P is less and less enslaved 
to 0 and V but on the contrary gains a status of genuine degree of free- 
dom. Secondary instabilities and the transition to chaos could be studied 
from the Lorenz system but, as far as physical observations are concerned, 
results turn out to be unrealistic, due to  the simplifications made. Having 
recognized that this model remains an excellent test-bed for chaos ideas 
(see Appendix B, gB.4.2, for a first numerical approach), we now consider 
nonlinear convection from a concrete experimental point of view. 

3.2.2 

The actual situation is indeed less transparent than that described by means 
of the simplified Lorenz model. But one fact remains: the effective dimen- 
sion of the problem increases with R. Unfortunately, the physical mech- 
anisms that destabilize the cellular structure to produce of the secondary 
modes are much less intuitive than the primary mechanism. 

The method is the same in principle but, a t  steady state, the base 
flow beyond threshold is now made of finite-amplitude time-independent 
convection cells. The study is considerably more complicated than when 
we had to deal with the uniform conducting state since the new base flow is 
periodic along one horizontal direction. Accordingly, the operator obtained 
through linearization now explicitly depends on space, which forbids the 
direct recourse to Fourier transforms to solve the problem. This will be 
reexamined theoretically later. For the moment, let us describe the cascade 
towards turbulence from a phenomenological point of view. 

The convection threshold was independent of the Prandtl number P ,  
whose value just played some role in the nature of the primary mode, ther- 
mal when P >> 1, hydrodynamic when P << 1. This simple fact has 
profound consequences on the shape of the secondary modes and the sub- 
sequent cascade of bifurcations towards turbulence. A compilation of early 
results adapted from Krishnamurti‘ is displayed in 3.4. 

Upon increasing R, the fluid layer first experiences a transition from 
pure conduction (fluid uniformly at rest) to two-dimensional time indepen- 
dent convection (2D: fluctuations depend locally on two coordinates, say 
z and 2). At sufficiently large Prandtl number a three-dimensional regime 
sets in (3D: fluctuations now depend on z, y ,  z ) ,  at first time-independent, 

Transition to  turbulence of convection cells 

OR. Krishnamurti, “Some further studies on the transition to turbulent convection,” 
J .  Fluid Mech. 60 (1973) 285. 
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Fig. 3.4 Transition toward turbulence in convection, after Krishnamurti, Note 6. The 
Prandtl number is varied by changing the fluid. The transition lines are intentionally 
made thick to indicate orders of magnitude rather that precise thresholds. 

next periodic, and eventually turbulent. At small P the ‘time-independent 
two-dimensional’ domain is very narrow and an irregular time dependence 
rapidly sets in, here called ‘turbulent convection’. 

3.2.2.1 Large Prandtl number fluids 

When P >> 1 (e.g., with highly viscous oils), the temperature field drives 
everything, inducing the vertical velocity component directly and the hor- 
izontal component indirectly through the continuity condition. 

Secondary instabilities specific to this case remain localized within ther- 
mal boundary layers close to the horizontal plates. These boundary layers 
get thinner and thinner as the Rayleigh number is increased and, a t  some 
point, they become unstable against the plain Rayleigh mechanism. A sta- 
tionary secondary instability called bimodal sets in, with rolls oriented at  
right angles with the primary rolls and located in the thermal boundary 
layers. Since the fluctuations are now modulated in the three directions 
of space, the regime is labelled ‘time-independent 3D’ in Figure 3.5. Time 
dependence next manifests itself as a periodic break-down and reformation 
of thermal boundary layers first analyzed by Howard. Strict periodicity is 
then lost and an irregular dynamics sets in. 
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3.2.2.2 

At smaller P,  the situation is more confused. Busse and his collabora- 
tors have identified a large number of possible secondary modes leading 
to a complicated picture in the (R, P, lc) parameter space called the Busse 
balloon7 owing to the global shape of the region where straight rolls are 
stable. When P - 1 (water, gases) or smaller (liquid metals), the veloc- 
ity field becomes dominant through specific contributions of the advection 
term v . Vv. The unstable secondary modes appear close to  the convection 
threshold and occupy the whole thickness of the layer. Cells enter a kind 
of free-wheel regime where friction on the plates is dealt with inside thin 
viscous boundary layers. Time dependence enters very early in the form of 
‘Busse oscillations’ that are sorts of waves propagating along the convection 
rolls and due to an inertial call-back of roll axis undulations. Most often it 
turns out to be difficult to identify a range of Rayleigh numbers over which 
the periodic behavior is strictly regular, and the flow is often considered 
turbulent right at  the onset of oscillations. 

Intermediate and low Prandtl number fluids 

3.2.2.3 

At least for P >> 1 there seems to be a small number of well defined steps on 
the way between the conduction regime and turbulence. This apparently 
supports the viewpoint advanced by Ruelle et Takens in 1971’ according 
to whom the stochastic behavior, a fundamental property of turbulence, 
generically appears at  the end of a short cascade of three or four bifurca- 
tions. Previously, Landaug explained his understanding of turbulence as the 
result of an indefinite superposition of modes, each with its own time-space 
scale, i. e. quasi-periodicity with an infinite number of incommensurate 
frequencies. These two interpretations are sketched in Figure 3.5. 

In the context of experiments reported above (Fig. 3.4), neither the 
Ruelle-Takens interpretation nor a fortiori that of Landau, are satisfac- 
tory. All observations were made in containers that were very wide (in 
order to check theories developed for a laterally unbounded system). The 

Transition towards turbulence, conceptual problems 

7For an early review, see, e.g. F . H .  Busse, “Transition to  turbulence in thermal 
convection” in Convective transport and instability phenomena, J. Zierep & H .  Oertel 
Jr., eds. (Braun, Karlsruhe, 1982). 

Ruelle and F .  Takens, “On the nature of turbulence,” Commun. Math. Phys. 
20 (1971) 167-192. Addendum 23 (1971) 343-344. 

gL.D. Landau, “On the problem of turbulence,” Akad. Nauk. Doklady 44 (1944) 339, 
translation in Collected Papers 0 f L . D .  Landau, D. ter Haar ed. (Pergamon Press, 1965), 
pp. 387-391. 
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‘3 pe‘riodic 2-periodic ..... n-periodic 

.* + periodic 2-periodic chaotic 

Fig. 3.5 The “nature of turbulence” according to Landau (top) and Ruelle & Takens 
(bottom). Ellipses attached one to the next in a string feature quasi-periodic behavior as 
results from the superposition of periodic motions with incommensurate frequencies. The 
chaotic end of the Ruelle-Takens cascade is represented by a miniature of the attractor 
of the Curry & Yorke model that illustrates the disintegration of the ellipse born at the 
previous step (see Chapter 4, Exercise 4.6.13). 

so-obtained convection patterns were rarely regularly organized but on the 
contrary presented lots of defects and inhomogeneities, so that the transi- 
tion thresholds were not as sharply defined as a bifurcation point. Moreover 
a slow residual time dependence was often observed. 

Having recognized that these interpretation problems were mostly due 
to spatial disorder, which in turn resulted from the presence of a large num- 
ber of cells, and that lateral boundaries at large distances were ineffective 
in maintaining long range order in the patterns, experimentalists have tried 
to better control the situation by turning to  systems with a small number 
of cells, hence lateral dimensions of containers of basically the same order 
of magnitude as their heights. 

Conf inemen t  effects can be appreciated through aspect ratios defined as 

r = e /h ,  (3.35) 

where e represents the typical lateral extension of the system, see Figure 3.6. 
We shall reexamine their physical role later in Chapter 4, $4.1. 

Early experiments reported above were performed in the limit r >> 1 
that characterize extended sy s t ems  and for which the concept of spatio- 
temporal chaos to be introduced in Chapter 5 seems more appropriate. 
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h 1h 2 
Fig. 3.6 Aspect ratio for closed systems, either confined (left) or extended (right). 

By contrast, strongly confined systems, characterized by I' - 1, can be ex- 
pected to better fit the framework proposed by Ruelle and Takens and their 
concept of temporal chaos. As a matter of fact, guaranteeing strong spatial 
coherence among a small number of convection cells, confinement effects 
should be instrumental in restricting the dynamics to couplings within a 
small set of effective variables. 

3.2.3 

The literature about the transition from regular to chaotic time behavior 
is sufficiently rich that we can limit ourselves to the presentation of few 
experimental results obtained at the beginning of the eighties as typical ex- 
amples of the main scenarios. This sketchy description is given mainly as an 
illustration of the kind of phenomena to be understood theoretically rather 
than as a review that would rather be premature at this stage. Consult the 
general bibliography for more detailed information, especially [Hao (1990); 
CvitanoviC (1989)l. 

Transition toward chaos in confined systems 

3.2.3.1 Subharmonic cascade 

The first experiment to be reported here has been performed by Libchaber 
et Maurer." Liquid helium with P - 1 is placed in a parallelepipedic con- 
tainer with aspect ratios r2 = 2.4, rY = 1.2. At the beginning, stationary 
convection sets in beyond some threshold R,. At R N 30R, the system ex- 
periences a bifurcation toward an oscillatory regime. Then, at R = 39.5RC, 
a second mode with an incommensurate period sets in. This two-periodic 

''A. Libchaber and J .  Maurer, "Une expbrience de Rayleigh-BBnard en gbombtrie 
rbduite; multiplication, accrochage et dbmultiplication de frkquences," J .  Physique Col- 
loques 4143 (1980) 51. 
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Fig. 3.7 
first steps of a subharmonic cascade after Libchaber and Maurer, Note 10. 

Time series of the temperature signal measured at a given point during the 

regime persists up to R N 40.5Rc when, while shifting, the second period 
gets locked to twice the first one, the system is then periodic with a pe- 
riod 2 T .  The scenario under study now begins: a second period doubling 
(period 4T) at R N 42.7Rc (Figure 3.7). After several supplementary pe- 
riod doublings (period 8T, 16T, .  . . the  system enters a chaotic regime for 
R > 43Rc. A complementary study of Fourier spectra would show first 
fine lines at one frequency and its harmonics, then a second family of lines 
and many combinations (two-periodic regime), then, after the locking, a 
return to a simpler spectrum with one fundamental line at  w = 27r/T and 
its harmonics. The period doubling cascade manifests itself by the growth 
of subharmonics at w/2, next w/4, etc. As long as the system is periodic, 
no matter how long the period, the spectral lines remain narrow but when 
it becomes chaotic, they get measurably enlarged at  their foot. 

3.2.3.2 

This transition, closely reminiscent of the scenario originally proposed by 
Ruelle and Takens, has been observed roughly at the same epoch by Dubois 
and Berg611 again in parallelepipedic geometry with similar aspect ratios, 

= 2, ry = 1.2, but this time with silicon oil ( P  21 130). By contrast 
with the previous experiment, visualization of the structure was possible 
by means of differential interferometry, Fig. 3.8 (top), which made easier 
the understanding of motions at the origin of the observed fluctuations 
and the choice of points where to  measure the velocity by LASER Doppler 
anemometry. 

Here is the (simplified) sequence observed: 1)  conduction regime up 
to  Rc. 2) Time-independent convection from R, to R N 215Rc. 3) Bifurca- 
tion towards a periodic regime with period TI. 4)  Two-periodic dynamics 
with a second period T2 from R N 250R, up. Geographically well separated 

Chaos on  a two-periodic background 

l lM.  Dubois and P. BergB, “InstabilitBs de couche limite dans un fluide en convection: 
Bvolution vers la turbulence,” J. Physique 42 (1981) 167. 
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I, w t 

Fig. 3.8 Top: Isotherms in silicon oil can be visualized by differential interferometry; 
the fringes originate from the variations of the refraction index induced by the local 
temperature gradients (picture kindly provided by M. Dubois). Bottom: Fourier spectra 
(left) and time series (right) of a velocity component at a given point in the experimental 
cell. In the two-periodic regime, the spectrum is essentially composed of two principal 
lines, each of which can be attributed to a definite fluid perturbation well localized in 
space. The chaotic regime is characterized by spectral lines with enlarged foot and a 
large amount of power at low frequency that corresponds to the slow fluctuations in the 
corresponding time series. After Dubois and BergB, Note 11. 

the two oscillation modes are weakly coupled, which explains the relative 
robustness of the two-periodic regime and a characteristic alternation of 
locking/unlockings when the ratio of the periods, that slightly shifts with 
R, passes from incommensurate to commensurate values and vice versa. 
5 )  For R > 305R,, temporal chaos enters as an irregular slow modulation 
of a locked periodic behavior that gives a series of widened spectral lines 
and low frequency power in the Fourier spectrum, Fig. 3.8 (bottom). 
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..........,.,,........., , , . . . . ,. , . . . .  
turbulent laminar intermission 

burst 

Fig. 3.9 The intermittency scenario: A periodic regime (“laminar” intermissions) is ir- 
regularly interrupted by chaotic bursts that become more frequent as R increases beyond 
the intermittency threshold. Upper trace: regular signal observed below threshold. Time 
is running from left to right. After Berg6 et al., Note 12. 

3.2.3.3 In te rmi t tency  

The third scenario to be described here has also been observed by Berg6 and 
Dubois” with the same fluid and the same experimental set-up but with a 
slightly different initial convection structure. Accordingly, a different tran- 
sition scenario developed after a single step involving a secondary instability 
mechanism with a hot droplet transported by the general convection and 
playing the role of a pacemaker. Convection was time-independent up to  
R = 25QR,, then periodic with period T .  Not far above a subharmonic bi- 
furcation (hence period 2T),  for R = 29QR,, the system experienced a tran- 
sition to chaos with irregularly distributed “turbulent” bursts interrupting 
the previously observed regular periodic behavior forming “laminar” inter- 
missions. When the Rayleigh number was increased, the frequency of the 
bursts was seen to increase. Time series of the velocity signal before and 
after the transition are displayed in Fig. 3.9, upper trace and lower trace, 
respectively. 

3.2.4 

By contrast with what has just been described, before 1975 the transition to 
turbulence was studied in extended systems and focused more on the occur- 
rence of a developed turbulent regime where most of the spatial structure 
was lost and the time dependence strongly irregular. They did not recog- 
nize the often observed low frequency noise as an interesting phenomenon 
related to the transition process. The study of the emergence of chaos in 
confined systems has also led to reconsidering the situation for extended 

Dynamics of “textures” in extended sys tems 

lZP. Be@, M. Dubois, P. M., Y. Pomeau, “Intermittency in Rayleigh-BBnard convec- 
tion,” J. Physique Lettres 40 (1979) L505. 
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Fig. 3.10 
Picture kindly provided by V. Croquette, Note 13. 

Texture observed in convection at large Prandtl number as seen from above. 

systems and introducing the notion of spatio-temporal chaos as an element 
of interpretation of the transition process. In practice, the instability mech- 
anisms preserve coherence at  the local scale (few convection cells) but are 
unable to  maintain it on a global scale (the set-up). This can be understood 
as the result of the possible interference of a large number of neighboring 
modes easily excited immediately beyond threshold ($3.1.5 and Chapter. 5). 
In the absence of any induction process forcing the growth of regularly ori- 
ented “clean” convection structures, disordered patterns with many defects 
of all sorts, called textures, are generally observed. Here again we have to 
distinguish between fluids according to  their Prandtl number. 

3.2.4.1 Textures in fluids with high Prandtl number 

When P is large, quasi-stationary convection structures are obtained, which 
relates to  the fact that the dominant field is the temperature, a scalar, and 
that the fluid layer mostly behaves as a gradient system (see Chapter 2, 
$2.1.3, p. 33). It is then possible to interpret the principal features of the 
textures observed in terms of a single amplitude field. An example is given 
in Fig. 3.10, where one can easily identify grains of convection rolls with 
nearly uniform orientations, grain boundaries along which two grains with 
different orientations meet, dislocations13 where a pair of rolls suddenly 
ends. It should also be noted that rolls arrive mostly perpendicular to  
the lateral boundaries and that the frustration implied by this topological 
constraint is partly resolved by the presence of a large scale curvature of 
the rolls. The evolution of such textures is very slow, when compared to  the 

l3A.  Pocheau & V. Croquette, “Dislocation motion: a wavenumber selection mecha- 
nism in Rayleigh-BBnard convection,” J .  Physique 45 (1984) 35-48. 
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Fig. 3.11 Weak turbulence observed in a cylindrical cell with r = D / h  = 12 in liquid 
helium at low Prandtl number. Typical background noise is the gray line in each fig- 
ure. For R = 3.35Rc low frequency noise develops first. At R = 3.70Rc noisy Busse 
oscillations at finite frequency around 0.5 Hs have settled in the system. As seen for 
R = 4.50Rc and beyond, the level of noise continues to increase gently. After Libchaber 
and Maurer. Note 14. 

velocity of the convecting fluid. The transition from 2D to  3D convection 
is mediated by the defects and the emergence of (weak) turbulence can be 
understood as a kind of “melting” of the global pattern, with progressive 
loss of local order. 

3.2.4.2 Transition at small Prandtl number and large aspect ratios 

All experimental observations show that turbulence occurs early when P 
is small. This feature has to be attributed to  the fact that the viscosity 
is low and that Reynolds numbers constructed from the velocity induced 
by convection and the size of the cells rapidly become large. Like for low- 
dimensional systems, the complexity of the dynamics is considerably en- 
riched by inertial effects that favor oscillatory behavior (here mainly the 
Busse oscillations). This explains that mode interactions, even close to the 
convection threshold, generate a much more ‘Lactive” behavior than what is 
observed at  higher Prandtl numbers. Another source of complexity comes 
from the existence of large scale flows directly generated by curvature and 
defects in the global texture as now shown. 

Figure 3.11 illustrates the scenario observed again by Libchaber and 
Maurer14 in liquid helium but in a cylindrical container with diameter D 
and aspect ratio l? = D / h  = 24. Remarkably enough, a low frequency 
noise sets in before the trace of any secondary instabilityin the form of 
Busse oscillations is apparent, and when the latter develops the system 
is already disordered so that the corresponding frequency is not sharply 

14A. Libchaber and J. Maurer, “Local probe in a Rayleigh-BBnard experiment in liquid 
helium,” J.  Physique Lettres 39 (1978) L-69. 
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Fig. 3.12 Cyclic evolution from state (1) --f (2) -+ . . . --f (6) + (1): Mechanism of 
nucleation-dissociation-migration-annihilation of dislocations pointed by Pocheau et al, 
Note 15, and here illustrated with pictures kindly provided by V. Croquette from a 
similar experiment with r = D/h = 40). 

defined. It took some time before this behavior could be understood. 
In an experiment where helium was replaced by argon under pressure at  

room temperature, making visualizations possible, Pocheau et aZ.I5 later 
showed that the noise developing slightly above threshold was due to the 
synchronization loss of an initially periodic process of nucleation, migration, 
annihilation of dislocations, as illustrated in Figure 3.12. The dislocation 
migration was driven by a secondary flow at the scale of the container, 
the existence of which was predicted by earlier theoretical studies16 and 
explicitly confirmed by specific experiments later.17 

Still for low Prandtl numbers, somewhat above the range of Rayleigh 
numbers where the convection pattern is made of possibly slowly evolving 
but essentially straight rolls, a much more disorganized active state is ob- 
served in the form of rotating spirals as illustrated in Figure 3.13. This 

15A. Pocheau, V. Croquette, and P. Le Gal, “Turbulence in a cylindrical container 
of Argon near threshold of convection,” Phys. Rev. Lett. 55 (1985) 1094-1097, later 
reviewed by V. Croquette, “Convective Pattern Dynamics at Low Prandtl Number. Part 
I, 11,” Contemporary Physics 30 (1989) 113-133, 153-171. 

lB(a) E.D. Siggia, A. Zippelius, “Pattern selection in Rayleigh-Bbnard convection near 
threshold,” Phys. Rev. Lett. 47 (1981) 835-838. (b) P. M. and J.M. Piquemal, 
“Transverse phase diffusion in Rayleigh-Bbnard convection,” J .  Physique Lettres 43 
(1982) L253-L258. (c) M.C. Cross, A.C. Newell, “Convection patterns in large aspect 
ratio systems,” Physica D 10 (1984) 299-328. 

17V. Croquette, P. Le Gal, A. Pocheau, P. Guglielmetti, “Large-scale flow characteri- 
zation in a Rayleigh-Bbnard convective pattern,” Europhys. Lett. 1 (1986) 393-399. 
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Fig. 3.13 Convection in C02 with I’ = D / h  N 150, spiral defect chaos observed at 
r = 0.536 (left) and r = 0.894 (right). After Morris et al., Note 18, courtesy G. Ahlers 
(UCSB). 

spiral defect chaos, observed in particular by Morris et aL1* permanently 
evolves in both space and time. It takes place only a t  large aspect ratios 
but then does not depend on the lateral shape of the container. Further- 
more, it is extensive in the sense that it can be characterized by a surface 
density of spiral cores seen to increase with increasing Rayleigh numbers be- 
yond a threshold that depends on the Prandtl number. Curvature-induced 
secondary flows seem essential to its occurrence. 

3.2.5 Turbulent convection 

The local study of convection structures has, since its very beginning, been 
completed by measurements of the heat flux through the whole experi- 
mental container, characterizing the global behavior. Results are usually 
expressed in terms of the dimensionless Nusselt number: 

total heat flux 
conduction heat flux 

N =  

where the ‘total heat flux’ is the quantity actually measured and the ‘con- 
duction heat flux’ is the flux that would be computed from the temperature 
difference upon assuming that the fluid is at  rest in the pure conduction 
state. Hence one gets N 1 when R < R,, while N - 1 measures the 

18S.W. Morris, E. Bodenschatz, D.S. Cannell, G. Ahlers, “The spatio-temporal struc- 
ture of spiral-defect chaos,” Physica D 97 (1996) 164-179. 
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contribution of convection. Close to threshold, one expects: 

R - Rc 
RC 

N - l K V z 6 c X - ,  (3.36) 

since both 9 and v, vary as [(R - Rc)/Rc]l/z, which is indeed well observed 
experimentally, see Figure 3.14. 

Far beyond threshold, from scaling arguments familiar in the theory of 
turbulence (Chapter 7), a power law behavior is expected instead: 

N - R’. 

Early experiments seemed to support a theory by Malkus predicting 
y = 1/3 but the range of Rayleigh number studied was too narrow, while 
other studies for P << 1 suggested rather y = 1/4. 

At the end of the eighties, the problem became a topic of renewed inter- 
est, experimental and theoretical. The heat flux was studied over R-ranges 
extending up to lo6 then lo1’, and even in fluids with various Prandtl 
numbers and in containers with aspect ratio of order 1/2 or 1. Exponents 
y ranging from 1/2 to 1/4, through 1/3, 0.3 or 2/7, have been measured 
over (sometimes very) limited ranges of Rayleigh numbers. Experimental 
results and their theoretical understanding are still the subject of debate.lg 

In Figure 3.14 drawn after the results of Chavanne e t  al. in liquid he- 
lium, Note 19(c), one can identify the linear behavior close to threshold 
expected from (3.36), a ‘soft turbulence’ regime where chaos is still mostly 
temporal as discussed in 53.2.3, then ‘hard turbulence’ with an exponent 
y 21 2/7 explained by a theory involving thermal transfer through tur- 
bulent layers sheared by the general circulation blowing as “wind” along 
the horizontal walls, and an “ultimate” regime with exponent tending to 
1/2. The discussion bears on the existence of asymptotic regimes with 
a single exponent or rather on superpositions of power laws in the form 

leWe quote here only few references, first the general presentation by (a) E.D. Sig- 
gia, “High Rayleigh number convection,” Annu. Rev. Fluid Mech. 26 (1994) 137-168, 
and next specific results by (b) J.J. Niemela et al., “Turbulent convection at very high 
Rayleigh numbers,” Nature 404 (2000) 837-840, err. 408 (2000) 439; (c) X. Chavanne 
et al., “Turbulent Rayleigh-BBnard convection in gaseous and liquid He,” Phys. Fluids 
13 (2001) 1300-1320; a theory by (d) S. Grossmann and D. Lohse, “Scaling in thermal 
convection: a unifying theory,” J. Fluid Mech. 407 (2000) 27-56 and “Thermal convec- 
tion for large Prandtl numbers,” Phys. Rev. Lett. 86 (2001) 3316-3319; corresponding 
experimental work by (e) G. Ahlers and X.-c. Xu, “Prandtl-number dependence of 
heat transport in turbulent Rayleigh-BBnard convection,” Phys. Rev. Lett. 86 (2001) 
3320-3323; and all references quoted by these authors. 
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Fig. 3.14 
the Rayleigh number (in log-log scale), after Chavanne et al, Note 19(c). 

Total heat flux as measured in terms of the Nusselt number as a function of 

N = ClR7’ + C2RT2 and the role of P (Note 19 d, e), of the geometry and 
nature of lateral walls, etc. 

To conclude, convection presents itself as the prototype of stationary 
cellular instabilities. In this chapter we have described its particularly in- 
tuitive mechanism, and its subsequent destabilization up to turbulence. We 
have also noted the role of confinement effects on the nature of these steps. 
In the next two chapters we shall examine in more detail some mathemati- 
cal aspects of the theory that allows us to interpret these phenomena and, 
at the same time, to tackle a large class of instabilities in continuous media. 
We shall not come back to turbulent convection, owing to the limited scope 
of Chapter 7 devoted to the simpler case of turbulent shear flows. 

3.3 Exercises 

3.3.1 

Consider the linear part of the Swifi-Hohenberg model2’ that reads: 

Simple model of cellular instabili ty 

atw = TV - (Vi + 1)%. (3.37) 

2o J .  Swift & P.C. Hohenberg, “Hydrodynamic fluctuations at the convective instabil- 
ity,” Phys. Rev. A 15 (1977) 319-328. 
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This model accounts for the emergence of convection cells in a simplified 
but physically meaningful way and will be used further in Appendix B, 
Secs. B.4.4 and B.4.5. 

Variable w may represent the vertical velocity component in the fluid 
or the departure from the base temperature profile, while r is the control 
parameter measuring the relative distance to the threshold: T 0: (T-T,)/T,. 
In (3.37), V: a,, + a,, is the Laplacian operator acting on the space 
dependence of the fluctuations in the plane of the layer. 

1) Laterally unbounded medium. 
a) Determine the dispersion relation s = s(k) for Fourier modes taken 

in the form exp(ik. x) where k = (kz, k,) and x = (z, y). Check that it 
depends only on k = I kh I. 

b) Draw the graph of s ( k )  for T < 0, T = 0 and T > 0 and conclude 
that the system bifurcates towards a cellular structure at T = 0. Show in 
particular that the most dangerous modes correspond to Ikl = 1. 

c) Sketch the marginal stability surface (s(kr) = 0) in the three- 
dimensional space (k,, ky,r); determine the set of marginal modes and 
the domain of unstable wavevectors s(k,T) > 0 when T > 0. [Answer: 
Figure 3.15 (left)]. 

Consider now the 
modified anisotropic model 

d) System (3.37) is isotropic in the (z-y) plane. 

atw = T w  - [(a,, + q2 - a,,] w .  (3.38) 

Sketch the marginal stability surface for this case and conclude that, by 
contrast with the isotropic case, the linear stability operator selects a non 
degenerated mode. [Answer: Figure 3.15 (right)]. 

Fig. 3.15 
isotropic (left) and anisotropic (right) cases. 

Marginal stability surfaces for the linearized Swift-Hohenberg model in the 
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2) Consider now the same system but restricted to one space dimension: 

a,v = TV - (axx + q 2 v ,  (3.39) 

for a function v(x, t )  defined on a finite interval of length e with boundary 
conditions v = dxxv = 0 at  x = 0 and x = e. 

Check that the eigenmodes can be taken in the form V = Asin(k,x) 
with Ic, = n.11. Determine the marginal stability condition T = rnm) ( (el for 
mode n at given C, and next the instability threshold rc(C) = inf, rim (e), 
as a function of e. 

How does the spatial resonance between the intrinsic length-scale A, = 
2n/kc = 2. and the size e of the system manifest itself? Find the condition 
for two neighboring modes being simultaneously marginal. 

The student is encouraged to perform the same (but much more dif- 
ficult) study for boundary conditions v = axv  = 0 at  x = fC/2 .  This 
is more typical of the general case since simple trigonometric lines are no 
longer appropriate. The eigenmodes will be searched for as superpositions 
of elementary solutions to the 4th order differential equation 

sv = [r - ($ + q2] v 

that fulfill the boundary conditions (the scalar s is the eigenvalue). Separate 
odd from even solutions and find corresponding marginal conditions (given 
by transcendental equations to be solved numerically by some root-finder 
program.) 

This model, completed by appropriate nonlinear terms, will be used 
again in Chapter 4, Exercise 4.6.2 and in hands-on numerical experiments, 
Appendix B. 

3.3.2 Rayleigh-Be'nard convection: detailed study 

The purpose of the exercise is to go beyond the semi-quantitative approach 
developed in 53.1.4 and determine the marginal stability condition from 
the full primitive equations. The theory rests on the Boussinesq approxi- 
mation of moderate heating which supports the idea that the fluid's phys- 
ical parameters are independent of the temperature, except the density in 
the term responsible for the differential buoyancy force. The linearized 
thermo-hydrodynamic equations governing two-dimensional (2, z )  pertur- 



106 Instabilities, Chaos and Turbulence 

bations then readz1: 

&(azz + a,,)~, = P ((azz + a z z ) 2 ~ ,  + a d ) ,  (3.40) 

(3.41) ate = R W ,  + (azz + a,,)s. 
These equations are written here in dimensionless form after elimination of 
the pressure and horizontal velocity component. The scales are the same as 
those leading to (3.17, 3.18). As far as the (z,t)-dependence is considered, 
their structure is also the same as that of the simplified system, but they 
now retain the additional z-dependence of the fluctuations explicitly. 

Boundary conditions are set at the position of the plates zp, at top, 
zt = 1 or +1/2, and bottom Zb = 0 or -112, one or the other choice 
making computations more transparent depending on the cases considered. 

We consider here infinitely good heat-conducting horizontal plates. 
Accordingly the temperature is strictly fixed by heat baths so that the 
fluctuations are zero there: 

eltp = 0 .  (3.42) 

For the velocity components, rigid plates imply a no slip condition 

%lZP = a t % l z p  = 0 .  (3.43) 

In practice, calculations are easier with the somewhat artificial stress-free 
conditions considered initially by Rayleigh, which leads to the replacement 
of (3.43) by 

= ~ZZ~,lZp = 0 .  (3.44) 

In the following we consider symmetrical cases where top and bottom 
conditions are identical but any non-symmetrical condition (good/bad con- 
ductor, no-slip/stress-free) can be considered in the same way at the ex- 
pense of a (much) more cumbersome analysis since parity considerations 
are no longer useful to classify the solutions. 

1) Normal mode analysis in the stress-free case (Rayleigh solution, 1916). 
Boundary conditions are set at zp = 0 and 1. 

a) For a laterally unbounded layer, check that solutions to (3.40, 3.41) 
can be taken in the form: 

(w,, 0) = ( V ,  0)  sin(nm) exp(ikz) exp(s,t) . 
'lSee p. 108 for a derivation of equations and boundary conditions. 
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b) Determine the marginal stability condition for the mode n that first 
bifurcates when R is increased. Find the corresponding critical wavevector 
and threshold. 

[Answer: 

(3.45) 

k,  = 7 r / f i ,  R, = 277r4/4. See Fig. 3.16, curve A.] 
c) Show that the linear dynamics close to the threshold is governed by: 

70s 1 T - [;(k - kc)’, 

with T ( R  - R,)/R, and coefficients TO and 50 to be computed. 
2) Normal mode analysis in the no-slip case. The exact solution, obtained 
by Pellew and Southwell (1940) is presented in [Chandrasekhar (1961)l. 
The corresponding marginal stability curve is given in Figure 3.16, as line 
B’ (fine, solid) with critical conditions k, x 3.11632, R, x 1707.76. 

Here we look for an approximate solution by a so-called Galerkin 
method, a special case of weighted-residual approximation introduced, e.g. 
in [Finlayson (1972)l. 

In a few words, the solution, expanded on a complete basis of functions, 
is further injected in the equations that are projected on a complementary 
basis using some scalar product. The Galerkin method comes in when the 
functions in the original and complementary bases are identical and fulfill 
the boundary conditions of the problem. 

The approximate solution is seen to converge to the exact solution as 
the number of functions is increased, especially when the problem has an 
underlying variational structure, which is the case for Rayleigh-BCnard 
convection, as discussed at length in [Chandrasekhar (1961)l. 

Here, the solution of (3.40, 3.41) is searched for in the form: 

{ v r ( z , z , t ) , e ( z , z , t ) }  = { V ( z ) ,  O(z)}sin(k,z) exp(st) . 

The z dependence of V, and 0 is taken as polynomials. Boundary condi- 
tions are set at z = f 1 / 2 .  

a) Show that in order to fulfill boundary conditions automatically, one 
must take: 

V ( z )  = (a - 2 ) 2 P V ( Z ) ,  
O ( 2 )  = (i - z”)Po(z), 
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where P,,(z) and Pe(z) are polynomials in z ,  P,,(z) = C,"==, Vnzn, Pe(z) = 
C,"=, Onzn. The approximation enters when polynomials are truncated 
beyond some given maximal degree N. 

b) The differential problem being formally written as CU = 0, where 
U has two components 6 et v', the projection onto the basis is defined by 
integrals 

l)12zn($ - z ~ ) ~ ( C U ) , ~  dz = 0 ,  

- z2)(CU)e dz = 0 ,  

for n = 0,1, .  . . , N .  This leads to a system of 2 ( N  + 1) linear equations for 
the 2 ( N  + 1) unknown coefficients introduced in the polynomials. 

Considering only the stationary case a t  marginality, i.e. s = 0 ,  derive 
the system at lowest significant order, i.e. N = 0 (2 equations for 2 un- 
knowns, 00 and VO) and the corresponding marginal stability condition; 
compare the result to the Rayleigh solution (3.45). Then compute the crit- 
ical wavevector and the threshold; further compare them to  the exact result 
given above. 

[Answer: 

28 (k4 + 24k2 + 504)(k2 + 10) 
27 k2 

R(")(k)  = - 
7 (3.46) 

threshold: k, x 3.1165 Y exact value, R, x 1750 2.5% too high only. See 
Fig. 3.16, curve B (dot-dashed line), but so close an agreement is somehow 
accidental!] 
Derivation of system (3.40-3.44). 

Fourier equations read: 
In the two-dimensional case (2, z ) ,  the continuity, Navier-Stokes, and 

The formally quadratic terms have been dropped owing to  the linearization 
step. Following the usual procedure, pressure is eliminated by differentiat- 
ing the equation for v, with respect to x, the equation for vx with respect 
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Fig. 3.16 Marginal stability curves of the most dangerous modes in the stress-free case 
(curve A) and no-slip case (curves B).  Thin solid line 4 exact result. Dot-dashed line 
+ Galerkin approximation at lowest significant order. 

to z and subtracting the two. In order to eliminate w,, the result is further 
differentiated with respect to x and the so-obtained d,w, replaced with 
-&w, using the continuity equation. This leads to: 

&(a,, + & z ) V t  = V ( L  + & z ) 2 w ,  + ag&,8 1 

ate = K(&,  + &,)e + Pv, 1 

which is finally cast into (3.40, 3.41) by scaling v, and 8 appropriately. 
No-slip and stress-free boundary conditions respectively read w, (zp) = 

w,(zp) = 0 and d,w,(zp) = w,(zp) = 0. Differentiating the conditions on 
w, with respect to x and replacing dzwz with -a,w, yields the boundary 
conditions (3.43, 3.44), expressed in terms of w, exclusively. 

3.3.3 Simplified model of convection in a binary mixture 

Thermal convection in the presence of additional molecular diffusion pro- 
cesses is called thermohaline, by reference to the diffusion of saIt in water. 
Here we consider the emergence of convection in a binary mixture. The 
local state of the fluid is thus characterized by the concentration C of a 
solute, in addition to its temperature T and its velocity v. The temper- 
ature gradient is still generated by the temperature difference AT, while 
a concentration gradient is applied by putting the fluid layer in contact 
with two reservoirs at  different concentration through appropriate porous 
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membranes. The solute concentration difference between top and bottom 
is a second control parameter and molecular diffusion (Fick law, coefficient 
D )  is a supplementary stabilizing mechanism, while solute advection may 
contribute to the destabilization of the layer. We develop a simplified one- 
dimensional model in the spirit of Section 3.1.2, i.e. assuming fluctuations 
that are functions of x and t only, while the driving gradients are imposed 
along the z direction. 

1)  Construction of the model: 
0) in contact with two 

baths at temperatures Tt and Tb = Tt + AT (heating from below implies 
AT > 0) and concentrations C, and Cb = C, + AC (AC positive or nega- 
tive). The purely diffusive temperature and concentration profiles read: 

The fluid layer is supposed to be at rest (v 

T ( z )  = Tb - p z  and C ( z )  = cb - p ' z ,  

where ,B = AT/h et p' = AC/h are the applied gradients. The differential 
buoyancy force is still induced by variations of the density p but it now has 
two origins, thermal expansion and composition change. Accordingly, the 
state equation can be taken as 

where a (> 0) is the same coefficient as that introduced previously and 
where the sign of a' depends on the composition of the mixture. Justify 
the equations governing the linearized model: 

and explain the origin of terms pv, and p'v, and discuss in simple terms 
the possible instability mechanisms involving each fluctuation. 

Take h as length unit, re = h2/K as time unit, introduce the Lewis 
number L = D/K in addition to the Prandtl number P = n/u, define the 
control parameters 

agATh3 a'gACh3 R =  et R'= ~ 

KU Du 

(thermal and chemical Rayleigh numbers), and finally cast these equations 



3. Life and Death of Dissipative Structures 111 

in the form 

atv, = P(a,zv, + 8 + Lc) , 
ate = ax2e + RV, , 
atc = Lazzc + R ' ~ , .  

Interpret the Lewis number from a physical viewpoint; what can be its 
order of magnitude in a liquid, in a gas? 

2) Normal mode analysis: 
a) Introducing {v,, 8, c }  = {V, 0, C} cos(kz) exp(st), write down the 

algebraic linear system fulfilled by the amplitudes {V, 0, C}. (Here we 
assume directly and without justification that k - T (ie., in dimensional 
units X = 2h where X is the wavelength of the unstable mode). 

b) Show that for highly viscous fluids ( P  + m), the resulting system 
of three equations for three unknowns can be reduced to  a system of two 
equations for two unknowns by eliminating the velocity component v,. In 
the following we keep this supplementary assumption but the general case 
can be treated in the same way using Exercise 2.5.3, Chapter 2, p. 63. 

c) Derive the compatibility condition of the simplified two-dimensional 
system and show that, by contrast with ordinary convection, complex roots 
are possible in the marginal case. 

3 )  Different instability modes: 
a) From a discussion of the sign of coefficients of the quadratic equation 

expressing the compatibility condition above, find the threshold of the sta- 
tionary instability mode (the product of roots change its sign), then that 
of the oscillatory mode (the sum of roots change its sign). 

b) In the parameter plane of parameters R' (horizontal axis) and R, 
draw the graph of these threshold conditions. Discuss the nature of the 
regime expected in each of the regions bound by these lines. Find the co- 
ordinates of the point where the system is simultaneously marginal against 
the two modes. Try to explain the physical origin of the oscillations by 
returning to the different contributions to the density changes and their 
respective relaxation times. 

[Answer: Figure 3.17, next page. The mechanism result from an inter- 
play of differential buoyancy with two competing dissipation processes, one 
(thermal diffusion) being much faster than the other (molecular diffusion). 
This induces delays and phase shifts between the different fluctuations, 
ending in overshoots and oscillations.] 



112 Instabilities, Chaos and Turbulence 

conduction 
regime 

L 

714 

Fig. 3.17 Stability diagram for convection in a binary fluid mixture. When R’ > 0, the 
temperature and concentration fluctuations cooperate, whereas when R’ < 0, they play 
antagonistic roles. Oscillations occur as their evolutions get sufficiently out of phase. At 
the intersection of the two lines (called a codimension-two point, where two parameters 
have to be tuned) the two mechanisms are equally efficient to destabilize the layer. 

3.3.4 

In chemistry, mechanisms combining reaction and diffusion may produce 
dissipative structures called Turing patterns. Here we consider a simpli- 
fied reaction-diffusion system where two species U and V with diffusion 
coefficients Du and DV also react with each other. 

Turing patterns and reaction-diffusion systems.  

In dimension one, with coordinate x, the model reads: 

a,u = F ~ ( u ,  v) + Duax,u ,  (3.47) 

a,v = F ~ ( u ,  v) + D v a x x v ,  (3.48) 

where reaction terms Fu and FV need not be specified at this stage. 
1) Neglect diffusion (Du = Dv 0) and assume that a fixed point solution 
(Uo, Vo) exists. Linearize the governing equations around that point, set 

a = auFuio, b = avFuio,  c = auFvio, d = avFvio,  

‘10’ meaning computed at  (UO, VO), next determine the conditions on a,  b, c, d 
that guarantee the stability of solution (UO, VO). 

[Answer: the linear stability matrix must have eigenvalues either real 
and negative or complex with negative real parts, hence negative sum 
( a  + d < 0) and positive product (ad - bc > O)]. 
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2) Assume that these conditions are fulfilled and add the effect of diffusion 
(Du # 0, DV # 0 ) .  Determine the dispersion relation of fluctuations 
around the state (VO, VO) supposed uniform in space. 

Write down the linearized system governing the amplitudes v(t) and 
V ( t ) )  of Fourier normal modes in exp(iIcz) and show that the instability, if 
any, is necessarily cellular and stationary ( I c  # 0, w = 0 ) .  

- 

Show that the occurrence of the instability requires: 

aDv + dDu > 0 and 4(ad - bc)DuDv 5 (aDv + dDu)2 ,  

in addition to the conditions already found. When this is the case, deter- 
mine the range of unstable wavevectors Ic.  

3.3.5 Taylor-Couette instability 

We study the stability of the flow between infinite coaxial cylinders rotating 
at  different angular speeds (Couette flow). This problem was studied by 
Rayleigh (1916) at the limit of zero viscosity. Taylor (1923) developed the 
first theoretical analysis of the viscous case and performed the correspond- 
ing experiments. 

In the geometry of Figure 3.18 (left), assume that the base flow is purely 
azimuthal, show that wd = T W O ( T )  with 

W O ( T )  = a + b / r 2 ,  (3.49) 

obtain a and b from the no-slip condition W ( T I )  = wi at ~ i ,  i = 1,2.  

1) Rayleigh instability mechanism (see also [Chandrasekhar (1961)] or 
[Drazin and Reid (198l)l). The base flow is characterized by the fact that 
the centrifugal force at  distance T from the axis, ~ T W ~ ( T ) ,  is compensated 
by a centripetal pressure gradient. 

Consider a rotating fluid particle displaced from distance T to  distance 
T + 6~ > T .  In the absence of viscous friction, angular momentum P T W ~  is 
a conserved quantity. From this conservation law, derive its angular speed 
a t  the new position and compare it with that of a fluid particle originally 
at  the same place. 

2) If the speed of the displaced particle is smaller than that of the surround- 
ing fluid, the local pressure gradient is larger and pushes the particle back 
to its original position, the purely azimuthal flow is stable. In the opposite 

[Answer: a = ( W 2 T i  - W i T : ) / ( T ;  - T ; ) ,  b = ( W 1  - W 2 ) T : T s ) / ( T ;  - T : ) . ]  
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Fig. 3.18 Left: Geometry of the Taylor-Couette experiment. Right: Examples of 
curved flows. 

situation it is unstable. Show that this stability condition reads 

dw W 

dr  T 
- 6r 2 -2- br , 

then turn it to the form: 

6 (r”) 2 0 

and express this Rayleigh stability cr i ter ion with words. 

3) Application to the Couette profile and other curved flows. 
a) Coming back to  the base flow profile (3.49) identify the different 

possible cases (rotation direction identical or different, and when the rota- 
tion directions are identical, which cylinder is rotating faster) and find the 
situations that are stable according to the Rayleigh criterion. 

b) When cylinders rotate in opposite directions, determine the region 
which is stable according to Rayleigh. 

c) By comparison with the case of convection, and by anticipation of 
Chapter 6 about shear flows, guess the role of viscosity, especially when the 
flow is mechanically stable. 

d) The same instability mechanism is expected to work when flow lines 
are curved. Identify the regions of the flow where the centrifugal instabil- 
ity can develop according to Rayleigh, in the boundary layer flow along a 
concave wall (Gortler instability; what about a convex wall?) or in the flow 
along a curved channel (Dean instability) depicted in Figure. 3.18 (right). 



Chapter 4 

Nonlinear Dynamics: 
from Simple to Complex 

We now examine in more detail the theoretical context where the convec- 
tion experiments described in the previous chapter can be best situated. 
The interest of this study stems from the fact that most instabilities that 
develop in bounded continuous media enter the framework of dynamical 
systems theory. Its foundation rests on an analysis of the effects of lateral 
confinement, $4.1. In a strongly confined system, even far enough from 
the instability threshold, the space dependence of unstable modes remains 
frozen and the state of the system is sufficiently well characterized by few 
amplitudes playing the role of effective degrees of freedom, which permits 
the analysis of the transition to turbulence in the spirit of Chapter 2. Here 
we limit ourselves to a heuristic presentation of the recent developments of 
nonlinear dynamics without insisting much on mathematical aspects. 

We are thus mainly interested in characterizing sustained regimes of 
dissipative dynamical systems obtained after the decay of transients. These 
asymptotic regimes reached in the limit t + f o o  are represented in phase 
space by objects called limit sets. Stable limit sets are reached in the 
normal course of time, i.e. for t + +m and unstable limit set in the reverse 
case t + -oo. We have already seen examples of limit sets, fixed points 
and limit cycles for time-independent and periodic regimes, respectively. 
More complicated, multi-periodic and chaotic, behaviors are accounted for 
by objects called limit tori and strange attractors, which remain to be 
introduced. The second main purpose of this chapter is the description 
of the growth of complexity observed as the number of instability modes 
increases when control parameters are varied. The transitions from time- 
independent states to regular 
chaos, take place according to 
the particular system studied. 

periodic or multi-periodic regimes, next to 
universal scenarios that are independent of 
Section 4.2 is devoted to the simplest ones. 
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By contrast with regular regimes, chaotic states are characterized by 
their unpredictabili ty,  generally associated with a fractal occupation of 
phase space. These different facets are introduced at a theoretical level 
in Section 4.3. Next we turn to  empirical approaches useful to interpret 
experimental results in Section 4.4. 

However, all this is valid only in so far as the projection of the dynamics 
onto well isolated spatially frozen modes makes sense. In practice, unfreez- 
ing takes place when lateral confinement effects are not strong enough to 
maintain coherence much beyond the cell size. In systems with many cells 
chaos then develops both in time and in space, but this topic is defered to 
Chapter 5.  

4.1 Reduction of the Number of Degrees of Freedom 

4.1.1 Role of aspect ratios 

Let us come back to eigenmodes obtained from the linear stability analysis 
of the instability studied, e.g. convection. The problem has been formalized 
in Section 3.1.3, p. 75. We assume that confinement is specified by lateral 
boundary conditions at a distance t ,  whereas the instability generates cells 
with typical scale A,. The aspect ratio can be defined as I’ = !/A,. The 
difference between the cases ‘T N 1” and ‘T >> 1” is illustrated in Figure 4.1 
and 4.2. Exercises 4.6.1 and 4.6.2 should be worked out to  gain a more 
analytical understanding of the problem. 

We first consider the case when the horizontal dimensions are of the 
order of the wavelength A, so that all modes are physically distinct 
(Fig. 4.1). Only the value of the corresponding thresholds R I ,  Rz,. . . mat- 
ters, the two-dimensional presentation of the different modes is given just 
in order to  rationalize the classification in terms of the number of substruc- 
tures in x and z ,  which is supported by the idea that these states should stay 
close to the branches that would exist in the absence of lateral boundary 
conditions (fine solid lines). They account for a kind of spatial resonance 
between the lateral extension of the system and the length scale originat- 
ing from the instability mechanism, ending in the formation of an integer 
number of roughly circular cells, as already illustrated in Figure 3.8 (top), 
p. 96 (visualization of convection in silicon oil). The lower branch would 
then correspond to the “fundamental” states with one layer of cells and the 
upper one to “excited” states with two layers of cells stacked one above 
the other as could be obtained at higher values of the control parameter. 
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Fig. 4.1 
R1 < R < Rz, mode 1 is unstable, the others are stable. 

Spectrum of the linearized stability problem for a confined system, r N 1; for 

In practice, the actual structure of the modes can be obtained at  the price 
of a full three-dimensional calculation, in general difficult and with little 
supplementary insight into their physical significance. Since the spectrum 
of the linear stability problem is entirely made of isolated values far from 
one another, it is in principle easy to limit the number of linearly excited 
modes ( R  > R, hence u, > 0) from those that are still damped ( R  < R,, 

By contrast, when I? >> 1, that is C >> A, (Figure 4.2), the spectrum is 
quasi-continuous. It is obtained from the dispersion relation for a laterally 
unbounded system by adding a quantization condition on the wavevector, 
typically k, - rn/C for n cells of width X/2 over a interval of width C. 
The difference between neighboring wavevectors for patterns with f 1 cell 
is k,+1 - k, = r/C <( k,, which is small when C is large. Close to k,, owing 
to  the quadratic shape of the dispersion relation (3.26), p. 84, one expects 
(Rnc*l -Rn,)/Rc = .$j7r2/C2, where n, is here the number of cells expected 
at threshold and given by ncX,/2 E t?. Corresponding modes are thus quasi- 
degenerate. Apart from the precise value of the wavevector, all modes of 
the lowest branch are expected to have similar spatial structures. The in- 
teractions between modes can then be understood as interferences yielding 
modulated patterns, also called teztures, as illustrated in Figure 3.10, p. 98. 
The present chapter is entirely devoted to the case r - 1 and to the de- 
velopment of temporal chaos phenomenologically introduced in Chapter 3, 
Section 3.2.3,  p. 94, and is thus placed in direct continuity with Chapter 2. 

u, < 0, IUml >> 1). 
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Fig. 4.2 Spectrum of the linearized stability problem for an extended system, I? >> 1; 
for R > R, the modes belonging to a range O ( d m )  centered at kc are unstable 
and may serve to build the nonlinear pattern. 

4.1.2 Low dimensional effective dynamics 

4.1.2.1 Framework 

From a general viewpoint, it may seem reasonable to  take advantage of 
the work done in solving the linear stability problem to  treat the nonlin- 
ear problem. This is done by expanding the solution onto the basis of 
eigenmodes: 

n 

and then searching the equations to be fulfilled by the amplitudes A,  of 
the modes X,, in order to extend the linear dynamics simply governed 
by An = snAn to the nonlinear range. From the qualitative arguments 
developed above, we are led to think that the unstable and neutral modes 
play the most active role and that the stable modes more passively evolve 
under the forcing action of the others. 

Let us incorporate this feature in the formalism itself and assume that 
the problem is initially posed in the general form: 

v = cv +nr(V), (4.2) 

where C accounts for the linear interactions and where n/(V) is at least 
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quadratic in V. An appropriate projection of the equations onto the eigen- 
basis yields a dynamical system for the amplitudes A, introduced through 
(4.1), which formally reads: 

A n  = sn An + C gn,mpAmAp + * * (4.3) 
m p  

where the coefficient Q , , ~ ,  describes how the interaction of modes X m  and 
X, contributes to the dynamics of mode X,. In fact this projection proce- 
dure is rarely achievable without approximation (and further modeling of 
the physical situation). A favorable case is when the analytical expression of 
eigenmodes can be handled by hand (or using formal algebra software), for 
example trigonometric functions as illustrated in Exercises 4.6.1 and 4.6.2. 
Otherwise one can attempt to extend to the nonlinear domain the Galerkin 
me thod  already used at  the linear stage, e.g. in the second part of Exer- 
cise 3.3.2, p. 107. 

Progress made by replacing the primitive problem expressed in terms 
of partial differential equations by (4.3), i.e. a differential system of infi- 
nite order, may seem slight. However, it is very powerful when combined 
with the idea of separating driving modes and enslaved modes to  truncate 
the system, eliminate the latter and obtain an effective system involving 
only the former. This is the adiabatic e l iminat ion procedure advanced as 
the founding principle of synergetics,  the science of nonlinear cooperative 
phenomena in out-of-equilibrium systems [Haken (1983)l. 

Let us consider a system on the verge of bifurcating or having just bi- 
furcated ( R  x R,). This comes to the assumption that, among all linear 
eigenmodes, we can isolate a small subgroup of those that are “dangerous,” 
nearly neutral, either unstable or stable but slightly, i.e. with the real parts 
u of their growth rates either positive or negative but small. Strictly speak- 
ing, the center  subspace, subscript ‘c’, is the space spanned by eigenmodes 
having eigenvalues with u = 0 exactly, and we assume that we have n, such 
modes. On general grounds, having n, strictly critical modes is a problem 
of codimension n,, since n, conditions u,(r) = 0 have to  be fulfilled, r be- 
ing the set of control parameters. In practice, we can vary only one control 
parameter while remaining in the vicinity of a manifold of codimension n, 
in parameter space, hence u, x 0 for n, driving modes that by extension 
will continue to be labelled with the same subscript. 

On the contrary, all other modes are supposed to remain stable,  hence 
with subscript‘ ‘s’ and a related assumption us < 0, meaning more precisely 

lSo, ‘c’ may equally well mean ‘central’ or ‘critical’ and ‘s’ either ‘stable or ‘slave’! 
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Fig. 4.3 Left: Spectrum of a linear operator with a group of center modes separated 
from stable modes by a wide ‘spectral gap’. Right: Adiabatic elimination of stable 
modes. The whole sets of center-mode and stable-mode amplitudes are featured by axes 
A, and A,, respectively. A trajectory starting anywhere in phase space rapidly migrates 
towards a center manifoZd with equation (4.6) which is the nonlinear extrapolation of 
the center subspace at the origin (A, = 0), then slowly evolves along it according to the 
effective dynamics (4.7). 

that Jo,J << la,], so that the driving modes have relaxation rates well sep- 
arated from those of the enslaved modes. The linear spectrum is therefore 
supposed to display a wide spectral gap, see Figure 4.3 (left). 

The effective dynamics is obtained by elimination of the enslaved modes. 
For simplicity we consider a d-dimensional case, d < 00, with n, driving 
modes and ns = d-n, stable modes. The considerations developed now can 
be, at least at a heuristic level, easily extended to  the infinite dimensional 
case corresponding to instabilities in continuous media, with an infinite 
number of stable modes and the series of eigenvalues with real parts ex- 
tending down to -00. The adaptation of this elimination procedure to the 
case of extended systems will be sketched in Chapter 5. 

4.1.2.2 Heuristic approach 

Let us explicitly separate driving modes with amplitudes collectively de- 
noted as A, from enslaved ones with amplitudes As in (4.3). For the 
driving modes we get: 

where Lc is the restriction of the linearized operator C, to  the space 
spanned by the A, and n/, accounts for the nonlinear interactions between 
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driving and enslaved modes. Similarly we write: 

A s  = GAS + n/s(Ac, As) (4.5) 

for the amplitudes of stable modes. The idea of the reduction is to  solve 
the problem for the stable modes as if they were submitted to a forcing 
from the (slowly evolving) driving modes, then to insert the solution back 
into (4.4) to  obtain the effective dynamical system we are looking for. 

In order to simplify the application of this strategy, let us assume that 
the s, are real and non degenerate, and that Afs involves only the A, so 
that we can rewrite (4.5) in a basis such that L, is in diagonal form, which 
leads to: 

A s  + IssIAs = n / s  (Ac(t)) . 
It is easily checked that the complete solution of this non-homogeneous 
linear problem reads 

t 
A,(t) = exp(-ls,It)A,(O) + 1 exp ( -  Is,l(t - t'))n/, (Ac(t')) dt' 

where A,(O) is specified by the initial conditions at t = 0. According to  the 
assumption made about the stable part of the spectrum, we see that the first 
term on the right hand side contributes to the solution only during a brief 
transient of duration O(l/lssl) and that, in the integral, the exponential 
kernel is short-range so that we may approximate the solution as 

In the &dimensional phase space, these ns = d - nc relations define a n,- 
dimensional manifold parameterized by the n, amplitudes of the driving 
modes. Inserting them into the evolution equations for the A,, we get: 

A, = &Ac + NC (&,&(Ac)) = &Ac + n/,n(A,) , (4.7) 

which defines an effective dynamics on this manifold. An example is treated 
in Exercise 4.6.2. 

4.1.3 

4.1.3.1 

The result illustrated in Figure 4.3 (right) can be derived in a mathe- 
matically rigorous way, asymptotically valid at the long time limit, i.e. 

Center manifolds and normal forms  

Reduction to the center manifold 
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t >> l/min(la,I). This approach is called the center manifold reduction.2 
Assuming that, as suggested by the heuristic approach, the stable modes 
“live” on a slow manifold defined through 

A s  = %(A,) , (4.8) 

one can determine the functional equation governing 31 by inserting (4.8) 
in (4.5) and replacing A, by its expression from (4.4). This yields 

where 831 denotes the Jacobian matrix of 31 with elements Rij = 
d?&/dA,j. This functional equation for 31 is then solved by represent- 
ing %(A,) as a formal series in powers of the components of A,: 

where N n ( A C )  is a polynomial formed with a series of homogeneous 
increasing-degree monomials in the form: 

m=l  m 

with coefficients to be determined by identification. The so-obtained ex- 
pression is further inserted in (4.4), which leads to  the effective dynamics 
one is looking for. 

4.1.3.2 

In practice, the physical contents of the expression just obtained for the 
effective dynamics is obscured by the presence of a large number of terms 
that can be eliminated by nonlinear changes of variables, in much the same 
way as linear changes of variables allow one to  represent a linear operator in 
its (much more transparent) Jordan normal form. This supplementary step, 
called normal form reduction leads to the elimination of all non-resonant 
terms in the effective dynamical system. The term “resonant” is here un- 
derstood in the same way as in the study of the improper node, Chapter 2, 
p. 40, or more generally in Appendix A, 5A.2, p. 334. 

Reduction to the normal form 

‘See for example: J.D. Crawford, “Introduction to bifurcation theory” Rev. Mod. 
PhyS. 63 (1991) 991-1037. 
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For example, let us consider the case of a two-dimensional center man- 
ifold parameterized with a pair of complex conjugate modes (2, 2’) with 
eigenvalues f i w , ,  w, # 0,3 exactly marginal at some specific value r = rc 
of the set of control parameters, i.e. a(r,) = 0. Consider one of these 
variables, say 2, the previous reduction procedure generically leads to an 
effective dynamics 

2 3 

m=O m=O 

where the coefficients g c )  are complex a priori. The equation governing the 
other variable Z* is of course the complex conjugate of (4.9). It is however 
easily seen that none of the quadratic terms present in these equations is 
resonant: 

Looking for a solution of (4.9) as an expansion in powers of 2, at first 
order we indeed get 2(l) 0: exp(-iw,t). The correction brought by the first 
quadratic term is then a solution to: 

i(’) + iw,z(’) 0: (z(’))’ - exp(-2iwCt), 

that admits exp( -2iw,t) as special solution with a non-singular coefficient. 
Terms 

ZZ* - 1 and (Z*)2 - exp(2iwCt) 

are non-resonant for the same reason and, among cubic terms only the 
monomial 

2*z2 = 1 . ~ 1 ~ ~  - exp(-iw,t) 

turns out to be resonant. It is just a little long and tedious to find the 
change of variables: 

2 3 

Z = 2 + a E ) Z 2 - m ( Z * ) m  + + . . . (4.10) 
m=O m=O 

that leads to  the so-call normal f o m :  

2 = - iw,z  + g 3 1 2 1 2 2  + . . . (4.11) 

appropriate to the case at hand. 
3wc # 0 means wc N O(1) since wc << 1 would rather correspond to  a reference 

situation with a double root s = 0, perturbed so as to display real and imaginary parts 
that would be simultaneously small. 
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4.1.3.3 

One last step remains to be performed. Up to now we have assumed that the 
control parameters had precisely the values that make the relevant modes 
marginal. This defines a critical surface in parameter space, r = r,. Close 
to this surface, the condition is no longer fulfilled but the real parts of the 
growth rates remain small. 

A first-order Taylor expansion of these growth rates in a direction of 
the parameter space that is transverse (i.e. not tangent) to the critical 
surface allows one to get off the critical conditions. Let us simple denote the 
coordinate in that direction by r .  For the pair of complex modes considered 
above, this comes to take: 

Slightly off the critical conditions 

s = u f i w  with U K T ,  W M W , ,  9 3 ~ 8 3 ,  

and to “unfold” the critical dynamics (4.11) by correcting the growth rate, 
hence -iw, s = u - iw,. This corrected form4 will be used below to 
account for the emergence of periodicity. A rewarding exercise is to derive 
it explicitly from Equation (2.42) governing the van der Pol oscillator, p. 48. 

4.1.3.4 Universality and modeling 

More generally, one may remark that the normal form and the perturbations 
that describe the departure from criticality depend in an essential way on 
resonance relations existing among the eigenvalues of the linearized stability 
problem at criticality. In the previous example we had: 

s1 = s2 + 2s1 for s 1 , ~  = SA = f i w ,  , 

which renders the term Z * Z 2  resonant. Here, the precise reason is: 

exp(s2t) exp(s1t)’ exp[(s2 + 2sl)tI = exp(s1t) 

with sg = iw, and s1 = -iw,, but the generalization is immediate to  any 
resonance and leads to the identification of nonlinear resonant terms. 

All systems that bifurcate in the same way, have the same symmetries, and 
are controlled by the same number of parameters, have qualitatively similar 
dynamics. 

This plain observation underlies the notion of universality: 

41n line with the remark in Note 3, p. 123, it is assumed that cr << wc N O(1) because 
admitting cr N wc is not compatible with the idea of a near-marginal situation. 
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To set this similarity on a quantitative footing requires complicated 
and tedious changes of variables that can be avoided by having recourse 
to  phenomenological modeling of the considered system close to its critical 
conditions, that is: 
1) Determine the linear normal form governing the driving modes, identify 
the corresponding resonance conditions and add the most general linear per- 
turbations corresponding the departure from criticality (see Appendix A, 
SA.2, and more specifically SA.2.3). 
2) Introduce all possible nonlinear resonant terms -different equivalent 
forms are admissible- with appropriate phenomenological coefficients. 
(Notice that these coefficients could be fitted from well-designed on-purpose 
experiments.) 
3) Takes full advantage of a preliminary abstract mathematical study (with 
few generic parameters) to account for the behavior of the specific system 
considered as its control parameters are varied. 

4.2 Transition to  Chaos 

The approach in terms of low dimensional dynamical systems now being 
established, we now briefly illustrate the theoretical approach to  the growth 
of complexity until chaos is obtained. At  steady state, a chaotic regime is 
characterized by an evolution that, in spite of being governed by a deter- 
ministic system, has lost its long-term predictability. 

As empirically shown in Chapter 3, complex evolution is observed when 
the system is driven ever farther from equilibrium at the end of an insta- 
bility cascade. The understanding of this cascade relies on the progressive 
increase of the dimension of the manifold on which the effective dynamics 
develops. By varying the control parameter, one increases the number of 
potentially unstable modes (see Figure 4.1) and thus the dimension of the 
effective dynamical system. 

While one variable is enough to account for transitions between time- 
independent regimes, we need two for periodic motion, and even more for 
more complicated behavior, regular (multi-periodic in practice) or irregular. 
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4.2.1 

4.2.1.1 Bifurcat ion between t ime-independent  regimes 

The simplest case is of course that of time-independent regimes accounted 
for by fixed points in phase space. Accordingly, the simplest bifurcations 
are also those that correspond to transitions from one time-independent 
regime to another. In practice, they can be accounted for by a single 
variable through appropriate generalizations of the Landau model (1.19), 
p. 13, see Exercise 4.6.3 for further relevant considerations. 

First  steps: t ime-independent and periodic regimes 

Let us start with: 

A = r A  - g A 3  + H , (4.12) 

describing the evolution of a system at a perturbed supercritical bifurcation. 
The dynamics described by (4.12) is typical of convection which, as we have 
seen, is a stationary instability that saturates beyond threshold ( r  > 0, 
g > 0). Here time t has been rescaled with the natural evolution time TO of 
the unstable mode. 

Quantity H measures the intensity of some perturbation coupled to  the 
instability mode. In convection this could be an induction process pro- 
ducing a modulation of the background fluid density through non-uniform 
heating, which encourages the rising or sinking of the fluid already in the 
absence of temperature gradient. See also the remark on the facing page. 

The bifurcation d i a g ~ a m , ~  corresponding to  (4.12), is displayed in Fig- 
ure 4.4. The diagram corresponding to perfect  bifurcation, with H = 0, 
features: 

A, = *(r/g)1’2 (4.13) 

and has already been displayed in Figure 1.4, p. 14. It is recalled here as a 
fine solid line. In the general case, the fixed points A,  of (4.12), obtained 
by solving it for A when A = 0, now depend on r and H .  The introduction 
of a small field H # 0 induces a non-trivial response A,  # 0 below the 
theoretical bifurcation point at  r = 0. This response remains small as long 
as r is large and negative, so that 

A,  x ( - l / r ) H ,  (4.14) 

but closer to the threshold, as Irl decreases, the amplitude of the response 

5The bifurcation diagram is a graph locating the fixed points, and more generally the 
limit sets, as functions of the control parameters. 
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Fig. 4.4 Imperfect fork bifurcation accounted for by (4.12) with g = 1 for H = 0.054. 
Thick solid line (dashed line) corresponds to stable (unstable) fixed points as functions 
of T. The thin solid line is for the perfect bifurcation when H = 0 already displayed in 
Figure 1.4, p. 14. 

increases up to a point where nonlinearities can no longer be neglected. For 
T = 0 this yields 

A, = (R/g)’I3. (4.15) 

When T varies from -oo to fool A,  follows a first branch of stable solutions, 
the thick line that continuously joins the axis A = 0 for T + -cm to  the 
arc of parabola A, = +(r/g)l12 for T + +m. Sufficiently above threshold 
(r > 0), a second branch appears, disconnected from the first, that joins 
the arc of parabola A, = -(r/g)’12 in its stable part (continuous thick 
line) to the axis A = 0 for T -+ +oo in its unstable part (dashed line). The 
singularity at T = A = 0 has disappeared and one speaks of an imperfect 
bifurcation. In convection, a tiny forcing by thermal impression of a given 
pattern would produce this effect. The detailed study of this bifurcation 
diagram and other related ones is the subject of Exercise 4.6.3. 

Remark 
This description is in fact in close correspondence with the Landau 

theory of ‘second order’ thermodynamic phase transitions.6 
An example of such phenomena is the paramagnetic-ferromagnetic tran- 

sition in a magnet close to its Curie point T,. A, then plays the role of 
6An old but nice reference that exactly fits the present purpose is Section I1 of a 

review article by L.P. Kadanoff et al., “Static phenomena near critical point: Theory 
and Experiment,” Rev. Mod. Phys. 39 (1967) 395-431. See also [Stanley (1988)l. 
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the magnetization, the order parameter for that transition, and H is the 
magnetic field. Exponent 1/2 in (4.13) and 1/3 in (4.15) are the “classical” 
values of critical exponents ,!3 and 1/S linking the magnetization to the de- 
parture from T, on the one hand, and the response to  an applied field at  
T = T, on the other. Relation (4.14) defines a susceptibility that diverges 
as the inverse of the departure to criticality (critical exponent y with clas- 
sical value - 1). Thermodynamic fluctuations slightly change the classical 
values that are easily derived from the Landau theory. 

The notion of universality is central to  the theory of so-called ‘critical 
phenomena’ associated to ‘macroscopic ordering’ measured by the order 
parameter. The values of the critical exponents involve only very general 
features of the system, especially the number of dimensions of physical space 
(usually 1, 2, or 3, for linear, planar, or bulk systems) and the symmetries of 
the order parameter. To stay with the magnetic example, the magnetization 
behaves as a vector with 1, 2, or 3 components, according to the existence of 
an easy direction (Ising model), an easy plane (XY model) or full isotropy 
(Heisenberg model), respectively. 

The Landau theory can also deal with ‘first order’ transitions that are 
discontinuous, provided that an order parameter can be defined. For the 
liquid-gas transition, the order parameter is the density difference between 
the liquid and the gaseous phases. 

The mathematical counterpart of Landau theory is Thorn’s catastrophe 
theory,  see e.g. [Poston and Stewart (1978)l. 

4.2.1.2 Emergence of periodicity 

Increasing the complexity of the dynamics, we now consider the emergence 
of temporal oscillations, which requires a two-dimensional effective phase 
space, as already learned in Chapter 2. This phenomenon, called Hopf 
bifurcation, (or Landau-Hopf, Hopf-Andronov, Poincarg-Andronov) is best 
described through a complex representation of the relevant subspace where 
it develops. The generic model reads: 

A = s A  - g1AI2A,  (4.16) 

with A E @, s = (T - iw ,  and g = g’ + ig“. Setting A = p exp(icp), upon 
substitution and after simplification by exp(icp) we get: 
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and, separating real and imaginary parts: 

p = up - gIp3, 
@ = - w - g  I t  p .  2 

(4.17) 
(4.18) 

As already discussed, the coefficients in (4.16) are a priori functions of 
the control parameter T ,  but at the dominant order we can assume that 
w and g are constant, and introduce the dependence on T only where it is 
indispensable, i.e. to control the growth rate. Since it must be negative be- 
low threshold (damping) and positive above (amplification), we can simply 
take u c( T .  

The study of the problem for the modulus p is similar to that for the 
order parameter A in the previous section. Solving (4.17) for p at steady 
state (i.e. after elimination of the transient behavior), we get: 

p = p* = (./g')'/Z (4.19) 

which, once inserted in (4.18), yields: 

p(t) = -w,t + p o  with w* = w + g " r / g ' ,  (4.20) 

where p o  is a constant that depends on initial conditions. The so-obtained 
limit cycle is stable when the bifurcation is supercritical, which implies 
g' > 0, as illustrated in Figure 4.5. On the other hand, as understood from 
(4.20), coefficient gN/g' determines the change in angular frequency due to 
nonlinear couplings, i. e. the oscillation's nonlinear dispersion. 

~ limit cycle 0=+0.25 

Fig. 4.5 Supercritical Hopf bifurcation (emergence of a stable limit cycle). The oscilla- 
tions relax towards the origin below the threshold (left) and saturate at a finite amplitude 
above (right). 
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4.2.1.3 

In fact one can show in full generality that the behavior of a system with 
a two-dimensional phase space which is isomorphic7 to R2 cannot have 
regimes that are more complicated than periodic according to the Poincari- 
Bendisson theorem. A qualitative idea of the reason why complex behavior 
(chaos) is excluded for two-dimensional time-continuous systems stems from 
the observation that, at a regular point (i.e. F(X) # 0) the vector field de- 
fines only one tangent direction, so that two trajectories cannot cross at this 
point. In dimension 2, the consequence of this fact is particularly drastic: 
a trajectory is a line (dimension 1) that splits the space (dimension 2) in 
two disconnected parts. Once transported everywhere by the vector field, 
this topological constraint implies that trajectories corresponding to  steady 
states can be either fixed points or closed curves, i.e. time-independent or 
time-periodic states. The rigorous mathematical proof of this result is not 
as easy as it seems; accessible references are [Hirsch and Smale (1974)I or 
[Lefschetz (1977)], for example. By contrast, many things become possible 
in dimensions strictly larger than two since trajectories have then enough 
room to wind in complicated ways without crossing by “escaping” in the 
supplementary dimensions.’ 

In what follows, we examine first the case of periodically forced two- 
dimensional systems, which are in fact three-dimensional systems with a 
particular structure. The stroboscopic analysis of trajectories (concretely 
illustrated in the numerical experiments of appendix B) is used to introduce 
discrete-time dynamical systems essential to  the understanding of the sub- 
sequent transition steps toward chaos. Before doing this we examine first 
the respective roles of linear resonance and nonlinearity on the particularly 
simple case of the forced Duffing oscillator. 

Dynamics in dimension two, general case 

4.2.2 Quasi-periodicity and resonances 

4.2.2.1 Forced systems 

Up to now we have considered autonomous systems in which time t does 
not appear explicitly, so that the trajectory is independent of the instant 
chosen to specify the initial condition in phase space, which is no longer 

7The surface of a torus is not isomorphic to W2 though tangent planes can be defined 
everywhere. 

8The same will hold for two-dimensional manifolds with nontrivial topology such 
as the Moebius band, which cannot be applied on W2 without tear but can indeed be 
embedded in W3. hence the third dimension. 
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the case of forced systems introduced on p. 27. It is easily seen that the 
effective dimension of a forced system formally written as: 

x = F(X; t )  , (4.21) 

is increased by one with respect to  the dimension of the corresponding 
unforced system. In order to specify a trajectory completely, we have indeed 
to  choose not only the initial condition X(O) but, since the system is no 
longer time-translationally invariant, to tell also the time t ( O )  at which we 
start the system. This very need for a supplementary initial condition 
already points to an increase of the effective dimension. 

More formally, one can pass to an extended phase space in which the 
system is autonomous by introducing an auxiliary state variable U trivially 
governed by U s 1. Setting Y = {X, U )  we then obtain: 

Y = B(Y) with B = {F, 1) (4.22) 

which is indeed autonomous. If the initial condition was X = X(O) at 
t = do) for (4.21), then for system (4.22), U(O) = t ( O )  presents itself as the 
initial condition for U .  The extended phase space is thus the product of 
the original phase space X by E% which accounts for the time variable. 

In practice, the most familiar case of non-autonomous system corre- 
sponds to periodic forcing with period T (angular frequency w = 27r/T), 
i.e. F ( X ; t  + T) = F ( X ; t ) .  From a mechanical viewpoint, one can un- 
derstand the supplementary variable U as characterizing the rotation of a 
wheel with a moment of inertia so large that its angular speed w is inde- 
pendent of the state of the system to which it is coupled, acting on it like 
the connecting rod of a steam engine. 

Stroboscopic analysis of the trajectories at the period of the forcing then 
comes to  take pictures of the system at a series of times tl, = kT, k E N. 
Geometrically, this operation corresponds to a series of “sections” of the 
extended phase space (Figure 4.6, left). During the time interval between 
two sections, the trajectory can be computed with as much precision as 
desired by integration of (4.21). 

Owing to  the periodicity of the forcing, we can represent the full trajec- 
tory by registering the state of the system in its (reduced) phase space X 
while keeping track of the instant it passes through this state using label k .  
In this perspective the full phase space of the system in restricted represen- 
tation is the product of X by the periodized interval [O,T]; the periodized 
interval [O; 11 is usually called the one-dimensional sphere S1, so that one 
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(n-l)T nT (n+l)T 
sphere 
81 

(vanable U) 

Fig. 4.6 Extended representation (left) and restricted representation (right) of the phase 
space of a periodically forced system. The stroboscopic analysis corresponds to a series 
of “sections” in the extended phase space, further identified modulo T in the restricted 
representation. 

can denote it as X @ T S1 (Figure 4.6, right). The generalization of this 
operation to the case of autonomous dynamical systems (Poincare‘ section) 
is a particularly efficient tool for the understanding of the emergence of 
chaos. 

4.2.2.2 

Let us consider a Duffing oscillator with natural period wo = 1, damped 
but externally forced: 

Steady state of  a periodically forced oscillator 

X + 271x + x + &x3 = f cos(wt). (4.23) 

We consider here only the case of a saturating nonlinearity E 2 0 (see also 
Exercise 2.5.7). 

Linear preliminary. When E = 0, after the damping of transients, the 
steady state response is obtained by inserting X = Ar cos(wt - cp) in (4.23), 
which yields: 

[(l - w2) cos(wt - cp) - 277 sin(wt - cp)]Af = f cos(wt) . 
Expanding cos(wt - cp) and sin(wt - cp), by identification of terms in cos(wt) 
and sin(wt), we get: 

[ (1 - w’) cos cp + 271w sin ’p] Af = f , 
-2~wcoscp + (1 - w2) sincp = 0 .  

We derive immediately from the second equation that 

277w 
1 - w ”  

tancp = - (4.24) 
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and, upon elimination of cos cp and sin cp 

{ (1 - w”)’ + 4 ~ ’ u ’ ) A ~  = f 2 ,  (4.25) 

which leads to 

Af = f (4.26) 
J(1 - w2)’ + 4772w’ ’ 

In Figure 4.7, this solution of the linear problem for f = 1, labelled E = 0, 
is represented as a thick solid line for Q = 0.1 and as a thin solid line in the 
limit r )  = 0. 

Effect of the nonlinearity. Let us assume that the forcing is sufficiently 
weak (f << 1) and that the response is not much distorted so that we 
can restrict ourselves to a first harmonic approximation, even close to  the 
linear resonance. At steady state, we can still keep X = Afcos(wt - cp) 
which, once inserted in (4.23), adds to the terms already obtained the 
quantity ~ A f 3  cos3(wt - cp) = EA; [$ cos(ut - cp) + $ cos (3(wt - cp))] . Only 
the first term of this sum is of interest to us now. Expanding it as before in 
cos(wt) and sin(&), we immediately see that the solution can be obtained 
by replacing (1 - w’) by [ (1 - w’) + :&A:] everywhere. 

6 

4 

2 

n 

“0 1 2 w 3  

Fig. 4.7 Response Af of the periodically forced Duffing oscillator upon sweeping the 
frequency around its resonance value. Thick and thin lines correspond to 11 = 0.1 and 
7 = 0, respectively in the linear ( E  = 0) and nonlinear ( E  = 0.3) cases. Stable solutions 
are represented by solid lines and unstable ones by dashed lines. 
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Equation (4.25) now reads 

{ [(l - w 2 )  + ;~Af2]’ + 4q2w2}Af  = f 2 .  (4.27) 

This equation is cubic in A: and can thus generically have one or three 
solutions, by contrast with the linear case ( E  = 0) for which the solution in 
A; is unique. 

Expanding (4.27) and considering the sign of its coefficients, one can 
easily show that there is always at  least one positive root in At .  In order 
to convince ourselves that it can also have other positive roots, we now 
examine the limiting case q = 0 which reads: 

[(l - w’) + ;EA:]’A: = f 2 .  

In the absence of forcing (f = 0), in addition to the trivial solution Af = 0, 
this equation has the double root: 

(4.28) 

which is acceptable as soon as w 2 1 (for E > 0, which we assume). This 
solution is perturbed by the introduction of a small forcing that suppresses 
the degeneracy. For w sufficiently large, the pair of solutions that derives 
from it is given with a good approximation by 

A: = A: f d with d = f [4(w2 - 1 ) / 3 ~ ] - ~ ” ,  

where the correction d remains small when compared to  A;,  itself large 
in the considered limit w >> 1. These two solution branches are traced for 
f = 1 and E = 0.3 as thin lines in Figure 4.7. The solution for f = 0 derived 
from (4.28) is an arc of hyperbola (not drawn) that starts at w = 1 and 
serves as a common asymptote inbetween these two branches. The thick 
line corresponds to the solution of the equation (4.27) including the viscous 
friction term with q = 0.1. As usual, unstable solutions are indicated by 
dashes. 

In applications, one can fix f and change w ,  or the reverse. In both cases 
one observes that there exist ranges of parameters over which multiple so- 
lutions exist. Then there are three solutions, one can show by methods 
adapted from those developed in Chapter 2 that the solution with inter- 
mediate amplitude is unstable and thus cannot be observed. By sweeping 
the control parameter (angular frequency or amplitude of the forcing) one 
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may drive the system to perform hysteresis cycles during which the oscil- 
lator jumps from a large amplitude to  a small one or the reverse. One can 
also notice that when the nonlinearity is saturating ( E  > 0), the curves 
bend in the direction of high frequencies, which is easily understood from 
the relation between the amplitude and the angular frequency for the free 
oscillator, Equation (2.48) p. 52 (increased average amplitude implies in- 
creased effective stiffness and thus shortening of the period). 

Secondarp resonances. The modification of the response curve in the 
neighborhood of the natural period of the oscillator, the so-called pr imary  
resonance is the most immediate effect of nonlinearity. The existence of sec- 
ondary resonances at  angular frequencies close to multiples or sub-multiples 
of this angular frequency is slightly less intuitive, though they still re- 
sult from elementary trigonometric relations. The subharmonic resonance 
is most easily understood. As a matter of fact, if the forcing period 
w = 1/3 is apparently far from the resonance, the cubic nonlinearity in- 
duces some response at  w = 1 since cos3(t/3) = ! cos(t/3) + $ cos(t). In 
turn, this response can be seen as an external forcing of the fundamental 
mode, inducing its own resonant response. Considering a superposition 
X = [ A  cos(t + $) + Af cos(wt + cp)] and computing X 3  one finds terms in 

cos3(t + $), cos2(t + $) cos(wt + cp), 
cos(t + $) cosywt + cp), cosywt + cp), 

which generate terms with angular frequencies f l ,  f 3 ,  f 2  f w, f l  f 2w, 
f w  et f 3 w ,  where the f signs come from the fact that the resonance 
does not depend on the sign of the arguments of the sines and cosines. A 
resonance occurs every time a combined angular frequency is equal to  the 
natural angular frequency ( f l ) . ’  In addition to w x 1 corresponding to the 
primary resonance, this rule adds w x 1/3 (3w = l), w x 3 (2 - w = -l), 
and of course w M 0. However the orders of magnitude of these different 
perturbations to the initial problem (the free, linear, frictionless oscillator) 
are different in each case, which imposes separate studies of lesser interest 
than that of the primary resonance. 

Simple or  complex response? As in Chapter 2, if one wants to go beyond 
the first harmonic approximation, one has to develop rigorous perturbation 
approaches by multiple scale methods. In the present context this would 
however lead us too far with little compensation as far as the insight into 

~ 

QExpanding the solution in terms of complex variables would lead to two conjugate 
resonance conditions, and at the end the same combinations, hence the fl. 
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nonlinear phenomena is concerned. (Asymptotic approaches to nonlinear 
oscillations are examined in greater detail in [Nayfeh and Mook (1979)l.) 

In practice, the relative simplicity of the response of the Duffing oscilla- 
tor with a saturating nonlinearity ( E  > 0) submitted to  a harmonic forcing 
stems from the fact that its phase space contains just one center at the ori- 
gin and no unstable elements. This would no longer be the case if, instead 
of X + X + X 3  = 0, we had taken X - X + X 3  = 0. The study of its phase 
portrait similar to  that in Exercises 2.5.6 and 2.5.8 shows that the center at 
the origin is replaced by a saddle and it is precisely the instability inherent 
in this type of fixed point which is at the origin of the chaotic behavior 
observed under external periodic forcing when the forcing increases beyond 
some threshold. More on this subject can be found in [Guckenheimer and 
Holmes (1983)], whereas the numerical study proposed in Appendix B, Sec- 
tion B.4.1, shows that the same result holds in the case of the periodically 
forced damped pendulum for the same reason: the presence of saddles in 
the phase portrait of the unperturbed system, Figure 2.9, p. 44). 

Before entering the realm of chaos, let us consider the (still regular) case 
of self-sustained oscillations submitted to a periodic external forcing. 

4.2.3 Quasi-periodicity and lockings 

The phase portrait of the (unforced) van der Pol oscillator is less trivial 
than that of the standard damped Duffing oscillator since it displays an 
unstable focus at the origin and an attracting limit cycle surrounding it 
at some distance. We take it here in the form (2.60), p. 54 which, when 
externally forced, reads: 

X - €(1 - X 2 ) X  + x = f cos(wt) . (4.29) 

Its different regimes will systematically be studied by means of stroboscopic 
analysis a t  the forcing period T = 2n/w. 

In the absence of forcing (f = 0), the temporal evolution of some 
observable W ( X )  function of the state X = { X , X }  of the oscillator is 
a periodic function of time with period TO = 2x/w0 (WO M 1 for E << 1, see. 
$2.3.2.2, p. 52). 

Assuming that the forcing is weak (f <( 1) and that the imposed angular 
frequency is not commensurate with wo, i.e. w/wo = a irrational, after 
transients have decayed we expect W ( X ( t ) )  = G(wot + 'p,wt + t)) with 
G(u + 27r, w) E G(u, w + 27r) = G(u, w), i.e. two-periodic behavior. 
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Fig. 4.8 Bifurcation diagram of the forced van der Pol oscillator. Left: w x 1, E = 0.1, 
and f = 0.5. Right: w M 3, e = 0.1, and a larger forcing, f = 1.0, to make its effects 
more visible. Notice also the expanded scale for w .  

By contrast, when w and wo are commensurate, i.e. w/wo = a E Q, 
CY = p / q ,  integers p and q being relative primes, W ( X )  is a periodic function 
of time with period equal to the smallest common multiple of T and To, - 
T = pT = qTo. 

Frequency locking. When the intensity of the forcing increases, the os- 
cillator can “feel better” if it leaves its own frequency and adopts that of 
the forcing. It is the locking phenomenon: over a full range of values of w ,  
around a condition such that qT0 = p T ,  the oscillator adjusts its motion 
so that its effective period PO, a P T ~ O T ~  function of f and w = 2x/T, still 
fulfills the resonance condition, qT0 = 5? = pT so that the period of the 
forced system remains 5?. 

Figure 4.8 displays the set of stroboscopic recordings Xstr as a function 
of the forcing frequency w (bifurcation diagram) in a given numerical sim- 
ulation of (4.29), thus illustrating this spectacular persistence phenomenon 
of locking windows for w M 1 with E = 0.1 and f = 0.5 (left), and for w M 3 
with E = 0.1 and f = 1.0 (right). 

Let us consider first the window at w M 1. When the locking takes 
place, the system is periodic with period T so that, when stroboscopically 
sampled at period T, it takes one and a single value XSt,(w). On the 
contrary, as soon as w gets out of the window, though the oscillator is still 
sensitive to the forcing, it recovers its independence and the signal becomes 
two-periodic. The stroboscopic analysis then produces a picture such as 
that for w = 0.75 in Figure 4.9 (left): the state of the oscillator ( X  and 
X )  is registered at increasing multiples of the forcing period, t k  = kT, 
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Fig. 4.9 Left: Stroboscopic analysis of a trajectory of the forced van der Pol oscillator 
for w = 0.75 and f = 0.5 (two-periodic unlocked regime). Right: Main resonance tongue 
w PZ 1: region of the ( w ,  f) parameter plane where locking is observed. 

and it can be observed that the corresponding points arrange themselves 
along a closed curve that is continuously covered. Considering successive 
points shows that they jump from one position to the next with a slight 
shift, which explains the continuous coverage due to incommensurability of 
the two periods (while only a finite set of points would be reached in case 
of locking). The projection of this curve on the X axis produces the full 
vertical segments shown at values of w corresponding to unlocked behavior 
on the bifurcation diagram of Figure 4.8. Notice that with w = 0.75 one 
has 4To 21 3T, i.e. close return every three samplings, which explains the 
proximity of points labelled 1, 4, and 7, etc. 

The case of the window at w M 3 (Fig. 4.8, right) is analogous but, inside, 
we now have three values of Xsrt for each w.  This is easily understood from 
the fact that the trajectory is sampled at period T which is about 1/3 of 
the natural period of the oscillator, so that it is regularly sampled three 
times during one of its own turns. In the locked regime, it returns exactly 
at the same places (modulo 3) whereas outside the window, in the unlocked 
regime, return points shift slightly from one sampling to the next, which 
again gives continuous segments on the bifurcation diagram. Notice that, 
in spite of a much stronger forcing, the window is extremely narrow. 

Emergence of complex behavior. The variation of the range in w where 
the van der Pol oscillator is locked to the forcing, the so-called resonance 
tongue, is displayed in Figure 4.9 (right) as a function of the intensity f 
of the forcing (on the vertical axis). For this resonance, it widens linearly 
with f at least as long as it is sufficiently weak. Higher order resonances 
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are narrower and widen more slowly. Frequency locking is a profoundly 
original manifestation of nonlinear effects. In the case of the van der Pol 
oscillator in a quasi-harmonic regime ( E  = 0.1) it seems that one cannot ob- 
serve phenomena more complicated than a decay of two-periodic behavior 
into simply periodic behavior, as long as one stays with reasonable values 
of the parameters. Things are different when the oscillator is more anhar- 
monic (e.g. E = 1.0). A wide variety of behaviors can be observed, with 
whole ranges of angular frequency where the response to forcing is chaotic, 
especially when the periodic driving is slow. 

M u t u a l  locking. Up to now we have considered forcing in a strict sense, 
that is to say without feedback of the forced oscillator on the driving sys- 
tem. Besides, it is the presence of this immutable clock that makes the 
stroboscopic analysis easy to perform. Relaxing this condition, we can con- 
sider a system composed of two weakly coupled oscillators. Transposing the 
observations above, we may expect mutual locking in the neighborhood of 
resonance conditions fulfilled by the angular frequencies of these oscillators, 
for example Huygens’ twin pendulum clocks.1° A system of two coupled 
oscillators is, as a whole, a four-dimensional system, each subsystem being 
two-dimensional. We are thus lead back to the case of autonomous systems 
in a dimension greater than two, to which we devote the end of this section. 

4.2.3.1 

To reach a higher complexity level, we must study the stability of self- 
sustained oscillations corresponding to  limit cycles in phase space. This 
study must be performed not only on the surface containing the cycle, 
locally represented by the complex plane ( A  E @), which allows only per- 
turbations in the radial direction, see Eq. (4.17), but in the full space in 
which the cycle is embedded, which permits “escape” in the supplementary 
dimensions. At this stage, it is useful to recall that we have arrived to 
an effective two-dimensional dynamics by adiabatic elimination of all sta- 
ble modes, leaving us with a single relevant pair of center modes. Upon 
increasing the stress applied to the system, we have to consider the possibil- 
ity that among stable modes, some become “dangerous.17 Mathematically 
speaking, the situation is more complex than before when we had to  deal 
with a fixed point, since now we have to perturb a well established periodic 
dynamics. 

Stabili ty of a l im i t  cycle: general case 

“See the article by J. Whitfield, “Synchronized swinging,” Nature Science Update, 
<http://www.nature.com/nsu/020218/020218-16.html> 
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Fig. 4.10 Stability of a limit cycle from a geometrical viewpoint. Top-left: Poincarb 
section and first return (Poincarb) map *(M). Top-right: Spectrum of the linearized 
map A. Bottom: Stability/instability of the fixed point of the map. 

Let us keep the geometrical approach sketched in Figure 4.6 illustrating 
the case of a periodic forcing, but now consider the intersections of the tra- 
jectories in a d-dimensional phase space with a (d - 1)-dimensional surface 
C, called the Poincare‘ surface of section, see Figure 4.10 (top-left). The 
oscillation that has settled can be viewed as a forcing for all other perturba- 
tions, and in the vicinity of the cycle, the phase space has indeed this prod- 
uct structure of the sphere S1 times a relevant space in which “transverse” 
perturbations live, as extrapolated from Fig. 4.6 (right). A correspondence 
between successive intersections of trajectories with C is thus established in 
the form of a map of C onto itself M‘ = +(M), called the first return map 
or the Poincare‘ map. This transition from a continuous-time dynamics to  
a discrete-time one, from a d-dimensional differential system to a (d - 1)- 
dimensional map, is therefore basically similar to  the stroboscopic analysis 
used for periodically forced systems. The difference just comes from the 
fact that the time interval between two sections is no longer the external 
forcing period but varies slightly with the position in the neighborhood of 
the cycle and tends to the period of the cycle as it is approached. Saying 
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this simply assumes that the differential dynamical system is smooth, so 
that the properties of the trajectories vary continuously, and that the sur- 
face of section is transverse ( L e .  not tangent) to the cycle, so that the 
trajectories are correctly sampled. 

Obviously, the cycle is associated with a fixed point P of the map !k ( i e .  
P = %(P)) and will be stable is P is stable for Q.. In the neighborhood of 
P, the map Q. can be linearized into an operator represented by a square 
(d - 1) x (d - 1) matrix A, and the stability properties of the cycle can be 
derived from its spectrum, as illustrated in Figure 4.10 (top-right). 

In full generality, one expects non-degenerate complex eigenvalues and 
corresponding two-dimensional invariant subspaces that are easier to pa- 
rameterize using complex variables. In such a subspace, the linearized 
dynamics then reads: 

z k + 1  = X z k  I (4.30) 

Z E C measuring the departure from the fixed point in the eigenspace of 
eigenvalue A. 

According to the definition, we have stability when the successive iter- 
ates of some initial condition Z(O) approach the origin as k increases and 
instability when they get away, Figure 4.10 (bottom). A given complex 
eigenmode is thus stable when (XI  < 1, marginal when 1x1 = 1, and unsta- 
ble when 1x1 > 1. Writing X as 

X = pexp(2~ia:) ,  

leads to a clear separation of the modulus p from the phase 527ra of the 
eigenvalues. 

The quantity a specifies the angular frequency of the mode that makes 
the cycle possibly unstable: a: = W / W O .  This can be irrational or rational 
like in the case of periodic forcing. Cases when X E B are special. Equation 
(4.30) then turns into a real iteration: 

x k + l  = X x k  j (4.31) 

and we must distinguish the dynamics corresponding to X > 0 ( i e .  a: = 0) 
for which iterates tend to or depart from the origin in a monotonic fashion 
from that observed when X < 0 (2.e. (Y = 1/2) for which they evolve by 
jumping alternatively from one side to the other. 

Eigenvalue X can be complex or not, but the corresponding stability 
condition remains 1x1 < 1 and a bifurcation takes place when at least one 
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(pair of) eigenvalue(s) leaves the interior of the unit disc as the control 
parameters are varied. Different possibilities are indicated by arrows in 
Figure 4.10 (top-right). 

Though the main purpose of the course is not a mathematical study 
of the different scenarios of transition to chaos in the perspective opened 
by Ruelle and Takens (see Figure 3.5, p. 93), let us mention that one can 
account for the simplest cases by completing (4.30) or (4.31) with appro- 
priate terms. In the original Ruelle-Takens scenario, the destabilization of 
the limit cycle still leads to a regular but two-periodic regime (A E C). The 
iteration that accounts for it reads 

Z,+l = xz, - ylZ,l2Z, , y = y' + iy" . (4.32) 

After the damping of transients, it yields iterates evolving around a circle 
with radius Jp=-r, where p = 1x1, Fig. 4.11 (top). Trajectories in phase 
space wound on an invariant limit torus which is the Cartesian product of 
two circles, one corresponding to the unstable limit cycle (longitude) and 

Fig. 4.11 Hopf bifurcation for a map (also called Neimark-Sacker bifurcation). Top: 
Iteration (4.32) for 1x1 < 1 (left) and 1x1 > 1 (right). Bottom: Perspective sketch of the 
skeleton of the torus over which the two-periodic dynamics develops asymptotically in 
time beyond bifurcation. 
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one for the new mode (meridian section), Fig. 4.11 (bottom), correspond 
to  this description on the PoincarC surface. 

The picture obtained in this case is very similar to that for the forced van 
der Pol oscillator. The difference is just that the two anguIar frequencies in 
the system now have intrinsic origin, the first one, which plays the role of 
the forcing, is that of the original cycle and the second one is that of its most 
dangerous instability mode. They can easily be identified on the records of 
physical observables, e.g. the two-periodic regime observed in convection 
and illustrated in Figure 3.8. As before, two-periodicity is observed only 
in the absence of resonant interaction between the two angular frequencies, 
that is to say as long as the ratio a remains irrational. Nonlinear couplings 
are therefore expected to  be responsible for lockings when a approaches 
a rational value p / q  as the control parameters are varied, lockings all the 
more visible when the denominator q is a small integer. 

Two-periodic states, and a fort iori  locked one-periodic states, are regu- 
lar asymptotic regimes. In order to observe a chaotic behavior, it seems nat- 
ural to  think of an effective dimension still increased by one. This was pre- 
cisely the context of the Ruelle and Takens approach, introducing strange 
attractors with properties accounting for irregularity in spite of determin- 
ism. More precisely, these authors showed (Note 8, p. 92) that when the 
system is smooth (C”), chaos is generic after supplementary bifurcations 
introducing two new angular frequencies in the system. The analyticity con- 
dition was later made milder ( i e .  C2 instead of C”) with chaos possibly 
occurring in three-frequency quasi-periodic systems.ll However, concrete 
scenarios from two-periodic regimes to chaos generally rely on different ex- 
planatory models which would lead us on mathematical grounds too far 
away from our main purpose. On the other hand, it is more interesting to 
spend some time to consider resonant cases. 

When a = p / q  the two periods are resonant. Little is changed if q is 
large, i.e. q 2 5. The resonance is weak) and the system behaves roughly 
as in the non-resonant case: typically, the dynamics still takes place on 
the torus that has emerged from the bifurcation. Genuinely two-periodic 
unlocked regimes alternate with locked regimes inside narrow tongues as 
the control parameters are varied. In a quasi-periodic state the trajectory 
winds on the torus without closing (the torus is densely covered with it), 
whereas in case of locking the trajectory is a closed cycle wound on the 
torus, making p turns along the meridian and q turns in the longitudinal 

l lS .  Newhouse, D. Ruelle, and F. Takens, “Occurrence of strange axiom A attractors 
near quasi-periodic flows on Tm, m 5 3,” Commun. Math. Phys 64 (1978) 35. 
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Fig. 4.12 Trajectories on the torus are represented by their phases: Longitude 0 = 
wot + do) (horizontal axis) and meridian coordinate ’p = wt + ’p(O) (vertical axis) defined 
modulo 27r. Up to a factor 27r, the torus is isomorphic to the square 0 E [O; 11, ’p E [O; 11 
with opposite sides identified. Left: For a two-periodic state, a @ 0, the whole (0,‘p) 
square is covered by any given trajectory as t + 00, here (I = (32/71)’12 = 0.671345.. . . 
Right: When a = p / q ,  the same state is reached after a time qT0 = p T ,  here a = 2/3 = 
0.666666.. . . (Notice that a = 2/3 is in principle a case of strong resonance; this value 
has been chosen here only because the figure is easy to read.) 

direction (Fig. 4.12). Chaos may enter after a new instability mode sets in. 
By contrast, when q 5 4 the resonance is strong and has marked effects, 

destroying the torus over which the motion takes place. Most extreme 
cases correspond to q = 2 and q = 1 that bring back the map from a 
complex iteration (4.30) to a real iteration (4.31) since for p / q  = 1/2  one 
has X = exp(i7r) = -1 and for p / q  = 1/1, X = exp(2i7r) = 1. Each of these 
two cases govern a specific scenario. 
0 The subharmonic cascade observed in convection (Fig. 3.7) corresponds 
to the strong resonance a = 1/2 ,  whose normal form reads: 

Xk+l = fr ( X k )  = -(I + T ) x k  - xi. (4.33) 

The corresponding scenario is illustrated here using the so-called logistic 
map12 

Xk+l = 4 r x k  (1 - x k )  7 (4.34) 

with 0 5 r 5 1. The full bifurcation diagram in Figure 4.13 displays how the 
attractor (values of X reached as the iteration proceeds, after elimination 

12For an introduction, see R.M. May, “Simple Mathematical models with very com- 
plicated dynamics,” Nature 261 (1976) 459-467. 
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Fig. 4.13 Subharmonic cascade for (4.34) 

of transients) changes as the control parameter T is varied. 
For T < 314, a single point is obtained, corresponding to  a periodic 

trajectory with period one (period TO if one considers the underlying limit 
cycle). At T = T I  = 314 a first period-doubling takes place: a period-two 
regime sets in with two values XI et X, alternatively visited as the sys- 
tem evolves. (Working out the nonlinear variable change that turns (4.34) 
into the normal form (4.33) close to the bifurcation point is an interesting 
exercise.) 

At T = r 2  = 0.86237.. . , this period-two attractor is destabilized against 
a period-four regime, etc., as observed in convection experiments (Fig. 3.7, 
p. 95). The bifurcation cascade ends up at  T = T ,  = 0.89248. . . , where 
the system becomes periodic with infinite period in the form 22n, n -+ 00. 

At this value, the so-called margin of chaos, the system is in fact aperiodic 
since it never returns exactly in the same state. 

Beyond T,, continuous vertical segments, in fact densely covered with 
points, are observed on the bifurcation diagram for each value of T .  They are 
the trace of chaotic attractors for which infinite sets of unequally distributed 
points are visited all along a trajectory. 

In fact, the situation is also very complicated in the parameter space 
since the return to  periodic attractors is clearly visible in some parameter 
windows, the corresponding periodic states themselves decaying to chaos 
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through subharmonic cascades. Programming (4.34) or its variant (4.69), 
p. 175, is so easy that one should not miss exploring their bifurcation dia- 
gram numerically by oneself. 

0 Interrnittency (type I, that featured in Figure 3.9, because several other 
types exist) takes place at  a l/l-resonance generically accounted for by the 
map: 

Before the transition, as long as T < 0, it has two fixed points solutions of: 

x * = r + x * + x ;  =2 X * = f J - r .  

All trajectories starting with X < X(+)  (and small enough) converge to- 
wards the fixed point at  X ( - ) .  Other trajectories leave this limited region of 
phase space, Figure 4.14. Beyond the transition, for T > 0, the fixed points 
have disappeared but the local structure of phase space keeps a track of 
their presence as “ghosts”: iterates go through the kind of tunnel opened 
between the graph of the map and the line Xk+l = x k .  They move very 
slowly since X k f l  = XI, plus some tiny correction, approach the origin and 
then go away. 

Now the global structure of phase space may provide the opportunity 
for trajectories visiting remote regions of phase space to come in the neigh- 

t 

Fig. 4.14 Type-I intermittency according to (4.35). Left: r < 0, two fixed points, X ( - )  
stable, X ( + )  stable. Right: r > 0, no fixed points but a narrow tunnel between the 
graph of the map and the line Xn+l = X,. 
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borhood of the origin. When this is the case, for T < 0 the system coming 
close to the stable fixed point eventually converge to it. By contrast for 
T > 0 fixed points no longer exist, iterates sent in the vicinity of the origin, 
travel slowly through the tunnel, then get away and come back later, hence 
the intermittent behavior observed in Figure 3.9, p. 97. 

Laminar intermissions are uncorrelated and their durations are unpre- 
dictable. This is due to the more or less uncontrolled evolution far from 
the previously existing limit cycle which generates randomness in the re- 
injection process. 

While interpreting the experiments, one must remember that the map 
describes what happens after an appropriate section of the dynamics has 
been performed. At the bifurcation, twin limit cycles, one stable and the 
other unstable, collide and disappear. Laminar intermissions are made of 
slowly evolving regular periodic oscillations corresponding to the “ghost” 
limit cycles. They are interrupted by chaotic bursts during which the sys- 
tem explores remote regions in phase space, until it is sent back in the 
laminar region, ready for a new intermission. 

4.3 Characterization of Chaotic Regimes 

As conceived by Ruelle, chaos is a dynamical regime characterized by a spe- 
cific sensitivity of trajectories to initial conditions and small perturbations. 
In phase space, it is accounted for by strange attractors that are robust 
attracting limit sets on which small departures between two trajectories 
are indefinitely amplified (the general meaning of instability) as a result of 
a stretching-and-folding process analogous to the making of Danish pastry 
(baker map, see later Figure 4.17). 

The main interest of these concepts is to reconcile determinism and 
stochasticity in dissipative dynamical systems, which was initially supposed 
to further shed some light on the problem of the “nature of turbulence’’ as 
discussed in Chapter 3, $3.2.2.3, p. 92. 

In this section we thus focus on a quantitative estimate of the two main 
facets of chaotic dynamics: the “longitudinal” instability measured by L ya- 
punov exponents and the fractal dimensions characterizing the %ansverse” 
foliated structure. 
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4.3.1 Instabili ty of trajectories and Lyapunov exponents 

The instability of trajectories on a strange attractor is illustrated here 
by means of an everywhere expanding iteration called the dyadic m a p  
(Fig. 4.15, top-left). It reads: 

Xk+l = 2Xk (mod 1). (4.36) 

It is convenient to visualize the trajectory {Xk, k = 0,1, .  . . } as a walk in 
the complex plane Zk+1 = Zk + exp(27riXk). (2 has no dynamical signif- 
icance here by contrast to X which is governed by the map.) This simple 

Fig. 4.15 
neighboring trajectories. Bottom left: Dyadic walk. Bottom right: Random walk. 

Interpretation of chaos. Top left: Dyadic map. Top right: Divergence of 
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representation helps us to clearly illustrate the divergence of trajectories 
starting at neighboring points (Fig. 4.15, top-right) and the long-term evo- 
lution (Fig. 4.15, bottom-left) that leads one to  think of the random walk 
that would be obtained by drawing the successive Xk uniformly at random 
over the unit interval (Fig. 4.15, bottom-right). 

The divergence rate of trajectories is a good measure of chaotic behavior. 
Let us show how the analysis proceeds in a simple example and consider a 
map f of a single real variable X :  

Xk+l = f ( x k )  7 

more general than (4.36). To begin with, a given trajectory { x k ;  k = 
0,1,2.  . . } starting at X O  = X(O) is taken as a reference and we consider a 
neighboring trajectory {Xk;  k = 0,1 ,2 . .  . }  starting at XO = X(O) + 6 x 0 .  
Denoting f' = d f /dX we have: 

X l  = x1 + ax1 = f ( X 0  + 6x0) = f ( X 0 )  + f ' ( X 0 )  ax0 
* ax1 = f'(X0)6Xo 

and using the chain rule: 

Assuming a geometrical growth/decay as l d x k l  N yk1dXol = exp(kX)lbXo(, 
which defines both y and X = lny, we get: 

At this stage, y still depends on k. To get rid of this dependence we take 
the limit k -+ 00 which leads to the definition of the Lyapunov  exponent:  

(4.37) 

In other words, the Lyapunov exponent is thus the time average of the 
local divergence rate In(lf'l), i.e. a measure of long term unpredictabil- 
i t y .  Trajectories diverge in the mean when X > 0, which can be taken as 
the definition of a chaotic dynamics. For the dyadic map (4.36), one gets 
X = In 2 > 0. 
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The extension to maps with several variables leads to  the definition 
of the Lyapunov spectrum, which rests on the analysis of the asymptotic 
behavior of the product of Jacobian matrices obtained from the chain rule. 
This generalizes the eigenspectrum of the stability matrix at  a fixed point 
to  the case of arbitrary trajectories. Technically, the matter is difficult 
but, in the limited context of this course, it is sufficient to know that this 
can be done and that, by successive generalizations, one can determine 
Lyapunov spectra for differential systems (from time-7 maps, see p. 28) 
and for continuous media governed by partial differential equations (after 
spectral approximation or discretization leading to finite-order ordinary 
differential systems, see Appendix B). 

The Lyapunov spectrum can be ordered by decreasing values of the 
individual exponents. The system is then declared to  be chaotic when 
the largest exponent is positive. The empirical determination of Lyapunov 
exponents from time records will be examined later, p. 165. 

Let us stress the fact that the whole approach in terms of dynamical 
systems is a progressive extension of linear instability concepts from time- 
independent regimes (fixed points of continuous-time systems) to periodic 
regimes (limit cycles then seen as fixed points of discrete-time systems) and 
finally to irregular aperiodic regimes. 

4.3.2 FTactal aspects 

Up to now we have been interested in expansion properties “along” the 
attractor. However the systems of interest are supposed to be dissipative, 
which implies overall contraction of volumes in phase space. As we have 
seen, chaotic behavior is marked by instability, which means expansion in 
some directions. This expansion has to be more than compensated for by 
stronger contraction in other directions. Some folding must then take place 
in order to  maintain trajectories in a bounded region of the phase space, as 
sketched in Figure 4.16. (The case of regular regimes would be much less 
anisotropic with, at  most, neutral directions on average.) 

What happens in the “transverse directions” can be concretely illus- 
trated using a celebrated simple two-dimensional map called the baker map 
(Fig. 4.17, top-left). This map of the unit square [0,1] x [0,1] expands it 
onto itself by a factor n = 2 in the direction of the first coordinate and by 
a factor n’ = a/. in the other direction (6’ < 1 j contraction). 

When a = 1, that is n’ = 1/2, the baker’s map is conservative (areas 
are preserved). In order to obtain a dissipative system, contraction must 
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dissipation + instability nonlinearity 

Fig. 4.16 
nonlinearities, all in combination, produce horseshoes typical of chaotic attractors. 

Expansion in unstable direction, contraction due to dissipation, folding by 

be larger than expansion, i.e. a < 1, so that KK' = a < 1. The strange 
attractor obtained in that case displays a characteristic fractal transverse 
structure (Fig. 4.17, top-right). This fractal structure is a triadic Cantor 
set classically obtained by removing the middle third of a segment and 
repeating indefinitely the operation on the two segments left apart in that 
operation as shown in Figure 4.17 (bottom), yielding a self-similar set that 
is invariant upon magnification by a factor of three. 

xz 0 
X, 

Fig. 4.17 Top-left: Conservative baker map (1st step: expand along X1 ( K  = 2) and 
contract along X z  (K' = 1/2); 2nd step: cut right half of rectangle and place it back in 
square). Top-right: Strange attractor for the dissipative map with K' = 1/3 (expansion 
rate KK' = 2/3 < 1). Bottom: Few steps of the construction rule of the triadic Cantor 
set, to be read from right to left. (Notice that, to build the dissipative baker attractor, 
we used a map that translates part (2) above part (1) and puts it upside down so that 
the fractal structure follows from the conventional Cantor middle-third rule.) 
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Fig. 4.18 Henon attractor obtained by iterating map (4.38, 4.39) for a = 1.4 and b = 0.3 
from some initial condition after elimination of the transient. Left: The full attractor. 
Right: Zoom on the boxed region. 

In practice, nonlinearities usually fold the trajectories as seen with the 
HCnon map: l3 

(4.38) 
(4.39) 

The attractor corresponding to a = 1.4 and b = 0.3 is presented in 
Figure 4.18. The folding originates from the nonlinearity in (4.38), which 
is of “logistic” type (see Exercise 4.6.9). Coefficient b in (4.39) guarantees 
the dissipative character of the map provided that Ibl < 1, as shown by 
performing Exercise 2.5.1 with this map. The fractal character of the at- 
tractor is particularly obvious from the magnification of the boxed region 
displayed in the right part of the figure. 

The fractal dimension gives a good idea of the way the attractor occupies 
the phase space. In a d-dimensional space, it is obtained by covering the 
considered set, here the attractor, by elementary volume elements of size 
&, next counting the number N(E) of such elements necessary to cover it, 
and finally study how that number grows as the linear size E of the volume 
elements tends to zero. The fractal dimension df is thus defined through 

13M. HBnon, “A two-dimensional mapping with a strange attractor,” Commun. math. 
Phys. 50 (1976) 69. 
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the formula: 

153 

(4.40) 

For an ordinary, connected, continuous set, this definition yields the 
usual topological d imens ion  (0 for a point, 1 for a line, 2 for an ordinary 
surface, etc . ) .  Let us see how it works for an indefinitely fragmented object 
like the triadic Cantor set by considering it at step k of the construction 
process. It can be covered by segments of length E = 1/3k, and 2k such 
segments are needed at that step, hence: 

somewhere between the dimension of a countable set of isolated points (0) 
and that of a continuous segment (1). 

Here the evaluation does not depend on k because the set is strictly 
self-similar but more generally the limit E + 0 must really be taken. The 
computation of the fractal dimensions of other classical self-similar sets 
from a direct application of (4.40) is the subject of exercise 4.6.12. 

Turning to the dissipative baker map, let us focus on what happens 
in the transverse direction Xz. We take for granted that, owing to the 
expanding character of the map along XI, the attractor is continuous in 
that direction, which just adds 1 to the dimension found for the transverse 
part. Following the same idea as for the triadic Cantor set, we can observe 
that, after one iteration, the length of a segment along X Z  is multiplied 
by K‘ < 1, which suggests us to take E = ( K ’ ) ~  after k iterations. Each 
application of the map brings about K reduced copies of the full set, so 
that we have N ( E )  = K ~ .  From the formula, we get df = log(K)/log(l/K’) 
along the contracting direction and thus 1 + log(K)/log(l/d) for the full 
attractor displayed in Figure 4.17 (middle part). With K = 2 and K’ = a / &  
with a = 213, this yields df M 1.63. 

As an exercise one can look at the aspect of dissipative generalized baker 
maps with definitions more complex than that illustrated in Figure 4.17, 
e.g. with K > 2 and different values of a for different pieces, and then try 
to  determine the dimension of the corresponding (transverse) Cantor sets, 
which might be less simple than it seems. 
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4.4 Empirical Approach of Chaotic Systems 

Let us consider a chaotic regime observed in a given experiment, e.g. in 
convection. The need of an empirical approach becomes obvious when it 
appears impossible from a practical point of view to get an ab intio un- 
derstanding of its nature. Most often, even something as qualitative as the 
type of transition scenario that develops under specific conditions cannot 
be predicted. For example, in Chapter 3, $3.2.3, we have seen that not only 
the physical properties of the fluid matters, but the experimental configu- 
ration and, in case of attractor coexistence, the history of the experiment 
also play a role in the transition (though the system, when engaged in a 
given scenario, follows all its steps at a quantitative level). 

Sufficiently far from the threshold of the primary instability, a multi- 
plicity of different possible permanent regimes can be reached by following 
specific experimental procedures. The effective phase space is thus already 
very complicated and poorly understood, even when confinement effects 
select a small number of driving modes. It is therefore fully justified to 
spend some time to seek a representation of the dynamics in some recon- 
struction space obtained from the experimental records, a space in which 
the evolution can be described, the amount of chaos can be measured and, 
hopefully, techniques of control can be developed. 

The output of experiments, either in the lab or using a computer, gen- 
erally presents itself in the form of t ime series of some observable, i e .  a 
series of numerical values taken by some function W = W(X) of the sys- 
tem’s state X = ( X I , .  . . , Xd) in its phase space X with dimension d.I4 Let 
us assume a regularly sampled time series: 

{Wk, k = 0,1,. . .}, with Wr, = W ( X ( t k ) )  , t k  = kr , 

where T is the inverse of the sampling frequency. 
Just having a look at the plotted time series is a step that should never 

be skipped since this gives one valuable information on the recurrent or 
intermittent character of the signal. But clearly more objective analyses are 
required, especially when the system has reached some sort of attractor, i.e. 
a permanent regime characterized by statistically stationary signals, with 
distributions that do not change significantly as times goes on, and for 

14For systems evolving in space, the output may also be pictures. This opens the 
vast field of image processing, basically extending to two-dimensional quasi-continuous 
arrays the viewpoint of one-dimensional, discrete scalar series on which we focus here 
exclusively. 



4 .  Nonlinear Dynamics: from Simple t o  Complex 155 

which finite-length series are typical of the dynamics, provided that they 
are not too short (i.e. correspond to several turns around the attractor). 

The first operations to perform on a time series of length K ,  
{Wo, W1,. . . , W K - ~ } ,  are of course to compute its average: 

and its variance:15 
K - l  

gz - - 
W - K  

k=O 

and then to  rescale it by making the changes: 

For simplicity, we assume in the following that this preprocessing has been 
performed, i.e. that we work with a signal supposed to be stationary, with 
zero mean and unit variance. 

In a second instance, one usually considers the autocorrelation of the 
signal defined as: 

C ( A t )  = lim 1 TW( t )W( t  +At )d t  
T+m T 

In the case of a finite series of discrete records, we get: 

1 K-n-l 
C ( K )  = - WkWkfn, 

K - K  k=O 

(4.41) 

(4.42) 

but when the series is very long and as long as the shifts IC are small enough 
( IC  << K ) ,  any difference with the result of the discrete evaluation of the 
integral (4.41) for At = KT is not perceptible. 

The autocorrelation is the simplest device to identify periodicities in the 
signal. It is usually not computed from its definition but rather through 
Fourier transforms. The next section thus begins with a brief reminder 
about them and continues by introducing the Hilbert transform, a useful 
tool to  perform the demodulation of periodic signals with superimposed 
slow amplitude and phase variations. 

we are always interested in K large so that this makes no difference. 
15The “unbiased” variance should be defined by dividing with K - 1 instead of K but 
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4.4.1 

On general grounds the direct Fourier transform is defined by: 

Standard analysis by  means of Fourier transform 

.# F + 0 0  

f ( w )  = - 1 ' f ( t )  exp(-iwt) dt 
2x -00 

and the inverse transform by: 

f ( t )  = J(w) exp(iwt) dw . 
--co 

The Fourier transform of the autocorrelation function then reads: 
00 

S (w)  = 

and a straightforward computation shows that 

/ C ( T )  exp(-iw.r) d7 
2x -m 

where W ( w )  is the Fourier transform of W(t). S(w)  is called the Fourier 
spectrum of the signal.16 

Direct inspection of the signal sometimes suggests that one has to deal 
with a periodic process that is modulated in amplitude and/or phase. An 
elegant way to perform the demodulation consists in constructing a com- 
plex signal Z(t),  whose real part is the primitive signal W ( t )  and whose 
imaginary part is constructed so as to make a x/2 phase angle with it. This 
is easily understood from the consideration of a strictly periodic signal: let 
W ( t )  = Acos(wt), the signal at 7r/2 is then Acos(wt-x/2) = Asin(wt), so 
that Z( t )  = Aexp(icp(t)), with amplitude A = 121 and phase cp, such that 
dcpldt = w is the angular frequency. 

In the general case, the instantaneous amplitude of the modulated signal 
is then given by the modulus of Z and its instantaneous period is derived 
from its argument by differentiating it with respect to time, provided that 
one knows how to obtain the signal at x/2. This is done from the Fourier 
transform of W ( t ) ,  by copying the case of the periodic signal taken as an 
example above, frequency by frequency. Starting with: 

+m 

W ( t )  = [, W ( w )  exp(iwt)dw , (4.43) 

leThis result is called the Wiener-Kintchine theorem. The derivation uses a few tricks, 
1 is a Dirac distri- among which the fact that the Fourier transform of a constant f 

bution 6 ~ ( w ) .  
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and setting:" 

1 
* ( w )  = ;[A(w) + i B ( w ) ]  = JV(-w)*,  

157 

(4.44) 
L 

one can observe that A ( w )  and B(w) are even and odd functions of w, 
respectively. In full generality one gets B(0) = 0 and, further also A(0)  = 0, 
since W ( t )  is assumed to have zero mean. Expression (4.43) can then be 
rewritten as: 

+W 

W ( t )  = [A(w)  cos(wt) - B ( w )  sin(wt)] dw, 

which allows one to  get the imaginary part, here denoted W': 
+03 

W'( t )  = 1 [A(w)  cos(wt - n/2) - B(w)  sin(wt - n/2)] dw, 

which more simply reads: 

W'(t)  = l + m [ B ( w )  cos(wt) + A(w)  sin(wt)] dw. 

By definition of Z = W + iW', one then obtains: 
+m 

Z( t )  = 1 exp(iwt)[A(w) + iB(w)] dw, (4.45) 

which involves a sum over the positive angular frequencies (the so-called 'an- 
alytical signal'). Comparing (4.45) and (4.43, 4.44), one obtains the Fourier 
transform Z ( w )  by setting to zero all components of the Fourier transform 
of W corresponding to negative angular frequencies and by doubling all the 
others. The analytic signal Z ( t )  itself is then recovered by computing the 
inverse transform of 2. Mathematically W and W' are Hilbert transform 
of each other" hence the expression 'Hilbert transform demodulation' (the 
full procedure is implemented by hilbert .m in the MATLAB software). 

4.4.2 

Let us now take a point of view more in line with the theory of dynamical 
systems. A difficulty arises immediately from the fact no specific assump- 
tion can be made, except that a deterministic framework is relevant, so that 

Reconstruction by the method of delays 

17The complex conjugation property arises from the fact that the observable W is 

18Formally, I?l'(w) = -(l/n) P l_",[ I?l(w')/(w - w')]dw', where 7' denote the Cauchy 
supposed to be a real function of X.  

principal part of the integral. 
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one can just write formally X = F ( X )  for unspecified states living in some 
space X. In particular, the nature and the dimension deR of the manifold 
supporting the dynamics,lg and the explicit relation between states and the 
observable W = W ( X )  are not known a przorz. 

Practically all reconstruction techniques derive from the method of 
delays mathematically formalized by Takens in 1981,” which is numerically 
more robust than a previous approach based on the evaluation of successive 
time derivatives of the experimental signal in terms of finite differences.21 

Let us illustrate the reconstruction approach using a discrete-time sys- 
tem for simplicity. At the beginning we assume that 

Xk+l = F ( X k )  

and that the time series of some scalar observable W is available (the 
method is, at least conceptually, easy to extend to the case of several 
observables). Reconstructing the dynamics means determining an empiri- 
cal relation between the xk in their phase space only from the knowledge 
of the W,, lc = 0,1,. . . 

A single measure WO = W ( X 0 )  is not sufficient to  determine the state 
X O  since we surely need more than one coordinate to  define it. But we 
assume that the next value W1 corresponds to a point X 1  that evolves from 
X O  under the map 3, unknown but existing. The second measurement thus 
adds a piece of information about the coordinates of X O  through W1 = 
W(X1) = W(F(X0) ) .  The third one, WZ = W ( X 2 )  = W ( F ( X 1 ) )  = 
W ( F ( F ( X 0 ) ) )  adds another piece, etc. In principle, a sufficiently long 
series of dtest successive measurements, { Wo, . . . , Wdtcst -l ), should serve us 
to specify X O .  In the same way, {Wl,. . . , Wdtes t }  would do so for X I ,  etc. 
Eventually a whole trajectory would then be reconstructed from the series 
of vectors in ~ ~ ~ e a ~  : 

The concrete implementation of the method is by increasing the dimen- 
sion of the reconstruction space until a consistent quantitative assessment 
of the observations can be given. In practice, the problem can be reformu- 

l9The dimension of the physical system itself is usually infinite; think of continuous 

z°F. Takens, “Detecting strange attractors in turbulence,” Lect. Notes Math. 898 

21N.H. Packard, J.P. Crutchfield, J.P., J.D. Farmer, R.S. Shaw, “Geometry from a 

media. 

(1981) 366-381. 

time series,” Phys. Rev. Lett. 45 (1980) 712-716. 
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lated in terms of the reliability of the reconstruction. The space of vectors 
v k  has to be in correspondence with the region of phase space visited by 
the system when the permanent regime is reached. Whereas we can accept 
redundancy, i. e. a dimension dtest that is too large, we must not lose useful 
dynamical information. In mathematical terms the representation of the 
system must be injective, so that different states have different reconstruc- 
tions: 

What was defined as a tentative number of component dtest is thus more 
mathematically understood as the dimension of the space in which the 
effective phase space can be embedded by means of some injective map. 
To stick with this abstract point of view more closely, we now define dtest 
as the embedding dimension, denote it d,, and thus specify states in the 
embedding space as: 

v k  = [wk;. . . ; w k + d , - l ]  7 (4.47) 

Takens’ method of delays is sketched in Figure 4.19. His theorem states that 
the VI, defined above, where the observable W is defined by a differentiable 
functional on phase space W ,  achieve a reliable reconstruction provided that 
the dimension de is large enough: d, 2 2d,ff+ 1, where d,R is the topological 
dimension of the manifold supporting the effective dynamics. 

This theorem can be understood as an extension to the present context 
of Witney’s theorem that states that a compact d-dimensional differentiable 
manifold M can be embedded in an Euclidean space As an illus- 

t 
tk 

Fig. 4.19 Illustration of Takens’ theorem. M is the manifold in the space x over which 
the effective dynamics takes place. Coordinates of points representing the system in Rde 
are obtained from the series of measurements wk through (4.47). 
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tration of the latter, one can consider a loop (dimension 1) that would be 
projected on a plane as the figure eight. In order to  resolve its structure, 
and in particular to check that the intersection is a fake, one must be able 
to look at  the loop from another side, i.e. to  stand in a 2 x 1 + 1 = 3 
dimensional space. 

In fact the reconstruction proposed by Takens is more general than 
that proposed by (4.47) since the vk can be any series of d, measurements, 
[Wk; Wk+nl;  ...; Wk+nd,-l], and nothing forbids it to take irregularly dis- 
tributed intervals K ~ .  It is however natural to take K~ as the successive 
multiples of some basic K ,  i.e. K~ = QK,  Q = 1, 2,.. . , d, - 1. When the 
signal is obtained from the time sampling of a continuous-time system with 
period T this corresponds to a sub-sampling at period KT. 

The mathematical viewpoint developed so far is apparently strong. 
However our enthusiasm must be somewhat tempered and a pragmatic per- 
spective has to be taken, for it is not clear that the physical systems we are 
interested in fulfill the theoretical conditions underlying the theorem, and 
first of all that the d,R-dimensional manifold over which the dynamics takes 
place is sufficiently smooth. As it is usually the case for chaotic nonlinear 
systems, the attractor has a fractal dimension df 2 d,a and, following Maiie 
(1981), one can replace d,R by df in the inequality for d,. This still does 
not lead to any concrete estimate, in part because measurements are always 
polluted by “noise” that comes and hinders the reconstruction. Strategies 
have thus been developed to get around these difficulties and determine 
more or less optimally the two basic ingredients of any reconstruction: the 
base delay K and the embedding dimension d,. This is what we now briefly 
discuss, inviting the interested reader to  consult, e.g. [Abarbanel (1996); 
Kanz and Schreiber (1997); Weigend and Gershenfeld (1993)] for more de- 
tailed approaches. 

4.4.3 

For more specificity we use a synthetic signal obtained by numerical simu- 
lation of a noisy limit cycle governed in the complex plane Z = X + ZY by 
a Langev in  equat ion 

Sampling frequency and embedding dimension 

2 = (1 + i ) Z  - (1 - i)lZ12Z + [ ( t ) ,  

where [ ( t )  is a Gaussian noise. We assume that the trajectories are com- 
puted by a second order Runge-Kutta scheme (B.9-B.lO) with time step 
6 t  = 0.01. A noise with amplitude 0.05 is added to X and Y at each time 
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Fig. 4.20 Top: Original noisy periodic signal in its own phase space. Bottom: Re- 
construction with sampling time T = 0.03 and delays K. = 5, 25 and 45 of observable 
W ( t )  = X ( t ) .  

step (for the generation of Gaussian noise see [Press et al. (1986)l). The 
trajectory used for this example is displayed in Figure 4.20 (top). The pe- 
riod of the (deterministic) signal is T = r. The signal W ( t )  that we take is 
just the X component of the trajectory and we mimic the sampling process 
by recording its value every T = 3dt. 

The first problem is that of the sampling time, and thus that of K .  An 
exaggerately high frequency is not an advantage since a huge volume of data 
is produced, the most part of which is redundant owing to the noise that 
blurs the information. It is then believed that the delay between two succes- 
sive records must be sufficient to bring novel information. A practical rule 
is to  take the delay corresponding to  the first zero of the autocorrelation 
as the effective sampling time M-. For the present (deterministic) sinu- 
soidal signal, W ( t )  = sin(2t) , the autocorrelation defined through (4.41) 
is C(At)  = cos(2At) and this rule prescribes At  = r /4 ,  i.e. a quarter of 
a period: two measurements out of phase by such a shift are indeed fully 
discriminated since one is maximum when the other is zero. 

The discrete estimate of the autocorrelation function (4.42) is displayed 
in the left part of Figure 4.21 where one can observe that the noise adds 
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Fig. 4.21 
ure 4.20 as a function of the delay n. 

Autocorrelation C ( K )  and mutual information Imut(n) of signal W in Fig- 

a slight damping to the behavior expected for a periodic signal. Applying 
the rule leads to  K N 25, which indeed corresponds to  a quarter of a period 
once recalled that T = 36t = 0.03. Two-dimensional reconstructions in 
the plane (Wk,Wk+n) for K = 5, 25 and 45 are displayed in Figure 4.20 
(bottom row) which shows that the representation with K = 25 is the most 
similar to the original signal, whereas for K = 5 and K = 45, corresponding 
to measurements too close in time or practically in phase opposition, the 
reconstructions align along directions Wk+n = -kwk and Wk+n = -Wk, 
respectively. 

The study of the autocorrelation function, of linear essence, does not 
always lead to  a satisfactory choice of K .  Let us now mention a more gen- 
eral criterion resting on a similar philosophy but with a better nonlinear 
flavor. This criterion bears on the mutual information contained in two 
records shifted by some time amount when compared to that contained 
in a single record. Again, stationarity of the signal is assumed. First the 
probability distribution P ( W )  of wk = W is obtained by an appropri- 
ate normalization of the histogram of the values of wk. Next, the joint 
probability Pn(W', W")  is determined in the same way but for couples 
(wk = Wr;Wk+& = W"),  with K = 1 , 2  ,.... From these, the mutual 
information is defined as: 

This quantity is a measure of the redundancy in the signal: when K is 
small, points in phase space are highly correlated so that learning about 
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Wk+n when wk is known does not bring much novel information; by con- 
trast when n >> 1, the points become uncorrelated and Pn(wk,wk+n) is 
essentially p(Wk)p(Wk+n), so that the mutual information is nearly zero, 
the information gained is the same as from independent drawings wk and 
W k + n  using P ( W ) .  As can be seen from the right part of Figure 4.21 that 
displays the graph of Imut(n) obtained by applying (4.48) to our signal, the 
mutual information does not decrease monotonically but in general presents 
a first minimum at some intermediate K that defines an optimal value nopt 
corresponding to a minimum of the redundancy, before ultimately decaying 
owing to statistical decorrelation: taking simultaneously Wk and Wk+nOpt  

should thus give the best information about the dynamical evolution. Here, 
without surprise nopt is the same as that given by the previous rule, but 
more generally this is not the case. 

It should be noted that, when no clear minimum of Imut(n) is obtained, 
this can mean either the presence of a very large noise, or that the ob- 
servable has been under-sampled, or that too many degrees of freedom are 
involved, all cases where methods of the theory of low dimensional deter- 
ministic dynamical systems are of little help. 

Once the parameter IE has been determined optimally, one can re-sample 
the time series with the new step and discard redundant information con- 
tained in the intermediate values that are too closely correlated to the 
retained ones. In fact, the n parallel time series obtained by changing 
the phase of the reconstruction modulo IE are not independent but yield K 

equivalent reconstructions of one and the same trajectory. Comparing these 
reconstructions may serve to appreciate the amount of noise quantitatively. 

Renumbering the time series, we can assume n = 1 and focus on our 
second problem: finding the most appropriate embedding dimension d,. 

Keeping in mind that we want to obtain an injective representation, we 
reverse the implication (4.46), now stated: 

V k = V k ’  X k = X k ’ ,  

which suggests to analyze the reliability of the state identification (r.h.s.) 
from comparisons of different reconstructions (1.h.s) especially in spaces 
with different dimensions: neighbors in some space are “true neighbors” if 
they remain so for all reconstructions. This property can be checked by 
increasing d,, i.e. enlarging the width of the window dragged on the data. 

The method of false neighbors is an efficient strategy to decide 
when to stop adding coordinates. Consider a trial dimension d’, i.e. 
[wk; wk+l;. . . ; W k + d ’ - 1 ]  and the (d’ + 1)-dimensional reconstruction ob- 
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Fig. 4.22 Comparison of the reconstruction in a d’-dimensional space featured by the 
horizontal axis (coordinates { w k ;  . . . ; W k + d f - l } ,  and a reconstruction in the (d’ + 1)- 
dimensional space obtained by adding coordinate W k + d ! .  

tained by adding a component W k + d l .  Choose a distance in reconstruction 
space and a criterion to decide which is neighbor and which is not (depend- 
ing on the noise amplitude). Next determine the number of false neighbors, 
i .e .  the number of pairs of points that were neighbors in d‘ dimensions and 
are no longer neighbors in d’ + 1 dimension, as illustrated in Figure 4.22. 
Then increase d’ up to  the point when the fraction of false neighbors de- 
creases significantly and choose that value as optimal embedding dimension. 

The Euclidean distance derived from the L2 norm is usually not a con- 
venient choice for neighborhood evaluations, since it requires a lot of com- 
putations. By contrast, the distance derived from the Lm-norm, i . e .  

dist (V(’), V(’)) = sup IV,(’) - V,(’) I . 
k 

only requires comparisons and is most economical. 
Choosing the embedding dimension as given by the false-neighbor 

method should appropriately unfold the structure of the attractor. The final 
presentation of the result can be improved by changing from the canonical 
basis in the reconstruction space to  a basis correlated to  the data in the 
least-square sense.22 The method known as proper orthogonal decomposi- 

22(a) The idea was introduced by D.S. Broomhead and G.P. King, “Extracting qual- 
itative dynamics from experimental data,” Physica D 20 (1986) 217-236. (b) For a 
concrete implementation, see R. Vautard, P. Yiou, and M. Ghil, “Singular spectrum 
analysis: a toolkit for short, noisy chaotic signals,” Physica D 58 (1992) 95-126. 
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“neighboring” trajectoly 

v 

ortion 

,. 
Fig. 4.23 Empirical determination of the largest Lyapunov exponent of a system in its 
reconstructed phase space. (a) Reconstructed attractor. (b) Rescaling of the distance 
between the reference portion of trajectory and its neighbor. 

t i o n  or singular value decomposition is implemented in numerical softwares 
such as MATLAB and is also used in the field of pattern recognition, which 
may be of interest in the analysis of space-time chaos to be introduced in 
Chapter 5 .  

4.4.4 Application 

From a d,-dimensional reconstruction one can next extract quantitative 
information of the system, and in particular the amount of chaos present, 
using quantities such as Lyapunov exponents or fractal dimensions of the 
attractor. 

By contrast with the theoretical approach, in which the expression of 
the dynamical system is known, here we have just a (very long) time series 
of some observable at given control parameter. The attractor is then first 
reconstructed by the method of delays from this time series, Figure 4.23(a), 
and we must assume at this stage that the permanent regime is reached and 
that the system explores its attractor repeatedly and satisfactorily in a sta- 
tistical sense. If this is the case, when the system comes in a given region of 
phase space, it never comes exactly at the same place but in some neighbor- 
hood. Taking a portion of the trajectory as a reference, the vector field in 
its neighborhood can be estimated from the set of trajectory pieces followed 
in close approaches to that reference portion, e.g. through a least-square 
adjustment of the coefficients of the local Jacobian matrix. This is in gen- 
eral a hard matter. A quantity that can however be determined more easily 
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Fig. 4.24 Determination of the correlation dimension in a convection experiment. Left: 
Distribution of distances in phase space for several embedding dimensions. Right: Vari- 
ation of the slope at small R as d, is increased. Exponent Y is seen to saturate at 2.8 
which is the correlation dimension of the considered attractor. When d, is too small, tra- 
jectories fill the reconstruction space homogeneously, as if the signal was a white noise, 
hence the corresponding line Y = d,. After Malraison et a[. ,  Note 25. 

is the largest Lyapunov exponent. The procedure used in early attempts23 
reflects particularly clearly its nature as an average trajectory divergence 
rate: since Lyapunov exponents are quantities relative to  the tangent evo- 
lution, the distance between pieces of trajectories serving to  compute the 
divergence rate must remain small enough; when following the reference 
trajectory, one is therefore obliged to look for pieces of trajectories as close 
as possible to the current point, in the direction of fastest divergence, as 
suggested in Figure 4.23(b). 

A quantity that can serve to characterize the fractal properties of strange 
attractors is the correlation dimension introduced by Grassberger and Pro- 
~ a c c i a . ~ ~  It is extracted from the distribution of distances between pairs of 
points on the reconstructed attractor A(Vi, Vj), obtained by computing 

(4.49) 
1 

C(R)  = lim - T ( R - A ( V i , V j ) ) ,  
N+ca N 2  

{Xi,Xj} 

where T = 0 for u < 0, and T(u) = 1 for u > 0 (Heaviside distribution). 
Provided that the statistic is sufficient, this quantity measures the num- 
ber of points in volume elements of radius R around each point, roughly 
speaking its mass, as it varies with R. For a compact d-dimensional object, 
one would have C(R)  - Rd as R + 0. The correlation dimension is thus 

23A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, “Determining Lyapunov exponents 

24P. Grassberger, I. Procaccia, “Measuring the strangeness of strange attractors,” 
from a time series,” Physica D 10 (1985) 285-317. 

Physica D 9 (1983) 189-208. 
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defined as 

167 

(4.50) 

The way it is defined makes exponent v similar to df. As such, it gives an 
easily determined measure of the fractal character of the attractor from the 
statistics of a long time record in the embedding space. 

This approach has been developed many times. The example given 
here is the first application to a concrete convection experiment in confined 
geometry, by Malraison et ~ 3 1 . ~ ~  It is seen in Figure 4.24 (left) that the 
correlation integral (4.49) plotted in log-log scale as a function of R indeed 
display a linear part at  small R from which an exponent v can be derived. 
At the time of the experiment, the determination of the optimal embedding 
dimension was made by just increasing de progressively. 

If the embedding dimension is chosen too small, one observes that v is 
close to d, which is easily understood from the fact that the reconstruction 
does not contain enough information to evidence the deterministic charac- 
ter of the dynamics. Points fill the V-space homogeneously as a random 
signal would do. On the contrary, if upon increasing d,, it happens that 
v saturates at  some finite value, as here, it is a good indication that some 
deterministic dynamics is at  work producing a low dimensional chaos, see 
Figure 4.24 (right). If unfortunately, v continues to increase with de, either 
confinement effects are too weak and the effective signal is not low dimen- 
sional, or the noise level is too high. 

To conclude this section, let us remark that a reliable quantitative de- 
termination of the amount of chaos requires a lot of data but that useful 
information can anyway be obtained from the reconstruction technique, 
e.g. to attempt controlling chaos.26 Software packages are available for an 
automatic treatment of experimental data, e.g. Note 22(b). 

25B. Malraison, P. Atten, P. BergB, M. Dubois, “Dimension d’attracteurs Btranges: 
une dBtermination expkrimentale en regime chaotique de deux systknes convectifs,” C.R. 
Acad. Sc. Paris 297 SBrie I1 (1983) 209-214. 

26Chaos control and its applications have received considerable attention in the 1990s. 
See, e.g. T. Shinbrot et al., “Using small perturbations to control chaos,” Nature 363 
(1993) 411-417; S. Hayes et al., “Communicating with chaos,” Phys. Rev. Lett. 70 
(1993) 3031; for another approach, see K .  Pyragas, “Continuous control of chaos by 
self-controlling feedback,” Phys. Lett. A 170 (1992) 421-428, and W. Just, et al, 
“Mechanism of time-delayed feedback control,” Phys. Rev. Lett. 78 203-206. A more 
complete presentation can be found in [Schuster (1999)l. 
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4.5 Conclusion 

As a whole, one can say that the problem of the transition to turbulence 
in strongly confined systems is, at least at a conceptual level but also most 
often at a practical quantitative level, well understood in terms of temporal 
chaos and a small set of universal scenarios. 

This framework is, by construction, that of discrete systems introduced 
in Chapter 2. It can also legitimately be applied to continuous systems 
in case of strong confinement effects, by virtue of the distinction between 
driving and enslaved modes and the adiabatic elimination of the latter, 
thus offering a vast field where a detailed comparison of theory, tools and 
concepts, and laboratory or numerical experiments is meaningful. 

The next chapter is devoted to the study of the case when confinement 
effects are no longer sufficiently strong to restrict the effective dynamics to 
the interaction of such a small number of discrete modes. 

4.6 Exercises 

4.6.1 

Consider a spatially extended system governed by 

Homogeneous instability in a confined context 

&V = TV -t a x x V  - V 3 .  

1) Linearized problem: determine the growth rate of Fourier modes a 
exp(ilcz) with infinitesimal amplitude in a laterally unbounded system and 
obtain the marginal stability condition of the trivial solution v E 0. 

2) Adding boundary conditions v(z) = 0 at both ends of the interval [0,7r], 
check that one can take eigenmodes in the form X ,  = sin(nz) and deter- 
mine their growth rate as a function of n. 

3) Find the condition on T such that only the first mode is excited, 
while others remain strongly stable. When this is the case, assuming 
v(z,t) = A , ( t ) X I ( x ) ,  determine the equation governing A1 within a first- 
harmonic approximation. Show that the system experiences a supercritical 
fork bifurcation. 

4) The cubic nonlinearity generates modes X,, n > 1. Find the equation 
governing As, its order of magnitude at steady state when T << 1, and 
justify the approximation made. 
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4.6.2 Cellular instability in a confined context 

Go back to model (3.39) and complete it by a nonlinear advection-like term 
to get: 

atv + wdzw = TV - (azz + 1)%. (4.51) 

Then consider a confined system with boundary conditions v = dzzv = 0 
at x = 0 and x = e. Check that modes in the form sin(k,x) are appropriate 
and insert expansion: 

03 

v(x, t )  = A,@) sin(k,x) , k, = nr /e ,  (4.52) 
n=l 

in (4.51). Further separate the different harmonics and obtain the set of 
ordinary differential equations governing the amplitudes A,. Write down 
explicitly the equations for A l ,  A2 and A3 when e = r for T << 1. Show that 
in this limit Az, A3,. . . are enslaved to A l .  Propose a coherent truncation 
of the system above some order N 2 2 fixed in advance. 

When truncated at order 2 the system reads: 

1 
2 

A, = rA1 + -AlAz 

A, = -9A2 - -A: 1 
2 

(4.53) 

(4.54) 

Sketch its phase portrait in the reduced phase space (A1, Az ) .  Determine 
the effective dynamics of A1 obtained by adiabatic elimination of A2 and 
the nature of the bifurcation as T increase from negative to positive values. 

4.6.3 Landau model of bijkrcation for one real mode 

Let A be a real variable governed by a first-order differential equation: 

A = 3 ( A ) .  (4.55) 

In Chapter 2, $2.1.3 it was shown that this equation can be written in 
gradient form A = -aG/dA,  so that 4 decreases as A evolves. Consider 
now the neighborhood of a time-independent base state A0 such that G is 
stationary, F(Ao) = - ~ A G ( A o )  E 0 .  

1) Rewrite the equation governing the dynamics of a “perturbation” A’ 
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defined by A = A0 + A’ as a Taylor expansion 

A’ = C a , ( A ’ ) n ,  (4.56) 
n 

express the linear stability condition for A0 in terms of the derivatives of .F 
at A0 and interpret this condition in terms of 9. By appropriate notational 
changes and rescalings we assume that A0 = 0 and that the linear growth- 
rate u of A is simply given by u = r ,  which define r = 0 as the bifurcation 
threshold. Equation (4.56) then reads 

A = r A  + a,An. (4.57) 
n22 

Assuming that the system can be truncated beyond some order N ,  using 
either 3 or G, show that the dynamics described by (4.57) is meaningful 
in the sense that A remains finite for all times, provided that N is an odd 
integer and a N  is negative. (When N is even, the model is only locally 
valid and should be completed by terms of higher degree to acquire a more 
global validity). Find the conditions fulfilled by coefficients a, in (4.57) 
when the system is invariant through the symmetry A C) -A.  
2) When N = 2, consider the systems: 

A = T O  - A’ (4.58) 

and 

A = r l A  - A’. (4.59) 

Draw the graphs giving their fixed points A, (bifurcation diagrams) against 
the control parameters TO or r1, and indicate their stability properties, using 
solid (dashed) lines for stable (unstable) fixed points. Justify the terms 
saddle-node and trans-critical for these two bifurcations. 

3) Same exercise when N = 3 with systems: 

A = rA - A3 - H ,  (4.60) 

producing the imperfect bifurcation (Fig. 4.4, p. 127) and 

A = r A  - A’ - A3 . (4.61) 

accounting for a perfect bifurcation perturbed by a breaking of the symme- 
try A H -A. Observe that, in both cases, elements of the case N = 2 are 
recovered locally in the plane ( r ,  A*). 
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6 )  Consider the case N = 5 with symmetry A e - A :  

A = T A  + aA3 - A 5 ,  (4.62) 

coefficient a being positive or negative. 
a) Determine the position of the fixed points at given ( r ,  a ) .  
b) When a is positive, show that the bifurcation at T = 0 is subcritical 

and that the system experiences hysteresis cycles as r is varied. Draw the 
bifurcation diagram and observe the presence of situations already stud- 
ied for smaller maximum degree N .  Determine the shape of potential 6 
corresponding to the different cases. 

c) consider briefly (4.62) with a < 0 and identify the different nonlinear 
regimes according to which of the nonlinear terms controls the position of 
the fixed point. 

Remark. Equation (4.58) is said to be the generic unfolding of the quadratic 
nonlinearity. It is indeed more general than (4.59) that additionally sup- 
poses the persistence of the fixed point at A = 0 [incidentally, this is also 
the case of (4.57)]. On more general grounds, one can always find the trans- 
lation A t) A + a that suppresses the coefficient aN-1, and rescale A so 
that aN = f l .  The generic unfolding of A = f A N  then reads: 

A = r0 + r l A  + ...  + T ~ - ~ A ~ - ~  f A ~ ,  

where the unfolding parameters T ,  are perturbations, i e .  must remain 
small when compared to the absolute value of the coefficient of the highest 
degree term (41 after rescaling). This system may have no fixed points, as 
seen above for N = 2 with (4.58) when TO < 0. 

4.6.4 

Consider the system 

Variation on the theme of Exercise 4.6.3 

A = F T ( A ) = - A / r + 2 A 2 - A 3 ,  T > O .  

1) Determine explicitly the potential O,(A) from which it derives, up to an 
arbitrary constant that will be taken as zero. 

2 )  Find the fixed points as functions of the control parameter T .  Show that 
a pair of fixed points appear through a saddle-node bifurcation at some 
value of r to be determined. Study the stability of the different fixed points 
and compute the value of the corresponding potentials. 
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3) Find the asymptotic behavior of the non-trivial fixed points as T + +ca 
and draw the bifurcation diagram. 

4) In the Landau theory of phase transition $7 would be a good model of free 
energy for a first-order transition, e.g. the liquid-gas transition. Compute 
the value T M  of parameter T corresponding to the Maxwell plateau at which 
the free energies of the two competing stable states are equal. Draw the 
graph Of 4, for T < ?‘M, T = T M ,  and T > T M .  

4.6.5 Excitable sys tem 

Consider a dynamical system in the form 

x = F y ( X )  = X - X 3  - Y ,  (4.63) 

where Y is, for the moment, a parameter. 
Determine the fixed points of (4.63), their number and nature (stable or 

unstable) as Y is varied. Determine the potential from which this equation 
derives (see Exercise 4.6.3, above). 

Suppose now that Y is a dynamical variable of its own, governed by 

Y = E(X - T ) ,  (4.64) 

where 0 < E is a constant and T the control parameter. 
Determine the character of the fixed point of system (4.63, 4.64) as a 

function of T ,  assuming that 1 - 3r2 # 0 and E << 11 - 3 ~ ~ 1 .  
Interpret the phase portrait of the system in the two cases I T ]  < 1/& 

and I T [  > l/&. In the first case, explain the shape of the relaxation 
oscillations observed after damping of the transient. See Fig. 4.25. 

In the second case, the system is said to describe an excitable medium 
such that, for initial conditions X > T ,  the relaxation of the system towards 
its fixed point occurs after a large pulse. [In a reaction-diffusion system 
where the reaction part is accounted for by (4.63,4.64), the system develops 
fronts separating excited regions from relaxed one]. 

4.6.6 

Consider the system 

Stability and at tmctors  of a two-dimensional s y s t em 

x = - - a X + Y + X Y ,  
Y = -bY - X 2 ,  

(4.65) 
(4.66) 
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c-- \ - -4 

r=l .O, ~=0.05 

. 
r=0.2, ~=0.05 

Fig. 4.25 Excitable system. Top: Phase portraits. Bottom: Time series of variable X 

where a and b are constants. By computing the eigenvalues and eigenvectors 
of the system when linearized around the origin X = Y = 0, show that it 
remains locally stable (stable with respect to infinitesimal perturbations) 
as long as a > 0 and b > 0. Sketch the phase portrait of the linearized 
system for a < b. 

Consider now the system with its nonlinear terms and determine the 
fixed points as functions of A = 1 - 4ab. This quantity will serve as a 
control parameter in the following. Show that a saddle-node bifurcation 
takes place when A changes its sign. Find the eigenvalues and eigenvectors 
of the vector field linearized around each non-trivial fixed point. 

Sketch the phase portrait of the system for A < 0, A = 0, and A > 0 
(take e.g. b = 1 and values of a that lead to simple numerical applications, 
in particular a = 1/4, 3/16). Observe that the stable manifold of the unsta- 
ble fixed point that extrapolates its stable eigendirection is the boundary 
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between the attraction basins of the two stable fixed points when they exist. 
Notice that the nonlinearities profoundly modify the aspect of the phase 
portrait expected from the linear analysis close to the origin. Numerical 
simulation of (4.65, 4.66) is re~ommended.,~ 

4.6.7 Bruxellator 

The system obtained in Exercise 1.5.1 reads 

X = A - ( B  + 1 ) X + X 2 Y ,  
Y = BX - X 2 Y .  

(4.67) 
(4.68) 

Find its fixed points as functions of parameters A and B and discuss their 
linear stability properties. Show that the reaction can bifurcate from a 
time-independent state towards an oscillatory regime beyond some critical 
value B, to be determined as a function of A. 

Compute the eigenvalues a t  lowest order in E = B - Bc Adapt the 
first harmonic approximation of Chapter 2, 52.3.1.2, p. 49 to  derive the 
amplitude equation governing the system beyond threshold. 

4.6.8 Locking 

In a permanent regime, an oscillator can be described using a phase vari- 
able 0 defined modulo 2n and governed by 4 = w where w is the angular 
frequency of the oscillator. Consider two such oscillators weakly but non- 
linearly coupled, governed by: 

el = w1 - f ( e 2  - e l ) ,  
e, = W, - f ( e ,  - e,) . 

Justify the fact that function f has to  be periodic with period 2n. In 
the following, take f ( c p )  = iKsin(cp) and write down the system for e = 
5(01 + 02)  and cp = ;(dl - 6,) (define 6w = ;(wl - w , ) ) .  

Determine the condition on K ensuring the existence of fixed points to  
the equation for ‘p. Discuss the nature of the asymptotic regime when this 
condition is (is not) fulfilled. Qualitatively describe the phase intermittency 
regime that takes place when the existence condition just misses being 
fulfilled. 

1 

27For a discussion of the physical relevance of this exercise, to be reconsidered in 
chapter 6, see: 0. Dauchot et P.M., “Local versus global concepts in hydrodynamic 
stability theory,” J. Phys. I1 France 7 (1997) 371-389. 
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4.6.9 Logistic map (variants) 

Consider the map 

where a > 0 is the control parameter. Draw the graph of fa, find its fixed 
points and study their stability properties. 

In the following, consider the dynamics of a trajectory starting in the 
neighborhood of X i + )  > 0 for a close to a0 where the fixed point bifurcates. 
Setting a = a0 + e ,  rewrite the nonlinear map for X' = X - X i + )  in terms 
of E << 1 at first order in E .  

Check that the map for X' has no fixed point in the neighborhood of 
X'  = 0 and that the system bifurcates towards a period-2 cycle by studying 
the iterated map XA+, = gE (XA)  as E crosses zero. By an expansion to  
third order in Xk conveniently simplified thanks to the assumption E << 1. 
Show that the bifurcated cycle is stable for E small enough. 

Derive the change of variables that put (4.69) in the equivalent forms 
y k + l  = ryk(1 - Y k )  and z k + l  = 1 - bzi. 

4.6.10 Delayed logistic map 

Consider the map 

Xk+l = TXk (1 - Xk-1) (4.70) 

Two initial conditions are necessary to start this recurrence which is thus a 
second-order discrete-time dynamical system. Its non-delayed version is one 
of the equivalent variants of the logistic map used in the previous exercise. 
1) Convert (4.70) into a first-order system by setting Y k  = Xk-1, compute 
the Jacobian of the map and determine its inverse when it is possible. 
2) Find the fixed points of the map xk+l = xk = &+I = y k  and study 
the stability of the non-trivial fixed point X ,  # 0 as a function of r E [ l ,  41. 
In order to do this, find the eigenvalues of the linearized system and their 
nature -real or complex- as a function of r.  Show that the system displays 
a Hopf bifurcation in the sense of (4.32) for some value of r to be determined. 

4.6.11 ArnoldJs cat 

Consider the discrete-time two-dimensional dynamical system ( X ,  Y )  
(V,V)  = S ( X , Y )  defined on the torus T2, the unit square (modulo l), 

AL

+1
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A 
step 0 step 1 step 2 

Fig. 4.26 von Koch snow flake. 

with opposite sides identified, called “Arnold’s cat map” : 

U = 2 X + Y  
V = X + Y  

This system is a classical example of chaotic iteration. Determine the in- 
verse map (U, V )  - (X, Y) = 7 ( U ,  V )  and check that S o 7 = Z where 
Z is the identity map. Compute the determinant of its Jacobian ma- 
trix and shows that the system is conservative (Chapter 2, Exercice 2.5.1, 
p. 61). Illustrate this property by considering the transform of the square 
(O,O) ,  (0,1/3),  (1/3,0),  (1/3,1/3). Show that all trajectories are unstable. 
Compute the second iterate S2 S o S. 

4.6.12 Fractals 

Apply formula (4.40) for a topologically connected set, usual line, surface, 
volume, and observe that it yields its topological dimension as expected. 
Then compute the fractal dimension of the following objects: 

1) von Koch snow flake (Fig. 4.26): starting with a triangle with sides of 
unit length, replace each side by a broken line formed with 4 segments of 
length 1/3 as shown in Figure 4.26 and repeat indefinitely the construction 
on each so obtained segment. 
2) Sierpinski sets (Fig. 4.27): On the plane, start with the unit square 
and suppress the central square with side 1/3; repeat on each of the eight 
remaining squares; and so on. Same rule but starting with a triangle and 
dropping the center part. In three-dimensional space, start with a cube cut 
it into 27 cubes of side 1/3, suppress seven cubes, the six in the middle of 
the sides and the center one, repeat indefinitely to get a fractal sponge. 
3) Cantor dust (Fig. 4.28): Take the square and keep the elements shown, 
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1 113 113 113 

step 0 step 1 step 2 

step 0 step 1 step 2 

Fig. 4.27 Two-dimensional Sierpinski sets. 

1 -.I14 112 114 

step 0 step 1 . step 2 

Fig. 4.28 Cantor dust. 

repeat indefinitely. Observe that the fractal dimension can be an integer 
and that here the result could have been obtained by noticing that, at 
every step, the whole set is in one-to-one correspondence with a continuous 
interval (by projection along the indicated direction). 

4.6.13 

Consider a two-dimensional map” expressed in terms of the two compo- 
nents ( X , Y )  components of a complex number 2 = X C iY, and defined 

Curry-Yorke model (transition QP + chaos) 

28J. Curry, J.A. Yorke, “A transition from Hopf bifurcation to chaos: computer ex- 
periment with maps on R2,” Springer Notes in Mathematics 688 (1977) 48ff. 
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in two steps: 
(1) a rotation of z k  = XI, + z y k  = l Z l k  exp(ipk) by an angle p: 

( P k + 1 / 2  = ( P k  + 8 (mod 2T) 

and a stretching of the modulus I z l k + 1 / 2 :  

I Z l k + 1 / 2  = (1 + r])l%(l -k l z l k )  7 

where r] is a control parameter controlling the stability of the fixed point 
at  the origin. (2) a nonlinear transformation is expressed in Cartesian 
coordinates through: 

X k + l  = X k + l  / 2  > y k + l  = y k + l  /2  + /2 . 
The model can be understood as the PoincarC map of a time-continuous 

system with a limit cycle bifurcating towards a two-periodic regime at  r] = 0 
and may serve to illustrate the breakdown of a torus into a chaotic attractor. 

Draw the attractors obtained numerically for (p = 2 and various values 

[Answer: Fig. 4.29. For r] = 0.27 the attractor is a smooth loop (section 
of a smooth torus corresponding to a two-periodic regime for the time con- 
tinuous system). For r ]  = 0.48, the attractor is a singular curve with fractal 
structure generated by stretchings and foldings in a regime of developed 
chaos. These corrugations appear around r] = 0.40 which is thus close to 
the border of chaos.] 

of r ]  > 0. 

4.6.14 Permanent us. transient chaos 

Consider one-dimensional maps in the form 

and more particularly the tent map defined by 

0 5 XI, 5 1/2 

1 / 2  5 x k  5 1 

X k + l  = a x k  7 

x k + l  = a(1 - x k ) .  

1) Suppose first a = 2 and draw the graph of 7 and check that interval 
I[,-, [0,1] is invariant in the sense that it contains its image by 3. Then 
find the fixed points of the map and show that they are unstable. Draw the 
graph of the iterated map For, i.e. X t-+ F ( F ( X ) ) .  Find its fixed points 
and obtain from them a periodic orbit of F with period 2. Show that this 
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2.5 r------ 

-1.5' 
-2 -1.5 -1 -0.5 0 0.5 1 

Fig. 4.29 The Curry-Yorke map 9 = 2 and several values of 11. 

orbit is also unstable. The orbit of an initial condition chosen at random 
is usually (with probability 1) chaotic. Compute its Lyapunov exponent 
using (4.37). 
2) Suppose now that 1 < a < 2 and draw the graph of 3. Find the image 
II1 of 10 and the image 12 of 11, so that the definition interval of the map can 
be restricted to  11. Show that all trajectories are unstable by computing 
the Lyapunov exponent. 
3) Consider the case 2 < a. The interval 10 is no longer invariant. Draw 
the corresponding graph of 3 and find the set Jl of initial conditions that 
escape at the first iteration. Construct the pre-image J, of this set, i.e. such 
that T(J,) = J1, to find initial conditions that escape in two iterations, and 
notice that it is made of two disconnected parts J; and Ji. Continue and 
observe that the initial conditions that do not escape belong to a Cantor 
set. When a = 3, the construction rule is exactly that of the triadic Cantor 
set. From the formula, compute the Lyapunov exponent of a trajectory 
starting right on this set (and remains in it). Such an unstable invariant 
set is called a chaotic repellor. 
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Chapter 5 

Nonlinear Dynamics of Patterns 

The theory of deterministic chaos represents an important conceptual 
advance and offers an appropriate framework to account for experiments in 
confined geometry. However, it becomes rapidly inapplicable when the ef- 
fective dimension of the dynamics increases, which is the case for extended 
systems (large aspect ratio). As already indicated, eigenmodes are then 
quasi-degenerate with wavevectors typically such that 

C being the lateral extension (see p. 117). Many modes may be unstable 
close to the threshold. A large part of the interaction between them can 
be understood in terms of linear interferences accounting for spatial mod- 
ulations brought to a regular uniform reference pattern (at the limit of 
a laterally unbounded system), e.g. parallel straight rolls for convection. 
At the nonlinear stage, focusing on the modulations directly leads one 
to the envelope formalism that gives a satisfactory account of confinement 
effects and defects at lowest order, a first step toward understanding spatio- 
temporal chaos. 

For simplicity, we mostly limit this presentation to the case of cellular 
stationary instabilities. The case of dissipative waves, just briefly intro- 
duced in 85.4.4, is left to more advanced studies. We consider first, in $5.1, 
the determination of uniform quasi-one-dimensional structures, periodic in 
a single space direction. Then we generalize the theory to the case of quasi- 
two-dimensional pat terns, with square or triangular /hexagonal plan-forms, 
in 85.2 and $5.3. Their most universal instability modes in terms of long 
wavelength perturbations are next investigated in 55.4. We conclude the 
chapter by 85.5 where we present some other modeling approaches that 
may help one analyze space-time chaotic regimes in extended systems. 

181 
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5.1 Quasi-one-dimensional Cellular Structures 

5.1.1 Steady states 

Consider an instability mechanism which, like plain Rayleigh-Bknard con- 
vection, generates stationary structures locally periodic in a single space 
direction, say x. At the linear stage we have: 

the solutions of which are searched for in the form: 

V = V exp(ikx + s t )  (5.2) 

which leads to the dispersion relation: 

L( ik ,  s; R )  = 0 .  (5.3) 

We are particularly interested in the neighborhood of the critical conditions 
R M R,, corresponding to a marginal mode k = k, for which Re(s)  = u = 0. 
(Zm(s) E 0 along a stationary instability branch.) At threshold, we have 
L(ik, ,  0; R,) = 0, so that the linear problem (5.1) has a non-trivial solution: 

V c  = V, exp(ik,x) + C.C. (5.4) 

where V, accounts for the structure of the critical normal mode and C.C. 
means ‘complex conjugate’. 

The nonlinear problem extending (5.1) reads: 

where hf(V, V )  represents the higher order terms that were neglected in the 
linearization procedure. The notation suggests formally quadratic nonlin- 
earities, as in hydrodynamics. The solution is searched for as an expansion 
in powers of a small parameter E :  

v = EV1 + E2V2 + E 3 V 3 . .  . , ( 5 4  

and, as in the calculation of the period of nonlinear oscillators (Chapter 2, 
especially §2.3.2.3), the control parameter is also expanded: 

R = R, + E R ~  + e2R2 + . , . (5.7) 
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Isolating the distance to threshold in the expression of the linear part on 
the 1.h.s. of (5.5) we can write: 

C = L c  - ( R -  R , ) M ,  (5.8) 

where M is the opposite of the formal derivative of C with respect to  R 
evaluated at  threshold. Inserting expansions (5.6, 5.7) into (5.5) and taking 
(5.8) into account, we get a series of linear problems: 

LV1= 0 (5.9) 
CVz = RiMV1+ n/(Vi, Vi) , (5.10) 

LV3 = RzMV1+ R1MVz + n/(VZ,Vi) + n/(Vl, V,) , (5.11) 

of the general form: 

CVk = Fk. (5.12) 

The first problem is homogeneous. Since the critical conditions are fulfilled, 
it has a non-trivial solution V1 c( V,. The higher order problems (k > 1) 
are all inhomogeneous and depend on the solutions computed at previous 
orders (k' < k). Unknown free quantities Rk introduced through (5.7) 
are fixed by the condition that the r.h.s. of (5.12) do not contain resonant 
terms, exactly like in the Poincark-Lindstedt calculation, p. 55ff. 

At a formal level, let the relevant scalar product' be denoted by (...I...) 
and the adjoint Ct to 12 be defined by: 

(WICV) = ( V l d W ) * ,  

the conditions (Fredholm alternative) fixing the unknown parameters in 
(5.7) read: 

(VIFk) = 0 .  

where v is the solution generating the kernel of Ct (CtV = 0). 
From (5.9) one gets V1 c( V, and when applied to (5.10), the condition 

for k = 2 yields R1. Once this condition is fulfilled, a particular solution can 
be found, to which one may add an arbitrary solution of the homogeneous 
problem to obtain the most general solution. To fix this solution uniquely, 
one may ask it to  be orthogonal to V,, so that it appears as a true correction 
to the first order solution (in the sense of the scalar product): 

(VCIVZ) = 0 .  
lSee Appendix A, sA.3.2 for a reminder. 
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Once V2 is determined, it is reported in (5.11), where the sole unknown on 
the r.h.s. is R2, and so on. 

When R1 # 0, one can truncate the expansion at lowest order, which 
gives: 

R = R, + E R ~ ,  v = E V , ,  

and, after elimination of E between the two equations 

so that the bifurcation is in fact two-sided, the solution exists for both 
R < R, and R > R,, and its amplitude varies linearly. This situation 
was encountered in Exercise 4.6.3, Eq. (4.59) describing what was called 
a trans-critical bifurcation where two solutions exchanged their stability. 
Though non-generic, this situation was shown to occur in the absence of 
‘ A  -A’ symmetry. 

In fact, it often happens that R1 = 0 for symmetry reasons. This is the 
case of Rayleigh-Bhard convection with symmetric top/bottom boundary 
conditions within the Boussinesq approximation. The ‘ A  -A’ symmetry 
then results from the translation invariance by Xc/2 in the direction per- 
pendicular to the roll axis. When R1 = 0, the lowest non-trivial truncation 
of the expansion is one order higher: 

R = R, i- t2R2, v = €VC + 2v2, 

and thus, neglecting c2V2 when compared to EV, for E sufficiently small, 
we obtain: 

V 21 k J ( R  - R,)/Rz V ,  

The bifurcation is now one-sided. Bifurcated states are to be found either 
for R > R, when R2 > 0 (supercrit ical bifurcation) or for R < R, when 
R2 < 0 (subcrit ical) .  

Explicit calculation shows that Rayleigh-Bknard convection between 
good-conducting plates is supercritical. It is of course possible to continue 
the expansion and determine a more accurate solution by going to  next 
order k+1 since everything is known at order lc (Rk-1) or can be determined 
( V k - 1 )  and that the compatibility condition contains only Rk as unknown. 
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5.1.2 Amplitude equation 

We now turn to a variant of the same calculation that brings back a problem 
similar to that studied in Chapter 4, $4.1, reintroducing time in a way 
similar to the method of multiple scales, Chapter 2, $2.3.2.4. 

We consider the emergence stationary dissipative structure and make it 
explicit that the bifurcation is supercritical by defining a new small param- 
eter E through: 

R =  R , + E ~ .  (5.13) 

We again search the solution as an expansion: 

v = &V1 + &2V2 + ... , (5.14) 

but we no longer assume that it is time-independent. In order to account 
for this new feature we introduce a slow time scale tl in addition to  the 
natural time scale that we now denote as to by setting: 

(5.15) 

The order of t l  in E results from the choice (5.13) and anticipates the fact 
that, close to  the threshold, the growth rate of perturbations varies as 
R - R,. Here, since the instability is stationary, the action of a,, is trivial.2 
Let us come back to (5.5) and expand also the at present in C. With 
respect to system (5.9,. . . ), in addition to the assumptions R1 = 0 and 
R2 = 1 inherent in (5.13) the first important modification enters Eq. (5.11) 
where a term at, appears. We can thus rewrite it as: 

LV3 = M V i  + M(V2, Vi) + N(Vi,  V2) - Q &,Vi , (5.16) 

where Q is the opposite of the operator obtained by differentiating 12 with 
respect to at formally. 

The solution at order E reads 

V1 = AIVc exp(ilc,z) + C.C. 

where A1 is now a function of the slow variable t l .  
At order E ~ ,  Eq. (5.10) is left unchanged with the introduction of time. 

The compatibility condition that determined R1 in the previous approach, 
is now trivially fulfilled by assumption. Eq. (5.10) contains non-resonant 

2Things would be different for an oscillatory instability, in which case we would have 
ato = -iwc, but the approach can easily be extended owing to what we learned in 
Chapter 2. 
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terms of the form exp(inkcz) with n = 0 and n = f 2  issued from the eval- 
uation of n/(Al  exp(ik,z) + c.c., A1 exp(ik,z) + C.C. ). A particular solution 
can thus be found in the form: 

where the first subscript indicates the order in E and the second one the 
harmonic generated by the nonlinear couplings. A solution of the homo- 
geneous problem, A2Vc exp(ik,z) + c.c., must be added to this particular 
solution in order to obtain the full solution at order e2. 

At order c3,  it is easily seen that Eq. (5.16) contains a certain number 
of resonant terms coming from the evaluation of n/(V2, V1) +n/(V,, V2). 
Because V2,part contains harmonics 0 and f 2  and V1 harmonics f.1, these 
terms contain harmonics 0 f 1, i.e. f l ,  and f 2  f 1, producing f 3  and f l .  
Other resonant terms come from R2V1 (with R2 = 1 by definition), and 
Q at1V,. Instead of giving R2 as in the previous approach, the compatibility 
condition now reads: 

One gets easily convinced that the second term is of the form IA1I2A1 by 
counting the powers of exp(ik,x), so that (5.17) effectively reads: 

where TO, a ,  and g are constants that can be evaluated by computing the 
scalar products in (5.17). Returning to notations introduced in Chapter 3, 
especially through (3.23), p. 84, coefficient a can be identified with R;' 
since the linear growth rate was defined there as u = T;~(R - Rc)/Rc. 

For a stationary instability, it is easily shown that if the system is 
symmetrical under the change x I+ -2, then (5.18) has real coeffi- 
cients since this symmetry implies symmetry under complex conjugation: 
Aexp(ik,x) I+ A*exp(-ik,z). This is no longer the case for oscillatory 
instabilities and dissipative waves which are much more complicated in this 
respect, see 55.4.4 below. 

The expansion can be continued. It is then observed that the freedom 
introduced by the Rk in (5.6) for the computation of the time-independent 
solutions (5.7) is now replaced by the introduction at each order of the 
successive amplitudes Ak. The Redholm alternative now governs these Ak 
as functions of the slow time tl .  
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At lowest order we have just A = &A1. Coming back to the natural time 
t using (5.15), observing that all terms of (5.18) are of order E ~ ,  we get: 

n&A = a(R - R,)A - glAI2A (5.19) 

called the amplitude equation. As announced, this result is in line with the 
argument developed at the beginning of Chapter 4, and especially with that 
leading to (4.7). 

5.2 Dissipative Crystals 

We now generalize the previous calculation €or the case of systems that are 
isotropic in the (z, y) plane perpendicular to direction t singled out by the 
instability mechanism. The linearized problem now reads: 

C(V1, at; R)V = 0 ,  V1 (az, 8,) (5.20) 

and, owing to the orientation degeneracy, its solution can be searched for 
as a superposition of plane waves with wavevectors in different directions 

v1 = c v k j  eXp(ikj*Xh) + C.C. , (5.21) 
k j 

with lkjl = k, for all j .  
The expansion in powers of E is performed as in $5.1.1 and again leads 

to (5.9, . . .). Let us work sequentially as before. Though the equation at 
order c2 remains formally the same as in the one-dimensional case, the two- 
dimensional character of the probIem implies novelty in the determination 
of resonant terms: nonlinearities h/(V1, V,) that were then only able to 
generate the non-resonant harmonics 0 and 2, can now produce resonant 
combinations as shown in Figure 5.l(b). 

We can now rewrite (5.10) in the form 

so that when kjl + kj,, falls right on the critical circle, we must compen- 
sate this term with a term in R1 # 0 for some well chosen kj.  In the case 
of formally quadratic nonlinearities, it is thus generically expected that 
solutions at order c2 exist in the form of regular superpositions of three 
wavevectors at angles 2 ~ / 3  (and their opposites). Such solutions bifurcate 



188 Instabilities, Chaos and Turbulence 

Fig. 5.1 Spatial resonance at second order: (a) Non-resonant combination k = kl + kz 
with Ikl # k,. (c) Regular 
superposition of three wavevectors making a three-branch star at 2 ~ / 3  forming a resonant 
set with their opposites (dashed arrows). 

(b) Resonant combination k = kl + kz with Ikl = k,. 

trans-critically as already shown and only special circumstances can sup- 
press them by canceling the scalar products involving the last terms on the 
r.h.s. of (5.22) for symmetry reasons (e.g. the top-bottom symmetry in 
convection). 

Let us suppose that the nonlinearities do not generate resonant terms 
at  second order. The solution is still a priori made of a superposition of 
linear modes (5.21). So, let us consider two pairs of wavevectors f k l  and 
f k z  and start with: 

The special solution at second order then formally reads: 

Inserting these expressions in (5.11), we obtain terms with space depen- 
dences in the form: 

so that we cannot avoid the generation of resonant terms through the 
relation: 

kji + kjri + kj,,, = k ,  

with k lying right on the critical circle, as shown in Figure 5.2. 
The difficulty in the computation only comes from the fact that this 

relation can be fulfilled in many ways. Among all possible combinations, 
those involving a single pair of wavevectors are immediately identified, 
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-+ - - - - - 
(1) = 1+1-1 

(2) = 1-1+1 

e- 
(3) = -1+1+1 

(4) = 1-2+2 (6) = -2+2+1 (8) = -2+1+2 

(a) (b) 

(5) = 1+2-2 (7) = 2-2+1 (9) = 2+1-2 

Fig. 5.2 Spatial resonance at third order: (a) An example of resonant superposition; 
(b) N pairs of wavevectors making an angle ?r/N between nearest neighbors, here with 
N = 3. (c) Combinations with a single pair of wavevectors fk (rolls). (d, e) Combina- 
tions with two pairs of wavevector forming a parallelogram, degenerate (d) or not (e). 

which we already had in the quasi-one-dimensional case. But other 
combinations with nontrivial contribution to Rz are readily discovered, 
Fig. 5.2(a), whose contributions further depend on the angles made by 
the wavevectors pairs in a quantitative way. 

In general one is first interested in the coefficient RL" associated to 
superpositions of N pairs of wavevectors forming angles of 7rlN between 
neighbors, Fig. 5.2(b). Apart from stability considerations to be examined 
in 35.3 below, superpositions with an arbitrary number of pairs can be 
considered. However, obtaining simple periodic patterns implies either N = 
1 for rolls, N = 2 for squares, or N = 3 for hexagons as demonstrated for 
standard two-dimensional  crystal^.^ 

Superpositions with more than three regularly disposed pairs of 
wavevectors in general form multi-periodic patterns called quasi-crystals. 
The latter may degenerate into periodic super-lattices with large periods 
when certain commensurability relations are fulfilled. See Chapters 5 and 6 
of [Rabinovich et al. (2000)]. The parallel is complete with periodic locking 

3See, Chapter 13 of L.D. Landau & E.M.  Lifshitz, Statistical Physics (Butterworth- 
Heinemann, 1980). 
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of quasi-periodic regimes studied in Chapter 4, 54.2.3. A natural extension 
of the temporal setting would suggest the existence of chaotic  crystal^.^ 

5.3 Short Term Selection of Patterns 

What has just been said relates only to the existence of stationary nonlinear 
dissipative structures but the approach leading to  the amplitude equation 
(5.19) for a roll pattern, characterized by a single complex amplitude A,  can 
be reproduced for more complex patterns with superpositions of plane waves 
exp(ikj.xh), with amplitudes A, and their complex conjugates. Symmetry 
and resonance considerations (see Exercise 5.6.1) lead to  phenomenological 
amplitude equations generalizing (5.19). Assuming formally cubic nonlin- 
earities (or formally quadratic but such that relevant resonances at second 
order are killed for symmetry reasons), one obtains: 

where coefficient go and gjjl respectively accounts for interactions of type (c) 
and (d, e) displayed in Figure 5.2. 

When formally quadratic interactions do not kill resonances at second 
order, sets of three pairs of wavevectors, k j ,  j = 1,2 ,3 ,  such as in Fig- 
ure 5.l(b) have to be considered with the corresponding amplitudes Aj, 
j = 1,2 ,3 .  The resonance condition k l  = -kz - k3 then implies the pres- 
ence of a term AZA; in the equation for Al ,  which leads to: 

and two other equations obtained by circular permutation of the subscripts. 
Coefficients g, p and j in (5.24) are to be determined from a detailed non- 
linear calculation or just introduced through a phenomenological argument. 

Regular configurations correspond to specific fixed points of the ampli- 
tude equations (5.23) or (5.24) with IAj( = A for all j .  Patterns selected 
by nonlinearities can be discussed from the stability of these fixed points 
in the strictly temporal setting of Chapters 2 and 4. The case of squares is 
examined in Exercise 5.6.1. 

4A.C. Newel1 and Y. Pomeau, “Turbulent crystals in macroscopic systems,” J .  Phys. 
A: Math. Gen. 26 (1993) L429-L434. 
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5.4 Modulations and Envelope Equations 

The previous analyses all referred to  uniform cellular structures with wave- 
lengths equal to the critical wavelength A,. By assumption, confinement 
effects are weak in extended geometry and thus may prove unable to  con- 
trol the development of such “ideal” structures. “Natural” patterns that 
develop are therefore usually disordered, with local vectors k such that 
Ikl x k, but with slowly variable lengths and/or orientations not every- 
where perfectly aligned with the directions defining a unique underlying 
reference pattern. Defects can also perturb the regular ordering of the in- 
dividual cells. An example from convection in a large Prandtl number fluid 
was displayed in Figure 3.10, p. 98. Imperfect patterns are usually called 
textures. 

The problem is approached within the framework of so-called envelope 
equations, which adds a spatial meaning to the temporal dimension of the 
amplitude equations introduced above, thus making possible the description 
of slow modulations to regular patterns and universal instabilities attached 
to  them. 

The derivation again starts with a solution to the nonlinear problem as 
a superposition of modes but with amplitudes that can be slowly varying in 
time and space, now called envelopes. Through the derivation process, most 
specificities of the primary instability are rubbed out, so that the result is 
expected to  bear a universal content: all patterns with the same symmetries 
behave in the same way. Here we restrict ourselves to a heuristic approach5 
mostly using symmetry arguments and we rest the discussion on properties 
of the linear dispersion relation in the neighborhood of the threshold as 
discussed earlier in Chapter 3, 53.1.6, p. 84. We consider first the case of a 
one-dimensional cellular instability before proceeding to  several extensions. 

5.4.1 Quasi-one-dimensional cellular patterns 

At distance r = (R-Rc)/R, from threshold R,, the growth rate of a normal 
mode with wavevector k = kc + Sk is generically given by (3.26), i.e.: 

(5.25) 2 2  
700 = T - toSk  . 

5For technical details consult the seminal paper by A.C. Newell, “Envelope equa- 
tions,” Lectures in Appl. Math. 15 (1974) 157-163; or else: S. Fauve, “Pattern forming 
instabilities” in [GodrBche and Manneville (1998)l; A.C. Newell, Th. Passot, and J .  Lega, 
“Order parameter equations for patterns,” Annu. Rev. Fluid Mech. 25 (1993) 399-453; 
[Cross and Hohenberg (1993)] or else [Rabinovich et al. (2000)l. 
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Slightly above threshold (0 < r << 1) the wavepackets serving to build the 
modulated pattern are made of unstable wavevectors (with u > 0) in the 
band k E [k,  - A k ,  k,  - A k ]  with A k  = [i’fi. The space modulations 
are thus slow when compared to  variations a t  the scale of the wavelength 
A, ( A k / k ,  << 1). Two time variables, t o  and tl, were introduced in order 
to  obtain the amplitude equations. In the same way, two space variables 
are defined, a fast one and a slow one, xo and 21, respectively. Like the 
slow time variable t l ,  the slow space variable is linked to  the distance to  
threshold r through the growth rate. F’rom (5.25), we guess: 

a,,,, - 6k2 - ru - at,. 

A systematic expansion in powers of a small parameter E should therefore 
rest on the assumptions: 

2 T = E , at * at, + E2&, , a, * a,, + e2ax, , 
and 

V = &A1(zl, t l )  exp(ik,xo) + C.C. + . . . 
where the distinction between the carrier wave at  k, and the modulation 
is made explicit. 

The translation in physical space (slow 21) is easily obtained by formally 
performing an inverse Fourier transform ibk ++ ax, which leads to 

TO&,AI = A1 + C~axlxlA1.  (5.26) 

After having unfolded the space dependence we have to  add the contribution 
of the nonlinearities previously computed and accounted for in (5.18). Back 
to the natural variables with A = E A ~ ,  (5.26) reads? 

TOatA = rA + C;,”a,,A - gIAI2A (5.27) 

where it can be seen that each term is of order r3I2,  which is in fact the 
lowest significant order. 

In the case of convection, Sege17 has shown that one could account for 
lateral boundary effects inhibiting the instability mechanism by imposing: 

A(xb, t) = 0 (5.28) 

6As already noticed, coefficient a in (5.18) is absorbed in the definition of r .  
‘L.A. Segel, “Distant side-walls cause slow amplitude modulation of cellular convec- 

tion,” J. Fluid Mech. 38 (1969) 203-224. 
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at the position of the lateral wall xb. In a semi-infinite medium, setting 
the origin at the wall, one easily determines the profile of the modulation 
by integrating the second order differential equation 

60 dZ A + r A - g A 3  = O .  

(Since the equation is invariant under the change A H Aexp(icp) one can 
choose the phase A that makes it real.) By identification one finds 

A = A0 t a n h ( x / < h )  

with A0 = fi and where 6 = &/fi, often called the coherence length, 
diverges in the vicinity of the threshold. 

5.4.2 

Let us now proceed to several extensions of (5.27) and first consider the case 
of an instability that still favors rolls but in an effective two-dimensional 
medium which is rotationally invariant in its plane. An argument due 
to Newell and Whitehead’ shows that, x being the direction of the local 
wavevector and y the perpendicular direction, modulations along y are 
slow but faster than along x (a, - U ( T - ~ / ~ )  >> 8, N 0(r1/’) for T << 1) 
and that rotational invariance is accounted for by the replacement of d, by 
8, - (i/2k,)dyy in (5.27). This substitution Ieads to what is known as the 
Newell-Whitehead-Segel (NWS) equation that reads: 

2 0  modulations of quasi-1D cellular patterns 

in the original variables x, y, and t ,  and where each term is again easily 
seen to be of order r3I2. 

The origin of the substitution can be understood by considering the 
operator (V: +kc’)  from which periodic structures with space periodicity 
close to A, = 27r/kc emerge in media with rotational invariance in the (2, y) 
plane. Under Fourier transform, for a wavevector k = (k, + &,)a + Sky?, 
at lowest significant order in (Sk,, SICzI) one obtains: 

2 
[ - (kc  + Sk,)2 - Skt + kc2]  E [-2k,bk, - S k i ] 2  

= [(2ikc)(i6k,) + (iSk,)2I2, 
8A.C. Newell and J.A. Whitehead, “Finite bandwidth, finite amplitude convection,” 

J .  Fluid Mech. 38 (1969) 279-303. 
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P 
4 6 8 

Fig. 5.3 
responding solution of (5.31). 

Left: Pattern with rolls arriving perpendicular to a lateral wall. Right: Cor- 

from which the indicated replacement derives by just performing the inverse 
Fourier transform (idlc, I-+ a,, idlc, I-+ a,). 

Brown and Stewartsong have shown that the boundary condition a t  a 
wall inhibiting the instability and perpendicular to  the y direction reads: 

A(X, Yb, t )  = 0 and d,A(Z, Yb, t )  = 0 (5.30) 

The y-dependence of the envelope in the vicinity of the lateral wall, depicted 
in Figure 5.3, has been obtained by numerical integration of the fourth order 
differential equation 

(5.31) 

with boundary conditions (5.30) at y = 0 and A + A0 = fi for y -+ 00. 

The value of the second derivative at y = 0 is obtained by multiplying 
(5.31) with 6.4 which can be integrated. The so-obtained first integral is 
then evaluated at  y + 00 where all derivatives of A are zero, which fixes 
$A at y = 0. Writing (5.31) as a four-dimensional first-order system, one 
finally obtains the solution by integrating it as an initial value problem, 
by means of a shooting method in which the value of the third derivative 
of A at  y = 0 is the sole unknown initial condition to be adjusted so that 
A(y) + A0 as y + 00. 

~~~ ~ 

QS.N. Brown and K.S. Stewartson, “On finite amplitude B6nard convection in a cylin- 
drical container,” Proc. R. SOC. Lond. A 360 (1978) 455-469. 
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5.4.3 Quasi-two-dimensional cellular patterns 

It is not difficult to extend the formalism to treat patterns with several 
pairs of wavevectors at a phenomenological level. We shall consider here 
only the case of a square pattern simply obtained by noticing that the x 
direction for one of the wavevectors is the transverse direction to the other 
and reciprocally. Combining results already obtained we get 

When p > 1, the calculation developed in Exercise 5.6.1 shows that rolls 
are preferred locally." Exercise 5.6.3 then shows that a system of rolls with 
a wavevector too far from k, also becomes unstable against the formation 
of rectangles owing to the growth of a system of rolls with wavevector kc 
but at right angles with it. This is the cross-roll instability, and the way 
it is shown to exist implies its universal character: all roll patterns in 
rotationally invariant media may experience it. On the other hand, owing 
to their local stability properties, roll systems at right angles may coexist in 
different but contiguous regions of space if their wavevectors are sufficiently 
close to kc, forming a stationary grain boundary, see Figure 5.4 (left). A 
grain boundary parallel to the y axis is obtained by solving (5.32, 5.33) in 

0 8  , , , , , , , , , 

Fig. 5.4 
amplitudes. 

Left: Roll system with a grain boundary. Right: Solution for the corresponding 

loIn essence, when p < 1, everything occurs as if p = 0, the two systems of rolls ignore 
each other, and grow, so that squares are obtained everywhere in space; when p > 1, 
they cannot but feel each other and one kills the other, at least locally. 
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the special case a, 0 which leaves one with a differential system in x. For 
example if both underlying wavevectors are equal to k,, one gets: 

where the primes indicate differentiation with respect to x. The solution 
illustrated in Figure 5.4 (right) has here been rapidly and accurately ob- 
tained by searching it as the asymptotic solution of a partial differential 
problem in x and t using a simple numerical scheme of the kind described 
in Appendix B, 5B.2.1. The mathematical solution can however be obtained 
by analytical means (matched asymptotic expansions).” 

The envelope formalism just introduced can account for the essentials 
of the dynamics of scalar textures such as those observed in convection a t  
large Prandtl numbers. In particular, it explains the orientation of rolls at  
lateral boundaries, the presence of curvature and well ordered grains and 
other defects such as those present in Figure 3.10, p. 98. All this follows 
from the fact that the NWS equation (5.29) derives from a potential in the 
sense of Chapter 2, $2.1.3, p. 33, i.e. can be written as 

(5.34) 

where the right hand side is a notation representing the functional differ- 
entiation of 

with respect to A*, with g E R, hence 
Functional differentiation in (5.34) is understood in the sense of varia- 

tion calculus. In the change A t-+ A + 6A: 
0 variations of IAI2 and IAI4 expand as AdA* + A*6A and 21A12(A6A* + 
A’dA), which immediately gives the corresponding terms in (5.29) upon 
isolation of terms in 6A*; 

terms involving derivatives need a slightly more complicated treatment; 
for example, the variation of aXAaxA* gives axAazSA* + ax6AazA* but 
ax6A* is not independent of 6A* so that an integration by part has to  
be performed to isolate the latter, which yields -6A*axx A plus boundary 

E R. 

“P. M. and Y. Pomeau, “A grain boundary in cellular structures near the onset of 
convection,” Phil. Mag. A 48 (1983) 607-621. 
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terms; the other terms can be treated in the same way (two integrations by 
part for the terms arising from l13yyAlz) so that all the partial derivatives 
of (5.29) with respect to space are also recovered; 
0 boundary conditions (5.28, 5.30) for rolls parallel or perpendicular to 
the lateral boundaries may be used to cancel boundary terms arising from 
integrations by parts in case of a rectangular domain; otherwise contribu- 
tions from the boundary term can simply be neglected when compared to 
bulk contributions in the general case. 

The system then evolves so as to minimize the potential 

a t )  = G(&, Y, t ) ,  A * ( Z ,  Y, t))dx dY 

over the domain considered since $G 5 0. Using the same argument as 
in 52.1.3, one obtains that the solution that achieves this local minimum is 
time independent. On this basis, selected patterns are those corresponding 
to stationary solutions of (5.29) at local minima of 6 (local maxima or sad- 
dles are unstable solutions). Favored textures can be found by comparing 
the contributions of the different causes of inhomogeneity (lateral walls, 
defects) to the potential increase with respect to the uniform solution. 

In this context, the slow residual time dependence often observed in 
experiments can be attributed to higher order terms omitted in (5.29) which 
only holds at lowest significant order, at least in the scalar case. However, 
the interpretation of space-time chaos (weak turbulence) is at any rate 
more complex as soon as one leaves this simple framework, in particular for 
convection at low Prandtl numbers for which the most relevant field is no 
longer the temperature but the velocity. 

5.4.4 

Up to now, we have considered only stationary instabilities. The approach 
in terms of envelope equations extends also in the more difficult case of oscil- 
latory instabilities, w, # 0, in particular for waves when Ic ,  # 0. Difficulties 
arise from the fast time dependence, drastically destroying the relaxational 
property by introducing complex coefficients in the evolution equations, as 
in the strictly temporal setting of standard Hopf bifurcation, Chapter 4, 
54.2.1.2, p. 128, and not mildly by higher order corrections as above. 

Here, we just give a few results practically without derivation, inviting 
the reader to consult references mentioned in Note 5. As in the stationary 
case, the primary role is taken by the linear dispersion relation introduced in 

Oscillatory patterns and dissipative waves 
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Chapter 3, $3.1.6. Considerations about resonances developed in Chapter 4, 
$4.1.3, are then used to deal with nonlinearities directly written as normal 
forms relevant to the case at hand. 

For an oscillatory instability with kc = 0 or for a dissipative wave with 
k, # 0 but in a reference frame moving at  the group velocity (see p. 85), 
we have: 

This equation accounts for the space unfolding of the Hopf bifurcation 
(4.16) as derived from the dispersion relation of the corresponding insta- 
bility (3.26, 3.27), p. 84. Coefficient 6 is the critical pulsation in units of 
TO, i e .  w, = 5/70; it can be eliminated by changing to a ‘rotating frame’ 
A ( z ,  t )  H A ( z ,  t )  exp(-iwot). 

The next coefficient, a, is a measure of linear dispersion in units of the 
natural coherence length ti. Finally, ,B is the nonlinear dispersion coefficient 
rescaled by g, which accounts for saturation effects by nonlinearities. 

Upon further rescaling of time, length, and amplitude, one obtains the 
universal form of the so-called complez Ginzburg-Landau equation (CGL):12 

&A = A + (1 + ia)d, ,A - (1 + i,B)IAI2A. (5.36) 

This formulation is not restricted to the one-dimensional case introduced 
here but can be extended to higher dimensions, a,, simply being replaced 
by the Laplacian when the physical system is isotropic in space. 

The structure of the equations governing one-dimensional waves propa- 
gating in opposite directions (complex envelopes A1,2) can be obtained in 
the same way by symmetry and resonance considerations which lead to: 

through appropriate rescalings. Notice however that, since the first order 
partial derivative 8, is expected to be of order r1I2 before rescaling, the 
unscaled group velocity must also be of order r1I2 ( i e .  small enough), to  
insure the consistency of the set of equations at  order r3I2. 

l2 W. van Saarloos, “The complex Ginzburg-Landau equation for beginners,” in [Cladis 
and Palffy-Muhoray (1995)l. 
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Solutions with A2 = 0 and A1 # 0 (or the reverse) account for propagat- 
ing waves moving to the right (or left), i.e. z Al (a : -v t )  (or Aa(a:+vt)) .  
By contrast condition /All = lAnl describes a superposition of right and 
left waves forming a standing wave. A calculation analogous to that in Ex- 
ercise 5.6.1 shows that the system prefers propagating waves when Jpll > 1 
(one wave L‘feels’’ the presence of the other and “kills” it) and standing 
waves when Ip‘I < 1 (each wave does not L‘fee”’ the presence of the other 
much and therefore ‘Laccept” cohabitation). 

When propagating waves are preferred, defects similar to grain bound- 
aries may separate homogeneous domains with opposite kinds of wave in 
each. These defects are called sources or sinks according to whether the 
waves travel away from the defect or toward it. 

5.4.5 Universal long-wavelength instabilities 

One of the interests of the envelope formalism is to offer a framework for the 
study of universal secondary instabilities of dissipative structures linked to 
the symmetry properties of patterns at the limit of a laterally unbounded 
system. For stationary cellular structures, two such secondary modes are 
the Eckhaus instability against local compression/expansion and the zigzag 
instability against local torsion of the rolls, as sketched in Figure 5.5. 

These two universal modes are called phase instabilities because they 
relate to modulations of the position of the cells. Within the envelope 
approach, the solution is searched for in the form A = IAlexp(i+), and 
while the modulus JAl describes the intensity of the response to the primary 
instability mechanism, the phase serves to specify the absolute position of 
the pattern in the laboratory frame. The universal instability linked to the 

Fig. 5.5 
the zigzag instability (right). 

Initial aspect of perturbation associated to the Eckhaus instability (left) and 
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amplitude is the cross roll instability mentioned earlier, p. 195, and further 
studied in Exercise 5.6.3. Contrasting with the amplitude that has a finite 
relaxation time, the phase is dynamically neutral as long as the solution is 
uniform. 

A slightly irregular pattern can be described by a phase modulation 
which decays when the pattern is stable or gets amplified when it is un- 
stable. Typically, at least for scalar dissipative structures, the phase of the 
envelope is governed by a diffusion equation: 

at4 = D,,azz4 + DLayy4 , (5.37) 

where Dll and D l  are diffusion coefficients along the wavevector of the 
structure, or perpendicular to it. As long as these coefficients are both 
positive, the phase perturbation relaxes and the roll pattern is stable against 
(infinitesimal) phase perturbations. The instability is observed when one 
of these coefficients changes its sign. The Eckhaus instability corresponds 
to Dll becoming negative, and the zigzag when it is DL.  

The phase diffusion coefficients depend on the wavelength of the under- 
lying pattern. Exercise 5.6.2 is a first approach to the Eckhaus instability 
resting on (5.27), the zigzag instability would be studied in the same way 
using (5.29). The result is generally presented as a stability diagram in 
the parameter plane (6k, r )  where 6k measures how the wavevector of the 
underlying pattern departs from the critical wavevector and r is the control 
parameter. Figure 5.6 displays the results at lowest significant order. 

The Eckhaus instability is a side-band instabili ty that develops “far 
from” k, and close to the marginal stability curve, in a region where the 
instability mechanism is not very efficient and the amplitude of the solu- 
tion, A0 = d(r - t:bk2)/g, is small. “Preferring” a solution with a more 
optimal wavevector, the system amplifies the phase modulation by com- 
pressing certain regions and expanding others (Fig. 5.5, left). Supposing 
for example that the initial wavelength is too short, expanded regions will 
have a more favorable local wavevector while in compressed regions the 
local wavelength will be even shorter. The primary mode completely dis- 
appears at the location of the most compressed places since the amplitude 
of the primary mode drops to zero at the marginal stability curve. The 
pattern then loses a pair of rolls at such places and the wavelength further 
relaxes toward an increased more optimal value. If the obtained wavevector 
is still in the unstable domain, the process repeats. If not, it stops and the 
system evolves through diffusive relaxation toward a uniform pattern with 
a wavelength inside the stable domain. 
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Fig. 5.6 Stability diagram of roll patterns against universal phase modes of compres- 
sion/expansion (Eckhaus) and torsion (zigzag). As obtained from equation (5.29) valid 
at lowest order, the marginal stability curve is given by T = <iSk2 .  Rolls are unstable 
against the Eckhaus mode in the region (idk2 < T < 3503dk2. The zigzag instability 
domain is for 6k < 0. Stable rolls have wavevectors in the domain 0 < dk, T > 3503dk2. 

The zigzag instability sets in when 6k < 0, i.e. for wavelengths larger 
than critical. This can also be easily interpreted by noticing (Fig. 5.5, 
right) that, when measured perpendicularly to the local axis of the rolls, 
the wavelength is shorter than that measured along the 2 axis by a factor 
equal to the cosine of the angle between the local periodicity direction 
and the x axis. The instability again develops so as to make the (too 
long) initial wavelength shorter and thus closer to the critical value. By 
contrast with the case of the Eckhaus instability which changes the number 
of rolls, the zigzag instability saturates as it amplifies. The process ends in 
wide regularly spaced domains of ‘zig’ and ‘zag’ straight rolls connected by 
barrow bands of strong bending. 

Up to now, we have only considered the initial development of these 
universal phase instabilities and just sketched the ultimate fate of the un- 
stable state. Analytically, one can go a little further and complete the 
phase diffusion equation (5.37) by appropriate nonlinearities. In this con- 
text, let us mention the Kwamoto-Sivashinsky equation13 (KS) to be used 
in the numerical experiments described at the end of Appendix B. This 
equation describes the dynamics of the phase of nearly uniform solutions to 
the complex Ginzburg-Landau equation (5.36) in a narrow neighborhood 
of the threshold of the Benjamin-Feir instability. 

13Y. Kuramoto, “Phase dynamics of weakly unstable periodic structures,” Prog. 
Theor. Phys. 71 (1984) 1182-1196. 
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On general grounds this instability, which closely corresponds to  the 
Eckhaus instability of one-dimensional stationary patterns, develops when 
the phase diffusion coefficient D = 1 + ag becomes negative (Newell’s 
c r i t e r i on ,  see Note 5. By symmetry considerations one can check that the 
equation governing the phase, at  most quadratic in + and up to order four 
in ax,  reads: 

at4 = DaXX4 - K a x x X x 4  + 9 0 ( & 4 ) ~  + g i ( a X 4 ) ( & x z 4 )  

+ 9 2 ( a x ~ + ) ~  + 9 3 ( a ~ + ) ~ ( a x x + )  (5.38) 

where each coefficient can be derived from those in (5.36). In addition to  
D = 1 + a,8, one gets14 K = ;a2(1 + p 2 )  > 0, 90 = P - a, 9 1  = 2 9 2  = 

In practice, for D M 0 but negative, the order of magnitude of the 
space gradient is fixed by the competition between the two linear terms 
and all nonlinear terms except the first can be neglected. After appropriate 
rescalings, Equation (5.38) can be reduced to the KS equation which reads 
in universal form:15 

a 9 3  = - 2 4 1  + p ) .  

or, after differentiating it with respect to x and setting $ = ax+: 
at$ + $ a x $  + 8 X X $  + ax , , , $  = 0 .  (5.40) 

The nonlinearity +a,$ present in this last expression is reminiscent of 
the advection term of hydrodynamics. It already appeared in the Burgers  
equation (Chapter 1, Exercise 1.5.3) producing shocks (Exercise 5.6.4, 
part 1) and the Korteweg-de Vries equation producing solitons (Chapter 2, 
Exercise 2.5.6). The KS equation in one or the other form, (5.39) or (5.40) 
is a particularly simple model of phase turbulence.16 

As long as D remains small, the modulus of the envelope is enslaved 
to  the phase gradient, stays close to its nominal value Ao, and therefore 
remains bounded away from zero. This is no longer the case when the 
phase instability is more intense. The field IA( then revolts and recovers a 

14J.  Lega, Defauts topologiques associ6s B la brisure d’invariance de translation dans 
le temps, PhD Dissertation, Nice University, 1989 (in French). 

15The equation also appears in problems of front propagation as shown by 
G.I. Sivashinsky, “On self-turbulisation of a laminar flame,” Acta Astronautica 8 (1979) 
569-591; hence the joint names for the equation. 

laFor a brief review with references, see: H.  Chat6 and P. M., “Phase turbulence,” in 
[Tabeling and Cardoso (1994)l. 
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dynamics of its own. It then explores a larger range of values that extends 
down to zero. At places where IAl = 0, the phase is no longer defined and 
phase defects nucleate, with 2~-jumps of 4. The CGL equation then enters 
new regimes whose precise nature depends on the value of cly and ,b in (5.36) 
and the space dimension. Strong space-time chaos called defect turbulence 
then sets in. In two dimensions, it is characterized by the permanent birth of 
defects in pairs, that further dissociate and move around before merging.17 

The theory of the transition to chaos is rooted in the idea of dimensional 
reduction leading to effective dynamical systems in terms of ordinary differ- 
ential equations. To summarize this section, one can say that the envelope 
formalism is the required adaptation of this idea when confinement effects 
are too weak to legitimate the approach in terms of isolated modes and 
corresponding discrete amplitudes. Pattern selection strictly relies on this 
reduction for uniform solutions. 

Defects and universal secondary instabilities involve modulations to 
some ideal reference situation. As long as the system remains sufficiently 
close to a stable regularly ordered pattern, the relevant instability modes 
relates to the phase of envelope and a supplementary reduction is possi- 
ble by adiabatic elimination of the envelope modulus. Localized defects 
also play a role, either because they are present in the initial conditions 
(when the pattern emerges) or as the result of secondary instabilities that 
do not saturate. Sometimes tools borrowed from the theory of dynamical 
systems can still be used, e.g. to determine special solutions to the envelope 
equations. 

It should also be noticed that, while the envelope formalism can be 
made rigorous within the framework of multiple scale methods, an inter- 
esting alternative is the derivation of generic models by phenomenological 
arguments resting on resonance and symmetry considerations. Further, 
the numerical simulation of such models has proved crucial to the under- 
standing of space-time chaos. Such simulations usually do not require con- 
siderable investment and the reader is encouraged to practice them using 
the simple numerical methods presented in Appendix B, in order to get a 
personal intuition of the problem while taking advantage of the published 
material listed in, e.g. [Rabinovich e t  al. (2000)] or to be found on the 
Internet. 

17P. Coullet, L. Gil, J .  Lega, “Defect-mediated turbulence,” Phys. Rev. Lett. 62 
(1989) 1619-1622. A complete phase diagram is given in the one-dimensional case by 
H.  Chat6, “Disordered regimes of the one-dimensional complex Ginzburg-Landau equa- 
tion,” in [Cladis and Palffy-Muhoray (1995)l. 
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5.5 What Lies Beyond? 

Before closing this chapter, let us point out the interest of fully analogical 
approaches to the modeling of extended systems, useful when the minimum 
space-time coherence necessary to apply the envelope formalism is absent 
from the system. As a matter of fact, when the space-time coherence is 
limited, there is some advantage to consider the continuous system as an 
aggregate of subsystems coupled to each other. The local dynamics is ac- 
counted for at the scale of the subsystem while the space extension arises 
through the coupling between the subsystems usually arranged at the node 
of a lattice. 

A system can thus be discretized at several levels. At first, one can 
just discretize the physical space and get lattices of differential systems, 
e.g. lattices of Hopf oscillators or Lorenz systems. These systems are then 
coupled by some rule. For example, nearest-neighbor diffusive coupling of 
identical Hopf oscillators in one dimension would yield 

where subscript n indicates the space position of an individual oscillator and 
the discrete version of the diffusion operator, here Da,, is easily recognized. 

Next step, time can also be discretized, which gives coupled map lat- 
tices. Time and space being indicated by superscript k and subscript n, 
respectively, in one dimension and again for diffusive coupling, one will 
start with 

which is preferable to the seemingly more straightforward formulation: 

x;+’ = F (xi) + D [x;,’ - 2x; + x;-,] , 
since it is immediately checked that the latter may not preserve the in- 
variant domain of each subsystem while the former does (if X E V implies 
F(X)  E ID, then X: E 2) implies Xk+l E V for all n). The appropriateness 
of the model relies entirely on the skill of the modeler while choosing the 
local map and the type of coupling.’* 

Up to now, the local phase space was still a continuous set. One can 
make a last step by considering cellular automata where each subsystem 

l8See for example [Kaneko (1993)] and for a specific application H. Chat6 and P. M., 
“Spatiotemporal intermittency” in [Tabeling and Cardoso (1994)]. 
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can be in one of a finite set of states. Boolean automata have states labelled 
by bits 0 and 1, with evolution rules functions of the configuration of the 
neighborhood of each cell. Such systems can already have complicated 
dynamics in spite of very simple definitions [Wolfram (1986)]. 

Lattice gas automata are automata specially adapted to hydrodynamics. 
They describe fluids at the level of individual molecules but governed by 
simplified evolution rules. “Living” at the nodes of a regular lattice, the 
molecules can be in one of a discrete set of motion state (speed and ori- 
entation), jump from node to node and change their state of motion when 
they meet at some given node according to rules given in collision tables. 
At first, when massively parallel computers began to appear, they were 
presented as an alternative to the direct numerical simulation of hydrody- 
namics equations. Nowadays, they are rather considered as useful models 
when the local dynamics is rich or complicated (chemical reactions), or 
when the boundaries have a complex topology or special physical proper- 
ties (surface catalysis). An interesting review of lattice gas automata as 
applied to complex hydrodynamics is [Rothman and Zaleski (1997)l. 

The present chapter was mostly devoted to stationary patterns in weakly 
confined systems, with only a few words about waves. The latter will be 
central to the study of open flow instabilities in the next chapter. 

5.6 Exercises 

5.6.1 Pattern selection 

Consider patterns described by superpositions of plane waves: 

V = i [ A j  exp(ikj .xh) + c.c.], 
j 

namely, rolls with a single pair of wavevectors and squares with two pairs 
at right angles. The wavelength of the participating modes is Ac = 27r/kc. 
1) Show that translational invariance along wavevector kj = IC& (unit 
vector xj), xj I-) xj + x j ( O ) ,  j = 1,2 ,  implies a (gauge) invariance for the 
corresponding complex amplitude Aj I-) Aj exp(@j(’)). 

Taking these symmetries into account, show that the supercritical bi- 
furcation towards a uniform pattern is governed at lowest order by 

d A  dt  1 - - rAl -g11(A1(2A1 - g 1 2 ( A 2 ( 2 A 1  (5.41) 

%A2 = rA2 - g221A212A2 - gzi1AiI2Az (5.42) 
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with gij  E R. Use the rotational invariance to reduce the number of in- 
teraction coefficients to g (self-interaction) and 9’ = pg (cross-interaction). 
Show that g can be eliminated by appropriate rescaling of A1 and Aa. 
2) Determine the potential G(A1, A; ,  A2,  A;)  from which (5.41, 5.42) de- 
rives in the sense of (5.34), here simply 

and conclude that permanent regimes are time-independent. 
3) Find all fixed points (A l* ,  AZ,) of system (5.41, 5.42) and, apart from the 
trivial solution, give their explicit expression and physical significance (take 
advantage of the gauge invariance to specify the phase of the envelopes so 
as to have real amplitudes). 
4) Compute the value of the potential and study its curvature at the dif- 
ferent fixed points to guess their stability properties. Then perform the 
explicit stability analysis by inserting Aj = Aj, + aj in the system and 
linearizing. Even though the Aj, are real quantities, the most general per- 
turbations are not, thus take aj = uj + ivj .  Show that the fourth order 
linear system obtained splits into two subsystems, producing two neutral 
modes (explain their origin) and two non-trivial modes that can be stable 
or unstable, according to the value of p and the considered fixed point. 
Use the result to interpret phase portraits displayed in Figure 5.7. What 
happens when p = l? 

Fig. 5.7 Phase portrait of system (5.41, 5.42) for p = 0.80 (left) and p = 1.25 (right). 
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5.6.2 Eckhaus instabili ty 

Consider a roll pattern described by an envelope evolving according to: 

&A = r A  + d x x A  - IAI2A. (5 .43)  

The Eckhaus instability relates to  the phase 4 of the complex field A. 
1) Determine amplitude of a phase-winding solution corresponding to  
uniform rolls with wavevector k = k, + Sk, A(x ,  t )  = A(') exp(i 6k x). 

The stability of this solution against long wavelength perturbations 
(phase modes) is studied by assuming that the prefactor of exp(i 6k x) can 
be a function of space and time. From (5 .43) ,  derive the equation governing 
A ( x ,  t )  defined through A ( z ,  t )  = d(z, t )  exp(i 6k x). 
2 )  Insert A(z, t )  = A(') + a(z,  t )  in this new equation, and show that the 
linearized equations governing the real and imaginary parts of a(x,t) = 
u(x, t )  + iv(z, t )  read: 

atu = -2(r - bk2)u + axxu - 2 b k d x v ,  
8tv  = 26kdXu + a X x v .  

Derive the dispersion relation for Fourier normal modes with growth 
rate s and wavevector q taken in the form u = .iiexp(s t )  cos(qx) and 
v = fiexp(st)sin(qx). 
3) Show that the roots are real and that the phase-winding solution is 
unstable when 

2(r - 36k2) + q2 5 0 ,  

derive from this that the instability occurs first for q + 0 (long wavelength) 
and recover the result displayed in Figure 5.6.  

5.6.3 Cross ro l l  instabili ty 

In the conditions of Exercise 5.6.1, assume p > 1 (rolls preferred to  squares), 
consider a phase winding solution with k ,  = k,  + 6k, and study its stability 
against rolls at right angles with k,  = k,. 

From (5 .32,  5 .33) ,  show that: 

$1 = TAl + &,A1 - g(IA1I2 + pIA2I2)A1 , 
= TAZ - g(lA2I2 + pIA1l2)A2 , 

is an appropriate starting point. 
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Show that the condition for instability has the same form as the Eckhaus 
condition but with a different prefactor to be determined. Compute the 
value of p that makes the cross-roll instability more dangerous than the 
Eckhaus instability and interpret the limit p + 1. 

5.6.4 

5.6.4.1 The Burgers equation 

Consider the Burgers equation: 

Dynamical systems and nonlinear waves 

atv + vaxv = vaxxv .  

1) Show that it is invariant through a Galilean change of frame (i.e. that 
the equation for V(E,t) with 5 = x - V t  and V = v - V is the same as 
that governing v (x ,  t ) ) .  (The corresponding symmetry of the NS equation 
is discussed in Note 9, p. 239.) 
2) Derive the differential equation governing a solution that propagates at 
speed V without deformation (5 = z - V t  is the sole independent variable) 
and integrate it once with respect to x. Consider a solution such that vh 
for 5 + f m ,  derive its speed V from the first integral just obtained, and 
derive the analytical shape of the corresponding solution. 
[Solution: a hyperbolic tangent.] 

5.6.4.2 Kuramoto-Sivashinsky equation 

Consider variant (5.40) of the KS equation: 

atv + vaxv + axxv + axxxzv = 0 .  

1) Derive the linear dispersion relation governing infinitesimal perturbations 
6v = &J exp(st + iqx) to  the trivial solution v 0. Show the instability of 
those belonging to  a range of q to be determined. 
2) Write down the ordinary differential equation in 5 = x - Vt  governing a 
solitary wave solution propagating without deformation in a frame moving 
at speed V and derive a first integral. By identification, find a solution in 
the form 

V = atanh(n5) +,Btanh3(n5). 

and compare the value of n with the wavevector qmax of the perturbation 
with maximum growth rate Smax. 
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5.6.4.3 Flow down an  inclined plane 

The Benney equation is a partial differential equation governing the long 
wavelength perturbations to a fluid film of uniform thickness flowing down 
an inclined plane. After appropriate rescalings of length, time, and film 
thickness, one obtainslg 

8th + $8, [h3 + (ah6 - h3) d,h + h3d,,,h] = 0 

where a is the control parameter. 
1) Derive the linearized equation governing infinitesimal perturbations to  a 
time-independent uniform solution h = ho. Show that solution h = ho = 1 
is linearly unstable for a > ac = 1. 

2) A hydraulic jump is a solution such that h + 1 for x -+ --oo and h + h, 
for x + +m. A solitary wave precisely corresponds to h, = 1. Write down 
the ordinary differential equation in 5 = x - Vt  governing a solution that 
propagates without deformation in a frame moving at speed V, integrate 
this equation to find a first integral and determine the value K of this first 
integral as a function of c when x -+ -m. Then derive the relation between 
V and h, < 1. 

l9See: A. Pumir, P. M. ,  Y. Pomeau, “On solitary waves running down an inclined 
plane,” J .  Fluid Mech. 135 (1983) 27-50, and cited references. 
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Chapter 6 

Open Flows: Instability and 
Transit ion 

Convection studied in Chapter 3 is the prototype of systems becoming 
turbulent by steps when progressively driven far from equilibrium upon in- 
creasing the temperature gradient. All along this progression, the physical 
problem is clearly ruled by a mechanical cause, buoyancy-induced advec- 
tion, counteracted by thermodynamic dissipation processes, viscous friction 
and thermal diffusion. Turning to open flows, one could thus try to stay 
within the same framework and start with the no-flow equilibrium situation, 
then consider weakly out-of-equilibrium laminar regimes mostly controlled 
by viscous dissipation, and further increase the shear' to observe the tran- 
sition to  turbulence after some cascade of instabilities. This approach can 
indeed be followed in some cases (e.g. wakes) but, in most situations, open 
flows turn out to  be representative of strongly out-of-equilibrium systems 
in which mechanical evolution largely preempts the relaxation trends of 
thermodynamic origin. 

This has been recognized early since the historical tradition gives the 
first place to the study of inviscid fluids, for which velocity gradients are 
not rubbed out by viscous friction. A simple illustration of this change of 
perspective is given by the damped linear oscillator mX + q X  + kX = 0: 
the high-viscosity limit v2 >> 4km, yielding over-damped behavior (stable 
node at  X = X = 0) typical of thermodynamic relaxation, is not a good 
starting point to  understand weakly damped oscillatory behavior of inertial 
origin q2 << 4km (spiral point), while the ideal oscillator q = 0 (elliptic 
point) is more relevant. 

Here, we restrict our attention to one-directional and time-independent 
base flows (36.1). Inertial effects due to rotation or time dependence (e.g. 

'The Reynolds number introduced in Chapter 1, p. 9, compares mechanical advection 
to supposedly stabilizing viscous effects. 
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alternating with at f i w )  will thus practically not be considered. Linear 
stability theory ($6.2) was first developed for inviscid fluids in the second 
half of the Nineteenth Century, pointing out the possibility of purely me- 
chanical instabilities ($6.2.2), namely the Kelvin-Helmholtz instability of 
inflexional flow profiles, and a contrario the existence of mechanically sta- 
ble flow profiles of more delicate study. 

The inviscid case then served as a natural starting point for the study 
of the effects of viscous dissipation considered as a perturbation ( R  < 00 

but large). While viscosity tends to  stabilize purely mechanical insta- 
bilities as expected, it can destabilize mechanically stable flows accord- 
ing to mechanisms that are not much intuitive, producing the so-called 
Tollmien-Schlichting waves. During the second third of the Twentieth 
Century, these mechanisms were elucidated by analytical means resting 
on asymptotic analyses in the limit R + CQ, which gave the behavior of 
the asymptotes of marginal stability curves and, to a limited extent, es- 
timates of instability thresholds. Precise numerical results were obtained 
later using computers. We will not consider this theoretical and numerical 
issue in detail but just present some results ($6.2.3) and redirect the inter- 
ested reader toward specialized literature, the chapter by Huerre and Rossi 
in [GodrGche and Manneville (1998)] to begin with, and [Drazin (2002); 
Schmid and Henningson (2001); Drazin and Reid (1981); Betchov and Crim- 
inale (1967)], among others, for more detailed presentations. 

Another source of difficulty is linked to the presence of the upstream- 
downstream flow of matter which, by the way, also transports the perturba- 
tions. The latter can thus be carried away (so-called convective instability) 
or instead develop in situ in spite of global transport (absolute instability). 
The technical approach to this problem is highly delicate and relies on a 
mastery of complex variable analysis that goes much beyond the prerequi- 
sites for this course. Accordingly we will only introduce the subject at a 
qualitative level ($6.2.4). 

After the description of primary instabilities we turn to  the situation 
beyond threshold and consider the main physical scenarios of transition to 
turbulence, the understanding of which is still incomplete owing to specific 
difficulties. We begin with an abstract presentation of the characteristics 
of secondary instability modes ($6.3.1). Then we focus on the most typ- 
ical cases representing the types of flow pointed out at the linear stages: 
the wake of a blunt body for mechanically unstable flows, and the bound- 
ary layer along a flat plate for mechanically stable flows possibly unstable 
due to  viscous effects. The case of the wake, which bifurcates toward the 
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classical BCnard-von KBrmdn vortex street (see Figure 1.6, p. 16) through 
a supercritical Hopf bifurcation, is examined first ($6.3.2) since it can be 
approached with the same tools as those described earlier. By contrast, 
wall flows such as the boundary layer considered next ($6.3.3) are more 
difficult to  understand, leaving us with still partially open problems. One 
known source of difficulties is that, a t  the Reynolds numbers relevant to  the 
transition, the base flows may remain stable against unlocalized infinites- 
imal disturbances, but become unstable against localized finite-amplitude 
perturbations. Turbulent spots arising from the breakdown of such per- 
turbations can therefore coexist (in physical space) with laminar flow, see 
Figure 1.7, p. 17. The global stability of wall flows, the role of transient 
structures and the spatio-temporal competition between laminar and tur- 
bulent domains are thus examined in a separate section ($6.3.4) with special 
emphasis on the case of plane Couette flow known to be linearly stable for 
all Reynolds numbers. 

6.1 Base Flow Profiles 

6.1.1 Strictly one-dimensional flows 

The Navier-Stokes (NS) equation reads: 

p(&v + v * VV) = -vp + p v v ,  (6.1) 

where p is the density, p the pressure and p the dynamical viscosity. It is 
completed by the cont inui ty  equation for an incompressible flow: 

v , v  = 0.  (6.2) 

We consider only the case of constant density fluids so that we can divide 
(6.1) by p and introduce the kinematic viscosity v = pip,  which is the dif- 
fusivity of velocity fluctuations (homogeneous to [LI2 [TI-'). The quantity 
p i p  does not play a dynamical role and can be eliminated by appropriate 
analytical manipulations, i.e. taking the curl of (6.1) while taking (6.2) 
into account. 

Let us examine the case of a time-independent one-directional flow 
whose direction defines the x axis. Here we denote u, v, and w the velocity 
components along 2, y, and z ,  respectively. Introducing v u(z,  y, z )  j t  in 
the continuity equation, we simply get: 

d,u = 0,  (6.3)
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i.e. u is independent of x but still a function of the transverse coordinates 
( y ,  z ) .  The advection term v Vv then cancels identically, while the equa- 
tions for u and w simply read atp = ayp 0, i.e. the pressure is a function 
of x only. Differentiating the x component of the NS equation with respect 
to x yields: 

-8xzP + P(azz  + a,, + ~ 2 2 ) a z u  = 0 

and, using (6.3), 

& X P  = 0 1 

so that, for a straight tube with length L, we obtain: 

p(x )  = po - Gx with G = A p / L ,  

where po is the pressure at  x = 0 and A p  = p,, -pdown is the pressure head. 
The velocity component u ( y ,  z )  is then a solution to the Poisson equation 

( 8 , ~  + a2z) u = -G/P ,  (6.4) 

with the usual no-slip boundary condition at  the wall. Of course u ( y , z )  
depends on the shape of the tube's section. The case of a tube with circu- 
lar cross-section is standard (Hagen-Poiseuille flow). The base flow is the 
axisymmetric solution of (6.4) in cylindrical coordinates: 

where e denotes the radial coordinate. Integrating this equation, requiring 
the regularity of the solution on the tube axis e = 0, and using the no-slip 
condition at  e = 0, the interior radius of the tube, we get 

with 

The classical expression of the flow rate is obtained by integrating over e: 

For simplicity we further restrict ourselves to the consideration of plane 
base flows, i.e. flows that develop in channels such that the velocity is 
uniform in along one of the transverse coordinates, called spanwise and 
traditionally labelled z .  The velocity profile u of course remains a function 
of the cross-stream coordinate y ,  i.e. u = U ( y ) .  This configuration is 
depicted in Figure 6.1 (left). The profile of the flow driven by a pressure 
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G = Ap/L 

X Y1 Ul 

Fig. 6.1 One-directional flow between parallel planes. Left: Geometry and notation 
conventions for the axes. Right: Plane Couette-Poiseuille profile. 

gradient G between two parallel plates moving along the x axis at speeds UI 
and U2 is then given by the classical plane Couette-Poiseuille expression: 

U ( y )  = - iGy2 + b y  + C, 
where constants b and c are determined from the no-slip conditions: 

U(yJ = uz , i = 1 , 2 .  

This profile is displayed in Figure 6.1 (right). 

6.1.2 More general velocity profiles 

The class of base profiles to be studied can be enlarged by relaxing the 
condition of strict parallelism. Let us, for example, consider a flow that 
is slowly evolving downstream. The continuity equation (6.2), i.e. axu = 
-ayv, implies a slight divergence of the stream lines: u # 0 but small as 
long as 8, remains small in a region where 8, = O(1). The boundary layer 
close to a wall, the wake downstream a body in a stream, the plane jet 
illustrated in Figure 6.2 are examples of nearly-parallel flows. 

t gum , 

1-\ 

Fig. 6.2 
layer, the jet, the wake. 

Example of flows developing downstream. From left to right: The boundary 
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Taking into account the orders of magnitude of the fields u ,  v, and 
their x and y derivatives, the time-independent (at = 0) two-dimensional 
(8, 0) NS equation and continuity equations at lowest order read: 

udxu + v8,u = -p-'dpo/dx + d , , u ,  (6.6) 

(6.7) axu + a,v = 0 ,  

where dpo/dz is a possible applied pressure gradient (so-called boundary 
layer approximation). The solution is then searched by standard similarity 
variable methods (see [Tritton (1990)], Chap. 11) in the form: 

u = urnax(X)qY/b(X)) (6.8) 

where umax(X)  and d ( X )  are the relevant scales for the streamwise speed 
and the transverse distances at the point with x-coordinate X .  

Let us consider first the case of the boundary layer that develops along 
a wall in the absence of pressure gradient, i.e. the region where the stream 
with speed U,  far from the wall accommodates the no-slip condition. The 
thickness S of the layer varies with the distance X from the leading edge. 
Considering the equation for u, it is immediately observed that the advec- 
tion term, which is no longer strictly zero, must be compensated by the 
dominant dissipative term, hence: 

U d X U  N ua,,u. (6.9) 

The distance X from the leading edge is the only streamwise length scale 
available, while 6 is obviously the relevant cross-stream scale at that posi- 
tion. Dimensionally, this yields: 

axu o( u,/x, a,,u cc U,/S2 , 
and, upon insertion of these relations in (6.9): 

S(z) = d Z .  (6.10) 

The locaI velocity profile u = Umf'(C), where C = y / d ( X )  is the sim- 
ilarity variable and the prime denote differentiation with respect to C, is 
obtained as the solution of a third-order nonlinear differential equation in 
C for the stream function f :  

f f " + 2 f " ' = 0 ,  (6.11) 

with boundary conditions f = f' = 0 at C = 0, f '  + 1 for C + co. The 
corresponding Blasius velocity profile is displayed in Fig. 6.3 (left). It starts 
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U 
4 

Fig. 6.3 
ment thickness 61 (shaded domains have the same surface). 

Left: Blasius profile. Right: Sketch illustrating the definition of the displace- 

with very weak curvature for C < 1, and quickly tends to its asymptote for 

The thickness A of the boundary layer is usually defined as the distance 
at  which the speed equals a given fraction of U,, for example A,,,, defined 
by u(Ao.99) = 0.99Um is about 56(X),  where S(X) is defined by (6.10). 
Since 0.99 is somewhat arbitrary, other quantities with more physical signif- 
icance have been defined in order to characterize measured boundary layer 
velocity profile. The quantities: 

C -+ 00. 

respectively called the displacement thickness  and the m o m e n t u m  thickness  
are classical examples. They represent the thicknesses of the layers over 
which one could condense the loss of flow rate and the loss of momentum 
due to the slowing down of the flow at the wall. Figure 6.3 (right) illustrates 
the definition of the displacement thickness. For the Blasius profile, one 
finds 61 = 1.721 6(X) and 62 = 0.6646(X). 

In the case of a plane jet (Fig. 6.2, middle), the maximum streamwise 
speed decreases as X increases due to spreading and flow-rate conservation, 
so that umaX(X) introduced in (6.8) now depends on X. The similarity 
argument leads to: 

umax 0: M2/3/(vX)1/3 and S c( ( V X ) ~ / ~ / M ~ / ~ ,  

where M = s_’,” u2dy. Equation (6.11) is replaced by another slightly dif- 
ferent equation that can be explicitly integrated yielding a stream-function 
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f 0; tanh(C). The base flow speed u = f '  accordingly reads: 

3M2 113 
ujet(X) = (-) 32uX [ 1 - t a d 2  [g (",';3]} 48U2X2 . (6.12) 

The far wake of a blunt obstacle (Fig. 6.2, right) can be modeled using a 
similar profile by considering the slowing-down behind it as a jet in the 
reversed direction (velocity defect), that is to say a profile in the form: 

where Umin is the minimal speed in the plane of the wake passing through 
the obstacle. 

A similar approach could have been developed for flows that are slowly 
time-dependent (e.g. growing of a boundary layer along an impulsively 
started plate). 

6.1.3 Extension to arbi trary profiles 

Velocity profiles considered up to now were all controlled by viscous effects. 
However, on physical grounds, viscosity is expected to be dominant at low 
Reynolds numbers R only. Given a typical shear AUlAe measured by a 
Reynolds number R = AUAe/u, the viscosity can impose its law only as 
long as the viscous time rv = (Ae)'/u stays much shorter than the advection 
time AelAU, which precisely makes the inviscid limit u + 0 relevant, as 
already pointed out. As a first approximation, any velocity profile U(y) 
can be thus accepted provided the Reynolds number is sufficiently large. 

The stability theory that we are now ready to  develop focuses on strictly 
parallel and time-independent flows. As applied to  the extended class of 
flows considered, its results are thus expected to give hints on what happens 
provided that the critical wavelengths and angular frequencies of the unsta- 
ble modes be sufficiently large when compared to their imposed evolution 
scales in space or time. 
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6.2 Linear Stability 

6.2.1 Geneml framework 

6.2.1.1 Setting 

Let us consider a base flow VO =_ {(U(y),O,O);po(z)} to which we add a 
perturbation V {(u,  u, w ) ; p } ,  function of (z, y, z ,  t ) .  The NS equations 
governing the perturbation are easily obtained by inserting Vo+V into (6.1, 
6.2). These equations are written here directly in dimensionless form using 
the scales characterizing the unperturbed profile U(y), typically AU = 
Umax-Umin where Urn,, = m a y  U(y) and Umjn = min, U(y) and At = y2- 

y1 for a channel flow, or some appropriately defined reference thickness 6 in 
other cases. The corresponding time and pressure scales are At = At/AU 
and Ap = P ( A U ) ~ .  The Reynolds number is defined as R = AUAt/u 
accordingly. The NS equations for the perturbation then read: 

a t U  + [(U + .)ax + .ay + .laz] (U + U )  = -axp + R-lV2u, (6.13) 

atu + [(U + .)ax + ua, + w&] u = -ayp + R-lV’u, (6.14) 

atw + [(U + u)& + ua, + wa,] w = -8,p + R-lV2w, (6.15) 

axu+ayu+dzW = o .  (6.16) 

Neglecting all terms quadratic in u, v, and w, we get 

atu + uaxu + d y u  = -azp + R - ~ V ~ ~ ,  (6.17) 

atu + uaxv = -a,p + R-1V2u, (6.18) 

atw + uaxw = -azp + R-lV2w, (6.19) 

axu+ayu+azw = o ,  (6.20) 

that can be formally written as 

q a t ,  v; T)V = 0 .  (6.21) 

At this stage, it can be useful to eliminate the pressure field and reduce 
(6.17-6.20) to a system of two equations for two unknowns. This reduction 
is the subject of Exercise 6.4.1 in which the perturbation is expressed in 
terms of the cross-stream velocity component u and the component of the 
vorticity normal to the boundary, R, = (V x v), = axw - a,u. 
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6.2.1.2 Reduc t ion  t o  two  dimensions 

The solution of the linearized problem (6.21) is, as usual, sought by super- 
position of elementary modes in the form 

V = V ( y )  exp[i(kh.xh - w t ) ]  , (6.22) 

where subscript “h” means L‘horizontal,” i,e. in the plane of the flow. A 
satisfactory representation of the physical perturbations would be obtained 
by taking the real part of these complex modes. 

The relevance of the Fourier modes exp(ikh.xh) is related to the fact 
that the problem is autonomous with respect to variables x and z. When 
studying convection, we took normal modes in the form exp(ikh x h  + s t ) ,  
with real wavevectors kh and a complex growth rate s, the real part of 
which accounted for the amplification/decay properties and the imaginary 
part for a possible oscillatory behavior. Here the introduction of the time 
dependence as exp( - iw t )  is a matter of convenience and the two formula- 
tions are equivalent when taking w € C. We see in particular that the real 
part of w = w, + iw; now accounts for the oscillation while the imaginary 
part w; gives the growth rate (s = (T - iw = -i(w, + iwi)  = w; - iw,). The 
appropriateness of choice (6.22) comes from the fact that, by contrast with 
plain Rayleigh-B6nard convection producing stationary roll patterns, here 
we will mainly have to deal with waves. 

As before, the existence of a nontrivial solution to the stability problem 
(6.21) is subjected to a compatibility condition expressed as a relation be- 
tween kh and w function of the control parameter R, the dispersion relation 
that can be formally written as 

(6.23) 

where C is a scalar functional relation while L in (6.21) a linear operator. 
Typically, the relation C = 0 arises as the existence condition of nontrivial 
solutions to an algebraic homogeneous linear system, see later $6.2.2.3, 
p. 230 and Exercise 6.4.4. 

In fact, relation (6.23) can be read in different ways without any assump- 
tion on the real or complex character of the wavevector and the angular 
frequency. The approach taken when assuming kh real and w complex is 
usually called temporal and was particularly relevant to the case of convec- 
tion. The spatial approach, that assumes w real and k complex, is more 
appropriate to open flows and allows one to account for the streamwise 
growth of perturbations in a flow forced by a spatially localized perturba- 
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tion that is periodic with some externally controllable angular frequency wf ,  
as exemplified in the film “Flow Instabilities” [Mollo-Christensen (1972)l. 

We will come back to this issue in Section 6.2.4 but, for the moment, let 
us focus on the temporal approach and, introducing explicitly the fact that 
we have to deal with waves propagating at  a (complex) phase velocity c, 
take normal modes (6.22) in the form 

that we insert in (6.17-6.20). According to this definition, the modes evolve 
in time as exp(st) with 

s = -2w = -ik,c = -2kx(cr + iq) = k,q - ikxcr,  

so that the flow is unstable when k,ci > 0, hence ci > 0 with k ,  > 0 by 
convention. 

At this stage, it is useful to take advantage of the Squire theorem, sub- 
ject of Exercise 6.4.2. It stipulates that the most dangerous perturbations 
with wavevectors kh = (k,, k.) and k ,  # 0 are those with k ,  = 0, and that 
w z 0, accordingly. More precisely it shows that these two-dimensional  
modes are the most amplified ones in the inviscid case and have the lowest 
threshold when viscosity is taken into account. 

For such reduced two-dimensional perturbations (ii, V,$) with k ,  5 k ,  
one readily obtains the following simpler system 

i k (U  - c)ii + VU’ = -ikj + R-’ ($ - k z )  ii, (6.24) 

(6.25) 

i k G + V ’ = O ,  (6.26) 

ik(U - c)V = -5‘ + R-’ ($ - k 2 )  G ,  

where the prime denotes differentiation with respect to  the cross-stream 
variable y, e.g. U’ = dU/dy. 

6.2.1.3 Orr-Sommerfeld and Rayleigh equations 

Two-dimensional incompressible flow are usually solved by introducing a 
stream function 11, such that: 

u=a,$ and v=-dx l l , ,  

so that the continuity condition is automatically fulfilled. 
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Dropping the tildes, we introduce the normal modes as: 

$(x, Y ,  t )  $ ( Y )  exp(ik(x - 4)  
in (6.24, 6-25), which leads to 

i k ( U  - c)$' + ( - ik$ )U'  = - i k p  + R-' ($ - k 2 )  $' , 
i k ( U  - c ) ( - z k $ )  = -p' + R-' ($ - k 2 )  ( - i k $ )  

(6.27) 

(6.28) 

(6.29) 

The pressure is eliminated by differentiating (6.28) with respect to  y ,  mul- 
tiplying (6.29) by i k  and subtracting the second equation from the first, 
which leads to the Orr-Sommerfeld equation: 

1 
ikR (U - c )  (& - k 2 )  $ - U"$ = - ( d2 (6.30) 

This is a fourth-order differential equation in y ,  to which four boundary 
conditions must be applied, two at each end of the cross-stream domain, 
y = Ymin and y = ymax. The boundary conditions on 11, derive from those 
on the velocity perturbation at a solid boundary, i.e. u = v = 0, which 
gives: 

0 = k$(ymin) = k$(ymax) = $'(Ymin) = $ ' ( Y m a x ) .  (6.31) 

In infinite domains, these conditions are replaced by non-divergence re- 
quirements as ymin -+ -co and/or ymax -i +co. 

It is immediately remarked that the inviscid limit 'v -i 0' is singular 
since when R -i ca, the small parameter R-' is a factor of the terms 
containing the fourth-order derivative. As a matter of fact, in this limit the 
Orr-Sommerfeld equation simply reads: 

(U - c)  (& - k2  $ - U"$ = 0 ,  1 (6.32) 

and is called the Rayleigh equation. For this second order differential equa- 
tion, the no-slip condition u = 0 is no longer applicable, while condition 
v = 0 remains: 

0 = k$(Ymin) = k$(Ymax).  (6.33) 

On general grounds, the solutions of the Orr-Sommerfeld equation are 
built on four elementary functions and those of the Rayleigh on only two. 
When R is sufficiently large, out of these four functions, two will derive 
from those found for the corresponding Rayleigh equation. The other two, 
of viscous origin, will remain localized in regions of strong velocity gradient. 
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6.2.2 Inviscid flows 

Let us start with the Rayleigh equation (6.32) and assume that we have 
found a complex solution ($; c). Since the equation has real coefficients, it 
follows that ($*; c* )  is also a solution. So, to  every stable solution (ci < 0) 
an unstable solution corresponds by complex conjugation, and reciprocally. 
This property comes from the time-reversal symmetry characteristic of the 
absence of dissipation. A sufficient stability condition is therefore the ab- 
sence of solution with q # 0, so that we face three possibilities: either (6.32) 
has no solution other than the trivial one, or it admits only neutral modes 
(q = 0), or it has also unstable modes (ci # 0). The problem is therefore to 
find the conditions under which the Rayleigh equation has unstable modes. 

6.2.2.1 

A necessary condition for the existence of unstable solutions to  Equation 
(6.32) is that the base flow profile displays inflection points (U" passes 
through zero and change its sign).' The derivation of this result due to 
Rayleigh (1880) is a good example of a global method in the sense of Chap- 
ter 1, Section 1.3, and Chapter 2, Exercise 2.5.2. 

Let us assume the existence of an unstable mode (q # 0), then Equation 
(6.32) can be divided by (U - c) that never cancels. This leads to: 

The Rayleigh theorem and related properties 

Multiplying by $* and integrating the result by parts over [ymin, ymax] using 
boundary conditions $(Ymin) = $(ymax) = 0, one gets: 

(6.34) 
/ymax -1$12dy. U" - /ymax 

+ k21$I2) dy = 
Ymin Ymin u - c 

Expanding the right hand side yields: 

Next, separating real and imaginary parts, and focusing on the latter, one 

2Here we assume implicitly that U" is not identically zero, which would be the case 
of plane Couette flow or, more generally, of linear-by-part velocity profiles, for which 
(6.32) has t o  be solved directly, see later p. 229. 
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It remains to be noticed that the assumption ci # 0 implies l:Ir (. . . )dy = 
0, which is possible only if the integrand goes through zero and changes its 
sign, and implies the same property for U",  hence the theorem. This is a 
necessary but not sufficient instability condition. 

Stated another way, the Rayleigh theorem stipulates that unstable flow 
profiles (U" = 0 somewhere in the cross-stream domain) display a vorticity 
extremum R,(y) = -Ur .  A more refined condition is obtained by working 
with the real part of the integrated Rayleigh equation (6.34). Following 
Fjortoft (1950), one can show that a monotonic velocity profile with an 
infection point may have unstable modes only if IR,(y)I displays a maximum 
at the inflection point. This criterion, is derived in Exercise 6.4.3 and 
illustrated in Figure 6.4. 

Other results can be shown about neutral and unstable modes, if they 
exist. For example the Howard semi-circle theorem stipulates that the 
(complex) phase speeds of solutions to  the Rayleigh equation, neutral or 
unstable, lie in the upper half-disk of the c-complex plane, centered on the 
real axis at Uav = k(Umin+Umax) with diameter AU = (Umax-Umin), where 

Fig. 6.4 
to stable (top) and unstable (bottom) flows according to Fjertoft criterion. 

Velocity profiles V(y) (left) and vorticity profiles I V'(y) I (right) corresponding 
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Fig. 6.5 
circle theorem. 

Domain of unstable modes for an inviscid flow according to the Howard semi- 

Umin = miny U ( y )  and Uma, = maxy U ( y ) ,  Figure 6.5. For a derivation by 
a global method similar to that for the Rayleigh theorem, consult [Schmid 
and Henningson (2001)], p. 23ff. 

Given a neutral mode with phase velocity c, it may be remarked that, 
since Umin 5 c, 5 Urnax there is a point yc in the flow where U ( y c )  = c,. 
At such a point, called the critical level, the coefficient of the second order 
derivative in the Rayleigh equation is zero, which makes it singular. This 
singularity expresses a particular resonance between the base flow and the 
perturbation, since the latter travels at  exactly the same speed as the fluid 
particles at  that level. 

We will not enter into a detailed discussion of this phenomenon, leaving 
it to more theoretically oriented works such as [Drazin and Reid (1981)] 
or [Schmid and Henningson (2001)], but just notice that it raises delicate 
analytical difficulties when yc is different from the level ys of the inflection 
point determined by solving U"(ys)  = 0. Instead, we now turn to  a typical 
instability associated with the presence of an inflection point. 

6.2.2.2 Kelvin-Helmholtz instability 

When two flows merge at  the end of a splitting plate, they form a mixing 
layer (Fig. 6.6). Let Ul (Uz)  be the speed of the fluid when y < 0 ( y  > 0 )  
and large and forget about the boundary layers that form on each side of 
the plate. At some distance of the trailing edge, viscosity smoothes out 
the velocity profile V(y) that can be locally characterized by its vortical 
content. The vorticity thickness of the mixing layer is then defined by: 

where IUL,,] is the absolute value of the maximum of the spanwise vorticity 
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Fig. 6.6 Mixing layer and definition of the vorticity thickness. 

component R, = -U'(y). Close to the end of the plate, hvort thickens as 
the square root of the downstream distance X ,  owing to viscous diffusion. 

At a given point X ,  the mixing layer can thus be seen as a quasi- 
parallel flow characterized by speeds U1 and U2, the thickness hvort, and 
the kinematic viscosity Y. Two dimensionless control parameters can be 
built with these quantities: the Reynolds number: 

Iu2 - UI I hvort R =  
Y 

and the velocity ratio: 

u2 - Ul 
uz + Ul * 

&I=- 

Obviously, this flow is a good candidate for a mechanical instability in 
the Rayleigh-Fjortoft context. Locally, the profile is close to a hyperbolic 
tangent that can serve to model it analytically: 

U(y) = U,, + $AU tanh(2y/hVort). 

The spanwise vorticity component is then 

AU 
l R z l  = bvort ~ o s h ~ ( 2 y / h ~ , , ~ )  * 

In the limit v + 0, which implies bvort -+ 0, we get lRIl = AU h ~ ( y )  where 
h ~ ( y )  is the Dirac distribution. Stated another way, a velocity discontinuity 
(seen as an extreme case of inflexional profile) can be understood as a vortex 
sheet. 
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The Kelvin-Helmholtz (KH) instability that we now study is typical 
of inviscid vortex sheets. Let us consider a base flow profile displaying a 
velocity discontinuity at  y = 0: 

region (1) y < 0,  U(y) = U(-)  = U,, - $ A U ,  
(6.35) 

region (2) y > 0 ,  U(y) = U(+) = Uav + $ A U ,  

and first discuss the physical instability mechanism following Batchelor's 
approach [Batchelor (1967), p. 5111, sketched in Figure 6.7. The unper- 
turbed vorticity sheet is represented by a regular distribution of equal inten- 
sity vortices in (a). Next, assume a periodic infinitesimal modulation of the 
intensity in (b) where points equivalent in a translation by one wavelength 
are labelled with the same letters and higher local vorticity is represented 
by arrowed circles with larger diameters. 

Intuitively, the differential effect of vortices at A and C is to move the 
interface at  B and D in the directions indicated in (c). At lowest order the 
effect of the base flow is to advect vorticity along the flow, to  the left when 
the interface has been moved downwards and to the right in the opposite 
case. Typically, at  B it is advected from B toward A and at D from D 

Fig. 6.7 Mechanism of the KH instability interpreted in terms of vorticity. The frame 
is moving at the average speed U,, (coordinate z' = z - Uavt) so that the flow profile 
displays a jump from - $ A U  for y < 0 to +$AU for y > 0. 
(a) Unperturbed vorticity sheet. (b) Modulation of the vorticity intensity. (c) Sinusoidal 
deformation of the interface and amplification of the modulation due to the advection 
of the vorticity by the base flow. 
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Fig. 6.8 Interpretation of the KH instability mechanism in terms of pressure. 

toward A, thus increasing the intensity of the vortex at  A and decreasing 
that of the vortex at  C. In all cases the initial modulation is increased, 
hence the instability. 

A second interpretation can be found in terms of pressure, as illustrated 
in Figure 6.8; consult, e.g. [Tritton (1990), p. 2681: Before the introduction 
of a perturbation, the trajectories of the fluid particles on both sides of the 
discontinuity are straight. When the discontinuity surface is undulated, 
the speed of the fluid is slightly augmented (reduced) in regions with neg- 
ative curvature above (below) the surface while in regions with opposite 
curvature the reverse situation holds. A naive use of the Bernoulli theo- 
rem expressing the conservation of energy along streamlines for an inviscid 
fluid in quasi-steady state, p +  $pv2 = Cst, implies that when 1 ~ 1  increases, 
then p decreases. Consequently a pressure difference tends to build between 
the two sides of the discontinuity surface, that pushes it further away: the 
instability develops. 

All along this discussion, the velocity ratio e = (VZ - Ul)/(VZ + Vl )  
does not show up since the mechanism is analyzed in a frame moving at 
the average speed U,, = ~ ( U Z  + U I ) .  The physical conditions for the for- 
mation of the mixing layer are thus in some sense evacuated. In practice, 
the trailing edge of the splitting plate has a fixed position in the labo- 
ratory frame and, accordingly, a spatial stability analysis in the sense of 
56.2.4 below should be developed. Intuitively, when downstream transport 
is dominant, i.e. Q <( 1, perturbations due to residual turbulence in the 
base flow get amplified by the mechanism but are blown away so that the 
instability is expected to be convective,  the flow playing the role of a no i se  
amplif ier.  In the opposite case e >> 1, i.e. Uz 21 -U1, the situation consid- 
ered in the previous discussion of the mechanism prevails, the instability 
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should develop on the spot, and thus be absolute. The flow is then a gen- 
uine self-sustained oscillator. The precise value of e at  which the behavior 
change takes place depends on the base profile. For the simplest continuous 
linear-by-part approximation, (Exercise 6.4.4, second item) it happens at  
e = 1 and for the smooth hyperbolic tangent profile at  e -" 1.3, consult 
Huerre and Rossi in [Godrkche and Manneville (1998), p. 169ff] for details 
and original references. 

6.2.2.3 T h e  Rayleigh equation with linear-by-part velocity profiles 

The two previous "physical" approaches rely on a knowledge of basic fluid 
mechanics properties of inviscid flows relative to  the transport of energy and 
vorticity that are not necessarily part of the reader's supposed background. 
It is accordingly valuable to choose a more analytical viewpoint on the KH 
instability, with just the assumption that it is legitimate to replace the 
actual base profile by a linear-by-part approximation, splitting the cross- 
stream interval [ymin, ymax] into subintervals such that 

W ( y )  = &) + / W y  for y E [yj ,yj+l] .  

The second derivative of such profiles with respect to y is identically zero, 
except at discontinuity points where it is not defined. The Rayleigh equa- 
tion then simply reads: 

Over each subinterval, the solution of (6.36) is given by: 

$ ( j )  = C ~ 2 )  exp(fko) .  
(*I 

(6.36) 

(6.37) 

In order to find the full solution, it remains to express boundary condi- 
tions (6.33) at ymin, ymax and to match the different partial solutions (6.37) 
at  the discontinuity points of U and/or U'.  The matching conditions are 
obtained from the continuity of pressure in (6.24) 

and the continuity of the cross-stream velocity component v at the surface 
of discontinuity. This second condition derives from the definition of v as 
the cross-stream velocity at  a point of the interface between domains ( j )  
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and ( j  + l), with coordinate Y ,  hence 
It reads: 

= &Y (Exercise 6.4.4, first item). 

(6.39) 

Assuming that the interval [ymin, ymax] has been cut into n pieces, 2 n  con- 
stants (A?), ( j  = 1,. . . , n)  have to be determined. One is left with two 
boundary conditions and 2 ( n  - 1) matching conditions, which indeed makes 
a system of 2 n  homogeneous linear equations. The dispersion relation is 
obtained from the condition that this system has nontrivial solutions. 

Let us analyze the KH instability along these lines using the approx- 
imate, discontinuous base flow profile (6.35). Solutions to the Rayleigh 
equation (6.36) are taken in the form (6.37). Forbidding divergence when 
y + f o o  implies 

while the matching conditions (6.38, 6.39) at y = 0 read 

so that we are left with a homogeneous linear system of two equations for 
two unknowns. The corresponding compatibility condition: 

2 2 
(U(-) - c) + (U(+) - c) = 0’  

is solved to yield: 

c = U , , f i $ A U ,  

The instability of the flow directly derives from ci = *!jAU # 0. Since 
there is no specific scale in this problem (unbounded medium, infinitely thin 
vorticity sheet) the instability condition is independent of the wavevector 
k and all modes are unstable. Their growth rates u = kci, are larger 
and larger as k increases. Things are different for a confined layer -ca < 
Ymin < 0 < Ymax < +oo, as can be seen by solving Exercise 6.4.4 where 
several other linear-by-part profiles are also considered. 
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6.2.3 Viscous flows 

6.2.3.1 Instabili ty and viscous dissipation 

For the KH instability, the destabilizing process is of mechanical origin and 
viscosity plays a “normal” stabilizing role. But the Rayleigh theorem shows 
that some flows do not have unstable modes at  the inviscid limit. In order 
to learn what happens to them, we have to return to the Orr-Sommerfeld 
equation (6.30). 

The problem is difficult from an analytical point of view owing to  the 
singular character of the limit R -+ 00. As a matter of fact, whereas the 
absence of inflection point ys such that U“(ys) = 0 forbids the existence of 
unstable inviscid modes, neutral modes may exist, for which the Rayleigh 
problem is singular: at  the critical level yc, the phase speed cr is equal to  
the speed U(yc) of the flow while U”(y,) # 0. These neutral modes are the 
best candidates for becoming unstable when perturbed by viscous effects. 
Here we restrict ourselves to a qualitative presentation of the results, often 
obtained from a numerical solution of the Orr-Sommerfeld equation, and 
refer to e.g. [Drazin and Reid (1981)] for the relevant theory. 

Let us first indicate why viscous dissipation could play a role in the 
destabilization of a mechanically stable flow. This hint is obtained by 
adopting a global point of view and considering the evolution of the ki- 
netic energy contained in a specific two-dimensional mode with wavevector 
k = 27r/X and phase speed c,. Let us compute ( 6 . 1 7 ) ~ ~  + ( 6 . 1 8 ) ~ ~ :  

uatu + vatv + uvut + u(vaZv + U a Z U )  = 
- ~ & p  - d Y p  + R-’[U(&, + aYy)u + ~ ( 8 . ~  + L $ y ) ~ ] ,  (6.40) 

and determine the average kinetic energy (per unit length in the spanwise 
direction) contained in a domain of length X and height (yma, -ymin), in the 
frame moving a t  speed c, labelled by coordinate 5 = 2 - c,t .  The quantity 
of interest is: 

The second term on the 1.h.s. cancels upon streamwise integration by virtue 
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of the periodicity in Z. On the right hand side we have -uaxp - wayp = 
-ax(up) -a,(~p)+p(a,u+d,v). The two first contributions cancel upon in- 
tegration, either owing to streamwise periodicity or to  cross-stream bound- 
ary conditions at ymin and ymax, and the last one from the continuity con- 
dition aXu + ayw = 0. Finally we get: 

&Kpert = -(U’UW) - R-’(((&U)~ + ( 8 , ~ ) ~  + + (a,~)’)), (6.41) 

where the viscous terms (in R-l) have been rearranged through integrations 
by parts exploiting the boundary conditions. This is the specific form taken 
by the Reynolds-Orr equation governing the evolution of the kinetic energy 
contained in the perturbation in the linear regime.3 

Equation (6.41) symbolically reads: 

ZKpert d = P - D > (6.42) 

where P is a production term and D, that contains all the terms in R-I, 

accounts for viscous dissipation. Term D is manifestly always positive and 
works so as to decrease the energy contained in the perturbation. The 
flow can thus be unstable only if the production term P is positive and 
sufficiently large. 

Let us consider perturbations in the form 

{u,w} = 2 q{- U(Y), fi(Y)} e x P [ w x  - 41 + C.C.) 
= $({ i i (y) ,~(y)}  exp(ik2) + c.c.) exp(kQt), 

with growth rate kci. It can then be checked that every term in (6.42) 
varies as exp(2kc;t) that can be factored out, leaving us with a discussion 
of the sign of 

P cc - / U‘(y)[ii(y)V*(y) + c.c.] dy , 

which is not determined in advance. On the contrary, this sign strongly 
depends on the shape of u and w, solutions to  the full Orr-Sommerfeld 
equation (6.30). The asymptotic analysis in the limit ‘ R  -+ 00’ points 
out the role of the variation of the stream function 4 close to  the critical 

3This equation is valid without modification in the nonlinear regime because the 
advection term conserves the energy. Terms of nonlinear origin and dropped upon lin- 
earization on the 1.h.s. read u2&u + u ~ t 3 ~ u  + vu&v + v2$u,  further rewritten as 
i&(u(u2 + v 2 ) )  + $t3q(v(u2 + v ’ ) )  using the continuity condition. All these terms 
disappear in the averaging process. Even more, the result is not restricted to the two- 
dimensional case but also holds for three-dimensional perturbations. 
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level yc, and shows the existence of specific unstable modes called Tollmien- 
Schlichting (TS) waves. Rather then starting a long and delicate discussion 
that would allow one to compute the behavior of the marginal stability curve 
in this limit (for an introduction, consult Huerre and Rossi in [Godr&che 
and Manneville (1998)l) we just present the main results obtained in part 
analytically and in part numerically. 

6.2.3.2 Results 

By contrast with convection-like instabilities (see Fig. 3.3, p. 81), marginal 
stability curves are conventionally presented in the plane (R,  k) with R 
along the horizontal axis and k vertically. Whatever the origin of the in- 
stability, mechanical or viscous, they take the shape of loops with different 
aspects in the limit ‘R  + 00’, as shown in Figure 6.9. 

0 When the flow is mechanically unstable (velocity profile with an inflec- 
tion point and a vorticity maximum at the inflection point), the threshold 
is “low” and a whole band of wavevectors remains unstable as R + 00, see 
Figure 6.9 (left). Viscosity then plays its usual stabilizing role. 

0 When the base profile is mechanically stable (no inflection point), the 
threshold is “high” and the marginal stability curve has the shape of a 
hairpin that pinches as R + 00, see Figure 6.9 (right). Unstable modes are 
the TS waves resulting from the viscous mechanism alluded to  above. 

k 

Fig. 6.9 Marginal stability curves typical of plane shear flows. In each case, the unstable 
domain corresponds to the interior of the loop. Left: Mechanically unstable flows; low 
threshold and finite-width band of unstable wavevectors when R --t 00. Right: Mechan- 
ically stable flows (no inflection point); high thresholds and narrowing band of unstable 
wavevector when R --t M. 
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Plane Poiseuille flow in a channel is typical of flows without inflection 
point. Taking the maximum speed Urn,, on the centerline of the flow as 
velocity unit and the half-gap h/2 = (ym,, - ymin)/2 as length unit. the 
dimensionless base velocity profile is thus U = 1 - y2 over the interval 
[-1,+1] and the Reynolds number is defined by R = Um,,h/2v. The 
marginal stability curve looks like that in Figure 6.9 (right), with Rc N 

5772 >> 1 and k, N 1.02 (critical wavelength A, = (h/2)(27r/1.02) N 3h).4 
The phase speed of waves at threshold is c,,~ N 0.264 ( ie .  about 1/4 of 
Urn,,). To these numerical results one can add the asymptotic behavior of 
the marginal stability branches obtained analytically (see e.g. [Drazin and 
Reid (1981)l for a detailed presentation and results summarized in their 
Fig. 4.11, p. 190): 

Upper branch + R1I3 N 8.44 (k2)-11/3, 
Lower branch + R1/3  N 5.96 ( k 2 ) - 7 / 3 ,  

cr N &k2 
c, N 0.611k2. 

6.2.4 Instability and downstream transport 

6.2.4.1 Theory us. experiments 

Let us come back to  the dispersion relation (6.23). The Squire theorem tells 
us that the wavevector kh has a single relevant (streamwise) component 
noted k, so that we can write 

L(-iw, ik; R) = 0 .  (6.43) 

The presentation of results in the plane (R, k )  corresponds to  a temporal 
reading of this relation, further solved by assuming k E R and w complex, 
w = w, +iwi, so that wi is the temporal growth rate (from the normal mode 
assumption: exp[i(kx - wt)] = exp(wit) exp[i(kx - wrt)]). 

This approach was satisfactory in the case of convection that develops 
in an enclosure and emerges from the background noise, in the absence 
of any forcing (absolute instability). It is no longer appropriate for typical 
open flow situations like the one sketched in Figure 6.10, where downstream 
transport manifestly plays a dominant role (convective in~tab i l i ty ) .~  In such 
a setup, a localized forcing, periodic with angular frequency wf is applied at  

4S.A. Orszag, “Accurate solution of the Orr-Sommerfeld stability equation,” J .  Fluid 
Mech. 50 (1971) 689-703. 

The terms absolute and convective are the accepted ones. We avoided to use the 
word ‘convective’ all along Chapter 3 dealing with ‘convection’ which is ‘absolute’ in the 
absence of (sufficiently strong) through-flow. 

cce

5
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wave absorber ’ 

Fig. 6.10 Experimental configuration used in the film “Flow Instabilities” [Mollo- 
Christensen (1972)]: A wind is blown over a water channel, produced by a vacuum 
cleaner downstream, and settled by the honeycomb upstream; its speed is measured by 
an anemometer. A wave generator hits the surface close to the entrance, producing a 
localized perturbation with given frequency. The height of the waves is measured by an 
appropriate gauge at a fixed distance from the wave generator. 

a given point in the Aow and the evolution of the perturbation is recorded 
at downstream stations as a function of the forcing characteristics and the 
Reynolds number. From the records, a downstream spatial amplification 
rate can be defined, negative when the perturbation is damped, positive 
otherwise. 

The different behaviors observed, sketched in Figure 6.11, can be ana- 
lyzed in terms of plane waves with angular frequency wf ,  exp[i(kx - wf t ) ] ,  
modulated by a slowly decaying or growing envelope, exp(px), with p small, 
hence exp[i(bz - wft )]  e x p ( p ) .  The two exponential factors can be recom- 
bined as exp[i(k - zp)x - wft] to form a complex wavevector with real part 
k and imaginary part -p.  

We are thus lead to a spatial reading of the dispersion relation (6.43) 
solved with w = wf real and k complex. This simplistic presentation is 
not free from criticism. We have indeed avoided evoking what happens 
upstream of the forcing point and represent it in Figure 6.11. While -ki > 0 
corresponds to  an amplification for x > 0 (which conventionally denotes 
the downstream direction), a mode with -ki < 0 is amplified upstream and 
the picture is reversed. The nonequivalence of upstream and downstream 
directions due to  advection has delicate analytical implications that we still 
mostly skip, asking the reader to turn to specialized references.6 

‘ e .9 .  the review article by P. Huerre, “Open shear flow instabilities,” in [Batchelor et  
al. (ZOOO)] and references quoted therein. 
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Fig. 6.11 The spatial amplification rate of the waves is extracted from the response of 
the system to a localized periodic excitation. The marginal value Rm(w) of the control 
parameter separates the domain of damped waves R < Rm(w) from that of amplified 
waves R > Rm(w). 

Without entering mathematical intricacies, following Gaster’ we can 
however relate the main characteristics of the spatial (S) problem to those 
of the temporal (T) problem. Let us consider the dispersion relation (6.43) 
and assume that it has been analytically solved for w as a function of k ,  
both complex, at given R: 

w = w ( k ;  R)  . (6.44) 

The expansion of the dispersion relation around some arbitrary point 
(k (O) ,  w(’)’> solution to (6.43) reads 

A nearly neutral T-mode is characterized by: 

and the corresponding angular frequency 

(6.45) 

(6.46) 

7M. Gaster, “A note on the relation between temporally increasing and spatially- 
increasing disturbances in hydrodynamic stability,” J. Fluid Mech. 14 (1962) 222-224. 
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We are looking for the characteristics of an S-mode (k!”, k/”) with k!’) = 
kiT) and angular frequency wiS) with w:’) = 0 by definition. The T and 
S modes fulfill the dispersion relation (6.44) and are both nearly neutral, 
which means in particular ki(’) = ki # 0 with (ki(’)I << 1. Inserting these 
assumptions in (6.45, 6.46) gives at lowest order 

(6.47) 

(6.48) 

Now, assuming that the dispersion relation (6.44) is analytic implies 
the existence of relations between the partial derivatives of the real and 
imaginary parts of a, the so-called Cauchy relations:’ 

Using (6.49a) in (6.48) yields: 

(6.49) 

(6.50) 

Strictly at threshold, this relation is an indeterminate ratio 010. Slightly 
off threshold, it allows us to convert spatial and temporal growth rates into 
each other. The quantity that shows up on the r.h.s. of (6.50) is the (real) 
group velocity of the normal modes, which is somewhat natural in view of 
the discussion on p. 85. 

Furthermore, by definition of the threshold condition in the temporal 
case, wi reaches a maximum at k = k, for R = R,. dwi ldk ,  is thus a small 
quantity of order (k, - kc), which makes dw,/dki also small from (6.49b) 
so that, from (6.47) at lowest significant order: 

WF(’) = w p  

i e .  that the most dangerous forcing frequency is that corresponding to the 
most amplified temporal mode, which is intuitively expected. 

The stability diagram corresponding to the spatial reading of the dis- 
persion relation displays the forcing frequency on the vertical axis and the 

81n order to derive relations (6.49), one takes advantage of the fact that P = P , + Z P ; ,  

as a function of k, = (k + k*)/2 and k; = - i ( k  - k * ) / 2 ,  is only a function of k and not 
of its complex conjugate k‘ (which is of course not the case of the most general function 
of the two variables kr and ki). 
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Reynolds number on the horizontal axis. Its experimental determination 
is concretely illustrated in the film “Flow instabilities” [Mollo-Christensen 
(1972)l. For mechanically stable flows, the marginal curve has again a 
hairpin shape, as illustrated in Figure 6.12. 

Flows most often develop downstream, the plane Poiseuille flow being 
an exception. The Reynolds number is then usually a function of the down- 
stream distance, e.g. the distance to the leading edge for a boundary layer 
as indicated on the horizontal axis of that figure. A first indication rel- 
ative to the stability of the flow is then obtained by using the results of 
the linear theory locally, i. e. by neglecting the downstream dependence of 
the flow and assuming a plane parallel flow with a velocity profile identi- 
cal to  that at the considered position. Results will be relevant provided 
that the space-time growth rate of the normal mode remains large when 
compared to the space-time evolution rate of the flow itself. They can be 
corrected by developing a multiple-scale approach to  account for the effects 
of non-parallelism or slow time dependence. 

Testing for the stability of an open flow then comes to explore the plane 
(R ,  w f )  by changing the angular frequency of the forcing as illustrated in the 
film. Of course, one should take the predictions of this linear approach with 
some caution. In particular, the boundary layer could be anticipated to  be 
stable (relaminarization) from a naive reading of Figure 6.12 but this can 
happen only if, while crossing the unstable domain, perturbations are kept 

f “  

Fig. 6.12 Marginal stability curve of a Blasius boundary layer flow submitted to a local- 
ized periodic forcing (vibrating ribbon experiment). As the flow develops downstream, 
R is a function of the distance X to the leading edge. A path in the ( R , w t )  plane is thus 
followed by moving the observation point at fixed infinitesimal forcing and perturbations 
are damped or amplified depending on its position. Far downstream the flow is expected 
to be stable provided that perturbations have no time to grow enough to invalidate the 
linear approach. 
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sufficiently small, so that no secondary instability (or even turbulence) sets 
in, which somehow leaves the receptivity problem open, i.e. how the sys- 
tem extracts the dangerous TS eigenmodes from the random perturbations 
forming the residual background turbulence (see later, s6.3.3.2). 

6.2.4.2 Absolute and convective instabilities 

The general stability problem is not only that of the resonant response 
of the flow to  a periodic localized forcing at  a fixed position. Previ- 
ously, we considered temporal modes in the form of unlocalized waves 
exp(i(kz - w t ) )  = exp(wit) exp(i(ka: - wrt ) ) .  The stability of the flow was 
then implicitly discussed in a frame moving at  the phase speed of the waves 
[kz  - w,t 5 k ( z  - cr t ) ] :  as long as no reference is made to  fixed bound- 
aries, this speed can freely be subtracted using Galilean invarianceg and 
the growth/decay properties can be obtained from the sign of wi. But nei- 
ther the spatial approach nor the temporal approach are satisfactory when 
dealing with the “natural” transition that relates to the evolution of tempo- 
rally incoherent and spatially localized small perturbations composing the 
residual turbulence, in the presence of walls or obstacles breaking Galilean 
invariance. In the most general case, a complete linear-response theory 
has to be developed. This implies a mastery of complex-variable analysis 
that goes beyond the prerequisites of this course, so we limit our ambition 
to giving a sketchy presentation that just keeps its spirit and suggest the 
reader to consult specialized works, e.g. Note 6, p. 235. 

Since phenomena are ultimately detected in the laboratory frame, we 
have to account for the competition between the downstream transport of 
perturbations and their amplification by instability mechanisms. The fate 
of perturbations which leave the physical domain of interest before having 
triggered a change of behavior of the flow is indeed of minor importance. 
Accordingly, as already alluded to before, we shall say that: 

The instability is convective when fluctuations are advected down- 
stream. In that case, its effects will be detectable depending on the level 
of triggering residual turbulence in the flow (or of external perturbations) 
and the flow behaves as a noise amplifier. 

gThe laboratory frame is attached to external characteristics of the flow that break 
the symmetry of the NS equation (in a infinite domain) with respect to a Galilean 
transformation: a change to a frame translating at constant speed Z = z - V t ,  f = t 
and u = fi + V ,  i.e. u(z,  t )  = o(z - Vt , t )  + V = @ ( Z , Q ,  indeed leaves these equations 
unchanged owing to the special form of the advection term: &v+v&v = &[Q(z -Vt ,  t)+ 
v] + [o(% - vt, t )  + v ~ a ~ [ o ( ~  - vt,t) + v] = -va,o + a,-o + [Q + vp,o = a,o + m o .  
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The instability is absolute when its mechanism is sufficiently intense 
that perturbations can go against the stream and invade the whole experi- 
mental domain in spite of a general downstream transport by the base flow. 
The system then behaves as a self-sustained oscillator. 

In the present context, it will be enough to express the result of the 
theoretical analysis in terms of the so-called Briggs and Bers criterion that, 
in some sense, extends Gaster's approach. Since the 'absolute/convective' 
discrimination relates to the laboratory frame, let us assume that we can 
restrict ourselves to the study of wave-packets composed of modes traveling 
a t  group velocity vug = 0. Now, vg is defined as usual through vg = am/&, 
where a is here the complex function of the complex variable k obtained 
by solving the dispersion relation (6.43) for w. Condition 'ug = 0 is thus 
an equation for lc. Let k(O), be the solution to this equation and wi(O) = 
a i ( k ( ' ) )  the corresponding growth rate (if there are several solutions k(O), 
we consider only that with the largest ui(O)). 
The criterion goes as follows: 

The flow is absolutely unstable if q ( O )  > 0 (amplification on the spot). 
It is convectively unstable if mi(') < 0, provided that wi > 0 for some k .  

0 It is linearly stable when wi < 0 for all k .  
These situations are depicted in Figure 6.13 which displays perturbation 

profile as a function of space at  several successive times. An elementary 
illustration of the use of the criterion is considered in Exercise 6.4.5. 

The preceding discussion is typically local in that is applies to a quasi- 
parallel flow provided that its 2 dependence can be neglected. In this 
perspective, when the flow develops downstream, the intensity of the insta- 
bility mechanism varies in space so that its absolute/convective character 
may change downstream. In that case only a global analysis can help us 
understand the stability properties of the flow, which is another full story in 
itself. Finally, in all that precedes departures from the base flow were tac- 
itly assumed to be wave-like and infinitesimal, making the linear approach 
legitimate (localized finite-size perturbations were discarded). Besides the 
identification of important instability mechanisms, a thorough understand- 
ing of the transition to turbulence in developing flows has to face difficulties 
arising from a combination of alternatives: absolute vs. convective, local 
us. global, and linear us. nonlinear. 
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6.13 Space-time representation of the growth/decay of a perturbation introduced 
= 0 and t = 0. Top-left: The two edges of the wavepacket go in opposite directions 
the perturbation grows on the spot, the instability is absolute. Top-right: The 

perturbation grows but is evacuated since the two edges of the wavepacket go in the 
same direction, the instability is convective. Bottom: The perturbation vanishes and the 
flow is stable. 

6.3 Transition to Turbulence 

6.3.1 Nonlinear development of instabilities 

6.3.1.1 

In its principle, the approach is parallel to that followed in Chapter 3 for 
natural convection. In order to identify the different steps more clearly let 
us introduce subscripts, ‘0’ for the base state, ‘1’ for the primary pertur- 
bation, ‘2’ for the secondary modes, etc. The linear stability theory of the 
parallel base flow VO yields a critical primary mode V1 in the form of a 
two-dimensional wave with wavevector k aligned with the flow direction, 
phase speed c,  and no spanwise flow component. Let Al be the amplitude 
of this mode. The first question to be answered relates to  the saturation 
of A1 beyond threshold, which is dealt with by means of an expansion in 
powers of the amplitude. This 6 la Landau approach has been introduced 
in the field of open flows separately by Stuart and Watson in 1960. Being a 

Saturat ion of the pr imary  mode 
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stationary cellular instability, convection is accounted for by a supercritical 
fork bifurcation governed by an equation for a single variable with real co- 
efficients. By contrast, here the wavy behavior of the flow beyond threshold 
makes it time-oscillatory in the laboratory frame so that a Hopf bifurca- 
tion on a two-dimensional center manifold is expected, see Chapter 4, Eq. 
(4.16), p.128. With s1 = (TI - iwl where (TI is the real growth rate of 
the primary mode (positive when unstable) and w1 the angular frequency, 
changing for a rotating amplitude by setting A1 = 21 exp(-iwlt), we get: 

where the complex coefficient g = gr + igi describes the effective interac- 
tion of the unstable mode with itself (through the coupling with other, 
adiabatically eliminated, non-critical modes, see Chapter 4, 54.1). 

Saturation is controlled by the sign of the real part gr of g. When gr > 0 
the bifurcation is supercritical and the wave saturates at an amplitude that 
smoothly varies with the distance to threshold. In the opposite case, the 
wave does not saturate at lowest order, one must continue the expansion 
(see the case of the plane Poiseuille flow discussed later) but there is a risk 
that no stable branch exists at finite distance from the base solution, as 
recognized early by Landau (Note 9, p. 92). 

6.3.1.2 Secondary instabilities 

Let us now sketch what should be the next steps and assume that the non- 
linear problem for the primary mode has been solved and that saturation 
at some amplitude A1 has been obtained. The stability analysis is then 
repeated for the flow V O ~  = VO + AlVl in a frame moving at the speed cnl 

of the saturated wave (coordinate 2 = z - cnlt). In subscript ‘01’ the ‘0’ 
indicates that it is the new base flow and the ‘1’ that it arises from the 
saturation of the primary perturbation. 

Concrete computations are particularly involved. The standard lin- 
earization process leads to a partial differential system with coefficients 
periodic in 1 with period X = 2.rr f k. For such linear operators, the Floquet 
theory implies taking secondary normal modes VZ in a form that explicitly 
isolates nontrivial space-time departures from a trivial space dependence in 
3 with period A: 

I 

VZ = A ~ e x p [ i ( q , 2 f q , t - - w ~ t ) ] V ~ ( Z )  withVz(Z+X) = V Z ( Z ) .  (6.51) 

The exponential part accounts for a supplementary modulation introduced 
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by the putative secondary instability, with real wavevector q = (q5, qz) and 
complex angular frequency w2 = ~ 2 , ~  + W Z , ~  (temporal instability scheme). 

The main possible cases of this conceptually well-posed problem can 
be identified without doing any explicit calculation, just by considering 
expression (6.51). 

First it is not difficult to show that the value of qx/k can be restricted 
to the interval [0,1[ since, setting qs = (c + n)k with K E N, one gets: 

exp(iqxz) = exp[27ri(c + K) IC?]  = exp(2i7rsk?) exp(2i7r~k?), 

where the last exponential factor is periodic in 3 with period 21r/nk, thus 
also periodic with period 21r/k, so that it can be incorporated into v2 that 
accounts for the trivial part of the space dependence. 

Next, possible secondary modes can be classified according to whether 
(i) qt = 0 or qz # 0, (ii) qx = 0 or qx # 0, and (iii) when qx # 0, whether qx 
is commensurate or not with k, i.e. c rational or irrational. In particular: 

When qz = 0 and qx = k/2 (c = 1/2), the secondary mode is still 
two-dimensional but has a wavelength twice that of the primary mode, this 
period doubling instability is called pairing. 
0 When qt # 0 and qx = 0, the secondary mode is most often called 
f u n d a m e n t a l ,  while the term subharmonic is associated to the case qz # 0 
and qz = k/2 (see later, Figure 6.18). 

When qx is not commensurate to k (c irrational), the situation is similar 
to  that of quasi-periodic temporal systems considered in Chapter 4, $4.2.3, 
and can be transposed from it. 

The physical mechanisms involved in secondary instabilities have been 
studied both theoretically and experimentally. One generally makes a dis- 
tinction between viscous processes evolving over long time scales (in prac- 
tice mostly the growth of TS waves) and inert ial  processes developing over 
short time scales. In this latter context, the elliptical instability affecting 
the core of vortical structures is of great importance. For a detailed discus- 
sion with references, see e.g. Kerswell“ or Huerre and Rossi in [Godrkche 
and Manneville (1998), p. 269ffl. 

Rather than considering the “natural” transition, the comparison of 
theory with experiments often bears on flows in which the spanwise depen- 
dence of the secondary mode is forced at a given qr by some experimental 
trick, e.g. by grooving the wall in a boundary layer experiment, the splitting 
plate for a mixing layer, the lips of the slit for a plane jet, etc. 

‘OR.R. Kerswell, “Elliptical instability,” Ann. Rev. Fluid Mech. 34 (2002) 83-113. 
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The tertiary instability is in general hardly accessible to  theory and 
small scale turbulence usually appears soon after secondary modes set in. 
The last step of the transition to turbulence is often interpreted as being due 
to inflection points in the velocity profiles resulting from the superposition 
of the primary and secondary modes to the base flow, thus promoting KH 
instabilities at  the origin of the smaller scales. 

On the whole, the situation is particularly involved since space and 
time aspects of the development of transitional flows are intermingled in a 
complicated way owing to downstream transport and evolution. 

In the rest of this chapter we present salient features of the transition to 
turbulence a t  a phenomenological level resting on the dichotomy between 
inviscidly unstable and stable flows and the supercritical or subcritical char- 
acter of the bifurcation. Rather than trying to be exhaustive, we focus on 
the most typical situations in each case. 

6.3.2 Inviscidly unstable flows 

6.3.2.1 General features  

Two-dimensional base flows that are unstable at  the inviscid limit display 
inflection points in their velocity profile (Rayleigh and Fjortoft theorems). 
These are mixing layers [Fig. 6.6), jets and wakes (Fig. 6.2). 

The transition to turbulence is characterized by primary instabilities 
that set in a t  low Reynolds numbers in the form of two-dimensional span- 
wise structures as expected from the linear theory. These structures then 
gently saturate beyond threshold to form developed vortices. Secondary 
modes are most often streamwise modulations (qz = 0) leading to  quasi- 
periodic behavior and lockings, especially subharmonic locking that man- 
ifests itself as vortex pairing (qZ = k/2). In the case of mixing layers, 
successive pairings may take place before a secondary instability can in- 
troduce some three-dimensional dependence. Small scale turbulence enters 
soon after the introduction of three-dimensional modes usually arising from 
the elliptical instabili ty previously mentioned (Note 10). The plane jet, un- 
derstood as two side-by-side mixing layers close to  the outlet and merging 
further downstream, behaves in the same way. 

Another general feature of this transition scenario is the persistence of 
coherent structures in the post-transitional regime. These are large vortices 
with lifetimes long when compared to their turn-over times, resembling KH 
vortices but now developing over a turbulent mean %ow profile. 
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6.3.2.2 Wakes 

In the following, we focus on the case of the wake of a cylinder, a quantita- 
tively much studied system which combines specificities of flows displaying 
inflection points in the base flow to  features arising from the absolute char- 
acter of the instability which is responsible for its self-oscillatory nature. 
Here we borrow mainly from the review given by Williamson.” 

The distinctive feature of the wake behind a bluff body is the occur- 
rence of a sharp Hopf bifurcation that marks the emergence of very regular 
periodic vortex shedding forming a pattern known as the Ka’rma’n vortex 
street after von K&rm&n (1911-12)l’ and already depicted in Figure 1.6, 
p. 16. The origin of this behavior can be understood by noticing that, 
at  flow rates corresponding to the bifurcation point, a steady recirculation 
develops just behind the obstacle so that the velocity profile displays a re- 
gion where downstream transport is compensated. By contrast, away from 
it, the flow has been smoothed by viscous effects and is closer to the uni- 
form flow blowing from infinity around the body (Fig. 6.14). Accordingly, 
there is a region of the flow at the rear of the obstacle where the instability 
linked to the presence of inflection points can develop on the spot (hence 
‘absolute’), producing the oscillations. This situation is reminiscent of what 
happens in closed systems where confinement effects select specific modes 
and nonlinearities can be studied in the framework of dynamical systems 
theory (Chapter 3, $3.2.3 and Chapter 4, $4.2). 

with speed U,. This experimental configuration is characterized by two 
dimensionless parameters. The first one is the Reynolds number: 

Let us consider a cylinder placed perpendicular to a uniform 

R = U,d/v, 

where d is the diameter of the cylinder and Y the kinematic viscosity of the 
fluid. The second parameter is the aspect-ratio r = L/d where L is the 

llC.H.K. Williamson, “Vortex dynamics in the cylinder wake,” Annu. Rev. Fluid 
Mech. 28 (1996) 477-539. 

12T. von KBrmln, “Uber den Mechanismus des Widerstandes, den ein bewegter Korper 
in ein Fliissikeit erzeugt,” Nachr. Ges. Wiss. Gottingen, Math. Phys. Klasse (1911) 
509-517, (1912) 547-556. Previous experimental observations by H. BBnard (1908) are 
reported in Notice sur les titres et travaux scientifiques de M. Henri Binard (Gauthier- 
Villars, Paris, 1926). French chauvinism often associates the two names with the wake 
instability. 

131n one of the last sequences of the film “Flow instabilities” [Mollo-Christensen 
(1972)], a cylinder is dragged through a viscous fluid at rest. In that case U, is of 
course the speed of the body. 

flow13
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Fig. 6.14 
ally, of a blunt body). 

‘Absolute/convective’ transition in the wake of a cylinder (and, more gener- 

length of the cylinder. Here we assume L >> d (or I? + m), so that it seems 
legitimate to neglect end effects and to start with a two-dimensional base 
flow. Accordingly, we are left with R as the only parameter. 

The flow structure can be understood from visualizations of the velocity 
field, while the different regimes are most conveniently identified through 
the variation of global observables. A first one is the oscillation frequency 
f, or in dimensionless form, the Strouhal number 

A second classical measure is the drag, i.e. the force FD necessary to  main- 
tain the cylinder at its position, or rather the dimensionless drag coefficient 
CD = FD/fpU&,d. Another related quantity is the base pressure, the pres- 
sure difference between a point at 180 degrees from the upstream stagnation 
point and a reference pressure, usually the static pressure at infinity. Here 
we will just discuss the early stages of the transition using the Strouhal 
number. 

The transition to turbulence behind a cylinder is described at many 
places besides Williamson’s review (Note ll), e.g. in [Tritton (1990)l. 
Beautiful pictures of the different laminar flow regimes by Taneda can be 
found in [van Dyke (1982)]. Creeping flow with flow lines smoothly sticking 
to  the cylinder exists up to R - 5-6, beyond which a steady symmetrical 
bubble of recirculating fluid sets in. This time independent situation per- 
sists up to R = R, N 48.5 beyond which the wake oscillates, periodically 
emitting vortices parallel to the cylinder axis as illustrated in Figure 6.15. 
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parallel shedding 

I 
oblique shedding 

Fig. 6.15 
Taneda’s pictures in [van Dyke (1982)]. Bottom: Parallel vs. oblique shedding. 

Top: Rerspective view of the shedding of parallel vortices, after one of 

At threshold, the Strouhal number is of order 0.12, so that the streamwise 
wavelength A0 = Urn/ f is of order 8d. 

Beyond threshold, the oscillation frequency increases regularly with the 
Reynolds number as shown in Figure 6.16. In fact the frequency selection 
problem is a difficult one, both experimentally and theoretically. 

On the experimental side, it took some time before it was recognized 
that the dispersion of the observed frequencies was due to  the occurrence 
of oblique shedding, i.e. shedding with the axis of the vortices at an angle 0 
with the cylinder axis. Assuming that the frequency of parallel shedding is 
fo, a simple geometrical construction (Fig. 6.15, bottom-right) shows that 
the frequency of oblique shedding (and with it, the Strouhal number S) is 
reduced by a factor cos0: let Ae be the wavelength of the oblique vortex 
street as measured perpendicularly to the vortex axis and suppose that 
the instability mechanism makes it identical t o  that of parallel shedding, 
then the wavelength measured along the flow direction is longer by a fac- 
tor 1/ cos0; to get the result one just needs to convert wavelengths into 
oscillation periods using the speed of the flow U,. Rescaling frequencies 
accordingly yields the master curve displayed in Figure 6.16 (left). 

The theoretical understanding of the neighborhood of the threshold is 
not as obvious as it may seen. At first, the wake can be thought of as a 
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Fig. 6.16 Variation of the Strouhal number S (dimensionless frequency of shedding) as 
a function of the Reynolds number R. Left: Two-dimensional shedding regime corrected 
for the effects of oblique shedding. Right: Transition to three-dimensionality. Modes 
modes A* and B’ have the same structure than modes A and B but display disloca- 
tions; dashed lines correspond to unstable regimes; The transition ‘2D ts mode A*’ is 
hysteretic; the “natural” route is: 2d -+ mode A* --t mode B. After Williamson, note 11. 

collection of Hopf oscillators, distributed all along the cylinder and coupled 
to their neighbors. An appropriate local model would then be (4.16), p. 128 
which, once unfolded in the spanwise direction z ,  would yield a complex 
Ginzburg-Landau equation (5.36), p. 198. The dynamics of the wake close 
to  the threshold is in fact reasonably well described by this equation whose 
coefficients can be fitted against experiment~.’~ Chevron patterns observed 
in case of oblique shedding, finite-size effects, or the presence of dislocations 
in the vortex system (viewed as phase defects for the complex amplitude), 
can be understood within this phenomenological approach. But this cannot 
be the whole story since the approach implicitly assumes that the stream- 
wise (.) structure of the perturbation is frozen, which this is not the case. 
While the amplitude of the maximum of the wake velocity fluctuations in- 
deed increases as the square root of the distance to  threshold as expected 
for a Hopf bifurcation, the position of the maximum shifts upstream closer 
to the cylinder. Progress has been made recently regarding the variation of 
the streamwise shape of the vortex amplitude and the frequency selection 
problem by combining convective/absolute, global, and nonlinear issues.15 

14M. Provansal, C. Mathis, L. Boyer, “BCnard-von Ktirman instability: transient and 
forced regimes,” J. Fluid Mech. 182 (1987) 1-22. Th. Leweke, M. Provansal, “The flow 
behind rings: bluff body wakes without end effects,” J. Fluid Mech. 288 (1995) 265-310. 

”See, e.9. B. Pier and P. Huerre, “Nonlinear self-sustained structures and fronts in 
spatially developing wake flows,” J .  Fluid Mech. 435 (2001) 145-174, B. Pier, “On the 
frequency selection of finite-amplitude vortex shedding in the cylinder wake,” J. Fluid 
Mech. 458 (2002) 407-415, and references cited. 

(x)
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Beyond R x 150, the wake enters a transition regime where the regular 
vortex street may be disrupted by several different secondary instability 
modes, all involving spanwise modulation. The picture is further compli- 
cated by the presence of vortex dislocations. Two main modes have been 
identified,16 first experimentally, next theoretically through linear stability 
ana1y~es. l~ The first one, called ‘mode A’, arises as a deformation of the 
primary vortices with wavelength of the order of 0.6-0.8Xo, where A0 is the 
primary wavelength at  the corresponding value of R. Since the Strouhal 
number is then about 0.2, the wavelength of mode A is of order 3-4d. By 
contrast the second one, called ‘mode B’, has a much shorter wavelength of 
order 0.2X0, i.e. of the order of d. The physical origin of these modes cannot 
be explained in terms of the elementary KH mechanism discussed previously 
but rather relates to the elliptical instability (56.3.1.2 and Note 10). 

Beyond this point 
the intensity of fine structures increases and the nature of the instabili- 
ties involved in the primary vortex shedding mechanism changes gradually. 
Rather than deriving from the global mode attached to  the recirculation 
bubble, as was the case at  lower R, these instabilities have to do first with 
shear layer that forms downstream the detachment point and, at the high- 
est Reynolds numbers, with the boundary layer that develops along the 
cylinder itself. 

The transition regime extends up to R x 260. 

6.3.3 Inviscidly stable flows 

6.3.3.1 Plane Poiseuille flow 

This prototype of Aows without inflection point has been much studied both 
theoretically and experimentally. The threshold of the instability against 
T W  waves is R, E 5772 (see p. 234). As shown by Herbert’’ the bifur- 
cation is subcritical with unstable nonlinear steady states appearing below 
threshold, but the bifurcated branch turns back a t  R,1 21 2900 (Fig. 6.17). 

The next step should be the linear stability analysis of two-dimensional 
saturated TS waves against three-dimensional infinitesimal perturbations, 
as suggested in 56.2.1. One would thus expect transversally modulated 

16Ch. Williamson, “Three-dimensional wake transition behind a cylinder,” J. Fluid 

“D. Barkley, R.D. Henderson, “Three-dimensional Floquet stability analysis of the 

“T. Herbert, “Secondary instability of plane channel flows to subharmonic three- 

Mech. (1995). 

wake of a circular cylinder,” J. Fluid Mech. 322 (1996) 215-241. 

dimensional disturbances,” Phys. Fluids 26 (1983) 871-874. 
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Fig. 6.17 
After Herbert, Note 18. 

Bifurcation diagram of two-dimensional TW waves in plane Poiseuille flow. 

waves later decaying into small scale turbulence. Several difficulties hinder 
the observation of this scenario. First, the primary instability is convective 
so that detecting its presence in a finite length channel strongly depends 
on the level of background noise. Second, the bifurcation is subcritical so 
that working with a “clean” base flow inevitably leads to missing the stable 
bifurcated branch at finite distance from it, whereas triggering appropriate 
waves, e.g. using vibrating ribbons, is not so easy. 

By contrast, a moderate high level of residual turbulence brings about a 
different scenario (natural  transition) involving localized finite-size pertur- 
bations, called turbulent spots, i. e. limited patches of small-scale turbulent 
flow traveling amid laminar Poiseuille flow, growing in size as they process 
downstream.’’ These turbulent spots are transient and rapidly decay into 
laminar flow below R, M 1000, but are sustained beyond this value, which 
is much lower than R, or even R,1. The value R, plays the role of a global 
stability threshold, hence the notation (see p. 9 for a refresher). Except for 
the existence of a linear threshold and a corresponding nonlinear branch, 
the situation is similar to that taking place in the plane Couette flow to be 
examined later in $6.3.4.3. 

6.3.3.2 Boundary  layer flows 

The main drawback of the Poiseuille flow as a test case for continuous tran- 
sition scenarios in open flows stems from its strongly subcritical character. 

leD.R. Carlson, S.E. Widnall, M.F. Peeters, “A flow visualization of transition in plane 
Poiseuille flow,” J. Fluid Mech. 121 (1982) 487-505. 
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Boundary layer flows may seem more favorable from this point of view and, 
being ubiquitous, have even more practical interest. 

The Blasius velocity profile is another example of flow without internal 
inflection point. As we have seen, the thickness 6 of the laminar boundary 
layer increases as the square root of the distance to the leading edge. The- 
ory predicts the emergence of TS waves a t  R = R, = 519.4 with k, = 0.303 
and cr,= N 0.397 (all scalings based on 6). The bifurcation seems supercriti- 
cal or nearly so, but the interpretation is made delicate by the downstream 
dependence of the flow. Anyway, linear stability has been tested at low 
residual turbulence levels in vibrating ribbon experiments and the agree- 
ment between predictions and observations is satisfactory once corrections 
due to the slight divergence of the flow are taken into account. 

Several tricks have been used to attempt a t  controlling the spanwise 
wavevector qt of the secondary modes in experiments (regularly spaced 
grooves or adhesive tapes aligned along the flow direction). In practice the 
most dangerous secondary modes either do not add streamwise modulation 
(q2 = 0, < = 0, where c was introduced in 56.3.1.2) or else introduce 
a spatial subharmonic (qz = k/2, that is q = 1/2). In the latter case, 
resonant interactions between a mode triad formed with the primary mode 
(k, 0) and two oblique waves (q2 = k / 2 ,  &qz) may be expected from the 
quadratic coupling through the advection term v Vv (Figure 6.18, top). 

The velocity field resulting from the superposition of the base flow and 
the secondary modes displays streamwise bands with alternatively increased 
and reduced speed (“peak-valley” alternation) that, upon amplification, 
take the shape of so-called h-vortices, see Fig. 6.18, bottom. 

A step-by-step transition is thus expected. Laminar flow first becomes 
unstable against two-dimensional TS waves, the amplitude of which slowly 
increases over a viscous time-scale. TS-waves then experience growth of 
secondary modes introducing three-dimensionality over a much shorter in- 
ertial time-scale, and a final breakdown into small scale turbulence. 

In fact the kind of secondary mode that develops the fastest depends 
on the amplitude A1 reached by the TS waves, which in turn is a function 
of the level of residual turbulence (through the exponential amplification 
of the primary mode over a limited time, converted into a distance by 
the downstream flow). For a detailed presentation consult the reviews by 
Herbert and/or Kachanov,” and also [Schmid and Henningson (2001)j. 

“T. Herbert, “Secondary instabilities of boundary layers,” Ann. Rev. Fluid Mech. 
20 (1988) 487-526; Y.S. Kachanov, “Physical mechanisms of laminar-boundary-layer 
transition,” Ann. Rev. Fluid Mech. 26 (1994) 411-482. 
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Fig. 6.18 Top: Resonance conditions for secondary modes. Bottom: (a) Aligned h- 
vortices, qz = 0, ‘K’ mode. (b) Staggered h-vortices, qz = k / 2 ,  ‘H’ mode. 

Figure 6.19 adapted from [Schlichting (1979)l displays a global 
schematic image of these different steps. 

At the lowest residual turbulence levels, the amplitude of the TS waves 
staying below 0.2-0.3% of the speed at  infinity, relaminarization is observed 
owing to the shape of the marginal stability curve, as already mentioned). 

When their amplitude is between 0.3% and 0.6%, the fastest emerging 
secondary mode is subharmonic, which produces staggered A-vortices, this 
is ‘mode H’ after Herbert’s name, Note 18, p. 249. 

Finally, when their amplitude is larger than 0.6%, the prevalent sec- 
ondary mode is with qz = 0 and produces aligned A-vortices as early ob- 
served by Klebanoff and coworkers.’’ 

A-vortices then breakdown into spikes that serve as germs for turbulent 
spots developing first in the cross-flow direction y and then laterally in 
the z-z plane while being advected downstream. Merging of the turbulent 
patches yields a fully developed turbulent boundary layer. Large streamwise 
rolls called wall streaks,  with finite lifetime and well-defined wavelength 
can be identified within the turbulent boundary layer. They experience 
intermittent breakdown and regeneration. This phenomenon called bursting 

21P.S. Klebanoff, K.D. Tidstrom, L.M. Sargent, “The three-dimensional nature of 
boundary layer transition,” J. Fluid Mech. 12 (1962) 1-34. 
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stability primary instability secondary instability developed 
TS-waves (2d) and 3d transition hubulence 

Fig. 6.19 
[Schlichting (1979)l. 

Side view and top view of a ‘K mode’ transitional boundary layer. After 

has been studied within the framework of chaotic dynamical systems using 
tools similar to those presented at the end of chapter 4, $4.4.22 

These different steps are difficult to identify in the absence of control of 
secondary modes (natural transition) and turbulent  spots often appear with- 
out apparent precursors. Such spots can also be introduced by perturbing 
the laminar boundary layer locally and sufficiently strongIy. Of course, 
when the flow is very clean, one must not conclude that it never become 
turbulent, but that, when it does, the other scenario involving spots devel- 
ops. A kind of competition between the standard sequences sketched above 
and a bypass transition not relying on secondary instability modes can thus 
be observed in the general case. 

6.3.4 Turbulent spots and i n t e m i t t e n c y  

6.3.4.1 Contex t  

In several instances we have mentioned the fact that turbulent  spots ,  i.e. 
bounded regions filled with strongly turbulent flow, could appear, move, 
and expand within laminar flow. This phenomenon can be understood by 
noticing that that solutions to the Navier-Stokes equations may not all 
be derived continuously from the thermodynamic branch by increasing the 

”N. Aubry, Ph. Holmes, J.L. Lumley, E. Stone, “The dynamics of coherent structures 
in the wall region of a turbulent boundary layer,” J .  Fluid Mech. 192 (1988) 115-173. 
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Fig. 6.20 (a, b) Super/sub-critical local bifurcation. The distance to the basic state is 
measured by the amplitude A of the primary instability mode beyond the corresponding 
threshold R,. (c, d) Global bifurcation toward a branch of nontrivial states existing 
beyond R > Rnt, disconnected from the basic state, A is the measure of the distance to 
that state. 

Reynolds number after supercritical bifurcations, and that there may exist 
other fully nonlinear solutions belonging to other disconnected branches. 
Figure 6.20 illustrates this situation in a highly simplified way: 

The bifurcation diagrams (a) and (b) correspond to  local bifurcations 
and have the same precise technical meaning as in Chapter 4: variable A 
on the vertical axis is the amplitude of the bifurcated state. 

By contrast, the nature of the states on the nontrivial branch in 
diagrams (c) and (d), resulting from global bifurcations, is left unspeci- 
fied for the moment. Quantity A, which serves as an order parameter, is 
simply some idealized statistical measure of the distance to the base flow, 
hiding a multiplicity of (possibly irregular) flow configurations. 

From these last two sub-figures, one will just retain (i) the possible exis- 
tence of nontrivial states for R > Rnt (‘nt’ for ‘nontrivial’) and (ii) the fact 
that depending on cases, the local bifurcation can take place at values of 
R lower or higher than Rnt. Diagram (d) represents a case with R, > Rnl 
and Rnl > Rnt, i.e. a subcritical, primary, local bifurcation and nontriv- 
ial states at even lower values of R, reminiscent of our description of the 
plane Poiseuille flow transition. Diagram (c) with a supercritical primary 
bifurcation occurring first R, < Rnt, and a nontrivial branch soon becom- 
ing relevant, would rather model the case of the Blasius boundary layer, 
though the exact situation is difficult to appreciate due to  the downstream 
development of the instability. 

At any rate, the suggestion is made explicit that the globally supercritical 
cascade toward turbulence can be preempted by other mechanisms involved 
in the so-called bypass transi t ion (that can thus be consistently termed 
globally subcrit ical) .  In terms of dynamical systems theory, the principal 



6. Open Flows: Instability and Transition 255 
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Fig. 6.21 Transition to turbulence by growth of turbulent plugs/slugs in a cylindrical 
pipe. The growth, propagation, and merging of the slugs is suggested by sketches of 
snapshots taken at regularly spaced successive times. 

difficulty is then to determine the boundary of the attraction basin of the 
nontrivial solution, that is to say not only the most dangerous directions in 
phase space, from the base state or related “trivial” nonlinear solutions, but 
also the amplitude of the perturbations that actually trigger the transition. 
Solving exercise 4.6.6 in Chapter 4 may contribute to the understanding 
of that difficulty in an exceedingly simplified case, the precise connection 
of that exercise with the present problem is discussed in the article from 
which it derives, Note 27, p. 174. 

The case of plane Couette flow is, from this point of view, the most 
dramatic since the base flow is linearly stable for all R as shown by RO- 
ma no^,^^ so that the branch that would correspond to  the local bifurcation 
is pushed a t  infinity (in R). 

This circumstance is shared by the Hagen-Poiseuille flow, the laminar 
flow in a cylindrical pipe, which is not a plane flow but is mentioned here 
owing to the historical role of Reynolds’ experiment (1883) regarding the 
definition of the Reynolds number and the problem of the transition to 
t ~ r b u l e n c e . ~ ~  It indeed turns out that the parabolic velocity profile (6.5) is 
also linearly stable for all R, though turbulent flow can be observed for suf- 
ficiently large R. The transition occurs without intermediate steps through 
the formation of turbulent plugs equivalent to  the turbulent spots observed 
in plane flows. As suggested in Figure 6.21, a turbulent plug develops close 
to the tube wall, then invades the section and grows in the streamwise di- 

23V.A. Romanov, “Stability of plane parallel Couette flow” (english transl.) Funkt- 
sional’nyi Analiz i Ego Prilozhaniya 7 (1973) 62-73. 

24The experiment is repeated in the film nrbulence [Stewart (1972)]. There, the 
Reynolds number is modified by mixing water and glycerol in order to vary the viscosity, 
rather than by changing the flow rate. 
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rection to become a turbulent slug. These slugs grow in length and thus 
persist indefinitely, i.e. till the end of the pipe, provided R is large enough. 
In practice, the head of a slug moves faster than its tails for R greater than 
about 2300. The slugs become statistically longer and longer beyond this 
value and, if their birth probability is large enough, the pipe becomes turbu- 
lent along most of its length. The transition is thus highly sensitive to the 
care brought to the experimental conditions (shape of the entrance of the 
pipe, roughness of the wall, level of residual turbulence). The generation 
mechanism of the plug depends on the Reynolds number. Laminar flow can 
be maintained at R > lo5 in experiments designed with extreme care but 
usually the natural transition is observed in pipes of moderate length for 
R < lo4 due to detachment on sharp angles in the entrance section, or in 
the range R N 104-105 due to the instability of the boundary layer close to 
the wall of the pipe. 

At any rate, the globally subcritical character of the transition toward 
nontrivial flow regimes, that implies coexistence in phase space, is essential 
to understand the coexistence of turbulent and laminar flow in physical 
space with well-defined fronts separating them at one and the same value 
of the control ~a rame te r . ’~  

6.3.4.2 

Described first by Emmons (1951), turbulent spots developing in the Blasius 
boundary layer flow have the shape of an arrow head (Fig. 6.22, left).26 
They move rapidly in the flow, about 90% and 50% of the speed a t  infinity 
for the head and the tail respectively. They widen while advancing with a 
spreading angle of order 10”. They also thicken by entraining laminar fluid 
from the outside of the boundary layer. 

In order to  partially suppress problems linked to the space dependence 
of the base flow, Carlson et al. (Note 19, p. 250) have studied the devel- 
opment of spots artificially produced by local triggering in plane Poiseuille 
flow ( R  is now independent of the streamwise coordinate x). As already 
mentioned, turbulent patches persist within laminar flow for R 2 1000, i.e. 
much below the value at  which nonlinear TS waves bifurcate (R,1 N 2900). 
As seen in Fig. 6.22 (right), triggered spots are oval. The head and tail of 
a spot move a t  speeds roughly 2/3 and 1/3 of the centerline velocity, re- 

Turbulent spots in Blasius and Poiseuille flows 

25Y. Pomeau, “Front motion, metastability and subcritical bifurcations in hydrody- 

zsB. Cantwell, D. Coles, P. Dimotakis, “Structure and entrainment in the plane of 
namics,” Physica D 23 (1986) 3-11. 

symmetry of a turbulent spot,” J .  Fluid Mech. 87 (1978) 641-672. 
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Fig. 6.22 
Dyke (1982)]), and in plane Poiseuille flow (right, after Carlson et  al., Note 19). 

Turbulent spots in the Blasius flow at high R (left, after Cantwell et  al. in [van 

spectively. The spreading angle is of the order of 8”. Further downstream, 
at distances - 150h (h  = channel’s height), a typical turbulent patch has 
a diameter of order 30-50h and then experiences spot spli t t ing: a calm 
region appears, separating two turbulent spots that run side by side and 
further grow. Turbulent patches that develop spontaneously within the 
laminar flow at high levels of residual turbulence evolve similarly but have 
less regular shapes and, of course, appear randomly in space and time. 

As a general rule, turbulent spots display different regions that are well 
visible in Figure 6.22: (1) the spot as a whole, a turbulent region with well- 
defined boundaries, that behaves as an obstacle in the flow since it moves 
somewhat more slowly than the neighboring laminar flow; ( 2 )  on the sides, 
trains of oblique waves seemingly produced by the motion of this obstacle; 
(3) an interior filled with small scale turbulence; and (4) a turbulent “wake” 
made of streamwise elongated streaks. These features are also present in 
Figure 1.7, p. 17, displaying a mature turbulent spot in plane Couette flow. 

6.3.4.3 Plane Coue t t e  flow 

Plane Couette flow, conceivably the simplest case of wall flow, is known 
to stay linearly stable for all R (Note 23). This guarantees the subcritical 
character of the transition, avoiding any risk of confusion with scenarios 
based on saturated TS waves. By contrast with Blasius or Poiseuille flows, 
there is further no problem with the downstream transport of spots when 
using the apparatus used in S a ~ l a y ~ ~  and described in Figure 6.23 since, by 
construction, the mean advection cancels exactly for symmetry reasons. In 
27F. Daviaud, J .  Hegseth et P. Bergd, “Subcritical transition to turbulence in plane 

Couette flow,” Phys. Rev. Lett. 69 (1992) 2511-2514; 0. Dauchot and F. Daviaud, 
“Finite amplitude perturbations and spot growth mechanism in plane Couette flow,’’ 
Phys. Fluids 7 (1995) 335-343. 
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t v  guiding rolls 

Fig. 6.23 Setup used to produce high-quality plane Couette flow in view of a quanti- 
tative study of turbulent spots. Left: The shear is created in the gap separating two 
portions of a wide plastic belt kept parallel at a constant distance 2h by four adjustable 
rolls, with counter-plates limiting mechanical vibrations, and entrained at linear speed U 
by two large rolls. Right: Turbulent spots are generated by a thin jet that goes through 
the flow when holes in the belt and the counter-plates are aligned. After Daviaud and 
coll. (CEA Saclay). 

fact, it is not so easy to produce a flow with a low level of residual turbu- 
lence and sophisticated image processing is necessary to reach a meaningful 
quantitative leveL2* 

Traditionally, the Reynolds number is defined as R = U h / v  where U 
is the speed of the wall inducing the shear and 2h the width of the gap 
between the walls. It turns out physically more significant to define R from 
the shear rate U l h ,  the inverse of the advection time, and the viscous time 
over the gap, = ( 2 h ) 2 / v ,  since experiments show that the structures 
involved in the transition occupy the full gap. The Reynolds number will 
accordingly be defined as R = 4 U h / v  = 4R, allowing easier comparisons 
with, e.g. Blasius or Poiseuille flows. 

Turbulent spots in plane Couette flow display characteristics similar to  
those in other wall flows. It is now well established that the plane Couette 
flow is globally stable forz9 R < R, N 1300. This value compares well with 
that in the plane Poiseuille flow case (- 1000 for sustained spots), which is 
easily understandable when noticing that the latter can be viewed as two 
juxtaposed Couette flows (the centerline velocity U,,, would be 2U and 
the half-height of the channel 2h, hence Rpois. = 4 U h / v  again). 

- 

28Equally interesting information can be obtained from direct numerical simulations 
of Navier-Stokes equations, e.g. A. Lundbladh and A.V. Johansson, “Direct simulations 
of turbulent spots in plane Couette flow,” J. Fluid Mech. 229 (1991) 499-516. 

29For a review of experimental results, see P. M. and 0. Dauchot, “Patterning and 
transition to turbulence in subcritical systems: the case of plane Couette flow,” in Coher- 
ent structures in classical systems, D. Reguera, J.M. Rubi, L.L. Bonilla, eds. (Springer 
Verlag, 2001), pp. 58-79. 
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Fig. 6.24 Turbulent fraction function of time for different values of R. ‘Q’ indicates a 
quench experiment, and ‘S’ a spot triggering experiment. Top: Immediate unconditional 
relaxation toward laminar flow. Left: Relaxation usually after a long chaotic transient. 
Right: Sustained turbulence. Adapted from original results, courtesy S. Bottin and 
0. Dauchot (CEA Saclay, 1998). 

The expression ‘globally stable’ is to be taken with precisely the mean- 
ing defined in Chapter 1, p. 9 and Figure 1.2. Experiments leading to  the 
result are principally of two kinds:30 either quench  experiments ( ‘Q’)  where 
a fully turbulent state, prepared at some large initial R, Rinit >> R,, is sud- 
denly decreased to some final value Rfin, or spot triggering experiments 
(‘S’) achieved as sketched in Figure 6.23 (right). In each case, the evolu- 
tion of the turbulent fraction Ft, that is the relative surface occupied by 
the turbulent flow, is extracted from video recordings of the flow pattern, 
Figure 1.7, p. 17, and appropriate thresholding of the images. As illustrated 
in Figure 6.24, these experiments show that for R 21 1120 all perturbations 
relax rapidly, whatever their initial structure, shape, and amplitude. For 
R between R, 21 1250 and R, E 1300, turbulent patches exist and live 
sufficiently long for the average measure of their surface as a function of 
time to  make sense. This lifetime diverges as R gets closer and closer to 

30S. Bottin, F. Daviaud, P. M., 0. Dauchot, “Discontinuous transition to spatiotem- 
poral intermittency in plane Couette flow,” Europhys. Lett. 43 (1998) 171-176. 
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Fig. 6.25 
tion of experiments. 

Turbulent fraction Ft as a function of the Reynolds number, from a compila- 

R, from below. Finally, turbulent patches persist indefinitely with finite 
probability for R > R,. 

It can be noticed that even when turbulence is sustained (Fig. 6.24, 
bottom-right) some spots may relax immediately (label 3 2 ’ )  though pre- 
pared in the same way as those that do not abort (‘Sl’). This feature is the 
trace of both the globally subcritical character of the bifurcation, and the 
sensitivity to initial condition expected from a basically chaotic process. 
Numerical simulations confirm this point by showing that, for Reynolds 
numbers in the corresponding range, the border of the attraction basin of 
the laminar flow is fractal.31 Furthermore, in this regime, the average value 
of the turbulent fraction does not depend on the type of experiment (Q or 
S), which qualifies it as an adequate order parameter. 

The bifurcation diagram displayed in Figure 6.25 summarizes results on 
the average turbulent fraction Ft as a function of R. This diagram suggests 
that Ft increases regularly with R. As a matter of fact, the flow becomes 
uniformly turbulent beyond Rt 2~ 1660. In the range R, < R < Rt the 
intensity of turbulence appears to be modulated in the form of alternately 
laminar and turbulent oblique bands. Just beyond R,, these bands are 
fragmented (Fig. 6.26, top) but, as R increases, for R N 1400-1450, frag- 
ments join together to  form continuous bands (Fig. 6.26, bottom). Then the 
modulation progressively disappears as the regime of uniform turbulence is 
31A. Schmiegel and B. Eckhardt, “Fractal stability border in plane Couette flow,” 

Phys. Rev. Lett. 79 (1997) 5250-5253. 
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Fig. 6.26 Typical oblique turbulent stripes observed in the range R, < R < Rt in the 
plane Couette flow for R = 1360 (top) and R = 1432 (bottom). Courtesy A. Prigent 
(CEA Saclay). 

I sustained 1 
turbulent stripes )4 g 1440 00, I featureless turbulence globally stable 

Ru G 1251 0 2s R g ~ 1 3 0 0  Rt=1660 
Be 5 3  

Fig. 6.27 Stability diagram of the plane Couette flow. 

reached. These results are recapitulated in Figure 6.27. 
Turbulent bands are strikingly similar to the celebrated turbulent spirals 

observed in cylindrical geometry (Taylor-Couette flow, see Exercise 3.3.5, 
p. 113) when the cylinders rotate in opposite directions and sufficiently fast. 
Early observations of these spirals date back to Coles’  experiment^.^' A 
quantitative bifurcation diagram has been established by Andereck et a133 
for a ratio 77 = T 0 / q  = 0.883 where r ,  and ~i are the radii of the outer and 
inner cylinders respectively. Further experiments performed by Dauchot 
and Prigent34 with 77 = 0.983 show that bands and spirals take place in 

32D. Coles, “Transition in circular Couette flow,” J. Fluid Mech. 21 (1965) 385-425. 
33D. Andereck, Liu, H. Swinney, “Flow regimes in a circular Couette flow system with 

independently rotating cylinders,” J. Fluid Mech. 164 (1986) 155-183. 
34A. Prigent, G. GrBgoire, H. ChatB, 0. Dauchot, W. van Saarloos, “Large-scale finite- 

wavelength modulation within turbulent shear flows,” Phys. Rev. Lett. 89 (2002) 
014501. 
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the same range of Reynolds numbers (weakly dependent on the average 
rotation rate as far as spirals are concerned), once computed, as in the case 
of the plane Couette flow, from the shear rate and the viscous time over 
the gap when curvature effects are small, Q 1. A physical explanation 
for the occurrence of turbulent bands or spirals is still lacking at  present. 

The principal interest of this detailed study is to  give a concrete ex- 
pression to the conceptual presentation given in Figure 6.20, especially in 
connection with the nature of the states on the postulated disconnected 
nontrivial branch of the bifurcation diagram (compare with Figure 6.25). 

6.3.4.4 Mechanisms? 

Turbulent spots appear to play an essential role in transitional wall flows. 
They have common features that do not seem to rely on TS waves and their 
nonlinear development. First they are present at “intermediate” values of 
R, i.e. not too large so that the flow as a whole remains relatively coherent 
and not yet filled with small scale eddies as in fully developed turbulence 
(Chap. 7). For plane Couette flow this transitional regime extends in the 
range 1250 < R < 1440. Trying to identify a limited number of interacting 
modes and processes thus seems meaningful. 

According to the Squire theorem and the conventional TS transition sce- 
nario, the most dangerous infinitesimal perturbations are two-dimensional, 
i.e. Disturbances 
relevant to the non-conventional scenario are thus expected to have finite 
amplitude and be mostly spanwise, i.e. depend on z (and y) but not on x. 
Small perturbations of this kind are damped in the long term but transient 
linear amplification is not excluded owing to the non-normal character of 
the linear stability operator (see Appendix A, 5A.3). The required finite 
amplitude can thus be reached provided that sufficiently large residual tur- 
bulence or intentional disturbances are present. (The linear scheme is there- 
fore not completely abandoned since, on general grounds it is hopeless to 
find nontrivial nonlinear solutions from scratch.) 

In practice it is not too difficult to imagine a mechanism by which 
streamwise structures can be sustained in the flow. As a matter of fact, 
a streamwise vortex [0, v(y, z ) ,  w(y, z ) ] ,  even transient and weak, induces 
a redistribution of streamwise velocity bU(y ,  z) by displacing fluid with 
speed U(y) to a different cross-stream coordinate y. This perturbation 
bU corresponds to a slowing down or a speeding up, depending on the 
local direction of displacement of the basic flow lines by the vortex (see 

periodic in x, functions of y, and independent of z. 
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Fig. 6.28 Streamwise vortices and formation of streaks. 

Figure 6.28). The presence of long, well visible, streamwise streaks in the 
flow is thus not so surprising. The superposition of the base flow and the 
streamwise component of the induced flow now displays inflection points 
that make it unstable to KH-like mechanism producing z-periodic waves, 
which in turn can trigger the transition. 

The question is then to determine the initial amplitude of streamwise 
vortices able to do the job (to find the boundary of the attraction basin of 
the base state in dynamical systems terms). The answer has been searched 
mostly by direct numerical simulation of the NS equations and comparison 
of scenarios starting with different initial perturbations. For a detailed pre- 
sentation with references, consult [Schmid and Henningson (2001), Chap. 91. 
This points to the receptivity problem, i.e. the way the flow converts resid- 
ual turbulence or controlled disturbances into effective perturbations. 

In boundary layers, perturbations in the form of oblique waves (an an- 
ticipation of secondary instability modes of TS waves) seem to be most 
efficient. In the case of plane Couette or Poiseuille flows, with Reynolds 
numbers independent of the streamwise distance, the result is often pre- 
sented in the form of a diagram relating the initial amplitude required for 
transition and the Reynolds number in the form 

where y is an empirically determined exponent and A is a measure of the 
perturbation amplitude in the sense of Figure 6.20 (essentially the square- 
root of the kinetic energy contained in the disturbance). The above relation 
is supposed to hold for R >> 1. This does not raise questions in the case of 
plane Couette flow which is linearly stable for all R. In the plane Poiseuille 
flow case, such a relation can be strictly valid only in the subcritical regime, 
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R < R, E 5772, since beyond it is linearly unstable, but fortunately R, is 
quite large and turbulent patches are expected beyond R - 1000, which 
leave some room to the observation of the scaling behavior. For boundary 
layers, the relation makes sense only as long as the non-conventional transi- 
tion through turbulent spots a t  high levels of residual turbulence preempts 
the conventional TS transition. 

The value of the exponent y depends on the flow considered and the 
type of perturbation introduced. Values such that y FZ 514 (plane Couette) 
and FZ 714 (plane Poiseuille) have been extracted from direct numerical 
simulations of the NS equations.35 A functional approach developed by 
Chapman36 leads to y = 1 for plane Couette flow and all kinds of pertur- 
bations, and to y = 312 or y = 514 for plane Poiseuille flow and streamwise 
vortices or oblique waves, respectively. It can be noticed that analytical val- 
ues are slightly smaller than experimental ones, which means that the con- 
sidered perturbations are effectively more dangerous than estimated (their 
amplitudes decrease faster than predicted when R increases). 

The study of processes leading to the transition can also give ideas 
about the nature of states belonging to the nontrivial branch since it is 
sufficient to admit that the instability of the streamwise streaks produces 
new streamwise vortices, which closes the loop. Such a cycle has indeed 
been pointed out in numerical simulations. The model studied considered 
in Exercise 4.6.6 with its variables X and Y representing the amplitude of 
the streaks and the streamwise vortices respectively, possesses both trivial 
and nontrivial states, but is too simple to  account for a realistic feedback. 
A more sophisticated model has been proposed by Waleffe37 coupling four 
variables. It reads: 

U = -rc,R-’U - uwW2 + u,MV, 
V = -rcVR-lV + uVW2, 

w = - K ~ R - ~ W  + U,UW - U,MW - U,VW, 
M = -K,R-~(M - 1) + o,w2 - U ~ U V ,  

where M represents the mean flow, V the amplitude of the streamwise vor- 

35S.C. Reddy, P.J. Schmid, J.S. Baggett, D.S. Henningson, “On stability of streamwise 
streaks and transition thresholds in plane channel flows,” J. Fluid Mech. 365 (1998) 

36S.J.  Chapman, “Subcritical transition in channel flows,” J. Fluid Mech. 451 (2002) 

37F. Waleffe, “On a self-sustaining process in shear flows,” Phys. Fluids 9 (1997) 

269-303. 

35-97. 

883-900. 
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tices, U that of the streaks, and W a supplementary variable accounting 
for three-dimensional features of the perturbed flow. Constants K. describe 
the viscous effects and coefficients u are coupling constants arising from 
the NS advection term. Their values are such that the kinetic energy 
is conserved in the sense of Exercise 2.5.2. In addition to its base state 
( M  = 1, U = V = W = 0), the model has several nontrivial states for R 
sufficiently large, representing possible operating points of the cycle men- 
tioned above. In particular, in the perturbation equations around the base 
state, the equation for U contains a term in V (from the linearization of the 
term n,MV) that accounts for the growth of the streak component induced 
by the streamwise vortices at the origin of transient energy growth. The 
boundary of the attraction basin of the base state has been studied in de- 
tail for this system and complex transients reminiscent of what is observed 
in laboratory experiments below the global stability threshold have been 
shown to exist.38 More realistic modelings are the subject of ongoing work. 

In the following we will no longer consider the instability mechanisms 
at the origin of unsteadiness in turbulent flows but rather focus on the 
statistical aspects of the flows that develop beyond the transitional regime. 

6.4 Exercises 

6.4.1 Velocity-vorticity perturbation equations 

Starting from Equations (6.17-6.20) for the perturbation, show that the 
pressure fulfills a Poisson equation: 

v2p = -2va,u (6.52) 

by computing the divergence of the momentum equations and using the con- 
tinuity equation. Applying the three-dimensional Laplacian to the equation 
for v, next eliminate the pressure variable thanks to (6.52) and show that 
this yields: 

(at + UdX)V2V - d,,U~,V = R-lV4v. (6.53) 

Finally, by cross differentiation and subtraction of equations for u and w 
show that the equation for R, = a,u - axw reads 

(at + Uax)Rg - R-lV2Ry = -ayUa,v. (6.54) 

380. Dauchot, N. Vioujard, “Phase space analysis of a dynamical model for subcritical 
transition to turbulence in plane Couette flow,” Eur. Phys. J. B 14 (2000) 377-381. 
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Notice that (6.53) is formally identical to  the Orr-Sommerfeld equation 
(6.30) and is closed for v, while (6.54), called the Squire equation, is not 
closed for R, but contains a forcing term in v. 

Show that the the no-slip condition u = v = w = 0 at a solid wall 
implies the boundary conditions v = dyv = 0 and R, = 0. 

6.4.2 

The theorem states that for a one-directional plane flow vo = U(y)jZ (see 
Figure 6. la), the most dangerous perturbations are two-dimensional, i. e. 
without spanwise velocity component and independent of the transverse 
coordinate z .  
1) Write down the linearized NS equations (6.17-6.20) for a normal mode 
taken as 

Derivation of the Squire theorem 

[v,P](x,Y,6t)  = [V,P](Y)exP[i(kx(x - c t )  + & z ) ] *  

2) Notice the symmetrical role of k x u  and k,w in the continuity equation 
and derive the equation governing kxu + kzw by appropriate combinations 
of the equations for u and w.  

3) Check that the equations for k,u + kzw and v are those of a two- 
dimensional problem in x and y (6.24-6.26) for some wavevector k and 
a Reynolds number R to be identified. 

4) Conclude the argument by comparing the critical Reynolds numbers cor- 
responding to a three-dimensional mode ( k x ,  ky) and the associated two- 
dimensional mode (& 0) in the viscous case, and the growth rates of these 
modes in the inviscid case. 

6.4.3 Derivation of Fjflrtoft’s theorem 

Rayleigh’s theorem is obtained by working with the imaginary part of equa- 
tion (6.34). Fjortoft’s improvement is gained by manipulating its real part. 

1) Use Rayleigh’s theorem to show that the real part of the phase velocity 
c, can be replaced by any real speed U in the real part of (6.34). 

2) Choose the speed U = Us = U(ys) a t  an inflection point (ys such that 
U”(y,) = 0) as a reference speed and expand U(y) - Us and Uf‘ in Taylor 
series in the neighborhood of ys. 

3) Insert these expansions in the identity for the real part of (6.34) and, 
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assuming that the velocity profile U(y) is monotonic with a single inflection 
point, derive a necessary condition for instability by the argument used to  
obtain Rayleigh's criterion. Express the result by noticing that U'(y) is the 
opposite of the base flow vorticity, (V x v), = axvy - ayvx, Fig. 6.4. 

6.4.4 

Instability modes of profiles in the form (6.36-6.39) are searched here by 
direct computation. (For unbounded domains, the boundary conditions 
at infinity are obtained by expressing that the solutions do not diverge 
exponentially.) 

Stabili ty of some linear-by-part velocity profiles 

6.4.4.1 

1) Express the continuity of pressure from equation (6.24) for the stream- 
wise velocity component u at  discontinuity points of U and/or U'and derive 
condition (6.38). 

2) Write down the equation governing the motion of a material point 
with cross-stream coordinate Y belonging to the interface between the 
two flows, first in full generality and next for a normal mode (ie., for 
Y = I'exp(ilc(x - c t ) ) ) .  Noticing that by definition of the cross-stream 
velocity component one has dY/dt = v, obtain as a function of 4 and 
derive the matching condition (6.39). 

Derivation of matching conditions (6.38) and (6.39) 

6.4.4.2 

1) Find the dispersion relation of normal modes for a confined mixing layer 
with velocity profile: 

Kelvin-Helmholtz instability and mixing layer 

where ymin < 0 and ymax > 0 are the cross-stream bounds of the fluid vein. 

2) Same question for the smoothed velocity profile: 

Take Ymin = -Ymax. Consider first ymax large and next ymax > 1 but finite. 
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3) Same question for the monotonic profile defined as 

U(Y) = c"Y + - 4(lY + 11 - IY - 11) 
on the interval [ -b ;b] ,  b > 1 and discuss the solutions according to the 
value of a. 

a) Show that, for all a, modes with k + 00 are not unstable. 
b) Show that there cannot be unstable modes when a > 1. 
c) For a < 1, show that there exist unstable modes when k + 0 and 

a M 1 (the complete dispersion relation should be determined outside this 
neighborhood). Interpret these results in view of Fjortoft's theorem. 

6.4.4.3 

The base velocity profile of a plane jet (with speed U = 1) of some inviscid 
fluid entering a large vessel of the same fluid at rest can be taken in the 
form 

Stabili ty of the plane j e t  

U(y) = 0 for y < -1, 

U ( y ) = l  for - l < y < l ,  
U(y) = 0 for 1 < y. 

1) Compute the dispersion relation while taking care of the parity of the 
solutions in the cross-stream coordinate y. 

2) Discuss the solutions and explain why the even mode is called 'sinuous' 
and the odd mode 'varicose' (cf. Fig. 6.29). 

sinuous mode varicose mode 

Fig. 6.29 Streamlines of the unstable modes of the plane jet 
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6.4.5 Convective and absolute instabilities in the CGL 
equation 

Consider the linearized Ginzburg-Landau equation in the following form: 

&A - V a x A  = rA  + ( 1  + ia)dxaA 

where A is the amplitude of the envelope of the primary waves generated by 
some instability mechanism and r is the corresponding control parameter, 
diffusion is normalized to 1 and a accounts for the dispersion of the waves 
(see Chapter 5 ,  p. 198). A supplementary term V d x A  has been introduced 
to mimic the effects of an average flow at some speed V on the pattern. 

1) Determine the dispersion relation of plane waves solutions in the form 
A cx exp(i(kx - w t )  and derive their growth rate. When are they unstable 
according to the definition and what is their (real) phase speed? 

2 )  When V # 0, the question arises of the convective or absolute nature 
of the instability. Compute the group velocity of plane waves wg = d w / d k ,  
then the complex wavevector k(O) for which vg = 0, and find its growth rate 
wi(O) as a function of T and V .  

3) Conclude by applying the Briggs-Bers criterion, and discuss the re- 
spective roles of the instability mechanism (through r )  and the advection 
(through V )  on the absolute/convective character of the instability. 
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Chapter 7 

Developed Turbulence 

In the previous chapters, we focused our attention on the transition to tur- 
bulence in closed systems and then in open flows. This problem was essen- 
tially studied from the viewpoint of mechanisms and associated thresholds 
for chosen idealistic base flows. However when one tries to evaluate the 
values of the control parameters of systems at hand, one finds that, most of 
the time they are far beyond the thresholds determined theoretically. This 
is in particular the case of most flows of geophysical or engineering interest 
(flows in tubes, around vehicles or obstacles, combustion, etc.) while the 
opposite situation, laminar flow, is quite exceptional (highly viscous fluids, 
lubrication, flows in capillaries of porous media, etc.) 

From the study of instability mechanisms, we can expect at most hints 
on the details of how things evolve locally and instantaneously in a tur- 
bulent flow. But this “microscopic” account, as useful as it can be to the 
understanding of irregularities and chaos in the flow, must be replaced by 
a statistical approach able to deal with their “macroscopic” regularities, in 
much the same way as, in gases, collisions between molecules lose interest 
when thermodynamics is at stake. As we will see this analogy is fruitful 
but must not be pushed too far. We indeed have to stress immediately that 
turbulence is not a property of a fluid (in some new state of matter) but of 
its motion at large scales when compared to molecular dimensions. 

As far as applications are concerned, turbulence is first of all character- 
ized by strong mixing properties due to intense velocity fluctuations over a 
wide range of scales (57.1). One of the objectives of the statistical theory to 
be built is thus to isolate the mean flow from the fluctuations (57.2). Tur- 
bulent mixing implies statistical smoothing that is tempting to understand 
as a diffusion. As current experience tells us, it is more efficient by several 
orders of magnitude than molecular diffusion (sugar in a stirred cup of cof- 
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fee). Though it is not well founded theoretically, the notion of turbulent 
diffusivity is then introduced (57.3) and we illustrate its use in the example 
of a fully turbulent boundary layer to predict the shape of the mean flow. 
We conclude the chapter by hinting at  why and how going beyond this 
elementary approach to deal with situations of practical interest. 

In this chapter we are essentially interested in completing the overall 
perspective centered on the dynamics of complex systems (mostly involving 
flowing fluids) by giving a few ideas of what happens when a hierarchy of 
interacting structures is involved, and developed turbulence should just be 
taken as an example in continuation with what precedes. However, this 
chapter just touches on a wide subject, many expositions of which can be 
found in the literature by more qualified authors. Here, let us mention a 
few books and defer to the corresponding part of the general bibliography 
for more references. [Tennekes and Lumley (1972)] or [Lesieur (1997)] may 
first serve as thorough introductions. The monograph [Frisch (2001)], in the 
perspective of Kolmogorov’s work, has a more theoretical flavor. Finally, 
[Pope (2000)l brings a particularly clear and interesting light on modeling 
and numerical issues. 

7.1 Scales in Developed Turbulence 

Let us come back to fundamental characteristics of developed turbulence 
and the different spatio-temporal scales involved. Their origin has been 
briefly and schematically illustrated in Figure 1.8, p. 18. Here we reexamine 
them in a more quantitative way. 

7.1 .I Production scale 

Having noticed that turbulent flows develop at high Reynolds numbers, let 
us try to be a little more precise and call l o  and VO the external characteris- 
tics of a given flow. Subscript ‘0’ here indicates the scale of motions at  the 
starting point of the hierarchy evoked above and generated by the nonlinear 
advection term v . Vv. Tildes are attached to fluctuating quantities, the 
separation of the m e a n  f low from the f luctuat ions will be discussed later. 

Let VO measure the order of magnitude of velocity fluctuations and eo be 
the typical size of eddies produced by the instabilities leading to local chaos. 
The relation between these scales and the apparent external characteristics 
of the flow may not be immediate. For example in grid turbulence (Fig. 7.1), 
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Fig. 7.1 
[van Dyke (1982)l. 

Turbulent flow behind a grid: From production to decay. After a picture in 

may a priori  depend on the diameter of the bars, their wakes producing 
the eddies, on the distance between the bars which moves the point where 
different wakes merge to produce a homogeneous turbulent flow, as well 
as on the typical diameter L of the channel that undoubtedly gives an 
upper bound to the size of the eddies present in the flow. For its own part, 
GO should be related to the transverse velocities generated by the vortices 
shed by the bars, which in turn scale with the average speed of the flow 
U. Some uncertainty thus exists about the value of the quantities entering 
the definition of the Reynolds number Ro = G&/u. This is what will 
later encourage us, on p. 278, to define a Reynolds number conventionally 
noted Rx and based on a length called the Taylor micro-scale,  which can 
be derived from experimental measurements. 

Let us notice that the hierarchy of scales gets wider as turbulence gets 
more developed. The multiplicative process from which it results will be an- 
alyzed in a logarithmic perspective that will not be sensitive to  the starting 
point (10, GO). Even if it differs from the naive nominal Reynolds computed 
from U and L by some unknown proportionality factor, we will assume that 
the Ro built on the production scale (10,210) and the fluid’s kinematic vis- 
cosity u is always very large compared to one (powers of lo!) in situations 
of developed turbulence. This assumption dismisses an intermediate regime 
called soft turbulence still too close to the transitional regime and where 
the nature of the concrete mechanisms that lead to local chaos cannot be 
ignored, a regime we alluded to in the case of turbulent convection in 53.2.5 
(see especially Figure 3.14, p. 103). 
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At the production scales, the viscous relaxation time of velocity fluctu- 
ations GO is large when compared to their turn-over time ro = Co/Vo, since 
we have rv = Cz/u, so that the ratio rv/ro = Ro is by assumption very 
large. Viscous dissipation can thus be neglected, leaving us just with the 
nonlinear advection term v . Vv. As already discussed in Chapter 1, p. 19, 
when operating on eddies of typical size ko - l/Co, it tends to produce 
eddies of typical size 2k0 N C0/2. This implies an energy transfer toward 
scales C < Co that should be independent of viscosity. 

Following a well-established tradition, the energy flux from large to 
small scales is denoted 6. The fundamental assumption that allows us to  
estimate its value is of dimensional nature (see the exercises). It consists 
of saying that during a turn-over time 70 of eddies with size l o ,  a fraction 
(fixed on average) of the kinetic energy per  unit mass present in these eddies - 5: is transfered to smaller ones: 

7.1.2 

Since the advection term produces scales of smaller and smaller sizes, of 
order to, Co/2, C0/4.. . let us examine its effects on an eddy of size C << lo 
and velocity i j e ,  with turn-over time re = C / i j e .  The corresponding Reynolds 
number reads Re = ijeC/v and, even if C << 1 0 ,  as long as Re >> 1, the 
corresponding motions carry the energy and transfer part of it but have no 
time to  dissipate it into heat, hence their name of inertial scales. As the 
scale division process is iterated, correlations among eddies are expected 
to decrease, so that it can easily be accepted that fluctuations at inertial 
scales are homogeneous and isotropic, that is to say invariant by translation 
and rotation, see Figure 7.2. 

At steady state the energy cannot accumulate in some given scale. Ac- 
cordingly, the amount that is extracted per  unit time from larger scales has 
to  be transfered to  smaller ones by the nonlinear advection term. Assuming 
that the instantaneous transfer does not fluctuate and is equal to E all along 
the cascade, i.e. independent of C, one can estimate the velocity fluctuation 
fie using the argument leading to (7.1) for scale Co, which gives: 

Inertial scales and Kolmogorov spectrum 

from which i je can be derived and thus the Reynolds number at the corre- 
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Fig. 7.2 Sufficiently far from the production region, here a grid, one can consider that 
turbulence is locally homogeneous and isotropic when the Reynolds number is large 
enough. The homogeneity and isotropy concepts have to do with the statistical invariance 
of the flow with respects to translation and rotation, as suggested by the arrows supposed 
to move the circled region. After a picture in [van Dyke (1982)]. 

sponding scale: 

and 

This energy transfer through the inertial  cascade can continue as long as 
Re stays much larger than one, so that the neglect of the viscous dissipation 
remains legitimate (see Figure 7.3). 

Turbulence in the inertial regime is usually characterized by its energy 
spectrum E ( k )  defined through K = E ( k )  d k ,  where quantity K is the 
total kinetic energy per  unit mass contained in the flow. Splitting the 
k-space in concentric shells, one can write 

P 

where p labels scale C p  with wavevector k,  = 27r/ep. The energy spectrum 
is homogeneous to an energy per  unit wavevector (and per  unit mass). On 
dimensional grounds this gives: 

K p  = k p E ( k p )  - $?, (7.4) 
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Fig. 7.3 Inertial cascade in wavevector space ( I c  = 27r/t) from production to dissipation. 

so that using (7.2) one gets: 

KP NvO -2(e P / c ~ ) ~ / ~ .  

Coming back to k-space, omitting index p ,  and substituting this expression 
in relation (7.4) one obtains: 

E(k)  = Cc2/3k-5/3. (7.5) 

This is the famous Kolmogorov spectrum. Constant C ( E  1.5 from empirical 
adjustment with experiments) is supposed to be universal. 

In experiments, what is usually recorded is the time series of fluctuations 
at a given point rather than a chart of the whole fluctuation field at a given 
time. In order to pass from wavevectors to frequencies, it is sufficient to 
observe that the time dependence ofa  quantity associated with a small scale 
contains a trivial part due to the transport by the large scale motion. This 
is the essence of Taylor's frozen turbulence hypothesis. Especially in wind 
or water tunnels, with average speed V a t  the location of measurement, 
one gets w = Vk and thus dw = Vdk, so that, in Ic as well as in w ,  a power 
law with exponent -5/3 is expected, as illustrated in Figure 7.4. 

7.1.3 Dissipation scales 

The turn-over time of eddies can be obtained from e - i$/re - 
(e/-re)2/re - e2/r," which yields - ( e 2 / ~ ) 1 / 3 ,  whereas the viscous dif- 
fusion time is still given by rV N C2/v. As long as the first one is much 
shorter than the second one, viscosity has no sufficient time to smooth out 
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Fig. 7.4 
ONERA-Sl wind tunnel in Modane, France. 
Grenoble University, 1987). 

Kinetic energy E ( w )  contained in the longitudinal velocity fluctuations in the 
Courtesy Y. Gagne (PhD Dissertation, 

fluctuations and inertial effects dominate. This is the regime considered 
up to now. But, as the cascade proceeds, decreases as e2I3 while T,, 
initially larger, decreases much more rapidly as e2. Viscosity ceases to be 
negligible when these two times have the same order of magnitude. This 
leads directly to the definition of the Kolmogorov dissipation scale CK: 

or 

see Figure 7.3. It is easily checked that the Reynolds number corresponding 
to this scale is of the order of one, so that the different regimes match 
correctly: imposing R = RK = 1 in (7.3) for the Reynolds number in the 
inertial range gives the same result that can be rewritten as 

eK/eo = R ; ~ / ~ .  (7.7) 

This leads us to point out that the difference between similar turbulent flows 
manifests itself only at the smallest scales (exercise 7.5.3). The film [Stewart 
(1972)] illustrates this feature using cinema special effects as an example: 
the eye is mostly sensitive to large structures and is easily mistaken about 
the order of magnitude of the Reynolds number, which allows specialists to 
blast models rather than full-scale film sets. 

Structures with sizes C <( &, smoothed by dissipation, are completely 
enslaved to larger scales. In developed turbulence, eddies sufficiently inde- 
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pendent to act as degrees of freedom must be at  least as large as e K .  The 
number of such eddies that can be piled up in a volume of order k': is thus: 

Nturb 0: ( e o / k ' ~ ) ~  R9/4,  (7.8) 

which is Landau's estimate of the number of degrees of freedom in developed 
turbulence. 

7.1.4 Remarks 

7.1.4.1 Taylor micro-scale 

Starting from the dissipation rate E and an estimate of the intensity of large 
scale velocity fluctuations GO, one can define another characteristic length X 
called the Taylor micro-scale. The order of magnitude of velocity gradients 
is indeed given by VG - Go/X. The dissipation is homogeneous to [v][VfiI2, 
hence E = vGi/X2, up to numerical factors, so that: 

x/eo = R ; ' / ~ ,  

by substitution. The Reynolds number Rx is then defined as Rx = f i o X / v ,  
so that: 

Rx = Ro '/2 . 

On the other hand, comparing X with eK one gets: 

A/& 0: Ri/4 0: R:/= 

Taking the square root to pass from Ro to Rx leads to less impressive 
numbers than estimates from primitive quantities. In practice, Rx is also a 
less subjective quantity since X and GO can both be derived from experiments 
by separate measurements of the root mean square value a t  a point of the 
velocity fluctuations (GO)  and of the velocity gradient fluctuations ( f i o / X ) ,  
which makes it appealing to  characterize the turbulence level empirically. 

7.1.4.2 Decaying turbulence 

To conclude this section, let us insist on the fact that, without an energy 
supply sustaining it, turbulence ultimately decays since its develop in a 
dissipative medium. In the absence of permanent forcing, a flow starting 
from a given set of turbulent initial conditions always returns to  the rest 
state a t  the end of a long turbulent transient (Exercise 7.5.4). For open 
flows such as those in Figure 7.1 and 7.2, this happens naturally as the 
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fluid is followed downstream. Close to the grid, turbulence is intense but it 
decays while being advected since no further perturbation is introduced in 
the flow. Since small structures are more heavily damped than large ones, 
they disappear shortly and only large eddies remain far downstream. 

7.2 Mean Flow and Fluctuations 

7.2.1 Statistical approach 

The turbulent flow now being conceived as a stochastic process, it be- 
comes necessary to specify its statistical characteristics. The nature of the 
corresponding mathematical theory rests on the definition of probability 
distributions representing statistical ensembles, that is to say a supposedly 
infinite collection of systems submitted to the same constraints, prepared 
in the same way, and among which a given observed state is drawn “at ran- 
dom.” In this context, ensemble averages are defined as ensemble average: 

i 

where Y, denotes the value of observable Y in state i with probability ail 

which is determined as the fraction of systems in the ensemble that are 
in state i ,  the specific flow configuration realized at  the considered time 
(mi = limlv+m N i / N ) .  Higher order statistical moments are defined in a 
similar way. Here the nature of the observable Y is not specified, this can 
be for example the value of a given velocity component at some particular 
location. What matters is our ability to prepare the appropriate ensemble 
since a large number of similar experiments should be realized in principle. 
This might be less difficult in numerical experiments than in the laboratory 
despite the fact that N is anyway supposed to tend to  infinity. Anyway, the 
statistical approach using ensembles remains mostly a (good) theoretical 
concept to  which it is advisable to oppose an empirical viewpoint resting 
on measurements taken on a single specific realization that has developed 
in the course of time. T i m e  averages are defined as: 

t+T - 
Y ( t )  = lim 1 h Y( t ‘ )d t ‘ ,  

T+m T (7.10) 

where Y is the considered observable, t the current time, and T a finite but 
long duration that in principle should be made arbitrarily large. According 
to this viewpoint, it is assumed that during a typical experiment the flow 
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explores all the accessible configurations, weighted by the fraction of time 
it spends in a given state (which finds its foundation in the instability 
of individual trajectories for a non-predictable chaotic system, as already 
discussed in Chapter 4, s4.3). 

The regime is stationary when the so-defined average quantity y(t) 
converges toward a value independent o f t  as T increases. When the flow 
depends on time, defines a sliding average at fixed T. This definition 
remains satisfactory provided that T can be kept sufficiently small when 
compared to the typical evolution time of the flow while being long enough 
with respect to  time scales of the turbulent fluctuations. The theoretical 
prediction of the flow’s statistical properties takes for granted the equiva- 
lence of the two types of calculation: 

ensemble average time average 

(ergodic hypothesis). In what follows we will consider ensemble averages 
(7.9) while not forgetting that they will be evaluated using time averages 
(7.10), which is reasonable in the stationary case but may raise difficulties 
otherwise. 

7.2.2 

Let us apply the ensemble averaging procedure defined above to  the conti- 
nuity and Navier-Stokes equations for an incompressible flow. For the sake 
of compactness, here and as often as possible in the rest of the chapter, 
equations will be written using the convention of implicit summation over 
repeated subscripts and simplified notations: aZj = a,, j = 1 , 2 , 3  with 
XI = x, 22 = y, 23 = z ,  so that a j v j  z Cj,lajvj, and so on. However, 
when the specification of coordinate axes will be needed, the velocity com- 
ponents will recover the names they had in the previous chapter, i.e. u for 
x1 (streamwise), v for 22 (cross-stream), and w for 23 (spanwise). 

Reynolds averaged Navier-Stokes (RANS) equations 

3 

The primitive equations then read: 

a jv j  = 0 ,  (7.11) 

(7.12) 

where (r is the stress tensor. Viscous effects are parameterized by the 
kinematic viscosity Y = p / p  where the shear viscosity p and the density p 
are supposed to be constant. For a Newtonian fluid we thus simply get: 

p(& + vjaj)vi = djuij, 

uij = -pdij + 2 p i j  with sij = $(aivj + ajvi) .  (7.13) 
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Following Reynolds, we isolate the fluctuations from the mean flow by 
requiring that they average to zero. For convenience and in order to  make 
the distinction more obvious, we denote all fluctuating quantities with tilded 
lower-case letters and mean values with upper-case letters: 

v = v + + ,  p = p + p .  (7.14) 

By definition, we have: 

(v) E V ,  ( p )  E P and (+) = 0 ,  (6) = 0 .  (7.15) 

Averaging defined by (7.9) is a linear operation that commutes with 
differentiation, yielding: 

(a,.) = &(v) = atv 
(E 0 in the stationary case) and 

(VV) = V(v) = vv. 
Averaging the continuity equation (7.11) leads to: 

0 = (ajvj)  = (8, (vj + ijj)) = (8jV,) + (ajijj) = ajv, + a j ( q  
that is to  say: 

ajv, = 0 (7.16) 

and, by subtraction of (7.11): 

ajvj = 0 .  (7.17) 

The introduction of (7.14) in the advection term (V, + Gj)aj(K + V i )  gives 
four terms, V,ajK, C j a j V , ,  V,ajiji, and i j j a j V i .  Only the first and the last 
terms survive to  the averaging. Like for primitive quantities, we can define 
tensors associated to the average flow and the fluctuations: 

Cij = -P&j + 2pSij with Sij = 4 (ajK + a i q )  (7.18) 

and 

The averaged Navier-Stokes equation then reads: 
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The third term on the left hand side can be transformed as: 

( V j 8 j V i )  = ( 8 j ( V j V i )  - VidjVj) = 8,(6jVi) - ( V i ( 8 j V j ) )  = 8 j ( V j V i ) ,  

using continuity condition (7.17) to cancel the second term of the third 
member of this series of equivalences. 

In component form, the Reynolds stress tensor is defined as' 

7.20) 

By identification with the mean stress tensor one then gets the mean flow 
equation in the form: 

P(8t -k 48j)x = 8j (-P&j -k 2/Lsij + T;j) . (7.21) 

It is immediately remarked that the set (7.16, 7.21) is not closed since 
the r.h.s. of (7.21) cannot be expressed entirely as a function of P and V 
but refers to the Reynolds stress, i.e. the average of a fluctuating term 
that remains to  be evaluated. This would be achieved by writing down 
the equations for the fluctuations by subtracting (7.21) from (7.12), which 
gives: 

P ( 8 t V i  f 58jfii + c j8 jx  -k CjdjVi) = 8 j ( - i  + 2/19ij - T..) 83 7 (7.22) 

then by deriving equations for products ViVj from & ( V i V j )  = VidtVj + V j & V ; ,  
adding equations such as (7.22) after multiplication by the appropriate 
fluctuating velocity components, then averaging and solving the so-obtained 
system. 

These operations produce triple products in V i ,  G j ,  Vk, leaving us with 
triple correlations after averaging, and so on. We have therefore to face 
the well known closure problem of turbulence theory: new terms appear 
in equations at a given order that can be determined only by continuing 
the computation at higher orders. In a number of applications the problem 
is settled by imposing a closure relation among moments at a given order, 
that is to say by postulating relations that give the new unknown quantities 
in terms of already determined quantities. 

Instead of considering the equations governing every component of the 
Reynolds stress tensor we will limit ourselves to the derivation of the equa- 
tion for its trace which, up to a factor 1/2,  is nothing but the average 

lThe density p is still present in this definition so that, dimensionally, ~ i j  is indeed 
a force per unit surface. Furthermore we do not follow a current practice that consists 
in omitting the minus sign from the definition, and thus in calling 'Reynolds stress' the 
quantity ( C i C j ) .  
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fluctuating energy 

7.2.3 

The distinction between mean flow and turbulent fluctuations leads us to  
examine how these two components of the flow exchange energy. Directly 
from the definitions, we get: 

Energy exchanges in a turbulent flow 

Etot = $p(v2) = $p((V + V)2)  = $ p  [(V’) + 2(V.  V) + (+’),I . 

Noticing that (V2)  = V 2  and (V . V) = V . (V) = 0, we simply get: 

Etot = ipV2 + $ p ( V 2 )  = E + E .  

In order to compute the kinetic energy of the mean flow, Eq. (7 .21)  for 
component V, is multip!ied by itself, and next the sum over the subscript 
i is performed. After a few manipulations and using definition (7.20) for 
the Reynolds stress, we obtain: 

(8, + Vj8j)E = -8, (PV, - 2pSijV, + ~ijv) - 2pSijSij - ri j  S i j .  (7 .23)  

This equation is valid locally. The first term on the r.h.s., -8j(. . . ), corre- 
sponds to a flux term that, in a global balance equation, can be integrated 
out as a surface term. Let us consider the other terms. The next one, 
-2pSijSij ,  obviously accounts for the energy dissipated by the mean flow 
through viscous friction. It is most often completely negligible since the 
large scale mean shear is small when compared to  the shear from the small 
scale eddies. The most interesting term is the last one, -r i j  Sij ,  which 
represents the work done by the mean flow on the fluctuations, and thus 
the energy transferred to the smaller scales. 

Let us now perform the complementary computation for the fluctuating 
kinetic energy. From the equation for the total energy, after averaging and 
subtraction of the mean flow kinetic energy equation just determined we 
get: 

(at + 58, )  e = -8, ((Cjp) - 2p(SijCi) -k $p(V’Cj)) - 2 p ( S i j S i j )  -k Tij sij. 

(7.24) 

Discarding again the flux gradient term and considering what remains, one 
easily identifies the fluctuating viscous dissipation - 2 p ( S i j S i j ) ,  which is a 
negative definite contribution and the turbulent energy production + ~ i j S i j ,  

directly subtracted to the energy of the mean flow. 
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A stationary regime can be obtained only if these two terms balance 
each other, otherwise, the evolution is transient (decaying turbulence). We 
now turn to the determination of the mean flow. 

7.3 Mean Flow and Effective Diffusion 

7.3.1 

As we have already pointed out, turbulence is characterized by diffusivities 
that are considerably augmented with respect to their microscopic coun- 
terparts, viscosity in Stokes’ law, molecular diffusivity in Fick’s law. It 
is however advisable to understand how the molecular properties arise in 
kinetic theory of gases. 

On general grounds, the macroscopic diffusion equation for the density 
of some microscopic physical quantity Y reads 

Mixing length and eddy viscosity 

&Y = Dya,zY, 

where DY is the relevant diffusivity, homogeneous to [L]2[T]-1. It de- 
scribes the smoothing of inhomegeneities by redistribution of that quantity 
as it is randomly transported by the microscopic agents (molecules). The 
diffusivity can be estimated through a dimensional argument in which mi- 
croscopic times and lengths involved in their motions are introduced. The 
kinematic viscosity related to the redistribution of linear momentum is for 
example given by: 

y - - =  52 < E ,  
T C  

in which < is the mean free path, T~ the average time between collisions, and 
E = </rC the average speed of molecules at the considered temperature. A 
detailed computation would give v = @/3 since on average only one third of 
the molecules contribute to the transfer of momentum in the direction of the 
gradient of velocity. Furthermore, in a gas all molecular diffusivities have 
the same order of magnitude since the physical quantities are transported 
by the same agents, the molecules themselves. Hence, the Prandtl number, 
ratio of the kinematic viscosity (diffusivity of momentum) to  the thermal 
diffusivity (for energy) is of order one. Things are different in viscous 
condensed media where heat diffusion is fast since it also involves vibration 
modes of a local pseudo-lattice. An analogous situation holds in mixtures 
where the diffusivity of a solute can be very slow when compared to viscous 
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damping when the solute’s molecules are much bigger than the solvent’s 
molecules (Schmidt number S = u / D  >> 1, see also Exercise 3.3.3 where 
the Lewis number L = D/ts was defined). 

The idea underlying the introduction of an eddy viscosity rests on a 
heuristic argument that simply replaces the thermal velocity E by the typical 
mixing velocity Gmix, e.g. the root-mean-square of 5 at some relevant place, 
and the mean free path < by a corresponding length emix, called the mixing 
length (Prandtl): 

ut = cmix emix . 
This concept is useful but its use is delicate because its justification is 
purely dimensional: the specific values of its two ingredients are not spec- 
ified a priori, by contrast with the case of gases where the thermal speed 
and the mean free path are unambiguously defined and where the latter 
remains usually extremely small when compared to the scale of the applied 
gradients. We already know in particular that, in turbulence, many ed- 
dies are active over a whole range of scales in turbulence, and that there is 
no real gap between the scales typical of the mean flow and those typical 
of turbulent fluctuations. This caveat being stated, below we elaborate a 
little more on the concept of eddy viscosity, noticing that the argument can 
sometimes be developed in terms of time scales rather than space scales 
(e.g. in Exercise 7.5.5). 

Up to now we have done as if the scales (speed, length) were constant 
but most flows of practical interest develop downstream, boundary layers, 
jets, wakes, mixing layer. 

In the case of a laminar flow controlled by the molecular viscosity, the 
width of the sheared region 6, in the cross-stream direction y depends on 
the streamwise coordinate x in a way correctly predicted by the dimensional 
argument in which, the advection U&U is balanced by the viscous diffusion 
ua,zU in the Navier-Stokes equations. For plane flows, this yields U 2 / X  = 
uU/6$, where X is the distance from the origin of the flow (leading edge 
of the plate for a boundary layer). Physically X / U  can be understood as 
the advection time from this origin to the point of interest and 6, as the 
width of the region affected by viscous damping during that time. 

When trying to apply the dimensional argument to  a turbulent flow 
in the x direction with a mean flow profile U ( y )  at position X ,  the esti- 
mate of the advection time does not change (XIU) while the momentum 
fluctuations are no longer diffusively damped but rather advected by ed- 
dies with characteristic speed firnix. This speed is not an equivalent of the 
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well-defined thermal speed in a near-equilibrium gas, but on the contrary 
a scale-dependent quantity. A crude guess, to be refined in the Sec. 7.3.2 
below, would be to assume Gmix constant and to evaluate the thickness of 
the layer affected by turbulence dimensionally as St = G)mix(X/U). Unfortu- 
nately, in flows developing downstream, this assumption is not tenable and 
that supposedly constant Cmix has to vary (slowly) with X. The widening 
of the turbulent layer cannot be estimated without pushing the argument 
further or taking into account experimental observations (see Sec. 7.4, later 
on). The behavior of St/X = Gmix/U indeed depends on the class of flow 
considered. In boundary layers Gmix/U + 0 whereas for jets and mixing 
layers Gmix/U -+ Cste. 

7.3.2 Application to the determination of the mean flow 

In what follows we restrict ourselves to the case of a fully developed tur- 
bulent boundary layer along a plane wall in direction x at stationary state 
(&U I 0), in the absence of pressure gradient (&P f 0). We assume that 
we are far enough from the leading edge, so that its thickness S,, defined 
as the distance at which the speed is roughly that of the external flow, is 
very large, and the fluctuations have sufficient room to develop over a wide 
range of scales. We also neglect the thickening of the layer so that the mean 
flow V is reduced to its streamwise component UP. 

From now on, we consider only quantities p e r  unit mass, which means 
that Eqs. (7.21-7.24) have been divided by p ,  with the replacements p ++ 
Y, ( P / p , f i / p )  H (P,fi), and that stresses or pressures are homogenous to 
velocities squared, especially the Reynolds stress defined by (7.20), ~ i j  ++ 

Close to the wall, the no-slip condition imposes that all the velocity 
components tend to zero. Accordingly the flow can be characterized by the 
mean shear at the wall d y U I Y = ~ ,  or rather by the friction at the wall, a 
stress p e r  unit mass denoted r*: 

-(Gzijj) .  

7* = vayuly,o, 

since the Reynolds stress does not contribute to the stress at the wall due 
to the cancellation of the transverse fluctuating velocity component there. 
Experimentally, it is not possible to evaluate T* using this relation since the 
mean flow profile is not measured with sufficent precision in the limit y + 0 
(a derivative has to be taken further, which does not improve the situation). 
However at very large Reynolds numbers this quantity is transferred to the 
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bulk without losses, so that it can be evaluated from the measurement 
of the mean flow profile and the Reynolds stresses farther from the wall. 
Anyway, this stress is dimensionally homogeneous to the square of a speed, 
called the friction velocity and here denoted V*, so that we set: 

T* = (V*) ' .  

Using this speed and the kinematic viscosity v one can construct a length 
unit y* through: 

y* = v/v*. 

The wall units V *  and y* then serve to rewrite the problem close to  the wall 
in dimensionless variables: 

y+ = y/y* and U+ = U/V* .  (7.25) 

In the immediate vicinity of the wall, y+ - 1, in a region called the 
viscous sublayer, the mean velocity gradient is very large, so that the viscous 
contribution of the mean strain tensor to  the mean stress tensor is not 
negligible (see later). But it is empirically observed that this gradient 
decreases very rapidly and that one can neglect it somewhat beyond the 
viscous sublayer. We now focus on the determination of the mean velocity 
profile in that region where the stress tensor is reduced to its Reynolds 
stress part ~ i j .  

Modeling the Reynolds stress using an eddy viscosity, one obtains: 

Txy = .t(Y)ayu * 

The assumptions that have been made simplify the mean flow equation 
(7.21) considerably since one is left with: 

a y ~ z y  = 0 ,  hence: vt(y)aYU = Cst , 

where the constant on the right hand side cannot be something other than 
the wall stress T* = (G')' introduced earlier. 

The variation of vt with y remains to be fixed. One then assumes that 
most of the turbulent dispersion at distance y from the wall is due to the 
largest possible eddies that can transfer momentum to the wall from that 
position (Fig. 7.5). Quantities V* and y are the only ones we have at our 
disposal to  construct vt. Therefore we get: 

%(Y) = X Y  V*  , (7.26) 
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Y I  I 

Fig. 7.5 Fully developed boundary layer. Outside the viscous sublayer with thickness 
of the order of y * ,  the most natural length scale of the eddies that disperse momentum 
efficiently is the distance y to the wall for dimensional reasons. The logarithmic mean 
profile follows. 

where x is a dimensionless proportionality coefficient called the Ka'rma'n 
constant. Integrating (x y <*) dyU = ( V * ) 2 ,  that simplifies as: 

1 v* 
X Y  

a u = - - ,  Y (7.27) 

we obtain: 

(7.28) 
v* 
X 

U(y) = - In(y) + Cst . 

At this stage it is useful to turn to wall units, which gives us the universal 
law: 

1 
X 

U+(y+) = - In(y+) + C .  (7.29) 

KBrmBn's logarithmic profile gives a satisfactory description of the bulk of 
the fully developed boundary layer,which justifies the assumptions made to 
obtain it a posteriori. Empirical fits against experiment give us: 

~ ~ 0 . 4 1  and C N 5. 

These constants are also supposed to be universal. 
The logarithmic behavior predicted by (7.29) cannot be extrapolated 

indefinitely, neither for y -+ 0 nor for y -+ 0;) since the logarithm diverges 
in both limits. It is only valid in the internal part of the layer called the 
inertial layer, and sufficiently far beyond the viscous sublayer where we 
must come back to the full expression of the stress in (7.21) but this time, 
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tu .--* / . I  U 
-uu- = ( U X )  log(y/&) 

\ I buffer I 
I layer ~ inner layer I 

Fig. 7.6 
out of the mixing length theory. 

Mean flow profile in a fully developed turbulent boundary layer as it comes 

neglect the contribution of the Reynolds stress. We then simply get: 

uayu = r* , 

which we integrate to obtain: 

U(y) = ( r*/u)y = [(V*)”U] y = V*(V*Y/Y) = V*(y/y*) 

(there is no integration constant since Uly,o = 0). Turning to wall units 
this reads 

u+=y+. 

Experiments show that the log law is acceptable for y+ > 40 and the linear 
law for y+ < 3. The matching of these two variation laws is achieved in the 
region 3 < y+ < 40 called the buffer layer.  

The logarithmic divergence of the profile for y large is equally unaccept- 
able. The bulk log-layer flow has now to be matched with the exterior flow 
U = U, for y > St. In the region where this matching takes place, the 
velocity scale is still 6* (we have nothing else) but the length scale is now 
the thickness St of the layer. Dimensionally, we must have 

v* ayu = -f (YlSt) 6t 

where f is an unknown function of the dimensionless variable y = y/&. 
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This expression of a,U in the external region must be matched with 
that given by (7.27), valid in the interior region. This implies f (tj) - l/xg 
for g << 1. The speed of the exterior flow being denoted as U,, the velocity 
in the external region of the layer is thus obtained from the integration of 

ij* 

XY 
a-u= :, Y 

that is: 

G* 
X 

u(g) = u, + -log@) 

(so that U = U,  for 
Since we are interested in the domain y 5 &, it is advisable to consider 

the velocity defect  [U, - U(y)] normalized by ij* and to measure y using 
its natural unit bt, hence: 

= 1). 

uw - U ( Y )  1 AU* = v+ = --1og(g). 
X 

The calculation can be adapted to other situations, e.g. the determina- 
tion of the pressure head necessary to drive a fully turbulent flow in a plane 
channel. This can be done along the same lines by considering two turbulent 
boundary layers placed face to face, each with its viscous sublayer, buffer, 
inertial, and external layers, which implies sufficiently large Reynolds num- 
bers. The essential assumption is the existence of a single velocity scale v*. 
The argument breaks down when several scales are relevant. 

7.4 Beyond the Elementary Approach 

In this presentation of developed turbulence, we sticked to  statistical char- 
acteristics of the flow at the lowest possible order, relying on the mean 
flow/fluctuations decomposition (in fact the root mean square of fluctu- 
ations). Things become much more complicated beyond this elementary 
level. For example if dimensional arguments give the essential of the Kol- 
mogorov spectrum (7.5) that accounts for two-point correlations of the ve- 
locity field2 The analysis of higher order correlations is more delicate since 
the closure prob lem cannot be escaped. A limitation comes from Landau's 
old objection to the Kolmogorov theory, according to which the dissipation 
rate p e r  unit mass E cannot be constant but rather fluctuates in time and 

'See Chapter 4, 54.4.1, for the relation between Fourier spectra and correlations. 
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space, which is called inertial range intermittency . The excitation of eddies 
at a given scale is indeed sporadic and the energy is distributed at random 
(local chaos) between the different daughter-eddies (size l / 2 )  generated by 
nonlinearities from the mother-eddy (size C). In fact triads of wavevectors 
are implied, such that kl + kz + k3 = 0 .  Elementary arguments developed 
previously assume, e,g.  J k l J  N JkzJ  - k and Jk3J N 2k, but the combination 
also produces wavevectors such that lk31 << k: a transfer also takes place 
toward larger scales though the transfer toward smaller scales is statistically 
dominant, so that the simplest image of the energy cascade subsists. 

The fine statistical characterization of turbulence rests on the study of 
velocity increments as functions of the distance: 

Aivj ( T )  = V~(X + T & )  - vj ( x )  , 

T being the distance measured in direction i indicated by the unit vector 
i i ,  parallel (i = j )  or perpendicular (i # j )  to the velocity component 
j considered. The analysis has to deal with statistical moments of the 
distribution of these increments: 

D, = (Aivj"). 

The argument that leads to (7.2) would predict 

D, = c,(ET)"l3, 

which is experimentally well verified for n = 2. For n = 3,  the result 
is exact, as shown by Kolmogorov who finds C3 = 4/5 (the '4/5 law'). 
When searching to adjust moments D, to power laws T C " ,  one observes 
that experiments deviate from the simple prediction Cn = n / 3  due to the 
intermittency phenomenon mentioned earlier. This problem is reviewed in 
detail in [Frisch (2001)l. 

Other quantities defined in terms of gradients of the velocity field are 
also interesting: 

and most especially the skewness coefficient S = Mtil and the kurtosis 
coefficient K = MFil of longitudinal gradients (i = j )  that would be 
respectively equal to 0 and 3 if turbulence were a bona f ide  centered Gaus- 
sian random process. 
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7.4.1 Turbulence modeling 

The approach followed above in order to determine the turbulent boundary 
layer mean profile rests on the intuitive concept of eddy viscosity. Trying 
to close the hierarchy of equations right at lowest level using appropriate 
extensions to this model seems both natural and desirable in order to  deal 
also with other more complicated situations. An excellent introduction to  
that problem is [Pope (2000)l and a thorough discussion of models used in 
numerical fluid dynamics is [Wilcox (2000)]. 

According to Boussinesq (1897), Reynolds stresses can be modeled by 
means of an eddy viscosity assumption expressed as: 

- ( V i V j )  + @ij = 2utsij,  (7.30) 

where Sij = i(aiy + ajx) is the mean strain tensor and where, according 
to  common practice, Ic here denotes the fluctuating kinetic energy per unit 
m a s 3  Reynolds averaged equations then read: 

(7.31) 

Depending on the approach, the formulation can be complete or not, 
i.e. according to whether the expression of the eddy viscosity vt is totally 
(or partially) fixed from the outside (incomplete model), or derived from 
the mean flow properties through specific equations (complete model). 

The simplest possible assumption consists in prescribing ut from the 
local characteristics of the external one-directional flow along x at position 
X: v t ( X )  = U ( X ) C o ( X ) / R t ,  where t o  is some outer scale and Rt a turbu- 
lent Reynolds number. But this has a narrow range of applicability since 
it does not take the least account of the specificities of turbulence. 

One step further, the mixing length theory used to treat the case of 
the boundary layer is a less trivial example of incomplete model founded 
on a clear physical assumption. Coming back to  (7.26), p. 287, it was 
assumed that vt = VmixCmix where Vmix = V and Cmix are two quantities 
relative to the turbulent mixing. More generally, Prandtl suggested taking 
Vmix/lmix 0: l8,Ul for a mean flow U along x sheared along y, which is 
dimensionally correct though this proposal has no real physical grounds. 
We thus get: 

4 = e:i,la,ul> 
3The risk of confusion of this quantity with a wavevector is small in the present 

context. The presence of term $k&j in expression (7.30) guarantees that the trace of 
the tensor is zero, owing to the mean flow incompressibility condition, 8;K = 0. 
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that has been extended to general flows by Smagorinsky (1963) in the form 

(7.32) 

The two formulations are easily checked to be equivalent when used in 
Prandtl's conditions: evaluating the second form with a mean strain tensor 
Sij reduced to S l 2  = 5'21 = i a l V 2 ,  one gets: vt = [2(S12S12 +S21S21)]1/2 = 

All this however does not make a complete model since an expression 
for lmix  is still requested. It is thus advisable to turn to complete mod- 
els, still resting on the eddy viscosity assumption, but free of external 
specification of vmix and/or Cmix on a case-by-case basis. These models 
can be developed at  several levels depending on the number of additional 
dynamical equations closing the Reynolds averaged equations. From this 
viewpoint, mixing length models are zero-equation models (or 'algebraic' 
models). One-equation models determine the velocity scale Zmix from the 
turbulent kinetic energy k by setting Zmix 0: A. The latter quantity 
is then obtained from Eq. (7.24),  with appropriately modeled unknown 
terms. This equation is rewritten here in the generic form: 

[ 4 ( p l v 2 ) 2 ] 1 / 2  = p 1 v 2 1 .  

(7.33) 

where 3(", P(') and D ( k )  represent flux, production, and dissipation 
terms, respectively. The actual flux term is replaced by a conventional 
diffusion term: 

where the turbulent diffusivity of energy Kt is related to the eddy viscosity 
(turbulent diffusivity of momentum) vt by means of an effective Prandtl 
number traditionally noted f f k ,  i.e. /st = vt/ok. In full generality, the 
production term reads P = -(i.jii.jj)Sij. The eddy viscosity assumption 
turns it into: 

which is positive definite. The dissipation term, corresponding to  the energy 
E transfered from the large scales is modeled by (7.1),  which yields: 



294 Instabiiities, Chaos and m r b d e n c e  

where CD is one of the constants in the model. The presence of Cmix in that 
equation, as well as in the relation that defines the eddy viscosity, that is 
vt 0: k1/2.tmix, still makes this type of modeling incomplete. This limitation 
is raised by adding a supplementary equation. 

The best known two-equation model is the k-E model that collects all 
that precedes but, instead of adding an equation governing Cmix, uses the 
fact that the missing length can be constructed from k and E as Cmix 0: 

k 3 l 2 / c ,  which is just Eq. (7.1) solved for C given E .  The eddy viscosity is 
then taken as: 

k2 
ut = c,-, 

€ 

where C, is a constant. The equation for E that closes the system is copied 
from (7.33): 

(at + ?a,)€ = a.F(.) + P(‘) - dE) , 

g“) = -$)VE, 

(7.34) 
3 3  

whose different terms are modeled in a fully parallel way: 

with K?) = ut/uf ,  where u, is the Prandtl number relative to  the “diffusion” 
of E .  The production and dissipation terms are taken further in the form 

which can be justified by noticing that quantity k/E is homogeneous to 
a time T and that a dimensionally consistent way to  pass from (7.33) to  
(7.34) is by dividing (7.33) by this time and introducing phenomenological 
dimensionless constant to account for the differences between the processes 
governing the dynamics of k and E .  Constants appearing in the model, 
c,, cE1, c , 2 ,  f f k  and u, are generally adjusted by demanding that the 
predictions in few test cases (decaying turbulence, log law in boundary 
layers, etc.) correspond to empirical data. To go further one should consult 
[Pope (2000)], Chapter 10. 

7.4.2 Large eddy simulations 

The variables introduced above refer to ensemble averages. However, quan- 
titative information collected from the study of specific realizations (struc- 
ture and temporal history) are at least as important as the properties of 
statistical ensembles ideally corresponding to these experiments. There is 
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therefore a pressing need for numerical simulations of Navier-Stokes equa- 
tions at large Reynolds numbers, in industrial or geophysical configurations 
for example. The evolution of small scales is of little interest, except that 
they have to  be present to guarantee energy dissipation. On the contrary, 
large scale motions that carry the energy and achieve the mixing are of 
more interest. This suggests performing a f i l tering of the equations that 
eliminates small scales, as implemented in large eddy simulat ions (‘LES’). 
The need for a filtering of primitive equations is clearly understood from 
Landau’s estimate (7.8) of the number of degrees of freedom relevant to  
developed turbulence, which might open a pessimistic perspective: despite 
the present observed increase of computational power, Reynolds numbers 
accessible to direct numerical simulation of Navier-Stokes equations will, 
for long, stay modest (see Exercise 7.5.1). Considering spectral approaches 
to the simulation problem (cf. Appendix B, 5B.2.2) will allow us to  better 
understand why and how one can develop an alternative strategy. 

In practice large scale eddies are reconstructed from a set of small 
wavevectors of the order of the inverse of l o ,  the scale in which energy 
is injected in the flow by the main instability mechanism. Few steps in 
the cascade are necessary to  reach complete disorder. These steps depend 
little on the precise value of the Reynolds number. Let us call4 ~ L E  the 
maximum wavevector necessary to account for large eddies (hence subscript 
‘LE’). One thus gets ~ L E  0: ko, with a rather small proportionality factor, 
typically 2n for n steps, with n = 3 or 4. In order of magnitude, the number 
of such modes is thus given as the volume of a sphere with radius ~ L E  in 
Fourier space: NLE c( k i E .  By contrast the value of k ~ ,  the wavevector 
associated to the Kolmogorov scale (7.6) marking the end of the inertial 
cascade, is strongly dependent on R : kK 0: R3I4. The corresponding num- 
ber of active modes, given by the Landau estimate Ndiss 0: ki - R9I4, 
is rapidly diverging. Let us denote k,,, the largest wavevector included 
in the simulation (typically, k,,, = ~r/Ax,  where Ax measures the space 
resolution). In principle the injected energy will be correctly dissipated a t  
the given value of R if kmax 2 k~ and thus N,,, 0: k,,, 2 Ndiss, which is 
impossible for the values of R of interest in applications. 

In fact, the large scales will be correctly described provided that the 
energy is correctly transferred through the scale derived from ~ L E .  Ac- 
cordingly, simulating the whole range of scales between k L E  and k~ in the 
inertial cascade is necessary only if one does not know how to  parame- 

3 

4From now on k no longer refers to the fluctuating kinetic energy but serves again t o  
label wavevectors. 
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terize this transfer through lc - l c ~ ~ .  The filtering is thus an operation 
by which numerous “useless” modes (Ndiss - NLE >> N L E )  are eliminated 
to  the benefit of few modes below ICLE “useful” to  the description of large 
scale motions. A detailed operational presentation of the method is out of 
question within the limited scope of these notes -for this one may consult 
[Pope (2000)], Chapter 13- but just give a qualitative idea of it, resting 
on, and extending the discussions in the previous subsection. 

The ensemble averaging leads to a splitting of the hydrodynamic fields 
into two components (7.14) that fulfill (7.15). Here the flow is similarly 
decomposed into filtered quantities (v, p)f (superscript ‘f’) and residual 
quantities (v, p)‘ (superscript ‘r’). The filtered velocity field in physical 
space is obtained from the convolution of the primitive field with a filter 
function GA: 

where GA(Y, X) is some appropriately normalized integral kernel 
(s GA(Y, x) d3y = 1) that is localized in space over a region of typical 
size A. The filter is homogeneous if it does not depend on position x 
which is usually the case except close to a wall). Furthermore it is isotropic 
if it depends only on the length IyI and not the orientation of y. The 
simplest homogeneous isotropic filter corresponds to  the averaging over a 
sphere with diameter A (the averaging over a cube of side A would not be 
isotropic since the result would depend on the local flow direction with re- 
spect to the coordinate axes). Smoother filters, e.g. Gaussian, are usually 
considered. 

Inspired by the initial remark about modes in Fourier space, one can 
also work in spectral space and perform the filtering in that space where the 
convolution product of two functions in physical space is just the ordinary 
product of their Fourier transforms. The Fourier transform of the filter 
function in physical space is called the transfer function. The transfer 
function of a Gaussian function is another Gaussian function, whereas the 
transfer function of a square window displays damped oscillatory wings 
in Fourier space. Conversely, the filter function of the low-pass square 
filter in spectral space also displays wings in physical space. The simplest 
spectral filtering is indeed achieved by such low-lass filtering that amounts 
to projecting the dynamics onto the subspace of Fourier modes such that 
lc 5 l c ~ ,  where l c ~  is the cut-off wavevector (i.e. truncating the Fourier 
decomposition of the fields beyond k ~ ) .  
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The residual velocity field is by definition the difference between the 
primitive field and the filtered field: 

V'(X, t )  = v(x, t )  - Vf(X, t ) .  

The filtering is somewhat less simple than the ensemble averaging. First 
it is to be noted that except when it comes to a projection over a set of 
modes, and contrary to averaging (see (7.15), p. 281), filtering is not an 
idempotent operation. Applying the filter to an already filtered quantity 
does not leave it unchanged, since filtering a residual does not give zero. 
One gets: 

f f f f 
v G v +v' + vf = [v'] + [v'] with [v'] $ 0 (in general). 

In the same way, it is easy to show that time differentiation commutes with 
filtering but that space differentiation commutes only if the filter is homo- 
geneous, which is shown from a direct computation starting with (7.35): 

Except in special cases (e.9. close to a wall) one can work with a homo- 
geneous filter and try to get, in this simple case, the equations governing 
the filtered fields to be explicitly resolved in a simulation. Filtering the 
continuity equation immediately gives: 

f [a& = a,.,' = 0 ,  

and, by subtraction: 

for the residue. Difficulties with the momentum equations are analogous to 
those that led to the introduction of the Reynolds stresses, p. 282. In full 
generality, these equations read: 

p (atwf + w,'a,wf) = a, (Ufi + Ti'j) , (7.36) 

where ut is the stress tensor defined in the usual way with the filtered 
quantities: 

uf. 23 = -pf& + q s f .  23 with sf, = (aiw,' + ajvzf) . 

The supplementary term T : ~  plays the role of the Reynolds stress in the 
ensemble averaging approach. Its presence is due to the fact that the term 
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[vivjlf that appears upon filtering the advection term is not equal to the 
product v:v; of the filtered components of the velocity. Introducing the 
decomposition v = vf + v’, one readily gets: 

f f f f 
[WjVi]  = [.;.:I + [.;.;I + [vpzf] + [v;.;]‘ . (7.37) 

The first term on the r.h.s. cannot be expressed as a product of resolved 
(i.e. filtered) quantities but the difference [v;wf] -v;vf, called the Leonard 
stress, is usually quantitatively small. The two terms next involve resolved 
and residual scales, and the last term, called subgridscale though at this 
stage no computational grid has been introduced, involves non-resolved 
scales only. A closure problem of a nature somewhat different from that in 
ensemble averaging is then posed. It rests on a modeling of the additional 
tensor T,& in (7.36), which is further decomposed into an isotropic part that 
contributes to  modify the filtered pressure and an anisotropic residue. This 
anisotropic part is most often modeled using an eddy viscosity assumption 
that closes the system at this level. A Smagorinsky formula (7.32) may be 
chosen, where the strain tensor is of course defined in terms of the filtered 
fields. 

In spite of an apparent parallelism, this approach is rather different 
from that developed in the previous subsection. As a matter of fact, here 
the filtered fields are fluctuating quantities while before they were averaged 
non-fluctuating quantities. The presence of time in equations (7.21-7.24), 
and later in the lc-E model (7.31-7.34) has indeed a different meaning related 
to the specific nature of the ensemble statistics. 

More or less sophisticated models -here we have just suggested the sim- 
plest formulation- used in LES present themselves as systems of equations 
for a “turbulent fluid” with specific rheological properties that would de- 
pend on the local state of the flow. They are still largely under development 
and demand to be validated by comparisons with direct simulations (mod- 
erate R) and laboratory experiments (high R),  since they settle the actual 
complexity of turbulent exchanges, cf. (7.37), via a closure assumption. 

The strategies used to solve the problem of interaction between resolved 
and residual motions might inspire the scientific approach to  the nonlinear 
dynamics of complex systems such as the climate system to be considered 
as an example at  the end of the next chapter, after a brief summary of the 
topics touched on up to now. 

f 
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7.5 Exercises 

7.5.1 

Direct numerical simulations of Navier-Stokes equations in a situation of 
developed turbulence are considered, in view of the amount of computer 
resources required for reliable results as a function of the nominal Reynolds 
number. The linear size of a cubic domain where a turbulent flow is L,  
the typical velocity U ,  v is the kinematic viscosity and we assume that the 
Reynolds number can be varied through Y at given L,  U .  
1) Recall Kolmogorov’s estimate of the dissipation scale CK relative to  L at 
given R. 
2) From a numerical point of view, but without reference to a specific nu- 
merical scheme (as discussed in Appendix B), Ax and At denoting the 
space and time integration step, respectively, it is assumed that the small 
scales are correctly resolved provided that CK - 2Ax. Determine the vari- 
ation with R of the number of grid points needed to resolve the smallest 
scales. 
3) Numerical stability considerations come and limit the time step At. In 
a system dominated by advection (term v . V()) the stability is controlled 
by a CFL (Courant-Friedrich-Lewy) stability criterion stipulating that the 
propagation speed of local (numerical) information Ax/At  must remain 
larger than the speed of transport of physical information by the velocity 
field. Numerical stability thus requires At < Ax/U. Derive the variation 
of the number of time steps necessary to perform a simulation over a time 
interval T with space step Ax, with T N L/U (turn-over time). 
4 )  Evaluate the amount of computational power as a function of R in a 
typical full 3D simulation, and the relative increase of power implied by a 
doubling of R. 

Scales in turbulence and numerical s imulat ions 

7.5.2 E f i c i e n c y  of turbulent mixing.  

1) A radiator is installed to heat up a room with typical size L (volume L 3 ) .  
Determine the time necessary to reach thermal equilibrium by assuming 
pure thermal diffusion using a dimensional argument. Take L = 5 m, and 
Y = 15 m2/s. For a gas, the Prandtl number is Y/K 21 0.7. 
2 )  Consider now turbulent heating with largest eddies of the size of the room 
generating smaller eddies driving the process. Still dimensionally, estimate 
the order of magnitude of the air speed above the radiator by assuming 
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the kinetic energy is converted from the potential gravitational energy 
(buoyancy) over a height h above the radiator. Take g = 10 m/s2, a 
temperature increase 68 = 10" above the ambient temperature, h = 0.1 m. 
The thermal expansion coefficient is a = 1/300 K-l. 
3) A fraction of this energy is available to stir the air in the room. Assuming 
that the effective stirring speed is only 20% of the speed computed above, 
determine the characteristic stirring time for the scale of the room. 

7.5.3 

1) Consider the motions inside a typical small cumulus with diameter 
of the order of l o  - 300 m. Assuming that the speed of eddies at 
this scale is Vo - 3 m/s, compute the corresponding Reynolds number 
(u = 15 m2/s). 
2) Estimate of the energy dissipation rate per unit mass and the total power 
(in kW) dissipated in the cloud ( p  = 1.25 kg/m3). Evaluate the internal 
scale CK at which energy is effectively dissipated by viscous friction. 
3) An observation plane goes through the cloud at speed 180 km/h, car- 
rying a hot-wire velocity probe. This apparatus is made of a small length 
sensor of length 61 = 0.5 mm. Assuming that it can resolve velocity fluc- 
tuations at scales of the order 361, what is the maximum frequency of 
turbulent signals that can recorded by the device. Like in grid turbulence, 
one can suppose that the relative velocity of the probe with respect of the 
fluid is the essential factor in converting spatial fluctuations into temporal 
fluctuations according to Taylor's frozen turbulence hypothesis. Compare 
the Kolmogorov scale CK to the scale of the correctly sampled fluctuations. 
Estimate the turn-over time of large eddies and justify the hypothesis. 

Developed turbulence in a cumulus cloud 

7.5.4 Decaying turbulence 

Consider a container with volume L3 containing an initially well stirred 
fluid that is left to settle. With C = 1 m, and u = 151OP6 m2/s, and as- 
suming initial velocity fluctuations of order GO = 1 m/s (V denotes here the 
root mean square velocity in one direction of space), compute the Reynolds 
number at  the beginning of the experiment. 
1) Assume that the characteristic scale of turbulent motions remains C and 
derive the evolution equation for the kinetic energy $ V 2 ,  the evolution law 
of the velocity and the decay law of the Reynolds number that follows. 
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2) Compute the time necessary to reach R N 10 and derive the correspond- 
ing fluctuation velocity. At this stage, the viscous dissipation of the large 
scales is no longer negligible and one must abandon the inertial expression 
of E to, replace it with the viscous form cviSc. = cuV2/C2. Determine the 
value of the constant C that assures the continuity of the matching of the 
two laws at R = 10 and the law governing the final stage of settling, 

7.5.5 

The atmospheric boundary layer is submitted to  the Earth’s rotation. The 
angular velocity of a frame linked to the surface is given by R sin( A) , where 
X is the latitude. (Coriolis acceleration is given by 2fl  x v,, where v, is the 
relative velocity; f = 2R sin(X) is called the ‘Coriolis parameter’.) 
1) Compute the time scale corresponding to this motion at latitude 45’ 
and next, by a dimensional argument, the thickness of the atmospheric 
layer that feels the friction on the ground in the laminar case. Take u = 
15 x lop6 m2/s. 
2) In fact the atmosphere is turbulent. Estimate the thickness Cmix of the 
boundary layer affected by turbulent fluctuations of the order of 3% of 
wind velocity (typically 10 m/s) over the same time scale. Determine the 
corresponding eddy viscosity given by ut = Gmix Cmix. 

Turbulence in the atmospheric boundary layer 

7.5.6 Two-dimensional turbulence 

The spectrum of velocity fluctuations in the two-dimensional case is dif- 
ferent from that in three-dimensional turbulence. In the latter case, the 
energy cascade toward small scales generates the Kolmogorov k - 5 / 3  spec- 
trum. In two dimensions it is admitted that the turbulent processes are 
controlled by the transport and dissipation of vorticity. In two dimensions 
the vorticity has a single component w = axuy - ayux (along the normal to  
the plane in which the motions are supposed to take place). The enstrophy 
is this then defined as W = ;w2.  

1) Consider an eddy of arbitrary size C and velocity Ue, estimate its vorticity 
we and the associated enstrophy. 
2) Let W I  be the vorticity present in the injection scales CI and assume that, 
per  unit time, eddies loose a fixed fraction of the enstrophy present at these 
scales. Paralleling the argument for energy injection in three dimensions, 
estimate the rate of injection of enstrophy per  unit time. 
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3) During the cascade, the size of an eddy is reduced but its vorticity is 
conserved. Evaluate the typical velocity ve function of WI and 1. 
4) Dimensionally, the energy spectrum E ( k )  is an energy per unit wavevec- 
tor (and per  unit mass). Show that the inertial enstrophy cascade leads to 
the Kraichnan spectrum E ( k )  0; p 2 / 3 k - 3 .  



Chapter 8 

Summary and Perspectives 

Through all these pages, our main aim has been to present an introduction 
to the study of complex systems from the viewpoint of nonlinear dynam- 
ics. An abstract approach generalizing the classical treatment of oscillators 
has been developed and applied to several concrete situations encountered 
in hydrodynamics. The validity of this theory eventually rests first on 
the recognition of space-time macroscopic coherence induced by instabil- 
ity mechanisms that optimally develop with specific scales, as opposed to 
the incoherence of motions involved in plain relaxation to thermodynamic 
equilibrium at microscopic scales. In turn this coherence reduces the multi- 
plicity of possible dynamical behaviors, up to a point where the context of 
low-dimensional dynamical  s y s t ems  become an appropriate setting. Com- 
plexity then mainly means chaos,  temporal or spatio-temporal. Such insta- 
bilities are generic in macroscopic systems driven far from thermodynamic 
equilibrium by external stresses. The tendency to return to uniform local 
configurations above implies a resistance to change expressing the dissi- 
pat ive  character of the global dynamics, which is not incompatible with 
slow large-scale unsteady evolution. In fluid mechanics, this has been illus- 
trated by the emergence of behaviors, from well-ordered cells or waves, to 
randomly disorganized, turbulent eddies. 

After a brief summary of the results obtained so far (58.1, 8.2) we ex- 
amine whether the approach that has been followed can be transposed to 
other situations where “aggregates” of different nature are in interaction 
over some range of spatio-temporal scales. Leaving aside applications of 
technical interest (e.g. flows around obstacles with complex geometries), 
we focus the discussion on a topic where problems already arise at the mod- 
eling stage and next when one wants to draw reliable conclusions from this 
modeling. Macroeconomics evolution or biodiversity dynamics in ecology 

303 
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belong to this class of problems. Of equal interest to the future of our 
society is the problem of climate change, which we choose to consider in 
$8.3, mostly since it is still rather close to physics and mechanics (though 
it might not be completely free of geopolitical afterthoughts). 

8.1 Dynamics, Stability, and Chaos 

The concept of dynamics governing a time evolution has been modeled as 
an initial value problem for a differential system written in the form: 

$x  = F ( X ) ,  X ( t ( 0 ) )  = X(O) . (8.1) 

Next, some operating point called the base state and denoted here xb 
is supposed to be given. The notion of stability, that occupies a central 
position, is easier to approach in a linear context where the departure from 
the base state X'  = X - xb is infinitesimal, which allows one to truncate 
the perturbation expansions beyond the first significant order, leading to 
problems in the form 

-&XI = L X ' ,  (8.2) 

where L is a linear operator to which one can apply the familiar tools of 
linear algebra, and especially normal mode analysis. Normal modes are 
taken in the form: 

X' = X exp(st), 

(L - S Z ) X  = 0 

where s is the growth rate. This leads to  an eigenvalue problem: 

(8.3) 

yielding a series of eigenvalues E C called its spectrum: 

s, = un - iw, , n = 1 , 2 , .  . . 

further ordered by decreasing values of the d s :  (TI 2 u2 2 ug 2 . . . . 
The principal result of this analysis is a representation of the dynamics 

in a infinitesimal neighborhood of the base state in terms of a superposition 
of normal modes Xn, each with an amplitude A,( t ) ,  function of time and 
A,(t(O)) = A t ) .  In the simplest cases, i.e. non-degenerate, this superposi- 
tion can be written as: 

X ' ( t )  = Aio) exp [ s ( t  - t ( ' ) ) ] X n .  
n 
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The stability of the base state Xb can thus be discussed as a function of the 
sign of the real parts (T, of the complex growth-rates s, of the eigenmodes. 
From the linear viewpoint a given mode n is thus stable when u, < 0, 
neutral or marginal when u,, = 0, and unstable when u, > 0. A suficient 
condition for the instability of Xb is thus (TI > 0. The imaginary part w, 
of s, next allows one to distinguish between stationary modes with w, = 0 
from oscillatory modes with w, # 0. 

In full generality, F, x b ,  C and its spectrum, are functions of con- 
trol parameters accounting for the different ways of acting on the system, 
which we symbolize by a single variable T in the present formal setting. A 
bifurcation takes place when the real part of the growth rate of the most 
dangerous mode crosses zero from below as T is varied. The critical con- 
dition is thus given by ( T ~ ( T )  = 0 which can be solved for T to  define the 
instability threshold rC. 

When the base state is unstable, the linear analysis is valid only as long 
as the system stays sufficiently close to its base state, which does not hold 
long since some perturbations diverge exponentially. Terms neglected until 
now in the perturbation expansion must be taken into account, expressing 
the interaction of the unstable modes between themselves and with all other 
modes. 

In this domain, the essential result is the possibility to  eliminate the 
stable modes Xs (‘s’ for ‘stable’), with amplitudes collectively called A,, 
and only keep the master modes X c  with amplitudes A, (‘c’ for ‘critical’ 
of ‘central’, i.e. either stable or unstable but near-marginal, see below or 
Chapter 4, 54.1.2). The reason is that the former are not independent 
of the latter but rather enslaved to them. This elimination, sketched in 
Figure 4.3, p. 120, leads one to define an effective dynamics only coupling 
the central modes between themselves: 

Apart from during a brief transient (exponential relaxation of stable 
modes), the system then evolves on a manifold defined by some relation 

that can usually be determined asymptotically in the long time limit and 
for small departure from the critical conditions by a well-defined technique 
called the center manifold reduction. 

Technically, a gap in the spectrum has to be assumed, such that us < 0 
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and minlcsl >> Iccl with a, N 0. But, in practice, the domain of interest 
of this reduction is larger than it seems because the normal f o r m  that 
is obtained has most of its structure imposed by the symmetries of the 
problem and the nature of the critical modes. This universality opens the 
door to a phenomenological modeling that relies only on these ingredients. 
This is particularly interesting because the number of possible forms and 
the manner to perturb them away from criticality are both generically small. 
Let us mention the most frequent ones. 

The first one relates to the bifurcation of a single real amplitude A 
displaying a symmetry with respect to  the change A t-+ -A.  At criticality 
it is governed by: 

and, upon adding the most general perturbation, by: 

L A  d t  = r A -  A3 + h ,  (8.4) 

where r measures the distance to the bifurcation point in the control param- 
eter space and h is a small perturbation that breaks the initial symmetry. 
(In this equation r and h are two real parameters.) This bifurcation, illus- 
trated in Figure 4.4, p. 127, is the dynamical translation of one of Thorn’s 
seven elementary catastrophes and was introduced earlier in the theory of 
thermodynamic phase transitions by Landau. 

The second example is the Hopf bifurcation of a pair of complex conju- 
gate modes that accounts for the birth of self-sustained oscillations, e.g. in 
the van der Pol system. Close to the threshold, the normal form reads 

$2 = ( r  - i W , ) Z  - 912122, (8.5) 

where 2 = A, + iAi is the complex amplitude of one of the two interacting 
modes, wc is the angular frequency at  threshold, r the distance to threshold 
and g a complex coefficient. Its real part g, describes the saturation of 
the amplitude beyond threshold while its imaginary part gi, the nonlinear 
dispersion coefficient, accounts for the dependence of the frequency on the 
amplitude, a typical feature of nonlinear oscillators, see Figure 4.5, p. 129. 

The story then continues with the emergence of more complex behavior, 
still crucially involving stability considerations. The state resulting from 
this first bifurcation can indeed be considered as a new base state, that 
may become unstable with respect to secondary modes, and then tertiary 
modes, etc. 
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This point of view refers to a situation where an ever larger number of 
modes initially in the stable group (a, < 0) become critical and next unsta- 
ble ((T, > 0), therefore increasing the dimension of the effective dynamics. 
Stationary modes (fixed point in phase space) described using a single real 
amplitude, e.g. (8.4), are then usually followed by periodic behaviors (limit 
cycle attractors) governed by (8.5), which in turn may become unstable 
with respect t o  other oscillatory modes yielding quasi-periodic behavior 
(torus attractor), etc. 

Ruelle and Takens have shown that, contrary to  the original intuition of 
Landau who argued in terms of superpositions of oscillatory behaviors, com- 
plexity arises from the interaction of modes, with chaos as a nontrivial can- 
sequence. These two competing scenarios were sketched in Figure 3.5, p. 93. 

In order to understand the emergence of chaos from a regular behavior, 
it is most appropriate to  take the Poincare' section of trajectories, a proce- 
dure that generalizes the stroboscopic analysis of forced periodic behaviors 
and, at any rate, reduced the initial continuous time system to an iteration 
(discrete time system). 

The essential property of chaotic systems is the instability of trajectories 
on the corresponding attractor, then said to be strange, which expresses the 
loss of long term predictability resulting from the sensitivity to initial con- 
ditions and small perturbations. This property is understood most easily 
when considering the dyadic iteration, the simplest model of chaotic system: 

Xk+l = 2x1, (mod I ) ,  

that perfectly illustrates the (exponential/geometrical) growth of the dis- 
tance between neighboring trajectories: &XI, = 2'6x0 = exp(n In 2)bXo. 
In the general case, this divergence can be measured by means of Lyapunov 
exponents that extend the notion of growth rate initially introduced to deal 
with the stability of regular trajectories. For one-dimensional 
the form 

one then defines: 

iterations in 

where { x k ,  k = 0 , 1 , .  . . }  is a reference trajectory, so that the distance 
between neighboring trajectories varies as (exp for k large enough. In 
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addition, strange attractors generally display a fractal structure contrasting 
the smooth aspect of regular attractors. Finally, it has been seen that the 
transition to  chaos develops through one out of a small number of universal 
scenarios, the most celebrated being the subharmonic cascade that leads to 
an aperiodic behavior at  the end of a series of period doublings (period 2, 
4, . . . , 2”,. . . ) with successive thresholds geometrically converging towards 
a finite value, as illustrated in Figure 4.13, p. 145. 

8.2 Continuous Media, Instabilities, and Turbulence 

For a discrete system, (8.1) is a finite-dimensional differential system. For 
a continuous medium, it is a system of partial differential equations. The 
linearized operator defined by (8.2) also contains partial derivatives with 
respect to  (physical) space coordinates. 

In order to simplify the analysis, one often considers the limit of trans- 
lationally invariant systems that allows one to solve (8.3) by means of a 
spatial Fourier transform, by making the change 

Branches of normal modes are then parameterized by the wavevector k .  
The relation s = s n ( k ; r )  = r n ( k ; r )  + iun(k;r) is called the dispersion 
relation relative to mode n. The condition C T , ( ~ ;  r )  = 0, once solved for r ,  
gives the corresponding marginal stability condition: 

r = rim,”’ ( k ) .  

As before, one is interested in the most dangerous mode, the mode with 
the largest CT. Let us assume that mode ‘1’ is the most dangerous for all 
values of k (no branch exchange) and further drop the subscript. Usually, 
the wavevector of the perturbation cannot be controlled and the growth rate 
displays a quadratic maximum around some specific Ic, called the critical 
wavevector. Generically the real part can thus be written as: 

ToCT = T - T c  - ( i ( k  - kc)2. (8.6) 

In this equation, TO is the natural evolution time of the fluctuations and <o, 
homogeneous to a length, is called the coherence length. This relation 
asserts the optimal character of couplings implied in the instability mecha- 
nism for the specific value Ic = k,  (the growth rate of neighboring modes is 
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smaller). The marginal stability conditions close to the instabili ty threshold 
(T , ,  k, )  then reads 

The values of r,, k,, TO, <,-, have to  be determined on a case-by-case basis 
and can be grossly evaluated by physical and dimensional arguments, but 
the universal contents of (8.7) remains. 

The instability is stationary or oscillatory depending on whether the 
critical angular frequency w, is identically zero or not. A stationary in- 
stability with k,  # 0 is called cellular, while when wc # 0 it is a wave. 
In this context, the study of natural (Rayleigh-B6nard) convection, Chap- 
ter 3 ,  has shown that it is a simple example of cellular instability, with a 
particularly intuitive mechanism involving buoyancy and dissipation. As to  
shear flows, the theory shows rather easily that they are unstable against 
spanwise-uniform streamwise-propagating waves when the base flow dis- 
plays an inflection point. 

In the case of open flows, a stationary instability with respect to a 
framework a t  rest with the mean flow is trivially seen as a wave in the lab- 
oratory frame. This leads to an important distinction according to  whether 
the mean advection is able or not to evacuate perturbations downstream 
or not, whether the instability is convective or absolute,  respectively (see 
Figure 6.13,  p. 241) .  Except for few immediate elementary facts, we got 
past the corresponding theory, owing to its delicate analytical character. 

When the continuous medium is not translationally invariant, usually 
due to  end effects, the role of confinement has to be discussed. To this aim, 
one defines aspect ratios: 

where e is the typical size of the system in the direction of the instability 
wavevector, and A, = 21r/k, is the critical wavelength of the instability. 

When I? N 1 (confined s y s t e m s ) ,  the instability mechanism produces a 
small number of elementary cells that play the role of effective degrees of 
freedom since confinement effects are strong enough to maintain the space 
coherence. Adiabatic elimination of stable modes evoked earlier helps one 
to  derive an effective low-dimensional dissipative dynamical system, which 
makes the theory of determinis t ic  chaos fully relevant, especially in regard 
of its universal aspects, see $3.2.3 where the case of natural convection was 
presented in detail. 
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The opposite case of extended systems, I? >> 1 corresponds to  a situation 
where the bifurcated solution remains coherent at  a local scale only, typi- 
cally few X,s. Another strategy has to be employed to account for them, 
in terms of envelopes describing the slow, long-wavelength modulations 
brought to an ideally uniform nonlinear solution. Technically these en- 
velopes are obtained through a rather boring multiple scale strategy which 
can be short-circuited through a phenomenological approach making an 
immoderate use of the universal properties of the system close to its in- 
stability threshold. This universality is linked to  its physical symmetries 
and the nature of the primary bifurcation. The system is then modeled by 
unfolding the normal form that governs the amplitude of the critical mode, 
thus becoming an envelope. This is achieved by adding a dynamics, often 
simply diffusive, driving spatial modulations to the amplitude, which yields 
equations of complex-Ginzburg-Landau type, see $5.4. 

While being restricted to the weakly nonlinear range, these theoretical 
developments, sketched in Chapter 5, satisfactorily account for topological 
defects and universal secondary instabilities. Defects (singular points in the 
envelopes) and phase instabilities linked to the local translation and rota- 
tion invariances in space, both contribute to the large-time long-distance 
disorganization of the patterns at  the heart of spatio-temporal chaos as a 
route to turbulence in extended systems. 

This route to turbulence is relatively progressive and can thus be called 
‘globally supercritical’ in the sense that the bifurcating state (which devel- 
ops beyond the bifurcation point) stays close to the bifurcated state (which 
is unstable) and replaces it. Some physical systems, and especially convec- 
tion even a t  large aspect ratios, become turbulent in that way. 

The case of shear flows is relatively more delicate. As a matter of fact, 
one has to distinguish flows that are mechanically unstable, i.e. unstable 
a t  the inviscid limit, from those that remain stable in this limit. The pro- 
totype of the first class is the shear layer experiencing a Kelvin-Helmholtz 
instability related to the presence of an inflection point in the base profile. 
The second class of flow is formed with those that can possibly be unsta- 
ble but through a subtle process in which viscous dissipation is crucially 
involved, producing Tollmien-Schlichting waves. 

The consequences of this classification in the strongly nonlinear regime 
are important. In particular, whereas the flows belonging to the first class 
follow a globally supercritical route to turbulence that develops at  moder- 
ate Reynolds numbers, in the second case, the linear instability threshold, 
if it exists at  all, is high, so that there is room for other typically nonlinear 

s
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solutions to the Navier-Stokes equations at  intermediate Reynolds num- 
bers. This explains that the transition to turbulence, globally subcritical 
according to  this scenario also called the bypass transition, appears to  be 
“wilder” than in the first case. Actually, turbulent spots concentrate, lo- 
cally in space amid laminar flow, that special kind of solution that does not 
derive continuously from the base state, see Figure 6.20, p. 254. 

Practical situations are often complicated: convective/absolute insta- 
bility, super/sub-critical bifurcation, regular/chaotic motion, modulations 
and spatio-temporal chaos. A good understanding of the processes at  stake 
can help in mastering them, that is to say, controlling the transition to tur- 
bulence. A toolbox has been presented, and its use demonstrated in some 
typical cases. It contains most of the implements necessary to explore the 
richness that surges as soon as nonlinearities cannot be neglected, whatever 
the field of knowledge considered. 

We have said little about the regime of turbulence developed that sets 
in well beyond the transitional region. In this circumstance, the determin- 
istic approach is no longer of help since many degrees of freedom interact 
in a cascade over a large range of space scales, from the large ones where 
the turbulent energy is extracted from the mean flow by the instability 
mechanisms to the small ones where it is dissipated by viscosity effects, 
see Figure 7.3, p. 276. Elementary dimensional arguments allowed us to 
estimate the rate of transfer of the energy (per unit mass) through the 
inertial range where viscous dissipation can be neglected and energy distri- 
bution is ruled by Kolmogorov’s energy spectrum E ( k )  N k - 5 / 3 ,  down to  
the dissipation scale where viscous effects cease to be negligible. 

The irregular (chaotic) character of turbulent flows lead us to intro- 
duce statistical methods. Two fundamental components of the flow, the 
average f low and the f luctuat ions were identified following Reynolds, but 
the closure problem arose immediately through the definition of Reynolds  
stresses. A very preliminary solution to this problem was presented, in 
terms of an eddy viscosity, itself evaluated within a mixing length hypoth- 
esis. The approach was then used to determine the mean profile of a fully 
developed turbulent boundary layer, yielding KBrmBn’s logarithmic law, 
see Figure 7.6, p. 289. 

The two main results obtained by dimensional arguments, Kolmogorov’s 
spectrum and KBrmin’s logarithmic law are remarkably verified by experi- 
ments but remains zero-order approximations that do not thoroughly treat 
the problem of exchanges between eddies with different scales. Empirical 
divergences appear as soon as one tries to go beyond this elementary level. 
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In concrete configurations of interest to  applications, a numerical approach 
is often necessary, with a crucial modeling step to deal with the closure 
problem (k-e model, Large Eddy Simulations,. . . ). 

In the context considered up to now, the origin of the complexity was 
mostly in the nonlinear character of the dynamics of systems with “simple” 
definitions. More “complex” interactions of processes can also take place, 
e.g. involving rotation and magnetic fields in conducting fluids (dynamo 
effect), combustion, etc. possibly demanding separate modeling efforts. In 
the concluding section we rather introduce a case where complexity arises 
from the interaction of a large variety of sub-systems, exchanging many 
physical quantities over a large range of space and time scales, the Earth’s 
climate system. 

8.3 Approach to a Complex System: the Earth’s Climate 

In the traditional geographical sense, the study of climate was limited 
to a description of meteorological phenomena such as temperature, wind, 
amount of rain, etc., that characterize the mean state of the atmosphere 
throughout a typical year. This meaning of course remains but, in the 
perspective of a rapid change induced by human activities, one has to en- 
large the viewpoint to also include how this average situation arises,’ and 
to understand the individual dynamics of many “actors,” the atmosphere, 
the ocean, the cryosphere (ice caps), the biosphere (mainly the vegetation), 
and at, the end of the chain, our society. 

The main physical media involved are fluids in motion, transporting en- 
ergy in different forms. Energy exchanges play an important role but are 
constrained by rigorous physical conservation laws. A large variety of non- 
linear feedbacks and space-time scales are involved in climate phenomena, 
which explains why one could naively try to tackle them using our toolbox. 
We therefore first extend the framework of previous approaches to  evoke 
a few tangible applications of the concepts introduced earlier, before going 
to more speculative grounds. 

Climate can first be understood through its meteorological dimension, 
variable and to a certain extent random. In French, there is a sailor say- 
ing that: Mentira bien souvent/ Qui prCdira le temps,/ Mais beaucoup 

’A nice introduction is [Philander (ZOOO)]; at a more technical level one can cite 
[Peixoto and Oort (1992)], and [Henderson-Sellers and McGuffie (1987)] for modeling 
issues. 
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moins pourtant/ S’il est bon observant, which essentially means that you 
are certainly a lier when you predict weather but much less of one if you 
make good observations. Current wisdom of old sailors as expressed in 
this saying is thus an excellent anticipation of the concept of determinis- 
tic chaos, originating from long term unpredictability (the lie) in spite of 
predictable short term evolution (reasonable extrapolation of accurate ob- 
servations) as it was formally introduced by Ruelle in the Seventies, not 
long after the informal quotation by Lorenz -a great meteorologist, by the 
way- in the Sixties. The key-concept of chaos theory is the indefinite am- 
plification of tiny differences between initial conditions, that forbids long 
term prediction. In the case of weather, this prediction rests on the direct 
integration of equations governing the motions of the atmosphere. These 
equations are implemented in an essentially satisfactory way in the best 
routines of modern Meteorological Offices but at  the regional scale that we 
consider presently, the reliability of the results depends on an accurate ac- 
count of initial conditions in the bulk of the atmosphere (pressure, winds, 
temperature, humidity) and boundary conditions at  the surface (sea sur- 
face temperature, relief,...). This data is known with a limited precision at  
the nodes of a sparse network of observation point, whereas the problem 
is set in terms of partial differential equations, which leaves aside all lo- 
cal events of small amplitude. Figure 8.1 illustrates the fact that radically 
different predictions are obtained beyond some predictability range, today 

Fig. 8.1 States at day+7 (bottom line) of three simulations starting from initial con- 
ditions all compatible with the same ensemble of physical observations (top). After 
Palmer, in [Hall (1992)l. 
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Fig. 8.2 
September 6, 1995; @ MCtBo-fiance, uwu.meteo.fr, with permission. 

METEOSAT image of a storm centered at the entrance of the English Channel, 

still much less than fifteen days (Lorenz’s “butterfly effect”). As a first step, 
one indeed has to proceed to data assimilation, i.e. put data in an appro- 
priate form to start the simulation, after some pre-treatment optimizing 
the short-time evolution and making the dynamical extrapolation reliable 
over a longer period of time, in accordance with chaos theory that tells us 
that the prediction (in abstract phase space) is more accurate if initial con- 
ditions are better known, but that small initial uncertainties always reveal 
themselves. Recent progress may lead us to think that the detailed mid- 
term (few days) prediction of extreme events such as the one illustrated in 
Figure 8.2, their conditions of occurrence and their development, is within 
reach and can only improve in parallel with computing power which allows 
one to follow individual trajectories ever better and make statistics over 
ensembles of trajectories, while long-term unpredictability is inescapable. 

Keeping the dynamical systems perspective, let us mention the use 
of nonlinear empirical reconstruction techniques introduced at the end of 
Chapter 4, 54.4. Takens’s delayed coordinate method was in particular 
applied to the quantitative analysis of time series measuring the intensity 
of the El Niiio phenomenon, as an attempt to predict its evolution one or 
two years in advance. El Niiio is a sequence of climatic “anomalies” that 
affect firstly the inter-tropical Pacific Ocean.2 It is characterized by a cyclic 
modification of heat exchanges and zonal motions of water masses together 
with a swing of the pressure field between the East-Pacific and the West- 
Pacific called the Southern Oscillation (hence the acronym ENS0 meaning 

2For an introduction, consult Chapter 9 of [Philander (2000)]. 
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Fig. 8.3 Variations of the ME1 measuring the intensity of the ENSO phenomenon. 

El Niiio-Southern Oscillation). The cycle is locked on the yearly seasonal 
periodicity but has a variable duration between two and seven years, with 
warm episodes (El Niiio) and cold ones (La Niiia). The warm phase is 
characterized by warm waters off the coasts of Peru before Christmas, due 
to  a weakening of trade winds that should push these waters further to the 
West. In the old days the El Niiio phenomenon was considered as a gift 
(at the regional scale) since abundant rains made Peruvian deserts some- 
how fertile. Nowadays, we have a better understanding of at-a-distance 
effects, and intense ENSO episodes (e.g. 1982-83, 1997-98) are considered 
as calamities since large regions in the World suffer from them: augmented 
rains and floods in western South America, drought and forest fires in the 
West-Pacific and Australia, not mentioning suspected consequences on the 
global climate. The intensity of the phenomenon is measured by several 
indices3 (Fig. 8.3). The aim of the game is, starting from the time se- 
ries of a given index, to predict the occurrence of an intense episode six 
months or one year in advance. Adaptative filtering techniques (singular 
spectrum analysis, Note 22, p. 164) and nonlinear techniques of dynam- 

3The first one, and the oldest is the Southern Oscillation Index, SOI, that directly 
measures the pressure difference between Darwin, in the north of Australia and Papeete 
in Tahiti (see e.g. the web site of the Australian Commonwealth Bureau of Meteorology, 
<http: //uuu. bom.gov.au/climate/current/> that displays monthly values of this in- 
dex from 1876 on). Another one, produced by the Japan Meteorological Agency (JMA, 
cftp: //uww . coaps. f su. edu/pub/JMA-SST-Index/>), is a sliding average over five months 
of sea surface temperature anomalies in a portion (4'S-4'N, 15OoW-9O0W) of the Pa- 
cific Ocean. Data was gathered since 1949 but could be reconstructed in the past from 
1868 on. A third one is elaborated by K. Wolter, at NOOA's Climate Diagnostic Cen- 
ter, as a compound of six different measures called ME1 for Multivariate ENSO Index. 
It covers the contemporary period since 1950, and can be found at the web address 
<http://uuu.cdc.noaa.gov/'kev/MEI/>. 
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ics reconstruction now seem to do better than the best linear statistical 
extrapolation  technique^.^ In paleoclimatology, time series of the tempera- 
ture in the ocean has been studied in the same way, pointing out oscillatory 
behaviors5 that we will consider later. 

The previous approach rests on the analysis of the time series of a sin- 
gle variable. A more ambitious strategy, also more computer demanding, is 
to account for meteorological fields in their space-time dimension. This is 
done by extending the classical principal componen t s  analysis (see [Peixoto 
and Oort (1992)] for the atmospheric context) by taking into account the 
time ordering of pictures serving to  compute the principal components, 
in order to include dynamical aspects. This multichannel combination of 
singular spectrum analysis and reconstruction leads to the objective identi- 
fication of weather regimes,  centers of action, regular oscillations (30-days 
in the North-Atlantic), blockings (understood as trajectories being close to 
a saddle fixed point in phase space), at-a-distance connections between re- 
gional phenomena, etc.,6 each contributing to the understanding of climate 
processes and to the improvement of mid-term weather forecasts. 

Up to now we have considered the meteorological facet of climate. The 
approach just described, local and deterministic in essence, cannot be pur- 
sued without adaptation when studying the system at a global scale and 
in the long term (several years to several hundred of years, not to say even 
more if ice ages are of interest). The problem is again of going from a “mi- 
cro~copic’~ perspective to “macroscopic” one, which is analogous to (but 
less well defined than) the determination of the mean flow in developed 
turbulence. The understanding of the Earth’s climate and its evolution is 
however not a pure intellectual exercise, since the impact of human activ- 
ities has to be taken into account and political choices have to be made, 
that will undoubtedly orient our near future existence. 

As we have already mentioned, many different actors interact on a wide 
range of space and time scales, at  the origin of the complexity of the dynam- 
ics of our natural environment. The description of this complexity relies 
on a hierarchy of climatic variables defined as statistical averages over geo- 

4M. Ghil, M. Kimoto, J.D. Neelin, “Nonlinear dynamics and predictability in the 
atmospheric sciences,” Review of Geophysics Supplement (1991) 46-55. 
5R. Vautard and M. Ghil, “Singular spectrum analysis in nonlinear dynamics, with 

applications to  paleoclimatic time series,” Physica D 35 (1989) 395-424. 
6 G .  Plaut and R. Vautard, “Spells of low-frequency oscillations and weather regimes 

in the northern hemisphere,” J. Atmos. Sc. 51 (1994) 210-236. P.A. Michelangeli, R. 
Vautard and B. Legras, “Weather regimes: recurrence and quasi-stationarity,” J. Atmos. 
Sc. 52 (1995) 1237-1256. 
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graphical regions of various sizes (local, regional, global) and over different 
lengths of time (day, month, season, year). These variables are generally 
defined as sliding averages over some duration (usually thirty years) in or- 
der to suppress the short term variability. Other quantities of interest are 
the statistics of the departures from the means, called anomalies, and of 
extreme events. By construction, fastest meteorological fluctuations are fil- 
tered out but slower trends remain, which makes it difficult (and subject to 
controversy) to separate “natural” climatic variability from climate change 
induced by human activities. 

Let us briefly examine the ingredients to this variability. The global 
climate system is sketched in Figure 8.4. It is composed of different tightly 
linked elements with various badly matched individual time constants. Ex- 
ternal forcing by the sun is essential and, while it is easy to attribute the 
basic driving mechanism to the pole-ward gradient of the energy exchanged 
with outer space -mostly received in the equatorial region while little is 
received and much radiated out near the poles- this does not help much 
understanding the details of the redistribution (somehow reminiscent of 
what occurs in natural convection) which mainly involves two fluids, the 
atmosphere and the ocean, with different physical characteristics, in a ro- 
tating framework. 

Time scales introduced by the solar forcing extend over a very wide 
range. The highest and most obvious frequencies are of course given by 
the daylight and season cycles that are most important in the short term. 
But the sun-spot cycle (11 years) may play a role and the variation of 
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astronomic parameters of the Earth’s orbit, and in particular, the precession 
of the equinox, with typical periods ranging from lo4 to  4 x lo5 years, are 
thought to drive the ice age cycles on a geological time-scale. 

The atmosphere is naturally sensitive to the daily forcing but most of its 
evolution takes place on a weekly basis, which corresponds to the average 
motion/instability of air masses at  mid latitudes. On longer time-scales, it 
is affected by the sea surface temperatures (SST) that follow the seasonal 
cycle. In addition to the tidal rhythm, the ocean as a whole evolves on 
quite longer times, from a few years for the upper ocean to hundreds of 
years much below. The surface of the sea ice, important since it reflects 
sun light in a region that receives little, varies essentially on a seasonal 
basis. Polar ice caps, that store and return fresh water, change on time 
scales of the order of a century up to periods fixed by the longest astro- 
nomical scales. Except for punctual effects linked to volcano eruptions that 
introduce dust particles and gases in the atmosphere (e.g. the Pinatubo in 
1991), geophysical phenomena linked to continental drift are also impor- 
tant by changing the shape of ocean basins or erecting mountain chains 
over tens of millions of years, but the effect of closing or opening straits 
may have more immediate consequences by changing oceanic currents. 

The biosphere is of course sensitive to the seasonal cycle but, on dura- 
tions of order tens to  hundreds of years, the flora follows the slow displace- 
ment of climatic zones and its role should not be neglected in the analysis of 
feedbacks rooting the climate variability. As to the human activity, its ef- 
fects can be felt on short time scales a t  the local scale (agricultural practices, 
deforestation), or on longer scales in particular by modifying the chemical 
composition of the atmosphere, introducing greenhouse gases in “anoma- 
lous” proportions, especially since the middle of the Nineteenth Century. 
The greenhouse gases (GG) are all gases with molecules containing at least 
three atoms (mainly water vapor, carbon dioxide, methane) even at the 
trace level (CFCs). Their climatic effect is linked to infra-red absorption 
properties due to rotation-vibration resonances. The molecules are trans- 
parent to visible and ultra-violet radiations in the incoming solar flux but 
opaque to the infra-red thermal reemission from the ground. The result- 
ing accumulation of heat in the lower atmosphere is called the greenhouse 
ef fect ,  first put forward by Arrhenius (1896). 

Paleoclimate studies focus on the very long term variability of climate. 
Our knowledge of past climates rests on the record of data derived from 
the study of cores drilled in ocean or lake sediments and in polar ice caps. 
Quantitative information is obtained on climatic conditions in given re- 
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gions by analyzing the isotopic composition of samples7 or the correlations 
between the plankton/pollen contents of sediments with the type of cli- 
mate. The relation between the GG concentrations and the temperature 
has also been studied from the air bubbles captured in the ice. Though 
the number/accuracy of these records is limited, their time series yield a 
precise identification of the most important events, as seen in Figure 8.5, 
next page. 

The alternation of glacial (cold) and interglacial (warm) episodes at mid 
and high latitudes, with an approximate period of order lo5 years, shows 
that the variability may have a large amplitude. Though it is generally 
believed that this alternation is related to insulation fluctuations induced 
by the already mentioned small variations of the Earth’s orbital parameters 
(obliquity, eccentricity, position of the perihelion) -Milankovitch’s theory 
(1924)- the reason the system entered this alternating regime, and the 
mechanisms controlling the periodicity are not fully understood and still 
subject to controversy.* At any rate, the forcing at  lo5 years is extremely 
weak and the most important contributions lie at  41, 19, and 23 kilo-years, 
and are effectively found, without much surprise, in the Fourier spectrum 
of the temperature signal. This idea of a superposition of simple responses 
to some external forcing is linear in essence. As such it is valid only for 
systems close to equilibrium or, which comes to the same, to  strongly dis- 
sipative systems. In fact, a forced nonlinear system far from equilibrium 
is likely to experience partial lockings or chaos, which makes any analy- 
sis resting on too short a time series questionable. In addition, the small 
scales of the system play the role of a noise that can contribute to erase 
or amplify the response to  the forcing depending on its a m p l i t ~ d e . ~  The 
astronomical theory is also powerless to account for rapid climate changes 
recently pointed out, and to which we now turn. 

’For example, the oxygen isotopic fraction 0 l 8 / O l 6  depends on the physical condi- 
tions at the time of formation of sediments/ice and gives information on the temperature 
or the global ice volume. 

81.J. Winograd et al. “Continuous 500,000-year climate record from vein calcite in 
Devils hole, Nevada,” Science 258 (1992) 255-260; J. Imbrie, A.C. Mix, and D.G. Mar- 
tinson, “Milankovitch theory viewed from Devils Hole,” Nature 363 (1993) 531-553. 

’Discussing stochastic systems is much beyond our purpose in this course. The phe- 
nomenon alluded to here is called “stochastic resonance.” (For a review see: L. Gam- 
maitoni, P. Hiinggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. 
Phys. 70 (1998) 223-287.) This phenomenon -the enhanced response of a periodically 
forced bistable system (here glacial/interglacial)- was suggested as an explanation of 
the occurrence of the 105-years period by R. Benzi, et al., “Stochastic resonance in 
climatic change,” Tellus 34 (1982) 10-16, but without decisive argument in its favor. 



320 Instabilities, Chaos and Turbulence 

I., , , . . , .  . .  . * ,  . .  . .  , . , , , , , I ,  . . . , .  , , , , , , , , , , , * , ) ,  , , , , * ,  . , . . , , , , , , 
160 140  1 P O  100 80 6 0  40 2 0  0 

Fig. 8.5 Variation of the temperature in Antarctica during the last ice cycle as derived 
from isotopic measurements from a core drilled at the Vostok site. Analysis of the data 
by Takens delayed coordinate method combined to singular spectrum analysis, allows 
one to isolate the main components of the signal. The continuous thin line through 
the fluctuating data is the signal reconstructed from a projection onto the five first 
components. The projection onto the two next components displays a clear oscillation 
with modulated amplitude (dotted line). Data provided by P. Yiou, LSCE, CEA-Saclay. 

The detailed study of the last ice cycle, that begins 115000 years ago 
and culminates 21  000 years ago, has effectively pointed out shorter periods 
superposed to the large amplitude saw-tooth modulation. Figure 8.5 sug- 
gests a period of the order of 6 000 years. This picture is given to prove that 
variability may also have fast variability yet to explain. It may however be 
misleading in that the oscillation pointed out seems smooth, an effect of 
the filtering procedure, whereas the variations are rapid, a feature which 
took time to  be recognized.1° These fast variations have been identified in 
the isotopic analysis of ice cores, as well as by carefully examining the size 
distribution of sediments. At roughly regular intervals, the North-Atlantic 
Ocean witnesses massive iceberg surges identified through layers of mate- 
rials scratched on the North-American continent and transported as far as 
the point of melting, where they are incorporated in the sediments (Hein- 
rich events). These episodes are seemingly well correlated to  temperature 
fluctuations over Greenland called Dansgaard-Oeschger oscillations. 

‘OFor a historical presentation with references, consult S. Weart, “The discovery 
of rapid climate change,” Physics Today 56 (2003) 30-36., also on the Internet 
http://uuw.aip.org/history/climate/.  
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Fig. 8.6 Dansgaard-Oeschger oscillations and Heinrich events (provided by 5). PaiIIard, 
LSCE, CEA-Saclay). 

Several indicators testifying for these rapid changes are displayed in Fig- 
ure 8.6. Shaded vertical bands through the data signal the anomalies of size 
distribution in the sediments. The upper curve (isotopic fraction anomaly 
for oxygen in Greenland ice) is interpreted in terms of the temperature at 
which the snow is formed over the land. The two other curves are related to 
the waters in the North-Atlantic ocean, respectively indicative surface tem- 
perature (middle) and salinity (bottom), and both derived from the Oxygen 
isotopic composition of specific plankton micro-organisms (iceberg melting 
brings fresh waters and changes the salinity; plankton composition is finely 
tuned to temperature and salinity). Most recent evidences of these oscil- 
lations give a period of 1 500 years with cycles skipped (hence 6 000 years 
would appear as a filtered subharmonic). The origin of these oscillations 
is searched in abrupt changes of the oceanic circulation, and convincing 
sophisticated models have been proposed.“ Later we will examine a much 
simpler “conceptua1” model. 

Closer to the present time, important climate fluctuations have been ob- 
served, just to  mention the ‘climate optimum’ (around 1000) when Vikings 
saw Greenland as a green land, and ’the little ice age’ (Sixteenth to Eigh- 
teenth Century). At the human lifetime scale, climate variability finds 

”A. Ganopolski and S .  Rahmstorf, “Abrupt glacial climate changes due to stochastic 
resonance,” Phys. Rev. Lett. 88 (2002) 038501. See also Note 9. 
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its trace, most of the time catastrophic, in the already mentioned ENS0 
phenomenon, persistent droughts implying some extension of the deserts 
(Sahel), frequency change of cyclones, exceptional floods, and so on. 

Understanding climate variability and learning to cope with it, in the 
perspective of global change, with converging pieces of evidence for warm- 
ing, is an important objective of climate research.12 Let us examine dif- 
ferent types of approaches in which nonlinear science might be involved a 
priori .  First it should be noticed that basic science (mechanics, physics, 
chemistry, biology) surely have their word to add in accounting for ex- 
changes from the most microscopic stage to the macroscopic level. How- 
ever the most detailed description is presumably impossible and further 
useless, so that some sort of reduction is necessary. This reduction cannot 
attain the level of rigor reached in dynamical systems theory that allows 
the asymptotic separation of slow active variables from fast enslaved vari- 
ables, but it is appealing to  try to understand climate as some effective 
dynamics with times scales much slower than those of individual contribut- 
ing processes. Classification of variables is however not easy. For example 
atmospheric modes are only partially entrained by oceanic modes v ia  sea 
surface temperatures, and the ocean responds in a filtered way to wind 
stresses generated by unstable fast atmospheric modes, hence complicated 
feedbacks. 

Climate modeling can be developed at  various levels, from simple energy 
balance models (EBM) governing few variables averaged over the whole 
surface of the Earth, to general circulation models (GCM) that try to mimic 
at  closest (partial differential equations) the dynamics of one of the main 
elements, the atmosphere or the world ocean, as forced by the other and 
vice versa,  and to coupled models that involve also the cryosphere and the 
biosphere in the most general context, which is now made possible by the 
tremendous power increase of present-day computers. For a first approach, 
consult [Henderson-Sellers and McGuffie (1987)l. The level of modeling is 
tightly linked to the degree of realism of the descript ion to  which one aims, 
and perhaps in inverse proportion to the degree of understanding one would 
reach. 

EBMs are more specifically adapted to the study of large scale equilib- 
ria, hypothesized fixed points of a global climate system (see Exercise 8.4). 
If they can help make up one’s mind about the sensitivity of climate to 
different variations, e.g. albedo, the fraction of what is reflected toward 

”For a critical point of view, see: R.S. Lindzen, “Climate dynamics and global 
change,” Ann. Rev. Fluid Mech. 26 (1994) 353-378. 



8. Summary and Perspectives 323 

space to what is received, by nature they can hardly account for any time 
dependence, at least in their zero space-dimension. One dimensional ex- 
tensions, i. e. zonal models in one space-dimension, the latitude, with aver- 
aging on the longitude and the altitude) improve the situation slightly but 
cannot account for features of geographical origin.13 These effects can be 
partially incorporated in so-called box models, whose variables characterize 
large geographic units and interact through selected processes supposed to  
be relevant and important to the phenomenon under study. Such models 
are often said to be conceptual, in order to insist on their heuristic role. 
By construction they present themselves as systems of ordinary differen- 
tial equations and therefore perfectly fit the framework of low-dimensional 
dissipative dynamical systems theory, bifurcation and chaos theory. 

As an example, let us consider the conceptual model of ocean circula- 
tion and ice dynamics sketched in Figure 8.7 and introduced by Paillard 
and Labeyrie14 as an element of explanation to Heinrich events mentioned 
earlier. The idea rests on relaxation oscillations linked to a bistable dy- 
namics of the North-Canada (Laurentide) ice cap during a glacial period: 
a slow accumulation regime and a fast ice surge stage, coupled to the ther- 
mohaline circulation in the North-Atlantic ocean. The oceanic circulation 
is an important vector of heat transfer between low and high latitudes. It 
is induced by density differences due to temperature and salinity variations 
between large water bodies (hence the name ‘thermohaline’, see also Exer- 
cise 3.3.3 in Chapter 3 where this circumstance was considered as a possible 
source of instability). 

At the level of fractions of ocean basins, water bodies can be identified 
by their physical properties as subsystems called ‘boxes’, exchanging mass, 
momentum, heat, salt, with their neighbors.15 Here the model has three 
boxes. Box (2) and (3) correspond to low latitudes, box (2) to the upper 
ocean that receives an amount Qz of solar energy, and box (3) to the deep 
ocean. Box (1) account for high latitude waters, extends over the whole 
ocean depth, and carries out the sinking of surface waters coming from the 

13For a detailed discussion, see: G.R. North, “Lessons from energy balance mod- 
els,” in Physicdy based modelling and simulation of climate and climatic change, M . E .  
Schlesinger, Ed. (Kluwer, 1988), vol. 11, pp. 627-651. 

14D. Paillard and L. Labeyrie, “Role of the thermohaline circulation in the abrupt 
warming after Heinrich events,” Nature 372 (1994) 162-164. 

16Such models were introduced by H.M. Stommel, “Thermohaline convection with two 
stable regimes of flow,” Tellus 13 (1961) 224-230. For a recent sophisticated example, 
see R.-X. Huang and H.M. Stommel, “Convective flow patterns in an eight-box cube 
driven by combined wind stress, thermal and saline forcing,” J .  Geophys. Res. 97 
(1992) 2347-2364. 
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low lat. high lat 

Fig. 8.7 
Canadian ice cap during a glacial episode (after Paillard, 1994). 

Conceptual model of interaction between the North-Atlantic ocean and the 

low latitudes owing to gravitational instability (warm waters become denser 
while cooling). An energy &I is returned to space from this box. The vari- 
able m measures the intensity of the circulation through these three boxes 
(advection) . Effective transfer coefficients describe the turbulent exchanges 
at  their common borders. 

Another element of this model is a fictitious atmosphere transporting 
heat and humidity towards the North. Water vapor and latent heat fluxes 
delivered to  the ice cap are measured by variables V and L. 

Finally, fresh water can be stored in the last element of the model, an 
ice cap characterized by its thickness H and whose evolution displays the 
two regimes of slow accumulation and fast surge. The change from one 
regime to the other is controlled by an auxiliary variable, the temperature 
Tb of the ice on the bedrock, that decides whether it is rough or slippery. 

Once the model is constructed the rest of the study is a standard prob- 
lem of dynamical systems theory, ending in a bifurcation diagram depending 
on the phenomenological parameters introduced.16 When the latter have 
realistic order of magnitudes, after elimination of the transients (that ap- 
pear to be very short), one obtains a periodic behavior like that illustrated 
in Figure 8.8. The fresh water cycle is seen to be enslaved to the dynamics 
of accumulation/surge periodicity, which “explains” the sudden heating of 
the inland temperature of Greenland just after an event. At first sight, 
this seems paradoxical since the ocean has just been cooled by the melting 
ice but this is boosted by the thermohaline circulation that grows rapidly 

laD. Paillard, “The hierarchical structure of glacial climatic oscillations: interaction 
between ice-sheets and climate,” Climate Dynamics 11 (1995) 162-177 (and PhD dis- 
sertation). 
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Fig. 8.8 The permanent regime of the model sketched in Figure 8.7 is rapidly reached. 
For the considered values of its parameters, an alternation of events with different ampli- 
tudes is observed. The graph on the top line accounts for ice surges more or less visible 
in Figure 8.4. Notice the temporary heating when the thermohaline circulations starts 
again. (Data provided by D. Paillard, LSCE, CEA-Saclay) 

and brings warmer waters. Different more or less simple behaviors can be 
obtained by tuning the models parameters (existence of oscillations with 
alternatively large and small amplitudes). This kind of approach may thus 
help us understand the stability of the global oceanic circulation and some 
observed counter-intuitive phenomena, provided that we accept tuning pa- 
rameters appropriately. 

Next, an intermediate level of modeling is possible, more detailed than 
box models but with still a regional geographical scope, in terms of (sim- 
plified) partial differential equations. For the ENS0 phenomenon, see the 
review article by Neelin et aZ.17 But, in order to  study the general dynam- 
ics of climate and not only a specific phenomenon, EBMs and box models 
are not refined enough, regional models are not global enough, so that cou- 
pled GCMs have to be considered. They explicitly solve as many processes 
as possible over the full range of scales available. These models are close 
to  the primitive equations of hydrodynamics but, like in turbulence, and 
in an acute way, the problem of subgridscale parameterization has to be 
faced, i.e. how to account for events at scales that cannot (and will never 

”J.D. Neelin, M. Latif, and F.-F. Jin, “Dynamics of coupled ocean-atmosphere models. 
The tropical problem,” Ann. Rev. Fluid Mech. 26 (1994) 617-659. 
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be) represented explicitly. This irreducible part of modeling is particularly 
difficult because of the variety of processes acting inside each grid element. 

For example, whereas a simplified description of radiative exchange 
within the atmosphere may be sufficient for accurate forecasts of its motion 
over a few days, it is not the same in the long term and a slightly defec- 
tive parameterization will lead to an unacceptable systematic drift that will 
show up on, say, monthly averages. On the time scales at  which climate 
evolves, these energetic exchanges are particularly sensitive to  the amount 
of greenhouse gases (GG) and to the locally prevalent kind of clouds. Ob- 
taining a robust parameterization of these two factors is an important chal- 
lenge in view of a correct extrapolation of the present state, the more as 
their effects are intimately linked. 

Apart from CFCs that are now banned (owing to their catalytic effects 
on the destruction of the stratospheric ozone), most GGs have a natural ori- 
gin. However, their abundance may be largely modified by human activity. 
The most important GG is water vapor; carbon dioxide and methane are 
also important but their effects are indirect, through a positive feedback: 
more of them increases the temperature of air that in turn can contain 
more water vapor, which increases the greenhouse effect. The problem is a 
difficult one, because the cycle of water is complicated. To stay with the 
atmosphere, the greenhouse effect of clouds depends on their nature. In 
equatorial regions, strongly convective thick clouds made of water droplets 
are thought to reflect the solar radiation toward space (cooling effect). On 
the other hand, high altitude thin ice clouds (cirrus) should take part in 
the greenhouse effect by letting the solar radiation enter and stopping the 
infrared emission from the ground. 

Other elements are equally difficult to take into account, for exam- 
ple dust in the high atmosphere, in general and especially after a violent 
volcanic eruption (cooling observed after Pinatubo’s eruption already men- 
tioned), the mechanical effects of geographical relief and vegetation cover, 
the level of biomass production through photosynthesis, etc. 

Presently, coupling of the atmosphere and the ocean often remains a 
problem owing to  the difference in their respective time constants. While 
on a given period each CGM, atmospheric or oceanic, works reasonably 
well when forced in the appropriate way, the coupled models may drift 
when they are not called back toward some observed climate state. But 
then, what about coping with an unknown future? As a matter of parame- 
terization reliability test the models can be run in conditions corresponding 
to different reference periods, e.g. the last glacial maximum (21 000 years 
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ago) or the climatic optimum (6 000 years ago) for which geological records 
are available to  compare with. Another type of experiment is the so-called 
‘doubling of the carbon dioxide concentration’, for which different models 
with different implementations of the subgrid processes may give outputs 
differing by a factor of two on a global scale and even more locally, which is 
considerable. In the theory of dynamical systems, the behavior of the solu- 
tion may change qualitatively close to a bifurcation point where the system 
considered looses robustness. The question therefore arises as to whether 
the dispersion of the results depends only quantitatively on the parame- 
terization (that should be improved or better tuned) or it is the trace of a 
deeper qualitative problem relative to the operating point of the climatic 
system, besides its already known and much studied glacial/interglacial 
bistability. 

The plausibility of climate evolution scenarios for the Twenty-first Cen- 
tury and beyond,” taking into account the “perturbations” brought by 
human activity to the “natural” operation of the climate system, is a cru- 
cial stake of the development of models. Even if general circulation models, 
more focused on describing than understanding the machinery, seem the 
better placed to bring useful answers, one might think that dynamical sys- 
tems theory should get better involved. Of course it applies strictly speak- 
ing to low-dimensional systems, the conceptual models alluded to above. 
But its demand of robustness, the distinction between enslaved modes and 
master modes it makes, and concept of effective dynamics that it proposes, 
should not be discarded a priori .  It is indeed tempting to understand the 
climate as the effective slow dynamics of a coupled system atmosphere- 
ocean-cryosphere-biosphere whose fast variables (atmosphere, biosphere) 
would be eliminated to the benefit of fewer slow variables (ocean, ice). 
Computer technology permits us to consider ever more sophisticated mod- 
els but the risk of a forward escape towards ever more complexity really 
exists. Dynamical theory provides an alternate framework apt to  structure 
our reasoning and criticize it from the inside. 

Difficulties that arise in the study of climate are but one example of those 
that appear due to nonlinearities at  work in complex systems. Our limited 
intuition of their effects, potentially unattended and/or exacerbated, should 
incite us to devote a sustained attention with a tinge of humility and caution 
to  them. 

181PCC Third Assessment Report, Climate Change 2001, Intergovernementd Panel on 
Climate Change, http: //www. ipcc.ch, and the numerous Web sites dedicated to “global 
change.” 
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8.4 Exercise: Ice ages as catastrophes 

We consider an ultra-simplified model of climate attempting to  describe it 
in terms of a single quantity: the average temperature T a t  the surface of 
the Earth. 

The average temperature is determined by a balance of energy that 
reads: 

C T  =z Ruv - Ri, (8.8) 

which expresses the fact that the power stored in the atmosphere (1.h.s.; 
dimensionally, C is some effective specific heat) is the difference between 
the power absorbed in the short wavelengths Ruv and the power emitted in 
the long wavelengths Ri,. 

The absorbed power R,, is a fraction of the power received from the 
Sun, the so-called solar constant, here noted Qo: 

Ruv = Q o ( 1 -  a)  (8.9) 

On general grounds, the fraction a directly reflected toward outer space, 
called the albedo, is a function of the nature of the ground and the degree 
of cloud cover. Here it is taken to be a function of T only. The reflection 
capacity of the ground is indeed mostly a function of the presence of ice 
or snow, itself function of the temperature. Here we assume that a is 
continuous and linear by parts (Sellers’ hypothesi~’~): 

T < X :  Ly=ai, 
a, - CYi T i < T < T , :  a = a i + @ ( T - X )  @I- T,-T.,’ 

T s < T :  a=@.. 

Taking into account previous remarks, one expects a, < ai. Constant Z 
corresponds to a temperature below which snowy ground is surely found 
(ai high) and T, a temperature above which the ground is free of ice or 
snow (as low). 

One could think that the Earth behaves as a black body that radiates 
according to  the Stephan law Ri, 0; aT4 but the actual situation is more 
complex since the atmosphere is not transparent to  IR radiations (green- 
house gases absorb part of this radiation). The Stephan law is therefore 

”W.D. Sellers, “A global climate model based on the energy balance of the earth- 
atmosphere system,” J .  Appl. Meteor. 8 (1969) 396-400. 
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replaced by the simplified relation 

Ri, = u + b(T - Ti), (8.10) 

where a and b are two empirical constants (Budyko’s hypothesis20). We 
assume b > 0 so that Ri, remains a growing function of T. 
1) The parameters in (8.9) being given, draw on the same figure R,, and Ri, 
as functions of T and discuss the number of fixed points of system (8.8-8.10) 
graphically, depending on the value of a at fixed b, b < P Q O  (the variation 
of a could be due to some extrinsic, e.g. anthropogenic, modification of the 
greenhouse effect). 
2) Discuss this again while assuming that the parameters of Ri, are fixed 
and that R,, varies through QO (e.g. astronomic forcing). 
3) Examine the stability of the different solutions to (8.8) when it has three 
roots (the difference R,, -Ri, will be drawn as a function of T ) .  Discuss the 
physical origin of the mechanisms that guarantee the stability of extreme 
solutions ( i e .  interpret the negative character of feedbacks). 
4) Show that when the orbital parameters (term Qo)  or the greenhouse 
effect (coefficient a) vary with a sufficient amplitude but quasi-statically 
(ie. slowly enough so that T is the steady-state solution to Problem (8.8) 
at the corresponding instantaneous value of its parameters) the climate 
of the Earth can pass from a cold solution (ice-age) to a warm solution 
(interglacial state) and vice uersa. 

The Budyko-Sellers model (8.8-8.10), completed by a noise term, was 
used in the specific work mentioned in Note 9 to exemplify stochastic res- 
onance. 

2oM.I. Budyko, “The effect of solar radiation variations on the climate of the earth,” 
Tellus 21 (1969) 611-619. 
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Appendix A 

Linear Algebra 

We recall here a few elements of linear algebra frequently used in applica- 
tions. Two perspectives are taken, the first one focuses on the decomposi- 
tion of vectors on eigen-bases, at  the heart of linear stability theory (§A.2), 
the other tackles essentially the same questions but from an “energetic” 
point of view v ia  the definition of appropriate scalar products (5A.3). Be- 
forehand, Section A.l is devoted to the enumeration of a few elementary 
properties linked to  the matrix representation of operators and changes of 
bases. Among the many reference books on the subject, let us just mention 
[Hirsch and Smale (1974)] that fits our purpose particularly well. 

A.l  Vector Spaces, Bases, and Linear Operators 

We suppose that the definition and immediate properties of vector spaces 
are known. So, let us consider such a space, noted X with elements (vectors) 
X. Scalars x entering linear combinations can be real or complex. To every 
vector space on R, one can associate a complex extension formed with the 
same vectors but in which the scalars (and thus also the components of the 
vectors) are in @. 

A vector X E X can be specified by its components in a given basis 
{Ei, i = 1,. . . , d } :  

X = c d  a=1 xiEi, 

where d is the dimension of X. A l inear form is a linear function that 
associates a scalar to every vector in the space. The set of forms also 
has a vector space structure called the dual space. Forms extracting every 
component of the vectors on a given basis makes the dual basis. 

331 

(A.1)
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A linear operator L can be defined by its action on the basis vectors: 

which defines a (d  x d) ,  two-dimensional array called a matrix, here denoted 
[ L]; by convention, the first (second) subscript labels the lines (columns). 
The column vectors of [ L ]  are the images of the basis vectors. The result 
of the action of C on an arbitrary vector then reads 

The representation of a linear operator changes with the basis. Let us 
define the new basis vectors {Fj, j = 1,. . . , d }  by their components in the 
old basis through: 

This builds a matrix [TI with elements t i j  representing the operator 7 
expressing the change of basis. 7 is a linear invertible operator, whose 
column vectors are the components of the new basis vectors in the old 
basis. Components { x i }  and { x i }  of  some given vector X in the two bases 
{E i }  and {Fi} are then related by: 

while the new components are given as a function of the old ones by: 

2'. 3 = ck U j k x k  

where the uij are the elements of the matrix [ U ]  inverse of [TI and denoted 
[TI-'. For this reason, the components xi are said to be contra-variant. 

Concretely, the inverse of a given square matrix [ A ]  can be obtained 
by hand as the transposed of the matrix of cofactors, divided by the de- 
terminant det([A]) of the matrix. The cofactor of element aij is aij = 
( - l ) i + j  det([ & I ) ,  where [ dij ] is the ( d  - 1)  x (d  - 1) matrix obtained by 
suppressing line i and column j of matrix [A].  Matrix [ U] can be obtained 
from [ T ]  in this way. 

From (A.l), (A.3) and (A.4), one readily gets: 

hence 

(A.5)
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so that the elements of the matrix representing C in the new basis are given 
by lii = ck cj Ulkmkjtji, i.e. 

[ L’] = [TI-’[ L][ T I .  

Matrices [ L‘] et [ L] are said to be similar. It is easy to  see that 

[L’Ik = [T] - l [L]k [T] .  

Remark. While developing Quantum Mechanics, Dirac introduced 
notations useful to linear algebra. In his setting, vectors are denoted 
as IX) and linear forms as (Yl. Let {IEi),i = 1, ..., d }  be a basis and 
{(EiJ, i = 1, ..., 01) the dual basis. The projector on basis vector IEi) reads 
IEi)(Eil, and the fact that the basis is complete leads to  xi  IEi)(Eil = Z, 
where Z is the identity operator in X. Coming back to (A.l) ,  one gets 
(X) = [xi/Ei)(Eil] IX), so that, by identification, (EiIX) is the ith 
contra-variant component of IX). 

The action of the linear operator C on a vector IX) gives the vector 

which allows the identification l j i  = (EjlLIEi), cf. (A.2). 
In a change of basis, vectors of the new basis are defined from the old one 

by (Fj) = xi (Ei)(Ei(Fj), which defines operator 7. Its inverse U = 7-1 
is represented by the matrix with elements uji = (FjlEi). The transforma- 
tion (A.4) of the components of vector (X) is then immediately obtained. 
In the same way the elements of the matrix representing L in basis { IFj)} 
are given by: (FjILIFi) = xk CI(FjIEk)(Ek]LIE1)(EIIFi), which is eas- 
ily identified to  (A.6). At this stage Dirac’s notations are essentially of 
mnemotechnical interest. 

MATLAB notations can also be useful. In this framework, all kinds 
of arrays are placed between square brackets. The comma (or a blank 
space) is used to  separate elements in a line, the semi-colon to indicate 
the line change (equivalent to a ‘carriage return’). A vector, traditionally 
represented in column form is thus a (d  x 1) array V = [Vl; V2; ...I. The 
line representation, transposed of the column representation then reads: 
[Vl, V2, ...] z [Vl; V2; ...It. With these conventions, the canonical scalar 
product can be written V . W = [VI, V2, ...I[ WI; Wz; ...I = C VkWk. By 
contrast the tensorial product of two vectors V @ W is a d x d array with 
elements XWj, which one can write [VI; V2; ...I[ WI, W2, ...I. 



334 Instabilities, Chaos and Turbulence 

A.2 Structure of a Linear Operator 

As we have seen in Chapter 2, and more specifically in Section 2.2, the 
solution to the initial value problem for a linear differential system: 

X d X ,  X(t=O)=Xo,  (A.7) 

leads to  the evaluation of 

X ( t )  = exp(tC)Xo ( A 4  

with, by definition: 

O01 
e x p Z = Z + C - Z k  k! 

k = l  

for an arbitrary linear operator Z. The computation of this exponential 
is made easier by resolving the structure of the operator Z, that is to say 
by decomposing the full space X into a direct sum of nontrivial i nvar ian t  
subspaces. 

One says that a vector subspace X' of X is invariant for L if the image 
of every X E X' is in X'. Trivial invariant subspaces are X itself, the null 
space 0, the image of X by L (set of vectors Y = LX for all X E X) and 
the kernel of C (set of vectors Z E X such that CZ = 0). 

The kernel of L is reduced to 0 when C is invertible, which is the case 
if its determinant is nonzero. One then says that the matrix has 'maximal 
rank'. (The rank of a general matrix, i.e. not necessarily square, is the 
dimension of the largest square sub-matrix with nonzero determinant that 
can be extracted from it by suppressing lines and columns.) 

The simplification brought by the so-obtained decomposition of space 
X is apparent through the change of basis that makes it explicit: Let X = 
X1 @ X2 and L the operator for which X1 is invariant, then for X1 E XI, 
LX1 E X1 and, in a basis of X formed with a basis of X1 appropriately 
completed by a basis in the supplementary space Xz, L takes on a block 
structure: 

where O is the null operator (OX = 0 whatever X). If in addition Xz is 

(A.9)
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also invariant, C acquires a block-diagonal structure: 

The eigen-direction attached to an eigenvalue s of C, such that: 

cx = sx 
is the prototype of the sought invariant subspaces (hence the kernel of 
operator M = C - SZ). The eigenvalues are the roots of the characteristic 
polynomial obtained by expanding the determinant: 

det(C - sZ) = 0 .  

The fundamental  theorem of algebra asserts that, in dimension d, this 
degree-d polynomial has d roots in @, possibly degenerate. One can thus 
write: 

det(C - sZ) = a0 + als + . . . 
where d j  is the multiplicity of eigenvalue s j ,  with Cj dj  = d. 

In order to treat complex eigenvalues (s E C) of a linear operator acting 
in a vector space on R, one must work with its complex extension. For 
example a rotation in a two-dimensional subspace is associated to a pair 
of simple conjugate purely imaginary roots, solutions to s2 + w2 = 0, and, 
though there are no real eigenvectors, there are two eigen-directions in the 
complex extension. 

In the general case, at  least one eigenvector Xj can be found for a given 
(real or complex) eigenvalue s j  in the complex extension. If s j  is non de- 
generate, the associated eigen-subspace is one-dimensional. It is generated 
by the eigenvector %j solution to (L - sjZ)%j  = 0 (see Exercise A.4). 

If s j  is degenerate, which corresponds in dynamics to a linear resonance 
condition, the problem is more complicated and one must search for a 
special basis in which the matrix representing the restriction of the operator 
to this subspace is in its normal form. 

A 

A.2.1 Jordan normal form 

The main tool to determine the Jordan normal form of an operator is 
the theory of operator polynomials, i.e. polynomials in the form Q = 
c:y a,Cn. The decomposition of the vector space X into a direct sum of 
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invariant subspaces rests on the determination of the kernels of operators 
(C - s ~ Z ) ~ ' ,  where d' is a trial dimension, as a generalization of the eigen- 
direction defined as the kernel of C - s j 2 .  These kernels are called the 
generalized eigen-subspaces associated to eigenvalue s j .  

Without entering the derivation, we now give some practical results 
about them. First they form a series of embedded subspaces of increasing 
dimensions, the kernel of (C - ~ 2 ) ~  containing that of C - sZ, etc. The 
largest of them, called the principal subspace, has dimension dj equal to 
the multiplicity of the eigenvalue, it is the kernel of (L - s ~ Z ) ~ J .  Next, the 
Cayley-Hamilton theorem stipulates that L fulfills its own characteristic 
polynomial, that is: 

which can be understood as the most direct translation of this decomposi- 
tion into a direct sum of principal subspaces. 

The numerical approach to multiples eigenvalues as it is implemented 
in usual computer routines can lead to difficulties in concrete cases. It may 
therefore be interesting to  present the main analytical steps of the compu- 
tation. Let Xj be the principal subspace associated to  s j ,  with dimension 
d j ,  and Lj the restriction of L to  Xj. Define also M j  = Cj - S j Z d , ,  where 
I d i  is the identity operator in Xj. Then: 

The index of a principal vector X (E Xj) is defined as the smallest 
nonnegative integer m such that M Y X  = 0. This index m is such that 
1 5 m 5 d j ;  the lower bound m = 1 corresponds to the case of the eigen- 
vector ( M X  = 0); the upper bound dj is because X belongs to  Xj by 
assumption (MjdjX = 0). It can easily be seen that when X is a vector 
with index m then M Y X  as index m - n for all n < m. 

Exploring Xi,  one begins with finding the maximum index mmax of vec- 
tors in this subspace by computing the kernel of Md' for increasing trial 
dimensions d'. When mmax = d j ,  one gets a vector with maximal index 
Y d i  by explicitly solving the linear problem 

(cj - S j Z d j ) d i X  = 0 .  

Y d j - - l  = M j Y d j ,  

Y d j - 2  = M j Y d j - l  = M : Y d i ,  ..., Y1 = M j Y z  = M j d ' - ' Y d j ,  that 
one can write in the more condensed form: 

One then considers the series of dj vectors Y d , ,  

{ Y d j - - n  = M Y y d j ;  n = 0 ,1 , .  . . , d j  - l} , 
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d .  noticing that Yo = MjY1 = Mj’Ydj G 0 since Y d j  has maximal in- 
dex by assumption. The series of vectors (Y1,. . . , Y d j }  is an acceptable 
basis for the principal subspace X j  attached to s j  since one has d j  lin- 
early independent vectors. This property can easily be checked by showing 
that any linear combination Z = x A = l p n Y n  cancels if and only if all 
its coefficients cancel. Computing first Mjd,-lZ, one indeed gets a single 
non-identically zero term / J d j Y d j l  which implies pdj = 0. Next, the com- 
putation of Md1-2Z gives b d j - l  = 0, and so on, down to  P I .  

The Jordan normal form directly derives from the matrix representation 
of Lj in this basis: Vector Y1 (index 1) is along eigenvector Xj and, by 
construction of the Y,,  one gets: 

d .  

that is: 

LjY,  = S j Y ,  + Yn- l .  

The expression of the elementary Jordan block directly derives from this 
expression: 

n - 1  n n + l  

n - 1  

n 

n t l  

f 
0 :  

1 0 :  

s j  1 0 

0 s j  1 

: 0 sj 

: o  
i 

Introducing the operator Afdj represented in this basis by a matrix with a 
series of ones just above the diagonal and zeroes everywhere else, one gets 

Lj = S j Z d j  + n / d j .  

When the maximal index is such that mmax < d j ,  one first constructs 
the subspace generated by the Y ,  just found. This subspace has dimension 
mmax, and one has to redo the same work in the supplementary subspace 
with dimension d j  -nmax, i.e. find the maximal index of vectors in this new 
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52 1 
s2 

I 
I I 

s 1  
S 

S' 

(33) 

Fig. A . l  (a) Jordan block structure in the basis of generalized eigenvectors, example: 
s1 is non-degenerate; sz is double but without diagonal form; 53 is with multiplicity 
four, decomposed into two subspaces with dimensions one and three; s4 is also with 
multiplicity four (zero entries are left blank). (b) Possible cases in dimension d = 3: 
Three distinct eigenvalues, possibly only in the complex extension if two eigenvalues out 
of the three are complex conjugate (bl). Two real distinct eigenvalues, in diagonal form 
(b2) or not (b3). Eigenvalue with multiplicity three and vectors with maximum index 
nmax = 1, 2, or 3, giving three Jordan blocks of order 1 (b4), one of order 1 and one of 
order 2 (b5), or one of order 3 (b6). 

subspace, find one vector with maximal index, build the associated basis, 
etc. up to the point where the full subspace Xj is decomposed. Using 
the so-obtained partial bases to build the basis of X j  one can represent 
Cj as a direct sum of Jordan blocks aligned along the diagonal. This 
result is illustrated in Figure A.l(a). In applications, one rarely deals with 
problems in a dimension higher than three analytically. The work involved 
in this systematic approach is therefore never as fastidious as it could seem. 
Figure A.l(b) illustrates all the possible cases for d = 3. Notice also that 
in case (bl) ,  when the three distinct roots are s1 plus a pair of complex 
eigenvalues s* = u * iw ,  the diagonal form holds in the complex extension 
only, otherwise one has a square block, e.g. 

's1 0 0 

.o  f w  u 
0 u --I. 

The two-dimensional case was illustrated in Chapter 2 without mentioning 
the index concept. This gap is filled in Exercise A.4.2. 
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A.2.2 Exponential of a matrix 

As far as the linear dynamics evolution governed by (A.7) is concerned, the 
aim of all that precedes is to turn operator C into the best adapted form in 
view of the computation of its exponential (A.8) defined as a power series 
(A.9). In the basis where C is in its Jordan form one gets: 

exp(tLj) = exp [t  (SjZdj  + Mdj)] = exp (tSjZdj) exp (tn/dj) . 

Here the exponential of the sum is simply the product of the exponentials 
because Z d j  commutes with any operator and thus also with Mzj. One 
obviously gets exp (tSjZdj) = exp(tsj)Zdj, and one is left with the com- 
putation of the second exponential, which is an easy matter since operator 
n / d j  is nilpotent, i .e.,  (Mdj)dJ = 0, so that we are left with a finite number 
of terms in the power series. Considering the case dj = 3 as an example 
and dropping all useless indices, we get: 

so that 

1 t $2 

exp(tN) = z + t M +  ;t2n/2 = o 1 t 
[o 0 1 

and thus 

exp(st) t exp(st) i t 2  exp(st)’ 
exp(tL) = [ : exp(st) t exp(st) 

0 exp(st) 

: :I, 
0 0  

The terms ( t j / j ! )  exp(st) are said to be secular. They account for a slow 
algebraic drift with respect to a dominant exponential behavior. 

A.2.3 

Degeneracy of eigenvalues is a singularity that usually demands to be raised 
by introducing perturbations in the most general way. It turns out that, the 
most general perturbation SC brought to some operator 12, i.e. C’ = C+SC 
may be decomposed in two parts, one that does not change its structure and 
another one (“true” perturbations) that does something nontrivial, either 

Perturbation of a linear problem 
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by changing its eigenvalues or the fact that it can be turned into diagonal 
form or not. 

Examples of operations that do nothing to a linear system are changes 
of bases, and more generally invertible transformations 7, such that C' = 
T - l C T ,  in which case C and C' are said to be similar. In such operations, 
the characteristic polynomial is indeed left invariant since: 

det [(T-lL'T) - s 2 ]  = det [ T 1 ( L  - s Z ) T ]  

= det [ T T 1 ( C  - SZ)] = det(C - sZ). 

Only the part of perturbation 6C that makes C' depart from staying 
similar to C is of interest. The complementary part, which leaves them 
similar, is sought for as a transformation close to identity: 

r = z + r ,  
ie., with yij small so that 7- remains invertible. The transformed operator 
is then given by 

c' = T-QT = (z + r)-l c (z + r) . 

(z+r)-l = z - r + r2 - . . . + ( - i ) Y  + .  . . 
We need the inverse of Z + I' but, by identification, it can be checked that 

so that neglecting all terms beyond first order in r, by substitution and in 
full generality we get: 

L' = c + (re - cr) . 
The operator I'C - CI' = [I?, C ]  is called the commutator of C and I'. The 
"true" perturbation is therefore 6C - [I?, C ]  and one must next ask for the 
number of independent parameters on which it depends. 

Nontrivial answers are already found in dimension two. Let 

L ' = C + d C ,  

where 6C is represented by the most general matrix: 

6111 6112 

6121 6122 SL = [ ] = 6111KJlI + ~llZ[UZ] f 6121[U3] + 6122[U4], 

where 
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form a canonical basis of the space of (2 x 2) matrices. Operator I' is further 
defined by 

I' = 6: , (A.lO) 

whose coefficients are adjustable parameters (by contrast with the 61ij which 
are given). 

Let us first consider the case when L: can be turned into diagonal form: 

c = ["; . 
Computation of the commutator leads to: 

and therefore 

When s1 = s2, t is a multiple of Z and commutes with any I'. The 
part of 6L that derives from a similarity is thus identically zero so that any 
perturbation 61jjl  # 0 modifies the dynamics, generically by raising the de- 
generacy (as an exercise one can look for cases where only the diagonalizable 
character is broken) 

By contrast when s1 # SZ, there exists a continuous two-parameter 
family of perturbations that gives an operator similar to  the original one 
since one can choose yjjt = 6ljj l /(sj l  - s j )  for ( j j ' )  = (12) or (21). True 
perturbations form a complementary two-parameters family (6111,6122) that 
modifies each eigenvalue separately. 

Things are a little less trivial when C cannot be turned to diagonal 
form, but only into the Jordan form: 

The commutator then reads: 

1 [I',CI = [-o 7 2  1 

721 711 - 7 2 2  
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and we see that 7 1 2  has disappeared, so that there remains only two pa- 
rameters 7 2 1  and 711 - 722 to cancel as many terms as possible in: 

1 [ 6121 6122 - 7 2 1  

6111 + 7 2 1  6112 - (711 - 722) 6~ - [ r , q  = 

The term 6112 can always be suppressed by choosing 711 - 722  appropriately, 
and there is enough freedom to cancel one of the two other terms, either 
6111 or 6/22, whereas term 6/21 can never be suppressed. The most general 
perturbation that unfolds the singularity of this degenerate problem can 
thus be taken as 

( A . l l )  

i.e. 6/21 = -q and 6/22 = -q' where the minus signs are introduced for 
convenience. The characteristic polynomial then reads: 

(s - a)(s - s + q') + 77 = s2 - (28 - q l )s  + s(s - q!) + q = 0.  

The discriminant of this quadratic polynomial is A = ql' - 477. How the 
degeneracy is raised is illustrated in Figure A.2, and one can see that, 
depending on the path in the parameter space, one can get either real or 
complex eigenvalues, which account for the dynamics in the vicinity of an 
improper node (Figure 2.7(b), p. 41): trajectories resemble those close to 
a focus as well as close to a node (Figure 2.5(a) and Fig. 2.6(a)). 

Fig. A.2 Raising the degeneracy at a double non-diagonalizable eigenvalue. The most 
general perturbation depends on parameters q and q1 (< Is[). r is a path in parameter 
space. 
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The generalization in dimension d 

3 1 0 ... 0 0 
0 3 1 ... 0 0 1 

is called the Jordan-Arnold normal form. 

A.3 Metric Properties of Linear Operators 

A.3.1 Scalar products, adjoints, normal and non-normal 
opemtors 

The definition of a scalar product adds an Euclidean structure to vector 
spaces on R. A scalar product is a bilinear form with general expression 

that is symmetric (gij = g j i )  and such that E ( X ,  X) is definite positive, i.e. 
E ( X ,  X) 2 0 and E ( X ,  X) = 0 if and only if X = 0 .  

The canonical scalar product relative to a given basis simply reads: 

By construction, the basis is orthonormal with respect to the so-defined 
scalar product since one has: E(Ei,Ej) = &j, where &j is the Kronecker 
symbol ( S i i  = 1 and &j  = 0 for i # j ) .  

The elements of the matrix [TI  representing the change from an 
orthonormal basis {E,} to another {Fj} are given by t i j  = E(Ei, Fj), those 
of the inverse matrix [ U ]  by 

Such matrices are said to be orthogonal. 

a Hermitian form 
In the case of vector spaces on CC, the scalar product is defined through 
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whose coefficients gij now fulfill gij = g;;, so that 

X(X, Y) = X ( Y ,  X)*. 

The quadratic form X(X,X) must also be definite positive (Hermitian 
norm). The canonical scalar product relative to a given basis reads: 

X(X,Y) = z . x ; y j .  2 

The change from an orthonormal basis to another one yields 

~ i j  = X(Fi, Ej) = X(Ej, Fi)' = tf. .  3% 

Such transformations are said to be unitarian. 

operator C being given, its adjoint Ct is defined by 
Let us consider the general case of a Hermitian scalar product. An 

X ( Y ,  CtX) = X ( C Y ,  X) = X(X, CY)'  . (A.12) 

Adjoint operators are thus represented by matrices such that: ( 1 t ) i j  = l ; j .  
An operator C is said to be normal  if it commutes with its adjoint, i.e. 

CtC CCt. It is said to be self-adjoint or Hermi t ian  if it is identical to 
its adjoint: Ct E L. 

Normality and hermiticity properties interfere with those arising from 
the eigenvalue decomposition. It can be shown that a normal operator C 
possesses an orthogonal eigen-basis in which it is represented by a diagonal 
matrix. If in addition it is Hermitian, all its eigenvalues are real. 

When the operator is non-normal (i.e. does not commute with its ad- 
joint), these properties are lost. Not only the operator can have complex 
eigenvalues, but there is no orthogonal basis in which it is represented by a 
diagonal matrix (cf. Jordan normal form). On the other hand, it is possible 
to find a double series of basis vectors {Ej, Fj, j = 1,. . . , d }  such that {Ei} 
is an eigen-basis of L and {Fj} an eigen-basis of Lt such that 

( ~ j *  - si)X(Fj, Ei) = 0 ,  

i.e. vectors Ei and Fj are orthogonal except when sj and s i  are complex 
conjugate. The series is said to be bi-orthogonal. Unfortunately, this says 
nothing about scalar products X(Ej, Ei) and X(Fj, Fi), see Exercise A.4. 

Remark: Non-normality and transient growth of the energy. Let 
a linear differential dynamical system be governed by 

x = cx, 
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one can interpret the canonical Hermitian norm 

2K = X ( X ,  X) 

as an energy. This interpretation is particularly appropriate when consider- 
ing systems of mechanical origin, whose dependent variables are velocities, 
e.g. fluids governed by the Navier-Stokes equations linearized around some 
base state for which the kinetic energy K = 3 &(d2 + d 2  + d2)  dx dy dz 
contained in a perturbation has all the properties requested for a norm. 

On general grounds, asymptotic stability properties (long time limit) 
of the fixed point at the origin are obtained from the spectrum of eigen- 
values s of L (Le., stability, neutrality, or instability for %(s) < 0, = 0 
or > 0, respectively). When the considered system is unstable, the energy 
contained in an arbitrary (but small) perturbation may decrease when the 
trajectory are called back the fixed point along strongly attracting eigen- 
directions but always escape exponentially fast in the unstable subspace 
since the long time behavior is controlled by eigenvalues with positive real 
parts. The case of asymptotically stable systems is less transparent be- 
cause, while they always approach the fixed point at late stage, trajectories 
may initially depart from it. This going away of trajectories, in the sense 
of the norm, can be interpreted as a transient growth of the energy for 
some initial conditions. One can indeed have K > 0 in some sectors of the 
tangent phase space, which may be surprising for a stable system. This is 
because the quadratic form: 

2 = +[X(X, X)+X(X, X)] = i [ X ( L X ,  X)+X(X, LX)] = R e ( X ( X ,  LX)) 

is not necessarily definite negative when L is non-normal, even when all 
eigenvalues are negative or have negative real parts. A simple example is 
treated in Exercise A.4.4. 

The interest of this property in hydrodynamics derives from the fact 
that nonlinearities conserve the kinetic energy, so that the initial growth of 
the energy in the perturbations around the base state is controlled by the 
linear part of the tangent operator whatever their amplitude.’l In practice, 
transient effects are all the more marked that diagonal terms are small when 
compared to non-diagonal terms. If one notices that diagonal terms mainly 
account for viscous dissipation, one understands that the situation is highly 
degenerate at large Reynolds numbers, so that this growth has essentially 

‘lD.S. Henningson & S.C. Reddy, “On the role of linear mechanisms in transition to 
turbulence,” Phys. Fluids 6 (1994) 1396-1398. 

s)
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the same origin as the sub-dominant algebraic evolution called ‘secular’ in 
the study of the Jordan normal form. See also the introduction of Chapter 6 
and $6.3.4. 

A.3.2 Fredholm Alternative 

Let us now consider the role played by the adjoints in the resolution of 
inhomogeneous linear problems (as they appear for example in perturbation 
theory, Chapter 2, p. 55ff): 

L X = F .  (A.13) 

The solution is unique and given by X = L-lF for all F, as long as L is 
invertible, that is to say as long as its kernel is trivial (L of maximal rank). 
The homogeneous problem 

L X = O  (A.14) 

then admits only the null vector X = 0 as a solution. When this is not the 
case, i e .  L is not of maximal rank and has a nontrivial kernel, the adjoint 
homogeneous problem 

LtX = 0 (A.15) 

also has nontrivial solutions X # 0 (Fredholm alternative). The inhomo- 
geneous problem (A.13) then has solutions only if the right hand side F is 
orthogonal to the kernel of the adjoint (Fredholm theorem). Vector X being 
in the kernel of Lt ,  this reads 

X(X,F) = 0 ,  (A.16) 

see Exercise A.4.3. When this condition is fulfilled the solution exists but 
is not unique. This indeterminacy can be raised by imposing, e.9. the 
orthogonality of the solution to the kernel of Ct, which, in perturbations 
problems presents the solution to the inhomogeneous problem as a true 
correction (in the sense of the scalar product) to the solution to the homo- 
geneous problem. 

A.3.3 Boundary value problems and adjoint operators. 

Up to now we have considered only finite dimensional spaces. Let us have 
a look as spaces whose elements are real or complex functions defined on 
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some interval [u,b]. The natural extension of the sum appearing in the 
definition of the scalar product is now an integral: 

b w, f) = 1 g(a:)*f(a:) da:. 

The case of interest to us is when these functions fulfill a differential bound- 
ary value problem of order n, with the differential operator C written as: 

f(") denoting the mth derivative of f with respect to x and f(') f. In 
order to formulate a well posed problem, we must add n boundary condi- 
tions: 

In many practical cases, these boundary conditions apply separately at each 
end of the interval, that is pjm = 0 when ajm # 0 and vice versa. When 
uj = 0 for all j ,  boundary conditions are said to be homogeneous. 

Returning to the definition of the adjoint operator (A.12), we see that 
the expression of Lt has to be determined from: 

[LI*(a:)Ctf(a:) da: = _I/yb (Lg(a:))* f(.) dx , 

by removing g* from the action of the differential operator on the right 
hand side of this identity. This is done by means of a series of integrations 
by parts: 

This operation progressively lowers the order of derivatives acting on g* 
and must be pursued down to zero. The formal expression of Lt is then 
easily obtained as: 

Lt f  = En m=O ( - l ) m ( a f f ) ( m ) ,  

However, the integrations by parts leaves us with a complicated boundary 
form made of integrated terms evaluated at the boundaries and involving 
derivatives of f, the a;, and g*. Inserting the boundary conditions of 
the direct problem in this linear form and imposing the cancellation of the 
residue gives the set of boundary conditions to  be applied to the functions 
of the adjoint problem. 
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A.4 Exercises 

Among the results recalled in this Appendix, several find a nontrivial 
illustration already in dimension two. The following, extremely elemen- 
tary exercises may help one better understand the generalizations stated 
without derivation in the text. Vectors X are represented in the canonical 
basis by column arrays: 

and the linear operator C by a matrix [ L]: 

(A.17) 

The complex extension of the vector space on R (ie., 21 E R, 2 2  E R) is 
the set of vectors with complex coefficients (ie., q E C, 2 2  E C). When 
necessary, the canonical scalar product is defined as: 

X ( Y ,  X) = yfz1+ y;22. 

A.4.1 Eigenvalues and eigenvectors, non- degenerate case 

1) Write down the eigenvalue problem CX = sX and the corresponding 
characteristic equation. Rewrite the latter using the sum S and the prod- 
uct P of the roots (S = trc(C) = 111 + Z22, P = det(C) = Z11Z2z - Z21Z12. 
Discuss the number and the nature of the roots in the plane of parameters 
(S, P )  and identify the possible bifurcations upon variation of a control pa- 
rameter r ,  S = S(r )  and P = P ( r ) .  [see Fig. A.31. 
2) Identify the domain of parameters corresponding to  two real distinct 
eigenvalues. Compute the eigenvalues, determine the corresponding eigen- 
vectors and the matrix expressing the change from the canonical basis to 
the eigen-basis. Compute the inverse of this matrix. 
3) Determine trajectories of X = CX with X(0) = XO in the canonical ba- 
sis by changing back and forth to  the eigen-basis. (As a concrete example, 
take Xl = 2X1 f X2, X2 = 4X1 - X2.) 
4) Find the adjoint Ct to C for the canonical scalar product (general case, 
[ L]  with coefficients in C). Show that when [ L ]  has real coefficients, Lt is 
normal (CCt CtC) only when it is symmetric (112 = 221) or such that 
111 = Z22 and 112 = -Z21. Find the eigenvectors (E1,Ez) of C and (F1,F2) 



A .  Linear Algebra 349 

p= improper node 

Fig. A.3 
lem as a function of S and P. 

Nature of the roots of the characteristic equation of the two-dimensional prob- 

of Ct. Check that, in all cases, X(F1,Ez) = 0 = R(F2,El) but that one 
has X(E1, E2) = 0 = X(F1, F2) only when C is normal. 
5) When there are two complex conjugate eigenvalues, s = CT f iw, find a 
basis in which the system is represented by (2.31), Chapter 2, p. 39. 

A.4.2 

1) Find the condition fulfilled by the l i j  when the characteristic polynomial 
has a double root. Find eigenvectors and determine the condition for any 
vector of the plane to be an eigenvector. 
2) In the general case, this condition is not satisfied and there is only one 
eigen-direction, generated by a single vector E, the components of which 
will be determined. Compute the image of an arbitrary vector X and check 
that Y = (L - SZ)X is parallel to E. Derive from this an illustration of 
the Cayley-Hamilton theorem. 
3) Show that in the basis {Y = (C - sZ)X;X}, the matrix representing 
L is in canonical Jordan form, which justifies writing a two-dimensional 
dynamical system with degenerate eigenvalues as (2.35, 2.36), p. 40. 
4) Unfold the singularity by setting s(*) = s f ds, where ds is a small 
perturbation, and consider the dynamical system: 

Degenerate case and Jordan normal form 

&x - 2 s x  + (2 - 6 2 )  x = (” d t  - ‘(+)I (% - ‘(-1) = 3 
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integrate it explicitly by solving successively (& - s(+)) Y = 0 and next 
(& - s(-)) X = Y ,  then show how secular terms associated to  linear reso- 
nance appear by taking the limit 6s + 0. 

A.4.3 Fredholm Alternative 

1) Compute the kernel of operator L in (A.17). 
2) Solve the inhomogeneous problem LX = F taken in the form 

Z l l X l  + z2222 = f l  , 
Z Z l Z l  + z2222 = f 2 ,  

when the kernel of L is not trivially reduced to the null vector. Observe that 
the problem has solutions only when the two equations are proportional and 
express this condition. 
3) Determine the adjoint Lt of L and its kernel. Then check that the 
existence condition obtained can be written in the form (A.16). 

A.4.4 

Consider X = LX defined by: 

Transient growth of the energy 

XI = -ax1 + ~ 2 ,  

X 2  = -bXs ,  

where constants a and b are positive and b > a (already considered in Ex- 
ercise 4.6.6, p. 172). 
1) This system is non-normal, and thus has no orthogonal eigen-basis. Find 
the eigenvalues and the eigen vectors of L and its adjoint Lt (for the canon- 
ical scalar product). 
2) Consider the energy K = i(X; + Xi) and determine the condition on 
a and b rendering K definite negative (monotonic stability). When this 
condition is not satisfied, identify the region of the ( X 1 , X z )  plane where 
K > 0 and the direction pmax = X2/X1 that maximize the initial growth 
of the energy. Examine in particular the case a << 1, b << 1, so that the 
behavior of the system is dominated by the out-of-diagonal term. 
3) Compute the solution ( X 1 , X z )  issued from the initial condition 
X,(O), X i o )  = pX,(O), the evolution of the energy associated to  this trajectory 
and the value of p that maximizes K(t)/K(O). 
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Numerical Approach 

Present-day computers make numerical simulations of complex physical sys- 
tems feasible. Their flexibility and accuracy allow us to gather quantitative 
information on situations of practical interest but also to obtain more qual- 
itative hints about the nature of interactions at work. In this appendix we 
focus on the simplest, low-cost, approaches most particularly appropriate 
to the second aspect, leaving the first one to specialists. We present some 
classical numerical schemes used in simulations of initial value problems de- 
fined in terms of ordinary (ODEs) or partial (PDEs) differential equations. 
The level is kept very elementary and theoretical discussions are avoided, 
though numerical stability properties derive directly from the application 
of techniques developed in other parts of the present work, as can be seen 
by working out the proposed exercises. 

In practice, the evolution of the system under consideration is deter- 
mined at a series of regularly spaced times t ,  = n At. The corresponding 
integration methods, appropriate to ODEs as well as PDEs, are introduced 
in SB.1. The physical-space dependence inherent in PDEs implies a spe- 
cific coupling between degrees of freedom. This can be treated in the most 
naive way by estimating the values of the different fields at the nodes of 
a discrete lattice, x + xj = j Ax. Replacing partial derivatives by their 
finite differences yields the numerical schemes presented in 5B.2.1. An- 
other description can be achieved in terms of projection of the dynamics 
on a functional basis spanning the whole physical space. These so-called 
spectral methods are briefly introduced, using Fourier modes in sB.2.2. 

Finite element methods and their variants specifically developed for fluid 
mechanics are left completely aside despite their accuracy and their versa- 
tility regarding complex geometries encountered in technical applications 
for which commercial softwares are fully adapted. Instead of relying on 
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such black-boxes, we prefer present simple algorithms that can be straight- 
forwardly translated into programming languages such as MATLAB. To our 
belief, the required investment is light but rewarding in terms of the insight 
gained in the complexity arising from nonlinearities. 

B. l  Treatment of the Time Dependence 

We consider the following general initial value problem: 

$v = f ( v , t )  with v(t0) = vo . (B.1) 

here written as a non-autonomous ODE but the case of PDEs is the same 
as far as time dependence is concerned. 

Expanding the solution as a Taylor series in the neighborhood oft,, we 
get: 

P . 2 )  W,+I  =u, +At&vI,  + ;Atz SVI, + g l ~ t 3  d3 + * * a  

where the successive derivatives of v, total derivative with respect to t ,  can 
be evaluated at t ,  recursively, using (B.1): 

provided that we can evaluate the successive partial derivatives of f (v ,  t )  
analytically, which is hardly conceivable beyond the lowest order without 
the help of formal algebra softwares. The idea is thus to look for numerical 
approximations of these derivatives.22 

Truncating expression (B.2) beyond first order, we get the most elemen- 
tary formula (Euler, cf. Fig. B.1): 

%+l = 21, + At f(%, tn) * (B.3) 

This integration scheme is said to be first order because it is exact up to  
correction of order At2,  and explicit because the knowledge of v and f (u ,  t )  
at previous steps is sufficient to compute the solution at the next step. 

sentation can be found in, e.g. [Lapidus and Seinfeld (1971)l. 
"For elementary formulas consult [Abramowitz and Stegun (1972)]. A detailed pre- 
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Another first order scheme is obtained by evaluating wn using quantities 
computed at tn+l: 

which leads to: 

wn+i = 21, + At f(wn+i, tn+i).  

This scheme, still exact up to corrections U ( A t 2 ) ,  is termed implicit since 
un+l is obtained from an implicit equation: 

%+1 -At . f (~n+l , tn+l )  = wn. (B-5) 

Subtracting (B.4) from (B.2) and noticing that 

d2 = z u l  d2 + A t  $wl +U(At' ) ,  
z u l n + l  

one can see that the term O(Atz) disappears, so that: 

(B.6) 
At 

wn+1 =z 21, + y( f (Vn , tn )  + f (~n+lttn+l))  + Q(At3).  

This implicit second order formula is called the Crank-Nicholson scheme 
(cf. Fig. B . l ) .  

t 

Fig. B . l  Solution of $ v  = -v at t = At = 0.5 with v (O)= l :  Exact result compared to 
estimates from the explicit Euler (EE), implicit Euler (IE) and Crank-Nicholson (CN) 
formulas, Eqs. (B.3),  (B.5), and (B.6),  respectively. 
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Let us compare the error terms using f (v) = -v with vo = 1 as a simple 
example. We get = exp(-t) and after a time step 

Exact (exp(-At)) : 1 - A t  + ;At2 - ;At3 + .. . 
Explicit Euler (B.3) : 1 - At 

1 
1 + At 

= 1 - At + At2 - At3 + . . . , Implicit Euler (B.5) : 

1 - ;At 
1 + $At 

Crank-Nicholson (B.6) : = 1 - At + ;At2 - l A t 3  4 + .  . . , 

which clearly shows the improvement brought by the Crank-Nicholson 
scheme (cf. exercise B.3.1). The obvious computational drawback of im- 
plicit iteration schemes, largely compensated by better stability properties 
as shown later, is that the solution a t  tn+l is not expressed simply in terms 
of the solution at t,. The inversion is trivial only if v is a single scalar 
variable and f is linear as in the example chosen. When this is not the 
case, specific techniques are required, see 5B.2.1. 

Up to  now we have used only one-step formulas, requiring the knowledge 
of the solution at a single time. A simple improvement of (B.3) is obtained 
by inserting: 

in (B.2), which leads to the second-order Adams-Bashford formula: 

vn+1 = vn + At ( i f ( v n ,  tn) - i f ( V n - 1 ,  tn-1)) 7 (B.7) 

exact up to O(At3) .  This formula is one of the simplest examples of multi- 
step schemes, computing v,+1 from the knowledge of v at several previous 
times, here t ,  and t,-1. 

An equally simple possibility is to write (B.4) at times t,-l and t ,  
instead of t ,  and tn+l ,  which yields 

SO that after subtraction of (B.2) one gets another second order formula, 
also exact up to 0 ( A t 3 ) :  

called the leap-frog scheme. 
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In addition to accuracy requirements, the choice of an integration 
scheme is also subjected to stability requirements. As a matter of fact, 
the numerical scheme must not amplify round-off errors so that the so- 
lution obtained is the physical one and not some parasitic solution. The 
problem is important since when, for example, one uses a two-step formula 
to integrate a first-order differential equation, one obtains an iteration that 
starts with two initial conditions instead of one for the time-continuous 
problem. The added mode must be damped in order that the simulation 
keeps its meaning. Let us compare schemes (B.7) and (B.8) used to inte- 
grate -v = -v: 

0 Iteration (B.7) reads 

d 
dt 

~ , + 1  = V, - At(%v,  - ;vn-1) 

or, better, 

'%+I = V n  3 

~,+1 = $At U ,  + ( 1  - :At)., , 
which, from standard linear stability analysis (Exercise B.3.2), leads to the 
characteristic equation: 

s2 - s ( l -  :At) - +At = 0 .  

At lowest order in At, the two roots are s(+) = 1 - At and s(-) = - ;At .  
The first one clearly corresponds to the physical solution and the second 
one to the numerical mode. Recalling that the differential equation is here 
replaced by a discrete-time system like those introduced in Chapter 3 (see 
in particular Figure 4.10, p. 140) we obtain that the latter mode is damped 
provided that Is(-)( < 1, which can be achieved by taking At sufficiently 
small, here At < 2. This does not mean that the numerical solution ob- 
tained with At just below the limit is a good approximation, but just that 
it is not polluted by the numerical mode. The Adams-Bashford scheme is 
said to be conditionally stable. 

0 Iteration (B.8) reads: 

vn+l = ~ n - 1  - 2 At vn, 

that is: 
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which leads to  

s2 + 2 A t s  - 1 = 0 ,  

so that s(+) 21 1 - At as before. But now one has s(-) N -1 - At and since 
Is(-)( > 1, the numerical mode is always unstable. The leap-frog scheme 
is thus always unconditionally unstable. Since s(-) is negative, successive 
iterates alternate from positive to negative values. This subharmonic insta- 
bility is due to the fact that the scheme leaves even time steps uncoupled 
to odd ones. Such a behavior is frequently the signature of a numerical in- 
stability (see later Figure B.16). Scheme (B.8) is however little demanding 
and its use is not forbidden provided the growth of errors is controlled. In 
general, the numerical mode is tamed by averaging over two iterations ev- 
ery p computation, with p >> 1 but still small enough, so that its amplitude 
remains small when compared to  the truncation errors. 

High order accuracy can be reached with sophisticated multi-step for- 
mulas. Their drawback stems from the need to  generate numerical initial 
conditions from the physical ones, especially when the time step has to  be 
changed for accuracy reasons. Explicit formulas of Runge-Kutta type avoid 
this problem. The idea is to use the basic first-order Euler formula but with 
a better estimate of the slope. Second order accuracy is obtained by averag- 
ing the slopes evaluated at  t ,  and tn+l but the resulting (Crank-Nicholson) 
scheme is implicit. To avoid such a difficulty one can first estimate w,+1 
with the first-order explicit formula: 

then compute the slope at  this point f ( ~ & + ~ ,  tn+l), and take the average 
with the slope at  (vn, tn)  as an improved guess. This yields: 

(B.lO) 

The correction is sufficient to achieve second order accuracy while keeping 
an explicit scheme (Exercise B.3.1). This case is illustrated in Figure B.2, 
left. 

Another way to achieve the same goal is to introduce an intermediate 
time tn+1/2, to compute w‘ with the first-order formula 

(B. l l )  

and to use the slope at  that point to extrapolate the solution at time tn+l, 

+1
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V V 

Fig. B.2 
(B.11, B.12). 

Achieving second order accuracy with Runge-Kutta formulas (B.9, B.lO) and 

0 4  0 4  

t 
0 2  0 2  

as shown in Figure B.2, right: 

V ~ + I  = V n  + At f (v ' ,  tn+1/2) . (B.12) 

High-order formulas combine these two basic techniques to get the best 
estimate of the slope. The classical fourth-order scheme 

V n + l  = V n  + $t(f(wn,tn) + 2f(Vf,tn+1,2) + 2 f ( V f ' , L + 1 / 2 )  + f (v"',tn+1)) 

(B.13) 
involves three intermediate estimates: 

- 

t 

w' = vn + iAt f (un ,  tn) , 
21'' = V ,  + $ A t f  (d , tn+lp) ,  
dff = V, + At f (d', tn+1/2) . 

One full time step thus requires four evaluations of f ,  which may be nu- 
merically demanding, but the scheme stays explicit and starts with a single 
initial condition so that the time step can easily be changed. 

Predictor-corrector methods are multi-step schemes that are often pre- 
ferred to  Runge-Kutta methods because they require a smaller number of 
evaluations of f to  reach the same accuracy though it is more difficult to  
change the time step. For more information, consult [Lapidus and Seinfeld 
(1971)l or [Press et al. (1986)l. 

Explicit methods can easily be extended to treat differential systems 
coupling several variables, see the examples considered in sB.4. 
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B.2 Treatment of Space Dependence in PDEs 

B.2.1 Finite difference methods 

The derivation of an integration scheme is made of two main steps. 
First, a consistent approximation of space differential operators has to  be 
found. Next a time-integration scheme is chosen. The resulting space-time 
iteration is then studied for stability. A supplementary step would be to  
demonstrate convergence in the limit of infinitesimal space and time steps. 
For l inear partial differential problems, it can be shown that consistence 
and stability implies convergence. Here we do worry about convergence and 
are happy with numerical solutions that look “physical.” 

We consider only systems that extend in one space direction. The solu- 
tion is sought for at regularly spaced nodes {xj} of a periodic lattice with 
spacing Ax = C/N where C is the length of the domain and N + 1 the 
number of points, including end points. The numerical solution vn,j is thus 
noted with two subscripts but the first one, corresponding to  time, will be 
dropped where it is not necessary. 

B.2.1.1 Space discretization and consistence 

Finite difference approximations of space derivatives are obtained in the 
same way as those of time  derivative^.^^ For example, combination of two 
first order approximations of the first order derivatives: 

yields the second order centered formula: 

&vlj  = (vj+l - vj-1)  AX. (B.15) 

In the same way, the expression of the second derivative at order Ax2 reads: 

a,,vlj = ( ~ j + l  - 2vj  + vj-1) /AX’, (B.16) 

Higher order accuracy requires more points, e.g. five at fourth order: 

a,,vlj = (-vj+z + l6vj+l - 30vj + l6vj-1 - vjP2)  /12Ax2. 

The second-order approximation of the fourth derivative reads: 

(B.17) 

azzzzvl j  = (vj+z - 4vj+l + 6vj - 4Wj-1 + ~ j - 2 )  /Ax4.  (B.18) 
23Useful formulas are found in [Abramowitz and Stegun (1972)l. A complete presen- 

tation is given by [Richtmyer and Morton (1967)]. Consult also [Acton (1970)l. 
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The order of consistency of some finite difference approximation is the 
value of the exponent that controls the decay of the global truncation error 
when Ax decreases. It serves nothing to approximate different derivatives 
appearing in a model by formulas at  different orders. In practice, the 
representation of differential operators by finite differences is not very good 
since truncation errors decay only algebraically, as a power of Ax. From this 
point of view spectral methods briefly introduced in Section B.2.2 behave 
in a much better way. 

B.2.1.2 Boundary  conditions 

Consistency considerations also affect the treatment of boundary conditions 
when they involve derivatives (Neumann conditions). Since it is in general 
easy to achieve consistency at  order Ax2 for interior points -for example 
by preferring (B.15) to (B.14) for 8,- it would be a pity to  spoil the quality 
of an approximation by a bad account of boundary conditions, even if their 
effects do not propagate beyond some narrow “numerical boundary layer.” 

Consider for example the condition a,v = 0 at one end point of the x 
interval. Using (B.14) we get an expression accurate at order Ax, which 
simply implies v j  = vj+l ,  with j = 0 and 1 for the boundary point and the 
first interior point, respectively. To achieve second order consistency, we 
can use: 

&vlj  = (-3vj + 4Vj+l - vj+2)  AX (B.19) 

so that canceling d,v at  the boundary gives 3v0 - 4vl + v2 = 0. Another 
possibility is to  add a fictitious point outside, j = -1 and associate a 
variable 2)-1 whose value is forced to  that of the first interior point at  all 
times, v-1 = v1, as dictated by formula (B.15). 

B.2.1.3 T i m e  discretization and stability 

For more specificity we consider the one-dimensional diffusion equation: 

a tv  = ax,v,  (B.20) 

with boundary conditions that need not be given here. The temporal 
scheme is obtained according to one the recipes of section B. l  (here we 
restore subscript n). From the spatial viewpoint we assume second or- 
der consistency, i.e. using (B.16) to  discretize axxw. The most important 
question is that of the numerical stability of the scheme, as determined 
from the growth rate of the “noise” generated by truncation and round-off 
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errors. Here, we only compare the case of the two simplest schemes deriv- 
ing from (B.3) and (B.5). In the expcplicit case, the space derivative axxv is 
evaluated at  t,, that is: 

while it is evaluated at  tn+l in the implicit case, which yields: 

The explicit method is straightforward and requires less computational 
work than the implicit method that requires the inversion of a linear system 
with a band structure and only three near-diagonal terms. As we will see, 
this amount of work is rewarding. 

The stability analysis of finite-difference systems is performed in the 
same way as that of physical systems (see Chap. 2, 53.1.3 and Chap. 3, 
$4.2). The evolution of a perturbation &,,j to a given numerical solution 
vj,, is studied by means of a discrete Fourier transform: 

&,,j = fxj n , k  exp(ikj) * 

Inserting this expression into equations (B.21) and (B.22), we obtain: 

Explicit: - (1 - C O S ( ~ ) )  &jn,k, (B.23) 
2 A t  
Ax2 

1 + -(I 2At - C O S ( ~ ) )  &,+l,k = b i jn , k ,  (B.24) ( Ax2 
Implicit: 

both of the general form: 

&+l,k = C(k) &,k , 
and, as we know, the perturbation grows when I((k)l > 1 and decays when 
IC(k)l < 1. 

For the explicit scheme, this gives: 

The upper bound condition brings nothing, whereas the lower bound im- 
plies -1 < & x p ( r )  for stability. This leads to: 

4 At 4 At Ax2 
Ax2 Ax2 

+ - < 2  =+ A t < - ,  
2 

- 1 < 1 - -  
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which means that the time step must be small enough at given spacing: 
the explicit scheme is thus conditionally stable. 

By comparison, the growth rate of perturbations with the implicit 
scheme: 

2 A t  ( Ax2 6 m p  = 1 + -(1- cos(k)) 

is such that 0 < Jimp 5 1 for all k since (1 - cos(k)) >_ 0. This scheme 
is therefore unconditionally stable, so that At can be chosen for temporal 
accuracy requirement only, whatever the value of Ax. 

For the explicit scheme the most unstable perturbations are those with 
k = 7r. Going back to physical space, one finds &,,j = &, (-1)j: the 
behavior of the solution at even nodes is the opposite of that at odd nodes, 
which is typical of numerical instabilities. At this stage, the instability 
can be tamed by decreasing the time step until the stability condition is 
fulfilled but it is better to turn to an implicit scheme, especially when higher 
derivatives are involved (Exercise B.3.3). Higher order time discretization 
would be studied in the same way. 

B.2.1.4 

The supplementary work needed to find the solution at time step tn+l by 
the implicit scheme (B.22) is easily achieved by a simple numerical “dou- 
ble sweep” method since the matrix to be inverted has only a few terms 
close to the diagonal. This is in fact a special case of the classical “LU” 
decomposition used to solve linear systems. 

Let the initial system be M V  = F, the operator M is then written 
as the product LU of two operators, L represented by a lower triangular 
matrix [ L]  with elements l i j  = 0 when i < j, and an operator U represented 
by an upper triangular matrix [ U ]  such that uij = 0 when i > j .  The 
decomposition is unique upon requiring that the diagonal elements of [ U ]  
are scaled to unity, uii = 1. The starting matrix [ M ]  is three-diagonal, i.e. 
mij # 0 for j = i and j = i f 1, [ L] and [ U ]  have a band structure with 
two non-zero diagonals only: l i j  # 0 for j = i and j = i - 1, uj j  = 1, and 
uij # 0 for j = i + 1. 

E f i c i e n t  treatment  of implicit schemes 

The problem which reads: 

( L U ) V  = L ( U V )  = L W  = F 
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is then replaced by two equations 

L W = F  and U V = W ,  

that are solved through two first-order recursion relations, first a forward 
iteration to obtain W: 

l l l W l  = fl , 
l i i - l~ i -1  + l i i ~ i  = f i ,  i = 2 , .  . . , N ,  

and second a backward iteration to get V from W: 

V N = W N ,  

vi + uii+1v,+1 = wi , i = N - 1,. . . , 1 . 

where the coefficients l i j  and uij are computed once for all using two sim- 
ple first-order recursion relations. The general term of the product reads ck l ik ' l lk j  = mij, with two special cases for z = 1 and j = N .  One readily 
obtains 

then for i = 2 to N - 1 

These relations are easily implemented numerically and can be general- 
ized to the case with any finite and small number of elements close to the 
diagonal. This happens for example when the model contains fourth or- 
der derivatives, hence five terms from (B.18), which leads to similar but 
second-order recursion relations, see exercise B.3.3 and B.4.4.2 focusing on 
the Swift-Hohenberg model. 

For problems that are two-dimensional in space, implicit schemes lead 
to linear systems where the matrix [MI is sparse with a block-diagonal 
structure. Instead of generalizing the previous algorithms to block matrices, 

and finallyfor i = N
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which is possible but requires a lot of storage, one usually turns to  iterative 
methods. The description of corresponding algorithms, over-relaxation, 
conjugate-gradients, etc., goes beyond our present purpose.24 

B.2.1.5 Treatment of nonlinear terms  

Up to now we have considered linear problems. In most cases of interest, 
nonlinearities are present, so let us write formally &v = Cv + N(v).  The 
linear part is often the most dangerous part from the point of view of 
numerical stability since it usually contains partial derivatives of higher 
order than the nonlinear part, the dangerous character of which comes 
from other sources as we know. In order to preserve second order accuracy 
while avoiding a fully implicit treatment of nonlinearities, one can develop 
quasi-linearized schemes of the Crank-Nicholson type by replacing v,+1 
by v, + (v,+1 - v,) in the nonlinear term, expanding it to  first order in 
(u,+1 - v,) assumed to be small enough: 

where &, = bN/bv),, the functional derivative of N with respect to  v is 
a coefficient evaluated at time t,. When nonlinearities are not numerically 
dangerous, another possibility is to treat the linear and nonlinear terms 
separately, using an implicit Crank-Nicholson scheme for the linear part 
and an explicit Adams-Bashford scheme for the nonlinear part 

B.2.2 Spectral methods 

Spectral methods rest on a conversion of the partial differential problem 
into an ordinary differential problem for the amplitudes of modes obtained 
by projection onto a complete functional basis. For simplicity, we consider 
here only the case of periodic boundary conditions at the ends of an interval 
of length C, which allows one to use Fourier modes: 

V(X) = C ijm exp(2r i rnz /~) ,  (B.25) 
m E Z  

24The interested reader is invited to consult specialized references, e.9. J.H. Wilkinson, 
“Solution of linear algebraic equations and matrix problems by direct methods,” Chapter 
2.2 in Digital computer user’s handbook, M.K. Klerer and G.A. Korn, Eds. (McGraw- 
Hill, 1967). 
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so that, when v E R, one must have &, = ;It. The coefficients of the 
Fourier series are given by: 

e 
~ ( x )  exp(-27rim x/e) d s  , m E Z . (B.26) 

We recall that: 

l e x p  (27ri(m' - m)x/e) dx = dmml , (B.27) 

where dmmt is the Kroneker symbol (= 1 when m = m' and zero otherwise), 
and that, reciprocally, 

+m C exp (27rim(x - .')/e) = ~ D ( z  - x') , (B.28) 
m=-m 

where d,(x) is the Dirac distribution (generalized function) such that 
+m 

~ ( x ' ) ~ D ( x  - x') dx = f ( ~ ) .  L 
For the diffusion equation (B.20), the evolution of the solution is easily 

obtained by integrating the differential equations for the Fourier coefficients 
6, = .;,(t): 

d -  = -k:Cm with k, = 2 ~ m / e ,  

which yields 

.i),(t) = s,(o) exp(-k;t), m E Z. 

Let us notice that, here, the differential operator is diagonal in Fourier 
space. This may not be the case with other boundary conditions requiring 
other basis functions, e.g. Chebyshev polynomials, but, in general, an 
exact representation of the differential operator in spectral space can still 
be found. 

In practice, the series is truncated beyond some maximal value N/2, so 
that is replaced by C-N12+1, see Fig. B.3(a, b). This truncation 
introduces some approximation forbidding us to resolve the dynamics of 
structures with wavelengths shorter than Xmin = 27r/kmaX = 2e/N, which 
can be understood as the result of sampling the solution on a regular lattice 
with spacing Ax = e/N. One may say that the method is of infinite order 
since the error term decreases exponentially with N, as exp ( - (N7r/C)2t) 
at given t, i.e. faster than any power of Ax. 

+ N / 2  
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0 NR 

Fig. B.3 (b) Same spectrum, truncated 
beyond N / 2 .  (c) Discrete Fourier transform of the function that has the same value as 
the solution at the collocation points. 

(a) Spectrum Ii&,,12 of a periodic function. 

In fact we have not yet said how integral (B.26) is computed. In practice 
the solution is only represented at the nodes of the lattice mentioned above 
and called the collocation points. This allows us to pass from continuous 
Fourier transforms to discrete ones.25 Let { z j  = jAz;  j = 0, . . . , N - 1) be 
the set of these points, (B.26) is then modified to read 

1 N - l  $2) = - N .  c vj exp ( - 2 x i g )  , 
J=O 

while the solution (B.25) is written as 

(B.29) 

(B.30) 

Notice that, depending on the computer program, the 1/N factor may be 
placed in (B.30) or in (B.29), or one can find a factor 1 / f i  in each. 

Relations (B.27, B.28) then read: 

= dm,l ) 
1 N - l  (m’ - m) j  
- c exp (2ai 

N j=o 

25A brief but nice introduction to discrete Fourier transforms is given by R.J. Higgins, 
“Fast Fourier transform: an introduction with some mini computer experiments,” Am. 
J. Physics 44 (1976) 766-773. For more information, of course consult [Gottlieb and 
Orsaag (1977)l or [Canuto et al. (1988)l. 
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It can be noticed that the series of Fourier coefficients d,($ is periodic 
with period N since: 

N-1 N-1 

d g i N  = v j  exp[-2ni(m + N)j/N] v j  exp(-2xi mj/N) = C:), 
j=O j=O 

(B.31) 
whereas d, is not periodic, as illustrated in Figure B.3. When v is a real 
quantity, it is also observed that not only Cf) is real (like do), but that d N I 2  (4 

is also real since one has ( 6 N / 2 )  (4 * = v-N/2 -(d) - - v-N/2+N ^(4 = C$2. The Fourier 

set of 2 real quantities, 6:) and d-N/2, (4 
transform thus changes the N real quantities v j ,  j = 0,. . . , N - 1, into a 

dg), m = 1,. . . , N/2 - 1, so that the total number of degrees of freedom 
describing the solution is preserved. 

The periodicity of the discrete spectrum induces what is known as the 
aliasing phenomenon: two Fourier modes distant by N in the spectrum 
are aliases of each other. This is another way of saying that, having no 
information on modes with m > Nf 2 ,  one cannot resolve structures with 
scales smaller than the lattice spacing. 

The important point is that we know how to go from v j  to 6:) and vice 
versa by means of “fast” algorithms with operation counts of order N log N 
and not N2 .  The Fast Fourier Transform (FFT) takes advantage of the 
standard trigonometric relations to organize the information Aow so as to 
minimize the number of arithmetic operations. Commercial softwares such 
as MATLAB are effective in computing FFTs when N is a power of two but 
also when N can be decomposed as N = 2n23n35n5 . . . with prime factors 
that are not too large. This possibility of a fast passage from physical to 
spectral space and back allows one to treat nonlinearities in a clever way 
by means of so-called pseudo-spectral methods, provided that aliasing is 
appropriately dealt with. 

The difficulty with nonlinearities is that products in physical space are 
transformed into convolution sums in spectral space, as exemplified here 
using quadratic nonlinearities, i.e. a product vw. For the exact solution 

and N/2 - 1 complex quantities 
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we have: 
+ca 

see Figure B.4(a). 
In the perspective of a truncation beyond f N / 2 ,  one should only keep 

the combinations such that m', m"l and m = m' + mr' belong to the 
considered interval (Fig. B.4(b), gray-shaded region). The computation of 
the Fourier transform of a formally quadratic term thus involves N sums 
with N 2  products each. A clever way to get around the rapid growth of the 
operation count with N is to take advantage of fast transforms to compute 
the product in physical space instead staying in the spectral space, with a 
reduction factor of order log(N)/N. 

Things are however not simple since one must take care of aliasing. If 
nothing special is done, the Fourier evaluation of a product computed in 
physical space contains spurious terms (Fig. B.4c). Let us indeed start 
with: 

next define : 

and expand the right hand side. We get: 

\ 1. 
j = O  m'=-N/2+1  m " = - N / 2 + l  / 

with (m',m") E [-N/2 + 1, N/2] and m = - N  + 2, .  . . , N .  Terms with 
m = m' + m" outside the band [-N/2 + 1, N/2] are sent back inside the 

which derives from the Fourier analysis of
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Fig. B.4 (a) The computation of the convolution involves terms such that m = m'+m". 
(b) For the truncated system only modes with lm'l < N / 2 ,  lm"I < N / 2 ,  Iml < N / 2  
should be kept (the gray-shaded region). (c) For the discrete transformation, aliasing 
send each term in the triangular gray-shaded corners in the corresponding region close 
to the center, which perturbs the result. 

band by the periodicity property (B.31) so that we get 

m' +m'I =m m'+m''=m&N 

with m = - N / 2  + 1, . . . , 0, . . . , N/2.  
decrease sufficiently fast as 

Iml increases, the correction due to the spurious terms may be negligible 
but it is preferable to get rid of them ("unaliased" scheme). A popular 
way to achieve this purpose is illustrated in Figure B.5. Starting with 
the spectrum of v and w with -N /2  + 1 5 m 5 N / 2  one turns to a 
spectrum with -MI2 + 1 5 m 5 M / 2  and M > N by adding zeroes 
for -M/2  + 1 5 m 5 -N/2  and N / 2  + 1 5 m 5 M / 2  (in the figure, 
all products in the band outside the interior square with side N cancel). 
Going back to the physical space one obtains an evaluation of v and w on a 
lattice with M regularly spaced points, finer than the original lattice. The 
product vw is then computed at the nodes of this lattice and next Fourier 
transformed. It remains to drop the Fourier coefficients outside interval 
[-N/2 + 1, N/2]  to get the unaliased spectrum of the product. The most 
dangerous non-zero term is with m' = m" = N/2.  Its alias, m' + m'' - M ,  
gets off the band if m' + mr' - M < -N/2  + 1,  thus if 3N/2 - 1 < M ,  so 
that one can take M = 3N/2  ("312 rule"). Despite manipulations implied 
by the size increase from N to M ,  the evaluation of convolutions involved 
in the treatment of nonlinear terms is freed from a systematic error. 

When the Fourier coefficients Gg) and 
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Fig. B.5 As in Figure B.4c, but now with M instead of N ,  the aliased terms belong to 
the gray-shaded triangular regions. In the regions with uniform shading, they arise from 
terms that are zero by construction (Iml outside the [ - N / 2  + 1, N / 2 ]  interval). The non- 
trivial aliased terms belong to hatched regions. Some still belong to the domain bounded 
by the thick line when M < 3N/2  (left), which is no longer the case for A4 > 3N/2  (right). 

B.3 Exercises 

B.3.1 25.llncation and round-off errors 

Consider the differential equation g v  = -v with initial condition v(0) = 1 
and exact solution v( t )  = exp(-t) and point out the role of the order of 
a numerical scheme on the precision of the numerical integration by com- 
paring the exact result at t = 1, v = l / e ,  to approximations obtained with 
first-order iterations (B.3) and (B.5), second-order schemes (B.6), (B.7), 
(B.8), (B.9, B.lO) and (B.11, B.12). In particular, show formally that the 
RK schemes are of order At'. 

Write down all the corresponding programs and determine the dis- 
tance ~ V N  - l/el between the exact solution and the numerical solution 
V N  obtained performing N successive iterations of each scheme with a 
time-interval At = 1/N. Use logarithmic scales to plot this distance as 
a function of At and to identify the regime dominated by truncation errors 
from that dominated by the accumulation of round-off errors. Test also the 
fourth-order Runge-Kutta scheme (B.13). 

B.3.2 Stability of multi-step schemes 

Consider the integration of &v = f (v) by means of second-order schemes 
(B.7) and (B.8) and assume that a solution {v,,n = 0,1 , .  . . }  is known. 
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Neighboring solutions {V,, n = 0,1, . . . } can be written as series of pertur- 
bations {un, n = 0,1, .  . . }, with u, = V ,  - v, governed by the linearized 
map gn = df/dvln. Show that the two numerical schemes respectively 
lead to: 

un+1= un + +At (3gn~n  - gn-Ian-1) 7 

U,+I = un-1+ 2At gnu,. 

(B.32) 
(B.33) 

Then write (B.32) and (B.33) as two-dimensional maps for the two variables 
un and v, = u,-1 and compute their eigenvalues. Determine which is the 
physical eigenvalue Xphys controlling the solution to  the linearized problem 
$u = g(v)u, where v is the solution to the primitive problem $v = f (v) ,  
and which is the eigenvalue A,,, corresponding to the spurious numerical 
mode. The instability takes place when lAnuml > 1. Assuming that 191 is 
bounded by some gmax for the values of v of interest, discuss the stability 
properties of the two schemes. 

B.3.3 

Derive second-order consistent finite difference approximations to the linear 
part of the Swift-Hohenberg (SH) model: 

Finite difference schemes for the SH model 

a,v = Tv - (axx + 1)2v 5 (T - 1). - dxxxxv - 2dxxv. (B.34) 

Consider explicit-Euler, implicit-Euler and Crank-Nicholson temporal 
schemes and use (B.18) to discretize the fourth-order derivative. Study 
their stability by introducing discrete Fourier normal modes analogous to  
those leading to conditions (B.23) and (B.24). 

Write down quasi-linearized Crank-Nicholson schemes for the original 
SH model, i.e. (B.34) with nonlinear term N(v)  = -v3 added to its r.h.s. 
by expanding the nonlinear terms N(v)  as: 

Consider also the modified SH model completed by a term N(v) = -vdxv 
on the r.h.s. ( i e .  an advection term vd,v on its 1.h.s). 
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B.4 Case studies 

The working sessions are organized around two themes: ODEs and PDEs. 
To deal with ODEs, we choose the simplest fourth-order Runge-Kutta 
scheme (B.13) and apply it to dynamical systems with few degrees of free- 
dom, the periodically forced pendulum (two-dimensional, non-autonomous, 
sB.4.1) and the Lorenz model (three-dimensional, autonomous, fjB.4.2). 
Other examples are illustrated but not studied in detail, the Rossler system, 
jB.4.3.1, and the Chua circuit, sB.4.3.2. All this can serve to materialize 
concepts introduced in Chapters 2 and 4. 

Problems arising in EDPs are illustrated using two variants of the SH 
model introduced in some exercises of Chapters 3 and 4, and considered in 
exercise B.3.3 above. They may help to better understand pattern forma- 
tion studied in Chapter 5. The approach can be extended to illustrate the 
generation of dissipative waves. Boundary conditions of Neumann-Dirichlet 
type are better adapted to finite difference methods and will mainly serve 
us to  illustrate numerical stability problems. Periodic boundary conditions 
are ides1 for a first approach of spectral methods used to  illustrate space- 
time chaotic regimes. Computational Fluid Dynamics (CFD) will be left 
to  specialists. 

B.4.1 ODEs 1: Forced pendulum 

We consider a pendulum submitted to a sinusoidal external force: 

$e + q-&e + sin(e) = f cos(wt) (B.35) 

where B is the angle that the pendulum makes with the vertical, q is the 
damping coefficient, f is the intensity of the forcing and w its angular 
frequency. 

Write down a second-order Runge-Kutta program (B.11, B.12) for 
(B.35) written as a system of two first-order ODEs for 0 and 4 = 4, taking 
care of the explicit time dependence introduced by the forcing. Then turn 
to a fourth-order scheme (B.13). 
1) Use that routine to  draw the projection of the trajectories in the plane 
(0,4). Choose for example w = f ,  r] = 0.5 and f variable in the range 
[0.5,3]. Consider in particular cases f = 1.07 and 1.15. See Figure B.6. 
2) Perform a stroboscopic analysis (PoincarC section) of the system at the 
forcing period T = 21r/w and observe the attractor in particular for the 
previous parameter values mentioned. See Figure B.7, left. 
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Fig. B.6 Forced pendulum for w = 2/3, f = 1.15. Top-left: Time series of 0. Top-right: 
Time series of 0 z 4. Bottom-left: q5 as a function of 0. Bottom-right: Three-dimensional 
representation in the space ( t ,O ,q$ ) ,  +axis vertical, &axis to the left, t-axis to  the right. 

3) When the intensity of the forcing f increases, one finds parameter ranges 
where the attractor is periodic and other ranges where it is chaotic. Draw 
the bifurcation diagram obtained by varying f by recording the values 
reached by variables q5 on the surface of section (for every At = T), at 
given w E [w l ,  wz],  for a sufficiently long trajectory and after having elimi- 
nated points corresponding to the transient. See Figure B.7, right. 

For all these simulations, it will be interesting to choose the time step 
At such that At = T / N  so that a full oscillation of the forcing corresponds 
exactly to an integer number of time steps. N will be sufficiently large, 
so that one has At << T and At << TO = 2 ~ ,  the natural period of the 
pendulum in the vicinity of its equilibrium position. A detailed study would 
show that the value of the bifurcation points is sensitive to the numerical 
resolution (compare results with the 2nd-order and 4th-order schemes). 
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Fig. B.7 Left: Poincard section of the forced pendulum for f = 1.15. Right: Bifurca- 
tion diagram for f E [1,1.25] obtained when increasing f (the result would be slightly 
different when decreasing f because some bifurcations are sub-critical, different attrac- 
tors may coexist in some limited ranges of the parameter f ,  and hysteresis takes place 
correspondingly). 

B.4.2 ODES 2: Lorenz model 

In Chapter 3, $3.2.1 we introduced a simplified model of nonlinear convec- 
tion initially proposed by E.N. Lorenz, cf. Note 5, p. 88 rewritten here for 
convenience using standard notations: 

$x = cT(Y - X ) ,  
$ Y = - X Z + r X - Y ,  
d Z  = XY - bZ . d t  

(B.36) 
(B.37) 
(B.38) 

1) Display the solution in the three-dimensional space (X, Y, Z), draw the 
time series of Z and study the attractor obtained for the values initially 
chosen by Lorenz: u = 10, b = 8/3 and T = 28 (Figure B.8). 

Then vary T on the interval T E [145,170], a range where the chaotic 
attractor decays into a periodic cycle through a subharmonic cascade and 
returns to chaos by intermittency (Figures B.9, and B.lO). 

2) Determine the Lorenz map defined as Zk+l = j(Zk) where 2, is 
defined by the condition that Z( t )  goes through a maximum, i .e .  &Z = 0 
with $2 < 0. To do so, at each iteration check the value of D, = 
X,Y, - bZ,, identify intervals [t,, tn+l = t ,  + At] where D, changes sign 
from positive to negative. By linear interpolation, find the time 7, where 
the change of sign takes place. Restarting from the result at t,, perform 
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Fig. B.8 
Xo = 6 = YO, 20 = 27. Right: Time series Z ( t )  in the same conditions. 

Left: The Lorena attractor for r = 28 with At = 0.01. Initial conditions 

Fig. B.9 Left: “Intermittent” Lorenz attractor for r = 166.5 with At = 0.01. Initial 
conditions: Xo = 12 = YO, 20 = 165.5. Lines joining successive points are not drawn to 
better point out the existence of a “ghost” trajectory recurrently visited by the system. 
Right: Limit cycle for T = 166 with At = 0.01. Initial conditions: X o  = 12 = YO, 
20 = 165. The cycle is reached after a transient that is not represented here. 

a single Runge-Kutta step with time interval 7, - t ,  to  obtain the set 
of coordinates of the corresponding point. Continue the simulation from 
tn+l determined previously. The Lorenz map for T = 28 is displayed in 
Figure B . l l .  This method to obtain PoincarC maps with essentially the 
same accuracy as the integration itself was proposed by Hknon.26 The same 
strategy can thus be used for PoincarC sections other than that defined by 
the condition D = 0. A popular one in early studies of the Lorenz model 
was the surface defined by 2 = r - 1 and crossed from above (for example). 
3) Construct a bifurcation diagram for the Lorenz model by plotting Z,+ - 
T + 1 as a function of T (Figure B.12). Sets of isolated points at given 

“M. HCnon, “On the numerical computation of Poincare maps,” Physica D 5 (1982) 
412-414. 
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Fig. B.10 
for r = 166.5, intermittent regime. 

Left: Z ( t )  for T = 166, periodic regime after a brief transient. Right: Z ( t )  

T correspond to  periodic behavior, continuous rows of inhomogeneously 
distributed points to chaotic behavior. The bifurcation around T = 320 is 
not a period doubling but a symmetry breaking bifurcation as shown by 
drawing trajectories in three dimensions before and after the bifurcation. 

1 

4 

ri 
-I- 

N" 

Fig. B.ll Lorena map Z k + l  = f(Zk) for T = 28. 
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Fig. B.12 Bifurcation diagram of the Lorenz model. 

33.4.3 ODES 3: Rossler and Chua models 

B.4.3.1 Rossler model 

Another simple three-dimensional autonomous dynamical system with a 
strange attractor is the Rossler 

-&x = -Y - 2 ,  

& Y = X + a Y ,  

&2 = b +  (X - C ) Z .  

Notice that its definition is even simpler than that of the Lorenz model 
since it has a single nonlinear quadratic term and no obvious symmetry. 
The dynamics has two ingredients: approximately periodic behavior at 
some distance from an unstable spiral fixed point and fast excursions away 
from the ( X ,  Y)-plane. It displays periodic and chaotic regimes. Typical 
trajectories are shown in Figure B.13. Use the same tools as for the Lorenz 
model to study its bifurcation diagram as a function of c E [l, 201. 

270.E.  Rossler, “An equation for continuous chaos,” Physics Lett. A 57 (1976) 397- 
398. Also, “Continuous chaos - Four prototype equations,” Ann. NY Acad. Sc. 316 
(1979) 376-392. See also: J.C. Sprott, “Simplest dissipative chaotic flows,” Physics Lett. 
A 228 271-274. 

model.27
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Fig. B.13 The Rossler attractor for a = 0.1, b = 0.1. Top-left: Limit cycle for c = 12. 
Top-right: Limit cycle after a period doubling for c = 12.7. Bottom: Chaotic attractor 
beyond the accumulation point of the subharmonic cascade for c = 13.6. 

B.4.3.2 Chua circuit 

The Chua circuit is the last example proposed here. It is defined as a 
prototype of analogical systems displaying chaos that can be implemented 
as electronic circuits with good accuracy. It is also three-dimensional and 
autonomous. Its main properties are reviewed in a collective work edited 
by R.N. Madan.28 It reads 

&x = a(Y - x - F ( X ) ) ,  
& Y = X - Y + Z ,  
-&Z = -BY. 

where F ( X )  is an odd function of X that is linear by part: F ( X )  = m l X  + 
$(mo - m l ) ( l X  + 11 - JX - 1)). The “double scroll” attractor is displayed 
in Figure B.14. Establish the bifurcation diagram of the Chua system from 
a Lorenz map of variable 2, with p E [ l ,  251 and other parameters fixed as 
in the caption of Figure B.14. Display other typical attractors. 
- 

28R.N. Madan, Ed., Chua’s circuit: a paradigm for chaos (World Scientific, 1993). 
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Fig. B.14 
ma = -817, mi = -517. 

Two views of the Chua “double scroll” attractor for a = 9, p = 10017, 

B.4.4 

Finite difference methods are illustrated here using the original variant 
of the Swift-Hohenberg model with a cubic nonlinear term in one space 
dimension: 

PDEs 1: SH model, f in i te  differences 

atv = TW - (azz + 1 ) Z V  - ?J3 (B.39) 

with boundary conditions 

w(0) = .(a) = &V(O) = &v(C) = 0 (B.40) 

The two parameters are T and C. The model derives from a potential and 
is a good tool to study the formation of cellular structures in simple cases. 

B.4.4.1 Explicit scheme 

Develop the simplest possible, first order in time, second order in space, 
explicit numerical scheme. To maintain second order consistency at the 
boundaries, add fictitious exterior points enslaved to the first inner points 
as explained in sB.2.1.2. Observe how the numerical instability develops 
when the condition on At obtained in Exercise B.3.3, namely At < Ax4/8 
for Ax small, is violated. 

The effect of the space resolution is shown in Figure B.15. In order to 
reach the finest grid, the time step should be considerably reduced in order 
to avoid the numerical instability illustrated in Figure B.16. Notice that 
in certain cases depending on initial conditions, the nonlinear term may be 
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I I I 

Fig. B.15 Explicit-Euler numerical simulation of the Swift-Hohenberg model with T = 
0.3; random initial conditions with amplitude 0.01; solution at tf = 300. Left: L = 64, 
n = 64, Ax = 1.0, At = 0.1. Right: L = 64, la = 128, Ax = 0.5, At = 0.008, numerically 
stable. 
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Fig. B.16 Numerical instability of the Swift-Hohenberg model with l = 64, n = 128, 
Az = 0.5, At = 0.01, T = 0.3, random initial conditions with amplitude 0.01. Left: 
State at iteration #20. Right: The same numerical instability at three successive time 
steps, iterations #18 (dots), #19 (dashes), and #20 (solid line). 

sufficiently strong to prevent the numerical divergence but the so-obtained 
solution is not physical in that it has a space period very different from the 
expected one E A, = 27r (in practice much shorter). 

B.4.4.2 Implicit scheme 

Develop an implicit Euler scheme, first order in time, second order in space, 
by solving the linear problem as explained in sB.2.1.4. Take ! = 64 (z 
lOA,) in order to  deal with a sufficiently extended system. The number of 
grid points N will be varied to check the effect of the numerical resolution 
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Fig. B.17 Swift-Hohenberg model with t = 64, At = 0.1, T = 0.3, random initial 
conditions with amplitude 0.01; solution at t f  = 300. (b) 
n = 128, Ax = 0.5. (c) n = 256, Ax = 0.25. (d) zoom on the left boundary showing the 
accuracy of the numerical account of boundary condition &w = 0. 

(a) n = 64, Ax = 1.0. 

(Figure B.17). Second order schemes can also be developed, either of the 
quasi-linearized Crank-Nicholson type (Exercise B.3.3) or according to an 
Adams-Bashford scheme. 

Since numerical stability problems are dismissed, focus on the physics 
of the formation of the cellular structure. Identify the initial phase of 
exponential growth of perturbations selected by the linear dynamics, then 
the saturation phase where nonlinearities come in the foreground, and the 
final stage where most effects compensate so that a slow residual motion 
(phase diffusion) towards the final time-independent state is observed. 

B.4.5 

Consider now the modified Swift-Hohenberg model: 

PDEs 2: SH model,  pseudo-spectral method 

a,v + V&V = [T - (azz + 1 ) 2 ]  0 ,  (B.41) 
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with periodic boundary conditions at the ends of an interval of length t .  
This model, which does not derive from a potential and thus can have 
unsteady behavior, is particularly appropriate to study the growth of space- 
time chaos in cellular structures. 

Derive a Fourier pseudo-spectral algorithm implementing the model tak- 
ing advantage of the fact that v a,v = i a, (v'), according to the scheme: 

h 

++ Lv, = smGm = (T - (k; - 1)2) Q, 
h A 

h 

I-+ V ( X )  C )  ;V(X)' C )  ;v', ++ vazv, ;ilCmv2m =Nm Qrn { 
where fi, must be computed as discussed earlier in order to avoid aliasing 
errors. Next choose a time evolution scheme (SB.1). Here the linear part 
can be integrated exactly since it is diagonal in Fourier space. For the 
nonlinear part a second order Adams-Bashford scheme can be chosen: The 
final result is 

cn+l,m = exp(srnAt)Qn,m + [ g$n,rn - z ~ n - l , r n ]  1 -  . 

When T = 1 the Swift-Hohenberg model happens to be a variant of the 
Kuramoto-Sivashinsky equation. In a slightly different form: 

atv + i(azv)2 + a , ,~  -t a x z x x ~  = o , (B.42) 

this equation appears in the treatment of turbulent interface propagation, 
e.g. flame fronts, as shown in Figure B.18. 

20 40 60 80 100 120 

Fig. B.18 
interval AT = 1 between two successive snapshots. 

Kuramoto-Sivashinsky equation for .t = 64, n = 128, Ax = 0.5, with a time 
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