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(Source: Review of particle properties (1984), Rev. Mod. Phys. 56, No. 2,
Part II)

Notation

r, k, etc., denote vectors (x, y, z), (k,, k,, k.), and r=lr|, k=|k],
d*r=dxdydz, d*k=dk,dk, dk,. '
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dQ=sin 8 d8 d¢ denotes an infinitesimal element of solid angle.
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A(r, 1)

B(Z, N)
B(r, 1)

E(r,1)

F(Z,E,)

Glossary of some important
symbols

nuclear mass number (=N + Z)

electromagnetic vector potential

§4.1 nuclear surface width; §4.5 bulk binding coefficient

binding energy of nucleus

magnetic field

§4.5 surface tension coefficient; § 13.1 impact parameter

electric field

energy; E,, E, neutron energy, proton energy; Ef, Eg neutron, proton
Fermi energy, measured from the bottom of the shell-model neutron
potential well; Eg §8.3 .

§12.3 Coulomb correction factor in p-deca

f(Z,Ey) §12.3 kinematic factor in total f-decay rate

G

g

. gL 9s

gagvsdL
G(ry/ro)

§6.2 exponent in the tunnelling formula

§D.2 statistical factor in Breit-Wigner formula
§5.6 orbital and intrinsic magnetic moment coefficients
§ 12.6 axial, vector, lepton coupling constants
§6.2 tunnelling integral

§C.3 total angular momentum operator
quantum number associated with J 2

quantum number of J,

wave vector

value of k=|k| at the Fermi energy

§C.1 orbital angular momentum operator
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Glossary of some important symbols

quantum number associated with L% Chapter 9, Chapter 13 mean free
path

quantum number of L, reduced mass

quantum number of s, ,

mass of a-particle; m,, m,,. mass of atom, nucleus

number of neutrons in nucleus

density of states

integrated density of states

momentum

§5.7 nuclear electric quadrupole moment; §6 1 kinetic energy release
in nuclear reaction

§9.4 fission probability

§4.3 nuclear radius; § 12.3 reaction rate

§6.2 potential barrier parameters

S.(N,Z) §5.2 neutron separation energy

S(E)

§8.3 parameter of nuclear reaction cross-section for energies below the

¢ Coulomb barrier
So(E),S(E) §12.3 electron (positron) energy spectrum without and with

Hns Hy

Ho
v, dy

Coulomb correction

§C.2 intrinsic angular momentum operator

quantum number associated with s; §4.5 symmetry energy coefficient
kinetic energy

decay half life

§5.2 nuclear time scale

§9.4 prompt neutron life

potential energy; U mean proton-neutron potential energy difference
in nucleus - %

radial wave-function

normalisation volume; § 3.3 V(r) nucleon—nucleon potential

velocity

atomic number (number of protons in nucleus)

width, partial width, of an excited state

§13.1 relativistic factor (1 —v?/c?)~%

§ 2.4 coefficient of pairing energy

permittivity of free space

§11.1 Fermi energy of electron gas

§ 5.5 magnetic dipole operator

neutron, proton magnetic moment

§5.5 magnetic dlpole moment; § 11.1 stellar mass per electron; § 13. 3

. photon linear attenuation coefficient

permeability of free space
§9.3 mean number of prompt neutrons, delayed neutrons, per fission
§2.1 electric charge density; § 13.2 mass density
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Glossary of some important symbols

Peh §4.1 electric charge density in units of e
Po §4.3 nucleon number density in nuclear matter

Paucs Pns Pp number density of nu:%’, neutrons, protons
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mean life; tg;, Ty electric, magnetic, dipole transition mean life; §7.4
(r)”! partial decay rate

§ 3.4 meson field

electromagnetic scalar potential

single particle wave-function

§D.1 general wave-function

§3.3 angular terms in the nucleon-nucleon potential
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Prologue

The world is made up of some 92 chemical elements, distinguished
from each other by the electric charge Ze on the atomic nucleus. This charge
is balanced by the charge carried by the Z electrons which together with the
nucleus make up the neutral atom. The elements are also distinguished by
their mass, more than 99 % of which resides in the nucleus. Are there other
distinguishing properties of nuclei? Have the nuclei been in existence since
the beginning of time? Are there elements in the Universe which do not exist
on Earth? What physical principles underlie the properties of nuclei? Why
are their masses so closely correlated with their electric charges, and why
are some nuclei radio-active? Radio-activity is used to man’s benefit in
medicine. Nuclear fission is exploited in power generation. But man’s use of
nuclear physics has also posed the terrible threat of nuclear weapons.

This book aims to set out the basic concepts which have been developed
by nuclear physicists in their attempts to understand the nucleus. Besides
satisfying our appetite for knowledge, these concepts must be understood if
we are to make an informed judgment on the benefits and problems of
nuclear technology.

After the discovery of the neutron by Chadwick in 1932, it was accepted
that a nucleus of atomic number Z was made up of Z protons and some
number N of neutrons. The proton and neutron were then thought to be -
elementary particles, although it is now clear that they are not but rather
are themselves structured entities, We shall also see that in addition to
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neutrons and protons several other particles play an important, if indirect,
role in the physics of nuclei. In this and the following two chapters, to
provide a background to our subsequent study of the nucleus, we shall
describe the elementary particles of nature, and their interactions, as they
are at present understood.

1.1 Fermions and bosons

Elementary particles are classified as either fermions or bosons.
Fermions are particles which satisfy the Pauli exclusion principle: if an
assembly of identical fermions is described in terms of single-particle wave-
functions, then no two fermions can have the same wave-function. For
example, electrons are fermions. This rule explains the shell structure of
atoms and hence underlies the whole of chemistry. Fermions are so called
because they obey the Fermi-Dirac statistics of statistical mechanics.

Bosons are particles which obey Bose-Einstein statistics, and are
characterised by the property that an y number of particles may be assigned
the same single-particle wave-function. Thus, in the case of bosons,
coherent waves of macroscopic amplitude can be constructed, and such
waves may to a good approximation be described classically. For example,
photons are bosons and the corresponding classical field is the familiar
electromagnetic field E and B, which satisfies Maxwell’s equations.

At a more fundamental level, these properties are a consequence of the
possible symmetries of the wave-function of a system of identical particles
when the coordinates of any two particles are interchanged. In the case of
fermions, the wave-function changes sign; it is completely antisymmetric. In
the case of bosons the wave-function is unchanged; it is completely
symmetric.

There is also an observed relation between the intrinsic angular
. momentum, or spin, of a particle and its statistics. The intrinsic spin s is
quantised, with spin quantum number s (see Appendix C). For a fermion, s
takesoneof the values4,4,3,. . . ; fora boson, s takes one of the values0, 1,2,
.... A theoretical explanation of this relationship can be given within the
framework of relativistic quantum field theory.

1.2 The particle physicist’s picture of nature ,

Elementary particle physics describes the world in terms of
elementary fermions, interacting through fields of which they are sources.
The particles associated with the interaction fields are bosons. To take the
most familiar example, an electron is an elementary fermion; it carries
electric charge —e and this charge produces an electromagnetic field E, B,

v

Conservation, symmetry, parity 3

which exerts forces on other charged particles. The electromagnetic field,
quantised according to the rules of quantum mechanics, corresponds to an
assembly of photons, which are bosons. Indeed, Bose-Einstein statistics
were first applied to photons.

Four types of interaction field may be distinguished in nature (see Table
1.1). All of these interactions are relevant to nuclear physics, though the
gravitational field becomes important only in densely aggregated matter,
such as stars. Gravitational forces act on all particles and are important for
the physics on the large scale of macroscopic bodies. On the small scale of
most terrestrial atomic and nuclear physics, gravitational forces are
insignificant and except in Chapter 10 and Chapter 11 we shall ignore them.

Nature provides an even greater diversity of elementary fermions than
of bosons. It is convenient to divide the fermions into two classes: leptons,
which are not sources of the strong fields and hence do not participate in the
strong interaction; and hadrons, which take part in all interactions. The
leptons and their interactions are described in Chapter 2. The elementary
hadrons, and the proton and the neutron, form the subject matter of
Chapter 3.

1.3 Conservation laws and symmetries; parity
The total energy of an isolated system is constant in time. So also
are its linear momentum and angular momentum. These conservation laws
are derivable from Newton’s laws of motion and Maxwell’s equations, or
from the laws of quantum mechanics, but they can also, at a deeper level, be
regarded as consequences of ‘symmetries’ of space and time. Thus the law of
conservation of linear momentum follows from the homogeneity of space,
the law of conservation of angular momentum from the isotropy of space; it
does not matter where we place the origin of our coordinate axes, or in
which direction they are oriented.
‘These conservation laws are as significant in nuclear physics as
elsewhere, but there is another symmetry and conservation law which is of

Table 1.1. Types of interaction field

Interaction field Boson Spin

‘Gravitons’ postulated
W+, W, Z particles
Photons

‘Gluons’ postulated

Gravitational field
Weak field
Electromagnetic field
Strong field

[\ ]
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particular importance in quantum systems such as the nucleus: reflection
symmetry and parity. By reflection symmetry we mean reflection about the
origin, r—» r'= —r. A single-particle wave-function y(r) is said to have
parity +1 if it is even under reflection, i.e.’

Y(—1)=y(r),
and parity —1 if it is odd under reflection, i.e.
Y(—r)=—y).

More generally, a many-particle wave-function has parity + 1 if it is even
under reflection of all the particle coordinates, and parity — 1 if it is odd
under reflection.

Parity is an important concept because the laws of the electromagnetic
and of the strong interaction are of exactly the same form if written with
respect to a reflected left-handed coordinate system (Ox’, 0y/,02') as they are
in the standard right-handed system (0x, Oy, 0z) (Fig. 1.1). We shall see in
Cha;iter 2 that this is not true of the weak interaction. Nevertheless, for
many properties of atomic and nuclear systems the weak interaction is
unimportant and wave-functions for such systems can be chosen to have a
definite parity which does not change with time.

14 Units

Every branch of physics tends to find certain units particularly
congenial. In nuclear physics, the size of the nucleus makes 10~ m=1 fm
(femtometre) convenient as a unit of length, usually called a fermi. However,

1.1 The point P at r with coordinates (x, y, z) has coordinates (—x, — ¥, —2)in
the primed, reflected coordinate axes. (0x’, 0y, 02) make up a left-handed set of
axes.

P(x, y, 2)

Problems

nuclear cross-sections, which have the dimensions of area, are measured in
barns; 1b=10"28 m?=100 fm?2. Energies of interest are usually of the
order of MeV. Since mc? has the dimensions of energy, it is convenient to

quote masses in units of MeV/c2.
For order-of-magnitude calculations, the masses m, and m, of the

electron and proton may be taken as
m,~0.5 MeV/c?
m, ~938 MeV/c?
and it is useful to remember that
he~ 197 MeV fm, e*/dne,~ 1.44 MeV fm,
e /dneoghc~ 1/137, c~3x 102 fms™*,
The student will perhaps be surprised to find how easily many expressions
in nuclear physics can be evaluated using these quantities.

Problems

1.1 Show that the ratio of the gravitational potential energy to the
Coulomb potential energy between two electrons is x2.4x 10™43,

1.2(a) Show that in polar coordinates (r, 8, ¢) the reflection
r—-r=-—r isequivalentto r—r=r
"0 O=n—6, ¢d>P=¢+m
(b)) What are the parities of the following electron states of the hydrogen
atom:

1 1 % —rfa
) W100=‘77‘t (;0> e ",

1 (1N e

i = ) e cosp,

@ Yao=7 7(2n)(ao> o
Lm0 5ingemi)

1 1
(i) Y21 —m(a() a,
{ag=(4neo)h?/m.e* is the Bohr radius.)

1.3(a) Show that the wavelength of a photon of energy 1 MeV is =~ 1240 fm.

(b) The electrostatic self-energy of a uniformly charged sphere of total
charge e, radius R, is U=(3/5)e%/(4neoR). Show that if R=1fm,
U=0.86 MeV.
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Leptons and the
electromagnetic and weak
interactions

21 The electromagnetic interaction

The electromagnetic field is most conveniently described by a
vector potential A and a scalar potential ¢. For simplicity, we consider only
the potential ¢(r, t). Using Maxwell’s equations, this may be chosen to
satisfy the wave equation

102 |
vip- ¢_ _plnn @.1)

Here p(r, t) is the electric charge density due to the charged particles, which
in atomic and nuclear physics will usually be electrons and protons, and c is
the velocity of light.

In regions where p=0, equation (2.1) has solutions in the form of
propagating waves; for example, the plane wave

o(r, t? =(constant) gk r=en, (22
This satisfies
1 0%¢
provided ‘
w?=c2k2. (2.4

The wave velocity is therefore ¢, as we should expect. In quantum theory,
unlike classical theory, the total energy and momentum of the wave are

- Electromagnetic interaction 7

quantised, and can only be integer multiples of the basic quantum of energy
and momentum given by the de Broglie relations:

E=hw, p=hk (2.5)

Such a quantum of radiation is called a photon. A macroscopic wave can be

considered to be an assembly of photons, and we can regard photons as
particles, each carrying energy E and momentum p.
Using (2.4) and (2.5), E and p are related by
E?=p3c?. (2.6)
For a particle of mass m, the Einstein equation gives
E*=p%?*+m%*. )
We therefore infer that the photon is a particle having zero mass.

A second important type of solution of (2.1) exists when charged particles
are present. If these are moving slowly compared with the velocity of light,
so that the term 82¢/(c? 8t2) can be neglected, the solution is approximately
the Coulomb potential of the charge distribution. Fora particle with charge
density p,, we can take

1 [pulrs)

~ . IV 0 7 3.
o(r, t)~4m’:0 r—r| d-r. 2.7

Another charged particle with charge density p, will have a potential
energy given by

Ul 2= JPZ(Y’ I)QS(I', t) d3r

_ 1 Jpl(r,t)pf(l’at) PENPE (2.8)
4re, |l'—l’|

Electric potential energy is basically resppnsiblc for the binding of
electrons in atoms and molecules. We shall see that, in nuclear physics, itis
responsible for the instability of heavy nuclei. If magnetic effects due to the
motion of the charges are included, equation (2.8) is modified to

12

- 1 J'p,lpz"*'(l/cz)jll ‘J2 dsl‘d3l", 2.9)
dneg r—r|
where j = pv is the current associated with the charge distribution which has
velocity v(r). Thus this magnetic contribution to the energy is of relative
order v?/c2.
The electromagnetic interaction also gives rise to the scattering of

charged particles. For example, if p; and p, represent the charge
distributions of two electrons approaching each other the interaction gives




8 Leptons, electromagnetic and weak interactions

a mutual repulsion which leads to a transfer of momentum between the
particles. The process can be represented by a diagram such as Fig. 2.1. In
quantum electrodynamics, these diagrams, invented by Feynman, have a
precise technical interpretation in the theory. We shall use them only to
help visualise the physics involved. The scattering of the two electrons may
be thought of as caused by the emission of a ‘virtual’ photon by one electron
and its absorption by the other electron. In a virtual process the photon
does not actually appear to an observer, though it appears in the
mathematical formalism that describes the process.

2.2 The weak interaction

There are three weak interaction fields associated with the W+, W~
and Z particles. Each one, like the electromagnetic field, is described by a
vector and a scalar potential. However, the bosons associated with the
weak fields all have mass, and the W~ and W™* bosons are electrically
charged. The Z boson is neutral, and most similar to the photon, but it hasa
mass

M;=(92.9+ 1.6) GeV/c?~ 100 proton masses,

which is very large by nuclear physics standards.

The interactions between leptons and the electromagnetic and weak
fields were combined into a unified ‘electro-weak’ theory by Weinberg and
by Salam. The existence of the Z and W* bosons was predicted by the
theory, and the theory also suggested values for their masses. These
predictions were confirmed by experiments at CERN in 1983.

The wave equation satisfied by the scalar pd?t"ential ¢ associated with the

2.1 The scattering of two electrons of momenta #k, #k’ by the exchange of a
virtual photon carrying momentum #q. Time runs from left to right in these
diagrams. (In principle, the exchange of a Z particle (§2.2) also contributes to
electron—electron scattering, but the very short range and weakness of the weak
interaction makes this contribution almost completely negligible: the electrons
are in any case kept apart by the Coulomb repulsion induced by the photon

exchange.)

k k—q
q

K k' + q

Weak interaction S 9

Z boson is a generalisation of (2.1) and includes a term involving M:

102 [Myee)? pz(r, 0
2 @ (XL _ _pAnb
[V 2 ort ( h )_:Id’z(l', 1) o .

where p; is the neutral weak-cljarge density. There is a close, but not exact,
analogy between weak-charge density and electric-charge density, and
particles carry weak charge somewhat as they carry electric charge.

In free space where p,=0 there exist plane wave solutions of (2.10),

ik-r—or)
b

(2.10)

¢4(r, t)=(constant) e
but now to satisfy the wave equation we require

wr=ck?+cAMyc/h)?,

and with the de Broglie relations (2.5) for the field quanta we obtain the
Einstein energy-momentum relation for the Z boson:

E*=p?+M2ic*

The static solution of (2.10) which corresponds to a point unit weak
charge at the origin is

¢,(r)=— ——, writing k=" (2.11)

L e” My
4ne, r h

At points away from the origin where V?¢,—x>¢p,=0, this satisfies
equation (2.10), as may be easily checked by substitution, using the formula
V2¢,=(1/r) d*(r¢p,)/dr?. Close to the origin the solution (2.11) behaves like
the corresponding Coulomb potential 1/(4neor) of a unit point electric
charge, and hence has the correct point source behaviour. The
generalisation of (2.11) to a distribution of weak charge gives the quasi-
static solution (cf. (2.7))

! Jpz(rz e

>

(2.12)

do(r, )~

" dne, Ir—r'|

The exponential factor in the integral effectively vanishes for |r—r| greater
than a few times x ~!=h/Mc and

h/Myc~2x 1073 fm.

This is a very small distance in the context of nuclear physics: by the
uncertainty principle, low momentum sources must be spread over
distances much greater than this. Hence in the integral in (2.12) the factor p;
is slowly varying over the range of the exponential and may be taken
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outside the integral (which is then elementary):

1 e 3
: = — D e— ll
¢Z(r’ t) 47t80 Pz(r, t) f lr _rrl d

- r, 1) e 4R dR
Tane, 7" |, R

IRYE RS trt)
—30 Mzc pZ s ).

The potential energy between two particles associated with the scalar field -

¢z is, by analogy with (2.8),
Ui, = fpzz(l', bz (r, 1) dr

~L(Y (r, Dpzo(r, £) d°r |
~80 My Pzi(L, [}pz,(r, s

anid there is also a contribution from the vector part of the field, analogous -

to the magnetic contribution in (2.9), of the form

LN, (r, £) jzo(r, £) dr
8002 Mye 21T, £) ° )zo(r, s

where j, is the weak-current density.

The physical consequences of these expressions are quite different from
the electromagnetic interaction. UZ, is very much suppressed by the large
mass factor in the denominator, and it is this which largely accounts for the
‘weakness’ of the weak interaction. Also the interaction at low energies
appears as a ‘contact interaction’, effeéiively having zero range.

The electrically charged W* and W~ boson fields give rise to the most
important weak interactions, and in particular to f-decay. They obey
equations similar to those of the Z field, but the masses of the associated

- particles are somewhat smaller;

My+=My-=(80.842.7) GeV/c2.

23 Mean life and half life

Not all particles are stable: some, for example the W* and Z
bosons, have only a transient existence. Suppose that an unstable particle
exists at some instant ¢ =0; its mean life is the mean time it exists in isolation,
before it undergoes radio-active decay. If we denote by P(t) the probability
that the particle survives for a time ¢, and make the basic assumption that
the particle has a constant probability 1/z per unit time of decaying, then

2.13)
i and integrating,

Leptons 11

P(t+dt)=P(t)(1 —=dt/1),

- since (1 —dt/7) is the probability it survives the time interval dr. Hence

1 dp 1

P dr T’

P(t)= P(Q)e~"";
Since P(0)=1 we have
P(t)=e""". (2.14)

Equation (2.14) is the familiar exponential-decay law for unstable particles.

Ctis well verified experimentally.

The probability that the particle decays between times ¢, t 4 dr is clearly
P(t) x (d¢t/z), so that the mean life is

J‘" tP(t)(dt/7) = fw te”"dtjr=1.
0

0

The “half life’ T is the time at which there is a 50% probability that the

particle has decayed, i.e.
P(T)=e W=}
Hence
Ti=1log 2=0.693<.

In th'is book we have preferred to quote mean lives rather than half lives.

We refer to (1/7) as the decay rate.

24 Leptons

Leptons are spin § fermions which interact through the electro-
magnetic and weak interactions, but not through the strong interaction.
The known leptons are listed in Table 2.1.

Table 2.1. Known leptons

Mass Mean life

(MeV/c?) (s) Charge
Electron e~ 0.5110 o) —e
Electron neutrino v, <46x 1076 o 0
Muon u~ 105.659 2.197x107¢ —e
Muon neutrino v, <05 ©? 0
Taut~ 1784 (3.4+05)x 10713 —e
Tau neutrino v, <164 0 ? 0
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The electrically charged leptons all have magnetic moments of mag-
nitude ~ —eh/2 (mass) aligned with their spins.

Of these charged leptons, only the familiar electron is stable. Electrons
are structureless particles that are described by the Dirac relativistic wave-

Parity violation in muion decay 13
The instability of the heavy leptons: muon decay

The W* and W~ bosons lead to processes called f-decay, which
neither photons nor Z bosons can induce. In this chapter we illustrate this
with the example of the B-decay of the muon,; in the next chapter we shall

25

equation. This equation explains the spin and magnetic moment of the describe f-decay processes ‘involving hadrons.

electron, and has the remarkable feature that it predicts the existence of
anti-particles: these are particles of the same mass and spin, but of opposite
charge and magnetic moment to the particle. The anti-particle of the
electron is called the positron. Positrons were identified experimentally by
Anderson in 1932 soon after their theoretical prediction.

Since leptons do not interact with the strong interaction field, electrons
and positrons interact principally through the electromagnetic field. A
. positron will eventually annihilate with an electron, usually to produce two
or three photons, so that all the lepton energy appears as electromagnetic
radiation. We write these processes as

e +et o2y
e” +et -3y

The converse processes of pair-production by photons are also possible,

and pair-production from a single photon is possible provided another
(charged) particle is present to take up momentum. Quantum electro-
dynamics, based on the Dirac and Maxwell equations, describes all
processes involving electrons, positrons and photons to a high degree of
accuracy. V ‘

It is a curious fact that nature provides us also with the electrically
charged muon = and tau v~ and their anti-particles the * and t*. Apart
from their greater masses and finite lifetimes, muons and taus seem to be
just copies of the electron, and like the electron they are accurately
described by Dirac equations. We shall see that the 4~ can be used as a
probe of nuclear<harge density, but otherwise neither the muons nor the
taus play any significant role in nuclear physics.

The remaining leptons are the neutrinos v and their corresponding anti-
neutrinos denoted by v. All the experimental evidence is consistent with
their mass being zero, so that, like photons, they move with the speed of
light. However, neutrinos are fermions with spin i ‘

It is exceedingly difficult and expensive to carry out experiments with
neutrinos, but there is evidence that the electron, muon and tau have
different neutrinos, v,, v,, v, associated with them.

The muon decays to a muon neutrino, together with an electron and an

electron anti-neutrino:

U —v,+e” + 7.
The W fields play the mediating role in this decay through the two virtual
processes illustrated in Fig. 2.2. Again, in a virtual process actual W bosons
do not appear to an observer.

The W bosons can in principle produce any charged lepton and its anti-
neutrino or an anti-lepton and its neutrino, but energy must be conserved
overall. Hence in the case of muon decay the charged lepton must be an
electron. A tau decay can produce a muon or an electron (and indeed it is
sufficiently massive to decay alternatively to hadrons, as we shall see later).

It is of fundamental significance that electric charge is conserved at every
stage of a decay. It is also believed to be true of all interactions that a single
lepton can only change to another of the same type, and a lepton and an
anti-lepton of the same type can only be created or destroyed together.
There is thus a conservation law, the ‘conservation of lepton number’ (anti-
leptons being counted negatively), for each separate type of lepton.

26 Parity violation in muon decay

It is observed experimentally that in the decay of the negative
muon, the electron momentum p, is strongly biased to be in the direction
opposite to that of the muon spin s,. To explainthe implication of this

2.2 The decay p~—»v,+¢~ +7.. In (a) the muon changes to its neutrino and a
‘virtual' W~ boson, which then decays to the electron and the electron anti-
neutrino. In (b) a ‘virtual’ W' is created from the vacuum with the electron
and the electron anti-neutrino. The W * then transforms the muon into a muon

neutrino.
u v, K Yy
- + .
w e w €
e De

(@ @)
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observation for parity violation, we must first point out that there are two
types of vector.

Under the reflection in the origin (Fig. 1.1), the position vector r of a-

particle and its momentum p transform:

. | S —dr
r—r'=-r and p=ma;—>p=m———=—p, (2.15)

r and p are both true vectors.

The angular momentum L=r x p has many of the attributes of a vector,

but under reflection

L-L'=(-rx(—p)=+L.
Thus L does not have the reflection property (2.14) of the true vectors r and
p. It is called an axial vector or pseudo-vector. The intrinsic angular
momentum s of a particle is likewise an axial vector. :
. Returning to muon decay, in the reflected coordinate system, p,— —p.,
s,— +8,, so that the momentum would be said to be biased in the same
direction as the muon spin! It appears that the equations of the theory are
only valid in the original right-handed frame, and would have to be
rewritten to hold in the left-handed reflected frame. Thus the laws are not
invariant under reflection and hence parity is not conserved in muon decay.
More generally, parity is not conserved in any process involving the weak
interaction fields. -

The inequivalence of right-handedness and left-handedness is most
extreme in the case of neutrinos. Neutrinos produced in a weak interaction
process are always ‘left-handed’, with their spin anti-parallel to their
direction of motion, and anti-neutrinos are always ‘right-handed’ (Fig. 2.3).
There is no evidence that right-handed neutrinos (or left-handed anti-
neutrinos) exist at all.

The breakdown of parity conservation may be expressed slightly
differently. The reflection in the origin r - r'= —r is easily seen to be:
equivalent to mir{QF reflection in a plane, followed by a rotation through =

23 Tpe relation between momentum p and spin for a neutrino v and an anti-
neutrino V.

p P

Neutrino I | Anti-neutrino
v v
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about an axis perpendicular to that plane (e.g. the xy-plane and the z-axis,
of. Problem 1.2). There is no evidence that the laws of physics break down
under rotations, so the breakdown is in the mirror reflection: the
assumption that the mirror image of a physical process is also a possible
physical process is wrong, in so far as the weak interaction is involved.

Problems

21 Plane wave solutions of the relativistic wave-equation for a free
particle of mass m are of the form

W(r, t)=(constant)e™ ="

where

w?=c2k? +(m2c*/h?).

Show that the group velocity of a wave-packet representing a particle
of total energy E=haw is the same as the velocity of a relativistic
classical particle having the same total energy.

22 The weak charge density of an electron bound in an atom has a
similar magnitude to the electric charge density and has, similarly, a
probability distribution over the atomic dimensions of the electron’s
wave-function. Show that the ratio of the weak interaction energy to
the electrostatic interaction energy between two electrons bound in an
atom is of order of magnitude 4n(hi/(a,Mzc)*~ 1071, where aj is the
Bohr radius. (Compare this result with Problem 1.1)

2.3  An electron—positron pair bound by their Coulomb attraction is called
positronium. Show that when positronium decays from rest to two
photons, the photons have equal energy.

24 Use energy and momentum conservation to show that pair creation
by a single photon, y —»e* +e7, is impossible in free space.

2.5 Show that a muon in free space with & kinetic energy of 1 MeV will
travel a mean distance of about 90 m before it decays. ‘

26 An electron and a u* bound by their Coloumb attraction is called
muonium. Which of the following decays can occur:

(@ (wreT)—y+y

(b) @*eT)—ve+i,

(c) (ute)—er+e +v.+v,?

27 The masses of the electron and neutrinos from a muon decay are
negligible compared with the muon mass. Show that if the muon
decays from rest and the kinetic energy released is divided equally
between the final leptons then the angle between the paths of any two
of them is approximately 120°.



16

~ Leptons, electromagnetic and weak interactions

2.8 Starting from the Coulomb law and the Biot-Savart law, show that
the electric field E is a true vector field, but that the magnetic field B
is an axial vector field.

3

Nucleons and the strong
interaction

We turn now to the hadrons, the particles which interact by the
strong interaction, as well as by the weak and electromagnetic interactions.
In particular we shall describe the nucleons, that is to say, the proton and the
neutron, the forces between nucleons, and the effect of the weak interaction
on the stability of nucleons.

31 Properties of the proton and the neutron
Nucleons, like leptons, are fermions with spin 4. The mass of the
neutron is 0.14% greater than that of the proton: «

m, =939.57 MeV/c?,
m,=938.28 MeV/c2,

Thus the mass difference m, —m,=1.29 MeV/c? (x2 electron masses).

The neutron has no net electric charge. The proton has the opposite
charge to the electron: protons are responsible for exactly cancelling the
charge of the electrons in electrically neutral atoms.

The electric charge on a proton is not concentrated at a point, but is
symmetrically distributed about the centre of the proton. By the experi-
mental methods to be discussed in Chapter 4, the mean radius R, of this
charge distribution is found to be R,~0.8fm. An extended charge
distribution is also found in the neutron, positive charge in the central

(3.1
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region being cancelled by negative charge at greater distances. The matter
distribution in nucleons also extends to a distance of about R,.

Both the proton and the neutron have a magnetic dipole moment,
aligned with their spin:

1, =2.79284(eh/2m,),
fo = — 1.91304(eh/2m,).

Clearly neither magnetic moment is simply related to the value eh/
[2(nucleon mass)] expected from a simple Dirac equation, and thisis a clear
indication that the nucleons are not themselves fundamental particles.
Compelling evidence that the nucleons are the ground States of a
compotite system is given by data of which that in Fig. 3.1 is an example.
This shows the cross-section for absorption of photons by protons and by
deuterons (see § 3.3), as a function of photon energy up to 1300 MeV. The

(32)

3.1 The total photon cross-section for hadron production on protons (dashes)
and deuterons (crosses). The difference between these cross-sections is
approximately the cross-section on neutrons. (After Armstrong, T. A. et al.
(1972), Phys. Rev. DS, 1640; Nuc. Phys. B41, 445)
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The quark model . 19

cross-sections vary rapidly with energy. A precise definition of cross-section
is given in Appendix A, but for our immediate purpose it is sufficient to
remark:that the peaks are due to photons being preferentially absorbed to
create an excited state when the photon energy matches the excitation
energy of that state. Perhaps a more familiar example of photons being
absorbed by a composite system is that of atomic absorption. Similar peaks
in atomic absorption cross-sections, but at energies of a few electron volts,
correspond to the excitation of the atom to higher energy states. The
nucleon peaks have a similar interpretation, albeit on a very different energy
scale. The first peak in the proton cross-section is at a photon energy of
about 294 MeV, and corresponds to the formation of a state called the A*.
The A* is a fermion with mass of about (938 +294) MeV x 1232 MeV; its
spin has been determined to be 3.

Data for the neutron show that it has a sequence of excited states of the
same spins and almost identical energies as.has the proton. The electrical
energies associated with the charge distributions of the proton and neutron
are of order of magnitude e?/(4ne,R,)~ 2 MeV (taking R, =0.8 fm), which
is small compared with the nucleon self-energies and excitation energies.
We shall see that, in all strong interactions, protons and neutrons behave in
the same way to a good approximation. The near independence of the
strong interaction on nucleon type is an important fact for our understand-
ing of the properties of the nucleus. :

32 The quark model of nucleons

Any composite system with spin § must contain an odd number of
fermion constituents. (An even number would give integral spin.) The
highly successful quark model postulates that nucleons contain three
fundamental fermions called quarks. We cannot here present the particle
physics which establishes the validity of the quark model, but since particle
physics does have implications for the concepts of nuclear physics we give —
without attempting justification — some of the most relevant results.

As is the case with the elementary leptons, there are several types of
quark, with a curious and so far unexplained mass hierarchy. For nucleons
and nuclear physics only the two least-massive quarks are involved, the up
quark u and the down quark d. The proton basically contains two up
quarks and a down quark (uud) and the neutron two downs and one up
(ddu). These quarks are bound by the fundamental strong interaction field,
called by particle physicists the gluon field. The fact that the strong
interactions of neutrons are almost the same as those of protons is
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explained by the gluon field having the same coupling to all quarks,

independent of their type.

What are the properties of these quarks? They have mass, but the mass of :

a particle is generally determined by isolating it and measuring its
acceleration in response to a known force. Because a single quark has never
been isolated, this procedure has not been possible, and our knowledge of
the quark masses is indirect. The consensus is that much of the nucleon
mass resides in the gluon force fields that bind the quarks, and only a few
MeV/c? need be assigned to the u and d quark masses. It is well established
that the d quark is heavier than the u quark, since in all cases where two

particles differ only in that a d quark is substituted for a u quark, the particle -
with the d quark is heavier. The principal example of this is the difference in -
mass between the neutron and proton. The mass, ~2 MeV/c?, associated

with the electrical energy of the charged proton is far greater than that
associated with the (overall neutral) charge distribution of the neutron, so

that one might expect the proton to be heavier. However, the extra d quark -

in the neutron more than compensates for thlS and makes the neutron
heavier than the proton.

The electric charges carried by quarks are well verified by measurements .

of the electromagnetic transitions between the nucleon ground states and
excited states. The u has charge e and the d has charge —1{e. Thus the
proton (uud) has net charge e and the neutron (ddu) has net charge zero.
Again, since a quark has never been isolated, the evidence for these
assignments is all indirect.

The differences between neutrons and protons, other than their electric
and weak charges, are due to the u—d mass difference. This has only a small
effect on the basic strong interactions, so that the resulting strong
interaction between nucleons is almost mdependent of nucleon type. This
independence may be expressed mathematically by introducing the concept
of ‘isotopic spin symmetry’, but for our purposes this elaboration is
unnecessary.

33 The nucleop-nucleon interaction: the phenomenological

description

We shall see in later chapters that the kinetic energies and potential
energies of nucleons bound together in a nucleus are an order of magnitude
smaller than the energies (~290 MeV) required to excite the quarks in an
individual nucleon. It is, therefore, reasonable to regard a nucleus as an
assembly of nucleons interacting with each other, but basically remaining in
their ground states. To understand the physics of nuclei it is therefore
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important to be able to describe the interactions between nucleons. Since
nucleons are composite particles, we can anticipate that their interactions
with each other will not be simple. In fact they are rather complicated.
Nevertheless, after 50 years of experimental and theoretical effort a great
deal is known empirically about the forces between two nucleons, especially
at the low energies relevant to nuclear physics.

The empirical approach is to construct a possible potential which
incorporates our limited theoretical knowledge (which we shall discuss in
§3.4) and has adjustable features, mainly to do with the short-range part of
the interaction. The Schrédinger equation for two nucleons interacting
through this potential is then solved numerically and the adjustable
features are varied to fit the experimental facts, namely the properties of the
deuteron and the low-energy scattering data.

The deuteron is a neutron—proton bound state with:

binding energy =2.23 MeV,

angular momentum j=1,
' (3.3)

magnetic moment = 0.8574(eh/2m,),
electric quadrupole moment = 0.286 fm?.

Neither proton-proton nor neutron-neutron bound states exist.

The scattering data provide much more information. Nucleons have
spin §, which may be ‘flipped’ in the scattering. It can be shown that there
are five independent differential cross-sections for spin-polarized proton—
proton and proton-neutron scattering which can, in principle, be
measured. Neutron-neutron cross-sections have never been measured
directly because there are no targets of free neutrons.

As has been explained, the strong neutron—neutron interaction should be
almost the same as the strong proton—proton interaction, and both these
should be almost the same as the proton—neutron interaction for the same
states of relative motion. However, we must remember jlere the Pauli
exclusion principle: the neutron and proton can exist together in states
which are not allowed for two protons or two neutrons. This is why the
neutron and proton can have a bound state, whereas two protons or two
neutrons do not bind, without any contradiction of the principle that the
strong interaction is almost independent of nucleon type.

A large amount of careful and accurate data has been accumulated, and
the most sophisticated and accurate empirical potential has been con-
structed by a group of scientists working in Paris. Two expressions are
needed: one for the (anti-symmetric) states allowed for two protons or two
neutrons, as well as a proton and a neutron, and one for symmetric states
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accessible only to the reutron—proton system. For both cases, when the_'
spins of the two nucleons are coupled to give a total spin S=0 (see:
Appendix C) the nucleons only experience a central potential.

When the spins couple to S=1 there are four contributions to these:
potentials, which are then each of the form
VO =Ve(N+ %(NQr + Vso(r)Qso + Vaoa (025
where :

Q=3 (o, Da, 1 (3.4)

’.2

—6y°'0,

Qg =(0y +0,) L
1?Qs0y = (0, ‘L), L) +(e,-L)(e, - L).
In these expressions a(#/2) is the nucleon spin operator, L is the orbital
angular momentum operator of the nucleon pair, and the subscripts 1 and 2
refer to the two nucleons present.

Ve1 is essentially an ordinary central potential. V3Qy is called the tensor
potential. It has the same angular structure as the potential between two
magnetic dipoles and it is also interesting because it is the only part of the
potential which mixes states of different orbital angular momentum. ¥;,Q,
and V4, Qs give rise to different terms for the different couplings of spin and
orbital angular momenta. Spin orbit coupling is well known in atomic
physics, where it is due to magnetic interactions. However, these terms in
the nuclear potential, which are of major importance, arise out of the strong
interaction.

In Fig. 3.2 we show the four potentials that are most important at low
energies of interaction (< 100 MeV) and in particular are important for
nucleons in nuclei. ;

The potential Viy(r) is appropriate for low-energy proton—proton and
neutron-neutron interactions. The attractive tail is not, however,
sufficiently deep to bind two nucleons. The potentials ¥, (r), ¥so(r) and ¥4(r)
are responsible for binding the deuteron: note the deeply attractive part of
Vi(r), which is associated also with the large electric quadrupole moment of
the deuteron. -

The central potentials have the important feature of a repulsive core at
~0.8 fm, which stops nuclei collapsing. The attractive part of these
potentials binds nucleons together in nuclei. The tensor potential is
particularly important for binding the deuteron, but since it is zero on
averaging over all directions it becomes less important in heavier nuclei.
This last remark presupposes that the potential established for the
interacti‘on of two nuéleons in isolation is relevant when many nucleons are
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interacting in an atomic nucleus. We shall discuss this assumption further in
Chapter 4.

Mesons and the nucleon-nucleon interaction

Like all fermions, quarks hqvé corresponding anti-particles. Anti-
protons and anti-neutrons can exist, made up of anti-quarks, (iitid) and
(ddui); the excited states of nucleons have images of identical mass but
opposite charge in anti-quark matter. In fact the electromagnetic and
strong interactions of anti-matter seem to be identical to those of matter. It
is possible to contemplate the existence of stable anti-atoms, and macTo-
scopic bodies, made up of anti-matter, but as electrons annihilate w1t.h
positrons, so do nucleons annihilate with anti-nucleons; matter and anti-
matter, though stable in isolation, cannot coexist. To study anti-particles
we must create them in laboratories.

34

"32 The most important components of the ‘Paris potential’. (After
Lacombe, M. et al. (1980), Phys. Rev. C21, 861.)
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As well as binding three quarks or three anti-quarks together to make‘
nucleons and anti-nucleons, the strong gluon field can bind a quark and an !
anti-quark together to form a short-lived particle called a meson. Like:
nucleons, such bound pairs have a sequence of excited states.

Of most importance for nuclear physics are the zm-mesons. The
electrically charged n* and =~ are made up of (ud) and (du) pairs
respectively, and the neutral z° is a superposition (ui —da)/\/ 2 of quark
anti-quark pairs. (The orthogonal combination (ui +da)/\/ 2 belongstoa
meson called the 5.)

The masses of the n-mesons are:

mass of n* =mass of 7~ =139.57 MeV/c?,
mass of #°=134.96 MeV/c2.

(The n has mass~ 549 MeV/c2)

The quark anti-quark pairs in these mesons have orbital angular»
momentum zero and intrinsic spins coupled to give total angular
momentum zero. The first excited states also have orbital angular |
2. momentum zero, but the intrinsic spins are coupled to g1ve atotal spm w1th
quantum number S= 1. These states are called the p*, p~ and p° mesons; |
they have masses ~ 750 MeV/c2.

For reasons that are not yet understood, the force between. nucleons at|
distances X 1fm is not mediated by the basic gluon field (which is:
responsible for holding quarks together in a nucleon), but it is apparent that
it is due to the exchange of mesons. Although mesons are composne
particles, their motion as a whole is still described by a wave-function :
®(r, ), obeying in free space the wave-equation for massive particles:

18 [me
[Vz-?b?z‘ ( A ) :'q)(l',t) 0,
where m is the mass of the particle (cf. equations (2.10)~(2. 12)))

One solution of this equation describes the 7-meson field associated w1th
a nucleon of spin ¢,(f/2) at r,:
e—mclr i

r—ry ’
where g, is a measure of the meson source strength of the nucleon. The
gradient operator V, acts only on r,, so that (3.7) is evidently a solution of
(3.6) (cf. (2.11)).

The ‘dipole-like’ nature of the field (3.7) is well understood by particle

physicists,and the interaction energy between two nucleons associated with
it is of ‘dlpole—dlpole form:

(3.5

(3.6)

Ofr, )=g.(0," V1) (B.7).
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—-mr|r2 —r,|/hv

UIZOCgf(UZ'VZ)(Gl \ D I (3.8)

r1|

The n mesons are the mesons of smallest mass and hence give the largest
contribution to the interaction at large distances. The appropriate length
scale, from the exponential in (3.7), is

h/mc~ 1.4 fm.

Explicit differentiation shows that (3.8) includes a potential of the
tensor form V4(r)Qr. It is empirically established that = meson exchange is
responsible for most of the tensor potential of (3.4), and is the dominant

i contribution to the whole potential at distances |r, —r;|> 1.4 fm. At smaller

distances other meson exchange processes become important, including the
exchange of p mesons. However, the potentials at distances <0.8 fm and, in

i particular, the short-range repulsion, are empirical and so far have no

established explanation.

35 The weak interaction; S-decay

Hadrons are subject to the weak interaction as well as to the
electromagnetic and strong interactions, and it is through the weak
interaction that quarks, like leptons, are coupled to the W and Z bosons.
For example, one quark can change to another by emitting or absorbing a
virtual W boson. The phenomena of 8-decay, in which a neutron becomes a
proton or a proton becomes a neutron, proceed in this way.

In free space, the proton is the only stable three-quark system. The
neutron in free space has enough excess mass over the proton to decay to it
by the process shown in Fig. 3.3.

The mean life of the neutron in free space is 15.0 minutes. However, a
neutron bound in a nucleus will be stable if the nuclear binding energies
make decay energetically forbidden. Conversely, a proton bound in a
nucleus may change into a neutron

p—n+ e’ + Ve, -
if the nuclear binding energies involved allow the process to occur. The

3.3 The decay n - p+¢~ +v,. As with muon decay, parity is not conserved in
this weak interaction.

u
Neutron g
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energetics of f-decay will be dealt with in detail in Chapter 4, and a more;E
quantitative theory of f-decay will be given in Chapter 12. {
3.6 More quarks (
The u and d quarks are merely the two least massive of a sequence;E

of types, or ‘flavours’ of quark, and to set the discussion of p-decay above
into this wider context we list in Table 3.1 all the presently known flavours.
The existence of the more massive quarks in this table is revealed by the
observation of states similar to the nucleon states and meson states we have
already discussed, but which are apparently formed by substituting any of;
the ‘new’ quarks for the u or d quarks. Thus, for example, substituting an s
quark for a d quark, there exists a K * meson (us) (mass 493.67 MeV/c?) like!
the #* meson (ud) but heavier, and a £° baryon (uds) (mass 1193 MeV/cz):f
like the neutron (udd) but heavier. Baryon and anti-baryon are the generic
names for particles essentially made up of three quarks or three anti-quarks.
Again, since no quark has ever been isolated, the masses given in Table 3.1
are, effective masses and have no precise significance. :
Were it not for the weak interaction a heavy quark would be stable and:
there would be more absolute conservation laws, for example, the!
conservation of strangeness and the conservation of charm. Such laws holdf
for processes involving only the electromagnetic and strong interactions,:

Table 3.1. Properties of quarks

Approximate Electric

Quark mass (GeV/c?) charge (e)
Down d " 7 -4
Upu sma 3
Strange s 0.3 ]
Charm ¢ 15 £
Bottom b 52 |
Top t ~40.0? %

e
3.4 The decays L >n+n, 2 =n+u”+v,

n d d =
»—d d —
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but are not absolute since all quarks couple to the W* and Z weak
interaction fields, and a quark changes its flavour (but remains a quark!)
when it emits or absorbs a virtual W2 boson. Thus, for example, the s quark

i inthe £~ baryon can decay through processes like those shown in Fig. 3.4.

We shall see that nuclear binding energies are not sufficiently large to make
a baryon containing a heavy quafk stable even in a nucleus.

The weak interaction makes all mesons unstable. Mesons containing a
heavy quark can decay by the heavy quark changing into a lighter quark.
Another possible process is illustrated in Fig. 3.5, in which a quark and an
anti-quark annihilate through the weak interaction into an anti-muon and
amuon neutrino. This latter process is the predominant type of decay of the
charged pions. The mean life of charged pions is 2.60x 1072 s.

The #n° usually decays into two photons by the direct annihilation of the
quarks with their own anti-quarks, in a way rather similar to the decay of
positronium (an electron—positron pair e*e~ in a bound state). Such a
decay (Fig. 3.6) takes place through the electromagnetic interaction, and is
therefore much quicker: the mean life of the n°is 0.83x 10716 s,

A baryon and an anti-baryon are always created or destroyed together.
All the available experimental evidence is consistent with there being a law
of ‘conservation of baryon number’: the total number of baryons (anti-
baryons being counted negatively) is conserved in all interactions.

3.5 The decay n* — u* +v,. The charged pion was discovered by Powell and
co-workers in Bristol in 1947 by the observation of this decay.

T
u
d
w ut
V“
3.6 The electromagnetic decay. n°— y+y. -
0 v
Y () E—
a(d)
v
Problems

3.1 The spins of the neutron and the proton in the deuteron are aligned.
Show that the magnetic moment of:the deuteron is within 3% of the
sum of the neutron and proton moments. What might be the origin of
the discrepancy?
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Show that the magnetic interaction energy between two magnetic

dipoles pay and ua, is of the form Vi(r)Qr with V()=
(1o is the permeability of the vacuum.)

= (o/Amu?/r.

Verify that equation (3.8) includes terms in the nucleon-nucleon

potential of tensor form.

The Coulomb self-energy of a hadron with charge +e or —e is about !

1 MeV. The quark content and rest energies (in MeV) of some

hadrons are:

n(udd) 940, p(uud) 938

Z7(dds) 1197, Z%uds) 1192, 2+(uus) 1189
K(ds) 498, K™*(us) 494.

The u and d quarks make different contributions to the rest energy.

Estimate this difference.

Which of the following processes are allowed by the conservation

laws:

n-p+y,
p-e’+y,
p-nt+y,
p+n—on” +n°?

The decay E* ~ initiates the sequence of decays shown below:
CE*T KT +X°

|——» A%+y .
p+e” +v,
n~ +n°
y+7
Ho+,
e +v+v,

The quark content of the hadrons involved is:
E*~(ssd), X%sud), A°sud), p(uud),
K~(s,0), n~(dd), =°uia-—dd).

Classify the decays as strong, electromagnetic, or weak.

t

4

Nuclear sizes and nuclear
masses

(F

We now turn to the study of the nucleus. A nucleus is a bound
assembly of neutrons and protons. 7X denotes a nucleus of an atom of the
chemical element X containing A nucleons, of which Z are protonsand N =
(A—Z) are neutrons. For example, j 35Cl denotes a chlorine nucleus with 18
neutrons and 37Cl a chlorine nucleus with 20 neutrons. Since the chemical
symbol determmes the atomic number Z, **Cl or 37Cl is identification
enough, but the addition of the Z label is often useful. A=(N + Z) is called
the mass number of the nucleus. Nuclei which differ only in the number of
neutrons they contain are called isotopes. Nuclei of the same A4 but different
Z are called isobars.

41 Electron scattering by the nuclear charge distribution
Rutherford’s famous analysis in 1911 of the”scattering of a-
particles by matter established that the size of the nucleus of an atom is
small compared with the size of the atom. Whereas the electronic
distribution extends to a distance of the order of angstrdms (1 A=107'"m)
from the nucleus, these and later experiments showed that the distribution
of nucleons is confined to a few fermis (1 fm= 10~*° m). Early theories of a-
decay and nuclear binding energies gave estimated values for nuclear radii
of a similar magnitude.
Precise information came in the 1950s, with experiments using the elastic
scattering of high-energy electrons to probe the nuclear charge distribution.
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There is an obvious advantage in using charged leptons (electrons or
muons) to probe nuclear matter, since leptons interact with nucleons
primarily through electromagnetic forces: the complications of the strong
nuclear interaction are not present, and the weak interaction is negligible
for the scattering process. The most significant interaction between a
charged lepton, which can be regarded as a structureless point object, and
the nuclear charge, is the Coulomb force, and this is well understood. If the
nucleus has a magnetic moment, the magnetic contribution to the
scattering becomes important at large scattering angles, but this also is well
understood.

If scattering experiments are to give detailed information on the nuclear
charge distribution, it is clear that the de Broglie wavelength 1 of the
incident particle must be less than, or at least comparable with, the
distances over which the nuclear charge density changes. An electron
with (1/2n)~1fm has momentum p=2nh/A and hence energy E=
(p?c? +m?c*)t~ 200 MeV. At these energies, the electrons are described by

the Dirac relativistic wave equation, rather than by the Schrodinger
"equation. The experiments yield a differential cross-section de(E, 6)/dQ
(Appendix A) for elastic scattering from the nucleus through an angle 6,
which depends on the energy E of the incident electrons. Typical
experimental data are shown in Fig. 4.1. ;

The incident electrons are, of course, also scattered by the atomic§
electrons in the target. However, this scatteringis easily distinguished from
the nuclear scattering by the lower energy of the scattered electrons.§
Whereas the recoil energy taken up by the heavy nucleus is very small, the
recoil energy taken up by the atomic electrons is appreciable, except for !
scattering in the forward direction. (See Problem 4.1

The nuclear charge density will be described by some density function :
ep(r). (The proton charge e is put in as a factor for convenience.) This
function is not necessarily spherically symmetric — we shall mention this
later — but for nuclei which are spherically symmetric, or nearly so, we can :
assume the charge density depends only on the distance r from the centre of
the nucleus. Thep, using the Dirac wave equation for the electron, da/dQ is
in principle completely determined by p,(r), though the calculations are not
trivial. The inverse problem, that of finding p,,(r) from a knowledge of |
do/dQ, is even more difficult (see Problem 4.2). The restricted amount of :
experimental information available means that, at best, only a partial :
resolution of the problem can be made. Some idea of the results of a direct
inversion of scattering data is given by Fig. 4.2, o

It has been more usual to assume a plausible shape for p,,(r), describe this |

do/d$¥ (fm)?/steradian

P (1) (fm)™

Electron scattering
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4.1 Experimental elastic electron-scattering differential cross-section from gold
197Au at energies of 126 MeV and 183 MeV. The ﬁtted curves are calculatgd
with an assumed charge distribution of the form given by equation (4.1)', with
R=6.63{m, a=0.45fm. The cross-section to be expec}ed, at 126 MeV, if the
gold nucleus had a point.charge is shown for comparison. (Data anq
theoretical curves taken from Hofstadter, R. (1963),. Electron Scattering and
Nuclear and Nucleon Structure, New York: Benjamin.)
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4.2 The electric charge density of 233Pb from a model-independent analysis of

electron scattering data. The bars indicate the uncertainty. (Friar, J.L. &
Negele, J. W. (1973), Nuc. Phys. A212, 93)
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by a simple mathematical expression involving a few parameters, and then
determine the parameters by fitting to the scattering data. A form which has|
been widely adopted is

@.)

where the parameters to be determined are R and a, and p$ is a
normalisation constant chosen so that

jpch(r) d3r=41t f pch(r)"2 dr=2Z.
0

It should be stressed that the choice of this expression has no fundamental
significance; it just conveniently describes a charge distribution which
extends almost uniformly from the centre of the nucleus to a distance R, and
falls to zero over a well-defined surface region of thickness ~ a. This picture
is consistent with the results of direct inversion.

In Fig. 4.3 we show nuclear charge distributions for a light (:$0), a
medium (*35Ag) and a heavy (2§5Pb) nucleus obtained from experimental
scattering data, using this parametrisation of the charge density. The
corresponding values of R and a are given in Table 4.1.

As the examples in the table indicate, it appears that there is a well-

4.3 The electric charge density of three nuclei as fitted by p,(r)=

p%/[1+exp((r—R)/a)]. The parameters are taken from the compilation in
Barrett, R. C. & Jackson, D. F. (1977), Nuclear Sizes and Structure, Oxford:
Clarendon Press. |
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| defined ‘surface region” which has much the same width for all nuclei, even

light ones.

Muon interactions

The negative muon is another leptonic probe of nuclear charge. Its
properties, other than its mass of m, ~207 m, and its mean life of 2.2 x
10~ s, are similar to those of the electron. However, the radius of its lowest
Bohrorbit in an atom of charge Z is (4ne,)h?/m,Ze? and this is smaller than
the corresponding electron orbit by a factor (m,/m,). For Z =50 the radius
isonly 5 fm. Hence the wave-functions of the lowest muonic states will lie to
a considerable extent within the distribution of nuclear charge, particularly
in heavy nuclei, and the energies of these states will therefore depend on the
details of the nuclear charge distribution.

Experimentally, negative muons are produced in the target material by
the decay of a beam of negative pions, and are eventually captured in outer
atomic orbitals. Before they decay, many muons fall into lower orbits,
emitting X-rays in the transitions. The measured energies of these X-rays
may be compared with those calculated with various choices of parameters
for p.(r). Values of R and a, found in this way, agree well with results from
electron scattering.

42

The distribution of nuclear matter in nuclei

From the distribution of charge in a nucleus, which as we have seen
can be determined by experiment, we can form some idea of the distribution
of nuclear matter. If the proton were a point object, we could identify the
proton number density p,(r) with pg(r). Since the strong nuclear forces
which bind nucleons together are charge independent and of short range,
we can assume that to a good approximation the ratio of neutron density p,
to proton density p, is the same at all points in a nucleus, i.e. p,(n)/p,y(r)=
N/Z. Then the total density of nucleons p = p, + p, can be expressed as p =

*

43

Table 4.1. Nuclear radii (R) and nuclear surface

widths (a)

: R a R/A
Nucleus (fm) (fm) (fm)
180 2.61 0.513 1.04
109Ag 5.33 0.523 112
20%Pb 6.65 0.526 1.12
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(A/Z)py, where A= N + Z. The resulting nuclear matter densities for th
same nuclei we took in Fig. 4.3 are plotted in Fig. 4.4. These densities a

only approximate, since we have neglected the finite size of both proton an
neutron and the effect of Coulomb forces, but they indicate that at th
centre of a nucleus the nuclear-matter density p is roughly the same for alf
nuclei. It increases with A, but appears to tend to a limiting value Do O
about 0.17 nucleons fm ~ 3 for large 4. The existence of this limiting value p,,
known as the ‘density of nuclear matter’, is an important result. Cond
sistently with this, we find (Table 4.1), that the ‘radius’ R of a nucleus is very,
closely proportional to 4%, and, approximately, (4n/3)R3p, = A. We shall
take .

Po=0.17 nucleons fm 3

and (4.2
R=1.14%fm,

44 The masses and binding energies of nuclei in their ground states
; It thus appears that a nucleus is rather like a spherical drop of]
liquid, of nearly uniform density. How are we to understand its properties)
A nucleus is a quantum-mechanical system. We shall see later that its
excited states are generally separated by energies ~ 1 MeV from its ground
state, so that to all intents and purposes nuclei in matter at temperatures

4.4 The nucleon density of the nuclei of Fig. 4.3, with p(N=(A/Z)pu(r).
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that are accessible on Earth are in their ground states. Like any other finite
system, a nucleus in its ground state has a well-defined energy and a well-
defined angular momentum. In this chapter we shall be concerned with the
ground-state energy. Other ground-state properties of a nucleus will be
discussed in the next chapter.

< Since a nucleus is a bound system, an energy B(Z, N) is needed to pull it
completely apart into its Z protons and N neutrons. From the Einstein
relation between mass and energy, the binding energy B(Z, N) is related to
the mass m,.(Z, N) of the nucleus by '

My (Z, Ny=Zm,+Nm,—B(Z, N)/c?,

and B(Z, N) must be positive for the nucleus to be formed. We shall see that
puclear binding energies are of the order of 1% of the rest-mass energy
m, .’

Experimentally, the masses of atomic ions, rather than the masses of bare
nuclei, are the quantities usually measured directly. If m,(Z, N) is the mass
of the neutral atom,

MZ, N)=Z(m,+m)+ Nm, — BZ, N)Je* ~boewonic/?,  (44)
where b,..onic 1 the binding energy of the atomic electrons. These electronic
contributions are, for many purposes, negligible. (The simple Thomas—
Fermi statistical model of a neutral atom gives the total electronic binding
energy ~20.8Z3%eV)

Atomic masses are known very accurately, and published tables give
atomic masses rather than nuclear masses. Measurements in ‘mass
spectrometers’ depend on the deflection of charged ions in electric and
magnetic fields. Instruments of great ingenuity have been developed, giving
relative masses accurate to about one part in 107. The unit employed is the
atomic mass unit, which is defined to be ; of the mass of the neutral *2C
atom:

4.3)

1amu=931.5016 +0.0026 MeV/c2.

Differences between the masses of stable atoms and unstable, radio-
active, atoms (for which mass spectrometers may be inappropriate) can be
determined by measuring the energy release in the unstable atom decay,
again using the Finstein mass—energy relation.

Table 4.2 shows the experimental binding energies for some of the lighter
nuclei, those formed by successively adding a proton followed by a neutron
to an original neutron. Note that all the binding energies are positive: this
reflects the basic long-range attraction of the nucleon—nucleon interaction.

Also given in the table is the average binding energy per nucleon,
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B(Z, N)/A. For the heavier nuclei in the table, the average binding ener
appears to be gradually increasing to around 8 MeV, but the numbe
fluctuate somewhat from nucleus to nucleus. The fluctuation is mo
dramatically exhibited in the binding energy difference between a nucle
and the one preceding it, also shown in the table. This energy can
interpreted as the binding energy of the last nucleon added to the nucleusi
the given sequence. It is particularly large for the ‘even—even’ nuclei 4H
§Be, !2C and '§0O, and particularly small for the nuclei immediatel
following, growing steadily as the next three nucleons are added to form th
next even-even nucleus. Clearly we see here some extra binding energ
associated with neutron-neutron and proton—proton pairing. The eff
stems from the attractive character of the nucleon-nucleon interaction, an
is associated with the pairing of angular momenta discussed in Chapter 5
Table 4.2 also gives the spins and parities of the nuclei for later reference; it
will be seen that the even—even nuclei have spin zero.
As we shall see in Chapter 6, because of its low mass, low electric charge
r?and relatively large binding energy, the first even—even nucleus ${He 13
“particularly important in the nuclear physics of heavy nuclei. Indeed, $H

Table 4.2. Energies of some light nuclei (MeV)

Binding Binding
energy energy
Binding of last per
energy nucleon nucleon Spin and}

Nucleus (MeV) (MeV) (MeV) parity

H 222 22 1.1 1+

iH . 848 6.3 2.8 i+

gHe 2830 19.8 7.1 0*

g}{e 27.34 -10 5.5 3

3Li 31.99 47 53 1*

éLi 3925 73 5.6 3"

1Be 56.50 ' 17.3 7.1 o+

$Be 58.16 1.7 6.5 3"
B * 64.75 6.6 6.5 3*
g 76.21 115 6.9 3
15C L 9216 160 7.1 0*
1 EC 97.11 50 7.5 3"
1IN 104.66 7.6 7.5 1*
: zlg i ;;gg . 10.8 7.7 %:
X go 127, 12.1 80 0

g 131.76 4.1 7.8 3
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played an important role in the early history of nuclear physics and before it
was properly identified it was given a special name, the a-particle, a name
% still in use today. . :

» Some of the large binding energy of the nuclei $He, !2C and '§O can be

associated with their ‘shell structure’, which will be discussed in Chapter 5.

Asfor 8Be, its binding energy is less than that of two a-particles by 0.1 MeV,
and so the nucleus $Be is unstable. It does have a transient existence for a
time long compared with the ‘nuclear time-scale’ (§ 5.2), but if it is formed it
will eventually fall apart into two a-particles.

. Another interesting special case in Table 4.2 is that of He. The binding
energy of the last nucleon is here negative; if 3He is formed it, too, has only a
transient existence before falling apart into a neutron and an a-particle. The
other nuclei in Table 4.2 are all stable.

45 The semi-empirical mass formula

.. The features of ‘pairing energies’ and shell-structure effects,
superposed on a slowly varying binding energy per nucleon, can be
discerned throughout the range of nuclei for which data are available. We
saw in §4.3 that the density of nuclear matter is approximately constant,

1 and also that nuclei have a well-defined surface region. It appears as if a

nucleus behaves in some ways rather like a drop of liquid. This analogy is

1 made more precise in the ‘semi-empirical mass formula’, a remarkable
7 formula which, with just a few parameters, fits the binding energies of all but

the lightest nuclei to a high degree of accuracy. There are several versions of
the mass formula. The one which is sufficiently accurate for the purposes of
this book gives for the total binding energy of a nucleus of 4 nucleons, made

up of Z protons and N neutrons,

-z -dz* §
B(N,Z)=aA—bA§-—s(—IY—AQ - 4.9

The parameters a, b, s, d and J are found by fitting the formula to measured
binding energies. Wapstra (Handbuch der Physik, XXXVI111/1) gives
a=15835 MeV
b=18.33 MeV
s=23.20 MeV

d=0.714 MeV

and
+11.2 MeV for odd-odd nuclei (i.e., odd N, odd Z)

d= { 0 for even—odd nuclei (even N, odd Z, or even Z, odd N)

—11.2 MeV for even—even nuclei (even N, even Z).
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It is the first two terms in this formula which have an analogue in th
theory of liquids. The term (aA) represents a constant bulk-binding ener;
per nucleon, like the cohesive energy of a simple liquid. The second te
represents a surface energy, in particular the surface energy of a sphere. T
surface area of a sphere is proportional to the two-thirds power of i
volume and hence, at constant density of nuclcons, to A} Asina liquid, thi
term subtracts from the bulk binding since the particles in the surface a
not in the completely enclosed attractive environment of those in the bul
In liquids this term is identified with the energy of surface tension, and i
responsible for drops of liquid being approximately spherical wh
gravitational effects are small. In nuclei, gravitational effects are alwa
small, and indeed nuclei do tend to be spherical. .

The term —dZ?/4}, called the Coulomb term, also has a simpl
explanation; it is the electrostatic energy of the nuclear charge distributiog
If the nucleus were a uniformly charged sphere of radius RoA} (equatio
(4.2)) and total charge Ze, it would have energy

3 (Ze)* .
Ee=5 regRoAs “8
With R, = 1.1 fm this gives an estimate of d,d = 0.79 MeV,close to the valud
found empirically.

The term —s(N — Z)?/A is the simplest expression which, by itself, would
give the maximum binding energy, for fixed A, when N=Z (4 even)or N=
Z + 1(A odd). It is called the symmetry energy, since it tends to make nuclel
symmetric in the number of neutrons and protons. As was exemplified ir
the case of the deuteron discussed in Chapter 3, the average neutron-
proton attraction in a nucleus is greater than the average neutron-neutror
or proton—proton attraction, essentially as a consequence of the Paul
exclusion principle. Thus for a given A it is energetically advantageous to
maximise the number of neutron-proton pairs which can interact: this i
achieved by making Z and N as near equal as possible. Since the forces a
short range, the term must correspond to a ‘bulk’ effect, like the cohesiv
energy. Hence there must be a factor A in the denominator, so that overalz

the term is proportional to 4 for a fixed ratio of neutrons to protons. On
can also argue (see Problem 5.2) that the kinetic energy contribution to th
energy results in a similar term, which is absorbed in the coefficient s.
The final term in the semi-empirical mass formula is the pairing energy
5/A}, manifest in the light nuclei included in Table 4.2, It is purely
phenomenological in form and the A~} dependence is empirical. For the
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larger nuclei the pairing energy is small but, as we shall see, it does give rise

to important physical effects.
More sophisticated versions of the formula include also ‘shell structure’
effects (Chapter 5), but for nuclei heavier than neon (A4 =20) for which our

formula is appropriate these extra terms are of less significance than the five
terms of equation (4.5).

* We have in the semi-empirical mass formula a description and an
] :understanding of the binding energies of the nuclei. We shall see that it gives

a simple but profound explanation of the masses of the chemical elements
and of why there is only a finite number of stable atoms in chemistry.

4.6 The S-stability valley

Using equations (4.3) and (4.5), the mass of the neutral atom with

its nucleus having Z protons and N neutrons is given by
6 2

dz
myN, Z)c? =(Nm, + Z(m, +m,))c* —ad+bA + -

s(N - Z)2
A AZ
{neglecting the electron binding energies).
For a fixed number of nucleons A4, we can write this as a function of Z,
replacing N by A—-Z:
m(A4, Z)c2=(Am,c? —aA+bA +sA+847)
— (85 +(my —m, —m)cA)Z +(dsA™t +dAHZ?
=o—pZ+yZ2, (4.8)
Consider first the case A odd, so that =0. The plot of m,(4, Z) against Z is
a parabola, with a minimum at
(4s+ (m, —my—m,)c*)A
24s+dA%)
Thus the atom with the lowest rest-mass energy for given A has Z equal to

the integer Z;, closest to f/2y. From the form of the expression (4.9) and the
values of the parameters, it is evident that Z,;, < A/2, so that N > Z for this

nucleus.
Now p-decay, described in §3.5, is a process whereby the Z of a nucleus

changes while A remains fixed, if the process is energetically allowed. Thus if
a nucleus has Z <Z_;, the process

(4,Z2) = (A, Z+ 1) +e™ +v,

4.7)

say.

4.9)

Z=p/2y=
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is possible if or
Mo A, Z)>my (4, Z + 1) +m,, (4.1

since the mass of the anti-neutrino (if indeed it has mass) is exceedingly® ©F example, ;Be decays by K-capture:

smgll. A.dding Zm, to each side of this inequality, the condition may b¢ ” iBe+e— JLi+v,+0.86 MeV,

written m terms of atomic masses: ’ \;hcreas it cannot decay by posit}on emission. When both processes are
my(A, Z)>m,(A, Z +1). (4.11}possible, the energy release in K-capture will be 2m.c?~ 1 MeV greater

More precisely, conditions (4.10) and (4.11) differ by a few (clectrofthah in the corresponding positron emission.

volts)/c?, associated with the electronic binding energy differences, an Thus odd-4 nuclei decay to the value of Z closest to B/2y. It is clearly

since f-decay usually takes place in an atomic environment 4.11) is th highly unlikely that there will be two values of Z giving exactly the same

more suitable form. The energy released in nuclear B-decay is never larg mic masses; we expect there to be only one f-stable Z value for odd-A

enough to produce particles other than electrons or positrons, an nuclei, and such is the case.

neutrinos. . Nuclei with even 4 must have Z and N both even numbers, or Z and N
As an example, ]7Ge decays by a series of f-decays to 17Se, Z increasingé}’th odd numbers. In the semi-empirical mass formula, the even—even

by one at each stage: ti'_uclci have alower energy than the odd-odd nuclei by 264 2. This quantity

{varies from 5 MeV when 4 =20 to 1.4 MeV when A=250. Thus there are

two mass parabolas with relative vertical displacement 264~Y/c? asin F ig.

B m(A,Z)>m, (A, Z ~1). (4.13)

13Ge = JJAs+e+v,+2.75 MeV

i
JiSe+e+7,+0.68 MeV. 4.5 foxt each even value of 4.
77Qa ; ) " InFig. 4.5, the values Z =28 and Z = 30 on the lower even—even parabola
3a5¢€ is the only stable nucleus with 4 =77. . . . .
A nucl ith z o ) are both stable with respect to p-decay, since processes in which two
For :::rsulséw;no th:rZ’"‘" can dec:;y dby emlttm.ga;?os;gron‘anda neutrinoeectrons or two positrons are emitted simultaneously have not been
77p e se?uence of decays ending in J7Se is: jobserved. The figure is characteristic of nuclei with even A, and pairs of
36Kr— 3iBr+e* +v,42.89 Mev stable nuclei with different (even) Z but the same A are common. The only
’ l . 10dd-odd nuclei which are stable are the four lightest: #H,$Li,'¢Band 4N -
saSe+e’ +v.+1.36 MeV. but for 4 <20 the semi-empirical mass formula is less accurate.
Forthe process of f-decay by positron emission to be possible the conditionj  The nuclei which are observed to be p-stable are plotted in Fig. 4.6 as
18 points in the (N, Z) plane. Nuclei of constant A lie on the diagonal lines

N +Z = A. The bottom of the ‘B-stability valley’ where the B-stable nuclei

mnuc(Aa Z) >mnuc(A, yAS 1) +me,~
‘ are found is given remarkably well by the approximation (equation (4.9)).

or, in terms of atomic masses, ' 5y 45+ (my —my —m )c?) 4 414
M4, Z)>m,(A, Z ~ 1)+ 2m,. @.1) Z=pimy= 24s+d A w1
I'n .an atomic environment, a B-decay process competing with positron
emission is electron capture, in which the nucleus absorbs one of itg cloud 47 The masses of the f-stable nuclei
of atomic electrons, emitting only a neutrino. For example, With the approximation Z = 2y, the binding energies of the f-

33Br+e— ]7Se+ v, +2.38 MeV. stable nuclei can be calculated from equation (4.5). Neglecting the pairing
NS o : . ) encrgy, the resulting binding energy per nucleon B(4)/A is plotted against A
Such processes are often referred to as K-capture, since the electron is most in Fig. 4.7 and the various contributions to B( A)/Aare displayed in Fig, 4.8.

likely to come from the i ‘K-shell’ i
cond); tion for K-capture tonllar;er?s?;l K slhell of atomic electrons. The| |y should be noted that apart from pairing effects the bulk term is the only
possible 1s less restrictive than (4.12): , | positive contribution to the binding energy. The initial rise of B/A with A is
Moo A, Z)+m,>m, (4, Z - 1), simply due to the negative surface contribution diminishing in magnitude
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relative to the bulk contribution as the size of the nucleus increa:}

However, as A and therefore Z increase further, the quadratic Coulo:
term becomes important and produces a maximum on the curve.

the most part due to the quantum mechanical ‘shell’ effects, which an

considered in the next chapter. The maximum binding energies lie in tf .

neighbourhood of 3¢Fe.
48 The energetics of a-decay and fission
The peak in the binding energy curve makes possible other modg
of decay for a heavy nucleus which is stable against f-decay. Since there is{
gradual decrease of (B/A) with A for the heavier nuclei, it may b
energetically advantageous for a heavy nucleus to split into two smallg
nuclei, which together have a greater net binding energy. The most commo

4.5 The atomic masses of atoms with A=64 relative to the atomic mass of
$3Ni. Open circles O are odd—odd nuclei, filled circles @ are even—even nucle;
The theoretical even—even and odd-odd parabolas are drawn using the
parameters of equation (4.5). Note the odd—odd nucleus $3Cu, which can

B~ -decay to $8Zn or B*-decay to $ENi, both of which are stable, naturally
occurring, isotopes. These decays are discussed in detail in Chapter 12. )

Atomic mass (MeV/c?)

Energetics of a-decay and fission 43

such process is the emission of an a-particle. As Table 4.2 shows, $He has the
ecomparatively large binding energy of-28.3 MeV. The condition for a-

1 emission to be possiblefrom a nucleus(4, Z) to give a nucleus (4 —4,Z ~2)
The curve gives the observed nuclear-binding energies quite well. Tk -,
small deviations of the experimental values from the smooth curve are fg

4.6 The p-stability valley. Filled squares denote the stable nuclei and long-lived
nuclei occurring in nature. Neighbouring nuclei are unstable. Those for which
@ data on masses and mean lives are known fill the area bounded by the lines.
For the most part these unstable nuclei have been made artificially. (Data
taken from Chart of the Nuclides (1977), Schenectady: General Electric

Company.)
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is

For (A, Z) on the line of f-stability, this condition is always satisfied fo
sufficiently large A, A 2 165, and all such nuclei are, in principle, able to em
a-particles. However, we shall see in Chapter 6, where the physic
mechanism of a-decay is analysed, that decay rates are so slow that the;
stable nuclei can also be regarded as a-stable up to 233Bi. Beyond, onl
some isotopes of Th and U are sufficiently long-lived to have survived

B/A (MeV)

9.0

8.5

8.0

7.5

Nuclear sizes and masses

B(A,Z)<B(A~4,Z —2)+28.3 MeV.

4.7 The binding energy per nucleon of B-stable (odd-A4) nuclei. Note the

displaced origin. The smooth curve is from the semi-empirical mass formula
with Z related to A4 by equation (4.14). Experimental values for odd-A nuclei
are shown for comparison; the main deviations (< 1%) are due to ‘shell effects

not included in our formula.
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oN Earth since its formation; other unstable heavy elements are produced
(4.1§ &ither from the decay of these, or artificially.

o

Contributions to B/A (MeV)

¥ Beyond the heavy elements o
bring the Periodic Table to an end.

% Another energetically-favourable process which is possible when A is
large is the splitting of a nucleus into two more nearly equal parts. This is
called fission. The energetics of fission may be explored using the semi-
empirical mass formula, and in Chapter 6 we shall investigate the rate of
spontaneous fission processes. ’ ,
; f the actinide group, a-decay and fission

48 The contributions to B/A. Note that the surface, asymmetry and Coulomb
terms all subtract from the bulk term.
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“potential is applied to particular light nuclei. For example, the bindi
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49 Nuclear binding and the nucleon—nucleon potential ,
To what extent do the nuclear properties discussed in this chapt
follow from the nucleon—-nucleon potential introduced in Chapter 3? Mu
theoretical effort has been expended on this question. In a nucle
containing three or more nucleons, the nuclear potential energy need not ¢
the simple sum of two-body potentials over all pairs of nucleons: since t
nucleons are composite particles, there may well be additional interaction$

Even if the possibility of additional interactions is not considered, t
computations are not easy but it appears that the two-body potentials age.
the dominant contribution to the nuclear potential energy. For
nuclear matter the Paris potential gives a value of 16 MeV/nucleon for t
binding energy per nucleon, in good agreement with values found for t
parameter a in the semi-empirical mass formula (4.5). However,
calculated density of nuclear matter is somewhat too high. The
potential gives 0.94 fm rather than the empirical 1.1 fm for the parameter
4.2).

Similar semi-quantitative agreement is found when the two-nucl

energy of 7H is calculated to be 7.38 MeV, and the experimental val
(Table 4.2) is 8.48 MeV.

Problems

A relativistic electron whose rest mass can be neglected has energy E,
It scatters elastically from a particle of mass M at rest and after the
collision has turned through an angle 8 and has energy E'.

4.1

Show that the total energy of the struck particle after the collision is
Ey=E—E+Mc?.
Show that its momentum is
P, =[E*+E?-2EE cos 0]¥c.
Hence (using EZ = P,c*+ M?c*) show that the fraction of energy lost
by the electron is
E-F 1

E *1+Mc*/[E(1—cos 0)]
For E~a few hundred MeV, show that this is small if the struck

particle is a heavy nucleus, and is large (except for 8~0) if the struck
particle is an electron.

(@)

()

©

42 In quantum mechanics, the differential cross-section for the elastic
scattering of a relativistic electron with energy E»m.c? from a fixed

electrostatic potential ¢(r) is given in Born approximation, and

{a)

(b

44

(a)

(b
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neglecting the effects of electron spin, by
do [EN*/1\* ) 2

== — iq-r d:!

in=(52) G (¢ o)

where q is the difference between the final and the initial wave vectors
of the electron.

Show that g=|q|=(2E/hc) sin (6/2), where 8 is the scattering angle.

Poisson’s equation relates the potential ¢.(r) to the charge density
epalr) by V2. = —epy, /eo. Noting V2e '= —g2¢™"", and integrating

by parts, show that
el . 2
(£ [ratrerwar).
€o

de [EN*1\*1
da \2n/\he) ¢*

For light nuclei (for which the Born approximation has a greater
validity) a measured cross-section can be used to infer the Fourier
transform of the charge distribution, as this example indicates.

Show that the characteristic velocity v of a lepton of mass m bound in
an atomic orbit is given by v/cxh/amc =143, where a= (dney)h?/me? is
the appropriate Bohr radius for that lepton. Hence show that the
muon mean life is long compared with the characteristic timescale a/v
for its motion in an atomic orbit.

The ground state wave-function of a lepton of mass m in a2 Coulomb
potential —Ze?/(dmeyr) is

3
ll'(r)=*£~(—z-) g%
Jr\a

where a=(4ng,)h?/me?, and the corresponding binding energy E is
Zh*2ma’.
The finite size of the nucleus modifies the Coulomb energy for r<R,
the nuclear radius, by adding a term of the approximate form
Z2 3 2 R
4negR|2 2R* v
Show that the volume integral of this potential is
Y Ze*R?
Vi) d¥r=—"—.
J T
Show that the first-order correction to the binding energy due to this
term, AE={ y*(n)V(riy(r) d’r, is

(Note that the lepton wave-function can be taken to be constant over
nuclear dimensions.)
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4.5

4.6

417

Nuclear sizes and masses

For the nucleus $$Zn show that

ﬂZ-sz 1075 for electrons. '

— 0.2 for muons.

Using Table 4.2 show that §Be can decay to two a-particles with an :
energy release of 0.1 MeV, but that *2C cannot decay to three «-

5

Ground state properties of
nuclei; the shell model

particles. Show that the energy released (including the energy of the

photon) in the reaction ?H + $He — §Li+y is 1.5 MeV.

Consider nuclei with small nucleon number A4 and such that
Z =N=A/2. Neglecting the pairing term, show that the semi- empmcal
mass formula then gives the binding energy per nucleon

B/A=a—bA™ —(d/a)43, :
Show that this expression reaches a maximum for Z = A4/2=26 (iron).:
Using the formula (4.14) calculate Z for A= 100 and 4=200. :

. Compare your results with Fig. 4.6 and comment.
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4.9

The carbon isotope !¢C is produced in nuclear reactions of cosmic
rays in the atmosphere. It is f-unstable,
14C > 14N +e” +v,+0.156 MeV,
with a mean life of 8270 years.

It is found that a gram of carbon, newly extracted from the
atmosphere, gives on average 15.3 such radio-active decays per
minute. What is the proportion of !#C isotope in the carbon?

odd A4, explain why there are about 300 S-stable nuclei with masses
up to that of 293Bi. What is the average number of isotopes per
element? 4

‘5.1

Nuclear potential wells
In the last chapter, we set out a semi-empirical theory for the
bmdmg energy of an atomic nucleus, and quantum-mechanical considera-

;hons came in only rather indirectly. Experimental atomic masses show
‘deviations from the smooth curve given by the semi-empirical mass
§formula, deviations which we said were of quantum-mechanical origin.
On the basis of the different properties of nuclei with even 4 and with’

Since a nucleus in its ground state is a quantum system of finite size, it has

?éngular momentum J, with quantum number j which is some integral
%multiple of 4. If j #0 the nucleus will have a magnetic dipole moment, and it
‘may have an electric quadrupole moment as well.

The nuclear angular momentum and magnetic moment manifest them-

iselves most immediately in atomic spectroscopy, where the interaction
ibetween the nuclear magnetic moment and the electron magnetic moments
'gives rise to the hyperfine structures of the electronic energy levels. In
Efavourable cases both j and the magnetic moment may be deduced from this
‘hyperfine splitting.

The observed values of nuclear angular momenta give strong support to
the validity of a simple quantum-mechanical model of the nucleus: the

‘nuclear shell model. In this model, each neutron moves independently in a

common potential well that is the spherical average of the nuclear potential

‘produced by all the other nucleons, and each proton moves independently

in a common potential well that is the spherical average of the nuclear




