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Preface

There are a number of excellent treaties on fission in the market and a reader
may wonder about the reason for us to write another book. All of the ex-
isting books, however, deal with the phenomena associated with fission from
the vantage point of the liquid-drop model of nuclei. In this monograph, we
depart from that and investigate a number of fission related properties from
a simple energy-density functional point of view taking into consideration the
actual density-distribution function of nuclei i.e., we investigate the effect of
a nuclear surface of 2 to 3 fm in width on the potential energy surface of a
separating daughter pair. This influences the structure of the potential en-
ergy surface significantly. The referee of the article titled “Potential Energy
Surfaces and Lifetimes for Spontaneous Fission of Heavy and Superheavy
Elements from a Variable Density Mass Formula” published in Annals of
Physics, Volume 98, 1976, stated “The work reported in this paper is im-
portant and significant for fission theory.” We, therefore, wish to bring to
the scientific community a comprehensive study of the fission phenomenon
done so far from the energy-density functional approach. An overview of this
monograph is presented in Sect. 1.10 of Chap. 1 under the title pre-amble.

Some of the successes of the approach are the following:
In 1972, using a simple version of the theory, it was correctly predicted

that half-lives of superheavy elements should be very short. So far, experi-
ments support this.

In 1972, the mass distribution in the fission of isomer state of 236U was
predicted. The measurements done eight years later in 1980 confirmed this
prediction.

The theory can calculate the most probable kinetic energies associated
with the emission of a daughter pair in spontaneous and induced fission within
a few MeV.

The theory, independent of observation done, predicted simultaneously
that the mass-spectrum in the spontaneous fission of 258Fm should be
symmetric.

The theory can account for nuclear masses and observed density distrib-
ution functions to within 1.5%.

The theory predicted the existence of cold fission, well before it was found
experimentally.
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Aside from describing many phenomena related to fission, this theoretical
approach can be extended to the study of cluster and alpha-radioactivities,
which are discussed in Chap. 9. Thus, the theory provides a uniform approach
to the emission of alpha, light clusters, and heavy nuclei from meta-stable
parent nuclei.

This latter problem, on the other hand, is clearly a complex many-body
one and as such, the theory presented herein is likely to be improved over
time with the advancement in many-body and reaction theory. We just hope
that this little book will serve as a foundation for more sophisticated work in
the future.

In essence, the theory is a refinement of the pioneering work of Professors
Neils Bohr and John A. Wheeler. In 1939, when their work was published,
very little knowledge of actual nuclear density distribution functions was
available. That work may be viewed as an energy-density approach to nu-
clear fission for a uniform density-distribution function. We have benefited
much from the underlying physics of this monumental publication. One of
us, (FBM) is very thankful to Professor John Wheeler for exposing him to
many nuances of that work and teaching him much of physics in other areas.

Many persons deserve many thanks for discussion and encouragement
in early parts of this investigation. Obviously, much of the subject matter
noted in the monograph is based on the excellent doctorial dissertation of
Dr. Behrooz Compani-Tabrizi. We are much indebted to him. We remember
fondly the spirited correspondences with Professor G.E. Brown, the then
editor of Physics Letters B, where some of the key papers were published.
Discussion with Professors John Clark, (late) Herman Feshbach, (late) Emil
Konopinski, Don Lichtenberg and Pierre Sabatier, and Dr. Barry Block are
much appreciated.

For the preparation of the manuscript, we are very much thankful to
Professor Arun K. Basak, Mr. Shahjahan Ali, Ms. Sylvia Shaw, Ms. Angela
Lingle, and Ms. Carol Booker. We are appreciative of the helpful assistance
of the staff and editors of Springer Verlag associated with the publication of
this monograph. Lastly, the support of our many friends and relatives played
an important role in getting this book done. We thank them collectively.

January 2005 Ali Hooshyar, Richardson, Texas
Irwin Reichstein, Ottawa, Ontario

Bary Malik, Carbondale, Illinois
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1 A Summary of Observed Data
and Pre-Amble

1.1 Introduction

The discovery of nuclear fission has been a key factor in establishing a major
role for physics in human society in the post World War II era. It had, how-
ever, an inconspicuous beginning in the laboratories of Paris and Rome. In
1934, F. Joliot and I. Curie [1.1,1.2] reported on a new type of radioactivity
induced by alpha particles incident on nuclei. Immediately thereafter, Fermi
and his collaborators reported neutron induced radioactivity on a series of
targets [1.3–1.5]. It was difficult to separate clearly the resultant elements.
In their zeal to discover elements heavier than uranium, the possibility of
nuclear fission was overlooked [1.6, 1.7], despite the fact that Noddack [1.8],
in her article, raised the possibility of nuclear fission in experiments carried
out in Rome [1.5–1.7]. Ultimately, Hahn and Strassmann [1.9] concluded re-
luctantly that uranium irradiated by neutrons bursts into fragments and the
phenomenon of particle induced fission of nuclei was established. This con-
clusion was immediately confirmed by Meitner and Frisch [1.10] and nuclear
fission was established as an important phenomenon in the study of physical
properties of nuclei.

The importance of nuclear fission for the production of energy is obvious.
About 180 MeV of energy is produced in the fission of an actinide to one
of its most probable daughter pairs. This means that 1 kg of uranium is
capable of producing about 2 × 107 Kilowatt hours of energy, enough to
keep a 100 Watt bulb burning continuously for about 25,000 years. From the
theoretical standpoint, the implication of the exothermal process involved in
their decay is that actinide nuclei must be in a meta-stable state, very much
like alpha emitters and the then nuclear physics community started exploring
the intriguing question of whether or not fission could occur spontaneously
in the same fashion as the emission of alpha particles from alpha emitters.
Libby searched in vain for the spontaneous fission of uranium, however, it
was finally Petrzhak and Flerov [1.11] who discovered that uranium fissions
spontaneously. Since then, extensive efforts have been carried out at various
laboratories to determine physical properties associated with spontaneous
fission as reported by Segré [1.12].

Spontaneous fission refers to the physical phenomenon where a parent
nucleus decays spontaneously to daughter pairs, each member of which is
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much heavier than an alpha particle. Simultaneous emission of three particles
also occurs but the process is a few orders of magnitude less likely. In induced
fission a target nucleus, upon bombardment by an incident projectile, decays
into a series of pairs of daughter nuclei, each member of the pair being much
heavier than an alpha particle. Unlike the case of alpha-particle emission,
the particles in the fission processes are emitted primarily in excited states.
Obviously, both of these processes involve a very complex transmutation of
the parent nuclei, the understanding of which requires measurements of many
associated phenomena. Extensive experimental studies of physical properties
associated with fission phenomena have been carried out and are documented
in many excellent treaties [1.13–1.15,1.34]. In the next section we summarize
some of the key physical properties relevant to the dynamical aspect of the
fission process.

In 1984, Rose and Jones [1.17] reported the observation of the emission of
14C spontaneously from 223Ra which was immediately confirmed in a num-
ber of research centers around the world [1.18–1.21]. In fact, many of these
laboratories observed the emission of clusters ranging from 14C to 34Si from
parent nuclei radium to uranium. Their half-lives range from 1011 to 1025

seconds. The main observed characteristic features associated with cluster
emission are also noted in Sect. 1.9.

1.2 Half-Lives and Spontaneous Decay

The half-lives associated with spontaneous decay of nuclei by fission range
from greater than 1018 years for 230Th to 10−3 s for 258Fm i.e., a range
of over 1028 years. These vary considerably for different isotopes of a given
element, e.g., the half-lives of spontaneous decay of californium vary from
12 min (∼2.3 × 10−5 years) for the isotope 256Cf to 103 years for the isotope
246Cf. An updated tabulation of spontaneous fission half-lives is given in
Table 1.1 and a selected number of them are plotted in Figs. 1.1–1.3. A
close examination of Table 1.1 reveals that odd-isotopes of a given element
have consistently longer half-lives by a few orders of magnitude than those
of their even-even neighbors. Similarly, odd-odd isotopes of a given element
have longer half-lives compared to their adjacent odd-even ones.

The spontaneous decay is, moreover, predominately binary. Only one in
every few hundred decays may be ternary. Recently, quaternary fission has
also been observed, [1.22] occurring at the rate of about 5× 10−8 per fission.
For binary fission, there is a mass and charge distribution associated with the
fission of a parent nucleus. A daughter pair usually has a mean or average
kinetic energy called total kinetic energy (TKE) associated with it, and there
is a distribution of the TKE with the fragment mass numbers, as shown in
Fig. 1.4.
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Table 1.1. Recommended spontaneous fission half-lives of elements from 230Th to
259Fm [1.81]. The number for each element refers to average values recommended
in [1.81]

T1/2(Years) T1/2(Years)
Element Unless Noted Element Unless Noted

230Th >2. × 1018 246Cm 1.81 ± 0.02 × 107

232Th >1. × 1021 248Cm 4.15 ± 0.03 × 106

231Pa >1. × 1017 250Cm 1.13 ± 0.05 × 104

230U >4. × 1010 249Bk 1.9 ± 0.1 × 109

232U 8. ± 6. × 1013 246Cf 2.0 ± 0.2 × 103

233U >2.7 × 1017 248Cf 3.2 ± 0.3 × 104

234U 1.5 ± 0.2 × 1016 249Cf 8. ± 1. × 104

235U 1.0 ± 0.3 × 1019 250Cf 1.7 ± 0.1 × 104

236U 2.5 ± 0.1 × 1016 252Cf 85. ± 1
238U 8.2 ± 0.1 × 1015 254Cf 60.7 ± 0.2 d
237Np >1. × 1018 256Cf 12. ± 1. min
236Pu 2.1 ± 0.1 × 109 253Es 6.4 ± 0.2 × 105

238Pu 4.75 ± 0.09 × 1010 254Es >2.5 × 107

239Pu 8. ± 2. × 1015 255Es 2.44 ± 0.14 × 103

240Pu 1.16 ± 0.02 × 1011 242Fm 0.8 ± 0.2 × 10−3 s
241Pu 6. × 1016 244Fm 3.3 ± 0.5 × 10−3 s
242Pu 6.77 ± 0.07 × 1010 246Fm 15. ± 5.
244Pu 6.6 ± 0.2 × 1010 248Fm 10. ± 5 hr
241Am 1.0 ± 0.4 × 1014 250Fm 0.83 ± 0.15
242Am >3. × 1012 252Fm 126. ± 11.
243Am 2.0 ± 0.5 × 1014 254Fm 228 ± 1. d
240Cm 1.9 ± 6. × 106 255Fm ≈1. × 104

242Cm 7.0 ± 0.2 × 106 256Fm 2.86 ± 0.02 hr
243Cm 5.5 ± 0.9 × 1011 257Fm 131. ± 3
244Cm 1.32 ± 0.02 × 107 258Fm 0.37 ± 0.02 × 10−3 s
245Cm 1.4 ± 0.2 × 1012 259Fm 1.5 ± 0.02

A very important characteristic of the binary fission process is that the
observed TKE associated with a decay mode is typically 10 to 30 MeV lower
than the Q-value of the reaction. A typical case is shown in Fig. 1.4. Daughter
pairs are emitted in predominantly excited states and cool off by emitting
primarily neutrons and γ-rays. Some important characteristic behaviors of
these emitted neutrons are discussed in Sects. 1.4 and 1.5.

1.3 Induced Fission

Induced fission was discovered before spontaneous fission. Experiments in
Rome [1.3–1.5] and Berlin [1.9] primarily used neutrons to induce fission,
although the initial experiments in France were done using alpha particles
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Fig. 1.1. Logarithm of spontaneous fission half-lives in years are plotted as a
function of neutron number for some even-even isotopes of Th, U, Pu, Cm, Cf and
Fm [1.81]

Fig. 1.2. Logarithm of spontaneous fission half life/alpha half life of even-even
nuclei are plotted as a function of the square of atomic number, Z over mass number
A known as the fissibility parameter [1.81]

[1.1, 1.2]. Induced fission can be initiated both by particles and by radiation
and like spontaneous fission, is predominantly a binary process.

Following the discovery of the fission process, Hahn and Strassmann [1.9]
in Berlin and Anderson, Fermi and Grosse in New York [1.23] established the
mass distribution in the fission process. Hahn and Strassmann [1.9], Frisch
[1.24], Jentschke and Prankl [1.25] and Joliot [1.26] demonstrated that a large
amount of kinetic energy was associated with the fission fragments but the
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Fig. 1.3. Logarithm of spontaneous fission half-lives in years of some non-even-
even isotopes are plotted as a function of the square of atomic number, Z over mass
number A [1.81], i.e., the fissibility parameter

Fig. 1.4. Observed pre-neutron emission total kinetic energies shown as a dashed
line [1.84] in the spontaneous fission of 252Cf are compared to the Q-value calculated
from Myers-Swiatecki’s [1.88] and Green’s [1.89] mass formulae for various daughter
pairs. mH is the mass of the heavier fragment

systematic measurement of the TKE spectra began after the second world war
at various laboratories [1.27–1.29]. Simultaneous measurements of both the
mass and TKE spectra in the same experiment were developed at a later date
and are very important to our understanding of the process. Way, Wigner
and Present [1.30,1.31] in the late nineteen-forties raised the possibility of a
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charge distribution associated with fission products and these distributions
were established by Glendenin and others noted in review articles by Wahl
[1.33,1.34].

The projectile in induced fission is not restricted to neutrons only. Exten-
sive studies of the fission process have been done with incident γ-rays, pro-
tons, deuterons, alpha particles, µ-mesons and other light as well as heavy
nuclei [1.15] with a wide range of incident energies. Fission yields, mass,
charge and TKE distributions are strongly affected by the energy of incident
projectiles.

The fission cross section induced by thermal neutrons is very large, ex-
ceeding a few thousand barns and falls off inversely with neutron velocity but
shows sharp narrow resonances illustrated in Fig. 1.5 for energy up to 10 keV.
Figure 1.6 presents the variation of cross section with energy up to 5 eV. It ex-
hibits sharp and well-separated resonances both in the total neutron capture,
absorption and fission cross sections.

Fission cross-sections at higher incident energy vary rather smoothly with
energy except for a few steps and are only a few barns.

Extensive data on angular distributions are available. Their pattern de-
pends on incident energies.

Fig. 1.5. Observed fission cross section is plotted as a function of incident neutron
energy for 235U and 239Pu [1.82]
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Fig. 1.6. Typical resonances observed in the interaction of neutrons with 235U in
the energy range of 0.1 to 5 eV. The observed total, fission and scattering cross
sections are noted, respectively, as solid and open circles and open triangles [1.94].
Resonances observed in (n, γ) are marked with open spikes

1.4 Mass, Charge
and Average Total Kinetic Energy Distribution

It is important to note that the decay mode in fission is neither asymmetric
nor symmetric i.e., fission does not take place to a daughter pair having
one partner twice as heavy as the other or to a pair each having equal mass.
Both spontaneous and induced fission leads to a distribution of emitted nuclei,
which is strongly dependent on mass number, A. The actual mass distribution
in spontaneous fission depends on the mass number of the parent and in
thermal neutron induced fission depends on the compound nucleus formed.
For example, the locations of the peak and the valley in the mass distribution
in thermally induced fission of 233U and 239Pu are different as shown in
Fig. 1.7.

For most of the lighter actinides, mass distributions or spectra as a func-
tion of mass number A, in spontaneous fission and in thermal neutron induced
fission having the same compound nucleus are nearly identical but they start
to differ significantly with increasing mass number of parent nuclei. The dif-
ference becomes striking for the isotope 256Fm. The mass distribution of
the daughter products in the spontaneous fission of 256Fm peaks towards a
maximum of about A = 144 and 112 [1.35], i.e., asymmetric, whereas in the
thermal neutron induced fission of 255Fm, it peaks towards A = 128, i.e., sym-
metric [1.95]. This is indeed remarkable, since the parent compound nucleus
in the induced fission has only about 6 MeV additional excitation energy.
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Fig. 1.7. Observed percentage mass yields for thermal neutron induced fission of
233U and 239Pu are plotted as a function of atomic number of daughter nuclei [1.83]

The mass distribution in particle and γ-ray induced fission changes dra-
matically with increase in incident energy. Figure 1.8 presents a comparison
of the mass distributions in the induced fission of 235U by both thermal and
14 MeV incident neutrons. In the latter case, the decay probabilities to sym-
metric modes increase significantly for the 14 MeV case and are comparable
to those to asymmetric modes.

By far the largest part of the energy released in fission goes into the
kinetic energies of daughter pairs. The average value of the released kinetic
energy, however, is a few tens of MeV lower than the Q-value as shown in
Fig. 1.4. The released average kinetic energy (TKE) has a significant mass
dependence. A typical case is shown in Fig. 1.9 which clearly establishes that
different daughter pairs are emitted with different average kinetic energies. In
fact, TKE associated with a particular daughter pair has usually a significant
root mean squared spread.

Aside from mass distribution, there is a charge distribution associated
with fission fragments, an example of which is presented in Fig. 1.10 for
the case of thermal neutron induced fission of 235U. Figure 1.11 presents
a collection of data indicating a typical charge distribution around Zp, the
most probable charge for a primary fission product of mass number A. Mass
distribution as well as TKE spectra depends strongly on the excitation energy
of fissile nuclei. This is discussed in details in Chap. 6.
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Fig. 1.8. Observed percentage mass yields for the thermal and 14 MeV neutron
induced fission of 235U are shown as a function of daughter masses [1.83]

1.5 Cooling of Daughter Pairs

The daughter pairs are usually in excited states and cool off primarily by
emitting γ-rays and neutrons in spontaneous fission as well as induced fission
by light projectiles (i.e., projectiles not heavier than 4He) of energies up to a
few tens of MeV. However, the measurement of significant root mean squared
deviation of TKE associated with a particular decay mode characterized by
a particular mass number may be indicative of the fact that the decay may
take place to a particular daughter pair having various degrees of excitation,
and different isotopes having the same mass number.

The average energy loss by gamma ray emission is about 6 to 8 MeV per
fission fragment and constitutes 15 to 30 percent of the total excitation. The
actual number of γ-rays emitted has a strong dependence on the mass num-
bers of the members of the daughter pair and hence, on the detailed nuclear
structure of the pair, irrespective of parent nuclei as shown in Figs. 1.12, 1.13.

Early studies of induced fission already indicated that neutron emission
accompanies the fission process [1.36–1.39]. In fact, Hagiwara [1.36] estab-
lished that the average number of neutrons emitted per fission, ν, is about
2.5. These neutrons are actually emitted by daughter pairs and within about
4× 10−14 sec of the scission [1.40]. The average number of neutrons emitted
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Fig. 1.9. The insert (a) indicates post and pre-neutron emission mass distribution
N(µ) and N(m∗), respectively. The insert (b) indicates the corresponding average
total kinetic energy Ek(µ) and Ek(m∗) distributions [1.84]. Both inserts are for
thermal induced fission of 235U

increases with the mass number of the parent [1.41] as shown in Fig. 1.14.
Systematic studies [1.40, 1.42–1.47] have revealed that the number of emit-
ted neutrons depends strongly on the mass numbers of the members of the
daughter pair, irrespective of the mass of the associated parent nuclei emit-
ting them. This is shown in Fig. 1.15. It seems that the nuclear structure
of daughter pairs plays an important role in neutron emission. In fact, the
number of neutrons emitted by closed shell nuclei is much smaller than
those emitted from non-closed shell nuclei. This is similar to the situation
for the number of γ-rays emitted by fission fragments. Thus, it seems that
the number of neutrons emitted is dependant on the excitation energies and
shell structures of the daughters.

The kinetic energy spectrum of emitted neutrons ranges from thermal to
over 10 MeV. A typical case is shown in Fig. 1.16, where the probability of
emission of a fission neutron with energy E, N (E), is plotted as a function
of E [1.48, 1.49]. The observed spectrum in the figure is well represented by
an analytic function.
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Fig. 1.10. Independent yields, noted as IN, obtained in thermal neutron induced
fission of 235U. Projections show mass, Y(A) and charge, Y(Z). Yields, ZA indicate
approximate location of the most stable nuclei. [1.33,1.34]

1.6 Ternary and Quaternary Fission

In one out of a few hundred fissions, energetic alpha-particles are emitted at
about right angles to the fission fragments [1.50] and hence, are not likely to
be evaporated from these fragments. These alpha particles are emitted either
during the breaking up of a parent nucleus simultaneously into three particles
or produced at a time scale considerably shorter than the evaporation time
for particle emission from daughter nuclei i.e., much less than 10−14 sec.
These alpha particles have an energy distribution peaked around 15 MeV
[1.13, 1.15]. Schmitt, Neiler, Walter and Chetham-Strode [1.51] found that
the mass distribution of the daughters in thermal neutron induced fission of
235U may be slightly different for the cases accompanied by alpha-emission
compared to those in normal fission.

Aside from alpha particles, light charged particles such as isotopes of H
and He [1.13,1.15,1.52] as well as heavy-ions B, C, N and O [1.53] have been
detected in particle induced fission, although it has not yet been established
that various charged particles are actually emitted in coincidence with fission,
i.e., in actual three-body break up. As noted earlier, Gönnenwein et al. [1.22]
have observed quaternary fission.
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Fig. 1.11. Observed charge distribution in thermal neutron induced fission of 233U,
235U and 239Pu shown, respectively, as squares, circles and triangles and in the spon-
taneous fission of 242Cm and 252Cf shown, respectively, as inverted triangles and
diamonds are compared to the theoretical function P (z) = (1/7,

√
πc) exp[−(Z −

Zp)
2/c] with c = 0.94. Zp refers to the most probable charge [1.90,1.91]

Fig. 1.12. Observed relative gamma-ray yields are shown as a function of fragment
mass in the spontaneous fission of 252Cf [1.85]
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Fig. 1.13. Average number of gamma-rays emitted, Nγ and their total energy
observed, Eγ is plotted as a function of fragment atomic mass in the thermal
neutron induced fission of 235U [1.86]. The solid curve refers to observed mass
spectrum

Fig. 1.14. Average number of prompt neutrons emitted is plotted as the mass
number of parent nuclei [1.41]. Solid and open circles refer, respectively, to those
observed in spontaneous and thermal neutron induced fission corrected for zero
excitation
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Fig. 1.15. Average numbers of neutrons emitted in the spontaneous fission of 252Cf
and thermal neutron induced fission of 233U, 235U and 239Pu is plotted as a function
of fragment mass number [1.47]

Fig. 1.16. Observed energy spectrum of emitted neutrons is compared to two
theoretical functions [1.87]

1.7 Fission Isomers

In 1962 Polikanov et al. [1.54] in induced fission observed spontaneously fis-
sioning nuclei with a very short partial half-life with a long partial gamma
decay half-life. Since then, this phenomenon has been observed in many cases
of induced fission and a list of such cases along with observed half-lives are
presented in Table 1.2. The fissioning state lies usually a few MeV above the
ground state. These have been interpreted as isomeric states lodged in the
humps of the potential surface between the ground state and saddle point and
referred to as shape isomers. Strutinsky’s [1.55] investigation indicates that
the shell structure of parent nuclei is responsible for producing these humps
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Table 1.2. Half-lives of fission isomers from the compilation in [1.13]. Items marked
∗ are not well determined

Element T1/2(sec) Element T1/2(sec) Element T1/2(sec)

234U * 241Cm (15 ± 1) × 10−9

235U * 242Cm 180 × 10−9

236U (105 ± 20) × 10−9 237Am 5 × 10−9 243Cm (42 ± 5) × 10−9

238U (195 ± 30) × 10−9 238Am 35 × 10−6 244Cm ≥50 × 10−9

239Am (160 ± 40) × 10−9 245Cm (13 ± 2) × 10−9

235Pu (30 ± 5) × 10−9 240Am (0.91 ± 0.07) × 10−3

236Pu (34 ± 8) × 10−9 241Am (1.5 ± 0.6) × 10−6 242Bk (9.5 ± 2.0) × 10−9

(600 ± 100) × 10−9

237Pu (82 ± 8) × 10−9 242Am (14.0 ± 0.4) ×10−3 244Bk (820 ± 60) × 10−9

(1120 ± 80) × 10−9

238Pu (6.5 ± 1) × 10−9 245Bk 2 × 10−9

0.5 × 10−9

239Pu (8 ± 1) × 10−6 243Am (6 ± 1) × 10−6

240Pu (3.8 ± 0.3) × 10−9 244Am (1.1 ± 0.2) × 10−3

241Pu (23 ± 1) × 10−9 245Am (640 ± 60) × 10−9

242Pu 28 × 10−9 246Am (73 ± 10) × 10−6

243Pu 33 × 10−9

or pockets in the potential surface between the ground state configuration of
a parent nucleus and the saddle point.

Extensive investigations of properties of these isomers have been made
and reviewed in a number of articles [1.13, 1.56, 1.57]. The determination of
exact excitation energies of these isomers is difficult and model-dependent
but lies between 2 to 3 MeV for Pu, Am and Cm and there may be excited
rotational states based on them [1.58].

The mass distribution and average kinetic energy associated with the
fission of 236U and its isomer have been found to be similar to those associated
with the fission of the ground state by Fontenla and Fontenla [1.59] which was
predicted by Hooshyar and Malik [1.60] about eight years earlier. Indication
is that this may be the situation in other cases.

1.8 Cold Fission

In 1976, Hooshyar, Compani-Tabrizi and Malik’s [1.61, 1.62] investigation
raised the possibility of emission of unexcited and nearly unexcited daugh-
ter pairs in a fission process. Signarbieux et al. in 1981 [1.63] reported
measuring daughter pairs with very little excitation energy. In fact, these
pairs do not emit any neutrons because of insufficient available energy
[1.63–1.66]. These processes, which are quite rare, are usually called cold
fission or fragmentation.
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These investigations have established the emission of cold fragments to
be not a rare phenomenon but the yields of these fragments are less proba-
ble compared to the corresponding daughter pairs being emitted in excited
states. The mass distribution of cold fragments covers the same mass range
of daughters as that seen in normal fission. This is shown in Fig. 1.17. Mea-
sured excitation energies of these fragments range from nearly zero to 8 MeV
in thermal neutron induced fission of 235U. Similarly, there is also a charge
distribution associated with the emission of cold fragments.

Fig. 1.17. Fragment mass distribution seen in cold fission product, noted as dotted
line, is compared to those observed in normal fission product in thermal neutron
induced fission of 235U [1.93]

1.9 Cluster Radioactivity

In 1984, Rose and Jones [1.17] observed the emission of 14C from 223Ra. The
emission of such clusters from other actinides was quickly confirmed in other
laboratories [1.18–1.21]. The half-lives associated with this process are very
long, ranging from 1011 to 1025 sec. The kinetic energies associated with the
process are significantly lower than the corresponding Q-values which is also
characteristic of spontaneous and induced fission. In Table 1.3, we present
the emission of such clusters by parent nuclei from francium to curium, their
observed kinetic energies, Q-values and half-lives. The understanding of clus-
ter radioactivity in the context of the energy-density functional theory is
discussed in Chap. 9.
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Table 1.3. Columns 1 to 5 refer, respectively, to the cluster decay mode, the mea-
sured kinetic energy, the corresponding Q-values calculated from [1.78], logarithm
of measured half-lives and references

Decay Mode Ek(MeV) Q-value (MeV) Measured log T (sec) Ref.

221Fr → 14C 29.28 31.28 >15.77 [1.21,1.68]
221Ra → 14C 30.34 32.39 >14.35 [1.21,1.68]
222Ra → 14C 30.97 33.05 11.0 ± 0.06 [1.21,1.67]
223Ra → 14C 29.35 31.85 15.2 ± 0.05 [1.17–1.21]
224Ra → 14C 28.63 30.53 15.9 ± 0.12 [1.21]
225Ac → 14C 28.57 30.47 >18.64 [1.68]
226Ra → 14C 26.46 28.79 21.3 ± 0.2 [1.67,1.68]
231Pa → 23F 46.68 51.84 >25.4 [1.69]
230Th → 24Ne 51.75 57.78 24.6 ± 0.07 [1.69]
232Th → 26Ne 49.70 55.98 >27.9 [1.70]
231Pa → 24Ne 54.14 60.42 23.4 ± 0.08 [1.69]
232U → 24Ne 55.86 62.31 20.5 ± 0.03 [1.71]
233U → 24Ne 54.27 60.50 24.8 ± 0.06 [1.72,1.73]
233U →25Ne 54.32 60.84 [1.72,1.73]
234U → 24Ne 52.81 58.84 25.9 ± 0.2 [1.74]
234U →26Ne 52.87 59.48 [1.74]
235U → 24Ne 51.50 57.36 >27.4 [1.78]
235U →25Ne 51.68 57.82 [1.78]
233U → 28Mg 65.32 74.24 >27.8 [1.78]
234U → 28Mg 65.26 74.13 25.7 ± 0.2 [1.74]
237Np → 30Mg 65.52 75.02 >27.4 [1.69]
236Pu → 28Mg 70.22 79.67 21.7 ± 0.3 [1.79]
238Pu → 30Mg 67.00 77.03 25.7 ± 0.25 [1.75]
238Pu →28Mg 67.32 75.93 [1.75]
238Pu → 32Si 78.95 91.21 25.3 ± 0.16 [1.75]
241Am → 34Si 80.60 93.84 >25.3 [1.69,1.76,1.77]
242Cm → 34Si 82.88 96.43 >21.5 [1.78,1.79]

1.10 Pre-Amble

In the above sections, we have presented an overview of selected experimental
data, among others, on spontaneous and particle-induced fission and cluster
emission. This monograph deals with the theoretical understandings of a sig-
nificant fraction of these data from the energy-density functional treatment
of the fission and cluster emission dynamics. This theoretical approach allows
one to investigate the nature of the potential energy surface caused by the re-
organization of density distribution as well as the change in geometrical shape
as a parent nucleus splits into a daughter pair. The exposition in Chap. 2
serves as a prelude to that goal by calculating nuclear masses with variable
density distribution functions determined from experiments. This also im-
plies that the nuclear masses have been determined with proper root mean
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squared radii. The treatment in Chap. 3 to determine the potential energy
surface in the fission process due to the change in geometry as well as the
reorganization of density distributions is essentially an ab-initio calculation
of the potential energy surface from a realistic two nucleon interaction in the
local density approximation. The latter approximation allows one to deter-
mine energy per nucleon from a two nucleon potential at various densities
of nuclear matter. The incorporation of variation of densities in the fission
process changes the nature of the barrier between the saddle and scission
points substantially from the one expected from models based on the liquid
droplet approach.

An important aspect of the theories presented here is the emphasis on the
use of observed kinetic energy in computing various observables, particularly
half-lives in spontaneous fission, and the charge and mass distributions of
emitted particles. The reason for this emphasis is dictated by the theorem,
derived in Appendix A, relating kinetic energy and the general nature of
the potential energy surface involved in defining the decay from a meta-
stable state. The barriers computed in Chap. 3 and empirically proposed
in Chap. 5 are compatible with this theorem and the analysis of the decay
process compatible with observed kinetic energy presented in Appendix B.

The predictions of half-lives and mass distributions of daughter pairs in
the spontaneous fission of 258Fm and selected superheavy elements using the
methodology of Chap. 3 are presented in Chap. 4. The predictions for super-
heavy elements, done almost three decades ago, are in line with experimental
data so far.

In Chap. 6, the change in mass distribution and kinetic energy spectra
with the variation of projectile energy in induced fission is investigated within
the context of the empirical barrier of Chap. 5 using a statistical approach
which is different from the one used by Fong [1.16]. The investigation leads
to the understanding of the physical mechanism relating the distribution of
available energy in the emission of a daughter pair between its kinetic and
excitation energies. The theory enables one to determine quantitatively the
most probable kinetic energy associated with the emission of a particular
daughter pair. It allows a daughter pair to be emitted in all possible excited
states including their ground states. This is, therefore, a pre-cursor of cold
fission which has since been discovered and is discussed in detail in Chap. 7.
The presentation in Chap. 7 also discusses a new phenomenon termed hot
fission pointing out that the structure of the barrier, derived in Chap. 3 and
proposed in Chap. 4, puts a limit on the distribution of available energy
towards the excitation energies of a daughter pair which can not be emitted
with zero kinetic energy.

The theorem derived in Appendix A presents a serious challenge to ac-
count for the half-lives observed in isomer fission with the appropriate kinetic
energies. A coupled channel approach, presented in Chap. 8, to describe the
fission process, which is an extension of the reaction theory presented in
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Chap. 3, allows one to solve the difficulty. The mass distribution in isomer
fission calculated using this theory has been confirmed by the measurement
done eight years later. The diagonalization of the set of coupled channel
equations under the conditions pertinent to the fission process is presented
in Appendix C.

Cluster as well as alpha radioactivity fit into the general scheme of the
theory presented herein, as discussed in Chap. 9. The barrier calculated for
the emission of 14C from 226Ra within the context of the theory presented
in Chap. 3 and the associated half-life with observed kinetic energy are pre-
sented in that chapter. The half-lives of the emission of a number of other
clusters, calculated with the observed kinetic energy and not Q-values, within
the context of an empirical barrier that is constructed to exhibit the salient
features for the barrier obtained for 14C emission from 226Ra, agree well with
the data. Similar calculations for alpha decays have also been presented and
compared to the data. Thus, the phenomena of fission, alpha and cluster
radioactivities are reasonably described by a unified approach.
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2 Energy-Density Functional Formalism
and Nuclear Masses

2.1 Introduction

Nuclear masses are usually described by refined versions of Weisäcker’s mass
formula [2.1, 2.2], the latest version of which is described in [2.3]. The ba-
sic premise of this mass formula and its modern version is that the nuclear
density distribution function is constant over its radial dimension, dropping
abruptly to zero i.e. as in a liquid droplet. The liquid drop model of a nu-
cleus has its root in the paper of Bohr and Kalcker [2.4] who postulated it
to provide physical understanding of the occurrence of sharp resonances in
thermal neutron scattering. Since the end of the Second World War, it has
been reasonably established that the nuclear surface is not membrane-like
which is characteristic of a liquid droplet, but that the central density of a
nucleus, after remaining constant for a few femtometres, drops gradually to
zero over a distance of about 2 to 3.0 fm [2.5,2.6]. One may estimate the frac-
tion of nuclear matter located at the nuclear surface by approximating the
observed density distribution by a trapezoidal function. This is a reasonable
approximation to the observed density distribution function for medium and
heavy nuclei and allows one to evaluate the integrals involved in determining
the fraction of nuclear matter in different regions of a nucleus, analytically.

The trapezoidal density-distribution function shown in Fig. 2.1 may be
represented by

ρ = ρ0 for r < c
ρ = ρ0(d − r)/(d − c) for c ≤ r ≤ d
ρ = 0 for r > d

(2.1)

The total number of nucleons in a nucleus, N(A), the number of nucle-
ons in the constant density zone, N(o), and in the surface zone, N(s), are,
respectively, given by the following expression

N(A) = (πρ0/3)(c + d)(c2 + d2) (2.2a)
N(o) = 4(πρ0/3)c3 (2.2b)
N(s) = (πρ0/3)[(c + d)(c2 + d2) − 4c3] . (2.2c)
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Fig. 2.1. A typical trapezoidal distribution for nuclear density given by (2.2a, 2.2b,
2.2c)

In Table 2.1, N(A), N(o), and N(s) are given in units of (πρ0/3) for
c = 1.1A1/3 fm and (d − c) = 2.5 and 3 fm. which are typical values for real-
istic density distributions. Typically, approximately 40 to 50% of the nuclear
mass resides in the surface zone i.e., at a density lower than the saturation
density, a point already noted in [2.8, 2.9].

Table 2.1. Total number of nucleons, N(A), number of nucleons in the constant
density interior, N(o) and number of nucleons in the surface region, N(s) in arbitrary
units, for mass numbers A = 125 and 238. These are defined in (2.2a), (2.2b) and
(2.2c). (d − c) is the surface region defined by (2.1)

A = Mass No. (d − c) = 2.5 fm (d − c) = 3.0 fm

N(A) N(o) N(s) N(A) N(o) N(s)

125 1272 665 607 1435 666 769
238 2150 1267 883 2376 1267 1109

The ramification of a large fraction of nuclear matter residing in the nu-
clear surface region is that the formation of a low-density nuclear matter neck
on the way to fission is very likely. Simple estimates done in [2.7] indicate
that this low-density neck may affect the potential surface involved in fission
significantly. Hence, its effect on the potential surface must be examined care-
fully. A first step towards that goal is to find an appropriate variation of the
energy per nucleon with density of nuclear matter. This information may be
obtained by developing a theory that accounts for observed nuclear masses
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using experimentally determined density distributions because this requires
the use of energy-densities at densities other than the saturation density.
This is done in the next section within the framework of an energy-density
functional approach.

2.2 The Energy-Density Functional for Nuclei

The energy-density functional formalism in nuclear physics has its roots in the
Thomas-Fermi statistical approach to account for nuclear masses [2.10–2.13].
Hohenberg and Kohn’s [2.14] observation that the total energy, E[ρ], of the
ground state of a Fermion system can always be expressed as a functional of
its density, allows one to write the functional as follows:

E[ρ] =
∫

ε(ρ)ρ(�r)d3�r (2.3)

where ε(ρ) is the energy-density, i.e., energy per unit volume. If one writes
ρ(r) in terms of wave functions, (2.3) may be considered equivalent to

E [ρ] =
∫

d�r1 . . . . d�rnψ∗(�r1, �r2 . . . �rn)[ΣiT (�ri)

+
1
2
Σi�=jυ(

∣∣�ri − �rj

∣∣)]ψ(�r1, �r2 . . . �rn)

≡
∫

d3�rψ∗(�r) [T (r) + V (r)]ψ(�r) (2.4)

where T (�r) and v(|�ri−�rj |) are, respectively, the single- nucleon kinetic energy
operator and the two-nucleon potential. To seek an equivalent average energy
per nucleon, ε(ρ), one may resort to a statistical approach.

The first term on the right hand side of (2.4) is the total kinetic energy of
the fermion system. One may calculate its contribution to the energy density
ε(ρ) for nuclear matter defined as a system of equal numbers of protons and
neutrons having a density ρ which remains constant with the increase of both
nucleon number, A and volume Ω. Because of the Pauli principle, only four
nucleons, two protons and two neutrons having opposite spin may be put into
a volume h3. Hence the total number of nucleons, A, is given by

A =

pf∫
0

(4Ω/h3)4πp2dp = (16πΩ/h3)p3
f/3 . (2.5)

In (2.5), Ω and pf are, respectively the volume containing the nucleons
and the highest available momentum called the Fermi-momentum. From (2.5)
one obtains the relation between the density, ρ, of the system and the Fermi
momentum:
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pf = �kf = h(3ρ/16π)1/3 (2.6)

since ρ, the density is defined as

ρ = A/Ω . (2.7)

The maximum kinetic energy, Ef , called the Fermi energy is given by

Ef = p2
f/2M = (h2/2M)(3/16π)2/3ρ2/3 (2.8)

where M is the mass of a nucleon. The total kinetic energy of the system
〈T 〉, is given by

〈T 〉 =

pf∫
0

(4Ω/h3)(p2/2M)4πp2dp = (3/5)EfA . (2.9)

Hence the kinetic energy per nucleon contributing to ε(ρ) is

〈T 〉/A = (3/5)Ef = (3h2/10M)(3/16π)2/3ρ2/3 . (2.10)

Thus, the contribution to the kinetic energy from the nucleons is pro-
portional to ρ2/3. Brueckner, Coon and Dabrowski [2.15] have extended this
treatment to nucleonic matter having unequal numbers of protons and neu-
trons confined in a large volume and obtained the following density depen-
dence of T (ρ).

T (ρ) = C1(α)ρ2/3 (2.11)

with

C1(α) = (3/5)(h2/2M)(3π2/2)2/3(1/2)[(1 − α)5/3 + (1 + α)5/3] (2.12)

where α = (N − Z)/A, is the neutron excess.
The second term of the right hand side of (2.4) represents the contribution

of the interaction between nucleons to the energy-density ε(ρ). V (r) in (2.4)
is the average self-consistent potential or mean field, generated by the mutual
interaction among nucleons and in which each nucleon moves. For a smooth
two-nucleon potential, the most important contribution may be computed in
the Hartree-Fock approximation. The two-nucleon potential is, however, not
smooth but has strong short range repulsion and may be evaluated from the
K-matrices following the prescription of Brueckner and Levinson [2.16,2.17].
The non-Coulomb part of the neutron and proton potential Vn(�k) and Vp(�k)
acting on state k, are given by

Vn(�k) =
∑

q<knf

[(�k�q|Knn |�k�q) − Exchange]

+
∑

q<kpf

(�k�q |Knp|�k�q) (2.13)

Vp(�k) =
∑

q<kpf

[(�k�q |Kpp|�k�q) − Exchange]

+
∑

q<knf

(�k�q |Knp|�k�q) . (2.14)
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In the above, knf and kpf are, respectively, neutron and proton Fermi mo-
menta which are related to the nuclear matter Fermi momentum kf by

knf = (1 + α)1/3kf and kpf = (1 − α)1/3kf . (2.15)

Brueckner, Coon and Dabrowski [2.15] have evaluated the average nuclear
potential per nucleon, Vnucl(ρ) using the above procedure and the realistic
two nucleon potential of Brueckner and Gammel [2.18]. The dependence of
Vnucl(ρ) on α and ρ is shown in Fig. 2.2 and may be represented by the
following function

Vnucl(ρ) = b1(1 + a1α
2)ρ + b2(1 + a2α

2)ρ4/3 + b3(1 + a3α
2)ρ5/3 (2.16)

where ai and bi (i = 1, 2, and 3) are appropriate constants, the values of
which are noted later.

Fig. 2.2. Calculated energy per nucleon from [2.15] as a function of r0 =
[(4/3)πρ]−1/3 where ρ is the density for various values of the neutron excess pa-
rameter α = (N − Z)/A. N , Z and A are the neutron, proton and atomic mass
numbers, respectively. Dots are calculated points

In addition to the nuclear part of the potential, protons interact via the
Coulomb potential. The Coulomb potential ϕc acting on a single proton from
a charge distribution ρp is given by the following expression from classical
electrodynamics:

ϕc =
e

2

∫
d�r ′ρp(r′)/ |�r − �r′| (2.17)

The correction to (2.17) due to the Pauli principle among protons is approx-
imately given by [2.19], namely (−0.738e2ρ

1/3
p ).

The expressions (2.11) and (2.16) have been derived for a system of par-
ticles at a particular constant density distribution known as the local-density
approximation. For a system having a variable density, T (ρ) in the lowest
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approximation, should include a term (∇ρ)2/ρ2 [2.1,2.20]. The investigation
of Brueckner, Buchler, Jorna and Lombard [2.21] indicates that a corrective
term of the type (∇ρ)2/ρ is also necessary to approximately account for the
correlation effect not included in Vnucl(ρ). Because of the many approxima-
tions involved in deducing both of these expressions, one may include in the
energy-density only one of these two gradient terms with a multiplicative
constant η in fm3 to be determined from observed nuclear masses. Thus, the
energy-density function ε(ρ) is given by

ε(ρ) = C1(α)ρ2/3 + Vnucl(ρ) + (1 − α)(e/2)ϕc

−(3/4)(3/π)1/3e2((1 − α)/2)ρ1/3
p + η(�2/8M)(∇ρ)2/ρ . (2.18)

Brueckner, Buchler, Jorna and Lombard [2.21] have derived the appro-
priate coupled set of differential equations for the density by minimizing the
total energy using (2.18) and solving it for 40Ca. They found that a Fermi-like
density distribution resulted for values of η from 5 to 15 fm3 and obtained a
binding energy of 364.3 MeV for η = 6 compared with the experimental value
of 342.1 MeV.

Instead of solving the coupled differential equations, one may adopt an
anzatz for the density function and determine its parameters by a variational
method [2.21,2.22]. The calculated binding energies, obtained using this pro-
cedure are noted in Table 2.2, and are in good agreement with the observed
ones. They compare very well with those obtained from the standard mass
formula based on the liquid drop model [2.23] which assumes a constant den-
sity distribution. However, the root mean squared radii as well as the surface
thickness could not be reproduced with sufficient accuracy.

Table 2.2. Calculated binding energies in MeV using the energy-density functional
method with an appropriate ansatz for the density function from [2.21]. Those
marked B.E. (Thy.) obtained in [2.21] are compared to experimental data [2.24]
shown in column 2 as B.E. (expt.) and also compared to those obtained from the
Myers-Swiatecki liquid drop formula [2.23] without shell correction shown as B.E.
(L. Drop) in the fourth column

Element B.E. (expt) in MeV B.E. (Thy) in MeV B.E. (L. Drop) in MeV

16O 128 121 120
40Ca 342 339 339
48Ca 416 414 415
116Sn 989 987 994
140Ce 1173 1168 1175
208Pb 1637 1622 1620
246Pu 1847 1845 1833
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In an alternative approach, Reichstein and Malik [2.9] and their collab-
orators [2.24] have used the energy-density (2.18) along with the observed
density distribution function using a fixed value of η determined from the
best fit to the observed binding energies. Parameters ai (i = 1, 2, 3) and bi

(i = 1, 2, 3) are obtained by fitting the calculated binding energy per nucleon
of [2.15] and are given by

a1 = −0.200, a2 = 0.316 and a3 = 1.646 (2.19a)
b1 = −741.28, b2 = 1179.89 and b3 = −467.54 . (2.19b)

In Table 2.3, calculated binding energies using η = 8 and observed density
distribution functions [2.26] noted in column 2 are shown and are compared
to the experimental binding energies given in column 5. The agreement is
very good. Indeed, binding energy calculations were performed on 95 nuclei
with parameters for the two parameter Fermi distribution, 24 nuclei with
parameters for the three parameter Fermi distribution and 36 nuclei with
parameters for the three parameter Gauss distribution. All parameters were
taken from [2.26] and the results compared with the experimental values
of [2.25]. The results for the 155 nuclei yielded an average difference of 1.5
percent per nucleus from the experimental values.

For many nuclei, the trapezoidal function is a very good approximation to
the actual density distribution. The parameter d of this function determining
the surface thickness and c, the range of the constant density zone are related
to the half-density radius C and the surface thickness parameter t of the Fermi
distribution by the relations

d = C + (5/8)t and c = C − (5/8)t . (2.20)

The value of C0, related to C by C = C0A
1/3, A being the mass number

and the value of t that are compatible with electron scattering and µ-mesic
atomic data are C0 = 1.07 fm and t = 2.4 fm. In Table 2.3, we have also noted
in column 4 the binding energies calculated using this trapezoidal distribution
adjusting the values of ai (i = 1, 2, 3) slightly i.e., taking a1 = −0.1933,
a2 = 0.3128 and a3 = 1.715 and for η = 10.3. This slight adjustment of
ai does not change in any significant way the calculated energy per nucleon
versus density curve of [2.15]. The agreement with the data remains very
good.

2.3 Conclusion

The importance of this analysis is that the energy-density (2.18) can account
for the observed binding energies of nuclei with the observed density distribu-
tion function, a fact that cannot be achieved with mass formulae based on the
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Table 2.3. Calculated binding energies using observed density distribution func-
tions taken from [2.25]. Column 2 indicates whether the 2 parameter (2pf) or 3
parameter (3pf) Fermi function of [2.25] is used for Column 3 which shows calcu-
lated values of binding energies using the energy density function of (2.18) with
η = 8. Column 4 shows calculated binding energies using a trapezoidal density dis-
tribution with η = 10.3. Experimental binding energies in Column 5 are from [2.24]

B.E. (Thy) B.E. (Thy. tr) B.E. (expt)
Element Density Function MeV MeV MeV

12C 2pf 92.5 92.2
16O 3pf 125.2 123.3 127.6
19F 2pf 149.2 147.8
24Mg 3pf 194.5 198.3
32S 270.1 271.8
28Si 2pf 234.3 236.5
31P 3pf 266.7 262.9
36Ar 2pf 311.2 306.7
40Ca 3pf 340.8 342.0 342.1
48Ca 416.2 416.0
50Cr 2pf 439.9 435.0
55Mn 2pf 490.5 482.1
60Ni 532.1 526.9
62Ni 2pf 550.4 545.3
65Cu 2pf 570.2 569.2
68Zn 2pf 601.7 595.4
70Ge 2pf 609.1 610.5
90Zr 793.4 783.9
93Nb 2pf 814.5 805.8
110Pd 2pf 937.4 940.2
114Cd 2pf 984.1 972.6
120Sn 2pf 1033.2 1020.6
140Ce 1181.8 1172.7
142Nd 3pf 1188.5 1185.2
142Ba 1185.7 1180.3
148Sm 2pf 1229.6 1225.4
152Sm 2pf 1268.4 1253.1
165Ho 1356.1 1344.8
176Yb 2pf 1450.9 1419.3
184W 2pf 1470.3 1473.0
197Au 2pf 1592.8 1559.4
206Pb 2pf 1630.1 1622.3
208Pb 1628.8 1636.5
238U 2pf 1808.6 1811.0 1801.7
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liquid drop model which assumes a constant density distribution for nuclei.
Since a substantial fraction of nuclear matter resides at the nuclear surface
where the density is lower than the saturation or central density, the abil-
ity to reproduce nuclear binding energies with observed density distribution
functions implies that the energy-density functional approach can account for
the energy per nucleon from the saturation to very low densities of nuclear
matter reasonably. This, therefore, enables one to calculate binding energies
of nuclear matter at densities different from the saturation density, involved
in various configurations as a nucleus undergoes fission which is discussed in
the next chapter.

The corrections to binding energies due to shell structure has also been
considered within the framework of the energy-density functional [2.27], and
are important only near zero separation and not for configurations close to
the separation of the fission fragments shown by configuration E of Fig. 3.2.
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3 The Decay Process, Fission Barrier,
Half-Lives, and Mass Distributions
in the Energy-Density-Functional Approach

3.1 Introduction

A typical density distribution function of a nucleus shown in Fig. 3.1 indicates
that C, the half-density radius which is equal to about 1.07 A1/3, A being
the mass number, is about 6.6 fm for a nucleus near Uranium and t, the
surface thickness parameter is between 2.4 to 3 fm. Thus, the surface of a
typical nucleus is not that of a membrane as idealized in the usual liquid drop
approach but extends to about 30% of the total radial dimension. Nucleons
in the surface region, from 2.4 to 3.0 fm in extent, where the density drops
from 90% to 10% of the central density, perceive a significantly different
potential compared to those in the zone of central density. For a parent
nucleus, in the process of undergoing fission to a daughter pair, this surface
region prior to the scission point would allow the formation of a neck with
nuclear matter of low density compared to that in the center of the nucleus.
Potential energy surfaces for fission calculated using methods based on a
liquid drop model of the nucleus assuming a constant density distribution [3.1,
3.2] do not usually allow for the formation of such necks of low nuclear matter.
Aside from the formation of this neck of low density, the density distribution
function of the parent nucleus undergoes substantial reorganization during
the fission process since (a) the central density of the parent nucleus and
daughter pairs are about the same and (b) the surface thickness of each
nucleus is nearly the same. Taking this into consideration, the fission process
is schematically depicted in Fig. 3.2. The situation A in Fig. 3.2 represents
a parent nucleus, usually deformed, having nearly constant density marked
by the solid central region that drops to zero over a range of 2.4 to 3.0 fm.
This drop is represented by broken contour lines. The starting point of the
substantial density reorganization is represented by the situation B which is
probably near the saddle point. In order to arrive at the final state of the
density distribution of the daughter pair, each member of which has a central
and surface density similar to that of the parent, intermediate stages such as
C and D are likely to emerge.

Subsequently, prior to scission, a configuration like E having a neck con-
taining nuclear matter of density much lower than that of central density of
a typical nucleus is likely to occur. The liquid-drop approach with its under-
lying assumption of a constant density distribution function cannot account
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Fig. 3.1. A typical density distribution of a nucleus in the actinide region for
C = 1.07 A1/3(∼=6 fm for U) and t ∼= 3 fm

Fig. 3.2. Schematic description of the density reorganization taking place, as a
nucleus fissions spontaneously into two fragments. The black central part represents
the nearly constant high density region in the interior of a nucleus. The successively
weaker contour lines show the density gradually dropping to zero. Configuration A
represents the density distribution contours of a typical parent nucleus and F, that
of a daughter pair. Configurations B, C, D, and E represent schematically the
process of density reorganization on the way to fission

for the dynamics associated with configurations C to E. Thus, the Bohr and
Wheeler theory [3.1, 3.2] of nuclear fission should be refined to incorporate
present day knowledge of the nuclear density distribution function [3.3], out
of which, configurations like C to E could occur.
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In this chapter, energies of configurations A to E to the scission point
will be calculated within the context of the energy-density functional theory
using superposition of (a) two spherical and (b) two spheroidal geometries
and using an appropriate density distribution function for a parent nucleus
that undergoes changes to generate stages A through F . The potential energy
surface for each of these configurations is calculated within the context of
the energy-density functional theory formulated by Brueckner et al. [3.4,3.5]
but using the adiabatic approximation of Reichstein and Malik [3.6] suitably
modified for the fission cases [3.7, 3.8].

That the use of a variable Fermi-like density distribution function, as
opposed to a constant density distribution function assumed in the liquid
drop model, might significantly affect the potential energy surface between
the saddle and scission points is evident from the initial estimation done by
Block et al. [3.9]. Their investigation indicates that the use of Fermi-like den-
sity distribution functions is likely to result in an additional external barrier
between the saddle and scission points and change the potential energy sur-
face by a few tens of MeV. This initial estimation, however, used a simple
model and did not consider the Coulomb potential. But the later, more de-
tailed investigations incorporating the Coulomb potential within the context
of the energy-density functional theory, where the change in half-density and
surface thickness parameters c and t, as a parent nucleus undergoes fission,
are determined using a variational method, confirm the existence of such a
barrier [3.7, 3.8].

Apart from including the appropriate density distribution function in cal-
culating the potential energy surface, this treatment of the fission process is
based on the observation that the masses of the daughter pairs associated
with the decay of a parent nucleus are neither symmetric nor asymmetric
but exhibit a mass distribution. In other words, nuclei of various types com-
mensurate with mass, charge and energy conservation are emitted in a fission
process. In the spontaneous fission of the actinides, this mass distribution is
peaked toward a mass splitting of (1/3) to (2/3) of the mass numbers of the
parent. This is known as asymmetric fission. In the fission of many of the
Fermium isotopes, however, this mass distribution peaks towards symmetric
fission i.e. near one half of the mass number of the parent nucleus. Apart from
the mass distribution, one has, in many cases, information on the average ki-
netic energy, TKE, associated with a particular decay mode. Typically, these
are about 10–25 MeV less than the related Q-value implying that daughter
pairs are predominantly emitted in excited states and not in ground states.
Moreover, the positive nature of the Q-values indicate that parent nuclei exist
in metastable states, which, at a given time, could be generated by super-
posing wave functions of various daughter pairs. The overlap of the wave
function of a particular daughter pair with that of the parent’s, therefore, is
a determining factor in deciding the decay probability of the parent nucleus
to a particular decay mode. The total decay probability to that particular
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daughter pair further depends on the penetration probability through the
barrier relevant for that pair. The latter part has as antecedents the resonat-
ing group model [3.10], the unified reaction theory of Feshbach [3.11] and
the reaction theory developed in [3.12–3.14]. In the next sections, we first
present the theoretical premise of the theory, followed by sections dealing
with quantitative estimation of the pre-formation probabilities of a daughter
pair, computation of the barrier using the energy-density functional approach,
actual calculations of mass-distribution, and half-lives of some actinides.

3.2 Theory

3.2.1 Expression for the Fission Decay Probability

As noted in [3.9], fission is viewed as a two-step process. The first is the
reorganization of the nucleons of a parent nucleus into states relevant to
various decay modes characterized by the asymptotic masses and excitation
energies of the final daughter pairs. The second is the tunneling of these final
daughter pairs through a barrier determined by their mutual interaction. The
latter is determined using the energy-density functional approach.

The wave function Θm(1, 2. . .A − 1, A) of the meta-stable parent nu-
cleus in state m containing A nucleons whose coordinates are denoted by
(1, 2. . .A − 1, A) may be expanded in a complete orthonormal set Ψn,

Θm(1, 2 . . . A − 1, A) = ΣnAmnΨn(1, 2 . . . A − 1, A) . (3.1)

The expansion coefficient Amn is then given by:

Amn = (Θm,Ψn) . (3.2)

The integration in (3.2) is over all coordinates (1, 2. . . A − 1, A).
In the expansion (3.1), the wave functions Θm and Ψn are defined by two

different Hamiltonians. Θm, the wave function of the parent nucleus A in the
state m, is defined by the total Hamiltonian describing A, whereas Ψn repre-
sents the eigenstate n of the sum of the two Hamiltonians each representing
intrinsic states of each member of a daughter pair. Thus, the latter does not
include interaction between each member of a daughter pair. The coefficient
Amn is the probability amplitude of finding a given configuration, n, of a
daughter pair in a well-defined configuration, m, of the parent nucleus. In
the strictest sense, since the parent nucleus is in a meta-stable state, Amn is
a function of time, t. However, spontaneous fission, being a slow process in
the time scale, Amn may be considered to be time independent.

The coordinate arguments of both wave functions in (3.1) are supposed
to be defined with respect to the same frame of reference. In reality however,
the properties of a daughter pair are most conveniently described in terms
of their intrinsic wave function defined with their respective centers of mass
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in conjunction with a wave function having R, the relative location of their
respective centers of mass, as a variable.

To achieve this, one may expand Ψn in terms of an orthonormal set con-
sisting of a function fnα(R) involving the relative coordinate and Φnα in-
volving intrinsic coordinates(1′, 2′ . . . (A − 1)′, A′) measured with respect to
the center of mass of each member of a daughter pair. Thus,

Ψn =
∑
α

fnα(R)Φnα(1′, 2′ . . . (A − 1)′, A′) . (3.3)

The total Hamiltonian, H, may now be expressed in terms of R and the
intrinsic coordinates

H = −(�2/2m
)∇R

2+H0(1′, 2′ . . . (A−1)′, A′)+Hint(R, 1′, 2′ . . . (A − 1)′, A′)
(3.4)

Φnα is the eigenfunction of H0, which is taken to be the sum of the following
two intrinsic Hamiltonians of a daughter pair

H0(1′, 2′ . . . i′) + H0((i + 1)′ . . . (A − 1)′, A′) . (3.5)

Using the resonating group procedure [3.10, 3.15, 3.16], one may now obtain
the following set of coupled integro-differential equations for Φnα (R):

[−(�2/2m)∇R
2 + knα

2 + Vnαα(R) + Knαα(R)]fnα(R)
= Σβα[Vnαβ(R)fnβ(R) + Knαβ(R)fnβ(R)] . (3.6)

In (3.6) Vnαβ(R) is the following scalar product:

(Φnα(1′, 2′ . . . (A − 1)′, A′),HintΦnβ(1′, 2′ . . . (A − 1)′, A′)) ,

knα is the wave number associated with a given channel (nα) and is equal to
(2m/�

2)(En − Enα), where En and Enα are energy-eigenvalues of (3.4) and
(3.5), respectively. Knαβ is a non-local potential such that Knαβ (R) fnβ

(R) =
∫

d R′Knαβ (R, R′) fnβ (R′), originating from the Pauli exclusion
principal between nucleons of the same type in two members of a daughter
pair.

The solution of (3.6) pertinent to fission in channel (nα) corresponds to
finding a solution with the following asymptotic condition:

lim
|R|→∞

fnα(R) = fnα(θ, ϕ) exp(iknαR − iη log 2knαR)/R . (3.7)

In denoting the boundary condition (3.7), due consideration has been
given to the fact that the two members of a daughter pair interact asymp-
totically with a Coulomb potential given by Z1Z2e

2/�v ≡ η where Z1 and
Z2 are the atomic numbers of each member of a daughter pair and v, their
relative velocity. The fission amplitude fnα(θ, ϕ) is given by the following
expression [3.16]:
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fnα(θ, ϕ) = −(1/4π)
∫

dR′ exp(−iknα ê · R′ − iη log 2knα(ê · R′)]

×
⎡
⎣∑

αβ

V N
nαβ + KN

nαβ

⎤
⎦ fnα(R′) , (3.8)

ê in (3.8) is a unit vector in the direction (θ, ϕ) and V N
nαβ and KN

nαβ refer
to the non-Coulombic part of the interaction in (3.6), i.e. it includes only the
nuclear part of the matrix elements of the potential.

The equation (3.6) is also valid for Fmnα = Amnfnα (R). Requiring a
solution for Fmnα with the following asymptotic form:

lim
|R|→∞

Fmnα = Fmnα(θ, ϕ) exp(iknαR − iη log 2knαR)/R , (3.9)

one obtains the following expression for fission amplitude:

Fmα(θ, ϕ) = ΣnAmn fnα(θ, ϕ) . (3.10)

The fission differential cross section for a parent nucleus in state, m, to a
daughter pair in state, n, with asymptotic kinetic energy k2

nα is given by∣∣∣∣∑
n

Amnfnα(θ, ϕ)
∣∣∣∣
2

. (3.11)

In case, there is only one single dominant channel n, one may consider
only one term in the summation and hence, the fission probability from a
parent in state m to a daughter pair in state, n, is given by

|Amnfnα(θ, ϕ)|2 . (3.12)

In (3.12), |Amn|2 represents the probability of the overlap of the wave
function of a particular daughter pair in the wave function of the parent,
henceforth denoted as the pre-formation probability. The determination of
the pre-formation probability is discussed in the next section. fnα(θ, ϕ) is
the fission amplitude which can be calculated once the potential between
a daughter pair is known. This potential energy surface has been calculated
subsequently in section 3, using energy-density-functional theory and exhibits
a non-monotonic barrier. Thus, |fnα(θ, ϕ)|2 is the barrier penetration proba-
bility. Hence, (3.12) may be written as:

(fission probability) = (pre-formation probability)
×(penetration probability through the potential between a daughter pair)

(3.13)

The barrier pertinent to the penetration, in this approximation, is given by
Vnαα (R) + Knα(R) which will be calculated using the energy-density func-
tional approach. The determination of pre-formation probability is discussed
in the next section.
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3.2.2 Determination of the Pre-Formation Probability

The determination of the preformation probability requires knowledge of the
wave functions of both the parent and the daughter pair. The daughter pairs
are usually in excited states capable of emitting neutrons and gamma rays.
Whereas, the detailed description of such excited states is complex the basic
premise that nucleons in their nuclei move in a shell model type of potential
holds. In the first approximation, the same holds for nucleons in the ground
state of a parent nucleus. To the extent that only an approximate knowl-
edge of the preformation probability is sufficient in determining the half-lives
within a factor of two or three, it is sufficient to estimate it using the ele-
mentary shell model, particularly for the decay of an even-even nucleus to
even-even daughter pairs where, as discussed below, the consideration of the
residual interaction among the nucleons is unlikely to alter this substantially.
On the other hand, for the decay of an odd-even or even-odd nucleus, the
residual interaction may affect the computation of the pre-formation prob-
ability by a couple of orders of magnitudes. For the estimation of the pre-
formation probability in the decay of an even-even nucleus to an even-even
daughter pair both the parent configuration and the daughter wave function
are in the first approximation considered to be a simple product of harmonic
oscillator wave functions ϕi(ri) but each with a different oscillator frequency
v and v′ since the latter, as is well known, depends on mass numbers. Thus,

Ψm
∼=

A∏
i=1

ϕi(ri) =
A∏

i=1

Rnili(vri)
ri

Ylimi
(θiϕi)xsi

(σi) . (3.14)

Rnili(vri)/ri, Ylimi
(θiϕi) and xsi

(σi) are, respectively, the radial, normalized
spherical harmonic and spin function of the orbital ϕi(ri) For an isotropic
harmonic oscillator, r times the radial wave function is given by,

Rnl(vr) =

√
2(2v)l+3/2(n − 1)!

[Γ(n + l + 1
2 )]3

rl+1e−vr2
L

l+ 1
2

n+l− 1
2
(2vr2) , (3.15)

Lk
m in (3.15) is an associated Laguerre polynomial.

The wave function of a daughter pair is also a product of harmonic oscil-
lator functions but v is replaced by v′.

Φn =
A∏

i=1

(Rnili(v
′ri)/ri)Ylimi

(θi, ϕi)xsi
(σi) . (3.16)

The overlap integral between (3.14) and (3.16) is non-zero only for the
cases where spin and spherical harmonic functions are identical. To compute
the overlap of the radial wave functions, we first examine the typical config-
urations involved, e.g., in the fission of a typical actinide 234U. The proton
and neutron configurations in 234U are the following:
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Proton Configuration : (1s1/2)2 (1p3/2)4 (1p1/2)2 (1d5/2)6 (2s1/2)2 (1d3/2)4

×(1f7/2)8 (2p3/2)4 (2p1/2)2 (1f5/2)6 (1g9/2)10 (2d5/2)6 (1g7/2)8 (3s1/2)2

×(2d3/2)4 (1h11/2)12 (2f1/2)8 (1h9/2)2 (3.17)

Neutron configuration: proton configuration plus

(1h9/2)8(3p3/2)4(2f5/2)6(3p1/2)2(1i13/2)14(2g9/2)10(1i11/2)6 . (3.18)

Noting that the main radial quantum number, n, in (3.17) and (3.18) is
1, 2, and 3, the overlap factor, Amn, may be calculated from the following
results, where m = v/v′ [3.9]

I11 =

∞∫
0

R1l(vr)R1l(v′r)dr = [2
√

m/(1 + m)]l+3/2 (3.19)

I22 =

∞∫
0

R2l(vr)R2l(v′r)dr = I11

[
2m

(1 + m)2
(2l + 5) − 2l + 3

2

]
, (3.20)

I33 =

∞∫
0

R3l(vr)R3l(v′r)dr

= I11

[
(2l + 5)(2l + 3)

{
− 3

8
+

1
2

1 + m2 + 4m(2l + 5)/(2l + 3)
(1 + m)2

− 2(2l + 5)(2l + 7)m
(1 + m)2

+
2(2l + 7)(2l + 9)m2

(1 + m)4

}]
. (3.21)

One may note that for m = 1, I11 = I22 = I33 = 1, as it should be.
Frequencies v and v′ can be computed from the knowledge of nucleon

separation energy using [3.17].
The observed nucleon-separation energy, Sn, in 234U is 6.8 MeV [3.17].

This leads to �v = 6.255 MeV. The nucleon-separation energy Sn
′ in a daugh-

ter pair is likely to lie between 1 and 6 MeV for neutron rich isotopes. How-
ever, noting that the daughter pair, immediate after scission should be ex-
cited enough to emit neutrons, Sn

′ must be low and is taken to be about
2 MeV. This yields �v′ ∼= 7.30 MeV. Using v and v′ from these, one obtains
Amn

∼= 4 × 10−3. Hence,

Pre-formation probability ∼= 1.6 × 10−5 . (3.22)

This pre-formation probability is not expected to change substantially in
the spontaneous fission of the neighboring even-even nuclei since the addi-
tion or subtraction of a few orbitals to (3.17) and (3.18) does not affect the
calculation in a significant way. This holds also for the decay of odd-nuclei.
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One may easily estimate the range of values allowed for Amn. Obviously,
the maximum is one when v = v′. However, noting that similar calculations
for alpha-decay has led to a value of about 10−2 [3.18, 3.19], the realistic
maximum is 10−2. The minimum value corresponds to zero separation energy
in a daughter pair i.e. Sn

′ = 0. The corresponding Amn is about 0.4 × 10−3.
Thus, the lowest limit of the pre-formation probability is 0.16 × 10−6.

3.2.3 The Influence of the Residual Interaction
on the Pre-Formation Probability

An appropriate way to investigate the influence of incorporating the resid-
ual interaction among nucleons on the calculation of Amn is to consider the
pairing model [3.20–3.22] of nuclei where the nucleons, aside from moving
in a harmonic oscillator potential, interact with a pairing potential. Actual
calculations indicate that the inclusion of a pairing interaction does not sig-
nificantly change the value of the overlap integral, which is essentially Amn,
for even-even nuclei. Thus, the value of Amn calculated in the proceeding
section, is not likely to change substantially for the decay of even-even nuclei
to even-even daughter pairs.

However, the spontaneous decay half-lives of odd-even nuclei differ from
their neighboring even-even nuclei by a factor of about 103. This is similar to
the situation in alpha-decay where the difference is about 102. In the case of
alpha-decay, this difference is attributed to the difference in the wave-function
due to residual interaction of a pairing type [3.18, 3.19]. Similar reasoning is
applicable to the fission case [3.9].

In terms of the elementary shell model, one does not expect any signifi-
cant difference between the wave functions of an even (refers to neutron)-even
(refers to proton) parent nucleus and to the even-even core of the neighboring
odd-even isotopes. However, the inclusion of the pairing interaction [3.20,3.21]
could significantly alter the even-even core wave function of the odd-even iso-
tope from its neighboring even-even nuclei. This is illustrated in Fig. 3.3, the
upper part of which represents the configuration of odd-numbers of neutrons
in an odd-even parent nucleus. In case, the pairing interaction among the
neutrons occupying all but the last orbital is turned on, the new core wave
function involves summation over all unoccupied states, which now is to ex-
clude the last occupied orbital. This would not have been the case for an
even-even neighbor. This effect, known as the blocking effect, significantly
alters the wave function of the even-even core of an odd-even nucleus from
the wave functions of its neighboring even-even nuclei.

Neutron configurations of a daughter pair emanating from the odd-even
parent nucleus shown in the upper insert, are represented by (a), (b), (c),
and (d) configurations in the lower insert of Fig. 3.3. The most unfavored of
these configurations is (d) because (i) it costs about 1 to 2 MeV to break a
pair and (ii) the neutron configurations of both partners being odd, result
in a double-blocking effect. Thus, the pair breaking configuration (d) has a
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Fig. 3.3. Schematic representation of different decay configurations of an odd-N -
even-Z nucleus. Only odd neutrons are considered. But for the last odd neutron,
other neutrons are paired off in the parent and in (a), (b), and (c) types of daughter
configurations. In (d) type, there are three unpaired neutrons. In the parent nucleus
the core wave function is now influenced by the blocking effect because of the
close proximity of the blocked level of the unpaired nucleon, and may, therefore,
be somewhat different from its two even-even neighbors. (a), (b), (c), and (d)
are typical configurations of various daughter modes. (d) types of configurations
are unfavored because of the pair breaking and of the double blocking effect. The
blocking effect in (a), (b), and (d) types of configuration is expected to be less
pronounced than in the case of the parent configuration

considerably different overlap with the wave function of the parent and is
unfavored.

The blocking effect in configurations (a), (b) and (c) is considerably less
than that in the parent since, in the case of (a), the blocked state is ener-
getically much higher, and in the case of (b) and (c), the even-even particles
could scatter into unoccupied holes or particle states. As a result, the over-
lap integral of the daughter states with that of the odd-even parent differs
significantly from the decay of a neighboring even-even isotope to an even-
even daughter pair. In the case of alpha-decay this difference is about 102

and hence, it is reasonable to expect at least a factor of 102 difference in the
pre-formation calculation in the fission of an odd-even and its neighboring
even-even isotopes. The pre-formation probability, |Amn|2 in the fission of an
odd-even nucleus is at least smaller than that of its even-even neighbor by
about two orders of magnitude. Because of this difference in the pre-formation
probability, the half-lives for the spontaneous fission of odd-parent nuclei is
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always expected to be two to three orders of magnitude longer than those in
the neighboring nuclei. Experimentally this is the case [see Table 1.1].

The blocking effect is expected to influence the calculation of the pre-
formation probability in the spontaneous fission of odd-odd nuclei from those
of their even-even and odd-even neighbors in a systematic way. However, the
understanding of low-lying spectra of these odd-even nuclei indicates that
the residual interaction between the valence odd neutron and proton plays
an important role. This makes it more difficult to do a qualitative argument
in determining the difference in the pre-formation probability in spontaneous
decay of odd-odd nuclei from those of their even-even or even-odd neighbors.

3.3 Calculation of the Potential Energy Surface
and Half-Lives

In determining the potential energy surface through which a particular
daughter pair is to penetrate after being preformed, we follow closely the
theory discussed in [3.7,3.8]. A parent nucleus, in the process of fissioning, is
expected to pass through various configurations depicted in Fig. 3.2. In the
usual theory of Bohr and Wheeler [3.1,3.2] and its various versions based on
the basic premises of Bohr and Wheeler’s theory [3.24,3.25], the key assump-
tion is that the nuclear density distribution function is basically constant as
a function of nuclear radius, dropping sharply to zero at the surface. Struti-
nsky’s attempt to incorporate the effect of shell correction [3.26] does not
change this basic premise of the Bohr-Wheeler theory. For a constant den-
sity distribution, computation of energies of various configurations involves
basically a change of the shape of a parent nucleus resulting in a competition
between the change of Coulomb and surface energies due to the change in
geometry only. However, the actual nuclear density distribution function is
closer to a two or three point Fermi function [3.26,3.30,3.31] shown schemat-
ically in Fig. 3.1. Typically, the half-density radius c = 1.1A1/3 fm, A being
the mass number and t, the distance over which the density drops from 90%
to 10% of its value at r = 0, is between 2.4 to 3.0 fm. Thus, for a typical
fissile nucleus, 234U, the region of constant density is about 5.4 fm, whereas
the surface thickness as given by t is about 2.4 fm. The nuclear surface is,
therefore, not like a membrane of a liquid droplet but extends about 30% of
the total radial dimension of the nucleus.

Apart from that, the density distribution functions of all medium, light
and heavy nuclei, are typically, described by a 2 parameter Fermi function
with c = 1.1A1/3 fm and t being between 2.4 and 3.0 fm. This necessarily
means that a substantial density reorganization, apart from the change in
geometry, must take place as a nucleus passes through different configurations
on the way to fission into a daughter pair. In particular, the theory relevant to
fission must be in a position to describe the energy of a configuration like E in
Fig. 3.2 which cannot be described within the context of a mass formula based
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on a liquid-droplet, since its constants are empirically determined from the
masses of configuration A. Actual calculations have clearly indicated that key
coefficients of liquid droplet based mass formulas, e.g. coefficient of energy per
nucleon, change substantially with the density of nuclear matter [3.4,3.5,3.27]
as shown in Fig 3.2. The actual value of the energy per nucleon i.e., the
coefficient of A in a mass formula based on the liquid droplet concept differs
markedly at low density from its value at saturation density.

In Chap. 2, we have already used the energy-density-functional method
to determine nuclear masses using observed density distributions. These
calculated total energies are in excellent agreement with the experimental
ones, implying that the energy per nucleon versus density curve used in this
calculation is reasonably accurate. This, then, allows us to calculate total
energies of various configurations depicted in Fig. 3.2. We, therefore, modify
the theory of Bohr and Wheeler to incorporate the role of the variable den-
sity distribution as well as deformation, during the fission process using the
energy-density-functional approach.

The total energy E of any one of the configurations depicted in Fig. 3.2
is given by

E(ρ) =
∫

E[ρ(r)]d3r . (3.23)

Following the work of Brueckner et al. [3.4,3.5,3.28] we may use the following
expression for the energy density E(ρ).

E(ρ)=(3/5)(�2/2M)(3π2/2)2/3(1/2)[(1 − α)5/3 + (1 + α)5/3]ρ5/3 + ρV (ρ, α)
+(e/2)Φcρp − 0.739e2ρp

4/3 + (�2/8M)η(∇ρ)2 . (3.24)

Where α is the neutron excess, M is the mass of a nucleon, ρ is the local
density of nuclear matter, ρp is the charge density and η is the strength of the
gradient term in the density. V (ρ, α) is the density-dependent mean potential
calculated from a realistic two-nucleon interaction using the Hartree-Fock-
Brueckner approach and is given by

V (ρ, α) = b1(1 + a1α
2)ρ + b2(1 + a2α

2)ρ4/3 + b3(1 + a3α
2)ρ5/3 (3.25)

and Φc, the Coulomb potential, is given by:

e

∫
d3r′

ρp(r′)
|r − r′| . (3.26)

This is the same functional used in Chap. 2 to calculate the nuclear masses
very successfully using experimentally determined density distributions and
hence, has been tested to account for the appropriate energy per nucleon for
the range of very small densities to the saturation density.

The potential energy surface, V (R), R being the separation distance be-
tween two members of a daughter pair, is calculated following the basic
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premise of Bohr-Wheeler theory that V (R) between the two daughter nu-
clei is given by the London-Heitler approximation, namely by the energy
difference between total energy of the two configurations.

V (R) = E(ρ1[R], ρ2[R]) − E(ρ1[∞]) − E(ρ2[∞]) ≡ E(R) − E(∞) . (3.27)

E(ρ1[R], ρ2[R]) in (3.27) is the energy of the composite systems such as A
to E in Fig. 3.2 generated by not superimposing the density distribution
functions of each member of a daughter pair but by modifying them according
to the adiabatic model described below, where the density at no point of
the composite system can exceed the central density of the parent nucleus.
E(ρ1[∞]) and E(ρ2[∞]) are the energies of each member of a daughter pair
when they are far apart.

It is to be emphasized that E(R) cannot be calculated by simply super-
imposing the density of two daughter nuclei but the density of the composite
system has been determined with due consideration of the conditions that
(a) the central density of the parent and the daughter pair is about the same,
(b) the density of the composite system at no point exceeds the saturation
density of [3.28] which is 0.182 fm−3 and (c) the surface thickness of the
density functions of a daughter pair is established as they emerge. Thus, the
parameter characterizing the densities in E[ρ1(R), ρ2(R)] vary continuously
as a function of R in a manner described below.

In addition to that, we consider here two separate geometries, one in
which the two members of a daughter pair are emitted, each with spherical
shape, called the sphere-sphere case or model and the second of which, each
member of the daughter pair emerges in spheroidal shape but both having
the same eccentricity called the spheroid-spheroid case or model.

Although the actual density distribution should be a Fermi function shown
in Fig. 3.1, calculations presented here are done using a simple trapezoidal
approximation to that function. However, actual calculations using a Fermi
function in a few test cases have shown no significant difference in calculat-
ing half-lives or mass distribution functions. On the other hand, the use of
a trapezoidal density distribution simplifies the computational task signifi-
cantly. The trapezoidal distribution used has the following functional form
that is schematically shown in Fig. 3.4.

ρ(r) = ρ0 0 ≤ r ≤ r0

= ρ0(b − r)/(b − r0) r0 ≤ r ≤ b
= 0 b ≤ r ≤ ∞

(3.28)

(3.28) represents a distribution function with a central region of radius r0 in
which the density is constant and equal to ρ0 and a surface region in which
the density falls off linearly to zero at a distance, b, from the center.

Instead of b and r0, it is more convenient to use half-density radius C
and the surface thickness parameter, t which are related by the following
equations
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Fig. 3.4. An example of the trapezoidal approximation to the density distribution
function shown in Fig. 3.1. ρ0 is the central density

b = C + (5/8)t
r0 = C − (5/8)t . (3.29)

The relation between the mass number and density, given below, deter-
mines the central density ρ0:

A =
∫

ρ(r)d3r . (3.30)

The half-density radius C is related to mass number, A by:

C = C0A
1/3 . (3.31)

The values of C0 and t used in the calculations [3.27–3.29] are the follow-
ing:

C0 = 1.07 fm (3.32a)
t = 2.4 fm . (3.32b)

The parameters a1, a2, a3, b1, b2, b3 and η in (3.25) have originally been
determined by Brueckner et al. [3.5] by fitting the energy per nucleon versus
density graph determined in the Brueckner-Hartree-Fock approximation us-
ing a realistic two nucleon potential [3.28]. In determining these parameters,
Brueckner et al., used the nuclear compressibility, K and the momentum
k, corresponding to the saturation density as a guide and calculated energy
per nucleon E/A . η was determined to reproduce the observed masses of
a few nuclei using observed density distribution functions. Since the trape-
zoidal distribution differs from the observed distribution, we have changed
these parameters slightly to reproduce the observed root mean squared radii
of a reasonable number of nuclei [3.29]. The value of these parameters
are a1 = −0.1933, a2 = 0.3128, a3 = 1.715, b1 = −741.28, b2 = 1179.89,
b3 = −467.54 and η = 10.8. These correspond to K = 184.7, κf = 1.447 fm−1

and E/A = −16.59 which are close to their expected values. In order to
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check the adequacy of using the trapezoidal distribution function, the ground
state energies of a number of nuclei have been calculated. These, shown in
Table 3.1, are within 1% of the experimentally determined values [3.17] and
hence, the use of the trapezoidal distribution function is sufficient for the
purpose of the calculations. The value of C0 and t are in conformity of their
accepted numbers [3.30,3.32].

Table 3.1. Experimental [3.17] and theoretical binding energies in MeV for se-
lected nuclei. The theoretical binding energies are calculated using a trapezoidal
distribution that reproduces the observed root mean squared radius

Nucleus Exp. Theory
(MeV) (MeV)

16O 127.6 123.3
32S 271.8 270.1
40Ca 416.0 416.0
56Fe 492.3 496.7
60Ni 526.9 532.1
140Ce 1172.7 1181.8
142Ba 1180.3 1185.7
165Ho 1344.8 1356.1
208Pb 1636.5 1628.8
236U 1776.0 1778.0
238U 1801.7 1798.5
240Pu 1813.4 1811.0

The values of C0 and t are suitable for the ground state of stable nuclei.
To reflect the enormous reorganization of the density distribution function
during the fission process, these two parameters characterizing the density
distribution should be dependent on R. At R = 0, the density distributions
ρ1[0] + ρ2[0] must be chosen so that their sum adds up to the central density of
the parent nucleus and on the other hand, as R → ∞ the density distributions
ρ1[∞] and ρ2[∞] must be those of the excited states of the daughter pair.

To ensure these boundary conditions of the density distribution function
at R = 0 and R = ∞, we use the special adiabatic approximation for the
variation of C and t with R proposed in [3.6]. The density distribution func-
tion ρ, in this approximation, is generated in such a way that, at no point
of the composite system, does the density exceed that of the average central
density of a nucleus and at R = 0 and R = ∞ the density distribution func-
tions are, respectively, given by the appropriate ones for the parent and for
the associated daughter pair. The ansatz for the variation of C and t with R
is as follows:
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Cd(R) = Cp exp[ln(Cd(∞)/Cp)(R/Rcut)n] for R ≤ Rcut

= Cd(∞) R ≥ Rcut .
(3.33)

In (3.33) Cd and Cp are, respectively, the C-parameter of the density distri-
bution function for the daughter and the parent. Similarly, the variation of t
with R is given by the ansatz:

td(R) = tp exp[ln(td(∞)/tp)(R/Rcut)n] for R ≤ Rcut

= td(∞) for R > Rcut .
(3.34)

In (3.34) the subscripts d and p stand, respectively, for daughter and parent.
The quantity Rcut in (3.33) and (3.34) has the role of a scaling parameter

determining the separation distance at which the densities of the daughter
pair reach their final value. At R ≥ Rcut, the density distributions of the
daughter pair remains unchanged as the fragments separate. At R = Rcut,
the daughter pair essentially establishes their identity. It is easy to establish
the upper and the lower limits of Rcut. Rcut must be greater than C1 + C2,
otherwise it is possible to have densities in excess of the central density of
a nucleus but it must also be less than the scission radius; otherwise it is
difficult for the daughter pair to develop a proper density distribution near
their surface region. In our calculation Rcut is taken to be one half of the
scission radius which is justified by the result of the point by point variation
of the fractional parameter p(R) defined in (3.35). In terms of the schematic
configurations shown in Fig. 3.2, R ≥ Rcut falls somewhere between config-
uration D and E. Finally, the parameter n in (3.33) and (3.34) determines
how quickly the daughter fragments establish their own identity by acquiring
final values of their respective density distribution.

At each separation point R, we generate the appropriate values of Cd and
td and hence, obtain ρ1(R) and ρ2(R) needed to calculate E(R) in (3.27).
Furthermore, the use of (3.30) insures that for each R, the nucleon num-
ber is conserved. The condition (3.30) replaces the Bohr-Wheeler auxiliary
condition of volume conservation which is valid only for a constant density
distribution but not for a Fermi or trapezoidal distribution.

Another measure for the variation of C and t with R is to define a frac-
tional parameter p(R) for both C and t as follows:

p(R) =
Cd(R) − Cd(∞)

Cp − Cd(∞)
(3.35)

with a similar expression for fractional parameter t. In (3.35), Cp is the half-
density radius of the parent nucleus.

This parameter is a measure of the progress made by the parameters de-
noting the density distribution function towards their final values in terms of
the difference of these parameters between a parent and a daughter nucleus.
For R ≥ Rcut, the potential energy surface does not depend on n, and is basi-
cally determined by the overlap of densities of a daughter pair. For example,
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the use of ansatz (3.33) and (3.34) leads to p(0) = 1 and p(Rcut) = 0. In
between p(R) is completely determined by (3.35).

It is possible to determine Cd(R) and td(R) by a point by point varia-
tion of p(R) as a function of R and minimizing it with respect to n. Rcut is
then determined by that R where p(R) is zero. In all cases computed so far,
such a minimum has always been found to exist for every R. The interpreta-
tion of this corresponds to the physical situation of allowing the formation of
the smallest cluster or condensation for a given R. Finally, one must deter-
mine the scission radius, Rsc. Since the daughter pair is usually in an excited
state, Rsc cannot be C0(A

1/3
1 +A

1/3
2 )+(5/8)(t1 +t2) but should be somewhat

larger. Particularly, for the sphere-sphere case where the density distribution
function is calculated by superposing two spherical configurations, one ex-
pects the two nuclei of a daughter pair to emerge in spherical shape. For the
spheroid-spheroid case, they emerge in spheroidal shapes. Within the context
of classical physics, the asymptotic kinetic energy of a daughter pair is equal
to its Coulomb energy at the scission point. Unfortunately, experimentally
determined asymptotic kinetic energies have usually an uncertainty of a few
MeV. To accommodate that and possible energy loss due to oscillation prior
to scission, we determine the scission radius from:

Z1Z2e
2/Rsc = Ekin + f(Ap) (3.36)

f(Ap) in (3.36) is chosen to be linear in Ap for simplicity and is determined
from the fastest decay mode in the spontaneous fission of 240Pu to be

f(Ap) = −0.883Ap + 215.9 . (3.37)

Thus, f(Ap) is a small correction to the observed kinetic energy and
usually lies within the observed experimental uncertainties. As noted in [3.8],
for the spheroid-spheroid case where the density distribution function for
each R is determined by superimposing spheroidal geometry, one must also
specify the eccentricity, ε, of each member of the daughter pair. Unfortunately
ε is not well known experimentally. To determine this in a systematic way,
we have imposed the auxiliary condition that the dimension of the surface to
the total dimension is constant and equal to the one obtained in the spherical
case, i.e.

η = (b(θ) − a(θ))/b(θ) = constant = 0.78 . (3.38)

Where b(θ) and a(θ) are, respectively, the outer boundary of the constant
density zone in a nucleus. f(Ap), for this case called f1(Ap) is again deter-
mined from one of the fastest decaying modes of 240Pu and given by

f1(Ap) = −0.983Ap + 220.39 . (3.39)

The calculated potential energy surfaces for different decay modes for
a particular parent nucleus differ from each other since Cd(R), Cd(∞) and
Rsc depends on the mass numbers of each member of a daughter pair. The
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difference in their potential energy surface along with the difference in the
average kinetic energy associated with different decay modes ensures a mass
and a charge distribution in the decay of a particular parent.

As noted earlier, the central density of a nucleus in these calculations
is taken to be 0.182 fm−3. For the calculation of half-lives, we have used a
pre-formation probability of 10−5 determined in [3.9] since we present here
the results for spontaneous decay of even-even nuclei to even-even daughter
pairs. The barrier penetration probability is calculated using expression (28)
of [3.33]. As noted in [3.33], the use of the more accurate expression (27)
therein would have affected the results at the most by one order of magnitude.
It is to be emphasized that the kinetic energy of a daughter pair in this theory
plays an important role. The theory emphasizes that the calculated half-lives
and kinetic energy used in the calculations are to be in accord with the data.

3.4 Results and Discussion

3.4.1 The Potential Energy Surface

In case one assumes the density distribution function of the parent and the
daughter pairs to be constant, dropping sharply to zero at the surface, one
obtains potential energy surfaces similar to those obtained in Bohr-Wheeler
type of theories. There would be no external barrier in that case. Our ap-
proach, however, not only considers the change in energy due to the change
in geometrical shape as a nucleus undergoes fission, which is the key feature
in the Bohr-Wheeler type of theories, but it incorporates also the dramatic
change in the density distribution function as a parent nucleus undergoes
fission to daughter pairs. This latter feature of the theory allows for the for-
mation of a neck of low density nuclear matter prior to scission to a given
daughter pair. The formation of this neck generates an external barrier in
the potential energy surface. The liquid drop model with its premise of a
constant density distribution cannot simulate that. The incorporation of a
folded surface either of Gaussian or of Yukawa type around a geometrical
shape [3.34] calculated from a constant density distribution and mass formu-
lae whose constants are determined from ground state energies based on a
liquid droplet, may not exhibit this dip in the potential energy surface simply
because these constants of those mass formulas are invalid at densities other
than the average saturation density of a nucleus in its ground state geometry.

Instead of presenting the potential energy surfaces for each case consid-
ered herein, we present only some sample cases. In Fig. 3.5, we present the
contribution to the potential energy surface due to the change in Coulomb
energy in the decay of 234U to 142Xe + 92Sr using the ansatz n = 2 and
n = 3 in (3.33) and (3.34) for the sphere-sphere case. In the same figure, we
have plotted by dashed line, the result obtained by varying (3.35) at every
separation distance (i.e. by a point by point variation) with respect to n and
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Fig. 3.5. Computed Coulomb interaction for the decay 234U → 92Sr + 142Xe for
n = 2, 3 in (3.33) and (3.34) and point by point variation of p(R) given by (3.35)

determining n from the minimum in ρ(R). The three calculations differ in
the region R less than Rcut but yield about the same results in the region
R greater than Rcut. We also note that the case n = 2 produces a surface
close to the one expected from the liquid droplet. Since the region external
to Rcut, where all three calculations yield about the same results, is a prime
contributor to the half-lives and the point by point calculations are very time
consuming, we present in the subsequent section results for n = 2. A few
sample calculations using n = 2 or point by point variation did not indicate
any significant change in potential energy surface in the region greater than
Rcut, which is the determining factor governing the calculations of half-lives.

In Fig. 3.6, we exhibit a sample case of the potential energy surface in the
decay of 234U → 142Xe + 92Sr for the case of n = 2 using the sphere-sphere
model. The interior part of the surface is similar to the one expected from the
Bohr-Wheeler case but the potential surface exhibits an external barrier prior
to scission which is around 16 fm. The occurrence of this external barrier is
a direct consequence of the existence of a neck of low density nuclear matter
prior to scission shown in configuration E in Fig. 3.2. It is instructive to
illustrate the change of C and t as 234U fissions to 142Xe + 92Sr. This is
shown in Fig. 3.7 for the point by point case in the sphere-sphere model.
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Fig. 3.6. The potential energy surface for the spontaneous fission of 234U to 92Sr
and 142Xe using n = 2 in the ansatz (3.33) and (3.34)

Indeed, the variation is substantial. The corresponding change in density
contours is shown in Fig. 3.8 and 3.9 using the point by point variation for
the sphere-sphere model and for the spheroid-spheroid, respectively. In the
latter case, the scission point is extended further outwards and the height
of the external barrier in the spheroid-spheroid case is lower than that in
the sphere-sphere case. An example of the difference in the external barriers
for the two cases is shown in the lower parts of Fig. 3.10. In both cases the
area of the potential energy surface above the asymptotic kinetic energy for
this decay mode is about the same resulting in similar half-lives as noted in
Table 3.3.

In Fig. 3.11 we exhibit the evolution of the density contour for n = 2
in the decay of 240Pu to 122Cd and 118Pd in the sphere-sphere model. The
formation of a low density neck is very prominent. This is one of the least
likely decay modes i.e. one of the symmetric modes.

In the upper half of Fig. 3.10 the external potential energy surface for this
decay mode is compared to that of the decay to 142Ba and 98Sr, one of the
fastest modes, for the spheroid-spheroid case. The latter barrier is lower than
the former. This, along with the fact, that the kinetic energy associated with
the decay to 142Ba and 98Sr is about 7 MeV higher than that for the decay
to 122Cd and 118Pd is responsible for five orders of magnitude difference in
their half-lives as shown in Table 3.2.
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Fig. 3.7. The partition of the central saturation density of the parent 234U into
those of the daughter pair 142Xe and 92Sr as a function of R obtained from a point
by point variation of p(R), for the sphere-sphere model

Table 3.2. Calculated spontaneous fission half-lives of 240Pu to a number of decay
modes in the spheroid-spheroid model are noted in column 5 and in the sphere-
sphere model, noted in column 6. ε is the eccentricity used in the spheroid-spheroid
model. Ekin is the observed kinetic energy and the logarithm of experimental half-
lives is shown in the last column from [3.35]. The experimental half-lives are for all
daughter pairs having the same mass number and do not specify atomic number

Parent Daughters Ekin ε log10 t1/2 log10t1/2 log10t1/2

(MeV) (years)(spheroid) (years)(sphere) (exp) (years)

240Pu94
86Se34 + 154Nd60 161.5 0.62 10.7 10.7 -
92Kr36 + 148Ce58 167.9 0.58 11.2 11.0 11.5
98Sr38 + 142Ba56 175.0 0.53 11.1 11.1 11.1
100Zr40 + 140Xe54 177.6 0.53 11.8 11.6 11.1
106Mo42 + 134Te52 185.4 0.44 10.8 11.1 11.0
108Ru44 + 132Sn50 185.5 0.47 11.4 11.5 11.2
118Pd46 + 122Cd48 167.9 0.67 16.8 16.1 14.0
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Fig. 3.8. The evolution of the density contour for the decay of 234U →92Sr +
142Xe as a function of R for the case of a point by point variation of p(R), for the
sphere-sphere model. The contour lines are represented by matter per (fm)3

3.4.2 Half-Lives

Apart from the nature of the potential energy surface, the asymptotic kinetic
energy plays a crucial role in any decay process and also in fission as discussed
in Appendices A and B. Thus, in order to calculate half-lives, knowledge of
the latter is necessary. In many cases this is available. As noted in these
appendices, in the presence of an external barrier such as the one shown
in Fig. 3.6, half-lives are primarily determined by the area bounded by the
kinetic energy and potential energy surface of the external barrier above the
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Fig. 3.9. The evolution of the density contour, represented by nuclear matter per
fm3 between 10.4 and 14.4 fm separation calculated in the spheroid-spheroid model
for the decay of 234U to 142Xe and 92Sr. Since this is the region of the external
barrier, n = 2 and the point by point variation yield the same result

kinetic energy. The internal barrier has no discernible effect on half-lives.
Since the nature of the external barrier and the magnitude of the kinetic
energy are different for different decay modes of a parent nucleus, one expects
a mass distribution in the fission of any nucleus. In Table 3.2 we present an
example of this mass distribution calculated for the spontaneous decay of
240Pu in terms of half-lives along with the data. The agreement is reasonable.
The potential energy surface of all decay modes shown in Table 3.2 has been
calculated using the energy density functional theory and the corresponding
half-lives have been computed using the observed kinetic energy and a pre-
formation probability of 10−5. The differences in the potential energy surface
at the external barrier, an example of which is shown in Fig. 3.10, and of
the kinetic energy associated with different decay modes are the underlying
cause of the observed mass spectrum in spontaneous fission not only of 240Pu,
but in the spontaneous fission of other nuclei. The interrelated role of these
two factors is responsible for the dominance of the decay to an asymmetric
mode mass distribution over the symmetric ones in the decay of Ra to Cf
isotopes. Once the balance of these two interrelated factors changes, decay to
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Fig. 3.10. The upper half exhibits the potential energy surface in the region of the
external barrier in the spheroid-spheroid model for the decay of 240Pu to one of the
fasted decay modes, 142Ba and 98Sr and to one of the slowest decay modes, 122Cd
and 118Pd. The lower half compares the potential energy surface near the external
barrier in the sphere-sphere and the spheroid-spheroid case for the decay of 234U
to 142Xe and 92Sr

symmetric modes could become dominant as in the case of 258 fm discussed
in the next chapter.

Clearly, calculations of total half-lives are extremely time-consuming be-
cause one must calculate partial half-lives for the decay to all possible daugh-
ter pairs characterized by mass and charge numbers. However, since the half-
lives to the fastest decay modes differ quite often by one or a few orders of
magnitude, it is sufficient to calculate only the decay rates to a few fastest
decay modes. We have tested this by actual calculations. In fact, only a few
fastest decay modes determine the total fission half-life of a parent nucleus,
since these decay modes are the dominant contributors to half-lives. In Ta-
ble 3.3 calculated half-lives of even-even parent nuclei 226Ra, 234U, 236U,
240Pu, 244Cm, 248Cf and 252Cf to one of their fastest decay modes for the
sphere-sphere (i.e. ε = 0) and the spheroid-spheroid cases using observed
TKE are compared to the observed ones. The TKE for the decay of Ra is un-
known experimentally. Similarly, its spontaneous fission half-life is unknown
but determined to be greater than 1014 years by Segré [3.38] and greater
than 6.6 × 1017 years by Tretyakova [3.39]. The value used for TKE in the
calculation is calculated using the theory outlined in Sect. 3.2 of Chap. 4. As
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Fig. 3.11. The evolution of the density contour, represented by nuclear matter per
fm3 just before the scission calculated using the sphere-sphere model for the decay
of 240Pu to 122Cd and 118Pd. In this region n = 2 and point by point variation yield
the same result

noted earlier, the typical uncertainties in the theoretical calculation is about
an order of magnitude originating from the use of the approximate formula
for barrier penetrations and for pre-formation probabilities. Within these un-
certainties both sets of theoretical calculations explain the observed half-lives
calculated with observed TKE sufficiently well.

Since the external barrier, critical for the determination of half-lives, is
relatively thin, the half-lives are somewhat sensitive to TKE used in the
calculation. For example, in the fission of 244Cm to 144Ba and 100Zr, the use
of 183, 185, 197 MeV for Ekin, all of them being within the error bars results
in half-lives of 8.8, 8.4 and 8.1 years, respectively, in the sphere-sphere case.
Using the same approximation, calculated half-lives for the fission of 248Cf to
152Sm and 96Kr are 2.7, 3.0 and 3.3 years for Ekin = 190, 188 and 186 MeV,
respectively.
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Table 3.3. Columns 1 to 7 represents, respectively, the parent nucleus, one of
the fastest decay modes, observed kinetic energies from [3.35–3.37] which are also
used in theoretical calculations, logarithm of half-lives in the sphere-sphere model
in years, the eccentricity used in the spheroid-spheroid model, logarithm of half-
lives in years in the spheroid-spheroid model and observed half-lives [3.36]. Typical
experimental uncertainties in kinetic energy is about 2 MeV, except for 244Cm where
it is ±5 MeV

Parent Daughter K.E. (exp) log t1/2(th) ε log t1/2(th) log t1/2(exp)
MeV years years years

(sphere) (spheroid)

226Ra 132Sn + 94Sr 156.0 — 0.17 20.5 >17.8
234U 142Xe + 92Sr 168.5 16.2 0.48 16.4 16.2
236U 140Xe + 96Sr 171.3 13.7 0.44 13.4 16.3
240Pu 142Ba + 98Sr 175.0 11.1 0.53 11.1 11.1
244Cm 144Ba + 100Zr 185.5 8.4 0.55 8.4 7.1
248Cf 152Sm + 96Kr 188.7 3.1 0.54 2.2 3.8
252Cf 144Xe + 108Ru 187.0 3.3 0.69 1.9 1.9

3.5 Conclusion

The main feature of the potential-energy surface calculated using the energy-
density functional theory is the occurrence of an additional barrier between
the saddle and scission points originating from the formation of a neck of
low-density nuclear matter prior to the scission. Unpublished calculations
indicate that such a barrier exists even for unrealistic geometries such as half-
cone attached to a half sphere. As noted in Appendix A, only the existence
of such a barrier allows the potential to drop below the asymptotic kinetic
energy, which is a necessary condition for the existence of a meta-stable state.
It is also established that the observed half-lives can be accounted for using
observed TKE. The preference for parent nuclei, considered herein, to decay
primarily to asymptotic modes is also accounted for.
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4 Spontaneous Fission Half-Lives of Fermium
and Super-Heavy Elements

4.1 Introduction

In 1967, Strutinsky [4.1] proposed a method to incorporate the correction
due to shell closure of parent nuclei to the potential energy surfaces calcu-
lated by models based on liquid drop type of approaches. The method is
discussed in further detail in Chap. 8. The incorporation of this correction
in the calculations of the potential energy surface within the context of the
liquid drop model enhances the stability of closed shell nuclei against spon-
taneous fission. At about the same time a number of calculations [4.2–4.6]
indicated that additional proton and neutron shell closures might occur at
atomic number N = 184. The additional few MeV associated with such a shell
closure raises the computed potential energy surface, by a few MeV, within
the context of models based on the liquid drop approach, thus making these
elements more stable against spontaneous fission in comparison with their
neighboring isotopes. In fact, Nilsson et al. [4.7, 4.8] predicted spontaneous
fission half-lives of 102, 1016, 1015 and 1014 years for the isotopes of 294, 298,
300 and 302 of the element 114. This was confirmed in [4.9] and the inves-
tigation in [4.10] raised the possibility of even longer half-lives for 298(114),
stating “when these same general methods are applied to superheavy nuclei,
we find that the fission barrier of nuclei near 298(114) is even higher than
previously supposed”. Such long spontaneous fission half-lives implied that
these elements should exist in nature. Despite much effort, no evidence of the
existence of any superheavy element has been found in nature to date.

The underlying premise of the above calculations is embedded in the
fundamental assumption of the constant distribution of nuclear density in-
herent in the liquid drop approach, which does not allow for the formation
of a neck of low-density nuclear matter, depicted in the configuration E of
Fig. 3.2. Furthermore, the calculations of barrier penetration probabilities in
the above models were done in the JWKB approximation using the Q-values
for the ground state to the ground state transitions of a particular daughter
pair, which implies the daughter pair to be emitted in unexcited states. This
is contrary to the spontaneous fission process involving actinides where the
daughter pairs are predominantly emitted in excited states.

The energy-density functional discussed in Chap. 3 allows one to alleviate
these difficulties. In particular, the potential energy surface associated with
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the configuration E in Fig. 3.2 can be calculated in a suitable approximation.
This leads to an external barrier prior to scission. The lowest points of this
external barrier lie below the pre-neutron emission kinetic energy allowing
a parent nucleus to decay in excited states of daughter pairs, as discussed
in [4.11] and noted in Appendices A and B. In fact, using an empirical external
barrier that explains the observed half-lives, mass and charge distributions of
some actinides [4.12,4.13] discussed in detail in Chap. 5, it was concluded in
1972 [4.13] that “The realistic upper limits of fission-decay and alpha-decay
half-lives are less than a year. This means that elements 112 and 114, if
produced in the laboratory, have a lower limit of half-life that is long enough
to measure. However, these half-lives are too short for the element to occur
naturally on the earth and it is fruitless to search for them.” Subsequent
detailed calculations [4.14,4.15] using the energy-density functional approach,
discussed in the next section, confirms this conclusion. Recent experiments
also support this conclusion [see e.g. [4.16]]. All data point to the fact that
elements up to 116 produced in the laboratory have spontaneous fission as
well as alpha decay half-lives significantly shorter than a year (production
of elements heavier than 116, although reported in [4.16, 4.17] is yet to be
confirmed).

As noted in [4.18], the total half-lives of heavy elements depend on
beta-decay, K-capture rate, alpha decay and spontaneous fission processes.
The beta decay and K-capture half-lives of super-heavy elements are about
104 sec. [4.13,4.19] or less. Calculations of alpha decay half-lives depend crit-
ically on Q-values, determinations of which using the usual mass-formulae,
have typical uncertainties of about 0.5 MeV. Actual theoretical computation
of alpha-decay half-lives of a number of isotopes of superheavy elements yield
results that are typically less than a year [4.7, 4.20] but long enough for the
production of these elements in laboratories. Hence, the ability to produce
these elements in laboratories depends critically on whether or not their
spontaneous fission half-lives are long, short, or nearly zero. Calculations
based on the energy-density functional theory, reported in the next section,
indicate these half-lives to be short or in some cases, zero. As noted in Appen-
dices A and B, the asymptotic kinetic energy plays a vital role in determining
half-lives. Unfortunately, these are unknown for superheavy elements. We,
therefore, first discuss the method used in determining asymptotic kinetic
energy in Sect. 4.1.

However, before computing the spontaneous fission half-lives of super-
heavy elements, one needs to account for the very interesting change in the
mass distribution spectrum occurring in the spontaneous decay of fermium
isotopes starting from 258Fm. The dominant decay modes in the fission of
258Fm are no longer asymmetric but symmetric [4.21]. Calculations done
using the energy-density functional approach to investigate the spontaneous
fission of superheavy elements supports this experimental fact. Hence, we, in
Sect. 4.3, present the results for the fission of 258Fm followed by calculations
of half-lives of a number of superheavy elements.
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4.2 Determination of Asymptotic Kinetic Energy

Spontaneous fission half-lives are determined by two critical factors, namely,
the potential-energy surface and the asymptotic kinetic energies. The latter
quantities are experimentally unknown for superheavy elements and poorly
determined for 258Fm and hence, are to be determined theoretically. For this
purpose, we follow the prescription of Terrell [4.25], which has been successful
in accounting for the asymptotic kinetic energies in the fission of the actinides.
The asymptotic kinetic energy, Ekin, associated with the spontaneous fission
of a parent nucleus to a particular daughter pair is related to the Q-value
and excitation energy, E(exc) as follows:

Ekin = Q − E(exc) . (4.1)

Q-values can be evaluated from some standard liquid-drop based mass formu-
lae like that of Møeller et al. [4.26], Myers and Swiatecki [4.27] or Green [4.28].
E(exc), the average excitation energy of a daughter pair is given by:

E(exc) =
∑

n(i),i=1,2

B(i, n(i)) −
∑

i=1,2

(v(i)η(i) + γ(i)) . (4.2)

In (4.2) B(i, n (i)) is the binding energy of the (n(i))th neutron emitted
from the i-th fragment (i = 1, 2) and can again be obtained from a mass
formula or, in some cases, from experimental information on neutron sepa-
ration energy. γ(i), the energy of prompt gamma rays emitted from the i-th
fragment, is estimated by Terrell to be (1/2) B (i, n (i)) . ν(i) and η(i) are,
respectively, the number of emitted neutrons and the average center of mass
kinetic energy of emitted neutrons from the i-th fragment. As noted in [4.25],

η(i) ∼= 1.4 MeV and
ν(i) ∼= 0.08 (A(i) − 82) if 82 ≤ A ≤ 126 (4.3)

∼= 0.1 (A(i) − 126) if A > 126

From Fig. 1.15 reproduced from [4.25] ν(i), in the first approximation,
does not depend on the mass number of the parent nucleus but on the mass
number of the individual daughter fragments. Knowing the mass number
of the individual daughter pair, ν(i) can easily be obtained from Fig. 1.15.
The calculated Ekin associated with the decay of 296(112), 298(114), 293(118)
and 310(126) to respective daughter pairs 148(56)+ 148(56), 148(58)+ 150(56),
147(59) + 146(59) and 156(64) + 154(62) are, respectively, 262, 270, 323 and
352 MeV [4.14, 4.15, 4.30]. These are the fastest decay modes in the sponta-
neous fission of elements 112, 114, 118, and 126.

The determination of kinetic energy using Terrell’s method has a typi-
cal uncertainty of about 5 MeV. An alternative method is to determine the
kinetic energy from a knowledge of the scission radius and identifying the



64 4 Spontaneous Fission Half-Lives of Fermium and Super-Heavy Elements

Coulomb energy at the scission point with asymptotic kinetic energy. How-
ever, it is difficult to determine the scission radius and the latter procedure
in determining the asymptotic kinetic energy leads also to an uncertainty of
a few MeV, as noted in Sect. 4.3.

Experimental determination of kinetic energy associated with the sponta-
neous fission of 258Fm to its fastest decay mode has large uncertainty but lies
in the range of 202 to 220 MeV [4.21,4.22,4.29]. The kinetic energy calculated
using Terrell’s method for this decay is about (210 ± 5) MeV.

4.3 Spontaneous Fission of 258Fm

Simultaneously, with the discovery that the primary decay modes in the spon-
taneous fission of 258Fm and 259Fm are symmetric [4.21], it was established
that the spontaneous fission half-life of 258Fm is very short (3.8±0.6) 10−4 sec.
[4.22]. As discussed in Chap. 5, Hooshyar and Malik [4.23] were able to ac-
count for the short half-life of 258Fm as well as the fact that its dominant
decay mode is symmetric using an empirical barrier and a kinetic energy of
about 205 MeV. Subsequent calculations based on the energy-density func-
tional theory [4.29] confirmed the earlier theoretical results. In particular, the
calculation established that the fastest decay modes are symmetric and that
one of the fastest modes is the decay to 130Sn and 128Sn. Since protons in tin
form a closed shell, this daughter pair is likely to be spherical or has a small
deformation. Hence, we present in Fig. 4.1, the external part of the potential

Fig. 4.1. The external part of the potential energy surface for the decay of 258Fm
to 128Sn and 130Sn in the sphere-sphere model. Asymptotic kinetic energy E(kin)
refers to Ekin and is marked by a straight line and calculated using 4.2. The arrow
indicates the scission point
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energy surface calculated using the sphere-sphere model. Since the actual
density distribution of 258Fm is unknown, the potential energy surface has
been calculated using a trapezoidal function. The scission radius, marked by
an arrow, is at about 18.5fm. The half-life associated with this decay mode is
calculated using a kinetic energy of 215 MeV, which is consistent with the one
reported in [4.24] and shown in Fig. 4.1. The calculated half-life of 1.4×10−11

years [4.29] is in agreement with the observed value of 1.2×10−11 years [4.22].
The theoretical calculation, however, depends critically on the kinetic energy
used. For example, the use of a smaller kinetic energy of 210 MeV would in-
crease the half-life by an order of magnitude. Nevertheless, the theory does
account for the very short half-life, and the fact that the dominant decay
modes in the spontaneous fission of 258Fm are symmetric.

4.4 The Potential-Energy Surface and Half-Lives
of Superheavy Elements

The aim of this chapter is to determine the upper limit of spontaneous fission
half-lives of a number of superheavy elements. To this end, it is necessary
to calculate the half-lives of the decay to the fastest modes. The calcula-
tions indicate that in each of the cases considered here, the dominant decay
modes are the symmetric ones [4.14,4.15,4.30]. As a result, we focus on these
decay modes. It is likely that daughter pairs associated with these decay
modes would be spheroidal. Nevertheless, we report here results of calculat-
ing potential-energy surfaces that are generated by superimposing both two
spheres and two spheroids with a variable density distribution function of
trapezoidal type. The details of the calculations are given in Chap. 3. The
key assumptions related to these calculations are the following:

(a) The density distributions of the parent and daughter pairs are represented
by a trapezoidal distribution schematically shown in Fig. 3.4. The central
density of each member of a daughter pair, even though it is an excited
state, is the same as that in its ground state.

(b) The eccentricity of each member of a daughter pair is the same, for the
spheroid-spheroid model and zero for the sphere-sphere model.

(c) The parameters, c and t, are given by the ansatz described in equations
3.33 and 3.34 as a function of the separation distance for a particular
daughter pair.

(d) The ratio of the surface to central region in the daughter ellipsoids re-
mains the same as a function of angle. In other words, the density con-
tours follow the shape of a particular ellipsoid.

(e) The penetration time is calculated using the expression (B.24) rather
than the more accurate expression (B.23) which has an accuracy of about
10−22.
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As noted in Chap. 3, the Coulomb energy, Z1Z2e
2/Rsc, at the scission radius,

may not be equal to the kinetic energy, Ekin. The energy balance equation
at the scission point may, then, be written as:

Ekin = Z1Z2e
2/Rsc − f(Ap) . (4.4)

Where Ap in (4.4) is the mass number of the parent nucleus. From the analysis
of the observed kinetic energy spectra in the fission of the actinides, the
empirically determined uncertainty is reflected by the function f(Ap). The
empirically determined function f(Ap), for the sphere-sphere case is given
by [4.14]

f(Ap) = −0.883Ap + 215.9 . (4.5)

And for the spheroid-spheroid case is given by [4.15]

f(Ap) = −0.9083Ap + 220.39 . (4.6)

We first examine the determination of the upper limit of spontaneous fis-
sion half-lives of the elements 112, 114, 118, and 126 in the spheroid-spheroid
model. In the absence of any information on their density-distribution func-
tion, we have used a trapezoidal function. In Fig. 4.2 we have plotted the

Fig. 4.2. Computed external barrier in the decay of 296(112) to 148(56) and 148(56)
for two different scission radii in the spheroid-spheroid model. Ekin, calculated from
(4.2), is shown as a straight line. f(Ap) is calculated from 4.4 and 4.6 and T1/2 is
the half-life for the corresponding barrier
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external barrier calculated in relation to Ekin computed in [4.15] for the de-
cay of 296(112) to 148(56) + 148(56) using f(Ap) determined from (4.5). The
scission radius, Rsc, determined from (4.4) is 22.0 fm. The maximum of the
barrier lies below the kinetic energy and as such the decay is instantaneous
and the half-life is zero. In Table 4.1, we present an example of the sensi-
tivity of the calculated half-life to the choice of the value of f(Ap). f(Ap)
calculated using (4.5) for the parent nuclei 296(112), 298(114) and 310(126)
are, respectively, (−48.5), (−50.3) and (−61.2) MeV. Recognizing that the
empirical value of f(Ap) given by (4.5) was determined from the spontaneous
fission of even-even actinide isotopes which primarily decay to asymmetric
modes, whereas the superheavy elements decay primarily to symmetric ones,
this empirical value may not be a suitable one for the decay of superheavy
elements. Since the objective is to compute an upper limit of fission half-lives,
this can be achieved by noticing the fact that the scission radii in the decay
of these isotopes cannot be smaller than that in the decay of californium.
(Since the experimentally determined kinetic energy in the decay of 258 Fm
has large uncertainties, it is difficult to use it to determine scission radius).
The scission radius in the decay of californium in its fastest decay mode is
19.5fm in the spheroid-spheroid case. Using this scission radius in (4.4) leads
to a new set of f(Ap) which are considerably smaller than those given by
the f(Ap) calculated above. As a consequence, the maxima of the external
barriers exceed the asymptotic kinetic energy, an example of which is shown
in Fig. 4.2. This leads to finite half-lives. The decay of 310(126) to its fastest
decay mode leads to zero half-life for a scission radius of 19.5 fm. However,
a scission radius of 19.3 fm yields a finite but very small half-life, noted in
Table 4.2. In Table 4.2, calculated half-lives for the fission of four superheavy

Table 4.1. Predicted spontaneous fission half-lives of superheavy elements 112,
114, and 126 to one of their fastest decay modes, in the spheroid-spheroid model.
f(Ap) calculated from (4.5) are noted in the second column in the first row in
each case. Other values for f(Ap) corresponds to the scission radii, Rsc, noted in
column(4). Ekin is calculated from (4.4) and (4.6). Half-lives, t1/2 are noted in years
and second in columns 5 and 6, respectively

f(Ap) Ekin Rsc t1/2 t1/2

Decay Mode (MeV) (MeV) (fm) (year) (sec)

296(112) → 148(56) + 148(56) −48.5 262 22.0 0 0
−25.0 262 19.5 2.2 × 10−9 7.0 × 10−2

298(114) → 154(58) + 144(56) −50.3 270 22.2 0 0
−25.0 270 19.5 1.5 × 10−6 4.8 × 101

310(126) → 156(64) + 154(62) −61.2 352 20.2 0 0
−40.0 352 18.6 5.5 × 10−10 1.7 × 10−2

−61.2 342 21.0 0 0
−40.0 342 19.3 8.3 × 10−10 2.6 × 10−2
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elements calculated with a scission radius of 19.5 fm for the decay of three
elements and 19.3 fm for the decay of 126, in the spheroid-spheroid model
are tabulated [4.30]. The calculations noted in Table 4.3 are done with a pre-
formation probability of 10−5 for the decay of elements 112, 114, 118, and 126.
As discussed in Chap. 2, the pre-formation probability for the odd-isotope
293(118) is likely to be smaller than 10−5 at least by an order of magnitude,
leading to a spontaneous half-life of 3.47×10−5 sec calculated using 10−6 for
preformation probability, which is noted in Table 4.2.

Table 4.2. Predictions of the upper limits of spontaneous fission half-lives in years
(column 6) and in seconds (column 7) for the decay of parent nuclei listed in column
1 to the daughter pair listed in column 2 in the spheroid-spheroid model. Ekin, Rsc

and f(Ap) are, respectively, the asymptotic kinetic energy in MeV calculated using
(4.1), scission radius in fm and the function defined by (4.2) and (4.6)

Parent Daughter Ekin Rsc f(Ap) t1/2 t1/2

MeV (fm) (MeV) (year) (sec)

296(112) 148(56) + 148(56) 262 19.5 −25.0 2.2 × 10−9 6.95 × 10−2

298(114) 148(58) + 150(56) 270 19.5 −25.0 1.5 × 10−6 4.73 × 10+1

293(118) 147(59) + 146(59) 323 19.5 −35.0 1.1 × 10−12 3.47 × 10−5

310(126) 156(64) + 154(62) 342 19.3 −40.0 8.3 × 10−10 2.61 × 10−2

Table 4.3. Computed half-lives t1/2 associated with the decay of elements 112 and
114 to two of their fastest decay modes in the sphere-sphere model. The relation
between Ekin, the asymptotic kinetic energy, scission radius Rsc and f(Ap) is given
by (4.4). f(Ap), calculated using (4.5) are noted in the first row of each decay
mode. Other values of f(Ap) are deduced from (4.4) using the corresponding Rsc.
Half-lives in year and second are noted in column 5 and 6, respectively

f(Ap) Ekin Rsc t1/2 t1/2

Decay Mode (MeV) (MeV) (fm) (year) (sec)

296(112) → 148(56) + 148(56) −45.5 262 20.86 0 0
−25.0 260 0 0

262 19.1 1.0 × 10−10 3.2 × 10−3

260 1.2 × 10−10 3.8 × 10−3

298(114) → 144(56) + 154(58) −47.2 270 21.0 0 0
268 0 0

298(114) → 148(56) + 150(58) −25.0 270 19.1 1.9 × 10−8 6.0 × 10−1

268 2.3 × 10−8 7.3 × 10−1
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It is very likely that the limit of stability of superheavy elements is some-
where around element 116 or 118 since the scission radius of 19.5 fm is very
conservative in determining the asymptotic kinetic energy for the decay of the
element 118 to its fastest decay mode. It is safe to predict that the element
126 is unstable against spontaneous fission.

The situation is similar, if one uses the sphere-sphere model where the
scission radius is usually slightly smaller compared to the one in the spheroid-
spheroid case. For the decay of 296(112) to 148(56) + 148(56) and 298(114) to
148(56) + 154(58), f(Ap) calculated from (4.6) are, respectively, (−45.5) and
(−47.2) MeV. The computed external fission barrier for the decay of 296(112)
to 148(56) and 148(56), shown in Fig. 4.3 lies lower than the kinetic energy
implying an instantaneous decay. However, the maximum of the barrier height
is higher than Ekin, if one uses a scission radius of 19.1 fm used in the decay
of californium. The barrier shown using a scission radius of 18.5 fm in Fig. 4.3

Fig. 4.3. Computed external barrier in the decay of 296(112) to 148(56) and 148(56)
for three different scission radii in the sphere-sphere model. f(Ap) is calculated from
(4.4). T1/2 is the half-life for the corresponding barrier
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is unrealistic and is included only for illustrative purposes, since this scission
radius is less than the one used for fission of californium to one of its fastest
decay modes.

In Table 4.3, we present the spontaneous fission half-lives of these two
elements to their fastest decay modes which are symmetric in the sphere-
sphere model. In the decay of 298(114), two modes shown in the table, have
essentially the same half-lives and compete with each other. In the same
table, we have illustrated the dependence of half-lives on kinetic energy and
scission radii in the sphere-sphere approximation. f(Ap) in column two has
been calculated using (4.4). A pre-formation probability of 10−5 has been
used in each case. The spontaneous fission half-life of 310(126) is zero, as
noted in [4.13–4.15], for any realistic scission radius and is not tabulated.

Thus, both in the spheroid-spheroid and sphere-sphere model, the half-
lives of the elements 112 to 118 are very short. The currently produced iso-
topes of these element in heavy-ion collision, reported in [4.16] differ from
those used in Tables 4.1 to 4.3. However, the basic situation that the maxi-
mum barrier height is close to the expected kinetic energy does not change
leading to the fact that the spontaneous half-lives of superheavy elements are
short and close to a fraction of a few seconds.

4.5 Conclusion

Within the framework of the energy-density functional approach it is con-
cluded that the spontaneous fission half-lives of super-heavy elements are
much less than a year, as already noted in 1972 [4.13]. Although the cal-
culations are presented only for a few isotopes, from the general features of
these calculations, it is evident that this conclusion stands for all super-heavy
elements and isotopes. It is very likely that one may have reached the limit
of stability against spontaneous fission at element 118 or around that. All
experimental evidence, so far, confirm this prediction.
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5 Empirical Barrier and Spontaneous Fission

5.1 Introduction

In the previous chapter we have established the existence of a barrier just
prior to the scission point in the potential energy surface of a daughter pair in
the fission process as a result of the formation of a neck of low density nuclear
matter. This barrier is the consequence of the observed fact that the nuclear
density distribution function has a significant surface region of 2.2 to 3.0 fm.
The liquid drop model with its underlying assumption of a constant nuclear
density cannot incorporate the effect of this low density neck prior to scission
in calculating the potential energy surface of a daughter pair. Hence, the
energy-density functional approach has been taken to calculate the potential
energy surface between two members of a daughter pair. To compute such a
barrier for each daughter pair using the energy-density functional approach is
very time consuming and costly in terms of computer time. Hence, we develop
in this chapter an empirical potential energy surface depending analytically
on mass numbers and atomic numbers of parents and daughter pairs.

Apart from the calculation of the potential energy surface done in Chap. 3
the necessity of such an external barrier can be ascertained from an analysis of
observed kinetic energy, Tk, of a daughter pair. Experimentally, the observed
kinetic energy lies between 20 to 40 MeV below the Q-value associated with
a particular decay mode. The Q-value is positive and as such the parent
nuclei are in a meta-stable state. Taking these two conditions into account,
Malik and Sabatier [5.1] have proven that the barrier derived in Chap. 3
is mathematically consistent with the conditions (a) Tk < Q and (b) the
matastablility of parent nuclei. The details of the proof are given in Appendix
A but a simplified version of the analysis is discussed in Sect. 5.2 of this
chapter.

We may note that the theory discussed in Chap. 3 has basically two parts.
Since in the fission process a parent nucleus decays to many daughter pairs,
there is a preformation probability for each daughter pair. This is followed
by a penetration through a barrier determined by the physical characteristics
of a particular daughter pair, such as density distribution. The preformation
probability has been calculated in Chap. 3 from the elementary shell model
to be approximately 1.6 × 10−5 for a typical case [5.2]. In the calculation of
half-lives done in Sect. 5.3, we have kept this constant for all decay modes.
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The theory presented in Chap. 3, deals with the decay process using a
set of coupled equations. In principle, the decay to various excited states of
a particular daughter pair is possible and there is a coupling among vari-
ous channels. Apart from the diagonal part of the matrix elements of the
two-body potential in each channel, the net potential energy surface has a
contribution from the terms representing the coupling of that channel with
other channels. For the calculation of spontaneous fission half-lives and the
associated mass, charge and kinetic energy spectra, the consideration of the
channel coupling is not important but it plays an important role in our un-
derstanding of the dynamics associated with the decay of fission isomers as
discussed in Chap. 8.

The details of the interior of the potential, determined from the energy-
density functional theory in Chap. 3 do not influence the penetration proba-
bilities in a significant way as discussed in Appendix A [5.1]. The critical part
of the potential for half-life calculation is the external barrier just prior to
scission generated by the neck of low-density nuclear matter. This observation
simplifies the task of determining an empirical barrier considerably. This is
done in Sect. 5.2. Calculated half-lives, mass and charge distributions in spon-
taneous fission and kinetic energy spectra using this barrier are presented in
Sect. 5.3 for 234U, 236U and 240Pu and compared to the corresponding data.
A detailed discussion is presented in Sect. 5.4.

5.2 The Nature of the Empirical Barrier

The fission phenomenon as envisioned by the model emphasizes, or idealizes,
the effects that (i) the nuclear density distribution function is not constant
but varies as a function of nuclear radius and (ii) a density reorganization
takes place as a daughter pair is formed out of a parent nucleus. This is
necessarily so because both the daughter pair and its parent have a density
distribution given by Fermi functions and their central densities are nearly
equal. The calculation of the barrier in the previous chapter within the frame-
work of the energy-density functional formalism emphasizing the effect of this
density reorganization leads to an external thin barrier. It is one of the main
goals of this chapter to establish that if a thin external barrier exists in a
region between the saddle and scission point, the detailed behavior of the
potential surface near the equilibrium position or saddle point does not have
any discernible effect on half-lives. This fact which has been proven by Ma-
lik and Sabatier [5.1], indicates that one need not be concerned about the
fine details of the potential surface in the interior of the fission barrier for
computing half-lives and mass distributions in the fission process. This ob-
servation has also been checked by performing actual computer modeling.
This important realization enables one to determine a reasonable empirical
barrier that is suitable to determine half-lives, fission widths, mass, charge
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and kinetic energy spectra in the spontaneous fission of a nucleus, which are
in good agreement with experimental results [5.3–5.5].

In order to justify the above statements and also deduce some information
about the nature of the fission barrier for the case of spontaneous and binary
fission, let us consider the case of a parent nucleus of mass number A and
atomic number Z decaying spontaneously to a daughter pair of mass numbers,
A1 and A2, and charge numbers, Z1 and Z2. The conservation of total energy
for this reaction leads to the following equation

M(A,Z)c2 = M(A1, Z1)c2 + M(A2, Z2)c2 + Q (5.1)

where, M is the mass of each nucleus and Q is the total amount of energy
released during this decay when each member of the daughter pair is in
the ground state. Q may be calculated from the observed masses from any
standard mass formula such as that of Green [5.6] or Myers and Swiatecki [5.7]
or Möller et al. [5.22]. The experimental fact is that both nuclei of a daughter
pair are predominantly emitted in excited states and as such their kinetic
energy, Tk, is less than Q. Based on experimental information on pre-gamma
and pre-neutron emissions, one can conclude that Tk is 20 to 40 Mev less
than the Q-value of the decay. This is a key observation based on experiment.
The other key fact is that the parent nucleus is in a meta-stable state prior
to fission. Since spontaneous fission involves a barrier-penetration problem,
we can also conclude that the maximum of the interaction potential must
be higher than the asymptotic kinetic energy Tk. Using these three basic
but important observations, we would like to examine the conclusions that
can be drawn about the nature of the fission barrier. In order to keep the
discussion simple and present the essential points, we assume the tunneling
stage of the fission can be regarded as a simple tunneling problem associated
with the radial Schrödinger equation with zero angular momentum. For a
more general treatment of this decay problem, the reader is referred to the
appendix based on [5.1]. In this simplified model of the tunneling stage of
fission, the equation of motion is given by

d2u(R)
dR2

= q2(R)u(R) (5.2)

q2(R) =
2µ

�2
[V (R) − E] . (5.3)

Here Φ is the reduced mass, E is the total energy, being equal to the as-
ymptotic kinetic energy Tk, V (R) is the potential and u(R) is R times the
radial wave function. The regular solution satisfies the following boundary
conditions near the origin

u(0) = 0 . (5.4)

We now examine the necessary condition for the existence of a meta-stable
state in context with a barrier penetration problem. The potential at R = 0
is the Q-value of the decay process and since Q > Tk, which is equal to E,
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therefore q2(R = 0) = 2µ(Q − Tk)/�
2 > 0. Hence R = 0 is not a turning

point. Let R0 be the largest value of R at which q2 = 0. The question to
be investigated is whether a meta-stable state could be formed if q2(R) > 0
for all values of R < R0, where R0 is the only turning point in the region
0 < R < R0. Since q2(R) > 0 for all values of R < R0, it then follows from
(5.2) and (A.8) that d2u/dR2 > 0 for all values of R < R0. Making use of
the relation

du(R)
dR

=

R∫
0

dR′ d
2u(R′)
dR′2 (5.5)

and since d2u/dR2 > 0 in the entire domain of integration, we find

du(R)
dR

> 0 for all R < R0 . (5.6)

The condition (5.6) means that du(R)/dR can not be zero in the region
0 < R < R0. As a result the wave function within the barrier does not have
a maximum and bend over to exhibit resonant structure, which is critical
for the existence of a meta-stable state. In fact, the wave function keeps on
growing and can not have any node in the region 0 < R < R0 which is a
necessary condition for the existence of a meta-stable state. Thus, the Malik-
Sabatier theorem states that the necessary condition for the existence of a
meta-stable state in a barrier penetration problem is that q2(R) < 0 at least
at one point inside the barrier. A potential V (R) consistent with this finding
is shown in Fig. 5.1. Of course Fig. 5.1 is only one possible example and
the main thing to be emphasized in this figure is that we must at least have
one region where V (R) < E which precedes the region where V (R) > E, i.e.

Fig. 5.1. A schematic potential barrier commensurate with the condition of meta-
stability of parent nucleus and observed average kinetic energy in spontaneous
fission
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region III in Fig. 5.1. The existence of region III is critical for the formation of
a meta-stable state if Q > Tk. Obviously, there could be more than one region
in the domain 0 < R < R0, where the potential could be less than Tk, but
at least one such a region needs to exist for the occurrence of a meta-stable
state.

We note that the potential energy surface derived from the energy-density
functional formalism is similar to the schematic potential of Fig. 5.1 and is
compatible with the existence and decay of a meta-stable state.

The nature of the potential V (R) can be studied further if we try to find
the half-life, T , related to barrier penetration of the meta-stable state. A way
to find the relation between T and V (R) is to consider the energy derivative
of the phase shift associated with the scattering by the potential. Following,
for example Goldberger and Watson [5.8], we find that

T = 2�
dδ

dE
=
√

2µ/E
dδ

dk
(5.7)

where the wave number k =
√

2µE/�2 and δ is the phase shift of the regular
wave function in the asymptotic region

u(R) = A(k) sin(kR − η log 2kR + δ + σ), for R → ∞ (5.8)

with η = µZ1Z2e
2/�k and σ = arg Γ(1 + iη) being Sommerfeld’s Coulomb

parameter and phase-shift, respectively. Equation (5.8) can be considerably
simplified [5.1] if we neglect terms of the order of k−1 in evaluation of the
derivative of phase-shift dδ/dk. Such an approximation in (5.8) results in the
following relation

T =
√

2µ/E(2/A2)

R0∫
0

u2(R)dR . (5.9)

It should be emphasized that in deriving (5.9), no detailed information about
the form of the potential V (R) has been used and the formula is not based
on any other aspect of the approximation except for the stated fact that it
is correct to within the order of k−1. Of course in order to make further use
of (5.9) we need to have some general form of the potential in mind. Let
us assume that V (R) follows a form as given in Fig. 5.1. In that case it is
evident that the wave function u(R) is very small in the region 0 < R < Rc

and therefore will not contribute significantly to the integral in (5.9). In other
words integration in (5.9) can be carried out from Rc to R0 and the detailed
form of the potential in the region IV will not play any important role in
determining half-lives. Using the JWKB approximation we may express the
wave function in terms of V (R) and make use of (5.9) to determine T in
terms of the potential. We have, then, the expression [5.1, 5.9]

T = 2µ

⎡
⎣ Rb∫
Rc

{E − V (R)}−1/2dR

⎤
⎦ exp

⎡
⎣2

R0∫
Rb

{
2µ

�2
(V (R) − E)

}1/2

dR

⎤
⎦ .

(5.10)
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The half-life associated with the decay does not depend on the details
of the potential at every point. All potentials yielding the same value of the
two integrals involved in (5.10) would give the same half-life. In other words,
all potentials having the same area below E in the region Rb ≥ R ≥ Rc and
above E in the region R0 ≥ R ≥ Rb would give the same half-life. However, it
is important that the chosen empirical potential be consistent with the three
criteria stated earlier which are relevant for the existence of a meta-stable
state. Clearly, there should be a region in the potential where V (R) > E;
otherwise the nucleus would decay instantaneously. There should also be at
least one region where V (R) < E so that a meta-stable state can exist when
the observed Q-value is greater than E.

An empirically determined potential consistent with these criteria must
also reproduce observed mass and charge spectra in spontaneous fission of
many elements along with the appropriate observed kinetic energy spectrum.
Mass and charge dependence of such a potential must be explicit in order
to achieve this goal. This difficult task becomes, however, somewhat easier
from the observation that the first integral in (5.10) does not contribute sig-
nificantly to half-lives and as such an approximate choice of the potential
in the region Rb ≥ R ≥ Rc is sufficient for our purpose. Furthermore, the
nature of the potential in the interior region i.e. R < Rc has also very little
consequence in determining decay probabilities. For fission dynamics, the de-
termining region is the potential between Rb and R0. However, all potentials
having the same area above E in this region would yield the same results. R0

is the separation point and as such is the sum of two radii of a daughter pair
of mass number A1 and A2 and should be r0(A1

1/3 +A2
1/3)+ t, with t being

the sum of the surface thicknesses. From the analysis of the energy-density
functional calculation of the barrier, one may determine Rc to be that point
where the central part (i.e. the region of constant density part of the density
distribution function) of the density of each member of a daughter pair barely
touches each other. For most of the daughter pairs, this distance is about the
same. (Actually, this depends on A1

1/3 +A2
1/3 but the details of this part of

the potential are not critical.) Based on these analyses, we have chosen the
following empirical barrier V (R),

V (R) = VD(R) + VC(R) . (5.11)

with

VD(R) =

⎧⎪⎪⎨
⎪⎪⎩

V for R < Rc

V0 for Rc < R < Rb

Vcoul exp[(R − R0)/d] for Rb < R < R0

Z1Z2e
2/R for R0 < R

(5.12)

where V = 200 Mev which is about the Q-value of the reactions under consid-
eration, Rc = 8 fm, V0 = Vcoul−60 Mev, d = 5.0 fm, Vcoul = Z1Z2e

2/R0, Rb =
R0+d log(V0/Vcoul) and R0 = r0(A1

1/3+A2
1/3)+t, with r0 = 1.3+0.13 g(A1,
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A2), t = 3.7 fm and g(A1, A2) = exp(−0.036(|A1 −A2|)1.6. Although the ef-
fective coupling potential VC need not be introduced if we are only interested
in discussing the spontaneous fission, in order to understand the dynamical
properties of isomer fission one needs to introduce this coupling potential
which we have parameterized to be

VC(R) = λ exp{−|(R − R0)/c|3} (5.13)

with λ = 4.56 + 36.1 g0(A) MeV, c = 4.8 − 0.6g(A1, A2), and g0(A) =
exp(−|(175 − A)/75.3|9.5).

In (5.13), A, A1, and A2 are, respectively, mass numbers of the parent and
two daughter nuclei. Except for the small correction g(A1, A2) this is the same
barrier used in [5.3–5.5]. In fact, for the fission to asymmetric decay modes
g → 0 and we get exactly our old barrier. This slight modification affects,
however, the mass yields near the symmetric modes. Neither the spontaneous
half-lives nor the mass yields spectra in spontaneous fission are influenced by
this slight change because they are determined by the asymmetric decay
modes accounting for most of the yields, and the percentage mass yields
are very low for the spontaneous fission to symmetric modes. Quite often
the experimental mass yields for symmetric modes are less than 0.1 percent,
and have considerable uncertainties. However, in neutron induced fission, the
percentage mass yields to symmetric modes becomes significantly large and
is sensitive to the details of the barriers relevant to these yields. Thus, the
information obtained in induced fission by neutrons of tens of MeV incident
energy is a significant one in learning about that part of the barrier which
is relevant to the decay to symmetric modes. On the other hand, data on
spontaneous fission of these nuclei are not good enough to determine the
details of the barrier contributing primarily to mass yields near symmetric
decay modes. The value of λ used here is not significantly different from that
used in [5.3–5.5]. The slight change in λ is motivated from the investigation
in [5.3] indicating that λ might depend on the parent nucleus. For A = 234,
238 and 240, λ = 37.3, 36.1 and 32.7, respectively, which is very close to
values of 37.4, 35.9 and 32.9 needed to obtain the best fit to the data in [5.3].
The value of λ used here provides equally good fit, as discussed in Sect. 5.4.
The slight difference in the definition of the functional form of g(A1, A2)
actually improves the results.

The details concerning the coupling potential and the intimate relation
between spontaneous and isomer fission will be discussed in Chap. 8, when
we deal with the theory of isomer fission as envisioned by our model. Vc

in this chapter may be viewed as a part of the empirical potential which
contributes to the potential barrier for spontaneous fission. The values of the
four parameters R0, d, λ, c are determined from the observed partial half-life
of the spontaneous and isomer fission of 240Pu →142Ba + 98Sr. Having found
the desired values of these parameters [5.3, 5.4], we have kept them fixed for
all other calculations carried out for different elements. A small dependency
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of these parameters on the mass of the parent nucleus has been observed for
elements with masses much greater than that of 240Pu and this variation has
been taken into account by introducing the factors g0(A) and g(A1, A2). As
can be seen, the effect of g(A1, A2) on the parameters is minimal. Its value
is almost zero for asymmetric decay modes and it has some effect only for
symmetric decay modes. It should be also made clear that values presented for
these parameters are not the only ones which can produce satisfactory half-
lives, mass, charge and kinetic energy spectra specially for spontaneous and
thermal neutron induced fission. In fact, in our original calculations [5.3] and
[5.10] the values of d = 3.2 fm, t = 3.0 fm and g(A1, A2) = exp(−0.036(|A1 −
A2|−A+4[A/4])1.6) have been used, where [A/4] stands for rounding up A/4
to the nearest integer. This choice of parameters could also reasonably explain
data on spontaneous and thermal neutron induced fission. However, for the
analyses of data in induced fission by neutrons of higher energies using a
statistical approach as presented in Chap. 6, the choice of parameters as given
by (5.11) and (5.12) is better for a wide range of the incident neutron energy.
Of course, for spontaneous and thermal neutron induced fission, the results
for the two different set of parameters given above do not differ appreciably.

Before discussing the results of the calculations of half-lives, mass and
charge distributions using the empirical barrier in Sect. 5.4, we present in
Sect. 5.3, Terrell’s empirical formula for determining the average kinetic en-
ergies of daughter pairs from Q-values. These have been used wherever the
observed values are not available.

5.3 Empirical Formula for Kinetic Energy

Based on the analysis of data, Terrell [5.12, 5.13] has pointed out that the
kinetic energy associated with the decay to a particular daughter pair may
be determined from the corresponding Q-value. The relation between kinetic
energy, E, Q-value and available excitation, E(exc) of a daughter pair is given
by

E = Q − E(exc) . (5.14)

E(exc) can be obtained from knowledge of the number of neutrons and
gamma rays emitted from each fragment, as follows:

E(exc) =
∑

n(i),i

[B(i, n(i)) − (v(i)n(i) + γ(i))] (5.15)

where i = 1, 2 and B (i, n(i)) is the binding energy of the n(i)th neutron
emitted from the i-th fragment with i = 1 and 2. The latter can be obtained
either from observed data on separation energy or from a mass formula. γ(i)
is the energy of prompt gamma rays emitted from the i-th fragment and is
estimated by Terrell to be approximately equal to (1/2)(B(i, n(i)).
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ν(i) and n(i) are, respectively, the number of emitted neutrons and the
average center of mass kinetic energy of emitted neutrons from the i-th frag-
ment. Terrell’s analysis indicates n(i) to be about 1.4 MeV and

v(i) ≈
{

0.08(A(i) − 82) if 82 < A < 126
0.1(A(i) − 126) if 126 < A .

(5.16)

Instead of using (5.16) one may also get the values of ν(i) from the com-
pilation of neutron emission data e.g. in [5.12, 5.13]. It is interesting and
important to note that in the first approximation ν(i) does not depend on
the parent nucleus but it depends on the individual members of a daughter
pair [5.12–5.14]. Thus, the shell structure of daughter pairs play an important
role in determining ν(i).

To obtain the average kinetic energy associated with a daughter pair
characterized only by mass numbers A1 and A2, one must calculate kinetic
energy for all isobars having mass numbers A1 and A2 and average over them.

5.4 Spontaneous Fission Half-Lives, Mass
and Charge Spectra

5.4.1 Spontaneous Fission Half-Lives

Data on spontaneous fission half-lives and average kinetic energies associ-
ated with the decay process are available. Within the context of the theory
described here, half-lives of spontaneous fission are a product of (preforma-
tion probabilities) and (half-lives associated with decay to various modes).
Although the preformation probabilities associated with the formation of
different clusters of daughter pairs depend in principle on the masses and
charges of parents and of the particular daughter pair, such dependence is
expected to be minute compared to the large variation of half-lives observed
in spontaneous fission. We, therefore, adopt here the value of 10−5 for all de-
cay processes. The barrier penetration probabilities vary sharply with mass
and atomic numbers of parents and daughter pairs. However, the spontaneous
half-lives are essentially determined by a few fastest decay modes. For the
calculation of half-lives, it is sufficient to concentrate on these fastest modes
in our calculation. Calculations of half-lives are sensitive to the kinetic energy
because of the relative thinness of the outer barrier – a 2 to 5 Mev change in
kinetic energies could change half-lives by a few orders of magnitude. Hence,
we have presented calculated values in Table 5.1 for the range of kinetic en-
ergy consistent with the observed error bars. It is impressive to note that the
theoretically calculated half-lives agree with the observed ones over 27 orders
of magnitude using the range of average kinetic energy. The numerical values
of half-lives are very sensitive to the choice of kinetic energy, yet the theory
correctly accounts for both of them.
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Table 5.1. Comparison between calculated half-lives in years y, and average kinetic
energies and the observed ones. Data marked with (a), (c), (e) are from [5.17], (b)
from [5.18], (d) from [5.19], (f) from [5.20], (g) from [5.21], (h) from [5.22], , (i)
from [5.26], (j) from [5.23], (k) from [5.24], (l) from [5.31], (m) from [5.25], (n)
from [5.27], (o) from [5.28], (p) from [5.30] and (q) from [5.29]

K.E. (exp) K.E. (th) S. F. Half-life S.F. Half-life
Parent MeV MeV (exp) y (th) y

234U 163 ± 2 (a) 161 1.60 × 1016 (b) 2.0 × 1017

163 2.0 × 1015

165 2.0 × 1013

236U 165 ± 2 (c) 163 2.00 × 1016 (d) 2.0 × 1015

165 2.0 × 1013

167 2.0 × 1011

240Pu 172 ± 2 (e) 170 1.34 × 1011 (f) 5.0 × 1013

172 6.0 × 1011

174 7.0 × 109

244Cm 185.5 ± 5 (g) 183 1.34 × 107 (h) 1.0 × 109

185 2.0 × 107

187 3.0 × 105

250Cm 180.5 2.00 × 104 (i) 2.2 × 106

182.3 3.1 × 104

246Cf 195.6 ± 2.0 (j) 196 2.00 × 103 (k) 3.8 × 103

252Cf 186.5 ± 1.2 (l) 186.7 85.5 (m) 86.0
254Cf 186.1 ± 2.0 (n,j) 188.6 1.78 × 10−1 (i) 2.4 × 10−1

258Fm 190 ∼ 200(p) 200.7 3.8 × 10−11 (q) 3.90 × 10−9

203.3 5.10 × 10−11

The difference in half-lives among even-even, odd-even, even-odd and odd-
odd nuclei has, in this theory, been attributed to the sharp difference in the
preformation probabilities among these groups [5.2]. The situation is very
similar to the role of preformation in alpha decay where the large difference
in half-lives between neighboring odd-even and even-even isotopes is largely
due to the difference in the overlap of their wave function.

5.4.2 Mass Spectra

A most striking feature of the fission process, spontaneous or induced, is the
fact that a parent nucleus decays into many daughter pairs. Fission involves
decay to neither symmetric nor asymmetric modes but decays to many modes
and has a mass spectrum of the decay products. Usually the decay yields are
measured as a function of mass number. Associated with each mass number
of the decay products, there is a kinetic energy which is less than the Q-value
implying that daughter pairs are emitted in excited states. Thus, associated
with a mass spectrum, there is also a kinetic energy spectrum. A successful
theory should not only explain half-lives with proper average kinetic energy



5.4 Spontaneous Fission Half-Lives, Mass and Charge Spectra 83

but must also account for the mass spectrum of daughter pairs with the
appropriate kinetic energy spectrum. Calculation of yields for a given mass
involves calculating decay probabilities to all isobars with the same mass and
then averaging over them. It also involves calculating Q-values for all isobars
and averaging over them. Similarly, measured kinetic energy for a given mass
is an average of all kinetic energies of all nuclei having the same mass. Thus,
we have concentrated on the data where both the mass and the kinetic energy
spectrum are measured in the same experiment.

In Fig. 5.2 we have plotted the experimental data on percentage mass
yields of the heavy fragment group in the spontaneous fission of 240Pu, as a
function of heavy fragment mass, MH , along with the data on the average
kinetic energy associated with each mass number. The data are plotted as
solid lines. The percentage yields spectrum is symmetric about mass number
120 and hence, the data on the light fragments have not been shown. The
theoretical calculations can reproduce the mass spectrum using a kinetic
energy spectrum which at some places deviate from data by a few MeV but
reproduce the general trend. The theoretical percentage mass yields curve
calculated using the barrier (5.11) along with the average kinetic energies
used in calculating the yields are shown as solid dots. Considering that the
typical errors in experimental determination of kinetic energy are a few MeV,
the agreement is very good for the set of data.

In Fig. 5.3 and Fig. 5.4, we have compared calculated percentage yields,
noted as solid dots, with the observed ones, drawn as solid lines, in the

Fig. 5.2. The average kinetic energy Ekin in MeV, and percentage mass yields
spectra, SFS yield (%) associated with spontaneous fission of 240Pu. The data
taken from [5.33] are shown in solid lines. The broken line in the upper insert is the
average kinetic energy used in calculating percentage mass yields shown as solid
dots in the lower insert
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Fig. 5.3. The average kinetic energy Ekin in MeV, and percentage mass yields
spectra, SFS yield (%) associated with spontaneous fission of 234U. The data taken
from [5.34] are shown as solid lines. The broken line in the upper insert is the
average kinetic energy used in calculating percentage mass yields shown as solid
dots in the lower insert

Fig. 5.4. The average kinetic energy, Ekin in MeV, and percentage mass yields
spectra, SFS yield (%), associated with spontaneous fission of 236U. The data taken
from [5.34] are shown as solid lines. The broken line in the upper insert is the average
kinetic energy used in calculating percentage mass yields shown as solid dots in the
lower insert



5.4 Spontaneous Fission Half-Lives, Mass and Charge Spectra 85

spontaneous fission of 234U and 236U. (The data are actually for thermal
neutron induced fission of 233U and 234U, but are very close to the data on
spontaneous fission.) The average kinetic energies used in the calculation of
percentage yields are shown as dots along with the observed ones, marked as
a solid line, in the upper half of the figures. A similar comparison of the data
and calculation for the spontaneous fission of 252Cf is done in Fig. 5.5. In
the same figure we have also plotted the calculated kinetic energy spectrum
associated with the decay of 252Cf obtained from Terrell’s theory, i.e., the
equations (5.15) and (5.16). The observed mass spectrum is well accounted
for by the calculation using a kinetic energy spectrum which reproduces the
shape and magnitude of the experimental spectrum very well, except in a few
cases where the difference between the data and calculated kinetic energy
deviates only by few MeV.

Fig. 5.5. The average kinetic energy, Ekin in MeV, and percentage mass yields
spectra, SFS yield (%), associated with spontaneous fission of 252Cf. The data on
percentage mass yields taken from [5.34] are shown as solid lines. The broken line
in the upper insert is the average kinetic energy used in calculating percentage mass
yields shown as solid dots in the lower insert. The solid dots in the upper insert is
the Ekin calculated from the Terrell’s prescription (5.14)
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Fig. 5.6. The calculated percentage mass yields, SFS yield (%), in the spontaneous
fission of 250Cm taken from [5.4] are shown as the solid line. The broken line in
the upper insert is the average kinetic energy, Ekin in MeV, used in calculating
percentage mass yields shown as solid dots in the lower insert. The solid dot in the
upper insert is the calculated Ekin using Terrell’s prescription (5.14)

Data on the average kinetic energy spectrum in the spontaneous fission
of 250Cm, 254Cf and 258Fm are not available. However, this can be calculated
using Terrell’s prescription and are shown as solid dots in the upper half of
Figs. 5.6, 5.7 and 5.8. Calculated percentage mass yields as a function of
masses of heavy fragments are shown in the same figures as solid dots and
dashed lines. The kinetic energies used in the calculation are noted as dashed
curves in the upper half of these two figures.

Figures 5.6, 5.7 and 5.8 show that while the dominant decay modes for
250Cm and 254Cf are non-symmetric, 258Fm prefers to decay primarily to
the symmetric daughter pairs. This theoretical finding is consistent with ob-
servation [5.30]. Theoretical values of total spontaneous decay half-lives and
average kinetic energy for 250Cm, 254Cf and 258Fm are also presented in
Table 5.1. The agreement with experimental results is good.

5.4.3 Charge Distribution

The underlying assumption of the theory is that a parent nucleus has a finite
probability to decay to a well defined daughter pair comprising of two nuclei
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Fig. 5.7. The same as in Fig. 5.6 except for the spontaneous fission of 254Cf

having well defined atomic charges and masses. The decay probabilities to
two nuclei specified only by their mass number are calculated by summing
over such probabilities of decay to all pairs having the same mass number but
different atomic number. From such calculations one can also obtain decay
probabilities to a daughter pair characterized only by their charge numbers
by summing over all mass numbers having the same pair of charges. Experi-
mental data on charge distribution have become available since the sixties. In
Tables 5.2 to 5.5, we present the calculated results and compare them with
the observed ones, for spontaneous fission of 234U, 236U, 240Pu and 252Cf.
The data on charge distribution and associated average mass for 234U, 236U
and 240U are actually for thermal neutron induced fission of 233U, 235U and
239Pu, respectively, but those on 252Cf are for spontaneous fission. The the-
ory can successfully account for the observed charge distribution, in all four
cases, reasonably well. Theoretical estimates of percentage charge yields, and
average nuclear mass, 〈M〉, associated with each charge of daughter nuclei,
for 254Cf, 254Fm, 256Fm and 258Fm are presented in Table 5.6.

The success of the empirical barrier in accounting for the mass yield spec-
tra with proper kinetic energies and the general trend of charge distribution
is primarily due to the realization of the necessity of having an external bar-
rier which follows from the necessary condition for the existence of a meta-
stable state for parent nuclei. The same barrier has been used to analyze the
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Table 5.2. Theoretical and experimental percentage charge yields, noted as %
yield, and average nuclear mass, 〈M〉, associated with each atomic number of daugh-
ter nuclei. The theoretical calculation is for spontaneous fission of 234U and the
experimental results are for thermal neutron induced fission of 233U [5.32]

Theory (n, f) (exp.)
Charge
Z 〈M〉 % Yield 〈M〉 % Yield

32 81.5 0.4 –
34 85.3 2.0 85.7 3.55 ± 0.20
36 89.3 7.9 90.5 16.44 ± 0.80
38 94.0 20.9 95.4 17.06 ± 0.40
40 98.9 11.5 100.3 12.57 ± 0.30
42 103.2 7.0 104.9 3.02 ± 0.33
44 to 48 ≤0.5 ≤0.5
50 130.8 7.0 129.1 3.02 ± 0.33
52 135.0 11.5 133.7 12.57 ± 0.30
54 140.0 20.9 138.6 17.06 ± 0.40
56 144.7 7.9 143.5 16.44 ± 0.80
58 148.7 2.0 148.3 3.55 ± 0.20
60 152.5 0.4 153.1 0.43 ± 0.06

Table 5.3. Theoretical and experimental percentage charge yields, noted as %
yield, and average nuclear mass, 〈M〉, associated with each charge of daughter
nuclei. The calculation is for spontaneous fission of 236U and the experimental
results are for thermal neutron induced fission of 235U [5.32]

Theory (n, f) (exp.)
Charge
Z 〈M〉 % Yield 〈M〉 % Yield

32 80.0 0.1 –
34 85.0 1.6 86.2 3.17 ± 0.24
36 90.7 11.1 91.2 12.84 ± 0.48
38 96.0 19.5 96.3 16.16 ± 0.13
40 101.0 12.1 101.4 15.10 ± 0.37
42 104.7 5.6 106.1 3.34 ± 0.48
44 to 48 ≤0.5 ≤0.4
50 131.3 5.6 129.6 3.34 ± 0.48
52 135.0 12.1 134.6 15.10 ± 0.37
54 140.0 19.5 139.7 16.16 ± 0.48
56 145.3 11.1 144.8 12.48 ± 0.48
58 151.0 1.6 149.8 3.17 ± 0.24
60 156.0 0.1 154.9 0.38 ± 0.05
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Table 5.4. Theoretical and experimental percentage charge yields, noted as %
yield, and average nuclear mass, 〈M〉, associated with each charge of daughter nuclei.
The theoretical calculation is for spontaneous fission of 240Pu and the experimental
results are for thermal neutron induced fission of 239Pu [5.32]

Theory (n, f) (exp.)
Charge
Z 〈M〉 % Yield 〈M〉 % Yield

32 81.3 0.3 −
34 86.6 2.0 85.2 1.20 ± 0.10
36 92.5 7.6 90.4 4.17 ± 0.25
38 97.1 9.6 95.55 11.20 ± 0.35
40 101.0 12.0 100.7 15.73 ± 0.14
42 104.9 11.7 105.7 14.64 ± 0.50
44 109.3 6.8 110.6 3.07 ± 0.33
50 130.6 6.8 129.4 3.07 ± 0.33
52 135.1 11.7 134.3 14.64 ± 0.33
54 139.0 12.0 139.3 15.73 ± 0.14
56 142.9 9.6 144.45 11.28 ± 0.35
58 147.5 7.6 149.6 4.17 ± 0.25
60 153.4 2.0 154.8 1.20 ± 0.10
62 158.7 0.3 159.7 0.20 ± 0.03

Table 5.5. Theoretical and experimental percentage charge yields, noted as %
yield, and average nuclear mass, 〈M〉, associated with each charge of daughter
nuclei in the spontaneous fission of 252Cf. The experimental numbers, Exp., noted
in columns 4 to 6, are from [5.15,5.16]

Charge Z Theory Exp. Exp.

〈M〉 % yield 〈M〉 % yield 〈M〉 % yield

34 86 0.1 – – – –
36 93.5 1.7 – – – –
38 97.5 2.3 94.6 1.97 ± 0.27 95.5 2.9 ± 0.1
40 101.9 9.5 100.8 7.38 ± 0.52 100.6 7.9 ± 0.3
42 107.5 17.9 105.0 15.36 ± 1.13 105.2 15.4 ± 0.3
44 112.7 10.4 109.8 11.86 ± 0.85 109.6 13.6 ± 0.2
46 116.5 6.1 114.1 6.83 ± 0.73 113.8 7.8 ± 0.3
48 119.5 2.2 118.9 1.66 ± 0.21 – –
50 131 2.2 – – – –
52 135 6.1 134.5 4.96 ± 0.21 133.9 7.8 ± 0.3
54 139.4 10.4 138.5 9.63 ± 0.70 138.5 13.6 ± 0.2
56 144.5 17.9 143.3 16.23 ± 1.08 143.3 15.4 ± 0.3
58 150.2 9.5 148.0 9.2 ± 0.68 147.9 7.9 ± 0.3
60 154.5 2.3 152.6 2.4 ± 0.26 152.5 2.9 ± 0.1
62 159.5 1.7 158.6 1.08 ± 0.99 156.9 1.13 ± 0.06
64 166 0.1 – – – –
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Fig. 5.8. The calculated percentage mass yields, SFS yield (%), in the spontaneous
fission of 258Fm taken from [5.4] are shown as the solid line. The broken line in
the upper insert is the average kinetic energy, Ekin in MeV, used in calculating
percentage mass yields shown as solid dots in the lower insert. The solid dot in the
upper insert is the calculated Ekin using Terrell’s prescription (5.14)

variation of percentage mass yields and average kinetic energy spectra with
the incident neutron energy in induced fission in Chap. 6 and isomer fission
in Chap. 8.

5.5 Conclusion

The empirical barrier and the mass dependence of its parameters can ac-
count for the observed half-lives with the observed kinetic energies, mass
dependence of yields of elements in spontaneous fission. The mass depen-
dence of kinetic energy needed to account for the percentage yields of masses
follow closely the one calculated from Terrell’s formulae.
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Table 5.6. Theoretical percentage charge yields, noted as % yield, and average
nuclear mass, 〈M〉, associated with each charge of daughter nuclei. The two theo-
retical results presented for 258Fm are such that their average kinetic energy become
identical with the ones given in Table 5.1, respectively

Charge 254Cf 254Fm 256Fm 258Fm (1) 258Fm (2)

Z 〈M〉 % yield 〈M〉 % yield 〈M〉 % yield 〈M〉 % yield 〈M〉 % yield

34 — — — — — — 88.0 0.3 — —
36 92.6 1.0 91.4 0.3 92.0 0.1 91.2 1.3 — —
38 97.2 1.7 95.2 0.8 96.5 1.5 96.2 3.3 96.7 0.7
40 102.5 7.3 100.5 3.8 101.2 2.4 102.1 5.4 102.4 1.8
42 108.1 15.6 106.3 10.1 106.4 7.7 108.1 6.6 108.4 4.7
44 113.9 15.0 111.1 10.9 112.2 14.0 113.0 5.3 113.1 5.4
46 118.8 6.7 115.9 16.2 117.0 10.9 118.1 10.2 118.2 12.5
48 122.9 2.7 121.1 7.4 121.6 10.3 124.1 13.0 124.1 18.1
50 131.1 2.7 127.0 0.6 128.0 6.3 129.0 9.5 129.0 13.6
52 135.2 6.7 132.8 7.4 134.4 10.3 133.9 13.0 133.9 18.1
54 140.1 15.0 138.1 16.2 139.0 10.4 139.9 10.2 139.8 12.5
56 145.9 15.6 142.9 10.9 143.8 14.0 145.0 5.3 144.9 5.4
58 151.5 7.3 147.7 10.1 149.6 7.7 149.9 6.6 149.6 4.7
60 156.8 1.7 153.5 3.8 154.8 2.4 155.9 5.4 155.6 1.8
62 161.4 1.0 158.8 0.8 159.5 1.5 161.8 3.3 161.3 0.7
64 — — 162.6 0.3 164.0 0.1 166.8 1.3 — —
66 — — — — — — 170.0 0.3 — —
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6 Induced Fission

6.1 Introduction

As noted in Chap. 1, one of the most interesting characteristics of the induced
fission process is the dramatic change in percentage mass yields spectra of
daughter pairs in the final channel, with the variation of the incident kinetic
energy of projectiles. For example, the spectra of percentage mass yields in the
induced fission of 235U and 239Pu by incident thermal neutrons peak towards
the asymmetric modes i.e. towards A/3 and 2A/3, (where A is the mass of the
compound nucleus), whereas for 14 MeV incident neutrons on 235U, the mass-
yields-spectrum near symmetric modes, i.e., near (A/2), becomes comparable
to those near asymmetric modes. The same phenomenon occurs for incident
charged particles [6.1–6.4]. In a series of papers D’yachenko, Kuzminov and
their collaborators [6.5–6.11] have reported results of the systematic studies
of variation of both percentage mass yield spectra and the associated average
kinetic energies, TKE, as a function of daughter masses, with incident neutron
energies for 233U, 235U and 239Pu targets. While the change in the percentage
mass yield is found to be substantial in these experiments, the variation of
TKE spectra was less dramatic. A similar situation had been observed for
alpha-induced fission of 226Ra earlier by Unik and Huizenga [6.4]. Since the
yields of daughter pairs are governed by their associated kinetic energies,
a theoretical understanding of induced fission must simultaneously account
for the variation of both TKE and percentage mass yield spectra with the
change in incident projectile energy. In this chapter we present a theory
explaining this variation. The role of the external barrier used in connection
with spontaneous fission in previous chapters is central to the understanding
of these variations.

Another feature, that a theory must account for, is the shape of the spec-
trum of the percentage yields curve for daughter pairs characterized by their
mass number as a function of their kinetic energy. Theoretical computation of
such a curve involves summing over the yields to all pairs of isotopes having
the same pair of mass number. In other words, the observed kinetic energy is
the average of the kinetic energies associated with the emission of all daugh-
ter pairs having the same mass number but different charges. The discovery
of cold fission further points to the possibility that the compound system
may be decaying to different excited states of each member of a particular
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daughter pair. The shape of the yields versus kinetic energy curve deter-
mines the mechanism that distributes the available energy to excitation of
a daughter pair and the kinetic energy associated with that. A theoretical
understanding of this experimental curve provides, therefore, the physical
mechanism involved in distributing the available energy into the excitation
of a daughter pair and its kinetic energy.

In the next section we present a theory that leads to the understanding of
the above features. In addition, the theory is in a position to calculate TKE.

6.2 Theory

The theory assumes that the induced fission proceeds in two steps. First a
projectile and target coalescence into a compound system, termed generically
as the compound nucleus and then this system decays into various excited
states of two nuclei with specific mass and charge numbers. The statistical
theory of Weisskopf [6.12], Weisskopf and Ewing [6.13], Newton [6.14] and
Ericson [6.15], is particularly suitable to describe this two step process [6.16–
6.18] and calculate absolute total and differential cross sections and decay
probabilities. The theory may also be adopted to calculate decay probabilities
to all permitted excited states of a particular daughter pair and to all nuclei
having the same pair of mass numbers. This leads to calculation of TKE
which is the location of the maximum of the average kinetic energy. We
discuss these cases in the following sections.

6.2.1 Cross Section and Decay Probabilities

Denoting the incident and final channels by α and β, the differential cross
section is given by

dσαβ

dΩ
=
∑

I

∑
�
(π/k

2)(2� + 1)T�(α)

[
Pβ(I, Uc, ε, �n)∑

γ

∫
dΩPγ(I, Uc, ε, �n)

]
(6.1)

where k, � and I are, respectively, the incident channel wave number,
orbital angular momentum and the total spin of the compound system.
Pβ(I, Uc, ε, �n) and Pγ(I, Uc, ε, �n), respectively, are the decay probabilities
into daughter pairs characterized by channel indices β and γ in the direc-
tion �n with kinetic energy ε from a compound or composite nucleus of spin I
and excitation energy Uc. The summation over γ extends to all decay modes
including the channel β. T�(α) is the transmission coefficient leading to the
formation of the compound or composite system.

The total cross section for the production of a pair characterized by chan-
nel β from the initial channel α is given by

σαβ =
∑

I

∑
�
(π/k

2)(2� + 1)T�(α)

[ ∫
dΩPβ(I, Uc, ε, �n)∑

γ

∫
dΩPγ(I, Uc, ε, �n)

]
. (6.2)
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Calculation of absolute cross section involves a model to evaluate∑
� (π/k

2)(2� + 1)T�(α). For an incident proton, neutron and alpha particle
one may approximate the capture probabilities by the reaction cross section
and then

T�(α) = (1 − | exp(2iδ�)|2) . (6.3)

Where δ� is the complex phase shift in the incident channel which may be
evaluated from a complex potential obtained by fitting elastic scattering data
for incident projectiles.

One may integrate over the angle to obtain the decay probability, Pβ

(I, Uc, ε) to a particular daughter pair with a kinetic energy ε

Pβ(I, Uc, ε) = 2π
∫ π

0

P β(I, Uc, ε, �n)d(cos θ) . (6.4)

The partial decay width Γ(A1, A2, Uc, ε) from a compound nucleus of
excitation energy Uc and spin I to a particular daughter pair denoted by
mass numbers A1 and A2 moving with kinetic energy ε is given by

Γ(A1, A2, I, Uc, ε) = Pβ(I, Uc, ε) (6.5)

and the total decay width is given by

Γ(A1, A2, I, Uc) =
∫ ξ

0

Γ(A1, A2, I, Uc, ε)dε . (6.6)

In (6.6) ξ is the maximum energy available for the intrinsic excitation
of a daughter pair in accordance with energy conservation. This maximum
available energy ξ is related to the masses of target, M(T ), projectile M(P ),
and daughter pair, M(A1) and M(A2), and incident channel kinetic energy
T by the following relation:

ξ = [M(T ) + M(P ) + T − M(A1) − M(A2)]c2 . (6.7)

This energy is distributed between excitation energies of a daughter pair U1

and U2 and their relative kinetic energy ε. Thus

ξ = U1 + U2 + ε . (6.8)

Within the frame work of the statistical model, the partial decay with
(6.5) may be related to the level densities, ρ1(U1) and ρ2(U2) of each member
of a daughter pair and a transmission function T (ε) through the barrier
associated with the decay of the compound nucleus to a particular daughter
pair [6.15,6.19,6.20] as follows

Γ(A1, A2, I, Uc, ε) = T (ε)
∫ ξ−ε

0

ρ1(U1)ρ2(U2)dU1

= T (ε)
∫ ξ−ε

0

ρ1(U1)ρ2(ξ − ε − U1)dU1 (6.9)
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Fong [6.21, 6.22] and Faissner and Wildermuth [6.23, 6.24] have used simi-
lar expressions to calculate decay width but set T (ε) = 1. This amounts to
neglecting the barrier and hence, the interaction between members of a par-
ticular daughter pair has been neglected in their models which are essentially
based on an evaporation model.

For the calculation of decay width one should, however, specify the in-
teraction between two members of a daughter pair and the functional form
of their level densities. The decay widths, using the theory presented herein,
have been calculated using (6.9). Calculations of the transmission coefficient,
T (ε), have been done using the barrier adopted in Chap. 5 to calculate decay
probabilities in spontaneous fission. Hence, the potential between the two
emerging members of a daughter is taken to be the following

Vnc(R) =

⎧⎪⎪⎨
⎪⎪⎩

V1 for R < Rc

V0 for Rc < R < Rb

Vcoul exp[(R − R0)/d] for Rb < R < R0

Z1Z2e
2/R for R0 < R .

(6.10)

In (6.10) V1 = 200 MeV, V0 = Vcoul − 60 MeV, Vcoul = Z1Z2e
2/R0 with

R0 = r0(A1
1/3+A2

1/3)+3.0 fm and r0 = 1.3+0.13 g(A1, A2), Rc = 8 fm, and
Rb = R0 +d log(V0/Vcoul) with d = 3.2 fm and g(A1, A2) = exp[−0.036(|A1−
A2|)1.6]. The barrier (6.10) is the diagonal part of the same barrier used in
explaining half-lives, mass and charge yields in the spontaneous and isomer
fission of 234U, 236U and 240Pu [6.25,6.26].

For excitation energy above 5 MeV, the level density function is taken to
be the one suggested by Gadioli and Zeta [6.27].

ρ(I, V ) =
�

3

24
√

2
(2I + 1) exp

[
−I(I + 1)

2σ2

]√
aG−3/2 exp[2(aV )1/2]/(V + 1)2 .

(6.11)
In (6.11), V is the effective excitation energy related to U and energy-gap
parameter ∆ by [6.28].

V = U − ∆ + (70/A) in MeV . (6.12)

G is the moment of inertia of the nucleus in consideration and is taken to be
the following

G = 0.7[rigid body moment of inertia]
= (0.7)(2/5)AR2 with R = 1.5A1/3fm . (6.13)

σ is the spin cut-off parameter regulating the distribution of level spin and
a is the characteristic parameter related to single particle spacing near the
Fermi sea and is taken to be = 0.127A (MeV)−1 i.e., a3, of Fig. 6.1 of Gadioli
and Zetta.
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The effective excitation energy V is related to nuclear temperature t by

V = at2 − t . (6.14)

For low excitation energy i.e., energy less than 5 MeV, the density of levels
is usually small and ρ(I, V ) is taken to be a delta function

ρ(I, V ) = δ − function of energy . (6.15)

Following Ericsson [6.15] the expression for the partial decay width may
be obtained from (6.9) and (6.14)

Γ(A1, A2, I, Uc, ε) =
√

π�
6

ρc(I, Uc)
× a1a2

144(2
√

2)
(G1G2)3/2T 1,2

0 (ε)

×
∫

(σ1 + σ2)3 exp[2
√

a1V1 + 2
√

a2V2]dV1

(σ1
2 + σ2

2)1/2(V1 + t1)2(V2 + t2)2
. (6.16)

In (6.16), ρc(I, Uc) is the level density of the compound nucleus with spin
I and excitation energy Uc. The limits of integration in (6.16) are from the
minimum to maximum allowed values of V1. The available energy ξ is distrib-
uted between the excitation energy of a daughter pair and its kinetic energy.
Normally, one may set the minimum and maximum value of V1 to be zero and
ξ, respectively. However, (6.16) is derived from a statistical consideration and
the decay process involves a change in entropy, ∆s. If the excitation energies
of the compound nucleus and daughter pairs are identified as available heat
energy H, the change in entropy ∆s must remain zero or positive during the
decay process. Hence,

∆s ≥ 0 . (6.17)

Neglecting the slight correction, we may set U ≈ V

∆s = U1/t1 + U2/t2 − Uc/t ≥ 0 . (6.18)

Using (6.18) and noting that a = 0.127 × mass number, one gets

∆s = 0.127(A1(t1 − t) + A2(t2 − t) − 1 ≥ 0 . (6.19)

The limits in (6.16) must be chosen to insure this inequality. This can be
fulfilled either by taking t1 > t and t2 > t or by setting t2 = t and choosing
the lowest excitation energy U1 corresponding to the minimum temperature
t1(min) that fulfills the following condition

t1(min) − t ≥ 1/(0.127A1) . (6.20)

The lowest limit of integration is chosen to insure a condition similar to
(6.20) obtained by using V . The maximum value of t1 corresponding to the
maximum excitation energy of fragment one U1(t1) = ξ−ε− U2(t). The limit
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of integration over V1 according to this prescription insures that ∆s ≥ 0 in
the entire domain of integration.

In most cases considered here, A1 lies between 80 to 150 and hence 0.127
A1 ≈ 0.1 or less. Hence, at the lowest limit, t1 ≈ t, which implies that the
temperature of each member of a daughter pair is very close to that of the
corresponding compound system. In fact, had one used the relation U =
at2 instead of (6.14), t1 = t in the lowest limit would have corresponded to
∆s = 0.

6.2.2 Calculation of the Most Probable Kinetic Energy, TKE

One may calculate the most probable kinetic energy by searching for that
kinetic energy, ε, which maximizes expression (6.9) for the partial width
Γ(A1, A2, I, Uc, ε). In essence, the decay widths to A1 and A2 are calculated
for a series of ε, allowed by energy conservation. For a given ε, U1 and U2,

the total excitation energy of a pair is determined using (6.8). Integration
over U1 is performed over all possible excitations of A1 allowed by the total
available excitation energy. This automatically takes into account the inclu-
sion of decay probabilities to all allowed excited states of a daughter pair.
In case the daughter pairs are identified by their mass numbers only, the de-
cay probabilities to all the pairs having the same mass number, but different
atomic numbers are calculated and summed over. Thus,

Most ProbableKinetic Energy = Max of Γ(A1, A2, I, Uc, ε)as a function of ε

= Max of T0
1,2(ε)

∫ ξ−ε

0

ρ1(U1)ρ2(ξ − ε − U1)dU1

(6.21)

The maximum of (6.21) does not occur at ε = 0 nor at ε = ξ for the level
density function used here. To emphasize this point we choose a simple form
for ρ1(U1) which maintains the key feature of ε dependence of (6.11) but is
analytically simple. Taking ρ1 = c1 exp

√
a1U1 and ρ2 = c2 exp

√
a2U2 which

are also quite often used in nuclear physics, we get

Max of Γ(A1, A2, I, Uc, ε) = Max of T o
1,2(ε)

∫ ξ−ε

0

c1c2

× exp[2U1] exp[2
√

a2U2]dU1 . (6.22)

The value of the integral in (6.22) is essentially determined by integration
in the neighborhood of its maximum and following Fong [6.22], the approxi-
mate value of the integral is given by

2π1/2c1c2

√
a1a2

(a1 + a2)5/4
(ξ − ε)3/4 exp[2(a1 + a2)(ξ − ε)1/2] . (6.23)
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Hence the location of the maximum of the width is given by

Max of Γ(A1, A2, I, Uc, ε) = Max of (
√

ε/2µ)(ξ − ε)1/4

× exp
[
−2
∫ 2

1

√
B(V − ε)dR

]
exp
[
2(a1 + a2)(ξ − ε)1/2

]
. (6.24)

In (6.24) we have omitted the constants which are not relevant for deter-
mining the location of the maximum. In arriving at (6.24), the transmission
coefficient in T (ε) is calculated for a barrier given by potential V in the
JWKB approximation. The constant B is the reduced mass divided by �

2.
The limits of integration refer to two turning points and the integration (6.21)
is replaced by (6.23). The dominating terms as a function of ε are the two
exponentials in (6.24), one increasing and the other decreasing with the in-
creasing ε. The maximum is clearly neither at ε = 0 nor at ε = ξ but occurs
for an ε value in between these two extrema. The exact location is determined
by the competition between these two exponentials.

In case one neglects the barrier between the two emerging final fragments
T0

1,2(ε) = 1 and the maximum of width as a function of ε is given by (6.23)
which is located at ε = 0. This means that the entire available energy is
transferred into internal excitation of the daughter pairs and maximum yields
occur at zero kinetic energy, i.e., fragments are evaporated. For induced as
well as spontaneous fission, this is clearly not the case experimentally. In
fact, this observation led Facchini and Saetta-Menichela [6.20] to suggest the
necessity of considering the interaction of the type shown in Fig. 6.1 between
two emerging nuclei in the final channel.

In the next section we present calculations of percentage mass yield and
TKE spectra. The latter is obtained by searching numerically for the maxi-
mum of Γ(A1, A2, I, Uc, ε) as a function of ε for all isotopes of a given daughter
pair of mass numbers A1 and A2, subject to the constraint ∆s ≥ 0.

6.3 Applications

The experimental data considered here represent percentage mass yields, i.e.,
the actual yields in the decay of a compound nucleus of a given energy to a
particular decay daughter pair as a percentage of all decay modes. Hence, the
theoretical calculations of the formation cross section of the compound nu-
cleus are not needed. These relative yields and TKE can be calculated using
(6.18) once Q-values, level density functions and the interaction in the final
channel between a daughter pair are specified. In practice, however, there
are a number of problems: (i) the mass formulas used to calculate Q-values
have inherent uncertainties of few MeV. This is further compounded in our
case because parameters of most of the mass formulas are adjusted to repro-
duce nuclear masses in the valley of stability, whereas, the daughter nuclei
in the fission process, are neutron rich, and quite often lie away from this
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Fig. 6.1. Calculated relative probabilities, using (6.4) in arbitrary units to three
sets of daughter pairs in thermal neutron induced fission of 235U, are plotted as
a function of kinetic energy, Ekin. Atomic masses of the daughter pair are noted
next to the relevant plot. The average or the most probable kinetic energy for a
given pair is the location of the maximum of the plot. Total yields are calculated
by summing over the yields of all isotopes

valley of stability, (ii) the experimental data on percentage yields and kinetic
energy have significant uncertainties, (iii) the potential chosen here is only
a good approximation to the actual one, the details of which is complicated
and (iv) the details of observed level densities in individual nuclei can not be
reproduced by the general function used by Gadioli and Zetta. In fact, the
parameters have an inherent uncertainty of 10 to 20%. Taking these into con-
sideration, we have adopted the following procedure to relate the calculation
and the data.

The Q-values used in all calculations are first calculated from the mass
formula of Myers and Swiatecki [6.30]. Since these Q-values could be uncer-
tain by a few MeV, they were allowed to vary within a 5 MeV range of the
calculated ones in order to obtain the best fit to the percentage mass yields
spectrum of the spontaneous fission from the ground state of the compound
nucleus formed by the coalescence of projectile and target. These Q-values
have been used unchanged to calculate the percentage mass yields and TKE
in the induced fission involving the same compound nucleus. The experimen-
tally measured average kinetic energies have also inherent uncertainties of
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a few MeV. We have, therefore, determined the theoretical TKE from the
kinetic energy needed to fit the percentage mass yields for all isotopes of
a daughter pair characterized by mass number A1 and A2. These are then
compared with observed average kinetic energy spectra.

6.3.1 Neutron Induced Fission

We present here the analysis of some of that data where both the percentage
mass yields and TKE spectra are taken in the same experiment. Such data
exist for induced fission of 233U by thermal, 5.5 and 15.5 MeV incident neu-
trons and of 235U by thermal, 7.0, 15.5 and 22.0 MeV, incident neutrons, of
239Pu by thermal, 5.5 and 15.5 MeV incident neutrons and of 229Th by ther-
mal neutrons. As noted earlier, the change in percentage mass yields spectra
in all these cases is substantial with increasing incident neutron energy but
the change in TKE spectra is less dramatic. In general, the percentage mass
yields to symmetric modes relative to asymmetric modes increase significantly
with increased bombarding energy. In the following sections we present also
theoretically calculated TKE for each decay mode. These are obtained by
calculating decay probabilities to all pairs that are characterized by the iso-
topes having the same mass number and then summing over them. These
summed yields are then plotted as a function of kinetic energy, ε. The most
probable kinetic energy or TKE is then determined from the maximum of
this function. Six typical examples, one for thermal neutron induced fission
of 235U and another for 22 MeV neutron induced fission of 235U are shown in
Figs. 6.1 and 6.2. Daughter pairs considered are (A1 = 118 and A2 = 118),
(A1 = 80 and A2 = 156) and (A1 = 96 and A2 = 140). One may note the
following:

(a) These TKE curves are bell shaped which is usually the case in experi-
mental determination of such TKE.

(b) The maximum of these curves correspond to most probable kinetic ener-
gies and are about 10 to 20 MeV below the corresponding Q-values as is
the case experimentally.

(c) The additional 22 MeV imparted by the incident neutron primarily (i)
broadens the widths of the bell shaped yield curves, and (ii) affects rela-
tive yields to symmetric modes relative to asymmetric modes. We discuss
neutron induced fission of 233U, 235U, 239Pu and 229Th in the following
sections.

6.3.1a Neutron Induced Fission of 233U

We have presented the observed percentage mass yields spectrum and TKE as
a function of the mass number of the heavier partner of a daughter pair for fis-
sion of 233U by thermal, 5.5 and 15.5 MeV incident neutron [6.11] in Figs. 6.3
and 6.4. The percentage mass yields and TKE spectra for the lighter partner
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Fig. 6.2. The same as Fig. 6.1 except the incident neutron energy is 22 MeV

Fig. 6.3. Experimental and theoretical mass yields and average kinetic energy, Ekin

are shown, respectively, by solid lines [6.11] and solid dots [6.16,6.25,6.45] in inserts
(a) and (b) for thermal neutron induced fission of 233U. Open circles in both inserts
are calculated average kinetic energy given by the maxima of (6.16). Broken line
and open triangle are, respectively, theoretical Q-values used in obtaining the fit
to percentage mass yield and Q-values obtained from Myers and Swiatecki’s mass
formula [6.30]. MH is the distribution of the heavy fragment of a daughter pair.
Typical error bars are those shown in insert (b)
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Fig. 6.4. Solid lines and solid dots are, respectively, calculated and experimental
percentage mass yields in lower inserts and the most probable kinetic energies in
upper inserts in 5.5 and 15.5 (right) MeV neutron induced fission of 235U. Open
circles in upper inserts are calculated Ekin determined from the maxima of (6.16)

of a daughter pair are basically the mirror image of plotted data in Figs. 6.3
and 6.4 and are not shown. However, the fact that the mass-yields spectra
of light and heavy fragments are mirror images of each other indicates the
process to be predominantly binary fragmentation and not random explosion.
Two experimental percentage mass yields spectra shown in Fig. 6.3 are very
instructive. At higher incident energy the yields to asymmetric modes, i.e.
mass number MH around 140 relative to those to symmetric modes decrease
substantially. On the other hand the TKE spectra in both cases indicate that
the change in TKE at higher incident energy over that for lower incident en-
ergy is not substantial. Nevertheless, the TKE associated with the decay to
lower masses e.g. those around 120 increases somewhat at the higher incident
neutron energy. This is primary responsible for the large percentage increase
associated with modes that had low yields at lower incident energies. The
tendency to equalize TKE for all modes results in a higher percentage in-
crease for symmetric ones, which is likely to enhance the barrier penetration
probabilities for these modes.

In the same figure, we have plotted the best fit to the percentage mass
yields spectra and the TKE needed for the fit. The data and calculations
are noted, respectively, as solid lines and solid dots. The Q-values used in all
cases are the same ones used in describing spontaneous fission and are shown
as dashed curve in Fig. 6.3 and compared to Q-values calculated using Myers
and Swiatecki’s mass formula [6.30] which are shown as open triangles. The
observed data on TKE and percentage mass yields are well accounted for at
all incident energies.

The open circles in each of these figures are theoretically calculated TKE,
using the barrier (6.10) and looking for the maximum of (6.21). These are the
kinetic energies where the decay probability function to all daughter pairs of
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a given isotope has its maximum. Considering that the data on TKE have
an uncertainty of about 5 MeV and given the approximate nature of level
density functions used here, the agreement is reasonable.

6.3.1b Neutron Induced Fission of 235U

A systematic study has been done at the Power Engineering Institute in
Kazakstan of the variation of percentage yields spectrum along with the
corresponding variation of TKE with the change in incident neutron energy
for induced fission of 235U [6.5–6.11]. Their measurements are for incident
neutrons of thermal energy and energies of 7.0, 15.5 and 22.0 MeV. These are
shown in Figs. 6.5 and 6.6 as solid dots.

Fig. 6.5. The same as the one for Fig. 6.3 except the target is 235U and incident
neutron energies are thermal and 7.0 MeV. Data are taken from [6.5–6.11]

Fig. 6.6. The same as the one for Fig. 6.5 except the neutron incident energies are
15.5 and 22.0 MeV
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The kinetic energy spectra necessary to fit these data along with the
calculated percentage mass yields using (6.16) are shown as solid dots in
these figures. The Q-values used in the calculations are the same ones used
in calculation of spontaneous fission of 236U and are noted as dashed lines in
Fig. 6.5. The same Q-value has been used in all other cases. These Q-values
are very close to the ones calculated from the liquid drop mass formula of
Myers and Swiatecki [6.30] which are shown as triangles, in Fig. 6.5.

These data indicate a substantial change in the relative percentage mass
yields between symmetric and asymmetric modes of decay with increasing
incident energy. At thermal incident energy the percentage mass yields to the
asymmetric decay modes dominate over those to symmetric ones by a few
orders of magnitude, but at 22 MeV the two percentage yields are comparable,
differing by a factor of about two. However, the change is gradual. The kinetic
energy spectra also change with increasing neutron energy but additional
energy seems to be distributed among all decay modes and hence, the change
is less dramatic.

Theoretically one can account for these data and their variation with
incident energy. The available increase in energy resulting from the increase
in incident energy seems to be distributed in a manner that tends to equalize
most probable kinetic energies associated with all decay modes.

A comparison of the decay probabilities to three particular pairs for ther-
mal and 22 MeV incident energies shown in Figs. 6.1 and 6.2 reveals that
the additional 22 MeV of energy affects the widths of the bell shaped curves.
They become wider with increase in available energy. The difference in yields
at maxima to the three decay modes is reduced significantly with increase of
incident energy.

6.3.1c Neutron Induced Fission of 239Pu

The data on percentage mass yields and TKE are exhibited as solid dots in
Figs. 6.7 and 6.8 as a function of mass numbers of the daughter pair in induced
fission of 239Pu by thermal, 5.5 and 15.5 MeV incident neutrons. They show
qualitatively the same behavior as the ones seen for 233U and 235U targets.
Theoretical calculations of percentage mass yields and the TKE needed to
fit them are shown as solid lines as a function of mass number, in these
figures. The agreement is reasonable. The Q-values used in these calculations
are shown in Fig. 6.7 as broken lines and they are the same ones used for
spontaneous fission. They are consistent with calculations using the liquid
drop mass formula [6.30].

Calculated TKE are shown as open circles in each of the figures. They
are within a few MeV of observed values as well as theoretical values needed
to fit the percentage mass yields spectra. In Fig. 6.8 we have also denoted by
crosses, TKE calculated without the requirement that the change in entropy
should be zero or positive. These values are in general not as good as the
ones calculated imposing the restriction ∆s ≥ 0.
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Fig. 6.7. The same as the one for Fig. 6.3 except the target is 239Pu and incident
neutron energy is thermal. Data are from [6.5, 6.6]

Fig. 6.8. The same as the one for Fig. 6.7 except the neutron incident energies are
5.5 and 15.5 MeV

The percentage mass yields spectra in the spontaneous fission of 240Pu
shown in Fig. 5.2, and thermal neutron induced fission of 239Pu shown in
Fig. 6.8 are not quite the same. This is, in principle, expected theoretically
because in the latter case, the compound nucleus 240Pu has 6.455 MeV extra
excitation energy. This additional excitation energy increases somewhat the
domain of integration of the phase space spanned by the product of two
level density functions of emerging nuclei. The analysis of spontaneous fission
done in Chap. 5 indicates that the model can also account for the observed
percentage mass yields spectrum in spontaneous fission of 240Pu.
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6.3.1d Neutron Induced Fission of 229Th

In Fig. 6.9, the observed percentage mass yields and TKE spectra in thermal
neutron induced fission of 229Th are plotted as solid lines as a function of
the mass of the heavy fragments. The observed mass yields can easily be
fitted using average kinetic energies that are very close to the observed ones.
These calculations are marked in Fig. 6.9 as solid dots. One may determine
average kinetic energies by locating the maximum of the decay widths. These
are shown as open circles. These theoretically determined TKE are also close
to the observed ones. The Q-values used in the calculations are noted as
triangles. They are within 10 MeV of those expected from Myers-Swiatecki’s
mass formula [6.30].

Fig. 6.9. The same as the one for Fig. 6.3 except solid, instead of open, triangles
refer to Q-values used in accounting for the mass yields

6.3.1e Fission Widths

For thermal induced fission, data on fission widths may be extracted by fitting
the fission cross section with a Breit-Wigner type of resonance formula and
from the knowledge of neutron width. An average value of fission width is then
obtained either by using an appropriate number for average level spacing or
taking an appropriate average of all fission widths extracted from the fitting.
Theoretically total fission widths may be calculated from (6.6), (6.15), and
(6.16). Calculations have been done using Green’s mass formula [6.41]. In
Table 6.1 we have compared the calculated fission width for thermal neutron
fission of 233U, 235U and 239Pu with those extracted from experiment and
the agreement is good for 233U and 235U. The extracted fission width from
the experiment on 239Pu has significant error bar and depends on the spin
of the states and neutron widths. It also differs from earlier data. Because
of relatively significant uncertainties in extracting average fission width from
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Table 6.1. Comparison of calculated average fission widths (column 3) with ob-
served ones (column 2) for thermal neutron induced fission 233U, 235U and 240Pu.
Widths are in ev. a, b, c, d, are, respectively, [6.42] through [6.45]

Target 〈Fission Width〉 〈Fission Width〉
Exp Th

233U 0.34a 0.30
235U 0.067b 0.06

0.114c
239Pu 1.03d 30.0

the measurement of fission cross section, the agreement does not allow one
to determine the detailed nature of the barrier.

6.3.2 Test of Compound Nucleus Formation Hypothesis

The change in percentage yields spectrum as a function of daughter masses
with the change in incident kinetic energy of projectiles is not unique to inci-
dent neutrons but has also been observed for incident charged particles like
protons and alpha-particles. Calculations involving percentage mass yields at
a particular incident energy do not require a knowledge of formation cross
sections since it involves the determination of a ratio. Only the information
about the excitation energy of the compound nucleus, Q-values related to
emission of daughter pairs, level density function and interaction potential
between each member of a daughter pair are needed. The same holds for the
calculation of TKE.

These calculations do not depend on the mechanism of the formation of
the compound or composite systems but assumes their formation. A possible
way to test this hypothesis is to use two different projectiles and targets,
each of which could form the same compound system at about the same
excitation energy and then to compare the final percentage mass yields and
TKE spectra in the two cases. Such data are available for neutron induced
fission of 235U and alpha induced fission of 232Th. The Q-values of formation
of the compound system, 236U in the two cases are the following:

n + 235U → 236U + 6.47 MeV
4He + 232Th → 236U − 4.57 MeV .

Thus, an alpha particle having about 11.04 MeV extra-energy would form
a compound system of 236U having the same excitation energy as the one
formed by the incident neutron. In Fig. 6.10, observed percentage mass yields
spectra for an incident neutron [6.7] of 15.5 MeV and an alpha particle [6.34]
of 27.5 MeV, have been plotted and they do exhibit similar mass distributions,
confirming the hypothesis. The observed mass yields spectra for other cases
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Fig. 6.10. Open circles and crosses in the upper insert are theoretical [6.16] average
kinetic energy spectra needed to account for observed percentage mass yields for
15.5 MeV incident neutrons on 235U and 27.5 MeV incident alpha particles on 232Th
[6.34]. The solid line is the observed average kinetic energy spectrum needed to fit
the yield curve for the (n + 235U) case. Q-values are the same ones used for thermal
neutron induced fission of 235U

can be fitted using (6.16) with the two TKE spectra shown in the upper
insert. The two theoretical spectra are very similar and close to the observed
one for the (n + 235U) case, justifying the assumption of the formation of a
compound system.

6.3.3 Alpha-Induced Fission

In this section, we investigate the change in percentage mass-yields and TKE
with the change in alpha-induced fission of 226Ra and of 226Th.

6.3.4 Alpha-Particle Induced Fission of 226Ra

Unik and Huizenga [6.4] have measured the TKE and percentage mass yields
distribution as a function of the masses of daughter fragments for 30.8 and
38.7 MeV alpha particles incident on 226Ra which are shown in Fig. 6.11. The
8 MeV of extra energy available for the 38.7 MeV case clearly influences the
mass distribution, particularly near symmetric modes, whereas the change in
TKE as a function of daughter the masses is less pronounced which is similar
to the case of neutron induced fission.

Theoretical calculations of these observables require a knowledge of Q-
values, parameters of level density functions and interaction between two
members of a daughter pair. Since the compound nucleus in this case is
230Th, we have taken exactly the same Q-values used in calculating the mass
distribution for neutron induced fission of 229Th. Calculated results are com-
pared to the data in Fig. 6.11. Theoretically one can account for the observed
mass distributions with TKE spectra close to the observed ones.
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Fig. 6.11. Experimental and theoretical percentage mass yields are shown in the
bottom insert as a function of masses of heavy fragments by solid dots and lines,
respectively, for 30.8 MeV (marked B) and 38.7 MeV (marked C) alpha induced
fission of 226Ra. The measured and theoretical average kinetic energies needed to
fit the mass yields are shown by solid dots and curves, respectively, in the upper
insert for two cases. Open circles are calculated average kinetic energies obtained
from maxima of (6.16). The data are from [6.35]. Calculations are from [6.16,6.17]

One can further calculate the most probable kinetic energy for a given
daughter pair by locating the maxima of the decay widths as a function
of ε. Some sample calculations are shown in Fig. 6.12 for daughter pairs,
(A1 = 140, A2 = 90), (A1 = 150, A2 = 80) and (A1 = 116, A2 = 114)
for incident energies of 38.7 MeV, respectively. This situation is very similar
to the neutron induced fission cases: (a) the shapes of these curves are bell
shaped, (b) the maxima lies 10 to 20 MeV below the respective Q-values and
(c) the additional energy broadens the widths.

Calculated TKE are shown as open circles in Fig. 6.11. They are very
close to the theoretical TKE used in fitting the mass yields spectra and to
the observed ones. There is, however, about 5 to 10 MeV difference between
the observed and calculated TKE for the decay to symmetric modes.
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Fig. 6.12. Calculated relative decay probabilities [6.16, 6.17] to daughter pairs
characterized by mass number (116, 114), (150, 80), and (140, 90) in 38.7 MeV
alpha induced fission of 226Ra are plotted as a function of their kinetic energies.
The location of maxima are average kinetic energies and shown as open circles in
Fig. 6.11

6.3.5 Alpha-Particle Induced Fission of 232Th

Pavlov et al. [6.34] have made a systematic study of the variation of percent-
age mass yields and TKE spectra in alpha induced fission of 232Th in the
energy range of 24 to 35 MeV. They have observed that the yields around
symmetric decay modes increase significantly relative to those around asym-
metric modes with increasing incident energy which is reminiscent of the
case of neutron induced fission of 235U. Their data are shown as solid lines in
Fig. 6.13. These have been analyzed theoretically and calculations are shown
as solid dots in Fig. 6.13. The Q-values used in the calculation are the same
as the ones used in the calculations of neutron induced fission of 235U. Theo-
retical values have been calculated from the maxima of Γ(A1, A2, I, U , ε) as
a function of ε. These values, shown as open circles in the same figures, are
very close to the values needed to fit the mass yields curve and experimental
data, shown as solid circles and lines, respectively.

There is a great deal of data on the variation of percentage mass yields as a
function of energy of incident charged and uncharged projectiles, particularly
proton, 3He, and 4He as summarized in [6.1]. However, in many instances the
information on TKE is absent. These data can easily be fitted using the
above theory. These fits are, however, incomplete since the observed decay
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Fig. 6.13. Experimental and theoretical percentage mass yields and average ki-
netic energies are shown, respectively, by solid dots and solid lines in the left and
right inserts. Open circles in the left are calculated most probable kinetic energies
obtained from the maxima of (6.16). Data are from [6.34]. Incident alpha particle
energies are marked in each insert on the left. Calculations are from [6.16,6.17]

probabilities must be obtained with appropriate kinetic energy. A particular
daughter pair is characterized by not only their mass and charge numbers
but also by excitation energies and the associated kinetic energy. Implicit in
the above theory is that (a) the decays are binary and (b) each member of
a daughter pair is characterized by its charge and mass number and that
decay is possible to all excited states of each pair commensurate with the
total available energy. Thus, the theory also predicts charge distributions
similar to those obtained in spontaneous or thermal neutron induced fission.
Moreover, not only cold fission but fission to all allowed excited states of a
daughter pair is permitted.

6.4 The Role of the Barrier and the Shape
of the Yield-Spectrum

The importance of obtaining mass yields spectra with correct kinetic energies
are exemplified in this section which presents a discussion on the relation of
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this theory to the statistical theory of Fong and Wildermuth and Faessner
and others. Whereas, it is possible to fit the mass yields spectra with these
latter theories, the most probable decay modes in every case occur at zero
kinetic energy of a daughter pair, which is in stark contrast with the data. The
key difference between their theory and the one expressed here is that T (ε)
in their theory is taken to be one, i.e., there is no final channel interaction
between an emerging daughter pair.

In this section we present an analysis of the expected kinetic energy for
maximum yields if T (ε) is set to one.

Fong [6.21, 6.22] Newton [6.14], Cameron [6.28, 6.35], Newson [6.36] and
Faessner and Wildermuth [6.23, 6.24], have attempted to reproduce the per-
centage mass yields as a function of daughter masses using statistical theories
that omit the final state interaction. Consequently only the integral in (6.9) is
a function of kinetic energy of a daughter pair. Fong has attempted to relate
this to separation radius Rs by assuming that the observed kinetic energies at
the point of separation are converted to Coulomb potential energy between
two members of a pair. He has found that Rs, determined from this equality,
is significantly larger than the sum of two radii of the pair and attributes this
to large deformation of two separating nuclei. Level density functions chosen
by these authors, although different from each other, are very similar. The
one used by Fong is the following:

ρ(U) = (2I + 1) exp{−(I + 1/2)2/2g
√

u/a}ρo(U) (6.25)

with
ρo(U) = c exp[2

√
aU ] and g = (2/5)MR2/�

2 (6.26)

with
c = 0.38 exp(−0.005A) and a = 0.05A[MeV−1] (6.27)

M and R are, respectively, the mass and radius of nucleus.
Fong’s calculation of mass yields for thermal neutron induced fission of

239U is in reasonable accord with observed data at that time. However, Per-
ring and Story [6.41] have been unsuccessful in explaining the thermal neutron
induced fission of 239Pu using Fong’s theory. Cameron [6.28,6.36] has pointed
out that Rs need to be a function of both available energy and observed ki-
netic energy ε in order to understand the change in percentage mass yields
from thermal to 14 MeV neutron induced fission of 235U. These difficulties are
a consequence of attempting to ignore the maximum of (6.9) which occurs at
ε = 0 in Fong’s theory as is evident from (6.23). Equation (6.23) corresponds
to using (6.9) with level density function (6.25) and T (ε) = 1. The maximum
of (6.23) in this case occurs at ε = 0. Actual calculations done using (6.16)
with T (ε) = 1 and using level density function (6.11) confirms this. Sample
calculations of decay probabilities with T (ε) = 1 in (6.16) are presented in
Figs. 6.14–6.16 as a function of kinetic energy of a number of daughter pairs
for thermal and 22 MeV induced fission of 235U and 38.7 MeV alpha induced
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Fig. 6.14. Calculated relative decay probabilities [6.16, 6.17] to mass pairs (140,
96), (118, 118), and (156, 80) are plotted as a function of their kinetic energies, Ekin,
for thermal induced fission of 235U for the case where the transmission function T (ε)
in (6.16) is set to be one

Fig. 6.15. The same as the one in Fig. 6.14 except the incident neutron energy is
22.0 MeV
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Fig. 6.16. Calculated relative decay probabilities [6.16] to mass pairs (140, 96),
(118, 118), and (156, 80) in 30.8 MeV alpha induced fission of 226Ra are plotted as
a function of their kinetic energies for the case where the transmission in (6.16) is
set to be one

fission of 232Th. In all cases the most probable kinetic energy is zero, i.e.,
the entire available energy has been transformed to excite each member of a
daughter pair which is in sharp contradiction to experimental results. In the
absence of a barrier, this is the expected theoretical result.

Thus, a consistent analysis that accounts for observed mass yields along
with corresponding kinetic energy requires the incorporation of a barrier in
the final channel. In fact, attempts to analyze the percentage mass yields and
TKE data of [6.5, 6.7, 6.39] in induced fission of 235U by 6.0 and 15.5 MeV
neutrons led Fachini and Saetta-Menichella to conclude the necessity of a
barrier similar to the ones used here between the saddle and scission points
[6.20].

6.5 Conclusion

Essentially, the same barrier which could account for the observed half-lives
with appropriate kinetic energies, percentage mass yields as a function of mass
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number and charge distribution, discussed in Chap. 5, can account for the
change in mass distribution as a function of the change in incident energies
of neutrons and alpha-particles in induced fission. Moreover, the calculated
distribution of the yields as a function of the kinetic energy of a daughter pair
exhibits the observed behavior. The latter point is a direct consequence of
using the external barrier between the saddle and scission points. In the ab-
sence of such a barrier, the most probable kinetic energy associated with the
emission of all daughter pairs is zero, which sharply contradicts the observed
data.
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7 Hot and Cold Fission

7.1 Introduction

In the previous chapter, the most probable kinetic energy associated with the
fission of a parent nucleus to a daughter pair having a particular mass division
A1 and A2 has been calculated by (a) averaging the yields over all isobars
having mass numbers A1 and A2, (b) averaging the yields over all excita-
tion energies of the daughter pair characterized by mass and atomic numbers
(A1Z1) and (A2Z2), and then (c) calculating the kinetic energy corresponding
to the maximum yields for that particular mass split. For example, in Fig. 6.1,
taken from [7.1–7.3], the most probable kinetic energy, TKE, for the thermal
neutron induced fission of 235U to the isobar pair A1 = 140 and A2 = 96 is
the kinetic energy at which the yields to this particular mass splitting has
its maximum. This maximum is at about 174 MeV. Thus, the most probable
kinetic energy associated with the mass splitting A1 = 140 and A2 = 96 is
174 MeV. However, the curve denoting the probability of the decay as a func-
tion of the total kinetic energy in the center of mass system, Ekin (CM), is
approximately bell shaped indicating a distribution of yields as a function of
Ekin (CM). There is, therefore, a finite probability for the isobaric daughter
pair, A1 = 140 and A2 = 96 to have a kinetic energy of about 180 MeV which
is very close to the Q-value for this mass split. In other words, there is a finite
probability for the pair (140 + 96) to be emitted cold i.e., the pair having no
or very little excitation energy. Similar results have also been obtained, the-
oretically, in the thermal neutron induced fission of 233U and 239Pu and are
expected in the spontaneous fission of all fissioning nuclei within the frame-
work of the theory expounded in Chap. 6. In 1981, Signarbieux et al. [7.4],
indeed, found experimentally that, daughter pairs having no or very little
excitation, called cold fragments, are emitted in the thermal neutron induced
fission of 235U. Subsequently, such cold fission fragments have been observed
in many cases [7.5].

The theory of [7.1–7.3] has three other important predictions. First, there
is always a finite probability of a daughter fragment being emitted with var-
ious excitation energies commensurate with the energy and angular momen-
tum conservation. Second, there is an upper limit to the maximum of kinetic
energy associated with the decay to a particular daughter pair. This upper
limit is very close to the Q-value of the emission of that daughter pair. A
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daughter pair emitted with this maximum kinetic energy has essentially no
excitation and hence, is emitted cold. Third, there is a lower limit for the ki-
netic energy well above zero and hence, an upper limit of the total excitation
energy of a particular daughter pair lying well below the allowed maximum
available energy for excitation, which is the Q-value for spontaneous emis-
sion and the Q-value plus incident projectile energy in case of induced fission.
This latter feature, here called hot fission, is distinct from the model used
for evaporation where the most probable kinetic energy associated with the
emission of a daughter pair in spontaneous fission is expected to be zero. The
limits on the kinetic energies for hot and cold fission depend on the detailed
structure of the external barrier. These predictions, discussed in detail in
Sect. 7.3, are in accord with the observations so far. The discovery of cold
fission and the validity of the other two predictions are essential consequences
of the existence of a barrier close to the scission point and establish the key
point of this monograph. In the next section, we present a summary of some
important experimental features associated with the study of cold fission,
but also pertinent to the possibility of experimentally establishing the emis-
sion of daughter pairs in hot fission.

7.2 Summary of Data Pointing to Hot and Cold Fission

The early experiments determining the kinetic energy spectra in spontaneous
and thermal neutron induced fission using solid state detectors had provided
the evidence of the occurrence of cold as well as hot fission. In Fig. 7.1,
we reproduce the contour plot of pulse heights in correlated solid state de-
tectors in the thermal neutron induced fission of 235U reported by Schmitt,
Neiler, and Walter [7.6]. Facchini and Saetta-Menichella [7.7] constructed
from the data of Fig. 7.1, the yield versus fragment kinetic energy curve for
neutron induced fission of 235U to the isobaric pairs having mass number
96 and 140. This is shown in Fig. 7.2. This plot clearly indicates that the
observed maximum kinetic energy is close to the Q-value and the observed
minimum kinetic energy is well above zero, thereby confirming the predic-
tion of the model. Facchini and Saetta-Menichella and High, Block, Clark,
and Malik [7.8] recognized that this distribution in yields as a function of
kinetic energy points to the penetration through an external barrier prior to
scission. Similar contour plots have since been constructed in many exper-
iments determining the kinetic energy spectra in spontaneous and induced
fission e.g., by Pleasonton [7.9] in the thermal neutron induced fission of
actinides.

In Fig. 7.2 the maximum kinetic energy at which there is some emission
of the fragment pair 96 and 140 is about 190 MeV, which is very close to
the maximum Q-value of the isobar pairs having these masses. Thus, the
isobar pair with 190 MeV kinetic energy is essentially emitted without any
excitation energy i.e., cold. As noted earlier, the evidence for cold fission was
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Fig. 7.1. Number of events measured in coincidence are plotted as an array (x1, x2)
in the thermal neutron induced fission of 235U. Numbers labeling the contours and
those appearing outside the 10-contours indicate the number of events per channel
squared. Curves of constant kinetic energy, EK, and the ratio of masses µ1 and µ2

in amu are shown. The array contains 0.95 × 106 events (Reproduced from [7.6])

then conclusively established by Signarbieux et al. [7.4] in 1981 and further
studied carefully by Montoya [7.5] in the thermal neutron induced fission of
233U, 235U and 239Pu. In Fig. 7.3, the observed maximum Q-value is plotted
as a function of the mass of the lighter member of a daughter pair in the
thermal neutron induced fission of 235U [7.10]. In each case, the observed
kinetic energies are very close to the corresponding Q-values of the emission
process implying that the daughter pairs are emitted with no or very little
excitation energy. In fact, these two energies are equal for the emission of
nuclei, having mass numbers around 105.

Figure 7.4 presents the contour plot of the observed kinetic energies of
light and heavy fragments in the spontaneous fission of 252Cf along with Q-
values. This plot indicates that (a) there are many fragment pairs emitted
with kinetic energies very close to the respective Q-values and (b) The kinetic
energy associated with the decay to a particular daughter pair has a distinct
lower limit, well above zero, experimentally. This observation implies that
there is an upper limit, well below the Q-value, which could be transferred to
the excitation of a daughter pair. This is the kind of hot fission expected in
the theory presented in Chap. 6, which does not allow a fragment pair being
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Fig. 7.2. Number of events are plotted against kinetic energy of the fission pair,
A1 = 140 and A2 = 96 in the thermal neutron induced fission of 235U (Reproduced
from [7.7])

Fig. 7.3. Observed maximum kinetic energy, TKEmax shown as open circles is
compared to maximum Q-values for a particular mass split, Qmax, shown as solid
dots. (Reproduced from [7.10]). AL refers to the mass number of the lighter fragment
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Fig. 7.4. Contour plot of the kinetic energies, Ekin, of two members of fissioned
fragments, with the mass split with the same mass number as shown as solid dots
(Reproduced from [7.11])

emitted with zero kinetic energy i.e., the sum of the excitation energies of
both members of a fragment pair can not be as high as its allowed Q-value.
Similar evidence of hot fission is present in Fig. 7.1.

There is also evidence of an odd-even effect in cold fission, i.e., the prefer-
ence for emission of even-even daughter pairs, an effect already noticed in the
normal fission process first by Reisdorf, Unik and Glendenin in 1973 [7.13].
This is illustrated by plotting the percentage yields in the thermal neutron
induced fission of 233U as a function of the mass of the light fragment for
several energies in Fig. 7.5 [7.10]. The odd-even effect is most pronounced at
high and low energies. At energies of 114 and 84 MeV of the light fragment,
AL, the most prominent peaks are respectively, observed at AL

∼= 90, 96, and
102 and AL

∼= 90, 94, and 98. The odd-even effect is much more pronounced
when the percentage yield is plotted against the charge of the light element,
ZL, in the same experiment. This is shown in Fig. 7.6. Clearly, the emission
of the light element of even number is preferred over its neighboring odd-even
or even-odd element, particularly at higher energies.

7.3 Theory and Discussion

The theory of hot and cold fission essentially follows from the theory discussed
in Chap. 6 dealing with induced fission. The expression for decay width is
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Fig. 7.5. Mass distribution of the light fission fragments in the thermal neutron
induced fission of 235U for a fixed kinetic energy shown in the inserts (Reproduced
from [7.12])

given by (6.9). The decay probability to a daughter pair having charge and
mass number (A1, Z1) and (A2, Z2) and a kinetic energy E, P (E, A1Z1,
A2Z2) is related to the decay width which is proportional to the right hand
expression of (6.9). Thus,

P (ε,A1Z1, A2Z2) ∼ T (ε)

ξ−E∫
0

ρ1(U1)ρ2(ξ − ε − U1)dU1 (7.1)

where U1 and U2 are the excitation energies of the fragments and ξ and ε
are, respectively, the Q-value of the process and the kinetic energy associated
with each fragment at a given excitation energy.

One may theoretically calculate the yields to an isobaric pair having mass
numbers A1, and A2 by summing over all isotopes of an isobaric pair

P (ε,A1, A2) =
∑
Z1Z2

P (ε,A1, Z1, A2, Z2) . (7.2)
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Fig. 7.6. Charge distributions of the light fission fragments in the thermal neutron
induced fission of 235U for fixed kinetic energies shown in the inserts (Reproduced
from [7.10])

Figures 6.1 and 6.2 indicate such decay probabilities in neutron induced
fission of 235U for thermal and 22 MeV incident energies to daughter pairs
(A1 = 140, A2 = 96), (A1 = 118, A2 = 118) and (A1 = 156, A2 = 80). In the
case of thermal neutron induced fission of 235U, the calculated decay prob-
abilities to each of the isotopic pairs clearly indicate a finite non-zero prob-
ability for the emission of a daughter pair, each of which is emitted with a
very little excitation energy. A comparison of this figure with Fig. 7.2 con-
structed from the experimental data for thermal neutron induced fission of
235U to the daughter pair (A1 = 140, A2 = 96), indicates that the theory
reproduces the general features of the yields curve shown in Fig. 7.2. The
calculated maximum kinetic energy in Fig. 6.1 is about 182 MeV which is
slightly less than the experimental value of about 190 MeV shown in Fig. 7.2.
Considering that the typical error in measuring kinetic energy is about 2 to
3 MeV per fragment [7.6] and because of the sensitivity of the theoretically
calculated yields on the choice of potential between the emitted pair, and the
parameters of the level-density function as discussed below, the agreement
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is reasonable. The predicted maximum kinetic energies associated with the
thermal neutron induced fission of 235U to the fragment pairs (156+80) and
(118 + 118) are shown in Fig. 6.1, and are approximately 166 and 169 MeV,
respectively, which are also close to the observed value of about 175 MeV
shown in Fig. 7.3.

The calculations of decay probabilities using (7.1) are sensitive to (a) the
choice of potential used in calculating T (ε) and (b) the level density func-
tion and its parameters. These two factors also determine the actual shape
of the curve of yields versus total kinetic energy. Level density functions
are usually accurate up to about 10 to 15% at high excitation energies, but
may not be very good at low excitation energies. The dependence of the
decay probabilities on the shape of the external barrier may be studied by
slightly changing the potential (6.10). The V1 term of that potential i.e.,
the internal barrier has insignificant influence on the decay probabilities;
however, the parameters characterizing the external barrier affects the de-
cay probabilities significantly. For example, changing d to 5.0 fm (instead
of 3.2), R0 to r0

(
A1

1/3 + A2
1/3
)

+ 3.7 fm with the same r0, and g to exp(−0.36|A1 − A2|1.6
)

results in a shift in the width as well as the location of
the maxima. The decay probabilities calculated using this new potential (set
B) are shown in Figs. 7.7 and 7.8 for thermal and 22 MeV neutron induced

Fig. 7.7. Calculated yields in the thermal neutron induced fission of 235U to daugh-
ter pairs (140 + 96), (118 + 118) and (156 + 80) for the potential set B is plotted
as a function of center of mass kinetic energy, Ekin (CM) in MeV of a daughter
pair. These yields are to be compared with those in Fig. 6.1 calculated with slightly
different potential (6.10). Both potentials give about the same observed half-lives
and average kinetic energy in the spontaneous fission of 236U



7.3 Theory and Discussion 127

fission of 235U. The minimum and maximum allowed kinetic energies which
are, respectively, associated with the yields of hot and cold fission of a par-
ticular isobaric daughter pair, as well as the location of the maximum yields
have changed significantly. Nevertheless, the maxima of allowed kinetic ener-
gies have remained close to respective Q-values indicating a finite possibility
for the cold fission to occur in each case. The detailed experimental studies of
the yields as a function of total kinetic energy of a daughter pair or isobaric
pairs would certainly assist in determining the detailed nature of the external
barrier.

Fig. 7.8. The same as in Fig. 7.7 except for the incident neutron energy of 22 MeV.
This is to be compared to Fig. 6.2

A comparison of Figs. 7.7 and 7.8 with Figs. 6.1 and 6.2 indicates that
the yields of cold fission fragments increase significantly with the increase of
incident neutron energy in induced fission for all three isobaric daughter pairs
considered there. Thus, the study of cold fission is likely to be easier if the
incident neutron has somewhat higher (e.g. 10 to 20 MeV) kinetic energies.

As noted earlier, an important ramification of the theory is that it predicts
the occurrence of hot fission. The characteristic feature of hot fission discussed
here, which is distinct from an evaporation process, is that the maximum
allowed excitation of a particular daughter pair is significantly less than the
Q-value. Thus, the entire Q-value cannot be converted into excitation energy
of a daughter pair. This is due to the dissipation of energy associated with
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barrier penetration. Experimentally, no fission fragments have been recorded
below a certain kinetic energy in the thermal neutron induced fission of 235U
shown in Figs. 7.1 and 7.2 and in the spontaneous fission of 252Cf indicated
in Fig. 7.4, thereby giving credence to the theory.

In Fig. 7.9, we present the theoretical calculations for the decay proba-
bilities as a function of kinetic energy for three fragment pairs in thermal
neutron induced fission of 229Th. Clearly cold fission to all three pairs is al-
lowed. A characteristic feature of the theory is the approximate bell shaped
nature of the yields versus kinetic energy curve associated with the emission
of each pair. Whereas, the detailed shapes of these curves depend on the
choice of the external barrier as well as level density functions, the character-
istic bell shape of the yield curves having a minimum kinetic energy which
is substantially higher than zero, is a direct consequence of the use of the
external barrier (6.10) in evaluating the transmission coefficient in (7.1).

Fig. 7.9. Calculated yields of daughter pairs (140 + 90), (116 + 114) and (150 +
80) are plotted as a function of their respective center of mass kinetic energies in
MeV in the thermal neutron induced fission of 229Th using the potential (6.10)

In the absence of such a barrier, T (ε) = 1. Calculated decay probabilities
in the thermal neutron induced fission of 229Th to three isobaric daughter
pairs for the case T (ε) = 1 i.e., in the absence of a barrier are plotted as a
function of kinetic energy in Fig. 7.10. In each case the maximum is at zero
kinetic energy and the possibility of cold fission is practically zero. Setting
T (ε) = 1 corresponds to evaporation. It is easy to analyze the reasons for
having no cold fission if the external barrier is absent. Setting T (ε) in (7.1)
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Fig. 7.10. The same as that of Fig. 7.9 except the transmission coefficient T (ε) in
(1) is set to one

to one and choosing the following simple but realistic level density function

ρ(U1) = c1 exp
√

a1U1 (7.3)

leads to the following expression for the probability of decay, in case the
approximation (6.23), is used

P (ε,A1Z1, A2Z2) ∼ 2π1/2c1c2

√
a1a2

(a1 + a2)5/4
(ξ − ε)3/4

× exp
[
2(a1 + a2)(ξ − ε)1/2

]
. (7.4)

In (7.4) A1, A2, c1 and c2 are appropriate parameters of level density
functions of the daughter pair. Noting that ξ and ε in (7.4) are, respectively
the Q-value and total kinetic energy, it is apparent that (a) there should be
no yields when ε = ξ i.e., cold fission is not allowed and (b) the maximum
decay probabilities occur at ε = 0. Both of these conclusions contradict the
observations. It is, therefore, reasonable to infer that the observation of cold
fission as well as a non-zero lower limit of the kinetic energy in the decay to
all daughter pairs is a direct manifestation of the occurrence of a barrier near
the scission point.
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This is further confirmed by the following model. Using a somewhat sim-
plified version of the above theory, Florescu et al. [7.14] could parameterize
the cold fission yields in terms of barrier-penetration probabilities. Noting,
that in cold fission both fragments have no or little excitation, they assign
both fragments a pre-determined configuration, taken to be vibration around
a prolate deformation characterized by β. The decay probabilities are then,
simply proportional to barrier penetration probabilities, Ps which, in the
lowest JWKB approximation, is given by

Ps = exp
[
− (2/�)

Re∫
Ri

√
2µ(V (r) − E)dr

]
. (7.5)

In (7.5) Ri and Re, are, respectively, the internal and external turning
points, µ is the reduced mass and V (r) is the sum of an attractive potential
and Coulomb potential given by the following expression

V (r) = 4πRbγΦ(r/b) +
Z1Z2e

2

r
F (r) . (7.6)

In (7.6), R is the curvature of the top of the barrier, b = 0.99 fm, γ =
0.9517

(
1 − 1.7826(N − Z)2/A2

)
MeV fm−2, N , Z and A being the neutron,

proton, and mass number of the parent, respectively. Φ(z) is the universal
function of [7.15,7.16]. F (r) multiplying the Coulomb potential is a function
of deformation parameters of daughter pairs which is, in this particular case,
taken to be due to two coaxial ellipsoids [7.17]. Z1 and Z2 in (7.6) refer to
the atomic number of a daughter pair. In Florescu et al.’s model [7.14], E,
the asymptotic kinetic energy associated with a daughter pair is related to
the observed kinetic energy, Ecl of cold fission by the following expression

E = (A/AH)Ecl (7.7)

where A and AH are, respectively, the mass number of the parent and heavier
member of a daughter pair.

The calculated yields, normalized to 100% of the experimental yields, are
shown as a function of the mass number of the lighter fragment of a daughter
pair in the thermal neutron induced fission of 235U and 233U in Figs. 7.11
and 7.12, respectively. The potential is set to be zero for r < Ri and as such
the barriers used in calculating half lives are located near the surface of two
emerging fragments.

Unlike the theory of [7.1–7.3], this model does not predict the kinetic
energy spectra and the occurrence of cold fission but assumes these to occur.
In addition, (a) clearly the yields calculated using (7.5) for energies greater
than E, are higher than those calculated with E and there is no apriori
justification for choosing a particular energy to calculate the yields and (b)
the derivation of (7.5) noted in Appendix A, requires E to be the asymptotic
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Fig. 7.11. The calculated mass yields of light fragments Y (AL) using (7.5) and
(7.6) [7.14] of cold fission fragments in the thermal neutron induced fission of 235U,
are plotted as open circles connected by a solid line using kinetic energies of fission
fragments of 110.85, 111.45, 112.06 and 112.67 MeV. These are compared to the
data shown as solid dots and connected by a broken line [7.22]. The calculated
yields are normalized to 100%

kinetic energy associated with the decay. Ecl, being different from E, cannot
be identified as observed kinetic energy of a cold fission daughter pair.

Nevertheless, the basic premises of the theory, particularly, the fact that
the cold fission points to an external barrier, are borne out. In studies using a
semi-classical approach Stefanescu, Sandulescu and Greiner [7.18] and their
collaborators [7.19,7.20] arrived at the same conclusion. Attempts have been
made to simulate the external barrier by its classical analogue of using a
dissipative force [7.21].

7.4 Odd-Even Effect

The decay probabilities through the thin barrier of Chap. 5 or that given by
(6.10) is sensitive to the asymptotic kinetic energy associated with a daugh-
ter pair. A one MeV change in kinetic energy affects the yields noticeably.
Thus, the pairing energy of about an MeV increases ξ in (7.1) by an MeV
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Fig. 7.12. The same as that of Fig. 7.11 except for thermal neutron induced fis-
sion of 233U and kinetic energies of fission fragments of 112.57, 113.15, 113.72 and
114.29 MeV. Calculations and data are reproduced from [7.14] and [7.22], respec-
tively

and hence, the allowed kinetic energy ε and the phase space of integration
in (7.1) by an MeV or so. For a barrier like the one (6.10) this enhances the
yields measurably. In general, therefore, the yield to an even-even daughter
pair is preferred over the neighboring odd-even or even-odd ones in the theory
of [7.1–7.3]. For a thin barrier involved here, the effects are more pronounced
for cold fission, because the asymptotic kinetic energy is larger than the one
associated with the most probable decay mode and hence, the penetration
occurs near the top of the barrier which is thin. Thus, the percent change in
the area bounded by the potential surface and kinetic energy is larger, and
the difference between the emission of an even-even isotope and its neighbor-
ing odd-even or even-odd isotopes is more pronounced. This seems to be the
case in Figs. 7.5 and 7.6. The increase in the odd-even effect with the increas-
ing kinetic energy of the light fragment is particularly evident, if one plots
δp = (Ye−Y0)/(Ye+Y0) where Y refers to yields and the subscripts ‘0’ and ‘e’
to odd and even-even isotopes, as a function of kinetic energy. This is plotted
in Fig. 7.13 for the thermal neutron induced fission of 239Pu.
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Fig. 7.13. The difference between yields of even-even pairs over odd-even or even-
odd pairs, δρ in percentage as a function of fragment kinetic energy in MeV in the
thermal neutron induced fission of 239Pu, Lohengrin and Cosi refer, respectively
to the data taken at the Laue-Langevin institute using the Lohengrin [7.23] and
Cosi [7.24] spectrometer (Reproduced from [7.24])

7.5 Conclusion

The theory exposed in this and Chap. 6, can account for cold fission. In
addition, a salient feature of the theory is that there is a minimum kinetic
energy below which no fission to a daughter pair could occur. This minimum
depends on the details of the barrier and the density of states of a particular
daughter. In other words, no hot fission, where the entire available Q-value
is converted to the excitation of a daughter pair, could occur. Experimental
data, so far, support this. A particular daughter pair having excitation energy
between this allowed maximum and zero could be emitted in fission.
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8 Isomer Fission

8.1 Introduction

In the early nineteen sixties a number of Russian scientists reported find-
ing nuclei having very short fission half-lives [8.1, 8.2] in the mass region of
about 240. These nuclei with short fission half-lives were observed in nu-
clear reactions with light projectiles such as deuterons incident on certain
actinide targets and were usually accompanied by induced fission products
from the ground states of the target. Since then many other isotopes exhibit-
ing short fission half-lives have been discovered following bombardment of
actinide targets by light projectiles. They are listed in Table 1.2. The energy
of these states is quite often a few MeV higher than the ground state of the
corresponding compound nucleus and so far, there is no evidence of the decay
of these states to the corresponding ground states of the compound nucleus;
the only decay mode seems to be fission. Thus, they are a kind of isomers of
the corresponding nuclei in the ground state and the fission phenomenon re-
lated to their decay is generally termed as isomer or isomeric fission. A typical
ratio of mass yields in the fission of the isomeric state to that of the ground
state is about 10−4. For example, the isomeric state of 240Am is formed at
an excitation of about 3.0 MeV [8.3, 8.4] and the ratio of the yields from the
fission of the isomer to that of the ground state is 5 × 10−4 [8.5]. Similarly,
the isomer state of 240Pu has an excitation energy of about 2.6 MeV [8.4]
and the ratio of the yields is (8.6 ± 2.4)10−4 [8.6]. A complete list of the
excitation energies of these isomer states and the ratio of the mass yields up
to 1973 are noted in [8.7]. The actual determination of excitation energies of
these isomeric states depends on the theoretical model used. This is usually
done within the context of an evaporation model and hence, neglects the final
state interaction between the members of a particular daughter pair. Thus,
the determination of the excitation energies of isomeric states is, somewhat,
model dependent.

Considerable insight on the probable cause leading to the formation of
these states is obtained within the context of Strutinsky’s idea of shape iso-
mer [8.8–8.11]. According to this idea, there may be the formation of local
minima in the potential energy surface of two members of a daughter pair
between the ground state configuration of the parent and the saddle point as-
sociated with its decay, due to the change in shell structure and deformation
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energy. Isomer states are states in these local minima and hence, have defor-
mations larger than the one in ground states. Being deformed, these states
are capable of exhibiting rotational spectra. Specht et al. [8.12] and Heffner
et al. [8.13] have claimed to have established the occurrence of these rotational
states. Although, Strutinsky’s theory has been done within the framework of
a liquid drop model, its basic concept may be carried over to the barrier ob-
tained within the context of the energy-density functional method discussed
in Chap. 3. In Sect. 8.2 of this chapter, we present the essential concepts of
Strutinsky’s model and indicate the way it could be incorporated into the
barrier calculated using energy-density functional theory. A key piece of in-
formation about the dynamic associated with the fission of these states is
obtained from the measurement of the average kinetic energy of the fission
products from these isomer states. The investigation of Ferguson, Plasil, Alam
and Schmitt [8.14] indicates that the average kinetic energy associated with
the decay of the isomer state is about the same as that in the fission of the
ground state. Based on this important experimental data and the fact that
induced fission as well as isomer fission occurs in the same reaction, Hooshyar
and Malik [8.15–8.17] have argued that the same reaction mechanism must
underlie the fission of both isomeric and the corresponding ground states.
They have analyzed the problem within the framework of a coupled channel
decay theory and predicted the percentage mass yields and charge distribu-
tion spectra for the fission of isomer states of 234U, 236U and 240Pu. In 1980
Fontenla and Fontenla [8.18] measured the percentage mass yields and the
average kinetic energy spectra associated with the fission of the isomer state
of 236U and found them to be very close to the ones predicted by Hooshyar
and Malik [8.16]. The theory and the comparison between the calculation
and the data are discussed in Sect. 8.3.

8.2 The Shell Correction and Shape Isomers

The density distribution functions used in Chap. 3 to calculate nuclear masses
are usually determined from the analyses of electron scattering data or the
µ-mesic atomic level scheme. These observed data are usually not sensitive
to slight fluctuations in the density distribution function and hence, the de-
termined density distribution functions usually represent a smooth average
of the actual density contour. On the other hand, one expects slight fluctua-
tions originating from the shell structure in nuclei which usually contributes
a few MeV to the total energy. Strutinsky, in a series of papers [8.8–8.11],
has pointed out that the inclusion of this correction may lead to one or more
local minima in the potential energy surface of a parent nucleus decaying to
a given daughter pair at a deformation larger than the one associated with
the ground state of the parent nucleus within the context of the liquid drop
model, noted henceforth as LDM. These local minima occur before the saddle
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point. The states formed in these local minima are isomeric states since they
cannot readily decay to the ground state by radiative process.

Lombard [8.19] has added a term

−c
∑

i

gi〈li·si〉 (8.1)

to the energy-density functional of Chap. 3 to account for the shell correc-
tion to the density. c, gi, li and si in (8.1) are, respectively, the strength of
the spin-orbit interaction, the weight function of the occupation of the i-th
shell, and the orbital and spin vectors of the i-th particle. His treatment is,
however, restricted to spherical shapes. Strutinsky’s approach, on the other
hand, is based on an attempt to incorporate the shell correction to the po-
tential energy surface calculated using the liquid drop mass formula as the
reference point and to investigate the change in this energy as a function
of deformation. His approach does not attempt to calculate the total energy
but only the change in potential energy surface due to the shell and pairing
effects. His model is summarized in the following:

The change in total energy of a nucleus as it deforms enroute to fission,
∆W , in Strutinsky’s model, is given by the summation of three terms:

∆W = ∆W (LDM) + ∆W (shell) + ∆W (pair) (8.2)

where ∆W (LDM) is the change in potential energy calculated using an ap-
propriate version of Bohr-Wheeler’s theory [8.42], ∆W (shell) is the energy
difference between nucleons moving in Nilsson’s potential [8.21] consisting
of a cylindrical symmetric anisotropic harmonic potential, a spin-orbit term
and a well flattening term, U(shell) and nucleons described by an appropriate
function for uniform distribution, U(unif) and ∆W (pair) is the difference
in pairing energy for nucleonic dynamics governed by Nilsson’s Hamiltonian,
P (shell) and nucleons described by uniform distribution, P (unif). Thus,

∆W (shell) = U(shell) − U(unif) (8.3a)
∆W (pair) = P (shell) − P (unif) . (8.3b)

In [8.9], ∆W (LDM) is taken to be

∆W (LDM) = τA2/3[0.4(1 − x)α2 − 0.0381(1 + 2x)α3] (8.4)

with τ = 16.0 MeV, x, the fissibility parameter = (Z2/A)/(Z2/A)crit where
(Z2/A)crit = 45, where A and Z refer, respectively, to the mass and atomic
number of the parent nucleus. The radii of cylindrical symmetric spheroid,
Rx, Ry, and Rz is related to deformation parameter α as follows:

Rx = Ry = R0(1 − α/2), Rz = R0(1 + α) . (8.5)

R0 in (8.5) is average radius of the sphere in the absence of any deformation.
The expression (8.4) represents basically the change in surface and Coulomb
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energy in LDM in the lowest order in α. The deformation parameter, α, is
related to Bohr-Mottelson’s deformation parameter β [8.42] as follows:

β = (3/2)α . (8.6)

U(shell) in (8.3b) is given by

U(shell) =
∑

ν

2ενnν

where εν are single particle energies of a nucleon described by Nilsson
Hamiltonian [8.21] and nν is the occupation number of a given shell. The
summation index ν is over occupied shells.

The energy for a uniform distribution of nucleons, U(unif) is given by

U(unif) = 2

λ∫
−∞

εg(ε)dε (8.7)

where g(ε) is the function for uniform distribution and λ is the chemical
potential determined from the number of nucleon N and is given by

N = 2

λ∫
−∞

g(ε)dε . (8.8)

The distribution function for the uniform case is taken to be

g(ε) = (πγ)−1/2
∑

ν

exp
[
γ−2(ε − εν)2

]
. (8.9)

The summation in (8.9) is over the number of levels in the energy interval
(πγ)1/2 which is centered around ε. The purpose is to choose γ in such a way
as to smooth out the shell effect. Thus, γ is taken to be of the order of the
inter-shell energy. In calculations reported here, γ = 0.7�w0 where �w0 is the
oscillator quantum taken to be 7 MeV. A correction term is added to (8.9) in
order to avoid the error introduced in taking a finite energy interval.

The pairing energy due to Nilsson’s orbitals, P (shell) is calculated using
the BCS theory [8.20] and is given by

P =
∑

ν

[
|Eν | − Eν

E(Eν ,∆)
− ∆2

2E(Eν ,∆)

]
(8.10)

where Eν is related to Nilsson’s energy εν and λ, the chemical potential, both
being dependent on deformation β and given by

Eν = εν − λ (8.11)
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and E(Eν ,∆) is given by

E(Eν ,∆) = [E2
ν + ∆2]1/2 (8.12)

∆ in (8.12) is the gap parameter. It is related to G, the strength of the pairing
interaction by

2/G =
∑

ν

′
1/E(Eν ,∆) . (8.13)

The prime over the summation in (8.10) and (8.13) indicates that the sum-
mation extends over n states equally above and below the Fermi level and n
is taken to be 24.

The pairing energy for a uniform distribution is given by

P (unif) = n∆(unif)
(
t −
√

1 + t2
)

(8.14)

where ∆(unif) is related to G, the strength of pairing potential, by

(2/G) = 2g(λ) ln
(
t +
√

1 − t2
)

. (8.15)

In (8.15) g(λ) is the distribution function around Fermi energy level λ and
the summation in (8.13) includes n states equally above and below λ. In most
calculations of Strutinsky, n = 24, although in some cases n is set to be 10.
The results obtained using different n were nearly the same. t in (8.15) is
given by

t = n/2g(λ)∆(unif) . (8.16)

In calculations presented in [8.9], the gap parameters are not determined
by solving (8.13) and (8.15), but ∆(unif) is taken to be a parameter set
equal to 0.6 MeV. ∆ for P (shell) is determined by equating the right hand
sides of (8.13) and (8.15). ∆W and ∆W (LDM) calculated as a function of β
by Strutinsky [8.9] for 230Th, 238U, 240Pu, and 250Cf are shown in Fig. 8.1 by
solid and broken lines, respectively. The first minimum in these figures corre-
sponds to the ground states of these nuclei which are known to be deformed.
However, the inclusion of shell effects leads to a second (and sometime a
third) minimum in the liquid drop potential surface. These minima occur at
a deformation before the two members of a daughter pairs establish their
identity i.e., at a separation distance of considerably less than about 8 fm.
This is considerably less than the distance between the centers of mass of
an emerging daughter pair where a neck of low-density nuclear matter starts
to form. The actual value of ∆W is sensitive to the details of single particle
states, the strength of pairing energy and the calculation of the change in
Coulomb and surface energy with deformation. This can be seen by com-
paring Strutinsky’s calculation with those done by others with somewhat
different approaches e.g., with those of Tsang and Nilsson [8.22].

The magnitude and the location of these minima depend critically on the
choice of parameters such as the strength of spin-orbit interaction, oscillator
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Fig. 8.1. The calculated shell corrected barrier, ∆W given by (8.2) and the stan-
dard liquid drop barrier ∆W (LDM) given by (8.4) are shown as solid and broken
lines respectively, as a function of deformation β. This is taken from [8.9]

quantum etc., of Nilsson states and the pairing interaction. Depending on the
choice of these parameters there may be multiple local minima. For example,
a third one is also possible, as noted by Scholz and Malik [8.23] in studying
the deformation dependence of potential energy surfaces of nuclei in mass
region 40 to 70. There are also some uncertainties about determining g(ε) for
a uniform distribution of energy states for the Wood-Saxon potential [8.43].

However, Strutinsky’s investigation opens up the possibility that (a) the
consideration of shell structure may lead to a second local minimum or even
multiple local minima in the potential energy surface at a deformation dif-
ferent from that of the ground state, (b) Such minima, if present, occur at
a separation distance less than 8 fm and hence, do not influence the contri-
bution to the potential energy surface from the density in the neck region,
formed prior to scission and (c) the net contribution of shell effects to the
potential energy surface is a few MeV compared to the effect of a few tens
of MeV discussed in Chap. 3, which is due to the formation of a neck of
low-density nuclear matter prior to scission.

The existence of multiple local minima leads to the possibility that they
may be populated in a nuclear reaction. Since they occur at a larger deforma-
tion, rotational states based on this configuration should be more compressed
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compared to those based on the ground state, because they would have a
larger moment of inertia due to larger deformation.

The energy of a rotational band, E(J), of angular momentum J , is given
by

EJ = AJ(J + 1) + BJ2(J + 1)2 (8.17)

where A and B are constants determined from the energy spacing. The first
and second term in (8.17) represent energies due to pure rotation and its cou-
pling to vibrational states, respectively. From the study of internal conversion
electron spectroscopy, Specht et al. [8.12] have identified the rotational states
based on a minimum of 240Pu. This band along with the one based on the
ground state of 240Pu is shown in Fig. 8.2. The transition energy between
two successive states of a band divided by 2(2J + 1) is simply given by

(EJ − EJ−2)/2(2J + 1) = A + 2B(J2 − J + 1) (8.18)

The parameter A and B, then, can be determined from the data by plot-
ting the right hand side of (8.18) as a function of 2(J2 − J + 1). This is done
in Fig. 8.2. The intercept and the slope of the data in that figure determine A

Fig. 8.2. The known rotational states of 240Pu and the rotational band deduced
from the measurements of the internal conversion experiment in the supposed sec-
ond well by Specht et al. [8.12] are shown, respectively, in insert (a) and (b). The
transition energies between adjacent states divided by 2(2J + 1) are plotted as a
function of 2(J2−J +1), J being the spin of the state, in both cases. The intercept
and the slope of the data determine parameters A and B of (8.18) which are found
to be 7.156 keV and (−3.55) eV for the ground state band and (3.331± 0.008) keV
and (0.17±0.10) eV for the band based on the configuration at the second minimum
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and B, respectively. The moment of inertia parameters for A, deduced from
the analysis of the rotational states based on the ground states and at the ex-
cited state in the local minimum are 7.156 and 3.331±0.008 keV, respectively.
Since the moment of inertia parameter A in the collective model is inversely
proportional to deformation, the location of this minimum in 240Pu occurs
at about twice the ground state deformation. The rotational-vibrational cou-
pling strength parameter B for bands based on the ground and isomer state
are (−3.55) and (−0.17 ± 0.1) eV, respectively.

These states in the experiments occur at a few MeV excitation energy
above the corresponding ground state which is consistent with the location
of isomeric states observed in [8.1–8.6]. The experiment using light projectiles
populates both ground and isomeric states and fission fragments from both
of these states are observed. In the next section we discuss the dynamic that
couples the decay probabilities from these two states, henceforth, noted as IFS
standing for isomer fissioning states and SFS, spontaneous fissioning states.
This influences the mass yields and kinetic energy spectra in the emission of
fission products from both of these states.

8.3 Half-Lives, Mass Yields and Kinetic Energy Spectra

As noted before, the experimental studies related to spectroscopy of isomer
states associate these states with large deformations. They are formed at
energies which are a few MeV higher than the energies of the ground state of
the corresponding parent nuclei. They primarily decay by fission. So far, the
decay probabilities of these states by emission of electro-magnetic radiation
to ground or other states has not been clearly established.

The deformation parameter extracted from the observed rotational states
associated with the location of IFS in a nucleus as well as Strutinsky’s inves-
tigation indicates these states to be situated between the ground state and
saddle point in the potential energy surface. While Strutinsky used the ground
state energy determined from LDM as a reference point and calculated the
variation around that value, it is perfectly reasonable to use the ground state
energy calculated using the energy-density functional theory, as a reference
point and calculate its change with deformation, ∆W (EDF ), and add to it
Strutinsky’s approximate determination of ∆W (shell) and ∆W (pair). Thus,
the change of potential energy in this case, ∆E(EDF ), is given by

∆E(EDF ) = ∆W (EDF ) + ∆W (shell) + ∆W (pair) (8.19)

∆W (EDF ) in (8.19) is the change in potential energy in the energy-density
functional approach as the system starts deforming as depicted in the interior
region of Fig. 3.5, i.e., before the saddle point configuration is reached. Since
∆W (EDF ) is a smooth function of R but ∆W (shell) and ∆W (pair) are
not, the potential energy surface is likely to have local minima before the
saddle point as indicated schematically in Fig. 8.3 in the interior part.
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Fig. 8.3. Schematic potential energy surface in an arbitrary unit that combines the
energy–density functional calculated for n = 2 in Chap. 3 with the shell and pairing
correction of Strutinsky [8.9] between two members of an arbitrary daughter pair as
a function of separation in an arbitrary unit. The dashed line represents a typical
value of asymptotic kinetic energy of that daughter pair. It is typically 20–30MeV
lower than the Q-value which is the value of the potential at R = 0

The few MeV excitation associated to IFS, when translated into energy
per nucleon, is small, being about 0.012 MeV per nucleon. This implies that
there is no significant change in the density distribution function between IFS
and SFS. Hence, the potential energy surface relevant to IFS is essentially the
same as the one associated with the fission of the ground state except in the
interior part, where it may exhibit local minima, as shown schematically in
Fig. 8.3. It is expected to exhibit the thin external barrier between the saddle
and scission points, as is the case for the decay of SFS. In the same figure, the
location of the average kinetic energy which is about 20 MeV lower than the
energy of IFS, is also shown. The situation is similar to the one associated
with the decay of SFS.

The presence of this external barrier poses a serious dilemma in account-
ing for the short half-lives of these isomers in view of the observed fact that
the average kinetic energies associated with the decay of IFS and SFS are
about the same. For example, if one uses the empirical barrier of Chap. 5 in
conjunction with Strutinsky’s barrier, the observed half-live of about 3×10−9

sec of the isomer state of 240Pu would require an average kinetic energy of
about 205 MeV. The early experimental evidence, on the other hand, indi-
cates that the average kinetic energy associated with the fission of the isomer
state is about the same as the one associated with the fission of the ground
state [8.1,8.14] i.e., about 25 MeV less than the Q-value. Later measurements
of the kinetic energy spectrum associated with the decay of the isomer state
of 236U by Fontenla and Fontenla [8.18] has not only confirmed the measure-
ment of average kinetic energy of Ferguson, Plasil, Alam and Schmitt [8.14] in
the fission of the isomer state of 236U, but indicates that the kinetic energy
spectrum of the fission fragments from both the IFS and the SFS of 236U to
be very similar, a fact that was predicted by Hooshyar and Malik [8.16] eight
years earlier.
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The experimental information on the kinetic energy spectrum in the decay
of IFS and SFS points to the fact that the reaction mechanism underlying
the fission dynamics of the two decay processes are related. This may be
examined by noting that the fission process is governed by the following set
of coupled equation as noted in Chap. 3:[

− �
2

2µ
∇2

R − Enα + Vnαα(R)
]

fnα(R) =
∑
β �=α

Vnαβ(R)fnβ(R) . (8.20)

Where R is the relative location of the centers of mass of the two daughter
nuclei, µ is their reduced mass, Enα is the channel energy associated with the
decay channel (nα) and Vnαα(R) and Vnαβ(R) are diagonal and off-diagonal
matrix elements of the interaction potential between two daughter nuclei. As-
ymptotically, Vnαβ(R) is zero and Vnαα(R) is the Coulomb potential between
two nuclei and Enα is related to the kinetic energy of the daughter pair. The
off-diagonal coupling terms between infinite number of channels must have
some influence on the fission process. The set of coupled equations may, how-
ever, be simplified for the physical situation pertinent to fission [8.15]. One
may note that (i) the energy difference between IFS and SFS is negligible
compared to the Q-value and average kinetic energies, (ii) the excitation en-
ergy of each member of a daughter pair is only about 8 to 15 MeV which is
small compared to the channel kinetic energy of 150 to 180 MeV, (iii) from
the analysis done in [8.15], it is evident that the diagonal part of the in-
teraction, Vnαα(R) is about the same between different excited states of a
daughter pair since about 8 to 15 MeV excitation energy contributes very
little to the energy per nucleon, (iv) channels which are directly coupled to
the channel under consideration are important, since indirect couplings rep-
resents second or higher order processes, and (v) the level density of each
member of a daughter pair, which is emitted with 8 to 15 MeV excitation
energy, is very high. It is, therefore, reasonable to assume that the functional
form of the coupling terms is the same for all channels coupled to the decay
channel but the strength of the coupling is different. These assumptions may
be summarized as follows:

En ≡ Enl ≈ Enα, α = 2, 3, . . . . . . , N (8.21a)
VnD(R) ≡ Vnll(R) ≈ Vnαα(R), α = 2, 3 . . . . . . , N (8.21b)
Vnβ1(R) ≡ Vn1β(R) ≈ γnβVnc(r) with β �= α and

β = 2, 3, . . . . . . , N (8.21c)
Vnαβ(R) = 0 for α �= 1 and β �= α (8.21d)

As shown in Appendix C, under these conditions, the N-coupled equa-
tion can be diagonalized exactly [8.15] which leads to the following three
uncoupled equations for zero angular momentum in decay channel:
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− �

2

2µ

d2

dR2
− En + VnD(R) + λVnc(R)

]
fn(R) = 0 (8.22a)[

− �
2

2µ

d2

dR2
− En + VnD

]
fn(R) = 0 (8.22b)[

− �
2

2µ

d2

dR2
− En + VnD(R) − λVnc(R)

]
fn(R) = 0 (8.22c)

where λ, the effective coupling strength is given by

λ =

⎡
⎣ N∑

β=2

γ2nβ

⎤
⎦

1/2

. (8.23)

Some remarkable things about the set of three equations (8.22a), (8.22b),
and (8.22c) are that (i) the asymptotic kinetic energy in all three cases is the
same and (ii) the difference in potential in the three cases manifests itself
only though the contribution of the coupling term λVnc(R). Thus, the effec-
tive barriers in the three cases are different, but the asymptotic kinetic energy
associated with the decay is the same. For positive λ, the barrier associated
with (8.22a) is the highest, which is, therefore, identified as the effective bar-
rier associated with the decay of SFS. For the coupling potential determined
in Chap. 5, the effective barrier in (8.22c) lies below the asymptotic kinetic
energy and hence, (8.22c) represents purely scattering phenomena by a re-
pulsive potential, since meta-stable states cannot be formed in this potential.
The barrier associated with (8.22b) is the determining factor in governing the
half-lives in the decay of IFS. In Fig. 8.4, the effective potentials in (8.22a),
(8.22b), and (8.22c) are plotted along with a typical kinetic energy for the
parameters noted in Chap. 5. The actual potential in the interior region i.e.,
for r < Rc should have a Strutinsky type of structure as schematically shown
in Fig. 8.3, but such structure in the interior region has very little influ-
ence in determining the half-lives, as noted in Chap. 5 and Appendix A and
confirmed by actual computer calculations.

IFS formed in a nuclear reaction as well as induced fission probabilities of
the corresponding SFS, while attempting to decay to various excited states
of a particular daughter pair results necessarily in a strong coupling among
various decay channels. The consequence of this coupling is an effective re-
duction and increase of the potential in the decay channel of IFS and SFS,
respectively. This decrease and increase of the potential energy surface in the
decay of IFS and SFS, occur between the saddle and scission points.

The calculations of half-lives of IFS as well as SFS involves a preformation
probability which is calculated to be 10−5 in Chap. 3 and used here. In Table
8.1, the calculated half-lives and average kinetic energies for the fission from
both the SFS and the IFS of a number of even-even nuclei are presented and
the overall agreement is quite reasonable. The calculations of half-lives for
the SFS and the IFS are done using the same average kinetic energy for both
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Fig. 8.4. The effective potentials for the decay of 240Pu to 142Ba + 98Sr from the
IFS and SFS are shown in inserts (a) and (c), respectively. The effective potential
due to the channel coupling is shown in the insert (b). (d) is the effective potential
contributing to scattering only. This is taken from [8.15]

cases, which is the case experimentally. The theoretical calculations presented
in Table 8.1 are done for one of the fastest fission decay modes. The inclusion
of all such decay modes does not significantly change the results as verified
by actual calculations.

A more stringent test of the theory is to obtain the observed mass yields
spectra along with the appropriate kinetic energy spectra. In Figs. 8.5, 8.6
and 8.7 theoretical percentage mass yields spectra for the fission of the SFS
and the IFS of 234U, 236U, and 240Pu are presented and compared to the
data for the SFS decay. The average kinetic energy used for each decay mode
is the same for the fission of both types of states and is shown in the upper
insert in each case and is compared with the data for the fission of the SFS.
The percentage mass yields spectra for the IFS in each of the three cases
are predictions. In Fig. 8.8, the predicted percentage mass yields and average
kinetic energy spectra in the fission of IFS of 236U are compared to the data
taken eight years after the predictions and the agreement is, indeed, very
good.

An important consequence of the theory is that the charge distribution
spectra from the fission of the SFS and the IFS of the same nucleus should
be similar. So far, there has been no data available for the IFS case, but the
predicted values are noted in Tables [5.2, 5.3, 5.4 and 5.5] of Chap. 5.

The calculations presented here consider the decay to one particular
daughter pair. Theoretically and experimentally, there are a number of decay
modes which are possible having about the same kinetic energy. Spontaneous
half-lives associated with some of these decay modes are close to one another.
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Fig. 8.5. The kinetic energy Ekin, and the percentage mass yields spectra for
spontaneous fission, SFS yields (%), and isomer fission states, IFS yield (%), of
234U are shown at the upper, middle and lower inserts, respectively. MH is atomic
mass of the heavy fragments. Solid lines are experimental data of [8.36]. Solid dots
in (b) and (c) are calculated percentage mass yields using the kinetic energy spectra
shown as broken line in (a). Solid line in (a) is the observed kinetic energy and solid
dots in (a) are (Q-values calculated from [8.37] −16 MeV)

Similarly, half-lives associated with the decay of the IFS of these decay modes
are close to one another as evidenced by the mass yields spectrum in the decay
of the IFS.

Theoretical calculations of the IFS half-lives done primarily for the decay
to one of the fastest modes decrease sharply with the increase of mass number
of the parent nucleus. As the half-lives associated with the decay of the IFS
to the fastest mode becomes too short to measure, those associated with
the decay to less dominant modes could become important and measurable.
Futhermore, the calculations presented here are done by severely restricting
the parameters of the potential; basically four parameters, r0, t, λ, and d,
determined from the decay of the SFS of 240Pu to one of the daughter pairs,
have been kept unchanged in all calculations, including the ones related to
particle induced fission. This implies that we have been able to generate the
mass dependence of the potential for the decay of parent nuclei from radium
to fermium to a variety of decay modes associated with the decay of IFS
and SFS of a parent nucleus. Clearly improved fits to the data could be
obtained by relaxing this stringent requirement on the mass-dependence of
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Fig. 8.6. The same as the one in Fig. 8.4, except for 236U. The data on spontaneous
fission are from [8.38]

Fig. 8.7. The same as the one in Fig. 8.4 except for 240Pu. The data on spontaneous
fission are from [8.38] and the number next to solid dots in insert (a) refers to the
atomic number
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Fig. 8.8. The insert (a) plots the observed kinetic energy in the fission of 236U
from the ground state (open circles) and from the isomer state (solid circles) [8.18].
The theoretically predicted kinetic energy of [8.16] is shown as crosses in (a). The
corresponding percentage mass yields spectra are shown in (b)

the barrier. For example, one could determine these parameters in different
regions of the periodic table by a least squared fit. It would be extremely
interesting to have experimental measurements of kinetic energy spectra for
more cases and charge distributions. These will help to pin down the detailed
structure of the external barrier.

8.4 Conclusion

Within the framework of the general structure of the potential-energy surface
expected by incorporating Strutinsky’s modification to the one generated by
the energy-density functional approach, the theory is in a position to account
for the observed half-lives and kinetic energy spectrum in the fission of IFS.
For this, it is important to apply a coupled channel approach to the decay
process. It would be very interesting to test experimentally the predictions
of the theory for mass spectra associated with fission of IFS in cases other
than 236U and for charge distributions, in the fission yields from IFS.
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9 Cluster Radioactivity

9.1 Introduction

In 1984 Rose and Jones [9.1] reported spontaneous emission of 14C from
the parent nucleus 223Ra. Their findings were, immediately, confirmed by
Gales et al. [9.2], Aleksandrov et al. [9.3], Price et al. [9.4] and Kutschera
et al. [9.5]. These findings were also in accord with the earlier theoretical
considerations pointing out the possibilities of such cluster emissions [9.6]
in their ground states. Since then, emissions of many other clusters e.g.,
20O, 24Ne, 25Ne, 26Ne, 28Mg, 30Mg, 32Si, etc., have been observed [9.7]. The
kinematics of the emitted clusters, initially, indicated that the lighter member
of a daughter pair is emitted in its ground state. However, more refined
measurements ultimately revealed that in one case, the lighter member of a
daughter pair is emitted in an excited state e.g., 14C in the spontaneous decay
of 223Ra [9.8]. This is reminiscent of the discovery of fine structure in alpha-
decay by Rosenblum [9.9]. It has also been established that, like in alpha-
decay and spontaneous fission, the cluster emission rate from odd-parent
nuclei is, in many cases, hindered as compared to the ones measured for the
cluster emission from the neighboring even-even isotopes [9.10]. The observed
kinetic energies in cluster decay differ substantially from the corresponding
Q-value implying a significant recoil effect.

In principle, a parent nucleus which exists in a meta-stable state, is capa-
ble of emitting a cluster of any size provided three conditions are satisfied, viz.
(a) the Q-value is positive, (b) as noted in Chaps. 3 and 5 and in Appendix
A, the minimum of the potential energy barrier must be located below the
observed asymptotic kinetic energy of the cluster thereby allowing the for-
mation of resonant meta-stable states and (c) the potential must be higher
than the Q-value or asymptotic kinetic energy in the region between the min-
imum of the potential-energy surface and scission point, thereby preventing
instantaneous decay. Aside from the three criteria, the derivation of the bar-
rier penetration formula requires the use of asymptotic kinetic energies and
not Q-values in calculating decay probabilities through barriers, as noted in
Chap. 3 and the Appendices A and B.

The condition (a) in all these cases is clearly met since the Q-values for
the observed cases of cluster emission are positive. A simple calculation of
the estimated Coulomb barrier between the emitted cluster and its partner
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given by the product of their charges divided by the sum of their radii, is
usually higher than the respective Q-values, thus fulfilling, the condition (c).

Two of the models discussed in the following sections, namely the mod-
els based on Gamow-Condon-Gurney’s theory of alpha-decay and the quasi-
stationary state model, tacitly assume empirical potential surfaces which are
compatible with the condition (b). The calculation of the potential barrier in
the emission of 14C from 226Ra using the energy-density functional theory,
similar to the one discussed in Chap. 3, indicates the formation of a neck of
low-density nuclear matter between 14C and 212Pb prior to scission [9.11].
This results in an attraction prior to scission where the potential surface dips
below the observed kinetic energy, thereby fulfilling the condition (b). The
potential surfaces calculated using a hybrid model incorporating both defor-
mation and an attractive force generated by nuclear surfaces of two members
of a daughter pair, first recognized in [9.12, 9.13], and quite often termed as
proximity force, does drop to the Q-values but not to the observed kinetic
energy which is lower than the Q-values. Thus, these potential energy sur-
faces are in contradiction with criterion (b) and cannot support a resonant
state prior to barrier penetration. Hence, even though, calculated half-lives,
using Q-values and not observed kinetic energies, are in reasonable agreement
with the observed ones [9.14, 9.15], this model is not discussed in detail any
further.

In Sect. 9.2, we present the basic concept underlying the model of [9.6],
which has undergone substantial refinement as discussed in [9.16]. Section 9.3
presents the basic exposition of the quasi-stationary model, which has also
been refined extensively. Both of these models use empirical barriers, pa-
rameters of which are determined by fitting the data. The models also use
Q-values in the computations of half-lives which implies that the recoil effect
is negligible. This is in contradiction with the observed fact that the kinetic
energies associated with a particular decay mode is quite often significantly
less than the corresponding Q-values, as noted in Tables 9.1 and 9.2 and
shown in Fig. 9.1.

In Sect. 9.4, we present the calculation of the potential-energy surface
in the emission of a 14C cluster from 226Ra, using energy-density functional
theory in the adiabatic approximation discussed in connection with fission in
Chap. 3. In essence, this potential-energy surface is calculated from a real-
istic two-nucleon potential in a local density approximation. The calculated
potential-energy surface does drop below the observed kinetic energy prior to
the barrier, and hence, can support resonant states. As noted in Chap. 3, the
emitted cluster starts taking on its identity in the region where the potential
dips below the observed kinetic energy, i.e., just prior to the scission point be-
cause a suitable resonant state can only be supported at this location. Since
the observed kinetic energy is less than the Q-value because of the significant
recoil effect, this has been used in calculating penetrability.
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Table 9.1. The observed kinetic energies, Ek in MeV, references of which are
noted in the captions of Table 1.3, in the decay of clusters are noted in column 4
in the emission from even-even parent nuclei noted in column 1. Q-values in MeV
calculated from the mass table [9.42], are listed in the last column. The light and
heavy daughter partners are noted in columns 2 and 3, respectively

Parent Lighter Heavier Ek Q-value
Nuclei Product Product (MeV) (cal.)

222
88 Ra 14

6 C 208
82 Pb 30.97 33.0531

224
88 Ra 14

6 C 210
82 Pb 28.63 30.5353

226
88 Ra 14

6 C 212
82 Pb 26.46 28.7887

230
90 Th 24

10Ne 206
80 Hg 51.75 57.7767

232
90 Th 26

10Ne 206
80 Hg 49.70 55.9751

232
92 U 24

10Ne 208
82 Pb 55.86 62.3076

234
92 U 24

10Ne 210
82 Pb 52.81 58.8432

234
92 U 26

10Ne 208
82 Pb 52.87 59.4757

234
92 U 28

12Mg 206
80 Hg 65.26 74.1292

236
94 Pu 28

12Mg 208
82 Pb 70.22 79.6690

238
94 Pu 28

12Mg 210
82 Pb 67.32 75.9305

238
94 Pu 30

12Mg 208
82 Pb 67.00 77.0323

238
94 Pu 32

14Si 206
80 Hg 78.95 91.2094

242
96 Cm 34

14Si 208
82 Pb 82.88 96.4315

Table 9.2. The same as Table 9.1 except for parent nuclei with odd number of
nucleons

Parent Lighter Heavier Ek Q-value
Nuclei Product Product (MeV) (cal.)

221
87 Fr 14

6 C 207
81 Tl 29.28 31.2833

221
88 Ra 14

6 C 207
82 Pb 30.34 32.3927

223
88 Ra 14

6 C 209
82 Pb 29.85 31.8515

225
89 Ac 14

6 C 211
83 Bi 28.57 30.4673

231
91 Pa 23

9 F 208
82 Pb 46.68 51.8404

231
91 Pa 24

10Ne 207
81 Tl 54.14 60.4195

233
92 U 24

10Ne 209
82 Pb 54.27 60.5005

233
92 U 25

10Ne 208
82 Pb 54.32 60.8368

233
92 U 28

12Mg 205
80 Hg 65.32 74.2440

235
92 U 24

10Ne 211
82 Pb 51.50 57.3579

235
92 U 25

10Ne 210
82 Pb 51.68 57.8189

237
93 Np 30

12Mg 207
81 Tl 65.52 75.0167

241
95 Am 34

14Si 207
81 Tl 80.60 93.8382
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Fig. 9.1. Observed Q-values, from [9.42] and observed kinetic energies, Ek, taken
from Table 1.3 for cluster emission from even-even and odd parent nuclei are shown,
respectively, in the upper and lower insert, by solid line with solid dots and light
broken line with dots, respectively

The key features of the calculation noted in Sect. 9.4, namely that the
emitted cluster is formed just prior to scission, where the potential energy
surface dips below the observed kinetic energy, thereby, being able to support
a resonant state, can be produced by a model similar to the one proposed by
Winslow [9.17] to describe alpha-decay. In Sect. 9.5, we present calculations
of half-lives for many cases of cluster radioactivity with observed kinetic
energies using this model.

9.2 Models Based
on the Gamow-Condon-Gurney Approach

The theory of alpha-decay of Gamow [9.18] and Condon-Gurney [9.19] postu-
lates the existence of an alpha-particle inside a parent nucleus which assaults
against a Coulomb barrier before penetration. Inside the parent nucleus, the
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alpha-particle experiences an attractive potential. The decay probability, λ
(GCG), is a product of the number of assaults per second (termed also the
assault frequency) ν and the barrier penetration probability, P . Thus,

λ(GCG) = νP . (9.1)

The barrier penetration probability, P , in (9.1) is calculated using the
JWKB method in the lowest approximation and assuming that the asymp-
totic wave function of the emitted cluster is represented by an outgoing plane
and not Coulomb wave having a wave number corresponding to the Q-value
of the process. For zero orbital angular momentum, P , in this approximation,
is given by

P = exp(−(2/�))

2∫
1

[2µ(V (r) − Ek)]1/2dr . (9.2)

where 1 and 2 are two turning points, V (r) and µ are, respectively, the
potential barrier between the emitted cluster and its partner nucleus and
reduced mass, Ek is the asymptotic kinetic energy of the daughter pair in
the center of the mass. Price [9.20, 9.21] used the following simple potential
Vp(r), to evaluate (9.2):

Vp(r) = −V for r ≤ R
= Z1Z2e

2/r for r > R
(9.3)

where Z1 and Z2 are the atomic charges of the two members of the daughter
pair. For the simple potential (9.3), (9.2) can be evaluated analytically leading
to

P = exp[−(2/�)(2µ/E)1/2Z1Z2e
2(cos−1 y1/2 − (y − y2)1/2)] . (9.4)

In (9.4), y = EK/B where B is the value of the Coulomb potential at the
outer turning point, R i.e. B = Z1Z2e2/R, R being the sum of two radii. R
is given by

R = R1 + R2 = r0[A1
1/3 + A2

1/3] (9.5)

In (9.5), A1 and A2 are the mass numbers of two members of a daughter pair.
Price could fit the data reasonably well by setting Ek equal to the Q-value
and choosing r0 = 0.928 fm and ν = 4.3 × 1026 s−1 for even-even parent
nuclei and ν = 1.1 × 1026 s−1 for odd-even or even-odd parent nuclei. His
calculations, noted in column 5 of Table 9.3 along with calculations based on
a number of different models, have been compared to the observed half-lives
associated with a number of cases of cluster emission. However, the values of
r0, and ν needed in this model to account for the data are at variance with the
expected values of r0 = 1.2 fm and ν ≈ 1022 s−1. In addition, the use of the
Q value in evaluating (9.2) implies a negligible recoil effect contradicting
the data.
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Table 9.3. Calculated half-lives of cluster emission in various models are compared
to the data shown in column 10. The parent nuclei, along with its decay modes,
are shown in column 1. The observed kinetic energy from Table 1.3 and Q-values
calculated from [9.42] are shown in columns 2 and 3, respectively. Calculated half
lives in seconds from [9.16], [9.20,9.21], [9.14,9.15], [9.26], [9.25], and [9.23,9.24], are
shown in columns 4 to 9, respectively. They have been done using Q-values, rather
than the observed kinetic energies in evaluating decay-constants. The last column
represents logarithm of half-lives calculated in the surface-cluster model using the
observed kinetic energies of column 2 to evaluate decay-constants as discussed in
Sect. 9.5 of this chapter

Ek in Q-value Measured Calculated
Decay MeV (MeV) Poe SqW S-S B-M B-W I-S logT (sec) logT (sec)

221Fr→14C 29.28 31.2833 14.3 15.2 16.0 14.0 15.5 18.7 >15.77 15.82
221Ra→14C 30.34 32.3927 14.2 14.1 14.8 >12.4 14.2 17.6 >14.35 14.38
222Ra→14C 30.97 33.0531 11.1 11.2 11.6 11.4 11.8 10.5 11.0 ± 0.06 11.50
223Ra→14C 29.35 31.8515 15.1 15.0 15.7 15.3 15.1 14.9 15.2 ± 0.05 15.34
224Ra→14C 28.63 30.5353 15.9 16.0 16.8 16.1 16.2 15.3 15.9 ± 0.12 16.08
225Ac→14C 28.57 30.4673 17.8 18.7 19.7 18.8 18.6 22.1 >18.34 19.16
226Ra→14C 26.46 28.7887 20.9 21.0 22.2 21.0 21.1 21.7 21.3 ± 0.2 20.46
231Pa→23F 46.68 51.8404 25.9 26.0 25.5 26.8 24.4 >25.4 25.81
230Th→24Ne 51.75 57.7767 25.2 24.8 24.9 24.7 24.8 25.2 24.6 ± 0.07 24.94
232Th→26Ne 49.70 55.9751 30.2 29.1 28.4 28.7 29.3 26.7 >27.9 28.40
231Pa→24Ne 54.14 60.4195 23.3 23.7 23.5 21.6 23.4 23.9 23.4 ± 0.08 23.80
232U→24Ne 55.86 62.3076 20.8 20.7 20.0 20.9 20.8 19.8 20.5 ± 0.03 20.27
233U→24Ne 54.27 60.5005 25.2 24.9 24.8 23.7 25.4 24.4 24.8 ± 0.06 23.99

→25Ne 54.32 60.8368 25.7 25.1 24.4 26.0 24.2 24.8 ± 0.06 24.90
234U→24Ne 52.81 58.8432 26.1 25.8 25.7 25.5 25.6 25.8 25.9 ± 0.2 25.17

→26Ne 52.87 59.4757 27.0 26.2 25.0 25.9 26.4 26.1 25.9 ± 0.2 26.37
235U→24Ne 51.50 57.3579 29.9 29.7 30.1 29.9 >27.4 28.33

→25Ne 51.68 57.8189 30.6 29.7 29.6 28.0 >27.4 28.32
233U →28Mg 65.32 74.2440 27.4 26.9 27.5 28.0 23.9 >27.8 27.35
234U →28Mg 65.26 74.1292 25.9 25.4 25.7 25.4 25.4 25.7 25.7 ± 0.2 25.71
237Np→30Mg 65.52 75.0167 28.3 28.3 27.7 >27.3 29.9 25.6 >27.4 28.62
236Pu→28Mg 70.22 79.6690 21.1 21.2 20.5 21.5 22.0 21.7 ± 0.3 21.02
238Pu→30Mg 67.00 77.0323 26.2 25.9 24.3 25.6 25.8 26.2 25.7 ± 0.25 25.32

→28Mg 67.32 75.9305 26.2 25.5 25.7 26.9 24.9 25.7 ± 0.25 25.05
238Pu →32Si 78.95 91.2094 26.1 25.7 25.8 25.7 26.3 25.3 ± 0.16 25.41
241Am→34Si 80.60 93.8382 25.8 26.5 26.2 25.3 28.8 23.8 >25.3 26.07
242Cm→34Si 82.88 96.4315 23.5 23.4 22.6 24.1 >21.5 21.96
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Sandelescu and his collaborators [9.6, 9.16, 9.22], and references therein
could explain the data using a different potential Vs(r) and defining the
frequency of assaults, νs as follows:

νs = (2Q/µ)1/2/R . (9.6)

In (9.6), Q and µ are, respectively, the Q-value of the reaction and reduced
mass and R is approximately the sum of the radii of the daughter pair

R = R1 + R2 (9.7)

with
Ri = 1.128A1/3(1 − 0.786A

−2/3
i ), i = 1, 2 . (9.8)

The potential Vs(r), used by them is the sum of nuclear and Coulomb
potentials, VN (r) and Vc(r), respectively.

Vs(r) = VN (r) + Vc(r) (9.9)

with
VN (r) = V0/[1 + exp[(r − R)/a] for r < R (9.10)

Vc(r) = (Z1Z2e
2/2R)(3 − r2/R) for r ≤ R

= Z1Z2e
2/r for r > R

(9.11)

The mass dependence of the parameters V0 and a are set to be the following:

V0 = 18
[
A1

1/3 + A2
1/3 − (A1 + A2)2/3

]
(9.12)

a = V0(R1 + R2)/(16πR1R2 × 0.95) (9.13)

Half-lives for a number of cases of cluster decay, calculated with this
model, are noted in Table 9.3 in column 4. In evaluating (9.2) they also used
Q-values of the decay and not Ek, thus overlooking significant recoil effect.
The discrepancy between these calculations and the observed half-lives, is,
sometimes, quantified as spectroscopic factor S, which are supposed to reflect
the formation probabilities of clusters prior to their assaulting the barrier.
The observed decay constant, λ(expt) is then related to the calculated decay
constant of this model, λ (sand), by the following relation

λ(expt) = Sλ (sand) (9.14)

where
λ(sand) = vsP (sand) . (9.15)

In (9.15), P (sand) is the penetrability through the barrier (9.9). Actual
values of S depend on the models used in describing the nuclear structure of
the parent and the daughter pairs. A number of such calculations is discussed
in [9.16].
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Ivascu and Silisteanu [9.23, 9.24] have investigated the cluster emission
probabilities by calculating a cluster formation amplitude within the context
of the Nilsson model and then, calculating the barrier penetration proba-
bilities using a purely attractive optical model potential, with the Coulomb
repulsion whose parameters are adjusted to reproduce the data. Q-values,
rather than Ek have been used in evaluating (9.2). The use of a purely at-
tractive potential implies the formation of clusters inside nuclei. Their results
are also reported in Table 9.3 in the column marked as (I–S).

A different barrier, derived from the liquid drop approach but incorporat-
ing an attraction between the two emerging clusters is termed the proximity
potential, and has been used in [9.14, 9.15, 9.26] to calculate half-lives using
(9.2) and Q-values. This model has about the same degree of success as the
model of [9.6, 9.22] and the results are noted in the column (S-S) of Table
9.3. Blendowske and Walliser [9.25] have also obtained reasonable fits to the
data using a slightly different potential barrier and Q-values, as noted under
the column (B-W) in the same table.

In all the models discussed in this section, the decay probabilities through
the barriers have been calculated using (9.2) with the Q-values of the clusters.
However, as noted in Tables 9.1 and 9.2 and Fig. 9.1, these Q-values differ
significantly from observed kinetic energies. The derivation of (9.2) requires
the use of the asymptotic kinetic energies which are less than the Q-values by
a few to a few tens of MeV. Thus, clusters in all the models described here,
are emitted with kinetic energies which are at substantial variance with the
observed ones.

9.3 The Quasi-Stationary State Model

Buck and his collaborators [9.26–9.29] have applied the quasi-stationary state
model whose main concept has originally been proposed by Gurwitz and
Kalbermann [9.30]. In this section we shall present the results of [9.26] and
discuss the key ideas of the model. Subsequent investigations basically present
the refinement of [9.26]. The decay width of the cluster emission, Γ, in this
model is given by

Γ =
(2Ii + 1)F�

2PB

(2If + 1)(2L + 1)4µ
(9.16)

where Ii, If and L are, respectively, the initial spin of the parent nucleus,
final spin of the partner nucleus of the spinless cluster and the orbital angular
momentum of the daughter pair. µ is the reduced mass in the final channel, F
is the normalization determined from (9.17) and PB is the barrier penetration
probability. The potential surface used in the calculation has three turning
points, r, r1, and r2. For such a situation, F is given by
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1
/
F =

r1∫
r2

dr

k(r)
cos2

⎡
⎣ r∫

r1

k(r′)dr′ − π
/
4

⎤
⎦ . (9.17)

In (9.17),
k(r) = [(2µ/�

2)(Q − V (r))]1/2 . (9.18)

The penetration probability P is calculated in the lowest order JWKB ap-
proximation and is given by

PB = exp

⎛
⎝−2

r2∫
r1

k(r)dr

⎞
⎠ . (9.19)

The interaction potential V (r) is the sum of nuclear, and Coulomb potentials,
VN (r) and Vc(r) and a centrifugal barrier in the Langer approximation.

V (r) = VN (r) + Vc(r) + (�2/2µr2)(L + 1/2)2 . (9.20)

The Coulomb part of the potential is taken to be that of an uniformly charged
sphere of radius R between a daughter pair having charges of Z1e and Z2e

Vc(r) =
Z1Z2e

2(3 − (r/R)2)
2R

for r ≤ R

=
Z1Z2e

2

r
for r > R .

(9.21)

The form of the nuclear potential is usually taken to be

VN (r) =
V0[1 + cosh(R/a)]

[cosh(r/a) + cosh(R/a)]
(9.22)

V0, the well-depth, is determined from the observed Q-values of the reaction
using the Bohr-Sommerfeld quantization condition. a and R are essentially
fixed from the observed half-lives of a few cluster emission rates particularly
that of

222Ra → 208Pb +14C

and are found to be

a = 0.75 fm and R = 1.04(A1
2/3 + A2

2/3) fm . (9.23)

The half-life T1/2 is related to the width by

T1/2 = � ln 2/Γ (9.24)

The calculated half-lives are shown in Table 9.3 in column 7.
Buck and his collaborators have subsequently refined the model. In par-

ticular, in the determination of Q-values, they have approximately taken into
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account the correction due to electronic shielding and the recoil effect. Sub-
sequently, potentials other than (9.22) have also been used [9.27]. The decay
rates for L �= 0 have also been calculated. Similar to the calculations done
with the models discussed in the previous section, the computations of half-
lives have been done using Q-values in calculating penetration probabilities
through the barriers i.e., in evaluating (9.19). Thus, the kinetic energies of the
emitted clusters in these models are the Q-values of the respective reaction
which are at variance with the data on kinetic energies.

9.4 The Energy-Density Functional Approach

In Tables 9.1 and 9.2, we have presented the calculated Q-values using ob-
served masses [9.42] for a number of emitted clusters, along with the observed
kinetic energies which are, in all cases, less than the respective Q-values. This
implies the presence of substantial recoil effect. In fact, a detailed measure-
ment of the kinetic energy spectrum of 14C, in the decay of 223Ra, indicates
that the most probable state of its partner nucleus 209Pb, is not the ground
state, but its first excited state [9.8]. The total decay rate is distributed
among its three lowest states. The percentages of decay rates among these
three states are, respectively 4, 81 and 15 leading to respective logarithm of
half-lives of 16.0, 15.3, and 16.6 seconds. The decay to other excited states of
209Pb has also been observed but the rates are substantially smaller [9.31].
In addition, the barriers used in all the above cases are empirical and assume
the clusters in their ground states to exist inside the parent nucleus for a
long time. Bethe [9.32] and Winslow [9.17] have noted in connection with
alpha-decay that, within the context of many-body theories, it is difficult
to visualize clusters bouncing around inside a nucleus, notwithstanding, the
success of the Gamow-Condon-Gurney type of theories in explaining the data
on half-lives of alpha decay. The concept of the number of assaults used in
Gamow-Condon-Gurney type of theories or the cluster going around in Bohr-
Sommerfeld orbits inside a nucleus, used in a quasi-stationary state model,
implies that clusters exist as actual entities inside a nucleus. There is no
experimental data that can substantiate this assumption; neither are there
theoretical reasons to support it. On the other hand, the fission process within
the context of energy-density functional theory, described in Chap. 3, does
not envisage the existence of clusters inside a nucleus but they are formed
just prior to scission as the neck of low-density nuclear matter begins to take
shape. In fact, the investigations of Mueller and Clark [9.33], Brink and Cas-
tro [9.34], and Röpke [9.35] indicate that the formation of alpha-like clusters
are more likely at low-density of nuclear matter than the formation of a pure
nucleonic matter.

In the calculations of mass and charge distribution in spontaneous fission,
discussed in Chaps. 3 and 5, the probabilities of the spontaneous emission
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Fig. 9.2. The external part of the potential energy surface calculated using special
adiabatic approximation discussed in Chap. 3 for the spontaneous emission of 14C
clusters from 226Ra. At r = 0, the value of the potential is the Q-value i.e. 28.79 MeV
which is larger than the observed kinetic energy, Ek. The scission point calculated
using (3.31) is about 14.06 fm

of light particles, are tacitly recognized, provided the Q-values were positive.
Cluster emissions are, therefore, an inherent part of these theories.

In this section, we present the potential barrier and half-life for the sponta-
neous emission of 14C from 226Ra, using the special adiabatic approximation
of Chap. 3. In Fig. 9.2, we present the external part of the calculated barrier
using trapezoidal density distribution functions for the parent 226Ra and the
daughter pair 212Pb and 14C. C0 and t for the parent are taken to be 1.07 fm
and 2.6 fm, which reproduce its ground state mass within a few MeV. The
observed Ekin of 26.46 MeV is less than the Q-value of 28.79 MeV. The recoil
energy of the daughter pair is simulated by adjusting C0 to 0.96 fm which,
in effect, smears their surface a little. f(Ap) is taken to be 23.93 resulting in
a scission radius Rsc = 14.06 fm, calculated using (3.31). This reproduces the
observed kinetic energy of 26.46 MeV. Since 14C is considerably smaller than
daughter pairs in nuclear fission, the pre-formation probability in its emission
process is higher and taken to be 10−3 instead of 10−5. Noting that the pre-
formation probability of alpha-particles is, on the average, about 10−2 [9.36]
and 14C is slightly larger than an alpha-particle, this pre-formation probabil-
ity for 14C is a reasonable one. The calculated logarithm of half-life for this
decay using the observed kinetic energy of 26.4 MeV is 21.4 sec. which is in
accord with the observed value of 21.3 ± 0.2 sec. [9.10,9.43].

Essentially, the same result is obtained in [9.11]. The important features
of the calculated barrier are that (a) the attractive part of the potential
energy surface occurs near the surface region, i.e., clusters are formed in the
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low-density neck region and (b) one can get a good result using observed
kinetic energy which must be the case in calculating penetrability through a
barrier in the JWKB approximation, as noted in Appendices A and B.

Both of these features can be introduced in the model used by Winslow
[9.17] for studying alpha-decay. Slightly modified versions of Winslow’s model
have also been used by Preston [9.37] and Devaney [9.38]. The model has
similarity with the model of Hooshyar and Malik discussed in Chap. 5 to
describe spontaneous fission.

9.5 The Surface-Cluster Model

As noted in Sect. 9.3, clusters cannot exist inside a nucleus and must be
formed just prior to separation in the neck of low-density nuclear matter.
In Fig. 9.2, we note that the attractive part of the potential between two
members of the daughter pair occurs just prior to the scission. These two
features could be simulated in the potential used by Winslow [9.17] to de-
scribe alpha-decay and Block et al. [9.39] to describe the fission process. An
infinite repulsive potential of the range of R0 which is expected to be equal
to about C0(A1

1/3 + A2
1/3), C0 being half-density radius of the trapezoidal

density distribution function, would prevent the cluster from existing inside
a nucleus. Since the clusters are formed prior to scission in the low-density
region, the range of the attractive part is expected to be approximately one
half of the surface thickness i.e., from 1.0 fm to 2.4 fm.

Thus, the potential V (r) shown in Fig. 9.3 is given by

+∞ for r < R0

V (r) = −V0 for R0 < r < R

Z1Z2e
2

r
for r ≥ R .

(9.25)

In (9.25), Z1 and Z2 are atomic numbers of two nuclei of a daughter
pair. This potential is shown in Fig. 9.3, with RE being the scission radius
where the Coulomb potential is equal to the asymptotic kinetic energy, Ekin.
The decay probabilities λ(scm), in this model, is equal to the pre-formation
probability, P (scm), times the decay probability λ(wi), through the barrier

λ(scm) = P (scm) λ (wi) (9.26)

Instead of using the standard JWKB method, discussed in Appendices A
and B, to calculate barrier penetrability, Winslow noted that a parent nucleus
emitting any particle spontaneously is in a meta-stable state and as such its
energy W is complex and equal to E − (iλ(wi)�)/2, in region III.

W = E − (iλ(wi)�/2 . (9.27)

The time-dependent wave function in region III, ΦIII (r, t) is given by
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Fig. 9.3. The barrier used in the calculation of cluster emission half-lives in the
surface cluster model is shown in the upper part. The lower part depicts schemat-
ically the behavior of the wave function for such a barrier. Essentially, clusters are
formed near the surface, prior to penetration through the barrier

Ψ (r, t) = ΦIII (r) exp[iWt/�] .

Noting that |Ψ (r, t)|2 represents the flux in this region, λ(wi) can be identified
with the decay constant. The wave numbers k is given by

�
2k2/2µ = W (9.28)

µ in (9.8) is the reduced mass in the decay process.
The solution in region I, i.e., in the interval R0 ≤ r < R that vanishes at

r = R0, is given by

ΦI(r) = (Kr)1/2[JL+1/2(Kr)J−(L+1/2)(KR0)
−J−(L+1/2)(Kr)JL+1/2(KR0)] (9.29)

where
�

2K2/2µ = W − V0 . (9.30)

Thus, the energy in region I is also complex which is commensurate with the
fact that the parent nucleus is in a meta-stable state. The radial part of the
wave function in region II, i.e. between R < r < RE , is a linear combination
of regular and irregular Coulomb wave functions, FL, and GL
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ΦII(r) = PGL(r) + QFL(r) . (9.31)

Noting that asymptotically Q = iP , one may write

ΦII(r) = P (GL(r) + iFL(r)) . (9.32)

As shown by Winslow [9.17], GL(r), and FL(r) can suitably be approxi-
mated in terms of variable p = kr by the following expressions:

GL(p) = |Φ(p)|−1/4 exp[w (p)] (9.33)

FL(p) =
(
1
/
2
) |Φ(p)|−1/4 exp[−w (p)] (9.34)

with

|Φ(p)| = η/p + (L + 1/2)2 /p2 − 1, (9.35)

w(p) =

PE∫
p

|Φ(ξ)|1/2
dξ (9.36)

and
η = (Z1Z2/�) µ/2W . (9.37)

In (9.37), Z1 and Z2 are the atomic numbers of each member of a daughter
pair and the limit of integration PE in (9.36) is kRE .

This must be matched to the wave function in region III, ΦIII , represent-
ing the following outgoing plane wave:

ΦIII (r) = A exp(ip) . (9.38)

Matching logarithmic derivatives at r = R and r = RE and separating real
and imaginary parts, and neglecting the contributions of the imaginary part
to k and K, one obtains the following expression for λ(wi)

λ (wi) =
(2�/µ) k |Φ|1/2 exp (−2w)

− (�2/µR) [∂f I/∂W ]E + (1 − δ) [k |Φ|1/2 (1 + δ)]
(9.39)

where

δ = (1/4) |Φ|−3/2 (∂ |Φ(ρ)| /∂ρ)kR (9.40)

w =

ρE∫
ρR

|Φ(ξ)|1/2
dξ . (9.41)

In deriving (9.39), (1− 2δ) has been replaced by (1− δ)/(1+ δ) since |δ| < 1.
(∂f I/∂W )E in (9.32) is determined from the following equation

−(�2/µR)(∂fI/∂W)E

= R[1 − [(2L + 1)/(KR)](υ/u) + (υ/u)2 − (2/πKRu)2] (9.42)
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where

υ = JL+1/2(KR)J−(L+1/2)(KR0) − J−(L+1/2)(KR0)JL+1/2(KR)

u = (KR)−1/2ΦI(R) .

We may note that the expression (9.39) for λ (wi) may also be written in the
following form:

λ(wi) =
2�

µRS
k |Φ|1/2 exp(−2w) (9.43)

with

S = 1 + (KR)−2(g2
L + gL − L(L + 1) − (2/(πu)2)

+(1 − δ)/gL (9.44)

where
gL = kR

∣∣Φ∣∣1/2(1 + δ) . (9.45)

The pre-formation probability P (scm) in (9.26) has been calculated by
Mang [9.36] for alpha-decay and lies between 10−1 and 10−2. In Chap. 3,
this has been evaluated for the spontaneous fission case and determined to
be about 10−5. Since the clusters involved are heavier than alpha-particles
but lighter than the daughter nuclei in the case of fission, one expects the
pre-formation probabilities for cluster emission to lie between 10−2 and 10−4.
In addition, the level density of many of the clusters are much lower than
that of daughter nuclei in fission, since they have smaller masses and hence,
it is likely that this number for the pre-formation probability may fluctuate
substantially. In fact, as noted in [9.39], the pre-formation probabilities for
cluster emission is likely to depend on the detailed structure of the energy lev-
els of daughter and parent nuclei, because it is basically the overlap integrals
of the product of the parent and daughter wave functions. A careful deter-
mination of pre-formation probabilities by fitting data is likely to provide
information on nuclear structures. However, we are, at this stage, interested
in describing the overall physical nature of the process and, as such, have
used a single number for pre-formation probability to calculate the decay
rates from even-even parent nuclei and another one for odd parent nuclei.

The extent of the infinite repulsive core, R0, is approximately equal to
C0 (A1

1/3 +A2
1/3), i.e., the distance where the sum of the densities of the two

members of a daughter pair is approximately equal to the saturation density
of nuclear matter. Thus, C0 should be between 0.9 and 1.2 fm. ∆R = R1−R0,
is of the order of one half of the surface and should be between 1.0 to 2.4
fm. The derivation of (9.39) requires that the asymptotic kinetic energy of a
daughter pair and not the Q-value, be used in calculating decay constants.

As noted in connection with the theory of fission in Chap. 3, the pre-
formation probabilities in the decay of clusters from the even-even and odd-
even (or even-odd) parent nuclei might differ from each other, due to the



168 9 Cluster Radioactivity

presence of the blocking effect for parent nuclei of odd mass numbers. In Table
9.4, we present the half-lives of cluster emission from even-even parent nuclei
and compare them with observed data using a pre-formation probability of
10−3, C0 = 1.03 fm and ∆R = 1.1 fm. The scission radius, Rsc is not an
arbitrary free parameter but is related to Ekin by

Ekin = Z1Z2e
2/Rsc (9.46)

The results are not very sensitive to the choice of V0 which is taken to be
(−50) MeV. The calculated logarithm of half-lives using Ekin are compared
to the data in Table 9.4. It is remarkable that, except for three cases, namely
230Th →24Ne, 236Pu →28Mg and 238Pu →32Si, the agreement between them
is quite good. This is particularly satisfying, since this is achieved by using a
single set of parameters, along with a simple mass number dependence.

The discrepancies in the three cases can be improved by simply changing
r0 to 1.015 fm. Calculated results [9.40] along with the data for these three
cases are presented in Table 9.5. The agreement is now quite reasonable.

Table 9.4. Calculated logarithms of half-lives in seconds in the surface-cluster
model, [9.40], noted in column 6 are compared to logarithm of the observed values
noted in the last column taken from Table 1.3. Columns 1 to 4 are, respectively, the
parent nuclei, lighter and heavier members of a daughter pair, and observed kinetic
energies. The calculations are done using parameters ∆R = 1.1 fm and r0 = 1.03 fm
defined in the text. V0 and pre-formation probabilities are taken to be (−50 MeV)
and 10−3 respectively. The observed kinetic energy, Ek has been used in calculating
barrier penetration probabilities

Parent Lighter Heavier Ek Q-value log (T) log (T)

Nuclei Product Product (MeV) (Cal.) Cal. Expt.

222
88 Ra 14

6 C 208
82 Pb 30.97 33.0531 11.504 11.0 (± 0.06)

224
88 Ra 14

6 C 210
82 Pb 28.63 30.5353 16.080 15.9(± 0.12)

226
88 Ra 14

6 C 212
82 Pb 26.46 28.7887 20.457 21.3(± 0.2)

230
90 Th 24

10Ne 206
80 Hg 51.75 57.7767 23.364 24.6(± 0.07)

232
90 Th 26

10Ne 206
80 Hg 49.70 55.9751 28.424 >27.9

232
92 U 24

10Ne 208
82 Pb 55.86 62.3076 20.275 20.5(± 0.03)

234
92 U 24

10Ne 210
82 Pb 52.81 58.8432 25.174 25.9(± 0.2)

234
92 U 26

10Ne 208
82 Pb 52.87 59.4757 26.375 25.9(± 0.2)

234
92 U 28

12Mg 206
80 Hg 65.26 74.1292 25.707 25.7(± 0.2)

236
94 Pu 28

12Mg 208
82 Pb 70.22 79.6690 19.863 21.7(± 0.3)

238
94 Pu 28

12Mg 210
82 Pb 67.32 75.9305 25.324 25.7(± 0.25)

238
94 Pu 30

12Mg 208
82 Pb 67.00 77.0323 25.053 25.7(± 0.25)

238
94 Pu 32

14Si 206
80 Hg 78.95 91.2094 23.760 25.3(± 0.16)

242
96 Cm 34

14Si 208
82 Pb 82.88 96.4315 21.963 >21.5
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Table 9.5. The same as that of Table 9.4 but r0 = 1.015 fm. Calculations have
been done using observed kinetic energies and not Q-values

Parent Lighter Heavier Ek Q-value log (T) log (T)
Nuclei Product Product (MeV) (Cal.) Cal. Expt.

230
90 Th 24

10Ne 206
80 Hg 51.75 57.7767 24.941 24.6(± 0.07)

236
94 Pu 28

12Mg 208
82 Pb 70.22 79.6690 21.020 21.7(± 0.3)

238
94 Pu 32

14Si 206
80 Hg 78.95 91.2094 25.412 25.3(± 0.16)

For parent nuclei with odd number of nucleons, the data are not as good
as the ones with the even-even parent nuclei. Nevertheless, the calculated
results presented in Table 9.6 using a pre-formation probability of 10−4,
C0 = 1.03 fm, ∆R = 1.1 and V0 = (−50) MeV, i.e., the same values of
parameters used in the calculations presented in Table 9.4, are in reasonable
agreement with the data, except for the case of the emission of 24Ne from
233U, where the discrepancy is of about three orders of magnitude. However,
changing C0, slightly to 1.01 fm, one can improve the agreement considerably.
The calculated logarithm of half-lives along with the data are presented in
Table 9.7. In all cases Ekin has been used.

The half-lives calculated in the surface-cluster model [9.40] are noted in
the last column of Table 9.3. These half-lives, calculated using asymptotic ki-
netic energies, Ek, noted in column 2, compare favorably with the data and

Table 9.6. The same as that of Table 9.4 but the pre-formation is taken to be
10−4

Parent Lighter Heavier Ek Q-value log (T) log (T)
Nuclei Product Product (MeV) (Cal.) Cal.(sec) Expt.(sec)

221
87 Fr 14

6 C 207
81 Tl 29.28 31.2833 15.822 >15.77

221
88 Ra 14

6 C 207
82 Pb 30.34 32.3927 14.379 14.35

223
88 Ra 14

6 C 209
82 Pb 29.85 31.8515 15.343 15.2(± 0.05)

225
89 Ac 14

6 C 211
83 Bi 28.57 30.4673 19.161 >18.34

231
91 Pa 23

9 F 208
82 Pb 46.68 51.8404 24.992 >25.4

231
91 Pa 24

10Ne 207
81 Tl 54.14 60.4195 22.038 23.4(± 0.08)

233
92 U 24

10Ne 209
82 Pb 54.27 60.5005 21.846 24.8(± 0.06)

233
92 U 25

10Ne 208
82 Pb 54.32 60.8368 24.107 24.8(± 0.06)

233
92 U 28

12Mg 205
80 Hg 65.32 74.2440 26.556 >27.8

235
92 U 24

10Ne 211
82 Pb 51.50 57.3579 28.331 >27.4

235
92 U 25

10Ne 210
82 Pb 51.68 57.8189 28.322 >27.4

237
93 Np 30

12Mg 207
81 Tl 65.52 75.0167 27.093 >27.4

241
95 Am 34

14Si 207
81 Tl 80.60 93.8382 24.584 >25.3
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Table 9.7. The same as that of Table 9.6 but r0 = 1.01 fm

Parent Lighter Heavier Ek Q-value log (T) log (T)
Nuclei Product Product (MeV) (Cal.) Cal.(sec) Expt.(sec)

221
87 Fr 14

6 C 207
81 Tl 29.28 31.2833 16.36 >15.77

221
88 Ra 14

6 C 207
82 Pb 30.34 32.3927 14.26 14.35

223
88 Ra 14

6 C 209
82 Pb 29.85 31.8515 15.39 15.2(± 0.05)

225
89 Ac 14

6 C 211
83 Bi 28.57 30.4673 19.69 >18.34

231
91 Pa 23

9 F 208
82 Pb 46.68 51.8404 25.81 >25.4

231
91 Pa 24

10Ne 207
81 Tl 54.14 60.4195 23.80 23.4(± 0.08)

233
92 U 24

10Ne 209
82 Pb 54.27 60.5005 23.99 24.8(± 0.06)

233
92 U 25

10Ne 208
82 Pb 54.32 60.8368 24.90 24.8(± 0.06)

233
92 U 28

12Mg 205
80 Hg 65.32 74.2440 27.35 >27.8

235
92 U 24

10Ne 211
82 Pb 51.50 57.3579 28.86 >27.4

235
92 U 25

10Ne 210
82 Pb 51.68 57.8189 29.98 >27.4

237
93 Np 30

12Mg 207
81 Tl 65.52 75.0167 28.62 >27.4

241
95 Am 34

14Si 207
81 Tl 80.60 93.8382 26.07 >25.3

half-lives computed in other models, which however, used Q-values in deter-
mining barrier penetration probabilities thereby neglecting the substantial
recoil effect.

Thus, the surface-cluster model which has its root in the potential energy-
surface calculated using energy-density functional theory, can account for
the observed half-lives with observed kinetic energies. The identities of the
clusters are established in the neck of low-density nuclear matter just prior
to emission and they do not have to exist in cluster forms inside a nucleus.

9.6 Conclusion

In Chap. 5, the half-lives of the spontaneous fission of a number of even-even
nuclei, their mass and charge distributions have been well accounted for with
a potential energy surface having a finite repulsive core followed by an at-
tractive part and a Coulomb potential and using observed asymptotic kinetic
energies and not Q-values, to compute decay constants. Similar potential bar-
riers can also explain the mass distributions and their variation with incident
projectile energies in induced fission as discussed in Chap. 6.

The potential barriers used in Chaps. 5 and 6 are akin to the ones used
in the surface cluster model of Sect. 9.5 in this chapter to describe cluster
radioactivity. The use of an infinite repulsive barrier in the latter case, instead
of a finite one used for the study of fission, is not significant, since the use of
an infinite repulsive core would not have changed the results of Chaps. 5 and
6 in a significant way.
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Table 9.8. Calculated half-lives in years, for alpha decay of a number of even-even
nuclei noted in column 2 in surface cluster model (Column 4) are compared to the
data [9.42] tabulated in the last column. Column 3 denotes observed Q-values [9.42]

T1/2 (Winslow Measured T1/2

Z A Q(exp) MeV with Q (exp) (years)

92U 228 6.68 0.2 × 10−6 2.0 × 10−6

230 5.89 7.8 × 10−2 5.7 × 10−2

232 5.32 10.1 × 10−1 7.2 × 101

234 4.77 3.6 × 105 2.5 × 105

236 4.49 4.0 × 107 2.4 × 107

238 4.20 9.1 × 109 4.5 × 109

94Pu 232 6.59 30.5 × 10−5 6.9 × 10−3

234 6.20 17.3 × 10−3 1.0 × 10−3

236 5.77 2.5 × 100 2.9 × 100

238 5.50 7.5 × 101 8.7 × 101

240 5.17 7.3 × 103 6.6 × 103

242 4.90 4.3 × 105 3.9 × 105

244 4.58 9.0 × 107 8.3 × 107

96Cm 240 6.29 4.4 × 10−3 7.4 × 10−2

242 6.12 2.8 × 10−1 4.5 × 10−1

244 5.81 1.1 × 101 1.8 × 101

246 5.39 2.8 × 103 4.7 × 103

248 5.08 2.5 × 105 3.5 × 103

98Cf 244 7.18 2.6 × 10−5 3.8 × 10−5

246 6.79 2.0 × 10−3 4.1 × 10−3

248 6.27 3.5 × 10−1 9.6 × 10−1

250 6.03 0.6 × 101 1.3 × 101

252 6.12 1.8 × 109 2.6 × 100

100Fm 248 7.85 0.6 × 10−6 1.2 × 10−6

250 7.44 2.0 × 10−5 5.7 × 10−5

252 7.05 0.7 × 10−3 2.6 × 10−3

254 7.16 2.3 × 10−4 3.7 × 10−4

High, Malmin and Malik [9.41] have also investigated alpha-decay of a
number of even-even nuclei using the surface-cluster model with a finite re-
pulsive barrier at r < R0. Their results are shown in Table 9.8 for C0 = 1.1
fm, V0 = (Q–60) MeV, ∆R = 1.2 fm. The calculations are done with observed
Q-values which, in this case, are equal to asymptotic energies. The agreement
between the calculated and the observed half-lives are very good. As noted
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in [9.41], the calculated results would not have been changed in any signif-
icant way by replacing the finite core by an infinite one. We can, therefore,
conclude that the fission phenomena, and cluster-radioactivities as well as
alpha- radioactivities could be described by a single model, having its root
in the energy-density functional approach to calculate the potential energy
surface.
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A The Relation Between the Asymptotic
Kinetic Energy, and the Condition
for the Existence of a Meta-Stable State

In binary fission, a parent nucleus of mass M , with mass and charge numbers
A and Z, respectively, is in a meta-stable state and decays into a daughter
pair of masses M(A1Z1) and M(A2Z2), A1 and A2 being their mass numbers
and Z1 and Z2 being their atomic mass number yielding an energy Q. The
conservation of energy for the process is given by

M(AZ)c2 = M(A1Z1)c2 + M(A2Z2)c2 + Q . (A.1)

In case all three nuclei involved in (A.1) are in their ground states, Q is
called the Q-value of the reaction.

In case of fission, M(A1Z1) and M(A2Z2) have been experimentally de-
termined to be in excited states, having masses M∗(A1Z1) and M∗(A2Z2),
respectively, and hence, the energy-balance equation reduces to

M(AZ)c2 = M∗(A1Z1)c2 + M∗(A2Z2)c2 + Q∗ (A.2)

where Q∗ is now less than Q. A decay process is determined by the asymptotic
kinetic energy in the center of mass system, T . Thus, if the daughter pair is
in excited states at the time of decay

T = Q∗ < Q . (A.3)

A typical experimentally determined pre-gamma ray and pre-neutron-
emission Q∗-value is shown in Fig. A.1 indicating that Q is typically larger
than Q∗ by about 20 to 40 MeV. In the figure, the two solid lines are calcu-
lated Q-values using Greens [A.1] and Myers-Swiatecki’s [A.2] mass formulas.
The use of the most recent mass formulas [A.3] does not change the basic
picture significantly.

In Bohr-Wheeler type of theories [A.4,A.5] (noted hereafter as B-W) and
its modified version to incorporate a Strutinski [A.6] type of barriers, (noted
hereafter as B-W-S) the penetration problem through a barrier is calculated
using Schrödinger equation with deformation parameter β being the variable.
Theories using barriers calculated from energy-density functional formalism
use the separation distance R as the variable in Schrödinger equation [A.7].
Thus, the tunneling stage in either formalism is governed by the Schrödinger
equation of the following type for un�(x) = xφn�(x), where φn�(x) is the radial



176 A The Relation Between the Asymptotic Kinetic Energy, and the Condition

Fig. A.1. Calculated Q-values shown by solid lines in the spontaneous fission of
252Cf to daughter pairs noted in the ordinate using the mass formulae of [A.1]
and [A.2] are compared to the corresponding pre-neutron emission kinetic energies,
shown as broken line [A.9]

wave function and x being either the characteristic deformation or separation
distance: [

d2/dx2 − q2(x) − l(l + 1)
x2

]
u�(x) = 0 (A.4)

with

q2(x) = (2µ/�
2)(Potential V (x) − asymptotic kinetic energy T ) (A.5)

µ in (A.5) is the reduced mass.
The solution, that is regular at the origin, is given by the Volterra equation

[A.8]

u�(x) = x�+1 + (2� + 1)−1

x∫
0

[
(x/t)�+1/2 − (t/x)�+1/2

]
(xt)1/2u�(t)q2(t)dt .

(A.6)
Then the derivative of u�(x), du�(x)/dx is given by

du�(x)/dx = (� + 1)x� + (2� + 1)−1x−1

×
x∫

0

[
(� + 1)(x/t)�+1/2 + �(t/x)�+1/2

]
(xt)1/2u�(t)q2(t)dt

(A.7)

u�(x) and du�(x)/dx are known up to an arbitrary constant but u�(x), being
regular at the origin is proportional to x�+1 near the origin. In this work, the
proportionality constant is taken to be unity.
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In particular for s-wave, we have the following equations

u0(x) = x +

x∫
0

(x − t)u0(t)q2(t)dt (A.8)

and

du0(x)/dx = 1 +

x∫
0

u0(t)q2(t)dt (A.9)

In case q2(t) > 0 from the origin to the only turning point at x = x0, as is
the case in B-W or B-W-S type of theories, all iterated values of u�(x) in (A.6)
and (A.8) are positive and when they are inserted in (A.7) and (A.9) yield a
positive du�(x)/dx everywhere. Hence, the wave function cannot bend over
from a positive slope to a negative one as required for a resonant-state Hence,
if q2 > 0 everywhere, in the domain (0, x0), a resonant state characteristic
of a decaying meta-stable state cannot be formed.

In fact, |ϕ�(x)|2 where ϕ�(x) = u�(x)/x, the wave function, grows steadily
from x = 0 to x = x0 and decays almost instantaneously.

Fig. A.2. The ordinate for both inserts is x. The abscissa in the upper and lower in-
serts represents, respectively, the barriers potential and the decay function through
the barrier
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On the other hand if q2 ≤ 0 at least in one region in the interval (0, x0)
as is the case for barriers derived from energy-density functional formalism
in Chap. 3, u�(x) and du�(x)/dx could change from a positive to a negative
value causing a change in its slope and u�(x) experiences a sudden increase
in its amplitude generating a meta-stable state.

This is illustrated schematically in Fig. A.2. The wave function of a par-
ticle tunneling through a barrier depicted in the upper insert, is shown,
schematically, in the lower insert of Fig. A.2. The amplitude of the wave
function in the region x1 < x < x2, where q2 < 0, suddenly increases in
magnitude and changes its slope that is characteristic of the formation of
a meta-stable state. In the upper insert, the barrier is the Q-value of the
process at x = 0 and the solid line represents asymptotic kinetic energy, T ,
which is equal to Q∗, of the daughter pair. In case q2 were positive in the en-
tire domain (0, x0), the wave function would not have exhibited the resonant
behavior. Thus, the necessary and sufficient condition for the formation of a
meta-stable state is that q2(x) must be zero or negative at least in one region
in the interval (0, x0). In the Gamow-Condon-Gurney theory of alpha-decay,
q2(x) = 0 near x = 0 and the condition is fulfilled.

The above theorem is derived for the one-dimensional single-channel case.
This can be generalized to multi-channel case. In that case, V (x) is to be iden-
tified as an effective potential generated by diagonalizing the set of coupled
equation describing the decay process, an example of which is presented in
Chap. 8 and Appendix C.

The above conclusion can also be derived in the JWKB approximation
but no approximation has been done in our analysis here.

References

1. A.E.S. Green, Phys. Rev. 95, 1006 (1954).
2. W.D. Myers and W.J. Swiatecki, Nucl. Phys. 81, 1 (1966).
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B The Expression for Half-Lives
of Particles Tunneling Through
the Barrier Shown in Fig. A.2

B.1 Exact Expression

We present here expressions for calculating half-lives pertinent to the pene-
tration through a barrier shown in Fig. A.2. As noted in [B.1], one may obtain
an exact expression for calculating half-lives, T , following Wigner [B.2] and
Smith [B.3,B.4] who related T to the derivative of the phase shift, λ, of the
scattered outgoing wave packet as follows

T = 2�dλ(E)/dE =
√

2µ/Edλ(k)/dk (B.1)

In the above, E and k are, respectively, the energy and wave number of
outgoing wave packet and µ is the reduced mass.

In this formalism, the half-life T of a meta-stable state is the probability
of finding the system in the region of interaction minus the probability of
finding a non-interacting wave packet in the same region. un�(x) = xφn�(x),
where φn�(x) is the radial wave function, describes a particle in the region of
interaction satisfying the following equation[

d2/dx2 − q2(x) − �(� + 1)/x2
]
un�(x) = 0 (B.2)

where
q2(x) =

(
2µ/�

2
)
[Potential, V (x) − Energy, E] . (B.3)

To obtain an explicit expression for dλ(k)/dk, we consider only s-wave (gen-
eralization to any other partial wave function is straight forward). In the
presence of Coulomb interaction, the asymptotic form of u(x) [dropping the
suffix (n�)] is

u(x) →
x→∞A(k) sin(ϕ(k, x) + λ) + O(η/kR) . (B.4)

where
ϕ(k, x) = kx − η log 2kx + σ (B.5)

In (B.5), η, the Coulomb parameter = Z1Z2e
2/�v, Z1 and Z2 are the charges

of the two decayed particles and v, their relative velocity and σ, the Coulomb
phase shift = arg Γ(1 + iη). In general, the second term in (B.4) is small and
neglected henceforth.
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Let us now consider wave functions, u(k1, x) and u(k2, x), having wave
number k1 and k2, respectively, satisfying (B.2). Multiplying the equation for
u(k1, x) with u∗(k2, x) and that for u(k2, x) with u∗(k1, x) and integrating
over dx, we obtain the following equation after a substraction

∞∫
0

dx
[
u∗(k2, x)d2u(k1, x)/dx2 − u∗(k1, x)d2u(k2, x)/dx2

]

+

∞∫
0

[u∗(k2, x)k2
1u(k1, x) − u∗(k1, x)k2

2u(k2, x)]dx = 0 . (B.6)

In case the non-Coulomb part of the potential is negligible for r > R, the
above equation, after a partial integration (B.6) reduces to

u∗(k2, x)du(k1, x)/dx − u∗(k1, x)du(k2, x)/dx|R0

+k2
1

R∫
0

u∗(k2, x)u(k1, x)dx − k2
2

R∫
0

u∗(k1, x)u(k2, x)dx = 0 .

Substituting the behavior of u∗(k2, x) and u(k1, x) near the origin and their
asymptotic forms (B.5), we get

(1/2)A(k1)A(k2) [(k1 + k2) sin(ϕ(k2, R) − ϕ(k1, R) + λ2 − λ1)
+(k1 − k2) sin(ϕ(k2, R) + ϕ(k1, R) + λ2 + λ1)] =

k2
2

R∫
0

u∗(k1, x)u(k2, x)dx − k2
1

R∫
0

u∗(k2, x)u(k1, x)dx . (B.7)

Taking the limit k1 → k2 and dropping the subscripts, we obtain

A2(k) {[(1/2)dϕ(k,R)/dk + (1/2)dλ/dk]

[1 − η/2kR] − (1/4k) sin(2ϕ(k,R) + 2λ)} =

R∫
0

|u(k, x)|2dx . (B.8)

Similarly for the case of a pure Coulomb potential only with a cut-off radius
R, we get the following

A2(k) [(1/2)(dϕ(k,R)/dk)(1 − η/2kR) − (1/4k) sin(2ϕ(k,R)]

=

R∫
0

|uc(k, x)|2dx . (B.9)

where uc is the Coulomb function that is regular at the origin. The subtraction
of (B.9) from (B.8) leads to the equation determining dλ/dk
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A2(k) [(1/2)(dλ/dk)(1 − η/2kR) − (1/4k) sin 2(ϕ(k,R) + λ) − sin 2ϕ(k,R)]

=

R∫
0

[|u(k, x)|2 − |uc(k, x)|2] dx . (B.10)

Equation (B.10) may be used to get dλ/dk since λ is obtained by solving (B.2)
for a given potential using an appropriate numerical method. The half-life is,
then, obtained from (B.1). This is exact.

Quite often, terms involving (1/k) can be neglected. Then

dλ/dk =
[
2/A2(k)

] R∫
0

[
u2(k, x) − u2

c(k, x)
]
dx (B.11)

since both u(k, x) and uc(k, x) are real.

B.2 JWKB Approximation

The kinetic energies of a daughter pair in the fission process is about 150 to
200 MeV and the energy equivalence of the masses of a daughter pair is large.
In that case, wave number k is large and terms of the order of k−1 in (B.10)
can be neglected, as long as one is interested in the half-lives of resonant
states. As to the integrals on the right-hand-side of (B.10), its contribution
in the region of x0 < x < R, i.e. from the outer turning point to R, referring
to Fig. A.2, contributes only of the order of A2k−1 because of the oscillatory
nature of both u and uc. In fact, in the JWKB approximation the envelopes
of u and uc are equal.

Noting the absence of Coulomb potential in the interval region 0 < x < x0,
we get the following expression for the derivative of λ with respect to k:

dλ/dk ∼= 2/A2

x0∫
0

u2(k, x)dx . (B.12)

Equations (B.10) and (B.12) are equivalent to the ones derived by F.T.
Smith [B.3]. The formal difference between his formulas and ours is a con-
sequence of his ansatz of averaging the wave function outside the range of
interaction, which we have avoided here and constitutes a negligible differ-
ence towards half-lives between ours’ and his formalism. It is also to be noted
that the definition used for the half-life could differ from the definition used
in the decay analysis by a factor of two. Our definition corresponds to the
delay time introduced by Wigner in [B.2].

In the region I, i.e., in the interval 0 ≤ x < x1, u(k, x) grows very slowly
and its amplitude is small because q2

I (x), i.e. the value of q(x) in the region
is very large. Hence, (B.12) can further be approximated as
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dλ/dk ∼= (2/A2
) x0∫

x1

u2(kx)dx . (B.13)

In region II i.e., in the interval x1 < x < x2, the magnitude of q i.e., qII is
given by

q2
II = (2µ/�

2)(E − V (x)) . (B.14)

It is no longer very large. The wave function, uII(k, x) in this region may be
obtained by matching the wave function to the wave function in the region I
at x = x1 and is given by [B.4]

uII(k, x) = 2
√

2/πqIIA2 cos(π/6) cos

⎡
⎣ x∫

x1

qII(x)dx − π/4

⎤
⎦ . (B.15)

Extending the limit of integration from x to x2 and noting that

x2∫
x1

qII(x)dx ∼=
(

n +
1
2

)
π (B.16)

we get the following

uII(k, x) = 2
(√

2/πqII

)
A2 cos(π/6) cos

(
n +

1
4

)
π . (B.17)

We note that (B.16) reflects the condition for the formation of a meta-stable
state in this region. Noting that π ∼= 3, we get

|uII(k, x)|2 = A2/qII . (B.18)

Hence,
x2∫

x1

u2
II(k1, x)dx = A2

2

x2∫
x1

dx/qII . (B.19)

In the region III, the penetration region where x2 < x < x0, the form
of the wave function uIII(k, x) is obtained from the matching condition at
x = x2 and is given

uIII(k, x) = A2 cos(π/6)
√

2/πqIII exp

⎛
⎝−

x∫
x2

qIIIdx

⎞
⎠ . (B.20)

This solution must match onto (B.4), i.e. onto the wave function in the region
IV, where x < x0. This leads to
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A = A2k
−1/2 exp

⎡
⎣−

x0∫
x2

qIIIdx

⎤
⎦ . (B.21)

Substituting the ratio of A2/A from (B.21), the expression for half-life is
given by

T =
√

2µ/E.k

⎡
⎣exp

⎛
⎝2

x0∫
x2

qIIIdx

⎞
⎠ x2∫

x1

dx/qII + (2/π) cos2(π/6)

x0∫
x2

dx/qIII

⎤
⎦ .

(B.22)
The contribution of the second term in (B.22) to half-life is of the order of
10−22 sec, since it is basically the time taken to traverse the distance (x0−x2).
Hence, it is appropriate to neglect it leading to the following expression

T =
√

2µ/E exp

⎛
⎝2

x0∫
x2

qIIIdx

⎞
⎠ x2∫

x1

dx/(1 − V (x)/E) . (B.23)

In case average value of V (x)/E in region II is small,

T =
√

2µ/E exp

⎛
⎝2

x0∫
x2

qIIIdx

⎞
⎠ . (x2 − x1) . (B.24)

Thus, the critical parameter controlling the half-life for the decay through
a barrier shown in Fig. A.2 is the difference (V − E) in region III.

The actual shape of the potential in region II and its width (x2−x1) do not
appreciably influence the numerical value in the calculation of half-life. The
critical point is that there should be an interval like region II characterized
by E > V (x), so that a meta-stable state could form. In the absence of region
II, the potential surface is essentially repulsive since V (x) > E everywhere
and the decay half-life is always of the order of 10−22 sec, the time taken for
a projectile to traverse the potential.
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C Diagonalization of the Coupled Set
of Equations Describing Fission

In this appendix the decoupling of differential equation (8.20) is demonstrated
for approximations (8.21). In order to achieve this, let us rewrite (8.16) with
these approximations in the following form[

− �
2

2µ
∇2

R − (En + VnD(R))I − VnC(R)CnN

]
FnN (R) = 0 . (C.1)

Where FnN is a vector with elements fnβ , I is the N × N identity matrix
and CnN is the following constant matrix

CnN =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 γn2 γn3 . . . . . . . . . γnN

γn2 0 0 . . . . . . . . . 0
γn3 0 0 . . . . . . . . . 0
.
.
γnN 0 0 . . . . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C.2)

In order to diagonalize CnN , let us define an N × N matrix

GnN = CnN − λI =

⎛
⎜⎜⎜⎜⎜⎜⎝

−λ γn2 γn3 . . . . . . . . . γnN

γn2 −λ 0 . . . . . . . . . 0
γn3 0 −λ . . . . . . . . . 0
.
.
γnN 0 0 . . . . . . . . . −λ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C.3)

and claim that its determinant is given by the equation

Det[GnN ] = (−1)N

⎡
⎣λN − λN−2

N∑
j=2

γ2
nj

⎤
⎦ . (C.4)

In order to prove the above equation, let us note that (C.4) is valid for N = 2.
Thus, appealing to proof by induction, let us assume that (C.4) is true

for N and make use of this assumption to prove that (C.4) is also valid for
N +1. To prove this, let us use the (N +1) th element of GnN+1 as the pivot,
and find
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Det[GnN+1] = −λDet[GnN ] − (−1)N+1γn(N+1)Det(LnN ) . (C.5)

Where

LnN =

⎛
⎜⎜⎜⎜⎜⎜⎝

γn2 γn3 . . . . . . . . . γnN+1

−λ 0 . . . . . . . . . 0
0 −λ . . . . . . . . . 0
.
.
0 0 . . . . . . . . . − λ 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (C.6)

with Det(LnN ) = −(−1)N (−λ)N−1γnN+1. Substitution of (C.4) and (C.6)
in (C.5) lead to

Det[GnN+1] = (−1)N+1

⎡
⎣λN+1 − λN−1

N∑
j=2

γ2
nj

⎤
⎦− (−1)N+1λN−1γ2

nN+1

= (−1)N+1

⎡
⎣λN+1 − λN−1

N+1∑
j=2

γ2
nj

⎤
⎦ . (C.7)

Equation (C.7) being identical to (C.4), except for N being changed to N +1,
completes the induction proof and allows us to conclude that the N × N
matrix CnN has three distinct eigenvalues

λ =

[
N∑

j=2

γ2
nj

]1/2

, 0, −
[

N∑
j=2

γ2
nj

]1/2

. (C.8)

With eignenvalue λ = 0 having a multiplicity of N −2 the matrix CnN being
symmetric, therefore is diagonalizable [C.2] and a constant N×N matrix PnN

exists such that

ΛnN = P−1
nNCnNPnN =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ 0 0 . . . . . . . . . 0
0 −λ 0 . . . . . . . . . 0
0 0 0 . . . . . . . . . 0
.
.
0 0 0 . . . . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(C.9)

where λ ≡ [
∑N

j=2 γ2
nj ]

1/2 and PnN is the transformation matrix whose
columns are the eigenvectors of CnN . For example, it can be written as

PnN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 . . . . . . . . . 0
ξn2 ξn2 −1 0 . . . . . . . . . 0
ξn3 ξn3 ζn3 −1 . . . . . . . . . 0
ξn4 ξn4 0 ζn4 . . . . . . . . . 0
.
.
ξnN−1 ξnN−1 0 0 . . . . . . . . . −1
ξnN ξnN 0 0 . . . . . . . . . ζnN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C.10)
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where ξnj = γnj/λ and ζnj = γn(j−1)/γnj . Of course, due to our assumption
that we have N coupled channels, γnj is all nonzero and therefore, ζnj is all
well defined.

The application of above transformation matrix to (C.1) yields the desired
result.[

− �
2

2µ
∇2

R − (En + VnD(R))I − VnC(R)ΛnN

]
F̃nN (R) = 0 . (C.11)

Where F̃nN (R) = P−1
nN FnN (R). As it can be seen, (C.11) is a set of

N decoupled ordinary differential equations, containing only three distinct
decoupled equations which are identical to equations (8.22a), (8.22b) and
(8.22c), appearing in Chap. 8.
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