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ULB-TH/02-08hep-th/0203096A Brief Course in Spontaneous Symmetry BreakingI. The Paleoliti
 Age1Robert BroutServi
e de Physique Th�eoriqueUniversit�e Libre de Bruxelles, Campus Plaine, C.P.225Boulevard du Triomphe, B-1050 Bruxelles, BelgiumAbstra
tThe physi
al word is marked by the phenomenom of spontaneous bro-ken symmetry (SBS) i.e. where the state of a system is assymmetri
with respe
t to the symmetry prin
iples that govern its dynami
s. Formaterial systems this is not surprising sin
e more often than not ener-geti
 
onsiderations di
tate that the ground state or low lying ex
itedstates of many body system be
ome ordered i.e. a 
olle
tive variable,su
h as magnetization or the Fourier transform of the density of asolid, pi
ks up expe
tation values whi
h otherwise would vanish byvirtue of the dynami
al symmetry(isotropy or translational symmetryin the aforementioned examples). More surprising was the dis
overyof the role of SBS in des
ribing the va
uum or low lyng ex
itations ofa quantum �eld theory. First 
ame spontaneously broken 
hiral sym-metry whi
h was then applied to soft pion physi
s. When 
ombinedwith 
urrent algebra, this �eld dominated parti
le physi
s in the 60's.Then 
ame the appli
ation of the notion of SBS to situations wherethe symmetry is lo
ally implemented by gauge �elds. In that 
ase the
on
ept of order be
omes more subtle. This development lead the wayto ele
troweak uni�
ation and it remains one of the prin
ipal tools ofthe theorist in the quest for physi
s beyond the standard model. Thisbrief review is intended to span the history of SBS with emphasis on
on
eptual rather than quantitative 
ontent. It is a written version ofle
tures of R.Brout on the \Paleolithi
 Age" and on \Modern Times"by F.Englert, i.e. respe
tively without and with gauge �elds.1Invited talks presented at the 2001 Corfu Summer Institute on Elementary Parti
lePhysi
s

http://arXiv.org/abs/hep-th/0203096


I. The Early An
estors (van der Waals and Weiss)[1℄At the beginning of the 20th 
entury, van der Waals proposed the idea of a\mole
ular �eld" in order to explain the deviation of the equation of stateof gases from ideality and from there to 
ondensation. (What this has todo with SBS will emerge subsequently.) His idea was to 
onsider that ea
hmole
ule was surrounded by others whi
h intera
t with it. Thus its energyis Vmol = �Z d3r0v(r � r0)� � ; (1)where v(r) is the intermole
ular potential, taken to be attra
tive, in vander Waals's eyes, for r > r0; � is the mean density. The \mole
ular �eldapproximation" (MFA) is to negle
t the 
orrelation of density at r0 to thepresen
e of a mole
ule at r. Though this negle
t does some injusti
e to thesituation, we have learnt over the years that, in the large, the essential physi
sis respe
ted. One ex
eption is the quantitative theory of 
riti
al phenomena,so beautifully exe
uted by Wilson, Fisher and others. However, throughoutthis review we shall work in MFA sin
e the main progress whi
h has beenmade in analyzing the order en
ountered in a great variety situations has beenin MFA. (On
e more a notable ex
eption is in 2 dimensional systems whereintopologi
al 
onsiderations are often vital). In general as the dimensionalityin
reases so does the reliability of MFA and for d > 4 , it be
omes reliablein all thermodynami
 
onditions (In this review we shall not tou
h uponlatti
e gauge theory where dimensionality plays a di�erent role from themore 
onventional many body and �eld theoreti
 systems treated here. Thus
on�nement will not be in
luded).From Eq.(1), van der Waals dedu
ed the existen
e of an internal pressure,pint given by pint = ��Vmol�v = �2�Vmol�� = �2ev(o) ; (2)where ev(o) is the Fourier transform of v(r) at q = 0. The total pressure is thusp+ pint; p is the external pressure. Under normal 
onditions (p �= 1atm andT �= room temperature) a typi
al liquid exhibits pint = 103atm, whi
h givesone an idea of just how essential are the intermole
ular for
es in maintainingthe 
ohesion of the liquid, as against a vapor where pint more often than notis negligible away from 
riti
al 
onditions.1



Whereas in an ideal gas has p = kT=v (v being the volume per mole
ule),van der Waals proposed that in a general 
uid one should repla
e v by the\free volume", that whi
h is uno

upied by the mole
ule itself. Thus heset ptotal = (kT=v � b) where b is volume o

upied by stu� within a singlemole
ule. He thus setpTot = p+ �2ev(o) = kT [��1 � b℄�1 ; (3)the famous van der Waals equation. This equation of state has been quali-tatively su

essful but fails quantitatively near the 
riti
al point, as is to beexpe
ted. In Fig.1 we sket
h s
hemati
ally a few isotherms
D
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Fig. 1Only vapor exists for all p on
e T � T (
), but for T < T (
), along,for example, isotherm A, the system is in the liquid (vapor) phase forp > p(e) ( p < p(e) ) respe
tively. At p = p(e), the system has a
hoi
e between liquid and vapor. They 
an 
oexist. It is this 
hoi
e,seemingly arbitrary, whi
h in this 
ase is SBS. We shortly bring more
larity into this question, but for the moment we ask the reader tobear in mind the 
oexisten
e 
urve D, whi
h on the left side marksthe lo
us of where liquid isotherms begin as the pressure in
reases andon the right where vapor isotherms take over as the pressure de
reases.Whilst van der Waals was busy in Holland explaining why it rains or shines,Weiss in Fran
e was proposing a similar me
hanism to explain ferromag-netism. Like van der Waals, he was toying with this new fangled idea of the2



atomi
 hypothesis. Ea
h atom was endowed with a magneti
 moment andferromagnetism was the alignement of these elementary entities o

asionedby the existen
e of an external magneti
 �eld. The only trouble was thatthese �elds were far too small to maintain the alignement at room tempera-ture, owing to their thermal agitation. Weiss therefore proposed that therewas an internal magneti
 �eld proportional to the magnetization itself. Thus~HTot = ~Hext + ~Hint = ~Hext + � ~M ; (4)where M is the magnetization per atom.The idea was mat
hed neatly with van der Waals internal pressure in the 20'swhen Heisenberg proposed his ex
hange me
hanism wherein there was anenergy due to spin-spin intera
tions brought about by interatomi
 
oulombi
for
es (like those whi
h were invoked to explain 
hemi
al binding or Hund'srule for atoms). Thus Heisenberg proposed an intera
tionVspin�spin = �v(r � r0)~S(r):~S(r0) ; (5)~S(r) being the spin of the atom lo
ated at r, hen
e proportional to itsmagneti
 moment. At typi
al interatomi
 distan
es in a solid, v(r) 
ouldbe estimated to be something less than 
hemi
al bond energies, rather likeO(10�1ev) = 103 K. The v in Eq.(5) is not be 
onfused with the v of Eq.(1).It is the spin-spin part. This advan
e lent more 
reden
e to Weiss's sugges-tion sin
e when the idea was �rst proposed, the energy one 
ould 
ome by wasin dipole-dipole magneti
 intera
tions and these were too small by 3 ordersof magnitude (Typi
ally ferromagneti
 transitions o

ur at O(103K) ).Thus Heisenberg proposed to furnish Weiss's hypothesis with a model whi
h
ontained spin-spin intera
tions in the formV = �12Xi;j vij ~Si:~Sj ; (6)~Si being the spin on site i. This implies the existen
e of an internal �eldgiven at site i by ~Hi =Xj vij ~Sj : (7)MFA is then the analog of van der Waals' approximation. One negle
ts the
orrelation of ~Sj to ~Si and approximatesh ~Hii = ~Hint =Xj vijh~Sji =Xj vijh ~M i ; (8)3



where we have used translational symmetry so that h~Sji is site independent.We have set the elementary magneton of ea
h atom equal to unity so thatspin and magneti
 momentmean the same thing. ThenH has the dimensionsof energy.Thus out�tted,Weiss's mole
ular �eld be
omes (with ev(q) = Fourier trans-form of vij) ~Hmol = ~H + ev(o) ~M : (9)From statisti
al me
hani
s one may then 
al
ulate h ~M i self 
onsistentlyh ~M i = tr exp h� ~Hmol � ~Si ~Str exp h� ~Hmol � ~Si ; � = (1=kT ) : (10)II. Broken Dis
rete SymmetryIn the next few paragraphs we shall develop the idea using the Ising model(proposed by Heisenberg to his student as a thesis proje
t). We shall seethat this model is the prototype of a broken dis
rete symmetry, as opposedto a 
ontinuous symmetry wherein S is a ve
tor.One treats S as a 2-valued fun
tion, taking on values �1. ThenhMi = exp�Hmol � exp��Hmolexp�Hmol + exp��Hmol = tanh �Hmol= tanh � [H + ev(o)hMi℄ (11)a self 
onsistent equation for hMi. In Eq.(11) H designates the external �eld.To see the 
onsequen
es of Eq.(11) set H = 0. It is then seen that in additionto hMi = 0 two additional solutions arise of equal and opposite values when�ev(o) > 1 sin
e the slope of tanh x at x = 0 ex
eeds unity when x > 1. Theseare the solutions whi
h en
ode spontaneous magnetization below the 
riti
altemperature ( kT < kT
 where kT
 = ev(o) ). We shall shortly see that theseare stable solutions whereas hMi = 0 is unstable for T < T
. This is SBS.4
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Fig. 3In Fig.2, 
urve A is the isotherm for T < T
, B for T = T
 and C for T > T
.The values of hMi at H = 0 are sket
hed in Fig.3.Conta
t with the van der Waals theory is made as follows. De�ne�i = 12(1 + �i) : (12)Thus � = 0 means absen
e of a parti
le on a site and � = 1 means itspresen
e. Then hMi is mean density and H is like pressure. Turning Fig.2on its side and tinkering with some thermodynami
 identities 
onverts Fig.2into Fig.1 . Fig.3 looked at on its side is the 
oexisten
e 
urve of Fig.1 . Inthis 
ase SBS is the 
hoi
e of whether sites are o

upied by parti
les or holes.It has re
ently been proven by Fisher that the analogy between liquid-vapor
ondensation in the 
ase of 
ontinuum spa
e (as opposed to the latti
e) andferromagnetism runs very deeply, even to the most minute details of their
riti
al behaviour.We shall 
ontinue with dis
rete SBS as exempli�ed by the Ising model byderiving these results from an important 
onstru
tion 
alled the e�e
tivepotential, a method developed by Bragg and Williams in the early 30's (inanother 
onne
tion, but this is irrelevant).The partition fun
tion isZ = tr exp "�2 X vij�i�j + �X�iHi# : (13)For the non
e take Hi independent of i. The tra
e is over all 2N spin states.5



Carry it out pie
emealM by M where M now means the total spinM =X�i = Nup �Ndown ; (14)so that Z =XM e�MHtrM exp "�2 X vij�i�j# ; (15)where trM means summing over the � N(N+M)=2� states 
hara
terized by M.Though one 
an 
arry through the 
onstru
tion in all rigor we shall onlydevelop the theory here in MFA in order to bring out the essential ideas. Itis the essen
e of MFA to negle
t inter-spin 
orrelations. Thus12Xi;j vijh�i�jiMFA = 12Xi;j vijh�iih�ji (16)= 12Xi;j vijh�i2M ; (17)where we used translational symmetry to set h�ii independent of site i. Thesymbol h�iM means the average of a spin in the subensemble 
hara
terizedby M i.e. h�iM = 1N Xi h�iiM = MN = m : (18)Thus in MFA one hasEnergy = �12Xi;j vij�i�j �HX �i= �12N ev(0)m2 �NHm : (19)Thus ZM = 
(M)e��E(M) ; (20)where 
(M) =  N(N +M)=2! ; (21)when
elnZM = ln
(M) � �E(M)ln
(M) = N ln 2� N2 [(1 +m) ln(1 +m) + (1�m) ln(1�m)℄ ; (22)6



where we have used Stirling's approximation and Eq (18). lnZM has a sharpmaximum at N = Mm� wherem� = tanh [�ev(o)m� +H℄ ; (23)the relative width of whi
h is O(1=pN ) so that in the thermodynami
 limit(i.e. limN!1 lnZ ) one has lnZ = ln(Nm�) : (24)Sin
e lnZ = ��[Helmholtz free energy℄, we identify ln
(Nm�) with theentropy (be
ause the energy has already been identi�ed in Eq (19) ). Overthe years we have 
ome to 
all (�1=N) lnZ the e�e
tive potential and thishas be
ome the standard way to approa
h SBS in �eld theory (sin
e Z(M)is the fun
tional integral over 
on�gurations of exp (�S) where S is theeu
ledeanized a
tion; in our 
ase the fun
tional integral is the dis
rete sumover 2N 
on�gurations).One gets a �rst glimpse into the �eld formulation by looking at Veff forsmall mVeff = � lim( 1N ) lnZN = �12�ev(o)m2 � �mH + 12m2 + 112m4 + : : := 12(1� �ev(o))m2 + 112m4 � �mH ; (25)m is to be 
onsidered a �eld taking on a 
ontinuum of values in the N !1 limit and from now on we shall use the symbols m and ' (for �eld )inter
hangeably. In Eq.(25) the irrelevant 
onstant N ln 2 has been dropped.From Eq.(25) we have, Veff = 12�2'2 + �'4 � 'H ; (26)where �2 = (1 � �ev(o)) = (1 � (T
=T )). It is seen that �2 
hanges sign atT = T
 , be
oming negative for T < T
. Veff is sket
hed in Fig.47
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Fig. 4A: T > T
 ;H = 0 B: T > T
 ;H > 0 C: T < T
 ;H = 0 D:T < T
 ;H > 0 E: T = T
 ;H = 0These pi
tures essentially 
ontain the whole story and nothing more.For 2 < d � 4, small modi�
ations exist in the 
riti
al region de�ned by���1� T
T ��� = O (a few per
ent) and H=kT a few per
ent. Otherwise MFA hasquantitative signi�
an
e, and always qualitative signi�
an
e. For example ford = 3 one has �2 � jT � T
j0:62 in the 
riti
al region at H = 0 rather than�2 � jT � T
j0:5. The latter estimate be
omes valid on
e ���1 � T
T ��� > 10%.The next se
tion will a�ord further insight into the whys and wherefores ofthese fa
ts.III. Correlation Fun
tion (Green's Fun
tion)Consider H = 0 and T = T
 + � where � is small and positive. As � ! 0,long range order 
omes into being i.e. if one �xes the orientation of a singlespin out of N , then all N get oriented in the same dire
tion. It then mustbe expe
ted that for � > 0, there must be a pre
ursor of this phenomenomi.e. long range order should be heralded in by 
orrelations among spins over8



in
reasingly longer range as � ! 0. The theory of this was worked out inthe �rst de
ades of the 20th 
entury by Ornstein-Zernike, by Smolo
howskiand by Einstein, the interest being the tremendous enhan
ement of lights
attering by 
riti
al 
u
tuations (i.e. long range 
orrelations) giving rise to
riti
al opales
en
e. In our 
ase the 
ross se
tion is proportional to hj�qj2iwhere �~q =Xi �i exp hi~q � ~Rii ; (27)hen
e to the Fourier transform h�i�ji, therefore at small q sensitive to longrange 
orrelations.A �rst shot at the problem is 
ontained in a rather obvious generalization ofMFA. Turn on an external �eld whi
h varies from site to siteHamiltonian = H = �12X vij�i�j �X�iHiZ = tre��H : (28)Then h�ii = � lnZ��Hi ; (29)h�i�ji � h�iih�ji = �h�ii��Hj = �2 lnZ��Hi��Hj : (30)For T > T
 and in limHi!0, all i, Eq.(30) allows to 
ompute the (
onne
ted)
orrelation fun
tion (Green's fun
tion in �eld theory). We shall approximatethis by use of MFA in this extended lo
al sense.The �eld on �i is Pj vij�j + Hi. Thus for small Hi the average of �i forT > T
 is h�ii = tanh �(X vijh�ji+Hi)! � hX vijh�ji +Hii : (31)The essential approximation that has been made is that h�ji is 
al
ulatedwith a probability distribution that is independent of the orientation of �i .This is not exa
t sin
e the distributions di�er a

ording to �i = +1 or �i =�1. This negle
t of 
orrelation in the present 
ontext is then a sort of lo
alMFA. Taking a derivative of Eq.(31) with respe
t of to Hk and using Eq (30)gives h�i�ki = Æik + �X vijh�j�ki : (32)9



This is like an integral equation for Gij(� h�i�ji). It may be solved byFourier transform. Denoting by G(q) and ev(q)G(q) the Fourier transforms ofGij and vij, one has G(q) = 1 + �ev(q)G(q) ; (33)G(q) = 11� �ev(q) : (34)An intera
tion whi
h is ferromagneti
 over its whole range has v(~Ri� ~Rj) > 0for all distan
es ���~Ri � ~Rj���. Therefore ev(q) is maximal at q = 0 and has theform ev(q) = ev(0) � �q2 ; (35)valid small q (qa� 1 where a = latti
e distan
e).Thus G(q) = 1(1 � �ev(0)) + �q2 ' 1�2 + �q2 ; (36)and we see that the 
urvature of the e�e
tive potential at its minimum (forT > T
 and H = 0 ) is equal to the (mass)2 in G(q). In this way one seesthat for small values of [(T � T
)=T
℄ with (T � T
) > 0 and for small valuesof (H=kT
) the spin system is governed by an e�e
tive a
tion density equalto 12(r')2 + (�2=2)'2 + �'4 + 'H ; (37)with �2 � (T � T
) and � > 0. We have dropped irrelevant fa
tors of O(1)whi
h may be absorbed into the de�nition of ', � and �. The important pointis that �2 ! 0 as T ! T
 and one is 
onfronted with an infra red problemat T = T
 , H = 0. This gives rise to the theory of 
riti
al phenomenawhi
h results in a dynami
al theory of renormalization. In parti
ular massrenormalization shifts �2 to� (T�T
)0:62 for d = 3. This is of little interest tous in this review whi
h is an exploration of the physi
al me
hanism behindSBS. Nevertheless it is interesting to understand how it is that there is athreshold value of d (d > 4) for whi
h these renormalization e�e
ts be
omeinsigni�
ant.From Eq.(32), one sees that G(Ri �Rj) is built out of 
hains of the intera
-tions vkl (Fig.5). 10



R
R

i

•

•


•
•

•
•


•


•

•


j

Fig. 5The sum of all these random walks isGij . One 
an re
ast these 
onsiderationsso as to take into a

ount the fa
t that in the 
orre
t rule for ea
h walk, agiven intermediate spin is visited one and only one time. To this must beadded walks whi
h do have interse
tions. These have di�erent weights. One
an then 
onvert the problem into a random walk without restri
tion givingrise to our G(q) plus 
orre
tions due to interse
tions (there has been someoversimpli�
ation but without injusti
e to the essential physi
s). It is afa
t, (and one 
an show it from the �eld theory itself) that for d > 4, theprobability of self interse
tion be
omes so small that it has no e�e
t on theGreen's fun
tions. There is too mu
h spa
e around and that is why MFAbe
omes exa
t (ex
ept for irrelevant fa
tors of O(1) ) for d > 4.Now let us see what happens T < T
. Then h�ii = m and the Green'sfun
tion is Gij = h�i�ji � h�iih�j i = h�i�ji �m2 : (38)One 
an go through some formalism to establish the rules for how to 
onstru
tthe random walk in this 
ase. SuÆ
e it to say that, on
e again, one sumson random walks in MFA, but one must weight ea
h vertex with the fa
tor(1 � m2). To understand this physi
ally, note that when one asks for thein�nitesimal variation of h�ii due to a variation of Hi , the �eld on �i , then�h�ii��Hi = ���Hi [tanh �Hi℄Hi=H0i = 1�m2(H0i ) : (39)Here H0i is the value of the �eld on �i before the variation, be it an externalor internal �eld!Sin
e in the 
hain of intera
tions, an intermediate spin, say k , is submittedto a variation of the �eld Hk upon it, 
oming from the link whi
h pre
edes it,(where one 
onsiders the 
hain originating at i and terminating at j). Theresponse of �k to this variation is equal to �vlk(1 �m2) whi
h is taken tobe small. 11



The net result is for T < T
 , H = 0G(q) = 1 �m21 � (1 �m2)�ev(q) ; (40)whi
h for small q reads G(q) = 1�02 � �q2 ; (41)where �02 = 1(1�m2)�1 � �ev(0) : (42)In this expression m is the spontaneous magnetization i.e.m = tanh [�ev(0)m℄ : (43)From Eq.(43) and Eq.(42) it is very easy to show that �02 > 0 and in fa
t forsmall (T
 � T )=T
 one has �02 � (T
 � T ).Thus the wild infra-red 
u
tuations en
ountered as T ! T
 + � with � > 0be
ome quen
hed through the existen
e of m for T < T
 . One easily showsthat �02 is the 
urvature of Veff in Fig.4C at one of the minima.One de�nes the sus
eptibility,� , as (�m=�H)jH=0 and in both 
ases ( (T�T
)positive or negative) one has � � jT � T
j�1 .IV. Broken Continuous SymmetryRather than the spin taking on dis
rete values like �i = �1, one 
an nowstudy a spin whi
h is a ve
tor. This 
an be done 
lassi
ally by pla
ing a unitve
tor on ea
h latti
e site. Then the tra
e that is used to 
al
ulate Z ish = Z Y d~Si Æ(X ~S2i � 1) ; (44)where ~Si is an n dimensional ve
tor in some internal spa
e. Or one 
an doa quantum 
al
ulation where ~Si is an operator and the tra
e is the sum overthe eigenvalues of ~Si in some group representation. For example if ~Si = ~�i(=Pauli matri
es) then the tra
e is on
e again over the values �1 for ea
h12



spin. The Hamiltonian in either 
ase is taken symmetri
 with respe
t to thetransformation of the symmetry group whi
h is represented by ~SiH = �12X vij(~Si � ~Sj) ; (45)and one represents an external breaking by �elds Hi a

ording toHext = �X ~Si � ~Hi : (46)For T > T
 the physi
s of this 
ase resembles strongly that of the Isingmodel. For example if ~Si = ~�i then the 
hain of intera
tions 
ontributing toG(q) 
ontains 
hains liketr [: : : vkl~�k:~�l vlm~�l:~�m : : : ℄ : (47)Sin
e tr~�l~�l is 6= 0 only for equal spatial 
omponents, one sees that the tra
eis the same as that for the Ising model. Then the 
hain whi
h 
ontributes toD�xi �xj E is the same as for the Ising model. Moreover D�xi �yj E = 0. Thus on
eagain,in MFA one has G(q) � 1q2 + �2 : (48)However for T < T
 , new physi
s emerges. The easiest road to Rome passesby the e�e
tive potential. From Eq.(26), one sees that the system dupli
atesin detail the theory of dis
rete SBS. Thus the quadrati
 part of the potentialis proportional to (r~')2 + �2~'2 where �2 = T � T
. As before, there willbe 
orre
tions due to self interse
tions of walks (and other dynami
 e�e
tswhi
h in fa
t are dependent on the representation ~' of the symmetry groupin question. But, whatever, the form of the quarti
 intera
tion is di
tated bysymmetry to be � h(~'i)2i2). [This is going a little too fast sin
e sometimesother polynomial forms are available, (like dijk'i'j'k for SU3 with 'i in theregular representation), but this 
ursory review is not the pla
e to enter intosu
h ni
eties℄. Thus one is led toVeff = 12 hr~'2 + �2(~')2i+ �(~'2)2 + ~' � ~H : (49)Whereas �2 
hanges sign at T = T
 ( being proportional to (1 � �ev(0)) upto a s
aling of ev(0) ), one has � > 0. This is most easily seen in MFA where� arise from the entropy fa
tor as in the Ising model.13



It then follows that all the pi
tures of Fig.4 remain appli
able for use of SBSin the 
ase of 
ontinuous symmetry provided they be
ome multidimensionalin \'-spa
e". For ease of representation let the symmetry be U(1). Then~' = ('1; '2) and the pi
tures must be interpreted as planes 
ut through�gures of revolution about a 
entral axis in ' spa
e.The dimple in Fig.4C is the unstable solution ~' = 0 for T < T
. The morestable minima lie along a 
ir
le in the '1; '2 plane ~'2 = '21+'22 = m2 where�V=�(~' 2) = 0. In this 
ase SBS is the 
hoi
e of whi
h ve
tor ~' is taken nonvanishing. The reason for the words \more stable" rather than \stable" is
lear. Suppose ~H 6= 0 in some dire
tion then the minimum be
omes stableand ~' k ~H . Now let H ! 0. The solution then tends to that value of ~'whi
h is on the abovementioned 
ir
le without 
hanging its dire
tion as onetakes the limit. But it is unstable with respe
t to dire
tional 
hanges uponapplying an in�nitesimal adjun
tion of ~H 0 in a dire
tion di�erent from theoriginal ~H (whi
h had been sent to zero). This will 
ause ~' to swivel alongthe 
ir
le so as to lie in the dire
tion of ~H 0, albeit this latter is in�nitesimalbut not zero.This new element of SBS of 
ontinuous symmetry is essential to the physi
s ofall kinds of situations and as will be seen in the gauge se
tion, plays a vitalrole in the Brout-Englert-Higgs (BEH) me
hanism1. It is an e�e
t whi
hwas �rst 
ons
iously put on display by Felix Blo
h in the mid 1930's in hisspin wave theory of ferromagnetism. In the next se
tions we shall review histheory, as well as appli
ations to super
ondu
tivity and super
uidity. Thiswill be followed by Nambu's development of the theory of spontaneouslybroken 
hiral symetry and soft pion physi
s. The expression of these ideas interms of a relativisti
 �eld theory, often 
alled the Goldstone theorem, willbe presented in the 
ontext of the BEH me
hanism in the se
tion \ModernTimes" by Fran�
ois Englert sin
e it is herein that this aspe
t of the theoryhas been parti
ularly su

essful.We brie
y summarize the important result of SBS of 
ontinuous symmetrywhi
h has been dedu
ed up to this point. In terms of the e�e
tive potentialfor Veff (~') , for T > T
 the situation is the same as for dis
rete symmetry.There is a unique minimum at ~'2 = 0, whose 
urvature is the inverse sus
ep-1Referen
es to the gauge theory and relevant material are given in \Modern Times".14



tibility � = �m=�H = (�2)�1 � (T �T
)�1. For T < T
, the point ~'2 = 0 isa lo
al maximum sin
e at this point the 
urvature (= T � T
) is then nega-tive. There is then an \orbit" of minima whi
h for the 
ase of broken U(1)symmetry is a 
ir
le (for the general 
ase see Modern Times for a des
riptionof this orbit in the spa
e of a representation of a general group). From ourdis
ussion it is seen that the sus
eptibility be
omes a tensor in \~'" spa
e.One de�nes a longitudinal sus
eptibility 
orresponding to the response of h~'iwith respe
t to ~H parallel to an priori �xed ve
tor ~'0 whi
h is on the orbitof minima at H = 0. One thinks of this as a \stret
hing" mode of responseof the magnetization. The transverse sus
eptibility is the response to ~H or-thogonal to h~'i0 and a

ording to our dis
ussion of instability this is in�nity.One de�nes a (mass)2 tensor whi
h is ��1 whereupon �2longitudinal � (T
�T )and �2transverse = 0. This vanishing of the mass in the transverse dire
tionis in fa
t the terminal point of a 
ontinuous spe
trum of ex
itations, themodes being sorted out a

ording to Fourier transform. The expression ofthis in relativisti
 �eld theory (Goldstone's Theorem) is 
overed in \ModernTimes". The appli
ation to feromagnetism is very instru
tive in this regard.This will be the subje
t of the next se
tion.V. Spin Wave TheoryThe existen
e of zero mass modes as 
olle
tive ex
itations (i.e. bosons inquantum �eld theory) is neatly revealed in spin wave theory. We here followa pro
edure, due to Blo
h, by studying the single quantum ex
itations fromthe the ground state (va
uum). For simpli
ity we work with ~Si = ~�i (thePauli matri
es). SBS is the 
hoi
e of orientation of va
uum, the only groupsymmetri
 spe
i�
ation for whi
h is \all spins parallel" i.e. all in the samespin state. We 
hoose j 0 > to the \all spins up" i.e. �zi j 0 >= j 0 >.Ex
itations then are generated by 
reating down spins, the most low lyingbeing l.
.'s of ��i j 0 >. These l.
.'s are determined from[H;'!℄ j 0 >= i!'! j 0 > ; (50)where '! is an \eigen operator", i.e an l.
. of ��i j 0 > whi
h satis�es[H;'!℄ = i!'!. Using the algebra of Pauli matri
es, along with [~�i; ~�j℄ = 0for i 6= j, we get with H = �12P vij~�i � ~�j,hH; ��i i = �X vij(h�zi ; ��i i�zj + h�+i ; ��i i��j ) =Xj vij(�zj��i ��zi ��j ) : (51)15



Operating on va
uum, we gethH; ��i i j 0 >=Xj vij(��i � ��j ) : (52)By translational symmetry Eq.(52) is diagonalized by Fourier transform.De�ning ��q = (1=pN)P ��i ei~q�~Ri one hashH; ��q i j 0 >= i!q��q j 0 >= [ev(0)� ev(q)℄��q j 0 > ; (53)where !q = ev(0)� ev(q) � q2 ; small q : (54)The generalization to the 
ase of an external �eld is equally interesting.Clearly our va
uum j 0 >, 
orresponds to ~H in the z dire
tion. So adding toH a term �HP�zi , going through the same steps then leads to!q = ev(0)� ev(q) + H � q2 + H : (55)Thus H indu
es a (mass)2 in the zero mode whi
h is linear in the externalbreaking. This is espe
ially important when applying these ideas to SB�Sand soft pion physi
s. It is to be noted that the ex
itation operator, ��q ,redu
es to the global rotation operator at q = 0 i.e. hH;��q=0i = 0 (at H = 0)in virtue of symmetry when
e !(0) = 0, and we see that �2transverse = 0 isindeed the statement that the ex
itation energy of a 
ontinuous spe
trumvanishes at q = 0 in virtue of symmetry.We also 
an now see why 
ontinuous SBS 
annot apply in its na��ve form tod = 2. The number of spin waves, at temperature ��1, is he�!q � 1i�1 forkT � ev(0) (for higher T they intera
t and the ideal gas of ex
itations is noa longer valid approximation). Then the total number of spin waves at lowT is � Z ddq 1e�!q � 1 � ��1 Z ddqq2 ; (56)whi
h diverges in the infra-red at d = 2 i.e. j 0 > is unstable for H = 0.New methods are therefore required in 
ontinuous SBS. But for SBS in thedis
rete 
ase, the naive notions are OK, albeit su�ering severe quantitativemodi�
ations. 16



Some 
on
eptual issues arise whi
h we will now address. Their resolutionis of pedagogi
al interest espe
ially when 
ompared with the 
orrespondingsituation in the gauge theory.We shall �rst display the 
lassi
al 
on
ept of broken symmetry given bythe familiar pi
ture of an arrow whi
h points in the \dire
tion of the va
uumstate" pi
ked by the broken symmetry. For example, in the above paragraphsthis arrow points in the z-dire
tion of group spa
e. For simpli
ity, we 
ontinuewith the example of broken SU(2) symmetry represented by a Pauli matrixsitting on ea
h latti
e site, wherein the Hamiltonian is a group s
alar asin Eq.(45). The generalization of these 
onsiderations to any group in anyrepresentation is straightforward.Let j0i be the va
uum state: Szj0i = N=2j0i where~S =Xi ~�i2 : (57)Sin
e the S�(� = x; y; z) represent group generators (i.e. [S�; S�℄ = i���
S
),one may 
onstru
t a rotated va
uum from them. For example, a rotationabout the x-axis of j0i gives the rotated va
uum j�i wherej�i = eiSx�j0i : (58)The states j�i and j0i are degenerate sin
e [H; Sx℄ = 0, H being s
alar and~S being a group ve
tor.Sin
e Sx is a group generator, it follows thath�jSxj�i = 0 ; h�jSyj�i = � sin � ; h�jSzj�i = 
os � : (59)In this way, the 
lassi
al notion of \arrow" is given by the expe
tation valueof the operator ~S in the di�erent rotated va
ua.We shall now prove that, for � �xed, in the limit N ! 1, h�j0i = 0.Moreover, we shall show that the Hilbert spa
e of ex
itations built upondi�erent va
ua are mutually ex
lusive as well (in the limit N !1).h0j�i = h0jeiSx�j0i = h0j NYi=1 ei(�xi =2)�j0i17



= NYi=1h0j 
os (�=2) + i(�xi =2) sin (�=2)j0i= [
os (�=2)℄N �!N!1 0 : (60)If instead of the overlap of h0j with j�i we took ex
ited states of h0j, say
ontaining n spin wawes, the overlap would then be � [
os (�=2)℄N�n. Soeven if n is a �nite fra
tion of N , the result vanishes in the limit. Withmore e�ort one 
an prove that the ex
ited states built on j�i are orthogonalto ex
ited states of j0i. This remains true until one rea
hes some thresh-hold number of ex
itations proportional to N at whi
h point one approa
hes
riti
al 
onditions wherein these naive 
onsiderations break down.For �nite N one 
an always 
onstru
t N + 1 orthogonal \va
uum" states asone does in the 
onventional method of quantizing angular momenta. Theseare the states (S�)pj0i ; p = 0; 1::: ; N . States 
orresponding to a rotation�; ' from j0i are obtainable as a linear 
ombination of these. For �nite Nsu
h states are not, in general, orthogonal. But they be
ome approximatelyso when their angular di�eren
e ex
eeds O(1=pN ). In this way one re
overstheir mutual orthogonality as N !1 for any angular di�eren
e.VI. Super
uidity and Super
ondu
tivityWe brie
y indi
ate how SBS applies to these two interesting phenomena.A free boson gas of N parti
les 
ondenses at a temperature for whi
h thethermal Compton wave length (mkT )�1=2 is O(interparti
le distan
e). ForT < T
 , a �nite fra
tion of N o

upies the state k = 0, and at T = 0 all Nhave zero momenta. For the intera
ting 
ase, at T = 0 there is only a �nitefra
tion whi
h 
ondenses i.e.Da+0 a0E = N0 = �N ; � < 1 : (61)This ma
ros
opi
 o

upation of the k = 0 state 
an be trans
ribed into aSBS as follows. The 
ommutator ha+0 ; a0i = 1 is negligible with respe
t toN0 i.e. N0 �= N0 + 1 in good approximation. Then one 
an treat a0 as a 
-number. But a0 has a phase. The 
hoi
e of this phase is SBS. Bogoljubov [2℄built a system of ex
itations in analogy to spins waves, by building themfrom a va
uum with a �xed 
omplex 
-number value of a0. They are linear18




ombinations of the form 	+q = �qa+q +�qa�q (note a�q j 0 >6= 0 be
ause j 0 >
ontains virtual o

upation of states with q 6= 0 , in virtue of the interatomi
intera
tions). The Bogoljubov 
oeÆ
ients �q; �q (with (j�qj2�j�qj2) = 1) areproportional to a0 and a�0 respe
tively. The point to be made here is that asq! 0, the operator 	+q be
omes a rotational generator in the \gauge plane"i.e. it generates in�nitesimal 
hanges of the phase of a0.Super
uidity is then a spe
ta
ular example of SBS where the symmetry isU(1). The all important phase plays vital physi
al role sin
e if one lets itvary from point to point, its gradient is the velo
ity of super
uid.Super
ondu
tivity is an equally fas
inating 
ase of spontaneously brokenU(1) symmetry. Bound states (Cooper pairs) are s states in spin singlets,so 
ausing 
orrelations hnk"n�k#i � hnk"i hn�k#i whi
h are O(1) rather thanthe usual free gas value O(1=N). In terms of a pseudo spin algebra whi
h isisomorphi
 to Pauli spin matri
es given bybk = ak"a�k# � ��kb+k = a+�k"a+k# � �+k1� nk" � n�k# � �zk ; (62)one invents a set of order parameters whi
h are hbki. Sin
e bk has a phase, onebreaks U(1) and sin
e the hamiltonian is invariant under this U(1) symme-try, the intera
tions being v(k; k0)b+k bk0, one has SBS. Note that an otherwiseSU(2) symmetry is broken externally sin
e the kineti
 energy in the Hamil-tonian is equal to P "(k)(nk" + n�k#) hen
e up to a 
onstant = P "(k)�zk.A typi
al \va
uum" 
on�guration may be depi
ted as follows as one spansthe Fermi surfa
e in k-spa
e
Fig. 6(in the free or normal metal at zero temperature jkj = kf is a point of dis-
ontinuity). The residual U(1) symmetry are rotations about the isospinZ axis whi
h in the above pi
ture is obtained by rotation around the hor-izontal axis. In this example the \mole
ular" �eld on the kth subsystem is19



"(k) h�zki + P v(k; k0) h�xk0i if the hbki's are 
hosen real. The zero mass isthen the aforementioned rotation whi
h for this ground state are ex
itationswhi
h are linear 
ombinations of �yk. There are also fermioni
 ex
itationswhi
h are massive. Their mass 
orresponds to the energy ne
essary to breakup a Cooper pair. It is given by h("k � "F )2 + H 2k i1=2 where Hk is the "trans-verse" mole
ular �eld on ~�k given by v(k; k0) hhbk0i + Db+k0Ei.In the above model the intera
tion v(k; k0) is a small attra
tive for
e thatissues from ex
hange of phonons (latti
e waves) among the ele
trons. Inaddition there is a mu
h stronger for
e due to Coulomb intera
tion. WhereasBardeen Cooper Shrie�er [3℄ worked only with the former, Anderson [4℄ andNambu [5℄ analysed the e�e
ts of the latter. The fermioni
 mass is essentiallyuna�e
ted, but the 
olle
tive mode is 
ompletely modi�ed so as to be
omethe massy plasmon. It is a "longitudinal" photon. There are also massy\transverse" photons. These give rise to the Meissner e�e
t and the 
uxtubes of type II super
ondu
tors. The transverse and longitudinal massesare unequal sin
e their origins di�er dynami
ally. The plasmon uses the totalele
tron density whereas the transverse photons refers to the 
ondensate (i.e.the hbki).These e�e
ts were the pre
ursor of the BEH me
hanism whi
h is studied in\Modern Times". Then be
ause there is longitudinal and transverse isotropyin the quantum relativisti
 quantum �eld va
uum, there is only one mass.VII. Spontanously Broken Chiral Symmetry(SB�S)One of the �rst exer
ises for students in �eld theory is the 
al
ulation of theele
tron's self mass �m, in QED with the result to O(e2)�m � e2m0 ln(�=m0) ; (63)where m0 is the bare mass, � the 
ut-o�. The important point is that�m = 0, if m0 = 0. It is this 
ir
umstan
e that redu
es the divergen
e of�m from the na��ve expe
tation that is linear in � to logarithmi
. One saysthat the mass is \prote
ted" by 
hiral symmetry. Chiral symmetry for asingle fermion �eld is invarian
e of the a
tion under	! ei�
5	 : (64)20



Whereas under normal (global) gauge transformations the L and R 
ompo-nents transform the same way (where L;R = [(1 � 
5) =2℄	) they transformwith opposite signs under the 
hiral gauge transformation.Sin
e 	 = 	+
0 one has under Eq.(64) 	! 	ei�
5. In 
onsequen
e		 ! (
os 2�) 		 + (sin 2�) 	i
5		i
5	 ! (� sin 2�)	i
5	+ (
os 2�)		 : (65)Here 
5 is hermitian with (
5)2 = 1 and f
5; 
�g = 0. Thus under Eq.(65) the
ouple �		;	(i
5)	� transforms as a ve
tor under 
hiral transformationsi.e. it rotates in the \
hiral gauge plane" with angle (2�).Whereas the ele
tromagneti
 intera
tion, as well the kineti
 term in the a
-tion are 
hiral invariants (sin
e f
5; 
�g = 0) thereby se
uring the invarian
eof 	
�	, the mass term (m0		) is not, due to Eq.(65). One 
onsequen
eis that every term in pertubation theory gives m = 0 if m0 = 0. This iseasily 
he
ked by making the 
ount of the number of 
 matri
es appearingin verti
es and fermion propagators. It is odd and the tra
e of su
h a termvanishes. A mass term appearing in the self energy is 
al
ulated by takingthe tra
e. We shortly give a more syntheti
 demonstration of this fa
t fromthe 
hiral Ward identity.Inspired by the BCS theory of super
ondu
tivity, wherein a mass gap was de-rived non perturbatively (through Cooper bound state formation), Nambu [6℄showed that the same 
ould arise in quantum �eld theory, the pri
e beingthe existen
e of a dynami
ally generated pseudos
alar meson, whi
h he thenidenti�ed with the pion. During this same period, Gell-Mann and Levy [7℄proposed a 
hiral invariant a
tion whi
h 
ontained s
alar and pseudos
alar�elds 
oupled to the fermion (Yukawa 
oupling). SB�S was �rst generatedthrough the bosoni
 a
tion (e�e
tive potential method) wherein the s
alarpi
ked up an expe
tation value and the pseudos
alar had zero mass in 
on-sequen
e of SBS kinemati
s. At low momentum s
ales the two methods giveequivalent physi
al results, whereas at large momenta the 
omposite 
hara
-ter of the e�e
tive boson �elds in Nambu's methods 
ould give a 
onsiderablemodi�
ation of the dynami
s, so as to augment the width of the massy s
alar(i.e. the s
alar whi
h 
orresponds to the stret
hing mode or longitudinal sus-
eptibility in the magneti
 
ase).It is the Gell-Mann L�evy phenomenologi
al approa
h whi
h until the present21



time has prevailed in standard model resear
h in the implementation of theBEH me
hanism. Resear
h beyond the standard model is so tenuous thatall avenues must be 
onsidered open. One also must bear in mind that theoriginal dynami
al me
hanism of SB�S of Nambu Jona-Lasinio is now sup-planted by the QCD 
on�nement me
hanism. In this 
ase the zitterbewegungof quarks at the end of ele
tri
 
ux tubes (the model for mesons) providesfor the \
onstituent" quark mass. The 
hiral symmetry of QCD then impliesthe existen
e of pions. These have zero mass if the \
urrent" quark mass iszero and have a (mass)2 proportional to the latter when it is not zero. Anex
eption is the ninth pseudos
alar of the eightfold way whi
h has mass dueto an anomaly. The origin of quark and lepton masses in terms of some ulti-mate 
hiral, super or GUTS symmetry remains elusive, the Yukawa 
ouplingin standard model resea
h being most likely the phenomenologi
al expressionof a deeper theory.In this review we shall adhere to Nambu's original approa
h sin
e it 
arries apedagogi
al message of both power and elegan
e. We �rst review the simplenon perturbative approa
h of Nambu Jona-Lasinio [8℄, not that it need beof dire
t appli
ability, but rather be
ause it sets the s
ene for more general
onsiderations.Consider a 
hiral invariant four point intera
tion (su
h as � h	
�	i2 ) orits Fierz equivalent � h(		)2 � (	
5	)i2. In lowest order the fermion selfenergy, �, is given by the graph (Fig.7)
Fig. 7where one may imagine some non lo
ality over a distan
e ��1 at the vertex(say due to the ex
hange of a very heavy meson) supplies a U-V 
ut-o�.Then �(p) � g Z � � d4k
�(k + p)�� ; (66)where irrelevant fa
tors of O(1) are dropped and � are the relevant 
 matri
es(e.g. take 
� for de�niteness). Then tr� = 0 and �m = 0.22



Let us now make this self 
onsistent by iterating in the fermion propagatorso that �(p) � g Z � d4k � 1
�(k + p)� � �(k + p)� : (67)This 
orresponds to an in�nite sum of graphs often 
alled rainbow graphsi.e a rainbow is built on every fermion line ad in�nitum. (It is amusing thatone 
an build the Weiss mole
ular �eld of ferromagnetism using exa
tly thesame set of graphs in a �eld theory whi
h is equivalent to the original spinproblem).Let � = A(p)
�p� +M(p) and take the tra
e to giveM(p) � g Z � d4k M(p + k)(p + k)2 �M2(p+ k) ; (68)where we have not in
luded the e�e
t due to the form fa
tor A. The ensuingintegral equation is diÆ
ult to solve but the ideas are brought out settingM(p) = M= 
onstant so as to give an eigenvalue equation for M . Takinginto a

ount fa
tors for i, one gets a solution by making a Wi
k rotationprovided the for
e is attra
tive (g < 0). This is the equivalent to the gapequation in super
ondu
tors.Of parti
ular interest in parti
le theory is the a

ompanying pseudos
alar.Note the SB�S; one 
ould have takenM as a linear 
ombination ofM1+iM2
5with M2 = M21 +M22 . Choosing M2 = 0 is a 
hoi
e of dire
tion in the 
hiralgauge plane, along the axis 		. Then 	
5	 should propagate with zeromass. It does as seen from its propagator (� 1=1 � g�) (Fig 8)
Fig. 8�(p) = tr Z d4k � 1
�(p + k)� �M � 1
�k� �M : (69)At q = 0 one has �(0) ' Z d4kk2 �M2 ; (70)23



and from the eigenvalue 
ondition Eq.(68) one 
he
ks 1 � g�(0) = 0. Thediligent reader may 
he
k all the kinemati
 fa
tors of O(1). Thus the prop-agator of 	
5	 at q = 0 has a pole and one may 
he
k (for example bydispersion relations) that it 
orresponds to a pole at q2 = 0 in the moregeneral 
ase when q� 6= 0. ( Here q2 � q20 � q2 )This result is general, powerful and independent of approximations that havebeen made. That is the true powerful a

omplishement of Nambu whi
h wenow present.The 
hiral Ward identity, established in the same way as the usual ve
torWard identity through use of the symmetry of the a
tion under 
hiral trans-formations, reads limq�!0 q���5 = 
5�(p + q) + �(p)
5 : (71)��5 is the vertex fun
tion formed from the 
hiral sour
es of momentum q�whi
h s
atters a fermion from p� to p� + q�. As q� ! 0, one sees that theform fa
tor A(p) drops out of Eq.(71) (sin
e f
5; 
�g = 0). When
elimq�!0 q���5 = 2M(p)
5 ; ��5 ! 2M(p)
5q�q2 : (72)This pole at q2 = 0 is the signal of a pseudos
alar meson whi
h 
ouples tothe fermion �eld through the mass of the fermion.Nambu re
ognized that in this way he had dis
overed the key to the su

essof the 
elebrated Goldberger-Treiman relation, one of the gems of parti
lephysi
s in the 1950's-1960's, to whi
h we now turn so 
losing out this reviewof the Paleolithi
 Age.The original derivation by Goldberger and Treiman was based on a dispersionrelation argument, involving two assumptions: an unsubtra
ted dispersionrelation for one of the form fa
tors o

urring in the matrix element for �de
ay (see below) and pion dominan
e of the same. The quantitative su

esswas remarkable, but there was little understanding of how to justify theassumptions. This was supplied by Nambu as follows. Whereas the Wardidentity involves �elds, one 
an also work dire
tly with matrix elements of
urrents among physi
al states. In parti
ular the matrix element of the axial24




urrent between nu
leons is observed as the Gamow-Teller transition in �de
ay. Its most general form 
an be shown to behN jj�5jN 0i = FA(q2)uN (p+q)
�
5uN 0(p)+Fp(q2)uN (p+q)q�
5uN(p) ; (73)where q� is the 4-momentum tranfer 
arried by j�5.Let us suppose that ��j�5 = 0 (i.e. 
hiral invarian
e). Then taking thedivergen
e of Eq.(73) gives0 = h(mN +mN 0)FA(q2) + q2Fp(q2)i [uN (p+ q)
5uN(p)℄ ; (74)where we have used f
5; 
�g = 0 and the Dira
 equation (
�p� �M)	 = 0.As q2 ! 0, one �ndsFp(q2)!q2!0 (mN +mN 0) 1q2FA(0) ; (75)i.e. F (p) has a pole whi
h like ��5 (Eq.(72)) has residue proportional to thefermion mass, here the nu
leon. Eqs. (74) and (75) have the interpretationgiven by the graphi
al stru
ture for Fp (Fig.9)
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Fig. 9The dark 
ir
le in the drawing is h0 jj�5j �i = �if�q�. The dotted line isthe pion propagator (= 1=q2) and the light 
ir
le is g�NN 0uN 0
5uN , whereg�NN 0 is the pion nu
leon 
oupling 
onstant. The residue 
ondition impliedby Eq.(75) is f�g�NN 0 = (mN +mN 0)FA : (76)All quantities are measured; f� is the pion de
ay 
onstant into leptons, FAthe Gamow-Teller � de
ay 
onstant, g�NN 0 is found from �N s
attering.Agreement is found to O(2%). The deviation is attributed to the fa
t that25



��j�5 does not quite vanish and this is re
e
ted by the fa
t that m2� 6= 0.Rather h0 j��j�5j�i = q2f� = m2�f� ; (77)sin
e the pion is \on shell". Nambu attributed m2� 6= 0, (but small on thes
ale of hadron physi
s) to a small external breaking of 
hiral invarian
eindu
ed by a bare mass, m0. He then showed that m2� � m0M where M=hadron s
ale (m0 � 10Mev;M � 1Gev;m� � 130Mev). Note the analogyto Eq.(55).Now return to Eqs.(73), (74) and (75). The l.h.s. of Eq.(74) now 
ontains thenon vanishing value hN j��j�5jN 0i. Nevertheless the residue relation Eq.(76)should not 
hange signi�
antly. The (momentum transfer)2 in g�NN 0 andin FA are now shifted by O(m2�). Therefore Eq.(76) ought to hold good atthe 1% level. The 
orre
tions will be en
oded in the 
ontribution of highmass states not in
luded in the pion dominan
e estimate of Fp. Assumingthis true, one repla
es Eq.(75) byFp(q) ' (mN +mN 0) 1q2 �m2�FA(0) ; (78)then yields Eq (76). This is the famous prin
iple of PCAC wherein pionmatrix elements are related to matrix elements of the axial 
urrent. Seereferen
e [9℄ for the phenomenology development of soft pion physi
s. Whenunited with the Gell-Mann 
urrent algebra it be
omes a very powerful toolwhi
h interrelates all kinds of hadroni
 phenomena, thus be
oming one of thedominant elements of parti
le physi
s throughout the 1960's and early 70's.The su

ess of the whole development bit by bit led to the QCD quark modeland 
on�nement whi
h are now 
onsidered the theoreti
al bases of hadronphysi
s as well as hadron-lepton intera
tions.In the pre
eedings paragraphs, we have seen the important role that SBS hasplayed in parti
le physi
s when the symmetry that has been broken is global(the 
hiral group). \Modern Times" is devoted to the other important fa
etof this development, to wit: the BEH me
hanism wherein one adds to theprevious 
onsideration the 
ompli
ation of gauge symmetry. This 
hapterlead to the ele
troweak uni�
ation. 26
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