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Chapter 1

Introduction

In this course I shall discuss nuclear and particle physics on a somewhat phenomenological level. The mathe-

matical sophistication shall be rather limited, with an emphasis on the physics and on symmetry aspects.

Course text:

W.E. Burcham and M. Jobes, Nuclear and Particle Physics, Addison Wesley Longman Ltd, Harlow, 1995.
Supplementary references

1. B.R. Martin and G. Shaw, Particle Physics, John Wiley and sons, Chicester, 1996. A solid book on
particle physics, slighly more advanced than this course.

2. G.D. Coughlan and J.E. Dodd, The ideas of particle physics, Cambridge University Press, 1991. A more
hand waving but more exciting introduction to particle physics. Reasonably up to date.

3. N.G. Cooper and G.B. West (eds.), Particle Physics: A Los Alamos Primer, Cambridge University Press,
1988. A bit less up to date, but very exciting and challenging book.

4. R. C. Fernow, Introduction to experimental Particle Physics, Cambridge University Press. 1986. A good
source for experimental techniques and technology. A bit too advanced for the course.

5. F. Halzen and A.D. Martin, Quarks and Leptons: An introductory Course in particle physics, John Wiley
and Sons, New York, 1984. A graduate level text book.

6. F.E. Close, An introduction to Quarks and Partons, Academic Press, London, 1979. Another highly
recommendable graduate text.

7. The course home page: http://walet.phy.umist.ac.uk/P615/ a lot of information related to the
course, links and other documents.

8. The particle adventure: http://www.phy.umist.ac.uk/Teaching/cpep/adventure.html. A nice low level
introduction to particle physics.
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CHAPTER 2. A HISTORY OF PARTICLE PHYSICS

Chapter 2

A history of particle physics

2.1 Nobel prices in particle physics

1903

BECQUEREL, ANTOINE HENRI, France,
Ecole Polytechnique, Paris, b. 1852, d. 1908:

CURIE, PIERRE, France, cole municipale de
physique et de chimie industrielles, (Municipal
School of Industrial Physics and Chemistry),
Paris, b. 1859, d. 1906; and his wife CURIE,
MARIE, née SKLODOWSKA, France, b. 1867
(in Warsaw, Poland), d. 1934:

”in recognition of the extraordinary services he
has rendered by his discovery of spontaneous
radioactivity”;

"in recognition of the extraordinary services
they have rendered by their joint researches on
the radiation phenomena discovered by Profes-
sor Henri Becquerel”

1922

BOHR, NIELS, Denmark, Copenhagen Univer-
sity, b. 1885, d. 1962:

"for his services in the investigation of the
structure of atoms and of the radiation ema-
nating from them”

1927

COMPTON, ARTHUR HOLLY, U.S.A., Uni-
versity of Chicago b. 1892, d. 1962:

and WILSON, CHARLES THOMSON REES,
Great Britain, Cambridge University, b. 1869
(in Glencorse, Scotland), d. 1959:

“for his discovery of the effect named after
him”;

”for his method of making the paths of electri-
cally charged particles visible by condensation
of vapour”

1932

HEISENBERG, WERNER, Germany, Leipzig
University, b. 1901, d. 1976:

"for the creation of quantum mechanics, the
application of which has, inter alia, led to the
discovery of the allotropic forms of hydrogen”

SCHRODINGER, ERWIN, Austria, Berlin
University, Germany, b. 1887, d. 1961; and
DIRAC, PAUL ADRIEN MAURICE, Great
Britain, Cambridge University, b. 1902, d.
1984:

”for the discovery of new productive forms of
atomic theory”

1935

CHADWICK, Sir JAMES, Great Britain, Liv-
erpool University, b. 1891, d. 1974:

”for the discovery of the neutron”

1936

HESS, VICTOR FRANZ, Austria, Innsbruck
University, b. 1883, d. 1964:

ANDERSON, CARL DAVID, U.S.A., Califor-
nia Institute of Technology, Pasadena, CA, b.
1905, d. 1991:

”for his discovery of cosmic radiation”; and

”for his discovery of the positron”

1938

FERMI, ENRICO, Italy, Rome University, b.
1901, d. 1954:

”for his demonstrations of the existence of new
radioactive elements produced by neutron irra-
diation, and for his related discovery of nuclear
reactions brought about by slow neutrons”

1939

LAWRENCE, ERNEST ORLANDO, U.S.A.,
University of California, Berkeley, CA, b. 1901,
d. 1958:

”for the invention and development of the cy-
clotron and for results obtained with it, espe-
cially with regard to artificial radioactive ele-
ments”

1943

STERN, OTTO, U.S.A., Carnegie Institute of
Technology, Pittsburg, PA, b. 1888 (in Sorau,
then Germany), d. 1969:

”for his contribution to the development of the
molecular ray method and his discovery of the
magnetic moment of the proton”
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1944 RABI, ISIDOR ISAAC, U.S.A., Columbia Uni- | "for his resonance method for recording the
versity, New York, NY, b. 1898, (in Rymanow, | magnetic properties of atomic nuclei”
then Austria-Hungary) d. 1988:

1945 PAULI, WOLFGANG, Austria, Princeton Uni- | ”for the discovery of the Exclusion Principle,
versity, NJ, U.S.A., b. 1900, d. 1958: also called the Pauli Principle”

1948 BLACKETT, Lord PATRICK MAYNARD | ”for his development of the Wilson cloud cham-
STUART, Great Britain, Victoria University, | ber method, and his discoveries therewith in
Manchester, b. 1897, d. 1974: the fields of nuclear physics and cosmic radia-

tion”

1949 YUKAWA, HIDEKI, Japan, Kyoto Impe- | ”for his prediction of the existence of mesons on
rial University and Columbia University, New | the basis of theoretical work on nuclear forces”
York, NY, U.S.A., b. 1907, d. 1981:

1950 POWELL, CECIL FRANK, Great Britain, | "for his development of the photographic
Bristol University, b. 1903, d. 1969: method of studying nuclear processes and his

discoveries regarding mesons made with this
method”

1951 COCKCROFT, Sir JOHN DOUGLAS, Great | ”for their pioneer work on the transmutation of
Britain, Atomic Energy Research Establish- | atomic nuclei by artificially accelerated atomic
ment, Harwell, Didcot, Berks., b. 1897, | particles”

d. 1967; and WALTON, ERNEST THOMAS
SINTON, Ireland, Dublin University, b. 1903,
d. 1995:

1955 LAMB, WILLIS EUGENE, U.S.A., Stanford | ”for his discoveries concerning the fine struc-
University, Stanford, CA, b. 1913: ture of the hydrogen spectrum”; and
KUSCH, POLYKARP, U.S.A., Columbia Uni- | ”for his precision determination of the mag-
versity, New York, NY, b. 1911 (in Blanken- | netic moment of the electron”
burg, then Germany), d. 1993:

1957 YANG, CHEN NING, China, Institute for Ad- | "for their penetrating investigation of the so-
vanced Study, Princeton, NJ, U.S.A.; b. 1922; | called parity laws which has led to important
and LEE, TSUNG-DAO, China, Columbia | discoveries regarding the elementary particles”
University, New York, NY, U.S.A., b. 1926:

1959 SEGRE, EMILIO GINO, U.S.A., University of | ”for their discovery of the antiproton”
California, Berkeley, CA, b. 1905 (in Tivoli,

Ttaly), d. 1989; and CHAMBERLAIN, OWEN,
U.S.A., University of California, Berkeley, CA,
b. 1920:

1960 GLASER, DONALD A., U.S.A., University of | ”for the invention of the bubble chamber”
California, Berkeley, CA, b. 1926:

1961 HOFSTADTER, ROBERT, U.S.A., Stanford | ”for his pioneering studies of electron scattering
University, Stanford, CA, b. 1915, d. 1990: in atomic nuclei and for his thereby achieved

discoveries concerning the stucture of the nu-
cleons”; and
MOSSBAUER, RUDOLF LUDWIG, Ger- | ”for his researches concerning the resonance ab-
many, Technische Hochschule, Munich, and | sorption of gamma radiation and his discovery
California Institute of Technology, Pasadena, | in this connection of the effect which bears his
CA, U.S.A., b. 1929: name”
1963 WIGNER, EUGENE P., U.S.A., Princeton | "for his contributions to the theory of the

University, Princeton, NJ, b.
dapest, Hungary), d. 1995:

1902 (in Bu-

GOEPPERT-MAYER, MARIA, U.S.A., Uni-
versity of California, La Jolla, CA, b. 1906
(in Kattowitz, then Germany), d. 1972; and
JENSEN, J. HANS D., Germany, University of
Heidelberg, b. 1907, d. 1973:

atomic nucleus and the elementary particles,
particularly through the discovery and appli-
cation of fundamental symmetry principles”;
”for their discoveries concerning nuclear shell
structure”
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1965 TOMONAGA, SIN-ITIRO, Japan, Tokyo, | "for their fundamental work in quantum
University of Education, Tokyo, b. 1906, d. | electrodynamics, with deep-ploughing conse-
1979; quences for the physics of elementary particles”
SCHWINGER, JULIAN, U.S.A., Harvard Uni-
versity, Cambridge, MA, b. 1918, d. 1994; and
FEYNMAN, RICHARD P., U.S.A., Califor-
nia Institute of Technology, Pasadena, CA, b.
1918, d. 1988:

1967 BETHE, HANS ALBRECHT, U.S.A., Cornell | ”for his contributions to the theory of nuclear
University, Ithaca, NY, b. 1906 (in Strasbourg, | reactions, especially his discoveries concerning
then Germany): the energy production in stars”

1968 ALVAREZ, LUIS W., U.S.A., University of | "for his decisive contributions to elementary
California, Berkeley, CA, b. 1911, d. 1988: particle physics, in particular the discovery of a

large number of resonance states, made possi-
ble through his development of the technique of
using hydrogen bubble chamber and data anal-
ysis”

1969 GELL-MANN, MURRAY, U.S.A., California | ”for his contributions and discoveries concern-
Institute of Technology, Pasadena, CA, b. | ing the classification of elementary particles
1929: and their interactions”

1975 BOHR, AAGE, Denmark, Niels Bohr Institute, | "for the discovery of the connection between
Copenhagen, b. 1922; collective motion and particle motion in atomic
MOTTELSON, BEN, Denmark, Nordita, | nuclei and the development of the theory of the
Copenhagen, b. 1926 (in Chicago, U.S.A.); and | structure of the atomic nucleus based on this
RAINWATER, JAMES, U.S.A., Columbia | connection”

University, New York, NY, b. 1917, d. 1986:

1976 RICHTER, BURTON, U.S.A., Stanford Linear | ”for their pioneering work in the discovery of a
Accelerator Center, Stanford, CA, b. 1931; heavy elementary particle of a new kind”
TING, SAMUEL C. C., U.S.A., Massachusetts
Institute of Technology (MIT), Cambridge,

MA, (European Center for Nuclear Research,
Geneva, Switzerland), b. 1936:

1979 GLASHOW, SHELDON L., U.S.A., Lyman | ”for their contributions to the theory of the uni-
Laboratory, Harvard University, Cambridge, | fied weak and electromagnetic interaction be-
MA, b. 1932; tween elementary particles, including inter alia
SALAM, ABDUS, Pakistan, International | the prediction of the weak neutral current”
Centre for Theoretical Physics, Trieste, and
Imperial College of Science and Technology,

London, Great Britain, b. 1926, d. 1996; and
WEINBERG, STEVEN, U.S.A., Harvard Uni-
versity, Cambridge, MA, b. 1933:

1980 CRONIN, JAMES, W., U.S.A., University of | ”for the discovery of violations of fundamental
Chicago, Chicago, IL, b. 1931; and symmetry principles in the decay of neutral K-
FITCH, VAL L., U.S.A., Princeton University, | mesons”

Princeton, NJ, b. 1923:
1983 CHANDRASEKHAR, SUBRAMANYAN, | ”for his theoretical studies of the physical pro-

U.S.A., University of Chicago, Chicago, IL, b.
1910 (in Lahore, India), d. 1995:

FOWLER, WILLIAM A.; U.S.A., California
Institute of Technology, Pasadena, CA, b.
1911, d. 1995:

cesses of importance to the structure and evo-
lution of the stars”

"for his theoretical and experimental studies
of the nuclear reactions of importance in the
formation of the chemical elements in the uni-
verse”
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1984 RUBBIA, CARLO, Italy, CERN, Geneva, | "for their decisive contributions to the large
Switzerland, b. 1934; and project, which led to the discovery of the field
VAN DER MEER, SIMON, the Netherlands, | particles W and Z, communicators of weak in-
CERN, Geneva, Switzerland, b. 1925: teraction”

1988 LEDERMAN, LEON M., U.S.A., Fermi Na- | ”for the neutrino beam method and the demon-
tional Accelerator Laboratory, Batavia, IL, b. | stration of the doublet structure of the leptons
1922; through the discovery of the muon neutrino”
SCHWARTZ, MELVIN, U.S.A., Digital Path-
ways, Inc., Mountain View, CA, b. 1932; and
STEINBERGER, JACK, U.S.A., CERN,
Geneva, Switzerland, b. 1921 (in Bad Kissin-
gen, FRG):

1990 FRIEDMAN, JEROME 1., U.S.A., Mas- | "for their pioneering investigations concerning
sachusetts Institute of Technology, Cambridge, | deep inelastic scattering of electrons on protons
MA, b. 1930; and bound neutrons, which have been of es-
KENDALL, HENRY W., U.S.A., Mas- | sential importance for the development of the
sachusetts Institute of Technology, Cambridge, | quark model in particle physics”
MA, b. 1926; and
TAYLOR, RICHARD E., Canada, Stanford
University, Stanford, CA, U.S.A., b. 1929:

1992 CHARPAK, GEORGES, France, Ecole | ”for his invention and development of particle
Superieure de Physique et Chimie, Paris and | detectors, in particular the multiwire propor-
CERN, Geneva, Switzerland, b. 1924 ( in | tional chamber”
Poland):

1995 ”for pioneering experimental contributions to

PERL, MARTIN L., U.S.A., Stanford Univer-
sity, Stanford, CA, U.S.A., b. 1927,

REINES, FREDERICK, U.S.A., University of
California at Irvine, Irvine, CA, U.S.A., b.
1918, d. 1998:

lepton physics”
”for the discovery of the tau lepton”

”for the detection of the neutrino”
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2.2 A time line

Particle Physics Time line

’ Year ‘ Experiment ‘ Theory

1927 (B decay discovered

1928 Paul Dirac: Wave equation for electron

1930 Wolfgang Pauli suggests existence of neu-
trino

1931 Positron discovered

1931 Paul Dirac realizes that positrons are part
of his equation

1931 Chadwick discovers neutron

1933/4 Fermi introduces theory for 8 decay

1933/4 Hideki Yukawa discusses nuclear binding in
terms of pions

1937 w discovered in cosmic rays

1938 Baryon number conservation

1946 w1 is not Yukawa'’s particle

1947 7w discovered in cosmic rays

1946-50 Tomonaga, Schwinger and Feynman de-
velop QED

1948 First artificial 7’s

1949 K™ discovered

1950 70— yy

1951 "V-particles” A” and K°

1952 A: excited state of nucleon

1954 Yang and Mills: Gauge theories

1956 Lee and Yang: Weak force might break
parity!

1956 CS Wu and Ambler: Yes it does.

1961 Eightfold way as organizing principle

1962 v, and v,

1964 Quarks (Gell-man and Zweig) u,d, s

1964 Fourth quark suggested (c)

1965 Colour charge all particles are colour neu-
tral!

1967 Glashow-Salam-Weinberg unification of
electromagnetic and weak interactions.
Predict Higgs boson.

1968-69 | DIS at SLAC constituents of proton seen!

1973 QCD as the theory of coloured interac-
tions. Gluons.

1973 Asymptotic freedom

1974 J/v (c€) meson

1976 D0 meson (@c) confirms theory.

1976 T lepton!

1977 b (bottom quark). Where is top?

1978 Parity violating neutral weak interaction

seen

1979 Gluon signature at PETRA

1983 W and ZY seen at CERN

1989 SLAC suggests only three generations of

(light!) neutrinos
1995 t (top) at 175 GeV mass
1997 New physics at HERA (200 GeV)
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2.3 Earliest stages

The early part of the 20th century saw the development of quantum theory and nuclear physics, of which
particle physics detached itself around 1950. By the late 1920’s one knew about the existence of the atomic
nucleus, the electron and the proton. I shall start this history in 1927, the year in which the new quantum
theory was introduced. In that year § decay was discovered as well: Some elements emit electrons with
a continuous spectrum of energy. Energy conservation doesn’t allow for this possibility (nuclear levels are
discrete!). This led to the realization, in 1929, by Wolfgang Pauli that one needs an additional particle to
carry away the remaining energy and momentum. This was called a neutrino (small neutron) by Fermi, who
also developed the first theoretical model of the process in 1933 for the decay of the neutron

n—p+e + 0. (2.1)

which had been discovered in 1931.

In 1928 Paul Dirac combined quantum mechanics and relativity in an equation for the electron. This
equation had some more solutions than required, which were not well understood. Only in 1931 Dirac realized
that these solutions are physical: they describe the positron, a positively charged electron, which is the
antiparticle of the electron. This particle was discovered in the same year, and I would say that particle
physics starts there.

2.4 fission and fusion

Fission of radioactive elements was already well established in the early part of the century, and activation
by neutrons, to generate more unstable isotopes, was investigated before fission of natural isotopes was seen.
The inverse process, fusion, was understood somewhat later, and Niels Bohr developped a model describing
the nucleus as a fluid drop. This model - the collective model - was further developped by his son Aage Bohr
and Ben Mottelson. A very different model of the nucleus, the shell model, was designed by Maria Goeppert-
Mayer and Hans Jensen in 1952, concentrating on individual nucleons. The dichotomy between a description
as individual particles and as a collective whole characterises much of “low-energy” nuclear physics.

2.5 Low-energy nuclear physics

The field of low-energy nuclear physics, which concentrates mainly on structure of and low-energy reaction on
nuclei, has become one of the smaller parts of nuclear physics (apart from in the UK). Notable results have
included better understanding of the nuclear medium, high-spin physics, superdeformation and halo nuclei.
Current experimental interest is in those nuclei near the “driplines” which are of astrophysical importance, as
well as of other interest.

2.6 Medium-energy nuclear physics

Medium energy nuclear physics is interested in the response of a nucleus to probes at such energies that we
can no longer consider nucleons to be elementary particles. Most modern experiments are done by electron
scattering, and concentrate on the role of QCD (see below) in nuclei, the structure of mesons in nuclei and
other complicated questions.

2.7 high-energy nuclear physics

This is not a very well-defined field, since particle physicists are also working here. It is mainly concerned with
ultra-relativistic scattering of nuclei from each other, addressing questions about the quark-gluon plasma.
It should be nuclear physics, since we consider “dirty” systems of many particles, which are what nuclear
physicists are good at.

2.8 Mesons, leptons and neutrinos

In 1934 Yukawa introduces a new particle, the pion (7), which can be used to describe nuclear binding. He
estimates it’s mass at 200 electron masses. In 1937 such a particle is first seen in cosmic rays. It is later
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realized that it interacts too weakly to be the pion and is actually a lepton (electron-like particle) called the
p. The 7 is found (in cosmic rays) and is the progenitor of the u’s that were seen before:

= ut +u, (2.2)

The next year artificial pions are produced in an accelerator, and in 1950 the neutral pion is found,
70 — 4. (2.3)

This is an example of the conservation of electric charge. Already in 1938 Stuckelberg had found that there
are other conserved quantities: the number of baryons (n and p and ...) is also conserved!

After a serious break in the work during the latter part of WWII, activity resumed again. The theory of
electrons and positrons interacting through the electromagnetic field (photons) was tackled seriously, and with
important contributions of (amongst others) Tomonaga, Schwinger and Feynman was developed into a highly
accurate tool to describe hyperfine structure.

Experimental activity also resumed. Cosmic rays still provided an important source of extremely energetic
particles, and in 1947 a “strange” particle (K was discovered through its very peculiar decay pattern. Balloon
experiments led to additional discoveries: So-called V particles were found, which were neutral particles,
identified as the A and K°. It was realized that a new conserved quantity had been found. It was called
strangeness.

The technological development around WWII led to an explosion in the use of accelerators, and more and
more particles were found. A few of the important ones are the antiproton, which was first seen in 1955, and
the A, a very peculiar excited state of the nucleon, that comes in four charge states AT+ AT, A% A—.

Theory was develop-ping rapidly as well. A few highlights: In 1954 Yang and Mills develop the concept of
gauged Yang-Mills fields. It looked like a mathematical game at the time, but it proved to be the key tool in
developing what is now called “the standard model”.

In 1956 Yang and Lee make the revolutionary suggestion that parity is not necessarily conserved in the
weak interactions. In the same year “madam” CS Wu and Alder show experimentally that this is true: God
is weakly left-handed!

In 1957 Schwinger, Bludman and Glashow suggest that all weak interactions (radioactive decay) are me-
diated by the charged bosons W*. In 1961 Gell-Mann and Ne’eman introduce the “eightfold way”: a mathe-
matical taxonomy to organize the particle zoo.

2.9 The sub-structure of the nucleon (QCD)

In 1964 Gell-mann and Zweig introduce the idea of quarks: particles with spin 1/2 and fractional charges.
They are called up, down and strange and have charges 2/3, —1/3,—1/3 times the electron charge.

Since it was found (in 1962) that electrons and muons are each accompanied by their own neutrino, it is
proposed to organize the quarks in multiplets as well:

e ve (u,d)

wov (5,0 (2.4)

This requires a fourth quark, which is called charm.

In 1965 Greenberg, Han and Nambu explain why we can’t see quarks: quarks carry colour charge, and all
observe particles must have colour charge 0. Mesons have a quark and an antiquark, and baryons must be
build from three quarks through its peculiar symmetry.

The first evidence of quarks is found (1969) in an experiment at SLAC, where small pips inside the proton
are seen. This gives additional impetus to develop a theory that incorporates some of the ideas already found:
this is called QCD. It is shown that even though quarks and gluons (the building blocks of the theory) exist,
they cannot be created as free particles. At very high energies (very short distances) it is found that they
behave more and more like real free particles. This explains the SLAC experiment, and is called asymptotic
freedom.

The J/v meson is discovered in 1974, and proves to be the ¢¢ bound state. Other mesons are discovered
(DO, @c) and agree with QCD.

In 1976 a third lepton, a heavy electron, is discovered (7). This was unexpected! A matching quark (b
for bottom or beauty) is found in 1977. Where is its partner, the top? It will only be found in 1995, and has
a mass of 175 GeV /c? (similar to a lead nucleus. ..)! Together with the conclusion that there are no further
light neutrinos (and one might hope no quarks and charged leptons) this closes a chapter in particle physics.
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2.10 The W*and Z bosons

On the other side a electro-weak interaction is developed by Weinberg and Salam. A few years later 't Hooft
shows that it is a well-posed theory. This predicts the existence of three extremely heavy bosons that mediate
the weak force: the Z° and the W*. These have been found in 1983. There is one more particle predicted by
these theories: the Higgs particle. Must be very heavy!

2.11 GUTS, Supersymmetry, Supergravity

This is not the end of the story. The standard model is surprisingly inelegant, and contains way to many
parameters for theorists to be happy. There is a dark mass problem in astrophysics — most of the mass in
the universe is not seen! This all leads to the idea of an underlying theory. Many different ideas have been
developed, but experiment will have the last word! It might already be getting some signals: researchers at
DESY see a new signal in a region of particle that are 200 GeV heavy — it might be noise, but it could well be
significant!

There are several ideas floating around: one is the grand-unified theory, where we try to comine all the
disparate forces in nature in one big theoretical frame. Not unrelated is the idea of supersymmetries: For
every “boson” we have a “fermion”. There are some indications that such theories may actually be able to
make useful predictions.

2.12 Extraterrestrial particle physics

One of the problems is that it is difficult to see how e can actually build a microscope that can look a a small
enough scale, i.e., how we can build an accelerator that will be able to accelarte particles to high enough
energies? The answer is simple — and has been more or less the same through the years: Look at the cosmos.
Processes on an astrophysical scale can have amazing energies.

2.12.1 Balloon experiments

One of the most used techniques is to use balloons to send up some instrumentation. Once the atmosphere is
no longer the perturbing factor it normally is, one can then try to detect interesting physics. A problem is the
relatively limited payload that can be carried by a balloon.

2.12.2 Ground based systems

These days people concentrate on those rare, extremely high energy processes (of about 102 eV), where the
effect of the atmosphere actually help detection. The trick is to look at showers of (lower-energy) particles
created when such a high-energy particle travels through the earth’s atmosphere.

2.12.3 Dark matter

One of the interesting cosmological questions is whether we live in an open or closed universe. From various
measurements we seem to get conflicting indications about the mass density of (parts of) the universe. It
seems that the ration of luminous to non-luminous matter is rather small. Where is all that “dark mass”:
Mini-jupiters, small planetoids, dust, or new particles....

2.12.4 (Solar) Neutrinos

The neutrino is a very interesting particle. Even though we believe that we understand the nuclear physics
of the sun, the number of neutrinos emitted from the sun seems to anomalously small. Unfortunately this
is very hard to measure, and one needs quite a few different experiments to disentangle the physics behind
these processes. Such experiments are coming on line in the next few years. These can also look at neutrinos
coming from other astrophysical sources, such as supernovas, and enhance our understanding of those processes.
Current indications from Kamiokande are that neutrinos do have mass, but oscillation problems still need to
be resolved.
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Chapter 3

Experimental tools

In this chapter we shall concentrate on the experimental tools used in nuclear and particle physics. Mainly
the present ones, but it is hard to avoid discussing some of the history.

3.1 Accelerators

3.1.1 Resolving power

Both nuclear and particle physics experiments are typically performed at accelerators, where particles are
accelerated to extremely high energies, in most cases relativistic (i.e., v & ¢). To understand why this happens
we need to look at the role the accelerators play. Accelerators are nothing but extremely big microscopes. At
ultrarelativistic energies it doesn’t really matter what the mass of the particle is, its energy only depends on
the momentum:

E = hv = /m2c* + p?c? =~ pc (3.1)
from which we conclude that "
c
A= =_. 3.2
o= (32)

The typical resolving power of a microscope is about the size of one wave-length, A. For an an ultrarelativistic

particle this implies an energy of
c

A

You may not immediately appreciate the enormous scale of these energies. An energy of 1 TeV (= 10'2eV) is

E=pc=h (3.3)

Table 3.1: Size and energy-scale for various objects

particle scale energy
atom 10~ 0m 2 keV
nucleus 10~ 4m 20 MeV
nucleon 10~ m 200 MeV
quark? < 107®¥m >200 GeV

3 x 1077 J, which is the same as the kinetic energy of a 1g particle moving at 1.7 cm/s. And that for particles
that are of submicroscopic size! We shall thus have to push these particles very hard indeed to gain such
energies. In order to push these particles we need a handle to grasp hold of. The best one we know of is to
use charged particles, since these can be accelerated with a combination of electric and magnetic fields — it is
easy to get the necessary power as well.

3.1.2 Types

We can distinguish accelerators in two ways. One is whether the particles are accelerated along straight lines
or along (approximate) circles. The other distinction is whether we used a DC (or slowly varying AC) voltage,
or whether we use radio-frequency AC voltage, as is the case in most modern accelerators.
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3.1.3 DC fields

Acceleration in a DC field is rather straightforward: If we have two plates with a potential V' between them,
and release a particle near the plate at lower potential it will be accelerated to an energy %va = eV. This
was the original technique that got Cockroft and Wolton their Nobel prize.

van der Graaff generator

A better system is the tandem van der Graaff generator, even though this technique is slowly becoming obsolete
in nuclear physics (technological applications are still very common). The idea is to use a (non-conducting)
rubber belt to transfer charge to a collector in the middle of the machine, which can be used to build up
sizeable (20 MV) potentials. By sending in negatively charged ions, which are stripped of (a large number of)
their electrons in the middle of the machine we can use this potential twice. This is the mechanism used in
part of the Daresbury machine.

In: Negatively charged ions

-

s ES )

collector stripper foil
terminal

belt
@
— ==
electron spray é Out: Positively charged ions

Figure 3.1: A sketch of a tandem van der Graaff generator

Other linear accelerators

Linear accelerators (called Linacs) are mainly used for electrons. The idea is to use a microwave or radio
frequency field to accelerate the electrons through a number of connected cavities (DC fields of the desired
strength are just impossible to maintain). A disadvantage of this system is that electrons can only be ac-
celerated in tiny bunches, in small parts of the time. This so-called “duty-cycle”, which is small (less than
a percent) makes these machines not so beloved. It is also hard to use a linac in colliding beam mode (see
below).

There are two basic setups for a linac. The original one is to use elements of different length with a fast
oscillating (RF) field between the different elements, designed so that it takes exactly one period of the field to
traverse each element. Matched acceleration only takes place for particles traversing the gaps when the field
is almost maximal, actually sightly before maximal is OK as well. This leads to bunches coming out.

More modern electron accelerators are build using microwave cavities, where standing microwaves are
generated. Such a standing wave can be thought of as one wave moving with the electron, and another moving
the other wave. If we start of with relativistic electrons, v = ¢, this wave accelerates the electrons. This
method requires less power than the one above.

Cyclotron

The original design for a circular accelerator dates back to the 1930’s, and is called a cyclotron. Like all circular
accelerators it is based on the fact that a charged particle (charge ge) in a magnetic field B with velocity v
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Figure 3.2: A sketch of a linac

Figure 3.3: Acceleration by a standing wave

moves in a circle of radius r, more precisely

ymuv?

B =——, (3.4)

where ym is the relativistic mass, v = (1 — 32)~/2, 8 = v/c. A cyclotron consists of two metal “D”-rings,
in which the particles are shielded from electric fields, and an electric field is applied between the two rings,
changing sign for each half-revolution. This field then accelerates the particles.

Figure 3.4: A sketch of a cyclotron

The field has to change with a frequency equal to the angular velocity,

oo v 9B (3.5)

o 2mr 2nym’

For non-relativistic particles, where v &~ 1, we can thus run a cyclotron at constant frequency, 15.25 MHz/T
for protons. Since we extract the particles at the largest radius possible, we can determine the velocity and
thus the energy,

E = ymc® = [(¢gBRc)? + m2c')'/? (3.6)

Synchroton

The shear size of a cyclotron that accelerates particles to 100 GeV or more would be outrageous. For that
reason a different type of accelerator is used for higher energy, the so-called synchroton where the particles are
accelerated in a circle of constant diameter.
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magnet
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Figure 3.5: A sketch of a synchroton

In a circular accelerator (also called synchroton), see Fig. 3.5, we have a set of magnetic elements that
bend the beam of charged into an almost circular shape, and empty regions in between those elements where
a high frequency electro-magnetic field accelerates the particles to ever higher energies. The particles make
many passes through the accelerator, at every increasing momentum. This makes critical timing requirements
on the accelerating fields, they cannot remain constant.

Using the equations given above, we find that

= ¢B  ¢Bc qBc? .
C 2mym 2mE 2m(m2ct + q2B2R2¢2)1/2 -
For very high energy this goes over to
c
=— FE=qB )
1= 5 qBRc, (3.8)

so we need to keep the frequency constant whilst increasing the magnetic field. In between the bending
elements we insert (here and there) microwave cavities that accelerate the particles, which leads to bunching,
i.e., particles travel with the top of the field.

So what determines the size of the ring and its maximal energy? There are two key factors:
As you know, a free particle does not move in a circle. It needs to be accelerated to do that. The magnetic
elements take care of that, but an accelerated charge radiates — That is why there are synchroton lines
at Daresbury! The amount of energy lost through radiation in one pass through the ring is given by (all
quantities in ST units)
A @233
360 R
with 8 = v/¢, v =1/4/1 — 52, and R is the radius of the accelerator in meters. In most cases v = ¢, and we
can replace 8 by 1. We can also use one of the charges to re-express the energy-loss in eV:

4 gyt aT q E N\
AF~ —— AF~ ——=— | — | . 3.10
3¢ R 3eg R \ mc? ( )

AE = (3.9)

Thus the amount of energy lost is proportional to the fourth power of the relativistic energy, E = ymc?. For
an electron at 1 TeV energy 7 is

E 1012
. = = =19 x 10° 11
Ye= @ T s X (3.11)
and for a proton at the same energy
E 102
Yp = = =1.1x10° (3.12)

mpc? 939 x 106

This means that a proton looses a lot less energy than an electron (the fourth power in the expression shows
the difference to be 10'2!). Let us take the radius of the ring to be 5 km (large, but not extremely so). We
find the results listed in table 3.1.3.

The other key factor is the maximal magnetic field. From the standard expression for the centrifugal force
we find that the radius R for a relativistic particle is related to it’s momentum (when expressed in GeV/c) by

p=0.3BR (3.13)

For a standard magnet the maximal field that can be reached is about 1T, for a superconducting one 5T. A
particle moving at p = 1TeV /c = 1000GeV /c requires a radius of
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Table 3.2: Energy loss for a proton or electron in a synchroton of radius 5km

proton E AE
1 GeV 1.5 x 10711 eV
10 GeV 1.5 x 1077 eV
100 GeV 1.5 x 1073 eV
1000 GeV 1.5 x 10! eV
electron F AF
1 GeV 2.2 x 10% eV
10 GeV 2.2 MeV
100 GeV 22 GeV
1000 GeV 2.2 x 105 GeV

Table 3.3: Radius R of an synchroton for given magnetic fields and momenta.

B P R

1T 1GeV/c 3.3 m
10 GeV/c 33 m
100 GeV/c 330 m
1000 GeV/c 3.3 km

5T 1GeV/c 0.66 m
10 GeV/c 6.6 m
100 GeV/c 66 m
1000 GeV/c 660 m

3.2 Targets

There are two ways to make the necessary collisions with the accelerated beam: Fixed target and colliding
beams.

In fixed target mode the accelerated beam hits a target which is fixed in the laboratory. Relativistic
kinematics tells us that if a particle in the beam collides with a particle in the target, their centre-of-mass
(four) momentum is conserved. The only energy remaining for the reaction is the relative energy (or energy
within the cm frame). This can be expressed as

Ecy = [m2c* + m2c* + 2m, 2B, (3.14)

where m;, is the mass of a beam particle, m; is the mass of a target particle and F, is the beam energy as
measured in the laboratory. as we increase Ej we can ignore the first tow terms in the square root and we

find that
Ecy =~ v/ 2muc?Ey, (3.15)

and thus the centre-of-mass energy only increases as the square root of the lab energy!

In the case of colliding beams we use the fact that we have (say) an electron beam moving one way, and a
positron beam going in the opposite direction. Since the centre of mass is at rest, we have the full energy of
both beams available,

Ecy = 2F5. (3.16)
This grows linearly with lab energy, so that a factor two increase in the beam energy also gives a factor two

increase in the available energy to produce new particles! We would only have gained a factor v/2 for the case
of a fixed target. This is the reason that almost all modern facilities are colliding beams.

3.3 The main experimental facilities

Let me first list a couple of facilities with there energies, and then discuss the facilities one-by-one.
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Table 3.4: Fixed target facilities, and their beam energies

accelerator  facility particle energy
KEK Tokyo P 12 GeV
SLAC Stanford e~ 25GeV
PS CERN p 28 GeV

AGS BNL » 32 GeV

SPS CERN p 250 GeV

Tevatron II  FNL D 1000 GeV

Table 3.5: Colliding beam facilities, and their beam energies
accelerator  facility particle & energy (in GeV)

CESR Cornell €™ (6) + e (6)
PEP Stanford et (15) + e (15)
Tristan KEK et (32) + e (32)
SLC Stanford et (50) + e~ (50)
LEP CERN €™ (60) + e (60)
SppS CERN  p(450) + 5(450)
Tevatron I  FNL p(1000) + p(1000)
LHC CERN e (50) + p(8000)

p(8000) + H(8000)

3.3.1 SLAC (B factory, Babar)

Stanford Linear Accelerator Center, located just south of San Francisco, is the longest linear accelerator in
the world. It accelerates electrons and positrons down its 2-mile length to various targets, rings and detectors
at its end. The PEP ring shown is being rebuilt for the B factory, which will study some of the mysteries of
antimatter using B mesons. Related physics will be done at Cornell with CESR and in Japan with KEK.

3.3.2 Fermilab (D0 and CDF)

Fermi National Accelerator Laboratory, a high-energy physics laboratory, named after particle physicist pioneer
Enrico Fermi, is located 30 miles west of Chicago. It is the home of the world’s most powerful particle
accelerator, the Tevatron, which was used to discover the top quark.

3.3.3 CERN (LEP and LHC)

CERN (European Laboratory for Particle Physics) is an international laboratory where the W and Z bosons
were discovered. CERN is the birthplace of the World-Wide Web. The Large Hadron Collider (see below) will
search for Higgs bosons and other new fundamental particles and forces.

3.3.4 Brookhaven (RHIC)

Brookhaven National Laboratory (BNL) is located on Long Island, New York. Charm quark was discovered
there, simultaneously with SLAC. The main ring (RHIC) is 0.6 km in radius.

3.3.5 Cornell (CESR)

The Cornell Electron-Positron Storage Ring (CESR) is an electron-positron collider with a circumference of
768 meters, located 12 meters below the ground at Cornell University campus. It is capable of producing
collisions between electrons and their anti-particles, positrons, with centre-of-mass energies between 9 and 12
GeV. The products of these collisions are studied with a detection apparatus, called the CLEO detector.

3.3.6 DESY (Hera and Petra)

The DESY laboratory, located in Hamburg, Germany, discovered the gluon at the PETRA accelerator. DESY
consists of two accelerators: HERA and PETRA. These accelerators collide electrons and protons.
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Figure 3.6: A picture of SLAC
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Figure 3.7: A picture of fermilab

3.3.7 KEK (tristan)

The KEK laboratory, in Japan, was originally established for the purpose of promoting experimental studies
on elementary particles. A 12 GeV proton synchrotron was constructed as the first major facility. Since its
commissioning in 1976, the proton synchrotron played an important role in boosting experimental activities
in Japan and thus laid the foundation of the next step of KEK’s high energy physics program, a 30 GeV
electron-positron colliding-beam accelerator called TRISTAN.

3.3.8 IHEP

Institute for High-Energy Physics, in the People’s Republic of China, performs detailed studies of the tau
lepton and charm quark.

3.4 Detectors

Detectors are used for various measurements on the physical processes occurring in particle physics. The most
important of those are

e To identify particles.
e To measure positions.

e To measure time differences.
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Figure 3.8: A picture of CERN

e To measure momentum.
e To measure energy.

Let me now go over some of the different pieces of machinery used to perform such measurements

3.4.1 Scintillation counters

This is based on the fact that charged particles traversing solids excite the electrons in such materials. In some
solids light is then emitted. This light can be collected and amplified by photomultipliers. This technique has
a very fast time response, of about 200 ps. For this reason one uses scintillators as “trigger”. This means
that a pulse from the scintillator is used to say that data should now be accepted from the other pieces of
equipment.

Another use is to measure time-of-flight. When one uses a pair of scintillation detectors, one can measure
the time difference for a particle hitting both of them, thus determining a time difference and velocity. This
is only useful for slow particles, where v differs from ¢ by a reasonable amount.

3.4.2 Proportional/Drift Chamber

Once again we use charged particles to excite electrons. We now use a gas, where the electrons get liberated.
We then use the fact that these electrons drift along electric field lines to collect them on wires. If we have
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Figure 3.9: A picture of Brookhaven National Lab

many such wires, we can see where the electrons were produced, and thus measure positions with an accuracy
of 500 pum or less.

3.4.3 Semiconductor detectors

Using modern techniques we can etch very fine strips on semiconductors. We can easily have multiple layers
of strips running along different directions as well. These can be used to measure position (a hit in a certain
set of strips). Typical resolutions are 5 um. A problem with such detectors is so-called radiation damage, due
to the harsh environment in which they are operated.

3.4.4 Spectrometer

One uses a magnet with a position sensitive detector at the end to bend the track of charged particles, and
determine the radius of the circular orbit. This radius is related to the momentum of the particles.

3.4.5 Cerenkov Counters

These are based on the analogue of a supersonic boom. When a particles velocity is higher than the speed
of light in medium, v > ¢/n, where n is the index of refraction we get a shock wave. As can be seen in Fig.
3.14a) for slow motion the light emitted by a particle travels faster than the particle (the circles denote how
far the light has travelled). On the other hand, when the particle moves faster than the speed of light, we
get a linear wave-front propagating through the material, as sketched in Fig. 3.14b. The angle of this wave
front is related to the speed of the particles, by cos 8 = 5%1 Measuring this angle allows us to determine speed
(a problem here is the small number of photons emitted). This technique is extremely useful for threshold
counters, because if we see any light, we know that the velocity of particles is larger than ¢/n.

3.4.6 Transition radiation

3.4.7 Calorimeters
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Figure 3.10: A picture of the Cornell accelerator
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Figure 3.11: A picture of HERA
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Figure 3.12: A picture of KEK

Figure 3.13: A picture of IHEP
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Figure 3.14: Cerenkov radiation



Chapter 4

Nuclear Masses

4.1 Experimental facts

1. Each nucleus has a (positive) charge Ze, and integer number times the elementary charge e. This follows
from the fact that atoms are neutral!

2. Nuclei of identical charge come in different masses, all approximate multiples of the “nucleon mass”. (Nu-
cleon is the generic term for a neutron or proton, which have almost the same mass, m, = 938.272MeV/ c?,
my, = MeV/c?.) Masses can easily be determined by analysing nuclei in a mass spectrograph which can
be used to determine the relation between the charge Z (the number of protons, we believe) vs. the
mass.

Nuclei of identical charge (chemical type) but different mass are called isotopes. Nuclei of approximately the
same mass, but different chemical type, are called isobars.

4.1.1 mass spectrograph

A mass spectrograph is a combination of a bending magnet, and an electrostatic device (to be completed).

4.2 Interpretation

We conclude that the nucleus of mass m =~ Amy contains Z positively charged nucleons (protons) and
N = A — Z neutral nucleons (neutrons). These particles are bound together by the “nuclear force”, which
changes the mass below that of free particles. We shall typically write 4El for an element of chemical type El,
which determines Z, containing A nucleons.

4.3 Deeper analysis of nuclear masses
To analyse the masses even better we use the atomic mass unit (amu), which is 1/12th of the mass of the
neutral carbon atom,
1
1 amu = T3mzc: (4.1)

This can easily be converted to SI units by some chemistry. One mole of 2C weighs 0.012 kg, and contains
Avogadro’s number particles, thus

0.001
A

1 amu =

kg = 1.66054 x 10727 kg = 931.494MeV /c2. (4.2)

The quantity of most interest in understanding the mass is the binding energy, defined for a neutral atom
as the difference between the mass of a nucleus and the mass of its constituents,

B(A,Z) = ZMyc® + (A — Z)M,,¢* — M(A, Z)c2. (4.3)

With this choice a system is bound when B > 0, when the mass of the nucleus is lower than the mass of its
constituents. Let us first look at this quantity per nucleon as a function of A, see Fig. 4.1
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Figure 4.1: B/A versus A

This seems to show that to a reasonable degree of approximation the mass is a function of A alone, and
furthermore, that it approaches a constant. This is called nuclear saturation. This agrees with experiment,
which suggests that the radius of a nucleus scales with the 1/3rd power of A,

Rrus ~ 1.1AY3 fm. (4.4)

This is consistent with the saturation hypothesis made by Gamov in the 30’s:

As A increases the volume per nucleon remains constant.

For a spherical nucleus of radius R we get the condition

4
§7TR3 = AV, (4.5)
or s
R = <V13) A3, (4.6)
47
From which we conclude that
Vi = 5.5 fm3 (4.7)

4.4 Nuclear mass formula

There is more structure in Fig. 4.1 than just a simple linear dependence on A. A naive analysis suggests that
the following terms should play a role:

1. Bulk energy: This is the term studied above, and saturation implies that the energy is proportional to
Byuk = aA.

2. Surface energy: Nucleons at the surface of the nuclear sphere have less neighbours, and should feel less
attraction. Since the surface area goes with R?, we find Bgurface = —5A.

3. Pauli or symmetry energy: nucleons are fermions (will be discussed later). That means that they
cannot occupy the same states, thus reducing the binding. This is found to be proportional to Bsymm =
—y(N/2 — Z/2)? A%

4. Coulomb energy: protons are charges and they repel. The average distance between is related to the
radius of the nucleus, the number of interaction is roughly Z2 (or Z(Z — 1)). We have to include the
term Bcoy = —€Z2/A.

Taking all this together we fit the formula

B(A,Z) = aA — BA?3 — (A2 — Z)?A7Y — eZ2A47Y/3 (4.8)
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Table 4.1: Fit of masses to Eq. (4.8)

parameter value

« 15.36 MeV
8 16.32 MeV
¥ 90.45 MeV
€ 0.6928 MeV

100

80

60

20

Figure 4.2: Difference between fitted binding energies and experimental values, as a function of N and Z.

to all know nuclear binding energies with A > 16 (the formula is not so good for light nuclei). The fit results

are given in table 4.1.
In Fig. 4.3 we show how well this fit works. There remains a certain amount of structure, see below, as well

as a strong difference between neighbouring nuclei. This is due to the superfluid nature of nuclear material:
nucleons of opposite momenta tend to anti-align their spins, thus gaining energy. The solution is to add a
pairing term to the binding energy,

(4.9)

B A~12 for N odd, Z odd
patt —A"1Y2 for N even, Z even

The results including this term are significantly better, even though all other parameters remain at the same
position, see Table 4.2. Taking all this together we fit the formula

B(A,Z) = aA — BA*? —y(A)2 — Z)?A7™Y — 6Bpain(A, Z) — €22 A71/3 (4.10)

4.5 Stability of nuclei

In figure 4.5 we have colour coded the nuclei of a given mass A = N + Z by their mass, red for those of
lowest mass through to magenta for those of highest mass. We can see that typically the nuclei that are most
stable for fixed A have more neutrons than protons, more so for large A increases than for low A. This is the
“neutron excess”.

Table 4.2: Fit of masses to Eq. (4.10)

parameter value

15.36 MeV
16.32 MeV
90.46 MeV
11.32 MeV
0.6929 MeV

" 2 ®» R
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Figure 4.4: B/A versus A, mass formula subtracted

Figure 4.5: The valley of stability
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Figure 4.6: A cross section through the mass table for fixed A. To the left, A = 56, and to the right, A = 150.

4.5.1 [ decay

If we look at fixed nucleon number A, we can see that the masses vary strongly,
It is known that a free neutron is not a stable particle, it actually decays by emission of an electron and
an antineutrino,
n—p+e + . (4.11)

The reason that this reaction can take place is that it is endothermic, m,c? > mp02 + mec2. (Here we assume
that the neutrino has no mass.) The degree of allowance of such a reaction is usually expressed in a @ value,
the amount of energy released in such a reaction,

Q = muc® — mpc® —mec® = 939.6 — 938.3 — 0.5 = 0.8 MeV. (4.12)

Generically it is found that two reaction may take place, depending on the balance of masses. Either a neutron
“B decays” as sketched above, or we have the inverse reaction

p—nt+et + v (4.13)

For historical reason the electron or positron emitted in such a process is called a § particle. Thus in 6~ decay
of a nucleus, a nucleus of Z protons and N neutrons turns into one of Z + 1 protons and N — 1 neutrons
(moving towards the right in Fig. 4.6). In 8 decay the nucleus moves to the left. Since in that figure I am
using atomic masses, the @ factor is

Qs- = M(AZ)P?~ M(A Z+1)c
Qs- = M(A Z)* - M(A,Z—1)c® — 2mec?. (4.14)

The double electron mass contribution in this last equation because the atom looses one electron, as well as
emits a positron with has the same mass as the electron.

In similar ways we can study the fact whether reactions where a single nucleon (neutron or proton) is
emitted, as well as those where more complicated objects, such as Helium nuclei (« particles) are emitted. I
shall return to such processed later, but let us note the @ values,

Z) = M(A—1,2) —m,)c?,

)= M(A—1,Z—1) - M(1,1))c?
) — M(

) — M(

neutron emission Q=(M(A
proton emission
M(A—4,7Z —2) — M(4,2))c?

Q
« emission Q=
Q A— A, 7~ 7)) — M(Ay, Zy))c2. (4.15)

break up

4.6 properties of nuclear states

Nuclei are quantum systems, and as such must be described by a quantum Hamiltonian. Fortunately nuclear
energies are much smaller than masses, so that a description in terms of non-relativistic quantum mechanics
is possible. Such a description is not totally trivial since we have to deal with quantum systems containing
many particles. Rather then solving such complicated systems, we often resort to models. We can establish,
on rather general grounds, that nuclei are
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Figure 4.7: A pictorial representation of the “quantum precession” of an angular momentum of fixed length L
and projection M.

4.6.1 quantum numbers

As in any quantum system there are many quantum states in each nucleus. These are labelled by their quantum
numbers, which, as will be shown later, originate in symmetries of the underlying Hamiltonian, or rather the
underlying physics.

angular momentum

One of the key invariances of the laws of physics is rotational invariance, i.e., physics is independent of the
direction you are looking at. This leads to the introduction of a vector angular momentum operator,

L=#xp, (4.16)

which generates rotations. As we shall see later quantum states are not necessarily invariant under the rotation,
but transform in a well-defined way. The three operators L,, L, and L, satisfy a rather intriguing structure,

Ly, Ly) = LyLy — LyL, =ihL., (4.17)

and the same for q cyclic permutation of indices (xyz — yzzx or zay). This shows that we cannot determine all
three components simultaneously in a quantum state. One normally only calculates the length of the angular
momentum vector, and its projection on the z axis,

P
L¢ry = PL(L+1)épu,
L.ppm = hL.¢rm- (4.18)

It can be shown that L is a non-negative integer, and M is an integer satisfying |M| < L, i.e., the projection
is always smaller than or equal to the length, a rather simple statement in classical mechanics.

The standard, albeit slightly simplified, picture of this process is that of a fixed length angular momentum
precessing about the z axis, keeping the projection fixed, as shown in Fig. 4.7.

The energy of a quantum state is independent of the M quantum number, since the physics is independent
of the orientation of L in space (unless we apply a magnetic field that breaks this symmetry). We just find
multiplets of 2L + 1 states with the same energy and value of L, differing only in M.

Unfortunately the story does not end here. Like electrons, protons and neutron have a spin, i.e., we can use
a magnetic field to separate nucleons with spin up from those with spin down. Spins are like orbital angular
momenta in many aspects, we can write three operators S that satisfy the same relation as the ﬁ’s, but we
find that

~2 3
S ¢s,5. = ﬁzzqﬁs,sz, (4.19)

i.e., the length of the spin is 1/2, with projections +1/2.
Spins will be shown to be coupled to orbital angular momentum to total angular momentum J,

J=L+8, (4.20)

and we shall specify the quantum state by L, S, J and J,. This can be explained pictorially as in Fig. 4.8.
There we show how, for fixed length J the spin and orbital angular momentum precess about the vector J,
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Figure 4.8: A pictorial representation of the vector addition of spin and orbital angular momentum.

which in its turn precesses about the z-axis. It is easy to see that if vecL and S are fully aligned we have
J =L+ S, and if they are anti-aligned J = |L — S|. A deeper quantum analysis shows that this is the way the
quantum number work. If the angular momentum quantum numbers of the states being coupled are L and .S,
the length of the resultant vector J can be

J=|L-S|,|[L-S|+2,...,L+8. (4.21)

We have now discussed the angular momentum quantum number for a single particle. For a nucleus which
in principle is made up from many particles, we have to add all these angular momenta together until we
get something called the total angular momentum. Since the total angular momentum of a single particle is

half-integral (why?), the total angular momentum of a nucleus is integer for even A, and half-integer for odd
A.

Parity

Another symmetry of the wave function is parity. If we change » — —r, i.e., mirror space, the laws of physics
are invariant. Since we can do this operation twice and get back where we started from, any eigenvalue of this
operation must be +1, usually denoted as Il = 4. It can be shown that for a particle with orbital angular
momentum L, IT = (—1)%. The parity of many particles is just the product of the individual parities.

isotopic spin (Isobaric spin, isospin)

The most complicated symmetry in nuclear physics is isospin. In contrast to the symmetries above this is
not exact, but only approximate. The first clue of this symmetry come from the proton and neutron masses,
m, = MeV/c? and m, = MeV/c?, and their very similar behaviour in nuclei. Remember that the dominant
binding terms only depended on the number of nucleons, not on what type of nucleons we are dealing with.

All of this leads to the assumption of another abstract quantity, called isospin, which describes a new
symmetry of nature. We assume that both neutrons and protons are manifestation of one single particle, the
nucleon, with isospin down or up, respectively. We shall have to see whether this makes sense by looking in
more detail at the nuclear physics. We propose the identification

Q=(.+1/2)e, (4.22)

where I, is the z projection of the vectorial quantity called isospin. Apart from the neutron-proton mass
difference, isospin symmetry in nuclei is definitely broken by the Coulomb force, which acts on protons but not
on neutrons. We shall argue that the nuclear force, that couples to the “nucleon charge” rather than electric
charge, respects this symmetry. What we shall do is look at a few nuclei where we can study both a nucleus
and its mirror image under the exchange of protons and neutrons. One example are the nuclei "He and "B (2
protons and 5 neutrons, I, = —3/2 vs. 5 protons and 2 neutrons, I, = 3/2) and "Li and "B (3 protons and 4
neutrons, I, = —1/2 vs. 4 protons and 3 neutrons, I, = 1/2), as sketched in Fig. 4.9.

We note there the great similarity between the pairs of mirror nuclei. Of even more importance is the fact
that the 3/27;3/2 level occurs at the same energy in all four nuclei, suggestion that we can define these states
as an “isospin multiplet”, the same state just differing by I,.

4.6.2 deuteron

Let us think of the deuteron (initially) as a state with L =0, J =1, S = 1, usually denoted as 3S; (S means
L =0, the 3 denotes S = 1, i.e., three possible spin orientations, and the subscript 1 the value of J). Let us
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Figure 4.9: The spectrum of the nuclei with A = 7. The label of each state is J, parity, isospin. The zeroes of
energy were determined by the relative nuclear masses.

model the nuclear force as a three dimensional square well with radius R. The Schrédinger equation for the
spherically symmetric S state is (work in radial coordinates)

h21<d2d

R0 )+ VIOR() = ERO) (423)

~on 7
Here V(r) is the potential, and p is the reduced mass,

My My
= My 4.24
S (4.24)
which arrises from working in the relative coordinate only. It is easier to work with u(r) = rR(r), which

satisfies the condition

h2 d2
—ﬂﬁu(r) + V(r)u(r) = Eu(r), (4.25)
as well as u(0) = 0. The equation in the interior
h? d?
—ﬂﬁu(r)vou(r) = Eu(r), u(0) =0 (4.26)

has as solution

2
u= Asinkr, k= ,/h—’;(VﬁE). (4.27)

Outside the well we find the standard damped exponential,

Viiir

u = Bexp(kr), k
Matching derivatives at the boundary we find
k

—cotkR = —
K

(4.29)

We shall now make the assumption that |E| < Vp, which will prove true. Then we find

2
K~ ,/hfg‘vo, cot kR ~ 0. (4.30)

Since it is known from experiment that the deuteron has only one bound state at energy —2.224573 +
0.000002 MeV, we see that kR = 7/2! Substituting x we see that
2h2
VoR2 =T (4.31)
81
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Figure 4.10: Possible form for the internucleon potential, repulsive at short distances, and attractive at large
distances.

If we take Vo = 30 MeV, we find R = 1.83 fm.
We can orient the spins of neutron and protons in a magnetic field, i.e., we find that there is an energy

Eragn = pnpS - B. (4.32)
(The units for this expression is the so-called nuclear magneton, uy = 2‘;’} .) Experimentally we know that
P
= —1.91315 £ 0.00007 5 tp = 2.79271 £ 0.00002 5 (4.33)

If we compare the measured value for the deuteron, pg = 0.857411 £ 0.000019x, with the sum of protons
and neutrons (spins aligned), we see that u, + p, = 0.857956 £ 0.00007ux. The close agreement suggest that
the spin assignment is largely OK; the small difference means that our answer cannot be the whole story: we
need other components in the wave function.

We know that an S state is spherically symmetric and cannot have a quadrupole moment, i.e., it does not
have a preferred axis of orientation in an electric field. It is known that the deuteron has a positive quadrupole
moment of 0.29¢2 fm?, corresponding to an elongation of the charge distribution along the spin axis.

From this we conclude that the deuteron wave function carries a small (7%) component of the 2D state
(D: L = 2). We shall discuss later on what this means for the nuclear force.

4.6.3 Scattering of nucleons

We shall concentrate on scattering in an L = 0 state only, further formalism just gets too complicated. For
definiteness I shall just look at the scattering in the 3S; channel, and the 1Sy one. (These are also called the
triplet and singlet channels.)

(not discussed this year! Needs some filling in.)

4.6.4 Nuclear Forces

Having learnt this much about nuclei, what can we say about the nuclear force, the attraction that holds nuclei
together? First of all, from Rutherford’s old experiments on « particle scattering from nuclei, one can learn
that the range of these forces is a few fm.

From the fact that nuclei saturate, and are bound, we would then naively build up a picture of a potential
that is strongly repulsive at short distances, and shows some mild attraction at a range of 1-2 fm, somewhat
like sketched in Fig. 4.10.

Here we assume, that just as the Coulomb force can be derived from a potential that only depends on the
size of r,

4192

Vir)= , 4.34

()= Treor (4.34)

the nuclear force depends only on r as well. This is the simplest way to construct a rotationally invariant

energy. For particles with spin other possibilities arise as well (e.g., S - ) so how can we see what the nuclear
force is really like?

Since we have taken the force to connect pairs of particles, we can just study the interaction of two nucleons,

by looking both at the bound states (there is only one), and at scattering, where we study how a nucleon gets
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deflected when it scatters of another nucleon. Let us first look at the deuteron, the bound state of a proton
and a neutron. The quantum numbers of its ground state are J™ = 17, I = 0. A little bit of additional
analysis shows that this is a state with S = 1, and L = 0 or 2. Naively one would expect a lowest state S = 0,
L = 0 (which must have I = for symmetry reasons not discussed here). So what can we read of about the
nuclear force from this result?

We conclude the following;:

1. The nuclear force in the S waves is attractive.
2. Nuclear binding is caused by the tensor force.

3. The nuclear force is isospin symmetric (i.e., it is independent of the direction of isospin).



Chapter 5

Nuclear models

There are two important classed of nuclear models: single particle and microscopic models, that concentrate
on the individual nucleons and their interactions, and collective models, where we just model the nucleus as a
collective of nucleons, often a nuclear fluid drop.

Microscopic models need to take into account the Pauli principle, which states that no two nucleons can
occupy the same quantum state. This is due to the Fermi-Dirac statistics of spin 1/2 particles, which states
that the wave function is antisymmetric under interchange of any two particles

5.1 Nuclear shell model

The simplest of the single particle models is the nuclear shell model. It is based on the observation that
the nuclear mass formula, which describes the nuclear masses quite well on average, fails for certain “magic
numbers”, i.e., for neutron number N = 20, 28,50, 82,126 and proton number Z = 20, 28, 50, 82, as indicated
if Fig. xxxx. These nuclei are much more strongly bound than the mass formula predicts, especially for the
doubly magic cases, i.e., when N and Z are both magic. Further analysis suggests that this is due to a shell
structure, as has been seen in atomic physics.

5.1.1 Mechanism that causes shell structure

So what causes the shell structure? In atoms it is the Coulomb force of the heavy nucleus that forces the
electrons to occupy certain orbitals. This can be seen as an external agent. In nuclei no such external force
exits, so we have to find a different mechanism.

The solution, and the reason the idea of shell structure in nuclei is such a counter-intuitive notion, is
both elegant and simple. Consider a single nucleon in a nucleus. Within this nuclear fluid we can consider the
interactions of each of the nucleons with the one we have singled out. All of these nucleons move rather quickly
through this fluid, leading to the fact that our nucleons only sees the average effects of the attraction of all
the other ones. This leads to us replacing, to first approximation, this effect by an average nuclear potential,
as sketched in Fig. 5.1.

Thus the idea is that the shell structure is caused by the average field of all the other nucleons, a very
elegant but rather surprising notion!

Figure 5.1: A sketch of the averaging approximation

41
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Figure 5.2: A schematic representation of the shell structure in nuclei.

5.1.2 Modeling the shell structure

Whereas in atomic physics we solve the Coulomb force problem to get the shell structure, we expect that in
nuclei the potential is more attractive in the centre, where the density is highest, and less attractive near the
surface. There is no reason why the attraction should diverge anywhere, and we expect the potential to be
finite everywhere. One potential that satisfies these criteria, and can be solved analytically, is the Harmonic
oscillator potential. Let us use that as a first model, and solve

2
o A(r) + b (r) = B(r). (5.1)

The easiest way to solve this equation is to realise that, since r? = 22 + 3% + 22, the Hamiltonian is actually a

sum of an z, y and z harmonic oscillator, and the eigenvalues are the sum of those three oscillators,
Enpngn. = (e +ny +n. +3/2)hw. (5.2)

The great disadvantage of this form is that it ignores the rotational invariance of the potential. If we separate
the Schrédinger equation in radial coordinates as

R (r)Yra (0, ) (5.3)
with Y the spherical harmonics, we find

K219 (28R(T)>+h2L(L+1)

2m r2 Or 72

i R(r) + mw*r*R(r) = E, R(r). (5.4)

In this case it can be shown that
E.. = (2n+ L+ 3/2)hw, (5.5)

and L is the orbital angular momentum of the state. We use the standard, so-called spectroscopic, notation
of s,p,d, f,g,h,i,7,...for L=0,1,2,....

In the left hand side of Fig. 5.2 we have list the number harmonic oscillator quanta in each set of shells.
We have made use of the fact that in the real potentials state of the same number of quanta but different
L are no longer degenerate, but there are groups of shells with big energy gaps between them. This cannot
predict the magic numbers beyond 20, and we need to find a different mechanism. There is one already known
for atoms, which is the so-called spin orbit splitting. This means that the degeneracy in the total angular
momentum (j = L 4+ 1/2) is lifted by an energy term that splits the aligned from anti-aligned case. This is
shown schematically in the right of the figure, where we label the states by n, [ and j. The gaps between the
groups of shells are in reality much larger than the spacing within one shell, making the binding-energy of a
closed-shell nucleus much lower than that of its neighbours.
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Figure 5.3: The spectra for the one-neutron hole nucleus 2°”Pb and the one-particle nucleus 2°°Pb.
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Figure 5.4: The shell structure of the one-neutron hole nucleus 2°“Pb and the one-particle nucleus 2°Pb.

5.1.3 evidence for shell structure

Evidence for the shell structure can be seen in two ways:

1- By looking at nuclear reactions that add a nucleon or remove a nucleon from a closed shell nucleus. The
most sensitive of these are electron knockout reactions, where an electron comes in and an electron and a
proton or neutron escapes, usually denoted as (e, €’p) (e, e'n) reactions. In those we see clear evidence of peaks
at the single particle energies.

2- By looking at nuclei one particle or one hole away from a doubly magic nucleus. As an example look at the
nuclei around 208Pb, as in Fig. 5.3.

In order to understand this figure we need to think a little about the shell structure, as sketched very
schematically in Fig. 5.4: The one neutron-hole nucleus corresponds to taking away a single neutron from the
50-82 shell, and the one neutron particle state to adding a a neutron above the N = 128 shell closure. We can
also understand more clearly why a closed shell nucleus has very few low-energy excited quantum states, since
we would have to create a hole below the closed shell, and promote the nucleon in that shell to an open state
above the closure. This requires an energy that equals the gap in the single-particle energy.

5.2 Collective models

Another, and actually older, way to look at nuclei is as a drop of “quantum fluid”. This ignores the fact that
a nucleus is made up of protons and neutrons, and explains the structure of nuclei in terms of a continuous
system, just as we normally ignore the individual particles that make up a fluid.

5.2.1 Liquid drop model and mass formula

Now we have some basic information about the liquid drop model, let us try to reinterpret the mass formula
in terms of this model; especially as those of a spherical drop of liquid.
As a prime example consider the Coulomb energy. The general energy associated with a charge distribution
is
1)p\T2
ECoulomb = %/Md:srldgTQa (56)
471'607"12
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where the charge distribution is the smeared out charge of the protons,

R
47r/0 p(r)ridr = Ze (5.7)

If we take the charge to be homogeneously distributed p = Ze/(4/37R3), then

ECoulomb =

(27T)(47r)p2 /R/l 72 dry dcos 0 r3dry
0o Joa(

dmeg r? +r2 — 2ryrg cos )1/2

2 R R _ _
- E/ / (ri+72) —|m 7“2|T%d7n17ﬂgdr2
260 0 0 T1T2

02 R R R /R
= — 2/ xzdx/ ydy—/ / |r1 — ra|riradry dro
2¢€0 0 0 o Jo
2 5
mp° R 5
= 22 R15
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77%9e%2  4RS _ e? 3Z72
(47)2R2¢y 15 (4meg 10 R

5.2.2 Equilibrium shape & deformation

Once we picture a nucleus as a fluid, we can ask question about its equilibrium shape. From experimental
data we know that near closed shells nuclei are spherical, i.e., the equilibrium shape is a sphere. When both
the proton and neutron number differ appreciably from the magic numbers, the ground state is often found to
be axially deformed, either prolate (cigar like) or oblate (like a pancake).

A useful analysis to perform is to see what happens when we deform a nucleus slightly, turning it into an
ellipsoid, with one axis slightly longer than the others, keeping a constant volume:

a=R(1+¢€), b=(R(1+e~ V2 (5.9)

The volume is %wabz, and is indeed constant. The surface area of an ellipsoid is more complicated, and we
find

S=or {bQ + abarczme} , (5.10)
where the eccentricity e is defined as
e=[(1-v/a?]"?. (5.11)
For small deformation € we find a much simpler result,
2 2 5
§=drR |1+ 2| (5.12)

and the surface area thus increases for both elongations and contractions. Thus the surface energy increases by
the same factor. There is one competing term, however, since the Coulomb energy also changes, the Coulomb
energy goes down, since the particles are further apart,

€2
ECoulomb - ECoulomb (1 - 5) (513)
We thus find a change in energy of
2 (20423 1 o, 13
DeltaE = € gﬁA - 562 A (5.14)

The spherical shape is stable if AE > 0.

Since it is found that the nuclear fluid is to very good approximation incompressible, the dynamical
excitations are those where the shape of the nucleus fluctuates, keeping the volume constant, as well as
those where the nucleus rotates without changing its intrinsic shape.
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Figure 5.6: Dipole fluctuations of a liquid drop

5.2.3 Collective vibrations

Let us first look at collective vibrations, and for simplicity only at those of a spherical fluid drop. We
can think of a large number of shapes; a complete set can be found by parametrising the surface as r =
> Lo ALMYL M (0, ¢), where Y5 are the spherical harmonics and describe the multipolarity (angular mo-
mentum) of the surface. A few examples are shown in Figs. xxx, where we sketch the effects of monopole
(L =0), dipole (L = 1), quadrupole (L = 2) and octupole (L = 3) modes. Let us investigate these modes in
turn, in the harmonic limit, where we look at small vibrations (small ar,ps) only.

Monopole

The monopole mode, see Fig. 5.5, is the one where the size of the nuclear fluid oscillates, i.e., where the nucleus
gets compressed. Experimentally one finds that the lowest excitation of this type, which in even-even nuclei
carries the quantum number J™ = 0%, occurs at an energy of roughly

Ey ~ 80A~Y3MeV (5.15)

above the ground state. Compared to ordinary nuclear modes, which have energies of a few MeV, these are
indeed high energy modes (15 MeV for A = 216), showing the incompressibility of the nuclear fluid.

Dipole

The dipole mode, Fig. 5.6, by itself is not very interesting: it corresponds to an overall translation of the centre
of the nuclear fluid. One can, however, imagine a two-fluid model where a proton and neutron fluid oscillate
against each other. This is a collective isovector (I = 1) mode. It has quantum numbers J™ = 17, occurs at
an energy of roughly

Ey =~ TTA™Y3MeV (5.16)

above the ground state, close to the monopole resonance. It shows that the neutron and proton fluids stick
together quite strongly, and are hard to separate.

Quadrupole

Quadrupole modes, see Fig. 5.7, are the dominant vibrational feature in almost all nuclei. The very special
properties of the lower multipolarities mean that these are the first modes available for low-energy excitations
in nuclei. In almost all even-even nuclei we find a low-lying state (at excitation energy of less than 1 —2MeV),
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Figure 5.8: Octupole fluctuations of a liquid drop

which carries the quantum numbers J*™ = 2%, and near closed shells we can often distinguish the second
harmonic states as well (three states with quantum numbers J™ = 0%, 2% 47) .

Octupole

Octupole modes, with J™ = 37, see Fig. 5.8, can be seen in many nuclei. In nuclei where shell-structure makes
quadrupole modes occur at very high energies, such as doubly magic nuclei, the octupole state is often the
lowest excited state.

5.2.4 Collective rotations

Once we have created a nucleus with axial deformation, i.e., a nucleus with ellipsoidal shape, but still axial
symmetry about one axis, we can rotate the fluid around one of the non-symmetry axes to generate excitations,
see Fig. 5.9. We cannot do it around a symmtery axis, since the resulting state would just be the same quantum
state as we started with, and therefore the energy cannot change. A rotated state around a non-symmetry
axis is a different quantum state, and therefore we can overlay many of these states, especially with constant
rotational velocity. This is almost like the rotation of a dumbbell, and we can predict the classical spectrum
to be of the form

1
H= ﬁJQ, (5.17)

Figure 5.9: Collective rotation of an axially deformed liquid drop
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Figure 5.11: potential energy for fission

where J is the classical angular momentum. We predict a quantum mechanical spectrum of the form

h2
E.o(J) = ﬁJ(J+ 1), (5.18)
where J is now the angular momentum quantum number. Naively we expect the spectrum to be more
compressed (the moment of inertial is larger) the more elongated the nucleus becomes. It is known that

certain structures in nuclei indeed describe well deformed nuclei, up to super and hyper deformed (axis ratio
from1:1.2to1:2).

5.3 Fission

Once we have started to look at the liquid drop model, we can try to ask the question what it predicts for
fission, where one can use the liquid drop model to good effect. We are studying how a nuclear fluid drop
separates into two smaller ones, either about the same size, or very different in size.

This process is indicated in Fig. 5.10. The liquid drop elongates, by performing either a quadrupole or
octupole type vibration, but it persists until the nucleus falls apart into two pieces. Since the equilibrium
shape must be stable against small fluctuations, we find that the energy must go up near the spherical form,
as sketched in Fig. 5.11.

In that figure we sketch the energy - which is really the potential energy - for separation into two fragments,
R is the fragment distance. As with any of such processes we can either consider classical fission decays for
energy above the fission barrier, or quantum mechanical tunneling for energies below the barrier. The method
used in fission bombs is to use the former, by hitting a ?*>U nucleus with a slow neutron a state with energy
above the barrier is formed, which fissions fast. The fission products are unstable, and emit additional neutrons,
which can give rise to a chain reaction.

The mass formula can be used to give an indication what is going on; Let us look at at the symmetric
fusion of a nucleus. In that case the @ value is

Q= M(A,Z)—2M(A[2,Z/2) (5.19)
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Figure 5.12: The potential energy for alpha decay

Please evaluate this for 226U (92 protons). The mass formula fails in prediciting the asymmetry of fission, the
splitting process is much more likely to go into two unequal fragments.
Missing: Picture of asymmetric fusion.

5.4 Barrier penetration

In order to understand quantum mechanical tunneling in fission it makes sense to look at the simplest fission
process: the emission of a He nucleus, so called « radiation. The picture is as in Fig. 5.12.

Suppose there exists an « particle inside a nucleus at an (unbound) energy > 0. Since it isn’t bound, why
doesn’t it decay immediately? This must be tunneling. In the sketch above we have once again shown the
nuclear binding potential as a square well, but we have included the Coulomb tail,

(Z —2)2¢e2

5.20
dmegr ( )

VCoulomb (T) =

. The hight of the barrier is exactly the coulomb potential at the boundary, which is the nuclear readius,
Re = 1.2A"3 fm, and thus Be = 2.4(Z — 2)A~'/3. The decay probablility across a barrier can be given by
the simple integral expression P = e~27, with

1/2 b
N (2/%;1) /R[V(T)—Ea]l/Qd?"

(2Na)1/2 b 2(Z—2)€2 1/2
S — —FE, dr
h Re depr

2(Z — 2)e?

= o larccos(Ey/Bc) — (Eo/Be)(1 — Eo/Be)], (5.21)
TEQNV

(here v is the velocity associated with E,). In the limit that Be > E,, we find

P=exp [_W—”]

5.22
2607‘1’0 ( )

This shows how sensitive the probability is to Z and v!



Chapter 6

Some basic concepts of theoretical
particle physics

We now come to the first hard part of the class. We’ll try to learn what insights we can gain from the equation
governing relativistic quantum mechanics.

6.1 The difference between relativistic and NR QM

One of the key points in particles physics is that special relativity plays a key réle. As you all know, in
ordinary quantum mechanics we ignore relativity. Of course people attempted to generate equations for
relativistic theories soon after Schrédinger wrote down his equation. There are two such equations, one called
the Klein-Gordon and the other one called the Dirac equation.
The structure of the ordinary Schrédinger equation of a free particle (no potential) suggests what to do.

We can write this equation as

. 1 ., 0

Hy = o—p w—matw. (6.1)
This is clearly a statement of the non-relativistic energy-momentum relation, £ = %va, since a time derivative
on a plane wave brings down a factor energy. Remember, however, that p as an operator also contains
derivatives,

h
p= ;V (6'2)

A natural extension would to use the relativistic energy expression,
0
m2ct + p2c2 ¢ = zhaw. (6.3)

But this is a nonsensical equation, unless we specify how to take the square root of the operator. The first
attempt to circumvent this problem, by Klein and Gordon, was to take the square of the equation,

82
(m?c* 4+ p*c?) Y = 412@ : (6.4)

This is an excellent equation for spin-less particles or spin one particles (bosons), but not to describe fermions
(half-integer spin), since there is no information about spin is in this equation. This needs careful consideration,
since spin must be an intrinsic part of a realtivistic equation!

Dirac realized that there was a way to define the square root of the operator. The trick he used was to
define four matrices «, 3 that each have the property that their square is one, and that they anticommute,

Q0 = I? /65 = I7
a;f+ Ba; =0, aa;+aja; =0 i#j. (6.5)

This then leads to an equation that is linear in the momenta — and very well behaved,

(Bmc? + ca - p)¥ = zh%kﬂ (6.6)
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Note that the minimum dimension for the matrices in which we can satisfy all conditions is 4, and thus ¥ is
a four-vector! This is closely related to the fact that these particles have spin.
Let us investigate this equation a bit further. One of the possible forms of a; and  is

o (0%) -4

where o; are the two-by-two Pauli spin matrices

O R N () ©3)

(These matrices satisfy some very interesting relations. For instance
g109 = 2'0'37 0201 = —iO’3, 0203 = ’iO’h (69)

etc. Furthermore o? = 1.)
Once we know the matrices, we can try to study a plane-wave solution

U(x,t) = u(p)e'Pe—EV/R, (6.10)

(Note that the exponent is a “Lorentz scalar”, it is independent of the Lorentz frame!).
If substitute this solution we find that u(p) satisfies the eigenvalue equation

me? 0 psc p1C — ipacC U1 Uq
0 mc? pic+ipac —pscC u | _p|ue (6.11)
p3c pic — ipac —mc? 0 us Uus '
p1c + ipac —psc 0 —mc? Uy Uy
The eigenvalue problem can be solved easily, and we find the eigenvalue equation
(m?ct +p*c® —E?)? =0 (6.12)
which has the solutions E = £+1/m?2c* + p2c2. The eigenvectors for the positive eigenvalues are
1 0
0 1
, and . , 6.13
pac/ (E +me?) (prc+ ip2c)/(E + me?) (6.13)
(p1c — ipac) /(B +mc?) —psc/(E +mc?)

with similar expressions for the two eigenvectors for the negative energy solutions. In the limit of small
momentum the positive-energy eigenvectors become

1
8 , and (6.14)

O O = O

0

and seem to denote a particle with spin up and down. We shall show that the other two solutions are related
to the occurence of anti-particles (positrons).

Just as photons are the best way to analyze (decompose) the electro-magnetic field, electrons and positrons
are the natural way way to decompose the Dirac field that is the general solution of the Dirac equation.
This analysis of a solution in terms of the particles it contains is called (incorrectly, for historical reasons)
“second quantization”, and just means that there is a natural basis in which we can say there is a state at
energy F, which is either full or empty. This could more correctly be referred to as the “occupation number
representation” which should be familiar from condensed matter physics. This helps us to see how a particle
can be described by these wave equations. There is a remaining problem, however!

6.2 Antiparticles

Both the Klein-Gordon and the Dirac equation have a really nasty property. Since the relativistic energy
relation is quadratic, both equations have, for every positive energy solution, a negative energy solution. We
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Figure 6.1: A schematic picture of the levels in the Dirac equation

don’t really wish to see such things, do we? Energies are always positive and this is a real problem. The
resolution is surprisingly simple, but also very profound — It requires us to look at the problem in a very
different light.

In figure 6.1 we have sketched the solutions for the Dirac equation for a free particle. It has a positive
energy spectrum starting at mc? (you cannot have a particle at lower energy), but also a negative energy
spectrum below —mc?. The interpretation of the positive energy states is natural — each state describes a
particle moving at an energy above mc?. Since we cannot have negative energy states, their interpretation
must be very different. The solution is simple: We assume that in an empty vacuum all negative energy
states are filled (the “Dirac sea”). Excitations relative to the vacuum can now be obtained by adding particles
at positive energies, or creating holes at negative energies. Creating a hole takes energy, so the hole states
appear at positive energies. They do have opposite charge to the particle states, and thus would correspond
to positrons! This shows a great similarity to the behaviour of semiconductors, as you may well know. The
situation is explained in figure 6.2.

Note that we have ignored the infinite charge of the vacuum (actually, we subtract it away assuming
a constant positive background charge.) Removing infinities from calculations is a frequent occurrence in
relativistic quantum theory (RQT). Many unmeasurable quantities become infinite, and we are only interested
in the finite part remaining after removing the infinities. This process is part of what is called renormalisation,
which is a systematic procedure to extract finite information from infinite answers!

6.3 QED: photon couples to efe™

We know that electrons and positrons have charge and thus we need to include electrodynamics in the rela-
tivistic quantum theory of the electron. That is even more clear when we take into account that an electron
and positron can annihilate by emitting two photons (the well-known 511 keV lines),

+

ete” — . (6.15)

Question: Why not one photon?

There is a natural way to describe this coupling, in a so-called Lagrangian approach, which I shall not
discuss here. It teaches us that an electron can emit a photon, as indicated figure 6.3.

The diagrams in figure 6.3 are usually referred to as a Feynman diagrams, and the process depicted in (a) is
usually called Bremsstrahlung, the one in (b) annihilation. With such a diagram comes a recipe for calculating
it (called the Feynman rule). A key point is that energy and momentum are conserved in all reactions. Let us
look at what happens when another nearby electron absorbs the photon, as in figure 6.4

Of course there are two possibilities: The left electron can emit the photon to the right one, or absorb one
that is emitted by the right one. This is related to the time-ordering of interactions. One of the advantages
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E E
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- mc? - mc? ———9e

Figure 6.2: A schematic picture of the occupied and empty levels in the Dirac equation. The promotion of a
particle to an empty level corresponds to the creation of a positron-electron pair, and takes an energy larger
than 2mc?.

of feynman diagrams is that both these possibilities are described in one feynman diagram. Thus the time in
this diagram should only be interpreted in the sense of the external lines, what are the particles in and out.
It is also very economical if we have more and more particles emitted and aborbed.

Since the emitted photon only lives for a short time, At = Ax/c, its energy cannot be determined exactly
due to the uncertainty relation

AEAL > g (6.16)

Thus even though the sum of the initial (four) momenta, k1 + ko equals the sum of the final ones, ks + k4, we
find that the photon does not have to satisfy

¢ =F?-q*=0. (6.17)

Such a photon is called virtual or “off mass-shell”, since it does not satisfy the mass-energy relations. This is
what gives rise to the Coulomb force.

6.4 Fluctuations of the vacuum

The great problem is in understanding the meaning of virtual particles. Suppose we are studying the vacuum
state in QED. We wish to describe this vacuum in terms of the states of no positrons, electrons and photons
(the naive vacuum). Since these particles interact we have short-lived states where eTe™ pairs, and photons,
and .... appear for a short while and disappear again. This is also true for real particles: a real electron is a
“bare” electron surrounded by a cloud of virtual photons, eTe™ pairs, etc. A photon can be an eTe™ pair part
of the time, and more of such anomalies.

6.4.1 Feynman diagrams

As T have sketched above, Feynman diagrams can be used to describe what is happening in these processes.
These describe the matrix elements, and the actual transition probability is proportional to the square of this
matrix elements. One can show that each electron-photon coupling vertex is proportional to e, and thus in
the square each vertex gives a factor e2. Actually by drawing time in the vertical direction and space in the
horizontal (schematically, of course), we see that the the two possible couplings of the photon to matter —
Bremsstrahlung and pair creation are one and the same process. Still it helps to distinguish. Note that at
each vertex charge is conserved as well as momentum!
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(e)

Figure 6.3: The Feynman diagrams for an electron and/or positrons interacting with a photon. Diagram (a)
is emission of a photon by an electron, (b) absoption. (c¢) and (d) are the same diagrams for positrons, and
(e) is pair creation, whereas (f) is annihilation.

Figure 6.4: One of the Feynman diagrams for an electron-electron scattering.

This can actually be combined into a dimensionless quantity

B e? N 1
T dmeohe 137

(6.18)

We should expand in « rather than e? since expansion parameters, being “unphysical” can not have dimensions.
In other words in order to carry through this mathematical concept the natural scale of a diagram is set by the
power of « it carries. Due to the smallness of a we normally consider only the diagrams with as few vertices
as possible. Let me list the two diagrams for electron-positron scattering, both proportional to o, as given in
figure 6.6.
Question: Why is there only one such diagram for e~ e~ scattering? Answer: Charge conservation.

We can also construct higher order diagrams, as in figure 6.7.

We can also calculate the scattering of light by light, which only comes in at a*, see figure 6.8.

The sum of all diagrams contributing to a given process is called the perturbation series.

6.5 Infinities and renormalisation

One of the key features missing in the discussion above is the fact that all the pictures I have drawn are infinite
— somewhat of a severe blow. The key point is to understand that this is not a problem, but has to do with a
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Figure 6.5: Some Feynman diagrams for “dressed propagators”.

Figure 6.6: The two Feynman diagrams for an electron-positron scattering.

misinterpretation of the series.

When we introduce a and e in our theory these we use the measured value of the charge of an electron
— which is a solution to the full theory, not to the artificial problem with all vacuum fluctuations turned of.
What it means is that we should try to express all our answers in physically sensible (measurable) quantities.
Renormalisation is the mathematical procedure that does this. A theory (such as QED) is called renormalisable
if we can make all expressions finite by reexpressing them in a finite number of physical parameters.

6.6 The predictive power of QED

It is hard to say that a theory has predictive power without comparing it to experiment, so let me highlight a
few successes of QED.

One of those is the so-called g factor of the electron, related to the ratio of the spin and orbital contributions
to the magnetic moment. Relativistic theory (i.e., the Dirac equation) shows that ¢ = 2. The measured value
differs from 2 by a little bit, a fact well accounted for in QED.

experiment ¢/2 = 1.00115965241(20)

Theory g/2 = 1.00115965238(26) (6.19)

Some of the errors in the theory are related to our knowledge of constants such as ki, and require better input.
It is also clear that at some scale QCD (the theory of strong interactions) will start playing a role. We are
approaching that limit.

6.7 Problems

1. Discuss the number of different time-orderings of electron-positron scattering in lowest order in a.
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Figure 6.7: A higher order diagram for electron-positron scattering.

Figure 6.8: The lowest diagram for photon-photon scattering.
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Chapter 7

The fundamental forces

The fundamental forces are normally divided in four groups, of the four so-called “fundamental” forces. These
are often naturally classified with respect to a dimensionless measure of their strength. To set these dimensions
we use /i, ¢ and the mass of the proton, m,. The natural classification is then given in table 7.1. Another
important property is their range: the distance to which the interaction can be felt, and the type of quantity
they couple to. Let me look a little closer at each of these in turn.

Table 7.1: A summary of the four fundamental forces

’ Force \ Range \ Strength \ Acts on ‘
Gravity 00 Gn ~ 610739 | All particles (mass and energy)
Weak Force <107®m | Gp~1107° Leptons, Hadrons
Electromagnetism 00 a=1/137 All charged particles
Strong Force ~ 10 m ¢ ~1 Hadrons

In order to set the scale we need to express everything in a natural set of units. Three scales are provided
by & and ¢ and e — actually one usually works in units where these two quantities are 1 in high energy physics.
For the scale of mass we use the mass of the proton. In summary (for e = 1 we use electron volt as natural
unit of energy)

h = 6.58x107% MeV s (7.1)
he = 1.97x 107" MeV m (7.2)
mp, = 938 MeV/c? (7.3)

7.1 Gravity

The theory of gravity can be looked at in two ways: The old fashioned Newtonian gravity, where the potential
is proportional to the rest mass of the particles,
Gnmim
v o= Gnmme (7.4)

r

We find that G Nmf) /he is dimensionless, and takes on the value
Gnm;/he = 5.9046486 x 10~ (7.5)

There are two more levels to look at gravity. One of those is Einstein’s theory of gravity, which in the low-
energy small-mass limit reduces to Newton’s theory. This is still a classical theory, of a classical gravitational
field.

The quantum theory, where we reexpress the field in their quanta has proven to be a very tough stumbling
block — When one tries to generalise the approach taken for QED, every expression is infinite, and one needs
to define an infinite number of different infinite constants. This is not deemed to be acceptable —i.e., it doesn’t
define a theory. Such a model is called unrenormalisable. We may return to the problem of quantum gravity
later, time permitting.
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7.2 Electromagnetism

Electro-magnetism, i.e., QED, has been discussed in some detail in the previous chapter. Look there for a
discussion. The coupling constant for the theory is

e2

(7.6)

“= dreghc’

7.3 Weak Force

This manifests itself through nuclear 3 decay,
n—p+e +7,. (7.7)

The standard coupling for this theory is called the Fermi coupling, G, after its discoverer. After the theory
was introduced it was learned that there were physical particles that mediate the weak force, the W= and the
Z9 bosons. These are very heavy particles (their mass is about 80 times the proton mass!), which is why they
have such a small range — fluctuations where I need to create that much mass are rare. The W bosons are
charged, and the Z° boson is neutral. The typical 3 decay referred to above is mediated by a W~ boson as
can be seen in the Feynman diagram figure 7.1. The reason for this choice is that it conserves charge at each
point (the charge of a proton and a W~ is zero, the charge of an electron and a neutrino is -1, the same as
that of a W™).

Figure 7.1: The Feynman diagram for the weak decay of a neutron.

7.4 Strong Force

The strong force is what keeps nuclei together. It is described by a theory called QCD, which described the
forces between fermions called quarks that make up the hadrons. These forces are mediated by spin-1 bosons
called gluons. Notice that this is a case where a series in powers of the coupling constant does not make a lot of
sense, since higher powers have about the same value as lower powers. Such a theory is called non-perturbative.
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Symmetries and particle physics

Symmetries in physics provide a great fascination to us — one of the hang-ups of mankind. We can recognise a
symmetry easily, and they provide a great tool to classify shapes and patterns. There is an important area of
mathematics called group theory, where one studies the transformations under which an object is symmetric.
In order to make this statement seem less abstract, let me look at a simple example, a regular hexagon in a
plane. As can be seen in figure Fig. 8.5, this object is symmetric (i.e., we can’t distinguish the new from the
old object) under rotations around centre over angles of a multiple of 60°, and under reflection in any of the
six axes sketched in the second part of the figure.

Figure 8.1: The symmetries of a hexagon

8.1 Importance of symmetries: Noether’s theorem

There are important physical consequences of symmetries in physics, especially if the dynamics of a system is
invariant under a symmetry transformation.

There is a theorem, due to Emily Noether, one of the most important (female) mathematicians of this
century, that states that for any continuous symmetry there is a conserved quantity.

So what is a continuous symmetry? Think about something like spherical symmetry — a sphere is invariant
under any rotation about its centre, no matter what the rotation angle. The continuity of choice of parameter
in a transformation is what makes the set of transformations continuous. Another way of saying the same thing
is that the transformation can be arbitrarily close to the unit transformation, i.e., it can do almost nothing at
all.

8.2 Lorenz and Poincaré invariance

One of the most common continuous symmetries of a relativistic theory is Lorentz invariance, i.e., the dynamics
is the same in any Lorentz frame. The group of Lorentz transformations can be decomposed into two parts:

e Boosts, where we go from one Lorentz frame to another, i.e., we change the velocity.

e Rotations, where we change the orientation of the coordinate frame.
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There is a slightly larger group of symmetries, called the Poincaré group, obtained when we add translations
to the set of symmetries — clearly the dynamics doesn’t care where we put the orbit of space.

The set of conserved quantities associated with this group is large. Translational and boost invariance
implies conservation of four momentum, and rotational invariance implies conservation of angular momentum.

8.3 Internal and space-time symmetries

Above I have mentioned angular momentum, the vector product of position and momentum. This is defined
in terms of properties of space (or to be more generous, of space-time). But we know that many particles
carry the spin of the particle to form the total angular momentum,

J=L+S. (8.1)
The invariance of the dynamics is such that J is the conserved quantity, which means that we should not just
rotate in ordinary space, but in the abstract “intrinsic space” where S is defined. This is something that will
occur several times again, where a symmetry has a combination of a space-time and intrinsic part.

8.4 Discrete Symmetries

Let us first look at the key discrete symmetries — parity P (space inversion) charge conjugation C' and time-
reversal 7.

8.4.1 Parity P

n=0 n=1
05 | 1 -
? o0
05 .
-1.0 t t t t t t

n=2 n=3

05 | T
? o0 A

Figure 8.2: The first four harmonic oscillator wave functions

Parity is the transformation where we reflect each point in the origin, ® — —a. This transformation should
be familiar to you. Let us think of the one dimensional harmonic oscillator, with Hamiltonian
n? d 1,22
—— = + smwz”. 8.2
2m dx? T2 (8:2)
The Hamiltonian does not change under the substitution z — —xz. The well-known eigenstates to this problem
are either even or odd under this transformation, see Fig. 8.2, and thus have either even or odd parity,

where P is the transformation that take x — —x. For
Pi(z,t) = (1) (8.4)

we say that the state has even parity, for the minus sign we speak about negative parity. These are the only
two allowed eigenvalues, as can be seen from looking at the probability density |1 (z,y)|?. Since this must be
invariant, we find that

[ (z,y)|* = [Py(z,y)]? (8.5)
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which shows that the only real eigenvalues for P are +1. One can show that there is a relation between parity
and the orbital angular momentum quantum number L, m = (—1)¥, which relates two space-time symmetries.

It is found, however, that parity also has an intrinsic part, which is associated with each type of particle.
A photon (7) has negative parity. This can be understood from the following classical analogy. When we look
at Maxwell’s equation for the electric field,

1
V'E((L‘ﬂf) = 7p(xvt)a (86)
€0
we find that upon releversal of the coordinates this equation becomes

1
-V - E(—z,t) = —p(—=x,t). (8.7)
€0
The additional minus sign, which originates in the change of sign of V is what gives the electric field and thus
the photon its negative intrinsic parity.
We shall also wish to understand the parity of particles and antiparticles. For fermions (electrons, protons,
..) we have the interesting relation Py Py = —1, which will come in handy later!

8.4.2 Charge conjugation '

The name of this symmetry is somewhat of a misnomer. Originally it stems from QED, where it was found
that a set of interacting electrons behaves exactly the same way as a similar set of positrons. So if we change
the sign of all charges the dynamics is the same. Actually, the symmetry generalises a little bit, and in general
refers to a transformation where we change all particles in their antiparticles.

Once again we find C? = 1, and the only possible eigenvalues of this symmetry are £1. An uncharged
particle like the photon that is its own antiparticle, must be an eigenstate of the symmetry operation, and it
is found that it has eigenvalue —1,

Cihy = —1by. (8.8)

(Here v, is the wave function of the photon.) This can be shown from Maxwell’s equation (8.6) as before,
since p chanegs sign under charge conjugation.

For a combination of a particle and an antiparticle, we find that CyCy = —1 for fermions, and +1 for
bosons.

8.4.3 Time reversal T

On a microscopic scale it is not very apparent whether time runs forward or backwards, the dynamics where
we just change the sign of time is equally valid as the original one. This corresponds to flipping the sign of all
momenta in a Feynman diagram, so that incoming particles become outgoing particles and vice-versa. This
symmetry is slightly nastier, and acts on both space-time and intrinsic quantities such as spin in a complicated
way. The space time part is found to be

Ty(r,t) =™ (r, —t). (8.9)

Combined with its intrinsic part we find that it has eigenvalues +i for fermions (electrons, etc.) and £1 for
bosons (photons, etc.).

8.5 The CPT Theorem

A little thought shows that all three symmetries mentioned above appear very natural — but that is a theorist’s
argument. The real key test is experiment, not a theorist’s nice ideas! In 1956 C.N. Yang and T.D. Lee analysed
the experimental evidence for these symmetries. They realised there was good evidence of these symmetries
in QED and QCD (the theory of strong interactions). There was no evidence that parity was a symmetry of
the weak interactions — which was true, since it was shown soon thereafter that these symmetries are broken,
in a beautiful experiment led by “Madame” C.S. Wu.

There is a fairly strong proof that only minimal physical assumptions (locality, causality) that the product
of C, P and T is a good symmetry of any theory. Up to now experiment has not shown any breaking of this
product. We would have to rethink a lot of basic physics if this symmetry is not present. I am reasonably
confident that if breaking is ever found there will be ten models that can describe it within a month!
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8.6 (P violation
The first experimental confirmation of symmetry breaking was found when studying the 8~ decay of 5°Co,
0Co — ONi+4e™ + 7. (8.10)

This nucleus has a ground state with non-zero spin, which can be oriented in a magnetic field.

A magnetic field is a pseudo-vector, which means that under parity it goes over into itself B — B. So
does the spin of the nucleus, and we thus have established that under parity the situation under which the
nucleus emits electrons should be invariant. But the direction in which they are emitted changes! Thus any
asymmetry between the emission of electrons parallel and anti-parallel to the field implies parity breaking, as

sketched in figure 8.3.
: :
: >
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parity mirror
Figure 8.3: Parity breaking for the 3 decay of %°Co

Actually one can shown that to high accuracy that the product of C' and P is conserved, as can be seen in
figure 8.4.
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Figure 8.4: C'P symmetry for the 3 decay of %°Co
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8.7 Continuous symmetries

8.7.1 Translations
8.7.2 Rotations

8.7.3 Further study of rotational symmetry

Rotational transformations on a wave function can be applied by performing the transformation

expli(Op Ty + 0y d, + 0.J.)] (8.11)

on a wave function. This is slightly simpler for a particle without spin, since we shall only have to consider
the orbital angular momentum,

L=pxr=ihrxV. (8.12)

Notice that this is still very complicated, exponentials of operators are not easy to deal with. One of the lessons
we learn from applying this operator to many different states, is that if a state has good angular momentum J,
the rotation can transform it into another state of angular momentum .J, but it will never change the angular
momentum. This is most easily seen by labelling the states by J, M:

T2+ TR+ T2 g = RI(J+ Doy (8.13)
J2om = Moy (8.14)

The quantum number M can take the values —J,—J + 1,...,J — 1, J, so that we typically have 2J + 1
components for each J. The effect of the exponential transformation on a linear combination of states of
identical J is to perform a linear transformation between these components. I shall show in a minute that
such transformation can be implemented by unitary matrices. The transformations that implement these
transformations are said to correspond to an irreducible representation of the rotation group (often denoted
by SO(3)).

Let us look at the simplest example, for spin 1/2. We have two states, one with spin up and one with
spin down, ty. If the initial state is ¥ = a1 + a_1_, the effect of a rotation can only be to turn this into
Y = o/ Yy 4+ o’ ¢p_. Since the transformation is linear (if I rotate the sum of two objects, I might as well

rotate both of them) we find
o U U_ o
()= o) () 819

Since the transformation can not change the length of the vector, we must have [[¢/|*> = 1. Assuming

Jlv+? =1, [¢i_ =0 we find

Ul =1 (8.16)
with
Uz Uz
T — ++ +-
oo (G ) o)

the so-called hermitian conjugate.
We can write down matrices that in the space of S = 1/2 states behave the same as the angular momentum
operators. These are half the well known Pauli matrices

0 1 0 —1 1 0

U(0) = expli(6,0,/2+ 0y0,/2 + 6,0./2)]. (8.19)

and thus we find that

I don’t really want to discuss how to evaluate the exponent of a matrix, apart from one special case. Suppose
we perform a 27 rotation around the z axis, 8 = (0,0, 27). We find

U(0,0,27) = explim ( (1) (11 >] (8.20)
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Since this matrix is diagonal, we just have to evaluate the exponents for each of the entries (this corresponds
to using the Taylor series of the exponential),

U(0.0,27) = (exp[m] 0 . )

0 exp[—in]

_ (01 " ) (8.21)

To our surprise this does not take me back to where I started from. Let me make a small demonstration to
show what this means.........

Finally what happens if we combine states from two irreducible representations? Let me analyse this for
two spin 1/2 states,

¢ = (ahyl +alyl) (il +a¢?)
= olad iyt +ala® i +alafylylal gl g2, (8.22)

The first and the last product of 1 states have an angular momentum component +1 in the z direction, and
must does at least have J = 1. The middle two combinations with both have M = M; + M5 = 0 can be shown
to be a combination of a J =1, M =0 and a J = 0, M = 0 state. Specifically,

1
2

transforms as a scalar, it goes over into itself. the way to see that is to use the fact that these states transform
with the same U, and substitute these matrices. The result is proportional to where we started from. Notice
that the triplet (S = 1) is symmetric under interchange of the two particles, whereas the singlet (S = 0)
is antisymmetric. This relation between symmetry can be exhibited as in the diagrams Fig. 7?7, where the
horizontal direction denotes symmetry, and the vertical direction denotes antisymmetry. This technique works
for all unitary groups.....

[wly? - ply2] (8.23)

0x0 = g+

Figure 8.5: The Young tableau for the multiplication 1/2 x 1/2 =0+ 1.

The coupling of angular momenta is normally performed through Clebsch-Gordan coefficients, as denoted
by
(Jimajama|JM) . (8.24)

We know that M = mj 4+ mgy. Further analysis shows that J can take on all values |j; — jal, [j1 — j2| + 1, |71 —
Jo| 2,514 j2.

8.8 symmetries and selection rules

We shall often use the exact symmetries discussed up till now to determine what is and isn’t allowed. Let us,
for instance, look at

8.9 Representations of SU(3) and multiplication rules

A very important group is SU(3), since it is related to the colour carried by the quarks, the basic building
blocks of QCD.

The transformations within SU(3) are all those amongst a vector consisting of three complex objects that
conserve the length of the vector. These are all three-by-three unitary matrices, which act on the complex
vector ¢ by

v o— Uy
Unn Uip Uiz U1
= Usi Uz Uss (5 (8.25)
Usi Usy Uss 3
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The complex conjugate vector can be shown to transform as
v — Ut (8.26)

with the inverse of the matrix. Clearly the fundamental representation of the group, where the matrices repre-
senting the transformation are just the matrix transformations, the vectors have length 3. The representation
is usually labelled by its number of basis elements as 3. The one the transforms under the inverse matrices is
usually denoted by 3.
What happens if we combine two of these objects, ¥ and x*7 It is easy to see that the inner product of 1
and x* is scalar,
X' = XUTUY =x* -, (8.27)

where we have used the unitary properties of the matrices the remaining 8 components can all be shown to
transform amongst themselves, and we write

33=108. (8.28)
Of further interest is the product of three of these vectors,

30323=13838a10. (8.29)

8.10 broken symmetries

Of course one cannot propose a symmetry, discover that it is not realised in nature (“the symmetry is broken”),
and expect that we learn something from that about the physics that is going on. But parity is broken, and we
still find it a useful symmetry! That has to do with the manner in which it is broken, only weak interactions
— the exchange of W* and Z bosons — break them. Any process mediated by strong, electromagnetic or
(probably) gravitational forces conserves the symmetry. This is one example of a symmetry that is only mildly
broken, i.e., where the conserved quantities are still recognisable, even though they are not exactly conserved.

In modern particle physics the way symmetries are broken teaches us a lot about the underlying physics,
and it is one of the goals of grand-unified theories (GUTSs) to try and understand this.

8.11 Gauge symmetries

One of the things I will not say much about, but which needs to be mentioned, is of a certain class of local
symmetries (i.e., symmetries of the theory at each point in space and time) called gauge symmetries. This is a
key idea in almost all modern particle physics theories, so much so that they are usually labelled by the local
symmetry group. Local symmetries are not directly observable, and do not have immediate consequences.
They allow for a mathematically consistent and simple formulation of the theories, and in the end predict the
particle that are exchanged — the gauge particles, as summarised in table 8.1.

Table 8.1: The four fundamental forces and their gauge particles

Gravitation —graviton(?)
QED photon
Weak W=, 20
Strong gluons
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Chapter 9

Symmetries of the theory of strong
interactions

The first time people realised the key role of symmetries was in the plethora of particles discovered using
the first accelerators. Many of those were composite particle (to be explained later) bound by the strong
interaction.

9.1 The first symmetry: isospin

The first particles that show an interesting symmetry are actually the nucleon and the proton. Their masses
are remarkably close,
M, = 939.566 MeV /c* M, = 938.272 MeV /c?. (9.1)

If we assume that these masses are generated by the strong interaction there is more than a hint of symmetry
here. Further indications come from the pions: they come in three charge states, and once again their masses
are remarkably similar,

M+ = M, =139.567 MeV/c?, Mo = 134.974 MeV /2. (9.2)

This symmetry is reinforced by the discovery that the interactions between nucleon (p and n) is independent
of charge, they only depend on the nucleon character of these particles — the strong interactions see only one
nucleon and one pion. Clearly a continuous transformation between the nucleons and between the pions is a
symmetry. The symmetry that was proposed (by Wigner) is an internal symmetry like spin symmetry called
isotopic spin or isospin. It is an abstract rotation in isotopic space, and leads to similar type of states with
isotopic spin I = 1/2,1,3/2,.... One can define the third component of isospin as

Q =e(I3+ B), (9.3)
where B is the baryon number (B = 1 for n,p, 0 for 7). We thus find

B Qe I I

n 1 0 1/2 —1/2

p 1 1 1/2 1/2

™~ 0 -1 1 -1 (9.4)
@ 0 0 1 0

ot 0 1 1 1

Notice that the energy levels of these particles are split by a magnetic force, as ordinary spins split under a
magnetic force.

9.2 Strange particles

In 1947 the British physicists Rochester and Butler (from across the street) observed new particles in cosmic

ray events. (Cosmic rays where the tool before accelerators existed — they are still used due to the unbe-
lievably violent processes taking place in the cosmos. We just can’t produce particles like that in the lab.

67
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(Un)fortunately the number of highly energetic particles is very low, and we won’t see many events.) These
particles came in two forms: a neutral one that decayed into a 7+ and a 7~, and a positively charge one that
decayed into a put (heavy electron) and a photon, as sketched in figure 9.1.

Figure 9.1: The decay of V particles

The big surprise about these particles was how long they lived. There are many decay time scales, but
typically the decay times due to strong interactions are very fast, of the order of a femto second (10715 s). The
decay time of the K mesons was about 1071% s, much more typical of a weak decay. Many similar particles
have since been found, both of mesonic and baryonic type (like pions or like nucleons). These are collectively
know as strange particles. Actually, using accelerators it was found that strange particles are typically formed
in pairs, e.g.,

+ AO 0
T +p— + K" meson (9.5)
baryon

This mechanism was called associated production, and is highly suggestive of an additive conserved quantity,
such as charge, called strangeness. If we assume that the Ay has strangeness —1, and the Ky +1, this balances

mr+p — A4+ K° (9.6)
0+0 = —-1+41 (9.7)
The weak decay
A — 7 +p (9.8)
-1 # 040, (9.9)

does not conserve strangeness (but it conserves baryon number). This process is indeed found to take much
longer, about 10710 s.
Actually it is found (by analysing many resonance particles) that we can accommodate this quantity in

our definition of isospin,
B+ S

Clearly for S = —1 and B = 1 we get a particle with I3 = 0. This allows us to identify the A? as an I = 0, Is—
particle, which agrees with the fact that there are no particles of different charge and a similar mass and strong
interaction properties.

The kaons come in three charge states K*, K° with masses myg+ = 494 MeV, mygo = 498 MeV. In
similarity with pions, which form an I = 1 multiplet, we would like to assume a I = 1 multiplet of K’s as well.
This is problematic since we have to assume S = 1 for all these particles: we cannot satisfy

1
Q=e(ls+3) (9.11)
for isospin 1 particles. The other possibility I = 3/2 doesn’t fit with only three particles. Further analysis
shows that the the KT is the antiparticle of K, but K° is not its own antiparticle (which is true for the
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S
0 +
K K
L
o T T
1 —
- —0
K K
[ B S .
1 0 1 I

Figure 9.2: a possible arrangement for the states of the septet

pions. So we need four particles, and the assignments are S = 1,1 = 1/2 for K® and K—, S = —1,1 = 1/2
for K* and K°. Actually, we now realise that we can summarise all the information about K’s and 7’s in one
multiplet, suggestive of a (pretty badly broken!) symmetry.

However, it is hard to find a sensible symmetry that gives a 7-dimensional multiplet. It was argued by
Gell-Mann and Ne’eman in 1961 that a natural extension of isospin symmetry would be an SU(3) symmetry.
We have argued before that one of the simplest representations of SU(3) is 8 dimensional symmetry. A
mathematical analysis shows that what is missing is a particle with I = I3 = S = 0. Such a particle is known,
and is called the n°. The breaking of the symmetry can be seen from the following mass table:

myx = 139 MeV
myo = 134 MeV
mg+ = 494 MeV
m;;& = 498 MeV
myo = 549 MeV

(9.12)

S

Figure 9.3: Octet of mesons

In order to have the scheme make sense we need to show its predictive power. This was done by studying
the nucleons and their excited states. Since nucleons have baryon number one, they are labelled with the
“hyper-charge” Y,

Y =(B+5), (9.13)
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rather than S. The nucleons form an octet with the single-strangeness particles A and o and the doubly-strange
cascade particle =, see figure 9.4.

Y
n
L
- +
o = s
-1
_ _0
\ \ \ \
1 0 1 I

Figure 9.4: Octet of nucleons

The masses are

M, = 938MeV
M, = 939 MeV
My = 1115 MeV
Ms: = 1189 MeV
Mso = 1193 MeV
Ms- = 1197 MeV
M=o = 1315 MeV
Mz = 1321 MeV

All these particles were known before the idea of this symmetry. The first confirmation came when studying
the excited states of the nucleon. Nine states were easily incorporated in a decuplet, and the tenth state (the
Q~, with strangeness -3) was predicted. It was found soon afterwards at the predicted value of the mass.

Y : 0

1| A A A A
*_ *(Q * 4
0 2 2 2
:*- :*0
1 T =
2 | Q
1 0 1 |
3

Figure 9.5: decuplet of excited nucleons
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Table 9.1: The properties of the three quarks.

Quark  label spin Q/e I I3 S B
U U I +2 1 _|_l 0 I
; [ B AT i
Down d p 3 3 3 0 5
Strange s 5 -3 0 0 -1 3
The masses are

Ma = 1232 MeV

My« = 1385 MeV

M=~ = 1530 MeV

Mqg = 1672 MeV

(Notice almost that we can fit these masses as a linear function in Y, as can be seen in figure 9.6. This was
of great help in finding the Q.)

Figure 9.6: A linear fit to the mass of the decuplet

9.3 The quark model of strong interactions

Once the eightfold way (as the SU(3) symmetry was poetically referred to) was discovered, the race was on to
explain it. As I have shown before the decaplet and two octets occur in the product

30393=138484 10. (9.14)

A very natural assumption is to introduce a new particle that comes in three “flavours” called up, down and
strange (u, d and s, respectively), and assume that the baryons are made from three of such particles, and the
mesons from a quark and anti-quark (remember,

33=138.) (9.15)

Each of these quarks carries one third a unit of baryon number. The properties can now be tabulated, see
table 9.2.

In the multiplet language I used before, we find that the quarks form a triangle, as given in Fig. 9.7.

Once we have made this assigment, we can try to derive what combination corresponds to the assignments
of the meson octet, figure 9.8. We just make all possible combinations of a quark and antiquark, apart from
the scalar one ' = uti + dd + c¢ (why?).

A similar assignment can be made for the nucleon octet, and the nucleon decaplet, see e.g., see Fig. 9.9.
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s

c|
Q|

S
ds us
1 -
ua-dd _
o — Od ° ud
ud+dd-2ss
1 -
us ds
\ \ \ \ \
1 0 1 I 3

Figure 9.8: quark assignment of the meson octet

9.4 SUM), ...

Once we have three flavours of quarks, we can ask the question whether more flavours exists. At the moment
we know of three generations of quarks, corresponding to three generations (pairs). These give rise to SU(4),
SU(5), SU(6) flavour symmetries. Since the quarks get heavier and heavier, the symmetries get more-and-more
broken as we add flavours.

9.5 Colour symmetry

So why don’t we see fractional charges in nature? This is an important point! In so-called deep inelastic
scattering we see pips inside the nucleon — these have been identified as the quarks. We do not see any direct
signature of individual quarks. Furthermore, if quarks are fermions, as they are spin 1/2 particles, what about
antisymmetry of their wavefunction? Let us investigate the A™T, see Fig. 9.10, which consists of three u
quarks with identical spin and flavour (isospin) and symmetric spatial wavefunction,

d’total = 1/}space X wspin X 'l/)ﬂavour- (916)

This would be symmetric under interchange, which is unacceptable. Actually there is a simple solution. We
“just” assume that there is an additional quantity called colour, and take the colour wave function to be
antisymmetric:

wtotal = 1pspa\ce X wspin X wﬂavour X wcolour (917)
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Y
L udd uud
o — dds uus
1
dss uss
I I I I I
1 0 1 I 3

Figure 9.9: quark assignment of the nucleon octet

Table 9.2: The properties of the three quarks.

Quark  label spin Q/e mass (GEV/c?)
Down d z -1z 035

Up U i +§ 0.35

Strange s i 1 0.5

Charm ¢ i +§ 1.5

Bottom b i i 4.5

Top t ; +§ 93

We assume that quarks come in three colours. This naturally leads to yet another SU(3) symmetry, which is
actually related to the gauge symmetry of strong interactions, QCD. So we have shifted the question to: why
can’t we see coloured particles?

This is a deep and very interesting problem. The only particles that have been seen are colour neutral
(“white”) ones. This leads to the assumption of confinement — We cannot liberate coloured particles at “low”
energies and temperatures! The question whether they are free at higher energies is an interesting question,
and is currently under experimental consideration.

9.6 The feynman diagrams of QCD

There are two key features that distinguish QCD from QED:

1. Quarks interact more strongly the further they are apart, and more weakly as they are close by —
assymptotic freedom.

2. Gluons interact with themselves

The first point can only be found through detailed mathematical analysis. It means that free quarks can’t be
seen, but at high energies quarks look more and more like free particles. The second statement make QCD
so hard to solve. The gluon comes in 8 colour combinations (since it carries a colour and anti-colour index,
minus the scalar combination). The relevant diagrams are sketches in Figure 9.11. Try to work out yourself
how we satisfy colour charge conservation!

9.7 Jets and QCD

One way to see quarks is to use the fact that we can liberate quarks for a short time, at high energy scales.
One such process is eTe™ — ¢, which use the fact that a photon can couple directly to gq. The quarks
don’t live very long and decay by producing a “jet” a shower of particles that results from the deacay of the
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(44)

Figure 9.10: The A*+ in the quark model.

q g
Q0OQ0QQ
9 g
q g

Figure 9.11: The basic building blocks for QCD feynman diagrams

quarks. These are all “hadrons”, mesons and baryons, since they must couple through the strong interaction.
By determining the energy in each if the two jets we can discover the energy of the initial quarks, and see
whether QCD makes sense.



Chapter 10

Relativistic kinematics

One of the features of particle physics is the importance of special relativity. This occurs at a very fundamental
level, since particle physics is all about creating and annihilating particles. This can only occur if we can
convert mass to energy and vice-versa. Thus Einstein’s idea of the equivalnece between mass and energy
plays an extremely fundamental réle in this field of physics. In order for this to be possible we typically
need processes that occur at velocities near the light velocity ¢, so that the kinematics (i.e., the description
of momemnta and energy) of these processes requires relativity. In this chapter we shall succintly introduce
the few necessary concepts — I hope that for most of you this is a review, but this chapter is intended to be
self-contained and contains everything I shall need in relativistic kinematics.

10.1 Lorentz transformations of energy and momentum

As you may know, like we can combine position and time in one four-vector z = («, ct), we can also combine
energy and momentum in a single four-vector, p = (p, E/c). From the Lorentz transformation property of
time and position, for a change of velocity along the z-axis from a coordinate system at rest to one that is
moving with velocity v = (v, 0,0) we have

o =y)(z —v/ct), t =n~(t—zvr/c?), (10.1)
we can derive that energy and momentum behave in the same way,

p;: = )Pz — E'U/CQ) = muzy(|ul),
E' = ~W)(E - vps) = v(Ju)moc?. (10.2)

To understand the context of these equations remember the definition of ~y

Yw)=1/V1- B, B="

c .

(10.3)

In Eq. (10.2) we have also reexpressed the momentum energy in terms of a velocity w. This is measured
relative to the rest system of a particle, the system where the three-momentum p = 0.

Now all these exercises would be interesting mathematics but rather futile if there was no further informa-
tion. We know however that the full four-momentum is conserved, i.e., if we have two particles coming into a
collision and two coming out, the sum of four-momenta before and after is equal,

EM+EP = B+ ER™,
P +py = pit+pt (104)

10.2 Invariant mass

One of the key numbers we can extract from mass and momentum is the invariant mass, a number independent
of the Lorentz frame we are in
W2t = (Z E;)? — (Zp,;)%z. (10.5)
i i

This quantity takes it most transparent form in the centre-of-mass, where ). p; = 0. In that case

W = Ecm/¢?, (10.6)

(0]
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and is thus, apart from the factor 1/c?, nothing but the energy in the CM frame. For a single particle W = my,
the rest mass.

Most considerations about processes in high energy physics are greatly simplified by concentrating on the
invariant mass. This removes the Lorentz-frame dependence of writing four momenta. I

As an exmaple we look at the collision of a proton and an antiproton at rest, where we produce two quanta
of electromagnetic radiation (v’s), see fig. 10.1, where the anti proton has three-momentum (p,0,0), and the

proton is at rest.

Y

Figure 10.1: A sketch of a collision between a proton with velocity v and an antiproton at rest producing two
gamma quanta.

The four-momenta are

(plab7 Oa 07 \/ m12]64 + p]2ab62)

(0,0,0,m,c?). (10.7)

Pp

Pp

From this we find the invariant mass

W = \/2m12) + 2my\/m2 + pt /c? (10.8)

If the initial momentum is much larger than m,, more accurately

Plab >> MypC, (109)

W = \/2mppab/c, (10.10)

which energy needs to be shared between the two photons, in equal parts. We could also have chosen to work
in the CM frame, where the calculations get a lot easier.

we find that

10.3 Transformations between CM and lab frame

Even though the use of the invariant mass simplifies calculations considerably, it clearly does not provide all
necessary information. It does suggest however, that a natural frame to analyse reactions is the CM frame.
Often we shall analyse a process in this frame, and use a Lorentz transformation to get informations about
processes in the laboratory frame. Since almost all processes involve the scattering (deflection) of one particle
by another (or a number of others), this is natural example for such a procedure, see the sketch in Fig. 10.2.
The same procedure can also be applied to the case of production of particles, such as the annihilation process
discussed above.
Before the collission the beam particle moves with four-momentum

P = (P, 0,0,/ mBet + 17, 2) (10.11)

pe = (0,0,0,m;c?). (10.12)

and the target particle m; is at rest,
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-
b

Figure 10.2: A sketch of a collision between two particles

We first need to determine the velocity v of the Lorentz transformation that bring is to the centre-of-mass
frame. We use the Lorentz transformation rules for momenta to find that in a Lorentz frame moving with
velocity v along the z-axis relative to the CM frame we have

Phe = Y©)(Prab — vEiab/c?)
Piw = —muvy(v). (10.13)

Sine in the CM frame these numbers must be equal in sizebut opposite in sign, we find a linear equation for

v, with solution
Plab me
v=——=cl|l1l— . 10.14
my + Enap/c? ( plab> ( )

Now if we know the momentum of the beam particle in the CM frame after collision,
(pf cosfcm, py sinbow, 0, EY), (10.15)

where ¢y is the CM scattering angle we can use the inverse Lorentz transformation, with velocity —v, to try
and find the lab momentum and scattering angle,

v(v)(ps cosbem + vE}/c®) = ppian cos Orap
prsinfcm = Pjlab Sin Olab, (10.16)
from which we conclude 1 o
tan G, = b SR 7eM (10.17)

v(v) py cosOom + vE /e

Of course in experimental situations we shall often wish to transform from lab to CM frames, which can be
done with equal ease.

To understand some of the practical consequences we need to look at the ultra-relativistic limit, where
Plab > m/c. In that case v ~ ¢, and (v) & (prap/2m.c?)*/2. This leads to

2myc? sin 6
tan Oa, ~ 4/ fer  ustue (10.18)
Plab Ucosbc + ¢

Here w is the velocity of the particle in the CM frame. This function is always strongly peaked in the forward
direction unless u ~ ¢ and cos0c ~ —1.

10.4 Elastic-inelastic

We shall often be interested in cases where we transfer both energy and momentum from one particle to
another, i.e., we have inelastic collissions where particles change their character — e.g., their rest-mass. If we
have, as in Fig. 10.3, two particles with energy-momentum k; and p, coming in, and two with ky and ps
coming out, We know that since energy and momenta are conserved, that ki 4+ p1 = ko + p2, which can be
rearranged to give

p2=p1+q ke=k —q. (10.19)

and shows energy and momentum getting transferred. This picture will occur quite often!
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Figure 10.3: A sketch of a collision between two particles

10.5 Problems

2. Suppose a pion decays into a muon and a neutrino,
at=put +u,. (10.20)

Express the momentum of the muon and the neutrino in terms of the mass of pion and muon. Assume that
the neutrino mass is zero, and that the pion is at rest. Calculate the momentum using m,+ = 139.6 MeV /c?,
m,, = 105.7 MeV /2.

3. Calculate the lowest energy at which a A(1115) can be produced in a collision of (negative) pions
with protons at rest, throught the reaction 7= +p — K° + A. m,— = 139.6 MeV/c?, m, = 938.3 MeV/c?,
myo = 497.7 MeV/c?. (Hint: the mass of the A is 1115 MeV /c?.)

4. a) Find the maximum value for v such that the relativisitic energy can be expressed by
E~md + ﬁ, (10.21)
2m
with an error of one procent.
b) find the minimum value of v and  so that the relativisitic energy can be expressed by

FE = pc, (10.22)

again with an error of one percent.



