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Preface

The interacting boson model (IBM) is suitable for describing intermediate and
heavy atomic nuclei. Adjusting a small number of parameters, it reproduces the
majority of the low-lying states of such nuclei. Figure 0.1 gives a survey of
nuclei which have been handled with the model variant IBM2. Figures 10.7 and
14.3 show the nuclei for which IBM1-calculations have been performed.
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Figure 0.1. Card of even-even nuclei. Z = number of protons, N =
number of neutrons. The dark areas denote nuclei which have been
calculated using the IBM2 approximation (lachello, 1988, p. 110).

The IBM is based on the well-known shell model and on geometrical collective
models of the atomic nucleus. Despite its relatively simple structure, it has
proved to be a powerful tool. In addition, it is of considerable theoretical interest
since it shows the dynamical symmetries of several nuclei, which are made
visible using Lie algebras.



The IBM was created in 1974 by F. lachello and A. Arima ( Arima and lachello,
1975 ). Subsequently in numerous papers it has been checked, extended, and
discussed. In 1990 in Santa Fe, New Mexico, Akito Arima was awarded the
Weatherhill medal by the Franklin Institute for his many contributions to the field
of nuclear physics. In the same year, Francesco lachello received the Wigner
medal given by the Group Theory and Fundamental Physics Foundation, which
cited him for " developing powerful algebraic tools and models in nuclear
physics ". In 1993, A. Arima and F. lachello were awarded the T. W. Bonner
Prize in Nuclear Physics by the American Physical Society.

The international symposia of Erice ( Italy, 1978 ), Granada ( Spain, 1981 ),
Drexel ( USA, 1983 ), Gull Lake ( USA, 1984 ), La Rabida ( Spain, 1985 ),
Dubrovnik ( Yugoslavia, 1986 ) as well as other events focusing on the I1BM
have clearly demonstrated the wide interest in this theory and its further
development on an international scale. In 1994 in Padua ( Italy ), the
"International Conference on Perspectives for the Interacting Boson Model on
the Occasion of its 20th Anniversary" took place.

In recent years outstanding survey reports on the IBM have been published by
lachello and Arima ( 1987 ), Eisenberg and Greiner ( 1987 ), Talmi ( 1993 ),
Frank and Van lIsacker ( 1994 ) , and others. Unfortunately, there are few
introductory books on the IBM available for the interested reader. The present
publication might reduce this deficiency. It is directed towards physics students
and experimental physicists interested in the main properties of the IBM.
Knowledge of the elements of quantum mechanics, nuclear physics, and
electrodynamics is a prerequisite.

The experienced reader may feel that some transformations and proofs have
been rendered in too great detail. For the beginner, however, this is
indispensable and may serve him as an exercise.



1 Introduction

A model of the atomic nucleus has to be able to describe nuclear properties
such as spins and energies of the lowest levels, decay probabilities for the
emission of gamma quantas, probabilities ( spectroscopic factors ) of transfer
reactions, multipole moments and so forth. In this chapter those models are
outlined from which the IBM comes.

The IBM is mainly rooted in the shell model, which has proved to be an
excellent instrument for light nuclei ( up to 50 nucleons ). The larger the number
of nucleons becomes the more shells have to be taken into account and the
number of nuclear states soon becomes so colossal that the shell model will be
intractable. For example the 2" state ( spin 2 and positive parity ) of %'Sm
shows 3-10'* different configurations ( Casten, 1990, p. 198 ). The interacting
boson model (sometimes named interacting boson approximation IBA)
reduces the number of states heavily. It constitutes only 26 configurations for
the 2" state mentioned above.

The shell model reveals that the low-lying states of the even-even nuclei are
made up predominantly by nucleon pairs with total spin O or 2. Higher spins of
such pairs are rare for energy reasons ( Hess, 1983, p. 55 ). Particularly the
spins of pairs of identical nucleons are even numbers because they constitute
an antisymmetric state ( appendix A2 ). Furthermore, in the case of two
identical nucleon pairs the total spin is strictly even, which follows from the fact
that the pairs behave like bosons ( see appendix A2 ). This theoretical result is
not far from the real situation of even-even nuclei, from which it is known that
their total spin predominantly is even.

These and other arguments led to the basic assumption of the IBM which
postulates that the nucleon pairs are represented by bosons with angular
momenta / = 0 or 2. The multitude of shells which appears in the shell model is
reduced to the simple s-shell (/=0 ) and the d-shell (/=2 ) which is composed
vectorially by d-bosons analogously to the shell model technique. The IBM
builds on a closed shell i.e. the number of bosons depends on the number of
active nucleon ( or hole ) pairs outside a closed shell. Each type of bosons, the
s- and the d-boson, has its own binding energy with regard to the closed shell.
Analogously to the standard shell model, the interacting potential of the bosons
acts only in pairs.

As a peculiarity of the IBM there exist special cases in which certain linear
combinations of matrix elements of this interaction potential vanish ( chapters
10 and 14 ). In these cases the energies of the nuclear states and the
configurations can be expressed in a closed algebraic form. These special
cases are named "dynamic symmetries". They correspond to the well-known
"limits" allocated to the vibration, the rotation et cetera of the whole nucleus.
However most nuclei have to be calculated by diagonalising the Hamilton matrix
as is usual in quantum mechanics ( chapter 12 ).



The IBM is not only in connection with the shell model but also with the
collective model of the atomic nucleus of Bohr and Mottelson ( 1953, 1975 ). In
this model the deformation of the nuclear surface is represented by five
parameters from which a Hamiltonian of a five dimensional oscillator results. It
contains fivefold generating and annihilating operators for oscillator quanta. The
operators of these bosons correspond to the operators of the d-shell in the IBM.

However, the handling of the collective model is laborious ( Jolos, 1985,
p. 121 ). Moreover, the number of bosons is unlimited and is not a good
quantum number in contrast to the situation in the IBM. The special cases
mentioned above are reproduced by some versions of geometric models but
they are not joined together continuously ( Barrett, 1981, p. 534 ). In the IBM
these relations exist.

An additional relationship between both models consists in the fact that the
form of the Hamilton operator ( after suitable transformations ) is similar to the
one of the IBM ( Jolos, 1985, p. 124 ).



2 Characteristics of the IBM

The simplest versions of the IBM describe the even-even nucleus as an inert
core combined with bosons which represent pairs of identical nucleons. Bosons
behave symmetrically in the following way: supposing that each boson has a
wave function, that can be attributed, the wave function of the total
configuration does not alter if two bosons ( i.e. their variables) are interchanged.
The analogy between nucleon pairs and bosons does not go so far that in the
IBM the wave functions of the corresponding nucleons would appear. However,
in the interacting boson-fermion model ( chapter 16 ) which deals with odd
numbers of identical nucleons, bosons are coupled to nucleons. Bosons are
taken as states without detailed structure and their symmetry properties result
in commutation relations for the corresponding creation- and annihilation
operators ( chapter 5 ).

The total spin of a boson is identical with its angular momentum i.e. one does
not attribute an intrinsic spin to the bosons. Since the angular momenta of the
bosons are even (/= 0, 2 ) their parity is positive. Although plausible arguments
exist for these angular momenta mentioned in the foregoing chapter, this
choice is arbitrary and constitutes a typical characteristic of the theory
( however, exotic variants have been developed with / = 4 or odd values ). Only
the success achieved by describing real nuclei justifies the assumption for the
angular momenta.

The models IBM1 and IBM2 are restricted to nuclei with even numbers of
protons and neutrons. In order to fix the number of bosons one takes into
account that both types of nucleons constitute closed shells with particle
numbers ..28, 50, 82 and 126 ( magic numbers ). Provided that the protons fill
less than half of the furthest shell the number of the corresponding active
protons has to be divided by two in order to obtain the boson number N,
attributed to protons. If more than half of the shell is occupied the boson
number reads N, = ( number of holes for protons )/2. By treating the neutrons in
an analogous way, one obtains their number of bosons N, . In the IBM1 the
boson number N is calculated by adding the partial numbers i.e. N= N, + N, .
For example the nucleus ''®;,Xegs shows the numbers N, = (54 - 50)/2 = 2, N,
= (64 -50)/2 = 7 and for '®5,Xe4 the values N, = (54 - 50)/2 = 2, N, = (82 - 74)/2
= 4 hold. Electromagnetic transitions don't alter the boson number but transfers
of two identical nucleons lift or lower it by one.

Naturally the IBM has to take into account the fact that every nuclear state has
a definite total nuclear angular momentum J or rather that the eigenvalue of the

angular momentum operator Jiis J(J + 1)-h. Jis an integer.



A boson interacts with the inert core of the nucleus ( having closed shells ) from
which results its single boson energy ¢. Three-boson interactions are excluded
in analogy with the assumptions of the standard shell model. In contrast to the
collective model, in the IBM one does not obtain a semiclassical, vivid picture of
the nucleus but one describes the algebraic structure of the Hamiltonian
operator and of the states, for which reason it is named an algebraic model.



3 Many-body configurations

At the beginning of this chapter the representation of boson configurations will
be outlined and in the second section completely symmetric states of a few d-
bosons will be formulated explicitly. In the end the rules are put together which
hold for the collective states in the seniority scheme. They are compared with
the results of section 3.2. In this chapter vector coupling technique is being
applied, which is reviewed in the appendices A1 up to A3.

3.1 Many-boson states

Here we introduce a formulation of completely symmetric states of N bosons of
which ny have a d-state and N - ny bosons are in the s-state. Besides the total
angular momentum J and its projection M, for the most part additional ordering
numbers are required in order to describe the collective state. One of these
numbers is the seniority 7, after which the most usual representation scheme is
named.

For the moment we are leaving out the additional ordering number and write the
completely symmetric configuration symbolically as

| (8" V% (d ™), J M. (3.1)

The s-bosons are coupled to a J = O-state. In detail, the d-boson part is
composed of single d-boson states having the angular momentum components
2, 1, 0, -1 and -2. These five single boson states d, appear in linear
combinations as will be shown in the next section. The expression (3.1) is
normalised to one.

3.2 Symmetric states of two and three d-bosons
In this section the s-bosons are left out of consideration and we will deal with
the symmetrisation of configurations with a small number ny of d-bosons.

First we take ny = 2. According to the relation (A2.7) the configuration | d? J M)
is symmetrical by itself if J is an even number. It has the form (A1.1)

1d% UMY =S e Rui2 2| JM)dude)=|[dxd]Y), J=0,2,4. (3.2)

In order to obtain a three-boson state we couple one d-boson to a boson pair
which has an even angular momentum Jy i.e. we form

1d3 Jo M) =|[[dxd]¥ xd] ). (3.3)

This expression is considered as a fully symmetrical three-d-boson state, which
is obtained by carrying out a transposition procedure. In order to formulate this
method, temporarily we are regarding bosons as distinguishable and we
attribute an individual number to each single boson state. Supposing that such



a state is described by a wave function, we have to label every variable with this
boson number. We make use of the relation [ d(1) x d(2)]** = [ d(2) x d(1) |**,
which holds for an even Jy according to ( A2.5 ) and ( A2.7 ). Starting from the
partially symmetric ( p. s. ) form

| [d(1) x d(2) 1Y x d(3) |V'm Ypss.,

we obtain a symmetric three-boson state by adding two analogous forms in
which the last d-boson is substituted as follows

AT d x d ] % d 1) = [T d(1) x d(2) ] x d(3) ]Vm Yps +
| T d(1) x d(3) 1Y x d(2) 1V dps. + | 1 d(3) x d(2) 1"? x d(1) [Vm dps. . (3.4)

A is the normalisation factor of the right hand side of (3.4). This expression is
symmetric because one reproduces it by interchanging two boson numbers ( for
example 2 and 3 ). In the last but one term, we can interchange d(1) and d(3)
because it is partially symmetric. We employ the recoupling procedure (A3.3)
and (A3.6) to the last two terms in (3.4) and obtain

AT x d ] % d V%) = [ 11 d(1) x d(2) 1Y x d(3) 1V Yps. + (3.5)
Yo (1) V@20 + 1)NQ@I + 1){% 2 03 1dEB) x [d(1) x d(2) IV N e+
> (1) N@2do + 1)N@I + 1){% 2 P [d3) x [d(2) x d(1) 1YV dps.

We now interchange d(2) and d(1) in the last term of (3.5), which yields the
factor (—1)J' ((A1.4)). Both sums are added then, through which all terms with
odd values J’ disappear. In the resulting sum we interchange d(3) and [ d(2) x
d(1) ](J ), which annihilates the factor (-1)J according to (A1.4), because J’ is
even. For formal reasons the first term on the right hand side of (3.5) is
replaced by Yeven Sswo | [ d(1) x d(2) 1" x d(3) 1’ )ps.. One obtains

AN Ldxd]" < d]Vy) = (3.6)
Soeven (8r0 + 2N(2Jo + NS+ 1){%2 % “u DI TTd(1) x d(2) 1) x d(3) V).
The normalisation factor A reads

A=(B3+6(2Jo+1){% % Y, (3.7)

It's a good exercise to derive this expression explicitly. The state
| [[dxd]¥ xd]¥y) is regarded as normalised to one. Analogously to the two-
boson states (A1.9) here the partially symmetric states |[[d(1)xd(2)]" 'xd(3)]"w)
with different J’ are orthogonal to each other. We employ a slightly modified
form of (3.5)

AT dxd]¥ %< d 1) =TT d(1) x d(2) ]Y x d(3) ]Vm Yps.+
V(@2Jo + 1) X (1 + (1) WL+ 1){% 2 3 d(1) x d(2) 1Y x d(3) 1P )ps. -

and make up the following equation



AP (d < o™ x oM | [[d x d % x o V) = A” =
1+22:2do+ 1{% %, Y} + (2Jo+ 1) (2 + 2:(-1)) 20 + 1){% 2 P02
Due to (A3.8) and (A3.9) the relations
Y0+ 1){% 2 % ¥ =(2Jo+1)" and
SrN @28+ 1{% % Y, = {2 2, %) hold, from which we derive
AZ=1+2+(2+4)(2Jo+1){?% 2, %}, which is in agreement with (3.7).

We now look into the J-values of symmetric three d-boson states represented
in (3.6).

The case J = 0 is of some importance in the seniority scheme. The number of
triplets with J = 0 is named n, i.e. in this case we have n, = 1.

For J # 0 we insert the numerical values of the 6-j symbols (A3.12 - 14) in the
equation (3.6). For J = 1 the partial vectors can only show Jo = J’ = 2 and the
expression (3.6) vanishes. For J = 2 the values Jo = 0, 2, 4 have to be
considered and the calculation yields

Tdxd19%xd]®u) = [dxd]?xd]®u)y=|[[dxd]¥xd]®u).

We take a special interest in states with Jo = 0, that is why we treat the state
(Jo= 2, J = 2) mentioned above as equivalent to (Jp = 4, J = 2) and to (Jp = 0,
J = 2) . Therefore we say, the configuration (Jo # 0, J = 2) does not exist. In a
similar way we see that the J = 3-states (Jp = 2, 4) differ only in their signs. Both
J = 4-states (Jp = 2, 4) are identical. For J = 5 (Jp = 4) the expression (3.6)
vanishes. J = 6 characterises the so-called "stretched" state.

3.3 The seniority scheme, rules defining J

General symmetric states of d-bosons are constructed by vector coupling and
complete symmetrisation using group theory ( Hamermesh, 1962 ), ( Bayman
and Landé, 1966 ). Here we have a look at the seniority scheme, which is the
most common version of this representation. The configuration of ny d-bosons
is written as follows

| ng, ([d x d]%%)"™=([ld x d]® x dV6)™ (")) . (3.8)

In the expression (3.8) the doublet [d x d](o)o with angular momentum 0 appears
n, times and the triplet [[d x d]® x d]%% exists n, times. The A remaining d-
bosons constitute a configuration with the total angular momentum J (M) which
contains neither a doublet nor a triplet with J = 0. Therefore the number of d-
bosons reads ng = 2nz + 3n, + A. The number 7 = nyg - 2nz = 3n, + A, which is
left over after subtracting the doublets, is named seniority analogously to the
description in the shell model. We name the configuration (d*)*, the "reduced"
state of the A bosons. It is defined unambiguously by A, J and M (Talmi, 1993,



S. 763). Its total angular momentum J is identical with the one of the whole
configuration (3.8).

In the seniority scheme the d-boson configurations are defined by the
numbers ny, Nz, Ny, J, (M).

There exist restrictions for the J-values. It can be shown that in a "reduced"
state of 1 d-bosons the following values are permitted

J=2, A+ 1, .., 24-3,21-2, 2], (3.9)

i.e.J<Aand J=24-1 are inadmissible. J = 2 represents the "stretched"
state.

The exclusion of J = 24 - 1 in (3.9) can be explained in the following way. We
know that for the "stretched", symmetric and to z orientated state of 1 d-bosons
the relation J = M = 24 holds. We now construct the symmetric state with M =
22 - 1 and represent it using numbered bosons whose projections of the
angular momentum is u :

(d*m=22-1) = Al(d(1)u1-0(2)ue2dB)z o A2
+ A1) d(2)1 03z . U(A)m2 (3.10)
t
t d(1)u=2d(2)=2:d(3) =2 .. d(A)=1) ) -

A is the normalisation constant. The expression (3.10) reveals that there exists
only one state with M = 21 - 1. On the other hand, if one turns the "stretched"
state ( with J = 21 ) relative to the z-axis in order to obtain the projection M = 21
- 1, the resulting state is still symmetric and must agree with the one of (3.10)
because this is unique. For the same reason a state with J = 24 - 1 is not
allowed because its maximal projection would be M = 24 - 1 which must not
occur twice.

We now verify the rule (3.9) inspecting the boson states (3.2) and (3.6). For
2 = 2 the "reduced" state reads |[ d x d ]y ) with J # 0. Owing to (3.9) only the
values J = 2, 4 have to be considered which is in agreement with (3.2). For the
"reduced" state with A = 3 according to (3.9) the values J = 0, 1, 2 are ruled out.
In fact the discussion of equation (3.6) showed that J = 1 does not appear and
that both other cases are equivalent to Jy = 0 which is inconsistent with the term
"reduced" state. The rule (3.9) excludes J = 5 which has been found to be true
for 2 = 3. Thus, for A = 2 and 3 the selection rule (3.9) is confirmed.

In table 3.1 for several boson numbers ny the allowed values n, and n, are
given. Accompanying values for 7, A and J are in the columns 3, 5 and 6.



Table 3.1. Classification of the d-boson configurations in the seniority scheme.
ng : number of d-bosons,

n,: number of boson pairs with total angular momentum O,

n, : number of boson triplets with total angular momentum O,

7 : seniority, A : number of bosons in the "reduced" state,

J: total angular momentum

Ng N, T=Ng-2N; N A=1-3n, J

2 0 2 0 2 2,4

2 1 0 0 0 0

3 0 3 0 3 3,4,6

3 0 3 1 0 0

3 1 1 0 1 2

4 0 4 0 4 4,5,6,8
4 0 4 1 1 2

4 1 2 0 2 2,4

4 2 0 0 0 0

7 0 7 0 7 7,8,9,10,11,12,14
7 0 7 1 4 4,5,6,8
7 0 7 2 1 2

7 1 5 0 5 5,6,7,8,10
7 1 5 1 2 2,4

7 2 3 0 3 3,4,6

7 2 3 1 0 0

7 3 1 0 1 2

Table 3.1 shows that for given ny > 3 some angular momenta J appear in more
than one configuration. The value J = 1 is absent in the whole spectrum. Clearly
it is missing also for A = 1 because this simplest "reduced" state consists of a
single d-boson.

Among states with several d-bosons it happens that configurations with equal
( ng, 7, J )-values differ in the quantity n, and are not orthogonal to one another.
They have to be orthogonalised with the help of the well-known Schmidt
procedure. By doing it, the number n, looses its character of an ordering
number and it has to be replaced by an arbitrarily defined index.

Many-boson configurations in the seniority scheme stand out because they are
eigenfunctions of the vibrational limit of the Hamilton operator ( chapter 10 and
section 14.4 ). Since this special case correlates with the Lie algebra u(5) the
states of the seniority scheme in addition are named u(5)-basis. "Spherical
basis " is a further customary name. Besides this scheme there exist two less
often used representations which are eigenfunctions of other limits of the
Hamiltonian ( chapter 14 ).






4 Many-boson states with undefined angular
momentum

In this chapter we will deal with the simplest representation of many-boson
states. It is formed as a product of single-boson state functions. Symmetry is
achieved by permuting the boson indices and adding up the resulting
expressions. In contrast to (3.8), the single angular momenta are not coupled to
a definit total quantity. We nam this representation "primitive" basis.

In the first section we will look into such representations of a few bosons and
relate them to the formulations with defined angular momentum. The symmetric
primitive representation of a multitude of different single-boson states is treated
in the second section.

4.1 Two- and three-d-boson states

By way of introduction, we treat the "primitive" states of a few d-bosons. The
single d-boson state is characterized by d,(n). The quantity m is the projection
of the angular momentum / = 2 and n is the number of the bosons. Provisionally
we are considering the bosons as distinguishable.

The symmetric and normalised two-d-boson state of this kind is represented by
| d mdm’), in which single boson states such as d,(/) and dn- (k) are involved.
It has the form

ldmdm’y =201+ )| din(1) di (2) + din(2) A (1) ). (4.1)

Interchanging 1 and 2 has no influence and (d mdm’| d mdm’) =1 holds i.e.
the expression (4.1) is symmetric and normalised.

Correspondingly, "primitive" three-d-boson states are constructed by summing
up | dim(1) dm (2) dm#(3) ), | di(1) dm(3) dm+(2) ) and | dm(2) dim (1) dim=(3) ) etc
and by normalising. One writes

|ldmdm’dm*) = Ap(m, m’, m“)'ZaII permutationsl dm(1) dm (2) dm<(3) ). (4.2)

The permutations concern the numbers 1, 2 and 3. The normalisation factor
Ax(m, m’, m*) is 1/\6 if all quantities m are different. Supposing that only two of
them agree, A, = 1/(2V3) holds and for three identical single boson states we
have A, = 1/6.

Before we turn to the general representation of the "primitive" basis we show
the connection between the states (4.1-2) and those of the seniority scheme
(3.2), (3.3) and (3.8) whose angular momenta are good quantum numbers.

According to equation (3.2) the symmetric two-boson state of this kind reads

|d?2IM)Y=|[dx d )= Zmm(@m2m |JM)| du(1) dm (2) ). (4.3)



The angular momentum J is even. We introduce an operator S which
interchanges in equation (4.3) the indices 1 and 2 and adds the new expression
to the original one. Due to the symmetry in (4.3) the following relations hold

|d?IM)=%S|d*IM) =
Yo Ymam (2 m 2 m’ |d M) (N2IN2):|dim(1) dime (2) + din(2) i (1)) +
Vo (2 MI2 2 MI2 |J M)-2-|d mi2(1) d miz2 (2))- O even =
S (2m2m’|d MY(AN2)-|[dmd m’) +
(2 MI2 2 MI2 |J M)-|d MI2 d MI2)-8 p even =
S V(1 + Sum)2)2m2m’ | JM):-[dmd m’) (4.4)
The last expression in (4.4) is built with "primitive" states introduced in (4.1).

The symmetric states of three-d-bosons with defined angular momentum J can
be treated in a similar way. According to (3.4) we have

AT d% oI My = [[d(1) x d(2)]Y % d(3)]Vn ) +
| [1d(2) x d(3)]Y % d(1)]hs ) +
| [1d(3) x d(1)]x d(2)] s ). (4.5)

The quantity Jo is even and the normalisation factor A is given in (3.7). Using
the Clebsch-Gordan coefficients defined in (A1.1) we rewrite (4.5) and in the
following step we insert the "primitive" representation of (4.2) . We obtain

AT 1A% oI MY = Suome(Jo Mo 2 m*| J M)- (4.6)
me’ (2 m 2 m’l JO MO)'1/2 Zall permutationsl dm(1) dm’(2) dme (3) > =
2mom* (Jo Mo 2 m* | M)-Zmm 2 m2 m’| Jo Mo)-1/2-Ap(m,m’,m“)'1-| dmdm’dm®).

In (4.4) and (4.6) the states of the seniority scheme are written as a linear
combination of "primitive" states. It's obvious that this is true for all many-
boson states. This stimulates further research on the "primitive" basis. In doing
so, we will encounter the well-known creation- and annihilation operators for
bosons ( chapter 5 ), which facilitate an elegant representation of the boson
interactions.

4.2 General "primitive" many-boson states

In the interacting boson model the bosons occupy the following six single states
S, dy, dy, do, d-y and d., . For the sake of simplicity, we have a look at an
arbitrary number of single boson states, which we represent by v, w, .., v, ...
In essence, we follow the report of Landau (86).



A single boson state can be occupied by several bosons. The number of
bosons which are in the single state yr is named N; . The total number of
bosons N amounts to the sum of these partial numbers

N=Na+Np+...+ N+ .. . (4.7)

The ansatz for the state ¥ of N bosons is written as a product of N single boson
states which contains N, times the factor y,, N, times the factor v, etc. Each
single state is designed by a different boson number as follows

W(Na, N, - ,Np, ) = Tt a7} Tlieort™ ™ i) - o -Tlieert™ Nye(i) ... . (4.8)

The index i in the partial products marks the bosons occupying the affiliated
single state. The function ¥ does not alter if the labels of bosons are
interchanged which belong to the same single state. In order to obtain complete
symmetry we interchange bosons in all possible ways, which belong to different
single states. All these configurations are generated by arranging the N
numbered bosons in the single states a, b, ..,f,.. with the partial numbers N,, N,
..,N¢ ..in all different ways. In other words, we have here the combinatorial task
to calculate how often N different balls can be put in vessels dissimilarly in such
a way that the first one contains N, balls, the second one N, balls, etc. From
the combinatorial analysis we take that the number of possibilities or
permutations reads

NY(N-N!- .. Nf!- ). (4.9)

We label these permutations by the index r and introduce the operator P’
which performs the rth permutation when acting on the state Y(N,, Np,.., N;, .).
We will show that the state

A Nay No, .. N, .Y =3 PP (Na, Np,.., Ni..) (4.10)

is completely symmetric with regard to interchanging numbered bosons. We
can see this by interchanging two bosons which belong to different single
states. Since every summand in (4.10) has a counterpart which contains the
mentioned bosons in the interchanged positions, the transposition has no effect
on the whole sum. This is true for all kinds of exchange.

We now turn to the normalisation constant A in (4.10). We assume that the
single states (i) depend on variables which we represent by the symbol &; .
We regard these states as orthonormalised i. e.

[ wg (EVWAE) d& = Sy (4.11)

We maintain that all functions P’,'¥(Na, Np,.., Ny, .) are orthonormal with respect
to each other as follows

[ P ¥(Na, No,.., Ng,.)I* P’y ¥(Na, Np,.., Ni, )dE1 .. dén=S,p. (4.12)

At least one boson ( say the ith ) can be found, namely, which is assigned to
different single states (for instance the states f and g ) in the functions



P’r¥(Na, Np,.., Ng,..) and P’y ¥(Na, Np,.., Ny, .). As a result, among other things
the partial integral [y,*(&)wd&)dE (g # f) vanishes. With that, the orthogonality
of the functions P’,¥(Na, Np,.., N;..) is shown. Taking into account the number
of special permutations P’ (4.9) and using (4.12) we obtain

( Na, Np,.., Ni, . | Na, Np,.., Ng.. ) = AZNV(NS-Np!- .. N¢l- ). (4.13)

The left-hand side of (4.13) has to be 1. e.
A = (Na-Npl- .. N¢l- L IN1)” (4.14)
and | Na, Np,.., Ng.. ) = (Na!-Np!- .. N¢l- . INY)™ S, PP ¥(Na, Np,.., Ni..). (4.15)

This function describes the " primitive" state of N bosons with single states a, b,
.., I, .. containing the boson numbers N,, Ny,.., Nf, .. . For N =2 and 3 one can
show directly the agreement between (4.15) and (4.1) or (4.2). Doing so, one
has to take into account that in (4.2) all permutations appear.



5 Operators and matrix elements

The interacting boson model and other many-particle models deal with
operators which act on single boson states or on pair states. Because in our
model the representation of the collective state is symmetric for all N bosons
the mentioned operators cannot be directed towards individual, labelled
bosons. However, they act on the collective of bosons and correspondingly they
have a symmetric form. The single-boson operator F"reads

FM = Zi=1N f“’(éi)- (5.1)

The operator f M acts on a single boson which we consider to be
distinguishable provisionally and to which we assign the index i. The argument
& describes vectorial, local and other variables of the ith boson on which (&)
acts. For example, the operator of the kinetic energy or the operator of a fixed
potential has the form of FO,

The two-boson operator reads
F = S £9(55). (5:2)

The partial operator £ acts on the variables of a boson pair. For example, the
potential operating in twos between bosons has the form (5.2). In simple
models @ is only a function of the difference |& - & |. The Hamilton operator,
which is decisive for quantum mechanical problems, contains the operator
types (5.1) and (5.2) in a linear combination.

In the following section we will deal with matrix elements of single boson
operators using the representation of the “primitive” basis. Almost unavoidably,
one reaches the definition of creation and annihilation operators ( section 5.2 ).
In the third section we will show how these operators contribute to the form of
the matrix elements.

5.1 Matrix elements of the single-boson operator

In order to calculate eigenfunctions and eigenvalues of the Hamilton operator,
matrix elements of the operators (5.1) and (5.2) have to be made up.
Represented in terms of the “primitive“ basis these matrix elements have the
following form

( Nay Nb, ... \Ni, .. | F | N&, Ny, .. N7, .Y (5.3)

First, we deal with the single-boson operator F™. For the sake of simplicity we
admit only two single states a and b. In the matrix element

( Na, No | F| NG, Ny ) (5.4)

the condition N, + N, = N7’ + N’ holds because both total states belong to the
same basis only if the total number of bosons is equal.



We begin with the diagonal matrix element, of which both functions are
identical as follows

Y1 ( Nay Ni | F(E) | Nay N ). (5.5)

First we take / = 1 and ask how many terms exist in the state | Ns, Np )
according to (4.15) and (4.9) in which the first boson is in the single state a. It is
the number of permutations P, ( see section 4.2 ) of the residual N — 1 bosons.
Therefore there are (N - 1)//((Na - 1)!Np!) terms in the state function | N, Np )
with the first boson in the state a. In this case in (5.5) the states w,(&/) and
va"(&1) constitute a separate integral together with ' The integration over the
residual factors containing the variables &, &3, .. &v yields the value 1 ( apart
from the normalisation constant ) if both factors agree in the allocation of
bosons, otherwise it vanishes. Therefore the part of the diagonal matrix
element in which the first boson is in the state a reads

VINNBYNYANLNYN YTy (ENF N En wa(Er) dEr (N - 1)U((Na - 1)ING!) =
(No/N) [ wa*(EnF(Er) walEr) dEr . (5.6)

The first factors in (5.6) are normalisation factors according to (4.14).
Furthermore, in diagonal matrix elements the first boson must not appear in
different states ( a and b ) together with f"'(&;) in the partial integral, because
then the residual states are orthogonal. On the other hand, one obtains an
expression analogous to (5.6) if the first boson is twice in the state b .
Consequently for i = 1 the diagonal matrix element reads

N (Na -l wa*(ENFD(E walEr) dE1 + Nb -y (ENFD(En wn(Er) dEr). (5.7)

Since according to (5.1) the operator F" contains a sum including all i
(1 <i< N) and because the expression

[y @ FO(E vl E) d&i= Fil” (5.8)

does not depend on the boson number j, the expression (5.7) appears N times
and the diagonal element reads

( Na No | F | No, Ni ) = Nafoo" + N, (5.9)
If several single states a, b, c, .., f, .. are involved, correspondingly we have
( Na, No, .., N, .| FY | Na, N, ooy Niy ) = Nafaal ) + Npfopt + .. + Nefe V.. (5.10)

We now deal with non-diagonal matrix elements of the single-boson operator
F®. Again we restrict the single states to a and b. We bring the total states in
the following sequence in which the occupation numbers N, and N, are
stressed



occupation numbers

state a state b

0 N

1 N -1

N, - 1 Np+ 1 (5.11)
N, Np

Nz + 1 Np -1

N 0

with N = N, + N,. It turns out that non-diagonal ( belonging to two different lines
in (5.11)) matrix elements are different from zero only if the occupation
numbers of one single state on both sides of (5.4) differ in 1. In order to show
this we treat

Y izt (Nay No | FD (&) | Na+ 1, Nop-1). (5.12)

We begin also with i = 1 and determine the number of summands on the right
hand side of (5.12) in which the first boson occupies the state a. Again it results
from the number of permutations P,’ of the residual N - 1 bosons i. e. there are
(N - 1)Y(Na!(Np - 1)!) terms of this kind. On the left hand side of (5.12) the
number of terms showing the first boson in the single state b is
(N - 1)Y(Na!(Np- 1)!) as well. These are the only terms which we have to take
into account if we form the integral in (5.12) in demanding /i = 1. We separate
the factors y,*(&1), wa(&7) and £ from the rest and carry out the integral over
&1. Analogously to (5.6) the integration of the residual function depending on &,
&s.. én yields the value 1 ( apart from the normalisation constant ) if both factors
agree in the allocation of bosons which happens (N - 1)//(Na!(Np - 1)!) times.
The integral vanishes if the residues disagree. Therefore the part of the matrix
element in which the first boson is on the left hand side in the state b and on
the right hand side in a reads as follows

( Nay No | £V (&) | Na+1, Np-1) =
V(NNYN )N (N2 + 1N -1)UNY) Ty*(EF D Er) wa(Er) dEr-(N -1)U((Nal(Nb -1)1) =
V(Na +1DNNIN-T y*(EF(Er) walEr) dEr. (5.13)

We take into account that F™" contains a sum over all N bosons and that the
integral

Jws* (ENFD(Ena(Er) dEr= o' (5.14)
does not depend on the boson number i. Thus we obtain
( Nay No | FV | Na +1, Np -1 = V(Na +1)VNp -Ffoa' . (5.15)

The matrix elements of a basis are arranged usually in a quadratic matrix in
which the x-direction indicates the increasing order of the right hand side part of
(5.4) and the falling y-direction is associated with the left hand side state. In this



representation the elements given by (5.15) lie directly beside the diagonal
which is why we name them off diagonal. The matrix elements lying directly on
the other side of the diagonal are formulated analogously to the equation
(5.15).

Matrix elements of the type ( Na, Np | FY | Na+ 2, Np-2 ) and those which are
more distant from the diagonal all vanish because the residual functions
mentioned above never agree i. e. they constitute an orthogonal pair. The result
of (5.15) remains the same if there are further single states c, d, .., f, .. on both
sides of the matrix element with corresponding occupation numbers as follows

( Nay Ny, N, .. N5, .| FY | Ny +1, Np -1, Ng, .. Ny, ..) = V(Na +1)VNp Fra”
or generally (5.16)
(Na, .., Ng, .. Ng, .| FO | Na, . Ny +1, .. Ng-1, ) = V(Ng +1)VNg Foe' .

Thus, in the non-vanishing matrix elements of F™ at most one occupation
number on each side may exceed the corresponding one at most by 1.

5.2 Creation and annihilation operators

We employ a trick which permits to formulate the matrix elements of F"in a
simple way, and to this end, we introduce the annihilation operator bf which
reduces the boson number. Its definition reads: If the annihilation operator by
acts on the boson state | N, Ny, .., Ny, ..) this one is replaced by the normalised
and completely symmetric state | N;, Np, .., N - 1, ..) in which the occupation
number N; is reduced to Ny - 1. Furthermore the factor VN; has to be attached
i e.

bs| Na, Np, .., Ny, ..) =AN¢| Na, Np, .., Ni- 1, ). (5.17)
We form the following matrix element

( Na, Np, .., Nr-1, .. | bs| Na, Np, .., Ny, .) =

( Na, Np, .., Ni-1, .. | Na, Np, .., Ne- 1, .)NNs = INs. (5.18)

It is known that the left hand side of the first expression in (5.18) represents the
conjugate complex form of the given state function. Now we go to the conjugate
complex of the matrix element (5.18). We postulate that there exists an
operator, say bs which generates just this conjugate matrix element if it is
placed between the states ( Na, Np, .., N¢, .. | and | Na, Np, .., N¢- 1, ) i. e.

VN;={( Na, Np, .., Ni- 1, .. | bs| Na, Np, .., Ny, .)* =
( Na, Np, .., Ni, .. | b | Na, Nb, .., Ne- 1, ). (5.19)

We learn from (5.19) that the so-called adjoint operator b has the following
effect:



b | Na, Np, .., Ni-1, .Y = AN¢ | Na, Np, .., Ny, ..). (5.20)

The operator by raises the occupation number by 1 and attaches the root of the
new occupation number as a factor. Consequently, bf is named creation
operator.

Let's act the operators bs" and by (f# p ) one after the other:

bi by| Na ., Ng, .., Np, ..) =

b VN | Na ., Np, ooy Np =1, ) = N(Ne+ TNy | Na o, Ne+ 1, ., Ny -1, ., (5.21)
orbpbs" | Na_, N, .., Np, .y = N(Ne+ INNp | Na, Ne+1, .., Np- 1,0, (5.22)
If both operators act on the same single boson state ( f= p ) we have

b bs| Na., Ni, ..) = bf YN¢| Na, ., Ni-1,.) = N¢| Na, ., Ny, ..). (5.23)

In (5.23) the total state remains unchanged but bs" br attaches the factor Ny i. e.
the effect of the operator

N; = b bf (5.24)

is simply multiplicative.

5.3 Single- and two-boson operators represented by creation and
annihilation operators

First, we will show that calculating a matrix element we can replace the single-
boson operator F by a combination of creation and annihilation operators in
the following way

FO =%, .t by" b, (5.25)

The integrals qu(” are defined in (5.8) and (5.14). First, we check the relation
(5.25) for a diagonal matrix element. For p = g = d we obtain according to (5.24)

( Na, .. Ng, .. | fs"-bg* bg | Na, .. Ng, .. ) = fug-N. (5.26)

Terms with p # q vanish because in this case the resulting state function
[Na,.. ,Np + 1, .. ,Ng -1, ..) is orthogonal to (N, .. ,N(), .. ,Ng, .. |. Consequently,
in order to form the diagonal matrix element of F Y we have to sum up the
terms of the type (5.26). The result is in agreement with the directly calculated
expression (5.10).

We now turn to the off diagonal matrix element. It reads
Yoq (Nay . \Nay .. N, .. | o -bp" by | Na, .. Ng+1, .. Ng-1,..) (5.27)

Only the term with p = g and q = d differs from zero and yields the expression
fas "N(Ng +1)VN; in agreement with (5.16). Namely, if b-operators with other p



and g values act on the right hand side of (5.27) the resulting state is
orthogonal to the one on the left-hand side.

In matrix elements lying farther from the diagonal, the operator b," bq is not
able to bring both sides in agreement. Therefore, such elements vanish as we
have realised directly in section 5.1. Thus, the assertion (5.25) is proved.

Creation and annihilation operators are also employed in order to represent
matrix elements of two-boson operators. The original form of these operators is
given by the equation (5.2)

FA=y%,.."NfFO¢g&).

Similar consideration as those for FV lead to the following expression for the
operator F®

F® =V22dgpq f(z)dgpq by" by" by by (5.28)
with  FPagpg = [ w3 (&) wg (O)-FPUEQ) win(E)-we(Q) dE dL.

Correspondingly to (5.25), in (5.28) the sum extends over the single states.
Diagonal matrix elements read now

< Na, . ,Np, . ,Nq, ..I F(2)| Na, . ,Np, . ,Nq, . > = % quf(Z)pqpq'Np'Nq =
Yo X F @i r NP + X peq FPog0q N Ng. (5.29)

The remaining not vanishing matrix elements of the two-boson operator have
the following form

( Na, .., Ng, ..,Ng, ...,Np, ...Ng, .| F? | N, .., Ng-1, ., Ng-1, ., Np+1, . Ng+1, ) =
V2 f(z)dgpq VNg \Ng (N, + 1) V(Ng + 1). (5.30)
In the broader sense they can be named off diagonal.

We have found matrix elements of F" and F® on the “primitive“ basis of total
states (4.15). Because every state of the seniority scheme (3.8) can be built
with “primitive” states ( section 4.1 ) the operator representations (5.25)
and (5.28) hold also in the seniority scheme. Although the annihilation and
creation operators were introduced as a formal aid, they have a central
importance in the interacting boson model.

We put together further properties of the operators bp+ and bg. According to
(5.24) the equation

b," b, = N, holds.
Analogously one finds b, by "= Ny + 1. (5.31)

Subtracting the equation (5.24) from (5.31) one obtains the commutation rules
for the operators b, and b, * :



In pairs of operators with different indices p and g the operators can be
interchanged according to (5.21) and (5.22) which yields the following relation

by, by - by bp = 0. (p=q) (5.33)
We sum up

by by" - by bp = S (5.34)
If there are only annihilation or creation operators the following relations hold

by bg - bg b, =0,

b," by - by by =0. (5.35)

We write the commutation rules for boson operators especially for s- and d-
operators :

[d;u d+v] = dyd+v' d+vdp = 5,uv
[s,s']=ss"-s"s=1 (5.36)
All other commutators of these operators vanish.

Following the corresponding methods of the quantum electrodynamics, the use
of the creation and annihilation operators occasionally is named second
quantisation. It is also used for the description of the harmonic oscillator or in
the shell model of the atomic nucleus.






6 Applications of the creation and annihilation
operators

In the first section the formation of “primitive” many-boson states and states
with defined angular momentum will be described in terms of creation
operators. In the following section we will show how the number of bosons can
be increased with the aid of operators leaving the seniority unchanged. In
section 6.3 the annihilation operator is modified in order to fulfil the rules of
angular momentum coupling. The inverse of the pair-generating operator is
treated in section 6.4. In the end the boson counting operators are put together.

6.1 Many-boson configurations represented by operators

The creation operators can act not only on fully symmetric many-boson states
but also on the so-called vacuum state |) which is realised in the case the
protons and neutrons fill closed shells and there are no active bosons. Starting
from the vacuum state we now construct “primitive“ states i. e. states without
defined angular momentum.

We employ a creation operator b," whose index a represents the angular
momentum of the single state and its projection. It raises the occupation
number N, of this state according to (5.20) as follows

b."| Na-1)=Na| Na). (6.1)
The effect of b," on the vacuum state |) is defined like this
b |Y=|Na=1). (6.2)

If a number N, of operators b, acts together on |) one obtains the following
symmetric many-boson state

(ba")"*| ) = V(Na!) | Na ). (6.3)

A normalised, symmetric state with occupation numbers N, N, .. ,Nf, .. reads
therefore

(N2INp! .. N (b2 Ve (bp ") . (BF)Y | ) = | Na N .. Nf). (6.4)

The symmetry of the state (6.4) comes from the definition of the creation
operator ( section 5.2 ). Any sequence of the operators on the left-hand side of
(6.4) can be chosen because they commute according to (5.35).

We now turn to many-boson states with defined angular momentum. From
states with a few bosons, we learn how the creation operators have to be
arranged.



First, we will look at two d-bosons which are coupled to J. According to (4.4) we
have

|d?2IM) = (1N2)Smm@m2m’ |[JM)|dmdm’) +
22m2m|JM)|dmdm) Sueven.

With |[dmdm’)=dn* dp'|)(form=m’)and |dmdm)=(12) (dn*) |)
we obtain

|[dx dYmy=|d*IM) =
(UN2) S (2 M2 M’ |J M) dp* di™ | ) = (1N2)[d* x d*1 ) (6.5)

Thus, in order to construct the symmetric state with defined angular momentum
the creation operators have to be coupled in the same way as the single states.
A normalisation factor arises ( here it is 1/2 ). Analogously to (A2.7) the
operator relation

[d*xd*1¥, =0 foroddJ (6.6)

holds because the operators d *, and d ™, can be interchanged in the same
way as the state functions in (A2.2).

We now look into the combination of three d-bosons. According to (4.6) we
have

| d®Jod M) = A Spom(JoMo2m“| JM)- (6.7)
S 2m 2 m’ | Jo Mo)-A(m,m’,m“))" | d md m’d m*).

The expressions for A, are given in section 4.1. The “primitive“ states can be
written as follows

dn dp’ dp< D=|dmdm’dm*)y withm=m=m“=m,

(AN2) (dm* P dm< ) =|dmdmdm*)  with m#m"
and (NGB (dm')* = | d md md m.
Using the function A,(m,m’,m*“) we summarise

V8- Ay(m,m’ m“) dp" dm” A< |y = | dmd m’ d m*) (6.8)
and insert the result in (6.7).

[Td x ] < )= d*Jo I M) =

ANBI2) Svtom(Jo Mo 2 M“| I M)-Zmew (2 M2 M’ | Jo M) di” ™ =™ |) =

ANB2)- [[d* x d'1Y x d*Y ]). (6.9)



Again, the creation operators have to be coupled in the same way as the single
boson states. Here the normalisation factor reads Av(3/2). This coupling rule
holds generally for symmetric states with defined angular momentum.
Operators like d* which obey the angular coupling rules are named tensor
operators.

6.2 Generating boson pairs with total angular momentum zero

Here we deal again with many d-boson states in the seniority scheme
introduced in (3.8). These states are built with boson pairs having J = 0 which
are coupled to a state with r d-bosons which is characterised by n,, J and M
( section 3.3 ). We investigate how this coupling procedure forming symmetric
states can be represented by operators. We symbolise the operator which
generates the normalised state of  boson by [(d*)7.]"y i. e.

|ng=1, 7 na JM)=[(d") 0] . (6.10)

According to the statements of section 6.1 a J=0-boson pair coupled up to the
state (6.10) is described in the following way

lng=t+2,tny JM)y=A’[[d" x d*1” x [(d")7%] 1Vm ) =
Ald" < d 1O d )0 ]Vu ) =
A (ANB)V5[d* x d* O | ng=1,t ny JM) =
A (1NBY P | ng=1,t ny JM). (6.11)

In the last line of (6.11) the so-called pair creation operator P* has been
introduced which is defined as follows

P'=Y,(-1y¥d*, d*, =5, (1N5) (-1)*d*,d*,=5[d* x d*|?. (6.12)

Several authors attach the factor V2 to the right hand side of (6.12). Sometimes
the symbol P* = d*ed " is used.

We now generalise the relation (6.11) starting from the state |ng-2, 7 n, J M)
in which the seniority T may fall below its maximal value ngy—2i. e. ng-2 > 7, on

condition that ny - 2 - 7 is even. In chapter 10 the following relation will be
shown ( see 10.15)

|ngt Ny dM)=(ng(ng+3) -t +3)% P |ng-2, 7t ny JM) =
(ng+ T+ 3)(Ng-17))" P ng-2,  ny JM). (6.13)

Replacing ng by the expression 7 + 2 in (6.13) and comparing with (6.11) we
obtain A’= 1/v2. Analogously to (6.13) the relation

Ng-2,7 np JM) =
((ng+t +3-2)(ng- 1-2))'1/2- P'|\ng-4, 7 ny JM) (6.14)



holds which we insert in (6.13). We continue this procedure until the boson
number in the state on the right hand side is r and this state has the form
(6.10). Finally, one obtains

|ngt Ny JM)=Anee (PH P2 27 0y JM) (6.15)
with Anse = ((Ng+ T+3)(Ng+ 143 -2) .. 2 1+ 5)(Ng- 1) Ng- 7 - 2)-.2) "
= ((2 T+ 3)M((ng + T +3)! (ng - D)) ~. (6.16)

The symbol n!! stands for n(n - 2)(n - 4)-..- 2 or 1.

To complete the picture we write the states of the seniority scheme including
the s-bosons whose number is ns. According to (6.3) we have

(™)) = (ns!) | ns). (6.17)

We let the operator (s*)™ /(ns!) act on (6.15) creating a normalised and
completely symmetric state as follows

| Nns ngtnad M) =
(27 + 3)(nl(ng+ 7 + 3)(ng - D)) (sH)™ (PN 2|zt nyd M. (6.18)

The structure of the d-boson states | = t n, J M ) with maximal seniority may be
complex but seldom they have to be formulated explicitly. For the most part it is
sufficient to give the so-called “coefficients of fractional parentage® which permit
a representation by states with © - 1 d-bosons. In this report we don’t deal with
this method.

6.3 Tensor operators annihilating bosons

In section 6.1 we have shown that the creation operators d+” are components
of the tensor operator d” i. e. they obey the rules of angular momentum
coupling using Clebsch-Gordan coefficients. This property, which correlates
with a special behaviour on the occasion of rotations of the co-ordinate system
is very important for treating matrix elements. Owing to the Wigner-Eckart
theorem ( appendix A5 ) the matrix elements of tensor operators can be
simplified heavily by writing them as a product of a reduced matrix element and
a Clebsch-Gordan coefficient.

It can be shown that the annihilation operators d,, cannot be coupled vectorially
but operators of the form

d~, = (-1)yd,, (6.19)

have this property. They are named modified hermitian adjoint operators. Thus,
we maintain that the operator d ~ whose components are defined in (6.19) is a
tensor operator. We verify this statement on two simple examples.



If the claim holds, an operator expression such as [d™ x d"](o) can be built which
we let act on the vacuum state |). In analogy with the operator P* ((6.12)) a
state with angular momentum 0 must result which contains no bosons because
the creation and the annihilation operator cancel out in every term. So we
expect

[d~xd*1? ) =B (6.20)

with a constant B. Employing (A1.1) and (A1.16) we remodel the left hand side
of (6.20)

[d"xd 19 =%,2u2-u00)dd",|)=
S (D)E N BY Y dyd |y = Zu(5) diyl dod = (5) Zul) = 5(5)). (6.21)
Therefore the relation (6.20) is satisfied with B = V5.

In the second example the operator d~ is coupled up to the state [d* x d*]** in
such a way that the angular momentum 2 with the component v results.
Because in every term one annihilating and two creating operators are opposite
we expect that the resulting state consists in one boson in the state | d, ) i. e.

[d~X [d+ % d+](J0)](J=2)v |> = B,'d+vl>_ (622)

Jo is even because the original two-boson state is symmetric. We write the left-
hand side of (6.22) as

[0 [d" x d )72, ) =

Swo (2 oMo | 2 v) Ty (2 12 | JoMo) dyd ™ e ™). (6.23)
With (6.19) and the commutation rules (5.36) we obtain

-1)*d,d ",t: d *,,~|> =d,d ",,: d *,,~|> = (Oyepd +,¢“ +d ",t: d,d ",,~)|> =

(Bl "+ St e+ A d e o)) = (S e+ Syeed ")) (6.24)
which we insert in (6.23) as follows

[d™x [d* x d**PNV=2), ) =

Y umto (2 1 JoMo| 2 V)(2, - 2 | JoMo)(-1)* d ™y +

X umo (2 oMol 2 V(2 ' 2, ~pu | JoMo)(-1) " d ™) = (6.25)

2% (Zmo (2 oMo 2 V)(2, -1 2 ' | JoMo))(-1) d* ).

We made use of the symmetry of the last Clebsch-Gordan coefficient. This is
rewritten using (A1.6) like this



(212 | JoMo) = (2, -1t Jo Mo | 2, -u)(2Jo + 1)/5)*(-1)" =
(2 1t Jo Mo | 2 p)((2Jo + 1)/5)“(-1)". (6.26)
Owing to (A1.10) we obtain
[d™x [d* x d*TYNY =2y = 2.((2dp + 1)/B)2X, Sy d ¥ ) =
2-((2Jo + 1)/5)%d ™) (6.27)
in agreement with our forecast (6.22). Both examples illustrate that d ~ is a

tensor operator.

6.4 Annihilating boson pairs with total angular momentum zero
Analogously to (6.12) we define the pair annihilation operator P~ as follows

P =%, (-1 d,d,=V5Y (1) (5" d™,d ", =V5-X(2 u2,-u| 00)d”,d™., =
V5.[d~ x d79. (6.28)

Several authors attach the factor 'z to the right hand side of (6.28). Sometimes
the symbol P~ = d"ed " is used. From (10.16) we have

P |ngtnysJ M) = (ng(ng +3) - t(t+ 3))* |ng-2, tnyJ M). (6.29)
The operator
(ng(ng +3) - (z + 3))” P~ (6.30)

is normalised. If P~ acts on the state | r t n, J M) of the seniority scheme ( with
ng = ), from (6.29) follows

P |ng=rt,tnysJM)=0. (6.31)

6.5 Number operators for bosons

We let the operator d+” d, (with 2 > p > -2 ) act on the “primitive” state
| (d2)™ (d1)™ (do)™ (d-1)™ (d2)™ ) =| n2 ny no N4 N ). Owing to (5.23) we obtain

d*ud,| naninonang)=n,| nanynonang). (6.32)

Therefore the eigenvalue of d*, d, is the number n, of d-bosons in the state p.
Consequently the operator ¥, d*, d,, yields

+
2ud ydy|lnaninongny)y=2n,Nn2n1ngn4na)=ng|n,nygnonany). (6.33)

Thus its eigenvalue is the total number ny of d-bosons. The operator ¥, d*, d,,
can be applied also to states with defined total angular momentum because
they can be written as a linear combinations of “primitive“ states with the same



number of d-bosons ( section 4.1 ). This number operator is characterized by
Ng,

ng=Y,d*,d,. (6.34)
With the help of d ™., (-1)* = d,, (6.19) and of (A1.16) we write also

ng=5,(-1)*5)"d*,d", =5 2,2 u2,-u|00)d*,d", =

V5. [d* x d19. (6.35)

The number operator for s-bosons is built correspondingly of creation and
annihilation operators for s-bosons, s* and s, as follows

ns=s"s. (6.36)
Its eigenvalue is the number of s-bosons, ns. The operator
N = ng4 + ng (6.37)

has the eigenvalue ns + ng .i. e. the total number of bosons of the collective
state.

As mentioned above, the use of creation and annihilation operators for bosons
frequently is named second quantisation. An advantage of this method consists
in the fact that the matrix elements of the Hamilton operator and of the
operators describing the electromagnetic transition can be written completely
with the boson operators d",,, d",, s and s . In a word, not only the operators of
the interactions (5.25) and (5.28) but also the boson states are represented by
the single boson operators. For the algebraic treatment of these elements the
commutation rules (5.36) are applied.






7 The Hamilton operator of the IBM1

In the first section of this chapter, the components of the Hamilton operator will
be sketched in. The part with boson-boson interactions is transformed in the
second section by coupling the tensor operators. In section 7.3 the Hamiltonian
is written explicitly with d- and s-operators. It must conserve the number of
bosons i. e. it must commute with the number operator, which is verified in the
fourth section. In the last one the Hamiltonian will be brought in a more
compact form.

7.1 The components of the Hamiltonian

In chapter 2 the number N of active bosons in the interacting boson model is
determined. Formulating the energy of the system, we don’'t go into the
structure and eigenenergy of the inner part of the nucleus i. e. of the closed
shell ( core ). The kinetic energy T(/) and the potential energy U(i) of an active
boson have the character of operators and constitute together the Hamilton
operator H'" of a single state | bin ) . It generates the eigenenergy &, owing to
the equation

(T + U by = HY | by ) = e | bim) 7.1

The singe-boson states | b, ) have a defined angular momentum / with the
projection mi. e. we suPpose that the angular momentum operator commutes
with the Hamiltonian H". We mentioned that there are only six Im-states in the
IBM1.

Because no spatial axis prevails, the single-boson energy ¢, does not depend
on m. Therefore there are only two energies of this kind, namely ¢ and &4 . If
the bosons were independent of one another, a system of ns s-bosons and ny
d-boson would have the energy nses + ngeq . Consequently the Hamilton
operator of the whole system would contain counting operators ( section 6.5 ) in
the following way

83"5 + gdnd. (7.2)

From (6.34) and (6.36) we see that this operator has the structure of a single-
boson operator (5.25) with f(”pqtq = 0 ( see section 5.3). Owing to (6.37) the form

& N+ (&q- &)ny. (7.3)

can be used also. We now introduce the interaction between the active bosons
from which we assume that it takes place in twos. According to (5.2) we have to
add a two-boson operator such as

%Y 1=iq W(ij)=W (7.4)

to the Hamiltonian. From (5.28), we take the corresponding form



1/221',/'=1N W(ij) = 1/2ngp,q=16 (fg|w|pq)b'sb'ybybg. (7.5)

The indices on the right hand side of (7.5) denote the s- and five d-states.

7.2 The operator of the boson-boson interaction formulated with defined
angular momentum

Before we write the expression (7.5) down for the IBM, we convert it into a form
containing operator configurations and matrix elements with defined angular
momenta. In (7.5) we replace the indices f, g, .. by pairs of quantum numbers
Ir my, Iy mg, .. and make the following claim

w= %Z Ifmflg mg lp mp la mq < lf ms Ig mgy | w | IP mp ICI mq > b+lfmfb+lgmg b/pmp blqmq = (76)
YeSitaoind=even (Il J | W | Iy lg J Y N(2J + 1) [[b7r x b"g x b7 x b~

We start the proof by adding the factor msme Omg me’ Omp mo’ Ome me ON the left hand
side of (7.6) and by summing over m¢, mgy’, m,’ and m,’ which yields the original
expression. It reads

w-= 1/22 /flglplqszmgmp mqu’mg’mp’mq’< lf mflg mg | w | lp mp lq mq> ’
+ +
5mfmf’ 5mg mg’ 5mp mp’ 5mq mq’ b Irmf’ b la mg’ blp mp’ blqmq’ ’ (7-7)

in which the quantum numbers m of the b-operators have been supplied with
primes. With the help of (A1.15), i. e. of

2um(lemelg mg | d M)(ls m¢’ Ig mg’ | J M) = S me Omg me® (7.8)
and of an analogous expression for p and g we obtain

W =221 ig bp ta 220 M 0* M2mr mg mp ma me* ma” mp? ma*{_ It M lg Mg | W | [ Mp lg mg ) -

(I mrlg mg | J M) (lo mp lg mg | J“M) (lr my g mg" | J M) (lo mp” lg mq’ | J“ M)

b e B 1y e’ Bl mo? Bro e - (7.9)
We make use of (A1.1) for the following equations

S mar (I 1 lg Mg’ 1J M) B "1y myr = [0 x b"g] Py (7.10)
and X me (b My’ lg my’ | I M) B Big e =

S me (p My’ g Mg | J“M*) ()7, 1y by e =

et m (oM, loymg” | J%-M*) (1) b7 s b my =
O b x b e, (7.11)

in which (A1.5) is used and (6.19) is put in the original form b, = (-1)"+mb 1 -m-
We obtain



W =22 g bo ta 220 M o M* 2omr mg mp ma { lr M lg Mg | W | o Mp lg Mg ) - (7.12)
(s e lg mg | J M) (I mp Iy mg | J* M=) (1) 167 x b* b~ x b g e
The sum over my, myg, m, and my yields
W="2hihpw2amom (e lgJ MWl lqg J“M*) -
GO x b b x bl e (7.13)

The matrix element in (7.13) is constructed in terms of two-boson states with
defined total angular momenta J and J* which, however, must agree. Namely, if
we assume that w is a tensor operator with rank 0 ( see appendix A5 ) the
Clebsch-Gordan coefficient in (A5.8) vanishes for (J,M) # (JM*). Moreover,
owing to (A5.8), (A1.6) and (A1.16) the matrix element in (7.13) is independent
of M. Using (A1.16) we obtain

w-= 1/ZZIf/g/p/q,J=even< /f Ig JI WI /p Iq J> \/(2J+ 1)
(b x b x [b™p x b~g]@ . (7.14)
No odd values occur for J if the /'s are 0 or 2, under which condition the

equation (7.6) is proved.

7.3 The basic form of the Hamilton operator

Now for the operators of the f-, g-, p- and g-states in (7.6) specially we put in
the s- and d-operators respectively and make use of the symmetry properties of
the matrix elements. The boson-boson interaction operator obtains the
following form

W= 004 (ddJ|w|ddJ)N@2J+1)[[d"x d¥ x[d” x d O +
Y(ddJ=2|w|dsJ=2W52([d* x d*® x d"s]O +[s'd" x [d~ x d" ]| O)+
%(ddJ=0|w]|ssJ=0)[d" xd*1?xss]¥+[s's*x[d” xd )+
%(dsJ=2|w|dsJ=2)V54[d"*s" x d"s]? + (7.15)
1%(ssJ=0|w|ssJ=0)[s's" x ss]?.
We introduce usual symbols for the matrix elements as follows
(ddJ|w|ddJ)=c,
(ddJ=2|w|ds,J=2W(25)=v,
(ddJ=0|w|ssJ=0)=vp (7.16)
(dsJ=2|w|ds,J=2)2\5=u,

(s§8,J=0|w|ss,J=0)=up.



In the following the quantities ¢, , v; and u; will play the role of parameters.
Finally, we put the Hamilton operator together from (7.3), (7.15) and (7.16)

H=es N+ (e4-6s)Ng+ Vs Yse024 csN2J+ 1) [[d* xd T x[d™ x d ] +
N¥e) vo([[d* x d']? x ds]9 + [s*d " x [d™ x d"?]?) +
Yo vo([[d ™ x d*19 x ss] + [s"s " x [d~ x d"]|?) +
us[d*s* x d”s] + (7.17)
Y up[s's’ x ss]?.

We name the representation (7.17) the basic form of the Hamilton operator in
the IBM1. In the next section but one we will see that the 9 parameters can be
brought to 6 by reducing the field of applicability.

7.4 The conservation of boson number

We expect that collective states with definite energy have also a definite
number N of bosons. In quantum mechanical terms this means that the
Hamilton operator H and the boson number operator, N = s*s + ¥, d ", d,
(6.37), commute

[H,N]=0. (7.18)

In order to prove (7.18) we fall back upon the representation (7.5) and write the
Hamilton operator this way

H=¢esN+ (c5-65) Ny + VoXrgpa=1" (Fg|W|pq)b'sh ybpby. (7.19)
From (6.34) up to (6.37) we take that the number operator reads
N=Y -°b*,b,. (7.20)

In order to see if N commutes with the group of the four b-operators in (7.19)
we push N step by step from the left to the right hand side of this group as
follows

Nb' b gbyby=3,b by b'sb by by =3,b"n( Snr+ b'sbp)b g by by =

b'ib by by + X b bbb gbpby=2b'tb ybyby+ X, b’ b yb", b, by by =
2b' b gbyby+ Y, b' by (-5np + bpb*y) by by = (7.21)
b':b’ybpybg+ Y, b b by b’ bgb,=3,b" b gbpbyb*, by =b'tb’y b, by N.

It is not difficult to extend the proof of (7.18) on the other terms in (7.19). Thus,
N commutes with H, i. e. N is a so-called constant of motion. Provided that the
Hamiltonian does not contain s-operators ( see chapter 10 ), implying the
condition v, = vp = Uz = U = 0, the d-number operator ng = ¥, d *, d, commutes
with H . Then the number of d-bosons is definite.



7.5 A simplified form of the Hamilton operator

Since the boson number N is a good quantum number, it's obvious to replace
the operators s and s* as far as possible by N. Making use of (5.34) we write

[s's* x s5]9 = s*s*ss = s*s s's-s's = ny(ns- 1) = (N- ng)(N - ng- 1). (7.22)
In addition, owing to (6.35) we obtain

[d*s" x d7s]? =[d" x d7]9 s*s = \(1/5) ngns = V(1/5) ng(N - ng). (7.23)
In (7.22) and (7.23) the operator ng appears, for which we give the expression
NG’ = Ng+ Yy=024 V(2J + N[[d" x d'1 x [d~ x d O (7.24)
Namely, according to (6.35) we write

ni=5[d" xd 9 [d"xd 19 =5[d" xd ]9 x[d* x d . (7.25)
From (A4.3) we learn that (7.25) can be rebuilt as follows

ng’ = 5%, (2J + 1) {*25 %2, %o} Si(d M J, -M | 0 0) - (7.26)

SQu2,M-pu|IM)Y (2 u 2, -M-p'| J, -My-d'd e d ey, d g

We employ (6.19) and the commutation rules (5.36) and obtain

dd e d v d e = (1) e d ud e+ d i d e, ded e (7.27)

This leads the expression (7.26) to fall into two parts. Because J is an integer,
from (A4.2), (A3.12) and (A1.16) we obtain

P2 %2, %0} = (1/5)N(2J + 1) and (UM J, -M | 0 0) = (-1)"MN@J +1).  (7.28)
The first expression of (7.26) reads now
Yoo (1) Zd  dy IR u2, M- | MY = (7.29)
Yoo (1) d*d, 20+ 1)/5= Y, d*,d,(1-3+5-7+9)5=ny

where (A1.11) has been applied. With the aid of (A4.1) and (A1.3), we bring the
second expression of (7.26) in the following form

Y024 V2 + N[[d* x d T x [d™ x d ], (7.30)

Owing to (6.6), the quantity J is even. With that, the equation (7.24) is proven.
We now insert (7.22) up to (7.24) in (7.17) and obtain



H=¢es N+ %UNN-1)+¢eng+
Ve Y024 C/NRI+ 1) [[d 7 d 1V x [d™ x d T +
VB vo([[d* x d*]? x d~s]9 + [s'd ™ x [d™ x d ] 9) + (7.31)
Yo vo([[d* x d'1? x s5]? + [s*s * x [d™ x d 1)
with & =&4- &+ (U2/N5 - ug)(N - 1),
c) = cy+ Up - 2uz N5, (7.32)

Since the operators H and N commute (7.21), the operator N has been
replaced by the number N. The simplified form (7.31) of the Hamilton operator
contains one free parameter less than the basic form (7.17). However, if only
the spectrum of a single nucleus has to be investigated neglecting the binding
energy relative to other nuclei one can disregard the first two terms in H (7.31).
They contribute the same amount to every energy level. The following 6
parameters are left over

&, Co’, Cz’, C4’, Vo and Vo. (733)

From (7.32) we see that these parameters don’'t depend directly from one
another because there are enough parameters in (7.17).

All d- and s-operators in (7.17) and (7.31) couple to the angular momentum 0.
Therefore they don’t prefer a spatial axis and are insensitive to rotations of the
co-ordinate system. Consequently, we expect that H commutes with the
components of the angular momentum operator J which will be treated in the
next chapter.



8 The angular momentum operator of the IBM1

In the first section the commutation properties of the quantum mechanical
angular momentum operators and their eigenvalues will be put together. In the
second section the angular momentum operator of the IBM1 is introduced and
its properties are checked. Finally, the commutator of the Hamiltonian and the
angular momentum operator is investigated.

8.1 The angular momentum operator in quantum mechanics

Introducing the spin of particles quantum mechanics postulates spin operators
Jx. Jy and J; which satisfy the same commutation relations as the angular
momentum operators Ly =y p; - Z py, L, and L,. Their commutation rules read

[ Jx, Jy] =ind;  with cyclic permutations. (8.1)

From these one derives the existence of quantum states | j m ) where j is an
integer or half integer and m is its z-component. The following eigenvalue
equations hold

J2jmy=(U+ 2+ ) | jmy=rji+1)|jm). (8.2)

We define new spin- or angular momentum operators which differ in the factor
1/h as follows

Jx(new) = Jy(old)/ 7 etc. (8.3)
We rewrite equations (8.1) and (8.2) in terms of the new operators like this

[ Jx, Jy] =iJ; with cyclic permutations, (8.4)

Jljm)y=m|jm), (8.5)

JEIjmy= (I | fmy=j i+ 1) [im).

From now on, we keep the new J-operators. The frequently used “ladder”
operators read

J1 = -(Jx + idy)N2,
1= (Jx-id))N2, (8.6)
Jo = Jz .

They satisfy the following commutation relations



[Ja1,Jo] =g,
[ J.1, J1 ] = Jo, (87)
[Jo, J1]=J1.

They are proved by insertin% (8.6) and comparing with (8.4). Making use of
(8.6) and (8.7) the operator J “ can be written this way

JP=d2+dP 4= didg-dadi+ P = (Y= Jo - Jo - 2J1d.1. (8.8)

8.2 The angular momentum operator expressed in terms of d-boson
operators

We will construct operators in terms of creation and annihilation operators of d-
bosons which satisfy the conditions (8.7) and which we name Jy, J.; and J, . At
the same time, making use of (8.6) one obtains operators Jx, Jy, and J;, which
fulfil the rules (8.4). The operator J? is constructed, which satisfies an
eigenvalue equation simultaneously with J, (8.5).

In the IBM1 the following expressions for the “ladder” operators are used
J,=V10[d* xd1",, u=1,0,-1. (8.9)

With the help of (A8.4), one recognizes that these operators satisfy the
commutation relations (8.7). In order to show that, we put J’=J “= 1 in the
equation (A8.4) which yields k = 1. We obtain

10[[d " x d ]V, [d7 < 7]y =
10[d " x d7Vppanr 301 M2 M| 1, M+ M){', "5 13)(-2).

Because of {'> '> 15} = 1/(6V5) (see A3.13), (8.9) and
(1,-110]1,-1)=(1,-111]10)=(1011]11)=-12 we have
10[[d”* x d" ]V, [d x d7 Y] = V10[d ™ x d 7] with M” < M“(8.10)

in agreement with (8.7).

As an example we check the effect of the operators Jy and J? on the single-
boson state d*, |).

Jod*, D=V10[d* xd | Mod*, )=
V10X, (212, -u|10)d,(-1)"d.d",]). (8.11)

Because of d,d”, =5, +d”, d,and (2 v2,-v|10)=(-1)"v/N10 (A1.16) the
relation

Jod*, P=V10 2 v2, -v]|10)-1)"d* p=vd"|) (8.12)



follows in agreement with (8.5). Furthermore, with the aid of (8.8) we calculate
J2d*, )= (P -Jo-2dida)d, |) =
(V-v-210[d* < d M [d* < d TV d") ).
Dueto (2,v-1,2,-v |1, -1)2 =(3-v)(2+ v)/20 (A1.16) we obtain
210 [d* x d I Vd* xd M d*, ) =
210 2012 0 A1 2 A2 |1 DR 1 2 pz | 1, -1) -
d ' (-1)2dd " (-1)2d,.d 7 ) =
2105522 412 22| 11)2, v-1, 2, -v| 1, -1)d 5 (1) 2dd ™y 4 (1)) =
2102, v-1,2,-v [ 1,-12d", D =-(3- V)2 + vd*,|).
Thatis J2d*, )= (V-v+6+v-1A)2d", p=22+1)d", |). (8.13)

The result (8.13) agrees with (8.5). According to (A1.22) and (A1.26) Jy and J?
act analogously on every coupled state like [d * x d ], |) which can be
generalised to all states of the spherical basis (3.8, 6.18).

With the help of (8.8) and (8.9) we write the operators J, and J? explicitly
making use of (6.19), (8.11) and (A1.16) as follows

Jo=dp=V10[d" xd [ =V102,2u2, -u|10d*,d ", =2, ud",d,,
J2= 3, (Y dd = N3 (-1 PN I, = (8.14)
N3 (1 1, -] 00) Iy =3I x J]V =-10V3-[[d " x d ] x [d* x d7 ]

8.3 The conservation of angular momentum
At the end of the last chapter, we made a supposition which can be written as
[J;,H]=0 and [J?,H]=0. (8.15)

We check the first commutator in (8.15) and pick just the most complex part of
H (7.31) out, namely the terms with the coefficients c,. They contain linear
combinations of expressions like

d',d*.d,d, (8.16)
with the condition u+u‘-v-v*=0 (8.17)

which results from (6.19) and from the coupling yielding the angular momentum
zero. We let J, act on a term like (8.16) and push it step by step to the right
hand side as follows



J.d"d"dydy =% pod dpd d e d, dy =
g0 tto (A "pod " dy dy 8o + 7y d o dd " dy dy ), (8.18)
where the commutation relations
duwd =80, +d  dy (8.19)

have been applied. The first sum on the right hand side of (8.18) yields one
single term. An analogous step results in

J,d"d*.d,d, = (8.20)
pd”d*edydy i+ Y0 u(dd pdydy Spe+d,dpd nd,d, dy).
The following step produces
J,d d*d,d, = (u+u-v)d,ded,dy+ Y nod d vdyd o dydy =
(u+u-v-v)yd,d,.dd, +d,d".d,d,J,. (8.21)

The last term but one in (8.21) vanishes because of (8.17). Therefore J,
commutes with d *,d ¥, d, d,-and consequently with the first sum in (7.31). In
the same way one shows that J, commutes with expressions such as

d,d,,d,d",, d,d,, d,d" d, (u+pu-v=0)etc.
Therefore [ J,, H] =0 (8.15) is satisfied.

Since in H no spatial aX|s prevails the analogous relations [Jx , H]=[Jy,, H] =
0 and consequently [ J2, H]=0 ( see 8.15) are true. From this, the well-known
fact follows that the elgenstates of H have a defined angular momentum J.



9 The Hamiltonian expressed in terms of Casimir
operators

In this chapter the Hamilton operator (7.17) will be transformed to a linear
combination of Casimir operators. These are characteristic of Lie algebras
( chapter 13 ) and permit to express the eigenenergies of the IBM in a closed
form in some special cases. Essentially, we follow the reports of Castafios et al.
(1979) and Eisenberg and Greiner (1987).

In chapter 14 we will show that the number operator ng of d-bosons (6.35), the
number operator N of all bosons (6.37) and the angular momentum operator J?
belong to the type of Casimir operators. We give them again

ng=\5[d*"xd1%=%,d",d,
N =s's + ng, (9.1)
JZ=310[[d" xd ]V x[d* xd ]9,
The operator
T?=ng(ng+3)-5[d" xd"19[d™ x d? (9.2)

is also of this kind and we name it seniority operator. It shows a certain
relationship to the following operator

R?=N(N+4)-(N5[d" x d*1? - s's")(V5[d~ x ] - ss). (9.3)

R? is identical with Co) (14.53) but it differs from the corresponding expression
employed by Eisenberg and Greiner (1987, p.398) in the signs of s's” and ss.
The operator

Q*=V5[Qx Q" =%, (-1} Q,Q,
with Q,=d",s+s'd™,-(N7/2) [d* x d]?, (9.4)

is related to the quadruple moment of the nucleus. Several authors place a
positive sign in front of the last term in (9.4).

Now we replace all components of the Hamilton operator (7.17) step by step by
expressions constituted by the operators (9.1) up to (9.4). First, we deal with
terms containing exclusively d-operators. Besides ngin (7.17) we have

YoV + 1) [[d x d* T x [d~ x d7 @), J=0,2, 4. (9.5)
It is easy to treat the term with J = 0 in (9.5). The relation (9.2) reveals

[d* x d* 19 x [d~ x d ] = (1/5)(ng(ng + 3) - T?). (9.6)



Since the operators ng, J* and Q, are built with terms of the type [d* x d "]y,
representing the operators [[d © x d +](J) x [d7™ x d“’](J)](O) by the same terms is
advisable. According to (A4.2) and (A4.3) and analogously to (7.26) the
following relation holds

[[d* xd 1Y x [d” x d IO =3, 1) V@I + NS+ 1) %) -
St (S M, -M{00)2m2, M-m | J'MY2 12, M- | J', -M)
A md"d o d 9.7)

Almost with the same method which yielded the equations (7.29) and (7.30),
starting from (9.7) one obtains

[d" xd"1¥ x [d” = d O =

T (1) N@I+ NS+ 1% % T 1T x d ) x [d T x d 1@ -

(1/5N(2J + 1)ng . (9.8)
Consequently, we now treat the terms

Wy=[d xd Y x[d*xd V)@ (9.9)

in order to represent the expressions (9.5) showing J = 2 and 4 by means of
Casimir operators. First, we take from (9.1) the following relations

Wo=[[d* xd]9x[d" x d ]9 = (1/5)ns* (9.10)
and Wi=[d" xd " x[d*xd " =-(10V3)"J2 (9.11)

For the operators W,, W3 and W, we draw up a system of linear equations. For
that purpose we represent the left-hand side of (9.6) with (9.8) too and get by
means of (A3.12)

Ng(ng+ 3)-T?+ng=Y, NI+ 1)[[d*xd ) x[d* x d ]9 .(9.12)

We obtain further equations from the fact that the terms W, are linearly
dependent on one another owing to their symmetry. In order to make this
visible, first we interchange the d-operators in [d* x d”]% ", :

[d"xd T =2, u2 M-u|J M1 d" dyu = (9.13)
YW@ u2, M- | I MY Sy o+ (1) x d T
In particular the expression
Su@u2, M- | I M S, =
YRu2, -u|JO)-1)* =Y (2 u2,-u|JO)-1)*N5= (9.14)
V5% (2 u2,-u|JO)2 12, -u|00)=58



can be inserted in (9.13) yielding the following equation
[d*xd [V =5680+(-1)[d"xdVy.  (9.15)
The inverse relation reads [d ™ x d+](J)M =580+ (-1)J[d+ X d“’]“ v (9.16)
Bringing (9.15) in the expression (9.9) we obtain
[[d* x d 1Y) x[d" x d TV = (-1)" [[d" x d V) x [d~ x d VO -
V5[d " x d1? 5y0. (9.17)

Now we interchange both facing operators d ™ on the right hand side of (9.17)
by means of (A4.1) and (A4.2) which results in

[[d* < d 1Y) x [d" x d ]V N0 = N5[d " x ]9 5,0 + (9.18)
N T NS+ NI+ DEL T - d T x d 1Y % [d x d YO,

In (9.18) we interchange the boson operators of the expression [d~ x d +](J“)
(9.16) and obtain

[[d* x d]¥) x [d* x d ] = V5[d* x d T 60+

V@ + 1)Z NI+ D)2 %27 e Hd T x d 7Y % [d T x d 1Y@ +

V@I + DT V@I + 1) %" s WB[d T x d™]? 0 =

~5[d* x d710) 8y +

V@ + )2 NI+ D)2 %27 e Hd T x d 7Y% [d T x d 1Y@ +

V@I + 1)1 (1N5)d " x d9. (9.19)

In the last term we made use of (A3.12). Employing (A3.12) we write (9.19) for
"= 0 and 1 in the following form

Wo=[[d" xd9x[d*x d ] =
(1/5)X 5+ (1)’ N@J“+ [[d* x d7 ¥ x [d* x d ]V )@ +
(AIN5)[d* x d"]? - V5[d* x d 19, 9.20)
Wy=[[d" xd " x[d" xd "=
VBT @I+ D)2 %2 HId T x d T [d T d T - (@/5)d T X d7.(9.21)

We calculate the 6-j symbols with the aid of (A3.13) and insert (9.9) up to (9.11)
in (9.12), (9.20) and (9.21). Doing so and making use of (A3.13), we obtain an
inhomogeneous and linear system of equations for W,, W3 and Wy (9.9). We
write down the solutions of the system and add the expressions (9.10) and
(9.11) as follows



W, = (1/5)ns’,
W, =-(10v3)"J?,
W, = 2(7V5) (ng® + 5ng - T? + (1/4)J?), (9.22)
Ws = -(2\7)(T? - (1/5)J7),
W, = (1/7)((6/5)n4” + 6ng - (1/2)T? - (1/6)J ?).
Inserting these expressions in (9.8) yields for J = 2
[[d* x d*? x[d™ x d N = (7V5)"(2n4? - 4ng + 2T? - J?). (9.23)

In order to calculate the corresponding expression for J = 4 we take the 6-j
symbols from (A3.14) and obtain

[[d"* d+](4) x [d~ d~](4)](0) _

Thus we have treated all terms in the Hamiltonian (7.17) which are constituted
exclusively by d-operators and we are turning to the other terms. Owing to
(7.22) and (7.23) we have

[s*s* x s5]Y = (N- ng)(N - ng- 1), (9.25)

[d*s" x d~s]” = (15)(N - ng)ng . (9.26)
The preceding term in (7.17) reads

[d* x d*1? x ss]? + [s*s" x [d™ x ]9 =

[d"x d"Pss +s's[d"xd 9=

-(1N5)(-R? + N(N + 4) + T? -ng(ng + 3) - s*s*ss) = (9.27)

“(ANB)-R*+ T? + N + (N - ng)(2ng + 4))

where (9.2), (9.3) and (9.25) have been employed. In order to work on the
remaining term in H (7.17) we write (9.4) this way

Q*N5=[(d*s+s'd - (N7/2)[d" xd|?) x (d*s +s'd™ - (N7/2)[d"* x d"]?)?

which we transform to

QN5 =[d" x d"Vss + s's"[d™ x d"? + (7/4)[[d " x d"? x [d" x dT# +
ss'd* xd ]9+ [d” x d]9s"s -
(N7/12)s([d* x [d* x d TN+ [[d* x d7]? x d ") - (9.28)
(N7/2)s*([d™ x [d " x d" 1N+ [[d* x d]? x d719).



The first line in (9.28) contains the relation (9.27). We write the following term
by means of (9.22) as

TIA[d* x d]? x[d* x d" ]9 = (2V5) " (ng® + 5ng - T? + (1/4)J?).  (9.29)

The second line in (9.28) is represented with the help of (9.16) and of the
relation ss* = 1 + s”s like this

ss'd" xd 19 +[d” x d9s’s =

[d* xd )9+ [d*"xd]Vs*'s+V5s's+[d" xd |9 s*s =

(1N5)ng + N5(N - ng) + (2IN5)ng (N - ng) = (9.30)

(1N5)(ng + (5 + 2ng)(N - ny)).
The third line in (9.28) contains the expression
[d" x dT? % d T = 3002 122 11 2 10)(2 102, 101 0 0) d "o d ™l ™.
With the aid of d o d " d "o = (1) (d " 8 o + d "o d *pdy),
(2 102, o | 00) = (-1)* N5, (2 12 2 o | 2 o) = 8z 0 (uo” - 2)N14 and of
(A1.16) we obtain

[[d*xd?xd"9=

Spo=-2" e (2 122 10| 2 po)(1NB)d " + [d* x [d* x d7]P* =

0 +[d" x[d* x d ] (9.31)

and recouple according to (A3.5) this way

[d*xd 9 xd" 9 =[d*x[d*xd ]9 = (9.32)

N5 V@2 + 1) % 2d ™ x d1Yd ™19 = [[d* x d 1@ x d 7]

The value of the 6-j symbol for J, = 2 has been taken from (A3.12). Analogously
the relation

[d™x[d" xd PP =[[d*xd|?xd |9 =[d"x[d"xd]?? (9.33)
holds so that the third and the fourth line in (9.28) can be written as follows

-(N712)2s[[d* x d*]? x d 19 + 2s"[d* x [d™ x d" ] 9) =

N7([d* x d*]? x d"s]? + [s*d " x [d~ x d7]?N9). (9.34)

Apart from a factor, the expression (9.34) is just the remaining term in H (7.17).
By means of (9.27) up to (9.30) and (9.34), we can write it this way



N vo([[d* x d*]? x d”s]9 + [s'd ™ x [d™ x d" ] 0) =
(1N14) v2 (1NB)Q% + (1NB)(-R% + T? + N + (N - ng)(2ng + 4)) -
(1/N20)(ng” + 5ng - T + (1/4)J?) -
(1W5)(ng + (5 + 2ng)(N - ng))) = (9.35)
v2 (1N70)(Q% + (3/2)T? - R? - (1/8)J? - (1/2)n4” - (5/2) ng).

Now we are able to represent the Hamilton operator (7.17) by the operators
cited in (9.1) up to (9.4) making use of (6.35), (6.37), (9.6), (9.23) up to (9.25),
(9.27) and (9.35) like this

H=esN+ (g4- &)ng + co(1/10)(-T? + ng(ng + 3)) +
c2 (1114)2n4d° + 2T? - 4ng - J?) +
c4(3/14)((6/5)n4’ - (12/5)ng - (1/5)T? + (1/3)J ?) -
V2 (1N70)(Q% + (3/2)T? - R? - (1/8)J? - (1/2)n4” - (5/2)ny) -
Vo (1N20)(-R? + T? + 5N + 2Nng - 2n4° - 4ng) + (9.36)
Uz (1N5)(Nng - ng?) + up(1/2)(N* - 2Nng - N + ng” + ng).
We summarise
H=¢e,N+ s/ ng+v,N*+ v,aNng+ vgng + v,R* + viT* + v;J* + v,Q* (9.37)
with
en=¢s- (N5/2)vo - (1/2)ug ,
g4 = €q- s+ (3/10)co - (2/7)c2 - (18/35)cs + (5/N280)v2 + (2/N5)vp + (1/2)up,
Vn = (1/2)uy, (9.38)
Vg = - (1I\5)vo + (1N5)uz - ug,
Vg = (1/10)co + (1/7)c2 + (9/35)cy + N(1/N280)v2 + (1/\5)vp - (1N5)uz + (1/2)uy,
v, = (1N70)v2 + (1/720)vp,
v = - (1/10)co + (1/7)c2 - (3/70)c4 - (3/N280)v2 - (1/420)vy,
v = - (1/14)c, + (1/14)cq + (1/14480)v,,
Vg = - (1N70)vs.

All summands with a coefficient v2> change their sign if Q , is defined with a plus
sign in front of the last term in (9.4).



In (9.37) the Hamilton operator of the IBM1 is represented by the Casimir
operators (9.1) up to (9.4). This is the so-called multipole form. In the same way
as in (7.21) we replace the operator N by its eigenvalue N and obtain

H=¢e,N+v,N*+ (65 + VogN)Ng + vang” + v, R + viT? + v;J? + v,Q°.  (9.39)

If only a single nucleus is investigated the term g,N + v,N? is omitted. Then the
eigenstates depend solely on the following six parameters

gd“ =&+ VoaN , Vg, Vr, V¢, V; and vq (9.40)
analogously to (7.33).

In order to solve eigenvalue problems usually the Hamilton matrix is
diagonalised ( chapter 12 ). However, the interacting boson model has the
peculiarity that for special cases (limits) the eigenenergies can be given
analytically. These cases are found by allocating the value zero to several
coefficients in (9.39). In chapters 10 and 14 we will deal with the physical
significance of this measure and of the operators (9.1) up to (9.4) and look at
the analytical solutions.






10 The u(5)- or vibrational limit

At the end of the last chapter the fact was mentioned briefly that the
eigenvalues of the Hamilton operator H (9.39) can be written in a closed form if
certain coefficients of this operator are zero. We deal here with a special case
characterised by vanishing coefficients v, and v, , which is realised approxi-
mately by a group of real nuclei.

In the first section we will write down this special operator and remember the
spherical basis of the boson model. The second section reveals that this basis
contains the eigenfunctions of the seniority operator T 2 In section 10.3
calculated nuclear spectra of the relevant special case will be compared with
measured ones.

10.1 The Hamiltonian of the vibrational limit. The spherical basis

We will formulate now the first special case of the Hamiltonian by putting v; = v,
= 0. This has the consequence that vy and v, vanish (see 9.38) and that in H
(7.17) remain only the terms which conserve both the number of d-bosons and
the one of the s-bosons (d " is coupled to d~ and s is connected with s). The
Hamilton operator of this approximation reads according to (9.39)

HY = ,N+v,N*+ (g5 + VygN)Ng + vang’ + viT? + v;J? (10.1)
with =& - (1/12)up,

€4’ = &4 & + (3/10)co - (2/7)c2 - (18/35)cq + (1/2)up

Vo = (1/2)up,

Vng = (1N5)uz - uo, (10.2)

Vg = (1/10)co + (1/7)c2 + (9/35)cy - (11V5)uz + (1/2)up

Vi = <(1/10)co + (1/7)c2 - (3/70)c4,

v = -(1/14)cz + (1/14)cq

The coefficients in (10.2) result from the equations (9.38) taking into account
the condition vy = v, = 0. Because the operators in (10.1) act only on d-boson
states, the eigenfunctions of H"Y are products of pure s-boson states and d-
boson states undergoing the symmetrisation procedure. The states of the
spherical basis (3.8) and (6.18) have this structure and we will show in this
chapter that they are really eigenfunctions of H" . They are characterised by the
integers N ( number of bosons ), ny ( number of d-bosons ), 7 ( seniority ), n
(number of d-boson triples resulting in the angular momentum zero ) and J
( angular momentum ) and are written like this

INngtnsyd). (10.3)



In this chapter we drop the projection M of J. According to (6.33), (6.34) and to
the section 8.2 the following eigenvalue equations hold

ng|NngtnysJ)=ng[NngztnsJ) (10.4)
JZINngtnsJdY=JJ+1)[NngtnsJ).
Owing to (3.8) and (3.9) for J only the following values are allowed

J= A, A+ 1, ... 2A-3,21-2,2) with A= 7-3n,and 7 < ng. (10.5)

10.2 Eigenvalues of the seniority operator

We now investigate the effect of the operator T 2 (9.2) on a state of the
spherical basis (10.3). By means of (9.2), (6.12) and (6.28) we write

T?=nyg (ng + 3) - PP~ with the following details (10.5a)

ng=%,d"d,, P'=Y,(1)'d"d",, P =3,(-1yd.d,.
We look into several commutators of these operators. First we claim

[ng, P"]1=2P", (10.6)
which we prove with the help of (5.36)

[X.d".d,,2d"2d"5-2d"1d "1 + d*?1=[d"dy+d ody, 2d"d" ;] -

[d*1di+d"1dy,2d"1dq]+[d odo, d*o’] =

22d*,d*5-2d*d" +d*?)=2P".
The validity of the relation

[P~, P =2(2ng4+ 5) (10.7)
is shown this way

[Zu(-1Y dudy, Ty (1Y 7, d ", ] =

4ld2do, d"2d "]+ 4[did.y, d"id "]+ [do” ,d "] =

41+d"dy+d odo) +4(1+d 1 di+d 1 dq) +2(1+2d o do) =

10 + 4ng4 = 2(2ng4 + 5).
The third commutator reads [P, (P *)"]. Owing to (10.7) the relation

P (P =2@2ng+5) P + PP (P (10.8)
holds. We carry the procedure on like this

P (P*)"=2(2ng+5)P")"" + P"2(2ng + 5)(P*)"* + (PP (P*)"*



Going on in this way we obtain
P-(P +)n = Zn’=0n-1 (P +)n’2(2nd + 5)(P +)n-n’-1 + (P +)n P-=
oo 4P ng (P +10n (P + (PTY' P (10.9)
With the help of (10.6) one shows the relation
P +)n'nd (P +)n-n’-1 = (P +)n'+1nd (P +)n-n’-2 +2(P +)n-1 _ (10.10)
(P "ng+2(n-1-n")(P")"" which we insert in (10.9).
P-(P +)n - Zn’=0n-1 4(P +)n-1nd + Zn’=0n-1 8(” _ 1)(P +)n-1 _ Zn’=0n-1 8n’(P +)n-1 +
10n(PYY"" + (P*Y'P =
4an (P "'ng+ 8n(n- )P -8(1/2)(n- n(P*)" + 10n(P*)" + (P*)"P =
(P4 ngn + 4n” + 6n) + (P*)" P or
[P~ (P")]=2n(P")""(2(ng + n) + 3). (10.11)

Now we are able to look into the effect of T2 on a state of the spherical basis.
Owing to (6.15) and (10.5a) we write

T |Nngt nyJ)=
Ng(Ng+3) [Nngt nad)-P P Ane (P 2N, ng=1, v nyJ).

In the last ket state the number of d-bosons agrees with the seniority 7. Note
that no use has been made of the explicit form of A,.,;,. We put

(ng-1)2=n,, (10.12)

rebuild our result with the help of (10.11) and take the relation
P |N,ny=1 tnsJ)=0(6.31)into account as follows

T2 |Nngt nad)=ngng+3) | Nngt nyJ)-

An: PP (P 1+ (P*)*P )N, ng=71, 7 nyJ)=

g+ 3) | N ng v nad) - AneP 20, (P"Y'(2(z + ng) + 3) ) [N T T na Jy =

(na(ng+3)-2n,(2(t+ny)+3)|Nngt naJd)y=7t(t+3)|Nngt nsJ)
where (6.15) has been inserted again. Thus, we have

T |Nngt nad)=t(t+3)|Nngt nyJ) (10.13)

i. e. the states of the spherical basis are eigenfunctions of the seniority operator
with the eigenvalues 7 (7 + 3).



From the commutation behaviour of T % we can see also directly that
eigenfunctions of H" (10.1) are simultaneously eigenfunctions of T2 In
chapters 7 and 8 it was shown that N and J 2 commute with H and therefore
with H O, Naturally, ng and H O commute with H ¢, According to (10.1) this
operator consists essentially of the operators N, ng, J%and T2 Consequently,
T? commutes with H ). Moreover, J ? commutes with T ? which results in a
common eigenfunction of the operators HY J%and T2

Deriving the eigenvalue of T? (10.13), not all properties of the many-d-boson
state are employed. From the eigenfunction, only the number of d-boson pairs
with J = 0 or the number of unpaired d-bosons has to be known. On the other
hand E. Chacon et al. (1976, 1977) succeeded in constructing the spherical
basis starting from the eigenvalue equations of T2 J?and J, ( see also Frank
(1994), p. 311).

At the end of this section, we treat the state
P"|N,ng-2,t nyJ),

of which we made use in section 6.2. By means of (10.6) and (10.7) we write
PP =[P ,P1+P'P =[P ,P1+ng(ng+3)-T?=
2(2ng+5) + ng(ng+3)-T?>=ng +7ng+ 10 - T

Because of (10.13) we have
PPN ng-2 7 nyd)=
((ng-2Y +7(ng-2)+10-7(c+3))|N, ng-2, T nyJ) =
(Ng(ng+3)-t(t+3)|N, ng-2,t nyJ).

The corresponding diagonal matrix element reads

(N,ng-2,7 nyJ| PP |N,ng-2, 7t nyJY=ng(ng+3)-7(r+3). (10.14)

The operator P~ is adjoint to P " analogously to the operators d, and d+u ( see
section 5.2 ). Consequently (N, ng- 2, © n, J| P is conjugate complex with
regard to the right hand side of the matrix element (10.14). Since P " raises ng
by 2 the expression

(Ng(ng+3) -7 (x+3)* P N ng-21t nyJd)=|Nngt nsJ)
(10.15)

is a normalised state with ny d-bosons. In an analogous way we obtain
(Nngt nyJ|P P |Nng t nyJd)=ng(ng+3)-7(r+3) (10.16)
and  (ng(ng+3)-t(z+3))"P |Nngt nsJd)=|N,ng-2, 7 ns J).



10.3 Energy eigenvalues. Comparison with experimental data

If the Hamilton operator H" (10.1) acts on a state of the spherical basis (10.3)
according to (10.4) and (10.13) the following eigenenergy results

EON o co= &N+ VaN? + (85 + Vag N)Ng + Vand® + Ve T (T + 3) + v;J(J + 1). (10.17)

Independently of the complexity of the state, the eigenvalue has a simple,
closed form. Neither the projection M nor the ordering number n, influence the
energy but the latter restricts the range of the angular momentum J according
to (10.5).

Comparing calculated with measured spectra of nuclear levels mostly one
single nucleus is investigated neglecting the binding energy relative to other
nuclei. The lowest level is characterised by ny = 0 and therefore r = J = 0. If we
put &, = v, = 0 the energy of this state is zero. Moreover at the beginning of this
chapter vy = v, = 0 has been chosen and so we obtain up = ¢s = 0 (10.2) and the
coefficients (10.17) read like this

&= & + (3/10)co - (2/7)ca - (18/35)cs,
Vng = (15)us,

Ve = (1110)co + (1/7)cs +(9135)cs - (1N5)us, (10.18)
Ve = -(1110)co + (1/7)c5 - (3170)cs,

v = -(114)c2 + (1114)cs.

Here we have written ¢ instead of ¢4, as is usual. In most published
comparisons with real nuclear spectra, the quantity uz is put equal to zero and
the energies are given as follows

EY pi ey = ea'na + vand + vt (t+ 3) + v J(J + 1), (10.19)

Fitting theoretical on experimental values one finds that for the most part v; and
v; are positive and small relative to &, ‘. The levels with greatest possible values
for r and J for given ny i. e. with 7 = ng and J = 2n,, constitute a conspicuous
series showing the angular momenta J = 0, 2, 4, 6 and so forth and slightly
increasing steps in energy, which is named Y-series. Every level of this kind is
the lowest one of the partial spectrum with the same angular momentum. Thus,
levels of the Y-series show the following energies

EM = EY e mio = (112)s4'd + (114)gd? + (112)vi JJI2 + 3) + viJ(J + 1) =
(1/8)[(4¢ - 2¢4)J + cad?] (10.20)

where (10.18) and u, = 0 have been employed. Apart from the feeble quadratic
term, the energy grows in (10.20) proportional to J i. e. in the same way as the
eigenenergies of the harmonic oscillator. This mathematical form appears also



if the atomic nucleus is interpreted as a vibrating droplet for which reason the
special case dealt with in this chapter is named “vibrational limit“. On the other
hand, we will show that the Hamilton operator has features of the Lie algebra
u(5), which is why the name “u(5) limit” is also used.
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Figure 10.1. Measured spectrum of '°’Ru. The energies of the Y-series
are given (Arima and lachello, 1976a, p. 273).



In figure 10.1 the levels of the Y-series of the nucleus '%%44Russ are marked and
the energies are given. The energy difference between two levels of the Y-
series following each other reads according to (10.20)

AEM, = EM o EM) 5 = - cq + (1/2)c4d. (10.21)

AEY,

800 —

600 —

400 —

I I | I
2 4 6 8 J

Figure 10.2. Energy differences AEM ;= EM - M, between levels
of the Y-series following each other of the nucleus 10244Ru58
according to figure 10.1. The straight line fitted in by eye yields the
values ¢4 = 125 keV and ¢ = 485 keV for the coefficients in (10.21).
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Figure 10.3. Comparison between the measured and the theoretical
spectrum of "%’Ru. The spectrum is calculated by means of (10.19) and
(10.18) with the parameters ¢ = 481 keV, cp = -18 keV, c> = 141 keV, ¢4 =
144 keV and uy = 0 (Arima and lachello, 1976a, p. 273). The numbers
above or below the lines indicate the numbers of d-bosons.



The measured values of AE"), of the same nucleus are plotted against J in
figure 10.2. Making use of (10.21) and of a graphical procedure the coefficients
¢4 and ¢ are found. In figure 10.3 about a dozen levels are given which have
been calculated by means of (10.19) and (10.18) adjusting the coefficients cy,
C2, €4 and ¢ . The values of the last two quantities agree reasonably with those
of figure 10.2. The levels are subdivided in the series Y, X, Z, B and A which
have the following characteristics

series T N J
Y Ny 0 2nd
X Ng 0 2ng-2
Z Ny 0 2nd -3
others Ng 0 2nq-4 (10.22)
2nd -5
ﬂ Ny -2 0 271= 2nd -4
A Ny 1 2nd -6

The rule (10.5) excludes a further series with J = 2n, - 1 between the series Y
and X. As in other nuclear models here it is impossible to reproduce all
measured levels. Every model is based on approximations, which restrict the
field of applicability.

Figures 10.4 and 10.5 show the spectra of ”0460d62 and 18878Pt110 with the
corresponding levels calculated by means of (10.19). Comparing these three
measured ( or calculated ) spectra reveals a clear agreement of the energy
structures, which is expected because (10.19) does not contain the boson
number N.

Figure 10.6 depicts the series Y and X for '%Ptss ( N = 4 ). Apparently, here
the boson number has been extrapolated over the value 4 otherwise J<8
would hold.
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Figure 10.4. Comparison between the measured and the theoretical spectrum
of ''°Cd. The spectrum is calculated by means of (10.19) and (10.18) with the
parameters ¢ = 722 keV, cp = 29 keV, ¢, = - 42 keV, ¢4 = 98 keV and u,=0
(Arima and lachello, 1976a, p. 274).
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Figure 10.5. Comparison between the measured and the theoretical
spectrum of '®®Pt. The spectrum is calculated by means of (10.19) and
(10.18) with the parameters ¢ = 281 keV, ¢y = 148 keV, ¢, = 30 keV, ¢4 =
110 keV and u, = 0 (Arima and lachello, 1976a, p. 274).
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Figure 10.6. Comparison between the measured and the calculated energies
of the Y-series and the X-series in '’Pd. The parameters employed are
£=680keV, ¢, = -160 keV und c4s = 45 keV (Arima and lachello, 1976a, p.
275).



According to (7.16) the quantities ¢y, c2, ¢4 and ¢ stand for matrix elements of
interaction operators and they should be individually equal for every nucleus
contrary to the reality. The discrepancy can be explained in the following way

(i) the interaction between s- and d-bosons is neglected in this limit,

(i) the effective boson-boson interaction can depend on the total number of
bosons,

(i)  no difference is made between bosons attributed to protons and those
belonging to neutrons.

The limitation (i) will be dropped later for the IBM1 and the approximation (iii) is
abolishes in the model IBM2.

Assigning measured to calculated levels is uncertain if no other criterion than
the energy is considered. The rates of electromagnetic transitions from level to
level are well-known quantities, which can help to improve the identification of
states. We will deal with them in the next chapter.

Only a restricted number of nuclei behave according to the vibrational limit.
Systematic investigations showed that nuclei with neutron- and/or proton
numbers near the magic numbers 50, 82 and 126 belong to this limit ( see
figure 10.7 ).
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Figure 10.7. Region of the periodic table of the even-even nuclei. Z =
number of protons, N = number of neutrons. The circles denote nuclei of
the u(5)-limit (lachello and Arima, 1987, p. 42).



11 Electromagnetic transitions in the u(5)-limit

Excited nuclei can reach lower energy levels by emitting electromagnetic
radiation. In this chapter mainly the electric quadrupole radiation will be treated
and the transition probabilities will be formulated for the IBM. First, a short
introduction will be given and in the second section the definition of the
interaction operator and its representation by creation- and annihilation
operators for bosons follows. In the third section the connection between the
matrix elements of the interaction operator and the transition probabilities will
be described. The derivation of closed expressions for these matrix elements (
section 11.4 ) and a comparison with experimental data follow. In the section
11.6 and 11.7 special transitions and levels are treated and finally we look into
the quadrupole moment.

11.1 Multipole radiation

The electromagnetic field of a radiating nucleus is represented by a vector
potential A(r). It is characterised by a spherical harmonic Yy (p) with p = rir
(Brussaard and Glaudemans, 1977, p. 179). It describes the multipole radiation
of the order 2" possessing the angular momentum L. When a nucleus emits a
photon, this angular momentum is carried away from the initial nuclear state
having spin J; which results in a final state with spin Jr . Thus, the triangle
condition

Ji+L>di>]Jdi-L| (11.1)

is satisfied. There are two types of multipole radiation, the electric and the
magnetic. They differ not only in their spatial shape but also in the parity of the
field. For example, positive parity means that two points of the field function
lying diametrically with respect to the origin show the same function value. For
negative parity, these values differ only in sign.

Electric multipole radiation has positive parity for even L-values and negative
parity for odd ones. The magnetic multipole radiation shows just the opposite
behaviour. If two fields are coupled which possess the same parity the
combination shows positive parity and negative parity results if the components
have different parity.

In the interacting boson model 1 and 2, single boson states ( actually material
waves ) are coupled which have all positive parity ( even angular momenta L =
0, 2 result in positive parity, which is connected with the behaviour of the
spherical harmonics ). Thus, all collective states of these models have positive
parity. Because the emission of a photon leads from a state of positive parity to
another with the same parity all types of radiation must show positive parity.
Consequently, for multipole radiation the following L-values are possible

electric : L=2,4,6, .. (11.2)
magnetic: L=1,3,5, ...



In order to formulate the probability of a radiative transition to a lower level we
will looke into the energy experienced by the excited nucleus in the field of
radiation i. e. into the interaction energy of the radiation field with the charges or
magnetic moments of the nucleus.

11.2 The operator of the electromagnetic interaction

In quantum mechanics, the classical expression of the interaction energy is
replaced by an operator. For the electric multipole radiation, this operator of the
electromagnetic interaction can be written employing the long-wavelength
approximation ( Brussaard and Glaudemans, 1977, p. 182 ) like this

O(E, L, M) =Y =" e(k) k)" Yim (p(K)). (11.3)

The sum covers all nucleons of the nucleus and e(k) is the charge of the kth
nucleon. Obviously O(E, L, M) is a single nucleon operator and it corresponds
formally to the single-boson operator (5.1). The operator for magnetic multipole
radiation is of this type as well. Due to the spherical harmonics, both kinds of
interaction operators are tensor operators ( section 6.3 ). We transfer both
properties of this operator - it is a tensor and it represents the single particle
type - to the corresponding interaction operator of the interacting boson model,
which we write analogously to (11.3) as follows

OE, L, M)=Y ;" o(E, L, M, &). (11.4)

The sum extend over all active bosons and o(E, L, M, &) is a tensor operator of
the rank L. Provisionally we are attributing to the ith boson the set of variables
&. For the magnetic radiation an analogous relation is true. The expression
(11.4) cannot be deduced completely or be described more in detail. In fact, it
belongs to the basic postulates of the IBM. According to (5.25) and (5.14) the
operator O(E, L, M) can be written in the second quantisation as

O(E, L; M) = le, la, mp, mq <p; lp; mpl O(E’ L, M) | q, /q: mq> b+lp mp blq maq - (1 1 5)

Matrix elements of tensor operators can be split in two factors with the aid of
the Wigner - Eckart theorem (A5.8) as follows

P, I, mp| o(E, L, M) |q, l5, mq) =
(lg mgL M| lymp) (21, + 1Y (p, I || o(E.L) [|q. lg). ~ (11.6)

The right hand side of (11.6) contains a Clebsch-Gordan coefficient and the
reduced matrix element, which is independent of the projection quantum
numbers m,, my and M. According to (6.19) and (A1.14) we write

b+lp, mp blq, mq = (_1 )-mq b+lp mp ~Iq mq =
™Y o (o Mplg, -mg | L M) [BYx b7 15 . (11.7)
We insert (11.6) and (11.7) in (11.5) and obtain



OFE, L, )= 1:m o 1o Zmpma (<1)™ (lg mg L M| Iy mp) (Iy My lg, -mg | L M) -
2+ 1), b || oE.L) I, Iy ) 6% x b7 (11.8)
Due to (A1.4) up to (A1.6) the relation
(1" (lg mg L M | Iy mp) = (-1)/+((2lp + 1)(2L + 1)) (lg mg I, -mp | L, -M)
= (1) (2 + 1)L +1))"2 (I, mp lg-mg | L M) (11.9)
holds, which we insert in (11.8). Since I, is even and because of
Yo ma (o Mp g, Mg |L M) (I mp Iy, -mg | L' M) = 811 S (A1.10) we have
OE, L, M)=X 1wt s Seer Samer 2L+ 1) (p, Ip [l 0(E,L) 11q, Ig ) [b%)x b7 1 s
=Y pu@L+1)"(p, Ll oE.L) g lg) [b%x b7 ] w.  (11.10)

Among the radiative transitions the electric quadrupole transition is most
suitable for demonstrating the nature of a collective state (Talmi, 1993, p. 746 ).
In this case (L =2, I, and I = 0, 2 ) the expression (11.10) reduces to three
terms

OE, 2, p)=azd*y s+ ays d™,+ f2[d*x d?),
with az =(d|| o(E,2)| sY5,
a2’ =(s|loEz2)| d)N5,
B2 =(d]| oE>2)| d)5. (11.11)

Because o(E,2) is a tensor operator one can show that ay = a2’* holds (Talmi,
1993, p. 112). It's usual to assume that ay is real i. e. a2 = a2’ and we can write

OE, 2, p)=ax(d*,s+s*d™,)+ fo[d " x d]'?), (11.12)

This is the operator of the electric quadrupole transitions of the IBM. It is not
limited to a special case ( limit ).

We now carry out a rough estimate of the quotient B, /a2 . As a model we
consider a closed core with a single boson moving like a particle in the potential
of the harmonic oscillator. It is represented by the function R (r) Y, m(p) with p =
r'r, which consists of the spherical harmonics Y; , (p) and of the r-dependent
part R,(r) ( see Lawson, 1980, p. 7 ). We denote the single particle operator of
the quadrupole radiation according to (11.3) by O(E, 2, M) = o(E, 2, M) = e r
Yom (p). Thus, we write

(d]loE2) || s)=e( Ya]|l Yall Yo)JR2N Ro(r) F* drand
(dllo(E2)[|d)y=e( Yzl Yall Y2) [(Ra(r)) F* d. (11.13)

From Brussaard and Glaudemans (1977, p. 419) we take



(Yall Yall Yo) = (25/(4))" (o % %) = (5/(4n))" and

(Ya || Yzl Y2 ) = (25/(4m))"? N5 (30 % 20) = - 5/(147) 2. (11.14)
Lawson (1980, p.7) gives the following relations

IR2 n=0(ar) Ro n=o(ar)r dr=3V15/(2¢%) and

(R 2 n=0(an) r* dr=71207). (11.15)
From (11.11) up to (11.15) follows

Balaz=(d | o(E,2) || d)(d]| oE,2)| s)=-(14/27)=-0.72. (11.16)

For “physical solutions® O. Scholten (1991, p. 99) formulates the condition
0>, /laz > - N7/2 = - 1.323, which is satisfied by (11.16). In practice the
coefficients a, and 2 serve as parameters, with which measured decay rates
are fitted.

11.3 Transition probabilities

The theory of the electromagnetic radiation connected with quantum mechanics
yields the following formula for the probability per time unit of a radiative
transition from the initial state / with spin J; to the final state f with Jr ( Brussaard
and Glaudemans, 1977, p. 189)

T(L, Ji—Jf) = 8n(L + 1)L (2L + N2 (g 1h) B(L, Ji—Jy). (11.17)

L is the angular momentum of the radiation field and (2L + 1)!! stands for
(2L +1)(2L - 1)(2L - 3)- ... -3-1. The quantity g depends directly on the energy
difference AE = E; -E; of the states involved in the transition like this

q = AE/(hc). (11.18)

Equation (11.17) holds both for electric and magnetic multipole radiation. A
multitude of nuclei being in the state i decays exponentially with the mean
lifetime 7, which is connected with T(L, J;—Jr) as follows

m (L, Ji—Jf) =11 T(L, Ji >Js). (11.19)
Using the uncertainty relation AE- At = 7i one can define the width of a level
I =hltm=hT : (11.20)

The quantity B(L, Ji —»Jf ) in (11.17) is the reduced transition probability.
According to (11.17) up to (11.20) it is related in a simple way to the mean
lifetime or the width of the initial level and therefore we can regard it as a
measurable quantity.



From quantum mechanics we learn that B(L, J; —Jr ) is connected with the
reduced matrix element of the operator O(L, M) of the interaction between the
multipole radiation field and the nucleus as follows

B(L, Ji—sJr) = ( Jr|l O(L) || Ji YI(2Ji + 1). (11.21)

This relation holds for electric and magnetic transitions. The reduced matrix
element ( Jr || O(L) || Ji ) is related to the normal matrix element due to the
Wigner - Eckart theorem ( appendix 5 ) like this

CJrMy| OL MY | JiMiy = (ML M| JiMy) (2J5 + 1)V2C Je || O(L) || Ji). (11.22)

For electric radiative transitions with L = 2 we insert the expression (11.12) in
the normal matrix element of (11.22) and obtain

( Jr My| OE, 2, M) | JiM;) = (11.23)
( NsfNgr e NarJdr M| otz (d+yS + S+d~#) + B2 [d+ X d~](2 )y | Nsi ngi ©iNai Ji M ).

This matrix element of the electric quadrupole transition contains three terms.
The first becomes active ( is different from zero ) if the final state f has one d-
boson more than the initial one ( /i ), the second is attributed to the inverse
situation and the third is important, if both states contain the same number of d-
bosons. In (11.23) states of the spherical basis i. e. of the vibrational limit are
chosen which have a definite number ny of d-bosons. In this limit radiative
quadrupole transitions occur only between states which differ in the number of
d-bosons by Ang=0,+1o0or—-1.

11.4 Reduced matrix elements for | Any| =1

Now we will work on the first term of the matrix element (11.23) and formulate
just the reduced matrix element of the electric quadrupole radiation making use
of (11.22) and dropping n,. We have

(ns=nsi-1,nge=ng+ 1, 1ds || d*s || nsingi 7 J; ) =
@ds+ 1) (M2 w | MY -
< Nsf = Ngj - 1,ndf= Ngi + 1, ‘L'fJf Mfl d+ﬂs | ns,-nd,-r,-J,- M,'). (1124)

Due to (5.17), s |nsingi ©i Ji M; Y = \nsi |nsi- 1,nqi 7 Ji M; ) holds. Because the
states are factorised in a part with s- and a part with d-bosons (6.18) the
“integration” over the s-part in (11.24) yields only the factor Vns. Therefore, we
have

(nsr=nsi-1,nge=ng+1,%Js || d*s || nsingi i J; ) =
Vnsi{ ngr = ngi + 1, s || d ™ || nai 7 J; ). (11.25)

Temporarily we are concentrating on reduced matrix elements and leave ns out
according to the element on the right hand side of (11.25). We increase ny by



steps of 1 and begin with ng = 0. In order to obtain ( ngr=1, Js=2 | d* || ) we
form

(ng=1,J=2, M| d*,| ngi=0,J=0,0)= Smry ,

which results from the fact that the operator d *, generates the state
| ng=1,J=2, u)on the right hand side. Owing to (11.22), the relations

1=(ng=1,d=2,uld",|ni=0,J4=00)=

002u|2p1)5" (ng=1,Jr=2]1d"|Ing=0),ie.

(ngg=1,Jdr=2||d*||ng =0)=+5 (11.26)
hold because the Clebsch-Gordan coefficient is 1.

We now turn to ng; = 1 and nyr = 2. First we calculate the normal matrix element
of d” like this

(Ner=2,JrMe| d™y| ngi=1,di=2, M;) = ngr=2, JrMs| d”yd*m]).  (11.27)
Using (A1.14) and (6.5), we write
(ng=2,Je M| d”y| ngi=1,di=2, M;) =
Y@ u2 M| IM)(ng=2, M |[d*x d* Yy ) =
Sm(2 p2 M| I MYN2( ngr=2, JrMs|ng=2,J M).
According to the orthonormality of the nys=2-states and of (A1.4) we obtain
(ng=2,Js Ms| d™ | ngi=1,di=2, M) =
N2 (2 M;2 | JiMy), Jr even. (11.29)
Moreover, according to (11.22) we have
(ng=2,Js Ms| d™ | ngi=1,di=2, M;) =

2 M2 pu| M )2ds+ 1Y ng=2, Jr || d* || ng=1, Ji=2), which
yields

(ng=2,Jdr || d™ || ngi=1, Ji=2) =2 V(2 + 1). (11.30)

We now take ngr= 3 and ngi = 2 i. e. we will calculate ( ngr=3, Jr || d™ || nai= 2,
Ji ). We restrict ourselves to final states with the highest seniority 7 = ngr = 3.
According to (3.9) or (10.5) this means that we are interested in values Jr = 3, 4
and 6. First, we work on the final state employing (6.9) and (3.7)



| N =3, I JrMy) = AN(312) (-1)"[d " x [d* x d 1) [y ]y =
[1+220 + D)% 20 73N AR2) (1) [d* x [d* < d* 1) 199). (11.31)
Making use of (A3.6) and of the symmetries of the 6-j symbol, we write
| N =3, J"Jr My ) =
[1+ 2208+ D) W 2 0752 2)72NA2) 1) [d* x [d* x d 1 1.

We restrict ourselves to J’ = 4, because with this choice all values for Jf
mentioned above can be reached. Moreover, we employ (A1.1) and (6.5) like
this

| ngr=3,J' =4, Jr M) =
[1+29 ()W Jr24; 22" ()" T2, J'= 4, M- 1’| I My) -
d*ylng=2,0=4, Mg- ). (11.32)

Now we calculate the normal ( not reduced ) matrix element and represent the
bra part with the help of (11.32) employing the hermitian adjoint operator d,
this way

(ngr=3,0 =4, M| d”y | ngi =2, JiM;) =
[1+29 ()W Jr24; 22" ()" T2, J'= 4, M- | I My) -
(ng=2,0=4,Js Ms- | dyed™)| ng =2, Ji, M;) (11.33)

Making use of d ,+d ", = 5, , + d ", d ,~and of the orthonormality of the states
| ng =2, J, M) we obtain

(ndf= 3, J' = 4, JfoI d+ﬂ | Ngi = 2, J,'M,'> =

[1+29 (-1)"W(4 Jr24;22)]" (-1)"

[(2 1, 4, Me- | Jr Mp) Spa + 20 (2 10 4, M- 1’ | Je M) -

(ng=2,0=4,Jr M- | d*ud | na =2, Jiy Mj)] (11.34)

We look into the right hand side of the last matrix element making use of (6.5)
and (A1.1) as follows

y Indl 2, J, i> =
2% w2 u"2, Mi-p” | Ji M) d ped ™ o d e ) (11.35)
Because of d ,d ™ d *miopye = 8y d “miope + d 50 8 e i + d rd Ty d e we

have



dy|ng=2,J,My=2""Quw2, M- | JiM)| duiw)+
222, M-, 2 | i M) | duie ) +0. (11.36)

The summand zero results from the annihilation operator acting on the vacuum
state. Because J; is even, we can write

dy|ne=2,J,My=2"@ w2, M- | JiM)| dmip). (11.37)
Now we insert (11.37) in (11.34) and obtain

(nek=3,0=4, M| d*,| ngi=2,JiM)=

[1+29 (-1)"W(4 Jr24;22)" (-1)".

[(2 1, 4, My- 1| Jr My) Sy + 20 (2 11 4, Mr- i’ | Jr M) -

2@ w2, M- | JiM)(ng=2,0=4,Jr My-p*| d*,| dmi)  (11.38)

For the last matrix element, we take the expression (11.29). Moreover, we
make use of the Wigner-Eckart theorem (A5.8) this way

(ng=3,0=4,J M| d*)| ngi=2, JiM;)y =

[1+29 (-1)"W(4 Jr24;22)" (-1)".

[(2 1, 4, My- | Jr My) Suia + 20 (2 1, 4, M- 1’ | Je M) -

N2(Q2 12, M-’ | JiM)N2 (2, M- ', 2 p | I =4, My - p°)] =

(iMi2 w| JeMp) s+ 1Y (nge= 3, Jr || d* || nai= 2, J; ). (11.39)

We multiply both sides of the last equation with (J; M; 2 u | Jf Mf) and sum
over u and M;. Making use of (A1.10), (A1.4) and (A3.4) we obtain.

(nar=3,Jrlld* || nai=2,J; )= [1+(-1)"29W4 J24;22)]"
1)12dr + )2 [(-1)7 65, 4 + 6V2Ji + 1) W(J; 2 Jr4; 2 2)], (Ji even). (11.40)

Thus, we have represented the reduced matrix element of d* on the basis of
the vibrational limit with maximal seniority up to ng = 2 (ngr=3 ). Arima and
lachello (1976a, p. 269) have carried on the procedure up to ng = 3 and have
elaborated a closed algebraic expression depending from ng; . For ng =0, 1 or 2
it agrees with our relations (11.26), (11.30) and (11.40).

The reduced matrix element of the second operator of the electric quadrupole
transition (11.23) can be written analogously to (11.25) as

(Nst=ngi+ 1, Ngr=ngi-1, Je|| s d~|| nginai Ji ) =
V(nsi+ 1) ( ngr=ngi = 1, Jell d” || nai Ji ). (11.41)
With the help of (A5.8) and (A1.4) up to (A1.6) one obtains



(ng-1,J7|[d™ || ng J) =
NI+ 1) (M2 u| MY (ng-1, J" M| d™y|ng JM) =
VRI+ 1) (M2 u| MY (1) (ng, M| d* | ng-1, M) =
NI+ 1) (M 2-p | IMY )Y (ng, M| A"y ng-1, M) =
N (ng, JI1dT || ng-1, I, (11.42)

In the equations (11.41) and (11.42), nq is not limited. They are true as well if
the seniority T does not agree with ny .

If the radiative transition of the type ng — ngr = ngi+ 1, which appears in (11.24)
up to (11.40), is energetically forbidden the inverse process ng — Ngr = Ngi - 1
may be possible which is described in (11.42) down to (11.40).

The reduced probability for transitions between states of the Y-series in the
vibrational limit ( section 10.3 ) can be written now for an arbitrary boson
number ng. Emitting E2-radiation the state | ns ng, Ji = 2ny = M; ) turns into
| ns+1,ng-1,Jr=2(ng- 1) = M ). The reduced matrix element reads according
to (11.41), (11.42) and (A5.8) as follows

(Nsg=ng+ 1, ngr=ngi-1, J|| $Td~|| nsingi Ji) =
Vnsi+ 1) N@Jr+ 1) (di i 2, -2 | JrJr )" -
(ngi-1, Jr My=Jds | d2 | ng JiMi=J;y (-1)%
Because of Jr= J; - 2 we have
(Jidi2,-2 | Jrdr) =N@Ir+ 1) (22 Jr Jr | Ji i) I N(2Ji + 1) =
N@2Js + 1) 1 N(2Jd; + 1).

The initial state is “stretched and we have set it in the z-direction and so it
consists only on d-single states. Therefore the operator d ,, which appears
above, transforms the initial state directly in the final one and adds the
factor \ng, from which follows

(ns+1,ng-1, Je|| sTd~|| nsinai Ji Y = N(nsi + 1) V(2Ji+ 1) Vng; . (11.43)
Owing to (11.21) and (11.23) we can write
B(E2, Ji—Jr) = (a2’ (nsi+ 1, ng-1, Je|l sTd~ || nsingi Jiy | (2J; + 1) =
(a2)’ (nsi+ 1) Nai. (11.44)
Especially for the lowest transition in the Y-series the following relation holds

B(E2,2" 1= 0%)= (a2’ (N-1+1)-1=(a2)’N. (11.45)



11.5 Comparison with experimental data of electric quadrupole transitions

In figures 10.3 up to 10.6 the values for ny are 0, 1, 2, .. . On the right hand side
of each Y-level there are levels with about the same energy which agree in
number ny with the corresponding Y-level ( see also 10.22 ). Consequently for
energy reasons transitions from ngto ny — 1 prevail. Measurements reveal that
transitions with Any = 0 are much weaker and an ascent from ng to ng + 1 is
practically excluded. For transitions in the Y-series the expressions, (11.43) and
(11.44) can be applied. According to (11.41) and (11.42) generally holds

(nst=ns+ 1, ng=ng-1, Je|| sTd~|| nsingi Ji) =
N(nsi+ 1) (1) Cng il d™ || nai-1, Jr)

where the last reduced matrix element is calculated by means of (11.26),
(11.30) or (11.40) according to the number ny . Doing so the indices i and f
have to be interchanged. From (11.21), one obtains the reduced transition
probability.

In table 11.1 transitions of the type ny — ng — 1 are listed. The reduced matrix
elements ME and the transition probabilities B are given. They are compared
with measured values of 11045;Cd62 . The model nucleus contains 7 active
bosons. In view of the sensitivity of the quantity B ( quadratic expression ) these
results corroborate the theory and the interpretations of the involved levels.
Measured reduced probabilities B for transitions with | ny| > 1 are two orders of
magnitude smaller than the values of table 11.1. In our model these transitions
are inadmissible. For the transition E2, 2¢ — 04 Milner (1969) gives the
measured value B(E2, 2; — 0+) = 934 (+/- 38) e” fm* which yields using (11.45)

a2=11,6 e fm% (11.46)



Table 11.1. Comparison between calculated and measured B(E2) values for
the nucleus ""°Cd .

Initial - final ME? Bl(az)* in- quotients of reduced

state state dex transition probabilities
spin* ny series spin* ny series calcul. exper.**
25 1. Y 0o 0 Y 5 7 a

4% 2 Y 2 1Y 18 12 b B(b)/B(a) 1.71 1.53 (.19)
2" 2 X 207 1 Y 10 12 ¢ B(c)yB(a) 1.71 1.08 (.29)
337 3 Z 2" 2 X 15 5.15/7 d

3% 3 Z 4 2 Y 6 56/7 e B(e)B(d) 0.4 0.47(.2)
4, 3 X 250 2 X 11 511/7 f

4, 3 X 47 2 Y 10 510/7 g B(g)/B(f) 091 0.23(.3)

The series and the levels correspond to figure 10.4. The quantity ME is the
reduced matrix element of the d-boson states according to (11.42).

* The indices beside the spin value serves as spectroscopic identification.
** The estimated errors ( Arima and lachello, 1976a, p. 287 ) are put in
parentheses. The data a up to ¢ stem from Milner (1969) and d up to g are
taken from Krane and Steffen (1970).

Table 11.2 shows further quotients of reduced transition probabilities compared
with measurements.

Table 11.2. Reduced transition probabilities for quadrupole radiation of Xe-
isotopes (Arima and lachello, 1976a, p. 276).

Quotients of the B'’s calculated measured values

Xers " PCsuXers PsaXers YsuXers
B(3:"— 4") I B3 >2,") 0.4 051 024025 046-0.72 0.16
B(dy"— 41") | B(ds'—>2,")  0.91 0.951.05 094  0.90

The measured values of transition probabilities which are forbidden in the IBM1
are two orders of magnitude smaller.

11.6 Transitions with | Ang|= 0

In our treatment of the quadrupole radiation the transitions with unchanged
numbers of d-bosons ( Anqg = 0, i. €. ngi = ngr ) were left over. In order to make
them up, first we look into the normal matrix element of the part of the transition
operator in question in (11.23) and write with the aid of (11.22)



UiM2m|JiM;) (2di+ 1Y (ngardr || [d* xd~12) || ng aidi ) =
(ngardiMi | [d*xd~ 1'% nga;di My =
ZW'(Z /,t2 /,t'l 2m)(nd OﬂfJfoI d+ﬂd~y' | Nyg OC,'J,' M,’ > (1147)

The specification a comprises n, and the seniority 7. We now use the concept
of the completeness of state functions of a quantum mechanical system. For
spatial functions ¢(r) of this kind the following equation holds

Yppp(D) @p*(r)=6(r-r").

Consequently the functions @; and @ rwhich belong to the same system obey
the relation

for @ @i()dr= T@of (@) 6(r-r')@;(r) drdr' =
Yp I @8 () op () dr-Jos X(r') @i (r) dr.
Thus, we can write down the last matrix element of (11.47) this way
(ngardiMe| d*yd ™y | ngoidi M) =
ZaJM<ndafJfo|d+u|nd-1,aJM>(nd-1,aJM|d~,,v|nda,-J,-M,->=
T aum(IM2 | JrMe) (2 + 1Y (UM 2 ' | I M) (2J + 1)
(ngards 1d™ || ng-1, ad)y(ng-1, ad|ld™ || ng o;Jp). (11.48)

In the last line the Wigner-Eckart theorem (A5.8) or (11.22) has been applied
twice. We now insert (11.48) in (11.47), multiply by (Ji Mi2 m | Js Ms), sum over
m (and M; ) and obtain by means of (A1.10), (A3.4) and (A3.6) the relation

(ngardi||[d*xd~ 12| ngadi )=
Zmup(iMi2m|JsMp) (2 u2u'|2m)-
Yadm (M2 | I M) (M2 1’| I M) (2J + 172 (11.49)
(ngasds ||d™ || ng-1, adY{(ng-1,ad||d”|| ng aiJi) =
1) INE Y s A e K ngards 1dY || ng-1, ad)(ng-1, aJd || d7| ng o J;).

As an example, we calculate the matrix element of the E2-transition from the
level 44 to 2,. According to figures 10.3 up to 10.5 these states are the lowest
one with ny = 2 and maximal seniority. Since there is only one level with ny = 1
(241-level ) the expression (11.49) contains here merely one summand as follows

(na=2,Jr=2||[d*xd~1? || ngJi =4) =
V52 % % (ng=2,di=2||d* || ng=1,J=2)-
(ng=1,J=2|d~||ng=2, Ji=4)=15(2/35) V10 V18 = 12/7. (11.50)



The values of the last matrix elements are taken from table 11.1 and the 6-j
symbol comes from (A3.14).

The sum in (11.49) extends over all states with nq - 1 including possibly higher
levels than ( ng, o, J;i ) or lower ones than ( ng4, ar, Jr ). Therefore, the sum can
comprise levels not having maximal seniority, which means that the prerequisite
of (11.40) is not met.

11.7 Configurations with ng > 7

With that, we turn to quadrupole transitions whose states have not maximal
seniority and belong therefore to the series  or other according to (10.22).
Such transitions have relatively low probabilities in nuclei of the vibrational limit
but anyway we will need the affiliated matrix element for the treatment of the
general Hamilton operator of the IBM1 ( chapter 12 ).

[. Talmi (1993, p. 766 - 775) has shown in an easily readable fashion that
matrix elements of the kind

(nd, T'<ng, ny, J'||d¥||ng=ng -1, t<ng Ny J) (11.51)

are connected by simple factors with matrix elements having maximal seniority
in both included states ( the effect of d * on the state on the right hand side
increases 7 by 1 or lowers it by 1 because an J=0-pair can arise ). The
corresponding matrix element of the operator d ™ is formulated by means of
(11.42).

In an analogous manner, |.Talmi has treated the matrix element
(Ng, T'<ng Ny, J'|| [d* x d12| ng, 1< ng, Ny J)

where t=1'-2, t'or '+ 2 holds.

11.8 Quadrupole moments

Electric multiple moments are measures of the charge distribution of nuclear
states and especially of their deviation from spherical symmetry. The
quadrupole moment Q. conveys how the charge is arranged along the z-axis.
Classically Q; is defined like this

Q. = Y k=1"e(k) (3z(K)? - r(k)?). (11.52)

A is the number of nucleons and e(k) is the charge of the kth nucleon. The
spherical harmonics of the second order read

P Yoo (r) = N(5/167) (32° - r?).
We insert them in (11.52) and obtain
Q. = V(161/5) X k= 1" (k) r(k)* Yao (r(K)). (11.53)



In quantum mechanics this function act as an operator, which we name Q®?
(=Q,). From (11.3) we see that Q ?) agrees largely with the operator O(E, 2, 0)
i e.

Q@ = J(16n/5) O(E, 2, 0). (11.54)

According to (11.4) this operator results in a single-boson operator.
Analogously to (11.12) it is written by means of creation- and annihilation
operators like this

Q@ = (167/5) (az(d*o s + s do) + Bo[d*x d'?)). (11.55)

In the vibration limit the operator d o s + s © d “y does not contribute to the
expectation value of Q? because this operator combines only boson states
with different numbers ny ( Ang =+ 1 or - 1 ). The quadrupole moment Q@ of
the nuclear state | ng a J M ) is defined as the expectation value of Q® where
the nuclear spin is put in the z-axis i. e. M = J. Therefore this moment reads

Q¥ =N(16m/5) B2 (ngad, M=J|[d*xd 1% | ngad, M=J).  (11.56)

The specification a is the same as in (11.47). In order to obtain consistent
expressions we generalise the concept of the reduced probability of the electric
quadrupole radiation (11.23, 11.21). Starting from (11.21), (11.12) and (11.22),
we define

(B(E2, (ng a J)=(ng a H)"? =2+ 1" Ba(ngaJ|l[d* xdT?|| ngad) =
(JI20|JIN" Bo(ngad, M=J|[d* xd 1% | ngad M=J). (11.57)

Because of (JJ20 | JJ)=VJ (2J - )" + 1)"? (24 + 3)"? and from (11.56)
and (11.57) we have the following relation

Q® = (11.58)
N(161/5) NJ (2J - 1)2(J + 172 (20 + 3Y"2 (B(E2, (ng o J)—s(ng o J)))"2.

This expression shows that calculating Q?, one can use the formalism
developed for B.

Now we calculate quantitatively the quadrupole moment of the level 24 in the
vibrational limit of the IBM1. According to (11.58), (11.57) and (11.21) we write

QP(21) = V1615 N2/T) N(1/5) (ng=1,J =2 |[[d* x d ]| ng=1, J = 2).
With the help of (11.49), (11.26), (11.42) and (A3.14) we continue like this
Q®(24) = N(167/5) N(2/7) N(1/5) B2 V5 {25 % 25} -
(ng=1,J=2]1d"|I)(lld7||ng=1,J=2)=
N(167/5) N(2/7) Bo= 1.695 p.. (11.59)



One obtains the same result from (11.56) using the relation

[d*xd%% =% ,2u2-u|20)d*,d",=2 (1t -2)\14d*,d,. (11.60)






12 The treatment of the complete Hamiltonian of
the IBM1

In chapter 10 the Hamiltonian has been reduced to the form of the vibrational
limit. In this chapter we go back to the complete Hamiltonian of the IBM1 (7.17
or 9.39). In the next section the eigenstates of this Hamilton operator will be
developed on the basis of the eigenfunctions of the vibrational limit i. e. on the
spherical basis. The well-known diagonalisation procedure is outlined. To this
end, the matrix elements of the Hamiltonian have to be formed on the spherical
basis, which is brought up in the second section. In the following section the
electric quadrupole radiation is treated in this model. Finally comparisons with
measured nuclear states and a hint for a roughly simplified model will be given.

12.1 Eigenstates

According to (9.39) and (10.1) the Hamilton operator of the IBM1 can be written
as

H=H" +v,R?*+ v,Q? with
HY = ;N + v, N?+ (¢4 + Vag N)Ng + vang’ + viT? + v;J°, (12.1)

In section 10.2 we have shown that the states of the spherical basis,
| Nngtnad M), are eigenfunctions of the operator H" with the eigenvalues
EVN ey (10.17). The orthogonality and the completeness of this basis, which
have been used in section 11.6, make it possible to represent functions
satisfying the same boundary conditions by expanding them in series of basis
functions. Therefore, the eigenfunctions of H, which are numbered by the index
I ( small letter of L ), can be written like this

[INIMY =3 ii” ¢nu(i) | iINIM). (12.2)

The index i represents the triple of the ordering numbers ny 7 and n, of the
basis states. The sum comprises Z states of this kind. The coefficients cyy ()
normalise the state | IN J M )) to 1.

The eigenenergy of the /th state (12.2) is characterized by E")y ; and satisfies
the relation

HIINIJMY =EDN [ INIMY)Y. (12.3)
Here we insert (12.2) and have

Yl NG (YHINIMY=EDy S e D) [ iINJI M. (12.4)
By multiplying with ( kK N J M | and by integrating we obtain

il NGV (CKNIMIH|iINIMY =EDyy ¢y y(k). (12.5)



We name the matrix element above H n y m (k ). It will be treated in section
12.2. The system of Z linear, homogeneous equations

St Hyumki)cOns()=EON s nyk), k=1,...,2 (12.6)

is soluble only if the determinant of the matrix of this system vanishes i. e.
\Hnom=-1-E"y=0. (12.7)

The matrix H n J p contains the elements H s (k i ) and the matrix 1 is the
unit matrix. The secular equation (12.7) yields Z roots EDy (=1, .., 2,
which are the energy eigenvalues of the complete Hamilton operator for N
bosons with the total angular momentum J. By inserting E Ny S in (12.6) one
obtains the affiliated eigenvector (c(' N 1, ..., Iy y (2)), which produces the

state |/ N J M) according to (12.2). It can be shown that the matrix H n J s of
the Hamilton operator is diagonalised by the matrix of the eigenvectors, for
which reason this method is named diagonalisation procedure.

12.2 Matrix elements of the Hamiltonian

Now we shall calculate the matrix elements of (12.5), which are constituted by
states of the spherical basis. Remember that the indices i and k denote triples
of quantum numbers. Consequently, i (or k ) can be written as a function i(ng, 7,
n,). According to (12.5), (12.1) and (10.17) we write

(KNIJM|H|iINIMY=(kNJM|HY +v,R*+ v,;Q?|iNJM) =
[eaN + VaNZ + (65" + Vag N)Ng + vang® + ve 7 (t+ 3) + viJ(J + 1)] 8k +
V(KNJIM|R2|iNIM) +vg(KNJIM|Q*|iNJM). (12.8)

We turn to the last term in (12.8) but one, i. e. to the matrix element of the
operator R? (9.3), which reads

R?=N(N+4)-(5[d" x d"19-s*s")(V5[d~ x d]? - ss).

Making use of (9.2) we can write
R%= (12.9)
N(N +4) + T2 - ng(ng + 3)- V5[d* x d*|Vss - V5 s*s*[d~ x |9 - s*s"ss.

With the aid of the commutation rules for the s-bosons, of the number operator
ns = s's and (10.13) we obtain



(king't'nys'YNJM|R?|i(ngtny) NI M) =

[N(n + 4) + o(z + 3) -ng(ng + 3) - N + ns | Six -

VB[ (KN JIM|[d* x d* 1O i NIM )Y NnsV(ns - 1) Spsrpaso +
(KNJIM|[d™xd ]| iNJM)Yns+ 1DN(Ns + 2) Spopa-2]- (12.10)

We put the relation ns = N -ng and \5 [d* x d "9 =% , (-1¥*d *,d ", in
(12.10), which yields

(king' T'nyYNJM|R?*|i(ngtny ) NI M) =
[(N - ng) (2ng + 5) + ng + (v + 3)] 8k - (12.11)
Y a1 Ckng' T nYNIM A, d™y [ i(ng tna) NI MY NnsN(ns - 1) Snorpasa +
(k(ng' T na"YNJIM | d™yd ™ i(ng Tna) NI M) N(ns + DN(Ns + 2) Sngrne-2].

Matrix elements like ( kK NJ M |d*,d*, | i NJ M) in principle have been
treated in (11.48). Correspondingly the relation

(KNJIM|d*,d*, |iNJM)=
Sism (KNIMA*, | i"NJ" M"Y "N J"M"| d*, [iNJM) (12.12)

holds. For the operator d ", d =, in (12.11) an analogous expression can be
written down. Thus, we have formulated completely the matrix elements of the
operator R%in (12.8).

We now turn to the last matrix element in (12.8), which contains the operator
Q2. According to (9.4) it reads

Q*=%,(-1)Q,Q,
with Q,=d",s+s'd™,-(N7/2) [d* x d"]?,. We form
Q.Q,=d",;sd*,;s+d",ss’d",+s"d",d" s+s"d,s"d",-
(N7/2) (d*ys[d " xd™ |, +s"d™,[d" xd|?, +
[d*xd %, d* s+[d" xd|?,s*d~,)+
(7/4) [d* x d7 19, [d* x d?.,. (12.13)
Making use of
Y (-1 (d ss’d +sTd T, dT s )=ng(ns+ 1)+ (5+ ng)ns = (12.14)

ng+2ngns+5ng we write



(KNJM|Q?|iNJM)=

Y1) (Ck(ng' T nYNJIM| Q, Q.| i(ng tna) NI M) =

(5N + 2Nng - 4ng - 2n4° )8, +

Y a1 (k(ng' T nYNIM | [ d ™ nsV(ns - 1) Snarna 2 + (12.15)

d~,d™,(ns + 1) V(ns + 2) Sparne-2 -
(N7/2)Nns (d ¥, [d ™ x d 712, +[d " x d7 ], d ™) Snorposn -
(712N (ns + 1) (d 7 [d" x d T2+ [d7 x d 19, d )51 +
(7/4) [d* x d1?, [d" x AP, S pan 1] iNa T ) NI M) .

The first two terms in the matrix element on the right hand side of (12.15) have
to be treated by means of (12.12). The next two terms contain matrix elements
of the type

(KNJIM|d*, [d* xd [P, |iNJM)= (12.16)

Yoyl KNIM|d*, [ i"NJ"M"y ("N JI" M| [d* x dT2, | iNIM).
Similarly, the last term on the right hand side of (12.15) is written as
(KNIM|[d* xd 12, [d* xd ]| i NIMy = (12.17)
Yogm{ KNIMI|[Ax d12, [ i"NJ"M"y ("N JI"M"| [d* x dT?, | iNJIM).

Making use of [d * x d“’](z)ﬂ =Ym@m2, u-m|2ud'n d ",.m the remaining
terms in (12.16) and (12.17) can be calculated by means of (11.48). The matrix
elements of the operators d *, and d ~, are reviewed in section 11.4. Matrix
elements of complex d-boson configurations are calculated with the help of the
coefficients of fractional parentage (Talmi, 1993, S. 763, 766 and Bayman,
1966), which have been mentioned shortly in section 6.2. Evidently, the
numerical calculation of matrix elements and the diagonalisation can become
laborious. The computer program package PHINT (appendix A7) coded by O.
Scholten (1991) performs this work and calculates eigenenergies, eigenstates
and reduced transition probabilities.

The method applied in this chapter is named configuration mixing because pure
states of the spherical basis are linearly combined. The resulting states don’t
show any group theoretical symmetries in contrast to the states
| Nngtnad M). For this reason, there is talk of symmetry breaking.

12.3 Electric quadrupole radiation

In order to calculate the reduced transition probability (11.21) we employ initial
and final states of the type (12.2) and form the reduced matrix element of the
transition operator (11.12) like this



(NI |OE, 2) || i NJp))y =
UIENJf || ao(d*s+s*d™)+ Bo[d* < d ) N J;)) = (12.18)
Sk € n (k) N (n) - (kN Jf|] az (d¥s +s'd™) + Bo[d* x d1?)| n N Jj ).

The last matrix elements have been treated in the normal form in section 11.4.
They are transformed to the reduced form with the help of (11.6). By means of
(11.17) and (11.21) the expression (12.18) is connected with the transition
probability per time unit T or with the mean lifetime 7, according to (11.19).

12.4 Comparison with experimental data

Figures 12.1 and 12.2 show comparisons between measured and calculated
level energies of the nuclei "%Cd and "®Ru, for which the complete Hamilton
operator of the IBM1 has been employed. The parameters of the simplified
form (7.31) of the Hamiltonian ¢, ¢y, ¢z, ¢4, v2 and v, are given. The calculated
level schemes of both nuclei don’t differ much from the schemes of figures 10.3
and 10.4 because it is about a numerical adaptation to nuclei which belong
clearly to the vibrational limit. For '%2Ru the calculated and measured reduced
transition probabilities agree quite well ( Kaup, 1983, p. 16).

Han, Chuu and Hsieh (1990) have calculated about 260 level energies of Sm-,
Gd- and Dy-isotopes and about 140 transitions probabilities B(E,2), which they
compared with measured values. By adjusting the boson number N as a free
parameter, an essential improvement could be achieved compared with earlier
publications.
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Figure 12.1. Comparison between the measured and the theoretical spectrum
of "'°Cd. It is calculated with the parameters ¢ = 740 keV, ¢y = 30 keV, ¢, = -
120 keV, ¢4 = 100 keV, vp = 71 keV and v, = -133 keV (Arima and lachello,
1976a, p. 288). The broken lines denote calculated energies. The order of the
levels corresponds to the scheme (10.22) and figure 10.4 respectively.
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Figure 12.2. Comparison between the measured and the theoretical
spectrum of 192Ru. It is calculated with the parameters ¢ = 561 keV, ¢y = -

177 keV, c2 = -174 keV, ¢4 = 81 keV, v2/N2 = 78 keV, v /2 = - 86 keV (Kaup
1983, p. 16).The order of the levels corresponds to the scheme (10.22) and
figure 10.3 respectively.



12.5 An empirical Hamilton operator

The authors Casten and Warner ( 1988, p. 440 ) describe a Hamilton operator
with drastic simplifications compared with (12.1). They set v, = 0 and H" = ¢ ng
i. e.

H=¢eng+ vy @ with
Q,=d",s+s'd, +y[d" xd]?,. (12.19)

The expression Q, in (12.19) differs from (9.4) in the parameter y. Similar
simplifications as in (12.19) are usual in the interacting boson model 2 ( chapter
15 ). Following the ideas of the IBM2, the expression (12.19) is made
dependent on the number of proton-bosons, N, and on the number of neutron-
bosons, N,. The conspicuous fact that nuclear properties depend largely on the
product N,- N, (Casten, 1990, p. 235) is taken into account by writing the
energy ¢ of a single d-boson like this

g = gg-g@WNelNu-No), (12.20)

Properties of about 100 nuclei in three different regions of the nuclear card
could be reproduced by varying weakly the parameters gy, ©, Ny, v, and y



13 Lie algebras

In chapter 9 the importance of the Lie algebras for interpreting and evaluating
the IBM-Hamiltonian has been stressed. In the present chapter the essential
characteristics of these algebras will be outlined starting from well-known
examples. In the first section the rules are described which hold for the
elements of a Lie algebra. Looking into special matrices in sections 2 and 3
three classical, real Lie algebras are identified and their dimensions are put
together in section 4. In the last section above all Casimir operators ( chapter 9
and 14 ) will be treated.

13.1 Definition

A Lie algebra L comprises infinitely many elements a, b, ¢, ... which show

common characteristics. For instance Lie algebras can be represented by
matrices with certain symmetry properties or by operators. In particular the
elements of a Lie algebra must be able to form Lie products or commutators
[a, b]. For quadratic matrices a and b the well-known relation

[a, b]=ab-ba (13.1)

holds, which results again in a matrix of the same type. If the elements of a Lie
algebra are operators instead of matrices the commutator [a, b] is still defined
but the right hand side of (13.1) need not be satisfied.

The definition of a Lie algebra demands the following properties from its
elements g, b, ¢

a) the commutator of two elements is again an element of the algebra
[a,ble Lforalla, b €L, (13.2)

b) a linear combination « a + b of two elements with the numbers « and S is
again an element of the algebra and the relation

[aa+pBb,cl=ala,c]+p[b,c] (13.3)
holds ( therefore the element O ( zero ) belongs also to the algebra),
c) interchanging both elements of a commutator results in
[a, b]=-[b, a], (13.4)
d) finally “lacobi’s identity“ has to be satisfied as follows
[a,[b,cll+[b,][c,a]l+[c,[a, b]]=0. (13.5)

Anyhow, other kinds of coupling the elements are possible in principle. As an



example the Casimir operators (13.32) can be mentioned, which result from
multiplicative couplings of elements.

Furthermore, the definition demands that a Lie algebra has a finite dimension n
i. e. it comprises a set of n elements a4, a,, ... , a, which act as a basis, by
which every element x of the algebra can be represented like this

x=Xi"&aj. (13.6)

In other words the algebra constitutes a n-dimensional vector space. The
structure of the algebra can be formulated in terms of the basis. Because the
commutator of two basis elements a, and a, belongs also to the algebra,
according to (13.6) the relation

[ap, ag] = Y= C(r)pq ar (13.7)

holds. The numbers ¢, ; are named structure constants. One formulates the
commutator of the arbitrary elements x (see 13.6) and y ( = 2 ;§ a; ) in terms of
the structure constants like this

X, =% ="EG i, al= Xijr1"&G i ar. (13.8)

If an algebra corresponds element by element to an other both are
isomomorphic and we mark them with the same symbol. In the following we will
restrict ourselves to real algebras which are characterised by real coefficients &
in the linear combinations (13.6). With regard to the interacting boson model we
will deal with the following types of real algebras: u(N), su(N) and so(N).

13.2 The u(N)- and the su(N)-algebra

We maintain that quadratic and antihermitian matrices of the rank N ( NxN-
matrices ) form a Lie algebra. Antihermiticity means that the adjoint of the
matrix a i. e. the conjugate complex and transposed ( reflected on the
diagonal ) matrix a' is identical with - a that is

a'=-a. (13.9)

Providing real coefficients a and g, for two antihermitian matrices a and b with
the same rank naturally the following relation holds

(aa+pBb)f=aa’+Bb =-aa-Bb=-(aa+pb). (13.10)

Thus linear combinations of antihermitian matrices are again of this type. We
make use of the well-known relation

(ab)' = b a’ (13.11)
in order to look into the commutator of antihermitian matrices as follows
[a, b]"= (ab) - (ba) = b’a’ -a’ b' = ba-ab=-]a, b]. (13.12)

Thus the commutator of two antihermitian matrices is again antihermitian.



Now it is not difficult to show that the conditions (13.3) up to (13.5) are met.
This means that the antihermitian matrices of the rank N constitute a Lie
algebra. It is named u(N) algebra because it is closely related to the Lie group
of the unitary matrices.

A matrix is antihermitian if every element of the matrix equals the negative,
conjugate complex value of the element which is in the transposed position.
Any NxN-matrix of this kind can be composed linearly by the following quadratic
matrices

i 0 00 . 0i 0 00 i0
oo T o%e 1 [e® (000
| | |. 00 | |0 | |li o |
| o o | o |
\ )\ Sy .o\ )

010 . ) (o 010 )
10 | 000 |
|0 | 10 | (13.13)
| | |0 |

| s | )

Simple counting reveals that there are N? matrices in (13.13). As just
mentioned they represent the basis of the Lie algebra u(N). The number of
basis elements is named dimension n. Thus for the Lie algebra u(N) we have

n=N?. (13.14)

Now we will investigate antihermitian matrices of the rank N with vanishing
traces ( sum of the diagonal elements ). We expect that they constitute a Lie
algebra as well. Obviously a linear combination of these matrices again has a
vanishing trace. Furthermore, for quadratic matrices a and b the relation

trace (ab) = trace (ba). (13.15)

holds. Thus the trace of a commutator vanishes always. This means that the
conditions (13.2) up to (13.5) are satisfied and that we have a Lie algebra.

The trace of the basis matrices is always zero if in (13.13) all N diagonal
matrices are replaced by matrices of the following form

p 0 . ) (0 0 . ) (b 00 )
0- 0 0i O |
|0 0 . | (13.16)

|
| |
| o .
\ )\ J. L e



Every diagonal, antihermitian matrix with trace 0 can be built by linearly
combining matrices from (13.16). The elements (13.16) and the non-diagonal
elements of (13.13) constitute the basis of the new Lie algebra. It comprises
one matrix less than the one of the u(N) algebra (13.13). Hence its dimension
amounts to

n=N?%-1. (13.17)

This algebra represents a special kind of the u(N) algebra and is therefore
named su(N).

13.3 The so(N) algebra

The third Lie algebra, which we are investigating here, is constituted by real,
antisymmetric and quadratic matrices of the rank N. The transposed a" of such
a matrix a equals to - a

a'=-a.

Obviously each linear combination of these matrices is still antisymmetric. With
the help of

(@ab)" =b"a" (13.18)

one shows in the same way as in the previous section that real, antisymmetric
NxN matrices constitute a Lie algebra. As it is closely related to the Lie group of
the orthogonal matrices it is named o(N). Each diagonal element of an
antisymmetric matrix is zero, i.e. its trace vanishes. Therefore its Lie algebra is
named so(N) as well in analogy to su(N).

The basis elements of this algebra show the following structure

(010 \(001 \(ooo )

10 | o o0 o0 | o o0 1 |

o0 . | |10 . | lo10 | (13.19)
|

| . | ] o
\ Jo A oL e

and their number is N(N - 1)/2. The dimension n of the Lie algebra so(N) is thus
n=N(N-1)/2. (13.20)

Specially for N = 3 the so(3) basis elements read

(010\ (001\ (ooo\
a;= |-1 00|l a=10001az=100 1] (13.21)
\o 0o o), \-1 0 0), Lo -1 0)

By calculating one obtains the following commutator relation



[ar, a2] = - a3 with cyclic permutations. (13.22)

The structure constants (13.7) of this algebra are therefore 1, 0 or -1. The
minus sign in (13.22) disappears if one changes the sign of every basis matrix.
The substitution

er=(as+ia)\2, e.s=(as-ia)N2, egp=-ias yields (13.23)
[6-1 , 61] = €y, [6-1, eo] =e.q, [eo , 61] =e1. (1324)

Obviously the elements es, e.; and e, constitute a Lie algebra with the
dimension 3. It has the character of so(3) as can be shown. The commutation
relations (13.24) agree completely with the rules (8.7) of the angular momentum
operators J, . Thus they constitute the Lie algebra so(3).

13.4 Dimensions of three classical algebras

In table 13.1 the lowest dimensions n of the three Lie algebras mentioned
above are put together. Group theory shows that there is only a small number
of simple and real Lie algebras. Therefore, a simple algebra can be identified
directly by means of the dimension. For the IBM1 the n-values of table 13.1 are
sufficient. They facilitate to project a given Lie algebra on one of the algebras
u(N), su(N) or so(N). The corresponding matrix algebra is a representation of
the given Lie algebra. It is possible to transform the basis of one algebra (see
13.23 and 13.24) in order to obtain a corresponding algebra.



Table 13.1. The lowest dimensions n of the Lie algebras u(N), su(N) and so(N)
according to (13.14), (13.17) and (13.20).

Algebra : u(N) su(N) so(N) dimension n
Rank : N N N
2 3 3
2 4
4 6
3 8
3 9
5 10
4 6 15
4 16
7 21
5 24
5 25
8 28
6 35
6 9 36

13.5 Operators constituting Lie algebras, their basis functions and their
Casimir operators

In the IBM Lie algebras constituted by operators prevail. A very important
property of the operators is the existence of sets of basis functions q/(’ )« which
are affiliated to the operators. For example such basis functions are frequently
represented by eigenstates of a physical system. They constitute a basis
vector, the dimension of which can be chosen. Its elements can be combined
linearly and generate a multidimensional vector space. They are characterised
by ordering numbers.

In order to clarify the situation we consider the angular momentum operators Jy,
J.1 and Jy (8.6). They obey the commutation rules (8.7)

[J.1, Jo] =J.1, [J.1, J1] =Jo, [Jo, J1] =J1 . (1325)

In section 13.3 we have seen that they constitute the Lie algebra so(3). On the
other hand, from quantum mechanics we know that the operators J;, J.; and Jo
generate functions or quantum states ¢;n,, which are characterised by the
quantity j ( an integer for bosons ). For a given j there are 2j + 1 functions,
which are labelled by m ( projection of the spin or of the angular momentum ). If
an operator J; acts on ¢;m, the result is not an entirely new function but as we
know from quantum mechanics the relations



J19im=-2"2[(+ 1) -mm+ 1D]"? @) m +1,
Jagim= 22+ 1) -mm- 1" p;m -1,
Jogojm =Mmo;m (13.26)

hold. Thus when acting on a function ¢;, the operators J4, J.1 or Jo generate
again a function of this kind with the same j. In general an operator of a Lie
algebra creates a linear combination of basis functions when it acts on such a
function.

We turn to the operator
JP= Ul +dP v dl = didg-dadi+ Jo (13.27)

defined in (8.8). With the aid of (13.25) one shows that the following relation
holds

[J2,J]=0fori=-1,0,1. (13.28)

We see that the operator J 2 which does not to belong to the Lie algebra
( J1, J-1, Jo), commutes with the basis elements and therefore with all elements
of the algebra. Operators which behave like J % are named Casimir
operatores. In phyS|cs they are important because they generate eigenvalues.
In the case of J? we have according to (8.5)

S2oim=j(+1) @jm. (13.29)

Thus, when the Casimir operator J % acts on the basis function ®jm , this is
reproduced and supplied with a factor, which depends only on .

Now we can put together the properties of the Lie algebras, which we need for
the IBM. We refer to the situation of the angular momentum and abstain from
group theoretical proofs.

13.6 Properties of operators

We start with basis operators @ @ with i = 1, .. ,n which are linearly
independent, constitute a Lie algebra accordlng to (13 2) up to (13.5) and are
connected by the structure constants c p q (13.7). There exist sets of basis
functions v i) « (j stands for the set ) on which the operators @ " act like this

@My =3, " T ), (13.30)

analogously to (13.26). The Casimir operators Z, which commute with all
operators @ ) according to (13.28) as follows

£, 0"%=0, (13.31)

are formed in terms of the elements @ ). We need the linear type =y of that
operator and the quadratic =,. The last has the following form
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=YX 0" (13.32)

The coefﬂments Xijof the quadratic Casimir operator depend from the structure
constants ¢ ,, q (13.7). For example the coefficients of the Casimir operator J?
read according to (13.27) : X7, .1 = X1 1=-1, Xpo= 1 and all other vanish.

The sets of functions l,t/ %o WhICh have so-called irreducible matrices I" ¢
(13.30), generate eigenvalues CY), under the influence of the Casimir operator
=> like this

=y yy (13.33)

According to (13.29) the eigenvalue of the quadratic Casimir operator J? of the
Lie algebra so(3) has the form j(j + 1).

Using creation and annihilation operators for bosons, Frank and Van Isacker
(1994, p. 310) show that the eigenvalues of the Casimir operators of the so(N)-
algebras have the following form

CP)y oy =p (p+ N-2). (13.34)

The quantity N is the rank of the so-algebra and p is an integer which is limited
by a function of the boson number. For instance for N = 3 (13.34) agrees with
(13.29), provided that p is replaced by the angular momentum J of the state.
We know that in the u(5)-limit of the IBM the quantity J has the values 2ny, 2n, -
2, 2nq - 3, ... , 1, 0. In the next chapter we will meet further applications of
formula (13.34).

For the Lie algebra su(3) Cornwell (1990, p. 596) derives the following
eigenvalue of the quadratic Casimir operator ( apart from a factor 1/9)

C™ ™, s =n?+m?+nm+3n+3m. (13.35)

The integers n and m characterise the irreducible matrices (I"*" "™, ) (13.30)
of the algebra and the affiliated functions y"™’; .The expression (13.35) will
arise in the next chapter in connection with the second special case of the
IBM1.

The basis operators of the IBM ( chapter 14 ) not only constitute a Lie algebra
in all but they contain subsets which are subalgebras. This means for instance
that commutators of operators of a subalgebra are linear combinations of
elements of this subset (13.2). The Casimir operator of the higher algebra
commutes with the Casimir operator of the subalgebra, which follows from
20" = @) 5 (13.31) and from (13.32). The Casimir operators of the
subalgebras, which we will meet in the next chapter, are summands in the
Casimir operators of the higher algebra.

Furthermore, it is true that the basis function 1,//(’ A (13.30) of the higher algebra
is also the basis function of the subalgebra. Therefore this function is labelled
both with the index of the Casimir eigenvalue C, of the higher algebra and with
the corresponding index of the subalgebra. For example in the basis function
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®;im (13.29) the quantity m is the characteristic parameter of the subalgebra
so(2) ( consisting only of the operator J, = Jp ) and j is the index of the higher
algebra so(3), which comprises J.1, Jyand Jp .
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14 Group theoretical aspects of the IBM1

In this chapter first we will show that the IBM-Hamiltonian is composed of
elements which constitute a Lie algebra. In the second section the affiliated
subalgebras are looked into. Three chains of subalgebras can be formulated.
The third section is rather illustrative and shows how the basis operators of the
IBM act on the accompanying basis functions. In sections 4, 5 and 6 special
cases of the IBM are treated. The eigenvalues of the Casimir operators which
belong to these cases, determine the energy eigenvalues. Comparisons with
measured level schemes will be performed.

14.1 Basis operators of the Lie algebras in the IBM1

In this section we show first that the Hamilton operator of the IBM1 is
composed exclusively of the following operators

[d*xd Yy, [d* = s, [s*xdT?yand [s* x s]%% (14.1)
Owing to (9.37) we can write the Hamiltonian like this
H=¢e,N+ e/ ng+v,N*+ v,gNng+ vangs + v,R* + viT* + v;J? + v,Q°. (14.2)

The cited operators - apart from R?and T2 - have the following structure (9.1),
(9.4)

ng=5[d" x d 1%,
N =s"s+ng=[s" x s]% + V5[d" x d 1,
JZ2=310[[d" xd 1" x[d* x d MY =
103, (1) [d" x d]", [d" xd ", (14.3)
Q%= %, (-1) Q, Q.
with @, =[d* x s]%, +[s " x d"1?, - N7/2) [d* x d"1?),.

Thus these operators are built by elements of the type (14.1). This is also true
for both remaining operators in (14.2), which we will show by remodelling. We
write the seniority operator T2 = ng (ng + 3) - 5[d * x d 1% [d~ x d "% (9.2)
with the aid of (9.12) this way

T2 =nd +4ng-3,NQ20 + 1) [[d" xd 1Y) x [d* x d YO,

We replace n4’ making use of (9.20)
n=5[[d" xd ]9 x[d* x d ] = (14.4)
> NN+ DA xd TV % [dF x dIY N9 -4 pg
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and obtain
T?=-23 joq s NI+ 1) [[d" xd ) x [d* x d VN9 (14.5)
The remaining operator R?(9.3) reads
R?=N(N+4)-(N5[d* x d* 9 - s's")(V5[d~ x d"]? - ss) =
NN +4)-5[d" xd" 9 [d™ x d ]+ V5[d* x d*]? ss +
V5s's'[d" xd"]¥-s"s" ss. (14.6)
With the help of (9.2) we obtain
R?=N(N + 4) -T? - ng(ng + 3) + \5[d* x d ] ss +
V5 s's'[d” x d7]V - s's" ss,
insert T2 from (14.5) and transform like this
R*=N(N+4)-ngng+3)-23 p=1 32+ 1)[[d*" x d V) x [d" x d7 VO +
V5[[d "x s]? x [d* x s]?@ + V5[[s" x d"]?) x [s" x d PO -
[[s*x s]9 x [s*x S| + [s* x 5] (14.7)
Thus, the entire Hamilton operator is built by operators of the type (14.1).

Now we show that the operators (14.1) constitute a Lie algebra. For the
moment we are restricting ourselves to operators such as [d * x d‘](J .
According to (A8.4) the commutation relation

[[d* xd 1Y)y, [d* xd Y] =
Y eldt x d 1 N@I + ONERI“+ 1) (14.8)
(M I M k) {2 T 9 - 1)

holds. That is, the commutator of two operators [d * x d “]Y )y is a linear
combination of such operators. Therefore the defining conditions (13.2) and
(13.7) for Lie algebras are satisfied. Interchanging both operators in the
commutator (14.8) results in altering the sign of the Clebsch-Gordan coefficient
( consult (A1.4) and the relation J'+ J" + k = odd ). Consequently the condition
(13.4) is met and one can show also that the relations (13.3) and (13.5) are
satisfied. Therefore the operators of the type [d © x d “’](J )y constitute a Lie
algebra.

The operators in (14.1) which contain s-operators satisfy the following
commutation relations
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[[s"xs]%,[s"xd1?,1=[s"xd]?),,

[[d* x s]®, , [s" x s]%] = [d" x s]®),,

[[s"x d®, [s"x dT?)] = [[d" x s]®), [d" x s]?),] = 0,

[[d” = s]?), , [s"xd]?),) = (14.9)
S22 ul JM)[d* x dTV -8 -1 [s" x s]%,

[s"xd 1%, [d" xd TV = (2, -1, 2, u+ M I M) (1Y [s" x dT® 0 m,

[[d" x 8], [d" xd V] =- (2, u+ M, 2. | I M) (1)[d " x 8]%)

which is shown similarly as in (A8.4). From (14.8) and (14.9) follows that all
operators listed in (14.1) constitute a Lie algebra.

14.2 Subalgebras within the IBM1

We now will investigate how this algebra can be subdivided in subalgebras. We
start with the elements [d © x d “’](1)” . According to (8.9) these operators
represent the ladder operators J, of the angular momentum apart from the
factor V10. Owing to (13.24) they constitute the Lie algebra so(3).

We turn to elements of the type
[d* x d "), with y=1, 3. (14.10)

According to (14.8) the commutator of two elements of this kind creates a linear
combination of operators [d* x d "]/, (with J = 1, 3 ). Obviously they also meet
the other definition conditions ( section 13.1 ) and constitute a Lie algebra of the
dimension ( = number of basis elements ) n =3 + 7 = 10. Table 13.1 contains
only one Lie algebra with n = 10 namely the algebra so(5).

The totality of the elements [d * x d "], with 0 < J < 4 also makes up a Lie
algebra. By means of its dimensionn=1+3 +5 + 6 + 9 = 25 we learn from
table 13.1 that it is the algebra u(5).

If one adds the elements [d* x s]?y, [s * x d®yand [s * x s]% , the resulting
36 elements constitute a Lie algebra, which has been mentioned in the last
section. Table 13.1 reveals that it is the algebra u(6).

Consequently the basis elements (14.1) constitute the following chain of Lie
algebras

. u(6)> u(5) > so(5) > so(3). (14.11)

It defines the vibrational or u(5) limit ( chapter 10 ), which will be reviewed in
section 14.4 once more.

Now we are claiming that the elements
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[d*xd 1" and Q,=[d" x s]?, +[s* x d1?,-(N7/2) [d* xd]?, (14.12)
make up a Lie algebra. First we investigate the commutator
[Qu. [d"xd V=" xd1?,, [d" xd "]+ (14.13)
[ld* xs]?,, [d*xd - (72) [[d" xd]?,, [d" xd "]
With the aid of (14.8), (14.9), (A1.4) up to (A1.6) and (A3.14) one obtains finally
[Qu, [d7x d M= (1) (2, -, 2, u+ k| 1K) Quae. (14.14)

The Clebsch-Gordan coefficient prevents that |u + k | exceeds 2. Furthermore,
we need the commutator [Q, , Q,], for which we write the non vanishing terms

[Qu, Qd=1[1d" x s]?,, [s"x d 1P ]-[[d" x s]?;, [s " x d1?,] -
(712)[[s* x d 1, [d" x d 1?1 + (7/2) [[s " x d 19, [d" x d TP ] -
(N712) [[d* x 819, [d* x d 120 + (V712) [1d " x s]?, [d " x d1®,] +
(7/4) [[d" x d71%,, [d" x d T, (14.15)

The four terms with the factor \7/2 in (14.15) cancel out in pairs because of
(14.9), (A1.4) and (A1.6). By means of the explicit values of the 6-j symbols
(A3.14)

%) =-110, {3 2% °%)=4/35
and of (14.8) and (14.9) one obtains the following result
Q.. QJ=(15/4) 2 u2 k|1, k+ ) [d* xd Vs, (14.16)

The Clebsch-Gordan coefficient prevents that |u + k| exceeds 1. In this way the
choice of the factor V7/2 is explained. It causes the term [d* x d~](3 Iy in (14.16)
to vanish. Clearly the factor \7/2 might have also a positive sign in (14.12)
because in (14.15) it appears only in squared form.

Thus the operators (14.12) constitute a Lie algebra with the dimensionn =3 + 5
= 8, which is in fact the su(3) algebra according to table 13.1. It includes the
elements [d " x d~](1 ), which make up the algebra so(3), as we know.

If we add the operators [d* x d1), (k=0,3,4),[s*xd7?,, [d*x s]?, and
[s ¥ x s](o)o to the 8 elements of (14.12) all possible commutators create linear
combinations of these 36 elements. In case single elements [d * x d "]/, are
generated, they have to be replaced by ([s * x d "], + [d " x s]?, - Q,) 2N7.
The totality constitutes the algebra u(6), which is subdivided in subalgebras like
this

. u(8)> su(3) > so(3). (14.17)
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This chain represents the su(3) limit, which is named rotational limit as well. In
section 14.5 it will be looked into.

We come to the third special case of the IBM by the following set of elements
[d*xd]Y), (J=1,3)and S; =[d* x s]?, +[s* x d"?, . (14.18)

The first group of operators in (14.18) makes up the algebra so(5) as we know
from (14.11). According to (14.9) the relation

[S2,S]=2%y=153(2A2ulJ, A+p)[d xd V., (14.19)
holds and for odd J we have

[Ss,[d "x d "] = (14.20)

4+ 1)5)"22Ad |2, A+ ) ([d* x 8P, + [s* x d1?4,).

Therefore, the elements of (14.18) constitute a Lie algebra of the dimension n =
3+7 +5 + =15, In table 13.1 the algebras su(4) and so(6) have this
dimension. They are isomorphic as can be shown.

Adding the elements [d “x d" ¥, (J=0,3,4), [s* x d"?,and [s * x 5] to
the set (14.18) one obtains 36 elements constituting the u(6) algebra, which is
shown analogously to the derivation of (14.17). Thus we obtain the following
chain of algebras

[I. u(6) o so(6) o so(5) o so(3). (14.21)

This is the third special case of the IBM, which is named so(6) or y -instable
limit.

In table 14.1 the chains of algebras of the IBM1 and the affiliated basis
elements are put together.
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Table 14.1. Chains of algebras for the three special cases of the IBM1

Basis elements dimension algebra
n
[s*xd7?,, [d*xs]?,, [s*xs]% b 36 u(é)
) N
[d+Xd~](O)O, [d+><d~](2)‘u,[d+><d~](4),u ‘}\ 25 u5 L
v, vibrational
[d* xd®), | +10  so(5)] limit
|1 v
[d*xd", [1+3  so@3))
)))
[s*x d7%,, [d* xs]?,, [s" x 5%,
[d*xd 1%, [d*xd1¥,, [d" xdT?¥, 36 u(6) )
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14.3 The spherical basis as function basis of Lie algebras

In chapter 6 we have treated the seniority scheme and represented its boson
states like this (6.18)

| nsngtnad M) =
(27 + 3)M(nsl(ng+ 7+ 3)MN(ng - D)) (s (PH " V2| rtnyd MY  (14.22)
with P* =5 [d* x d*1% (6.12).

These so-called spherical basis states are assigned to the u(5)- or vibrational
limit ( chapter 10 ) and we know that they are eigenfunctions of the operators
J2and T? which are components of the corresponding Hamiltonian. As an
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exercise we check if these states behave like basis functions of the u(5) limit
and if they satisfy the relation (13.30). We restrict ourselves to the so(5)
subalgebra. It comprises the elements

[d*xd " and [d* x d]®),. (14.23)

According to (13.30) we expect the following behaviour: when an operator of
the type (14.23) acts on a basis function (14.22) a linear combination of such
functions arises.

The equations (13.26) show that the first operator in (14.23) satisfies this
condition because it agrees with the angular momentum operator J, (8.9) apart
from a factor.

Now we let the operator [d ¥ x d~](3),c act on the state (14.22) and move it to the
right in front of the operator P *. Then we maintain that these operators
commute. In order to show it, according to (A9.3) and (A1.16) we can write for
odd k

[[d*x d1%),, [d* x d"%%] = (14.24)
2% ,(2pu2,-ul00)(2, k+u 2, -u| ki) (-1)"d wud"y=
2N5) Y (2, k+ 11, 2, -u | k) d ¥ pd ™= (2N5) [d " x d %),

Because k is odd the last expression vanishes owing to (6.6). Therefore
[d* x d"]®.(k=1,3)can be interchanged with P *. Generally the relation

[d* x d % (PHa D2 = (pH -2 g*  g™®) k=1,3,.., (14.25)

holds. This means that the so(5) operator (14.23) can be moved in front of the
state | ng © 7 N J M) with maximal seniority in (14.22). For the time being we
are restricting ourselves to states with ny = 7 = 2. They read according to (6.5)

|ng=t=2,JM)=2)"[d" x d"1V)y|) with J = 2, 4. (14.26)

Acting on the state (14.26) the so(5) operator [d * x d ~](3 ) generates the
expression

[d*xd 1% @)"d* x d* Y] = (14.27)
V23 ,Qu2,M-pu|IM) 2, k+p,2,-u|3k) (1) d"end my,

which is shown by means of (9.3) and the relation d, |) = 0. With the aid of
(A1.14) the pair of d *-operators is transformed to expressions such as
[d* x d*]Y")), . Because we are interested in the question if J' = 0 arises, we
investigate situations with M’ = 0. That is we put M = - x in (14.27) and obtain
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[d"x d 1% 2)"d* x d" V) =
2%, Qu2, k-uld -« (2 K+ 2, 1|3« (1Y d epd ey =
2, Ru2, -k-uld, k) (2, k+pu 2, -u|3x) (1"
Y@ kw2, c-p | J0)[dY < dTY . (14.28)

With the help of (A1.16), (A1.4) and (A1.5) we write the coefficient for J'=0 as
follows

N(2/5) (1) T (22, - pu|J, k) (2 u2, - |3, -x)=0. (14.29)

Owing to the orthogonality relation (A1.10) this expression vanishes because J
has only the values 2 or 4 (14.26).

Thus we have shown that the operator [d " x d~](3)K acting on the state (14.26)
which has maximal seniority creates a linear combination of states of the same
kind. In other words, when the operator [d © x d 7]®), acts on a state with
seniority 2, the resulting states have the same seniority. That is, the rule (13.30)
for Lie algebras is satisfied.

It's obvious that this statement holds also for states with =1, i. e. d*|). For v =
3 it can be checked with the aid of (6.9). The proof of the general relation

[d*xd % NngTnsJ M) =
> s s T N s cnsgmmse ] N g Tn'a ' M) (14.30)

is laborious.

14.4 Casimir operators of the u(5)- or vibrational limit

In chapter 9 the Hamilton operator was transformed in a combination of
operators which we named Casimir operators. In sections 14.4 up to 14.6 we
will show now that this naming is correct. We begin with the special form (10.1)
of the Hamiltonian characterising the u(5) limit

HY = g, N+ v, N? + (¢4 + Vag N)g + vang’ + viT? + v; J2. (14.31)

We will investigate the properties of the operators in (14.31), confront it with the
rules (13.31) up to (13.33) and make visible how they are related to the
subalgebras of the u(5) limit.

According to (13.28) the operator JZ = -10V3-[[d "x d"]" x [d* x d "]"© (8.14)
commutes with the components J , = V10 [d* x d7]",, u=1,0, -1 (8.9), which
constitute the Lie algebra so(3) (13.24). Clearly J 2 must be its quadratic
Casimir operator. It satisfies not only (13.31) and (13.32) but it generates also
the eigenvalue J(J + 1) and therefore it meets the conditions (13.34).
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We expect that
T?=-2%,-13VQ2J+ 1)[ld" xdT) x[d" x d VN0 =
2% =13 Zu (D[d" x d TV uld " x d )y

is the quadratic Casimir operator of the higher algebra so(5). Firstly it is
composed of products of operators [d * x d %), k = 1, 3 of this algebra and
obeys therefore the relation (13.32). According to (10.13) T ? meets the
condition (13.33) and creates the eigenvalue 7 (7 + 3), which has the form
(13.34), because the rank N amounts to 5. According to (10.13) and (14.30) we
have

[d*xd® T2 Nngtnyd M) =1 (c+3)[d" xd | [NngtnyJ M) =
t(t+3) mum T N cnsumnasmr| Nng tn's ' My =

T2% nasm T ONnscnsummgme| NngTn's JJ My =

T’d" x d %) | Nngtnsd M). (14.32)

Thus the condition (13.31) is met, which is valid also for the basis operator
[d*xd"),.

The next higher algebra u(5) in this special case of the IBM1 comprises all
elements [d " x d“’](k ) k=0 up to 4. According to (14.4) the relation

N +4ng=3 -0 (-1N2k + N[[d" x d" 1% [d* x d]*NO =
kot T (1) [d " x d 1 [d x d R, (14.33)

holds. This operator must be the quadratic Casimir operator of the algebra u(5)
because it satisfies (13.31) up to (13.33). We guess that the number operator
ng=%,(-1)" d",t d~_, is the linear Casimir operator of the u(5) algebra.

The highest algebra in the u(5) chain, u(6), comprises all 36 elements of the
type [b*x b1 (1, I'=0,2; by =s, by, =d,). We maintain that its quadratic
Casimir operator reads as follows in agreement with (13.32)

Cue) =21 rrm=022kx(-1) b 1x b b rx b%) o ie. (14.34)
Cue) = Zheo' T ic(-1) [0 x d T [0 x d %) o+
E (N5 (d % s1P[s T x d1®) o+ [sTx d TP [d T 5] ) +
[s*, s]9[s*, s]9. (14.35)
With the aid of (14.33), (6.35), (6.36), (5.36) and little conversions one obtains
Cue) = ng +4 ng+ ng(1+ ng) + ng(ng + 5) + ng? =

(ng + ng) (ng + ng +5)=N(N + 5). (14.36)
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Because N is the number operator for bosons, the operator C; 4g has the
eigenvalue N(N + 5) and it meets the conditions (13.31) up to (13.33).
According to (14.36) one can write NZ= Cue) - SN. The operator N is the linear
Casimir operator of u(6).

In table 14.2 the Casimir operators of HY (14.31) are put together.

Table 14.2
Operators included in the Hamilton operator Symbols for Eigenvalues
of the vibrational limit these Casimir
operators

JE = 0V3[[dx d TV x[d* x d M@ C2,50 (3) J(J
+1)
T> =

2% =13+ DA x d T x [d T x d T Coeo s t(r+3)
ny (nd + 4) =

S=o' (1)VRk+ A" x d T [d"xd TN Cau na(ng + 4)
Ny = \/5[d+ X d~](0) C1,u (5) Ng
N (N +5) =

S0 (1) Nk + 1) [[d*x dx [d " x d 1O +

V5 [[d*x s]%) x [s * x d @ +

V5 [[s *x d1%x [d* x s]?1O +[[s*, s]9% [s*, sV Cou ) N(N + 5)
N = [s*, s]? + V5[d"x d"]¥ Ciu ) N

The operator H" (14.31) can be written like this as well
HO =
a1 Cru@er 02 Cou@e)t B Crue Crui) + 71 Crue)t 72 Co,ui)t 0 Cos0 5t € C2,50 (3)
with a7 =¢,-5v,, a2 =y, B = Vn y1 = &q-4vy, (14.37)
Y2 = Vaq, 0 =Ww, £ =V.
With the help of table 14.2 the eigenenergy can be represented this way
EV) = (14.38)
a1 N+ aoN(N +5)+ BN ng+ ying + yong(ng+ 4) + 6 t (v + 3) + e J(J + 1).

In section 10.3 eigenvalues of the Hamilton operator H" have been calculated
with ( 10.17 ) and compared with measured level energies.
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Whenever it is possible to represent energy eigenvalues in terms of
eigenvalues of Casimir operators there is talk of dynamical symmetry.

14.5 Casimir operators of the su(3)- or rotational limit
According to (14.12) the operators

J.=[d"xd1"). and
Q,=[d* xs]?, +[s*xd?,- N7/2) [d* x d]?, (14.39)

are basis elements of the su(3) algebra in the rotational limit ((14.17) and table
14.1). In order to find its Casimir operator we look into the commutator of Q%=
>, (1)'@:Q.,(9.4) and Q. and maintain

[Q% Q1 =3V(3/32) T o (1 1’2 u" |2 1) (S Qur Que ). (14.40)
Owing to (14.16) and (14.14) the relations

[Qc, Q] =3V(5/32) 2 k2 |1, K+ p1) S s

Qe J]=-V6(2Kk1 1|2, k+ 1) Quiy (14.41)

are valid. We insert them in succession in [Q %, Q,] and obtain the equation
(14.40) making use of (A1.4) and (A1.6). Analogously one obtains

V2 Ql=-V6 T (11’2 1" 2 1) (Jyr Quet Qur ). (14.42)
One multiplies this relation by 3/8, adds it to (14.40) and obtains

[Q2+ (3/8)J%, Q,]=0. (14.43)
The operator (1/2)Ca, su@) = Q2 + (3/8)J? (14.44)

commutes not only with Q, but also with J, , because on the one hand J >
commutes anyway with J, (13.28) and on the other hand one can show that Q*?
commutes with J,, .That is, with the aid of (14.41), (A1.4) and (A1.6) one
obtains

Q2 J]=-V6 3, (-T2, -4, 1 1|2, -2+ 1) Qs Qupny -
VBT (-1 2A1 0|2, A+ 1) Quuy Qi = (14.45)
-NBVBIB) (X aar(2, -4 2 -A" |1, - 1) Qu Qun +
Y (2, -A" 2 -2 1, - 1) Qur Qpv) = 0.

Thus the operator (14.44) commutes with all elements (14.39) of the su(3)
algebra and represents its Casimir operator. Its structure meets the condition
(13.32). The factor 2 in (14.44) gives the Casimir operator the usual form.
According to (13.35) the operator C, sy3) has the following eigenvalues
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22+ Hz + Au+ 3(A+ u), A, uintegers

when it acts on the corresponding eigenstates (provided that they are in a so-
called irreducible representation) which are themselves characterised by the
parameters 4 and u. Naturally these states are also eigenfunctions of J 2 with
the eigenvalue J(J + 1). A detailed treatment of these eigenstates reveals that

there exist restrictions for A and u. They are positive integers and obey the
following rules

u=0,24, ..
A=2N-6/-2uwith/=0,1, ... and N =number of bosons. (14.46)

Therefore, the doublets (A, u) contain the following values: for N = 1 they
amount to (2, 0); for N = 2 we have (4, 0), (0, 2); for N = 3 consequently (6, 0),
(2, 2), (0, 0) and so forth. Further doublets can be taken from figure 14.1.

(N.I) A

(9,0) — 18

(6,0), (9,1) —12
(5,0), (8,1) - 10 -,
4.0), (T4) ~ 8
(3.0). (6.1),(9.2) — 6
(2,0), (5.1), (8,2) - 4

(1,0), (4,1), (7,2) - 2

Figure 14.1. Graph of the doublets (A,u) according to the equations
(14.46). They represent descending straight lines. At their highest point
the corresponding doublets (N,/) are given.
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A given doublet (4, p) admits only selected values for J. They depend on a
ordering number K, for which the following values are permitted

K=0,2,4, .., min(4, w). (14.47)
For K= 0 the values J=0, 2, 4, ... , max(4, u) are allowed
and for K>0 J=K K+1, K+2, ..., K+max(4, u). (14.48)

We look at the simplest values. For u =1/=0 we have (1, u) = (2N, 0) and the
series of the ground state shows the values J=0, 2,4, .., 2N. The case u=2, /
= 0 is the next higher irreducible representation with (4, n) = (2N - 4, 2) where
the values K=0 with J=0,2,4,.. 2N-2and K=2withJ=2,3,4,..,2N-2
arise. It happens that J-values which belong to the same doublet (4, u) appear
many times. We will show that such states have the same energy i. e. they are
degenerated. The parameter K is needed for describing the eigenstates.

The su(3)- or rotational limit is realised by deleting the following coefficients in
the Hamiltonian (9.39)

Ed' = Vna=Vg=V,=v=0. (14.49)

The remaining Hamiltonian consists of the Casimir operators of the second
chain of algebras ( (14.17) and table 14.1 ) as follows

H" = g,N+v,N?+ v;J? + v,Q% (14.50)
We write the last two terms like this

viJZ+v,Q%= (14.51)

VidZ - (318)vg % + vyQ2 + (3/8)vy J % = (v - (318)ve) 2 + (1/2)V4Csu3) -

The eigenstates of the Casimir operator of the su(3) chain are eigenstates of
the Hamilton operator H" as well. The operators N and N(N + 5) = C, have
already been discussed (14.36). Thus the eigenvalues of H" read

EW = (14.52)
&N + VaNZ + (v - (3I8)V)J(J + 1) + (1/2) vg (A% + 17 + A+ 3(A + p)).

They don’t depend directly on the ordering number K (14.47). Figure 14.2
shows a typical energy spectrum of a nucleus of the su(3) limit, which is
calculated with the help of (14.52). Because of v4 < 0 the level energies of every
series with given (4, u) ascend according to the term (v; -(3/8)vg)J(J + 1). This
behaviour is typical for the rotator and that's why the su(3) limit is named
rotational limit as well.
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(Au) : (14,0) (10,2) (6,4) (2,6) (8,0) (4,2) (0,4)
K: 0 0 2 0 2 4 0 2 0 0 2 0
J: 14 12 10 8 8 6 4
12 11 9 7 6 5 2
10 10 10 8 8 6 6 4 4 4 0
8 9 7 7 5 2 3
6 8 8 6 6 6 4 4 0 2 2
E 4 7 5 5 3 0
2 6 6 2 2 -
(MeV) 0 5 — 0 _
4 4 —
3 _ L —
2 — 2 2 -
0 R
1 -
—_ Figure 14.2. Typical spectrum of the su(3)
limit. It is calculated by means of equation
(14.52) and of the values N =7, v4 = - 20
S keV and v; = 0. The ground state is
— assigned to the energy 0 MeV. The
parameters (A,u) come from (14.46) or from
- figure 14.1. (14.47) and (14.48) give the
values for K and J. All levels have positive
L parity. The J-values can been seen in the
columns on top of the figure. In every
— column ( series ) the same energy

0 — — differences appear for the same J-steps.

Extensive investigations (Arima and lachello, 1978, 1987) reveal that the nuclei
which behave like the su(3) model have proton- and neutron numbers deviating
clearly from the magic numbers 82 and 126 ( figure 14.3 ).
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7 50 82 126

100 — =

60 — —

40 - |
rl: .
- NN

40 60 80 100 120 140 N

Figure 14.3. Card of even-even nuclei. Z = number of protons, N =
number of neutrons. The grey circles denote nuclei of the su(3) limit and
the black ones are representations of the so(6) limit (lachello and Arima,
1987, p.42).

Figure 14.4 shows that the rare earth 70gy corresponds well to the energy
scheme of the su(3) limit.



118

(A1) : (34,0) (30.,2)
K: 0 0 2
E 10°
(MeV)
4+ 4+ ...............
B 3"’ ...............
1 s .
+ 2 2
8 Y | R
T 8t e
— 4"
170
. 68Er102
2
0o &

Figure 14.4. Comparison between the measured and the calculated su(3)-
spectrum of OEr (Arima and lachello, 1978, p. 215). The parameters N = 17,
v = 9.19 keV and v, = - 8.8 keV have been used with formula (14.52).
Broken lines represent the calculated energies.

14.6 Casimir operators of the so(6)- or y-instable limit

The chain of Lie algebras (14.21) defining the so(6) limit comprises the
subalgebras so(5) o so(3). Their Casimir operators have been dealt with in
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the elements (14.18), has the following Casimir operator (Talmi, 1993, p.778)
Csoe) =2 X ket 3 X (1) [d " x d 1 [d" x d %)+ 2 (-1)* S S.a with
S, =[d* x s]?, +[s* x d?,. (14.53)

Its form meets the condition (13.32). We have to check if C so), Which is
identical with R? (14.7), commutes with the operators (14.18). Because the first
part of C s is identical with T? according to (14.5), this part commutes with
the affiliated elements [d ™ x d“](k ) (k=1,3) (see 14.32). But these operators
commute also with the second part of C e, i. €. With 2, (-1)A S, S.;, which can
be shown with the aid of (14.20) and roughly with the procedure employed for
(14.45). With the same methods one proves that S; commutes with C 5o and
in doing so, one finds that the following expressions cancel out

[T2 SJd+X,(-1)[S2 5.4 Sd=0, i. €. [Csoe, Sd = 0. (14.54)

Consequently the operator C so6) meets the condition (13.31). It is written in the
standard form and therefore its eigenvalue reads according to (13.34) ( rank N
=06 )

p(p+4). (14.55)

A detailed investigation of the eigenstates of the so(6) algebra reveals that the
admissible values for p are

p=N,N-2,N-4,...,10r0 ( N : number of bosons ). (14.56)

Moreover, for the parameter t of the Casimir operator T2 the following values
are admitted

7=0,1, ..., p. (14.57)
According to (10.5) J can amount to
J=ALA+1,...,21-3,21-2,2A (14.58)

with A =17 -3n,and ny =0, 1, ... ( see chapter 3 ). Table 14.2 gives permissible
values for J.



120

Table 14.2. Values for J of the so(6) limit depending on n, and .

T N J
0 0 0
1 0 2
2 0 2,4
3 1 0
0 3,4,6
4 1 2
0 4,5,6,8
5 1 2,4
0 5,6,7,8,10
6 2 0
1 3,4,6
0 6,7,8,9,10,12

One treats the Casimir operator of the highest algebra, u(6), in the same way
as in the previously discussed special cases of the IBM1.

Now we turn to the Hamilton operator. For the present special case, the so(6)
limit, one deletes the following coefficients of the equation (9.39)

&' = Vna = Vg = Vg =0. (14.59)

Choosing v = 0 results in vo = 0 ( 9.38 ), which means ( see 7.17 ) that the
Hamilton operator is not able any longer to interchange dd- with sd-states i. e.
that there is no interaction between these states. The remaining Hamilton
operator, which defines the so(6)- or y -instable limit, reads

=8n +Vn +Vr +Vt +Vj . .
H"W =g N+v,N2+v,R*+ vT?+ v J? (14.60)

It represents a linear combination of the Casimir operators of the chain (14.21).
Again the functions of the highest algebra are functions of the lower ones and
therefore the energy eigenvalue is given according to (10.3), (10.13) and
(14.55) by the following expression

EW = gN+vaN?+vp(p+4)+vit(c+3)+ v J(J+1). (14.61)

Figure 14.5 shows a typical energy spectrum of a nucleus of the so(6) limit
according to equation (14.61). The 2'- 4"-doublet of the third and fourth level
(with 7 = 2 ) is characteristic for this special case and appears also in the so-
called y -instable nuclei, for which reason this model is named y -instable limit
as well.

In figure 14.3 the regions with nuclei of the so(6) type are marked with black
dots. They join always regions with su(5) nuclei ( see figure 10.7 ) which
corresponds to the noticeable similarity of both Hamiltonians.
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N

—

(6,0) (6,1) (6,2) 4,00 (4,1) (2,0) (0,0)
7 J 7 —d--- 1 d 1 - . Jd 71 -Jd- 1d
6;12,10,9,8,7,6 6;6,4,3 6;0 4;8,6,5,4 4;2 2;4,2 0;0
5;10, 8,7,6,5 5;4,2 3;6,4,3 3;0 1;2
4; 8, 6,5,4 4;2 2;4,2 0:0
3; 6, 4,3 3;0 1; 2
2; 4, 2 0;0
1, 2
0;0
6—\_\_ 4
5 6— 7_\1
T
5 3 0~
-~ L
4 0
271
4_
- 1
3_\_\_ 0 —
53—
T

o

Figure 14.5. Typical spectrum of the so(6) limit. It is calculated by means of
equation (14.61) and the values N = 6, v, = - 30 keV, v; =40 keV and v; = 5,1
keV. The parameters p and 7 follow the rules (14.56) and (14.57). The
values of n, and J are given by (14.58). All levels have positive parity. Level
groups with the same t are joined together and labelled with the value of 7.
The J-values can be taken from the columns on top of the figure.
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Figures 14.6 and 14.7 compare measured with calculated levels of % pt and
Ba

() (6.0) (6.1} rre(d.0) (2,0)-
E
(Mevyi¢ ...
2 I
, - 0
2. —
2
B , 2z
6.. —
0 ......
. 4 g o
4 ...... —
2 ......
2 196 6Pt11g
oL —y-

Figure 14.6. Comparison between the measured and the calculated so(6)-
spectrum of 19 pt (lachello and Arima, 1987, p. 43). The parameters N = 6, v,
= - 42.75 keV, v; = 50 keV and v; = 10 keV have been used with formula
(14.61). The spins are given and the parity is positive. Broken lines represent
calculated energies.
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(PNa) : (6,0) (6,1)
5 - o
E &
(MeV) 3 -
. 0
47 A
1 — —
_ 2t 132
seBaze
0 L _0"' ...............

Figure 14.7. Comparison between the measured and the calculated so(6)-
spectrum of 132Bg (Arima and lachello, 1979, p. 486). The expression (14.61)
and the parameters v; = 90 keV and v; = 10 keV have been used. Because
only the states with p = N = 6 have been identified unambiguously, v, does
not appear. Broken lines represent the calculated eneraies.

The so(6) limit offers the chance to test the program PHINT (appendix 7). One
chooses first the parameters in equation (14.60) and puts ¢, = v, = 0, which is
admissible when the spectrum of a single nucleus is looked at. By inserting in
equation (9.38) and by transforming one obtains
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Ed-Es = 2(3vi+2wn),
Co = 4 (-3vj-2vi-2v;),
C2 = 2(-3vitvitv),
Cq = 2(4vtwvi+v,), (14.62)
V2 = 0,
vo = 245v,
u, = 2+5v,
Uo = 0.

By means of (A7.1) one finds the input parameters for the program.
Calculations using the parameters of figure 14.5, which are performed both
according to (14.61) and with the help of PHINT and (14.62), agree perfectly.

According to lachello and Arima (1987, p. 25) it can be shown that there exist
only three chains of algebras, (14.11), (14.17) and (14.21), in the interacting
boson model 1. Therefore there are only three types of dynamical symmetries.
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15 The proton-neutron interacting boson model
IBM2

In this interacting boson model, protons and neutrons are treated separately. In
the sections 1 up to 3, we will show how the Hamilton operator of this model
can be simplified and how the number of parameters is reduced. Sections 4
and 5 demonstrate the eigenenergies and transition probabilities and compare
them with experimental data. There will be talk of group theoretical structures of
the IBM2 in section 6.

15.1 The complete Hamiltonian of the IBM2

In the IBM1 the boson number of the protons is added to the boson number of
neutrons ( chapter 2 ) and later on, no distinction is made between these types
of bosons. In chapter 7 the interaction terms don’t contain Coulomb forces.
Moreover, speaking in terms of the shell model, the fact is known that in
intermediate and heavy nuclei protons and neutrons occupy different shells.
This results in an interaction between proton- and neutron pairs, which differs
from the interaction between identical pairs. This fact contrasts to the well-
known charge independence of the short-range nuclear forces. Likewise, this
effect is not taken into account in the IBM1.

Because of these simplifications, the parameters of the IBM1 fitted on
experimental data change from nucleus to nucleus in a discontinuous and
hardly interpretable way. On the other hand the interacting model 2, which
distinguishes between proton- ( 7 ) and neutron ( v ) bosons, yields results
which can be interpreted by means of the SD-version of the shell model. The
IBM2 has special practical significance because its parameters depend in a
smoothed curve on 7- and v -boson numbers and it makes possible to calculate
unknown nuclear spectra (Arima and lachello, 1984, p. 177). The interest in the
algebraic structure of the IBM2 has even grown since states with special
magnetic dipole properties (Bohle, 1984) are known which can be explained
with group theoretical methods.

The numbers of z-bosons N, and v-bosons N, are fixed equally as in chapter 2.
There is no boson composed of a proton and a neutron. There exist 12 creation
operators for bosons

b*yjm=8 "z, d zm(m=-2,-1,.,2)and
b+V'jm=S+V’d+V;m(m=_2’ _1: ’2) (151)

Analogously to (6.19), we have the same number of tensor operators for boson
annihilation like this

~7r,jm = slra dNn,m, b~v,jm = sv, de,m (m = _2= _1! !2) (152)
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In analogy with (5.33) and (5.35), every d- or s-operator for protons commutes
with every d- or s-operator for neutrons. We demand that both N, and N, are
good quantum numbers i. e. the Hamilton operator must meet the condition

[H, N =[H,N,]=0 (15.3)

with the operators N, = V5[d *; x d~J® + s ¥, s, (6.37) and the corresponding
N,. Generalising the equations (7.3), (7.5) and (7.6), we write the Hamilton
operator as follows

H=H,+H,+ V,,. (15.4)

Both H, and H, have the form of the IBM1-Hamiltonian (7.3, 7.6, and 7.17) but
there is nothing than n-operators in H, and v -operators in H,. We write the
mixing potential operator V,, employing the parameter

p=T, V (15.5)
analogously to (7.6) like this
Vn'v= (1/2) ijjgjqumfmgmpmq pr¢pg pr¢pq (156)

(prjrmz, pgjg Mg | W ppjo Mp, pgjgMq) b +;ofifmfb +pgig mg Bpojo mp Bpaja ma

where j = 0 denotes a s-operator and j = 2 a d-operator. Both the creation and
the annihilation operators in (15.6) comprise a 7- and a v -operator (pr # pg, pp #

pq ), otherwise the matrix element vanishes. Analogously to (7.6) V,, can be
written by means of vector coupling as

Vn'v= (1/2) ijjgjqu ZJ=O4 pr;tpg pr;tpq <Pfjf, ngg; J | Wl ijp; quq, J> '
@I+ 1) [[b " pje x b g1V X Do % b pejo 119, (15.7)

Because the operators b ", jm and b, j» create distinguishable bosons, the
common state does not show symmetry according to (A2.5) and for
[d7, x d+v](J) the statement (6.6) is not valid any more. On the contrary, for J all
integers from O up to 4 are possible.

In the case of j, = j; = 2 for the two-boson state in the matrix element in (15.7)
one obtains the following expression

|72, v2, JM)Y=Sm m(@m2m, | IM)| 72 m,;, v2m,) = (15.8)
N e (@my2mz | IMY|v2m,, 22 m;)=(-1)|v2, 72, JM).

Therefore, there are 12 independent matrix elements in (15.7) as follows



127

Ws =(0,v0,0|W|z0,v0,0)

Ws =(r0,v2,2|W|x0,v2,2)

Wy =(r0,v2,2|W|x2 v0,2)=(x2,v0,2|W|x0,v2,2)

Ws =(n2,v0,2|W|x2,v0,2) (15.9)
We =(x0,v0,0|W|72 v20)=(x2 v2 0| W|z0, v0,0)
Wio=(70,v2,2|W|r2 v22)=(x2,v2,2|W|r0, v2 2)
Wit=(72,v0,2|W|r2 v22)=(x2,v22|W|x2 v0,2).

These matrix elements don’t alter if one interchanges the 7- and the v -state on
one side. The residual elements read

W, =(n2,v2,J|W|x2,v2,J) (J=0,1,23,4). (15.10)

Here interchanging the 7- and the v-state results in a factor (-1)J (see15.8)i. e.

(2, v2,J|W|7r2,v2, JY=(n2,v2, J|W|v2 72 J)(-1)= (15.11)
(v2, 72, J|W|r2,v2,J) (1) =(v2 22, J|W|v2 n2 J).

The partial Hamilton operators H, and H, contain, according to (7.17) and
(7.33) respectively, 9 or 6 free parameters each. The considerations in
chapter 7 that facilitated the reduction of this number can be applied to the 12
parameters in (15.9) and (15.11) and they can be reduced to 9 (lachello and
Arima, 1987, p. 138). Therefore the Hamilton operator (15.4) comprises 30 or
21 parameters respectively, which render this theory cumbersome and it is
practically impossible to fit the parameters unambiguously on experimental
data.

15.2 Basis states and the angular momentum operator of the IBM2

Before we deal with the simplification of the Hamilton operator, we turn to the
eigenstates. For practical reasons, the basis states of the IBM2 are chosen as

vectorial couplings of symmetrical, spherical IBM1-states (6.18) of n- and v -
bosons this way

| [(Nsx. Naz, To, Nazs Jn) X (Nsv, Nav, Tv, Nav, SV, (15.12)
For example the complete set of states with N, = N, = 1 reads as follows

I [Sn X SV](O)O ), | [S X dv](z)u )3 I [dﬂ' X Sv](Z)u'>, I [dﬂ' X dv](J)u"> with

(J=0,1,.4). (15.13)

The basis function of the IBM2 (15.12) demands a corresponding angular
momentum operator according to (A1.21) and (A1.23). Analogously to (8.9) its
components read
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Ju= dpy+ dy = V10 ([dY e x d W+ [dxd™JM,)  (15.14)

and meet the commutation rules (8.7). According to (A1.22) and (A1.26) the
states (15.12) are eigenfunctions of the operators Jo and J?2 = Jo? - Jo - 2 J1 Jq
which are made up by the operators (15.14).

15.3 A reduced Hamiltonian of the IBM2

In section 15.1 we have seen that the IBM2-Hamiltonian comprises a large
number of parameters. In practice it is reduced drastically in the course of
which one is based on arguments of microscopic theories - mainly on the SD-
version of the shell model - and on experiences made by fitting on measured
data. A simplification of the Hamilton operator is also necessary because the
sum H, and H, generates a large number of energy levels. Because the IBM1
reproduces the spectrum of measured energies relatively well, the IBM2 may
not generate essentially more levels.

A first simplification of the Hamiltonian consists in reducing H, and H, to a
special case ( chapter 14 ). For that purpose, the vibrational limit ( chapter 10 )
imposes itself because it is able to interpret most nuclei ( compare figures 10.7
and 14.3 ). Thus in both IBM-Hamiltonians on drops R ? and Q * (9.39). In
practice in equation (7.17) not only vy and v, are deleted but also up, u, and &s.
Consequently the following expression is left over

Hy=g,ng,+ V2 Y =024, N2J+ 1) [[d*, x d* ] x[d~, x d~,]©
with p = 7, v. (15.15)

The third term V,, in the Hamilton operator (15.4) is simplified as well.
Generally, one employs the following form (lachello and Arima, 1987, p. 140)

Viv = K V5 [Qe{xn) x QU + 4 My, (15.16)

The quadrupole operators Q, (x, ). (p = 7, v) correspond to the operators Q, in
(12.19) that is

Q,(xp)u = [d+p x sp](z)u + [s+p X d~p](2),u + o [d +p X d~p](2)y . (15.17)
For the quadrupole-quadrupole part of V;, sometimes the symbol

V5 [Quix) x Q) = Qulx2) © Qu1s). (15.18)

is employed. We write it explicitly
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V5 [Qu(xx) x Q)] =

V5 {([[d "z x s4® x [d*, x $JP19 + [[s"r x d"]® x [s*, < d " JP1D +

([[d "z x s4% x [s%y x d~)P10 +[[s" < d 7@ x [d*, x 5,]]%) +

2 l([d e x 5P + 8% x d™?) x [d 7, x d =] + (15.19)

2:0ld e x dd® x ([d*, x 8] + [s*, x d~,]P) @ +

2ol e x d =1 x [d*, x d ] P19,

The last term in equation (15.16) is named Majorana term and it reads

My, = N5{([[d "z x "] x [d 7 x 8,]P19 + [[s"2 x d*)]? x [s,x d ] ?) -
(lTd x x "] x [s2x ™)) + [[s" x d*\J@ x [d 7 x 8,7 )} +
2% 3NQ2J+ 1) [[d e x d* P x [d 7 x d =) (15.20)

Sometimes a further parameter is attached to the last expression. The terms in
the expressions (15.19) and (15.20) appear individually in the original
expression for V,, (15.7), which can be pursued by means of table15.1.

Table 15.1

Correspondence of terms in (15.7), (15.9) and (15.10) to the terms in (15.19)
and (15.20).

Original terms of V, corresponding terms in (15.19) and (15.20),
in (15.7), (15.9) and (15.10) the numbers denote the lines.

Term with W ( see 15.9) 1. Term in V5 [Q(x) x Q)Y (15.19)
" "Wy 2." " ",
" " W10 3. " " ",
" " Wi 4. " " ",
Terms with Wy .. W, (see 15.10) 5. " " "
" " Weand Ws 1. Term in M,, (15.20),
Term with W7 2." " ",
Terms with Wy and W5 3. " o,

This comparison shows that in fact only the coefficients of the terms in V,, have
been altered. In doing so, individual terms had to be recoupled by means of
(A4.1). The consistent correspondence reveals that expression (15.16) is not an
ad hoc construction but the result of a reduction and remodelling of the operator
(15.7).
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The quadrupole-quadrupole operator has to replace to a certain degree the
operators Q?, and @Q%, which have been omitted in H, and H, (15.15).
Furthermore,one knows from the shell model that the strongly attractive
interaction between proton and neutron breaks the so-called generalised
seniority (Talmi, 1993, p. 906) and is responsible for the deformation of the
nucleus (Eisenberg and Greiner, 1987, p. 443). This z-v-interaction

corresponds to the sd-terms in Q, (x, ). (15.17), which influence the s-d-division
of bosons.

In order to illustrate this behaviour we show that the term Q.(x,)eQ.x.) (15.18,
15.19) is able to make up non vanishing matrix elements resting on the states
s, s ) and [d*; x d *J9). We pursue this by means of the first term in
(15.19), [[d*z x $4? x [d*, x 5,]9]©, as follows

(1d~ex d~JOUd "z x sJ? x [d*, x ,) 9 s*,s*, ) =
qdex d~ )9 [d* e x d* )9 s.8,8" 8", |) = (15.21)
(1dzxd )P [d xd* ]y =1.

Thus, the quadrupole-quadrupole operator creates non-diagonal matrix
elements, which cause s-d-mixing.

The Majorana term M, (15.20) influences states with a special symmetry which
is forbidden in the IBM1. We show that by means of states with N,=N, =1
(15.13), which can be remodelled this way

sz x SJ, (IIs2x d]®) + [[de x SJP N2, [[de x dW]P,), J even, (15.22)
(Ilsx x d?) - [dx x JPNN2, |[dy x d,],, J odd. (15.23)

The states (15.22) are symmetric with regard to the indices = and v and the
states (15.23) are antisymmetric. If we replace the labels = and v by boson
numbers 1 and 2, equation (15.22) represents the symmetric two-boson states
of the IBM1 but the states (15.23) exist neither in this model nor in reality. By
means of the Majorana term we can lift these intruder states in a higher energy
than all decisive levels and make them insignificant.

For example, we consider first the influence of M,, on one partial state in
(15.23)

(1N5) My | [s 2 x d\]?,) =
[[s+n: X d+v](2) x [Sz x d~v](2)](0) s+7rd+vu ) - (15.24)
[d +n: X s.'.v](z) x [Sz x d~v](2)](0) s+7rd+vu ).

All other states vanish because each time an annihilation operator acts on an
empty state |). We remodel the expression (15.24)
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(1) Mz | [s = x ]9, ) =
Y,d'ud 2 (242,-2100)d*,, s 8,87 ]) - (15.25)
X:d 3d7, 2 (222,-2100)d",s" s |).
Because of d™; = d; (-1)*and (2 12, -1 | 0 0) = (-1)*5 the relation
(1N5) Mgy | [s 2 x d\J?, ) =(1N5) (d ¥, 8"z - d "y s™)) |) holds. (15.26)
Analogously one gets
M| [d 7 x 8,170 = (d "™y - d 8™ D
Therefore, for corresponding states of (15.22) and (15.23) we obtain
My, (Ilsx x W] + lldx x 8,]9.0)N2 = 0, (15.27)
My ([l x A%, - I[ds x 8,202 =
V2([[s7 x duJ?, - [z x $,1%0). (15.28)

Now we investigate the effect of M,, on other states of (15.22) and (15.23) like
this

V@2 + 1) [1d e x d ") x [d 7 x d )N [ x o] Pw) =
S 1) Md e x d YV [d 7 x d V0 (IN2)de x d]Py = (15.29)
(AN2)Z u (-1)™M[d " x d*\ ]y
St (2 222 Ay |y -MY2 1z 2 iy | L M) dggedy, a0 8 e ™y ) =
(N2 w (1) A e x d I T e (2, 112 2, =i |, -MY(2 11z 2 ay |L ML) =
(AN2)Z wld e x d % S e 2 1122 1] Jy -MY(2 1122 1y | L M)y =
(1N2)[d "z x d* JOml) S
Therefore, we obtain
Moy [dz % 0] = +N2[d ™2 x d*\JOl) (81 + S31). (15.30)
For the first expression in (15.22) the relation
M., |s:s,) =0 (15.31)

holds. We see how the Majorana operator M,, contributes to diagonal elements
of the Hamilton matrix on the basis (15.22) and (15.23). According to (15.27),
(15.28), (15.30) and (15.31) only the diagonal matrix elements of the
antisymmetric states (15.23) are non-vanishing and positive if the coefficient 1
in (15.16) is positive. By means of 1 one lifts the levels of the states which are
antisymmetric with respect to 7 and v. Doing so, they lose all spectroscopic
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significance. One can show that M,, acting on more complex basis states has
the same effect.

15.4 Eigenenergies and electromagnetic transitions within the IBM2

Having discussed the individual terms of the IBM2-Hamiltonian ( see 15.15 up
to 15.20) we put it together

H= En ndn:+ Ev ndv+
Spmnv Ve Xu=02,4CspN2I+ 1) [[d ", x d* ]V x [d™x d - +
K V5 [Qulx2) x QU + A My, . (15.32)

It contains 12 parameters. The eigenenergies of H are calculated on a basis of
functions analogous to (12.2) which are composed of the basis states (15.12)
like this

1NNy, JMY =X ¢Onnes () 17, Ne Ny I M. (15.33)

The coefficients ¢! . n. (/) of the Ith state result from the diagonalisation
procedure discussed in section 12.1. The sum comprises the configurations i =
(Nsz Ndz Tr Naz Jr Nsy Ngy T, Ny, Jy) according to (15.12). The eigenvalue is
labelled with £y, . .

The probabilities for electromagnetic transitions between states of this kind are
formulated analogously to the method described in chapter 11. The reduced
transition probability B(L,Ji — Jr ) is calculated by means of the initial and the
final state of the type (15.33). For the operator O(E L M) for an electromagnetic
transition with the angular momentum L, the form (11.4) is extended to a sum of
the operator for 7-bosons and the one for v-bosons.

Specially for electric transitions with L = 2 ( quadrupole radiation ) we have
analogously to (11.12) the following expression

OE2u)=Y p=rvep(d pus,+s5,d ", + ', [d",xd™J?).  (15.34)

The operators in (15.34) correspond largely to the operator Q,(x,). in (15.17),
for which reason frequently one puts ', = x,. This demands that this parameter
is fitted simultaneously on energies and on transition probabilities. In this case,
we have

OE2u)=€e:Qu(xx)ut e Quxv)u- (15.35)

Frequently the quantity e, is equated with e,. T. Otsuka and O. Scholten have
written the computer program NPBOS which performs IBM2-calculations
essentially according to (15.32) (T. Otsuka, 1977, University Tokyo). The newer
program BOSON2 ( A. Novoselsky, 1985, Weizmann Institute, Israel ) is able to
handle with a great number of bosons.
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Figure 15.1. Comparison between the measured and the calculated
energies of the levels 27, 474, 6" and 8" of isotopes of s4Xe with even
numbers of neutrons 62 up to 78. The IBM2-Hamiltonian has been
employed (Scholten, 1980, p. 55).

15.5 Comparisons with experimental data

Figures 15.1 up to 15.3 show experimental and calculated energies of levels of
s4Xe and sgBa isotopes. They are taken from the report of O. Scholten (1980).
The Hamiltonian (15.32) has been employed with the simplification e, = e,. The
Majorana term M,, has been formulated more generally.
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Figure 15.2. Comparison between the measured and the calculated
energies of the levels 5, 4%, 3"; and 2, of isotopes of s4Xe with even
numbers of neutrons 64 up to 78 (Scholten, 1980, p. 55).
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(MeV)

Figure 15.3. Comparison between the measured and the calculated energies
of 8 levels of ssBa isotopes with even numbers of neutrons 64 up to 78. The
IBM2-Hamiltonian has been employed (Scholten, 1980, p. 55).

The corresponding parameters ¢ and k of the Hamilton operator are
represented in figure 154 as a function of the neutron number. The
dependence of these quantities on the proton number ( 54 up to 58) could be
neglected.
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\

54 58 62 66 70 74 78

Figure 15.4. The parameters « ( with negative values ) and ¢ employed for the
IBM2-calculations shown in figures 15.1 up to 15.3 for nuclei with even neutron
numbers from 54 up to 78 and proton numbers 54 up to 58 (Scholten, 1980, p.

57).
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Figure 15.5. The parameters y, , co, and c2, employed for the IBM2-
calculations shown in figures 15.1 up to 15.3 for nuclei with even neutron
numbers 54 up to 78 (Scholten, 1980, p. 57).

Figure 15.5 shows the separate dependence of the quantities y,, co, and ¢z, on
the neutron number. The coefficient ¢4, was put equal to zero. Also the
quantities cop,, C2, and c4, are nearly zero, but y, descends from -0.81 to -1 for
proton numbers 54 up to 58. Furthermore, O. Scholten (1980) showed that the
terms of c¢y,, c2, and c4, have little influence. Compared with the quadrupole
term «KV5[Qx) x Qy (x.,)I they are only important if there are little neutrons
beside many active protons or vice versa.

Reduced transition probabilities for quadrupole radiation are calculated
according to (15.35) and shown in figure 15.6 together with experimental data.
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Figure 15.6. Comparison between measured and calculated reduced
transition probabilities for quadrupole radiation of even-even nuclei with
neutron numbers 68 up to 78. The parameters of figures 15.4 and 15.5 have
been employed (Scholten, 1980, p. 58).

Duval and Barrett (1981) have performed similar IBM2-calculations for tungsten
isotopes. They employed the parameters ¢, = ¢, and ¢4, = Co, = C2; = C4, = 0.
Figures 15.7 and 15.8 show the comparison with experimental data.
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Figure 15.7. Comparison between the measured and calculated
energies of the levels 2', 471, 6" and 8" of isotopes from 74W with
even neutron numbers 96 up to 114 employing the IBM2 formalism
(Duval and Barrett, 1981, p. 493).
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Figure 15.8. Comparison between measured and calculated energies of 6
levels of 74W with even numbers of neutrons 106 up to 116. The IBM2-
Hamiltonian has been employed (Duval and Barrett, 1981, p. 494).

In figures 15.9 and 15.10, the behaviour of the corresponding IBM2-parameters
depending on the neutron number is shown.
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Figure 15.9. The parameters k ( with negative values ) and ¢
employed for the IBM2-calculations shown in figures 15.7 and 15.8 for
tungsten isotopes with even neutron numbers 96 up to 114 (Duval and

Barrett, 1981, p. 495).
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Figure 15.10. The parameters y,, co, and ¢z, employed for the IBM2-
calculations shown in figures 15.7 and 15.8 for tungsten isotopes with
even neutron numbers 96 up to 114 (Duval and Barrett, 1981, p. 495).

Figure 15.11 shows some reduced transition probabilities B(E2) for y -radiation
and compares calculated with measured values. Jolos et al. (1985) have
performed similar calculations for isotopes of 44sRu and 4Pd with equal success.
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Figure 15.11. Comparison between measured and calculated
reduced transition probabilities for quadrupole radiation of tungsten
isotopes with neutron numbers 106 up to 112 (Duval and Barrett,
1981, p. 495 up to p. 497). The employed parameters are shown in
figures 15.9 and 15.10 and described in the text.

As we have mentioned above (Scholten, 1980) little changes if all coefficients
Cyp in (15.32) are equal to zero and &, = ¢,. In this case the Hamilton operator
obtains the following form

H=¢(ng,+ ng,)+ V5 [Qulix) x Q) + A My, (15.36)

With this Hamiltonian, which contains essentially four parameters ( frequently 4
is fixed arbitrarily ), for many nuclei good agreement could be achieved with
measured data. Figure 0.1 puts together existing calculations up to 1988. The
expression (15.36) is named Talmi’s Hamiltonian (lachello, Arima, 1987, p.140).
In the same publication on page 140 a group of authors is given which have
done calculations with this Hamilton operator.



144

15.6 Chains of Lie algebras in the IBM2

Owing to the relationship between the IBM2- and the IBM1-Hamiltonian we
expect also chains of Lie algebras such as in (14.11), (14.17), (14.21) and table
14.1.

First, we consider the term V,, (15.7). It contains a sum comprising expressions
of the following form

[[b +ﬂjf>< b+ng](J) X [b"gjp % b~vjq](J)](0) » (s Jos o Ja=0,2) (15.37)

where the labels 7 and v are ordered. With the aid of the 9-j symbols, (A4.1)
one obtains sums of the following expressions

(16" zjex b rjp]") x [y jo x b~ VN . (15.38)

On the other hand the terms H, ( p = &, v) in (15.4) consist according to (14.2),
(14.3), (14.5) and (14.7) on sums of expressions such as

b, x b 1% and [[b*pj x b 1" x [b "o x b V] (15.39)

We single out special cases of Hamilton operators (15.4) which are able to
constitute chains of Lie algebras.

First series of special cases of the IBM2
Here all corresponding coefficients in H, and H, (14.2) are put equal i. e.
Exn=&n=En ey Van = Vyn= Vi, vy Vag = Vyg=Vqg . (15.40)
If one replaces in H (14.2) (14.3), (14.5) and (14.7) every term of the form
6" x b1 M, (a jp =1, 2) (15.41)
by expressions such as
GV %o jo) = [0 je x B pp 1M+ B i x B 190, (o jo=1,2)  (15.42)

one obtains by means of (15.40) just the sum H, + H, plus a sum of terms such
as (15.38). As an additional restriction in this special case one demands that
these residual terms cancel out with the terms of V. This results in several
conditions for the involved coefficients. Some authors leave a Majorana term
(15.20) (Bonatsos, 1988, p. 78), (Frank and van Isacker, 1994, p. 369).

The remaining IBM2-Hamiltonian reads now analogously to (9.39) or (14.2)
H=¢e,N+v,N?+ (15.43)
(gd’ + Vo N)nd, n+v + Van 2d, n+v + VrR2ﬂ+v + VtT27t+V + VjJ2ﬂ:+v + VqQ 271:+v

where in each operator the basis operators (15.41) are replaced by (15.42).
These make up the same chains of algebras as in the IBM1. The formulation of
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these chains can be taken from (14.11), (14.17), (14.21) and table 14.1. They
are put together in table 15.2 with usual markings.

Table 15.2. Chains of Lie algebras of the special cases 4, Il; and lll4 of the
IBM2

Basis elements ?imension Algebra Special case
n
G?,2,0), 6?0,2), G%(0,0) ‘k 36  Uw(6))
\ U
G9%(2,2), 6G?,22), G¥(2,2) b 25 U (5)]
| H Ut l4
G%,22) [} 10 s0m(5)
EER v
c",(22) 11+ 3 som(3))
))))
G?,2,0), 6?,(0,2), 6%%(0,0), )
G9%(2,2), 6¥2,2), ¥ (2,2) ‘% 36 U (6))
) v
G?,2,0)+ G?0,2)-(V7/2) G? (2,2) H 8  sum(3)F I
) v
¢",22) [t 3 s0md3))
)))
G ?,(0,2), G%%(0,0), )
G9%(2,2), 6% ,2,2), 6" 2,2) ‘k 36  Uwy (6))
\ v
G? 2,00+ 6?0,2) |t 15 SOy (6)]
| vl
G%,2,2) [+ 10 s0mm (B)]
R o
¢ ",22) 11} 3 s0m(3))
))))

As discussed in the preceding chapter every Lie algebra generates a set of
basis functions. Their members are labelled with quantum numbers, which
appear partly in the eigenvalues of the Casimir operators. In the IBM1 there is —
except for su(3) — only one quantum number per algebra, which is relevant for
the Casimir operator. In the IBM2 there are mostly two such numbers as the
investigation of van Isacker et al. (1984) shows. For the special case |; ( table
15.2 ) result the following quantum numbers
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| Urty (6) D Upsy (B) D SO4u(B) D SOmu(B) \
| ) l4 (15.44)
I[N1, N2]  [n41, n2] [71, T2, Na1, Naz [J] /

with N7+ Ny =N (N1 > Np), ng, + n2 = ng; + nNg, .
The quantum numbers in square brackets characterise the eigenvalues of the
Casimir operators (see 15.47) and the remaining numbers serve to the
classification of the states. Analogously to the IBM1, the relations

ni<Nyiy, no<No t1<n4, 25 N5 (15.45)

hold together with further conditions for these quantum numbers and for the
angular momentum. lachello and Arima (1987, p. 152) have put them together.

By cancelling the coefficients v, and v, (15.43), one obtains analogously to the
IBM1 ( section 14.4 ) the combination of Casimir operators which belong to the
first chain |1 in table 15.2. In agreement with (14.37) the Hamilton operator can
be written as

HO =
a1 Ca,u6), mevt 02 Cou6), mtvt B Cru(e), ntv Clu(s), nev + (15.46)

71 Cus), vt 72 C2,u5), vt 0 C2s0(5), v+ € C2,50 (3), ntv -

It contains Casimir operators which are formed by the operators G )y(ja, Ji)
(15.42) in the same way as the operators in table 14.2. The formulas for
eigenvalues of Casimir operators depending on quantum numbers are given by
lachello and Arima (1987, p. 37, p. 158). According to (15.46) the following
eigenenergies for the special case |1 result

Eii = as (N1+ No)+ oz (N1(Ns+5) + No (N2 + 3)) +
B (N1 + N2 )(ni+nz) + y(ns + nz) + (15.47)
y2(ni(ng+4) + n2(n2+ 2))+ 5 (t1(t1+ 3) + 12(2+ 1)) + e J(J + 1).

For large boson numbers N, one obtains a multiplicity of possible splittings in N4
and N but only the lowest levels are important. Figure 15.12 shows a spectrum
according to (15.47) for two active n-bosons and a v -boson. The part with N, =
3 and N> = 0 corresponds to the IBM1 spectrum for the vibrational limit.
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[N1, Np] : [3,0] [2,1]
E
(MeV)
5* 4+
4 3t ot » "
3 6
+ 4"
4 + +
3 + +
0 2 0+ 3 1+
2+
2 .
4 o* 2
o'l-
1 [ ot
o'l-
0

Figure 15.12. Typical spectrum for the |i-special case of the IBM2. N, = 2
and N, = 1 ( or vice versa ) have been employed (lachello and Arima,
1987, p.159).

For the chains of the algebras Il1 and Ill; ( table 15.2 ) there exist
representations of eigenvalues corresponding to (15.46) and (15.47) (lachello
and Arima, 1987, p. 159). In appropriate publications further chains of algebras
are mentioned, in which the higher algebras are direct sums of 7~ and v -
algebras.
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16 The interacting boson-fermion model IBFM

In the first section the extension of the IBM will be outlined which admits odd
numbers of protons and/or neutrons. Creation and annihilation operators for
nucleons are introduced and the corresponding Hamiltonian is brought in the
usual form. The second section deals with a version of the IBMF which employs
the boson-boson interaction of the u(5)-limit. The simple case of one active d-
boson coupled to a nucleon is discussed. In the third section we will explaine
how the number of parameters in the boson-nucleon interaction can be reduced
realistically. Comparisons of IBFM calculations with measurements will follow.

16.1 The Hamiltonian of the IBFM

In the preceding chapters the nuclear model was restricted to nuclei with even
proton- and neutron numbers. However, most of the nuclei are composed of
odd-even (oe) or odd-odd (0o) nucleon numbers.

In order to include these nuclei, the interacting boson model is extended by
attaching a nucleon to the boson configuration. For oo-nuclei, one has to add a
proton and a neutron. The number of bosons is fixed in the same way as in
chapter 2. If the active bosons are holes, the nucleon has to be taken in the
hole state as well.

Nucleons are known to have total spins j = 1/2, 3/2, 5/2, ... with regard to the
nucleus and they can show positive or negative parity. Coupling a spherical
basis state for bosons ( chapter 3, (6.18)) to a nucleon state creates the
simplest basis state for oe-nuclei like this

INg ng tnsJg jJ M) =|[(Ns ng ny)e x j1¥ ). (16.1)
For nucleons, there exist also creation and annihilation operators as follows
a+j,,, » Qjm (1 62)

which are assigned to the nucleon state (j,m). Analogously to (6.19) the
annihilation operator can be put in tensor form like this

aim=(-1)"a;.m. (16.3)

Because the nucleon operators (16.2) create ( or annihilate) antisymmetric
states, the commutation rules (5.34) and (5.35) are not valid and the
commutators have to be replaced by anticommutators. In analogy with the
IBM2 ( section 15.1 ) one demands that a*j, and a”j,» commute with the boson
creation and annihilation operators. That is to say, bosons and nucleons are
regarded as essentially different objects and one forgets that a boson
represents a nucleon pair.
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The Hamilton operator for bosons and nucleons contains, besides the
interaction between the bosons, also nucleon-nucleon and nucleon-boson
interactions. Analogously to (15.4) it reads

H=Hg+ H+ Vgg. (164)

For the boson part Hg, mostly the IBM1-Hamilton operator (7.17) is employed.
The pure nucleon Hamiltonian He is constructed analogously to (7.3) and (7.6)
as follows

He=Eo+Y;gN@2j+ 1) [ajxa % +
PN C(J)Jjj’j”j"’[[a+j X a+jv](J) x [@” j» x a~jm](J)](O). (16.5)

Henceforth we will restrict ourselves to oe-nuclei. Therefore, the last sum in
(16.5) disappears because it does not contribute when it acts on a single
nucleon. The quantity ¢ is the single-nucleon energy of the nucleon state (jm).
In analogy with (15.7) the boson-fermion interaction can be written as

Ver=21 Izj1j2jVU)I1j1I2j2[[b +I1 X a+j1](/) x [b7p, x a"j'z](/.)](o) (166)

with (/1, I2) = 0, 2 and (j4, j2) = 1/2, 3/2, 5/2, ... . The b-operators concern bosons.
The coefficients v'’ ;i .o are matrix elements of the boson-fermion interaction
this way

VU)I1j1I2j2 = (bi1 aj1j I VBF |bl2 aj2j>. (167)

Analogously to (15.9) there is linear dependency between some of the
quantities V(I)/1j1 rj2- Frequently it is sufficient to employ only one nucleon spin j;
= J» = jo. The expression (16.6) can be recoupled by means of (A4.1), which
yields

VBF = ZH Izj1j2JC(J)I1j1 I2j2 [[b +I1 X b~I2 ](J) X [a+j1 X a~jz](J )](0). (168)

The coefficients ¢’ 1 jirzjoa@re linear combinations of W) njiizjz and their factors
contain 9-j symbols. We write (16.8) in detail employing d- and s-operators

Var = 3 ¢%g; [[s™ x 8] x [a%) x a1 | +

3092 [1d " x d 1 x[a% x a1 + 1 Doy e (16.9)
[([s* % d 1+ [d* x $]® + (cP 2 16P0z112) [d* x d]P) x [a") x @] +

Yo g=1346 a5 plld % d7Y) x [@*5 x @]V O,
The expressions [[d *x d"]¥) x [a*; x a7,]/ ] (16.10)

in the last term of (16.9) are frequently written in another form. According to
(A1.4) we have

[@" x @] = (1) S e o Moy my | J M) @%@ (16.11)
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Now we are defining the operator of normal ordering of nucleon operators as
follows

Therefore, we can write
[@%, x @] = (1) "2 a, x a®, Y (16.13)

This means that the right hand side of (16.13) first is represented formally by
means of (A1.1) and then the interchanging (16.12) is performed. Now the
expression (16.10) is written with the aid of (A4.1) as follows

[[d*x d7Y) x [a*; x a1V @ = (16.14)
(2 2 J) B | |
YiI+ N2+ 1) Grojo I )N d T x a]? x [a) < d 1)
' j 0)
Therefore, the last sum in (16.9) obtains the following form

Sjijeg=134C" )2z p[ld "% d1Y) x [a%), x a%,]" ) =

Y e AV lld*x @]l x [a% x d 1@ (16.15)
With the help of the number operators (6.35) up to (6.37) such as
[s*xs]Y=N-ng, [d*xd]?=ng\5, [a*jxa]¥=nN2j+1), (16.16)
with the usual markings (lachello and van Isacker, 1991, p. 12) like this
o V5 - Vg = A Pogijo = T, (€¥2g0j2 16P031012) = 100 (16.17)
and with the quadrupole operator (15.17)
Qs (1112 )u = [d™ x §1%, + [8"x dTZ+ zi [d T > d T2, (16.18)
one obtains for Vgr (16.9) the following expression
Vir = 3¢ N nj - £ A ng nj N(5(2j + 1)) +
X o Tinje [Q (znje) x [@% x @] + (16.19)
X jjrje AVeje [l ™ @] x [@% < d 1010

The second term on the right hand side of (16.19) is named monopole term and
the following are the quadrupole term and the exchange term.
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16.2 The u(5)-limit of the IBFM

If the part Hg of the Hamiltonian (16.4) has the special form (14.31) of the u(5)-
limit, the state (16.1) is an eigenfunction of Hg with the following eigenvalue
(10.17)

EVg = ;N + voN? + (e4° + Vag N)Ng + vang + ve T (z + 3) + vida(Js + 1).  (16.20)

It can be written in the form (14.38) as well. The matrix of the operator Hg on
the basis of functions (16.1) has therefore only diagonal elements. Naturally Hg
( for one single nucleon ) is diagonal and has the eigenvalues g;. In order to find
the eigenenergies of the whole operator H (16.4) essentially only Vge has to be
diagonalised (see section 12.1 ). We investigate the influence of the individual
terms of Vgr (16.19). Because the monopole term on the right hand side of
(16.19) contains only number operators it gives an identical contribution to
every diagonal matrix element with the same number of d-bosons and the same
nucleon state |j m ). The quadrupole term in Vg contains the operators

Yiplhpld*xs+s xd?x[a" xa7]? and (16.21)
S i g Tipe [ld* x d7T? x [@* x @] (16.22)

The expression (16.21) generates non-diagonal elements in the energy matrix.
Experience shows that its contributions can be neglected if &y (16.20) is
relatively large. The term (16.22) contributes to the diagonal matrix elements,
which we now look into for the situation of a single d-boson coupled to a
nucleon state | j m ). Such a diagonal term reads

Y 520"+ 1) Gor %o P20} ([d x J 1l [Id ™ x @5 1Y) x [d™x @3]V N 1d x j 1V ) =
S omeN5 (PP ME Ty oy (%1 | [d ™ x @' 1Y e [d < @31l [d % 1)

The first transformation in (16.23) is a recoupling according to (A4.1) and the
second employs the relations (4.2), (A1.1) and (A1.16). Furthermore, because
of (16.3), (A1.1), (A1.5) and (A1.10) the following equation holds

[dx a1l [d xj1m) =

S wmum (DT i m | I -MY2 wjm | I MYy @] Ay @ ) =

S rmum (VM (2, -, -m | S -MY2 pjm | I M) 8y, S, e =

M Sy S (16.24)
Analogously we have

qd xj 1 | 1d*x a1 = Spy Sum - (16.25)
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Therefore, the term (16.22) yields the following contribution to the diagonal
matrix element

AEp =1 = 25 TjN5 (-1)7 85 15 ). (16.26)

The energy of the state represented by a j-nucleon coupled up to a d-boson
splits up into 2j + 1 or 5 (if j> 2 ) levels starting from the energy (e4° + Vag N) +
vg + 4v; + 6v; (16.20). The splitting is proportional to the geometrical factors
(16.26), which depend on J (2 +j>J > |2 -j | ). The exchange term in Vgg
(16.19) yields a similar multiplicity of terms as (16.26).

Figure 16.1 shows a comparison between measured and calculated energies of
the nucleus "*s;Lazs for d-boson configurations of the u(5)-limit. The 2*-state of
152, Bare (ng = 1) is split up into 5 levels by coupling a j = 11/2-proton according
to (16.26).

132 133

56Ba76 57La76
Th. Exp.
(MeV)
0 8 i 11/2°
i s — 132
T - 912
2
04 —
B — 712
0. B . 11/2°

Figure 16.1. Comparison between measured and calculated energies
of low-lying levels of '**La. The energies of the 5 excited levels are
calculated starting from the 2*-level of 32Bg ( consisting of one d-
boson in the u(5)-limit ) with the aid of equation (16.26) and with the
coefficient y; I';; = -0.94 MeV (Scholten, 1980, p. 98).
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Figure 16.2 compares experimental data with results of IBFM calculations in the
u(5)-limit of two Eu-isopotes.

147 5
63EU34 63EU38
E Exp Th. Exp Th
(MeV)
................. "2
S 23/2°
. — 48 88 8RR 17/2
2 T 19/2_
— e 21/2-
B 13127 e i
15/2° 23/2
712
.................... 45
R Tz
B 9I2- —
1 ............... - 19/2_
—— e aa e nEREE 11/2- 13/2-
B 15/2"
9/2
712
11/2°
0

Figure 16.2. Comparison between measured and calculated energy levels of
"“Eu and ™'Eu (Casten, 1980, p. 199). The calculations are performed
according to the equation (16.19) and Arima and lachello (1976b)
respectively, by coupling a 11/2-proton up to u(5)-states and by fitting the
parameters. The ground states ( J = 11/2" ) are drawn in, taking into account
the binding energies.
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Nuclei with boson configurations belonging to the other two special cases of
dynamical symmetries are treated analogously.

16.3 Numerical treatment of the IBFM. Comparison with experimental data

The general operators Hg and Hg (16.4) and Ve (16.19) comprise so many free
parameters that the model becomes cumbersome. One has to reduce them
suitably similarly as in the IBM2. In this section we deal specially with the term
VBF-

Owing to the microscopic theory, which connects the IBM with the shell model,
and making use of the generalised seniority principle, Scholten (1981, p.286)
gives the following instruction for the coefficients in (16.19),, which represents
an approximation

Ai=-\(5(2) + 1)) Ao,
1—}'1j2 = \/571'1j2 I'p, with Virje = (Uj1 Ujz = Vi1 Ve )Qj1j2, (1627)
Ao = 2512+ 1)) Bij Bej Ao with By = (uj vj + vj U ) Qs

The quantities Q;+; in (16.27) are reduced matrix elements of the quadrupole
operator in the single-nucleon basis like this

Q=1 YP U j)

The quantities Vj2 are occupation probabilities for the nucleon states (Ring and
Schuck, 1980), (Otsuka and Arima, 1978). The relation u; = (1 - vjz) holds.
Apart from the constant term, the parameters of Vge (16.19) are reduced to Ay,
I'p and A according to (16.27).

One finds the parameters of Hg in practice by fitting IBM1 calculations to the
next lighter ( or heavier ) even-even nucleus which contains one nucleon ( or
nucleon hole ) less than the even-odd nucleus.

Similarly as in chapter 12 the matrix elements of the Hamilton operator can be
formed on the basis (16.1). By diagonalising, one obtains the eigenenergies
and eigenstates.

Figure 16.3 shows results of such an IBFM calculation for 10145Rh56 compared
with the measured level energies. States with positive parity are treated as a
coupling of an IBM1 state to a gg,o-proton.
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E
(MeV) Exp. Th.
21/2—-., 101
— 43Rhsg
2 I
Exp. Th. Exp. Th. Exp. Th.
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Figure 16.3. Comparison between measured and calculated low-lying
levels with positive parity of '“'Rh (Scholten, 1981, p. 289). Not all
experimental spin assignments are unambiguous. In the calculation a gg/.-
proton is coupled to a '*°44Ruse nucleus which has been treated with the
IBM1 making use of the parameters ¢ = 0.733 MeV, ¢y’ = - 0.415 MeV, c,’
=-0.283 MeV, ¢,/ =- 0.024 MeV, v, =0.175 MeV and vy = - 0.31 MeV
(7.31). For the fermion-boson term Vge (16.19 and 16.27) the value v,-2 =
0.5 has been chosen for which reason the quadrupole term vanishes.
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The low-lying states of *"Ir are calculated using a Hamiltonian containing an

IBM1 part for bosons and parts with the proton state (h11/2-)'1. In figure 16.4, the
results for negative parity are compared with experimental data.

E
(MeV)|
23/2 ........ .
— 2172 .
1.5 22 N
1.~ f'i9/2

A2
0.5 15/2 [
oL L&

Figure 16.4. Comparison between calculated and experimental spectra of
the negative-parity states in ¥y (Bijker and Dieperink, 1982, p. 229). The
broken lines denote calculated data. The levels are interpreted in the IBFM
model as a hq12- proton hole state coupled to the '%%75 Pty14 core. The lines
connecting the levels represent large E2 transitions by radiation.
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Isotopes of gold of the odd-even type with 106 up to 116 neutrons have been
treated as a coupling of an even-even Pt-core to a hg; -proton. Figure 16.5
shows the lowest levels compared with experimental data.

(MeV)

1/2

79AU

o LT 1 1 1 ler L I 1 1 1 Ja
106 110 114 106 110 114

Figure 16.5. Comparison between measured and calculated spectra with
negative parity in 79 Au-isotopes (Bijker and Dieperink, 1982, p. 231). The
neutron numbers comprise 104 up to 116. For the calculation, a hg,-proton
has been coupled to the corresponding 7gPt-cores.

Figure 16.6 represents an IBFM-calculation for numerous levels with positive
parity of Tc. The even-even nucleus is coupled to a proton with two different
shell states.

The IBFM comprises more dynamic symmetries than the IBM2. Because this
book is only an introduction to the interacting boson model, we leave them out
of consideration.
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Figure 16.6. Comparison between the measured and the calculated
spectrum with positive parity of ¢ (von Brentano, 1981, p. 307). In the
calculation, a proton with the states ge, and ds;; has been coupled to *Mo.
This nucleus has been treated with the IBM1 by means of the parameters ¢ =
0.795 MeV, ¢y = - 0.25 MeV, ¢, = - 0.085 MeV, ¢/ =0.047 MeV, v, = 0.113
MeV and vy = 0 MeV (7.31). The fermion-boson term Ve (16.18) has been
calculated with expressions, which correspond largely to the equations
(16.19) and (16.27).
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Appendix

A1 Clebsch-Gordan coefficients and 3-j symbols

Some properties of the Clebsch-Gordan coefficients will be reviewed which are
employed in the treatment of the IBM on hand. Descriptions of this topic in
detail are given by Condon and Shortley (1953) and Talmi (1993).

Clebsch-Gordan coefficients arise when state functions containing a definite
spin or angular momentum are coupled and constitute a joint state with good
spin quantum numbers. Let the normalised and orthogonal function ¢
describe the state of a particle or boson with spin or angular momentum j and
projection m. In the language of quantum mechanics this means that ¢, is an
eigenfunction of the operators JZ and J,.

Staring from the functions ¢.m. and @sm» Which belong to different objects a joint
state @,u(ja , j») can be made up which is also an eigenfunction of the operators
JZ and J,. Its total spin is characterized by J with the projection M. The new
state reads

Dymlfa » Jb) = 2 ma mo (ja Ma jo mp | J M) ®jamaPjomo (A1.1)
with ma+mp=M and | ja-jp | <JI<jat+ )b . (A1.2)

The factors (jz ma jy mp | J M) are named Clebsch-Gordan coefficients or vector
coupling coefficients. They are real and vanish if the conditions (A1.2) are
violated. The coupling (A1.1) is frequently written as

[@ma % Ppmol W1 = Ponaia » Jiv). (A1.3)
Clebsch-Gordan coefficients meet the following symmetry conditions

(o Ma jo Mo | J M) = (-1 Gy mp ja ma | I M), (A1.4)

(o Ma o M | J M) = (1) Yo -ma, o, -mp | J, -M), (A1.5)
Ga Majo Mo | J M) = (-1)" ™ (24 + 1)/(2jo + 1)) (ja Ma J, -M | o, -mp).  (A1.6)
For j, = j, = j specially we can write

Gmim’ | IM)= D2 (imjm| I M). (A1.7)
If additionally m = m’ holds we have

Gmim|JM)y=ED)Z(imim|Jdm. (A1.8)
Thatistosay jmjm|JM)=0,if 2j - Jis odd.

We demand that state functions such as @y (ja , jb) and @y (ja , jb) are
normalised and orthogonal i. e.
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[ @m*(a s jb) P (a » jb) do = Sy S (A1.9)

In (A1.9) the integration comprises all variables of the functions ¢;,. By inserting
the relation (A1.1) and by means of the given orthonormality one obtains

2 mamo (ja Ma o My | J M) (ja Ma jo mp | I M’) = 84 Sumr. (A1.10)
Making use of (A1.4) up to (A1.6) one obtains
Y o Gia Ma jo M | J M) (ja” Ma’jo My | M) = (2J + 1)2ja + 1) Sijor Smamer- (A1.11)
Multiplying both sides of (A1.1) by @um.”@pm”™ and integrating yield the relation

[ @ Qoo™ Dpa (ja » jo) = (ja M’ o My’ | J M), (A1.12)

Because of the linearity of (A1.1) one expects an inverse transformation with
real coefficients. We write it with conjugate complex functions like this

Ojorna” Pjporms™ = 22 > Cfa Ma jo Mp ' M) Dppp *(fa , Jb)-

Multiplying by @,y (ja , jb) and integrating one obtains with the aid of (A1.12)
Clja Ma jbo Mp J M) = [ Qome*Oom* Pura Gz » o) Ao = (ja Majo mp | JM).  (A1.13)

Thus, we have

OjamaPjorm> = 2= M (fa Ma jo Mp | I M) @y (ja , Jiv) (A1.14)
as the inverse transformation to (A1.1). Multiplying (A1.14) by the expression
Oema” Qo™ = 2 o (fa Ma’ jo My’ | I M) @ypi*(ja , jb) @nd integrating one obtains
the relation

2 um (Ja Ma jo Mp | J M) (ja ma’jo My’ | J M) = Sma ma* Oms mo’ (A1.15)

in analogy with (A1.10). We give the explicit expressions of frequently
employed Clebsch-Gordan coefficients

(a Ma o M | 0 0) = (1) (2o + 1Y% 5 s S s
(2m2,-m|10)=(-1)"mNh10, (A1.16)
2,m-1,2,-m|1,-1)=(-1)" (2 + m\(3 - m)\20,

(202 m|2m)=(m*-2)N14,

(jas Ma = Jay Jor Mb = Jio | J = Ja + o, M = ja + jio) = +1. (A1.17)

The last coefficient shows that the product of two states |j, m = j ) is the
stretched joint state lying in the z-direction. The choice of the positive sign on
the right hand side of (A1.17) is arbitrary.

The symmetry properties of the Clebsch-Gordan coefficients are made visible
especially by means of the 3-j symbol (1. %, *41), which is defined as follows
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(ia Ma jo My | J M) = (1) MN20 + 1) (o s L 1), (A1.18)

The value of the 3-j symbol does not alter when its columns — here they are
arranged at an angle — undergo en even number of interchanges. If this number
is odd or if all projections m,, mp and -M change their signs simultaneously, the
new 3-j symbol differs from the original one in the phase factor (-1)% "% - 7
Edmonds (1964) and (1996) has given algebraic expressions for some 3-j
symbols. Numerical tables for 3-j symbols were published by Rotenberg, Bivins
et al. (1959) and Brussaard and Glaudemans (1977).

We come back to the statement (A1.1) and go into the angular momentum
operators. If the spin operators J;, = Jpa and Jz» = Jop act on the states ¢.m. and
@sm» @ccording to

Joa Qjems = Ma Qjama, Job Pjoms = Mp Pjpms AN (A1.19)

Joa®jsme =Ppoms Joa , JobPjema =Pjama Job (A1.20)
the sum operator

Jo = Joa *+ Joo (A1.21)

satisfies the following eigenvalue equation with the joint expression (A1.1) or
(A1.3)

Jo@uja , jb) = Jo [@ama X Do) 1 = M [@ama X @porme] 11
(A1.22)

which can be seen with the help of (A1.1), (A1.19) and (A1.20). The other
“ladder components of J read according to (8.6) as follows Js = -(Jx + in)/\/2
and J.g = (Jx - in)/\/2. They meet the condition (13.26)

Jit,a Giorne = (E)(alia + 1) - Ma(ma £ 1))/2)" 0o mas 1,

which holds analogously for J.1,, @pms. INn @analogy with (A1.21) we make up the
operator

i1 =Jita ¥ Jip (A1.23)
and expect that the similar relation
el @pomn % @] 11 =
) + 1) = MM £ 1))/2) [ @jama * @] 1 21 (A1.24)
will hold. We write it in detail as follows
3 o mo (o Ma o M | J M) {(iaia + 1) = Ma(mMa £ 1))@ s, o 11 Qs +
UblUp + 1) - mp(mp £ 1))1/2(Pjama(/)jbmbi1 }= (A1.25)

(JJ + 1) - MM £ 1) [ @ma X @Gjors] 21 -
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The relation (A1.25) cannot be explained solely by the properties of the
Clebsch-Gordan coefficients put together in this appendix. In contrary, they
constitute a special condition for these coefficients. Making use of the
orthonormality of the state functions, from (A1.25) one obtains recursion
formulas for the Clebsch-Gordan coefficients. They serve to calculate them
numerically.

In case the operator of the total spin, J? (8.8), acts on a coupled state, from
(A1.22), (A1.24) and (8.8) follows the well-known relation

I [gpams % ol = (I = Jo = 2J1.1) [@ima % @] 11 =
JWJ + 1) [@oma % Qo] - (A1.26)

A2 Symmetry properties of coupled spin states of identical objects

In this section the selection rules for the total spin of a coupled state of identical
objects - fermions or bosons - will be looked into. According to (A1.1) such a
coupling reads as follows

O j12)=2mm(Gmjim’ | J M) @im(1)@im (2). (A2.1)

In (A2.1) provisionally we are considering these objects as distinguishable and
label them with numbers. We now interchange both objects - that is to say all
their variables - and obtain the following joint state

Oum(jj,21) = Zmm (mjm’| I M) @jm(2)@jm (1).
With (A1.7) we have
O ji2 1) = (1S Gm’ i m | I M) @ (1) jm (2) =
DY o j1 2). (A2.2)

First, we apply (A2.2) to fermions - for example to nucleons. They obey the
Pauli principle i. e. the function of the whole state changes its sign if both
fermions are interchanged as follows

DOjji2 1) = -@(jj,12) i. e. (A2.3)
13 7=, (A2.4)

Fermions have half-integer spin j, that is why 2j is odd. Consequently, the
equations (A2.3) and (A2.4) are satisfied if J is even. That is to say, a pair of
identical fermions can be represented by (A2.1) if J is even.

On the other hand, bosons behave symmetrically with respect to interchanging
i. e. for a coupled pair of identical bosons the following relation holds

Dij ;2 1) = +Dya(j ,12) or (A2.5)
1?7 =+1. (A2.6)
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Because here j is integer the total spin ( or angular momentum ) J must also be
even. Specially for j = 2 the quantity J can amount to

J=0,2or4. (A2.7)

A3 Racah-coefficients and 6-j symbols

Three state functions with spins can be coupled by combining the first and the
second function and by adding the third one to the joint function. An other way
to do it consists in coupling the second and the third function and in adding the
result to the first one. By means of the Racah coefficients, it is possible to
represent one configuration by linear combinations of the other type.

Three eigenfunctions of the spin - or angular momentum - operators JZand J,
are given and coupled in the following way (A1.1, A1.3)

(5 x @] x ] = (A3.1)
Zma mb Mab mc (ja ma jb mb I Jab Mab) (Jab Mabjc mc I J M) (pjama (ij mb (ch mc -«

With the help of (A1.14), we recouple the triple of functions on the right hand
side in (A3.1) this way

([ x @il <" m =

2 ma mo Mab me (fa Ma jbo Mp | Jab Mab) (Jab Mab je Me | J M) - (A3.2)
2 oe Moc (o Mp fo Me | Jbe Mipe) -

2 oM (fa Ma dbe Mo | I M) [@ja % [@ o % (ch](JbC)](J’ " S S -

The symbol o,-6uvw takes into account that both sides of (A3.2) are
eigenfunctions of J? and J, with the same corresponding eigenvalues. We can
write (A3.2) like this

([ x 91 x @] = soe Ul fio J jou Jab Jc) [@7e x [9jo x @idP1 Ny (A3.3)
with  U(ja jb J je; Jab Jbc) =
2 mams (fa Ma o Mp | Jab, Ma + Mp) (Jab, Ma + Mp, jo, M- ma-mp | J M)
Ub Mp Jo, M - Mg - mp | Joe, M - mMg) (ja Ma Jpe, M-my | M) = (A3.4)
N@2Jap + 1) N(2pe + 1) Wja jb J o 5 Jab JIbe)-

The equation (A3.3) reveals that the coupling of three spin eigenfunctions
according to (A3.1) can be represented as a linear combination of couplings
where the second and the third functions are combined first. The factors U
(A3.4) are named normalised Racah-coefficients. Apart from two factors they
agree with the common Racah-coefficients W (A3.4). The following inverse
relation can be shown
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[0j [0 % @11 % = T soo Ula fiv J o Jab Joc) [ % @) x@ . (A3.5)

In order to visualise the symmetry properties of the Racah-coefficients, the 6-j
symbol has been created as follows

{jala jblb jclc} = (_1)'ja -Jp-ly- 1y (ch + 1)-1/2(2IC + 1)-1/2 U(jajb lb Ia ,_IC /C) =
(1) P Wi iy By Lo ; e o). (A3.6)

The value of the 6-j symbol is unaltered when the columns - here they are
arranged at an angle - are interchanged. It remains also the same when two
columns are turned upside down. The following triples of quantities in the 6-f
symbol have to form a triangle

(/a jb jc), (/a Ip /c), (Ia Ip ]C) and (Ia jb IC)
which is indicated by lines in the symbols as follows
fo, 7 oy T o) e \ oy o) ey oy o) ey ) o\ ey (A3.7)

From the orthonormality of the expression (A3.3), follows this orthogonality
relation

2o (2fc + 1){jala Io lc}{/ala b /c} Ok l(2lc + 1). (A3.8)
A similar relation reads like this
Y (-1)" (e + 1)-f5 1y 2y = o, 1 5} for e . (A3.9)

With the orthonormality of the Clebsch-Gordan coefficients the equations (A3.4)
and (A3.6) can be brought in the following form

(1) e 21, + NIy + 1) (la Na Iy N | I ) {7 B o} =

> e s o (=1 Yo T Ma* Mo Mo (A3.10)

(ja Ma jio, =Mp | Ic , =nc) (o Mp je, M | la, -Na) (e Me ja, =Ma | Ip, -Nb).
Furthermore the relation

T2+ 1) e B T = (1), (A3.11)

holds. Some 6-j symbols are simple algebraic expressions. If I, is zero,
according to the triangle conditions (A3.7) we have I, = j; and I; = j,. Then the
6-/ symbol has the form

{jajb jbja jco} = (-1 )ja+jb+jc(2ja + 1)'1(21'C + 1)'1_ (A3.12)

The zero can be brought to any position by using the interchanging rules
mentioned above. We refer to a further special 6-j symbol (Edmonds 1964, p.
154)
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/'ajb /'ajb 1jc} = (_1)/a+jb+jc+1 [/a(/a + 1) +jb(jb + 1) -jc(,'c + 1)]
[4fa(ja + 1)(2ja + V)jblis + 1)(2jp + ™. (A3.13)

In the following table, numerical expressions of some 6-j symbols are put
together (Rotenberg, Bivins et al. 1959), which appear in the IBM

J J’ {22 22 JJ’}
2 0 1/5

2 1 -1/10

2 2 -3/70

2 3 4/35

2 4 2/35 (A3.14)
4 0 1/5

4 1 2/15

4 2 2/35

4 3 1/70

4 4 1/630.

A4 The 9-j symbol

If four spin eigenfunctions are coupled in pairs which are coupled additionally
like this

[[(Pja % (/)jb]](Jab) % [(Pj % (pj,](J')](J )M ,

this configuration can be represented by means of equivalent expressions
where ¢, and ¢; are interchanged. After several steps one obtains the following
result

([ x (pjb](‘/ab) x [gy x (Pj’](J’ )](J )M =

> 0o i [(2dan + 1) (207 + 1)(2da + 1)(2dp + 1)]2- (A4.1)

i P P} o x @]Y x [@p x @1y,
The matrix in braces is the 9-j symbol. It shows certain symmetries. An even
permutation of its columns - here they are arranged at an angle - or of its rows
leaves its value unaffected. An odd permutation of rows or columns introduces
the phase factor (-1)°, where s is equal to the sum of all arguments in the 9-f
symbol. In every column and row, the triangle condition is satisfied.

If the 9-j symbol contains the argument J = 0, the relations J,, = J’ and
Ja = Jp = J“hold. In this case the 6-j symbol reads

Pejge Topge Loy = (1P + )@+ O T T (A4.2)
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Now we replace the functions ¢ in (A4.1) by operators b and write the last
brackets in detail with the help of (A1.1) and (A1.3). We leave the operators b
in the original sequence as follows

[[by. x b1 x [by x k] )y, =

S e 1 [(2dap + 1)+ 1)(2a + 1)(2Jp + D242 1a Tjrgy L0} (A4.3)
Zmambmm’MaMb (ia majm | Ja Ma) (/b mbj’m’l Jb Mb) (Ja Ma Jb Mb | JM)
bja ma bjb mb bjmbj’m’

If the operators b commute, the equation (A4.3) can be transformed to the form
(A4.1), otherwise this conversion is not possible.

A5 The Wigner-Eckart theorem

The IBM deals with matrix elements of coupled s- and/or d-operators ( chapter
11 and 12 ). The Wigner-Eckart theorem makes possible to split up these
matrix elements in a Clebsch-Gordan coefficient and an element which is
independent on projection quantum numbers of the state functions and of the
operators.

We start from the properties of the spherical harmonicsY»(p) depending on the
direction vector p = r/r. They are eigenfunctions of the angular momentum
operators J? and J, and therefore they represent a part of the wave functions of
particles in a central field. They are orthonormalised i. e.

IY*m (0) Yir (0) dp = 1Y*im (9,0) Yimr (9, 9) SinS d9 d = &1 S (A5.1)
Spherical harmonics have the following properties

Yim(g) = (-1)" Y*,.m(0) (A5.2)
and  Yimd(o) Yem(0) =Zim[(2la + 1)(2h + 1)]"? [4n(2L + 1)]2

(la Ma s My | L, -M) (1a 0 15 O | L 0) (-1)™ Y*Lu(p). (A5.3)
Now we make up the following integral

[Y e ma (2) Yem(2) Yio ms (0)Ap = (1) Yira(0) Yoo () Yio s (0)dlp =

o[l + 1)2l + 1] [4r(2L" + 1) (A5.4)

(fa, ~Ma by My | L, -M) (1l 0 15 0| L*0) (-1)™*™ [Y*La (0) Yim(p)dlp =

VM (L, -ma Iy mp | L, -M) [(20a + 1)(20, + )] [4r(2L + 1)] 2.

(l,0l,0|LO).
Doing this, (A5.1) and (A5.3) have been used. Making use of (A1.6) we obtain
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IY*ma (2) Yem(2) Yio s (0)dlp = (A5.5)
1o mp L M| I ma) (21 + 1Y "2(=1)" 2" (21, + 1)(21, + 1)/4n] 21, 0 1, 0 | L 0).
We write (A5.5) in the following form

[Y e me (2) Yem(2) Yio me (0)dlp = (A5.6)

( Yiama | Youa | Yiomo ) = (<17 mo L M |y ma) (2l + 1) (Vi || Ye || Vo).

The last quantity is named reduced matrix element. It is independent on the
projection quantum numbers m,, M and my and it reads

CYall YOIl Yy = (1Y 2 (21, + 1) (21, + 1)/47] (1, 0 1, 0 | L O). (A5.7)

The equations (A5.6) can be generalised. One can replace Y.m. and Yim» by the
eigenfunctions | I, m; ) and | I, mp ) of J 2 and J, with a common potential.
Instead of the function Y.y, which is placed in the middle of the original matrix
element (A5.5), one can put a tensor operator T of the rank L. These
operators and spherical harmonics behave equally when the co-ordinate
system rotates. After a rotation the new spherical harmonics are linear
combinations of spherical harmonics belonging to the old system with the same
rank L. For a given rotation, the corresponding coefficients for spherical
harmonics and tensor operators are identical.

As an equivalent statement, one can say that tensor operators can be coupled
to an operator with a defined angular momentum with the same procedure as
the spherical harmonics i. e. by making use of Clebsch-Gordan coefficients.
Examples for tensor operators are the angular momentum operator J;, the
nabla operator V, creation operators for bosons d *, s* (see the comment on
(6.9)) and the corresponding modified annihilation operators d~ and s (see the
comment on (6.19) and (6.20)).

One can show that (A5.6) remains valid if all three functions are replaced in the
way just mentioned like this

lama | Tl ms Y= (1 o mo LM | Lama) @l + 12 (L TP | 1). (A5.8)

This is the Wigner-Eckart theorem. It enables to split the matrix elements of a
tensor operator in a reduced matrix element, which does not depend on the
projection quantum numbers m and in a Clebsch-Gordan coefficient. It offers an
essential simplification because as soon as a matrix element with a set of m-
values is known it can be given for other sets of this kind. One obtains the
reduced matrix element ( on the right hand side of (A5.8)) by calculating the left
side for one set of m-values and by remodelling.

Reduced matrix elements are also necessary for constituting the so-called
coefficients of fractional parentage.
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A6 A further multipole representation of the Hamiltonian

The multipole representation of the Hamilton operator according to (9.37)
stands out due to an especially consequent choice of operators which permit to
constitute the three special cases of the IBM in a direct manner. Frequently, in
the literature the multipole representation appears, which was formulated
originally by lachello and Arima. In their review article, these authors use it
again in 1987. This representation was built in the computer code PHINT (
appendix 7 ) by O. Scholten in a simplified form.

This multipole representation contains the operators ngy and J? (9.1), which are
already present in the Hamiltonian in (9.37). Instead of Q 2 (9.4) the more
general form Q?(x) (12.19, 15.17) is employed. Its components read

Q.(x)=d*s+s'd, +y[d" xd]?,. (A6.1)

Furthermore the operators [[d* x d 1Y) x [d ¥ x d Y19 with J = 3, 4 occur,
which come from the transformation of the term [[d* x d ]¥) x (d~ x d" Y] in
(7.17).

In concrete terms, we make the claim that the Hamilton operator can be written
as follows

53 &[[d xd 1 x (d* x d ™. (A6.2)

Now we are working on the individual terms in (A6.2) in order to transform this
equation in the basic form (7.17). With the help of (9.28) and (9.34) we can
write @Q?(y) in the following form

QAx)N5=[d" x d*Vss + s's[d~ x d"]? +
ss'd"  xd 19 +[d” x d[%"s + y?[[d* x d7]? x [d* x d"]9]9 +
2 7 ([d* xd"? x ds]? +[s"d" x [d~ x d"]9). (A6.3)

For the time being we are dealing with the second line in (A6.3). According to
the commutation rules for d-operators we have

[d™xd 1Y =5"%%, 2d " md " m(-1)" = 57T md.md "y =
5N5 + 57 d “mdm = V5 + [d* x d 1. (A6.4)
Because of ss” = 1 + s™s this line results in
ssTd " xd 1@ +[d” x d*%s's =
[d*xd ¥ +s*s[d" xd ¥+ [d*xd]?s's+5s's =

ng/N5 + V5(N - ng) + 2[d *s* x d"s]?. (A6.5)
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In order to handle the last expression in (A6.2) we need the relation (9.8)
[[d*xd* 1Y) x (d~xd V@ =
Yo NRI+ NI+ 1) P L L xd Y ) x [dF x d V@ -
(1/5N(2J + 1)ng. (AB.6)
We multiply both sides of (A6.6) by V(2J + 1){% %, ?,-}, sum over J and obtain
S AN@RI+ )P % AT x d T x (@7 x d 1O =
So() NS+ 1) (S + D2 % UK % eI T x d Y x [d T x d 1
- (15 s @I+ 1) % Yehng. (AB.7)

The expressions in pointed brackets in (A6.7) read according to (A3.8) and
(A3.11) like this

Yo+ 1) % e B Uy = s (2094 1)
and Y, I+ 13 % Ja=1.
Thus we obtain the inverse relation of (A6.6)
[d*xd ) x[d*xd V] =
(1) NQI+ 1) T 024 V2I + 1) 2 %2 73 Id T x d TV x [d™ x d IO +
17 (1/5)N@2J + 1)ng.. (A6.8)

According to (6.6) the summands with J = 1, 3 vanish. We now insert the
expressions (9.1) and (A6.33 in (A6.2) and make use of (A6.5) and (A6.8). By
means of the 6-j symbol {22 2 JJ’} according to (A3.14) we obtain

H=(s+3n+(12) (" -4)c + To + 9E)ng +
(-3n+ (12)1"k- @+ 98 [[d* x d"T” x [d” x d O +
V5(-(3/2)n - (3/28)5°k + 4w + (18/7)E) [[d* x d 1?9 x [d™ x d 191 +
3(2n + (1T) Pk + (112)o + (114)E) [[d* x d 1Y x [d~ x d" ] +
5y ([[d* x d*]1? x d”s]9 + [s*d™ x [d™ x d"]?9) + (A6.9)
V5(1/2)« ([d* x d]%ss + s*s'[d™ + d"]?) +
V5x [d*s* x d~s]?.
The comparison of (A6.9) with (7.17) yields
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& =0,

Eg-Es=€+3n+ (1/2)(;(2 -d)k+Tw+ 9¢,

Co=-6n+ x’x- 140 + 18¢,

c2=-3n- (3/14)){2K + 8w + (36/7)¢,

cs=4n+ (2I7) Y+ 0+ (17)E,

volN2 =15 y K, (A6.10)
vo/2 = (11205 &,

uz =5 k,

up =0.

The ansatz (A6.2) comprises 6 parameters ¢, n, k, o, £ and y ( contained in
Q). The transformation (A6.10) reveals that the quantities &5 and uy of the basic
form (7.17) have been put equal to zero and that vy and u, are coupled. This
reduction to six free parameters is permitted if one looks into the structure of
individual nuclei disregarding the binding energies.

A7 The program package PHINT

The code PHINT calculates energies of nuclear states and reduced transition
probabilities of the electromagnetic radiation in the interacting boson model. It
was written by O. Scholten in FORTRAN, published in Computational Nuclear
Physics 1 (O. Scholten, 1991, p.88) and made accessible in the diskette
enclosed in that book.

The IBM calculation can be performed in the basic form of the Hamiltonian
(7.17) with the program PCIBAXW. The input parameters ( in capitals )
correspond to the following coefficients in (7.17)

Es 0 (is put equal to zero )

Ed - &s H BAR

Co, C2, Cy (C(1), C(2), C(3))

V2 /N2 F (A7.1)
V0/2 G

usN5 CH2

Uo CH1.

It is also possible to use the reduced form (7.31). In this case, the following
assignments hold
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€ HBAR
co’, C2, Cs C(1), C(2), C(3)
VN2 F (A7.2)
V0/2 G
CH2=CH1=0.

The calculation can be done in the multipole form of the Hamiltonian according
to appendix 6, the coefficients of which correspond to the following input
parameters

-

EPS

ELL

CHQN5

QQ (A7.3)
OCT

HEX.

S ARSI O

To the technical notes of O. Scholten (1991, p. 103) the following remarks have
to be added

- The subroutine RDPAR in the packet PCIBALIB has to be corrected in order
to enable it to read the input parameters (C(1), C(2), C(3)) as a triplet ( for
example (3F10.4) has to be replaced by (3F7.4)).

- Energies should be given in MeV.

- In order to compile the source program no sensitive debug option can be used
( for example for the FORTRAN compiler of Microsoft only the command fl and
not fl/4Yb must be given ).

- Increasing the boson number N to 14 or 16 calls for changes in
COMMON(READMAT) and in the corresponding DATA in various places of the
programs. Tips in the comments of the program texts have to be followed.

A8 Commutators of operators such as [d+xd~](")M

Commutators of the type [[d* x d" 1Y, [d* x d]Y")] are employed in
connection with the angular momentum operators ( chapter 8 ) and with Lie
algebras in the IBM ( chapter 14 ).

By means of (6.19) and (A1.1) we can write
[[d " x 1", [d" x d 1"yl = (A8.1)
S mnmen(2m 20 | MY (2 m 2 n“| JMY (-1 [d " e Aoy, d e done].
Using the commutation relations (5.36) we obtain

[d +m’ d.n’ ; d+m“ d.n“] = 'd +m“ d.n’ 6m’y n“ + d+m’ d.n“ 6m“, -n’ - (A82)
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Thus, from (A8.1) and (6.19) the following relation results

[[d* x d 1, [d" < d ]V ] =

Swwmn@m2n| M) (2 m 2 n“| JM)

(1) d " d e St = (1) e A G e ) =

S monke(2m 20| I M) (2 m“2 n*| JCMY)- (A8.3)
(2m2n“l kld* x d 101" S - (@ m 20" | ki )[d" x dT9 1) 8me ).

The last transformation was performed with the aid of (A1.14). By means of the
relation (A3.10), one verifies the following result

A" xd 1w, [d" < d TV %] =3 kld " x d 1%,

Ca(2m2,-m*| M) (2 m*“2n“| J“M)(2m’2n“| k k) (-1)" -
Cr@m2, | I M)Y2m2,-m' | JMY2m“2n | ki) (-1)™) =

Y eld” x d7 0 N@RI+ 1NERI“+ 1) (A8.4)
(MM k) {2 T2 9 D) (- ).

A9 The commutator [[d *xd~ 1Yy, [d*xd *1u]

This commutator is used in section 14.3. It is related to the commutator we
dealt with in appendix A8. Analogously we transform as follows

[[d" x d 1Y, [d” x d 1Y)y = (A9.1)
Swwmn@m 20| IMY2m2n|IM) (1) [d mde, d md .
With [d md, d md ]l =d md nSmm+d md mdmyn (A9.2)
one obtains by means of (A1.4)
[[d* x d" 1", [d7 x d V)] =
Smn@m2n|IME nw@m'2,-m|J M) 1)"d md ", + (A9.3)
N 'Zmn@m2n|IMEp@m2,-m| I M) (1)"d" mwd m=
2Ym@m2,M-m|JM) 2, M+m,2,-m| I M) 1)"d wemd mm .
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