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Neutrino Physics

R. D. Peccei

Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547

Abstract. These lectures describe some aspects of the physics of massive neutrinos.
After a brief introduction of neutrinos in the Standard Model, I discuss possible pat-
terns for their masses. In particular, I show how the presence of a large Majorana mass
term for the right-handed neutrinos can engender tiny neutrino masses for the observed
neutrinos. If neutrinos have mass, different flavors of neutrinos can oscillate into one
another. To analyze this phenomena, I develop the relevant formalism for neutrino
oscillations, both in vacuum and in matter. After reviewing the existing (negative)
evidence for neutrino masses coming from direct searches, I discuss evidence for, and
hints of, neutrino oscillations in the atmosphere, the sun, and at accelerators. Some of
the theoretical implications of these results are emphasized. I close these lectures by
briefly outlining future experiments which will shed further light on atmospheric, accel-
erator and solar neutrino oscillations. A pedagogical discussion of Dirac and Majorana
masses is contained in an appendix.

I NEUTRINOS IN THE STANDARD MODEL

Neutrinos play a special role in the SU(2)×U(1) electroweak theory. While the
left-handed neutrinos are part of SU(2) doublets

Li =

(
ν`i
`i

)

L

, `i = {e, µ, τ} , (1)

the right-handed neutrinos are SU(2) singlets. Since the electromagnetic charge
and the U(1) hypercharge differ by the value of the third component of weak isospin

Q = T3 + Y , (2)

one sees that the right-handed neutrinos (ν`i)R carry no SU(2) × U(1) quantum
numbers. The above has two important experimental implications:

i) The neutrinos seen experimentally are those produced by the weak interactions.
These neutrinos are purely left-handed.

ii) Because one cannot infer the existence of right-handed neutrinos from weak
processes, the presence of (ν`i)R can only be seen indirectly, most likely through
the existence of neutrino masses. However, it should be noted that neutrino
masses do not necessarily imply the existence of right-handed neutrinos.



Before discussing issues connected with neutrino masses, it is useful to summarize
what we know about the left-handed neutrinos from their weak interactions. In the
electroweak theory these neutrinos couple to the Z-boson in a universal fashion

LZνν̄ =
e

2 cos θW sin θW
Zµ[JNC

µ ]ν , (3)

where

[JNC
µ ]ν =

∑

i

(ν̄`i)Lγµ(ν`i)L . (4)

Precision studies of the Z-line shape allow the determination of the number of
neutrino species i, since as this number increases so does the Z total width. Each
neutrino type (provided its mass mνi � MZ

2
) contributes the same amount to the

Z-width [1]

Γ(Z → ν`i ν̄`i) =

√
2GFM

3
Z

24π
ρ . (5)

Here GF is the Fermi constant as determined in µ-decay [2] and ρ is related to the
axial coupling of the charged leptons to the Z-boson: ρ = (2g`A)2. Using [1]

g`A = −0.50102 ± 0.00030 , (6)

which is the average of the results obtained by the four LEP collaborations and
SLD, one has numerically

Γν ≡ Γ(Z → ν`i ν̄`i) = (167.06 ± 0.22) MeV . (7)

Using the above, the number of different neutrino species, Nν , can then be derived
from the precision measurements of the Z total width and of its partial width into
hadrons and leptons using the (obvious) equation

Γtot = Γhad + 3Γlept +NνΓν . (8)

From a fit of the Z-line shape for e+e− → µ+µ− and e+e− → hadrons at LEP
one can extract very accurate values for Γtot, Γlept and Γhad:

Γtot = (2.4939 ± 0.0024) GeV

Γlept = (83.90 ± 0.1) MeV

Γhad = (1.7423 ± 0.0023) GeV . (9)

Whence it follows that the, so-called, invisible width is

Γinv = NνΓν = (499.9 ± 3.4) MeV (10)

and thus one deduces for Nν—the number of neutrino species:



Nν = 2.992 ± 0.020 . (11)

This result strongly supports the notion, expressed in Eq. (1), that there are only
3 generations of leptons.

It turns out that one can get a more accurate value for Nν by using other infor-
mation derivable from the Z-line shape. The cross-section for e+e− → hadrons can
be expressed in terms of three factors: [3] a peak cross-section

σo =
12πΓleptΓhad

Γ2
totM

2
Z

, (12)

a Breit-Wigner factor

BW(s) =
s Γ2

tot

(s−M2
Z)2 + s2Γ2

tot/M
2
Z

, (13)

and a computable initial state bremsstrahlung correction (1− δQED(s)), with

σhad = σo BW(s)(1 − δQED(s)) . (14)

The value of σo extracted from an analysis of the cross-section for e+e− → hadrons
at LEP [1]

σo = (41.491 ± 0.058) nb (15)

can be combined with the LEP results for the ratio of hadronic to leptonic partial
widths of the Z

R` =
Γhad

Γlept
= 20.765 ± 0.026 (16)

to deduce, with a little bit of theoretical input, a value for Nν . This value, as we
will see, is slightly more accurate than that given in Eq. (11).

Using Eqs. (8), (10), (12), and (16), one can write

Nν =
Γinv

Γν
=

Γlept

Γν

{
Γtot

Γlept
− Γhad

Γlept
− 3

}
=

Γlept

Γν

{√
12πR`

σoM2
Z

−R` − 3

}
. (17)

In the Standard Model, the ratio Γlept/Γν is very accurately known:

Γν
Γlept

∣∣∣∣∣
SM

= 1.991 ± 0.001 . (18)

Using this value in Eq. (17), along with the experimentally determined Z mass
MZ = (91.1867± 0.0021) GeV and the values of σo and R` measured at LEP, gives

Nν = 2.994 ± 0.011 ; Γinv = (500.1 ± 1.9) MeV . (19)



These values are consistent with those in Eqs. (10) and (11), but are about a factor
of two more accurate.

There is an analogous equation to Eq. (3) describing the coupling of the W ± bo-
son to the leptonic charged currents. Again only left-handed neutrinos are involved.
One has

LW`ν` =
e√

2 sin θW
{W µ

+J
lept
µ− +W µ

−J
lept
µ+ } , (20)

where

J lept
µ− = (J lept

µ+ )† =
∑

i

¯̀
iLγµν`iL . (21)

The states that appear in Eq. (21) in general are not mass eigenstates, since mass
generation can mix leptons of the same charge among each other. Nevertheless,
one can always diagonalize the charged lepton mass matrix by a by-unitary trans-
formation of the left- and right-handed charged lepton fields:

`L = U ` ˜̀
L ; `R = V ` ˜̀

R . (22)

After this transformation, the charged currents in Eq. (21) read

J lept
µ− = (J lept

µ+ )† =
∑

ij

˜̀
iLγµ(U `)†ijν`jL =

∑

i

˜̀
iLγµν̃`iL , (23)

where

ν̃`L = (U `)†ν`L . (24)

Note that because U ` is unitary, the neutral current [JNC
µ ]ν is the same whether

it is expressed in terms of ν`L or ν̃`L. Conventionally, the states ν̃`iL are called
weak interaction eigenstates, since they are produced in the decay of a W +

boson in association with a physically charged lepton ˜̀
i of definite mass. These

states, of course, are also pair produced by the Z-boson. For ease of notation, in
what follows I will drop the tilde on both ˜̀

iL and ν̃`iL with the understanding that
the states now called ν`iL are those produced by the weak interactions—they are
the weak interaction eigenstates. Similarly, the charged leptons `i are the states
associated with a diagonal mass matrix

M` =



me

mµ

mτ


 . (25)



II PATTERNS OF NEUTRINO MASSES

With these preliminaries underway, I want now to examine in a bit of detail
the possible patterns of neutrino masses. To do so, it is useful to first review how
fermion masses originate in field theory. The mass term with which everybody is
acquainted with is one involving a fermion ψ and its conjugate ψ̄ = ψ†γ0:

Lmass = −mψ̄ψ = −m(ψLψR + ψRψL) , (26)

with ψL, ψR being the usual projections

ψL =
1

2
(1− γ5)ψ ; ψR =

1

2
(1 + γ5)ψ . (27)

This term, obviously, conserves fermion number

ψ → eiαψ ; ψ̄ → e−iαψ̄ (28)

and gives equal mass for particles and antiparticles

mψ̄ = mψ = m . (29)

For particles carrying any U(1) quantum number, like electromagnetic charge, it
is clear that Lmass is the only possible mass term, since to preserve these U(1)
quantum numbers one needs always to have particle-antiparticle interactions.

Neutrinos, however, provide an interesting exception. Because neutrinos do not
have electromagnetic charge, it is possible to contemplate other types of mass terms
for them besides the particle-antiparticle term given in Eq. (26). These other
neutrino mass terms, contain two neutrino (or two antineutrino) fields. Hence they
violate fermion number (and in some cases SU(2)×U(1)), but otherwise are allowed
by Lorentz invariance.

As we discuss in more detail in Appendix A, one can write three different types
of mass terms for neutrinos:

Lνmass = − [νRmDνL + νLm
†
DνR]− 1

2
[νRC̃mSνR

T + νTRC̃m
†
SνR]

− 1

2
[νTL C̃mTνL + νLC̃m

†
TνL

T ] . (30)

Here the mass matrices mD,mS,mT are Lorentz scalars. However, their presence
is only possible as a result of different symmetry breakdowns. Specifically, mD

conserves fermion number, but violate SU(2) × U(1) since it does not transform
as an SU(2) doublet. This fermion number conserving mass is often called a Dirac
mass. Thus, in a happy confluence of notation, mD can stand both for a Dirac mass
and a doublet mass. Both mS and mT violate fermion number by two units and
are known as Majorana masses. Because mS couples νR with itself, clearly it is an



SU(2)× U(1) invariant. This is not the case for mT , which violates SU(2)× U(1)
because it does not transform as an SU(2) triplet.

The matrix C̃ which enters in the Majorana mass terms in Eq. (30) is there
to preserve Lorentz invariance. Appendix A contains a detailed discussion of this
point, along with a pedagogical review of how one constructs 4-spinors starting from
2-dimensional Weyl spinors. I note here only that C̃ is not to be confused with the
matrix C connected with how Dirac fields transform under charge conjugation. [4]1

Under the charge conjugation operator U(C) a Dirac field ψ is transformed into its
Hermitian conjugate ψ†:

U(C)ψU(C)−1 = Cψ†(x) . (31)

The matrix C is necessary to insure the invariance of the Dirac equation under
charge conjugation and obeys the restriction

Cγ∗µC
−1 = −γµ . (32)

In general, C depends on the γ-matrix basis used. In the Majorana basis, where the
γ-matrices are purely imaginary, then C = 1. At any rate, the matrix C̃ appearing
in Eq. (30) is related to C by [5]

C̃ = CγoT . (33)

It is easy to check that instead of (32) C̃ obeys

C̃γTµ C̃
−1 = −γµ . (34)

The reason the matrix C̃ appears in Eq. (30) is because it relates the, so-called,
charge conjugate field ψc to ψ̄ rather than to ψ†. In view of the way the charge
conjugation operator acts on the fermion field ψ (see Eq. (31)), it is natural to
define the charge conjugate field ψc as

ψc(x) = Cψ†(x) . (35)

Now ψ̄ = ψ†γ0, so one also has that

ψc(x) = Cγ0T ψ̄T (x) = C̃ψ̄T (x) . (36)

So C̃, indeed, serves to relate ψ̄ to ψc.

1) Unfortunately, the distinction between C and C̃ is often blurred in the literature.



III THE SEE-SAW MECHANISM

Eq. (30) displays the most general neutrino mass term, involving three distinct
mass matrices mD, mS and mT . If there are only three flavors of neutrinos these
are 3 × 3 matrices. For the moment this is what we shall assume, but we shall
return to this point later on.

One can write Eq. (30) in a more symmetrical way by replacing the transposed
fields in this equation by the charge conjugate field. Recall that [cf. Eq. (35)]

ψc = C̃ψ̄T ; ψc = ψT C̃ . (37)

Hence, for example, one can write2

νRνL = −νTL νR
T = νTL C̃C̃νR

T = νcLν
c
R . (38)

Thus

νRνL =
1

2
[νRνL + νcLν

c
R] . (39)

Using these equations, Lνmass can be written in the following compact way:

Lνmass = −1

2

[
(νcL νR)

(
mT mT

D

mD mS

)(
νL

νcR

)]
+ h.c. (40)

For 3 generations of neutrinos, the six mass eigenstates mi are the eigenvalues of
the 6× 6 matrix

M =

(
mT mT

D

mD mS

)
. (41)

BecauseM is not necessarily Hermitian, its diagonalization necessitates a bi-unitary
transformation

U †RMUL = Mdiag , (42)

where UL and UR are 6× 6 unitary matrices. This diagonalization is accomplished
by a basis change on the original neutrino fields

ψL =

(
νL

νcR

)
; ψR =

(
νcL
νR

)
(43)

to a new set of fields ηL and ηR defined by the equations:

ψL = ULηL ; ψR = URηR . (44)

2) The minus sign in the second term below comes from Fermi statistics.



It is useful to consider the simple, but physically interesting case, [6] of just one
family of neutrinos. Further, let us imagine mT = 0 and mS � mD. The 2 × 2
matrix M in this case reads simply

M =

(
0 mD

mD mS

)
. (45)

This matrix has two eigenvalues, given approximately by mS and −m2
D/mS. That

is, in this case the spectrum splits into a very heavy neutrino of (approximate) mass
mS and a very light neutrino of (approximate) mass m2

D/mS.3 This, so called, see-
saw mechanism is very suggestive. It is natural to expect that mD should be of
the order of the charged lepton mass, corresponding to the neutrino in question:
mD ∼ m`. Then the spectrum of leptons has a natural hierarchy:

(mν)light ∼ m`

(
m`

mS

)
� m` � (mν)heavy ∼ mS . (46)

So, if there is a large mass scale associated with the right-handed neutrinos (the
mass scale mS, which is not constrained by the scale of SU(2) × U(1) breaking,
since it is an SU(2) × U(1) singlet) one readily understands why neutrino masses
could be so much lighter than the corresponding charged lepton masses.

The matrix M in the simple 2×2 example above is diagonalized (approximately)
by the orthogonal matrix

U =

(
1 mD/mS

−mD/mS 1

)
. (47)

The two neutrino mass eigenstates are then

ηL ≡
(
η1

η2

)

L

=

(
1 −mD/mS

mD/mS 1

)(
νL

νcR

)
(48)

ηR ≡
(
η1

η2

)

R

=

(
1 −mD/mS

mD/mS 1

)(
νcL
νR

)
. (49)

I note that the mass eigenstates η1 and η2 are Majorana (self-conjugate) states

η1 = η1L + η1R = (νL + νcL)− mD

mS
(νcR + νR) = ηc1 (50)

η2 = η2L + η2R = (νcR + νR) +
mD

mS
(νL + νcL) = ηcL . (51)

The νL state which enters in the weak interactions, for all practical purposes is,
essentially η1L. That is, it is the state associated with the light neutrino eigenstate
(m1 ' m2

D/mS):

3) For fermion fields, the sign of the mass term is irrelevant since it can be changed by a chiral
transformation ψR → exp

[
iπ

2

]
ψR; ψL → exp

[
−iπ

2

]
ψL which leaves the rest of the Lagrangian

invariant.



νL = η1L +
mD

mS
η2L . (52)

The right-handed neutrino νR, on the other hand, is essentially the heavy neutrinos
eigenstate η2R (m2 ' mS):

νR = η2R −
mD

mS
η1R . (53)

This simple example can be easily generalized to the 3×3 case of interest. Again,
if the matrix mT is negligible (i.e. if its eigenvalues are negligibly small), then the
neutrino mass matrix M takes the approximate form

M =

(
0 mT

D

mD mS

)
. (54)

Provided the eigenvalues of mS are large compared to those of mD, then again the
spectrum separates into a light and heavy neutrino sector. The light neutrinos have
a 3× 3 mass matrix

(Mν)light = mT
Dm

−1
S mD , (55)

while the heavy neutrino mass eigenstates are the eigenstates of the 3× 3 matrix

(Mν)heavy = mS . (56)

The see-saw mechanism, in my view, is the only natural way to understand eV
neutrino masses. Let me expand a bit on this point. Simce mS is an SU(2)×U(1)
invariant parameter, there are no constraints on it. On the other hand, as we
discussed earlier, both mD and mT can only originate after SU(2)×U(1) breaking.

The Yukawa interaction, of νR with a left-handed doublet L =

(
ν`
`

)

L

via a Higgs

doublet Φ =

(
φ0

φ−

)

LYukawa = −Γν̄RΦL + h.c. , (57)

leads to a Dirac mass

mD = Γ〈φ0〉 . (58)

Since 〈φ0〉 is fixed by the scale of the SU(2) × U(1) breakdown:

〈φ0〉 =
1

(
√

2 GF )1/2
∼ 180 GeV , (59)

to get mD to have a value in the eV range requires that Γ ∼ 10−11!



The situation is not much less artificial in the case of mT . In this case, to get a
non-zero value for mT it is necessary to introduce a Higgs triplet field ~∆. This field
can couple to L ⊗ L so that if, indeed, ~∆ gets a VEV one can generate a triplet
mass mT . In detail, the triplet coupling involving ~∆ has the form

Ltriplet = −1

2
{ΓTLT C̃~τ · ~∆L}+ h.c. , (60)

where ΓT is an unknown coupling constant. When the neutral component of ~∆,
∆o, gets a vacuum expectation, then Ltriplet generates a mass term for νL:

Lνmass = −1

2
ΓT 〈∆o〉{νTL C̃νL}+ h.c. (61)

and mT = ΓT 〈∆o〉. The only real constraint on 〈∆o〉 comes from precision mea-
surements of the ρ parameter, typifying the NC to CC ratio. Experimentally [1]
one finds

ρexp = 1.00412 ± 0.00124 . (62)

The presence of the triplet Higgs interaction modifies the ρ parameter from unity
at the tree level and one has: [7]

ρ = 1 − 2

(
〈∆o〉
〈φ0〉

)2

+ rad. corr. (63)

Using the error on ρ in Eq. (62) as an estimate of the size of 〈∆o〉 implies that
〈∆o〉 ≤ 4 GeV. So, also in this case, if 〈∆o〉 is near this limit to get neutrino masses
in the eV range one needs a Yukawa strength of order ΓT ∼ 10−9. If 〈∆o〉 << 〈φ0〉
then ΓT can be larger, but one is left to explain the reason for the doublet-triplet
VEV hierarchy.

Elementary Higgs triplets do not emerge very naturally in models. 4 However,
one can always get an effective triplet out of two Higgs doublets:

~∆ ∼ ΦTC~τΦ (64)

where C is an appropriate charge conjugation matrix. Effective L-violating interac-
tions involving pairs of doublet Higgs fields arise quite naturally in Grand Unified
Theories [9] as dimension 5 terms:

Ld=5
eff =

g

2Λ
(LT C̃~τL) · (ΦTC~τΦ) + h.c. (65)

In the above, Λ is a scale associated with the GUT breakdown scale and g is a
coupling constant. Clearly the above interaction gives

4) An exception is provided by left-right symmetric models where triplets have often been con-
sidered to give the requisite symmetry breaking. [8]



mT =
g〈φ0〉2

Λ
. (66)

Since 〈φ0〉 ∼ 102 GeV, with g ∼ O(1), one gets mT ∼ 10−2 eV for scales Λ ∼ 1015

GeV, which are typical of GUTs. Note that the above formula for mT is quite
similar in spirit to the see-saw expression for light neutrinos

(mν)
see−saw
light ∼ m2

D

mS
∼ 〈φ

0〉2
mS

, (67)

since mD ∼ 〈φ0〉. In either case, new physics at a large scale (either a large νR

mass scale mS or the GUT scale Λ) produces a light neutrino. It is clearly more
appealing physically to have light neutrinos be the result of new physics at high
scales, rather than simply as a result of some Yukawa coupling being unnaturally
small.

IV NEUTRINO OSCILLATIONS IN VACUUM

If neutrinos have mass then, in general, the neutrinos produced by the weak
interactions (weak interaction eigenstates) are not states of definite mass (mass
eigenstates). In the basis where the charged lepton mass matrix is diagonal [c.f.
Eq. (25)], it follows from Eq. (23) that the neutrino weak interaction eigenstates
are fixed by the corresponding lepton produced in the associated weak process.
That is, the piece of the weak current J lept

µ− involving the charged lepton `i =
{e, µ, τ} will always involve the corresponding neutrino weak interaction eigenstate
ν`i = {νe, νµ, ντ}. These, left-handed, neutrino weak interaction eigenstates are
superpositions of neutrino mass eigenstates νi:

ν`j =
∑

i

U`j iνi . (68)

The matrix U`ji, in general, is a 3 × 6 matrix. However, if the see-saw mechanism
is operative, one expects that the contributions of superheavy neutrinos in Eq.
(68) should be negligible. Then, to a very good approximation, the matrix U`j i is
a 3× 3 unitary matrix

U`jiU
∗
`ki

= δ`j`k . (69)

For the moment I will restrict myself to the case when Eq. (69) holds. Further-
more, I will discuss the phenomenology of neutrino oscillations in the simple case
of just 2 flavors of neutrinos, since this is how most of the data is usually presented.
However, the formalism which we will develop can be generalized straightforwardly
to three families of light neutrinos. [10] For definitiveness, let us consider then
just νe and νµ weak interaction eigenstates. In this case, Eq. (68) reads, using a
convenient quantum mechanical notation,



|νe〉 = cos θ|ν1〉 + sin θ|ν2〉
|νµ〉 = − sin θ|ν1〉+ cos θ|ν2〉 . (70)

The mass eigenstates |νi〉 have a time evolution which just follows from the
Schrödinger equation:

|νi(t)〉 = e−iEit|νi(0)〉 ; Ei =
√
~p2 +m2

i . (71)

Because m1 6= m2, it is easy to see that the weak interaction eigenstate νe
produced at t = 0 evolves in time into a superposition of νe and νµ states. Taking
by definition |νi〉 ≡ |νi(0)〉, it follows that

|νe(t)〉 = cos θe−iE1t|ν1〉+ sin θe−iE2t|ν2〉
=
[
cos2 θe−iE1t + sin2 θe−iE2t

]
|νe〉 +

[
cos θ sin θ(e−iE2t − e−iE1t)

]
|νµ〉

≡ Aee(t)|νe〉+Aeµ(t)|νµ〉 . (72)

Using the above, one can compute immediately the probabilities that at time t
the state νe(t) is either a νe or a νµ weak interaction eigenstate:

P (νe → νe; t) = |Aee(t)|2 = 1 − 1

2
sin2 2θ[1 − cos(E2 −E1)t] (73)

P (νe → νµ; t) = |Aeµ(t)|2 =
1

2
sin2 2θ[1− cos(E2 − E1)t] . (74)

Since the masses of neutrinos are small compared to the momentum, one can write

Ei ' |p| +
m2
i

2|p| ; t ' L , (75)

where L is the distance travelled by the neutrinos in a time t. Using the above,
one can write, for instance,

P (νe → νµ;L) =
1

2
sin22θ

[
1− cos

∆m2

2|p| L
]

= sin2 2θ sin2 ∆m2L

4|p| , (76)

where ∆m2 = m2
2 −m2

1. Numerically, it turns out that

∆m2L

4|p| ' 1.27
∆m2(eV2)L(m)

|p|(MeV)
. (77)

Recapitulating, for the case of 2 neutrino species, one gets the following for-
mula quantifying the probability that a weak interaction eigenstate neutrino (νe)
has oscillated to other weak interaction eigenstate neutrino (νµ) after traversing a
distance L:



P (νe → νµ;L) = sin2 2θ sin2

[
1.27∆m2(eV2)L(m)

|p|(MeV)

]
. (78)

The probability that no such oscillation took place, of course, is just

P (νe → νe;L) = 1 − P (νe → νµ;L) . (79)

These probabilities depend on two factors: (i) a mixing angle factor sin2 2θ and (ii)
a kinematical factor which depends on the distance travelled, on the momentum of
the neutrinos, as well as on the difference in the squared mass of the two neutrinos.
Obviously, for oscillations to be important the mixing factor sin2 2θ should be of
O(1). However, large mixing is not enough. It is also important that the kinemat-
ical factor ∆m2(eV2)L(m)/|p|(MeV) >∼ O(1), so that the second oscillatory factor
in Eq. (78) can be significant.

It is useful to develop the formalism a bit more for future use. The probability
amplitudes Aee(t) and Aeµ(t) of Eq. (72) can be recognized as matrix elements of
a 2× 2 matrix e−iHt defined by

e−iHt = U e−iHdiagt U † , (80)

where

U =

(
cos θ sin θ
− sin θ cos θ

)
(81)

is the mixing matrix of the weak interaction eigenstates and

Hdiag =

(
E1 0
0 E2

)
. (82)

One has

Aee(t) = [e−iHt]11 ; Aeµ(t) = [e−iHt]12 . (83)

Using the fact that Ei = |p|+m2
i /2|p|, it proves convenient to separate Hdiag into

two different pieces:

Hdiag =

(
|p|+ m2

1 +m2
2

4|p|

)(
1 0
0 1

)
+

∆m2

4|p|

[
−1 0
0 1

]
. (84)

The first piece above, because it is proportional to the unit matrix, gives an overall
phase factor which is irrelevant for calculating the neutrino oscillation probabilities.
Hence, effectively, one can replace

Hdiag → Ho = −∆m2

4|p| σ3 . (85)



In view of (85), it is convenient to define the 2× 2 Hamiltonian matrix Hvac by

Hvac = U Ho U
† =

∆m2

4|p|

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)

=
∆m2

4|p| {sin 2θσ1 − cos 2θσ3} . (86)

Then, effectively,

Aee(t) = [e−iHvact]11 ; Aeµ(t) = [e−iHvact]12 . (87)

Just as the above coefficients describe the time evolution of a state that started
at t = 0 as a νe weak interaction eigenstate [cf. Eq. (72)], one can define coefficients

Aµe(t) = [e−iHvact]21 ; Aµµ(t) = [e−iHvact]22 (88)

which will detail the time evolution of a state which started out at t = 0 as a νµ
weak interaction eigenstate:

|νµ(t)〉 = Aµe(t)|νe〉 +Aµµ(t)|νµ〉 . (89)

It is easy to deduce from these considerations that the 2×2 Hamiltonian Hvac is just
the Hamiltonian which enters in the Schrödinger equation for |νe(t)〉 and |νµ(t)〉:

i
∂

∂t

[
|νe(t)〉
|νµ(t)〉

]
= Hvac

[
|νe(t)〉
|νµ(t)〉

]
. (90)

V NEUTRINO OSCILLATIONS IN MATTER

When neutrinos propagate in matter, a subtle but important effect takes place
which alters the ways in which neutrinos oscillate into one another. The origin
of this effect, which is known as the MSW effect for the initials of the physicists
who first discussed it, [11] is connected to the fact that the electron neutrinos can
interact in matter also through charged current interactions. While all neutrino
species have the same interactions in matter due to the neutral currents, the νe
weak interaction eigenstates, because of their charged current interactions, as they
propagate in matter experience a slightly different index of refraction than the
νµ weak interaction eigenstates (and the ντ weak interaction eigenstates). This
different index of refraction for νe alters the time evolution of the system from
what it was in vacuum.

Let us again consider the two-neutrino case. The relative index of refraction
between νe and νµ is the result of the difference between the forward scattering
amplitudes for νe and νµ, caused by the charged current interactions of the νe. In
detail, one has [11]



1 − nrel = −2πNe

|p|2
[
A(0)|νee − A(0)|νµe

]
(91)

where Ne is the electron density and A(0) is the forward scattering amplitude.
The contribution of the neutral current interactions cancels in Eq. (91), while the

charged current contribution to A(0)|CC
νee

gives [11]

1 − nrel =

√
2GF Ne

|p| . (92)

One can use Eq. (92) and the formalism we developed at the end of the last
section to study the evolution of neutrinos in matter. The relevant Hamiltonian
now is

H = Hvac + |p|(1− nrel)

[
1 0
0 0

]
. (93)

Again, because relative phases are irrelevant, we can subtract from the above a
term proportional to the identity. This yields the following effective Hamiltonian
describing the propagation of neutrinos in matter:

Hmatter = Hvac + |p|(1 − nrel)

2

[
1 0
0 −1

]

=
∆m2

4|p| sin 2θσ1 −
(

∆m2

4|p| cos 2θ − GF Ne√
2

)
σ3 . (94)

Because of the term proportional to the electron density in Eq. (94), in matter it
is no longer true that the eigenstates of Hmatter are ν1 and ν2. Calling these matter
eigenstates νM1 and νM2 , one has that

[
|νe〉
|νµ〉

]
=

(
cos θM sin θM
− sin θM cos θM

)[
|νM1 〉
|νM2 〉

]
≡ UM

[
|νM1 〉
|νM2 〉

]
(95)

and

Hmatter = UMH
diag
matterU

†
M . (96)

It is easy to check that Hdiag
matter is given by

Hdiag
matter = −σ3



(

∆m2

4|p| cos 2θ − GF Ne√
2

)2

+

(
∆m2

4|p| sin 2θ

)2



1/2

, (97)

with the mixing angle in matter θM determined by the equation



sin 2θM =

∆m2

4|p| sin 2θ
[(

∆m2

4|p| cos 2θ − GF Ne√
2

)2
+
(

∆m2

4|p| sin 2θ
)2
]1/2

. (98)

The presence of the term proportional to the electron density gives rise to inter-
esting resonance phenomena. [12] There is a critical density N crit

e , given by

N crit
e =

∆m2 cos 2θ

2
√

2|p|GF

, (99)

for which the matter mixing angle θM becomes maximal (sin 2θM → 1), irrespec-

tive of what the vacuum mixing angle θ is. If one is in such a medium, then Hdiag
matter

reduces to

Hdiag
matter

∣∣∣
Ne=Ncrit

e

= −∆m2

4|p| sin 2θσ3 . (100)

The probability that a νe transmutes into a νµ after traversing a distance L in
this medium is given by Eq. (78), with two differences. First, since we are in
a medium sin 2θ → sin 2θM . However, because the density is assumed to be the
critical density, sin 2θM → 1. Second, since Hdiag

matter in Eq. (100) differs from Ho by
the replacement of ∆m2 → ∆m2 sin 2θ, such a replacement also will enter in the
kinematical factor in the probability formula. Hence, it follows that

Pmatter (νe → νµ;L)|Ne=Ncrit
e

= sin2

(
∆m2

4|p| sin 2θL

)
. (101)

This formula shows that one can get full conversion of a νe weak interaction
eigenstate into a νµ weak interaction eigenstate, provided that the length L and
momentum |p| satisfy the relation

∆m2

4|p| sin 2θL =
nπ

2
; n = 1, 2, . . . . (102)

There is a second interesting limit to consider. [12] This is when the electron

density Ne is so large that it overwhelms the other terms in Hdiag
matter. If GF Ne �

∆m2/2
√

2|p|, then one has, approximately,

Hdiag
matter = −σ3

GF Ne√
2

. (103)

In this limit, it is easy to check that sin 2θM → 0; cos 2θM →−1, so that θM → π
2
.

In this case, there are no oscillations in matter because sin 2θM vanishes

Pmatter (νe → νµ;L)|
Ne� ∆m2

2
√

2|p|GF
→ 0 . (104)



This actually is immediate also since, in this limit, Hmatter itself is diagonal

Hmatter = UMH
diag
matterU

†
M = σ3

GF Ne√
2

. (105)

Hence the Schrödinger equation (90), with Hvac → Hmatter, is diagonal and there
can be no transitions. For future use I note that in this limit, since θM = π/2, the
νe weak interaction eigenstate in matter coincides with the state νM2 :

|νe〉 = cos θM |νM1 〉 + sin θM |νM2 〉 →
θM=π/2 |νM2 〉 . (106)

VI EVIDENCE FOR NEUTRINO MASSES

Most experiments searching for direct evidence for neutrino masses have, up to
now, only set limits on these masses and the associated mixing angles. However,
there are now both strong hints, and some real evidence, that neutrino masses
really exist coming from neutrino oscillation experiments.

Most oscillation data is presented as an allowed region, or limits at some con-
fidence level, in a ∆m2 − sin2 2θ plot. That is, experimentalists find it conve-
nient to quantify their results using the formalism discussed in the last section,
involving oscillations among two neutrino species να and νβ The oscillation prob-
ability formulas for P (να → νβ;L) [cf. Eq. (78)] involves both the α − β mix-
ing angle θαβ, as well as a kinematical factor depending on the mass squared
difference ∆m2 between the mass eigenstates in the two neutrino system. Be-
cause neutrino beams have a rather large energy spread, for ∆m2 � |p|/L the
kinematical oscillating factor in Eq. (78) averages to 1/2. This implies that,
in general, the sensitivity to a signal for neutrino oscillations goes down to
sin2 2(θαβ)min ' 2P (να → νβ;L).

A Direct Mass Measurements

The classical way to try to infer a non-vanishing value for neutrino masses is by
measuring β-decay spectra near their endpoint. The presence of neutrino masses
alters the dependence of the measured intensity I(Te) on the electron kinetic energy
Te as it approaches the maximum energy release Q. One has [13]

I(Te) = (Q− Te)
∑

i

|Uei|2[(Q− Te)2 −m2
νi

]1/2 . (107)

If mνi = 0 then the intensity spectrum is quadratically dependent on the energy

release (Q−Te). If neutrinos have mass, one has a spectrum distorsion and
√
I is no

longer linear in (Q− Te), but vanishes at some value of Te less than the maximum
energy released Q. These distorsions are best detected in β-decay spectra which
have low Q values; an ideal candidate being Tritium where Q = 18.6 KeV.



TABLE 1. Neutrino Mass Limits from 3He

β-decay, from Ref. [14].

Experiment “m2
νe”(eV2) “mνe”(eV)

Tokyo −65± 85± 65 < 13.1
Los Alamos −147± 68± 41 < 9.3

Zürich −24± 48± 61 < 11.7
Livermore −130± 20± 15 < 7.0

Mainz −22± 17± 14 < 5.6
Troitsk 1.5± 5.9± 3.6 < 3.9

Tritium β-decay experiments are sensitive to neutrino masses in the “few eV”
range. Remarkably, most of the high precision experiments performed with tritium
actually see an excess of events near the end-point, setting poorer limits than their
theoretical sensitivity. [14] However, very recently, the Troitsk experiment [15] has
been able to determine a very stringent result for the largest eigenvalue “mνe”
principally contributing to Tritium β-decay:

“m2
νe

” = (1.5± 5.9± 3.6) eV2 ; “mνe” < 3.9 eV (90% C.L.) (108)

Table 1 gives a compilation of the existing β-decay results in Tritium and the
corresponding limit for “mνe”.

Similar, but less accurate, kinematical bounds are also known for the largest
eigenvalues principally contributing to decays involving νµ and ντ weak eigenstates.
Denoting these eigenvalues, respectively, as “mνµ” and “mντ ”, one finds the follow-
ing results. From studying π+ → µ+νµ decay at PSI [16] one has

“m2
νµ” = (−0.016± 0.028) MeV2; “mνµ” < 170 KeV (90%C.L.) . (109)

From studying the decay τ → ντ + 5π at LEP [17] one has

“mντ ” < 18.2 MeV (95% C.L.) . (110)

A different, and in some ways more interesting, limit on the neutrinos associated
with the νe weak interaction eigenstate comes from neutrinoless double β-decay.
This process, if it exists, violates lepton number. Thus it is only possible if neutrinos
have a Majorana mass. Ordinary double β-decay Z → (Z+2)+2e−+2ν̄e conserves
lepton number. However, in a double β-decay processes where no neutrinos are
emitted Z → (Z + 2) + 2e−, lepton number is violated. As shown schematically in
Fig. 1, these processes can only occur if there is a neutrino-antineutrino transition
engendered by the presence of a Majorana mass term.

There is now a variety of measurements of ordinary double β-decay, [18] but up
to now there are only limits on neutrinoless double β-decay. [19] The half-life for
these later processes is a measure of the neutrino Majorana mass associated with
these decays:
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FIGURE 1. Schematic diagram which gives rise to neutrinoless double β-decay if neutrinos have

a Majorana mass.

[
T 2βoν

1
2

]−1

∼ 〈mνe〉2ee . (111)

Here the mass 〈mνe〉ee is given by

〈mνe〉ee =
∑

i

U2
eimνi, (112)

with mνi being the neutrino mass eigenstates. Note that 〈mνe〉ee vanishes if the neu-
trinos are Dirac particles. That is, if neutrinos have only lepton number conserving
Dirac masses.

This point can be appreciated readily by considering, for simplicity, the case of
one neutrino species. In this case, if these neutrinos only have a Dirac mass mD,
the corresponding 2 × 2 neutrino mass matrix M has the form

M =

(
0 mD

mD 0

)
. (113)

This matrix is diagonalized to

Mdiag =

(
−mD 0

0 mD

)
(114)

by the orthogonal matrix

U =

( 1√
2

1√
2

− 1√
2

1√
2

)
. (115)

Using Eq. (115), for this case one easily checks that 〈mνe〉ee vanishes. One has



TABLE 2. Bounds on neutrinoless double β-decays half lives

and associated bounds on 〈mνe 〉ee, from Ref. [14].

Decay T 2βoν
1
2

(Years) 〈mνe 〉ee (eV)

76Ge→ 76Se > 5.7× 1025 (90% C.L.) < 0.2 (90% C.L.)
128Te→ 128Xe > 7.7× 1024 (68% C.L.) < 1.1 (68% C.L.)
130Te→ 130Xe > 5.6× 1022 (90% C.L¿) < 3.0 (90% C.L.)
136Xe→ 136Ba > 4.4× 1023 (90% C.L.) < 2.3 (90% C.L.)

〈mνe〉ee =

(
1√
2

)2

(−mD) +

(
1√
2

)2

(mD) = 0 . (116)

Table 2 reproduces a recent compilation of experimental results on neutrinoless
double β-decay. [14] The most sensitive of these experiments involves the double
β-decay of 76Ge to 76Se, with a half-life limit of over 1025 years. [20] The resulting
bound on 〈mνe〉ee quoted is

〈mνe〉ee < 0.2 eV (90% C.L.) . (117)

This bound, however, has probably a factor of two uncertainty due to uncertainties
associated with calculating the nuclear matrix elements involved in the decay. [21]

B Cosmological Constraints

There are some indirect constraints on neutrino masses provided by cosmology.
The most relevant is the constraint which follows from demanding that the energy
density in neutrinos should not overclose the Universe. Neutrinos are thermal
relics; they decoupled from the Universe’s expansion when their interaction rate
Γ fell below the Universe’s expansion rate H. [22] In the usual Robertson-Walker
expanding Universe, the rate of expansion H ∼ T 2/MP, where MP ∼ 1019 GeV is
the Planck mass and T is the Universe’s temperature. Since

Γ = nν〈σv〉 ∼ G2
FT

5 , (118)

withGF the Fermi constant, GF ∼ 10−5 GeV−2, decoupling occurs at a temperature
TD determined by setting Γ ' H. This gives

TD '
(

1

G2
FMP

)1/3

∼ 1 MeV . (119)

Two cases are of interest. If neutrinos have a mass much less than TD (mν � TD)
they are hot relics. That is, they are relativistic at the time of decoupling. For
hot relics, the density of neutrinos is comparable to that of photons at decoupling:



nν ∼ nγ|TD . Cold relics, on the other hand, are neutrinos whose mass is much

greater than TD (mν � TD). In this case, at the time of decoupling the neutrino
density nν , because of the Boltzmann factor, is much below that of the photons.
Thus for cold relics, nν � nγ|TD.

In either case, one can compute the neutrino contribution to the energy density
of the Universe. [22] This is simplest for the case of hot relics, since their number
density essentially tracks the photon number density.5 Thus the number density of
neutrinos now is fixed by the measured temperature of the microwave background
radiation:

nν =
3ζ(3)

2π2
T 3
ν . (120)

Hence the contribution of neutrinos to the present energy density of the Universe
is

ρν = nν
∑

i

mνi . (121)

It has become conventional to normalize all densities in terms of the Universe’s
closure density ρc:

ρc =
3H2

o

8πGN
' 1.9 × 10−29h2 g

cm3
' 1.1 × 104h2 eV

cm3
. (122)

In the above Ho is the Hubble constant and h is a measure of its uncertainty. One
finds

Ho = 100h
Km

sec Mpsec
(123)

with [24]

h = 0.65 ± 0.1 . (124)

Defining

Ων =
ρν
ρc

, (125)

then, for hot relics, one has

ΩHot
ν =

∑
imνi

92 eV h2
. (126)

5) Because of photon reheating at the time of recombination (and a small statistical difference
because neutrinos are fermions and photons are bosons), the neutrino temperature Tν is not quite

the same as the photon temperature Tγ . One finds Tν =
(

4
11

)1/3
Tγ . [23]



FIGURE 2. Plot of Ωνh
2 as a function of the neutrino (sum) mass.

It follows from the above that if the sum of neutrino masses
∑
imνi ' 30 eV, then

neutrinos would close the Universe. Because we know that the Universe is not very
far from closure density, if neutrinos are hot relics the sum of their masses cannot
be much above 30 eV. Thus, although direct bounds allows for a presence of a “νµ”
neutrino with mass “mνµ” less than 170 KeV, cosmology forbids neutrinos to have
masses as large as that. 6

When neutrino masses are above TD ∼ MeV, then the simple formula given in
Eq. (126) no longer applies. Nevertheless, it is still possible to compute Ων taking
into account now of the appropriate Boltzmann factor. Figure 2, adapted from [22],
plots Ωνh

2 as a function of the neutrino (sum) mass. This quantity rises linearly
with mass up to mν ∼ 1 MeV and then drops rather rapidly. Cosmology allows
neutrino masses for which Ων ≤ 1. So, as mentioned above, “mνµ” and “mντ ” must
really be well below their kinematical bounds. On the other hand, we note that our
bounds for “mνe” and 〈mνe〉ee lie in a cosmologically allowed region. In principle,
cosmology also allows neutrinos to exist with masses greater than a few GeV, since
these cold relics give Ων ≤ 1. However, as we discussed earlier, neutrino counting
at LEP excludes additional neutrinos besides νe, νµ and ντ , with mass mν < MZ/2.
This exclusion region is also indicated in Fig. 2.

6) These cosmological bounds can be avoided if the massive neutrinos were unstable and had a
sufficiently short lifetime. [25]
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FIGURE 3. Bounds on νµ → ντ oscillations for large ∆m2, from [27].

C Accelerator limits and hints for neutrino masses

Two experiments at CERN, using νµ beams of average neutrino energies 〈Eνµ〉 ∼
15 GeV and typical decay lengths L ∼ 1 Km, put strong limits on νµ → ντ neutrino
oscillations for ∆m2 ≥ 10 eV2. In view of the discussion in the last subsection,
this is a very interesting mass range to explore, since neutrinos with masses in this
range could be of cosmological interest.

These two experiments use quite different techniques to detect ντ ’s.
CHORUS [26] uses an emulsion target to try to detect the τ track produced in ντ
charged current interactions. NOMAD, [27] on the other hand, uses drift chambers
and kinematical techniques to detect a ντ signal. The result of both experiments
are shown in Fig. 3, along with limits obtained by some earlier experiments. The
CHORUS and NOMAD results for ∆m2 ≥ 10 eV2 exclude oscillations with mixing
angles sin2 2θµτ ≥ 10−3 at the 90% C.L., improving previous limits by about a
factor of 5.

Because NOMAD has a very good electron identification, this experiment is also
able to set a strong limit for νµ → νe oscillations. For ∆m2 ≥ 10 eV2, one excludes
oscillations with mixing angles sin2 2θµe > 2 × 10−3 at 90% C.L. Finally, because
the νµ beam at CERN has about a 1% νe admixture, both experiments are also
able to exclude νe → ντ oscillations for ∆m2 ≥ 10 eV2, but now only for mixing
angles sin2 2θeτ ≥ 10−1, at 90% C.L.

The situation regarding neutrino oscillations is much less clear cut in the region



∆m2 ≤ 10 eV2. Here there are limits from past accelerator and reactor searches for
oscillations and recent bounds from the KARMEN experiment. [28]. However, there
is also some evidence for νµ → νe oscillations coming from the LSND experiment.
[29] Let me begin by briefly detailing the results of this last experiment first. LSND
studies neutrinos originating from pions produced at rest at the LAMPF beam stop
by an 800 MeV proton beam. These neutrinos, which are produced in the chain
π+ → µ+νµ → e+νeν̄µνµ, have average momenta in the 30 to 50 MeV range. What
LSND looks for is the oscillation of the ν̄µ produced in µ+ decay into a ν̄e, using
a delayed coincidence in a target 30 meters from the beam dump. If ν̄µ → ν̄e
oscillations take place, the ν̄e inverse β-decay in the target (ν̄ep→ e+n) produces a
prompt photon from e+e− annihilation, while the produced neutron gives a delayed
photon, as a result of the process np→ dγ.

The LSND experiment observes an excess of e+γ coincidence events which, if
interpreted as ν̄µ → ν̄e oscillations, give a substantial allowed region in the ∆m2−
sin2 2θ plane. However, as I mentioned above, other experiments performed in the
past, [30] as well as the recent KARMEN experiment, [28] exclude almost all of this
allowed region. Furthermore, new data from the KARMEN2 detector [31] which
became available in summer 1998 appeared to exclude even the small remaining
allowed region for LSND!

This rather confusing situation is displayed in Fig. 4. It was discussed in some
detail in the summary talk of Janet Conrad at the 1998 Vancouver International
Conference on High Energy Physics. [32] As one can see from Fig. 4, a combination
of the BNL 776 data and the Bugey reactor data only leaves the region between
0.2 eV2 < ∆m2 < 4 eV2 as an “allowed” region for the LSND signal. However,
this region is essentially excluded by the KARMEN2 data, if one uses the 90%
C.L. bound from this experiment. However, this result itself is somewhat anoma-
lous, since the 90% C.L. sensitivity for KARMEN2 is actually below the LSND
signal.7 Furthermore, the LSND experiment has also looked for νµ → νe oscil-
lations by studying νe quasielastic scattering events and the collaboration, again,
find an excess of events. citeLSND2 If interpreted as resulting from oscillations,
this additional signal gives a ∆m2− sin2 2θ allowed region which is consistent with
that obtained by the ν̄µ → ν̄e analysis.

It is difficult to make strong statements at this stage. The best that one can say
is that there are hints of νµ → νe oscillations in the region 0.2 eV2 < ∆m2 < 4 eV2,
with rather small mixing angles sin2 2θµe ∼ 10−2.

7) The 90% C.L. for KARMEN2 of Fig. 4 uses data only from the initial part of their run-where
no background events were seen, even though 3 events were expected. Additional data from
KARMEN2 now appears to have the number of background events expected. [33] As a result, it
looks like the full KARMEN2 results will probably be closer to the 90% C.L. sensitivity line in
Fig. 4.



FIGURE 4. Summary of the experimental situation for ν̄µ → ν̄e oscillations at the time of the

Vancouver Conference, from Ref. [28].

D Atmospheric Neutrino Oscillations.

Large underground detectors, originally conceived to search for proton decay, are
sensitive to the flux of neutrinos produced in the atmosphere. These neutrinos are
mostly produced through the decay of pions, with the π → µ → e chain producing
two νµ neutrinos and antineutrinos for each νe neutrino and antineutrino. One has
known since the early 1990’s that the observed flux of νµ’s appeared to be much
smaller than expected, with the ratio [35]

R =

(
νµ
νe

)
observed(

νµ
νe

)
expected

' 0.6 . (127)

Although the anomalous ratio R could be the result of neutrino oscillations,
strong evidence for neutrino oscillations only emerged in summer 1998 from the
SuperKamiokande experiment. The SuperKamiokande collaboration [36] reported
a pronounced zenith angle dependence for the flux of multi-GeV νµ neutrinos, but
no such dependence from νe neutrinos. For neutrino energies in the multi-GeV
range, the neutrino fluxes are not affected by geomagnetic effects in an asymmetric
fashion. Thus one expects the observed neutrino signal to be up-down symmet-
ric. As can be seen in Fig. 5, the SuperKamiokande data for multi-GeV νµ’s is
clearly up-down asymmetric. There are 139 up-going νµ compared to 256 down
going events. The observed asymmetry
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FIGURE 5. SuperKamiokande results on multi-GeV νµ events.

(
U −D
U +D

)Multi−GeV

νµ

= −0.296 ± 0.048 ± 0.010 (128)

is a 6σ effect. The corresponding asymmetry for multi-GeV νe

(
U −D
U +D

)Multi−GeV

νe

= −0.036 ± 0.067 ± 0.020 (129)

is quite consistent with zero.
The SuperKamiokande collaboration [36] interprets these results as evidence for

νµ → νX oscillations, with νX some other neutrino species. This is most dramati-
cally demonstrated in Fig. 6 where the ratio of data to Monte Carlo is plotted as a
function of L/Eν for both νe and νµ events. No L/Eν dependence is seen in the νe
data, but the νµ data drops down to a value of 1/2 for L/Eν ≥ 103 Km/GeV. Re-
calling the simple 2-neutrino formula for the probability of oscillations [Eq. (78)],
Fig. 6 suggest immediately that ∆m2 ∼ 10−3 eV2 and that the mixing angle θ is
near maximal. This is confirmed by a more detailed analysis, which for νµ → νX
oscillations gives sin2 2θ = 1 and ∆m2 = 2.2 × 10−3 eV2 as the best fit point.

It is unlikely, however, that the SuperKamiokande results are due to νµ → νe
oscillations (that is, that νX ≡ νe). First, the region in the ∆m2 − sin2 2θ plane



FIGURE 6. Plot of neutrino signals in the SuperKamiokande experiment as a function of

L/Eν.

favored by the SuperKamiokande results, is almost totally excluded already by the
null results of the CH00Z reactor experiment [37] which looks at νe oscillations into
another neutrino species. Furthermore, the up-down ratio (129) for the νe flux is
more than 3σ away from what one would expect if one were dealing with νµ → νe
oscillations, where one expects

(
U −D
U +D

)theory

νµ→νe
= 0.205 . (130)

If there are only three neutrino species, then most likely what is being seen in
SuperKamiokande are νµ → ντ oscillations. However, at this stage, it is not possible
to rule out the possibility that νX may be a sterile neutrino νs.
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The SuperKamiokande results [36] are consistent with previous Kamiokande
results, [38] which also had indicated a (less pronounced) zenith angle depen-
dence of the νµ flux. Although the ∆m2 − sin2 2θ regions for SuperKamiokande
and Kamiokande do not appear to overlap much, the 90% C.L. region of Su-
perKamiokande is “more-significant”, since the Kamiokande best fit has sin2 2θ =
1.35. In fact, recent results presented by SuperKamiokande at DPF 99, [39] with
more data collected, help span the gap, indicating even more clearly the consistency
of all data with each other.

In addition, data from other underground experiments (Soudan [40] and MACRO
[41]) as well as other phenomena—like the flux of upward going muons [42] pro-

8) Sterile neutrinos are, by definition, SU (2) × U (1) singlets. Because they do not couple to the
Z, they are not excluded by the neutrino counting results from LEP.



FIGURE 7. Evidence for atmospheric neutrino oscillations from all experiments, from Ref. [24].

duced by νµ interactions in the earth—when interpreted in a neutrino oscillation
framework, are totally consistent with the SuperKamiokande νµ zenith angle re-
sults. Fig. 7 summarizes all this information in one graph. This figure provides
quite strong evidence in favor of neutrino masses and is probably the strongest
evidence we have to date for physics beyond the Standard Model.

E Solar Neutrinos

The study of the solar neutrino flux was started in the early 1970’s by Ray Davis
and his group. [43] At present there are five different experiments which give infor-
mation on solar neutrinos (Homestake, [44] Gallex, [45] SAGE, [46] Kamiokande
[47] and SuperKamiokande [48]) and all five have some bearing on the issue of neu-
trino oscillations. In fact, roughly speaking, all five experiments see approximately
half of the expected rate, as shown in Fig. 8. However, these experiments are sen-
sitive to different parts of the solar neutrino spectrum, because the reactions they
use to detect solar neutrinos in their detectors have different thresholds. SAGE
and Gallex study the reaction νe + 71Ga → 71Ge + e−, which has a threshold of
0.23 MeV. Homestake looks for the excitation of chlorine (νe + 37Cl → 37Ar + e−)
which has a 0.8 MeV threshold. The water Cerenkov detectors, Kamiokande and
SuperKamiokande, study elastic νee scattering and their threshold is in the neigh-
borhood of 6.5 MeV.9

9) SuperKamiokande is making strong efforts to move this threshold down to 5.5 MeV.



FIGURE 8. Rates seen by the diferent solar neutrino experiments, compared to the expectations

of the Standard Solar Model. [49]

It has long been felt that the observed discrepancy between the neutrino signals
detected and the expectations of the, so called, Standard Solar Model(SSM) [49]
is not due to defects in this model but to the presence of some new physical phe-
nomena. One of the principal arguments in favor of this latter solution to the solar
neutrino puzzle, has to do with the details of the signal expected in each experi-
ment. Because of the quite different threshold involved, each of the solar neutrino
experiments, in fact, feels different pieces of the neutrino producing reactions in
the solar cycle. For example, the Gallium experiments are the only ones which are
sensitive to neutrinos originating in the pp cycle (the main solar cycle), with these
neutrinos contributing about 50% of the expected rate. The Homestate detector
mostly measures neutrinos from 8B, although it is also sensitive to 7Be neutrinos.
Finally, because of their high threshold, the big water Cerenkov detectors only see
Boron neutrinos. These circumstances make it difficult to argue for an astrophys-
ical solution to the solar neutrino deficit. Much more natural is to imagine that
this deficit arises as a result of neutrino oscillations.

There are two distinct neutrino oscillation solutions to the solar neutrino prob-
lem. Because roughly all experiments are reduced by about a factor of two from
expectations, it is possible to fit the data by using vacuum neutrino oscillations
νe → νX . Clearly, for this fit one must appeal to large mixing angles and assume
a tiny ∆m2. Since Eν ∼ MeV and the earth-sun distance L ∼ 1011 m, typically
∆m2 ∼ 10−11 eV2. However, because the Homestake result is only about 30% of
the predicted value, one has to fine-tune the parameters, so that only a few “just
so” regions are favored. [50] A recent “just so” fit by Bahcall, Krastev, and Smirnov



FIGURE 9. ”Just so” solar neutrino fit, from [51].

[51] is shown in Fig. 9.
In my opinion, much more interesting that the above “solution” is the possibility

that the solar neutrino results are a reflection of matter induced oscillations (the
MSW effect we discuss in Section V). In the sun, the electron density to a good
approximation, can be characterized by an exponential profile function [52]

Ne(r) = Ne(0)e
− 10r
R0 . (131)

The central density Ne(0) ' 1026 cm−3 ' 1012 (eV)
3

is rather high and for appro-
priate values of ∆m2 and sin2 2θ can exceed the critical MSW density. For instance,
for θ small, ∆m2 ' 10−5 eV2 and |p| ∼ 3 MeV

N crit
e =

∆m2 cos2 θ√
2|p|GF

∼ 1011 (eV)3 . (132)

It follows from Eq. (132) that, for these parameters, νe’s produced in the core of
the sum (where Ne(o) � N crit

e ) as they radiate outward go through a region with
Ne ∼ N crit

e and can oscillate to νµ’s (or other neutrino types) without paying a
mixing angle penalty, since sin 2θM |Ncrit

e
→ 1.

The actual calculation of what happens in the sun is rather complicated, [12]
since the density Ne changes along the neutrino trajectory. Since Ne = Ne(t), the
matter Hamiltonian of Eq. (94) is now time dependent:



Hmatter(t) =
∆m2

4|p| sin 2θσ1 −
(

∆m2

4|p| cos 2θ − GF√
2
Ne(t)

)
σ3 . (133)

Although one can diagonalize this Hamiltonian, the resulting mixing angles and
energies will be time dependent:

EM
1,2(t) = ±



(

∆m2

4|p| cos 2θ − GFNe(t)√
2

)2

+

(
∆m2

4|p| sin 2θ

)2



1/2

(134)

tan 2θM(t) =

∆m2

4|p| sin 2θ

∆m2

4|p| cos 2θ − GFNe(t)√
2

. (135)

Because of this time dependence, it is no longer true that the states |νM1 (t)〉 and
|νM2 (t)〉 are actual eigenstates. In fact, transitions can occur between these states.
A simple calculation [12] shows that the states |νMi (t)〉 obey a coupled Schrödinger
equation

i
∂

∂t

[
|νM1 (t)〉
|νM2 (t)〉

]
=

[
EM

1 (t) i ∂
∂t
θM(t)

i ∂
∂t
θM(t) EM

2 (t)

] [
|νM1 (t)〉
|νM2 (t)〉

]
. (136)

If

|EM
2 (t)− EM

1 (t)| �
∣∣∣∣∣2
∂

∂t
θM(t)

∣∣∣∣∣ (137)

then transiting between |νM1 (t)〉 and |νM2 (t)〉 will be relatively unimportant and
one has an adiabatic situation. For an exponential density profile, Eq. (137) is
satisfied at N crit

e provided that [12]

∆m2 sin2 2θ

2 cos 2θ
� 2 × 10−8 (eV)2 . (138)

For the adiabatic case, one can use our discussion of matter oscillations to give
a qualitative picture of how the MSW mechanism could work in the sun. Because
at the solar core Ne(o) � N crit

e , according to Eq. (106) |νe〉 ' |νM2 (o)〉. Because
we are assuming adiabaticity, as the neutrinos diffuse out of the core of the sun,
the state |νM2 (o)〉 will evolve into |νM2 (t)〉. That is, there are no transitions in the
sun. Thus, when the neutrinos exit the sun, the state |νM2 (tsurface)〉 will just simply
become |ν2〉. Because

〈νe|ν2〉 = sin θ , (139)

it follows that, in this case,
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FIGURE 10. Regions in the the ∆m2 − sin2 2θ plane favored by the MSW explanations of the

solar neutrino data, from Ref. [51].

P adiabatic
solar (νe → νe;L) = sin2 θ . (140)

A more careful analysis shows that there are actually two MSW solutions, one
adiabatic and one non-adiabatic, [53] both having ∆m2 ∼ 10−5 eV2. The adiabatic
solution has large mixing angles sin2 2θ ' 1. Hence, according to Eq. (140),
P adiabatic

solar (νe → νe;L) ' 1/2 so, indeed, roughly half the flux is lost. The non-
adiabatic solution has sin2 2θ ∼ 5 × 10−3. Furthermore, a rather large range in
the ∆m2 − sin2 2θ plane is eliminated by the absence of a day/night effect, which
would be a sign of matter oscillations in the earth. The favored MSW regions are
depicted in Fig. 10.

I want to close this brief discussion of solar neutrinos, and in particular of the
MSW explanation of the solar data, by making a more quantitative remark. To fit
the solar neutrino data using the MSW effect requires that the probability P (νe →
νe;L) have considerable energy dependence. The required energy dependence is
shown in Fig. 11. I indicate also in this figure at what energies the neutrinos
produced in the various solar reactions are effective. One sees from Fig. 11 that



FIGURE 11. Energy dependence needed for P (νe→ νe;L) to fit the solar neutrino data.[54]

essentially all pp neutrinos survive, the Berylium neutrinos disappear and the flux
of Boron neutrinos is roughly halved. This reconciles nicely with what is seen in
the data, as detailed in Table 3.

Table 3. Summary of neutrino flux observations and expectations of solar
neutrino experiments

37Cl (13% Be; 80% B)

(2.56 ± 0.23) SNU Ref.[44]
[
predicted SSM :

(
7.7+1.2
−1.0

)
SNU

]

71Ga (51% pp; 15% Be; 12% B)
(77.5 ± 7.7) SNU Ref.[45] [predicted SSM : (129 ± 8) SNU]
(66.6 ± 8.0) SNU Ref.[46]

Water Č (100% B)

2.80 ± 0.38 SNU Ref.[47] [predicted SSM :
(
5.15+1.0

−0.7

)
SNU]

2.44 ± 0.10 SNU Ref.[48]

VII THEORETICAL IMPLICATIONS

I summarize in Fig. 12 where one is at present on the issue of neutrino masses and
mixings. This figure collects together all the neutrino oscillation evidence, as well as
the hints for oscillations, which we have at the moment. As is clear from the figure
there are three regions suggested in the ∆m2−sin2 2θ plane. The strongest evidence
is that for atmospheric neutrino oscillations coming from the SuperKamiokande
zenith angle data. Here the suggested parameters are (∆m2) ∼ 3 × 10−3 eV2,
sin2 2θ ∼ 1 with νµ → νX (νX 6= νe). Solar neutrinos also are strongly suggestive



FIGURE 12. Summary of evidence of, and hints for, neutrino oscillations.[24]

of oscillations. Interpreting the data this way leads to (∆m2) ∼ 10−5 eV2, with
sin2 2θ ∼ 1 or sin2 2θ ∼ 5 × 10−3, for MSW νe → νX oscillations, or ∆m2 ∼
10−11 eV2 and sin2 2θ ∼ 1, for “just-so” νe → νX oscillations. The weakest hint
for oscillations probably is that of LSND, because of other contrary evidence. At
any rate, the suggested region here is ∆m2 ∼ 5 × 10−1 eV2 and sin2 2θ ∼ 10−2 for
νe → νµ oscillations.

Besides neutrino oscillation phenomena, there is really no other direct evidence
for neutrino masses. However, both β-decay and neutrinoless double β-decay put
rather strong bounds on neutrino masses connected to νe. From β-decay the largest
neutrino mass obeys the bound: “mνe” < 3.9 eV (90% C.L.). Double β-decay,
bounds the Majorana mass 〈mνe〉ee even more strongly: 〈mνe〉ee < 0.2 eV (90%
C.L.). These bounds are interesting, since they are close to the kind of neutrino
masses which could have substantial cosmological influence. Using the central value
for the Hubble parameter [c.f. Eq.(124)], I note that

∑
imνi = 30 eV, 6 eV, 2 eV

correspond, respectively, to neutrinos closing the Universe, to neutrinos being 20%
of the dark matter in the Universe (assuming ΩM ' 1), and to neutrinos being



20% of the dark matter, with ΩM ' 0.3. The last case is, perhaps, the one that
is most cosmologically realistic. [55] This stresses the the importance of continuing
the search for neutrino masses in the eV range.

Concentrating only on the SuperKamiokande evidence for neutrino masses al-
ready has important implications. Taking

∆m2 = m2
3 −m2

2 ∼ 3× 10−3 eV2 (141)

gives one already a lower bound on some neutrino mass: m3 ≥ 5 × 10−2 eV.
This mass value, in turn, gives a lower bound for the cosmological contribution of
neutrinos

Ων ≥
m3

92 eV h2
∼ 1.5× 10−3 . (142)

Although this number is far from that needed for closure of the Universe, I note
that the Ων of Eq. (142) is comparable to the contribution of luminous matter to
the energy density of the Universe [56]

Ωluminous ∼ (3− 7)× 10−3 . (143)

So, from SuperKamiokande we learn that the neutrino contribution to the energy
density of the Universe is the same as, in the words of Carl Sagan, that of “billions
and billions of stars”!

For particle physics, a value of m3 ∼ 5 × 10−2 eV is also quite interesting. If we
use either the simple see-saw formula of Eq. (55) or the GUT relation (66), the
identification

m3 =





[(mD)3]2

mS
∼ m2

t

mS

mT ' 〈φ0〉2
Λ

(144)

give comparable values for mS and Λ:

mS ∼ Λ ∼ 1015 GeV . (145)

Of course, these values are only justifiable in specific models where one has a bit
more control of other constants, which are taken above all to be of O(1).

If one goes beyond the SuperKamiokande data, then many theoretical scenarios
emerge. Unfortunately, in general, these scenarios mostly reflect the prejudices one
has regarding the data. Nevertheless, it is useful to briefly discuss two differing
broad theory scenario. In the first scenario, one assumes that all hints for oscilla-
tions seen are true. In the second, one disregards some oscillation hints. In most
cases, the discarded data is that of LSND.

If one believes all hints for neutrino oscillations, since there are three different
∆m2 involved, the neutrino mass matrix M necessarily is a 4× 4 matrix.10 To get

10) There have been attempts to “stretch” some of the data, so that all hints can be accounted
for with only two different ∆m2. These attempts [57] seem rather forced to me.



a 4× 4 neutrino matrix one adds to the usual three neutrinos a sterile neutrino νs.
Most 4 neutrino models attempt to fit all data, since this was after all the reason
for introducing the fourth neutrino. The most promising scenario [58] has two pairs
of quasi-Dirac neutrinos split by a small mass difference.11 The heaviest pair (m2

and m3) have masses of order 0.5 eV and contribute Ων ' 0.03 to cosmology. The
atmospheric neutrino oscillations involve this pair, so that ∆m2

23 ∼ 3 × 10−3 eV2.
The second pair (m1 and m4) are much lighter, with mass around 10−2 − 10−1 eV.
Their mass difference ∆m2

14 ∼ 10−5 eV2 is what enters in solar neutrino oscilla-
tions. The LSND result is explained as an oscillation between the light pair and
the heavy pair, with ∆m2 ∼ m2

3 ∼ 0.6 eV2. In this scheme, the solar neutrino
oscillations involve oscillations of νe to a sterile neutrino, while the atmospheric
neutrino oscillation is νµ → ντ and LSND νe → νµ. Although this scheme works
phenomenologically, theoretically it is difficult to get light sterile neutrinos almost
degenerate with ordinary neutrinos.

Different patterns arise if one is prepared to disregard some of the neutrino
oscillation limits. If one disregards, in particular, the results from LSND then
the CH00Z bound, [37] and the quite different mass squared differences involved
in atmospheric and solar neutrino oscillations, suggest a very simple 3-neutrino
mixing matrix. CH00Z suggests that θ13 ' 0o. On the other hand, atmospheric
neutrino oscillations suggest θ23 ' 45o. Finally, depending on what solar neutrino
oscillation solution one picks, the angle θ12 can either be large or small. Thus,
neglecting possible CP violating phases, the neutrino mixing matrix looks like [59]

U '




1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2







1 0 0
0 1 0
0 0 1






c12 −s12 0
s12 c12 0
0 0 1


 (146)

=



c12 −s12 0
s12√

2
c12√

2
− 1√

2
s12√

2
c12√

2
1√
2


 ,

where c12 = cos θ12; s12 = sin θ12. However, even with U of the above form, there
are many open questions to answer. For instance, is maximal mixing (θ12 ' 45o)
allowed? Are nearly degenerate neutrino masses (m1 ' m2 ' m3 ' 0.5 eV)
allowed? What neutrino mass matrix gives rise to this particular mixing matrix?

These questions cannot really be answered in a straightforwad manner, without
making some more assumptions. There is really a lot of freedom. Given U and some
assumptions for the neutrino mass spectrum {mi} then one can deduce a neutrino
mass matrixM . However, recall from our discussion of the see-saw mechanism, that
M itself depends on both the neutrino Dirac mass mD and on the right-handed
neutrino mass matrix mS [cf. Eq. (55)]. Thus, to make progress, even “knowing”
M one has to make some assumptions on mD (or mS) to learn something further.

11) A quasi-Dirac neutrino pair reduces to a Dirac neutrino, as the mass difference between the
pair vanishes.



For instance, one could use GUTs which naturally ties the matrix mD in Eq. (55)
to the u-quark mass matrix. [60]

Some authors have preferred to focus on some simple structure for the 3 × 3
matrix M . [61] Two of these are particularly appealing. The first of these has
a total degeneracy for the neutrinos, the other is Dirac-like with an additional
massless neutrino. In the first pattern

M = m




1 0 0
0 0 1
0 1 0


 . (147)

In this case,
∑
imνi = 3m, so that cosmology impose a bound on m, depending on

what one believes Ων is. However, in the degenerate case, one has also that

〈mνe〉ee =
∑

i

U2
eimνi = m . (148)

The double β-decay bound then tell us that m < 0.2 eV. If we push m to its upper
bound, however, it is difficult to see what perturbation can then give ∆m2

atmos '
3× 10−3 eV2; ∆m2

solar ∼ 10−5 eV2.
The second simple pattern for neutrino masses has [62]

M = m




0 1 1
1 0 0
1 0 0


 (149)

which has a degenerate pair and a zero eigenvalue. Note that this pattern conserves
Le − Lµ − Lτ . Since for this mass matrix ∆m2

atmos = m2, it follows that m ∼
5 × 10−2 eV. So in this case, neutrinos do not contribute much to the energy
density of the Universe (Ων ' 3 × 10−3). To get solar neutrino oscillations one
has to introduce some perturbation on the mass matrix (149) that will split the
massive degenerate states and give ∆m2

12 ∼ 10−5 eV2.

VIII FUTURE EXPERIMENTS

It seems pretty clear that progress in understanding what is going on in the
neutrino sector can only come from further data. Fortunately, new data will be
forthcoming in all the relevant ∆m2 regions. I want to end these lectures by briefly
discussing these future experiments.

A Solar Neutrinos

SuperKamiokande will continue to take data in years to come, thus refining their
present measurements of solar neutrinos. Furthermore, a real effort is taking place



to lower the neutrino energy threshold further so as to be able to study the shape
dependence of the signal as a function of Eν . In addition to this continuing effort,
relatively soon two other experiments will be coming on line which have considerable
promise. The first of these is SNO (the Sudbury Neutrino Observatory [63]) which
uses a Kiloton of D2O. The advantage of having heavy water is that it allows SNO
to study simultaneously both charged current and neutral current processes. The
charged current process

νe + d→ e− + p+ p , (150)

like all charged current processes, is sensitive to whether oscillations have occurred
or not. The neutral current disintegration of the deuteron, on the other hand, is
insensitive to oscillations since it is the same for all neutrino species νX :12

νX + d→ νX + p+ n . (151)

Comparison of the rates for the two neutrino reactions(150) and (151) should help
rule out possible astrophysical explanations for the solar neutrino puzzle. The SNO
detector should begin taking data in 1999.

The second solar neutrino experiment of interest is Borexino. [64] This experi-
ment is presently under construction at the Gran Sasso Laboratory and should be
ready for data taking in 2001. Borexino uses 300 tons of scintillator, which has a
relatively low threshold (Ethr > 340 KeV). As a result, Borexino should be par-
ticularly sensitive to the Eν = 862 GeV neutrino line coming from 7Be. Recalling
Fig. 11, one sees that if the MSW explanation is correct, the solar neutrino signal
in Borexino should be significantly below the theoretical expectations. Indeed, if
there are no solar oscillations, Borexino is supposed to detect about 50 events/day,
while if the MSW explanation is true, this number should go down to about 10
events/day.

B Atmospheric Neutrinos

Here again SuperKamiokande will continue to integrate data with time. However,
the ∆m2 region, will also be probed more directly by using neutrino beams from
accelerators. Three such long baseline experiments are in different stages of readi-
ness. K2K, which uses a neutrino beam from KEK, aimed at SuperKamiokande
250 Km away, should shortly be operational. [65] MINOS, [66] in the Soudan Mine,
is under construction and will be the target of a dedicated neutrino beam from
Fermilab, 730 Km away. First data should become available around 2001-2002.
Finally, a variety of proposals exist for experiments in the Gran Sasso Laboratory,
which is 740 Km from CERN, to become targets of neutrino beams from CERN.

12) This is only true for neutrinos whose neutral couplings to the Z are universal. It does not
apply to sterile neutrinos.



The main advantage that these long baseline experiments have over Su-
perKamiokande is that the neutrino beam used is well characterized, both in energy
and in its time structure. Furthermore, these beams also have a higher intensity.
So many possible systematic effects will be under better control. In the case of
the higher energy Fermilab and CERN beams, it may also be possible to directly
search and detect ντ ’s, if these neutrinos are produced in the oscillations.

C LSND Region

The ∆m2 − sin2 2θ region identified by the LSND experiment as potentially in-
teresting also will be explored further. At Fermilab, there is an approved experi-
ment, Mini BooNE, [67] which will run around 2001-2002, which should be about
a factor of five more sensitive than LSND in a comparable kinematical region.
With this sensitivity, it should be quite clear whether νµ → νe oscillations with
∆m2 ∼ (0.1 − 1) eV2 exist or not.
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APPENDIX A: DIRAC AND MAJORANA MASSES

To understand how Dirac and Majorana masses can arise, it is useful to review
here some of the properties of the spinor representations of the Lorentz group.
The Lorentz group, besides the well known vector and tensor representations has
also spinor representations. It turns out that there are two inequivalent spinor
representations. It is out of these two-dimensional spinors that one builds up the
usual four-dimensional Dirac spinor ψ.

Under a Lorentz transformation, a vector field V µ has the well known transfor-
mation

V µ → V ′µ = Λµ
νV

ν , (1)

where the 4-dimensional representation matrices Λ obey the pseudo-orthogonality
conditions

ηµν = Λα
µηαβΛβ

ν , (2)

involving the metric tensor



ηµν =




−1
1

1
1


 . (3)

Besides vector representations, the Lorentz group has two inequivalent spinor
representation. The corresponding 2-dimensional Weyl spinors are conventionally
denoted by ξa and ξ̇a, known as undotted and dotted spinors, respectively. Under
Lorentz transformations they transform as

ξa → ξ′a = M b
a ξb (4)

ξ̇a → ξ̇′a = M∗ba ξ̇b . (5)

The 2 × 2 matrices M and M ∗, with det M = det M∗ = 1, provide inequivalent
representation of SL(2, C). Obviously, from the above it follows that ξ̇ ∼ ξ∗.

One can establish a relationship between the 2 × 2 matrices M and the 4 × 4
matrices Λ, since the vector field V µ transforms as V ∼ ξ ⊗ ξ̇. For these purposes,
it is useful to define a set of four matrices σµ ≡ (1, ~σ), with ~σ being the usual Pauli
matrices. The 2× 2 matrix

V = σµηµνV
ν ≡ σµVµ (6)

under a Lorentz transformation transforms as

V → V ′ = MVM † = σµV ′µ . (7)

Using Eq. (A1), it follows that

σµacΛ
ν
µ = M b

a σ
ν
bdM

∗d
c . (8)

Because det M = 1, the analogue of the scalar product for vectors V µηµνV
ν ≡

V µVµ, for the spinors ξ and ξ̇ leads to the following Lorentz scalars:

ξaε
abξb ≡ ξaξ

b ; ξ̇aε
abξ̇b ≡ ξ̇aξ̇

b (9)

where εab = −εba and ε12 = 1. Similarly, just as the contraction of a covariant and
contravariant metric tensor gives the identity [ηµρη

ρν = δνµ], one can define 2 × 2
antisymmetric ε-matrices, εab, which obey

εacε
cb = δba . (10)

It follows that ε12 = −1.
The usual 4-component Dirac spinor ψ is made up of a dotted and an undotted

Weyl spinor:

ψ =

(
ξa
χ̇a

)
(11)



In this, so called, Weyl-basis the Dirac γ-matrices γµ, which obey the anticommu-
tation relations {γµ, γν} = −2ηµν , take the form

γµ =

(
0 σµ

σ̄µ 0

)
. (12)

Here σ̄µ = (1,−~σ), so that in this basis

γ0 =

(
0 1
1 0

)
; γi =

(
0 σi

−σi 0

)
(13)

and

γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
. (14)

It follows from the above that ξa and χ̇a are chiral projections of ψ:

ψL =
1

2
(1− γ5)ψ =

(
ξa
0

)
; ψL = ψ̄

1

2
(1 + γ5) = (0 ξ∗a) (15)

ψR =
1

2
(1 + γ5)ψ =

(
0
χ̇a

)
; ψR = ψ̄

1

2
(1 − γ5) = (χ̇a∗ 0) . (16)

Using these equations, it is easy to see that the Dirac mass term connects ξ with
χ̇. Specifically, one has

LDirac = −mD(ψLψR + ψRψL) = −mD(ξ∗aχ̇
a + χ̇a∗ξa) . (17)

Recall, however, that dotted spinors are related to the complex conjugate of an
undotted spinor. Choosing a phase convention where

ξ∗a = ξ̇a ; χ̇∗a = χa, (18)

one can write the Dirac mass term simply as

LDirac = −mD(ξ̇aχ̇
a + χaξa) . (19)

In view of Eq. (A9) this term is obviously Lorentz invariant. However, Lorentz in-
variance does not require one to have two distinct Weyl spinors ξ and χ to construct
a mass term. Majorana masses, basically, make use of this “simpler” option.

One can define a 4-component Majorana spinor in terms of the Weyl spinor ξ
and its complex conjugate ξ̇:

ψM =

(
ξa
ξ̇a

)
. (20)



Because ξ̇a = ξa∗, effectively ψM has only one independent helicity projection. One
can choose this projection to be, say, (ψM)L:

(ψM)L =
1

2
(1 − γ5)ψM =

(
ξa
0

)
; (ψM)L = ψM

1

2
(1 + γ5) = (0 ξ̇a) . (21)

One can construct (ψM)R by using the charge conjugate matrix C̃. In the Weyl
basis C̃ is given by

C̃ =

[
εab 0
0 εab

]
=




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 . (22)

Clearly

(ψM)R =

(
0

ξ̇a

)
=

(
0

εabξ̇b

)
= C̃(ψM)L

T

(ψM)R = (ξa 0) = (εabξb 0) = (ξbεba 0) = (ψM)TLC̃ . (23)

That is, (ψM)R is the charge conjugate of (ψM)L (c.f. Eq. (36)):

[(ψM)L]c = (ψM)R . (24)

Because of Eq. (A24) it follows that the Majorana spinor ψM obeys a constraint.
It is self-conjugate:

ψM =

(
ξa
ξ̇a

)
= (ψM)L + (ψM )R = (ψM)L + [(ψM)L]c . (25)

Hence,

ψM = [ψM ]c . (26)

The Majorana mass term

LMajorana = −1

2
mMψMψM (27)

involves a product of ξ with itself and ξ̇ with itself

LMajorana = −1

2
mM

(
(ψM )L(ψM)R + (ψM)R(ψM)L

)
= −1

2
mM(ξ̇aξ̇

a + ξaξa) . (28)

Eq. (A28) can also be written purely in terms of (ψM)L by using the charge
conjugation matrix C̃. Using Eq. (A23) one has also

LMajorana = −1

2
mM

(
(ψM)LC̃(ψM)L

T + (ψM)TL C̃(ψM)L

)
. (29)

Equally well one can write this mass term entirely as a function of (ψM)R. One
finds

LMajorana = −1

2

(
(ψM)TRC̃(ψM)R + (ψM)RC̃(ψM )R

T
)
. (30)
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