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I. Introdu
tionIt was known in the �rst half of the twentieth 
entury that, at the atomi
level and at larger distan
e s
ales, all phenomena appear to be governed bythe laws of 
lassi
al general relativity and of quantum ele
trodynami
s.Gravitational and ele
tromagneti
 for
es are long range and hen
e 
an beper
eived dire
tly without the mediation of highly sophisti
ated te
hni
aldevi
es. The development of large s
ale physi
s, initiated by the Galileaninertial prin
iple, is surely tributary to this 
ir
umstan
e. It then took aboutthree 
enturies to a
hieve a su

essful des
ription of long range e�e
ts.The dis
overy of subatomi
 stru
tures and of the 
on
omitant weak andstrong intera
tion short range for
es raised the question of how to 
ope withshort range for
es in quantum �eld theory. The Fermi theory of weak inter-a
tions, formulated in terms of a four Fermi point-like 
urrent-
urrent inter-a
tion, was predi
tive in lowest order perturbation theory and su

essfully
onfronted many experimental data. However, it was 
learly in
onsistentin higher order be
ause of un
ontrollable quantum divergen
es at high en-ergies. In order words, in 
ontradistin
tion with quantum ele
trodynami
s,the Fermi theory is not renormalizable. This diÆ
ulty 
ould not be solved bysmoothing the point-like intera
tion by a massive, and therefore short range,
harged ve
tor parti
le ex
hange (the so-
alled W+ and W� mesons); theo-ries with fundamental massive 
harged ve
tor mesons are not renormalizableeither. In the early nineteen sixties, there seemed to be insuperable obsta
lesfor formulating a theory with short range for
es mediated by massive ve
tors.The solution of the latter problem 
ame from the theory proposed in 1964 byBrout and Englert [1℄ and by Higgs [2, 3℄. The Brout-Englert-Higgs (BEH)theory is based on a me
hanism, inspired from the spontaneous symmetrybreaking of a 
ontinuous symmetry, dis
ussed in the previous talk by RobertBrout, adapted to gauge theories and in parti
ular to non abelian gaugetheories. The me
hanism uni�es long range and short range for
es mediatedby ve
tor mesons, by deriving the ve
tor mesons masses from a fundamentaltheory 
ontaining only massless ve
tor �elds. It led to a solution of the weakintera
tion puzzle and opened the way to modern perspe
tives on uni�edlaws of nature.Before turning to an expos�e of the BEH me
hanism, we shall in se
tion II1



review, in the 
ontext of quantum �eld theory, the analysis given by RobertBrout of the spontaneous breaking of a 
ontinuous symmetry. Se
tion III ex-plains the BEH me
hanism. We present the quantum �eld theory approa
hof Brout and Englert wherein the breaking me
hanism for both abelian andnon abelian gauge groups is indu
ed by s
alar bosons. We also present theirapproa
h in the 
ase of dynami
al symmetry breaking from fermion 
onden-sate. We then turn to the equation of motion approa
h of Higgs. Finallywe explain the renormalization issue. In se
tion IV, we brie
y review thewell-known appli
ations of the BEH me
hanism with parti
ular emphasis on
on
epts relevant to the quest for uni�
ation. Some 
omments on this subje
tare made in se
tion V.II. Spontaneous Breaking of a Global SymmetrySpontaneous breaking of a Lie group symmetry was dis
ussed by RobertBrout in \The Paleoliti
 Age". I review here its essential features in thequantum �eld theory 
ontext.Re
all that spontaneous breakdown of a 
ontinuous symmetry in 
ondensedmatter physi
s implies a degenera
y of the ground state, and as a 
onse-quen
e, in absen
e of long range for
es, 
olle
tive modes appear whose ener-gies go to zero when the wavelength goes to in�nity. This was exempli�edin parti
ular by spin waves in a Heisenberg ferromagnet. There, the brokensymmetry is the rotation invarian
e.Spontaneous symmetry breaking was introdu
ed in relativisti
 quantum �eldtheory by Nambu in analogy to the BCS theory of super
ondu
tivity. Theproblem studied by Nambu [4℄ and Nambu and Jona-Lasinio [5℄ is the spon-taneous breaking of 
hiral symmetry indu
ed by a fermion 
ondensate1. The
hiral phase group exp(i
5�) is broken by the fermion 
ondensate h �  i 6= 0and the massless mode is identi�ed with the pion. The latter gets its tinymass (on the hadron s
ale) from a small expli
it breaking of the symmetry,just as a small external magneti
 �eld imparts a small gap in the spin wavespe
trum. This interpretation of the pion mass 
onstituted a breakthrough inour understanding of strong intera
tion physi
s. General features of sponta-neous symmetry breakdown in relativisti
 quantum �eld theory were further1See the detailed dis
ussion in Brout's le
ture, se
tion VII.2



formalized by Goldstone [6℄. Here, symmetry is broken by non vanishing va
-uum expe
tation values of s
alar �elds. The method is designed to exhibitthe appearan
e of a massless mode out of the degenerate va
uum and doesnot really depend on the signi�
an
e of the s
alar �elds. The latter 
ouldbe elementary or represent 
olle
tive variables of more fundamental �elds,as would be the 
ase in the original Nambu model. Compositeness a�e
tsdetails of the model 
onsidered, su
h as the behavior at high momentumtransfer, but not the existen
e of the massless ex
itations en
oded in thedegenera
y of the va
uum.Let us �rst illustrate the o

urren
e of this massless Nambu-Goldstone (NG)boson in a simple model of a 
omplex s
alar �eld with U(1) symmetry [6℄.The Lagrangian density,L = �������� V (���) with V (���) = ��2���+ �(���)2 ; � > 0 ; (1)is invariant under the U(1) group � ! ei��. The U(1) symmetry is 
alledglobal be
ause the group parameter � is 
onstant in spa
e-time. It is brokenby a va
uum expe
tation value of the �-�eld given, at the 
lassi
al level,by the minimum of V (���). Writing � = (�1 + i�2)=p2, one may 
hooseh�2i = 0. Hen
e h�1i2 = �2=� and we sele
t, say, the va
uum with h�1ipositive. The potential V (���) is depi
ted in Fig.1 .
φ

φ 2
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NG massless boson

BEH massive boson

(inverse) transverse susceptibility

(inverse) longitudinal susceptibility

V

Fig. 1 3



Around the unbroken va
uum the �eld �1 has negative mass and a
quires apositive mass around the broken va
uum where the �eld �2 is massless. Thelatter is the NG boson of broken U(1) symmetry. The massive s
alar des
ribesthe 
u
tuations of the order parameter h�1i. Its mass is the analog of theinverse longitudinal sus
eptibility of the Heisenberg ferromagnet dis
ussedby Robert Brout while the vanishing of the NG boson mass 
orresponds tothe vanishing of its inverse transverse sus
eptibility. The s
alar boson �1 isalways present in spontaneous breakdown of a symmetry. In the 
ontext ofthe BEH me
hanism analyzed in the following se
tion, it was introdu
ed byBrout and myself, and by Higgs. We shall label it the BEH boson2 (Fig.1).In the 
lassi
al limit, the origin of the massless NG boson �2 is 
learly illus-trated in the Fig.1. The va
uum 
hara
terized by the order parameter h�1i isrotated into an equivalent va
uum by the �eld �2 at zero spa
e momentum.Su
h rotation 
osts no energy and thus the �eld �2 at spa
e momenta !q= 0has q0 = 0 on the equations of motion, and hen
e zero mass.This 
an be formalized and generalized by noting that the 
onserved Noether
urrent J� = �1���2 � �2���1 gives a 
harge Q = R J0d3x. The operatorexp (i�Q) rotates the va
uum by an angle �. In the 
lassi
al limit, this
harge is, around the 
hosen va
uum, Q = R h�1i�0�2d3x and involves only�2 at zero momentum. In general, h[Q;�2℄i = ih�1i is non zero in the 
hosenva
uum. This implies that the propagator ��hTJ�(x) �2(x0)i 
annot vanishat zero four-momentum q be
ause its integral over spa
e-time is pre
iselyh[Q;�2℄i. Expressing the propagator in terms of Feynman diagrams we seethat the �2-propagator must have a pole at q2 = 0. The �eld �2 is themassless NG boson.The proof is immediately extended to the spontaneous breaking of a semi-simple Lie group global symmetry. Let �A be s
alar �elds spanning a rep-resentation of the Lie group G generated by the (antihermitian) matri
esT aAB. If the dynami
s is governed by a G-invariant a
tion and if the po-tential has minima for non vanishing �A,s , symmetry is broken and theva
uum is degenerate under G-rotations. The 
onserved 
harges are Qa =R ���B T aBA �A d3x. As in the abelian 
ase above, the propagators of the�elds �B su
h that h[Qa; �B℄i = T aBA h�Ai 6= 0 have a NG pole at q2 = 0.2It is often 
alled the Higgs boson in the literature.4



III. The BEH Me
hanism- From global to lo
al symmetryThe global U(1) symmetry in Eq.(1) 
an be extended to a lo
al U(1) in-varian
e �(x)! ei�(x)�(x) by introdu
ing a ve
tor �eld A�(x) transforminga

ording to A�(x)! A�(x) + (1=e)���(x). The 
orresponding Lagrangiandensity is L = D���D��� V (���)� 14F��F �� ; (2)with 
ovariant derivative D�� = ���� ieA�� and F�� = ��A� � ��A�.Lo
al invarian
e under a semi-simple Lie group G 
an be realized by extendingthe Lagrangian Eq.(2) to in
orporate non-abelian Yang-Mills ve
tor �elds Aa�LG = (D��)�A(D��)A � V � 14F a��F a�� ; (3)where(D��)A = ���A � eAa�T aAB�B; F a�� = ��Aa� � ��Aa� � efab
Ab�A
� :(4)Here, �A belongs to the representation of G generated by T aAB and thepotential V is invariant under G.The su

ess of quantum ele
trodynami
s based on lo
al U(1) symmetry, andof 
lassi
al general relativity based on a lo
al generalization of Poin
are in-varian
e, provides ample eviden
e for the relevan
e of lo
al symmetry forthe des
ription of natural laws. One expe
ts that lo
al symmetry has afundamental signi�
an
e rooted in 
ausality and in the existen
e of exa
t
onservation laws at a fundamental level, of whi
h 
harge 
onservation ap-pears as the prototype. As an example of the strength of lo
al symmetry we
ite the fa
t that 
onservation laws resulting from a global symmetry aloneare violated in presen
e of bla
k holes.The lo
al symmetry, or gauge invarian
e, of Yang-Mills theory, abelian ornon abelian, apparently relies on the massless 
hara
ter of the gauge �eldsA�, hen
e on the long range 
hara
ter of the for
es they transmit, as theaddition of a mass term for A� in the Lagrangian Eq.(2) or (3) destroysgauge invarian
e. But short range for
es, su
h as the weak intera
tion for
es,seem to be as fundamental as the ele
tromagneti
 ones despite the apparent5



absen
e of exa
t 
onservation laws. To rea
h a basi
 des
ription of su
h for
esone is tempted to link the violation of 
onservation to a mass of the gauge�elds whi
h would arise from spontaneous symmetry breaking. However theproblem of spontaneous broken symmetry is di�erent for global and for lo
alsymmetry.To understand the di�eren
e, let us break the symmetries expli
itly. To theLagrangian Eq.(1) we add the term�h� + ��h ; (5)where h; h� are 
onstant in spa
e time. Let us take h real. The presen
eof the �eld h breaks expli
itly the global U(1) symmetry and the �eld �1always develops an expe
tation value. When h ! 0, the symmetry of thea
tion is restored but, when the symmetry is broken by a minimumof V (���)at j�j 6= 0, we still have h�1i 6= 0. The tiny h-�eld simply pi
ks up oneof the degenerate va
ua in perfe
t analogy with the in�nitesimal magneti
�eld whi
h orients the magnetization of a ferromagnet. As in statisti
alme
hani
s, spontaneous broken global symmetry 
an be re
overed in the limitof vanishing external symmetry breaking. The degenera
y of the va
uum 
anbe put into eviden
e by 
hanging the phase of h; in this way, we 
an rea
hin the limit h! 0 any U(1) rotated va
uum.When the symmetry is extended from global to lo
al, one 
an still break thesymmetry by an external \magneti
" �eld. However in the limit of vanishingmagneti
 �eld the expe
tation value of any gauge dependent lo
al operatorwill tend to zero be
ause, in 
ontradistin
tion to global symmetry, it 
ost noenergy in the limit to 
hange the relative orientation of neighboring \spins";there is then no ordered 
on�guration in group spa
e whi
h 
an be prote
tedfrom disordering 
u
tuations. As a 
onsequen
e, the va
uum is generi
allynon degenerate and points in no parti
ular dire
tion in group spa
e as theexternal �eld goes to zero. Lo
al gauge symmetry 
annot be spontaneouslybroken3 and the va
uum is gauge invariant4. Re
alling that the expli
it3For a detailed proof, see referen
e [8℄.4Note that for global symmetry breaking, one 
an always 
hoose a linear 
ombinationof degenerate va
ua whi
h is invariant under, say, the U (1) symmetry. This 
hoi
e has noobservable 
onsequen
es and only masks the degenera
y of the va
uumwhi
h is guaranteedby a supersele
tion rule. The Hilbert spa
e splits indeed, as in the ferromagneti
 
aseanalyzed by Robert Brout (se
tion V of \The Paleoliti
 Age"), into an in�nite number oforthogonal spa
es formed by all the �nite ex
itations on ea
h degenerate va
uum.6



presen
e of a gauge ve
tor mass breaks gauge invarian
e, we are thus fa
edwith a dilemma. How 
an gauge �elds a
quire mass without breaking thelo
al symmetry?- Solving the dilemmaIn perturbation theory, gauge invariant quantities are evaluated by 
hoosinga parti
ular gauge. One imposes the gauge 
ondition by adding to the a
tiona gauge �xing term and one sums over subsets of graphs satisfying the WardIdentities5.Consider the Yang-Mills theory de�ned by the Lagrangian Eq.(3). Let us
hoose a gauge whi
h preserves Lorentz invarian
e and a residual global Gsymmetry. This 
an be a
hieved by adding to the Lagrangian a gauge �xingterm (2�)�1��A�a ��Aa� . The gauge parameter � is arbitrary and has noobservable 
onsequen
es.
A

B

q Fig. 2

(a)

(c)

(b)

The global symmetry 
an now be spontaneously broken, for suitable poten-5To this end, it is often ne
essary, in parti
ular for non abelian gauge theories, toin
lude Fadeev-Popov ghosts terms in the a
tion. These 
ontribute when 
losed gauge�eld loops are in
luded in the 
omputation.7



tial V , by non zero expe
tation values h�Ai of BEH �elds. In Fig.2 we haverepresented 
u
tuations of this parameter in the spatial q-dire
tion and inan internal spa
e dire
tion orthogonal to the dire
tion A. The orthogonaldire
tion depi
ted in the �gure has been labeled B. Fig.2a pi
tures thespontaneously broken va
uum of the gauge �xed Lagrangian. Fig.2b and 2
represent 
u
tuations of �nite wavelength �.Clearly as �!1 these 
u
tuations 
an only indu
e global rotations in theinternal spa
e. In absen
e of gauge �elds, su
h 
u
tuations would give rise,as in spontaneously broken global 
ontinuous symmetries, to massless NGmode. In a gauge theory, 
u
tuations of h�Ai are just lo
al rotations in theinternal spa
e and hen
e are unobservable gauge 
u
tuations. Hen
e the NGbosons indu
e only gauge transformations and its ex
itations disappear fromthe physi
al spe
trum.The degrees of freedom of the NG �elds were present in the original gaugeinvariant a
tion and 
annot disappear. But what makes lo
al internal spa
erotations unobservable in a gauge theory is pre
isely the fa
t that they 
anbe absorbed through gauge transformations by the Yang-Mills �elds. Theabsorption of the long range NG �elds renders massive those gauge �elds towhi
h they are 
oupled, and transfers to them the missing degrees of freedomwhi
h be
omes their third polarization.We shall see in the next se
tions how these 
onsiderations are realized inquantum �eld theory, giving rise to an apparent breakdown of symmetry:despite the absen
e of spontaneous lo
al symmetry breaking, gauge invariantve
tor masses will be generated in a 
oset G=H, leaving long range for
es onlyin a subgroup H of G.- The quantum �eld theory approa
h [1℄�) Breaking by BEH bosonsLet us �rst examine the abelian 
ase as realized by the 
omplex s
alar �eld� exempli�ed in Eq.(2).In the 
ovariant gauges, the free propagator of the �eld A� isD0�� = g�� � q�q�=q2q2 + � q�q�=q2q2 ; (6)8



where � is the gauge parameter. It 
an be put equal to zero, as in theLandau gauge used in referen
e [1℄, but we leave it arbitrary here to illustrateexpli
itly the role of the NG-boson.
Gauge field

Complex scalar field

Fig. 3In absen
e of symmetry breaking, the lowest order 
ontribution to the self-energy, arising from the 
ovariant derivative terms in Eq.(2), is given by theone-loop diagrams of Fig.3. The self-energy (suitably regularized) takes theform of a polarization tensor��� = (g��q2 � q�q�) �(q2) ; (7)where the s
alar polarisation �(q2) is regular at q2 = 0, leading to the gauge�eld propagator D�� = g�� � q�q�=q2q2[1��(q2)℄ + � q�q�=q2q2 : (8)The polarization tensor in Eq.(7) is transverse and hen
e does not a�e
t thegauge parameter �. The transversality of the polarization tensor re
e
ts thegauge invarian
e of the theory6 and, as we shall see below, the regularityof the polarization s
alar signals the absen
e of symmetry breaking. Thisguarantees that the A�-�eld remains massless.6The transversality of polarisation tensors is a 
onsequen
e of the Ward Identitiesalluded to in the pre
eding se
tion. 9



Symmetry breaking adds tadpole diagrams to the previous ones. To see thiswrite � = 1p2(�1 + i�2) h�1i 6= 0 : (9)The BEH �eld is �1 and the NG �eld �2. The additional diagrams aredepi
ted in Fig.4.
BEH tadpole

NG propagator

Fig. 4In this 
ase, the polarisation s
alar �(q2) in Eq.(7) a
quires a pole�(q2) = e2h�1i2q2 ; (10)and, in lowest order perturbation theory, the gauge �eld propagator be
omesD�� = g�� � q�q�=q2q2 � �2 + � q�q�=q2q2 ; (11)whi
h shows that the A�-�eld gets a mass�2 = e2h�1i2 : (12)The generalization of Eqs.(7) and (10) to the non abelian 
ase des
ribed bythe a
tion Eq.(3) is straightforward. One gets from the graphs depi
ted inFig.5,
a

bCa

b

Fig. 5�ab�� = (g��q2 � q�q�)�ab(q2) ; (13)10



�ab(q2) = e2h��BiT �aBCT bCAh�Aiq2 ; (14)from whi
h follows the mass matrix�ab = e2h��BiT �aBCT bCAh�Ai : (15)In terms of the non-zero eigenvalues �a of the mass matrix the propagatorfor the massive gauge ve
tors takes the same form as Eq.(11)Da�� = g�� � q�q�=q2q2 � �a2 + � q�q�=q2q2 : (16)The gauge invarian
e is expressed, as it was in absen
e of symmetry breaking,through the transversality of the polarization tensors Eqs.(7) and (13). Thesingular 1=q2 
ontributions to the polarization s
alars Eqs.(10) and (14),whi
h preserve transversality while giving mass to the gauge �elds, stem fromthe long range NG boson �elds en
oded in their 1=q2 propagator. We shallverify below that this pole has no observable e�e
t as su
h. On the otherhand, its absorption in the gauge �eld propagator transfers the degrees offreedom of the NG bosons to the third degree of polarization of the massiveve
tors. Indeed, on the mass shell q2 = �a2, one easily veri�es that thenumerator in their propagator Eq.(16) is:g�� � q�q�q2 = 3X�=1 e(�)� :e(�)� ; q2 = �a2 ; (17)where the e(�)� are the three polarization ve
tors whi
h are orthonormal inthe rest frame of the parti
le.In this way, the NG bosons generate massive propagators for those gauge�elds to whi
h they are 
oupled. Long range for
es only survive in the sub-group H of G whi
h leaves invariant the non vanishing expe
tation valuesh�Ai.Note that (as in the abelian 
ase) the s
alar potential V does not enter the
omputation of the gauge �eld propagator. This is be
ause the trilinear termarising from the 
ovariant derivatives in the Lagrangian Eq.(3), whi
h yieldsthe se
ond graph of Fig.5, 
an only 
ouple the tadpoles to other s
alar �elds11



through group rotations and hen
e 
ouple them only to the NG bosons.These are the eigenve
tors with zero eigenvalue of the s
alar mass matrixgiven by the quadrati
 term in the expansion of the potential V around itsminimum. Hen
e the mass matrix de
ouples from the tadpole at the treelevel 
onsidered above. An expli
it example of this feature will be given forthe Lagrangian Eq.(32).�) Dynami
al symmetry breakingThe symmetry breaking giving mass to gauge ve
tor bosons may arise fromthe fermion 
ondensate breaking 
hiral symmetry. This is illustrated by thefollowing 
hiral invariant LagrangianL = LF0 � eV � 
� V� � eA � 
�
5 A� � 14F��F ��(V ) � 14F��F ��(A) : (18)Here F��(V ) and F��(A) are abelian �eld strength for U(1)�U(1) symmetry.Chiral anomalies are eventually 
an
eled by adding in the required additionalfermions.The Ward identity for the 
hiral 
urrentq���5(p + q=2; p� q=2) = S�1(p+ q=2)
5 + 
5S�1(p� q=2) ; (19)shows that if the fermion self-energy 
�p��2(p2) � �1(p2) a
quires a nonvanishing �1(p2) term, thus a dynami
al mass m at �1(m2) = m (taking forsimpli
ity �2(m2) = 1); the axial vertex ��5 develops a pole at q2 = 0. Inleading order in q, we get ��5!2m
5 q�q2 : (20)The pole in the vertex fun
tion indu
es a pole in the suitably regularizedgauge invariant polarization tensor �(A)�� of the axial ve
tor �eld A� depi
tedin Fig.6 �(A)�� = e2A(g��q2 � q�q�)�(A)(q2) ; (21)with limq2!0 q2�(A)(q2) = �2 6= 0 : (22)The �eld A� a
quires in this approximation7 a gauge invariant mass � .7The validity of the approximation, and in fa
t of the dynami
al approa
h, rests on thehigh momentumbehavior of the fermion self energy, but this problem will not be dis
ussedhere. 12



Γ γ
ν5µ5

axiovector propagator

fermion propagator

Fig.6This example illustrates the fa
t that the transversality of the polarizationtensor used in the quantum �eld theoreti
 approa
h to mass generation isa 
onsequen
e of a Ward identity. This is true whether ve
tor masses arisethrough fundamental fundamental BEH bosons or through fermion 
onden-sate. The generation of gauge invariant masses is therefore not 
ontingentupon the \tree approximation" used to get the propagators Eqs.(11) and(16). It is a 
onsequen
e of the 1=q2 singularity in the va
uum polarisations
alars Eqs.(10), (13) or (22 ) whi
h 
omes from NG boson 
ontribution.- The equation of motion approa
h [2, 3℄Shortly after the above analysis was presented, Higgs wrote two papers. Inthe �rst one [2℄ , he showed that the proof of the Goldstone theorem [6, 7℄,whi
h states that, in relativisti
 quantum �eld theory, spontaneous symmetrybreaking of a 
ontinuous global symmetry implies zero mass NG bosons, failsin the 
ase of gauge �eld theory. In the se
ond paper [3℄, he derived the BEHtheory in terms of the 
lassi
al equations of motion, whi
h he formulated forthe abelian 
ase.From the a
tion Eq.(2), taking as in Eq.(9), the expe
tation value of theBEH boson to be h�1i, and expanding the NG �eld �2 to �rst order, one getsthe 
lassi
al equations of motion to that order��f���2 � eh�1iA�g = 0 ; (23)��F �� = eh�1if���2 � eh�1iA�g : (24)De�ning B� = A� � 1eh�1i���2 and G�� = ��B� � ��B� = F�� ; (25)one gets ��B� = 0 ; ��G�� + e2h�1i2B� = 0 : (26)Eq.(26) shows that B� is a massive ve
tor �eld with mass squared e2h�1i2 ina

ordan
e with Eq.(12). 13



In this formulation, we see 
learly how the Goldstone boson is absorbed intoa rede�ned massive ve
tor �eld whi
h has no longer expli
it gauge invarian
e.The same phenomenon in the quantum �eld theory approa
h is related tothe unobservability of the 1=q2 pole mentioned in the dis
ussion of Eq.(15);this will be made expli
it in the next se
tion.The equation of motion approa
h is 
lassi
al in 
hara
ter but, as pointed outby Higgs [3℄, the formulation of the BEH me
hanism in the quantum �eldtheory terms of referen
e [1℄ indi
ates its validity in the quantum regime.We now show how the latter formulation signals the renormalizability of theBEH theory.- The renormalization issueThe massive ve
tor propagator Eq.(16) di�ers from a 
onventional free mas-sive propagator in two respe
ts. First the presen
e of the unobservable longi-tudinal term re
e
ts the arbitrariness of the gauge parameter �. Se
ond theNG pole at q2 = 0 in the transverse proje
tor g���q�q�=q2 is un
onventional.Its signi�
an
e is made 
lear by expressing the propagator of the A� �eld inEq.(16) as (putting � to zero)Da�� � g�� � q�q�=q2q2 � �a2 = g�� � q�q�=�a2q2 � �a2 + 1�a2 q�q�q2 : (27)The �rst term in the right hand side of Eq.(27) is the 
onventional massiveve
tor propagator. It may be viewed as the (non-abelian generalization ofthe) free propagator of the B� �eld de�ned in Eq.(25) while the se
ond termis a pure gauge propagator due to the NG boson ([1=eh�1i℄���2 in Eq.(25) )whi
h 
onverts the A� �eld into this massive ve
tor �eld B�.The propagator Eq.(16) whi
h appeared in the �eld theoreti
 approa
h 
on-tains thus, in the 
ovariant gauges, the transverse proje
tor g�� � q�q�=q2 inthe numerator of the massive gauge �eld Aa� propagator. This is in sharp
ontradistin
tion to the numerator g�� � q�q�=�a2 
hara
teristi
 of the 
on-ventional massive ve
tor �eld B� propagator. It is the transversality of theself energy in 
ovariant gauges, whi
h led in the \tree approximation" to thetransverse proje
tor in Eq.(16). As already mentioned, the transversality isa 
onsequen
e of a Ward identity and therefore does not depend on the treeapproximation. This fa
t is already suggested from the dynami
al example14



presented above but was proven in more general terms in a subsequent pub-li
ation8 [9℄. The importan
e of this fa
t is that the transversality of theself-energy in 
ovariant gauges determines the power 
ounting of irredu
iblediagrams. It is then straightforward to verify that the BEH quantum �eldtheory formulation is renormalizable by power 
ounting.On this basis we suggested that the BEH theory 
onstitutes indeed a 
on-sistent renormalizable �eld theory [9℄. To prove this statement, one mustverify that the theory is unitary, a fa
t whi
h is not apparent in the \renor-malizable" 
ovariant gauges be
ause of the 1=q2 pole in the proje
tor, butwould be manifest in the \unitary gauge" de�ned in the free theory by theB� propagator. In the unitary gauge however, renormalization from power
ounting is not manifest. The equivalen
e, at the free level, between the A�and B� free propagators, whi
h is only true in a gauge invariant theory wheretheir di�eren
e is the unobservable NG propagator appearing in Eq.(27), isthe 
lue of the 
onsisten
y of the BEH theory. A full proof that the theoryis renormalizable and unitary was a
hieved by 't Hooft and Veltman [10℄.IV. Consequen
esThe most dramati
 appli
ation of the BEH me
hanism is the ele
troweaktheory, amply 
on�rmed by experiment. Considerable work has been done,using the BEH me
hanism, to formulate Grand Uni�ed theories of non grav-itational intera
tions. We shall summarize here these well known ideas andthen evoke the 
onstru
tion of regular monopoles and 
ux lines using BEHbosons, be
ause they raise potentially important 
on
eptual issues. We shallalso mention brie
y the attempts to in
lude gravity in the uni�
ation quest,in the so 
alled M-theory approa
h, and fo
uses in this 
ontext on an inter-esting geometri
al interpretation of the BEH me
hanism.- The ele
troweak theory [11℄In the ele
troweak theory, the gauge group is taken to be SU(2) � U(1)with 
orresponding generators and 
oupling 
onstants gAa�T a and g0B�Y 0.8The proof given in referen
e [9℄ was not 
omplete be
ause 
losed Yang-Mills loops,whi
h would have required the introdu
tion of Fadeev-Popov ghosts were not in
luded.15



The SU(2) a
ts on left-handed fermions only. The ele
tromagneti
 
hargeoperator is Q = T 3+Y 0 and the ele
tri
 
harge e is usually expressed in termsof the mixing angle � as g = e= sin �; g0 = e= 
os �. The BEH bosons (�+; �0)are in a doublet of SU(2) and their U(1) 
harge is Y 0 = 1=2. Breakingo

urs in su
h a way that Q generates an unbroken subgroup, 
oupled towhi
h is the massless photon �eld. Thus the va
uum is 
hara
terized byh�i = 1=p2 (0; v).Using Eqs.(12) and (15) we get the mass matrixj�2j=v24 g2 0 0 00 g2 0 00 0 g02 �gg00 0 �gg0 g2whose diagonalization yields the eigenvaluesM2W+ = v24 g2 ; M2W� = v24 g2 ; M2Z = v24 (g02 + g2) ; M2A = 0 : (28)This permits to relate v to the the Fermi 
oupling G as v2 = (p2G)�1.Although the ele
troweak theory has been amply veri�ed by experiment, theexisten
e of the BEH boson has, as yet, not been 
on�rmed. It should benoted that the physi
s of the BEH boson is more sensitive to dynami
alassumptions than the massive ve
torsW� and Z, be it a genuine elementary�eld or a manifestation of a 
omposite due to a more elaborate me
hanism.Hen
e observation of its mass and width is of parti
ular interest for furtherunderstanding of the me
hanism at work.- Grand uni�
ation s
hemesThe dis
overy that 
on�nement 
ould be explained by the strong 
ouplinglimit of quantum 
hromodynami
s based on the \
olor" gauge group SU(3)led to tentative Grand Uni�
ation s
hemes where ele
troweak and strongintera
tion 
ould be uni�ed in a simple gauge group G 
ontaining SU(2) �U(1) � SU(3) [12℄. Breaking o

urs through va
uum expe
tation values ofBEH �elds and uni�
ation 
an be realized at high energies be
ause while the16



renormalization group makes the small gauge 
oupling of U(1) in
rease loga-rithmi
ally with the energy s
ale, the 
onverse is true for the asymptoti
allyfree non abelian gauge groups.- Monopoles, 
ux tubes and ele
tromagneti
 dualityIn ele
tromagnetism, monopoles 
an be in
luded at the expense of introdu
-ing a Dira
 string [13℄. The latter 
reates a singular potential along the stringterminating at the monopole. For instan
e to des
ribe a point-like monopolelo
ated at ~r = 0, one 
an take the line-singular potential~A = g4� (1� 
os �)~r� ; (29)This potential has a singularity along the negative z-axis (� = �) where thestring has been put (see Fig.7). The unobservability of the string impliesthat its �
titious 
ux be quantized a

ording to the Dira
 
onditioneg = 2�n n 2 Z : (30)
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In 
ontradistin
tion to the string in the U(1) theory, the Dira
 string innon abelian gauge groups 
an be removed by a gauge singularity for well
hosen quantized magneti
 
harges, redu
ing the line singularity to a pointlike singularity. 17



B

A

r

y

x

z 3

2

1 unobservability

gauging out

3

B

r

y

x

z 3

2

1

Fig. 8An example is the SO(3) monopole, represented in Fig.8, arising from thepotential Aa i = g4��iab rbr2 ; eg = 4� : (31)Breaking the symmetry to U(1) by a BEH �eld belonging to the adjointgroup SO(3) one 
an remove the point singularity to get the topologi
allystable 't Hooft-Polyakov regular monopole [14℄.This pro
edure 
an be extended to Lie groups G of higher rank [15℄. For ageneral Lie group G, the possibility of gauging out the Dira
 string depends onthe global properties of G. Namely, the mapping of a small 
ir
le surroundingthe Dira
 string onto G must be a 
urve 
ontinuously deformable to zero.Closed 
urves in G are 
hara
terized by Z where Z is the subgroup of the
enter of the universal 
overing ~G of G su
h that G = ~G=Z. Gauging outonly o

urs for the 
urve 
orresponding to the unit element of Z. Thisis the origin for the un
onventional fa
tor of 2 (4� = 2:2�) in Eq.(31) asSO(3) = SU(2)=Z2.The 
onstru
tion of regular monopoles has interesting 
on
eptual impli
a-tions.The mixing between spa
e and isospa
e indi
es in Eq.(31) means that theregular monopole is invariant under the diagonal subgroup of SO(3)spa
e �SO(3)isospa
e. This implies that a bound state of a s
alar of isospin 1=2 withthe monopole is a spa
e-time fermion. In this way, fermions 
an be made outof bosons [16℄. 18



One 
an de�ne regular monopoles in a limit in whi
h the BEH-potentialvanishes. These are the BPS monopoles. They admit a supersymmetri
extensions in whi
h there are indi
ations that ele
tromagneti
 duality 
an berealized at a fundamental level, namely that the inter
hange of ele
tri
 andmagneti
 
harge 
ould be realized by equivalent but distin
t a
tions.The BEH-me
hanism,when G symmetry is 
ompletely broken, is a relativisti
analog of super
ondu
tivity. The latter may be viewed as a 
ondensation ofele
tri
 
harges. Magneti
 
ux is then 
hanneled into quantized 
ux tubes.In 
on�nement, it is the ele
tri
 
ux whi
h is 
hanneled into quantized tubes.Therefore ele
tri
-magneti
 duality suggests that, at some fundamental level,
on�nement is a 
ondensation of magneti
 monopoles and 
onstitutes themagneti
 dual of the BEH me
hanism [17℄.- A geometri
al interpretation of the BEH me
hanismThe BEH me
hanism operates within the 
ontext of gauge theories. Despitethe fa
t that grand uni�
ation s
hemes rea
h s
ales 
omparable to the Plan
ks
ale, there was, a priori, no indi
ation that Yang-Mills �elds o�er any insightinto quantum gravity. The only approa
h to quantum gravity whi
h hadsome su

ess, in parti
ular in the 
ontext of a quantum interpretation of thebla
k holes entropies, are the superstring theory approa
hes and the possiblemerging of the �ve perturbative approa
hes (Type IIA, IIB, Type I and thetwo heteroti
 strings) into an elusive M-theory whose 
lassi
al limit wouldbe 11-dimensional supergravity. Of parti
ular interest in that 
ontext is thedis
overy of Dp-branes along whi
h the ends of open strings 
an move [18℄.This led, for the �rst time, to an interpretation of the area entropy of somebla
k holes in terms of a 
ounting of quantum states. Here we shall explainhow Dp-branes yield a geometri
al interpretation of the BEH me
hanism.When N BPS Dp-branes 
oin
ide, they admit massless ex
itations from theN2 zero length oriented strings with both end atta
hed on the N 
oin
identbranes. There are N2 massless ve
tors and additional N2 massless s
alarsfor ea
h dimension transverse to the branes. The open string se
tor has lo
alU(N) invarian
e. At rest, BPS Dp-branes 
an separate from ea
h other inthe transverse dimensions at no 
ost of energy. Clearly this 
an break thesymmetry group from U(N) up to U(1)N when all the branes are at distin
tlo
ation in the transverse spa
e, be
ause strings joining two di�erent branes19



have �nite length and hen
e now des
ribe �nite mass ex
itations. The onlyremaining massless ex
itations are then due to the zero length strings withboth ends on the same brane.
Dp-branes

Fig. 9This symmetry breaking me
hanism 
an be understood as a BEH me
hanismfrom the a
tion des
ribing low energy ex
itations of N Dp-branes. Thisa
tion is the redu
tion to p+1 dimensions of 10-dimensional supersymmetri
Yang-Mills with U(N) gauge �elds [19, 20℄.The Lagrangian isL = �14TrF��F�� + Tr� 12D�AiD�Ai � 14[Ai ;Aj ℄2 �+ fermions ; (32)where � labels the p+1 brane 
oordinates and i the dire
tions transverse tothe branes. F�� = F a��Ta, Ai = Aa i Ta where Ta is a generator of U(N) ina de�ning representation.The states of zero energy are given 
lassi
ally, and hen
e in general be
auseof supersymmetry, by all 
ommuting Ai = fximng matri
es, that is, up toan equivalen
e, by all diagonal matri
es fximng = fximÆmng. Label the N2matrix elements of A� by A�mn. The (N2 � N) gauge �elds given by thenon diagonal elements m 6= n a
quire a massm2mn / (~xm � ~xn)2 ; (33)if ~xm 6= ~xn, as is easily 
he
ked by 
omputing the quadrati
 terms in A�mnappearing in the 
ovariant derivatives TrD�AiD�Ai.This symmetry breaking is indu
ed by the expe
tation values fximg. Thegauge invarian
e is ensured, as usual, by unobservable (N2�N) NG bosons.20



To identify the latter we 
onsider the s
alar potential in Eq.(32), namelyV = Tr14[Ai ;Aj ℄[Ai ;Aj℄ = 14 Xi;j;m;nhmj[Ai ;Aj ℄jnihnj[Ai ;Aj ℄jmi : (34)We write hmjAj jni = xjmÆmn + yjmn : (35)Here the diagonal elements fxjmg are the BEH expe
tation values and theyjmn(= �[yjnm℄�) de�ne d(N2 � N) hermitian s
alar �elds (yimn)a (a = 1; 2)where yjmn = (yjmn)1 + i(yjmn)2 ; m > n , and d is the number of transversespa
e dimensions. The mass matrix for the �elds (yimn)a is�2V�(ykmn)a�(ylmn)b = Æab[(~xm � ~xn)2Ækl � (xkm � xkn)(xlm � xln)℄ ; (36)and has for ea
h pair m;n (m < n), two zero eigenvalues 
orresponding tothe eigenve
tors (ylmn)a / (xlm � xln). These are the required (N2 �N) NGbosons, as 
an be 
he
ked dire
tly from the 
oupling of Ai to A� in theLagrangian Eq.(32) .As mentioned above, the breaking of U(N) up to U(1)N may be viewed in thestring pi
ture as due to the stret
hed strings joining branes separated in thedimensions transverse to the branes. One identi�es the fximg as 
oordinatestransverse to the brane m. The mass of the ve
tor meson A�mn is then themass shift due to the stret
hing of the otherwise massless open string ve
torex
itations. The unobservable NG bosons ~ymn k (~xm � ~xn) are the �eldtheoreti
 expression of the unobservable longitudinal modes of the stringsjoining the branes m and n. In this way Dp-branes provide a geometri
alinterpretation of the BEH me
hanism.It may be worth mentioning the interesting situation whi
h o

urs when p = 0[20, 21℄. The Lagrangian Eq.(32) then des
ribes a pure quantum me
hani
alsystem where the fximng are the dynami
al variable. The time 
omponentAtwhi
h enters the 
ovariant derivativeDtAi 
an be put equal to zero, leaving a
onstraint whi
h amounts to restri
t the quantum states to singlets of SU(N).The fximg whi
h de�ne in string theory D0-brane 
oordinates (viewed aspartons in the in�nite momentum frame in referen
e [21℄) are the analog, forp = 0, of the BEH expe
tation values in the p 6= 0 
ase, although they labelnow 
lassi
al 
olle
tive position variables of the quantum me
hani
al system21



and not va
uum expe
tation values. The nondiagonal quantum degrees offreedom ~ymn ? (~xm � ~xn) have a positive potential energy proportional tothe distan
e squared between the D0-branes m and n. Hen
e they get lo
kedin their ground state when the D0-branes are largely separated from ea
hother. In this way, the D0-brane Ai = fximng matri
es 
ommute at largedistan
e s
ale and de�ne geometri
al degrees of freedom. However thesematri
es do not 
ommute at short distan
es where the potential energies ofthe yimn go to zero. This suggests that the spa
e-time geometry exhibits non
ommutativity at small distan
es, a feature whi
h may well turn out to bean essential element of quantum gravity.V. RemarksPhysi
s, as we know it, is an attempt to interpret the apparent diversity ofnatural phenomena in terms of general laws. By essen
e then, it in
ites onetowards a quest for unifying diverse physi
al laws.Originally the BEH me
hanism was 
on
eived to unify the theoreti
al de-s
ription of long range and short range for
es. The su

ess of the ele
troweaktheory made the me
hanism a 
andidate for further uni�
ation. Grand uni-�
ation s
hemes, where the s
ale of uni�
ation is pushed 
lose to the s
aleof quantum gravity e�e
ts, raised the possibility that uni�
ation might alsohave to in
lude gravity. This trend towards the quest for uni�
ation re
eiveda further impulse from the developments of string theory and from its 
on-ne
tion with eleven-dimensional supergravity. The latter was then viewedas a 
lassi
al limit of a hypotheti
al M-theory into whi
h all perturbativestring theories would merge. In that 
ontext, the geometrization of the BEHme
hanism is suggestive of the existen
e of an underlying non 
ommutativegeometry.Referen
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