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Preface

The idea that light is composed of discrete particles can be traced to Newton’s Opticks
(Newton, 1952), in which he introduced the term ‘corpuscles’ to describe what we now
call ‘particles’. However, the overwhelming evidence in favor of the wave nature of
light led to the abandonment of the corpuscular theory for almost two centuries. It was
resurrected—in a new form—by Einstein’s 1905 explanation of the photoelectric effect,
which reconciled the two views by the assumption that the continuous electromagnetic
fields of Maxwell’s theory describe the average behavior of individual particles of light.
At the same time, the early quantum theory and the principle of wave–particle duality
were introduced into optics by the Einstein equation, E = hν, which relates the energy
E of the light corpuscle, the frequency ν of the associated electromagnetic wave, and
Planck’s constant h.

This combination of ideas marks the birth of the field now called quantum optics.
This subject could be defined as the study of all phenomena involving the particulate
nature of light in an essential way, but a book covering the entire field in this general
sense would be too heavy to carry and certainly beyond our competence. Our more
modest aim is to explore the current understanding of the interaction of individual
quanta of light—in the range from infrared to ultraviolet wavelengths—with ordinary
matter, e.g. atoms, molecules, conduction electrons, etc. Even in this restricted domain,
it is not practical to cover everything; therefore, we have concentrated on a set of topics
that we believe are likely to provide the basis for future research and applications.

One of the attractive aspects of this field is that it addresses both fundamental
issues of quantum physics and some very promising applications. The most striking
example is entanglement, which embodies the central mystery of quantum theory and
also serves as a resource for communication and computation. This dual character
makes the subject potentially interesting to a diverse set of readers, with backgrounds
ranging from pure physics to engineering. In our attempt to deal with this situation, we
have followed a maxim frequently attributed to Einstein: ‘Everything should be made
as simple as possible, but not simpler’ (Calaprice, 2000, p. 314). This injunction, which
we will call Einstein’s rule, is a variant of Occam’s razor : ‘it is vain to do with more
what can be done with fewer’ (Russell, 1945, p. 472).

Our own grasp of this subject is largely the result of fruitful interactions with many
colleagues over the years, in particular with our students. While these individuals are
responsible for a great deal of our understanding, they are in no way to blame for the
inevitable shortcomings in our presentation.

With regard to the book itself, we are particularly indebted to Dr Achilles Spe-
liotopoulos, who took on the onerous task of reading a large part of the manuscript,
and made many useful suggestions for improvements. We would also like to express
our thanks to Sonke Adlung, and the other members of the editorial staff at Oxford
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University Press, for their support and patience during the rather protracted time
spent in writing the book.

J. C. Garrison and R. Y. Chiao
July 2007
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Introduction

For the purposes of this book, quantum optics is the study of the interaction of indi-
vidual photons, in the wavelength range from the infrared to the ultraviolet, with ordi-
nary matter—e.g. atoms, molecules, conduction electrons, etc.—described by nonrela-
tivistic quantum mechanics. Our objective is to provide an introduction to this branch
of physics—covering both theoretical and experimental aspects—that will equip the
reader with the tools for working in the field of quantum optics itself, as well as its
applications. In order to keep the text to a manageable length, we have not attempted
to provide a detailed treatment of the various applications considered. Instead, we try
to connect each application to the underlying physics as clearly as possible; and, in
addition, supply the reader with a guide to the current literature. In a field evolving
as rapidly as this one, the guide to the literature will soon become obsolete, but the
physical principles and techniques underlying the applications will remain relevant for
the foreseeable future.

Whenever possible, we first present a simplified model explaining the basic physical
ideas in a way that does not require a strong background in theoretical physics. This
step also serves to prepare the ground for a more sophisticated theoretical treatment,
which is presented in a later section. On the experimental side, we have made a serious
effort to provide an introduction to the techniques used in the experiments that we
discuss.

The book begins with a survey of the basic experimental observations that have led
to the conclusion that light is composed of indivisible quanta—called photons—that
obey the laws of quantum theory. The next six chapters are concerned with building
up the basic theory required for the subsequent developments. In Chapters 8 and
9, we emphasize the theoretical and experimental techniques that are needed for the
discussion of a collection of important experiments in linear quantum optics, presented
in Chapter 10.

Chapters 11 through 18 contain a mixture of more advanced topics, including cavity
quantum electrodynamics, nonlinear optics, nonclassical states of light, linear optical
amplifiers, and quantum tomography.

In Chapter 19, we discuss Bell’s theorem and the optical experiments performed
to test its consequences. The ideas associated with Bell’s theorem play an important
role in applications now under development, as well as in the foundations of quantum
theory. Finally, in Chapter 20 many of these threads are drawn together to treat topics
in quantum information theory, ranging from noise suppression in optical transmission
lines to quantum computing.

We have written this book for readers who are already familiar with elementary
quantum mechanics; in particular, with the quantum theory of the simple harmonic
oscillator. A corresponding level of familiarity with Maxwell’s equations for the clas-
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sical electromagnetic field and with elementary optics is also a prerequisite. On the
mathematical side, some proficiency in classical analysis, including the use of partial
differential equations and Fourier transforms, will be a great help.

Since the number of applications of quantum optics is growing at a rapid pace,
this subject is potentially interesting to people from a wide range of scientific and
engineering backgrounds. We have, therefore, organized the material in the book into
two tracks. Sections marked by an asterisk are intended for graduate-level students
who already have a firm understanding of quantum theory and Maxwell’s equations.
The unmarked sections will, we hope, be useful for senior level undergraduates who
have had good introductory courses in quantum mechanics and electrodynamics. The
exercises—which form an integral part of the text—are marked in the same way.

The terminology and notation used in the book are—for the most part—standard.
We employ SI units for electromagnetic quantities, and impose the Einstein summa-
tion convention for three-dimensional vector indices. Landau’s ‘hat’ notation is used for
quantum operators associated with material particles, e.g. q̂, and p̂, but not for similar
operators associated with the electromagnetic field. The expression ‘c-number’—also
due to Landau— is employed to distinguish ordinary numbers, either real or com-
plex, from operators. The abbreviations CC and HC respectively stand for complex
conjugate and hermitian conjugate. Throughout the book, we use Dirac’s bra and
ket notation for quantum states. Our somewhat unconventional notation for Fourier
transforms is explained in Appendix A.4.
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The quantum nature of light

Classical physics began with Newton’s laws of mechanics in the seventeenth century,
and it was completed by Maxwell’s synthesis of electricity, magnetism, and optics in the
nineteenth century. During these two centuries, Newtonian mechanics was extremely
successful in explaining a wide range of terrestrial experiments and astronomical ob-
servations. Key predictions of Maxwell’s electrodynamics were also confirmed by the
experiments of Hertz and others, and novel applications have continued to emerge up
to the present. When combined with the general statistical principles codified in the
laws of thermodynamics, classical physics seemed to provide a permanent foundation
for all future understanding of the physical world.

At the turn of the twentieth century, this optimistic view was shattered by new ex-
perimental discoveries, and the ensuing crisis for classical physics was only resolved by
the creation of the quantum theory. The necessity of explaining the stability of atoms,
the existence of discrete lines in atomic spectra, the diffraction of electrons, and many
other experimental observations, decisively favored the new quantum mechanics over
Newtonian mechanics for material particles (Bransden and Joachain, 1989, Chap. 4).
Thermodynamics provided a very useful bridge between the old and the new theories.
In the words of Einstein (Schilpp, 1949, Autobiographical Notes, p. 33),

A theory is the more impressive the greater the simplicity of its premises is, the more
different kinds of things it relates, and the more extended is its area of applicability.
Therefore the deep impression which classical thermodynamics made upon me. It
is the only physical theory of universal content concerning which I am convinced
that, within the framework of the applicability of its basic concepts, it will never be
overthrown (for the special attention of those who are skeptics on principle).

Unexpected features of the behavior of light formed an equally important part
of the crisis for classical physics. The blackbody spectrum, the photoelectric effect,
and atomic spectra proved to be inconsistent with classical electrodynamics. In his
characteristically bold fashion, Einstein (1987a) proposed a solution to these difficulties
by offering a radically new model in which light of frequency ν is supposed to consist
of a gas of discrete light quanta with energy ε = hν, where h is Planck’s constant.
The connection to classical electromagnetic theory is provided by the assumption
that the number density of light quanta is proportional to the intensity of the light.
We will follow the current usage in which light quanta are called photons, but this
terminology must be used with some care.1 Conceptual difficulties can arise because

1According to Willis Lamb, no amount of care is sufficient; and the term ‘photon’ should be banned
from physics (Lamb, 1995).
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this name suggests that photons are particles in the same sense as electrons, protons,
neutrons, etc. In the following chapters, we will see that the physical meaning of the
word ‘photon’ evolves along with our understanding of experiment and theory.

Einstein’s introduction of photons was the first step toward a true quantum the-
ory of light—just as the Bohr model of the atom was the first step toward quantum
mechanics—but there is an important difference between these parallel developments.
The transition from classical electromagnetic theory to the photon model is even more
radical than the corresponding transition from classical mechanics to quantum me-
chanics. If one thinks of classical mechanics as a game like chess, the pieces are point
particles and the rules are Newton’s equations of motion. The solution of Newton’s
equations determines a unique trajectory (q (t) , p (t)) for given initial values of the
position q (0) and the momentum p (0) of a point particle. The game of quantum me-
chanics has the same pieces, but different rules. The initial situation is given by a
wave function ψ (q), and the trajectory is replaced by a time-dependent wave function
ψ (q, t) that satisfies the Schrödinger equation. The situation for classical electrody-
namics is very different. The pieces for this game are the continuous electric and
magnetic fields E (r, t) and B (r, t), and the rules are provided by Maxwell’s equations.
Einstein’s photons are nowhere to be found; consequently, the quantum version of the
game requires new pieces, as well as new rules. A conceptual change of this magnitude
should be approached with caution.

In order to exercise the caution recommended above, we will discuss the experimen-
tal basis for the quantum theory of light in several stages. Section 1.1 contains brief
descriptions of the experiments usually considered in this connection, together with
a demonstration of the complete failure of classical physics to explain any of them.
In Section 1.2 we will introduce Einstein’s photon model and show that it succeeds
brilliantly in explaining the same experimental results.

In other words, the photon model is sufficient for the explanation of the experi-
ments in Section 1.1, but the question is whether the introduction of the photon is
necessary for this purpose. The only way to address this question is to construct an
alternative model, and the only candidate presently available is semiclassical elec-
trodynamics. In this approach, the charged particles making up atoms are described
by quantum mechanics, but the electromagnetic field is still treated classically.

In Section 1.3 we will attempt to explain each experiment in semiclassical terms.
In this connection, it is essential to keep in mind that corrections to the lowest-order
approximation—of the semiclassical theory or the photon model—would not have
been detectable in the early experiments. As we will see, these attempts have varying
degrees of success; so one might ask: Why consider the semiclassical approach at all?
The answer is that the existence of a semiclassical explanation for a given experimental
result implies that the experiment is not sensitive to the indivisibility of photons,
which is a fundamental assumption of Einstein’s model (Einstein, 1987a). In Einstein’s
own words:

According to the assumption to be contemplated here, when a light ray is spreading
from a point, the energy is not distributed continuously over ever-increasing spaces,
but consists of a finite number of energy quanta that are localized in points in space,
move without dividing, and can be absorbed or generated only as a whole.
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As an operational test of photon indivisibility, imagine that light containing exactly
one photon falls on a transparent dielectric slab (a beam splitter) at a 45◦ angle
of incidence. According to classical optics, the light is partly reflected and partly
transmitted, but in the photon model these two outcomes are mutually exclusive. The
photon must go one way or the other. In Section 1.4 we will describe an experiment that
very convincingly demonstrates this all-or-nothing behavior. This single experiment
excludes all variants of semiclassical electrodynamics. Experiments of this kind had to
wait for technologies, such as atomic beams and coincidence counting, which were not
fully developed until the second half of the twentieth century.

1.1 The early experiments

1.1.1 The Planck spectrum

In the last half of the nineteenth century, a considerable experimental effort was made
to obtain precise measurements of the spectrum of radiation emitted by a so-called
blackbody, an idealized object which absorbs all radiation falling on it. In practice,
this idealized body is replaced by a blackbody cavity, i.e. a void surrounded by a
wall, pierced by a small aperture that allows radiation to enter and exit. The interior
area of the cavity is much larger than the area of the hole, so a ray of light entering
the cavity would bounce from the interior walls many times before it could escape
through the entry point. Thus the radiation would almost certainly be absorbed before
it could exit. In this way the cavity closely approximates the perfect absorptivity of
an ideal blackbody. Even when no light is incident from the outside, light is seen
to escape through the small aperture. This shows that the interior of a cavity with
heated walls is filled with radiation. The blackbody cavity, which is a simplification of
the furnaces used in the ancient art of ceramics, is not only an accurate representation
of the experimental setup used to observe the spectrum of blackbody radiation; it
also captures the essential features of the blackbody problem in a way that allows for
simple theoretical analysis.

Determining the spectral composition (that is, the distribution of radiant energy
into different wavelengths) of the light emitted by a cavity with walls at temperature
T is an important experimental goal. The wavelength, λ, is related to the circular
frequency ω by λ = c/ν = 2πc/ω, so this information is contained in the spectral
function ρ (ω, T ), where ρ (ω, T )∆ω is the radiant energy per unit volume in the
frequency interval ω to ω + ∆ω. The power per unit frequency interval emitted from
the aperture area σ is cρ (ω, T )σ/4 (see Exercise 1.1). In order to measure this quantity,
the various frequency components must be spectrally separated before detection, for
example, by refracting the light through a prism. If the prism is strongly dispersive
(that is, the index of refraction of the prism material is a strong function of the
wavelength) distinct wavelength components will be refracted at different angles.

For moderate temperatures, a significant part of the blackbody radiation lies in
the infrared, so it was necessary to develop new techniques of infrared spectroscopy
in order to achieve the required spectral separation. This effort was aided by the
discovery that prisms cut from single crystals of salt are strongly dispersive in the
infrared part of the spectrum. The concurrent development of infrared detectors in
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Fig. 1.1 Distribution of energy in the spec-

trum of a blackbody at various temperatures.

(Reproduced from Richtmyer et al. (1955,

Chap. 4, Sec. 64).)

the form of sensitive bolometers2 allowed an accurate measurement of the blackbody
spectrum. The experimental effort to measure this spectrum was initiated in Berlin
around 1875 by Kirchhoff, and culminated in the painstaking work of Lummer and
Pringsheim in 1899, in which the blackbody spectrum was carefully measured in the
temperature range 998 K to 1646 K. Typical results are shown in Fig. 1.1.

The theoretical interpretation of the experimental measurements also required a
considerable effort. The first step is a thermodynamic argument which shows that the
blackbody spectrum must be a universal function of temperature; in other words, the
spectrum is entirely independent of the size and shape of the cavity, and of the material
composition of its walls. Consider two separate cavities having small apertures of
identical size and shape, which are butted against each other so that the two apertures
coincide exactly, as indicated in Fig. 1.2. In this way, all the radiation escaping from
each cavity enters the other. The two cavities can have interiors of different volumes
and arbitrarily irregular shapes (provided that their interior areas are sufficiently large
compared to the aperture area), and their walls can be composed of entirely different
materials. We will assume that the two cavities are in thermodynamic equilibrium at
the common temperature T .

Now suppose that the blackbody spectrum were not universal, but depended, for
example, on the material of the walls. If the left cavity were to emit a greater amount
of radiation than the right cavity, then there would be a net flow of energy from left
to right. The right cavity would then heat up, while the left cavity would cool down.
The flow of heat between the cavities could be used to extract useful work from two
bodies at the same temperature. This would constitute a perpetual motion machine of
the second kind, which is forbidden by the second law of thermodynamics (Zemansky,
1951, Chap. 7.5). The total flow of energy out of each cavity is given by the integral of

2These devices exploit the temperature dependence of the resistivity of certain metals to measure
the deposited energy by the change in an electrical signal.
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Fig. 1.2 Cavities α and β coupled through a

common aperture.

its spectral function over all frequencies, so this argument shows that the integrated
spectral functions of the two cavities must be exactly the same.

This still leaves open the possibility that the spectral functions could differ in
certain frequency intervals, provided that their integrals are the same. Thus we must
also prove that net flows of energy cannot occur in any frequency interval of the
blackbody spectrum. This can be seen from the following argument based on the
principle of detailed balance. Suppose that the spectral functions of the two cavities,
ρα and ρβ , are different in the small interval ω to ω + ∆ω; for example, suppose that
ρα (ω, T ) > ρβ (ω, T ). Then the net power flowing from α to β, in this frequency
interval, is

1
4
c [ρα (ω, T )− ρβ (ω, T )] σ∆ω > 0 , (1.1)

where σ is the common area of the apertures. If we position absorbers in both α and β
that only absorb at frequency ω, then the absorber in β will heat up compared to that
in α. The two absorbers then provide the high- and low-temperature reservoirs of a
heat engine (Halliday et al., 1993, Chap. 22–6) that could deliver continuous external
work, with no other change in the system. Again, this would constitute a perpetual
motion machine of the second kind. Therefore the equality

ρα (ω, T ) = ρβ (ω, T ) (1.2)

must be exact, for all values of the frequency ω and for all values of the temperature T .
We conclude that the blackbody spectral function is universal; it does not depend on
the material composition, size, shape, etc., of the two cavities. This strongly suggests
that the universal spectral function should be regarded as a property of the radiation
field itself, rather than a joint property of the radiation field and of the matter with
which it is in equilibrium.

The thermodynamic argument given above shows that the spectral function is uni-
versal, but it gives no clues about its form. In classical physics this can be determined
by using the principle of equipartition of energy. For an ideal gas, this states that
the average energy associated with each degree of freedom is kBT/2, where T is the
temperature and kB is Boltzmann’s constant. For a collection of harmonic oscillators,
the kinetic and potential energy each contribute kBT/2, so the thermal energy for
each degree of freedom is kBT .

In order to apply these rules to blackbody radiation, we first need to identify and
count the number of degrees of freedom in the electromagnetic field. The thermal
radiation in the cavity can be analyzed in terms of plane waves eks exp (ik · r), where
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eks is the unit polarization vector and the propagation vector k satisfies |k| = ω/c and
k·eks = 0. There are two linearly independent polarization states for each k, so s takes
on two values. The boundary conditions at the walls only allow certain discrete values
for k. In particular, for a cubical cavity with sides L subject to periodic boundary
conditions the spacing of allowed k values in the x-direction is ∆kx = 2π/L, etc.
Another way of saying this is that each mode occupies a volume (2π/L)3 in k-space,
so that the number of modes in the volume element d3k is 2 (2π/L)−3

d3k, where the
factor 2 accounts for the two polarizations. The field is completely determined by the
amplitudes of the independent modes, so it is natural to identity the modes as the
degrees of freedom of the field. Furthermore, we will see in Section 2.1.1-D that the
contribution of each mode to the total energy is mathematically identical to the energy
of a harmonic oscillator. The identification of modes with degrees of freedom shows
that the number of degrees of freedom dnω in the frequency interval ω to ω + dω is

dnω = 2
∫

dθ sin θ

∫
dφ

k2dk

(2π/L)3
=

L3k2

π2c
dω , (1.3)

where θ and φ specify the direction of k. The equipartition theorem for harmonic
oscillators shows that the thermal energy per mode is kBT . The spectral function is
the product of dnω and the thermal energy density kBT/L3, so we find the classical
Rayleigh–Jeans law:

ρ (ω, T ) dω = kBT
ω2

π2c3
dω . (1.4)

This fits the low-frequency data quite well, but it is disastrously wrong at high
frequencies. The ω-integral of this spectral function diverges; consequently, the total
energy density is infinite for any temperature T . Since the divergence of the integral
occurs at high frequencies, this is called the ultraviolet catastrophe.

In an effort to find a replacement for the Rayleigh–Jeans law, Planck (1959) con-
centrated on the atoms in the walls, which he modeled as a family of harmonic oscil-
lators in equilibrium with the radiation field. In classical mechanics, each oscillator is
described by a pair of numbers (Q, P ), where Q is the coordinate and P is the momen-
tum. These pairs define the points of the classical oscillator phase space (Chandler,
1987, Chap. 3.1). The average energy per oscillator is given by an integral over the
oscillator phase space, which Planck approximated by a sum over phase space elements
of area h. Usually, the value of the integral would be found by taking the limit h → 0,
but Planck discovered that he could fit the data over the whole frequency range by
instead assigning the particular nonzero value h ≈ 6.6 × 10−34 J s. He attempted to
explain this amazing fact by assuming that the atoms could only transfer energy to
the field in units of hν = �ω, where � ≡ h/2π. This is completely contrary to a clas-
sical description of the atoms, which would allow continuous energy transfers of any
amount.

This achievement marks the birth of quantum theory, and Planck’s constant h
became a new universal constant. In Planck’s model, the quantization of energy is a
property of the atoms—or, more precisely, of the interaction between the atoms and
the field—and the electromagnetic field is still treated classically. The derivation of the
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spectral function from this model is quite involved, and the fact that the result is in-
dependent of the material properties only appears late in the calculation. Fortunately,
Einstein later showed that the functional form of ρ (ω, T ) can be derived very simply
from his quantum model of radiation, in which the electromagnetic field itself consists
of discrete quanta. Therefore we will first consider the other early experiments before
calculating ρ (ω, T ).

1.1.2 The photoelectric effect

The infrared part of atomic spectra, contributing to the blackbody radiation discussed
in the last section, does not typically display sharp spectral lines. In this and the
following two sections we will consider effects caused by radiation with a sharply
defined frequency. One of the most celebrated of these is the photoelectric effect:
ultraviolet light falling on a properly cleaned metallic surface causes the emission of
electrons. In the early days of spectroscopy, the source of this ultraviolet light was
typically a sharp mercury line—at 253.6 nm—excited in a mercury arc.

In order to simplify the classical analysis of this effect, we will replace the complex-
ities of actual metals by a model in which the electron is trapped in a potential well.
According to Maxwell’s theory, the incident light is an electromagnetic plane wave
with |E| = c |B|, and the electron is exposed to the Lorentz force F = −e (E + v × B).
Work is done only by the electric field on the electron. Hence it will take time for
the electron to absorb sufficient energy from the field to overcome the binding energy
to the metal, and thus escape from the surface. The time required would necessarily
increase as the field strength decreases. Since the kinetic energy of the emitted electron
is the difference between the work done and the binding energy, it would also depend
on the intensity of the light. This leads to the following two predictions. (P1) There
will be an intensity-dependent time interval between the onset of the radiation and
the first emission of an electron. (P2) The energy of the emitted electrons will depend
on the intensity.

Let us now consider an experimental arrangement that can measure the kinetic
energy of the ejected photoelectrons and the time delay between the arrival of the
light and the first emission of electrons. Both objectives can be realized by positioning
a collector plate at a short distance from the surface. The plate is maintained at a
negative potential −Vstop, with respect to the surface, and the potential is adjusted to
a value just sufficient to stop the emitted electrons. The photoelectron’s kinetic energy
can then be determined through the energy-conservation equation

1
2
mv2 = (−e) (−Vstop) . (1.5)

The onset of the current induced by the capture of the photoelectrons determines the
time delay between the arrival of the radiation pulse and the start of photoelectron
emission. The amplitude of the current is proportional to the rate at which electrons
are ejected. The experimental results are as follows. (E1) There is no measurable time
delay before the emission of the first electron. (E2) The ejected photoelectron’s kinetic
energy is independent of the intensity of the light. Instead, the observed values of
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the energy depend on the frequency. They are very accurately fitted by the empirical
relation

εe = eVstop =
1
2
mv2 = �ω − W , (1.6)

where ω is the frequency of the light. The constant W is called the work function; it is
the energy required to free an electron from the metal. The value of W depends on the
metal, but the constant � is universal. (E3) The rate at which electrons are emitted—
but not their energies—is proportional to the field intensity. The stark contrast between
the theoretical predictions (P1) and (P2) and the experimental results (E1)–(E3) posed
another serious challenge to classical physics. The relation (1.6) is called Einstein’s
photoelectric equation, for reasons which will become clear in Section 1.2.

In the early experiments on the photoelectric effect it was difficult to determine
whether the photoelectron energy was better fit by a linear or a quadratic dependence
on the frequency of the light. This difficulty was resolved by Millikan’s beautiful ex-
periment (Millikan, 1916), in which he verified eqn (1.6) by using alkali metals, which
were prepared with clean surfaces inside a vacuum system by means of an in vacuo
metal-shaving technique. These clean alkali metal surfaces had a sufficiently small work
function W , so that even light towards the red part of the visible spectrum was able
to eject photoelectrons. In this way, he was able to measure the photoelectric effect
from the red to the ultraviolet part of the spectrum—nearly a threefold increase over
the previously observed frequency range. This made it possible to verify the linear
dependence of the increment in the photoelectron’s ejection energy as a function of
the frequency of the incident light. Furthermore, Millikan had already measured very
accurately the value of the electron charge e in his oil drop experiment. Combining
this with the slope h/e of Vstop versus ν from eqn (1.6) he was able to deduce a value
of Planck’s constant h which is within 1% of the best modern measurements.

1.1.3 Compton scattering

As the study of the interaction of light and matter was extended to shorter wavelengths,
another puzzling result occurred in an experiment on the scattering of monochromatic
X-rays (the Kα line from a molybdenum X-ray tube) by a graphite target (Compton,
1923). A schematic of the experimental setup is shown in Fig. 1.3 for the special

Fig. 1.3 Schematic of the setup used to ob-

serve Compton scattering.
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case when the scattering angle θ is 135◦. The wavelength of the scattered radiation
is measured by means of a Bragg crystal spectrometer using the relation 2d sin φ =
mλ, where φ is the Bragg scattering angle, d is the lattice spacing of the crystal,
and m is an integer corresponding to the diffraction order (Tipler, 1978, Chap. 3–
6). Compton’s experiment was arranged so that m = 1. The Bragg spectrometer
which Compton constructed for his experiment consisted of a tiltable calcite crystal
(oriented at a Bragg angle φ) placed inside a lead box, which was used as a shield
against unwanted background X-rays. The detector, also placed inside this box, was
an ionization chamber placed behind a series of collimating slits to define the angles
θ and φ.

A simple classical model of the experiment consists of an electromagnetic field of
frequency ω falling on an atomic electron. According to classical theory, the incident
field will cause the electron to oscillate with frequency ω, and this will in turn generate
radiation at the same frequency. This process is called Thompson scattering (Jack-
son, 1999, Sec. 14.8). In reality the incident radiation is not perfectly monochromatic,
but the spectrum does have a single well-defined peak. The classical prediction is that
the spectrum of the scattered radiation should also have a single peak at the same
frequency.

The experimental results—shown in Fig. 1.4 for the scattering angles of θ = 45◦,
90◦, and 135◦—do exhibit a peak at the incident wavelength, but at each scattering
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Fig. 1.4 Data from the Compton scattering experiment sketched in Fig. 1.3. A calcite crystal

was used as the dispersive element in the Bragg spectrometer. (Adapted from Compton

(1923).)
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angle there is an additional peak at longer wavelengths which cannot be explained by
the classical theory.

1.1.4 Bothe’s coincidence-counting experiment

During the early development of the quantum theory, Bohr, Kramers, and Slater raised
the possibility that energy and momentum are not conserved in each elementary quan-
tum event—such as Compton scattering—but only on the average over many such
events (Bohr et al., 1924). However, by introducing the extremely important method
of coincidence detection—in this case of the scattered X-ray photon and of the
recoiling electron in each scattering event—Bothe performed a decisive experiment
showing that the Bohr–Kramers–Slater hypothesis is incorrect in the case of Compton
scattering; in fact, energy and momentum are both conserved in every single quantum
event (Bothe, 1926). In the experiment sketched in Fig. 1.5, X-rays are Compton-
scattered from a thin, metallic foil, and registered in the upper Geiger counter. The
thin foil allows the recoiling electron to escape, so that it registers in the lower Geiger
counter.

When viewed in the wave picture, the scattered X-rays are emitted in a spherically
expanding wavefront, but a single detection at the upper Geiger counter registers the
absorption of the full energy �ω of the X-ray photon, and the displacement vector
linking the scattering point to the Geiger counter defines a unique direction for the
momentum �k′ of the scattered X-ray. This is an example of the famous collapse of
the wave packet.

When viewed in the particle picture, both the photon and the electron are treated
like colliding billiard balls, and the principles of the conservation of energy and mo-
mentum fix the momentum p of the recoiling electron. The detection of the scattered
X-ray is therefore always accompanied by the detection of the recoiling electron at the
lower Geiger counter, provided that the second counter is carefully aligned along the
uniquely defined direction of the electron momentum p. Coincidence detection became
possible with the advent, in the 1920s, of fast electronics using vacuum tubes (triodes),
which open a narrow time window defining the approximately simultaneous detection
of a pair of pulses from the upper and lower Geiger counters.

Later we will see the central importance in quantum theory of the concept of an
entangled state, for example, a superposition of products of the plane-wave states
of two free particles. In the case of Compton scattering, the scattered X-ray pho-
ton and the recoiling electron are produced in just such a state. The entanglement

Fig. 1.5 Schematic of Bothe’s coincidence de-

tection of a Compton-scattered X-ray from a

thin, metallic foil, and of the recoil electron

from the same scattering event.
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between the electron and the photon produced by their interaction enforces a tight
correlation—determined by conservation of energy and momentum—upon detection of
each quantum scattering event. It was just such correlations which were first observed
in the coincidence-counting experiment of Bothe.

1.2 Photons

In one of his three celebrated 1905 papers Einstein (1987a) proposed a new model of
light which explains all of the experimental results discussed in the previous sections.
In this model, light of frequency ω is supposed to consist of a gas of discrete photons
with energy ε = �ω. In common with material particles, photons carry momentum as
well as energy. In the first paper on relativity, Einstein had already pointed out that
the relativistic transformation laws governing energy and momentum are identical to
those governing the frequency and wavevector of a plane wave (Jackson, 1999, Sec.
11.3D). In other words, the four-component vector (ω, ck) transforms in the same way
as (E, cp) for a material particle. Thus the assumption that the energy of a light
quantum is �ω implies that its momentum must be �k, where |k| = (ω/c) = (2π/λ).
The connection to classical electromagnetic theory is provided by the assumption that
the number density of photons is proportional to the intensity of the light.

This is a far reaching extension of Planck’s idea that energy could only be trans-
ferred between radiation and matter in units of �ω. The new proposal ascribes the
quantization entirely to the electromagnetic field itself, rather than to the mechanism
of energy exchange between light and matter. It is useful to arrange the results of
the model into two groups. The first group includes the kinematical features of the
model, i.e. those that depend only on the conservation laws for energy and momentum
and other symmetry properties. The second group comprises the dynamical features,
i.e. those that involve explicit assumptions about the fundamental interactions. In
the final section we will show that even this simple model has interesting practical
applications.

1.2.1 Kinematics

A The photoelectric effect

The first success of the photon model was its explanation of the puzzling features
of the photoelectric effect. Since absorption of light occurs by transferring discrete
bundles of energy of just the right size, there is no time delay before emission of the
first electron. Absorption of a single photon transfers its entire energy �ω to the bound
electron, thereby ejecting it from the metal with energy εe given by eqn (1.6), which
now represents the overall conservation of energy. The energy of the ejected electron
therefore depends on the frequency rather than the intensity of the light. Since each
photoelectron emission event is caused by the absorption of a single photon, the number
of electrons emitted per unit time is proportional to the flux of photons and thereby
to the intensity of light. The photoelectric equation implied by the photon model is
kinematical in nature, since it only depends on conservation of energy and does not
assume any model for the dynamical interaction between photons and the electrons in
the metal.
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B Compton scattering

The existence of the second peak in Compton scattering is also predicted by a kine-
matical argument based on conservation of momentum and energy. Consider an X-ray
photon scattering from a weakly bound electron. In this case it is sufficient to consider
a free electron at rest and impose conservation of energy and momentum to determine
the possible final states as shown in Fig. 1.6.

For energetic X-rays the electron may recoil at velocities comparable to the velocity
of light, so it is necessary to use relativistic kinematics for this calculation (Jackson,
1999, Sec. 11.5). The relativistic conservation laws for energy and momentum are

mc2 + �ω = E + �ω′ , �k = �k′ + p , (1.7)

where p and E =
√

m2c4 + c2p2 are respectively the final electron momentum and
energy, |k| = ω/c, and |k′| = ω′/c. Since the recoil kinetic energy of the scattered
electron (K = E − mc2) is positive, eqn (1.7) already explains why the scattered
quantum must have a lower frequency (longer wavelength) than the incident quantum.
Combining the two conservation laws yields the Compton shift

∆λ ≡ λ′ − λ = λC (1 − cos θ) , (1.8)

in wavelength as a function of the scattering angle θ (the angle between k and k′),
where the electron Compton wavelength is

λC =
h

mc
= 0.0048 nm . (1.9)

This simple argument agrees quite accurately with the data in Fig. 1.4, and with
other experiments using a variety of incident wavelengths. The fractional wavelength
shift for Compton scattering is bounded by ∆λ/λ < 2λC/λ. This shows that ∆λ/λ is
negligible for optical wavelengths, λ ∼ 103 nm; which explains why X-rays were needed
to observe the Compton shift.

Fig. 1.6 Scattering of an incident X-ray quan-

tum from an electron at rest.
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The argument leading to eqn (1.8) seems to prove too much, since it leaves no
room for the peak at the incident wavelength, which is also evident in the data. This
is a consequence of the assumption that the electron is weakly bound. In carrying out
the same kinematic analysis for a strongly bound electron, the electron mass m in eqn
(1.9) must be replaced by the mass M of the atom. Since M � m, the resulting shift
is negligible even at X-ray wavelengths, and the peak at the incident wavelength is
recovered.

1.2.2 Dynamics

A Emission and absorption of light

The dynamical features of the photon model were added later, in conjunction with the
Bohr model of the atom (Einstein, 1987b, 1987c). The level structure of a real atom
is quite complicated, but for a fixed frequency of light only the two levels involved
in a quantum jump describing emission or absorption of light at that frequency are
relevant. This allows us to replace real atoms by idealized two-level atoms which have
a lower state with energy ε1, and a single upper (excited) state with energy ε2. The
combination of conservation of energy with the photoelectric effect makes it reasonable
(following Bohr) to assume that the atoms can absorb and emit radiation of frequency
ω = (ε2 − ε1) /�. In this spirit, Einstein assumed the existence of three dynamical
processes, absorption, spontaneous emission, and stimulated emission. The simplest
cases of absorption and emission of a single photon are shown in Fig. 1.7.

Einstein originally introduced the notion of spontaneous emission by analogy with
radioactive decay, but the existence of spontaneous emission is implied by the princi-
ple of time-reversal invariance: i.e. the time-reversed final state evolves into the time-
reversed initial state. We will encounter this principle later on in connection with
Maxwell’s equations and quantum theory. In fact, time-reversal invariance holds for
all microscopic physical phenomena, with the exception of the weak interactions. These

atom

AFTER

photon atom

BEFORE

(a) Absorption of a single photon

atom

BEFORE

photon

AFTER

(b) Spontaneous emission

atom

Fig. 1.7 (a) An atom in the ground state jumps to the excited state after absorbing a single

photon. (b) An atom in the excited state jumps to the ground state and emits a single photon.
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very small effects will be ignored for the purposes of this book. For the present, we
will simply illustrate the idea of time reversal by considering the motion of classi-
cal particles (such as perfectly elastic billiard balls). Since Newton’s equations are
second order in time, the evolution of the mechanical system is determined by the
initial positions and velocities of the particles, (r (0) ,v (0)). Suppose that at time
t = τ , each velocity is somehow reversed3 while the positions are unchanged so that
(r (τ) ,v (τ)) → (r (τ) ,−v (τ)). More details on this operation—which is called time
reversal—are found in Appendix B.3.3. With this new initial state, the particles will
exactly reverse their motions during the interval (τ, 2τ) to arrive at (r (2τ) ,v (2τ)) =
(r (0) ,−v (0)), which is the time-reversed form of the initial state. A mathematical
proof of this statement, which also depends on the fact that the Newtonian equations
are second order in time, can be found in standard texts; see, for example, Bransden
and Joachain (1989, Sec. 5.9).

In the photon model, the reversal of velocities is replaced by the reversal of the
propagation directions of the photons. With this in mind, it is clear that Fig. 1.7(b) is
the time-reversed form of Fig. 1.7(a). Absorption of light is a well understood process
in classical electromagnetic theory, and in principle the intensity of the field can be
made arbitrarily small. This is not the case in Einstein’s model, since the discreteness
of photons means that the weakest nonzero field is one describing exactly one photon,
as in Fig. 1.7(a). If we extrapolate the classical result to the absorption of a single
incident photon, then time-reversal invariance requires the existence of the process of
spontaneous emission, pictured in Fig. 1.7(b).

This argument can also be applied to the situation illustrated in Fig. 1.8, in which
many photons in the same mode are incident on an atom in the ground state. The
absorption event shown in Fig. 1.8(a) is evidently the time-reversed version of the
process shown in Fig. 1.8(b). Consequently, the principle of time-reversal invariance
implies the necessity of the second process, which is called stimulated emission.
Since the N photons in Fig. 1.8(a) are all in the same mode, this argument also shows
that the stimulated photon must be emitted into the same mode as the N −1 incident
photons. Thus the stimulated photon must have the same wavevector k, frequency ω,
and polarization s as the incident photons. The identical values of these parameters—
which completely specify the state of the photon—for the stimulated and stimulating
photons implies a perfect amplification of the incident light beam by the process of
stimulated emission (ignoring, for the moment, the process of spontaneous emission).
This is the microscopic origin of the nearly perfect directionality, monochromaticity,
and polarization of a laser beam.

B The Planck distribution

We now consider the rates of these processes. Absorption and stimulated emission
both vanish in the absence of atoms and of light, so for low densities of atoms and
low intensities of radiation it is natural to assume that the absorption rate W1→2 from
the lower level 1 to the upper level 2, and the stimulated emission rate W2→1—from
the upper level 2 to the lower level 1—are both jointly proportional to the density of

3This is hard to do in reality, but easy to simulate. A movie of the particle motions in the interval
(0, τ) will display the time-reversed behavior in the interval (τ, 2τ) when run backwards.
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(b) Stimulated emission
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(a) Absorption from a multi-photon state

photonatomatomphotons

Fig. 1.8 (a) An atom in the ground state jumps to the excited state after absorbing one

of the N incident photons. (b) An atom in the excited state illuminated by N − 1 incident

photons jumps to the ground state and leaves N photons in the final state.

atoms and the intensity of the light. We further assume that the two-level atoms are
placed inside a cavity at temperature T , so that the light intensity is proportional to
the spectral function ρ (ω, T ). Therefore we expect that

W1→2 = B1→2N1ρ (ω, T ) , (1.10)
W2→1 = B2→1N2ρ (ω, T ) , (1.11)

where N1 and N2 are respectively the number of atoms in the lower level 1 and the
upper level 2. The rate S2→1 of spontaneous emission can only depend on N2:

S2→1 = A2→1N2 , (1.12)

since spontaneous emission occurs in the absence of any incident photons. The phe-
nomenological Einstein A and B coefficients, A2→1, B2→1, and B1→2, are assumed to
be properties of the individual atoms which are independent of N1, N2, and ρ (ω, T ).

By studying the situation in which the atoms and the radiation field are in thermal
equilibrium, it is possible to derive other useful relations between the rate coefficients,
and thus to determine the form of ρ (ω, T ). The total rate T2→1 for transitions from
the upper state to the lower state is the sum of the spontaneous and stimulated rates,

T2→1 = A2→1N2 + B2→1N2ρ (ω, T ) , (1.13)

and the condition for steady state—which includes thermal equilibrium as an impor-
tant special case—is T2→1 = W1→2, so that

[A2→1 + B2→1ρ (ω, T )] N2 = B1→2ρ (ω, T )N1 . (1.14)

Since the atoms and the radiation field are both in thermal equilibrium with the walls
of the cavity at temperature T , the atomic populations satisfy Boltzmann’s principle,
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N1

N2
=

e−βε1

e−βε2
= eβ�ω , (1.15)

where β = 1/kBT . Using this relation in eqn (1.14) leads to

ρ (ω, T ) =
A2→1

B1→2 exp (β�ω) − B2→1
. (1.16)

This solution has very striking consequences. In the limit of infinite temperature
(β → 0), the spectral function approaches a constant value:

ρ (ω, T ) → A2→1

B1→2 − B2→1
. (1.17)

On the other hand, it seems natural to expect that the energy density in any finite
frequency interval should increase without bound in the limit of high temperatures.
The only way to avoid this contradiction is to impose

B1→2 = B2→1 = B , (1.18)

i.e. the rate of stimulated emission must exactly equal the rate of absorption for a
physically acceptable spectral function. This is an example of the principle of detailed
balance (Chandler, 1987, Sec. 8.3), which also follows from time-reversal symmetry.
Substituting eqn (1.18) into eqn (1.16) yields the new form

ρ (ω, T ) =
A

B

1
exp (β�ω) − 1

, (1.19)

where we have further simplified the notation by setting A2→1 = A. In the low
temperature—or high energy—limit, �ω � kBT (β�ω � 1), the energy density is

ρ (ω, T ) =
(

A

B

)
exp (−β�ω) . (1.20)

This is Wien’s law, and it indeed agrees with experiment in the high energy limit.
By contrast, in the low energy limit, �ω � kBT —i.e. the photon energy is small

compared to the average thermal energy—the classical Rayleigh–Jeans law is known
to be correct. This allows us to determine the ratio A/B by comparing eqn (1.19) to
eqn (1.4), with the result

A

B
=
(

�ω3

π2c3

)
. (1.21)

Thus the standard form for the Planck distribution,

ρ (ω, T ) =
(

�ω3

π2c3

)
1

exp (β�ω) − 1
, (1.22)

is completely fixed by applying the powerful principles of thermodynamics to two-level
atoms in thermal equilibrium with the radiation field inside a cavity.
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Einstein’s argument for the A and B coefficients correctly correlates an impressive
range of experimental results. On the other hand, it does not provide an explanation
for the quantum jumps involved in spontaneous emission, stimulated emission, and
absorption, nor does it give any way to relate the A and B coefficients to the micro-
scopic properties of atoms. These features will be explained in the full quantum theory
of light which is presented in the following chapters.

1.2.3 Applications

In addition to providing a framework for understanding the experiments discussed in
Section 1.1, the photon model can also be used for more practical applications. For
example, let us model an absorbing medium as a slab of thickness ∆z and area S
containing N = n∆zS two-level atoms, where n is the density of atoms. The energy
density of light in the frequency interval (ω, ω + ∆ω) at the entrance face is u (ω, z) =
ρ (z, ω)∆ω, where ρ (z, ω) is the spectral function of the incident light. The incident
flux is then cu (ω, z), so energy enters and leaves the slab at the rates cu (ω, z)S and
cu (ω, z + ∆z)S, respectively, as pictured in Fig. 1.9.

By energy conservation, the difference between these rates is the rate at which
energy is absorbed in the slab. In order to calculate this correctly, we must provide
a slightly more detailed model of the absorption process. So far, we have used an
all-or-nothing picture in which absorption occurs at the sharply defined frequency
(ε2 − ε1) /�. In reality, the atoms respond in a continuous way to light at frequency ω.
This is described by a line shape function L (ω), where L (ω)∆ω is the fraction of
atoms for which (ε2 − ε1) /� lies in the interval (ω, ω + ∆ω). In succeeding chapters we
will encounter many mechanisms that contribute to the line shape, but in the spirit
of the photon model we simply assume that L (ω) is positive and normalized by∫ ∞

0

dωL (ω) = 1 . (1.23)

We first consider the case that all of the atoms are in the ground state, then eqn (1.10)
yields

[cu (z + ∆z) − cu (z)]S = − (�ω) (Bρ (z, ω)) (L (ω)∆ωn∆zS) . (1.24)

In the limit ∆z → 0 this becomes a differential equation:

c
du (z, ω)

dz
= −�ωnBL (ω)u (z, ω) , (1.25)

� ���� � ��� + ∆��

∆�

Fig. 1.9 Light in the frequency interval

(ω,ω + ∆ω) falls on a slab of thickness

∆z and area S . The incident flux is

cu (z, ω) = cρ (z, ω)∆ω, where ρ (z, ω) is the

spectral function.
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with the solution

u (z, ω) = u (0, ω) e−α(ω)z , where α(ω) =
nL (ω)B�ω

c
. (1.26)

This is Beer’s law of absorption, and α(ω) is the absorption coefficient.
In the opposite situation that all atoms are in the upper state, stimulated emission

replaces absorption, and the same kind of calculation leads to

c
du (z, ω)

dz
= �ωnBL (ω)u (z, ω) , (1.27)

with the solution

u (z, ω) = u (0, ω) eα′(ω)z , α′(ω) =
nL (ω)B�ω

c
. (1.28)

In this case we get negative absorption, that is, the amplification of light.
If both levels are nondegenerate, the general case is described by densities n1 and

n2 for atoms in the lower and upper states respectively, with n1 + n2 = n. In the
previous results this means replacing n by n1 in the first case and n by n2 in the
second. In this situation,

du (z, ω)
dz

= g(ω)u (z, ω) , where g(ω) =
(n2 − n1) L (ω)B�ω

c
. (1.29)

For thermal equilibrium n1 > n2, so we get an absorbing medium, but with a popu-
lation inversion, n2 > n1, we find instead a gain medium with gain g(ω) > 0. This
is the principle behind the laser (Schawlow and Townes, 1958).

1.3 Are photons necessary?

Now that we have established that the photon model is sufficient for the interpretation
of the experiments described in Section 1.1, we ask if it is necessary. We investigate
this question by attempting to describe each of the principal experiments using a
semiclassical model.

1.3.1 The Planck distribution

This seems to be the simplest of the experiments under consideration, but finding a
semiclassical explanation turns out to involve some subtle issues. Suppose we make
the following assumptions.
(a) The electromagnetic field is described by the classical form of Maxwell’s equations.
(b) The electromagnetic field is an independent physical system subject to the stan-

dard laws of statistical mechanics.
With both assumptions in force the equipartition argument in Section 1.1.1 inevitably
leads to the Rayleigh–Jeans distribution and the ultraviolet catastrophe. This is phys-
ically unacceptable, so at least one of the assumptions (a) or (b) must be abandoned.
At this point, Planck chose the rather risky alternative of abandoning (b), and Einstein
took the even more radical step of abandoning (a).
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Our task is to find some way of retaining (a) while replacing Planck’s ad hoc
procedure by an argument based on a quantum mechanical description of the atoms
in the cavity wall. There does not seem to be a completely satisfactory way to do this,
so a rough plausibility argument will have to suffice. We begin by observing that the
derivation of the Planck distribution in Section 1.2.2-B does not explicitly involve the
assumption that light is composed of discrete quanta. This suggests that we first seek
a semiclassical origin for the A and B coefficients, and then simply repeat the same
argument.

The Einstein coefficients B1→2 (for absorption) and B2→1 (for stimulated emission)
can both be evaluated by applying first-order, time-dependent perturbation theory—
which is reviewed in Section 4.8.2—to the coupling between the atom and the classical
electromagnetic field. In both processes the electron remains bound in the atom, which
is small compared to typical optical wavelengths. Thus the interaction of the atom
with the classical field can be treated in the dipole approximation, and the interaction
Hamiltonian is

Hint = −d̂ · E , (1.30)

where d̂ is the electric dipole operator, and the field is evaluated at the center of mass
of the atom. Applying the Fermi-golden-rule result (4.113) to the absorption process
leads to

B1→2 =
π

3ε0

|d12|2
�2

, (1.31)

where d12 is the matrix element of the dipole operator. A similar calculation for stimu-
lated emission yields the same value for B2→1, so the equality of the two B coefficients
is independently verified.

The strictly semiclassical theory used above does not explain spontaneous emis-
sion; instead, it predicts A = 0. The reason is that the interaction Hamiltonian (1.30)
vanishes in the absence of an external field. If no external field is present, an atom in
any stationary state—including all excited states—will stay there permanently. On the
other hand, spontaneous emission is not explained in Einstein’s photon model either;
it is built in by assumption at the beginning. Since the present competition is with the
photon model, we are at liberty to augment the strict semiclassical theory by simply
assuming the existence of spontaneous emission. With this assumption in force, Ein-
stein’s rate arguments (eqns (1.10)–(1.21)) can be used to derive the ratio A/B. Note
that these equations refer to transition rates within the two-level atom; they do not
require the concept of the photon. Combining this with the independently calculated
value of B1→2 given in eqn (1.31) yields the correct value for the A coefficient. This
line of argument is frequently used to derive the A coefficient without bringing in the
full blown quantum theory of light (Loudon, 2000, Sec. 1.5).

The extra assumptions required to carry out this semiclassical derivation of the
Planck spectrum may make it appear almost as ad hoc as Planck’s argument, but it
does show that the photon model is not strictly necessary for this purpose.

1.3.2 The photoelectric effect

By contrast to the derivation of the Planck spectrum, Einstein’s explanation of the
photoelectric effect depends in a very direct way on the photon concept. In this case,
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however, the alternative description using the semiclassical theory turns out to be much
more straightforward. For this calculation, the electrons in the metal are described by
quantum mechanics, and the light is described as an external classical field. The total
electron Hamiltonian is therefore H = H0 + Hint, where H0 is the Hamiltonian for an
electron in the absence of any external electromagnetic field and Hint is the interaction
term. For a single electron in a weak external field, the standard quantum mechanical
result—reviewed in Appendix C.6—is

Hint = − e

m
A (r̂, t) · p̂ , (1.32)

where r̂ and p̂ are respectively the quantum operators for the position and momentum.
In the usual position-space representation the action of the operators is r̂ψ (r) =
rψ (r) and p̂ψ (r) = −i�∇ψ (r). The c-number function A (r, t) is the classical vector
potential—which can be chosen to satisfy the radiation-gauge condition ∇ · A = 0—
and it determines the radiation field by

E = −∂A
∂t

, B = ∇ × A . (1.33)

For a monochromatic field with frequency ω, the vector potential is

A (r, t) =
1
ω
E0e exp (ik · r − ωt) + CC , (1.34)

where e is the unit polarization vector, E0 is the electric field amplitude, |k| = ω/c,
and e · k = 0. Another application of Fermi’s golden rule (4.113) yields the rate

Wfi =
2π

�
|〈f |Hint| i〉|2 δ (εf − εi − �ω) (1.35)

for the transition from the initial bound energy level εi into a free level εf . This
result is valid for observation times t � 1/ω. For optical fields ω ∼ 1015 s−1, so
eqn (1.35) predicts the emission of electrons with no appreciable delay. Furthermore,
the delta function guarantees that the energy of the ejected electron satisfies the
photoelectric equation. Finally the matrix element 〈f |Hint| i〉 is proportional to E0, so
the rate of electron emission is proportional to the field intensity. Therefore, this simple
semiclassical theory explains all of the puzzling aspects of the photoelectric effect,
without ever introducing the concept of the photon. This point is already implicit in
the very early papers of Wentzel (1926) and Beck (1927), and it has also been noted
in much more recent work (Mandel et al., 1964; Lamb and Scully, 1969). The energy
conserving delta function in eqn (1.35) reproduces the kinematical relation (1.6), but
it only appears at the end of a detailed dynamical calculation.

Most techniques for detecting photons employ the photoelectric effect, so an expla-
nation of the photoelectric effect that does not require the existence of photons is a bit
upsetting. Furthermore, the response of other kinds of detectors (such as photographic
emulsions, solid-state photomultipliers, etc.) is ultimately also based on the photoelec-
tric effect. Therefore, they can also be entirely described by the semiclassical theory.
This raises serious questions about the interpretation of some experiments claiming to



Are photons necessary? ��

demonstrate the existence of photons. An early example is a repetition of Young’s two
slit experiment (Taylor, 1909), which used light of such low intensity that the average
energy present in the apparatus at any given time was at most �ω. The result was a
slow accumulation of spots on a photographic plate. After a sufficiently long exposure
time, the spots displayed the expected two slit interference pattern. This was taken as
evidence for the existence of photons, and apparently was the basis for Dirac’s (1958)
assertion that each photon interferes only with itself. This interpretation clearly de-
pends on the assumption that each individual spot on the plate represents absorption
of a single photon. The semiclassical explanation of the photoelectric effect shows that
the results could equally well be interpreted as the interference of classical electromag-
netic waves from the two slits, combined with the semiclassical quantum theory for
excitation of electrons in the photographic plate. In this view, there is no necessity for
the concept of the photon, and thus for the quantization of the electromagnetic field.

1.3.3 Compton scattering

The kinematical explanation for the Compton shift given in Section 1.1.3 is often
offered as conclusive evidence for the existence of photons, but the very first derivation
(Klein and Nishina, 1929) of the celebrated Klein–Nishina formula (Bjorken and Drell,
1964, Sec. 7.7) for the differential cross-section of Compton scattering was carried
out in a slightly extended form of the semiclassical approximation. The analysis is
more complicated than the semiclassical treatment of the photoelectric effect for two
reasons. The first is that the electron motion may become relativistic, so that the
nonrelativistic Schrödinger equation must be replaced by the relativistic Dirac equation
(Bjorken and Drell, 1964, Chap. 1). The second complication is that the radiation
emitted by the excited electron cannot be ignored, since observing this radiation is the
point of the experiment. Thus Compton scattering is a two step process in which the
electron is first excited by the incident radiation, and the resulting current subsequently
generates the scattered radiation. In the original paper of Klein and Nishina, the
Dirac equation for an electron exposed to an incident plane wave is solved by using
first-order time-dependent perturbation theory. The expectation value of the current-
density operator in the perturbed state is then used as the source term in the classical
Maxwell equations. The radiation field generated in this way automatically satisfies
the kinematical relations (1.7), so it again yields the Compton shift given in eqn (1.8).
Furthermore, the Compton cross-section calculated by using the semiclassical Klein–
Nishina model precisely agrees with the result obtained in quantum electrodynamics,
in which the electromagnetic field is treated by quantum theory. Once again we see that
Einstein’s quantum model provides a beautifully simple explanation of the kinematical
aspects of the experiment, but that the more complicated semiclassical treatment
achieves the same end, while also providing a correct dynamical calculation of the cross-
section. There is again no necessity to introduce the concept of the photon anywhere
in this calculation.

1.3.4 Conclusions

The experiments discussed in Section 1.1 are usually presented as evidence for the
existence of photons. The reasoning behind this claim is that classical physics is in-
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consistent with the experimental results, while Einstein’s photon model describes all
the experimental results in a very simple way. What we have just seen, however, is
that an augmented version of semiclassical electrodynamics can explain the same set
of experiments without recourse to the idea of photons. Where, then, is the empirical
evidence for the existence of photons? In the next section we will describe experiments
that bear on this question.

1.4 Indivisibility of photons

The semiclassical explanations of the experimental results in Section 1.1 imply that
these experiments are not sensitive to the indivisibility of photons. Classical electro-
magnetic theory describes light in terms of electric and magnetic fields with contin-
uously variable field amplitudes, but the photon model of light asserts that electro-
magnetic energy is concentrated into discrete quanta which cannot be further subdi-
vided. In particular, a classical electromagnetic wave must be continuously divisible
at a beam splitter, whereas an indivisible photon must be either entirely transmitted,
or entirely reflected, as a whole unit. The continuous division of the classical waves
and the discontinuous reflection-or-transmission choice of the photon are mutually ex-
clusive; therefore, the quantum and classical theories of light give entirely different
predictions for experiments involving individual quanta of light incident on a beam
splitter. The indivisibility of the photon is a postulate of Einstein’s original model,
and it is a consequence of the fully developed quantum theory of the electromagnetic
field. Since even the most sophisticated versions of the semiclassical theory describe
light in terms of continuously variable classical fields, the decisive experiments must
depend on the indivisibility of individual photons.

Two important advances in this direction were made by Clauser in the context of
a discussion of the experimental limits of validity of semiclassical theories, in particu-
lar the neoclassical theory of Jaynes (Crisp and Jaynes, 1969). For this purpose, the
two-level atom used in previous discussions is inadequate; we now need atoms with at
least three active levels. The first advance was Clauser’s reanalysis (Clauser, 1972) of
the data from an experiment by Kocher and Commins (1967), which used a three-level
cascade emission in a calcium atom, as shown in Fig. 1.10. A beam of calcium atoms
is crossed by a light beam which excites the atoms to the highest energy level. This

Fig. 1.10 The lowest three energy levels of

the calcium atom allow the cascade of two suc-

cessive transitions, in which two photons hν1

and hν2 are emitted in rapid succession. The

intermediate level has a short lifetime of 4.7 ns.
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excitation is followed by a rapid cascade decay, with the correlated emission of two
photons. The first (hν1) is emitted in a transition from the highest energy level to the
short-lived intermediate level, and the second (hν2) is emitted in a transition from the
intermediate level to the ground level. These two photons, which are emitted almost
back-to-back with respect to each other, are then detected using fast coincidence elec-
tronics. In this way, a beam of calcium atoms provides a source of strongly correlated
photon pairs.

The light emitted in each transition is randomly polarized—i.e. all polarizations
are detected with equal probability—but the experiment shows that the probabilities
of observing given polarizations at the two detectors are correlated. The correlation
coefficient obtained from a semiclassical calculation has a lower bound which is violated
by the experimental data, while the correlation predicted by the quantum theory of
radiation agrees with the data. The second advance was an experiment performed by
Clauser himself (Clauser, 1974), in which the two bursts of light from a three-level
cascade emission in the mercury atom are each passed through beam splitters to four
photodetectors. The object in this case is to observe the coincidence rate between
various pairs of detectors, in other words, the rates at which a pair of detectors both
fire during the same small time interval. The semiclassical rates are again inconsistent
with experiment, whereas the quantum theory prediction agrees with the data. The
first experiment provides convincing evidence which supports the quantum theory and
rejects the semiclassical theory, but the role of the indivisibility of photons is not easily
seen. The second experiment does depend directly on this property, but the analysis
is rather involved. We therefore refer the reader to the original papers for descriptions
of this seminal work, and briefly describe instead a third experiment that yields the
clearest and most direct evidence for the indivisibility of single photons, and thus for
the existence of individual quanta of the electromagnetic field.

The experiment in question—which we will call the photon-indivisibility experi-
ment—was performed by Grangier et al. (1986). The experimental arrangement (shown
in Fig. 1.11) employs a three-level cascade (see Fig. 1.10) in a calcium atom located at
S. Two successive, correlated bursts of light—centered at frequencies ν1 and ν2—are
emitted in opposite directions from the source. At this point in the argument, we leave
open the possibility that the light is described by classical electromagnetic waves as
opposed to photons, and assume that detection events are perfectly describable by the
semiclassical theory of the photoelectric effect.

The atoms, which are delivered by an atomic beam, are excited to the highest
energy level shortly before reaching the source region S. The photomultiplier PMgate

is equipped with a filter that screens out radiation at the frequency ν2 of the second
transition, while passing radiation at ν1, the frequency of the first transition. The out-
put from PMgate, which monitors bursts of radiation at frequency ν1, is registered by
the counter Ngate, and is also used to activate (trigger) a device called a gate gener-
ator which produces a standardized, rectangularly-shaped gate pulse for a specified
time interval, Tgate = w, called the gate width. The outputs of the photomultipliers
PMrefl and PMtrans, which monitor bursts of radiation at frequency ν2, are registered
by the gated counters Nrefl and Ntrans only during the time interval specified by the
gate width w.
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Fig. 1.11 The photon-indivisibility experiment of Grangier, Roger, and Aspect. The detec-

tion of the first burst of light, of frequency ν1, of a calcium-atom cascade produces a gate

pulse of width w during which the outputs of the photomultipliers PMtrans and PMrefl de-

tecting the second burst of light, of frequency ν2, are recorded by the gated counters. The

rate of gate openings is Ṅgate = Ṅ1. The probabilities of detection during the gate openings

are ptrans = Ṅtrans/Ṅ1, prefl = Ṅrefl/Ṅ1 for singles, and pcoinc = Ṅcoinc/Ṅ1 for coincidences.

(Adapted from Grangier et al. (1986).)

If a burst of radiation at ν1 has been detected, the burst of radiation of frequency ν2

from the second transition is necessarily directed toward the beam splitter BS, which
partially reflects and partially transmits the light falling on it. The two beams pro-
duced in this way are directed toward the two photomultipliers PMrefl and PMtrans.
The outputs of PMrefl and PMtrans are used to drive the gated counters Nrefl and
Ntrans, which record every pulse from the two photomultipliers, and also to drive a co-
incidence counter Ncoinc, which responds only when both of these two photomultipliers
produce current pulses simultaneously within the specified open-gate time interval w.
Therefore, the probabilities for the individual counters to fire (singles probabilities) are
given by prefl = Ṅrefl/Ṅgate and ptrans = Ṅtrans/Ṅgate, where Ṅgate ≡ Ṅ1 is the rate
of gate openings—the count rate of photomultiplier PMgate—and Ṅrefl and Ṅtrans are
the count rates of PMrefl and PMtrans, respectively. The coincidence rate Ṅcoinc is the
rate of simultaneous firings of both detectors PMrefl and PMtrans during the open-gate
interval w; consequently, the coincidence probability is pcoinc = Ṅcoinc/Ṅgate. The ex-
periment consists of measuring the singles counting rates Ṅgate, Ṅrefl, Ṅtrans, and the
coincidence rate Ṅcoinc.

According to Einstein’s photon model of light, each atomic transition produces
a single quantum of light which cannot be subdivided. An indivisible quantum with
energy hν2 which has scattered from the beam splitter can only be detected once.
Therefore it must go either to PMrefl or to PMtrans; it cannot go to both. In the
absence of complicating factors, the photon model would predict that the coincidence
probability pcoinc is exactly zero. Since this is a real experiment, complicating factors
are not absent. It is possible for two different atoms inside the source region S to emit
two quanta hν2 during the open-gate interval, and thereby produce a false coincidence
count. This difficulty can be minimized by choosing the gate interval w � τ ′, where
τ ′ is the lifetime of the intermediate level in the cascade, but it cannot be completely
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removed from this experimental arrangement.
Only three general features of semiclassical theories are needed for the analysis of

this experiment: (1) the atom is described by quantum mechanics; (2) each atomic
transition produces a burst of radiation described by classical fields; (3) the photomul-
tiplier current is proportional to the intensity of the incident radiation. The first two
features are part of the definition of a semiclassical theory, and the third is implied
by the semiclassical analysis of the photoelectric effect. The beam splitter will convert
the classical radiation from the atom into two beams, one directed toward PMrefl and
the other directed toward PMtrans. Therefore, according to the semiclassical theory,
the coincidence probability cannot be zero—even in the absence of the false counts
discussed above—since the classical electromagnetic wave must smoothly divide at the
beam splitter. The semiclassical theory predicts a minimum coincidence rate, which
is proportional to the product of the reflected and transmitted intensities. The in-
stantaneous intensities falling on PMrefl and PMtrans are proportional to the original
intensity falling on the beam splitter, and the gated measurement effectively averages
over the open-gate interval. Thus the photocurrents produced in the nth gate interval
are proportional to the time averaged intensity at the beam splitter:

In =
1
w

∫ tn+w

tn

dtI (t) , (1.36)

where the gate is open in the interval (tn, tn + w). The atomic transitions are described
by quantum mechanics, so they occur at random times within the gate interval. This
means that the intensities In exhibit random variations from one gate interval to
another. In order to minimize the effect of these fluctuations, the counting data from a
sequence of gate openings are averaged. Thus the singles probabilities are determined
from the average intensity

〈I〉 =
1

Mgate

Mgate∑
n=1

In , (1.37)

where Mgate is the total number of gate openings. The singles probabilities are given
by

prefl = ηrefl w 〈I〉 , ptrans = ηtrans w 〈I〉 , (1.38)

where ηrefl is the product of the detector efficiency and the fraction of the original
intensity directed to PMrefl and ηtrans is the same quantity for PMtrans. Since the
coincidence rate in a single gate is proportional to the product of the instantaneous
photocurrents from PMrefl and PMtrans, the coincidence probability is proportional to
the average of the square of the intensity:

pcoinc = ηrefl ηtrans w2
〈
I2
〉
, (1.39)

with 〈
I2
〉

=
1

Mgate

Mgate∑
n=1

I2
n . (1.40)

By using the identity
〈
(I − 〈I〉)2〉 � 0 it is easy to show that
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〈
I2
〉

� 〈I〉2 , (1.41)

which combines with eqns (1.38) and (1.39) to yield

pcoinc � prefl ptrans . (1.42)

This semiclassical prediction is conveniently expressed by defining the parameter

α ≡ pcoinc

preflptrans
=

ṄcoincṄgate

ṄreflṄtrans

� 1 , (1.43)

where the latter inequality follows from eqn (1.42). With the gate interval set at
w = 9 ns, and the atomic beam current adjusted to yield a gate rate Ṅgate = 8800
counts per second, the measured value of α was found to be α = 0.18 ± 0.06. This
violates the semiclassical inequality (1.43) by 13 standard deviations; therefore, the
experiment decisively rejects any theory based on the semiclassical treatment of emis-
sion. These data show that there are strong anti-correlations between the firings of
photomultipliers PMrefl and PMtrans, when gated by the firings of the trigger pho-
tomultiplier PMgate. An individual photon hν2, upon leaving the beam splitter, can
cause either of the photomultipliers PMrefl or PMtrans to fire, but these two possi-
ble outcomes are mutually exclusive. This experiment convincingly demonstrates the
indivisibility of Einstein’s photons.

1.5 Spontaneous down-conversion light source

In more recent times, the cascade emission of correlated pairs of photons used in the
photon indivisibility experiment has been replaced by spontaneous down-conversion. In
this much more convenient and compact light source, atomic beams—which require the
extensive use of inconvenient vacuum technology—are replaced by a single nonlinear
crystal. An ultraviolet laser beam enters the crystal, and excites its atoms coherently
to a virtual excited state. This is followed by a rapid decay into pairs of photons γ1

and γ2, as shown in Fig. 1.12 and discussed in detail in Section 13.3.2. This process
may seem to violate the indivisibility of photons, so we emphasize that an incident
UV photon is absorbed as a whole unit, and two other photons are emitted, also as
whole units. Each of these photons would pass the indivisibility test of the experiment
discussed in Section 1.4.

Just as in the similar process of radioactive decay of an excited parent nucleus
into two daughter nuclei, energy and momentum are conserved in spontaneous down-
conversion. Due to a combination of dispersion and birefringence of the nonlinear

Fig. 1.12 The process of spontaneous down-

conversion, γ0 → γ1 + γ2 by means of a non-

linear crystal.
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crystal, the result is a highly directional emission of light in the form of a rainbow of
many colors, as seen in the jacket illustration.

The uniquely quantum feature of this rainbow is the fact that pairs of photons
emitted on opposite sides of the ultraviolet laser beam, are strongly correlated with
each other. For example, the detection of a photon γ1 by a Geiger counter placed
behind pinhole 1 in Fig. 1.12 is always accompanied by the detection of a photon γ2

by a Geiger counter placed behind pinhole 2. The high directionality of this kind of
light source makes the collection of correlated photon pairs and the measurement of
their properties much simpler than in the case of atomic-beam light sources.

1.6 Silicon avalanche-photodiode photon counters

In addition to the improved light source discussed in the previous section, solid-state
technology has also led to improved detectors of photons. Photon detectors utilizing
photomultipliers based on vacuum-tube technology have now been replaced by much
simpler solid-state detectors based on the photovoltaic effect in semiconductor crystals.
A photon entering into the crystal produces an electron–hole pair, which is then pulled
apart in the presence of a strong internal electric field. This field is sufficiently large
so that the acceleration of the initial pair of charged particles produced by the photon
leads to an avalanche breakdown inside the crystal, which can be thought of as a chain
reaction consisting of multiple branches of impact ionization events initiated by the
first pair of charged particles. This mode of operation of a semiconductor photodiode
is called the Geiger mode, because of the close analogy to the avalanche ionization
breakdown of a gas due to an initial ionizing particle passing through a Geiger counter.

Each avalanche breakdown event produces a large, standardized electrical pulse
(which we will henceforth call a click of the photon counter), corresponding to the
detection of a single photon. For example, many contemporary quantum optics ex-
periments use silicon avalanche photodiodes, which are single photon counters with
quantum efficiencies around 70% in the near infrared. This is much higher than the
quantum efficiencies for photomultipliers in the same wavelength region. The solid-
state detectors also have shorter response times—in the nanosecond range—so that
fast coincidence detection of the standardized pulses can be straightforwardly imple-
mented by conventional electronics. Another important practical advantage of solid-
state single-photon detectors is that they require much lower voltage power supplies
than photomultipliers. These devices will be discussed in more detail in Sections 9.1.1
and 9.2.1.

1.7 The quantum theory of light

In this chapter we have seen that the blackbody spectrum, the photoelectric effect,
Compton scattering and spontaneous emission are correctly described by Einstein’s
photon model of light, but we have also seen that plausible explanations of these phe-
nomena can be constructed using an extended form of semiclassical electrodynamics.
However, no semiclassical explanation can account for the indivisibility of photons
demonstrated in Section 1.4; therefore, a theory that incorporates indivisibility must
be based on new physical principles not found in classical electromagnetism. In other
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words, the quantum theory of light cannot be derived from the classical theory; in-
stead, it must be based on new conjectures.4 Fortunately, the quantum theory must
also satisfy the correspondence principle; that is, it must agree with the classical
theory for the large class of phenomena that are correctly described by classical elec-
trodynamics. This is an invaluable aid in the construction of the quantum theory. In
the end, the validity of the new principles can only be judged by comparing predictions
of the quantum theory with the results of experiments.

We will approach the quantum theory in stages, beginning with the electromag-
netic field in an ideal cavity. This choice reflects the historical importance of cavities
and blackbody radiation, and it is also the simplest problem exhibiting all of the
important physical principles involved. An apparent difficulty with this approach is
that it depends on the classical cavity mode functions, which are defined by boundary
conditions at the cavity walls. Even in the classical theory, these boundary condi-
tions are a macroscopic idealization of the properties of physical walls composed of
atoms; consequently, the corresponding quantum theory does not appear to be truly
microscopic. We will see, however, that the cavity model yields commutation relations
between field operators at different spatial points which suggest a truly microscopic
quantization conjecture that does not depend on macroscopic boundary conditions.

1.8 Exercises

1.1 Power emitted through an aperture of a cavity

Show that the radiative power per unit frequency interval at frequency ω emitted from
the aperture area σ of a cavity at temperature T is given by

P (ω, T ) =
1
4
cρ (ω, T )σ .

1.2 Spectrum of a one-dimensional blackbody

Consider a coaxial cable of length L terminated at either end with resistors of the same
small value R. The entire system comes into thermal equilibrium at a temperature T .
The dielectric constant inside the cable is unity. All you need to know about this
terminated coaxial cable is that the wavelength λm of the mth mode of the classical
electromagnetic modes of this cable is determined by the condition L = mλm/2, where
m = 1, 2, 3, . . ., and therefore that the frequency νm of the mth mode of the cable is
given by νm = m (c/2L).
(1) In the large L limit, derive the classical Rayleigh–Jeans law for this system. Is

there an ultraviolet catastrophe?
(2) Argue that the analysis in Section 1.2.2-B applies to this one-dimensional system,

so that eqn (1.19) is still valid. Combine this with the result from part (1) to
obtain the Planck distribution.

(3) Sketch the frequency dependence of the power spectrum, up to a proportionality
constant, for the radiation emitted by one of the resistors.

4We prefer ‘conjecture’ to ‘axiom’, since an axiom cannot be questioned. In physics there are no
unquestionable statements.
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(4) For a given temperature, find the frequency at which the power spectrum is a
maximum. Compare this to the corresponding result for the three-dimensional
blackbody spectrum.

1.3 Slightly anharmonic oscillator

Given the following Hamiltonian for a slightly anharmonic oscillator in 1D:

Ĥ =
p̂2

2m
+

1
2
mω2x̂2 +

1
4
λm2x̂4 ,

where the perturbation parameter λ is very small.

(1) Find all the perturbed energy levels of this oscillator up to terms linear in λ.
(2) Find the lowest-order correction to its ground-state wave function. (Hint: Use

raising and lowering operators in your calculation.)

1.4 Photoionization

A simple model for photoionization is defined by the vector potential A and the
interaction Hamiltonian Hint given respectively by eqns (1.34) and (1.32).

Assume that the initial electron is in a bound state with a spherically symmetric
wave function 〈r |i 〉 = φi (r) and energy εi = −εb (where εb > 0 is the binding energy)
and that the final electron state is the plane wave 〈r |f 〉 = L−3/2eikf ·r (this is the
Born approximation).

(1) Evaluate the matrix element 〈f |Hint| i〉 in terms of the initial wave function φi (r).
(2) Carry out the integration over the final electron state, and impose the dipole

approximation—kf � |k|—in eqn (1.35) to get the total transition rate in the
limit ω � εb.

(3) Divide the transition rate by the flux of photons (F = I0/�ω, where I0 is the
intensity of the incident field) to obtain the cross-section for photoemission.

1.5 Time-reversal symmetry applied to the time-dependent Schrödinger
equation

(1) Show that the time-reversal operation t → −t, when applied to the time-dependent
Schrödinger equation for a spinless particle, results in the rule

ψ → ψ∗

for the wave function.
(2) Rewrite the wave function in Dirac bra-ket notation explained in Appendix C.1,

and restate the above rule using this notation.
(3) In general, how does the scalar product for the transition probability amplitude

between an initial and a final state 〈final| initial〉 behave under time reversal?
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Quantization of cavity modes

In Section 1.3 we remarked that both classical mechanics and quantum mechanics deal
with discrete sets of mechanical degrees of freedom, while classical electromagnetic
theory is based on continuous functions of space and time. This conceptual gap can be
partially bridged by studying situations in which the electromagnetic field is confined
by material walls, such as those of a hollow metallic cavity. In such cases the classical
field is described by a discrete set of mode functions. The formal resemblance between
the discrete cavity modes and the discrete mechanical degrees of freedom facilitates
the use of the correspondence-principle arguments that provide the surest route to the
quantum theory.

In order to introduce the basic ideas in the simplest possible way, we will begin by
quantizing the modes of a three-dimensional cavity. We will then combine the 3D cavity
model with general features of quantum theory to explain the Planck distribution and
the Casimir effect.

2.1 Quantization of cavity modes

We begin with a review of the classical electromagnetic field (E, B) confined to an
ideal cavity, i.e. a void completely enclosed by perfectly conducting walls.

2.1.1 Cavity modes

In the interior of a cavity, the electromagnetic field obeys the vacuum form of Maxwell’s
equations:

∇ · E = 0 , (2.1)

∇ · B = 0 , (2.2)

∇ × B = µ0ε0
∂E
∂t

(Ampère’s law) , (2.3)

∇ × E = −∂B
∂t

(Faraday’s law) . (2.4)

The divergence equations (2.1) and (2.2) respectively represent the absence of free
charges and magnetic monopoles inside the cavity.1 The tangential component of the

1As of this writing, no magnetic monopoles have been found anywhere, but if they are discovered
in the future, eqn (2.2) will remain an excellent approximation.
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electric field and the normal component of the magnetic induction must vanish on the
interior wall, S, of a perfectly conducting cavity:

n (r) × E (r) = 0 for each r on S , (2.5)
n (r) · B (r) = 0 for each r on S , (2.6)

where n (r) is the normal vector to S at r.
Since the boundary conditions are independent of time, it is possible to force a

separation of variables between r and t by setting E (r, t) = E (r)F (t) and B (r, t) =
B (r)G (t), where F (t) and G (t) are chosen to be dimensionless. Substituting these
forms into Faraday’s law and Ampère’s law shows that F (t) and G (t) must obey

dG (t)
dt

= ω1F (t) ,
dF (t)

dt
= ω2G (t) , (2.7)

where ω1 and ω2 are separation constants with dimensions of frequency. Eliminating
G (t) between the two first-order equations yields the second-order equation

dF (t)
dt

= ω1ω2F (t) , (2.8)

which has exponentially growing solutions for ω1ω2 > 0 and oscillatory solutions for
ω1ω2 < 0. The exponentially growing solutions are not physically acceptable; therefore,
we set ω1ω2 = −ω2 < 0. With the choice ω1 = −ω and ω2 = ω for the separation
constants, the general solutions for F and G can written as F (t) = cos (ωt + φ) and
G (t) = sin (ωt + φ).

One can then show that the rescaled fields2 Eω (r) =
√

ε0/�ωE (r) and Bω (r) =
B (r) /

√
µ0�ω satisfy

∇ × Eω (r) = kBω (r) , (2.9)

∇ × Bω (r) = kEω (r) , (2.10)

where k = ω/c. Alternately eliminating Eω (r) and Bω (r) between these equations
produces the Helmholtz equations for Eω (r) and Bω (r):(∇2 + k2

)Eω (r) = 0 , (2.11)

(∇2 + k2
)Bω (r) = 0 . (2.12)

A The rectangular cavity

The equations given above are valid for any cavity shape, but explicit mode functions
can only be obtained when the shape is specified. We therefore consider a cavity in the
form of a rectangular parallelepiped with sides lx, ly, and lz. The bounding surfaces

2Dimensional convenience is the official explanation for the appearance of � in these classical
normalization factors.
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are planes parallel to the Cartesian coordinate planes, and the boundary conditions
are

n× Eω = 0
n · Bω = 0

}
on each face of the parallelepiped ; (2.13)

therefore, the method of separation of variables can be used again to solve the eigen-
value problem (2.11). The calculations are straightforward but lengthy, so we leave
the details to Exercise 2.2, and merely quote the results. The boundary conditions can
only be satisfied for a discrete set of k-values labeled by the multi-index

κ ≡ (k, s) = (kx, ky, kz, s) =
(

πnx

lx
,
πny

ly
,
πnz

lz
, s

)
, (2.14)

where nx, ny, and nz are non-negative integers and s labels the polarization. The
allowed frequencies

ωks = c |k| = c

[(
πnx

lx

)2

+
(

πny

ly

)2

+
(

πnz

lz

)2
]1/2

(2.15)

are independent of s. The explicit expressions for the electric mode functions are

Eks (r) = Ekx (r) esx (k)ux + Eky (r) esy (k)uy + Ekz (r) esz (k) uz , (2.16)

Ekx (r) = Nk cos (kxx) sin (kyy) sin (kzz) ,

Eky (r) = Nk sin (kxx) cos (kyy) sin (kzz) , (2.17)
Ekz (r) = Nk sin (kxx) sin (kyy) cos (kzz) ,

where the Nks are normalization factors. The polarization unit vector,

es (k) = esx (k)ux + esy (k)uy + esz (k) uz , (2.18)

must be transverse (i.e. k · es (k) = 0) in order to guarantee that eqn (2.1) is satisfied.
The magnetic mode functions are readily obtained by using eqn (2.9).

Every plane wave in free space has two possible polarizations, but the number of
independent polarizations for a cavity mode depends on k. Inspection of eqn (2.17)
shows that a mode with exactly one vanishing k-component has only one polariza-
tion. For example, if k = (0, ky, kz), then Eks (r) = Ekx (r) esx (k)ux. There are no
modes with two vanishing k-components, since the corresponding function would van-
ish identically. If no components of k are zero, then es can be any vector in the plane
perpendicular to k. Just as for plane waves in free space, there is then a polariza-
tion basis set with two real, mutually orthogonal unit vectors e1 and e2 (s = 1, 2).
If no components vanish, Nk =

√
8/V , but when exactly one k-component vanishes,

Nk =
√

4/V , where V = lxlylz is the volume of the cavity. The spacing between the
discrete k-values is ∆kj = π/lj (j = x, y, z); therefore, in the limit of large cavities
(lj → ∞), the k-values become essentially continuous. Thus the interior of a suffi-
ciently large rectangular parallelepiped cavity is effectively indistinguishable from free
space.



Quantization of cavity modes ��

The mode functions are eigenfunctions of the hermitian operator −∇2, so they are
guaranteed to form a complete, orthonormal set. The orthonormality conditions∫

V

d3rEks (r) · Ek′s′ (r) = δkk′δss′ , (2.19)

∫
V

d3rBks (r) · Bk′s′ (r) = δkk′δss′ (2.20)

can be readily verified by a direct calculation, but the completeness conditions are
complicated by the fact that the eigenfunctions are vectors fields satisfying the di-
vergence equations (2.1) or (2.2). We therefore consider the completeness issue in the
following section.

B The transverse delta function

In order to deal with the completeness identities for vector modes of the cavity, it is
useful to study general vector fields in a little more detail. This is most easily done by
expressing a vector field F (r) by a spatial Fourier transform:

F (r) =
∫

d3k

(2π)3
F (k) eik·r , (2.21)

so that the divergence and curl are given by

∇ · F (r) = i

∫
d3k

(2π)3
k · F (k) eik·r (2.22)

and

∇ × F (r) = i

∫
d3k

(2π)3
k × F (k) eik·r . (2.23)

In k-space, the field F (k) is transverse if k · F (k) = 0 and longitudinal if k ×
F (k) = 0; consequently, in r-space the field F (r) is said to be transverse if ∇·F (r) =
0 and longitudinal if ∇×F (r) = 0. In this language the E- and B-fields in the cavity
are both transverse vector fields.

Now suppose that F (r) is transverse and G (r) is longitudinal, then an application
of Parseval’s theorem (A.54) for Fourier transforms yields∫

d3rF∗ (r) · G (r) =
∫

d3k

(2π)3
F∗ (k) · G (k) = 0 . (2.24)

In other words, the transverse and longitudinal fields in r-space are orthogonal in
the sense of wave functions. Furthermore, a general vector field F (k) can be decom-
posed as F (k) = F‖ (k) + F⊥ (k), where the longitudinal and transverse parts are
respectively given by

F‖ (k) =
k · F (k)

k2
k (2.25)

and
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F⊥ (k) = F (k) − F‖ (k) . (2.26)

For later use it is convenient to write out the transverse part in Cartesian components:

F⊥
i (k) = ∆⊥

ij (k)Fj (k) , (2.27)

where
∆⊥

ij (k) ≡ δij − kikj

k2
, (2.28)

and the Einstein summation convention over repeated vector indices is understood.
The 3 × 3-matrix ∆⊥ (k) is symmetric and k is an eigenvector corresponding to the
eigenvalue zero. This matrix also satisfies the defining condition for a projection op-
erator:

(
∆⊥ (k)

)2 = ∆⊥ (k). Thus ∆⊥ (k) is a projection operator onto the space of
transverse vector fields.

The inverse Fourier transform of eqn (2.27) gives the r-space form

F⊥
i (r) =

∫
V

d3r∆⊥
ij (r − r′)Fj (r′) , (2.29)

where

∆⊥
ij (r − r′) ≡

∫
d3k

(2π)3
∆⊥

ij (k) eik·(r−r′) . (2.30)

The integral operator ∆⊥
ij (r− r′) reproduces any transverse vector field and annihi-

lates any longitudinal vector field, so it is called the transverse delta function.
We are now ready to consider the completeness of the mode functions. For any

transverse vector field F , satisfying the first boundary condition in eqn (2.13), the
combination of the completeness of the electric mode functions and the orthonormality
conditions (2.19) results in the identity

Fi (r) =
∫

V

d3r′
{∑

ks

(Eks (r))i (Eks (r′))j

}
Fj (r′) . (2.31)

On the other hand, eqn (2.24) leads to∫
V

d3r′
{∑

ks

(Eks (r))i (Eks (r′))j

}
Gj (r′) = 0 (2.32)

for any longitudinal field G (r). Thus the integral operator defined by the expression
in curly brackets annihilates longitudinal fields and reproduces transverse fields. Two
operators that have the same action on the entire space of vector fields are identical;
therefore, ∑

ks

(Eks (r))i (Eks (r′))j = ∆⊥
ij (r − r′) . (2.33)

A similar argument applied to the magnetic mode functions leads to the corresponding
result: ∑

ks

(Bks (r))i (Bks (r′))j = ∆⊥
ij (r − r′) . (2.34)
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C The general cavity

Now that we have mastered the simple rectangular cavity, we proceed to a general
metallic cavity with a bounding surface S of arbitrary shape.3 As we have already
remarked, the difference between this general cavity and the rectangular cavity lies
entirely in the boundary conditions. The solution of the Helmholtz equations (2.11)
and (2.12), together with the general boundary conditions (2.5) and (2.6), has been
extensively studied in connection with the theory of microwave cavities (Slater, 1950).

Separation of variables is not possible for general boundary shapes, so there is no
way to obtain the explicit solutions shown in Section 2.1.1-A. Fortunately, we only
need certain properties of the solutions, which can be obtained without knowing the
explicit forms. General results from the theory of partial differential equations (Za-
uderer, 1983, Sec. 8.1) guarantee that the Helmholtz equation in any finite cavity
has a complete, orthonormal set of eigenfunctions labeled by a discrete multi-index
κ = (κ1, κ2, κ3, κ4) that replaces the combination (k, s) used for the rectangular cav-
ity. These normal mode functions Eκ (r) and Bκ (r) are real, transverse vector
fields satisfying the boundary conditions (2.5) and (2.6) respectively, together with
the Helmholtz equation: (∇2 + k2

κ

)Eκ = 0 , (2.35)(∇2 + k2
κ

)Bκ = 0 , (2.36)

where kκ = ωκ/c and ωκ is the cavity resonance frequency of mode κ. The allowed val-
ues of the discrete indices κ1, . . . , κ4 and the resonance frequencies ωκ are determined
by the geometrical properties of the cavity.

By combining the orthonormality conditions∫
V

d3rEκ · Eλ = δκλ ,∫
V

d3rBκ · Bλ = δκλ

(2.37)

with the completeness of the modes, we can repeat the argument in Section 2.1.1-B
to obtain the general completeness identities∑

κ

Eκi (r) Eκj (r′) = ∆⊥
ij (r − r′) , (2.38)

∑
κ

Bκi (r)Bκj (r′) = ∆⊥
ij (r − r′) . (2.39)

D The classical electromagnetic energy

Since the cavity mode functions are a complete orthonormal set, general electric and
magnetic fields—and the associated vector potential—can be written as

3The term ‘arbitrary’ should be understood to exclude topologically foolish choices, such as re-
placing the rectangular cavity by a Klein bottle.
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E (r, t) = − 1√
ε0

∑
κ

Pκ (t)Eκ (r) , (2.40)

B (r, t) =
√

µ0

∑
κ

ωκ Qκ (t)Bκ (r) , (2.41)

A (r, t) =
1√
ε0

∑
κ

Qκ (t)Eκ (r) . (2.42)

Substituting the expansions (2.40) and (2.41) into the vacuum Maxwell equations
(2.1)–(2.4) leads to the infinite set of ordinary differential equations

Q̇κ = Pκ and Ṗκ = −ω2
κQκ . (2.43)

For each mode, this pair of equations is mathematically identical to the equations of
motion of a simple harmonic oscillator, where the expansion coefficients Qκ and Pκ

respectively play the roles of the oscillator coordinate and momentum. On the basis
of this mechanical analogy, the mode κ is called a radiation oscillator, and the set
of points

{(Qκ, Pκ) for −∞ < Qκ < ∞ and −∞ < Pκ < ∞} (2.44)

is said to be the classical oscillator phase space for the κth mode.
For the transition to quantum theory, it is useful to introduce the dimensionless

complex amplitudes

ακ (t) =
ωκQκ (t) + iPκ (t)√

2�ωκ

, (2.45)

which allow the pair of real equations (2.43) to be rewritten as a single complex
equation,

α̇κ (t) = −iωκακ (t) , (2.46)

with the general solution ακ (t) = ακe−iωκt, ακ = ακ (0). The expansions for the fields
can all be written in terms of ακ and α∗

κ; for example eqn (2.40) becomes

E (r, t) = i
∑

κ

√
�ωκ

2ε0
ακe−iωκtEκ (r) + CC . (2.47)

One of the chief virtues of the expansions (2.40) and (2.41) is that the orthogonality
relations (2.37) allow the classical electromagnetic energy in the cavity,

Uem =
1
2

∫
V

d3r
(
ε0E2 + µ−1

0 B2
)
, (2.48)

to be expressed as a sum of independent terms: one for each normal mode,

Uem =
∑

κ

1
2
(
P 2

κ + ω2
κQ2

κ

)
. (2.49)

Each term in the sum is mathematically identical to the energy of a simple harmonic
oscillator with unit mass, oscillator frequency ωκ, coordinate Qκ, and momentum Pκ.
For each κ, eqn (2.43) is obtained from
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Q̇κ =
∂Uem

∂Pκ
and Ṗκ = −∂Uem

∂Qκ
; (2.50)

consequently, Uem serves as the classical Hamiltonian for the radiation oscillators,
and Qκ and Pκ are said to be canonically conjugate classical variables (Marion
and Thornton, 1995). An even more suggestive form comes from using the complex
amplitudes ακ to write the energy as

Uem =
∑

κ

�ωκα∗
κακ . (2.51)

Interpreting α∗
κακ as the number of light-quanta with energy �ωκ makes this a real-

ization of Einstein’s original model.

2.1.2 The quantization conjecture

The simple harmonic oscillator is one of the very few examples of a mechanical sys-
tem for which the Schrödinger equation can be solved exactly. For a classical me-
chanical oscillator, Q (t) represents the instantaneous displacement of the oscillating
mass from its equilibrium position, and P (t) represents its instantaneous momentum.
The trajectory {(Q (t) , P (t)) for t � 0} is uniquely determined by the initial values
(Q, P ) = (Q (0) , P (0)).

The quantum theory of the mechanical oscillator is usually presented in the coor-
dinate representation, i.e. the state of the oscillator is described by a wave function
ψ (Q, t), where the argument Q ranges over the values allowed for the classical co-
ordinate. Thus the wave functions belong to the Hilbert space of square-integrable
functions on the interval (−∞,∞). In the Born interpretation, |ψ (Q, t)|2 represents
the probability density for finding the oscillator with a displacement Q from equilib-
rium at time t; consequently, the wave function satisfies the normalization condition∫ ∞

−∞
dQ |ψ (Q, t)|2 = 1 . (2.52)

In this representation the classical oscillator variables (Q, P )—representing the pos-
sible initial values of classical trajectories—are replaced by the quantum operators q̂
and p̂ defined by

q̂ψ (Q, t) = Qψ (Q, t) and p̂ψ (Q, t) =
�

i

∂

∂Q
ψ (Q, t) . (2.53)

By using the explicit definitions of q̂ and p̂ it is easy to show that the operators satisfy
the canonical commutation relation

[q̂, p̂] = i� . (2.54)

For a system consisting of N noninteracting mechanical oscillators—with coordi-
nates Q1, Q2, . . . , QN—the coordinate representation is defined by the N -body wave
function

ψ (Q1, Q2, . . . , QN , t) , (2.55)
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and the action of the operators is

q̂mψ (Q1, Q2, . . . , QN , t) = Qmψ (Q1, Q2, . . . , QN , t) ,

p̂mψ (Q1, Q2, . . . , QN , t) =
�

i

∂

∂Qm
ψ (Q1, Q2, . . . , QN , t) ,

(2.56)

where m = 1, . . . , N . This explicit definition, together with the fact that the Qms
are independent variables, leads to the general form of the canonical commutation
relations,

[q̂m, p̂m′ ] = i�δmm′ , (2.57)

[q̂m, q̂m′ ] = [p̂m, p̂m′ ] = 0 , (2.58)

for m, m′ = 1, . . . , N . This mechanical system is said to have N degrees of freedom.
The results of the previous section show that the pairs of coefficients (Qκ, Pκ)

in the expansions (2.40) and (2.41) are canonically conjugate and that they satisfy
the same equations of motion as a mechanical harmonic oscillator. Since the classical
descriptions of the radiation and mechanical oscillators have the same mathematical
form, it seems reasonable to conjecture that their quantum theories will also have the
same form. For the κth cavity mode this simply means that the state of the radiation
oscillator is described by a wave function ψ (Qκ, t). In order to distinguish between
the radiation and mechanical oscillators, we will call the quantum operators for the
radiation oscillator qκ and pκ. The mathematical definitions of these operators are still
given by eqn (2.56), with q̂κ and p̂κ replaced by qκ and pκ.

Extending this procedure to describe the general state of the cavity field introduces
a new complication. The classical state of the electromagnetic field is represented by
functions E (r, t) and B (r, t) that, in general, cannot be described by a finite number
of modes. This means that the classical description of the cavity field requires infi-
nitely many degrees of freedom. A naive interpretation of the quantization conjecture
would therefore lead to wave functions ψ (Q1, Q2, . . .) that depend on infinitely many
variables. Mathematical techniques to deal with such awkward objects do exist, but it
is much better to start with abstract algebraic operator relations like eqns (2.57) and
(2.58), and then to choose an explicit representation that is well suited to the problem
at hand.

The formulation of quantum mechanics used above is called the Schrödinger
picture; it is characterized by time-dependent wave functions and time independent
operators. The Schrödinger-picture formulation of the quantization conjecture for the
electromagnetic field therefore consists of the following two parts.

(1) The time-dependent states of the electromagnetic field satisfy the superposition
principle: if |Ψ (t)〉 and |Φ (t)〉 are two physically possible states, then the super-
position

α |Ψ (t)〉 + β |Φ (t)〉 (2.59)

is also a physically possible state. (See Appendix C.1 for the bra and ket notation.)
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(2) The classical variables Qκ = Qκ (t = 0) and Pκ = Pκ (t = 0) are replaced by time-
independent hermitian operators qκ and pκ:

Qκ → qκ and Pκ → pκ , (2.60)

that satisfy the canonical commutation relations

[qκ, pκ′ ] = i�δκκ′ , [qκ, qκ′ ] = 0 , and [pκ, pκ′ ] = 0 , (2.61)

where κ, κ′ range over all cavity modes.
The statements (1) and (2) are equally important parts of this conjecture.

Another useful form of the commutation relations (2.61) is provided by defining
the dimensionless, non-hermitian operators

aκ =
ωκqκ + ipκ√

2�ωκ

and a†
κ =

ωκqκ − ipκ√
2�ωκ

(2.62)

for the κth mode of the radiation field. A simple calculation using eqn (2.61) yields
the equivalent commutation relations[

aκ, a†
κ′

]
= δκκ′ , [aκ, aκ′ ] = 0 . (2.63)

To sum up: by examining the problem of the ideal resonant cavity, we have been
led to the conjecture that the radiation field can be viewed as a collection of quantized
simple harmonic oscillators. The quantization conjecture embodied in eqns (2.59)–
(2.61) may appear to be rather formal and abstract, but it is actually the fundamental
physical assumption required for constructing the quantum theory of the electromag-
netic field. New principles of this kind cannot be deduced from the pre-existing theory;
instead, they represent a genuine leap of scientific induction that must be judged by
its success in explaining experimental results.

In the following section, we will combine the canonical commutation relations with
some basic physical principles to construct the Hilbert space of state vectors |Ψ〉, and
thus obtain a concrete representation of the operators qκ and pκ or aκ and a†

κ for a
single cavity mode. In Section 2.1.2-C this representation will be generalized to include
the infinite set of normal cavity modes.

A The single-mode Fock space

In this section we will deal with a single mode, so the mode index can be omitted.
Instead of starting with the coordinate representation of the wave function, as in eqn
(2.53), we will deduce the structure of the Hilbert space of states by the following
argument. According to eqn (2.49) the classical energy for a single mode is

Uem=
1
2
(
P 2 + ω2Q2

)
, (2.64)

where the arbitrary zero of energy has been chosen to correspond to the classical
solution Q = P = 0, representing the oscillator at rest at the minimum of the potential.
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In quantum mechanics the standard procedure is to apply eqn (2.60) to this expression
and to interpret the resulting operator as the (single-mode) Hamiltonian

Hem =
1
2
(
p2 + ω2q2

)
. (2.65)

It is instructive to rewrite this in terms of the operators a and a† by solving eqn (2.62)
to get

q =

√
�

2ω

(
a + a†) and p = −i

√
�ω

2
(
a − a†) . (2.66)

Substituting these expressions into eqn (2.65)—while remembering that the operators
a and a† do not commute—leads to

Hem =
1
2

{
−
(

�ω

2

)(
a − a†)2 +

(
�ω

2

)(
a + a†)2}

=
(

�ω

2

){
aa† + a†a

}
. (2.67)

By using the commutation relation (2.63), this can be written in the equivalent form

Hem = �ω

(
a†a +

1
2

)
. (2.68)

The superposition principle (2.59) is enforced by the assumption that the states of
the radiation operator belong to a Hilbert space. The structure of this Hilbert space is
essentially determined by the fact that Hem is a positive operator, i.e. 〈Ψ |Hem|Ψ〉 � 0
for any |Ψ〉. To see this, set |Φ〉 = a |Ψ〉 and use the general rule 〈Φ |Φ 〉 � 0 to conclude
that

〈Ψ |Hem|Ψ〉 = �ω
〈
Ψ
∣∣a†a

∣∣Ψ〉
+

�ω

2

= �ω 〈Φ |Φ 〉 +
�ω

2
� 0 . (2.69)

In particular, this means that all eigenvalues of Hem are nonnegative. Let |φ〉 be an
eigenstate of Hem with eigenvalue W ; then a |φ〉 satisfies

Hema |φ〉 = {[Hem, a] + aHem} |φ〉
= Wa |φ〉 + [Hem, a] |φ〉 . (2.70)

The commutator is given by

[Hem, a] = �ω
[
a†a, a

]
= �ω

{
a† [a, a] +

[
a†, a

]
a
}

= −�ωa , (2.71)

so that
Hema |φ〉 = (W − �ω)a |φ〉 . (2.72)

Thus a |φ〉 is also an eigenstate of Hem, but with the reduced eigenvalue (W − �ω).
Since a lowers the energy by �ω, repeating this process would eventually generate
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states of negative energy. This is inconsistent with the inequality (2.69); therefore, the
Hilbert space of a consistent quantum theory for an oscillator must include a lowest
energy eigenstate |0〉 satisfying

a |0〉 = 0 , 〈0|a† = 0 , (2.73)

and
Hem |0〉 =

�ω

2
|0〉 . (2.74)

In the case of a mechanical oscillator |0〉 is the ground state, and a is a lowering
operator. A calculation similar to eqns (2.70) and (2.71) leads to

Hema† |φ〉 = (W + �ω)a† |φ〉 , (2.75)

which shows that a† raises the energy by �ω, so a† is a raising operator. The idea
behind this language is that the mechanical oscillator itself is the object of interest.
The energy levels are merely properties of the oscillator, like the energy levels of an
atom.

The equations describing the radiation and mechanical oscillators have the same
form, but there is an important difference in physical interpretation. For the electro-
magnetic field, it is the quanta of excitation—rather than the radiation oscillators
themselves—that are the main objects of interest. This shift in emphasis incorpo-
rates Einstein’s original proposal that the electromagnetic field is composed of discrete
quanta. In keeping with this view, it is customary to replace the cumbersome phrase
‘quantum of excitation of the electromagnetic field’ by the term photon. The in-
tended implication is that photons are physical objects on the same footing as massive
particles. The subtleties associated with treating photons as particles are addressed
in Section 3.6. Since a removes one photon, it is natural to call it the annihilation
operator, and a†, which adds a photon, is naturally called a creation operator. In
this language the ground state of the radiation oscillator is referred to as the vacuum
state, since it contains no photons.

The number operator N = a†a satisfies the commutation relations

[N, a] = −a ,
[
N, a†] = a† , (2.76)

so that the a and a† respectively decrease and increase the eigenvalues of N by one.
Since N |0〉 = 0, this implies that the eigenvalues of N are the the integers 0, 1, 2, . . ..
The eigenvectors of N are called number states, and it is easy to see that N |n〉 =
n |n〉 implies

|n〉 = Zn

(
a†)n |0〉 , (2.77)

where Zn is a normalization constant. The Hamiltonian can be written as Hem =
(N + 1/2)�ω, so the number states are also energy eigenstates: Hem |n〉 = (n + 1/2)
�ω |n〉. The commutation relations (2.76) can be used to derive the results

Zn =
1√
n!

, 〈n |n′ 〉 = δnn′ , a |n〉 =
√

n |n − 1〉 , and a† |n〉 =
√

n + 1 |n + 1〉 .

(2.78)
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The Hilbert space H
(1)
F for a single mode consists of all linear combinations of

number states, i.e. a typical vector is given by

|Ψ〉 =
∞∑

n=0

Cn |n〉 . (2.79)

The space H
(1)
F is called the (single-mode) Fock space. In mathematical jargon—see

Appendix A.2—H
(1)
F is said to be spanned by the number states, or H

(1)
F is said to be

the span of the number states. Since the number states are orthonormal, the expansion
(2.79) can be expressed as

|Ψ〉 =
∞∑

n=0

|n〉 〈n |Ψ 〉 . (2.80)

For any state |φ〉 the expression |φ〉 〈φ| stands for an operator—see Appendix C.1.2—
that is defined by its action on an arbitrary state |χ〉:

(|φ〉 〈φ|) |χ〉 ≡ |φ〉 〈φ |χ 〉 . (2.81)

This shows that |φ〉 〈φ| is the projection operator onto |φ〉, and it allows the expansion
(2.80) to be expressed as

|ψ〉 =

( ∞∑
n=0

|n〉 〈n|
)
|ψ〉 . (2.82)

The general definition (2.81) leads to

(|n〉 〈n|) (|n′〉 〈n′|) = |n〉 〈n |n′ 〉 〈n′| = δnn′ (|n〉 〈n|) ; (2.83)

therefore, the (|n〉 〈n|)s are a family of orthogonal projection operators. According to
eqn (2.82) the projection operators onto the number states satisfy the completeness
relation ∞∑

n=0

|n〉 〈n| = 1 . (2.84)

B Vacuum fluctuations of a single radiation oscillator

A standard argument from quantum mechanics (Bransden and Joachain, 1989, Sec.
5.4) shows that the canonical commutation relations (2.61) for the operators q and p
lead to the uncertainty relation

∆q∆p � �

2
, (2.85)

where the rms deviations ∆q and ∆p are defined by

∆q =
√

〈Ψ |q2|Ψ〉 − 〈Ψ |q|Ψ〉2 , ∆p =
√
〈Ψ |p2|Ψ〉 − 〈Ψ |p|Ψ〉2 , (2.86)

and |Ψ〉 is any normalized vector in H
(1)
F . For the vacuum state the relations (2.66)

and (2.73) yield 〈0 |q| 0〉 = 0 and 〈0 |p| 0〉 = 0, so the uncertainty relation implies that
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neither
〈
0
∣∣q2

∣∣ 0〉 nor
〈
0
∣∣p2

∣∣ 0〉 can vanish. For mechanical oscillators this is attributed
to zero-point motion; that is, even in the ground state, random excursions around the
classical equilibrium at Q = P = 0 are required by the uncertainty principle. The
ground state for light is the vacuum state, so the random excursions of the radiation
oscillators are called vacuum fluctuations. Combining eqn (2.66) with eqn (2.73)
yields the explicit values 〈

0
∣∣q2

∣∣ 0〉 =
�

2ω
,

〈
0
∣∣p2

∣∣ 0〉 =
�ω

2
. (2.87)

We note for future reference that the vacuum deviations are ∆q0 =
√

�/2ω and ∆p0 =√
�ω/2, and that these values saturate the inequality (2.85), i.e. ∆q0∆p0 = �/2. States

with this property are called minimum-uncertainty states, or sometimes minimum-
uncertainty-product states.

The vacuum fluctuations of the radiation oscillator also explain the fact that the
energy eigenvalue for the vacuum is �ω/2 while the classical energy minimum is Uem =
0. Inserting eqn (2.87) into the original expression eqn (2.65) for the Hamiltonian yields
〈0 |Hem| 0〉 = �ω/2. The discrepancy between the quantum and classical minimum
energies is called the zero-point energy; it is required by the uncertainty principle for
the radiation oscillator. Since energy is only defined up to an additive constant, it would
be permissible—although apparently unnatural—to replace the classical expression
(2.64) by

U =
1
2
(
p2 + ω2q2

)− �ω

2
. (2.88)

Carrying out the substitution (2.66) on this expression yields the Hamiltonian

Hem = �ωa†a . (2.89)

With this convention the vacuum energy vanishes for the quantum theory, but the
discrepancy between the quantum and classical minimum energies is unchanged. The
same thing can be accomplished directly in the quantum theory by simply subtracting
the zero-point energy from eqn (2.68). Changes of this kind are always permitted, since
only differences of energy eigenvalues are physically meaningful.

C The multi-mode Fock space

Since the classical radiation oscillators in the cavity are mutually independent, the
quantization rule is given by eqns (2.60)–(2.63), and the only real difficulties stem from
the fact that there are infinitely many modes. For each mode, the number operator
Nκ = a†

κaκ is evidently positive and satisfies

[Nκ, aλ] = −δκλaκ , (2.90)[
Nκ, a†

λ

]
= δκλa†

κ . (2.91)

Combining eqn (2.90) with the positivity of Nκ and applying the argument used for
the single-mode Hamiltonian in Section 2.1.2-A leads to the conclusion that there must
be a (multimode) vacuum state |0〉 satisfying
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aκ |0〉 = 0 for every mode-index κ . (2.92)

Since number operators for different modes commute, it is possible to find vectors |n〉
that are simultaneous eigenstates of all the mode number operators:

Nκ |n〉 = nκ |n〉 for all κ ,

n = {nκ for all κ} .
(2.93)

According to the single-mode results (2.77) and (2.78) the many-mode number states
are given by

|n〉 =
∏
κ

(
a†

κ

)nκ

√
nκ!

|0〉 . (2.94)

The total number operator is

N =
∑

κ

a†
κaκ , (2.95)

and

N |n〉 =

(∑
κ

nκ

)
|n〉 . (2.96)

The Hilbert space HF spanned by the number states |n〉 is called the (multimode)
Fock space.

It is instructive to consider the simplest number states, i.e. those containing exactly
one photon. If κ and λ are the labels for two distinct modes, then eqn (2.96) tells us
that |1κ〉 = a†

κ |0〉 and |1λ〉 = a†
λ |0〉 are both one-photon states. The same equation

tells us that the superposition

|ψ〉 =
1√
2
|1κ〉 +

1√
2
|1λ〉 =

1√
2

(
a†

κ + a†
λ

)
|0〉 (2.97)

is also a one-photon state; in fact, every state of the form

|ξ〉 =
∑

κ

ξκa†
κ |0〉 (2.98)

is a one-photon state. There is a physical lesson to be drawn from this algebraic
exercise: it is a mistake to assume that photons are necessarily associated with a single
classical mode. Generalizing this to a superposition of modes which form a classical
wave packet, we see that a single-photon wave packet state (that is, a wave packet
that contains exactly one photon) is perfectly permissible.

According to eqn (2.94) any number of photons can occupy a single mode. Further-
more the commutation relations (2.63) guarantee that the generic state a†

κ1
· · ·a†

κn
|0〉

is symmetric under any permutation of the mode labels κ1, . . . , κn. These are defin-
ing properties of objects satisfying Bose statistics (Bransden and Joachain, 1989, Sec.
10.2), so eqns (2.63) are called Bose commutation relations and photons are said to
be bosons.
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D Field operators

In the Schrödinger picture, the operators for the electric and magnetic fields are—by
definition—time-independent. They can be expressed in terms of the time-independent
operators pκ and qκ by first using the classical expansions (2.40) and (2.41) to write the
initial classical fields E (r, 0) and B (r, 0) in terms of the initial displacements Qκ (0)
and momenta Pκ (0) of the radiation oscillators. Setting (Qκ, Pκ) = (Qκ (0) , Pκ (0)),
and applying the quantization conjecture (2.60) to these results leads to

E (r) = − 1√
ε0

∑
κ

pκEκ (r) , (2.99)

B (r) =
1√
ε0

∑
κ

kκ qκBκ (r) . (2.100)

For most applications it is better to express the fields in terms of the operators aκ and
a†

κ by using eqn (2.66) for each mode:

E (r) = i
∑

κ

√
�ωκ

2ε0

(
aκ − a†

κ

)Eκ (r) , (2.101)

B (r) =
∑

κ

√
µ0�ωκ

2
(
aκ + a†

κ

)Bκ (r) . (2.102)

The corresponding expansions for the vector potential in the radiation gauge are

A (r) =
∑

κ

√
1
ε0

qκEκ (r)

=
∑

κ

√
�

2ε0ωκ

(
aκ + a†

κ

)Eκ (r) . (2.103)

2.2 Normal ordering and zero-point energy

In the absence of interactions between the independent modes, the energy is additive;
therefore, the Hamiltonian is the sum of the Hamiltonians for the individual modes.
If we use eqn (2.68) for the single-mode Hamiltonians, the result is

Hem =
∑

κ

[
�ωκa†

κaκ +
�ωκ

2

]
. (2.104)

The previously innocuous zero-point energies for each mode have now become a serious
annoyance, since the sum over all modes is infinite. Fortunately there is an easy way
out of this difficulty. We can simply use the alternate form (2.89) which gives

Hem =
∑

κ

�ωκa†
κaκ . (2.105)

With this choice for the single-mode Hamiltonians the vacuum energy is reduced from
infinity to zero.



�� Quantization of cavity modes

It is instructive to look at this problem in a different way by using the equivalent
form eqn (2.67), instead of eqn (2.68), to get

Hem =
∑

κ

�ωκ

2
(
a†

κaκ + aκa†
κ

)
. (2.106)

Now the zero-point energy can be eliminated by the simple expedient of reversing the
order of the operators in the second term. This replaces eqn (2.106) by eqn (2.105). In
other words, subtracting the vacuum expectation value of the energy is equivalent to
reordering the operator products so that in each term the annihilation operator is to
the right of the creation operator. This is called normal ordering, while the original
order in eqn (2.106) is called symmetrical ordering.

We are allowed to consider such a step because there is a fundamental ambiguity
involved in replacing products of commuting classical variables by products of non-
commuting operators. This problem does not appear in quantizing the classical energy
expression in eqn (2.64), since products of qκ with pκ do not occur. This happy cir-
cumstance is a fortuitous result of the choice of classical variables. If we had instead
chosen to use the variables ακ defined by eqn (2.45), the quantization conjecture would
be ακ → aκ and α∗

κ → a†
κ. This does produce an ordering ambiguity in quantizing eqn

(2.51), since ακα∗
κ, (α∗

κακ + ακα∗
κ) /2, and α∗

κακ are identical in the classical theory,
but different after quantization. The last two forms lead respectively to the expressions
(2.106) and (2.105) for the Hamiltonian. Thus the presence or absence of the zero-point
energy is determined by the choice of ordering of the noncommuting operators.

It is useful to extend the idea of normal ordering to any product of operators
X1 · · ·Xn, where each Xi is either a creation or an annihilation operator. The normal-
ordered product is defined by

: X1 · · ·Xn : = X1′ · · ·Xn′ , (2.107)

where (1′, . . . , n′) is any ordering (permutation) of (1, . . . , n) that arranges all of the
annihilation operators to the right of all the creation operators. The commutation
relations are ignored when carrying out the reordering. More generally, let Z be
a linear combination of distinct products X1 · · ·Xn; then : Z : is the same linear
combination of the normal-ordered products : X1 · · ·Xn : . The vacuum expectation
value of a normal-ordered product evidently vanishes, but it is not generally true that
Z = : Z : + 〈0 |Z| 0〉.

2.3 States in quantum theory

In classical mechanics, the coordinate q and momentum p of a particle can be precisely
specified. Therefore, in classical physics the state of maximum information for a system
of N particles is a point

(
q, p

)
= (q1,p1, . . . ,qN ,pN ) in the mechanical phase space.

For large values of N , specifying a point in the phase space is a practical impossibility,
so it is necessary to use classical statistical mechanics—which describes the N -body
system by a probability distribution f

(
q, p

)
—instead. The point to bear in mind here

is that this probability distribution is an admission of ignorance. No experimentalist
can possibly acquire enough information to determine a particular value of

(
q, p

)
.
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In quantum theory, the uncertainty principle prohibits simultaneous determination
of the coordinates and momenta of a particle, but the notions of states of maximum
and less-than-maximum information can still be defined.

2.3.1 Pure states

In the standard interpretation of quantum theory, the vectors in the Hilbert space de-
scribing a physical system—e.g. general linear combinations of number states in Fock
space—provide the most detailed description of the state of the system that is consis-
tent with the uncertainty principle. These quantum states of maximum information
are called pure states (Bransden and Joachain, 1989, Chap. 14). From this point of
view the random fluctuations imposed by the uncertainty principle are intrinsic; they
are not the result of ignorance of the values of some underlying variables.

For any quantum system the average of many measurements of an observable X
on a collection of identical physical systems, all described by the same vector |Ψ〉, is
given by the expectation value 〈Ψ |X |Ψ〉. The evolution of a pure state is described
by the Schrödinger equation

i�
∂

∂t
|Ψ (t)〉 = H |Ψ (t)〉 , (2.108)

where H is the Hamiltonian.

2.3.2 Mixed states

In the absence of maximum information, the system is said to be in a mixed state.
In this situation there is insufficient information to decide which pure state describes
the system. Just as for classical statistical mechanics, it is then necessary to assign a
probability to each possible pure state. These probabilities, which represent ignorance
of which pure state should be used, are consequently classical in character.

As a simple example, suppose that there is only sufficient information to say that
each member of a collection of identically prepared systems is described by one or the
other of two pure states, |Ψ1〉 or |Ψ2〉. For a system described by |Ψe〉 (e = 1, 2), the
average value for measurements of X is the quantum expectation value 〈Ψe |X |Ψe〉.
The overall average of measurements of X is therefore

〈X〉 = P1 〈Ψ1 |X |Ψ1〉 + P2 〈Ψ2 |X |Ψ2〉 , (2.109)

where Pe is the fraction of the systems described by |Ψe〉, and P1 + P2 = 1.
The average in eqn (2.109) is quite different from the average of many measure-

ments on systems all described by the superposition state |Ψ〉 = C1 |Ψ1〉+ C2 |Ψ2〉. In
that case the average is

〈Ψ |X |Ψ〉 = |C1|2 〈Ψ1 |X |Ψ1〉 + |C2|2 〈Ψ2 |X |Ψ2〉 + 2 Re [C∗
1C2 〈Ψ1 |X |Ψ2〉] ,

(2.110)
which contains an interference term missing from eqn (2.109). The two results (2.109)
and (2.110) only agree when |Ce|2 = Pe and Re [C∗

1C2 〈Ψ1 |X |Ψ2〉] = 0. The latter
condition can be satisfied if C∗

1C2 〈Ψ1 |X |Ψ2〉 is pure imaginary or if 〈Ψ1 |X |Ψ2〉 = 0.
Since it is always possible to choose another observable X ′ for which neither of these
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conditions is satisfied, it is clear that the mixed state and the superposition state
describe very different physical situations.

A The density operator

In general, a mixed state is defined by a collection, usually called an ensemble, of
normalized pure states {|Ψe〉}, where the label e may be discrete or continuous. For
simplicity we only consider the discrete case here: the continuum case merely involves
replacing sums by integrals with suitable weighting functions. For the discrete case, a
probability distribution on the ensemble is a set of real numbers {Pe} that satisfy
the conditions

0 � Pe � 1 , (2.111)∑
e

Pe = 1 . (2.112)

The ensemble may be finite or infinite, and the vectors need not be mutually orthog-
onal.

The average of repeated measurements of an observable X is represented by the
ensemble average of the quantum expectation values,

〈X〉 (t) =
∑

e

Pe 〈Ψe (t) |X |Ψe (t)〉 , (2.113)

where |Ψe (t)〉 is the solution of the Schrödinger equation with initial value |Ψe (0)〉 =
|Ψe〉. It is instructive to rewrite this result by using the number-state basis {|n〉} for
Fock space to get

〈Ψe (t) |X |Ψe (t)〉 =
∑

n

∑
m

〈Ψe (t) |n 〉 〈n |X |m〉 〈m |Ψe (t) 〉 , (2.114)

and

〈X〉 (t) =
∑

n

∑
m

〈n |X |m〉
[∑

e

Pe 〈m |Ψe (t) 〉 〈Ψe (t) |n 〉
]

. (2.115)

By applying the general definition (2.81) to the operator |Ψe (t)〉 〈Ψe (t)|, it is easy
to see that the quantity in square brackets is the matrix element 〈m |ρ (t)|n〉 of the
density operator:

ρ (t) =
∑

e

Pe |Ψe (t)〉 〈Ψe (t)| . (2.116)

With this result in hand, eqn (2.115) becomes

〈X〉 (t) =
∑
m

∑
n

〈m |ρ (t)|n〉 〈n |X |m〉

=
∑
m

〈m |ρ (t)X |m〉

= Tr [ρ (t)X ] , (2.117)
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where the trace operation is defined by eqn (C.22). Each of the ket vectors |Ψe〉 in
the ensemble evolves according to the Schrödinger equation, and the bra vectors 〈Ψe|
obey the conjugate equation

−i�
∂

∂t
〈Ψe (t)| = 〈Ψe (t)|H , (2.118)

so the evolution equation for the density operator is

i�
∂

∂t
ρ (t) = [H, ρ (t)] . (2.119)

By analogy with the Liouville equation for the classical distribution function (Huang,
1963, Sec. 4.3), this is called the quantum Liouville equation. The condition
(2.112), together with the normalization of the ensemble state vectors, means that
the density operator has unit trace,

Tr (ρ (t)) = 1 , (2.120)

and eqn (2.119) guarantees that this condition is valid at all times.
A pure state is described by an ensemble consisting of exactly one vector, so that

eqn (2.116) reduces to
ρ (t) = |Ψ (t)〉 〈Ψ (t)| . (2.121)

This explicit statement can be replaced by the condition that ρ (t) is a projection
operator, i.e.

ρ2 (t) = ρ (t) . (2.122)

Thus for pure states
Tr

(
ρ2 (t)

)
= Tr (ρ (t)) = 1 , (2.123)

while for mixed states
Tr

(
ρ2 (t)

)
< 1 . (2.124)

For any observable X and any state ρ, either pure or mixed, an important statistical
property is given by the variance

V (X) =
〈
X2

〉− 〈X〉2 , (2.125)

where 〈X〉 = Tr (ρX). The easily verified identity V (X) = 〈(X − 〈X〉)2〉 shows that
V (X) � 0, and it also follows that V (X) = 0 when ρ is an eigenstate of X , i.e.
Xρ = ρX = λρ. Conversely, every eigenstate of X satisfies V (X) = 0. Since V (X)
is non-negative, the variance is often described in terms of the root mean square
(rms) deviation

∆X =
√

V (X) =
√

〈X2〉 − 〈X〉2 . (2.126)
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B Mixed states arising from measurements

In quantum theory the act of measurement can produce a mixed state, even if the state
before the measurement is pure. For simplicity, we consider an observable X with a
discrete, nondegenerate spectrum. This means that the eigenvectors |xn〉, satisfying
X |xn〉 = xn |xn〉, are unique (up to a phase). Suppose that we have complete infor-
mation about the initial state of the system, so that we can describe it by a pure state
|ψ〉. When a measurement of X is carried out, the Born interpretation tells us that
the eigenvalue xn will be found with probability pn = |〈xn |ψ 〉|2. The von Neumann
projection postulate further tells us that the system will be described by the pure state
|xn〉, if the measurement yields xn. This is the reduction of the wave packet. Now con-
sider the following situation. We know that a measurement of X has been performed,
but we do not know which eigenvalue of X was actually observed. In this case there is
no way to pick out one eigenstate from the rest. Thus we have an ensemble consisting
of all the eigenstates of X , and the density operator for this ensemble is

ρmeas =
∑

n

pn |xn〉 〈xn| . (2.127)

Thus a measurement will change the original pure state into a mixed state, if the
knowledge of which eigenvalue was obtained is not available.

2.3.3 General properties of the density operator

So far we have only considered observables with nondegenerate eigenvalues, but in
general some of the eigenvalues xξ of X are degenerate, i.e. there are several linearly
independent solutions of the eigenvalue problem X |Ψ〉 = xξ |Ψ〉. The number of solu-
tions is the degree of degeneracy, denoted by dξ (X). A familiar example is X = J2,
where J is the angular momentum operator. The eigenvalue j (j + 1) �2 of J2 has the
degeneracy 2j + 1 and the degenerate eigenstates can be labeled by the eigenvalues
m� of Jz, with −j � m � j. An example appropriate to the present context is the
operator

Nk =
∑

s

a†
ksaks , (2.128)

that counts the number of photons with wavevector k. If k has no vanishing com-
ponents, the eigenvalue problem Nk |Ψ〉 = |Ψ〉 has two independent solutions corre-
sponding to the two possible polarizations, so d1 (Nk) = 2. In general, the common
eigenvectors for a given eigenvalue span a dξ (X)-dimensional subspace, called the
eigenspace Hξ (X). Let

|Ψξ1〉 , . . . ,
∣∣Ψξdξ(X)

〉
(2.129)

be a basis for Hξ (X), then

Pξ =
∑
m

|Ψξm〉 〈Ψξm| (2.130)

is the projection operator onto Hξ (X).



States in quantum theory ��

According to the standard rules of quantum theory (see eqns (C.26)–(C.28)) the
conditional probability that xξ is the result of a measurement of X , given that the
system is described by the pure state |Ψe〉, is

p (xξ |Ψe ) =
∑
m

|〈Ψξm |Ψe 〉|2 = 〈Ψe |Pξ|Ψe〉 . (2.131)

For the mixed state the overall probability of the result xξ is, therefore,

p (xξ) =
∑

e

Pe

∑
m

|〈Ψξm |Ψe 〉|2 = Tr (ρPξ) . (2.132)

Thus the general rule is that the probability for finding a given value xξ is given by the
expectation value of the projection operator Pξ onto the corresponding eigenspace.

Other important mathematical properties of the density operator follow directly
from the definition (2.116). For any state |Ψ〉, the expectation value of ρ is positive,

〈Ψ |ρ|Ψ〉 =
∑

e

Pe |〈Ψe |Ψ 〉|2 � 0 , (2.133)

so ρ is a positive-definite operator. Combining this with the normalization condition
(2.120) implies 0 � 〈Ψ |ρ|Ψ〉 � 1 for any normalized state |Ψ〉. The Born interpretation
tells us that |〈Ψe |Ψ〉|2 is the probability that a measurement—say of the projection
operator |Ψ〉 〈Ψ|—will leave the system in the state |Ψ〉, given that the system is
prepared in the pure state |Ψe〉; therefore, eqn (2.133) tells us that 〈Ψ |ρ|Ψ〉 is the
probability that a measurement will lead to |Ψ〉, if the system is described by the
mixed state with density operator ρ.

In view of the importance of the superposition principle for pure states, it is natural
to ask if any similar principle applies to mixed states. The first thing to note is that
linear combinations of density operators are not generally physically acceptable density
operators. Thus if ρ1 and ρ2 are density operators, the combination ρ = Cρ1+Dρ2 will
be hermitian only if C and D are both real. The condition Tr ρ = 1 further requires
C + D = 1. Finally, the positivity condition (2.133) must hold for all choices of |Ψ〉,
and this can only be guaranteed by imposing C � 0 and D � 0. Therefore, only the
convex linear combinations

ρ = Cρ1 + (1 − C) ρ2 , 0 � C � 1 (2.134)

are guaranteed to be density matrices. This terminology is derived from the mathe-
matical notion of a convex set in the plane, i.e. a set that contains every straight line
joining any two of its points. The general form of eqn (2.134) is

ρ =
∑

n

Cnρn , (2.135)

where each ρn is a density operator, and the coefficients satisfy the convexity condition

0 � Cn � 1 for all n and
∑

n

Cn = 1 . (2.136)
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The off-diagonal matrix elements of the density operator are also constrained by the
definition (2.116). The normalization of the ensemble states |Ψe〉 implies |〈Ψe |Ψ 〉| � 1,
so

|〈Ψ |ρ|Φ〉| =

∣∣∣∣∣∑
e

Pe 〈Ψ |Ψe 〉 〈Ψe |Φ 〉
∣∣∣∣∣

�
∑

e

Pe |〈Ψ |Ψe 〉| |〈Ψe |Φ 〉| � 1 , (2.137)

i.e. ρ is a bounded operator.
The arguments leading from the ensemble definition of the density operator to its

properties can be reversed to yield the following statement. An operator ρ that is
(a) hermitian, (b) bounded, (c) positive, and (d) has unit trace is a possible density
operator. The associated ensemble can be defined as the set of normalized eigenstates
of ρ corresponding to nonzero eigenvalues. Since every density operator has a complete
orthonormal set of eigenvectors, this last remark implies that it is always possible to
choose the ensemble to consist of mutually orthogonal states.

2.3.4 Degrees of mixing

So far the distinction between pure and mixed states is absolute, but finer distinc-
tions are also useful. In other words, some states are more mixed than others. The
distinctions we will discuss arise most frequently for physical systems described by a
finite-dimensional Hilbert space, or equivalently, ensembles containing a finite number
of pure states. This allows us to simplify the analysis by assuming that the Hilbert
space has dimension d < ∞. The inequality (2.124) suggests that the purity

P (ρ) = Tr
(
ρ2
)

� 1 (2.138)

may be a useful measure of the degree of mixing associated with a density operator ρ.
By virtue of eqn (2.122), P (ρ) = 1 for a pure state; therefore, it is natural to say that
the state ρ2 is less pure (more mixed) than the state ρ1 if P (ρ2) < P (ρ1). Thus the
minimally pure (maximally mixed) state for an ensemble will be the one that achieves
the lower bound of P (ρ). In general the density operator can have the eigenvalue
0 with degeneracy (multiplicity) d0 < d, so the number of orthogonal states in the
ensemble is N = d − d0. Using the eigenstates of ρ to evaluate the trace yields

P (ρ) =
N∑

n=1

p2
n , (2.139)

where pn is the nth eigenvalue of ρ. In this notation, the trace condition (2.120) is just

N∑
n=1

pn = 1 , (2.140)

and the lower bound is found by minimizing P (ρ) subject to the constraint (2.140).
This can be done in several ways, e.g. by the method of Lagrange multipliers, with
the result that the maximally mixed state is defined by
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pn =

{
1
N , n = 1, . . . ,N ,

0 , n = N + 1, . . . , d .
(2.141)

In other words, the pure states in the ensemble defining the maximally mixed state
occur with equal probability, and the purity is

P (ρ) =
1
N

. (2.142)

Another useful measure of the degree of mixing is provided by the von Neumann
entropy, which is defined in general by

S (ρ) = −Tr (ρ ln ρ) . (2.143)

In the special case considered above, the von Neumann entropy is given by

S (ρ) = −
N∑

n=1

pn ln pn , (2.144)

and maximizing this—subject to the constraint (2.140)—leads to the same definition
of the maximally mixed state, with the value

S (ρ) = lnN (2.145)

of S (ρ). The von Neumann entropy plays an important role in the study of entangled
states in Chapter 6.

2.4 Mixed states of the electromagnetic field

2.4.1 Polarized light

As a concrete example of a mixed state, consider an experiment in which light from a
single atom is sent through a series of collimating pinholes. In each atomic transition,
exactly one photon with frequency ω = ∆E/� is emitted, where ∆E is the energy
difference between the atomic states. The alignment of the pinholes determines the
unit vector k̃ along the direction of propagation, so the experimental arrangement
determines the wavevector k = (ω/c) k̃. If the pinholes are perfectly circular, the
experimental preparation gives no information on the polarization of the transmitted
light. This means that the light observed on the far side of the collimator could be
described by either of the states

|Ψs〉 = |1ks〉 = a†
ks |0〉 , (2.146)

where s = ±1 labels right- and left-circularly-polarized light. Thus the relevant en-
semble is composed of the states |1k+〉 and |1k−〉, with probabilities P+ and P−, and
the density operator is

ρ =
∑

s

Ps |1ks〉 〈1ks| =
[P+ 0

0 P−

]
. (2.147)

In the absence of any additional information equal probabilities are assigned to the
two polarizations, i.e. P+ = P− = 1/2, and the light is said to be unpolarized. The
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opposite extreme occurs when the polarization is known with certainty, for example
P+ = 1, P− = 0. This can be accomplished by inserting a polarization filter after
the collimator. In this case, the light is said to be polarized, and the density operator
represents the pure state |1k+〉. For the intermediate cases, a measure of the degree of
polarization is given by

P = |P+ − P−| , (2.148)

which satisfies 0 � P � 1, and has the values P = 0 for unpolarized light and P = 1
for polarized light.

A The second-order coherence matrix

The conclusions reached for the special case discussed above are also valid in a more
general setting (Mandel and Wolf, 1995, Sec. 6.2). We present here a simplified version
of the general discussion by defining the second-order coherence matrix

Jss′ = Tr
(
ρa†

ksaks′
)

, (2.149)

where the density operator ρ describes a monochromatic state, i.e. each state vector
|Ψe〉 in the ensemble defining ρ satisfies ak′s |Ψe〉 = 0 for k′ �= k. In this case we may
as well choose the z-axis along k, and set s = x, y, corresponding to linear polarization
vectors along the x- and y-axes respectively. The 2×2 matrix J is hermitian and posi-
tive definite—see Appendix A.3.4—so the eigenvectors cp = (cpx, cpy) and eigenvalues
np (p = 1, 2) defined by

Jcp = npcp (2.150)

satisfy
c†pcp′ = δpp′ and np � 0 . (2.151)

The eigenvectors of J define eigenpolarization vectors,

ep = c∗pxex + c∗pyey , (2.152)

and corresponding creation and annihilation operators

a†p = c∗pxa†
kx + c∗pya†

ky , ap = cpxakx + cpyaky . (2.153)

It is not difficult to show that

np = Tr
(
ρa†pap

)
, (2.154)

i.e. the eigenvalue np is the average number of photons with eigenpolarization ep. If ρ
describes an unpolarized state, then different polarizations must be uncorrelated and
the number of photons in either polarization must be equal, i.e.

J =
n

2

[
1 0
0 1

]
, (2.155)

where
n = Tr

[
ρ
(
a†
kxakx + a†

kyaky

)]
(2.156)

is the average total number of photons. If ρ describes complete polarization, then
the occupation number for one of the eigenpolarizations must vanish, e.g. n2 = 0.
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Since detJ = n1n2, this means that completely polarized states are characterized by
detJ = 0. In this general setting, the degree of polarization is defined by

P =
|n1 − n2|
n1 + n2

, (2.157)

where P = 0 and P = 1 respectively correspond to unpolarized and completely polar-
ized light.

B The Stokes parameters

Since J is a 2 × 2 matrix, we can exploit the well known fact—see Appendix C.3.1—
that any 2× 2 matrix can be expressed as a linear combination of the Pauli matrices.
For this application, we write the expansion as

J =
1
2
S0σ0 +

1
2
S1σ3 +

1
2
S2σ1 − 1

2
S3σ2 , (2.158)

where σ0 is the 2 × 2 identity matrix and σ1, σ2, and σ3 are the Pauli matrices given
by the standard representation (C.30). This awkward formulation guarantees that the
c-number coefficients Sµ are the traditional Stokes parameters. According to eqn
(C.40) they are given by

S0 = Tr (Jσ0) , S1 = Tr (Jσ3) , S2 = Tr (Jσ1) , S3 = −Tr (Jσ2) . (2.159)

The Stokes parameters yield a useful geometrical picture of the coherence matrix, since
the necessary condition det (J) � 0 translates to

S2
1 + S2

2 + S2
3 � S2

0 . (2.160)

If we interpret (S1, S2, S3) as a point in a three-dimensional space, then for a fixed
value of S0 the states of the field occupy a sphere—called the Poincaré sphere—of
radius S0. The origin, S1 = S2 = S3 = 0, corresponds to unpolarized light, since this
is the only case for which J is proportional to the identity. The condition detJ = 0
for completely polarized light is

S2
1 + S2

2 + S2
3 = S2

0 , (2.161)

which describes points on the surface of the sphere. Intermediate states of polarization
correspond to points in the interior of the sphere.

The Poincaré sphere is often used to describe the pure states of a single photon,
e.g.

|ψ〉 =
∑

s

Csa
†
ks |0〉 . (2.162)

In this case S0 = 1, and the points on the surface of the Poincaré sphere can be labeled
by the standard spherical coordinates (θ, φ). The north pole, θ = 0, and the south pole,
θ = π, respectively describe right- and left-circular polarizations. Linear polarizations
are represented by points on the equator, and elliptical polarizations by points in the
northern and southern hemispheres.
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2.4.2 Thermal light

A very important example of a mixed state arises when the field is treated as a thermo-
dynamic system in contact with a thermal reservoir at temperature T , e.g. the walls
of the cavity. Under these circumstances, any complete set of states can be chosen
for the ensemble, since we have no information that allows the exclusion of any pure
state of the field. Exchange of energy with the walls is the mechanism for attaining
thermal equilibrium, so it is natural to use the energy eigenstates—i.e. the number
states |n〉—for this purpose.

The general rules of statistical mechanics (Chandler, 1987, Sec. 3.7) tell us
that the probability for a given energy E is proportional to exp (−βE), where
β = 1/kBT and kB is Boltzmann’s constant. Thus the probability distribution is
Pn = Z−1 exp

(−βEn

)
, where Z−1 is the normalization constant required to satisfy

eqn (2.112), and
En =

∑
κ

�ωκnκ . (2.163)

Substituting this probability distribution into eqn (2.116) gives the density operator

ρ =
1
Z

∑
n

e−βEn |n〉 〈n| =
1
Z

exp (−βHem) . (2.164)

The normalization constant Z, which is called the partition function, is determined
by imposing Tr (ρ) = 1 to get

Z = Tr [exp (−βHem)] . (2.165)

Evaluating the trace in the number-state basis yields

Z =
∑

n

exp

[
−β

∑
κ

nκ�ωκ

]
=

∏
κ

Zκ , (2.166)

where

Zκ =
∞∑

nκ=0

e−βnκ�ωκ =
∞∑

nκ=0

(
e−β�ωκ

)nκ =
1

1 − e−β�ωκ
(2.167)

is the partition function for mode κ (Chandler, 1987, Chap. 4).

A The Planck distribution

The average energy in the electromagnetic field is related to the partition function by

U =
(
− ∂

∂β

)
ln Z =

∑
κ

�ωκ

eβ�ωκ − 1
. (2.168)

We will say that the cavity is large if the energy spacing �c∆kκ between adjacent
discrete modes is small compared to any physically relevant energy. In this limit the
shape of the cavity is not important, so we may suppose that it is cubical, with
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κ → (k, s), where s = 1, 2 and ωκ → ck. In the limit of infinite volume, applying the
rule

1
V

∑
k

→
∫

d3k

(2π)3
(2.169)

replaces eqn (2.168) by
U

V
=

2
(2π)3

∫
d3k

�ck

eβ�ck − 1
. (2.170)

After carrying out the angular integrations and changing the remaining integration
variable to ω = ck, this becomes

U

V
=

∫ ∞

0

dω ρ (ω, T ) , (2.171)

where the energy density ρ (ω, T )dω in the frequency interval ω to ω + dω is given by
the Planck function

ρ (ω, T ) =
1

π2c3

�ω3

eβ�ω − 1
. (2.172)

B Distribution in photon number

In addition to the distribution in energy, it is also useful to know the distribution in
photon number, nκ, for a given mode. This calculation is simplified by the fact that
the thermal density operator is the product of independent operators for each mode,

ρ =
∏
κ

ρκ , (2.173)

where
ρκ =

1
Zκ

exp (−βNκ�ωκ) . (2.174)

Thus we can drop the mode index and set

ρ =
(
1 − e−β�ω

)
exp

[−β�ωa†a
]
. (2.175)

The eigenstates of the single-mode number operator are nondegenerate, so the general
rule (2.132) reduces to

p (n) = Tr (ρ |n〉 〈n|) = 〈n |ρ|n〉 =
(
1 − e−β�ω

)
e−nβ�ω , (2.176)

where p (n) is the probability of finding n photons. This can be expressed more con-
veniently by first calculating the average number of photons:

〈n〉 = Tr
(
ρa†a

)
=

e−β�ω

1 − e−β�ω
. (2.177)

Using this to eliminate e−β�ω leads to the final form

p (n) =
〈n〉n

(1 + 〈n〉)n+1 . (2.178)

Finally, it is important to realize that eqn (2.177) is not restricted to the electro-
magnetic field. Any physical system with a Hamiltonian of the form (2.89), where the
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operators a and a† satisfy the canonical commutation relations (2.63) for a harmonic
oscillator, will be described by the Planck distribution.

2.5 Vacuum fluctuations

Our first response to the infinite zero-point energy associated with vacuum fluctuations
was to hide it away as quickly as possible, but we now have the tools to investigate
the divergence in more detail. According to eqns (2.99) and (2.100) the electric and
magnetic field operators are respectively determined by pκ and qκ so there are in-
escapable vacuum fluctuations of the fields. The E and B fields are linear in aκ and a†

κ

so their vacuum expectation values vanish, but E2 and B2 will have nonzero vacuum
expectation values representing the rms deviation of the fields. Let us consider the
rms deviation of the electric field. The operators Ei (r) (i = 1, 2, 3) are hermitian and
mutually commutative, so we are allowed to consider simultaneous measurements of
all components of E (r). In this case the ambiguity in going from a classical quantity
to the corresponding quantum operator is not an issue.

Since trouble is to be expected, we approach
〈
0
∣∣E2 (r)

∣∣ 0〉 with caution by first
evaluating 〈0 |Ei (r)Ej (r′)| 0〉 for r′ �= r. The expansion (2.101) yields

〈0 |Ei (r) Ej (r′)| 0〉 = − �

2ε0

∑
κ

∑
λ

√
ωκωλEκi (r) Eλj (r′)

×
〈

0| (aκ − a†
κ

) (
aλ − a†

λ

)
|0
〉

, (2.179)

and evaluating the vacuum expectation value leads to

〈0 |Ei (r)Ej (r′)| 0〉 =
�

2ε0

∑
κ

ωκEκi (r) Eκj (r′) . (2.180)

Direct evaluation of the sum over modes requires detailed knowledge of both the
mode spectrum and the mode functions, but this can be avoided by borrowing a trick
from quantum mechanics (Cohen-Tannoudji et al., 1977a, Chap. II, Complement B).
According to eqn (2.35) each mode function Eκ is an eigenfunction of the operator
−∇2 with eigenvalue k2

κ. The operator and eigenvalue are respectively mathemati-
cal analogues of the kinetic energy operator and the energy eigenvalue in quantum
mechanics (in units such that 2m = � = 1). Since −∇2 is hermitian and Eκ is an
eigenfunction, the general argument given in Appendix C.3.6 shows that(−∇2

)1/2 Eκ =
√

k2
κEκ = kκEκ . (2.181)

Using this relation, together with ωκ = ckκ, in eqn (2.35) yields

ωκEκi (r) = ckκEκi (r) = c
√

k2
κEκi (r) = c

(−∇2
)1/2 Eκi (r) . (2.182)

Thus eqn (2.180) can be replaced by

〈0 |Ei (r)Ej (r′)| 0〉 =
�c

2ε0

(−∇2
)1/2 ∑

κ

Eκi (r) Eκj (r′) , (2.183)
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which combines with the completeness relation (2.38) to yield

〈0 |Ei (r)Ej (r′)| 0〉 =
�c

2ε0

(−∇2
)1/2

∆⊥
ij (r − r′)

=
�c

2ε0

∫
d3k

(2π)3
k

(
δij − kikj

k2

)
eik·(r−r′) , (2.184)

where the last line follows from the fact that eik·r is an eigenfunction of −∇2 with
eigenvalue k2. Setting r′ = r and summing over i = j yields the divergent integral

〈
0
∣∣E2 (r)

∣∣ 0〉 =
�

ε0

∫
d3k

(2π)3
k . (2.185)

Thus the rms field deviation is infinite at every point r. In the case of the energy this
disaster could be avoided by redefining the zero of energy for each cavity mode, but
no such escape is possible for measurements of the electric field itself.

This looks a little neater—although no less divergent—if we define the (volume
averaged) rms deviation by

(∆E)2 =
〈

0
∣∣∣∣ 1
V

∫
V

d3rE2 (r)
∣∣∣∣ 0〉 . (2.186)

This is best calculated by returning to eqn (2.180), setting r = r′ and integrating to
get

(∆E)2 =
∑

κ

e2κ , (2.187)

where the vacuum fluctuation field strength, eκ, for mode Eκ is

eκ =
√

�ωκ

2ε0V
. (2.188)

The sum over all modes diverges, but the fluctuation strength for a single mode is
finite and will play an important role in many of the arguments to follow. A similar
calculation for the magnetic field yields

(∆B)2 =
∑

κ

b2
κ , bκ =

√
µ0�ωκ

2V
. (2.189)

The source of the divergence in (∆E)2 and (∆B)2 is the singular character of
the the vacuum fluctuations at a point. This is a mathematical artifact, since any
measuring device necessarily occupies a nonzero volume. This suggests considering an
operator of the form

W ≡ −
∫

V

d3r P (r) · E (r) , (2.190)

where P (r) is a smooth (infinitely differentiable) c-number function that vanishes
outside some volume V0 � V . In this way, the singular behavior of E (r) is reduced by
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averaging the point r over distances of the order d0 = V
1/3
0 . According to the uncer-

tainty principle, this is equivalent to an upper bound k0 ∼ 1/d0 in the wavenumber,
so the divergent integral in eqn (2.185) is replaced by

�

ε0

∫
k<k0

d3k

(2π)3
k =

�

ε0

k4
0

8π2
< ∞ . (2.191)

If the volume V0 is filled with an electret, i.e. a material with permanent electric
polarization, then P (r) can be interpreted as the density of classical dipole moment,
and W is the interaction energy between the classical dipoles and the quantized field. In
this idealized model W is a well-defined physical quantity which is measurable, at least
in principle. Suppose the measurement is carried out repeatedly in the vacuum state.
According to the standard rules of quantum theory, the average of these measurements
is given by the vacuum expectation value of W , which is zero. Of course, the fact that
the average vanishes does not imply that every measured value does. Let us next
determine the variance of the measurements by evaluating

〈
0|W 2 |0〉 =

∫
V

d3r

∫
V

d3r′Pi (r)Pj (r′) 〈0 |Ei (r) Ej (r′)| 0〉 . (2.192)

Substituting eqn (2.180) into this expression yields

〈
0|W 2 |0〉 =

�

2ε0

∑
κ

ωκP2
κ , (2.193)

where

Pκ =
∫

V

d3r P (r) · Eκ (r) (2.194)

represents the classical interaction energy for a single mode. In this case the sum
converges, since the coefficients Pκ will decay rapidly for higher-order modes. Thus W
exhibits vacuum fluctuation effects that are both finite and observable. It is important
to realize that this result is independent of the choice of operator ordering, e.g. eqn
(2.105) or eqn (2.106), for the Hamiltonian. It is also important to assume that the
permanent dipole moment of the electret is so small that the radiation it emits by
virtue of the acceleration imparted by the vacuum fluctuations can be neglected. In
other words, this is a test electret analogous to the test charges assumed in the standard
formulation of classical electrodynamics (Jackson, 1999, Sec. 1.2).

2.6 The Casimir effect

In Section 2.2 we discarded the zero-point energy due to vacuum fluctuations on the
grounds that it could be eliminated by adding a constant to the Hamiltonian in eqn
(2.104). This is correct for a single cavity, but the situation changes if two different
cavities are compared. In this case, a single shift in the energy spectrum can eliminate
one or the other, but not both, of the zero-point energies; therefore, the difference
between the zero-point energies of the two cavities can be the basis for observable
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phenomena. An argument of this kind provides the simplest explanation of the Casimir
effect.

We follow the approach of Milonni and Shih (1992) which begins by considering
the planar cavity—i.e. two plane parallel plates separated by a distance small com-
pared to their lateral dimensions—described in Appendix B.4. In this situation edge
effects are small, so the plates can be represented by an ideal cavity in the shape of a
rectangular box with dimensions L × L× ∆z. This configuration will be compared to
a cubical cavity with sides L. The eigenfrequencies for a planar cavity are

ωlmn = c

[(
lπ

L

)2

+
(mπ

L

)2

+
( nπ

∆z

)2
]1/2

, (2.195)

where the range of the indices is l, m, n = 0, 1, 2, . . ., except that there are no modes
with two zero indices. If one index vanishes, there is only one polarization, but for
three nonzero indices there are two. We want to compare the zero-point energies of
configurations with different values of ∆z, so the interesting quantity is

E0 (∆z) =
∑

l,m,n

Clmn
�ωlmn

2
, (2.196)

where Clmn is the number of polarizations. Thus Clmn = 2 when all indices are nonzero,
Clmn = 1 when exactly one index vanishes, and Clmn = 0 when at least two indices
vanish. Since this sum diverges, it is necessary to regularize it, i.e. to replace it with a
mathematically meaningful expression which has eqn (2.196) as a limiting value. All
intermediate calculations are done using the regularized form, and the limit is taken
at the end of the calculation. The physical justification for this apparently reckless
procedure rests on the fact that real conductors become transparent to radiation at
sufficiently high frequencies (Jackson, 1999, Sec. 7.5D). In this range the contribution
to the zero-point energy is unchanged by the presence of the conducting plates, so it
will cancel out in taking the difference between different configurations. Thus the high-
frequency part of the sum in eqn (2.196) is not physically relevant, and a regularization
scheme that suppresses the contributions of high frequencies can give a physically
meaningful result (Belinfante, 1987).

One regularization scheme is to replace eqn (2.196) by

E0 (∆z) =
∑

l,m,n

exp
(−αω2

lmn

)
Clmn

�ωlmn

2
. (2.197)

This sum is well behaved for any α > 0, and approaches the original divergent ex-
pression as α → 0. The energy in a cubical box with sides L is E0 (L) and the ratio
of the volumes is L2∆z/L3 = ∆z/L, so the difference between the zero-point energy
contained in the planar box and the zero-point energy contained in the same volume
in the larger box is

U (∆z) = E0 (∆z) − ∆z

L
E0 (L) . (2.198)

This is just the work done in bringing one of the faces of the cube from the original
distance L to the final distance ∆z.
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The regularized sum could be evaluated numerically, but it is more instructive to
exploit the large size of L. In the limit of large L, the sums over l and m in E0 (∆z)
and over all three indices in E0 (L) can be replaced by integrals over k-space according
to the rule (2.169). After a rather lengthy calculation (Milonni and Shih, 1992) one
finds

U (∆z) = −π2�c

720
L2

∆z3
; (2.199)

consequently, the force attracting the two plates is

F = − dU

d (∆z)
= −π2�c

240
L2

∆z4
. (2.200)

For numerical estimates it is useful to restate this as

F [µN] = −0.13 L [cm]2

∆z [µm]4
. (2.201)

For plates with area 1 cm2 separated by 1 µm, the magnitude of the force is 0.13 µN.
This is a very small force; indeed, it is approximately equal to the force exerted by the
proton on the electron in the first Bohr orbit of a hydrogen atom.

The Casimir force between parallel plates would be extremely hard to measure,
due to the difficulty of aligning parallel plates separated by 1µm. Recent experiments
have used a different configuration consisting of a conducting sphere of radius R at a
distance d from a conducting plate (Lamoreaux, 1997; Mohideen and Roy, 1998). For
perfect conductors, a similar calculation yields the force

F (0) (d) = −π3�c

360
R

d3
(2.202)

in the limit R � d. When corrections for finite conductivity, surface roughness, and
nonzero temperature are included there is good agreement between theory and exper-
iment.

The calculation of the Casimir force sketched above is based on the difference be-
tween the zero-point energies of two cavities, and it provides good agreement between
theory and experiment. This might be interpreted as providing evidence for the real-
ity of zero-point energy, except for two difficulties. The first is the general argument
in Section 2.2 showing that it is always permissible to use the normal-ordered form
(2.89) for the Hamiltonian. With this choice, there is no zero-point energy for either
cavity; and our successful explanation evaporates. The second, and more important,
difficulty is that the forces predicted by eqns (2.200) and (2.202) are independent of
the electronic charge. There is clearly something wrong with this, since all dynamical
effects depend on the interaction of charged particles with the electromagnetic field.
It has been shown that the second feature is an artifact of the assumption that the
plates are perfect conductors (Jaffe, 2005). A less idealized calculation yields a Casimir
force that properly vanishes in the limit of zero electronic charge. Thus the agreement
between the theoretical prediction (2.202) and experiment cannot be interpreted as
evidence for the physical reality of zero-point energy. We emphasize that this does
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not mean that vacuum fluctuations are not real, since other experiments—such as the
partition noise at beam splitters discussed in Section 8.4.2—do provide evidence for
their effects.

Our freedom to use the normal-ordered form of the Hamiltonian implies that it
must be possible to derive the Casimir force without appealing to the zero point
energy. An approach that does this is based on the van der Waals coupling between
atoms in different walls. The van der Waals potential can be derived by considering the
coupling between the fluctuating dipoles of two atoms. This produces a time-averaged
perturbation proportional to (p1 · p2) /r3, where r is the distance between the atoms,
and p1 and p2 are the electric dipole operators. This potential comes from the static
Coulomb interactions between the charged particles comprising the atoms; it does not
involve the radiative modes that contribute to the zero point energy in symmetrical
ordering. The random fluctuations in the dipole moments p1 and p2 produce no first-
order correction to the energy, but in second order the dipole–dipole coupling produces
the van der Waals potential VW (r) with its characteristic 1/r7 dependence. The 1/r7

dependence is valid for r � λat, where λat is a characteristic wavelength of an atomic
transition. For r � λat the potential varies as 1/r6.

For many atoms, the simplest assumption is that these potentials are pair-wise
additive, i.e. the total potential energy is

Vtot =
∑
m �=n

VW (|rn − r′m|) , (2.203)

where the sum runs over all pairs with one atom in each wall. With this approximation,
it is possible to explain about 80% of the Casimir force in eqn (2.200). In fact the
assumption of pair-wise additivity is not justified, since the presence of a third atom
changes the interaction between the first two. When this is properly taken into account,
the entire Casimir force is obtained.

Thus there are two different explanations for the Casimir force, corresponding to
the two choices a†a or

(
a†a + aa†) /2 made in defining the electromagnetic Hamil-

tonian. The important point to keep in mind is that the relevant physical prediction—
the Casimir force between the plates—is the same for both explanations. The difference
between the two lies entirely in the language used to describe the situation. This kind
of ambiguity in description is often found in quantum physics. Another example is the
van der Waals potential itself. The explanation given above corresponds to the normal
ordering of the electromagnetic Hamiltonian. If the symmetric ordering is used instead,
the presence of the two atoms induces a change in the zero-point energy of the field
which becomes increasingly negative as the distance between the atoms decreases. The
result is the same attractive potential between the atoms (Milonni and Shih, 1992).

2.7 Exercises

2.1 Cavity equations

(1) Give the separation of variables argument leading to eqn (2.7).

(2) Derive the equations satisfied by E (r) and B (r) and verify eqns (2.9) and (2.10).



�� Quantization of cavity modes

2.2 Rectangular cavity modes

(1) Use the method of separation of variables to solve eqns (2.11) and (2.1) for a
rectangular cavity, subject to the boundary condition (2.13), and thus verify eqns
(2.14)–(2.17).

(2) Show explicitly that the modes satisfy the orthogonality conditions∫
d3rEks (r) · Ek′s′ (r) = 0 for (k, s) �= (k′, s′) .

(3) Use the normalization condition∫
d3rEks (r) · Eks (r) = 1

to derive the normalization constants Nk.

2.3 Equations of motion for classical radiation oscillators

In the interior of an empty cavity the fields satisfy Maxwell’s equations (2.1) and
(2.2). Use the expansions (2.40) and (2.41) and the properties of the mode functions
to derive eqn (2.43).

2.4 Complex mode amplitudes

(1) Use the expression (2.48) for the classical energy and the expansions (2.40) and
(2.41) to derive eqn (2.49).

(2) Derive eqns (2.46) and (2.51).

2.5 Number states

Use the commutation relations (2.76) and the definition (2.73) of the vacuum state to
verify eqn (2.78).

2.6 The second-order coherence matrix

(1) For the operators a†p and ap (p = 1, 2) defined by eqn (2.153) show that the number
operators Np = a†pap are simultaneously measurable.

(2) Consider the operator

ρ =
1
2
|1x〉 〈1x| + 1

2
|1y〉 〈1y| − 1

4
(|1y〉 〈1x| + |1x〉 〈1y|) ,

where |1s〉 = a†
ks |0〉.

(a) Show that ρ is a genuine density operator, i.e. it is positive and has unit trace.

(b) Calculate the coherence matrix J , its eigenvalues and eigenvectors, and the
degree of polarization.
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2.7 The Stokes parameters

(1) What is the physical significance of S0?
(2) Use the explicit forms of the Pauli matrices and the expansion (2.158) to show

that
det J =

1
4
[
S2

0 − S2
1 − S2

2 − S2
3

]
,

and thereby establish the condition (2.160).
(3) With S0 = 1, introduce polar coordinates by S3 = cos θ, S2 = sin θ sinφ, and

S3 = sin θ cosφ. Find the locations on the Poincaré sphere corresponding to right
circular polarization, left circular polarization, and linear polarization.

2.8 A one-photon mixed state

Consider a monochromatic state for wavevector k (see Section 2.4.1-A) containing
exactly one photon.

(1) Explain why the density operator for this state is completely represented by the
2 × 2 matrix ρss′ = 〈1ks |ρ| 1ks′〉.

(2) Show that the density matrix ρss′ is related to the coherence matrix J by ρss′ =
Js′s.

2.9 The Casimir force

Show that the large L limit of eqn (2.198) is

U (∆z) =
�c

2

(
L

π

)2 ∫
dkxdkye−αk2

⊥k⊥

+ �c

(
L

π

)2 ∞∑
n=1

∫
dkxdkye−α(k2

⊥+k2
zn) [k2

⊥ + k2
zn

]1/2

− ∆z

L
�c

(
L

π

)3 ∫
dkxdkydkze

−αk2
k ,

where k⊥ =
√

k2
x + k2

y, k =
√

k2
⊥ + k2

z , and kzn = nπ/∆z.

2.10 Model for the experiments on the Casimir force

Consider the simple-harmonic-oscillator model of the Lamoreaux and Mohideen-Roy
experiments on the Casimir force shown in Fig. 2.1.

All elements of the apparatus, which are assumed to be perfect conductors, are
rendered electrically neutral by grounding them to the Earth. Assume that the spring
constant for the metallic spring is k. (You may ignore Earth’s gravity in this problem.)

(1) Calculate the displacement ∆x of the spring from its relaxed length as a function
of the spacing d between the surface of the sphere and the flat plate on the right,
after the system has come into mechanical equilibrium.

(2) Calculate the natural oscillation frequency of this system for small disturbances
around this equilibrium as a function of d. Neglect all dissipative losses.



�� Quantization of cavity modes

Fig. 2.1 The Casimir force between a

grounded metallic sphere of radius R and the

grounded flat metallic plate on the right, which

is separated by a distance d from the sphere,

can be measured by measuring the displace-

ment of the metallic spring. (Ignore gravity.)
����� �����	
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(3) Plot your answers for parts 1 and 2 for the following numerical parameters:

R = 200 µm ,

0.1 µm � d � 1.0 µm ,

k = 0.02 N/m .
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Field quantization

Quantizing the radiation oscillators associated with the classical modes of the elec-
tromagnetic field in a cavity provides a satisfactory theory of the Planck distribution
and the Casimir effect, but this is only the beginning of the story. There are, after all,
quite a few experiments that involve photons propagating freely through space, not
just bouncing back and forth between cavity walls. In addition to this objection, there
is a serious flaw in the cavity-based model. The quantized radiation oscillators are
defined in terms of a set of classical mode functions satisfying the idealized boundary
conditions for perfectly conducting walls. This difficulty cannot be overcome by sim-
ply allowing for finite conductivity, since conductivity is itself a macroscopic property
that does not account for the atomistic structure of physical walls. Thus the quantiza-
tion conjecture (2.61) builds the idealized macroscopic boundary conditions into the
foundations of the microscopic quantum theory of light. A fundamental microscopic
theory should not depend on macroscopic idealizations, so there is more work to be
done. We should emphasize, however, that this objection to the cavity model does not
disqualify it as a guide toward an improved theory. The cavity model itself was con-
structed by applying the ideas of nonrelativistic quantum mechanics to the classical
radiation oscillators. In a similar fashion, we will use the cavity model to suggest a
true microscopic conjecture for the quantization of the electromagnetic field.

In the following sections we will show how the quantization scheme of the cavity
model can be used to suggest local commutation relations for quantized fields in free
space. The experimentally essential description of photons in passive optical devices
will be addressed by formulating a simple model for the quantization of the field in
a dielectric medium. In the final four sections we will discuss some more advanced
topics: the angular momentum of light, a description of quantum field theory in terms
of wave packets, and the question of the spatial localizability of photons.

3.1 Field quantization in the vacuum

The quantization of the electromagnetic field in free space is most commonly carried
out in the language of canonical quantization (Cohen-Tannoudji et al., 1989, Sec.
II.A.2), which is based on the Lagrangian formulation of classical electrodynamics.
This is a very elegant way of packaging the necessary physical conjectures, but it
requires extra mathematical machinery that is not needed for most applications. We
will pursue a more pedestrian route which builds on the quantization rules for the
ideal physical cavity. To this end, we initially return to the cavity problem.
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3.1.1 Local commutation relations

In Chapter 2 we concentrated on the operators (qκ, pκ) for a single mode. Since the
modes are determined by the boundary conditions at the cavity walls, they describe
global properties of the cavity. We now want turn attention away from the overall
properties of the cavity, in order to concentrate on the local properties of the field
operators. We will do this by combining the expansions (2.99) and (2.103) for the time-
independent, Schrödinger-picture operators E (r) and A (r) with the commutation
relations (2.61) for the mode operators to calculate the commutators between field
components evaluated at different points in space. The expansions show that E (r)
only depends on the pκs while A (r) and B (r) depend only on the qκs; therefore, the
commutation relations, [pκ, pλ] = [qκ, qλ] = 0, produce

[Ej (r) , Ek (r′)] = 0 , [Aj (r) , Ak (r′)] = 0 , [Bj (r) , Bk (r′)] = 0 . (3.1)

On the other hand, [qκ , pλ] = i�δκλ, so the commutator between the electric field and
the vector potential is

[Ai (r) ,−Ej (r′)] =
1
ε0

∑
κ

∑
λ

[qκ, pλ]Eκi (r) Eλj (r′)

=
i�

ε0

∑
κ

Eκi (r) Eκj (r′) . (3.2)

For any cavity, the mode functions satisfy the completeness condition (2.38), so we see
that

[Ai (r) ,−Ej (r′)] =
i�

ε0
∆⊥

ij (r − r′) . (3.3)

The resemblance between this result and the canonical commutation relation, [qκ, pλ] =
i�δκλ, for the mode operators suggests the identification of A (r) and −E (r) as the
canonical variables for the field in position space. A similar calculation for the commu-
tator between the E- and B-fields can be carried out using eqn (2.100), or by applying
the curl operation to eqn (3.3), with the result

[Bi (r) , Ej (r′)] = i
�

ε0
εijl∇lδ (r− r′) , (3.4)

where εijl is the alternating tensor defined by eqn (A.3). The uncertainty relations
implied by the nonvanishing commutators between electric and magnetic field compo-
nents were extensively studied in the classic work of Bohr and Rosenfeld (1950), and
a simple example can be found in Exercise 3.2.

The derivation of the local commutation relations (3.1) and (3.3) for the field oper-
ators in the physical cavity employs the complete set of cavity modes, which depend on
the geometry of the cavity. This can be seen from the explicit appearance of the mode
functions in the second line of eqn (3.2). However, the final result (3.3) follows from the
completeness relation (2.38), which has the same form for every cavity. This feature
only depends on the fact that the boundary conditions guarantee the Hermiticity of
the operator −∇2. We have, therefore, established the quite remarkable result that
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the local position-space commutation relations are independent of the shape and size
of the cavity. In particular, eqns (3.1) and (3.3) will hold in the limit of an infinitely
large physical cavity; that is, when the distance to the cavity walls from either of the
points r and r′ is much greater than any physically relevant length scale. In this limit,
it is plausible to assume that the boundary conditions at the walls are irrelevant. This
suggests abandoning the original quantization conjecture (2.61), and replacing it by
eqns (3.1) and (3.3). In this way we obtain a microscopic theory which does not involve
the macroscopic idealizations associated with the classical boundary conditions. We
emphasize that this is not a derivation of the local commutation relations from the
physical cavity relations (2.61). The sole function of the cavity-based calculation is
to suggest the form of eqns (3.1) and (3.3), which constitute an independent quanti-
zation conjecture. As always, the validity of the this conjecture has to be tested by
means of experiment. In this new approach, the theory based on the ideal physical
cavity—with its dependence on macroscopic boundary conditions—is demoted to a
phenomenological model.

Since the new quantization rules hold everywhere in space, they can be expressed
in terms of Fourier transform pairs defined by

F (r) =
∫

d3k

(2π)3
eik·rF (k) , F (k) =

∫
d3re−ik·rF (r) , (3.5)

where F = A, E, or B. The position-space field operators are hermitian, so their
Fourier transforms satisfy F† (k) = F (−k). It should be clearly understood that eqn
(3.5) is simply an application of the Fourier transform; no additional physical assump-
tions are required. By contrast, the expansions (2.99) and (2.103) in cavity modes
involve the idealized boundary conditions at the cavity walls.

Transforming eqns (3.1) and (3.3) with respect to r and r′ independently yields
the equivalent relations

[Ej (k) , Ek (k′)] = [Aj (k) , Ak (k′)] = 0 , (3.6)

and
[Ai (k) ,−Ej (k′)] =

i�

ε0
∆⊥

ij (k) (2π)3 δ
(
k + k′) , (3.7)

where the delta function comes from using the identity (A.96).

3.1.2 Creation and annihilation operators

A Position space

The commutation relations (3.1)–(3.4) are not the only general consequences that are
implied by the cavity model. For example, the expansions (2.101) and (2.103) can be
rewritten as

E (r) = E(+) (r) + E(−) (r) , A (r) = A(+) (r) + A(−) (r) , (3.8)

where

A(+) (r) =
∑

κ

√
�

2ε0ωκ
aκEκ (r) = A(−)† (r) (3.9)
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and

E(+) (r) = i
∑

κ

√
�ωκ

2ε0
aκEκ (r) = E(−)† (r) . (3.10)

Let F be one of the field operators, Ai or Ei, then F (+) is called the positive-frequency
part and F (−) is called the negative-frequency part. The origin of these mysterious
names will become clear in Section 3.2.3, but for the moment we only need to keep
in mind that F (+) is a sum of annihilation operators and F (−) is a sum of creation
operators. These properties are expressed by

F (+) (r) |0〉 = 0 , 〈0|F (−) (r) = 0 . (3.11)

In view of the definition (3.9) there is a natural inclination to think of A(+) (r) as an
operator that annihilates a photon at the point r, but this temptation must be resisted.
The difficulty is that the photon—i.e. ‘a quantum of excitation of the electromagnetic
field’—cannot be sharply localized in space. A precise interpretation for A(+) (r) is
presented in Section 3.5.2, and the question of photon localization is studied in Section
3.6.

An immediate consequence of eqns (3.9) and (3.10) is that[
F (±) (r) , G(±) (r′)

]
= 0 , (3.12)

where F and G are any pair of field operators. It is clear, however, that
[
F (+), G(−)

]
will not always vanish. In particular, a calculation similar to the one leading to eqn
(3.3) yields [

A
(+)
i (r) ,−E

(−)
j (r′)

]
=

i�

2ε0
∆⊥

ij (r − r′) . (3.13)

The decomposition (3.8) also allows us to express all field operators in terms of
A(±). For this purpose, we rewrite eqn (3.10) as

E(+) (r) = ic
∑

κ

√
�

2ε0ωκ
aκkκEκ (r) , (3.14)

and use eqn (2.181) to get the final form

E(+) (r) = ic
(−∇2

)1/2
A(+) (r) . (3.15)

Substituting this into eqn (3.13) yields the equivalent commutation relations[
A

(+)
i (r) , A

(−)
j (r′)

]
=

�

2ε0c

(−∇2
)−1/2

∆⊥
ij (r − r′) , (3.16)[

E
(+)
i (r) , E

(−)
j (r′)

]
=

�c

2ε0

(−∇2
)1/2

∆⊥
ij (r− r′) . (3.17)

In the context of free space, the unfamiliar operators
(−∇2

)1/2 and
(−∇2

)−1/2 are
best defined by means of Fourier transforms. For any real function f (u) the identity
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−∇2 exp (ik · r) = k2 exp (ik · r) allows us to define the action of f
(−∇2

)
on a plane

wave by f
(−∇2

)
eik·r ≡ f

(
k2
)
eik·r. This result in turn implies that f

(−∇2
)

acts on
a general function ϕ (r) according to the rule

f
(−∇2

)
ϕ (r) ≡

∫
d3k

(2π)3
ϕ (k) f

(−∇2
)
eik·r =

∫
d3k

(2π)3
ϕ (k) f

(
k2
)
eik·r . (3.18)

After using the inverse Fourier transform on ϕ (k) this becomes

f
(−∇2

)
ϕ (r) =

∫
d3r′

(
r
∣∣f (−∇2

)∣∣ r′)ϕ (r′) , (3.19)

where (
r
∣∣f (−∇2

)∣∣ r′) =
∫

d3k

(2π)3
f
(
k2
)
eik·(r−r′) (3.20)

is the integral kernel defining f
(−∇2

)
as an operator in r-space. Despite its abstract

appearance, this definition is really just a labor saving device; it avoids transforming
back and forth from position space to reciprocal space. For example, real functions of
the hermitian operator−∇2 are also hermitian; so one gets a useful integration-by-parts
identity ∫

d3rψ∗ (r) f
(−∇2

)
ϕ (r) =

∫
d3r

{
f
(−∇2

)
ψ∗ (r)

}
ϕ (r) , (3.21)

without any intermediate steps involving Fourier transforms.
The equations (3.8), (3.11)–(3.13), (3.15), and (3.16) were all derived by using the

expansions of the field operators in cavity modes, but once again the final forms are
independent of the size and shape of the cavity. Consequently, these results are valid
in free space.

B Reciprocal space

The rather strange looking result (3.16) becomes more understandable if we note that
the decomposition (3.8) into positive- and negative-frequency parts applies equally
well in reciprocal space, so that A (k) = A(+) (k) + A(−) (k). The Fourier transforms
of eqns (3.12) and (3.16) with respect to r and r′ yield respectively[

A
(±)
i (k) , A

(±)
j (k′)

]
= 0 (3.22)

and [
A

(+)
i (k) , A

(−)
j (−k′)

]
=

�

2ε0c

∆⊥
ij (k)
k

(2π)3 δ
(
k − k′) . (3.23)

This reciprocal-space commutation relation does not involve any strange operators, like(−∇2
)−1/2, but it is still rather complicated. Simplification can be achieved by noting
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that the circular polarization unit vectors eks—see Appendix B.3.2—are eigenvectors
of ∆⊥

ij (k) with eigenvalue unity:

∆⊥
ij (k) (eks)j = (eks)i . (3.24)

By forming the inner product of both sides of eqns (3.22) and (3.23) with e∗ks and
ek′s′ and remembering F† (k) = F (−k), one finds

[as (k) , as′ (k′)] =
[
a†

s (k) , a†
s′ (k′)

]
= 0 (3.25)

and [
as (k) , a†

s′ (k′)
]

= δss′ (2π)3 δ
(
k − k′) , (3.26)

where

as (k) =

√
2ε0ωk

�
e∗ks ·A(+) (k) (3.27)

and ωk = ck. The operators as (k), combined with the Fourier transform relation (3.5),
provide a replacement for the cavity-mode expansions (3.9) and (3.10):

A(+) (r) =
∫

d3k

(2π)3

√
�

2ε0ωk

∑
s

as (k) ekse
ik·r , (3.28)

E(+) (r) = i

∫
d3k

(2π)3

√
�ωk

2ε0

∑
s

as (k) ekse
ik·r . (3.29)

The number operator

N =
∫

d3k

(2π)3
∑

s

a†
s (k) as (k) (3.30)

satisfies [
N, a†

s (k)
]

= a†
s (k) , [N, as (k)] = −as (k) , (3.31)

and the vacuum state is defined by as (k) |0〉 = 0, so it seems that a†
s (k) and as (k) can

be regarded as creation and annihilation operators that replace the cavity operators
aκ and a†

κ. However, the singular commutation relation (3.26) exacts a price. For
example, the one-photon state |1ks〉 = a†

s (k) |0〉 is an improper state vector satisfying
the continuum normalization conditions

〈1k′s′ |1ks 〉 = δss′ (2π)3 δ
(
k − k′) . (3.32)

Thus a properly normalized one-photon state is a wave packet state

|Φ〉 =
∫

d3k

(2π)3
∑

s

Φs (k) a†
s (k) |0〉 , (3.33)

where the c-number function Φs (k) is normalized by
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∫
d3k

(2π)3
∑

s

|Φs (k)|2 = 1 . (3.34)

The Fock space HF consists of all linear combinations of number states,

|Φ〉 =
∫

d3k1

(2π)3
· · ·

∫
d3kn

(2π)3
∑
s1

· · ·
∑
sn

Φs1···sn (k1, . . . ,kn) a†
s1

(k1) · · · a†
sn

(kn) |0〉 ,

(3.35)
where ∫

d3k1

(2π)3
· · ·

∫
d3kn

(2π)3
∑
s1

· · ·
∑
sn

|Φs1···sn (k1, . . . ,kn)|2 < ∞ (3.36)

and n = 0, 1, . . ..

3.1.3 Energy, momentum, and angular momentum

A The Hamiltonian

The expression (2.105) for the field energy in a cavity can be converted to a form
suitable for generalization to free space by first inverting eqn (3.10) to get

aκ = −i

√
2ε0
�ωκ

∫
V

d3rEκ (r) · E(+) (r) . (3.37)

The next step is to substitute this expression for aκ into eqn (2.105) and carry out the
sum over κ by means of the completeness relation (2.38); this calculation leads to

Hem =
∑

κ

�ωκa†
κaκ

= 2ε0

∫
V

d3r

∫
V

d3r′E(−)
i (r)∆⊥

ij (r − r′) E
(+)
j (r′) . (3.38)

Since the free-field operator E(+) (r′) is transverse, the infinite volume limit is

Hem = 2ε0

∫
d3rE(−) (r) · E(+) (r) . (3.39)

This can also be expressed as

Hem = 2ε0c
2

∫
d3rA(−) (r) · (−∇2

)
A(+) (r) , (3.40)

by using eqn (3.15). A more intuitively appealing form is obtained by using the plane-
wave expansion (3.29) for E(±) to get

Hem =
∫

d3k

(2π)3
�ωk

∑
s

a†
s (k) as (k) . (3.41)
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B The linear momentum

The cavity model does not provide any expressions for the linear momentum and
the angular momentum, so we need independent arguments for them. The reason for
the absence of these operators is the presence of the cavity walls. From a mechanical
point of view, the linear momentum and the angular momentum of the field are not
conserved because of the immovable cavity. Alternatively, we note that one of the
fundamental features of quantum theory is the identification of the linear momentum
and the angular momentum operators with the generators for spatial translations and
rotations respectively (Bransden and Joachain, 1989, Secs 5.9 and 6.2). This means
that the mechanical conservation laws for linear and angular momentum are equivalent
to invariance under spatial translations and rotations respectively. The location and
orientation of the cavity in space spoils both invariances.

Since the cavity model fails to provide any guidance, we once again call on the
correspondence principle by quoting the classical expression for the linear momentum
(Jackson, 1999, Sec. 6.7):

P =
∫

d3r ε0E⊥ × B

=
∫

d3r ε0E × (∇ × A) . (3.42)

The vector identity F× (∇ × G) = Fj∇Gj − (F · ∇)G combined with an integration
by parts and the transverse nature of E (r) provides the more useful expression

P = ε0

∫
d3rEj (r)∇Aj (r) . (3.43)

The initial step in constructing the corresponding Schrödinger-picture operator is to
replace the classical fields according to

A (r) → A (r) = A(+) (r) + A(−) (r) , (3.44)

E (r) → E (r) = E(+) (r) + E(−) (r) . (3.45)

The momentum operator P is then the sum of four terms, P = P(+,+) + P(−,−) +
P(−,+) + P(+,−), where

P(σ,τ) = ε0

∫
d3rE

(σ)
j ∇A

(τ)
j for σ, τ = ± . (3.46)

Each of these terms is evaluated by using the plane-wave expansions (3.28) and (3.29),
together with the orthogonality relation, e∗ks ·eks′ = δss′ , and the reflection property—
see eqn (B.73)—e−k,s = e∗ks, (s = ±) for the circular polarization basis. The first result
is P(+,+) = P(−,−)† = 0; consequently, only the cross terms survive to give

P =
∫

d3k

(2π)3
�k
2

∑
s

{
a†

s (k) as (k) + as (k) a†
s (k)

}
. (3.47)
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This is analogous to the symmetrical ordering (2.106) for the Hamiltonian in the cavity
problem, so our previous experience suggests replacing the symmetrical ordering by
normal ordering, i.e.

P =
∫

d3k

(2π)3
�k

∑
s

a†
s (k) as (k) . (3.48)

From this expression and eqn (3.41), it is easy to see that [P, Hem] = 0 and [Pi, Pj ] = 0.
Any observable commuting with the Hamiltonian is called a constant of the motion,
so the total momentum is a constant of the motion and the individual components Pi

are simultaneously measurable.
By using the inverse Fourier transform,

as (k) =

√
2ε0ωk

�
e∗ks ·

∫
d3re−ik·rA(+) (r) , (3.49)

which is the free-space replacement for eqn (3.37), or proceeding directly from eqn
(3.46), one finds the equivalent position-space representation

P = 2ε0

∫
d3rE

(−)
j (r)∇A

(+)
j (r) . (3.50)

C The angular momentum

Finally we turn to the classical expression for the angular momentum (Jackson, 1999,
Sec. 12.10):

J =
∫

d3r r× [ε0E (r, t) × B (r, t)] . (3.51)

Combining B = ∇ × A with the identity F × (∇ × G) = Fj∇Gj − (F · ∇)G allows
this to be written in the form J = L + S, where

L = ε0

∫
d3r Ej (r × ∇)Aj (3.52)

and

S = ε0

∫
d3r E × A . (3.53)

Once again, the initial guess for the corresponding quantum operators is given by
applying the rules (3.44) and (3.45), so the total angular momentum operator is

J = L + S , (3.54)

where the operators L and S are defined by quantizing the classical expressions L and
S respectively.
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The application of the method used for the linear momentum to eqn (3.52) is com-
plicated by the explicit r-term, but after some effort one finds the rather cumbersome
expression (Simmons and Guttmann, 1970)

L = − i�

2

∫
d3k

(2π)3

[
M †

i (k)
(
k × ∂

∂k

)
Mi (k) − HC

]
= −i�

∫
d3k

(2π)3
M †

i (k)
(
k × ∂

∂k

)
Mi (k) , (3.55)

where
M (k) =

∑
s

as (k) eks . (3.56)

In this case a substantial simplification results from translating the reciprocal-space
representation back into position space to get

L =
2iε0
�

∫
d3rE

(−)
j (r)

(
r × �

i
∇
)

A
(+)
j (r) . (3.57)

A straightforward calculation using eqn (3.39) shows that L is also a constant of the
motion, i.e. [L, Hem] = 0. However, the components of L are not mutually commuta-
tive, so they cannot be measured simultaneously.

The quantization of eqn (3.53) goes much more smoothly, and leads to the normal-
ordered expression

S = �

∫
d3k

(2π)3
k̃
∑

s

sa†
s (k) as (k)

= �

∫
d3k

(2π)3
k̃
[
a†
+ (k) a+ (k) − a†

− (k) a− (k)
]
, (3.58)

where k̃ = k/k is the unit vector along k. Another use of eqn (3.49) yields the equiv-
alent position-space form

S = 2ε0

∫
d3rE(−) × A(+) . (3.59)

The expression (3.54) for the total angular momentum operator looks like the
decomposition into orbital and spin parts familiar from quantum mechanics, but this
resemblance is misleading. For the electromagnetic field, the interpretation of eqn
(3.54) poses a subtle problem which we will take up in Section 3.4.

D The helicity operator

It is easy to show that S commutes with P and with Hem, and further that

[Si, Sj] = 0 . (3.60)

Thus S, P, and Hem are simultaneously measurable, and there are simultaneous eigen-
vectors for them. In the simplest case of the improper one-photon state |1ks〉 =
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a†
s (k) |0〉, one finds: Hem |1ks〉 = �ωk |1ks〉, P |1ks〉 = �k |1ks〉, k̃ × S |1ks〉 = 0, and

k̃ · S |1ks〉 = s� |1ks〉. Thus |1ks〉 is an eigenvector of the longitudinal component k̃ · S
with eigenvalue s� and an eigenvector of the transverse components k̃×S with eigen-
value 0. For the circular polarization basis, the index s represents the helicity, so S is
called the helicity operator.

E Evidence for helicity and orbital angular momentum

Despite the conceptual difficulties mentioned in Section 3.1.3-C, it is possible to devise
experiments in which certain components of the helicity S and the orbital angular mo-
mentum L are separately observed. The first measurement of this kind (Beth, 1936)
was carried out using an experimental arrangement consisting of a horizontal wave
plate suspended at its center by a torsion fiber, so that the plate is free to undergo
twisting motions around the vertical axis. In a simplified version of this experiment,
a vertically-directed, linearly-polarized beam of light is allowed to pass through a
quarter-wave plate, which transforms it into a circularly-polarized beam of light (Born
and Wolf, 1980, Sec. 14.4.2). Since the experimental setup is symmetrical under ro-
tations around the vertical axis (the z-axis), the z-component of the total angular
momentum will be conserved.

We will use a one-photon state

|ψ〉 =
∑

s

ξs |1ks〉 =
∑

s

ξsa
†
s (k) |0〉 , (3.61)

with k = ku3 directed along the z-axis, as a simple model of an incident light beam
of arbitrary polarization. A straightforward calculation using eqn (3.55) for Lz shows
that Lz |1ks〉 = 0; consequently, Lz |ψ〉 = 0 for any choice of the coefficients ξs. In
other words, states of this kind have no z-component of orbital angular momentum.
The particular choice

|ψ〉lin =
1√
2

[|1k+〉 + |1k−〉] =
1√
2

[
a†
+ (k) + a†

− (k)
]
|0〉 (3.62)

defines a linearly-polarized state which possesses zero helicity, i.e. Sz |ψ〉lin = 0. Due to
the action of the quarter-wave plate, the incident linearly-polarized light is converted
into circularly-polarized light. Thus the input state |ψ〉lin changes into the output state
|ψ〉cir = |1k,s=+〉. The output state |ψ〉cir has helicity Sz = +�, but it still satisfies
Lz |ψ〉cir = 0. Since the transmitted photon carries away one unit (+�) of angular
momentum, conservation of angular momentum requires the plate to acquire one unit
(−�) of angular momentum in the opposite direction. In the classical limit of a steady
stream of linearly-polarized photons, this process is described by saying that the light
beam exerts a torque on the plate: τz = dSz/dt = Ṅ (−�), where Ṅ is the rate of flow
of photons through the plate. The resulting twist of the torsion fiber can be sensitively
measured by means of a small mirror attached to the fiber.

The original experiment actually used a steady stream of light composed of very
many photons, so a classical description would be entirely adequate. However, if the
sensitivity of the experiment were to be improved to a point where fluctuations in the



�� Field quantization

angular position of the wave plate could be measured, then the discrete nature of the
angular momentum transfer of � per photon to the wave plate would show up. The
transfer of angular momentum from an individual photon to the wave plate must in
principle be discontinuous in nature, and the twisting of the wave plate should manifest
a fine, ratchet-like Brownian motion. The experiment to see such fluctuations—which
would be very difficult—has not been performed.

A more modern experiment to demonstrate the spin angular momentum of light
was performed by trapping a small, absorbing bead within the beam waist of a tightly
focused Gaussian laser beam (Friese et al., 1998). The procedure for trapping a small
particle inside the beam waist of a laser beam has been called an optical tweezer ,
since one can then move the particle around at will by displacing the axis of the light
beam. The accompanying procedure for producing arbitrary angular displacements of
a trapped particle by transferring controllable amounts of angular momentum from
the light to the particle has been called an optical torque wrench (Ashkin, 1980). For
linearly-polarized light, no effect is observed, but switching the incident laser beam to
circular polarization causes the trapped bead to begin spinning around the axis defined
by the direction of propagation of the light beam. In classical terms, this behavior is a
result of the torque exerted on the particle by the absorbed light. From the quantum
point of view absorption of each photon deposits � of angular momentum in the bead;
therefore, the bead has to spin up in order to conserve angular momentum.

Observations of the orbital angular momentum, Lz, of light have also been made
using a similar technique (He et al., 1995). The experiment begins with a linearly-
polarized laser beam in a Gaussian TEM00 mode. This beam—which has zero helicity
and zero orbital angular momentum—then passes through a computer-generated holo-
graphic mask with a spiral pattern imprinted onto it. The linearly-polarized, paraxial,
Gaussian beam is thereby transformed into a linearly-polarized, paraxial Laguerre–
Gaussian beam of light (Siegman, 1986, Sec. 16.4). The output beam possesses orbital,
but no spin, angular momentum. A simple Laguerre–Gaussian mode is one in which
the light effectively orbits around the axis of propagation as if in an optical vortex
with a given sense of circulation. The transverse intensity profile is doughnut-shaped,
with a null at its center marking a phase singularity in the beam. In principle, the spi-
ral holographic mask would experience a torque resulting from the transfer of orbital
angular momentum—one unit (+�) per photon—to the light beam from the mask.
However, this experiment has not been performed.

What has been observed is that a small, absorbing bead trapped at the beam waist
of a Laguerre–Gaussian mode—with nonzero orbital angular momentum—begins to
spin. This spinning motion is due to the steady transfer of orbital angular momentum
from the light beam into the bead by absorption. The resultant torque is given by
τz = dLz/dt = Ṅ (−�), where Ṅ is the rate of photon flow through the bead. Again,
there is a completely classical description of this experiment, so the photon nature of
light need not be invoked.

Just as for the spin-transfer experiments, a sufficiently sensitive version of this
experiment, using a small enough bead, would display the discontinuous transfer of
orbital angular momentum in the form of a fine, ratchet-like Brownian motion in
the angular displacement of the bead. This would be analogous to the discontinuous
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transfer of linear momentum due to impact of atoms on a pollen particle that results
in the random linear displacements of the particle seen in Brownian motion. This
experiment has also not been performed.

3.1.4 Box quantization

The local, position-space commutation relations (3.1) and (3.3)—or the equivalent
reciprocal-space versions (3.25) and (3.26)—do not require any idealized boundary
conditions, but the right sides of eqns (3.3) and (3.26) contain singular functions
that cause mathematical problems, e.g. the improper one-photon state |1ks〉. On the
other hand, the cavity mode operators aκ and a†

κ—which do depend on idealized
boundary conditions—have discrete labels and the one-photon states |1κ〉 = a†

κ |0〉 are
normalizable. As usual, we would prefer to have the best of both worlds; and this can
be accomplished—at least formally—by replacing the Fourier integral in (3.5) with
a Fourier series. This is done by pretending that all fields are contained in a finite
volume V , usually a cube of side L, and imposing periodic boundary conditions at the
walls, as explained in Appendix A.4.2. This is called box quantization. Since this
imaginary cavity is not defined by material walls, the periodic boundary conditions
have no physical significance. Consequently, meaningful results are only obtained in
the limit of infinite volume. Thus box quantization is a mathematical trick; it is not a
physical idealization, as in the physical cavity problem.

The mathematical situation resulting from this trick is almost identical to
that of the ideal physical cavity. For this case, the traveling waves, fks (r) =
eks exp (ik · r) /

√
V , play the role of the cavity modes. The periodic boundary condi-

tions impose k =2πn/L, where n is a vector with integer components. The fkss are
an orthonormal set of modes, i.e.

(fks, fk′s′) =
∫

V

d3r f∗ks (r) · fk′s′ (r) = δkk′δss′ . (3.63)

The various expressions for the commutation relations, the field operators, and
the observables can be derived either by replacing the real cavity mode functions in
Chapter 2 by the complex modes fks (r), or by applying the rules relating Fourier
integrals to Fourier series, i.e.∫

d3k

(2π)3
↔ 1

V

∑
k

and as (k) ↔
√

V aks , (3.64)

to the expressions obtained in Sections 3.1.1–3.1.3. In either way, the commutation
relations and the number operator are given by[

aks, a
†
k′s′

]
= δkk′δss′ , [aks, ak′s′ ] = 0 , N =

∑
ks

a†
ksaks . (3.65)

The number states are defined just as for the physical cavity,

|n〉 =
∏
ks

(
a†
ks

)nks

√
nks!

|0〉 , (3.66)
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where n = {nks} is the set of occupation numbers, and the completeness relation is∑
n

|n〉 〈n| = 1 . (3.67)

Thus the box-quantization scheme replaces the delta function in eqn (3.26) by the
ordinary Kronecker symbol in the discrete indices k and s. Consequently, the box-
quantized operators aks are as well behaved mathematically as the physical cavity
operators aκ. This allows the construction of the Fock space to be carried out in
parallel to Chapter 2.1.2-C.

The expansions for the field operators are

A(+) (r) =
∑
ks

√
�

2ε0ωkV
aksekse

ik·r , (3.68)

E(+) (r) =
∑
ks

i

√
�ωk

2ε0V
aksekse

ik·r , (3.69)

and

B(+) (r) =
∑
ks

√
�k

2ε0cV
saksekse

ik·r , (3.70)

where the expansion for B(+) was obtained by using B = ∇ × A and the special
property (B.52) of the circular polarization basis.

The Hamiltonian, the momentum, and the helicity are respectively given by

Hem =
∑
ks

�ωka†
ksaks , (3.71)

P =
∑
ks

�ka†
ksaks , (3.72)

and
S = �

∑
ks

k̃sa†
ksaks . (3.73)

As always, these achievements have a price. One part of this price is that physically
meaningful results are only obtained in the limit V → ∞. This is not a particularly
onerous requirement, since getting the correct limit is simply a matter of careful al-
gebra combined with the rules in eqn (3.64). A more serious issue is the absence of
the total angular momentum from the list of observables in eqns (3.71)–(3.73). One
way of understanding the problem here is that the expression (3.55) for L contains
the differential operator ∂/∂k which creates difficulties in converting the continuous
integral over k into a discrete sum. The alternative expression (3.57) for L does not
involve k, so it might seem to offer a solution. This hope also fails, since the r-integral
in this representation must now be carried out over the imaginary cube V . The edges
of the cube define preferred directions in space, so there is no satisfactory way to define
the orbital angular momentum L.
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3.2 The Heisenberg picture

The quantization rules in Chapter 2 and Section 3.1.1 are both expressed in the
Schrödinger picture: observables are represented by time-independent hermitian oper-
ators X(S), and the state of the radiation field is described by a ket vector

∣∣Ψ(S) (t)
〉
,

obeying the Schrödinger equation

i�
∂

∂t

∣∣∣Ψ(S) (t)
〉

= H(S)
∣∣∣Ψ(S) (t)

〉
, (3.74)

or by a density operator ρ(S) (t), obeying the quantum Liouville equation (2.119)

i�
∂

∂t
ρ(S) (t) =

[
H(S), ρ(S) (t)

]
. (3.75)

The superscript (S) has been added in order to distinguish the Schrödinger picture
from two other descriptions that are frequently used. Note that the density operator is
an exception to the rule that Schrödinger-picture observables are independent of time.

There is an alternative description of quantum mechanics which actually preceded
the familiar Schrödinger picture. In Heisenberg’s original formulation—which appeared
one year before Schrödinger’s—there is no mention of a wave function or a wave equa-
tion; instead, the observables are represented by infinite matrices that evolve in time
according to a quantum version of Hamilton’s equations of classical mechanics. This
form of quantum theory is called the Heisenberg picture; the physical equivalence of
the two pictures was subsequently established by Schrödinger. The Heisenberg picture
is particularly useful in quantum optics, especially for the calculation of correlations
between measurements at different times. A third representation—called the interac-
tion picture—will be presented in Section 4.8. It will prove useful for the formulation
of time-dependent perturbation theory in Section 4.8.1. The interaction picture also
provides the foundation for the resonant wave approximation, which is introduced in
Section 11.1.

In the following sections we will study the properties of the Schrödinger and Heisen-
berg pictures and the relations between them. In order to distinguish between the same
quantities viewed in different pictures, the states and operators will be decorated with
superscripts (S) or (H) for the Schrödinger or Heisenberg pictures respectively. In
applications of these ideas the superscripts are usually dropped, and the distinctions
are—one hopes—made clear from context.

The Heisenberg picture is characterized by two features: (1) the states are inde-
pendent of time; (2) the observables depend on time. Imposing the superposition prin-
ciple on the Heisenberg picture implies that the relation between the time-dependent,
Schrödinger-picture state vector

∣∣Ψ(S) (t)
〉

and the corresponding time-independent,
Heisenberg-picture state

∣∣Ψ(H)
〉

must be linear. If we impose the convention that the
two pictures coincide at some time t = t0, then there is a linear operator U (t − t0)
such that ∣∣∣Ψ(S) (t)

〉
= U (t − t0)

∣∣∣Ψ(H)
〉

. (3.76)

The identity of the pictures at t = t0,
∣∣Ψ(H)

〉
=

∣∣Ψ(S) (t0)
〉
, is enforced by the initial

condition U (0) = 1. Substituting eqn (3.76) into the Schrödinger equation (3.74) yields
the differential equation
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i�
∂

∂t
U (t − t0) = H(S)U (t − t0) , U (0) = 1 (3.77)

for the operator U (t − t0). This has the solution (Bransden and Joachain, 1989, Sec.
5.7)

U (t − t0) = exp
[
− i

�
(t − t0)H(S)

]
, (3.78)

where the evolution operator on the right side is defined by the power series for the
exponential, or by the general rules outlined in Appendix C.3.6. The Hermiticity of
H(S) guarantees that U (t − t0) is unitary, i.e.

U (t − t0)U † (t − t0) = U † (t − t0)U (t − t0) = 1 . (3.79)

The choice of t0 is dictated by convenience for the problem at hand. In most cases
it is conventional to set t0 = 0, but in scattering problems it is sometimes more useful
to consider the limit t0 → −∞. The evolution operator satisfies the group property,

U (t1 − t2)U (t2 − t3) = U (t1 − t3) , (3.80)

which simply states that evolution from t3 to t2 followed by evolution from t2 to t1 is
the same as evolving directly from t3 to t1. For the special choice t0 = 0, this simplifies
to U (t1)U (t2) = U (t1 + t2). The definition (3.78) also shows that U (−t) = U † (t).
In what follows, we will generally use the convention t0 = 0; any other choice of initial
time will be introduced explicitly.

The physical equivalence of the two pictures is enforced by requiring that each
Schrödinger-picture operator X(S) and the corresponding Heisenberg-picture operator
X(H) (t) have the same expectation values in corresponding states:〈

Ψ(H)
∣∣∣X(H) (t)

∣∣∣Ψ(H)
〉

=
〈
Ψ(S) (t)

∣∣∣X(S)
∣∣∣Ψ(S) (t)

〉
, (3.81)

for all vectors
∣∣Ψ(S) (t)

〉
and observables X(S). Using eqn (3.76) allows this relation to

be written as 〈
Ψ(H)

∣∣∣X(H) (t)
∣∣∣Ψ(H)

〉
=

〈
Ψ(H)

∣∣∣U † (t)X(S)U (t)
∣∣∣Ψ(H)

〉
. (3.82)

Since this equation holds for all states, the general result (C.15) shows that the oper-
ators in the two pictures are related by

X(H) (t) = U † (t)X(S)U (t) . (3.83)

Note that the Heisenberg-picture operators agree with the (time-independent)
Schrödinger-picture operators at t = 0. This definition, together with the group prop-
erty U (t1)U (t2) = U (t1 + t2), provides a useful relation between the Heisenberg
operators at different times:

X(H) (t + τ) = U † (t + τ) X(S)U (t + τ)
= U † (τ) U † (t)X(S)U (t) U (τ)
= U † (τ) X(H) (t)U (τ) . (3.84)

Also note that H(S) commutes with exp
[±itH(S)/�

]
, so eqn (3.83) implies that the

Hamiltonian is the same in both pictures: H(H) (t) = H(S) = H .
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In the Heisenberg picture, the operators evolve in time while the state vectors are
fixed. The density operator is again an exception. Applying the transformation (3.83)
to the definition of the Schrödinger-picture density operator,

ρ(S) (t) =
∑

u

Pu

∣∣∣Θ(S)
u (t)

〉〈
Θ(S)

u (t)
∣∣∣ , (3.85)

yields the time-independent operator

ρ(H) =
∑

u

Pu

∣∣∣Θ(H)
u

〉〈
Θ(H)

u

∣∣∣ = ρ(S) (0) , (3.86)

which is the initial value for the quantum Liouville equation (3.75).
A differential equation describing the time evolution of operators in the Heisenberg

picture is obtained by combining eqn (3.77) with the common form of the Hamiltonian
to get

∂X(H) (t)
∂t

=
i

�
U † (t)

[
H, X(S)

]
U (t)

=
i

�

[
H, X(H) (t)

]
, (3.87)

where the last line follows from the identity

U † (t)X(S)Y (S)U (t) = U † (t)X(S)U (t)U † (t)Y (S)U (t)
= X(H) (t)Y (H) (t) . (3.88)

Multiplying eqn (3.87) by i� yields the Heisenberg equation of motion for the
observable X(H):

i�
∂X(H) (t)

∂t
=

[
X(H) (t) , H

]
. (3.89)

The definition (3.83) provides a solution for this equation. The name ‘constant of the
motion’ for operators X(S) that commute with the Hamiltonian is justified by the
observation that the Heisenberg equation for X(H) (t) is (∂/∂t)X(H) (t) = 0.

In most applications we will suppress the identifying superscripts (H) and (S). The
distinctions between the Heisenberg and Schrödinger pictures will be maintained by the
convention that an operator with a time argument, e.g. X (t), is the Heisenberg-picture
form, while X—with no time argument—signifies the Schrödinger-picture form. The
only real danger of this convention is that density operators behave in the opposite way;
ρ (t) denotes a Schrödinger-picture operator, while ρ is taken in the Heisenberg picture.
This is not a serious problem if the accompanying text provides the appropriate clues.

3.2.1 Equal-time commutators

A pair of Schrödinger-picture operators X and Y is said to be canonically conjugate
if [X, Y ] = β, where β is a c-number. Canonically conjugate pairs, e.g. position and
momentum, play an important role in quantum theory, so it is useful to consider the
commutator in the Heisenberg picture. Evaluating [X (t) , Y (t′)] for t �= t′ requires a
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complete solution of the Heisenberg equations for X (t) and Y (t′), but the equal-time
commutator for such a canonically conjugate pair is given by

[X (t) , Y (t)] =
[
U † (t)XU (t) , U † (t)Y U (t)

]
= U † (t) [X, Y ] U (t)
= β . (3.90)

Thus the equal-time commutator of the Heisenberg-picture operators is identical to the
commutator of the Schrödinger-picture operators. Applying this to the position-space
commutation relation (3.3) and to the canonical commutator (3.65) yields

[Ai (r, t) ,−Ej (r′, t)] =
i�

ε0
∆⊥

ij (r − r′) (3.91)

and [
aks (t) , a†

k′s′ (t)
]

= δss′δkk′ , (3.92)

respectively.

3.2.2 Heisenberg equations for the free field

The preceding arguments are valid for any form of the Hamiltonian, but the results are
particularly useful for free fields. The Heisenberg-picture form of the box-quantized
Hamiltonian is

Hem =
∑
ks

�ωka†
ks (t) aks (t) , (3.93)

and eqn (3.89), together with the equal-time versions of eqn (3.65), yields the equation
of motion for the annihilation operators[

i
d

dt
− ωk

]
aks (t) = 0 . (3.94)

The solution is
aks (t) = akse

−iωkt = eiHemt/�akse
−iHemt/� , (3.95)

where we have used the identification of aks (0) with the Schrödinger-picture operator
aks. Combining this solution with the expansion (3.68) gives

A(+) (r, t) =
∑
ks

√
�

2ε0ωkV
aksekse

i(k·r−ωkt) . (3.96)

The expansions (3.69) and (3.70) allow the operators E(+) (r, t) and B(+) (r, t) to be
expressed in the same way.
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3.2.3 Positive- and negative-frequency parts

We are now in a position to explain the terms positive-frequency part and negative-
frequency part introduced in Section 3.1.2. For this purpose it is useful to review some
features of Fourier transforms. For any real function F (t), the Fourier transform sat-
isfies F ∗ (ω) = F (−ω). Thus F (ω) for negative frequencies is completely determined
by F (ω) for positive frequencies. Let us use this fact to rewrite the inverse transform
as

F (t) =
∫ ∞

−∞

dω

2π
F (ω) e−iωt = F (+) (t) + F (−) (t) , (3.97)

where the positive-frequency part,

F (+) (t) =
∫ ∞

0

dω

2π
F (ω) e−iωt , (3.98)

and the negative-frequency part,

F (−) (t) =
∫ 0

−∞

dω

2π
F (ω) e−iωt , (3.99)

are related by
F (−) (t) = F (+)∗ (t) . (3.100)

The definitions of F (±) (t) guarantee that F (+) (ω) vanishes for ω < 0 and F (−) (ω)
vanishes for ω > 0.

The division into positive- and negative-frequency parts works equally well for any
time-dependent hermitian operator, X (t). One simply replaces complex conjugation
by the adjoint operation; i.e. eqn (3.100) becomes X(−) (t) = X(+)† (t). In particular,
the temporal Fourier transform of the operator A(+) (r, t), defined by eqn (3.96), is

A(+) (r, ω) =
∫

dt eiωtA(+) (r, t) =
∑
ks

√
�

2ε0ωkV
aksekse

ik·r2πδ (ω − ωk) . (3.101)

Since ωk = c |k| > 0, A(+) (r, ω) vanishes for ω < 0, and A(−) (r, ω) = A(+)† (r,−ω)
vanishes for ω > 0. Thus the Schrödinger-picture definition (3.68) of the positive-
frequency part agrees with the Heisenberg-picture definition at t = 0.

The commutation rules derived in Section 3.1.2 are valid here for equal-time com-
mutators, but for free fields we also have the unequal-times commutators:[

F (±) (r, t) , G(±) (r′, t′)
]

= 0 , (3.102)

provided only that F (±) (r, 0) and G(±) (r′, 0) are sums over annihilation (creation)
operators.

3.3 Field quantization in passive linear media

Optical devices such as lenses, mirrors, prisms, beam splitters, etc. are the main tools
of experimental optics. In classical optics these devices are characterized by their bulk
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optical properties, such as the index of refraction. In order to apply the same simple
descriptions to quantum optics, we need to extend the theory of photon propagation
in vacuum to propagation in dielectrics. We begin by considering classical fields in
passive, linear dielectrics—which we will always assume are nonmagnetic—and then
present a phenomenological model for quantization.

3.3.1 Classical fields in linear dielectrics

A review of the electromagnetic properties of linear media can be found in Appen-
dix B.5.1, but for the present discussion we only need to recall that the constitutive
relations for a nonmagnetic, dielectric medium are H (r, t) = B (r, t) /µ0 and

D (r, t) = ε0E (r, t) + P (r, t) . (3.103)

For an isotropic, homogeneous medium that does not exhibit spatial dispersion (see
Appendix B.5.1) the polarization P (r, t) is related to the field by

P (r, t) = ε0

∫
dt′χ(1) (t − t′)E (r, t′) , (3.104)

where the linear susceptibility χ(1) (t − t′) describes the delayed response of the
medium to an applied electric field. Fourier transforming eqn (3.104) with respect to
time produces the equivalent frequency-domain relation

P (r, ω) = ε0χ
(1) (ω)E (r, ω) . (3.105)

Applying the definition of positive- and negative-frequency parts, given by eqns
(3.97)–(3.99), to the real classical field E (r, t) leads to

E (r, t) = E(+) (r, t) + E(−) (r, t) . (3.106)

In position space, the strength of the electric field at frequency ω is represented by
the power spectrum

∣∣E(+) (r, ω)
∣∣2 (see Appendix B.2). In reciprocal space, the power

spectrum is
∣∣E(+) (k, ω)

∣∣2. We will often be concerned with fields for which the power
spectrum has a single well-defined peak at a carrier frequency ω = ω0. The value
of ω0 is set by the experimental situation, e.g. ω0 is often the frequency of an injected
signal. The reality condition (3.100) for E(±) (r, ω) tells us that

∣∣E(−) (r, ω)
∣∣2 has a

peak at ω = −ω0; consequently, the complete transform E (r, ω) has two peaks: one
at ω = ω0 and the other at ω = −ω0.

We will say that the field is monochromatic if the spectral width, ∆ω0, of the
peak at ω = ±ω0 satisfies

∆ω0 � ω0 . (3.107)

We should point out that this usage is unconventional. Fields satisfying eqn (3.107)
are often called quasimonochromatic in order to distinguish them from the ideal case
in which the spectral width is exactly zero: ∆ω0 = 0. Since the fields generated in real
experiments are always described by wave packets with nonzero spectral widths, we
prefer the definition associated with eqn (3.107). The ideal fields with ∆ω0 = 0 will
be called strictly monochromatic.
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The concentration of the Fourier transform in the vicinity of ω = ±ω0 allows us to
define the slowly-varying envelope fields E(±)

(r, t) by setting

E(±)
(r, t) = E(±) (r, t) e±iω0t , (3.108)

so that
E (r, t) = E(+)

(r, t) e−iω0t + E(−)
(r, t) eiω0t . (3.109)

The slowly-varying envelopes satisfy E(−)
(r, t) = E(+)∗

(r, t), and the time-domain
version of eqn (3.107) is∣∣∣∣∣∂2E(±)

(r, t)
∂t2

∣∣∣∣∣ � ω0

∣∣∣∣∣∂E(±)
(r, t)

∂t

∣∣∣∣∣ � ω2
0

∣∣∣E(±)
(r, t)

∣∣∣ . (3.110)

The frequency-domain versions of eqns (3.108) and (3.109) are

E(±)
(r, ω) = E(±) (r, ω ± ω0) (3.111)

and
E (r, ω) = E(+)

(r, ω − ω0) + E(−)
(r, ω + ω0) , (3.112)

respectively. The condition (3.107) implies that E(±)
(r, ω) is sharply peaked at ω = 0.

The Fourier transform of the vector potential is also concentrated in the vicinity
of ω = ±ω0, so the slowly-varying envelope,

A(+)
(r, t) = A(+) (r, t) eiω0t , (3.113)

satisfies the same conditions. Since E (r, t) = −∂A (r, t) /∂t, the two envelope functions
are related by

E(+)
(r, t) = iω0A(+) − ∂

∂t
A(+)

. (3.114)

Applying eqn (3.110) to the vector potential shows that the second term on the right
side is small compared to the first, so that

E(+)
(r, t) ≈ iω0A(+)

. (3.115)

This is an example of the slowly-varying envelope approximation.
More generally, it is necessary to consider polychromatic fields, i.e. superposi-

tions of monochromatic fields with carrier frequencies ωβ (β = 0, 1, 2, . . .). The car-
rier frequencies are required to be distinct; that is, the power spectrum for a poly-
chromatic field exhibits a set of clearly resolved peaks at the carrier frequencies
ωβ . The explicit condition is that the minimum spacing between peaks, δωmin =
min [|ωα − ωβ| , α �= β] , is large compared to the maximum spectral width, ∆ωmax =
max [∆ωβ ]. The values of the carrier frequencies are set by the experimental situation
under study. The collection {ωβ} will generally contain the frequencies of any injected
fields together with the frequencies of radiation emitted by the medium in response to
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the injected signals. For a polychromatic field, eqns (3.108), (3.113), and (3.115) are
replaced by

E(+) (r, t) =
∑

β

E(+)

β (r, t) e−iωβt , (3.116)

A(+) (r, t) =
∑

β

A(+)

β (r, t) e−iωβt , (3.117)

and

E(+)

β (r, t) = iωβA(+)

β (r, t) . (3.118)

In the frequency domain, the total polychromatic field is given by

E (r, ω) =
∑

β

∑
σ=±

E(σ)

β (r, ω − σωβ) , (3.119)

where each of the functions E(±)

β (r, ω) is sharply peaked at ω = 0.

A Passive, linear dielectric

An optical medium is said to be passive and linear if the following conditions are
satisfied.

(a) Off resonance. The classical power spectrum is negligible at frequencies that are
resonant with any transition of the constituent atoms. This justifies the assump-
tion that there is no absorption.

(b) Coarse graining. There are many atoms in the volume λ3
0, where λ0 is the mean

wavelength for the incident field.

(c) Weak field. The field is not strong enough to induce significant changes in the
material medium.

(d) Weak dispersion. The frequency-dependent susceptibility χ(1) (ω) is essentially
constant across any frequency interval ∆ω � ω.

(e) Stationary medium. The medium is stationary, i.e. the optical properties do
not change in time.

The passive property is incorporated in the off-resonance assumption (a) which
allows us to neglect absorption, stimulated emission, and spontaneous emission. The
description of the medium by the usual macroscopic coefficients such as the suscep-
tibility, the refractive index, and the conductivity is justified by the coarse-graining
assumption (b). The weak-field assumption (c) guarantees that the macroscopic ver-
sion of Maxwell’s equations is linear in the fields. The weak dispersion condition (d)
assures us that an input wave packet with a sharply defined carrier frequency will
retain the same frequency after propagation through the medium. The assumption (e)
implies that the susceptibility χ(1) (t − t′) only depends on the time difference t − t′.
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For later use it is helpful to explain these conditions in more detail. The medium
is said to be weakly dispersive (in the vicinity of the carrier frequency ω = ω0) if

∆ω0

∣∣∣∣∣
(

∂χ(1) (ω)
∂ω

)
ω=ω0

∣∣∣∣∣ � ∣∣∣χ(1) (ω0)
∣∣∣ (3.120)

for any frequency interval ∆ω0 � ω0. We next recall that in a linear, isotropic dielectric
the vacuum dispersion relation ω = ck is replaced by

ωn (ω) = ck , (3.121)

where the index of refraction is related to the dielectric permittivity, ε (ω), by n2 (ω) =
ε (ω). Since ε (ω) can be complex—the imaginary part describes absorption or gain
(Jackson, 1999, Chap. 7)—the dispersion relation does not always have a real solu-
tion. However, for transparent dielectrics there is a range of frequencies in which the
imaginary part of the index is negligible.

For a given wavenumber k, let ωk be the mode frequency obtained by solving
the nonlinear dispersion relation (3.121), then the medium is transparent at ωk if
nk = n (ωk) is real. In the frequency–wavenumber domain the electric field satisfies[

ω2

c2
n2 (ω) − k2

]
Ek (ω) = 0 (3.122)

(see Appendix B.5.2, eqn (B.123)), so one finds the general space–time solution
E (r, t) = E(+) (r, t) + E(−) (r, t), with

E(+) (r, t) =
1√
V

∑
ks

Eksekse
i(k·r−ωkt) . (3.123)

For a monochromatic field, the slowly-varying envelope is

E(+)
(r, t) =

1√
V

∑
ks

′ Eksekse
i(k·r−∆kt) , (3.124)

where the prime on the k-sum indicates that it is restricted to k-values such that
the detuning, ∆k = ωk − ω0, satisfies |∆k| � ω0. The wavelength mentioned in the
coarse-graining assumption (b) is then λ0 = 2πc/ (n (ω0)ω0).

For a polychromatic field, eqn (3.108) is replaced by

E(+) (r, t) =
∑

β

E(+)

β (r, t) e−iωβt , (3.125)

where

E(+)

β (r, t) =
1√
V

∑
ks

′ Eβksekse
i(k·r−∆βkt) , ∆βk = ωk − ωβ (3.126)

is a slowly-varying envelope field. The spectral width of the βth monochromatic field
is defined by the power spectrum

∣∣E(+)

β (r, ω)
∣∣2 or

∣∣E(+)

β (k, ω)
∣∣2. The weak disper-

sion condition (d) is extended to this case by imposing eqn (3.120) on each of the
monochromatic fields.
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The condition (3.107) for a monochromatic field guarantees the existence of an
intermediate time scale T satisfying

1
ω0

� T � 1
∆ω0

, (3.127)

i.e. T is long compared to the carrier period but short compared to the characteristic
time scale on which the envelope field changes. Averaging over the interval T will
wash out all the fast variations—on the optical frequency scale—but leave the slowly-
varying envelope unchanged. In the polychromatic case, applying eqn (3.107) to each
monochromatic component picks out an overall time scale T satisfying 1/ωmin � T �
1/∆ωmax, where ωmin = min (ωβ).

B Electromagnetic energy in a dispersive dielectric

For an isotropic, nondispersive dielectric—e.g. the vacuum—Poynting’s theorem (see
Appendix B.5) takes the form

∂uem (r, t)
∂t

+ ∇ · S (r, t) = 0 , (3.128)

where

uem (r, t) =
1
2

{
εE2 (r, t) +

1
µ0

B2 (r, t)
}

(3.129)

is the electromagnetic energy density and

S (r, t) = E (r, t) × H (r, t) =
1
µ0

E (r, t) × B (r, t) (3.130)

is the Poynting vector. The existence of an electromagnetic energy density is an es-
sential feature of the quantization schemes presented in Chapter 2 and in the present
chapter, so the existence of a similar object for weakly dispersive media is an important
question.

For a dispersive dielectric eqn (3.128) is replaced by

pel (r, t) +
∂umag

∂t
+ ∇ · S = 0 , (3.131)

where the electric power density,

pel (r, t) = E (r, t) · ∂D (r, t)
∂t

, (3.132)

is the power per unit volume flowing into the dielectric medium due to the action of
the slowly-varying electric field E, and

umag (r, t) =
1

2µ0
B2 (r, t) (3.133)

is the magnetic energy density; see Jackson (1999, Sec. 6.8). The existence of the
magnetic energy density umag (r, t) is guaranteed by the assumption that the material



Field quantization in passive linear media ��

is not magnetically dispersive. The question is whether pel (r, t) can also be expressed
as the time derivative of an instantaneous energy density. The electric displacement
D (r, t) and the polarization P (r, t) are given by eqns (3.103) and (3.104), respectively,
so in general P (r, t) and D (r, t) depend on the electric field at times t′ �= t. The
principle of causality restricts this dependence to earlier times, t′ < t, so that

χ(1) (t − t′) = 0 for t′ > t . (3.134)

For a nondispersive medium χ(1) (ω) has the constant value χ
(1)
0 , so in this approxi-

mation one finds that
χ(1) (t − t′) = χ

(1)
0 δ (t − t′) . (3.135)

In this case, the polarization at a given time only depends on the field at the same
time. In the dispersive case, χ(1) (t − t′) decays to zero over a nonzero interval, 0 <
t−t′ < Tmem; in other words, the polarization at t depends on the history of the electric
field up to time t. Consequently, the power density pel (r, t) cannot be expressed as
pel (r, t) = ∂uel (r, t) /∂t, where uel (r, t) is an instantaneous energy density.

In the general case this obstacle is insurmountable, but for a monochromatic (or
polychromatic) field in a weakly dispersive dielectric it can be avoided by the use of
an appropriate approximation scheme (Jackson, 1999, Sec. 6.8). The fundamental idea
in this argument is to exploit the characteristic time T introduced in eqn (3.127) to
define the (running) time-average

〈pel〉 (r, t) =
1
T

∫ T/2

−T/2

pel (r, t + t′) dt′ . (3.136)

This procedure eliminates all rapidly varying terms, and one can show that

〈pel〉 (r, t) =
∂uel (r, t)

∂t
, (3.137)

where the effective electric energy density is

uel (r, t) =
d [ω0ε (ω0)]

dω0

1
2
〈E (r, t) · E (r, t)〉

=
d [ω0ε (ω0)]

dω0
E(−)

(r, t) · E(+)
(r, t) , (3.138)

and E(+)
(r, t) is the slowly-varying envelope for the electric field. The effective electric

energy density for a polychromatic field is a sum of terms like uel (r, t) evaluated
for each monochromatic component. We will use this expression in the quantization
technique described in Section 3.3.5.

3.3.2 Quantization in a dielectric

The behavior of the quantized electromagnetic field in a passive linear dielectric is
an important practical problem for quantum optics. In principle, this problem could
be approached through a microscopic theory of the quantized field interacting with
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the point charges in the atoms constituting the medium. The same could be said for
the classical theory of fields in a dielectric, but it is traditional—and a great deal
easier—to employ instead a phenomenological macroscopic approach which describes
the response of the medium by the linear susceptibility. The long history and great
utility of this phenomenological method have inspired a substantial body of work
aimed at devising a similar description for the quantized electromagnetic field in a
dielectric medium.1 This has proven to be a difficult and subtle task. The phenomeno-
logical quantum theory for the cavity and the exact vacuum theory both depend on
an expression for the classical energy as the sum of energies for independent radiation
oscillators, but—as we have seen in the previous section—there is no exact instanta-
neous energy for a dispersive medium. Fortunately, an exact quantization method is
not needed for the analysis of the large class of experiments that involve a monochro-
matic or polychromatic field propagating in a weakly dispersive dielectric. For these
experimentally significant applications, we will make use of a physically appealing ad
hoc quantization scheme due to Milonni (1995). In the following section, we begin
with a simple model that incorporates the essential elements of this scheme, and then
outline the more rigorous version in Section 3.3.5.

3.3.3 The dressed photon model

We begin with a modified version of the vacuum field expansion (3.69)

E(+) (r) = i
∑
ks

Ekaksekse
ik·r , (3.139)

where aks and a†
ks satisfy the canonical commutation relations (3.65) and the c-number

coefficient Ek is a characteristic field strength which will be chosen to fit the problem
at hand. In this section we will choose Ek by analyzing a simple physical model, and
then point out some of the consequences of this choice.

The mathematical convenience of the box-quantization scheme is purchased at the
cost of imposing periodic boundary conditions along the three coordinate axes. The
shape of the quantization box is irrelevant in the infinite volume limit, so we are at
liberty to replace the imaginary cubical box by an equally imaginary cavity in the
shape of a torus filled with dielectric material, as shown in Fig. 3.1(a).

In this geometry one of the coordinate directions has been wrapped into a circle,
so that the periodic boundary conditions in that direction are physically realized by
the natural periodicity in a coordinate measuring distance along the axis of the torus.
The fields must still satisfy periodic boundary conditions at the walls of the torus,
but this will not be a problem, since all dimensions of the torus will become infinitely
large. In this limit, the exact shape of the transverse sections is also not important.
Let L be the circumference and σ the cross sectional area for the torus, then in the
limit of large L a small segment will appear straight, as in Fig. 3.1(b), and the axis
of the torus can be chosen as the local z-axis. Since the transverse dimensions are

1For a sampling of the relevant references see Drummond (1990), Huttner and Barnett (1992),
Matloob et al. (1995), and Gruner and Welsch (1996).
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��� ��� Fig. 3.1 (a) A toroidal cavity filled with a

weakly dispersive dielectric. A segment has

been removed to show the central axis. The

field satisfies periodic boundary conditions

along the axis. (b) A small segment of the torus

is approximated by a cylinder, and the central

axis is taken as the z-axis.

also large, a classical field propagating in the z-direction can be approximated by a
monochromatic planar wave packet,

E (z, t) = Ek (z, t) ei(kz−ωkt) + CC , (3.140)

where ωk is a solution of the dispersion relation (3.121) and Ek (z, t) is a slowly-varying
envelope function. If we neglect the time derivative of the slowly-varying envelope, then
Faraday’s law (eqn (B.94)) yields

B (z, t) =
1
ωk

k × Ek (z, t) ei(kz−ωkt) + CC . (3.141)

As we have seen in Section 3.3.1, the fields actually generated in experiments are
naturally described by wave packets. It is therefore important to remember that wave
packets do not propagate at the phase velocity vph (ωk) = c/nk, but rather at the
group velocity

vg (ωk) =
dω

dk
=

c

nk + ωk (dn/dω)k

. (3.142)

This fact will play an important role in the following argument, so we consider very
long planar wave packets instead of idealized plane waves.

We will determine the characteristic field Ek by equating the energy in the wave
packet to �ωk. The energy can be found by integrating the rate of energy transport
across a transverse section of the torus over the time required for one round trip around
the circumference. For this purpose we need the energy flux, S = c2ε0E ×B, or rather
its average over one cycle of the carrier wave. In the almost-plane-wave approximation,
this is the familiar result 〈S〉 = 2c2ε0 Re {Ek × B∗

k}. Setting Ek = Ek ux, i.e. choosing
the x-direction along the polarization vector, leads to

〈S〉 =
2c2ε0k |Ek|2

ωk
uz =

2cε0nk |Ek|2
µ0

uz , (3.143)

where the last form comes from using the dispersion relation. The energy passing
through a given transverse section during a time τ is 〈Sz〉στ . The wave packet com-
pletes one trip around the torus in the time τg = L/vg (ωk); consequently, by virtue of
the periodic nature of the motion, 〈Sz〉στg is the entire energy in the wave packet. In
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the spirit of Einstein’s original model we set this equal to the energy, �ωk, of a single
photon:

2cε0nk |Ek|2 σL

vg (ωk)V
= �ωk . (3.144)

The total volume of the torus is V = σL, so

|Ek| =

√
�ωkvg (ωk)
2ε0cnkV

, (3.145)

which gives the box-quantized expansions

A(+) (r) =
∑
ks

√
�vg (ωk)

2ε0nkωkcV
aksekse

ik·r (3.146)

and

E(+) (r) = i
∑
ks

√
�ωkvg (ωk)
2ε0nkcV

aksekse
ik·r (3.147)

for the vector potential and the electric field. The continuum versions are

E(+) (r) = i

∫
d3k

(2π)3
∑

s

√
�ωkvg (ωk)

2ε0nkc
as (k) ekse

ik·r (3.148)

and

A(+) (r) =
∫

d3k

(2π)3
∑

s

√
�vg (ωk)
2ε0nkωkc

as (k) ekse
ik·r . (3.149)

This procedure incorporates properties of the medium into the description of the field,
so the excitation created by a†

ks or a†
s (k) will be called a dressed photon.

A Energy and momentum

Since �ωk is the energy assigned to a single dressed photon, the Hamiltonian can be
expressed in the box-normalized form

Hem =
∑
ks

�ωka†
ksaks , (3.150)

or in the equivalent continuum form

Hem =
∫

d3k

(2π)3
∑

s

�ωka†
s (k) as (k) . (3.151)

We will see in Section 3.3.5 that this Hamiltonian also results from an application of
the quantization procedure described there to the standard expression for the electro-
magnetic energy in a dispersive medium.
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The condition (3.144) was obtained by treating the dressed photon as a parti-
cle with energy �ωk. This suggests identifying the momentum of the photon with
an eigenvalue of the standard canonical momentum operator p̂can = −i�∇ of quan-
tum mechanics. Since the basis functions for box quantization are the plane waves,
exp (ik · r), this is equivalent to assigning the momentum

p = �k (3.152)

to a dressed photon with energy �ωk. The operator

Pem =
∑
ks

�ka†
ksaks (3.153)

would then represent the total momentum of the electromagnetic field. In Section 3.3.5
we will see that this operator is the generator of spatial translations for the quantized
electromagnetic field.

There are two empirical lines of evidence supporting the physical significance of
the canonical momentum for photons. The first is that the conservation law for Pem is
identical to the empirically well established principle of phase matching in nonlinear
optics. The second is that the canonical momentum provides a simple and accurate
model (Garrison and Chiao, 2004) for the radiation pressure experiment of Jones
and Leslie (1978). We should point out that the theoretical argument for choosing
an expression for the momentum associated with the dressed photon is not quite as
straightforward as the previous discussion suggests. The difficulty is that there is no
universally accepted definition of the classical electromagnetic momentum in a disper-
sive medium. This lack of agreement reflects a long standing controversy in classical
electrodynamics regarding the correct definition of the electromagnetic momentum
density in a weakly dispersive medium (Landau et al., 1984; Ginzburg, 1989). The
implications of this controversy for the quantum theory are also discussed in Garrison
and Chiao (2004).

3.3.4 The Hilbert space of dressed-photon states

The vacuum quantization rules—e.g. eqns (3.25) and (3.26)—are supposed to be ex-
act, but this is not possible for the phenomenological quantization scheme given by
eqn (3.146). The discussion in Section 3.3.1-B shows that we cannot expect to get
a sensible theory of quantization in a dielectric without imposing some constraints,
e.g. the monochromatic condition (3.107), on the fields. Since operators do not have
numerical values, these constraints cannot be applied directly to the quantized fields.
Instead, the constraints must be imposed on the states of the field. For conditions (a)
and (b) the classical power spectrum is replaced by

pk =
〈
a†
ksaks

〉
=

∑
s

Tr
[
ρina†

ksaks

]
, (3.154)

where ρin is the density operator describing the state of the incident field. Similarly
(c) means that the average intensity

〈
E(−) (r)E(+) (r)

〉
is small compared to the char-

acteristic intensity needed to produce significant changes in the material properties.
For condition (d) the spectral width ∆ω0 is given by
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∆ω2
0 =

∑
k

(ωk − ω0)
2
pk . (3.155)

For an experimental situation corresponding to a monochromatic classical field
with carrier frequency ω0, the appropriate Hilbert space of states consists of the state
vectors that satisfy the quantum version of conditions (a)–(d). All such states can be
expressed as superpositions of the special number states

|m〉 =
∏
ks

(
a†
ks

)mks

√
mks!

|0〉 , (3.156)

with occupation numbers mks restricted by

mks = 0 , unless |ωk − ω0| < ∆ω0 . (3.157)

The set of all linear combinations of number states satisfying eqn (3.157) is a subspace
of Fock space, which we will call a monochromatic space, H (ω0). For a polychro-
matic field, eqn (3.157) is replaced by the set of conditions

mks = 0 , unless |ωk − ωβ | < ∆ωβ , β = 0, 1, 2, . . . . (3.158)

The space H ({ωβ}) spanned by the number states satisfying these conditions is called
a polychromatic space. The representations (3.146)–(3.151) are only valid when
applied to vectors in H ({ωβ}). The initial field state ρin must therefore be defined by
an ensemble of pure states chosen from H ({ωβ}).
3.3.5 Milonni’s quantization method∗

The derivation of the characteristic field strength Ek in the previous section is dan-
gerously close to a violation of Einstein’s rule, so it is useful to give an independent
argument. According to eqn (3.138) the total effective electromagnetic energy is

Uem =
d [ω0ε (ω0)]

dω0

1
2

∫
d3r

〈E2 (r, t)
〉

+
1

2µ0

∫
d3r

〈B2 (r, t)
〉
. (3.159)

The time averaging eliminates the rapidly oscillating terms proportional to E(±) (r, t) ·
E(±) (r, t) or B(±) (r, t) · B(±) (r, t), so that

Uem =
d [ω0ε (ω0)]

dω0

∫
d3rE(−) (r, t) · E(+) (r, t) +

1
µ0

∫
d3rB(−) (r, t) · B(+) (r, t) .

(3.160)
For classical fields given by eqn (3.123) the volume integral can be carried out to

find

Uem =
∑
ks

{
ω2

k

d [ω0ε (ω0)]
dω0

+
k2

µ0

}
|Aks|2 , (3.161)

where Aks = Eks/iω0 is the expansion amplitude for the vector potential. Since the
power spectrum |Aks|2 is strongly peaked at ωk = ω0, it is equally accurate to write
this result in the more suggestive form
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Uem =
∑
ks

{
ω2

k

d [ωkε (ωk)]
dωk

+
k2

µ0

}
|Aks|2 . (3.162)

This expression presents a danger and an opportunity. The danger comes from its
apparent generality, which might lead one to forget that it is only valid for a mono-
chromatic field. The opportunity comes from its apparent generality, which makes it
clear that eqn (3.162) is also correct for polychromatic fields. It is more convenient to
use the dispersion relation (3.121) and the definition ε (ω) = ε0n

2 (ω) of the index of
refraction to rewrite the curly bracket in eqn (3.162) as{

ω2
k

d [ωkε (ωk)]
dωk

+
k2

µ0

}
= 2ε0ω

2
knk

d [ωknk]
dωk

= 2ε0ω
2
knk

c

vg (ωk)
, (3.163)

where the last form comes from the definition (3.142) of the group velocity. The total
energy is then

Uem =
∑
ks

2ε0ω
2
knk

c

vg (ωk)
|Aks|2 . (3.164)

Setting

Aks =

√
�vg (ωk)
2ε0nkωkc

wks , (3.165)

where wks is a dimensionless amplitude, allows Uem and A(+) (r, t) to be written as

Uem =
∑
ks

�ωk |ws (k)|2 (3.166)

and

A(+) (r, t) =
∑
ks

√
�vg (ωk)

2ε0nkωkcV
wksekse

i(k·r−ωkt) , (3.167)

respectively.
In eqn (3.166) the classical electromagnetic energy is expressed as the sum of

energies, �ωk, of radiation oscillators, so the stage is set for a quantization method
like that used in Section 2.1.2. Thus we replace the classical amplitudes wks and w∗

ks,
in eqn (3.167) and its conjugate, by operators aks and a†

ks that satisfy the canonical
commutation relations (3.65). In other words the quantization rule is

Aks →
√

�vg (ωk)
2ε0nkωkc

aks . (3.168)

In the Schrödinger picture this leads to

A(+) (r) =
∑
ks

√
�vg (ωk)

2ε0nkωkcV
aksekse

ik·r , (3.169)

which agrees with eqn (3.146). The Hamiltonian and the electric field are consequently
given by eqns (3.150) and (3.147), respectively, in agreement with the results of the
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dressed photon model in Section 3.3.3. Once again, the general appearance of these
results must not tempt us into forgetting that they are at best valid for polychromatic
field states. This means that the operators defined here are only meaningful when
applied to states in the space H ({ωβ}) appropriate to the experimental situation
under study.

A Electromagnetic momentum in a dielectric∗

The definition (3.153) for the electromagnetic momentum is related to the fundamental
symmetry principle of translation invariance. The defining properties of passive linear
dielectrics in Section 3.3.1-A implicitly include the assumption that the positional and
inertial degrees of freedom of the constituent atoms are irrelevant. As a consequence
the generator G of spatial translations is completely defined by its action on the field
operators, e.g. [

A
(+)
j (r) ,G

]
=

�

i
∇A

(+)
j (r) . (3.170)

Using the expansion (3.169) to evaluate both sides leads to [aks,G] = �kaks, which
is satisfied by the choice G = Pem. Any alternative form, G′, would have to satisfy
[aks,G′ − Pem] = 0 for all modes ks, and this is only possible if the operator Z ≡
G′ − Pem is actually a c-number. In this case Z can be set to zero by imposing the
convention that the vacuum state is an eigenstate of Pem with eigenvalue zero. The
expression (3.153) for Pem is therefore uniquely specified by the rules of quantum field
theory.

3.4 Electromagnetic angular momentum∗

The properties and physical significance of Hem and P are immediately evident from
the plane-wave expansions (3.41) and (3.48), but the angular momentum presents a
subtler problem. Since the physical interpretation of J is not immediately evident from
eqns (3.54)–(3.59), our first task is to show that J does in fact represent the angular
momentum. It is possible to do this directly by verifying that J satisfies the angular
momentum commutation relations; but it is more instructive—and in fact simpler—
to use an indirect argument. It is a general principle of quantum theory, reviewed in
Appendix C.5, that the angular momentum operator is the generator of rotations. In
particular, for any vector operator Vj (r) constructed from the fields we should find

[Ji, Vj (r)] = i� {(r× ∇)i Vj (r) + εijkVk (r)} . (3.171)

Since all such operators can be built up from A(+) (r), it is sufficient to verify this result
for V (r) = A(+) (r). The expressions (3.57) and (3.59) together with the commutation
relation (3.3) lead to[

Li, A
(+)
j (r)

]
= i�

∫
d3r′∆⊥

kj (r − r′) (r′ × ∇′)i A
(+)
k (r′) (3.172)

and [
Si, A

(+)
j (r)

]
= i�εikl

∫
d3r′∆⊥

kj (r − r′)A
(+)
l (r′) , (3.173)
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so that[
Ji, A

(+)
j (r)

]
= i�

∫
d3r′∆⊥

kj (r − r′)
{
(r′ × ∇′)i A

(+)
k (r′) + εiklA

(+)
l (r′)

}
. (3.174)

The definition (2.30) of the transverse delta function can be written as

∆⊥
lj (r− r′) = δljδ (r − r′) −

∫
d3k

(2π)3
klkj

k2
eik·(r−r′) , (3.175)

and the first term on the right produces eqn (3.171) with V = A(+). A straightforward
calculation using the identity

klkje
ik·(r−r′) = −∇′

l∇′
je

ik·(r−r′) (3.176)

and judicious integrations by parts shows that the contribution of the second term in
eqn (3.175) vanishes; therefore, eqn (3.171) is established in general.

For a global vector operator G, defined by

G =
∫

d3rg (r) , (3.177)

integration of eqn (3.171) yields

[Jk, Gi] = i�εkijGj . (3.178)

In particular the last equation applies to G = J; therefore, J satisfies the standard
angular momentum commutation relations,

[Ji, Jj ] = i�εijkJk . (3.179)

The combination of eqns (3.171) and (3.179) establish the interpretation of J as the
total angular momentum operator for the electromagnetic field.

In quantum mechanics the total angular momentum J of a particle can always
be expressed as J = L + S, where L is the orbital angular momentum (relative to
a chosen origin) and the spin angular momentum S is the total angular momentum
in the rest frame of the particle (Bransden and Joachain, 1989, Sec. 6.9). Since the
photon travels at the speed of light, it has no rest frame; therefore, we should expect
to meet with difficulties in any attempt to find a similar decomposition, J = L + S,
for the electromagnetic field. As explained in Appendix C.5, the usual decomposition
of the angular momentum also depends crucially on the assumption that the spin and
spatial degrees of freedom are kinematically independent, so that the operators L and
S commute. For a vector field, this would be the case if there were three independent
components of the field defined at each point in space. In the theory of the radiation
field, however, the vectors fields E and B are required to be transverse, so there are
only two independent components at each point. The constraint on the components of
the fields is purely kinematical, i.e. it holds for both free and interacting fields, so the
spin and spatial degrees of freedom are not independent. The restriction to transverse
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fields is related to the fact that the rest mass of the photon is zero, and therefore to
the absence of any rest frame.

How then are we to understand eqn (3.54) which seems to be exactly what one
would expect? After all we have established that L and S are physical observables,
and the integrand in eqn (3.57) contains the operator −ir × ∇, which represents
orbital angular momentum in quantum mechanics. Furthermore, the expression (3.59)
is independent of the chosen reference point r = 0. It is therefore tempting to interpret
L as the orbital angular momentum (relative to the origin), and S as the intrinsic or
spin angular momentum of the electromagnetic field, but the arguments in the previous
paragraph show that this would be wrong.

To begin with, eqn (3.60) tells us that S does not satisfy the angular momentum
commutation relations (3.179); so we are forced to conclude that S is not any kind of
angular momentum. The representation (3.57) can be used to evaluate the commuta-
tion relations for L, but once again there is a simpler indirect argument. The ‘spin’
operator S is a global vector operator, so applying eqn (3.178) gives

[Jk, Si] = i�εkijSj . (3.180)

Combining the decomposition (3.54) with eqn (3.60) produces

[Lk, Si] = i�εkijSj , (3.181)

so L acts as the generator of rotations for S. Using this, together with eqn (3.54) and
eqn (3.179), provides the commutators between the components of L,

[Lk, Li] = i�εkij (Lj − Sj) . (3.182)

Thus the sum J = L + S is a genuine angular momentum operator, but the sepa-
rate ‘orbital’ and ‘spin’ parts do not commute and are not themselves true angular
momenta.

If the observables L and S are not angular momenta, then what are they? The
physical significance of the helicity operator S is reasonably clear from k̃ · S |1ks〉 =
s� |1ks〉, but the meaning of the orbital angular momentum L is not so obvious. In
common with true angular momenta, the different components of L do not commute.
Thus it is necessary to pick out a single component, say Lz, which is to be diagonalized.
The second step is to find other observables which do commute with Lz, in order to
construct a complete set of commuting observables. Since we already know that L is
not a true angular momentum, it should not be too surprising to learn that Lz and
L2 do not commute. The commutator between L and the total momentum P follows
from the fact that P is a global vector operator that satisfies eqn (3.178) and also
commutes with S. This shows that

[Lk, Pi] = i�εkijPj , (3.183)

so L does serve as the generator of rotations for the electromagnetic momentum. By
combining the commutation relations given above, it is straightforward to show that
Lz, Sz , S2, Pz, and P 2 all commute. With this information it is possible to replace the
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plane-wave modes with a new set of modes (closely related to vector spherical harmon-
ics (Jackson, 1999, Sec. 9.7)) that provide a representation in which both Lz and Sz

are diagonal in the helicity. The details of these interesting formal developments can
be found in the original literature, e.g. van Enk and Nienhuis (1994), but this approach
has not proved to be particularly useful for the analysis of existing experiments.

The experiments reviewed in Section 3.1.3-E all involve paraxial waves, i.e. the field
in each case is a superposition of plane waves with propagation vectors nearly parallel
to the main propagation direction. In this situation, the z-axis can be taken along the
propagation direction, and we will see in Chapter 7 that the operators Sz and Lz are,
at least approximately, the generators of spin and orbital rotations respectively.

3.5 Wave packet quantization∗

While the method of box-quantization is very useful in many applications, it has both
conceptual and practical shortcomings. In Section 3.1.1 we replaced the quantum rules
(2.61) for the physical cavity by the position-space commutation relations (3.1) and
(3.3) on the grounds that the macroscopic boundary conditions at the cavity walls
do not belong in a microscopic theory. The imaginary cavity with periodic boundary
conditions is equally out of place, so it would clearly be more satisfactory to deal
directly with the position-space commutation relations. A practical shortcoming of
the box-quantization method is that it does not readily lend itself to the description of
incident fields that are not simple plane waves. In real experiments the incident fields
are more accurately described by Gaussian beams (Yariv, 1989, Sec. 6.6); consequently,
it would be better to have a more flexible method that can accommodate incident fields
of various types.

In this section we will develop a representation of the field operators that deals
directly with the singular commutation relations in a mathematically and physically
sensible way. This new representation depends on the definition of the electromagnetic
phase space in terms of normalizable classical wave packets. Creation and annihila-
tion operators defined in terms of these wave packets will replace the box-quantized
operators.

3.5.1 Electromagnetic phase space

In classical mechanics, the state of a single particle is described by the ordered pair
(q,p), where q and p are respectively the canonical coordinate and momentum of
the particle. The pairs, (q,p), of vectors label the points of the mechanical phase
space Γmech, and a unique trajectory (q(t),p(t)) is defined by the initial conditions
(q(0),p(0)) = (q0,p0). A unique solution of Maxwell’s equations is determined by the
initial conditions

A (r, 0) = A0 (r) ,

E (r, 0) = E0 (r) ,
(3.184)

where A0 (r) and E0 (r) are given functions of r. By analogy to the mechanical case, the
points of electromagnetic phase space Γem are labeled by pairs of real transverse
vector fields, (A (r) ,−E (r)). The use of −E (r) rather than E (r) is suggested by
the commutation relations (3.3), and it also follows from the classical Lagrangian
formulation (Cohen-Tannoudji et al., 1989, Sec. II.A.2).
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A more useful representation of Γem can be obtained from the classical part of the
analysis, in Section 3.3.5, of quantization in a weakly dispersive dielectric. Since the
vacuum is the ultimate nondispersive dielectric, we can directly apply eqn (3.167) to
see that the general solution of the vacuum Maxwell equations is determined by

A(+) (r, t) =
∫

d3k

(2π)3
∑

s

√
�

2ε0ωk
ws (k) ekse

i(k·r−ωkt) , (3.185)

where we have applied the rules (3.64) to get the free-space form. The complex func-
tions ws (k) and the two-component functions w (k) = (w+ (k) , w− (k)) are respec-
tively called polarization amplitudes and wave packets. The classical energy for
this solution is

U =
∫

d3k

(2π)3
�ωk

∑
s

|ws (k)|2 . (3.186)

Physically realizable classical fields must have finite total energy, i.e. U < ∞, but
Einstein’s quantum model suggests an additional and independent condition. This
comes from the interpretation of |ws (k)|2 d3k/ (2π)3 as the number of quanta with
polarization es (k) in the reciprocal-space volume element d3k centered on k. With this
it is natural to restrict the polarization amplitudes by the normalizability condition,∫

d3k

(2π)3
∑

s

|ws (k)|2 < ∞ , (3.187)

which guarantees that the total number of quanta is finite. For normalizable wave
packets w and v the Cauchy–Schwarz inequality (A.9) guarantees the existence of the
inner product

(v, w) =
∫

d3k

(2π)3
∑

s

v∗s (k) ws (k) ; (3.188)

therefore, the normalizable wave packets form a Hilbert space. We emphasize that
this is a Hilbert space of classical fields, not a Hilbert space of quantum states. We
will therefore identify the electromagnetic phase space Γem with the Hilbert space of
normalizable wave packets,

Γem = {w (k) with (w, w) < ∞} . (3.189)

3.5.2 Wave packet operators

The right side of eqn (3.16) is a generalized function (see Appendix A.6.2) which means
that it is only defined by its action on well behaved ordinary functions. Another way
of putting this is that ∆⊥

ij (r) does not have a specific numerical value at the point r;
instead, only averages over suitable weighting functions are well defined, e.g.∫

d3r′∆⊥
ij (r − r′)Yj (r′) , (3.190)

where Y (r) is a smooth classical field that vanishes rapidly as |r| → ∞. The ap-
pearance of the generalized function ∆⊥

ij (r − r′) in the commutation relations implies
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that A(+) (r) and A(−) (r) must be operator-valued generalized functions. In other
words only suitable spatial averages of A(±) (r) are well-defined operators. This con-
clusion is consistent with eqn (2.185), which demonstrates that vacuum fluctuations
in E are divergent at every point r. As far as mathematics is concerned, any suffi-
ciently well behaved averaging function will do, but on physical grounds the classical
wave packets defined in Section 3.5.1 hold a privileged position. Thus the singular
object A

(+)
i (r) = ui ·A(+) (r) should be replaced by the projection of A(+) on a wave

packet. This can be expressed directly in position space but it is simpler to go over to
reciprocal space and define the wave packet annihilation operators

a [w] =
∫

d3k

(2π)3
∑

s

w∗
s (k) as (k) . (3.191)

Combining the singular commutation relation (3.26) with the definition (3.188) yields
the mathematically respectable relations[

a [w] , a† [v]
]

= (w, v) . (3.192)

The number operator N defined by eqn (3.30) satisfies

[N, a [w]] = −a [w] ,
[
N, a† [w]

]
= a† [w] , (3.193)

so the Fock space HF can be constructed as the Hilbert space spanned by all vectors
of the form ∣∣∣w(1), . . . , w(n)

〉
= a†

[
w(1)

]
· · ·a†

[
w(n)

]
|0〉 , (3.194)

where n = 0, 1, . . . and the w(j)s range over the classical phase space Γem. For example,
the one-photon state |1w〉 = a† [w] |0〉 is normalizable, since

〈1w |1w 〉 = (w, w) =
∫

d3k

(2π)3
∑

s

|ws (k)|2 < ∞ . (3.195)

Thus eqn (3.192) provides an interpretation of the singular commutation relations that
is both physically and mathematically acceptable (Deutsch, 1991).

Experiments in quantum optics are often described in a rather schematic way by
treating the incident and scattered fields as plane waves. The physical fields generated
by real sources and manipulated by optical devices are never this simple. A more
accurate, although still idealized, treatment represents the incident fields as normalized
wave packets, e.g. the Gaussian pulses that will be described in Section 7.4. In a typical
experimental situation the initial state would be

|in〉 = a†
[
w(1)

]
· · ·a†

[
w(n)

]
|0〉 . (3.196)

This technique will work even if the different wave packets are not orthogonal. The
subsequent evolution can be calculated in the Schrödinger picture, by solving the
Schrödinger equation with the initial state vector |Ψ (0)〉 = |in〉, or in the Heisenberg
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picture, by following the evolution of the field operators. In practice an incident field
is usually described by the initial electric field E in (r, 0). According to eqn (3.185),

E(+)
in (r, 0) = i

∫
d3k

(2π)3
∑

s

√
�ωk

2ε0
ws (k) ekse

ik·r , (3.197)

so the wave packets are given by

ws (k) = −i

√
2ε0
�ωk

e∗ks ·
∫

d3re−ik·rE(+)
in (r, 0) . (3.198)

3.6 Photon localizability∗

3.6.1 Is there a photon position operator?

The use of the term photon to mean ‘quantum of excitation of the electromagnetic field’
is a harmless piece of jargon, but the extended sense in which photons are thought to
be localizable particles raises subtle and fundamental issues. In order to concentrate
on the essential features of this problem, we will restrict the discussion to photons
propagating in vacuum. The particle concept originated in classical mechanics, where
it is understood to mean a physical system of negligible extent that occupies a definite
position in space. The complete description of the state of a classical particle is given by
its instantaneous position and momentum. In nonrelativistic quantum mechanics, the
uncertainty principle forbids the simultaneous specification of position and momentum,
so the state of a particle is instead described by a wave function ψ (r). More precisely,
ψ (r) = 〈r |ψ 〉 is the probability amplitude that a measurement of the position operator
r̂ will yield the value r, and leave the particle in the corresponding eigenvector |r〉
defined by r̂ |r〉 = r |r〉. The improper eigenvector |r〉 is discussed in Appendix C.1.1-
B. The identity

|ψ〉 =
∫

d3r |r〉 〈r |ψ 〉 (3.199)

shows that the wave function ψ (r) is simply the projection of the state vector on the
basis vector |r〉. The action of the position operator r̂ is given by 〈r |r̂|ψ〉 = r 〈r |ψ 〉,
which is usually written as r̂ψ (r) = rψ (r).

Thus the notion of a particle in nonrelativistic quantum mechanics depends on
the existence of a physically sensible position operator. Position operators exist in
nonrelativistic quantum theory for particles with any spin, and even for the relativistic
theory of massive, spin-1/2 particles described by the Dirac equation; but, there is no
position operator for the massless, spin-1 objects described by Maxwell’s equations
(Newton and Wigner, 1949).

A more general approach would be to ask if there is any operator that would serve
to describe the photon as a localizable object. In nonrelativistic quantum mechanics
the position operator r̂ has two essential properties.
(a) The components commute with one another: [r̂i, r̂j ] = 0.
(b) The operator r̂ transforms as a vector under rotations of the coordinate system.
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Property (a) is necessary if the components of the position are to be simultaneously
measurable, and property (b) would seem to be required for the physical interpre-
tation of r̂ as representing a location in space. Over the years many proposals for a
photon position operator have been made, with one of two outcomes: (1) when (a) is
satisfied, then (b) is not (Hawton and Baylis, 2001); (2) when (b) is satisfied, then (a)
is not (Pryce, 1948). Thus there does not appear to be a physically acceptable pho-
ton position operator; consequently, there is no position-space wave function for the
photon. This apparent difficulty has a long history in the literature, but there are at
least two reasons for not taking it very seriously. The first is that the relevant classical
theory—Maxwell’s equations—has no particle concept. The second is that photons are
inherently relativistic, by virtue of their vanishing rest mass. Consequently, ordinary
notions connected to the Schrödinger equation need not apply.

3.6.2 Are there local number operators?

The nonexistence of a photon position operator still leaves open the possibility that
there is some other sense in which the photon may be considered as a localizable
or particle-like object. From an operational point of view, a minimum requirement
for localizability would seem to be that the number of photons in a finite volume
V is an observable, represented by a local number operator N (V ). Since simultane-
ous measurements in nonoverlapping volumes of space cannot interfere, this family of
observables should satisfy

[N (V ) , N (V ′)] = 0 (3.200)

whenever V and V ′ do not overlap. The standard expression (3.30) for the total number
operator as an integral over plane waves is clearly not a useful starting point for the
construction of a local number operator, so we will instead use eqns (3.49) and (3.15)
to get

N =
2ε0
�c

∫
d3rE(−) (r) · (−∇2

)−1/2
E(+) (r) . (3.201)

In the classical limit, the field operators are replaced by classical fields, and the � in
the denominator goes to zero. Thus the number operator diverges in the classical limit,
in agreement with the intuitive idea that there are effectively an infinite number of
photons in a classical field.

The first suggestion for N (V ) is simply to restrict the integral to the volume V
(Henley and Thirring, 1964, p. 43); but this is problematical, since the integrand in eqn
(3.201) is not a positive-definite operator. This poses no problem for the total number
operator, since the equivalent reciprocal-space representation (3.30) is nonnegative,
but this version of a local number operator might have negative expectation values in
some states. This objection can be met by using

(−∇2
)1/2 =

(−∇2
)1/4 (−∇2

)1/4 and
the general rule (3.21) to replace the position-space integral (3.201) by the equivalent
form

N =
∫

d3rM† (r) · M (r) , (3.202)

where

M (r) = −i

√
2ε0
�c

(−∇2
)−1/4

E(+) (r) . (3.203)



��� Field quantization

The integrand in eqn (3.202) is a positive-definite operator, so the local number oper-
ator defined by

N (V ) =
∫

V

d3rM† (r) ·M (r) (3.204)

is guaranteed to have a nonnegative expectation value for any state. According to the
standard plane-wave representation (3.29), the operator M (r) is

M (r) =
∫

d3k

(2π)3
∑

s

es (k) as (k) eik·r , (3.205)

i.e. it is the Fourier transform of the operator M (k) introduced in eqn (3.56). The
position-space form M (r) is the detection operator introduced by Mandel in his
study of photon detection (Mandel, 1966), and N (V ) is Mandel’s local number
operator. The commutation relations (3.25) and (3.26) can be used to show that the
detection operator satisfies[

Mi (r) , M †
j (r′)

]
= ∆⊥

ij (r− r′) , [Mi (r) , Mj (r′)] = 0 . (3.206)

Now consider disjoint volumes V and V ′ with centers separated by a distance R
which is large compared to the diameters of the volumes. Substituting eqn (3.204) into
[N (V ) , N (V ′)] and using eqn (3.206) yields

[N (V ) , N (V ′)] =
∫

V

d3r

∫
V ′

d3r′Sij (r, r′)∆⊥
ij (r − r′) , (3.207)

where Sij (r, r′) = M †
i (r)Mj (r′) − M †

j (r′) Mi (r). The definition of the transverse
delta function given by eqns (2.30) and (2.28) can be combined with the general
relation (3.18) to get the equivalent expression,

∆⊥
ij (r − r′) = δijδ (r − r′) +

1
4π

∇i∇j
1

|r − r′| . (3.208)

Since V and V ′ are disjoint, the delta function term cannot contribute to eqn (3.207),
so

[N (V ) , N (V ′)] =
∫

V

d3r

∫
V ′

d3r′Sij (r, r′)
1
4π

∇i∇j
1

|r− r′| . (3.209)

A straightforward estimate shows that [N (V ) , N (V ′)] ∼ R−3. Thus the commutator
between these proposed local number operators does not vanish for nonoverlapping
volumes; indeed, it does not even decay very rapidly as the separation between the
volumes increases. This counterintuitive behavior is caused by the nonlocal field com-
mutator (3.16) which is a consequence of the transverse nature of the electromagnetic
field.

The alternative definition (Deutsch and Garrison, 1991a),

G (V ) =
2ε0
�ω0

∫
V

d3rE(−) (r) · E(+) (r) , (3.210)

of a local number operator is suggested by the Glauber theory of photon detection,
which is discussed in Section 9.1.2. Rather than anticipating later results we will obtain
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eqn (3.210) by a simple plausibility argument. The representation (3.39) for the field
Hamiltonian suggests interpreting 2ε0E(−) ·E(+) as the energy density operator. For a
monochromatic field state this in turn suggests that 2ε0E(−) ·E(+)/�ω0 be interpreted
as the photon density operator. The expression (3.210) is an immediate consequence
of these assumptions. The integrand in this equation is clearly positive definite, but
nonlocal effects show up here as well.

The failure of several plausible candidates for a local number operator strongly
suggests that there is no such object. If this conclusion is supported by future research,
it would mean that photons are nonlocalizable in a very fundamental way.

3.7 Exercises

3.1 The field commutator

Verify the expansions (2.101) and (2.103), and use them to derive eqns (3.1) and (3.3).

3.2 Uncertainty relations for E and B

(1) Derive eqn (3.4) from eqn (3.3).
(2) Consider smooth distributions of classical polarization P (r) and magnetization

M (r) which vanish outside finite volumes VP and VM respectively, as in Section
2.5. The interaction energies are

WE = −
∫

d3rP (r) · E (r) , WB = −
∫

d3rM (r) ·B (r) .

Show that
[WB , WE ] = − i�

ε0

∫
d3rP (r) · M (r) .

(3) What assumption about the volumes VP and VM will guarantee that WB and WE

are simultaneously measurable?
(4) Use the standard argument from quantum mechanics (Bransden and Joachain,

1989, Sec. 5.4) to show that WB and WE satisfy an uncertainty relation

∆WB∆WE � �K ,

and evaluate the constant K.

3.3 Electromagnetic Hamiltonian

Carry out the derivation of eqns (3.37)–(3.41).

3.4 Electromagnetic momentum

Fill in the steps leading from the classical expression (3.42) to the quantum form (3.48)
for the electromagnetic momentum operator.

3.5 Milonni’s quantization scheme∗

Fill in the details required to go from eqn (3.159) to eqn (3.164).
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3.6 Electromagnetic angular momentum∗

Carry out the calculations needed to derive eqns (3.172)–(3.178).

3.7 Wave packet quantization∗

(1) Derive eqns (3.192), (3.193), and (3.195).
(2) Derive the expression for 〈1w |1v 〉, where w and v are wave packets in Γem.
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Interaction of light with matter

In the previous chapters we have dealt with the free electromagnetic field, undisturbed
by the presence of charges. This is an important part of the story, but all experiments
involve the interaction of light with matter containing finite amounts of quantized
charge, e.g. electrons in atoms or conduction electrons in semiconductors. It is there-
fore time to construct a unified picture in which both light and matter are treated by
quantum theory. We begin in Section 4.1 with a brief review of semiclassical electrody-
namics, the standard quantum theory of nonrelativistic charged particles interacting
with a classical electromagnetic field. The next step is to treat both charges and fields
by quantum theory. For this purpose, we need a Hilbert space describing both the
charged particles and the quantized electromagnetic field. The necessary machinery is
constructed in Section 4.2. We present the Heisenberg-picture description of the full
theory in Sections 4.3–4.7. In Sections 4.8 and 4.9, the interaction picture is introduced
and applied to atom–photon coupling.

4.1 Semiclassical electrodynamics

In order to have something reasonably concrete to discuss, we will consider a system of
N point charges. The pure states are customarily described by N -body wave functions,
ψ (r1, . . . , rN ), in configuration space. The position and momentum operators r̂n and
p̂n for the nth particle are respectively defined by

r̂nψ (r1, . . . , rN ) = rnψ (r1, . . . , rN ) ,

p̂nψ (r1, . . . , rN ) = −i�
∂

∂rn
ψ (r1, . . . , rN ) .

(4.1)

The Hilbert space, Hchg, for the charges consists of the normalizable N -body wave
functions, i.e. ∫

d3r1 · · ·
∫

d3rN |ψ (r1, . . . , rN )|2 < ∞ . (4.2)

In all applications some of the particles will be fermions, e.g. electrons, and others will
be bosons, so the wave functions must be antisymmetrized or symmetrized accordingly,
as explained in Section 6.5.1.

In the semiclassical approximation the Hamiltonian for a system of charged parti-
cles coupled to a classical field is constructed by combining the correspondence prin-
ciple with the idea of minimal coupling explained in Appendix C.6. The result is

Hsc =
N∑

n=1

(p̂n − qnA (r̂n, t))2

2Mn
+

N∑
n=1

qnϕ (r̂n, t) , (4.3)
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where A and ϕ are respectively the (c-number) vector and scalar potentials, and qn

and Mn are respectively the charge and mass of the nth particle. In this formulation
there are two forms of momentum: the canonical momentum,

p̂n,can = p̂n = −i�
∂

∂rn
, (4.4)

and the kinetic momentum,

p̂n,kin = p̂n − qnA (r̂n, t) . (4.5)

The canonical momentum is the generator of spatial translations, while the classical
momentum Mv is the correspondence-principle limit of the kinetic momentum.

It is worthwhile to pause for a moment to consider where this argument has led
us. The classical fields A (r, t) and ϕ (r, t) are by definition c-number functions of
position r in space, but (4.3) requires that they be evaluated at the position of a
charged particle, which is described by the operator r̂n. What, then, is the meaning of
A (r̂n, t)? To get a concrete feeling for this question, let us recall that the classical field
can be expanded in plane waves exp (ik · r − iωkt). The operator exp (ik · r̂n) arising
from the replacement of rn by r̂n is defined by the rule

eik·�rnψ (r1, . . . , rN ) = eik·rnψ (r1, . . . , rN ) , (4.6)

where ψ (r1, . . . , rN ) is any position-space wave function for the charged particles.
In this way A (r̂n, t) becomes an operator acting on the state vector of the charged
particles. This implies, for example, that A (r̂n, t) does not commute with p̂n, but
instead satisfies

[Ai (r̂n, t) , p̂nj ] = i�
∂Ai

∂rj
(r̂n, t) . (4.7)

The scalar potential ϕ (r̂n, t) is interpreted in the same way.
The standard wave function description of the charged particles is useful for deriv-

ing the semiclassical Hamiltonian, but it is not particularly convenient for the applica-
tions to follow. In general it is better to use Dirac’s presentation of quantum theory, in
which the state is represented by a ket vector |ψ〉. For the system of charged particles
the two versions are related by

ψ (r1, . . . , rN ) = 〈r1, . . . , rN |ψ 〉 , (4.8)

where |r1, . . . , rN 〉 is a simultaneous eigenket of the position operators r̂n, i.e.

r̂n |r1, . . . , rN 〉 = rn |r1, . . . , rN 〉 , n = 1, . . . , N . (4.9)

In this formulation the wave function ψ (r1, . . . , rN ) simply gives the components of
the vector |ψ〉 with respect to the basis provided by the eigenvectors |r1, . . . , rN 〉. Any
other set of basis vectors for Hchg would do equally well.
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4.2 Quantum electrodynamics

In semiclassical electrodynamics the state of the physical system is completely de-
scribed by a many-body wave function belonging to the Hilbert space Hchg defined by
eqn (4.2), but this description is not adequate when the electromagnetic field is also
treated by quantum theory. In Section 4.2.1 we show how to combine the charged-
particle space Hchg with the Fock space HF , defined by eqn (3.35), to get the state
space, HQED, for the composite system of the charges and the quantized electromag-
netic field. In Section 4.2.2 we construct the Hamiltonian for the composite charge-field
system by appealing to the correspondence principle for the quantized electromagnetic
field.

4.2.1 The Hilbert space

In quantum mechanics, many-body wave functions are constructed from single-particle
wave functions by forming linear combinations of product wave functions. For example,
the two-particle wave functions for distinguishable particles A and B have the general
form

ψ (rA, rB) = C1ψ1 (rA)χ1 (rB) + C2ψ2 (rA) χ2 (rB) + · · · . (4.10)

Since wave functions are meaningless for photons, it is not immediately clear how
this procedure can be applied to the radiation field. The way around this apparent
difficulty begins with the reminder that the wave function for a particle, e.g. ψ1 (rA),
is a probability amplitude for the outcomes of measurements of position. In the stan-
dard approach to the quantum measurement problem—reviewed in Appendix C.2—a
measurement of the position operator r̂A always results in one of the eigenvalues rA,
and the particle is left in the corresponding eigenstate |rA〉. If the particle is initially
prepared in the state |ψ1〉A, then the wave function is simply the probability ampli-
tude for this outcome: ψ1 (rA) = 〈rA |ψ1 〉. The next step is to realize that the position
operators r̂A do not play a privileged role, even for particles. The components x̂A, ŷA,
and ẑA of r̂A can be replaced by any set of commuting observables ÔA1, ÔA2,, ÔA3

with the property that the common eigenvector, defined by

ÔAn |OA1, OA2, OA3〉 = OAn |OA1, OA2, OA3〉 (n = 1, 2, 3) , (4.11)

is uniquely defined (up to an overall phase). In other words, the observables ÔA1, ÔA2,
ÔA3 can be measured simultaneously, and the system is left in a unique state after the
measurement.

With these ideas in mind, we can describe the composite system of N charges
and the electromagnetic field by relying directly on the Born interpretation and the
superposition principle. For the system of N charged particles described by Hchg, we
choose an observable Ô—more precisely, a set of commuting observables—with the
property that the eigenvalues Oq are nondegenerate and labeled by a discrete index q.
The result of a measurement of Ô is one of the eigenvalues Oq, and the system is left
in the corresponding eigenstate |Oq〉 ∈ Hchg after the measurement. If the charges are
prepared in the state |ψ〉 ∈ Hchg, then the probability amplitude that a measurement
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of Ô results in the particular eigenvalue Oq is 〈Oq |ψ 〉. Furthermore, the eigenvectors
|Oq〉 provide a basis for Hchg; consequently, |ψ〉 can be expressed as

|ψ〉 =
∑

q

|Oq〉 〈Oq |ψ 〉 . (4.12)

In other words, the state |ψ〉 is completely determined by the set of probability am-
plitudes {〈Oq |ψ 〉} for all possible outcomes of a measurement of Ô.

The same kind of argument works for the electromagnetic field. We use box quanti-
zation to get a set of discrete mode labels k,s and consider the set of number operators
{Nks}. A simultaneous measurement of all the number operators yields a set of oc-
cupation numbers n = {nks} and leaves the field in the number state |n〉. If the field
is prepared in the state |Φ〉 ∈ HF , then the probability amplitude for this outcome
is 〈n |Φ 〉. Since the number states form a basis for HF , the state vector |Φ〉 can be
expressed as

|Φ〉 =
∑

n

|n〉 〈n |Φ 〉 ; (4.13)

consequently, |Φ〉 is completely specified by the set of probability amplitudes {〈n |Φ 〉}
for all outcomes of the measurements of the mode number operators. We have used
the number operators for convenience in this discussion, but it should be understood
that these observables also do not hold a privileged position. Any family of compatible
observables such that their simultaneous measurement leaves the field in a unique state
would do equally well.

The charged particles and the field are kinematically independent, so the operators
Ô and Nks commute. In experimental terms, this means that simultaneous measure-
ments of the observables Ô and Nks are possible. If the charges and the field are
prepared in the states |ψ〉 and |Φ〉 respectively, then the probability for the joint out-
come (Oq, n) is the product of the individual probabilities. Since overall phase factors
are irrelevant in quantum theory, we may assume that the probability amplitude for
the joint outcome—which we denote by 〈Oq, n |ψ, Φ 〉—is given by the product of the
individual amplitudes:

〈Oq, n |ψ, Φ〉 = 〈Oq |ψ 〉 〈n |Φ 〉 . (4.14)

According to the Born interpretation, the set of probability amplitudes defined by
letting Oq and n range over all possible values defines a state of the composite system,
denoted by |ψ, Φ〉. The vector corresponding to this state is called a product vector,
and it is usually written as

|ψ, Φ〉 = |ψ〉 |Φ〉 , (4.15)

where the notation is intended to remind us of the familiar product wave functions in
eqn (4.10).

The product vectors do not provide a complete description of the composite system,
since the full set of states must satisfy the superposition principle. This means that
we are required to give a physical interpretation for superpositions,

|Ψ〉 = C1 |ψ1, Φ1〉 + C2 |ψ2, Φ2〉 , (4.16)
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of distinct product vectors. Once again the Born interpretation guides us to the follow-
ing statement: the superposition |Ψ〉 is the state defined by the probability amplitudes

〈Oq, n |Ψ 〉 = C1 〈Oq, n |ψ1, Φ1 〉 + C2 〈Oq, n |ψ2, Φ2 〉
= C1 〈Oq |ψ1 〉 〈n |Φ1 〉 + C2 〈Oq |ψ2 〉 〈n |Φ2 〉 . (4.17)

It is important to note that for product vectors like |ψ〉 |Φ〉 the subsystems are
each described by a unique state in the respective Hilbert space. The situation is
quite different for superpositions like |Ψ〉; it is impossible to associate a given state
with either of the subsystems. In particular, it is not possible to say whether the field
is described by |Φ1〉 or |Φ2〉. This feature—which is imposed by the superposition
principle—is called entanglement, and its consequences will be extensively studied in
Chapter 6.

Combining this understanding of superposition with the completeness of the states
|Oq〉 and |n〉F in their respective Hilbert spaces leads to the following definition: the
state space, HQED, of the charge-field system consists of all superpositions

|Ψ〉 =
∑

q

∑
n

Ψqn |Oq〉 |n〉 . (4.18)

This definition guarantees the satisfaction of the superposition principle, but the Born
interpretation also requires a definition of the inner product for states in HQED. To this
end, we first take eqn (4.14) as the definition of the inner product of the vectors |Oq, n〉
and |ψ, Φ〉. Applying this definition to the special choice |ψ, Φ〉 = |Oq′ , n′〉 yields

〈Oq, n |Oq′ , n′ 〉 = 〈Oq |Oq′ 〉 〈n |n′ 〉 = δq′,qδn′,n , (4.19)

and the bilinear nature of the inner product finally produces the general definition:

〈Φ |Ψ〉 =
∑

q

∑
n

Φ∗
qnΨqn . (4.20)

The description of HQED in terms of superpositions of product vectors imposes a
similar structure for operators acting on HQED. An operator C that acts only on the
particle degrees of freedom, i.e. on Hchg, is defined as an operator on HQED by

C |Ψ〉 =
∑

q

∑
n

Ψqn {C |Oq〉} |n〉 , (4.21)

and an operator acting only on the field degrees of freedom, e.g. aks, is extended to
HQED by

aks |Ψ〉 =
∑

q

∑
n

Ψqn |Oq〉 {aks |n〉} . (4.22)

Combining these definitions gives the rule

Caks |Ψ〉 =
∑

q

∑
n

Ψqn {C |Oq〉} {aks |n〉} . (4.23)
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A general operator Z acting on HQED can always be expressed as

Z =
∑

n

CnFn , (4.24)

where Cn acts on Hchg and Fn acts on HF .
The officially approved mathematical language for this construction is that HQED

is the tensor product of Hchg and HF . The standard notation for this is

HQED = Hchg ⊗ HF , (4.25)

and the corresponding notation |ψ〉⊗|Φ〉 is often used for the product vectors. Similarly
the operator product Caks is often written as C ⊗ aks.

4.2.2 The Hamiltonian

For the final step to the full quantum theory, we once more call on the correspon-
dence principle to justify replacing the classical field A (r, t) in eqn (4.3) by the time-
independent, Schrödinger-picture quantum field A (r). The evaluation of A (r) at r̂n

is understood in the same way as for the classical field A (r̂n, t), e.g. by using the
plane-wave expansion (3.68) to get

A (r̂n) =
∑
ks

√
�

2ε0ωkV
eks akse

ik·�rn + HC . (4.26)

Thus A (r̂n) is a hybrid operator that acts on the electromagnetic degrees of freedom
(HF ) through the creation and annihilation operators a†

ks and aks and on the particle
degrees of freedom (Hchg) through the operators exp (±ik · r̂n).

With this understanding we first use the identity

A (r̂n) · p̂n + p̂n · A (r̂n) = 2A (r̂n) · p̂n − [Aj (r̂n) , pnj ]
= 2A (r̂n) · p̂n + i�∇ · A (r̂n) , (4.27)

together with ∇ · A = 0 and the identification of ϕ as the instantaneous Coulomb
potential Φ, to evaluate the interaction terms in the radiation gauge. The total Hamil-
tonian is obtained by adding the zeroth-order Hamiltonian Hem + Hchg to get

H = Hem + Hchg +
N∑

n=1

(p̂n − qnA (r̂n))2

2Mn
+

N∑
n=1

qnΦ (r̂n) . (4.28)

Writing out the various terms leads to the expression

H = Hem + Hchg + Hint , (4.29)

Hem =
1
2

∫
d3r

(
ε0 : E2 : +µ−1

0 : B2 :
)
, (4.30)
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Hchg =
N∑

n=1

p̂2
n

2Mn
+

1
4πε0

∑
n�=l

qnql

|r̂n − r̂l| , (4.31)

Hint = −
N∑

n=1

qn

Mn
A (r̂n) · p̂n +

N∑
n=1

q2
n : A (r̂n)2 :

2Mn
. (4.32)

In this formulation, Hem is the Hamiltonian for the free (transverse) electromagnetic
field, and Hchg is the Hamiltonian for the charged particles, including their mutual
Coulomb interactions. The remaining term, Hint, describes the interaction between
the transverse (radiative) field and the charges. As in Section 2.2, we have replaced
the operators E2, B2, and A2 in Hem and Hint by their normal-ordered forms, in order
to eliminate divergent vacuum fluctuation terms. The Coulomb interactions between
the charges—say in an atom—are typically much stronger than the interaction with
the transverse field modes, so Hint can often be treated as a weak perturbation.

4.3 Quantum Maxwell’s equations

In Section 4.2 the interaction between the radiation field and charged particles was
described in the Schrödinger picture, but some features are more easily understood
in the Heisenberg picture. Since the Hamiltonian has the same form in both pictures,
the Heisenberg equations of motion (3.89) can be worked out by using the equal-time
commutation relations (3.91) for the fields and the equal-time, canonical commuta-
tors, [r̂ni(t), p̂lj(t)] = i�δnlδij , for the charged particles. After a bit of algebra, the
Heisenberg equations are found to be

E (r, t) = −∂A (r, t)
∂t

, (4.33)

∇ × E (r, t) = −∂B (r, t)
∂t

, (4.34)

∇ × B (r, t) − 1
c2

∂E (r, t)
∂t

= µ0ĵ⊥ (r, t) , (4.35)

v̂n (t) ≡ dr̂n (t)
dt

=
p̂n (t) − qnA (r̂n (t) , t)

Mn
, (4.36)

dp̂n (t)
dt

= qnE (r̂n (t) , t) + qnv̂n (t) × B (r̂n (t) , t) − qn∇Φ (r̂n (t)) , (4.37)

where v̂n (t) is the velocity operator for the nth particle, ĵ⊥ (r, t) is the transverse
part of the current density operator

ĵ (r, t) =
∑

n

δ (r−r̂n (t)) qnv̂n (t) , (4.38)

and the Coulomb potential operator is

Φ (r̂n (t)) =
1

4πε0

∑
l�=n

ql

|r̂n (t) − r̂l (t)| . (4.39)
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This potential is obtained from a solution of Poisson’s equation ∇2Φ = −ρ/ε0, where
the charge density operator is

ρ (r, t) =
∑

n

δ (r−r̂n (t)) qn , (4.40)

by omitting the self-interaction terms encountered when r → r̂n (t). Functions f (r̂n)
of the position operators r̂n, such as those in eqns (4.35)–(4.40), are defined by

f (r̂n)ψ (r1, . . . , rN ) = f (rn) ψ (r1, . . . , rN ) , (4.41)

where ψ (r1, . . . , rN ) is any N -body wave function for the charged particles.
The first equation, eqn (4.33), is simply the relation between the transverse part of

the electric field operator and the vector potential. Faraday’s law, eqn (4.34), is then
redundant, since it is the curl of eqn (4.33). The matter equations (4.36) and (4.37)
are the quantum versions of the classical force laws of Coulomb and Lorentz.

The only one of the Heisenberg equations that requires further explanation is eqn
(4.35) (Ampère’s law). The Heisenberg equation of motion for E can be put into the
form

(∇ × B (r, t))j −
1
c2

∂Ej (r, t)
∂t

= µ0

∑
n

∆⊥
ji (r − r̂n (t)) qn

p̂ni − qnAi (r̂n (t) , t)
Mn

,

(4.42)
but the significance of the right-hand side is not immediately obvious. Further insight
can be achieved by using the definition (4.36) of the velocity operator to get

p̂n (t) − qnA (r̂n (t) , t)
Mn

= v̂n (t) . (4.43)

Substituting this into eqn (4.42) yields

(∇ × B (r, t))j −
1
c2

∂Ej (r, t)
∂t

= µ0

∑
n

∆⊥
ji (r − r̂n) qnvni (t)

= µ0

∫
d3r′∆⊥

ji (r− r′) ĵi (r′, t) , (4.44)

where ĵi (r′, t), defined by eqn (4.38), can be interpreted as the current density oper-
ator. The transverse delta function ∆⊥

ji projects out the transverse part of any vector
field, so the Heisenberg equation for E (r, t) is given by eqn (4.35).

4.4 Parity and time reversal∗

The quantum Maxwell equations, (4.34) and (4.35), and the classical Maxwell equa-
tions, (B.2) and (B.3), have the same form; consequently, the field operators and the
classical fields behave in the same way under the discrete transformations:

r → −r (spatial inversion or parity transformation) ,

t → −t (time reversal) .
(4.45)
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Thus the transformation laws for the classical fields—see Appendix B.3.3—also apply
to the field operators; in particular,

E (r, t) → EP (r, t) = −E (−r, t) under r → −r , (4.46)

E (r, t) → ET (r, t) = E (r,−t) under t → − t . (4.47)

In classical electrodynamics this is the end of the story, since the entire physical
content of the theory is contained in the values of the fields. The situation for quantum
electrodynamics is more complicated, because the physical content is shared between
the operators and the state vectors. We must therefore find the transformation rules for
the states that correspond to the transformations (4.46) and (4.47) for the operators.
This effort requires a more careful look at the idea of symmetries in quantum theory.

According to the general rules of quantum theory, all physical predictions can be
expressed in terms of probabilities given by |〈Φ |Ψ 〉|2, where |Ψ〉 and |Φ〉 are normalized
state vectors. For this reason, a mapping of state vectors to state vectors,

|Θ〉 → |Θ′〉 , (4.48)

is called a symmetry transformation if

|〈Φ′ |Ψ′ 〉|2 = |〈Φ |Ψ〉|2 , (4.49)

for any pair of vectors |Ψ〉 and |Φ〉. In other words, symmetry transformations leave
all physical predictions unchanged. The consequences of this definition are contained
in a fundamental theorem due to Wigner.

Theorem 4.1 (Wigner) Every symmetry transformation can be expressed in one of
two forms:
(a) |Ψ〉 → |Ψ′〉 = U |Ψ〉, where U is a unitary operator;
(b) |Ψ〉 → |Ψ′〉 = Λ |Ψ〉, where Λ is an antilinear and antiunitary operator.

The unfamiliar terms in alternative (b) are defined as follows. A transformation Λ
is antilinear if

Λ {α |Ψ〉 + β |Φ〉} = α∗Λ |Ψ〉 + β∗Λ |Φ〉 , (4.50)

and antiunitary if

〈Φ′ |Ψ′ 〉 = 〈Ψ |Φ〉 = 〈Φ |Ψ〉∗ , where |Ψ′〉 = Λ |Ψ〉 and |Φ′〉 = Λ |Φ〉 . (4.51)

Rather than present the proof of Wigner’s theorem—which can be found in Wigner
(1959, cf. Appendices in Chaps 20 and 26) or Bargmann (1964)—we will attempt to
gain some understanding of its meaning. To this end consider another transformation
given by

|Ψ〉 → |Ψ′′〉 = exp (iθΨ) |Ψ′〉 , (4.52)

where θΨ is a real phase that can be chosen independently for each |Ψ〉. For any value of
θΨ it is clear that |Ψ〉 → |Ψ′′〉 is also a symmetry transformation. Furthermore, |Ψ′′〉
and |Ψ′〉 differ only by an overall phase, so they represent the same physical state.
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Thus the symmetry transformations defined by eqns (4.48) and (4.52) are physically
equivalent, and the meaning of Wigner’s theorem is that every symmetry transforma-
tion is physically equivalent to one or the other of the two alternatives (a) and (b).
This very strong result allows us to find the correct transformation for each case by a
simple process of trial and error. If the wrong alternative is chosen, something will go
seriously wrong.

Since unitary transformations are a familiar tool, we begin the trial and error
process by assuming that the parity transformation (4.46) is realized by a unitary
operator UP :

EP (r, t) = UPE (r, t) U †
P = −E (−r, t) . (4.53)

In the interaction picture, E (r, t) has the plane-wave expansion

E (r, t) =
∑
ks

i

√
�ωk

2ε0V
aksekse

i(k·r−ωkt) + HC , (4.54)

and the corresponding classical field has an expansion of the same form, with aks re-
placed by the classical amplitude αks. In Appendix B.3.3, it is shown that the parity
transformation law for the classical amplitude is αP

ks = −α−k,−s. Since UP is linear,
UPE (r, t)U †

P can be expressed in terms of aP
ks = UP aksU

†
P . Comparing the quantum

and classical expressions then implies that the unitary transformation of the annihi-
lation operator must have the same form as the classical transformation:

aks → aP
ks = UP aksU

†
P = −a−k,−s . (4.55)

The existence of an operator UP satisfying eqn (4.55) is guaranteed by another well
known result of quantum theory discussed in Appendix C.4: two sets of canonically
conjugate operators acting in the same Hilbert space are necessarily related by a
unitary transformation. Direct calculation from eqn (4.55) yields[

aP
ks, a

P†
k′s′

]
=
[
−a−k,−s,−a†

−k′,−s′

]
= δkk′δss′ ,[

aP
ks, a

P
k′s′

]
= [−a−k,−ss,−a−k′,−s′ ] = 0 .

(4.56)

Since the operators aP
ks satisfy the canonical commutation relations, UP exists. For

more explicit properties of UP , see Exercise 4.4.
The assumption that spatial inversion is accomplished by a unitary transformation

worked out very nicely, so we will try the same approach for time reversal, i.e. we
assume that there is a unitary operator UT such that

ET (r, t) = UTE (r, t)U †
T = E (r,−t) . (4.57)

The classical transformation rule for the plane-wave amplitudes is αT
ks = −α∗

−k,s, so
the argument used for the parity transformation implies that the annihilation operators
satisfy

aks → aT
ks = aT

ks = UT aksU
†
T = −a†

−k,s . (4.58)

All that remains is to check the internal consistency of this rule by using it to evaluate
the canonical commutators. The result
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aT
ks, a

T†
k′s′

]
=
[
−a†

−k,s,−a−k′,s′
]

= −δkk′δss′ (4.59)

is a nasty surprise. The extra minus sign on the right side shows that the transformed
operators are not canonically conjugate. Thus the time-reversed operators aT

ks and aT†
ks

cannot be related to the original operators aks and a†
ks by a unitary transformation,

and UT does not exist.
According to Wigner’s theorem, the only possibility left is that the time-reversed

operators are defined by an antiunitary transformation,

ET (r, t) = ΛTE (r, t) Λ−1
T = E (r,−t) . (4.60)

Here some caution is required because of the unfamiliar properties of antilinear trans-
formations. The definition (4.50) implies that ΛT α |Ψ〉 = α∗ΛT |Ψ〉 for any |Ψ〉, so
applying ΛT to the expansion (4.54) for E (r, t) gives us

ΛTE (r, t) Λ−1
T =

∑
ks

i

√
�ωk

2ε0V

{
−aT

kse
∗
kse

−i(k·r−ωkt) +
(
a†
ks

)T

ekse
i(k·r−ωkt)

}
,

(4.61)
where

aT
ks = ΛT aksΛ−1

T ,
(
a†
ks

)T

= ΛT a†
ksΛ

−1
T . (4.62)

Setting t → −t in eqn (4.54) and changing the summation variable by k → −k yields

E (r,−t) =
∑
ks

i

√
�ωk

2ε0V

{
a−kse−kse

−i(k·r−ωkt) − a†
−kse

∗
−kse

i(k·r−ωkt)
}

. (4.63)

After substituting these expansions into eqn (4.60) and using the properties e−k,−s =
eks and e∗k,s = ek,−s derived in Appendix B.3.3, one finds

aT
ks = −a−k,s ,

(
a†
ks

)T

= −a†
−k,s . (4.64)

This transformation rule gives us
(
a†
ks

)T

= aT†
ks and[

aT
ks, a

T†
k′s′

]
=
[
−a−k,s,−a†

−k′,s′

]
= δkk′δss′ ; (4.65)

consequently, the antiunitary transformation yields creation and annihilation opera-
tors that satisfy the canonical commutation relations. The magic ingredient in this
approach is the extra complex conjugation operation applied by the antilinear trans-
formation ΛT to the c-number coefficients in eqn (4.61). This is just what is needed
to ensure that aT

ks is proportional to a−k,s rather than to a†
−k,s, as in eqn (4.58).

4.5 Stationary density operators

The expectation value of a single observable is given by

〈X (t)〉 = Tr [ρX (t)] = Tr [ρ (t)X ] , (4.66)

which explicitly shows that the time dependence comes entirely from the observable
in the Heisenberg picture and entirely from the density operator in the Schrödinger
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picture. The time dependence simplifies for the important class of stationary density
operators, which are defined by requiring the Schrödinger-picture ρ (t) to be a constant
of the motion. According to eqn (3.75) this means that ρ (t) is independent of time,
so the Schrödinger- and Heisenberg-picture density operators are identical. Stationary
density operators have the useful property[

ρ, U † (t)
]

= 0 = [ρ, U (t)] , (4.67)

which is equivalent to

[ρ, H ] = 0 . (4.68)

Using these properties in conjunction with the cyclic invariance of the trace shows
that the expectation value of a single observable is independent of time, i.e.

〈X (t)〉 = Tr [ρX (t)] = Tr (ρX) = 〈X〉 . (4.69)

Correlations between observables at different times are described by averages of
the form

〈X (t + τ) Y (t)〉 = Tr [ρX (t + τ)Y (t)] . (4.70)

For a stationary density operator, the correlation only depends on the difference in the
time arguments. This is established by combining U (−t) = U † (t) with eqns (3.83),
(4.67), and cyclic invariance to get

〈X (t + τ) Y (t)〉 = 〈X (τ) Y (0)〉 . (4.71)

4.6 Positive- and negative-frequency parts for interacting fields

When charged particles are present, the Hamiltonian is given by eqn (4.28), so the
free-field solution (3.95) is no longer valid. The operator aks (t)—evolving from the
annihilation operator, aks (0) = aks—will in general depend on the (Schrödinger-
picture) creation operators a†

k′s′ as well as the annihilation operators ak′s′ . The unitary
evolution of the operators in the Heisenberg picture does ensure that the general
decomposition

F (r, t) = F (+) (r, t) + F (−) (r, t) (4.72)

will remain valid provided that the initial operator F (+) (r, 0) (F (−) (r, 0)) is a sum
over annihilation (creation) operators, but the commutation relations (3.102) are only
valid for equal times. Furthermore, F (+) (r, ω) will not generally vanish for all negative
values of ω. Despite this failing, an operator F (+) (r, t) that evolves from an initial
operator of the form

F (+) (r, 0) =
∑
ks

Fksakse
ik·r (4.73)

is still called the positive-frequency part of F (r, t).
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4.7 Multi-time correlation functions

One of the advantages of the Heisenberg picture is that it provides a convenient way
to study the correlation between quantum fields at different times. This comes about
because the state is represented by a time-independent density operator ρ, while the
field operators evolve in time according to the Heisenberg equations.

Since the electric field is a vector, it is natural to define the first-order field
correlation function by the tensor

G
(1)
ij (x1; x2) =

〈
E

(−)
i (x1)E

(+)
j (x2)

〉
, (4.74)

where 〈X〉 = Tr [ρX ] and x1 = (r1, t1), etc. The first-order correlation functions are
directly related to interference and photon-counting experiments. In Section 9.1.2-B
we will see that the counting rate for a broadband detector located at r is proportional
to G

(1)
ij (r, t; r, t). For unequal times, t1 �= t2, the correlation function G

(1)
ij (x1; x2) rep-

resents measurements by a detector placed at the output of a Michelson interferometer
with delay time τ = |t1 − t2| between its two arms. In Section 9.1.2-C we will show
that the spectral density for the field state ρ is determined by the Fourier transform
of G

(1)
ij (r, t; r, 0). The two-slit interference pattern discussed in Section 10.1 is directly

given by G
(1)
ij (r, t; r, 0).

We will see in Section 9.2.4 that the second-order correlation function, defined
by

G
(2)
ijkl (x1, x2; x3, x4) =

〈
E

(−)
i (x1)E

(−)
j (x2)E

(+)
k (x3)E

(+)
l (x4)

〉
, (4.75)

is associated with coincidence counting. Higher-order correlation functions are defined
similarly. Other possible expectation values, e.g.

〈
E

(−)
i (x1)E

(−)
j (x2)

〉
, are not related

to photon detection, so they are normally not considered.
In many applications, the physical situation defines some preferred polarization

directions—represented by unit vectors v1,v2, . . .—and the tensor correlation func-
tions are replaced by scalar functions

G(1) (x1; x2) =
〈
E

(−)
1 (x1)E

(+)
2 (x2)

〉
, (4.76)

G(2) (x1, x2; x3, x4) =
〈
E

(−)
1 (x1)E

(−)
2 (x2)E

(+)
3 (x3)E

(+)
4 (x4)

〉
, (4.77)

where E
(+)
p = v∗

p ·E(+) is the projection of the vector operator onto the direction vp.
For example, observing a first-order interference pattern through a polarization filter
is described by

G(1) (x; x) =
〈
e ·E(−) (x) e∗ · E(+) (x)

〉
, (4.78)

where e is the polarization transmitted by the filter.
If the density operator is stationary, then an extension of the argument leading to

eqn (4.71) shows that the correlation function is unchanged by a uniform translation,
tp → tp + τ, t′p → t′p + τ , of all the time arguments. In particular G

(1)
ij (r, t; r′, t′) =
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G
(1)
ij (r, t − t′; r′, 0), so the first-order function only depends on the difference, t− t′, of

the time arguments.
The correlation functions satisfy useful inequalities that are based on the fact that

Tr ρF †F � 0 , (4.79)

where F is an arbitrary observable and ρ is a density operator. This is readily proved
by evaluating the trace in the basis in which ρ is diagonal and using

〈
Ψ
∣∣F †F

∣∣Ψ〉
� 0.

Choosing F = E(+) (x) in eqn (4.79) gives

G(1) (x; x) � 0 , (4.80)

and the operator F = E
(+)
1 (x1) · · ·E(+)

n (xn) gives the general positivity condition

G(n) (x1, . . . , xn; x1, . . . , xn) � 0 . (4.81)

A different sort of inequality follows from the choice

F =
n∑

a=1

ξaE(+)
a (xa) , (4.82)

where the ξas are complex numbers. Substituting F into eqn (4.79) yields
n∑

a=1

n∑
b=1

ξ∗aξbFab � 0 , (4.83)

where F is the n × n hermitian matrix

Fab = G(1) (xa; xb) . (4.84)

Since the inequality (4.83) holds for all complex ξas, the matrix F is positive definite.
A necessary condition for this is that the determinant of F must be positive. For the
case n = 2 this yields the inequality∣∣∣G(1) (x1; x2)

∣∣∣2 � G(1) (x1; x1)G(1) (x2; x2) . (4.85)

For first-order interference experiments, this inequality translates directly into a bound
on the visibility of the fringes; this feature will be exploited in Section 10.1.

4.8 The interaction picture

In typical applications, the interaction energy between the charged particles and the
radiation field is much smaller than the energies of individual photons. It is therefore
useful to rewrite the Schrödinger-picture Hamiltonian, eqn (4.29), as

H(S) = H
(S)
0 + H

(S)
int , (4.86)

where
H

(S)
0 = H(S)

em + H
(S)
chg (4.87)

is the unperturbed Hamiltonian and H
(S)
int is the perturbation or interaction

Hamiltonian. In most cases the Schrödinger equation with the full Hamiltonian H(S)
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cannot be solved exactly, so the weak (perturbative) nature of H
(S)
int must be used to

get an approximate solution.
For this purpose, it is useful to separate the fast (high energy) evolution due to

H
(S)
0 from the slow (low energy) evolution due to H

(S)
int . To this end, the interaction-

picture state vector is defined by the unitary transformation∣∣∣Ψ(I) (t)
〉

= U †
0 (t)

∣∣∣Ψ(S) (t)
〉

, (4.88)

where the unitary operator,

U0 (t) = exp
[
− i (t − t0)

�
H

(S)
0

]
, (4.89)

satisfies
i�

∂

∂t
U0 (t) = H

(S)
0 U0 (t) , U0 (t0) = 1 . (4.90)

Thus the Schrödinger and interaction pictures coincide at t = t0. It is also clear
that

[
H

(S)
0 , U0 (t)

]
= 0. A glance at the solution (3.76) for the Schrödinger equation

reveals that this transformation effectively undoes the fast evolution due to H
(S)
0 . By

contrast to the Heisenberg picture defined in Section 3.2, the transformed ket vector
still depends on time due to the action of H

(S)
int . The consistency condition,〈

Ψ(I) (t)
∣∣∣X(I) (t)

∣∣∣Φ(I) (t)
〉

=
〈
Ψ(S) (t)

∣∣∣X(S)
∣∣∣Φ(S) (t)

〉
, (4.91)

requires the interaction-picture operators to be defined by

X(I) (t) = U †
0 (t) X(S)U0 (t) . (4.92)

For H
(S)
0 this yields the simple result

H
(I)
0 (t) = U †

0 (t)H
(S)
0 U0 (t) = H

(S)
0 , (4.93)

which shows that H
(I)
0 (t) = H

(S)
0 = H0 is independent of time.

The transformed state vector
∣∣Ψ(I) (t)

〉
obeys the interaction-picture Schrödinger

equation

i�
∂

∂t

∣∣∣Ψ(I) (t)
〉

= −H
(S)
0

∣∣∣Ψ(I) (t)
〉

+ U †
0 (t)

(
H

(S)
0 + H

(S)
int

) ∣∣∣Ψ(S) (t)
〉

= −H
(S)
0

∣∣∣Ψ(I) (t)
〉

+ U †
0 (t)

(
H

(S)
0 + H

(S)
int

)
U0 (t)

∣∣∣Ψ(I) (t)
〉

= H
(I)
int (t)

∣∣∣Ψ(I) (t)
〉

, (4.94)

which follows from operating on both sides of eqn (4.88) with i�∂/∂t and using eqns
(4.90)–(4.93). The formal solution is∣∣∣Ψ(I) (t)

〉
= V (t)

∣∣∣Ψ(I) (t0)
〉

, (4.95)
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where the unitary operator V (t) satisfies

i�
∂

∂t
V (t) = H

(I)
int (t)V (t) , with V (t0) = 1 . (4.96)

The initial condition V (t0) = 1 really should be V (t0) = IQED, where IQED is the
identity operator for HQED, but alert readers will suffer no harm from this slight abuse
of notation.

By comparing eqn (4.92) to eqn (3.83), one sees immediately that the interaction-
picture operators obey

i�
∂

∂t
X(I) (t) =

[
X(I) (t) , H0

]
. (4.97)

These are the Heisenberg equation for free fields, so we can use eqns (3.95) and (3.96)
to get

a
(I)
ks (t) = a

(S)
ks e−iωk(t−t0), (4.98)

and

A(I)(+) (r, t) =
∑
ks

√
�

2ε0ωkV
a
(S)
ks ekse

i[k·r−ωk(t−t0)] . (4.99)

In the same way eqn (3.102) implies[
F (I)(±) (r, t) , G(I)(±) (r′, t′)

]
= 0 , (4.100)

where F and G are any of the field components and (r, t), (r′, t′) are any pair of
space–time points.

In the interaction picture, the burden of time evolution is shared between the oper-
ators and the states. The operators evolve according to the unperturbed Hamiltonian,
and the states evolve according to the interaction Hamiltonian. Once again, the density
operator is an exception. Applying the transformation in eqn (4.88) to the definition
(3.85) of the Schrödinger-picture density operator leads to

i�
∂

∂t
ρ(I) (t) =

[
H

(I)
int (t), ρ(I)(t)

]
, (4.101)

so the density operator evolves according to the interaction Hamiltonian.
In applications of the interaction picture, we will simplify the notation by the fol-

lowing conventions: X (t) means X(I) (t), X means X(S), |Ψ (t)〉 means
∣∣Ψ(I) (t)

〉
, and

ρ (t) means ρ(I) (t). If all three pictures are under consideration, it may be necessary
to reinstate the superscripts (S), (H), and (I).

4.8.1 Time-dependent perturbation theory

In order to make use of the weakness of the perturbation, we first turn eqn (4.96) into
an integral equation by integrating over the interval (t0, t) to get

V (t) = 1 − i

�

∫ t

t0

dt1Hint (t1)V (t1) . (4.102)
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The formal perturbation series is obtained by repeated iterations of the integral equa-
tion,

V (t) = 1 − i

�

∫ t

t0

dt1Hint (t1) +
(
− i

�

)2 ∫ t

t0

dt1

∫ t1

t0

dt2Hint (t1)Hint (t2) + · · ·

=
∞∑

n=0

V (n) (t) , (4.103)

where V (0) = 1, and

V (n) (t) =
(
− i

�

)n ∫ t

t0

dt1 · · ·
∫ tn−1

t0

dtnHint (t1) · · ·Hint (tn) , (4.104)

for n � 1.
If the system (charges plus radiation) is initially in the state |Θi〉 then the prob-

ability amplitude that a measurement at time t leaves the system in the final state
|Θf 〉 is

Vfi (t) = 〈Θf |Ψ (t) 〉 = 〈Θf |V (t)|Θi〉 ; (4.105)

consequently, the transition probability is

Pfi (t) = |Vfi (t)|2 . (4.106)

4.8.2 First-order perturbation theory

For this application, we choose t0 = 0, and then let the interaction act for a finite time
t. The initial state |Θi〉 evolves into V (t) |Θi〉, and its projection on the final state
|Θf 〉 is 〈Θf |V (t)|Θi〉. Let the initial and final states be eigenstates of the unperturbed
Hamiltonian H0, with energies Ei and Ef respectively. According to eqn (4.104) the
first-order contribution to 〈Θf |V (t)|Θi〉 is

V
(1)
fi (t) = − i

�

∫ t

0

dt1 〈Θf |Hint (t1)|Θi〉

= − i

�

∫ t

0

dt1 〈Θf |Hint|Θi〉 exp (iνfit1) , (4.107)

where we have used eqn (4.92) and introduced the notation νfi = (Ef − Ei) /�. Eval-
uating the integral in eqn (4.107) yields the amplitude

V
(1)
fi (t) = −2i

�
exp (iνfit/2)

sin (νfit/2)
νfi

〈Θf |Hint|Θi〉 , (4.108)

so the transition probability is

Pfi (t) =
∣∣∣V (1)

fi (t)
∣∣∣2 =

4
�2

|〈Θf |Hint|Θi〉|2 ∆ (νfi, t) , (4.109)

where ∆ (ν, t) ≡ sin2 (νt/2) /ν2.
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For fixed t, the maximum value of |∆ (ν, t)|2 is t2/4, and it occurs at ν = 0. The
width of the central peak is approximately 2π/t, so as t becomes large the function
is strongly peaked at ν = 0. In order to specify a well-defined final energy, the width
must be small compared to |Ef − Ei| /�; therefore,

t � 2π�

|Ef − Ei| (4.110)

defines the limit of large times. This is a realization of the energy–time uncertainty
relation, t∆E ∼ � (Bransden and Joachain, 1989, Sec. 2.5). With this understanding
of infinity, we can use the easily established mathematical result,

lim
t→∞

∆ (ν, t)
t

= lim
t→∞

sin2 (νt/2)
tν2

=
π

2
δ (ν) , (4.111)

to write the asymptotic (t → ∞) form of eqn (4.109) as

Pfi (t) =
2π

�2
t |〈Θf |Hint|Θi〉|2 δ (νfi)

=
2π

�
t |〈Θf |Hint|Θi〉|2 δ (Ef − Ei) . (4.112)

The transition rate, Wfi = dPfi (t) /dt, is then

Wfi =
2π

�
|〈Θf |Hint|Θi〉|2 δ (Ef − Ei) . (4.113)

This is Fermi’s golden rule of perturbation theory (Bransden and Joachain, 1989,
Sec. 9.3). This limiting form only makes sense when at least one of the energies Ei

and Ef varies continuously. In the following applications this happens automatically
because of the continuous variation of the photon energies.

In addition to the lower bound on t in eqn (4.110) there is an upper bound on the
time interval for which the perturbative result is valid. This is estimated by summing
eqn (4.112) over all final states to get the total transition probability Pi,tot (t) = tWi,tot,
where the total transition rate is

Wi,tot =
∑

f

Wfi =
∑

f

2π

�
|〈Θf |Hint|Θi〉|2 δ (Ef − Ei) . (4.114)

According to this result, the necessary condition Pi,tot (t) < 1 will be violated if
t > 1/Wi,tot. In fact, the validity of the perturbation series demands the more strin-
gent condition Pi,tot (t) � 1, so the perturbative results can only be trusted for
t � 1/Wi,tot. This upper bound on t means that the t → ∞ limit in eqn (4.111)
is simply the physical condition (4.110). For the same reason, the energy conserving
delta function in eqn (4.112) is really just a sharply-peaked function that imposes the
restriction |Ef − Ei| � Ef .
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With this understanding in mind, a simplified version of the previous calculation is
possible. For this purpose, we choose t0 = −T/2 and allow the state vector to evolve
until the time t = T/2. Then eqn (4.107) is replaced by

V
(1)
fi (T/2) = − i

�
〈Θf |Hint|Θi〉 exp (iνfiT/2)

∫ T/2

−T/2

dt1 exp (iνfit1) . (4.115)

The standard result

lim
T→∞

∫ T/2

−T/2

dt1e
iνt1 = 2πδ (ν) (4.116)

allows this to be recast as

V
(1)
fi = V

(1)
fi (∞) = −2πi

�
〈Θf |Hint|Θi〉 δ (νfi) , (4.117)

so the transition probability is

Pfi =
∣∣∣V (1)

fi

∣∣∣2 =
(

2π

�

)2

|〈Θf |Hint|Θi〉|2 [δ (νfi)]
2 . (4.118)

This is rather embarrassing, since the square of a delta function is not a respectable
mathematical object. Fortunately this is a physicist’s delta function, so we can use
eqn (4.116) once more to set

[δ (νfi)]
2 = δ (νfi)

∫ T/2

−T/2

dt1
2π

exp (iνfit1) =
T

2π
δ (νfi) . (4.119)

After putting this into eqn (4.118), we recover eqn (4.113).

4.8.3 Second-order perturbation theory

Using the simplified scheme, presented in eqns (4.115)–(4.119), yields the second-order
contribution to 〈Θf |V (T/2)|Θi〉:

V
(2)
fi =

(
− i

�

)2 ∫ T/2

−T/2

dt1

∫ t1

−T/2

dt2 〈Θf |Hint (t1)Hint (t2)|Θi〉

=
(
− i

�

)2 ∫ T/2

−T/2

dt1

∫ T/2

−T/2

dt2θ (t1 − t2) 〈Θf |Hint (t1) Hint (t2)|Θi〉 , (4.120)

where θ (t1 − t2) is the step function discussed in Appendix A.7.1 . By introducing a
basis set {|Λu〉} of eigenstates of H0, the matrix element can be written as

〈Θf |Hint (t1)Hint (t2)|Θi〉 = exp [(iνfi)T/2]
∑

u

〈Θf |Hint|Λu〉 〈Λu |Hint|Θi〉

× exp (iνfut1) exp (iνuit2) , (4.121)

where we have used eqn (4.92) and the identity νfu + νui = νfi. The final step is to
use the representation (A.88) for the step function and eqn (4.116) to find
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V
(2)
fi = − i

2π�2
eiνfiT/2

∫ ∞

−∞
dν

∑
u

〈Θf |Hint|Λu〉 〈Λu |Hint|Θi〉
ν + iε

× 2πδ (νfu − ν) 2πδ (νui + ν) . (4.122)

Carrying out the integration over ν with the aid of the delta functions leads to

V
(2)
fi = −2πi

�2

∑
u

〈Θf |Hint|Λu〉 〈Λu |Hint|Θi〉
νfu + iε

δ (νfi)

= −2πi
∑

u

〈Θf |Hint|Λu〉 〈Λu |Hint|Θi〉
Ef − Eu + iε

δ (Ef − Ei) . (4.123)

Finally, another use of the rule (4.119) yields the transition rate

Wfi =
2π

�

∣∣∣∣∣∑
u

〈Θf |Hint|Λu〉 〈Λu |Hint|Θi〉
Ef − Eu + iε

∣∣∣∣∣
2

δ (Ef − Ei) . (4.124)

4.9 Interaction of light with atoms

4.9.1 The dipole approximation

The shortest wavelengths of interest for quantum optics are in the extreme ultraviolet,
so we can assume that λ > 100 nm, whereas typical atoms have diameters a ≈ 0.1 nm.
The large disparity between atomic diameters and optical wavelengths (a/λ < 0.001)
permits the use of the dipole approximation, and this in turn brings about important
simplifications in the general Hamiltonian defined by eqns (4.28)–(4.32).

The simplified Hamiltonian can be derived directly from the general form given in
Section 4.2.2 (Cohen-Tannoudji et al., 1989, Sec. IV.C), but it is simpler to obtain the
dipole-approximation Hamiltonian for a single atom by a separate appeal to the corre-
spondence principle. This single-atom construction is directly relevant for sufficiently
dilute systems of atoms—e.g. tenuous atomic vapors—since the interaction between
atoms is weak. Experiments with vapors were the rule in the early days of quantum
optics, but in many modern applications—such as solid-state detectors and solid-state
lasers—the atoms are situated on a crystal lattice. This is a high density situation with
substantial interactions between atoms. Furthermore, the electronic wave functions can
be delocalized—e.g. in the conduction band of a semiconductor—so that the validity
of the dipole approximation is in doubt. These considerations—while very important
in practice—do not in fact require significant changes in the following discussion.

The interactions between atoms on a crystal lattice can be described in terms of
coupling to lattice vibrations (phonons), and the effects of the periodic crystal potential
are represented by the use of Bloch or Wannier wave functions for the electrons (Kittel,
1985, Chap. 9). The wave functions for electrons in the valence band are localized to
crystal sites, so for transitions between the valence and conduction bands even the
dipole approximation can be retained. We will exploit this situation by explaining
the basic techniques of quantum optics in the simpler context of tenuous vapors. Once
these notions are mastered, their application to condensed matter physics can be found
elsewhere (Haug and Koch, 1990).



Interaction of light with atoms ���

Even with the dipole approximation in force, the direct use of the atomic wave
function is completely impractical for a many-electron atom—this means any atom
with atomic number Z > 1. Fortunately, the complete description provided by the
many-electron wave function ψ (r1, . . . , rZ) is not needed. For the most part, only
selected properties—such as the discrete electronic energies and the matrix elements of
the dipole operator—are required. Furthermore these properties need not be calculated
ab initio; instead, they can be inferred from the measured wavelength and strength
of spectral lines. In this semi-empirical approach, the problem of atomic structure is
separated from the problem of the response of the atom to the electromagnetic field.

For a single atom interacting with the electromagnetic field, the discussion in Sec-
tion 4.2.1 shows that the state space is the tensor product H = HA⊗HF of the Hilbert
space HA for the atom and the Fock space HF for the field. A typical basis state for
H is |ψ, Φ〉 = |ψ〉 |Φ〉, where |ψ〉 and |Φ〉 are respectively state vectors for the atom
and the field. Let us consider a typical matrix element 〈ψ, Φ |E (r)|ψ′, Φ′〉 of the elec-
tric field operator, where at least one of the vectors |ψ〉 and |ψ′〉 describes a bound
state with characteristic spatial extent a, and |Φ〉 and |Φ′〉 both describe states of the
field containing only photons with wavelengths λ � a. On the scale of the optical
wavelengths, the atomic electrons can then be regarded as occupying a small region
surrounding the center-of-mass position,

r̂cm =
Mnuc

M
r̂nuc +

Z∑
n=1

Me

M
r̂n , (4.125)

where r̂cm is the operator for the center of mass, Me is the electron mass, r̂n is the
coordinate operator of the nth electron, Mnuc is the nuclear mass, r̂nuc is the coordinate
operator of the nucleus, Z is the atomic number, and M = Mnuc + ZMe is the total
mass.

For all practical purposes, the center of mass can be identified with the location
of the nucleus, since Mnuc � ZMe. The plane-wave expansion (3.69) for the electric
field then implies that the matrix element is slowly varying across the atom, so that
it can be expanded in a Taylor series around r̂cm,

〈ψ, Φ |E (r)|ψ′, Φ′〉
= 〈ψ, Φ |E (r̂cm)|ψ′, Φ′〉 + 〈ψ, Φ |[(r − r̂cm) · ∇]E (r̂cm)|ψ′, Φ′〉 + · · · .

(4.126)
With the understanding that only matrix elements of this kind will occur, the

expansion can be applied to the field operator itself:

E (r) = E (r̂cm) + [(r − r̂cm) · ∇]E (r̂cm) + · · · . (4.127)

The electric dipole approximation retains only the leading term in this expan-
sion, with errors of O (a/λ). Keeping higher-order terms in the Taylor series incorpo-
rates successive terms in the general multipole expansion, e.g. magnetic dipole, electric
quadrupole, etc. In classical electrodynamics (Jackson, 1999, Sec. 4.2), the leading term
in the interaction energy of a neutral collection of charges with an external electric field
E is −d ·E, where d is the electric dipole moment. For an atom the dipole operator is
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d̂ =
Z∑

n=1

(−e) (r̂n − r̂nuc) . (4.128)

Once again we rely on the correspondence principle to suggest that the interaction
Hamiltonian in the quantum theory should be

Hint = −d̂ ·E (r̂cm) . (4.129)

The atomic Hamiltonian can be expressed as

Hatom =
P̂2

2M
+

Z∑
n=1

(p̂n)2

2Me
+ VC , (4.130)

VC =
e2

4πε0

Z∑
n�=l=1

1
|r̂n − r̂l| −

Ze2

4πε0

Z∑
n=1

1
|̂rn − r̂nuc| , (4.131)

where VC is the Coulomb potential, P̂ is the total momentum, and the p̂ns are a set of
relative momentum operators. Thus the Schrödinger-picture Hamiltonian in the dipole
approximation is H = Hem + Hatom + Hint.

The argument given in Section 4.2.2 shows that E (r̂cm) is a hybrid operator acting
on both the atomic and field degrees of freedom. For most applications of quantum
optics, we can ignore this complication, since the De Broglie wavelength of the atom is
small compared to the interatomic spacing. In this limit, the center-of-mass position,
r̂cm, and the total kinetic energy P̂2/2M can be treated classically, so that

Hatom =
P2

2M
+ Hat , (4.132)

where

Hat =
Z∑

n=1

(p̂n)2

2Me
+ VC (4.133)

is the Hamiltonian for the internal degrees of freedom of the atom. In the same ap-
proximation, the interaction Hamiltonian reduces to

Hint = −d̂ ·E (rcm) , (4.134)

which acts jointly on the field states and the internal states of the atom.
In the rest frame of the atom, defined by P = 0, the energy eigenstates

Hat |εq〉 = εq |εq〉 (4.135)

provide a basis for the Hilbert space, HA, describing the internal degrees of freedom
of the atom. The label q stands for a set of quantum numbers sufficient to specify the
internal atomic state uniquely. The qs are discrete; therefore, they can be ordered so
that εq � εq′ for q < q′.
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In practice, the many-electron wave function ψq (r1, . . . , rZ) = 〈r1, . . . , rZ |εq 〉 can-
not be determined exactly, so the eigenstates are approximated, e.g. by using the
atomic shell model (Cohen-Tannoudji et al., 1977b, Chap. XIV, Complement A). In
this case the label q = (n, l, m) consists of the principal quantum number, the angular
momentum, and the azimuthal quantum number for the valence electrons in a shell
model description. The dipole selection rules are〈

εq

∣∣∣d̂∣∣∣ εq′
〉

= 0 unless l − l′ = ±1 and m − m′ = ±1, 0 . (4.136)

The z-axis is conventionally chosen as the quantization axis, and this implies〈
εq

∣∣∣d̂z

∣∣∣ εq′
〉

= 0 unless m − m′ = 0 ,〈
εq

∣∣∣d̂x

∣∣∣ εq′
〉

=
〈
εq

∣∣∣d̂y

∣∣∣ εq′
〉

= 0 unless m − m′ = ±1 .
(4.137)

A basis for the Hilbert space H = HA ⊗ HF describing the composite system of the
atom and the radiation field is given by the product vectors

|εq, n〉 = |εq〉 |n〉 , (4.138)

where |n〉 runs over the photon number states.
For a single atom the (c-number) kinetic energy P2/2M can always be set to zero

by transforming to the rest frame of the atom, but when many atoms are present there
is no single frame of reference in which all atoms are at rest. Nevertheless, it is possible
to achieve a similar effect by accounting for the recoil of the atom. Let us consider an
elementary process, e.g. absorption of a photon with energy �ωk and momentum �k by
an atom with energy ε1 + P2/2M and momentum P. The final energy, ε2 + P′2/2M ,
and momentum, P′, are constrained by the conservation of energy,

�ωk + ε1 + P2/2M = ε2 + P′2/2M , (4.139)

and conservation of momentum,

�k + P = P′ . (4.140)

The initial and final velocities of the atom are respectively v = P/M and v′ = P′/M ,
so eqn (4.140) tells us that the atomic recoil velocity is vrec = v′ − v = �k/M .
Substituting P′ from eqn (4.140) into eqn (4.139) and expressing the result in terms
of vrec yields

�ωk = �ω21 + Mvrec ·
(
v +

1
2
vrec

)
, (4.141)

where
ω21 =

ε2 − ε1

�
(4.142)

is the Bohr frequency for this transition. For typical experimental conditions—e.g.
optical frequency radiation interacting with a tenuous atomic vapor—the thermal
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velocities of the atoms are large compared to their recoil velocities, so that eqn (4.141)
can be approximated by

ωk = ω21 +
ω21

c
k̃ · v , (4.143)

where k̃ = k/k. Since v/c is small, this result can also be expressed as

ω21 = ωk − k · v . (4.144)

In other words, conservation of energy is equivalent to resonance between the atomic
transition and the Doppler shifted frequency of the radiation. With this thought
in mind, we can ignore the kinetic energy term in the atomic Hamiltonian and simply
tag each atom with its velocity and the associated resonance condition.

The next step is to generalize the single-atom results to a many-atom system. The
state space is now H = HA⊗HF , where the many-atom state space consists of product
wave functions, i.e. HA = ⊗nH

(n)
A where H

(n)
A is the (internal) state space for the nth

atom. Since Hint is linear in the atomic dipole moment, the part of the Hamiltonian
describing the interaction of the many-atom system with the radiation field is obtained
by summing eqn (4.129) over the atoms.

The Coulomb part is more complicated, since the general expression (4.131) con-
tains Coulomb interactions between charges belonging to different atoms. These inter-
atomic Coulomb potentials can also be described in terms of multipole expansions for
the atomic charge distributions. The interatomic potential will then be dominated by
dipole–dipole interactions. For tenuous vapors these effects can be neglected, and the
many-atom Hamiltonian is approximated by H = Hem + Hat + Hint, where

Hat =
∑

n

H
(n)
at , (4.145)

Hint = −
∑

n

d̂(n) · E
(
r(n)
cm

)
, (4.146)

and H
(n)
at , d̂(n), and r(n)

cm are respectively the internal Hamiltonian, the electric dipole
operator, and the (classical) center-of-mass position for the nth atom.

4.9.2 The weak-field limit

A second simplification comes into play for electromagnetic fields that are weak, in the
sense that the dipole interaction energy is small compared to atomic energy differences.
In other words |d · E| � �ωT , where d is a typical electric dipole matrix element, E is
a representative matrix element of the electric field operator, and ωT is a typical Bohr
frequency associated with an atomic transition. In terms of the characteristic Rabi
frequency

Ω =
|d · E|

�
, (4.147)

which represents the typical oscillation rate of the atom induced by the electric field,
the weak-field condition is

Ω � ωT . (4.148)

The Rabi frequency is given by Ω = 1.39 × 107d
√

I, where Ω is expressed in Hz, the
field intensity I in W/cm2, and the dipole moment d in debyes (1 D = 10−18 esu cm =
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0.33 × 10−29 C m). Typical values for the dipole matrix elements are d ∼ 1 D, and
the interesting Bohr frequencies are in the range 3 × 1010 Hz < ωT < 3 × 1015 Hz,
corresponding to wavelengths in the range 1 cm to 100 nm. For each value of ωT , eqn
(4.148) imposes an upper bound on the strength of the electric fields associated with
the matrix elements of Hint. For a typical optical frequency, e.g. ωT ≈ 3×1014 Hz, the
upper bound is I ∼ 5×1014 W/cm2, which could not be violated without vaporizing the
sample. At the long wavelength limit, λ ∼ 1 cm (ωT ∼ 3×1010 Hz), the upper bound is
only I ∼ 5×106 W/cm2, which could be readily violated without catastrophe. However
this combination of wavelength and intensity is not of interest for quantum optics,
since the corresponding photon flux, 1029 photons/cm2 s, is so large that quantum
fluctuations would be completely negligible. Thus in all relevant situations, we may
assume that the fields are weak.

The weak-field condition justifies the use of time-dependent perturbation theory
for the calculation of transition rates for spontaneous emission or absorption from an
incoherent radiation field. As we will see below, perturbation theory is not able to
describe other interesting phenomena, such as natural line widths and the resonant
coupling of an atom to a coherent field, e.g. a laser. Despite the failure of perturbation
theory for such cases, the weak-field condition can still be used to derive a nonper-
turbative scheme which we will call the resonant wave approximation. Just as with
perturbation theory, the interaction picture is the key to understanding the resonant
wave approximation.

4.9.3 The Einstein A and B coefficients

As the first application of perturbation theory we calculate the Einstein A coefficient,
i.e. the total spontaneous emission rate for an atom in free space. For this and subse-
quent calculations, it will be convenient to write the interaction Hamiltonian as

Hint = −�
[
Ω(+) (r) + Ω(−) (r)

]
, (4.149)

where the positive-frequency Rabi operator Ω(+) (r) is

Ω(+) (r) =
E(+) (r) · d̂

�
, (4.150)

and r is the location of the atom. In the absence of boundaries, we can choose the
location of the atom as the origin of coordinates. Setting r = 0 in eqn (3.69) for
E(+) (r) and substituting into eqn (4.150) yields

Ω(+) =
∑
ks

i

√
�ωk

2ε0V

eks · d̂
�

aks . (4.151)

The initial state for the transition is |Θi〉 = |ε2, 0〉 = |ε2〉 |0〉, where |ε2〉 is an
excited state of the atom and |0〉 is the vacuum state, so the initial energy is Ei = ε2.
The final state is |Θf 〉 = |ε1, 1ks〉 = |ε1〉 |1ks〉, where |1ks〉 = a†

ks |0〉 is the state
describing exactly one photon with wavevector k and polarization eks and |ε1〉 is an
atomic state with ε1 < ε2. The final state energy is therefore Ef = ε1 + �ωk. The
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Feynman diagrams for emission and absorption are shown in Fig. 4.1. It is clear from
eqn (4.151) that only Ω(−) can contribute to emission, so the relevant matrix element
is 〈

ε1, 1ks

∣∣∣Ω(−)
∣∣∣ ε2, 0

〉
= −iΩ∗

21,s (k) , (4.152)

where

Ω21,s (k) =
√

�ωk

2ε0V

d21 · eks

�
(4.153)

is the single-photon Rabi frequency for the 1 ↔ 2 transition, and d21 =
〈
ε2

∣∣d̂∣∣ε1

〉
is the dipole matrix element. In the physical limit V → ∞, the photon energies �ωk

become continuous, and the golden rule (4.113) can be applied to get the transition
rate

W1ks,2 = 2π |Ω21,s (k)|2 δ (ωk − ω21) . (4.154)

The irreversibility of the transition described by this rate is a mathematical con-
sequence of the continuous variation of the final photon energy that allows the use
of Fermi’s golden rule. A more intuitive explanation of the irreversible decay of an
excited atom is that radiation emitted into the cold and darkness of infinite space will
never return.

Since the spacing between discrete wavevectors goes to zero in the infinite volume
limit, the physically meaningful quantity is the emission rate into an infinitesimal k-
space volume d3k centered on k. For each polarization, the number of k-modes in d3k
is V d3k/ (2π)3; consequently, the differential emission rate is

dW1ks,2 = W1ks,2
V d3k

(2π)3

= 2π |M21,s (k)|2 δ (ωk − ω21)
d3k

(2π)3
, (4.155)

where

M21,s (k) =
√

V Ω21,s (k) =
√

�ωk

2ε0

d21 · eks

�
. (4.156)

The Einstein A coefficient is the total transition rate into all ks-modes:

Fig. 4.1 First-order Feynman diagrams for

emission (1) and absorption (2). Straight lines

correspond to atomic states and wiggly lines

to photon states. ��� ���

ε�

ε�

ε�

ε���

��
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A2→1 =
∫

d3k

(2π)3
∑

s

2π |M21,s (k)|2 δ (ωk − ω21) . (4.157)

The integral over the magnitude of k can be carried out by the change of variables
k → ω/c. It is customary to write this result in terms of the density of states, D (ω21),
which is the number of resonant modes per unit volume per unit frequency. The number
of modes in d3k is 2V d3k/ (2π)3, where the factor 2 counts the polarizations for each
k, so the density of states is

D (ω21) = 2
∫

d3k

(2π)3
δ (ωk − ω21) =

ω2
21

π2c3
. (4.158)

This result includes the two polarizations and the total 4π sr of solid angle, so calcu-
lating the contribution from a single plane wave requires division by 8π. In this way
A2→1 is expressed as an average over emission directions and polarizations,

A2→1 =
∫

dΩk

4π

1
2

∑
s

2π |M21,s (k)|2 D (ω21) , (4.159)

where dΩk = sin (θk) dθkdφk. The average over polarizations is done by using eqn
(4.153) and the completeness relation (B.49) to get

1
2

∑
s

|d21 · eks|2 =
1
2

(di)21 (dj)
∗
21

∑
s

eksie
∗
ksj

=
1
2

[
d∗

21 · d21 −
(
k̃ · d21

)∗ (
k̃ · d21

)]
. (4.160)

In some cases the vector d21 is real, but this cannot be guaranteed in general (Mandel
and Wolf, 1995, Sec. 15.1.1). When d21 is complex it can be expressed as d21 =
d′

21 + id′′
21, where d′

21 and d′′
21 are both real vectors. Inserting this into the previous

equation gives∑
s

|d21 · eks|2 =
[
(d′

21)
2 −

(
k̃ · d′

21

)2
]

+
[
(d′′

21)
2 −

(
k̃ · d′′

21

)2
]

, (4.161)

and the remaining integral over the angles of k can be carried out for each term by
choosing the z-axis along d′

21 or d′′
21. The result is

A2→1 =
[

1
4πε0

]
4 |d21|2 k3

0

3�
, (4.162)

where k0 = ω21/c = 2π/λ0 and |d21|2 = d∗
21 · d21. This agrees with the value ob-

tained earlier by Einstein’s thermodynamic argument. Dropping the coefficient in
square brackets gives the result in Gaussian units.

Einstein’s quantum model for radiation involves two other coefficients, B1→2 for
absorption and B2→1 for stimulated emission. The stimulated emission rate is the rate
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for the transition |ε2, nks〉 → |ε1, nks + 1〉, i.e. the initial state has nks photons in the
mode ks. In this case eqn (4.152) is replaced by〈

ε1, nks + 1
∣∣∣Ω(−)

∣∣∣ ε2, nks

〉
= −iΩ∗

21,s (k)
√

nks + 1 , (4.163)

where the factor
√

nks + 1 comes from the rule a† |n〉 =
√

n + 1 |n + 1〉. For nks = 0,
this reduces to the spontaneous emission result, so the only difference between the two
processes is the enhancement factor

√
nks + 1. In order to simplify the argument we

will assume that nks = n (ω), i.e. the photon population is independent of polarization
and propagation direction. Then the average over polarizations and emission directions
produces

Γ = [n (ω21) + 1]A2→1 = A2→1 + n (ω21)A2→1 , (4.164)

where the two terms are the spontaneous and stimulated rates respectively. By com-
paring this to eqn (1.13), we see that B2→1ρ (ω21) = n (ω21)A2→1, where ρ (ω21) is
the energy density per unit frequency. In the present case this is

ρ (ω21) = (�ω21)n (ω21)D (ω21) =
�ω3

21

π2c3
n (ω21) , (4.165)

so the relation between the A and B coefficients is

A2→1

B2→1
=

�ω3
21

π2c3
, (4.166)

in agreement with eqn (1.21). The absorption coefficient B1→2 is deduced by calculat-
ing the transition rate for |ε1, nks + 1〉 → |ε2, nks〉. The relevant matrix element,〈

ε2, nks

∣∣∣Ω(+)
∣∣∣ ε1, nks + 1

〉
= iΩ21,s (k)

√
nks + 1 , (4.167)

corresponds to part (2) of Fig. 4.1. Since |Ω21,s (k)| =
∣∣Ω∗

21,s (k)
∣∣, using this matrix

element in eqn (4.113) will give the same result as the calculation of the stimulated
emission coefficient, therefore the absorption rate is identical to the stimulated emission
rate, i.e. B1→2 = B2→1, in agreement with the detailed-balance argument eqn (1.18).
Thus the quantum theory correctly predicts the relations between the Einstein A and
B coefficients, and it provides an a priori derivation for the spontaneous emission rate.

4.9.4 Spontaneous emission in a planar cavity∗

One of the assumptions in Einstein’s quantum model for radiation is that the A and
B coefficients are solely properties of the atom, but further thought shows that this
cannot be true in general. Consider, for example, an atom in the interior of an ideal
cubical cavity with sides L. According to eqn (2.15) the eigenfrequencies satisfy ωn �√

2πc/L; therefore, resonance is impossible if the atomic transition frequency is too
small, i.e. ω21 <

√
2πc/L, or equivalently L < λ0/

√
2, where λ0 = 2πc/ω21 is the

wavelength of the emitted light. In addition to this failure of the resonance condition,
the golden rule (4.113) is not applicable, since the mode spacing is not small compared
to the transition frequency.
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What this means physically is that photons emitted by the atom are reflected from
the cavity walls and quickly reabsorbed by the atom. This behavior will occur for
any finite value of L, but clearly the minimum time required for the radiation to be
reabsorbed will grow with L. In the limit L → ∞ the time becomes infinite and the
result for an atom in free space is recovered. Therefore the standard result (4.162) for
A2→1 is only valid for an atom in unbounded space.

The fact that the spontaneous emission rate for atoms is sensitive to the bound-
ary conditions satisfied by the electromagnetic field was recognized long ago (Purcell,
1946). More recently this problem has been studied in conjunction with laser etalons
(Stehle, 1970) and materials exhibiting an optical bandgap (Yablonovitch, 1987). We
will illustrate the modification of spontaneous emission in a simple case by describ-
ing the theory and experimental results for an atom in a planar cavity of the kind
considered in connection with the Casimir effect.

A Theory

For this application, we will assume that the transverse dimensions are large, L � λ0,
while the longitudinal dimension ∆z (along the z-axis) is comparable to the transition
wavelength, ∆z ∼ λ0. The mode wavenumbers are then k = q + (nπ/∆z)uz, where
q = kxux + kyuy, and the cavity frequencies are

ωqn = c

[
q2 +

( nπ

∆z

)2
]1/2

. (4.168)

Both n and q are discrete, but the transverse mode numbers q will become densely
spaced in the limit L → ∞. The Schrödinger-picture field operator is given by the
analogue of eqn (3.69),

E(+) (r) = i
∑
q

∑
n

Cn∑
s=1

√
�ωqn

2ε0
aqnsEqns (r) , (4.169)

where the mode functions are described in Appendix B.4 and Cn is the number of
independent polarization states for the mode (n,q): C0 = 1 and Cn = 2 for n � 1.

Since the separation, ∆z, between the plates is comparable to the wavelength, the
transition rate will depend on the distance from the atom to each plate. Consequently,
we are not at liberty to assume that the atom is located at any particular z-value. On
the other hand, the dimensions along the x- and y-axes are effectively infinite, so we
can choose the origin in the (x, y)-plane at the location of the atom, i.e. r = (0, z). The
interaction Hamiltonian is given by eqns (4.149) and (4.150), but the Rabi operator
in this case is a function of z, with the positive-frequency part

Ω(+) (z) = i
∑
q

∑
n

Cn∑
s=1

√
�ωqn

2ε0
aqnsd̂ · Eqns (0, z) . (4.170)

The transition of interest is |ε2, 0〉 → |ε1, 1qns〉, so only Ω(−) (z) can contribute.
For each value of n and z the remaining calculation is a two-dimensional version of
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the free-space case. Substituting the relevant matrix elements into eqn (4.113) and
multiplying by L2d2q/ (2π)2—the number of modes in the wavevector element d2q—
yields the differential transition rate

dW2→1,qns (z) = 2π |M21,ns (q, z)|2 δ (ω21 − ωqn)
d2q

(2π)2
, (4.171)

where

M21,ns (q, z) =
√

�ωqn

2ε0
Ld21 · Eqns (0, z) . (4.172)

For a given n, the transition rate into all transverse wavevectors q and polarizations
s is

A2→1,n (z) =
Cn∑
s=1

∫
d2q

(2π)2
2π |M21,ns (q, z)|2 δ (ω21 − ωqn) , (4.173)

and the total transition rate is the sum of the partial rates for each n,

A2→1 (z) =
∞∑

n=0

A2→1,n (z) . (4.174)

The delta function in eqn (4.173) is eliminated by using polar coordinates, d2q =
qdqdφ, and then making the change of variables q → ω/c = ωqn/c. The result is
customarily expressed in terms of a density of states factor Dn (ω21), defined as the
number of resonant modes per unit frequency per unit of transverse area. For a given
n there are Cn polarizations, so

Dn (ω21) = Cn

∫
d2q

(2π)2
δ (ω21 − ωqn)

=
Cn

2π

∫
ω0n

dω ω

c2
δ (ω21 − ω)

=
Cnω21

2πc2
θ

(
∆z − nλ0

2

)
, (4.175)

where θ (ν) is the standard step function, λ0 = 2πc/ω21 is the wavelength for the
transition, and ω0n = nπc/∆z. This density of states counts all polarizations and the
full azimuthal angle, so in evaluating eqn (4.173) the extra 2πCn must be divided out.
The transition rate then appears as an average over azimuthal angles and polarizations:

A2→1,n (z) = Dn (ω21)
1

Cn

Cn∑
s=1

∫
dφ

2π
2π |M21,qns (z)|2 . (4.176)

According to eqn (4.175) the density of states vanishes for ∆z/λ0 < n/2; therefore,
emission into modes with n > 2∆z/λ0 is forbidden. This reflects the fact that the
high-n modes are not in resonance with the atomic transition. On the other hand,
the density of states for the (n = 0)-mode is nonzero for any value of ∆z/λ0, so this
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transition is only forbidden if it violates atomic selection rules. In fact, this is the only
possible decay channel for ∆z < λ0/2. In this case the total decay rate is

A2→1,0 =
[

1
4πε0

]
2πk2

0 |(dz)21|2
�∆z

=

[
3 |(dz)21|2
|d21|2

]
λ0

4∆z
Avac , (4.177)

where Avac is the vacuum value given by eqn (4.162). The factor in square brackets
is typically of order unity, so the decay rate is enhanced over the vacuum value when
∆z < λ0/4, and suppressed below the vacuum value for λ0/4 < ∆z < λ0/2.

If the dipole selection rules (4.137) impose (dz)21 = 0, then decay into the (n = 0)-
mode is forbidden, and it is necessary to consider somewhat larger separations, e.g.
λ0/2 < ∆z < λ0. In this case, the decay to the (n = 1)-mode is the only one allowed.
There are now two polarizations to consider, the P -polarization in the (q̃,uz)-plane
and the orthogonal S-polarization along uz × q̃. We will simplify the calculation by
assuming that the matrix element d21 is real. In the general case of complex d21 a
separate calculation for the real and imaginary parts must be done, as in eqn (4.161).

For real d21 the polar angle φ can be taken as the angle between d21 and q. The
assumption that (dz)21 = 0 combines with the expressions (B.82) and (B.83), for the
P - and S-polarizations, respectively, to yield

A2→1,1 =
3
2

(
λ0

2∆z

)[
1 +

(
λ0

2∆z

)2
]

sin2
( πz

∆z

)
θ

(
∆z − λ0

2

)
Avac , (4.178)

where we have used the selection rule to impose
(
d⊥

)2 = d2. The decay rate depends
on the location of the atom between the plates, and achieves its maximum value at
the midplane z = ∆z/2. In a real experiment, there are many atoms with unknown
locations, so the observable result is the average over z:

A2→1,1 =
3
4

(
λ0

2∆z

)[
1 +

(
λ0

2∆z

)2
]

θ

(
∆z − λ0

2

)
Avac . (4.179)

This rate vanishes for λ0 > 2∆z, and for λ0/2∆z slightly less than unity it is enhanced
over the vacuum value:

A2→1,1 � 3
2
Avac for λ0/2∆z � 1 . (4.180)

The decay rate is suppressed below the vacuum value for λ0/2∆z � 0.8.

B Experiment

The clear-cut and striking results predicted by the theoretical model are only possible
if the separation between the plates is comparable to the wavelength of the emitted
radiation. This means that experiments in the optical domain would be extremely
difficult. The way around this difficulty is to use a Rydberg atom, i.e. an atom which
has been excited to a state—called a Rydberg level—with a large principal quantum
number n. The Bohr frequencies for dipole allowed transitions between neighboring
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high-n states are of O
(
1/n3

)
, so the wavelengths are very large compared to optical

wavelengths.
In the experiment we will discuss here (Hulet et al., 1985), cesium atoms were

excited by two dye laser pulses to the |n = 22, m = 2〉 state. The small value of
the magnetic quantum number is explained by the dipole selection rules, ∆l = ±1,
∆m = 0,±1. These restrictions limit the m-values achievable in the two-step exci-
tation process to a maximum of m = 2. This is a serious problem, since the state
|n = 22, m = 2〉 can undergo dipole allowed transitions to any of the states |n′, m′〉 for
2 � n′ � 21 and m′ = 1, 3. A large number of decay channels would greatly compli-
cate both the experiment and the theoretical analysis. This complication is avoided by
exposing the atom to a combination of rapidly varying electric fields and microwave
radiation which leave the value of n unchanged, but increase m to the maximum pos-
sible value, m = n − 1, a so-called circular state that corresponds to a circular Bohr
orbit. The overall process leaves the atom in the state |n = 22, m = 21〉 which can
only decay to |n = 21, m = 20〉. This simplifies both the experimental situation and
the theoretical model. The wavelength for this transition is λ0 = 0.45 mm, so the me-
chanical problem of aligning the parallel plates is much simpler than for the Casimir
force experiment. The gold-plated aluminum plates are held apart by quartz spacers
at a separation of ∆z = 230.1 µm so that λ0/2∆z = 0.98.

The atom has now been prepared so that there is only one allowed atomic transi-
tion, but there are still two modes of the radiation field, Eq0 and Eq1s, into which the
atom can decay. There is also the difficult question of how to produce controlled small
changes in the plate spacing in order to see the effects on the spontaneous emission
rate. Both of these problems are solved by the expedient of establishing a voltage drop
between the plates. The resulting static electric field polarizes the atom so that the
natural quantization axis lies in the direction of the field. The matrix elements of the
z-component of the dipole operator,

〈
m
∣∣d̂z

∣∣m′〉, vanish unless m′ = m, but transitions
of this kind are not allowed by the dipole selection rules, m′ = m ± 1, for the circu-
lar Rydberg atom. This amounts to setting (dz)21 = 0. Emission of Eq0-photons is
therefore forbidden, and the atom can only emit Eq1s-photons. The field also causes
second-order Stark shifts (Cohen-Tannoudji et al., 1977b, Complement E-XII) which
decrease the difference in the atomic energy levels and thus increase the wavelength
λ0. This means that the wavelength can be modified by changing the voltage, while the
plate spacing is left fixed. The onset of field ionization limits the field strength that can
be employed, so the wavelength can only be tuned by ∆λ = 0.04λ0. Fortunately, this
is sufficient to increase the ratio λ0/2∆z through the critical value of unity, at which
the spontaneous emission should be quenched. At room temperature the blackbody
spectrum contains enough photons at the transition frequency to produce stimulated
emission. The observed emission rate would then be the sum of the stimulated and
spontaneous decay rates. In the model this would mean that we could not assume that
the initial state is |ε1, 0〉. This additional complication is avoided by maintaining the
apparatus at 6.5 K. At this low temperature, stimulated emission due to blackbody
radiation at λ0 is strongly suppressed.

A thermal atomic beam of cesium first passes through a production region, where
the atoms are transferred to the circular state, then through a drift region—of length
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L = 12.7 cm—between the parallel plates. The length L is chosen so that the mean
transit time is approximately the same as the vacuum lifetime. After passing through
the drift region the atoms are detected by field ionization in a region where the field
increases with length of travel. The ionization rates for n = 22 and n = 21 atoms differ
substantially, so the location of the ionization event allows the two sets of atoms to be
resolved.

In this way, the time-of-flight distribution of the n = 22 atoms was measured. In
the absence of decay, the distribution would be determined by the original Boltzmann
distribution of velocities, but when decay due to spontaneous emission is present, only
the faster atoms will make it through the drift region. Thus the distribution will shift
toward shorter transit times. In the forbidden region, λ0/2∆z > 1, the data were
consistent with A2→1,1 = 0, with estimated errors ±0.05Avac. In other words, the
lifetime of an atom between the plates is at least twenty times longer than the lifetime
of the same atom in free space.

4.9.5 Raman scattering∗

In Raman scattering, a photon at one frequency is absorbed by an atom or molecule,
and a photon at a different frequency is emitted. The simplest energy-level diagram
permitting this process is shown in Fig. 4.2. This is a second-order process, so it
requires the calculation of the second-order amplitude V

(2)
fi , where the initial and

final states are respectively |Θi〉 = |ε1, 1ks〉 and |Θf〉 = |ε2, 1k′s′〉. The representation
(4.149) allows the operator product on the right side of eqn (4.120) to be written as

Hint (t1)Hint (t2) = �2
[
Ω(−) (t1)Ω(−) (t2) + Ω(+) (t1)Ω(+) (t2)

]
+ �2

[
Ω(−) (t1)Ω(+) (t2) + Ω(+) (t1) Ω(−) (t2)

]
,

(4.181)

where the first two terms change photon number by two and the remaining terms
leave photon number unchanged. Since the initial and final states have equal photon
number, only the last two terms can contribute in eqn (4.120); consequently, the matrix
element of interest is

�2
〈
Θf

∣∣∣Ω(−) (t1)Ω(+) (t2) + Ω(+) (t1)Ω(−) (t2)
∣∣∣Θi

〉
. (4.182)

�

�

�� �� ��

�

Fig. 4.2 Raman scattering from a three-level

atom. The transitions 1 ↔ 3 and 2 ↔ 3 are

dipole allowed. A photon in mode ks scatters

into the mode k′s′.
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Since t2 < t1 the first term describes absorption of the initial photon followed by
emission of the final photon, as one would intuitively expect. The second term is rather
counterintuitive, since the emission of the final photon precedes the absorption of the
initial photon. These alternatives are shown respectively by the Feynman diagrams
(1) and (2) in Fig. 4.3, which we will call the intuitive and counterintuitive diagrams
respectively.

The calculation of the transition amplitude by eqn (4.123) yields

V
(2)
fi = −i

∑
u

〈
ε2, 1k′s′

∣∣Ω(−)
∣∣Λu

〉 〈
Λu

∣∣Ω(+)
∣∣ ε1, 1ks

〉
ωk′ +

(
ε2−Eu

�

)
+ iε

2πδ (ωk − ωk′ − ω21)

− i
∑

u

〈
ε2, 1k′s′

∣∣Ω(+)
∣∣Λu

〉 〈
Λu

∣∣Ω(−)
∣∣ ε1, 1ks

〉
ωk′ +

(
ε2−Eu

�

)
+ iε

2πδ (ωk − ωk′ − ω21) ,

(4.183)
where the two sums over intermediate states correspond respectively to the intuitive
and counterintuitive diagrams. Since Ω(+) decreases the photon number by one, the
intermediate states in the first sum have the form |Λu〉 = |εq, 0〉. In this simple model
the only available state is |Λu〉 = |ε3, 0〉. Thus the energy is Eu = ε3 and the denomi-
nator is ωk′ −ω32+iε. In fact, the intermediate state can be inferred from the Feynman
diagram by passing a horizontal line between the two vertices. For the intuitive dia-
gram, the only intersection is with the internal atom line, but in the counterintuitive
diagram the line passes through both photon lines as well as the atom line. In this
case, the intermediate state must have the form |Λu〉 = |ε1, 1ks, 1k′s′〉, with energy
Eu = ε3 + �ωk′ + �ωk and denominator −ωk − ω32 + iε. These claims can be verified
by a direct calculation of the matrix elements in the second sum.

This calculation yields the explicit expression

V
(2)
fi = −i

{
M∗

32,s′ (k′)M31,s (k)
ωk′ − ω32 + iε

+
M23,s (k) M∗

13,s′ (k′)
−ωk − ω32 + iε

}
2π

V
δ (ωk − ωk′ − ω21) ,

(4.184)

Fig. 4.3 Feynman diagrams for Raman scat-

tering. Diagram (1) shows the intuitive order-

ing in which the initial photon is absorbed

prior to the emission of the final photon. Di-

agram (2) shows the counterintuitive case in

which the order is reversed.
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where the matrix elements are defined in eqn (4.156). Multiplying
∣∣V (2)

fi

∣∣2 by the
number of modes

[
V d3k/ (2π)3

][
V d3k′/ (2π)3

]
and using the rule (4.119) gives the

differential transition rate

dW3ks→2k′s′ = 2π

∣∣∣∣M∗
32,s′ (k′)M31,s (k)
ωk′ − ω32 + iε

+
M23,s (k) M∗

13,s′ (k′)
−ωk − ω32 + iε

∣∣∣∣2
× δ (ωk − ωk′ − ω21)

d3k

(2π)3
d3k′

(2π)3
. (4.185)

4.10 Exercises

4.1 Semiclassical electrodynamics

(1) Derive eqn (4.7) and use the result to get eqn (4.27).
(2) For the classical field described in the radiation gauge, do the following.

(a) Derive the equation satisfied by the scalar potential ϕ (r).
(b) Show that

∇2 1
|r − r0| = −4πδ (r − r0) .

(c) Combine the last two results to derive the Coulomb potential term in eqn
(4.31).

4.2 Maxwell’s equations from the Heisenberg equations of motion

Derive Maxwell’s equations and Lorentz equations of motion as given by eqns (4.33)–
(4.37), and eqn (4.42), using Heisenberg’s equations of motions and the relevant equal-
time commutators.

4.3 Spatial inversion and time reversal∗

(1) Use eqn (4.55) to evaluate UP |n〉 for a general number state, and explain how to
extend this to all states of the field.

(2) Verify eqn (4.61) and fill in the details needed to get eqn (4.64).
(3) Evaluate ΛT |n〉 for a general number state, and explain how to extend this to all

states of the field. Watch out for antilinearity.

4.4 Stationary density operators

Use eqns (3.83), (4.67), and U (−t) = U † (t), together with cyclic invariance of the
trace, to derive eqns (4.69) and (4.71).

4.5 Spin-flip transitions

The neutron is a spin-1/2 particle with zero charge, but it has a nonvanishing magnetic
moment MN = − |gN |µNσ, where gN is the neutron gyromagnetic ratio, µN is the
nuclear magneton, and σ = (σx, σy , σz) is the vector of Pauli matrices. Since the
neutron is a massive particle, it is a good approximation to treat its center-of-mass
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motion classically. All of the following calculations can, therefore, be done assuming
that the neutron is at rest at the origin.

(1) In the presence of a static, uniform, classical magnetic field B0 the Schrödinger-
picture Hamiltonian—neglecting the radiation field—is H0 = −MN ·B0. Take the
z-axis along B0, and solve the time-independent Schrödinger equation, H0 |ψ〉 =
ε |ψ〉, for the ground state |ε1〉, the excited state |ε2〉, and the corresponding en-
ergies ε1 and ε2.

(2) Include the effects of the radiation field by using the Hamiltonian H = H0 + Hint,
where Hint = −MN ·B and B is given by eqn (3.70), evaluated at r = 0.
(a) Evaluate the interaction-picture operators aks (t) and σ± (t) in terms of the

Schrödinger-picture operators aks and σ± = (σx ± iσy) /2 (see Appendix
C.3.1). Use the results to find the time dependence of the Cartesian com-
ponents σx (t), σy (t), σz (t).

(b) Find the condition on the field strength |B0| that guarantees that the zero-
order energy splitting is large compared to the strength of Hint, i.e.

ε2 − ε1 � |〈ε1, 1ks |Hint| ε2, 0〉| ,
where |ε1, 1ks〉 = |ε1〉 |1ks〉, |ε2, 0〉 = |ε2〉 |0〉, and |1ks〉 = a†

ks |0〉. Explain the
physical significance of this condition.

(c) Using Section 4.9.3 as a guide, calculate the spontaneous emission rate (Ein-
stein A coefficient) for a spin-flip transition. Look up the numerical values
of |gN | and µN and use them to estimate the transition rate for magnetic
field strengths comparable to those at the surface of a neutron star, i.e.
|B0| ∼ 1012 G.

4.6 The quantum top

Replace the unperturbed Hamiltonian in Exercise 4.5 by H0 = −MN · B0 (t), where
B0 (t) changes direction as a function of time. Use this Hamiltonian to derive the
Heisenberg equations of motion for σ (t) and show that they can be written in the
same form as the equations for a precessing classical top.

4.7 Transition probabilities for a neutron in combined static and
radio-frequency fields∗

Solve the Schrödinger equation for a neutron in a combined static and radio-frequency
magnetic field. A static field of strength B0 is applied along the z-axis, and a circularly-
polarized, radio-frequency field of classical amplitude B1 and frequency ω is applied
in the (x, y)-plane, so that the total Hamiltonian is H = H0 + Hint, where

H0 = −MzB0 ,

Hint = −MxB1 cosωt + MyB1 sin ωt ,

Mx = 1
2µσx, My = 1

2µσy, Mz = 1
2µσz , µ is the magnetic moment of the neutron,

and the σs are Pauli matrices. Show that the probability for a spin flip of the neutron
initially prepared (at t = 0) in the ms = + 1

2 state to the ms = − 1
2 state is given by
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P 1
2→− 1

2
(t) = sin2 Θ sin2

(
1
2
at

)
,

where

sin2 Θ =
ω2

1

(ω0 − ω)2 + ω2
1

,

a =
√

(ω0 − ω)2 + ω2
1 ,

ω0 = µB0/�, and ω1 = µB1/�. Interpret this result geometrically (Rabi et al., 1954).
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Coherent states

In the preceding chapters, we have frequently called upon the correspondence principle
to justify various conjectures, but we have not carefully investigated the behavior of
quantum states in the correspondence-principle limit. The difficulties arising in this
investigation appear in the simplest case of the excitation of a single cavity mode
Eκ (r). In classical electromagnetic theory—as described in Section 2.1—the state of
a single mode is completely described by the two real numbers (Qκ0, Pκ0) specifying
the initial displacement and momentum of the corresponding radiation oscillator. The
subsequent motion of the oscillator is determined by Hamilton’s equations of motion.
The set of classical fields representing excitation of the mode κ is therefore represented
by the two-dimensional phase space {(Qκ, Pκ)}.

In striking contrast, the quantum states for a single mode belong to the infinite-
dimensional Hilbert space spanned by the family of number states, {|n〉 , n = 0, 1, . . .}.
In order for a state |Ψ〉 to possess a meaningful correspondence-principle limit, each
member of the infinite set, {cn = 〈n |Ψ 〉 , n = 0, 1, . . .}, of expansion coefficients must
be expressible as a function of the two classical degrees of freedom (Qκ0, Pκ0). This
observation makes it clear that the number-state basis is not well suited to demonstrat-
ing the correspondence-principle limit. In addition to this fundamental issue, there are
many applications for which a description resembling the classical phase space would
be an advantage.

These considerations suggest that we should search for quantum states of light that
are quasiclassical; that is, they approach the classical description as closely as possi-
ble. To this end, we first review the solution of the corresponding problem in ordinary
quantum mechanics, and then apply the lessons learnt there to the electromagnetic
field. After establishing the basic form of the quasiclassical states, we will investigate
possible physical sources for them and the experimental evidence for their existence.
The final sections contain a review of the mathematical properties of quasiclassical
states, and their use as a basis for representations of general quantum states.

5.1 Quasiclassical states for radiation oscillators

In order to simplify the following discussion, we will at first only consider situations
in which a single mode of the electromagnetic field is excited. For example, excitation
of the mode Eκ (r) in an ideal cavity corresponds to the classical fields
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A (r, t) =
1√
ε0

Qκ (t)Eκ (r) ,

E (r, t) = − 1√
ε0

Pκ (t)Eκ (r) .

(5.1)

5.1.1 The mechanical oscillator

In Section 2.1 we guessed the form of the quantum theory of radiation by using the
mathematical identity between a radiation oscillator and a mechanical oscillator of
unit mass. The real Q and P variables of the classical oscillator can be simultaneously
specified; therefore, the trajectory (Q (t) , P (t)) of the oscillator is completely described
by the time-dependent, complex amplitude

A (t) =
ωQ (t) + iP (t)√

2�ω
, (5.2)

where the � is introduced for dimensional convenience only. Hamilton’s equations of
motion for the real variables Q and P are equivalent to the complex equation of motion

Ȧ = −iωA , (5.3)

with the general solution given by the phasor (a complex number of fixed modulus)

A (t) = α exp (−iωt) . (5.4)

The initial complex amplitude of the oscillator is related to α by

A (t = 0) =
ωQ0 + iP0√

2�ω
= α , (5.5)

and the conserved classical energy is

Ecl =
1
2
(
ω2Q2

0 + P0

)
= �ωα∗α . (5.6)

Taking the real and imaginary parts of A (t), as given in eqn (5.4), shows that the
solution traces out an ellipse in the (Q, P ) phase space. An equivalent representation
is the circle traced out by the tip of the phasor A (t) in the complex (ReA, ImA)
space.

For the quantum oscillator, the classical amplitude A (0) and the energy �ω |α|2
are respectively replaced by the lowering operator

â =
ωq̂ + ip̂√

2�ω
(5.7)

and the Hamiltonian operator Ĥosc = �ωâ†â. The Heisenberg equation of motion for
â(t),

dâ

dt
= − i

�
[â, Ĥosc] = −iωâ , (5.8)

has the same form as the classical equation of motion (5.3).
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We can now use an argument from quantum mechanics (Cohen-Tannoudji et al.,
1977a, Chap. V, Complement G) to construct the quasiclassical state. According to
the correspondence principle, the classical quantities α and Ecl must be identified with
the expectation values of the corresponding operators, so the quasiclassical state |φ〉
corresponding to the classical value α should satisfy 〈φ |â|φ〉 = α and

〈
φ
∣∣Ĥosc

∣∣φ〉 =
Ecl = �ω |α|2. Inserting Ĥosc = �ωâ†â into the latter condition and using the former
condition to evaluate |α|2 produces〈

φ
∣∣â†â

∣∣φ〉 =
〈
φ
∣∣â†∣∣φ〉 〈φ |â|φ〉 . (5.9)

The joint variance of two operators X and Y , defined by

V (X, Y ) = 〈(X − 〈X〉) (Y − 〈Y 〉)〉 = 〈XY 〉 − 〈X〉 〈Y 〉 , (5.10)

reduces to the ordinary variance V (X) for X = Y . In this language, the meaning of
eqn (5.9) is that the joint variance of â and â† vanishes,

V
(
â†, â

)
= 0 , (5.11)

i.e. the operators â and â† are statistically independent for a quasiclassical state. In
its present form it is not obvious that V

(
â†, â

)
refers to measurable quantities, but

this concern can be addressed by using eqn (5.7) to get the equivalent form

V
(
â†, â

)
=

ω

2�

〈
(q̂ − 〈q̂〉)2

〉
+

1
2�ω

〈
(p̂ − 〈p̂〉)2

〉
− 1

2
. (5.12)

The condition (5.11) is the fundamental property defining quasiclassical states, and
it determines |φ〉 up to a phase factor. To see this, we define a new operator b̂ = â−α

and a new state |χ〉 = b̂ |φ〉, to get

〈χ|χ〉 =
〈
φ
∣∣∣̂b†b̂∣∣∣φ〉 = V

(
â†, â

)
= 0 . (5.13)

The squared norm 〈χ |χ 〉 only vanishes if |χ〉 = 0; consequently, â |φ〉 = α |φ〉. Thus
the quasiclassical state |φ〉 is an eigenstate of the lowering operator â with eigenvalue
α. For this reason it is customary to rename |φ〉 as |α〉, so that

â |α〉 = α |α〉 . (5.14)

For non-hermitian operators, there is no general theorem guaranteeing the existence
of eigenstates, so we need to find an explicit solution of eqn (5.14). In this section,
we will do this in the usual coordinate representation, in order to gain an intuitive
understanding of the physical significance of |α〉. In the following section, we will find
an equivalent form by using the number-state basis. This is useful for understanding
the statistical properties of |α〉.

The coordinate-space wave function for |α〉 is φα (Q) = 〈Q|α〉, where q̂ |Q〉 =
Q |Q〉. In this representation, the action of q̂ is q̂φα (Q) = Qφα (Q), and the action of
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the momentum operator is p̂φα (Q) = −i� (d/dQ)φα (Q). After inserting this into eqn
(5.7), the eigenvalue problem (5.14) is represented by the differential equation

1√
2�ω

(
ωQ + �

d

dQ

)
φα (Q) = αφα (Q) , (5.15)

which has the normalizable solution

φα (Q) =
( ω

π�

)1/4

exp

[
− (Q − Q0)

2

4∆q2
0

]
exp

[
i
P0Q

�

]
(5.16)

for any value of the complex parameter α. The parameters Q0 and P0 are given by
Q0 =

√
2�/ω Re α, P0 =

√
2�ω Im α, and the width of the Gaussian is ∆q0 =

√
�/2ω.

We have chosen the prefactor so that φα (Q) is normalized to unity. For Q0 = P0 =
0, φ0 (Q) is the ground-state wave function of the oscillator; therefore, the general
quasiclassical state, φα (Q), represents the ground state of an oscillator which has been
displaced from the origin of phase space to the point (Q0, P0). For the Q dependence
this is shown explicitly by the probability density |φα (Q)|2, which is a Gaussian in
Q centered on Q0. An alternative representation using the momentum-space wave
function, φα (P ) = 〈P |α〉, can be derived in the same way—or obtained from φα (Q)
by Fourier transform—with the result

φα (P ) = (π�ω)−1/4 exp

[
− (P − P0)

2

4∆p2
0

]
exp

[
−i

Q0P

�

]
, (5.17)

where ∆p0 =
√

�ω/2. The product ∆p0∆q0 = �/2, so |α〉 is a minimum-uncertainty
state; it is the closest we can come to the classical description. The special values
∆q0 =

√
�/2ω and ∆p0 =

√
�ω/2 define the standard quantum limit for the

harmonic oscillator.

5.1.2 The radiation oscillator

Applying these results to the radiation oscillator for a particular mode Eκ involves a
change of terminology and, more importantly, a change in physical interpretation. For
the radiation oscillator corresponding to the mode Eκ, the defining equation (5.14) for
a quasiclassical state is replaced by

aκ′ |ακ〉 = δκ′κακ |ακ〉 ; (5.18)

in other words, the quasiclassical state for this mode is the vacuum state for all other
modes. This is possible because the annihilation operators for different modes commute
with each other. A simple argument using eqn (5.18) shows that the averages of all
normal-ordered products completely factorize:〈

ακ

∣∣∣(a†
κ

)m
(aκ)n

∣∣∣ακ

〉
= (α∗

κ)m (ακ)n

=
(〈

ακ

∣∣a†
κ

∣∣ακ

〉)m
(〈ακ |aκ|ακ〉)n ; (5.19)

consequently, |ακ〉 is called a coherent state. The definition (5.18) shows that |ακ〉
belongs to the single-mode subspace Hκ ⊂ HF that is spanned by the number states
for the mode Eκ.
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The new physical interpretation is clearest for the radiation modes of a physical
cavity. In the momentum-space representation, the operator pκ is just multiplication
by the eigenvalue Pκ, and the expansion (2.99) shows that the electric field oper-
ator is a function of the pκs, so that E (r)φα (Pκ) = Eκ

√
V Eκ (r) φα (Pκ) , where

Eκ = Pκ/
√

ε0V is the electric field strength associated with Pκ. The dimension-
less function

√
V Eκ (r) is of order unity and describes the shape of the mode func-

tion. The corresponding result in the coordinate representation is B (r)φα (Qκ) =
Bκ

√
V Bκ (r)φα (Qκ) with Bκ = kκQκ/

√
ε0V =

√
µ0/V ωκQκ. Eliminating Pκ in

favor of Eκ allows the Gaussian factor in φα (P ) to be expressed as

exp
[
− ε0V

2�ωκ
(Eκ − εκ)2

]
= exp

[
− (Eκ − εκ)2

4e2κ

]
, (5.20)

where eκ is the vacuum fluctuation strength defined by eqn (2.188). Thus a coherent
state displays a Gaussian probability density in the electric field amplitude Eκ with
average εκ, and variance V (Eκ) = 2e2κ. Similarly the coordinate-space wave function
is a Gaussian in Bκ with average βκ and variance 2b2

κ. The classical limit corresponds
to |Eκ| � eκ and |Bκ| � bκ, which are both guaranteed by |ακ| � 1. As an example,
consider ωκ = 1015 s−1 (λκ ≈ 2 µm) and V = 1 cm3, then the vacuum fluctuation
strength for the electric field is eκ � 0.08 V/m.

The fact that ακ is a phasor provides the useful pictorial representation shown in
Fig. 5.1. This is equivalent to a plot in the phase plane (Qκ, Pκ). The result (5.17) for
the wave function and the phase plot Fig. 5.1 are expressed in terms of the excitation
of a single radiation oscillator in a physical cavity, but the idea of coherent states is not
restricted to this case. The annihilation operator a can refer to a cavity mode (aκ), a
(box-quantized) plane wave (aks), or a general wave packet operator (a [w]), as defined
in Section 3.5.2, depending on the physical situation under study. In the interests of
simplicity, we will initially consider situations in which only one annihilation operator a
(one electromagnetic degree of freedom) is involved. This is sufficient for a large variety

Fig. 5.1 The coherent state (displaced ground

state) |α0〉 is pictured as an arrow joining the

origin to the point α0 in the complex plane.

The quantum uncertainties of the ground state

(at the origin) and the displaced ground state

are each represented by an error circle (quan-

tum fuzzball).

���α�

�� �α�

α
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of applications, but the physical justification for isolating the single-mode subspace
associated with a is that coupling between modes is weak. This fact should always be
kept in mind, since a more complete calculation may involve taking the weak coupling
into account, e.g. when considering dissipative or nonlinear effects.

5.1.3 Coherent states in the number-state basis

We now consider a single mode and represent |α〉 by the number-state expansion

|α〉 =
∞∑

n=0

bn |n〉 . (5.21)

According to eqn (2.78) the eigenvalue equation (5.14) can then be written as

∞∑
n=0

√
nbn |n − 1〉 = α

∞∑
n=0

bn |n〉 . (5.22)

Equating the coefficients of the number states yields the recursion relation, bn+1 =(
α/

√
n + 1

)
bn, which has the solution bn = b0α

n/
√

n!. Thus each coefficient bn is a
function of the complex parameter α, in agreement with the discussion at the beginning
of the chapter. The vacuum coefficient b0 is chosen to get a normalized state, with the
result

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 . (5.23)

This construction works for any complex number α, so the spectrum of the operator a
is the entire complex plane. A similar calculation for a† fails to find any normalizable
solutions; consequently, a† has neither eigenvalues nor eigenvectors.

The average number of photons for the state |α〉 is n =
〈
α
∣∣a†a

∣∣α〉 = |α|2, and the
probability that n is the outcome of a measurement of the photon number is

Pn = e−n nn

n!
, (5.24)

which is a Poisson distribution. The variance in photon number is

V (N) =
〈
α
∣∣N2

∣∣α〉− 〈α |N |α〉2 = |α|2 = n . (5.25)

5.2 Sources of coherent states

Coherent states are defined by minimizing quantum fluctuations in the electromagnetic
field, but the light emitted by a real source will display fluctuations for two reasons.
The first is that vacuum fluctuations of the field are inescapable, even in the absence
of charged particles. The second is that quantum fluctuations of the charged particles
in the source will imprint themselves on the emitted light. This suggests that a source
for coherent states should have minimal quantum fluctuations, and further that the
forces exerted on the source by the emitted radiation—the quantum back action—
should be negligible. The ideal limiting case is a purely classical current, which is so
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strong that the quantum back action can be ignored. In this situation the material
source is described by classical physics, while the light is described by quantum theory.
We will call this the hemiclassical approximation, to distinguish it from the familiar
semiclassical approximation. The linear dipole antenna shown in Fig. 5.2 provides a
concrete example of a classical source.

In free space, the classical far-field solution for the dipole antenna is an expanding
spherical wave with amplitude depending on the angle between the dipole p and the
radius vector r extending from the antenna to the observation point. A receiver placed
at this point would detect a field that is locally approximated by a plane wave with
propagation vector k = (ω/c) r/r and polarization in the plane defined by p and r.
Another interesting arrangement would be to place the antenna in a microwave cavity.
In this case, d and ω could be chosen so that only one of the cavity modes is excited.
In either case, what we want now is the answer to the following question: What is the
quantum nature of the radiation field produced by the antenna?

We will begin with a quantum treatment of the charges and introduce the classical
limit later. For weak fields, the A2-term in eqn (4.32) for the Hamiltonian and the
A-term in eqn (4.43) for the velocity operator can both be neglected. In this approx-
imation the current operator and the interaction Hamiltonian are respectively given
by

ĵ (r) =
∑

ν

δ (r−r̂ν) qν
p̂ν

mν
(5.26)

and
Hint = −

∫
d3r ĵ (r) ·A (r) . (5.27)

This approximation is convenient and adequate for our purposes, but it is not strictly
necessary. A more exact treatment is given in (Cohen-Tannoudji et al., 1989, Chap.
III).

For an antenna inside a cavity, the positive-frequency part of the A-field is

A(+) (r) =
∑

κ

√
�

2ε0ωκ
aκEκ (r) , (5.28)

Fig. 5.2 A center fed linear dipole antenna

excited at frequency ω. The antenna is short,

i.e. d � λ = 2πc/ω.
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and the box-normalized expansion for an antenna in free space is obtained by Eκ (r) →
ekse

ik·r/
√

V . Using eqn (5.28) in the expressions for Hem and Hint produces

Hem =
∑

κ

�ωκa†
κaκ , (5.29)

and

Hint = −
∑

κ

√
�

2ε0ωκ
a†

κ

∫
d3r ĵ (r) · E∗

κ (r) + HC . (5.30)

In the Heisenberg picture, with aκ → aκ (t) and ĵ (r) → ĵ (r, t), the equation of
motion for aκ (t) is

i�
∂

∂t
aκ (t) = [aκ (t) , H ]

= �ωκaκ (t) −
∑

κ

√
�

2ε0ωκ

∫
d3r ĵ (r, t) · E∗

κ (r) . (5.31)

In an exact treatment these equations would have to be solved together with the
Heisenberg equations for the charges, but we will avoid this complication by assum-
ing that the antenna current is essentially classical. The quantum fluctuations in the
current are represented by the operator

δĵ (r, t) = ĵ (r, t) − J (r, t) , (5.32)

where the average current is

J (r, t) = Tr
[
ρchgĵ (r, t)

]
, (5.33)

and ρchg is the density operator for the charges in the absence of any photons. The
expectation value J (r, t) represents an external classical current, which is analogous
to the external, classical electromagnetic field in the semiclassical approximation. With
this notation, eqn (5.31) becomes

i�
∂

∂t
aκ (t) = �ωκaκ (t) −

∑
κ

√
�

2ε0ωκ

∫
d3r J (r, t) · E∗

κ (r)

−
∑

κ

√
�

2ε0ωκ

∫
d3r δĵ (r, t) · E∗

κ (r) .

(5.34)

In the hemiclassical approximation the quantum fluctuation operator δĵ (r, t) is ne-
glected compared to J (r, t), so the approximate Heisenberg equation is

i�
∂

∂t
aκ (t) = �ωκaκ (t) −

∑
κ

√
�

2ε0ωκ

∫
d3r J (r, t) · E∗

κ (r) . (5.35)

This is equivalent to approximating the Schrödinger-picture interaction Hamiltonian
by

HJ (t) = −
∫

d3r J (r, t) · A (r) , (5.36)

which represents the quantized field interacting with the classical current J (r, t).
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The Heisenberg equation (5.35) is linear in the operators aκ (t), so the individual
modes are not coupled. We therefore restrict attention to a single mode and simplify
the notation by {aκ, ωκ, Eκ} → {a, ω, E}. The linearity of eqn (5.35) also allows us to
simplify the problem further by considering a purely sinusoidal current with frequency
Ω,

J (r, t) = J (r) e−iΩt + J ∗ (r) eiΩt . (5.37)

With these simplifications in force, the equation for a (t) becomes

i
∂

∂t
a (t) = ωa (t) − We−iΩt − W ′eiΩt , (5.38)

where

W =
√

1
2ε0�ωκ

∫
d3r J (r) · E∗ (r) ,

W ′ =
√

1
2ε0�ωκ

∫
d3r J ∗ (r) · E∗ (r) .

(5.39)

For this linear differential equation the operator character of a (t) is irrelevant, and
the solution is found by elementary methods to be

a (t) = ae−iωt + α (t) , (5.40)

where the c-number function α (t) is

α (t) = iWe−i(ω+Ω)t/2 sin
(

∆
2 t
)

∆
2

+ iW ′e−i∆t/2
sin

[
(ω+Ω)

2 t
]

ω+Ω
2

, (5.41)

and ∆ = ω−Ω is the detuning of the radiation mode from the oscillation frequency of
the antenna current. The first term has a typical resonance structure which shows—
as one would expect—that radiation modes with frequencies close to the antenna
frequency are strongly excited. The frequencies ω and Ω are positive by convention,
so the second term is always off resonance, and can be neglected in practice.

The use of the Heisenberg picture has greatly simplified the solution of this problem,
but the meaning of the solution is perhaps more evident in the Schrödinger picture.
The question we set out to answer is the nature of the quantized field generated by
a classical current. Before the current is turned on there is no radiation, so in the
Schrödinger picture the initial state is the vacuum: |Ψ (0)〉 = |0〉. In the Heisenberg
picture this state is time independent, and eqn (5.40) implies that a (t) |0〉 = α (t) |0〉.
Transforming back to the Schrödinger picture, by using eqn (3.83) and the identifica-
tion of the Heisenberg-picture state vector with the initial Schrödinger-picture state
vector, leads to

a |Ψ (t)〉 = α (t) |Ψ (t)〉 , (5.42)

where |Ψ (t)〉 = U (t) |Ψ (0)〉 is the Schrödinger-picture state that evolves from the
vacuum under the influence of the classical current. Thus the radiation field from
a classical current is described by a coherent state |α (t)〉, with the time-dependent
amplitude given by eqn (5.41). According to Section 5.2, the field generated by the
classical current is the ground state of an oscillator displaced by Q (t) ∝ Reα (t) and
P (t) ∝ Im α (t).
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5.3 Experimental evidence for Poissonian statistics

Experimental verification of the predicted properties of coherent states, e.g. the Pois-
sonian statistics of photon number, evidently depends on finding a source that produces
coherent states. The ideal classical currents introduced for this purpose in Section 5.2
provide a very accurate description of sources operating in the radio and microwave
frequency bands, but—with the possible exception of free-electron lasers—devices of
this kind are not found in the laboratory as sources for light at optical wavelengths.
Despite this, the folklore of laser physics includes the firmly held belief that the out-
put of a laser operated far above threshold is well approximated by a coherent state.
This claim has been criticized on theoretical grounds (Mølmer, 1997), but recent ex-
periments using the method of quantum tomography, explained in Chapter 17, have
provided strong empirical support for the physical reality of coherent states. This
subtle question is beyond the scope of our book, so we will content ourselves with a
simple plausibility argument supporting a coherent state model for the output of a
laser. This will be followed by a discussion of an experiment performed by Arecchi
(1965) to demonstrate the existence of Poissonian photon-counting statistics—which
are consistent with a coherent state—in the output of a laser operated well above
threshold.

5.3.1 Laser operation above threshold

What is the basis for the folk-belief that lasers produce coherent states, at least when
operated far above threshold? A plausible answer is that the assumption of essentially
classical laser light is consistent with the mechanism that produces this light. The
argument begins with the assumption that, in the correspondence-principle limit of
high laser power, the laser field has a well-defined phase. The phases of the individual
atomic dipole moments driven by this field will then be locked to the laser phase, so
that they all emit coherently into the laser field. The resulting reinforcement between
the atoms and the field produces a mutually coherent phase. Moreover, the reflection
of the generated light from the mirrors defining the resonant cavity induces a positive
feedback effect which greatly sharpens the phase of the laser field. In this situation
vacuum fluctuations in the light—the quantum back action mentioned above—have
a negligible effect on the atoms, and the polarization current density operator ∂P̂/∂t
behaves like a classical macroscopic quantity ∂P/∂t. Since ∂P/∂t oscillates at the
resonance frequency of the lasing transition, it plays the role of the classical current
in Section 5.2, and will therefore produce a coherent state.

The plausibility of this picture is enhanced by considering the operating conditions
in a real, continuous-wave (cw) laser. The net gain is the difference between the gain
due to stimulated emission from the population of inverted atoms and the linear losses
in the laser (usually dominated by losses at the output mirrors). The increase of the
stimulated emission rate as the laser intensity grows causes depletion of the atomic
inversion; consequently, the gain decreases with increasing intensity. This phenomenon
is called saturation, and in combination with the linear losses it reduces the gain until
it exactly equals the linear loss in the cavity. This steady-state balance between the
saturated gain and the linear loss is called gain-clamping. Therefore, in the steady
state the intensity-dependent gain is clamped at a value exactly equal to the distributed
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loss. The intensity of the light and the atomic polarization that produced it are in turn
clamped at fixed c-number values. In this way, the macroscopic atomic system becomes
insensitive to the quantum back-action of the radiation field, and acts like a classical
current source.

5.3.2 Arecchi’s experiment

In Fig. 5.3 we show a simplified description of Arecchi’s experiment, which measures
the statistics of photoelectrons generated by laser light transmitted through a ground-
glass disc. As a consequence of the transverse spatial coherence of the laser beam, light
transmitted through the randomly distributed irregularities in the disc will interfere
to produce the speckle pattern observed when an object is illuminated by laser light
(Milonni and Eberly, 1988, Sec. 15.8). In the far field of the disc, the transmitted light
passes through a pinhole—which is smaller than the characteristic spot size of the
speckle pattern—and is detected by a photomultiplier tube, whose output pulses enter
a pulse-height analyzer.

When the ground-glass disc is at rest, the light passing through the pinhole repre-
sents a single element of the speckle pattern.1 In this situation the temporal coherence
of the transmitted light is the same as that of original laser light, so the expectation
is that the detected light will be represented by a coherent state. Thus the photon
statistics should be Poissonian.

If the disc rotates so rapidly that the speckle features cross the pinhole in a time
short compared to the integration time of the detector, the transmitted light becomes
effectively incoherent. As a simple classical model of this effect, consider the vectorial
addition of phasors with random lengths (intensities) and directions (phases). The
resultant phasor is the solution to the 2D random-walk problem on the phasor plane.
In the limit of a large number of scatterers the distribution function for the resultant
phasor is a Gaussian centered at the origin. The incoherent light produced in this
way is indistinguishable from thermal light that has passed through a narrow spectral
filter. Therefore, one expects the resulting photon statistics to be described by the
Bose–Einstein distribution given by eqn (2.178).

Fig. 5.3 Schematic of Arecchi’s photon–

counting experiment. Light generated by a cw,

helium–neon laser is transmitted through a

ground-glass disc to a small pinhole located

in the far field of the disc and placed in front

of a photomultiplier tube. The resulting pho-

toelectron current is analyzed by means of a

pulse-height analyzer. Results for coherent (in-

coherent) light are obtained when the disc is

stationary (rotating).
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1Murphy’s law dictates that the pattern element covering the pinhole will sometimes be a null in
the interference pattern. In practice the disc should be rotated until the signal is a maximum.



Experimental evidence for Poissonian statistics ���

Photomultiplier tubes are fast detectors, with nanosecond-scale resolution times, so
the pulse height (i.e. the peak voltage) of each output pulse is directly proportional to
the number of photons in the beam during a resolution time. This follows from the fact
that the fundamental detection process is the photoelectric effect, in which (ideally)
a single photon would be converted to a single photoelectron. Thus two arriving pho-
tons would be converted at the photocathode into two photoelectrons, and so on. In
practice, due to the finite thickness of the photocathode film, not all photons are con-
verted into photoelectrons. The fraction of photons converted to photoelectrons, which
is called the quantum efficiency, is studied in Section 9.1.3. Under the assumption that
the quantum efficiency is independent of the intensity of the light, and that the postde-
tection amplification system is linear, it is possible to convert the photoelectron-count
distribution, i.e. the pulse-height distribution, into the photon-count distribution func-
tion, p(n). In the ideal case when the quantum efficiency is 100%, each photon would
be converted into a photoelectron, and the photoelectron count distribution function
would be a faithful representation of p(n). However, it turns out that even if the quan-
tum efficiency is less than 100%, the photoelectron count distribution function will,
under these experimental conditions, still be a faithful representation of p(n).

In Fig. 5.4 the channel numbers on the horizontal axis label increasing pulse heights,
and the vertical coordinate of a point on the curve represents the number of pulses
counted within a small range (a bin) around the corresponding pulse height. One can
therefore view this plot as a histogram of the number of photoelectrons released in a
given primary event. The data points were obtained by passing the output pulse of
the photomultiplier directly into the pulse-height analyzer. This is raw data, in the
sense that the photomultiplier pulses have not been reshaped to produce standardized
digital pulses before they are counted. This avoids the dead-time problem, in which
the electronics cannot respond to a second pulse which follows too quickly after the
first one.

Assuming that the photomultiplier (including its electron-multiplication struc-
tures) is a linear electronic system with a fixed integration time—given by an RC
time constant on the order of nanoseconds—the resulting pulse-height analysis yields
a faithful representation of the initial photoelectron distribution at the photocathode,
and hence of the photon distribution p(n) arriving at the photomultiplier. Therefore,
the channel number (the horizontal axis) is directly proportional to the photon number
n, while the number of counts (the vertical axis) is linearly related to the probability
p(n). For the case denoted by L (for laser light), the observed photoelectron distribu-
tion function fits a Poissonian distribution, p(n) = exp (−n) nn/n!, to within a few per
cent. It is, therefore, an empirical fact that a helium–neon laser operating far above
threshold produces Poissonian photon statistics, which is what is expected from a co-
herent state. For the case denoted by G (for Gaussian light), the observed distribution
closely fits the Bose–Einstein distribution p(n) = nn/ (n + 1)n+1, which is expected
for filtered thermal light. The striking difference between the nearly Poissonian curve
L and the nearly Gaussian curve G is the main result of Arecchi’s experiment.

Some remarks concerning this experiment are in order.

(1) As a function of time, the laser (with photon statistics described by the L-curve)
emits an ensemble of coherent states |α (t)〉, where α (t) = |α|eiφ(t). The amplitude
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Fig. 5.4 Data from Arecchi’s experiment measuring photoelectron statistics of a cw, heli-

um–neon laser. The number of counts of output pulses from a photomultiplier tube, binned

within a narrow window of pulse heights, is plotted against the voltage pulse height for two

kinds of light fields: ‘L’ for ‘laser light’, which closely fits a Poissonian, and ‘G’ for ‘Gaussian

light’, which closely fits a Bose–Einstein distribution function. (Reproduced from Arecchi

(1965).)

|α (t)| = |α| is fixed by gain clamping, but the phase φ(t) is not locked to any
external source. Consequently, the phase wanders (or diffuses) on a very long
coherence time scale τcoh � 0.1 s (the inverse of the laser line width). The phase-
wander time scale is much longer than the integration time, RC � 1 ns, of the
very fast photon detection system. Furthermore, the Poissonian distribution p(n)
only depends on the fixed amplitude |α| =

√
n, so the phase wander of the laser

output beam does not appreciably affect the Poissonian photocount distribution
function.

(2) For the G-case, the coherence time τcoh is determined by the time required for
a speckle feature to cross the pinhole. For a rapidly rotating disc this is shorter
than the integration time of the photon detection system. As explained above,
this results in incoherent light described by a Bose–Einstein distribution peaked
at n = 0.

(3) The measurement process occurs at the photocathode surface of the photomulti-
plier tube, which, for unit quantum efficiency, emits n photoelectrons if n photons
impinge on it. However, unity quantum efficiency is not an essential requirement for
this experiment, since an analysis for arbitrary quantum efficiencies, when folded
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in with a Bernoulli distribution function, shows that the Poissonian photoelec-
tron distribution still always results from an initial Poissonian photon distribution
(Loudon, 2000, Sec. 6.10). Similarly, a Bose–Einstein photoelectron distribution
function always results from an initial Bose–Einstein photon distribution.

(4) The condition that the laser be far above threshold is often not satisfied by real
continuous-wave lasers. The Scully–Lamb quantum theory of the laser predicts
that there can be appreciable deviations from the exact Poissonian distribution
when the small-signal gain of the laser is comparable to the loss of output mirrors.
Nevertheless, a skewed bell-shape curve that roughly resembles the Poissonian
distribution function is still predicted by the Scully–Lamb theory.
In sum, Arecchi’s experiment gave the first partial evidence that lasers emit a

coherent state, in that the observed photon count distribution is nearly Poissonian.
However, this photon-counting experiment only gives information concerning the di-
agonal elements 〈n |ρ|n〉 = p(n) of the density matrix. It gives no information about
the off-diagonal elements 〈n |ρ|m〉 when n �= m. For example, this experiment cannot
distinguish between a pure coherent state |α〉, with |α| = n, and a mixed state for
which 〈n |ρ|n〉 happens to be a Poissonian distribution and 〈n |ρ|m〉 = 0 for n �= m.
We shall see later that quantum state tomography experiments using optical homo-
dyne detection are sensitive to the off-diagonal elements of the density operator. These
experiments provide evidence that the state of a laser operating far above threshold
is closely approximated by an ideal coherent state.

In an extension of Arecchi’s experiment, Meltzer and Mandel (1971) measured the
photocount distribution function as a laser passes from below its threshold, through
its threshold, and ends up far above threshold. The change from a monotonically
decreasing photocount distribution below threshold—associated with the thermal state
of light—to a peaked one above threshold—associated with the coherent state—was
observed to agree with the Scully–Lamb theory.

5.4 Properties of coherent states

One of the objectives in studying coherent states is to use them as an alternate set
of basis functions for Fock space, but we must first learn to deal with the peculiar
mathematical features arising from the fact that the coherent states are eigenfunctions
of the non-hermitian annihilation operator a.

5.4.1 The displacement operator

The relation (3.83) linking the Heisenberg and Schrödinger pictures combines with the
explicit solution (5.40) of the Heisenberg equation to yield U † (t) aU (t) = ae−iωt +
α (t). For N = a†a, the identity exp (iθN)a exp (−iθN) = exp (−iθ)a (see Appendix
C.3, eqn (C.65)) allows this to be rewritten as

U† (t) aU (t) = eiωNtae−iωNt + α (t) , (5.43)

which in turn implies [
U (t) eiωNt

]†
a
[
U (t) eiωNt

]
= a + α (t) . (5.44)
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Thus the physical model for generation of a coherent state in Section 5.2 implies that
there is a unitary operator which acts to displace the annihilation operator by α (t).

The form of this operator can be derived from the explicit solution of the model
problem, but it is more useful to seek a unitary displacement operator D (α) that
satisfies

D† (α) aD (α) = a + α (5.45)

for all complex α. Since D (α) is unitary, it can be written as D (α) = exp [−iK (α)],
where the hermitian operator K (α) is the generator of displacements. A similar situ-
ation arises in elementary quantum mechanics, where the representation p̂ = −i�d/dq
for the momentum operator implies that the transformation

T∆qψ (q) = ψ (q − ∆q) (5.46)

of spatial translation is represented by the unitary operator exp (−i∆qp̂/�) (Brans-
den and Joachain, 1989, Sec. 5.9). This transformation rule for the wave function is
equivalent to the operator relation

e−i∆q�p/�q̂ei∆q�p/� = q̂ + ∆q . (5.47)

The similarity between eqns (5.45) and (5.47) and the associated fact that
[
a, a†] (like

[q̂, p̂]) is a c-number together suggest assuming that K (α) is a linear combination of
a and a†:

K (α) = g (α) a† + g∗ (α) a , (5.48)

where g (α) is a c-number yet to be determined.
One way to work out the consequences of this assumption is to define the inter-

polating operator a (τ) by

a (τ) = eiτK(α)ae−iτK(α) . (5.49)

This new operator is constructed so that it has the initial value a (0) = a and the final
value a (1) = D† (α) aD (α). In the τ -interval (0, 1), a (τ) satisfies the Heisenberg-like
equation of motion

i
da (τ)

dτ
= [a (τ) , K (α)] = eiτK(α) [a, K (α)] e−iτK(α) . (5.50)

In the present case, the ansatz (5.48) shows that [a, K (α)] = g (α), so the equation of
motion simplifies to

i
da (τ)

dτ
= g (α) , (5.51)

with the solution a (τ) = a− ig (α) τ . Thus eqn (5.45) is satisfied by the choice g (α) =
iα, and the displacement operator is

D (α) = e(αa†−α∗a) . (5.52)

The displacement operator generates the coherent state from the vacuum by
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|α〉 = D (α) |0〉 = e(αa†−α∗a) |0〉 . (5.53)

The simplest way to prove that D (α) |0〉 is a coherent state is to rewrite eqn (5.45) as

aD (α) = D (α) [a + α] , (5.54)

and apply both sides to the vacuum state.
The displacement operators represent the translation group in the α-plane, so they

must satisfy certain group properties. For example, a direct application of the definition
(5.45) yields the inverse transformation as

D−1 (α) = D† (α) = D (−α) . (5.55)

From eqn (5.45) one can see that applying D (β) followed by D (α) has the same effect
as applying D (α + β); therefore, the product D (α) D (β) must be proportional to
D (α + β):

D (α)D (β) = D (α + β) eiΦ(α,β) , (5.56)

where Φ (α, β) is a real function of α and β. The phase Φ (α, β) can be determined by
using the Campbell–Baker–Hausdorff formula, eqn (C.66), or—as in Exercise 5.6—by
another application of the interpolating operator method. By either method, the result
is

D (α)D (β) = D (α + β) ei Im(αβ∗) . (5.57)

5.4.2 Overcompleteness

Distinct eigenstates of hermitian operators, e.g. number states, are exactly orthogonal;
therefore, distinct outcomes of measurements of the number operator—or any other
observable—are mutually exclusive events. This is the basis for interpreting |cn|2 =
|〈n|ψ〉|2 as the probability that the value n will be found in a measurement of the
number operator. By contrast, no two coherent states are ever orthogonal. This is
shown by using eqn (5.23) to calculate the value

〈α |β 〉 = exp
(
−1

2
|α − β|2

)
exp (i Im [α∗β]) (5.58)

of the inner product. On the other hand, states with large values of |α − β| are ap-
proximately orthogonal, i.e. |〈α |β 〉| � 1, for quite moderate values of |α − β|. The
lack of orthogonality between distinct coherent states means that |〈α|ψ〉|2 cannot be
interpreted as the probability for finding the field in the state |α〉, given that it is
prepared in the state |ψ〉.

Although they are not mutually orthogonal, the coherent states are complete. A
necessary and sufficient condition for completeness of the family {|α〉} is that a vector
|ψ〉 satisfying

〈ψ |α 〉 = 0 for all α (5.59)

is necessarily the null vector, i.e. |ψ〉 = 0. A second use of eqn (5.23) allows this
equation to be expressed as
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F (α) =
∞∑

n=0

αn

√
n!

c∗n = 0 , (5.60)

where c∗n = 〈ψ |n 〉. This relation is an identity in α, so all derivatives of F (α) must
also vanish. In particular, (

∂

∂α

)n

F (α)
∣∣∣∣
α=0

=
√

n!c∗n = 0 , (5.61)

so that cn = 0 for all n � 0. The completeness of the number states then requires
|ψ〉 = 0, and this establishes the completeness of the coherent states.

The coherent states form a complete set, but they are not linearly independent
vectors. This peculiar state of affairs is called overcompleteness. It is straightforward
to show that any finite collection of distinct coherent states is linearly independent,
so to prove overcompleteness we must show that the null vector can be expressed as a
continuous superposition of coherent states. Let u1 = Re α and u2 = Im α, then any
linear combination of the coherent states can be written as∫ ∞

−∞
du1

∫ ∞

−∞
du2 z (u1, u2) |u1 + iu2〉 , (5.62)

where z (u1, u2) is a complex function of the two real variables u1and u2. It is custom-
ary to regard z (u1, u2) as a function of α∗ and α, which are treated as independent
variables, and in the same spirit to write

du1du2 = d2α . (5.63)

For brevity we will sometimes write z (α) instead of z (α∗, α) or z (u1, u2), and the
same convention will be used for other functions as they arise. Any confusion caused
by these various usages can always be resolved by returning to the real variables u1

and u2.
In this new notation the condition that a continuous superposition of coherent

states gives the null vector is

|z〉 =
∫

d2αz (α∗, α) |α〉 = 0 , (5.64)

where the integral is over the entire complex α-plane and z (α∗, α) is nonzero on
some open subset of the α-plane. The number states are both complete and linearly
independent, so this condition can be expressed in a more concrete way as

〈n |z 〉 =
1√
n!

∫
d2αe−|α|2/2z (α∗, α) αn = 0 for all n � 0 . (5.65)

By using polar coordinates (α = ρ exp iφ) for the integration these conditions become

1√
n!

∫ ∞

0

dρρn+1e−ρ2/2

∫ 2π

0

dφz (ρ, φ) einφ = 0 for all n � 0 . (5.66)
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In this form, one can see that the desired outcome is guaranteed if the φ-dependence
of z (ρ, φ) causes the φ-integral to vanish for all n � 0. This is easily done by choosing
z (ρ, φ) = g (ρ) ρm exp (imφ) for some m > 0; that is,

z (α∗, α) = g (|α|)αm , with m > 0 . (5.67)

The linear dependence of the coherent states means that the coefficients in the generic
expansion

|ψ〉 =
∫

d2αF (α∗, α) |α〉 (5.68)

are not unique, since replacing F (α∗, α) by F (α∗, α)+z (α∗, α) yields the same vector
|ψ〉.

In spite of these unfamiliar properties, the coherent states satisfy a completeness
relation, or resolution of the identity,∫

d2α

π
|α〉 〈α| = I , (5.69)

analogous to eqn (2.84) for the number states. To prove this, we denote the left side
of eqn (5.69) by I and evaluate the matrix elements

〈n |I|m〉 =
∫

d2α

π
〈n |α 〉 〈α |m 〉

=
∫ ∞

0

dρ ρ
ρn+m

√
n!m!

e−ρ2
∫ 2π

0

dφ

π
ei(n−m)φ

= δnm . (5.70)

Thus I has the same matrix elements as the identity operator, and eqn (5.69) is
established.

Applying this representation of the identity to a state |ψ〉 gives the natural—but
not unique—expansion

|ψ〉 =
∫

d2α

π
|α〉 〈α |ψ 〉 . (5.71)

The completeness relation also gives a useful formula for the trace of any operator:

TrX = Tr
{(∫

d2α

π
|α〉 〈α|

)
X

}
=
∫

d2α

π

∞∑
n=0

〈n |α 〉 〈α |X |n〉

=
∫

d2α

π
〈α |X |α〉 . (5.72)

5.4.3 Coherent state representations of operators

The completeness relation (5.69) is the basis for deriving useful representations of
operators in terms of coherent states. For any Fock space operator X , we easily find
the general result
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X =
(∫

d2α

π
|α〉 〈α|

)
X

(∫
d2β

π
|β〉 〈β|

)
=

∫
d2α

π

∫
d2β

π
|α〉 〈α |X |β〉 〈β| . (5.73)

Since the coherent states are complete, this result guarantees that X is uniquely defined
by the matrix elements 〈α |X |β〉. On the other hand, the overcompleteness of the
coherent states suggests that the same information may be carried by a smaller set of
matrix elements.

A An operator X is uniquely determined by 〈α |X |α〉
The diagonal matrix elements 〈n |X |n〉 in the number-state basis—or in any other
orthonormal basis—do not uniquely specify the operator X , but the overcompleteness
of the coherent states guarantees that the diagonal elements 〈α |X |α〉 do determine
X uniquely. The first step in the proof is to use eqn (5.23) one more time to write
〈α |X |α〉 in terms of the matrix elements in the number-state basis,

〈α |X |α〉 = e−|α|2
∞∑

m=0

∞∑
n=0

〈m |X |n〉√
m!n!

α∗mαn . (5.74)

Now suppose that two operators Y and Z have the same diagonal elements, i.e.
〈α |Y |α〉 = 〈α |Z|α〉; then X = Y − Z must satisfy

∞∑
m=0

∞∑
n=0

〈m |X |n〉√
m!n!

α∗mαn = 0 . (5.75)

This is an identity in the independent variables α and α∗, so the argument leading to
eqn (5.61) can be applied again to conclude that 〈m |X |n〉 = 0 for all m and n. The
completeness of the number states then implies that X = 0, and we have proved that

if 〈α |Y |α〉 = 〈α |Z|α〉 for all α , then Y = Z . (5.76)

B Coherent state diagonal representation

The result (5.76) will turn out to be very useful, but it does not immediately supply us
with a representation for the operator. On the other hand, the general representation
(5.73) involves the off-diagonal matrix elements 〈α |X |β〉 which we now see are appar-
ently superfluous. This suggests that it may be possible to get a representation that
only involves the projection operators |α〉 〈α|, rather than the off-diagonal operators
|α〉 〈β| appearing in eqn (5.73). The key to this construction is the identity

an |α〉 〈α| a†m = αnα∗m |α〉 〈α| , (5.77)

which holds for any non-negative integers n and m. Let us now suppose that X has
a power series expansion in the operators a and a†, then by using the commutation
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relation
[
a, a†] = 1 each term in the series can be rearranged into a sum of terms in

which the creation operators stand to the right of the annihilation operators, i.e.

X =
∞∑

m=0

∞∑
n=0

XA
nmana†m , (5.78)

where XA
nm is a c-number coefficient. Since this exactly reverses the rule for normal

ordering, it is called antinormal ordering, and the superscript A serves as a reminder
of this ordering rule. By combining the identities (5.69) and (5.77) one finds

X =
∞∑

m=0

∞∑
n=0

XA
nman

(∫
d2α

π
|α〉 〈α|

)
a†m

=
∫

d2αXA (α) |α〉 〈α| , (5.79)

where

XA (α) =
1
π

∞∑
m=0

∞∑
n=0

XA
nmαnα∗m (5.80)

is a c-number function of the two real variables Reα and Imα. This construction gives
us the promised representation in terms of the projection operators |α〉 〈α|.

5.5 Multimode coherent states

Up to this point we have only considered coherent states of a single radiation oscil-
lator. In the following sections we will consider several generalizations that allow the
description of multimode squeezed states.

5.5.1 An elementary approach to multimode coherent states

A straightforward generalization is to replace the definition (5.18) of the one-mode
coherent state by the family of eigenvalue problems

aκ |α〉 = ακ |α〉 for all κ , (5.81)

where α = (α1, α2, . . . , ακ, . . .) is the set of eigenvalues for the annihilation operators
aκ. The single-mode case is recovered by setting ακ′ = 0 for κ′ �= κ. The multimode
coherent state |α〉—defined as the solution of the family of equations (5.81)—can
be constructed from the vacuum state by using eqn (5.53) for each mode to get

|α〉 =
∏
κ

D (ακ) |0〉 , (5.82)

where
D (ακ) = exp

(
ακa†

κ − α∗
κaκ

)
(5.83)

is the displacement operator for the κth mode. Since there are an infinite number of
modes, the definition (5.82) raises various mathematical issues, such as the convergence
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of the infinite product. In the following sections, we show how these issues can be dealt
with, but for most applications it is safe to proceed by using the formal infinite product.

For later use, it is convenient to specialize the general definition (5.82) of the
multimode state to the case of box-quantized plane waves, i.e.

|α〉 = D (α) |0〉 , (5.84)

D (α) =
∏
ks

D (αks) =
∏
ks

exp
(
αksa

†
ks − α∗

ksaks

)
. (5.85)

By combining the eigenvalue condition aks |α〉 = αks |α〉 with the expression (3.69) for
E(+), one can see that

E(+) (r) |α〉 = E (r) |α〉 , (5.86)

where

E (r) = i
∑
ks

√
�ωk

2ε0V
αksekse

ik·r (5.87)

is the classical electric field defined by |α〉.
5.5.2 Coherent states for wave packets∗

The incident field in a typical experiment is a traveling-wave packet, i.e. a superposition
of plane-wave modes. A coherent state describing this situation is therefore an example
of a multimode coherent state. From this point of view, the multimode coherent state
|α〉 is actually no more complicated than a single-mode coherent state (Deutsch, 1991).
This is a linguistic paradox caused by the various meanings assigned to the word
‘mode’. This term normally describes a solution of Maxwell’s equations with some
additional properties associated with the boundary conditions imposed by the problem
at hand. Examples are the modes of a rectangular cavity or a single plane wave.
General classical fields are linear combinations of the mode functions, and they are
called wave packets rather than modes. Let us now return to eqn (5.82) which gives
a constructive definition of the multimode state |α〉. Since the operators ακa†

κ − α∗
κaκ

and ακ′a†
κ′ −α∗

κ′aκ′ commute for κ �= κ′, the product of unitary operators in eqn (5.82)
can be rewritten as a single unitary operator,

|α〉 = exp

{∑
κ

(
ακa†

κ − α∗
κaκ

)} |0〉

= exp
{
a† [α] − a [α]

} |0〉 , (5.88)

where
a [α] =

∑
κ

α∗
κaκ (5.89)

is an example of the general definition (3.191). In other words the multimode coherent
state |α〉 is a coherent state for the wave packet

w (r) =
∑

κ

ακwκ (r) , (5.90)
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where the wκ(r)s are mode functions. The wave packet w(r) defines a point in the
classical phase space, so it represents one degree of freedom of the field. This suggests
changing the notation by

|α〉 → |w〉 = D [w] |0〉 , (5.91)

where
D [w] = exp

{
a† [w] − a [w]

}
(5.92)

is the wave packet displacement operator, and a [w] is simply another notation for
a [α].

The displacement rule,

D† [w] a [v] D [w] = a [v] + (v,w) , (5.93)

and the product rule,

D [v] D [w] = D [v + w] exp {i Im (w,v)} , (5.94)

are readily established by using the commutation relations (3.192), the interpolating
operator method outlined in Section 5.4.1, and the Campbell–Baker–Hausdorff formula
(C.66). The displacement rule (5.93) immediately yields the eigenvalue equation

a [v] |w〉 = (v,w) |w〉 . (5.95)

This says that the coherent state for the wave packet w is also an eigenstate—with
the eigenvalue (v,w)—of the annihilation operator for any other wave packet v. To
recover the familiar single-mode form, a |α〉 = α |α〉, simply set w = αw0, where w0

is normalized to unity, and v = w0; then eqn (5.95) becomes a [w0] |αw0〉 = α |αw0〉.
The inner product of two multimode (wave packet) coherent states is obtained from
(5.91) by calculating

〈v |w 〉 =
〈
0
∣∣D† [v] D [w]

∣∣ 0〉
= exp {i Im (v,w)} 〈0 |D [w − v]| 0〉
= exp {i Im (v,w)} exp

{
−1

2
‖w − v‖2

}
, (5.96)

where ‖u‖ =
√

(u,u) is the norm of the wave packet u.

5.5.3 Sources of multimode coherent states∗

In Section 5.2 we saw that a monochromatic classical current serves as the source for a
single-mode coherent state. This demonstration is readily generalized as follows. The
total Hamiltonian in the hemiclassical approximation is the sum of eqns (3.40) and
(5.36),

H = 2ε0c
2

∫
d3rA(−) (r, t) · (−∇2

)
A(+) (r, t) −

∫
d3r J (r, t) · A (r, t) . (5.97)

The corresponding Heisenberg equation for A(+),
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i
∂A(+) (r, t)

∂t
= c

(−∇2
)1/2

A(+) (r, t) − 1
2ε0c

(−∇2
)−1/2 J (r, t) , (5.98)

has the formal solution

A(+) (r, t) = exp
[
−i (t − t0) c

(−∇2
)1/2

]
A(+) (r, t0) + w (r, t) , (5.99)

where

w (r, t) =
i

2ε0c

∫ t

t0

dt′ exp
[
−i (t − t′) c

(−∇2
)1/2

] (−∇2
)−1/2 J (r, t′) , (5.100)

and the Schrödinger and Heisenberg pictures coincide at the time, t0, when the current
is turned on. The classical field w (r, t) satisfies the c-number version of eqn (5.98),

i
∂w (r, t)

∂t
= c

(−∇2
)1/2

w (r, t) − 1
2ε0c

(−∇2
)−1/2 J (r, t) . (5.101)

Applying this solution to the vacuum gives A(+) (r, t) |0〉 = w (r, t) |0〉 in the Heisen-
berg picture, and A(+) (r) |w, t〉 = w (r, t) |w, t〉 in the Schrödinger picture. The time-
dependent coherent state |w, t〉 evolves from the vacuum state (|w, t0〉 = |0〉) under
the action of the Hamiltonian given by eqn (5.97).

5.5.4 Completeness and representation of operators∗

The issue of completeness for the multimode coherent states is (infinitely) more com-
plicated than in the single-mode case. Since we are considering all modes on an equal
footing, the identity (5.69) for a single mode must be replaced by∫

d2ακ

π
|ακ〉 〈ακ| = Iκ , (5.102)

where Iκ is the identity operator for the single-mode subspace Hκ. The resolution of
the identity on the entire space HF is given by∏

κ

∫
d2ακ

π
|α〉 〈α| = IF . (5.103)

The mathematical respectability of this infinite-dimensional integral has been estab-
lished for basis sets labeled by a discrete index (Klauder and Sudarshan, 1968, Sec.
7-4). Fortunately, the Hilbert spaces of interest for quantum theory are separable, i.e.
they can always be represented by discrete basis sets. In most applications only a few
modes are relevant, so the necessary integrals are approximately finite dimensional.

Combining the multimode completeness relation (5.103) with the fact that op-
erators for orthogonal modes commute justifies the application of the arguments in
Sections 5.4.3 and 5.6.3 to obtain the multimode version of the diagonal expansion for
the density operator:

ρ =
∫

d2α |α〉P (α) 〈α| , (5.104)

where

d2α =
∏
κ

d2ακ

π
. (5.105)
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5.5.5 Applications of multimode states∗

Substituting the relation

a [w] =

√
2ε0c

�
A(+) [w] =

√
2ε0c

�

∫
d3rw∗ (r) · (−∇2

)1/2
A(+) (r) (5.106)

into eqn (5.95) provides the r-space version of the eigenvalue equation:

A(+) (r) |w〉 =
√

�

2ε0c
w (r) |w〉 . (5.107)

For many applications it is more useful to use eqn (3.15) to express this in terms of
the electric field,

E(+) (r) |w〉 = E (r) |w〉 , (5.108)

where

E (r) = i

√
�c

2ε0

(−∇2
)1/2

w (r) (5.109)

is the positive-frequency part of the classical electric field corresponding to the wave
packet w. The result (5.108) can be usefully applied to the calculation of the field
correlation functions for the coherent state described by the density operator ρ =
|w〉 〈w|. For example, the equal-time version of G(2), defined by setting all times to
zero in eqn (4.77), factorizes into

G(2) (x1, x2; x3, x4) = E∗
1 (r1) E∗

2 (r2) E3 (r3) E4 (r4) , (5.110)

where Ep (r) =s∗p ·E (r). In fact, correlation functions of all orders factorize in the same
way.

Now let us consider an experimental situation in which the classical current is
turned on at some time t0 < 0 and turned off at t = 0, leaving the field prepared in a
coherent state |w〉. The time at which the Schrödinger and Heisenberg pictures agree
is now shifted to t = 0, and we assume that the fields propagate freely for t > 0. The
Schrödinger-picture state vector |w, t〉 evolves from its initial value |w, 0〉 according to
the free-field Hamiltonian, while the operators remain unchanged.

In the Heisenberg picture the state vector is always |w〉 and the operators evolve
freely according to eqn (3.94). This guarantees that

E(+) (r, t) |w〉 = E (r, t) |w〉 , (5.111)

where E (r, t) is the freely propagating positive-frequency part that evolves from the
initial (t = 0) function given by eqn (5.109). According to eqn (5.110) the correlation
function factorizes at t = 0, and by the last equation each factor evolves independently;
therefore, the multi-time correlation function for the wave packet coherent state |w〉
factorizes according to

G(2) (x1, x2; x3, x4) = E∗
1 (r1, t1) E∗

2 (r2, t2) E3 (r3, t3) E4 (r4, t4) . (5.112)
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5.6 Phase space description of quantum optics

The set of all classical fields obtained by exciting a single mode is described by a two-
dimensional phase space, as shown in eqn (5.1). The set of all quasiclassical states for
the same mode is described by the coherent states {|α〉}, that are also labeled by a
two-dimensional space. This correspondence is the basis for a phase-space-like descrip-
tion of quantum optics. This representation of states and operators has several useful
applications. The first is a precise description of the correspondence-principle limit.
The relation between coherent states and classical fields also provides a quantitative
description of the departure from classical behavior. Finally, as we will see in Section
18.5, the phase space representation of the density operator ρ gives a way to convert
the quantum Liouville equation for the operator ρ into a c-number equation that can
be used in numerical simulations.

In Section 9.1 we will see that the results of photon detection experiments are ex-
pressed in terms of expectation values of normal-ordered products of field operators. In
this way, counting experiments yield information about the state of the electromagnetic
field. In order to extract this information, we need a general scheme for representing
the density operators describing the field states. The original construction of the elec-
tromagnetic Fock space in Chapter 3 emphasized the role of the number states. Every
density operator can indeed be represented in the basis of number states, but there are
many situations for which the coherent states provide a more useful representation.
For the sake of simplicity, we will continue to emphasize a single classical field mode
for which the phase space Γem can be identified with the complex plane.

5.6.1 The Wigner distribution

The earliest—and still one of the most useful—representations of the density operator
was introduced by Wigner (1932) in the context of elementary quantum mechanics. In
classical mechanics the most general state of a single particle moving in one dimension
is described by a normalized probability density f (Q, P ) defined on the classical phase
space Γmech = {(Q, P )}, i.e. f (Q, P ) dQdP is the probability that the particle has
position and momentum in the infinitesimal rectangle with area dQdP centered at the
point (Q, P ) and ∫

dQ

∫
dPf (Q, P ) = 1 . (5.113)

In classical probability theory it is often useful to represent a distribution in terms of
its Fourier transform,

χ (u, v) =
∫

dQ

∫
dPf (Q, P ) e−i(uP+vQ) , (5.114)

which is called the characteristic function (Feller, 1957b, Chap. XV). In some ap-
plications it is easier to evaluate the characteristic function, and then construct the
probability distribution itself from the inverse transformation:

f (Q, P ) =
∫

du

2π

∫
dv

2π
χ (u, v) ei(uP+vQ) . (5.115)
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An example of the utility of the characteristic function is the calculation of the mo-
ments of the distribution, e.g.〈

Q2
〉

= (i)2
(

∂nχ

∂v2

)
(u,v)=(0,0)

,

〈QP 〉 = (i)2
(

∂nχ

∂v∂u

)
(u,v)=(0,0)

,

...

(5.116)

A The Wigner distribution in quantum mechanics

In quantum mechanics, a phase space description like f (Q, P ) is forbidden by the
uncertainty principle. Wigner’s insight can be interpreted as an attempt to find a
quantum replacement for the phase space integral in eqn (5.114). Since the integral is
a sum over all classical states, it is natural to replace it by the sum over all quantum
states, i.e. by the quantum mechanical trace operation. The role of the classical dis-
tribution is naturally played by the density operator ρ, and the classical exponential
exp [−i (uP + vQ)] can be replaced by the unitary operator exp [−i (up̂ + vq̂)]. In this
way one is led to the definition of the Wigner characteristic function

χW (u, v) = Tr
[
ρe−i(u�p+v�q)

]
, (5.117)

which is a c-number function of the real variables u and v. The classical definition
(5.114) of the characteristic function by a phase space integral is meaningless for
quantum theory, but the inverse transformation (5.115) still makes sense when applied
to χW . This suggests the definition of the Wigner distribution,

W (Q, P ) = �

∫
du

2π

∫
dv

2π
χW (u, v) ei(uP+vQ) , (5.118)

where the normalization has been chosen to make W (Q, P ) dimensionless. The Wigner
distribution is real and normalized by∫

dQdP

�
W (Q, P ) = 1 , (5.119)

but—as we will see later on—there are physical states for which W (Q, P ) assumes
negative values in some regions of the (Q, P )-plane. For these cases W (Q, P ) cannot be
interpreted as a probability density like f (Q, P ); consequently, the Wigner distribution
is called a quasiprobability density.

Substituting eqn (2.116) for the density operator into eqn (5.117) leads to the
alternative form

χW (u, v) =
∑

e

Pe

〈
Ψe

∣∣∣e−i(u�p+v�q)
∣∣∣Ψe

〉
=

∑
e

Pee
i�uv/2

〈
Ψe

∣∣∣e−iv�qe−iu�p
∣∣∣Ψe

〉
, (5.120)
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where the last line follows from the identity (C.67). Since exp (−iup̂) is the spatial
translation operator, the expectation value can be expressed as〈

Ψe

∣∣∣e−iv�qe−iu�p
∣∣∣Ψe

〉
=

∫
dQ′Ψ∗

e (Q′) e−iv(Q′+�u)Ψe (Q′ + �u) . (5.121)

Substituting these results into eqn (5.118) finally leads to

W (Q, P ) =
∑

e

Pe

∫
dX

π
e2iXP/�Ψe (Q + X)Ψ∗

e (Q − X) , (5.122)

which is the definition used in Wigner’s original paper. Thus the ‘momentum’ depen-
dence of the Wigner distribution comes from the Fourier transform with respect to the
relative coordinate X . Integrating out the momentum dependence yields the marginal
distribution in Q: ∫

dP

�
W (Q, P ) =

∑
e

Pe |Ψe (Q)|2 . (5.123)

Despite the fact that W (Q, P ) can have negative values, the marginal distribution in
Q is evidently a genuine probability density.

B The Wigner distribution for quantum optics

In the transition to quantum optics the mechanical operators q̂ and p̂ are replaced
by the operators q and p for the radiation oscillator. In agreement with our earlier
experience, it turns out to be more useful to use the relations (2.66) to rewrite the
unitary operator exp [−i (up + vq)] as exp

[
ηa† − η∗a

]
, where

η =

√
�ω

2
u − i

√
�

2ω
v , (5.124)

so that eqn (5.117) is replaced by

χW (η) = Tr
[
ρeηa†−η∗a

]
. (5.125)

The characteristic function χW (η) has the useful properties χW (0) = 1 and χ∗
W (η) =

χW (−η). The Wigner distribution is then defined (Walls and Milburn, 1994, Sec.
4.2.2) as the Fourier transform of χW (η):

W (α) =
1
π2

∫
d2ηeη∗α−ηα∗

χW (η) . (5.126)

After verifying the identity ∫
d2α

π2
eη∗α−ηα∗

= δ2 (η) , (5.127)

where δ2 (η) ≡ δ (Re η) δ (Im η), one finds that the Wigner function W (α) is normalized
by
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d2αW (α) = 1 . (5.128)

In order to justify this approach, we next demonstrate that the average, Tr ρX , of
any operator X can be expressed in terms of the moments of the Wigner distribution.
The representation (5.127) of the delta function and the identities

αmα∗neη∗α−ηα∗
=

(
∂

∂η∗

)m (
− ∂

∂η

)n

eη∗α−ηα∗
(5.129)

allow the moments of W (α) to be evaluated in terms of derivatives of the characteristic
function, with the result∫

d2α αmα∗nW (α) =
(
− ∂

∂η∗

)m (
∂

∂η

)n

χW (η, η∗)
∣∣∣∣
η=0

. (5.130)

The characteristic function can be cast into a useful form by expanding the exponential
in eqn (5.125) and using the operator binomial theorem (C.44) to find

χW (η, η∗) =
∞∑

k=0

1
k!

Tr
[
ρ
(
ηa† − η∗a

)k
]

=
∞∑

k=0

1
k!

k∑
j=0

ηk−j (−η∗)j k!
j! (k − j)!

Tr
{
ρS

[(
a†)k−j

aj
]}

,

(5.131)

where the Weyl—or symmetrical—product S[(a†)k−j
aj
]

is the average of all distinct
orderings of the operators a and a†. Using this result in eqn (5.130) yields∫

d2ααmα∗nW (α) = Tr
{

ρS
[(

a†)n
am

]}
. (5.132)

By means of the commutation relations, any operator X that has a power series
expansion in a and a† can be expressed as the sum of Weyl products:

X =
∞∑

n=0

∞∑
m=0

XW
nmS

[(
a†)n

am
]
, (5.133)

where the XW
nms are c-number coefficients. The expectation value of X is then

〈X〉 =
∞∑

n=0

∞∑
m=0

XW
nm

〈
S
[(

a†)n
am

]〉
=

∫
d2αXW (α) W (α) , (5.134)

where

XW (α) =
∞∑

n=0

∞∑
m=0

XW
nmαmα∗n . (5.135)

Thus the Wigner distribution carries the same physical information as the density
operator.
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As an example, consider X = E2, where E = i
√

�ω0/2ε0
(
a − a†) is the electric

field amplitude for a single cavity mode. In terms of Weyl products, E2 is given by

E2 = −�ω0

2ε0

{S [
a2
]− 2S [

a†a
]
+ S [

a†2]} , (5.136)

and substituting this expression into eqn (5.134) yields

〈
E2

〉
=

�ω0

2ε0

∫
d2α

{
2 |α|2 − α2 − α∗2

}
W (α) . (5.137)

C Existence of the Wigner distribution∗

The general properties of Hilbert space operators, reviewed in Appendix A.3.3, guar-
antee that the unitary operator exp

(
ηa† − η∗a

)
has a complete orthonormal set of

(improper) eigenstates |Λ〉, i.e.

exp
(
ηa† − η∗a

) |Λ〉 = eiθΛ(η) |Λ〉 , (5.138)

where θΛ (η) is real, −∞ < Λ < ∞, and 〈Λ′ |Λ 〉 = δ (Λ − Λ′). Evaluating the trace in
the |Λ〉-basis yields

χW (η) =
∫

dΛ 〈Λ |ρ|Λ〉 eiθΛ(η) . (5.139)

This in turn implies that χW (η) is a bounded function, since

|χW (η)| <

∫
dΛ |〈Λ |ρ|Λ〉| =

∫
dη 〈Λ |ρ|Λ〉 = Tr ρ = 1 , (5.140)

where we have used the fact that all diagonal matrix elements of ρ are positive. The
Fourier transform of a constant function is a delta function, so the Fourier transform
of a bounded function cannot be more singular than a delta function. This establishes
the existence of W (α)—at least in the delta function sense—but there is no guarantee
that W (α) is everywhere positive.

D Examples of the Wigner distribution

In some simple cases the Wigner function can be evaluated analytically by means of
the characteristic function.

Coherent state. Our first example is the characteristic function for a coherent state,
ρ = |β〉 〈β|. The calculation of χW (η) in this case can be done more conveniently by
applying the identities (C.69) and (C.70) to find

eηa†−η∗a = e−|η|2/2eηa†
e−η∗a = e|η|

2/2e−η∗aeηa†
. (5.141)

The first of these gives

χW (η) = Tr
[
ρeηa†−η∗a

]
= e−|η|2/2

〈
β
∣∣∣eηa†

e−η∗a
∣∣∣β〉 = e−|η|2/2eηβ∗−η∗β . (5.142)
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This must be inserted into eqn (5.126) to get W (α). These calculations are best done
by rewriting the integrals in terms of the real and imaginary parts of the complex
integration variables. For the coherent state this yields

W (α) =
2
π

e−2|α−β|2 . (5.143)

The fact that the Wigner function for this case is everywhere positive is not very
surprising, since the coherent state is quasiclassical.

Thermal state. The second example is a thermal or chaotic state. In this case, we
use the second identity in eqn (5.141) and the cyclic invariance of the trace to write

χW (η) = e|η|
2/2 Tr

[
ρe−η∗aeηa†]

= e|η|
2/2 Tr

[
eηa†

ρe−η∗aeηa†]
. (5.144)

Evaluating the trace with the aid of eqn (5.72) leads to the general result

χW (η) =
∫

d2α

π
eηα∗−η∗α 〈α |ρ|α〉 . (5.145)

According to eqn (2.178) the density operator for a thermal state is

ρth =
∞∑

n=0

nn

(n + 1)n+1 |n〉 〈n| , (5.146)

where n = 〈Nop〉 is the average number of photons. The expansion (5.23) of the
coherent state yields

〈α |ρth|α〉 =
1

n + 1
exp

(
− |α|2

n + 1

)
, (5.147)

so that

χth
W (η) =

1
n + 1

∫
d2α

π
exp (ηα∗ − η∗α) exp

(
− |α|2

n + 1

)

= exp
[
−
(

n +
1
2

)
|η|2

]
. (5.148)

The general relation (5.126) defining the Wigner distribution can be evaluated in the
same way, with the result

Wth (α) =
1
π

1
n + 1/2

exp

(
− |α|2

n + 1/2

)
, (5.149)

which is also everywhere positive.
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Number state. For the third example, we choose a pure number state, e.g. ρ =
|1〉 〈1|, which yields

χW (η) = Tr
[
ρeηa†−η∗a

]
= e−|η|2/2

〈
1
∣∣∣eηa†

e−η∗a
∣∣∣ 1〉 . (5.150)

Expanding the exponential gives

e−η∗a |1〉 = |1〉 − η∗ |0〉 , (5.151)

so the characteristic function and the Wigner function are respectively

χW (η) =
(
1 − |η|2

)
e−|η|2/2 (5.152)

and

W (α) =
1
π2

∫
d2ηeη∗α−ηα∗ (

1 − |η|2
)

e−|η|2/2

= −
(
1 − 4 |α|2

) 2
π

e−2|α|2 . (5.153)

In this case W (α) is negative for |α| < 1/2, so the Wigner distribution for a number
state |1〉 〈1| is a quasiprobability density. A similar calculation for a general number
state |n〉 yields an expression in terms of Laguerre polynomials (Gardiner, 1991, eqn
(4.4.91)) which is also a quasiprobability density.

5.6.2 The Q-function

A Antinormal ordering

According to eqn (5.76) ρ is uniquely determined by its diagonal matrix elements in
the coherent state basis; therefore, complete knowledge of the Q-function,

Q (α) =
1
π
〈α |ρ|α〉 , (5.154)

is equivalent to complete knowledge of ρ. The real function Q (α) satisfies the inequality

0 � Q (α) � 1
π

, (5.155)

and the normalization condition

Tr ρ =
∫

d2αQ (α) = 1 . (5.156)

The argument just given shows that Q (α) contains all the information needed to
calculate averages of any operator, but it does not tell us how to extract these results.
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The necessary clue is given by eqn (5.78) which expresses any operator X as a sum of
antinormally-ordered terms. With this representation for X , the expectation value is

〈X〉 = Tr (ρX) =
∞∑

m=0

∞∑
n=0

XA
mn Tr

(
ρama†n)

=
∞∑

m=0

∞∑
n=0

XA
mn

∫
d2α

π

〈
α
∣∣a†nρam

∣∣α〉
=

∫
d2αQ (α)XA (α) , (5.157)

where XA (α) is defined by eqn (5.80). In other words the expectation value of any
physical quantity X can be calculated by writing it in antinormally-ordered form, then
replacing the operators a and a† by the complex numbers α and α∗ respectively, and
finally evaluating the integral in eqn (5.157).

The Q-function, like the Wigner distribution, is difficult to calculate in realistic
experimental situations; but there are idealized cases for which a simple expression
can be obtained. The easiest is that of a pure coherent state, i.e. ρ = |α0〉 〈α0|, which
leads to

Q (α) =
|〈α |α0 〉|2

π
=

exp
(− |α − α0|2

)
π

. (5.158)

Despite the fact that this state corresponds to a sharp value of α, the probability
distribution has a nonzero spread around the peak at α = α0. This unexpected feature
is another consequence of the overcompleteness of the coherent states.

At the other extreme of a pure number state, ρ = |n〉 〈n|, the expansion of the
coherent state in number states yields

Q (α) =
|〈α |n〉|2

π
=

e−|α|2

π

|α|2n

n!
, (5.159)

which is peaked on the circle of radius |α| =
√

n.

B Difficulties in computing the Q-function∗

For any state of the field, the Q-function is everywhere positive and normalized to
unity, so Q (α) is a genuine probability density on the electromagnetic phase space Γem.
The integral in eqn (5.157) is then an average over this distribution. These properties
make the Q-function useful for the display and interpretation of experimental data
or the results of approximate simulations, but they do not mean that we have found
the best of all possible worlds. One difficulty is that there are functions satisfying the
inequality (5.155) and the normalization condition (5.156) that do not correspond to
any physically realizable density operator, i.e. they are not given by eqn (5.154) for
any acceptable ρ. The irreducible quantum fluctuations described by the commutation
relation

[
a, a†] = 1 are the source of this problem. For any density operator ρ,〈

aa†〉 =
〈
a†a + 1

〉
� 1 . (5.160)
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Evaluating the same quantity by means of eqn (5.157) produces the condition∫
d2αQ (α) |α|2 � 1 (5.161)

on the Q-function. As an example of a spurious Q-function, consider

Q (α) =
2

π
√

πσ2
exp

(
−|α|4

σ4

)
. (5.162)

This function satisfies eqns (5.155) and (5.156) for σ2 > 2/
√

π, but the integral in eqn
(5.161) is ∫

d2αQ (α) |α|2 =
σ2

√
π

. (5.163)

Thus for 2/
√

π < σ2 <
√

π, the inequality (5.161) is violated. Finding a Q-function
that satisfies this inequality as well is still not good enough, since there are similar
inequalities for all higher-order moments a2a†2, a3a†3, etc. This poses a serious problem
in practice, because of the inevitable approximations involved in the calculation of the
Q-function for a nontrivial situation. Any approximation could lead to a violation of
one of the infinite set of inequalities and, consequently, to an unphysical prediction for
some observable.

The dangers involved in extracting the density operator from an approximate Q-
function do not occur in the other direction. Substituting any physically acceptable
approximation for the density operator into eqn (5.154) will yield a physically accept-
able Q (α). For this reason the results of approximate calculations are often presented
in terms of the Q-function. For example, plots of the level lines of Q (α) can provide
useful physical insights, since the Q-function is a genuine probability distribution.

5.6.3 The Glauber–Sudarshan P (α)-representation

A Normal ordering

We have just seen that the evaluation of the expectation value, 〈X〉, using the Q-
function requires writing out the operator in antinormal-ordered form. This is contrary
to our previous practice of writing all observables, e.g. the Hamiltonian, the linear
momentum, etc. in normal-ordered form. A more important point is that photon-
counting rates are naturally expressed in terms of normally-ordered products, as we
will see in Section 9.1.

The commutation relations can be used to express any operator X
(
a, a†) in normal-

ordered form,

X =
∞∑

m=0

∞∑
n=0

XN
nma†nam , (5.164)

so we want a representation of the density operator which is adapted to calculating the
averages of normal-ordered products. For this purpose, we apply the coherent state
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diagonal representation (5.79) to the density operator. This leads to the P -function
representation introduced by Glauber (1963) and Sudarshan (1963):

ρ =
∫

d2α |α〉P (α) 〈α| . (5.165)

If the coherent states were mutually orthogonal, then Q (α) would be proportional to
P (α), but eqn (5.58) for the inner product shows instead that

Q (α) =
∫

d2β

π
|〈α |β 〉|2 P (β)

=
∫

d2β

π
e−|β|2P (α + β) . (5.166)

Thus the Q (α) is a Gaussian average of the P -function around the point α.
The average of the generic normal-ordered product a†man is

〈
a†man

〉
= Tr

(
ρa†man

)
= Tr

(
anρa†m)

=
∫

d2ααnα∗mP (α) , (5.167)

which combines with eqn (5.164) to yield

〈
X

(
a, a†)〉 =

∫
d2αXN (α) P (α) , (5.168)

where

XN (α) =
∞∑

m=0

∞∑
n=0

XN
nmα∗nαm . (5.169)

The normalization condition Tr ρ = 1 becomes∫
d2αP (α) = 1 , (5.170)

so P (α) is beginning to look like another probability distribution. Indeed, for a pure
coherent state, ρcoh = |α0〉 〈α0|, the P -function is

Pcoh (α) = δ2 (α − α0) , (5.171)

where

δ2 (α − α0) = δ (Re α − Reα0) δ (Imα − Im α0) . (5.172)

This is a positive distribution that exactly picks out the coherent state |α0〉 〈α0|, so
it is more intuitively appealing than the Q-function description of the same state by
a Gaussian distribution. Another hopeful result is provided by the P -function for a
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thermal state. From eqn (2.178) we know that the density operator for a thermal or
chaotic state with average number n has the diagonal matrix elements

〈n |ρth|n〉 =
nn

(1 + n)n+1 ; (5.173)

therefore, the P -function has to satisfy

nn

(1 + n)n+1 =
∫

d2αPth (α) |〈n |α 〉|2 (5.174)

=
∫

d2αPth (α) e−|α|2 |α|2n

n!
. (5.175)

Expressing the remaining integral in polar coordinates suggests that P (α) might be
proportional to a Gaussian function of |α|, and a little trial and error leads to the
result

Pth (α) =
1

πn
exp

[
−|α|2

n

]
. (5.176)

Thus the P -function acts like a probability distribution for two very different states
of light. On the other hand, this is a quantum system, so we should be prepared for
surprises.

The interpretation of P (α) as a probability distribution requires P (α) � 0 for all α,
and the normalization condition (5.170) implies that P (α) cannot vanish everywhere.
The states with nowhere negative P (α) are called classical states, and any states
for which P (α) < 0 in some region of the α-plane are called nonclassical states.
Multimode states are said to be classical if the function P (α) in eqn (5.104) satisfies
P (α) � 0 for all α.

The meaning of ‘classical’ intended here is that these are quantum states with
the special property that all expectation values can be simulated by averaging over
random classical fields with the probability distribution P (α). By virtue of eqn (5.171),
all coherent states—including the vacuum state—are classical, and eqn (5.176) shows
that thermal states are also classical. The last example shows that classical states need
not be quasiclassical,2 i.e. minimum-uncertainty, states.

Our next objective is to find out what kinds of states are nonclassical. A convenient
way to investigate this question is to use eqn (5.165) to calculate the probability that
exactly n photons will be detected; this is given by

〈n |ρ|n〉 =
∫

d2α |〈n |α 〉|2 P (α) =
∫

d2αe−|α|2 |α|2n

n!
P (α) . (5.177)

If ρ is any classical state—other than the vacuum state—the integrand is non-negative,
so the integral must be positive. For the vacuum state, ρvac = |0〉 〈0|, eqn (5.171) gives
P (α) = πδ2 (α), so the integral vanishes for n �= 0 and gives 〈0 |ρvac| 0〉 = 1 for n = 0.

2It is too late to do anything about this egregious abuse of language.
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Thus for any classical state—other than the vacuum state—the probability for finding
n photons cannot vanish for any value of n:

〈n |ρ|n〉 �= 0 for all n . (5.178)

Thus a state, ρ �= ρvac, such that 〈n |ρ|n〉 = 0 for some n > 0 is nonclassical. The
simplest example is the pure number state ρ = |m〉 〈m|, since 〈n |ρ|n〉 = 0 for n �= m.
This can be seen more explicitly by applying eqn (5.177) to the case ρ = |m〉 〈m|, with
the result ∫

d2αe−|α|2 |α|2n

n!
P (α) =

{
1 for n = m ,

0 for n �= m .
(5.179)

The conditions for n �= m cannot be satisfied if P (α) is non-negative; therefore, P (α)
for a pure number state must be negative in some region of the α-plane. A closer
examination of this infinite family of equations shows further that P (α) cannot even
be a smooth function; instead it is proportional to the nth derivative of the delta
function δ2 (α).

B The normal-ordered characteristic function∗

An alternative construction of the P (α)-function can be carried out by using the
normally-ordered operator, eηa†

e−η∗a, to define the normally-ordered character-
istic function

χN (η) = Tr
(
ρeηa†

e−η∗a
)

. (5.180)

The corresponding distribution function, P (α), is defined by replacing χW with χN

in eqn (5.126) to get

P (α) =
1
π2

∫
d2ηeη∗α−ηα∗

χN (η) . (5.181)

The identity (5.141) relates χN (η) and χW (η) by

χN (η) = e|η|
2/2χW (η) , (5.182)

so the argument leading to eqn (5.140) yields the much weaker bound |χN (η)| < e|η|
2/2

for the normal-ordered characteristic function χN (η). This follows from the fact that
eηa†

e−η∗a is self-adjoint rather than unitary. The eigenvalues are therefore real and
need not have unit modulus. This has the important consequence that P (α) is not
guaranteed to exist, even in the delta function sense. In the literature it is often said
that P (α) can be more singular than a delta function.

We already know from eqn (5.171) that P (α) exists for a pure coherent state, but
what about number states? The P -distribution for the number state ρ = |1〉 〈1| can
be evaluated by combining the general relation (5.182) with the result (5.152) for the
Wigner characteristic function of a number state to get

P (α) =
1
π2

∫
d2ηeη∗α−ηα∗ (

1 − |η|2
)

. (5.183)

This can be evaluated by using the identities
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ηeη∗α−ηα∗
= − ∂

∂α∗ eη∗α−ηα∗
, η∗eη∗α−ηα∗

=
∂

∂α
eη∗α−ηα∗

, (5.184)

to find
P (α) = δ2 (α) +

∂

∂α

∂

∂α∗ δ2 (α) . (5.185)

This shows that P (α) is not everywhere positive for a number state. Since P (α) is
a generalized function, the meaning of this statement is that there is a real, positive
test function f (α) for which ∫

d2αP (α) f (α) < 0 , (5.186)

e.g. f (α) = exp
(−2 |α|2).

Let ρ be a density operator for which P (α) exists, then in parallel with eqn (5.130)
we have ∫

d2α α∗nαmP (α) =
(
− ∂

∂η∗

)m (
∂

∂η

)n

χN (η, η∗)
∣∣∣∣
η=0

= Tr
(
ρa†neηa†

ame−η∗a
)∣∣∣

η=0

= Tr
(
ρa†nam

)
. (5.187)

The case m = n = 0 gives the normalization∫
d2α P (α) = 1 , (5.188)

and the identity of the averages calculated with P (α) and the averages calculated with
ρ shows that the density operator is represented by

ρ =
∫

d2α |α〉P (α) 〈α| . (5.189)

Thus the definition of P (α) given by eqn (5.181) agrees with the original definition
(5.165).

For an operator expressed in normal-ordered form by

X
(
a†, a

)
=

∞∑
m=0

∞∑
n=0

XN
nma†nam , (5.190)

eqn (5.187) yields

Tr (ρX) =
∫

d2α P (α)XN (α∗, α) , (5.191)

where

XN (α∗, α) =
∞∑

m=0

∞∑
n=0

XN
nmα∗nαm . (5.192)
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The P -distribution and the Wigner distribution are related by the following argu-
ment. First invert eqn (5.181) to get

χN (η) =
∫

d2α eηα∗−η∗αP (α) . (5.193)

Combining this with eqn (5.126) and the relation (5.182) produces

W (α) =
1
π2

∫
d2ηeη∗α−ηα∗

e−|η|2/2χN (η)

=
1
π2

∫
d2βP (β)

∫
d2η eη(β∗−α∗)e−η∗(β−α)e−|η|2/2 . (5.194)

The η-integral is readily done by converting to real variables, and the relation between
the Wigner distribution and the P -distribution is

W (α) =
2
π

∫
d2βe−2|β−α|2P (β) . (5.195)

An interesting consequence of this relation is that a classical state automatically
yields a positive Wigner distribution, i.e.

P (α) � 0 implies W (α) � 0 , (5.196)

but the opposite statement is not true:

W (α) � 0 does not imply P (α) � 0 . (5.197)

This is demonstrated by exhibiting a single example—see Exercise 5.7—of a state with
a positive Wigner function that is not classical.

It is natural to wonder why P (α) � 0 should be chosen as the definition of a
classical state instead of W (α) � 0. The relations (5.196) and (5.197) give one reason,
since they show that P (α) � 0 is a stronger condition. A more physical reason is that
counting rates are described by expectation values of normal-ordered products, rather
than Weyl products. This means that P (α) is more directly related to the relevant
experiments than is W (α).

5.6.4 Multimode phase space∗

In Section 5.5 we defined multimode coherent states |α〉 by aκ |α〉 = ακ |α〉, where aκ

is the annihilation operator for the mode κ and

α = (α1, α2, . . . , ακ, . . .) . (5.198)

For states in which only a finite number of modes are occupied, i.e. aκ |α〉 = 0 for
κ > κ′, the characteristic functions defined previously have the generalizations

χW

(
η
)

= Tr
(
ρeη·a†−η∗a

)
, (5.199)

χN

(
η
)

= Tr
(
ρeη·a†

e−η∗a
)

, (5.200)



��� Coherent states

where η ≡ (η1, η2, . . .), and

η · a† =
∑
κ�κ′

ηκa†
κ . (5.201)

The corresponding distributions are defined by multiple Fourier transforms. For ex-
ample the P -distribution is

P (α) =
∫ ⎡⎣ ∏

κ�κ′

d2ηκ

π2

⎤⎦ e−η·α∗+η∗·αχN

(
η
)
, (5.202)

and the density operator is given by

ρ =
∫ ⎡⎣ ∏

κ�κ′
d2ακ

⎤⎦ |α〉P (α) 〈α| . (5.203)

All this is plain sailing as long as κ′ remains finite, but some care is required to
get the mathematics right when κ′ → ∞. This has been done in the work of Klauder
and Sudarshan (1968), but the κ′ → ∞ limit is not strictly necessary in practice. The
reason is to be found in the alternative characterization of coherent states given by
|α〉 → |w〉, where

A(+) [v] |w〉 = (v,w) |w〉 , (5.204)

and the wave packets w, v, etc. are expressed as expansions in the chosen modes,

w (r) =
∑

κ

ακwκ (r) . (5.205)

The vector fields v and w belong to the classical phase space Γem defined in Section
3.5.1, so the expansion coefficients ακ must go to zero as κ → ∞. Thus any real ex-
perimental situation can be adequately approximated by a finite number of modes.
With this comforting thought in mind, we can express the characteristic and distribu-
tion functions as functionals of the wave packets. In this language, the normal-ordered
characteristic function and the P -distribution are respectively given by

χN (v) = Tr
(
ρ exp

{
A(+) [v]

}
exp

{
−A(−) [v]

})
(5.206)

and

P (w) =
∫

D [v] exp {(w,v) − (v,w)}χN (v) . (5.207)

The symbol
∫ D [v] stands for a (functional) integral over the infinite-dimensional

space Γem of classical wave packets; but, as we have just remarked, it can always
be approximated by a finite-dimensional integral over the collection of modes with
non-negligible amplitudes.
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5.7 Gaussian states∗

In classical statistics, the Gaussian (normal) distribution has the useful property that
the first two moments determine the values of all other moments (Gardiner, 1985, Sec.
2.8.1). For a Gaussian distribution over N real variables—with the averages of single
variables arranged to vanish—all odd moments vanish and the even moments satisfy

〈x1 · · ·x2q〉 =
(2q)!
q!2q

[〈xixj〉 〈xkxl〉 · · · 〈xmxn〉]sym , (5.208)

where i, j, k, l, m, n range over 1, . . . , 2q and the subscript sym indicates the average
over all ways of partitioning the variables into pairs. Two fourth-order examples are

〈x1 · · ·x4〉 =
4!

2!22

[
1
3
{〈x1x2〉 〈x3x4〉 + 〈x1x3〉 〈x2x4〉 + 〈x1x4〉 〈x2x3〉}

]
= 〈x1x2〉 〈x3x4〉 + 〈x1x3〉 〈x2x4〉 + 〈x1x4〉 〈x2x3〉 (5.209)

and 〈
x4

1

〉
= 3

〈
x2

1

〉 〈
x2

1

〉
. (5.210)

This classical property is shared by the coherent states, as can be seen from the
general identity 〈

α
∣∣a†man

∣∣α〉 = α∗mαn =
(〈

α
∣∣a†∣∣α〉)m

(〈α |a|α〉)n
. (5.211)

A natural generalization of the classical notion of a Gaussian distribution is to define
Gaussian states (Gardiner, 1991, Sec. 4.4.5) as those that are described by density
operators of the form

ρG = N exp
[−G

(
a, a†)] , (5.212)

where
G
(
a, a†) = La†a +

1
2
Ma†2 +

1
2
M∗a2 , (5.213)

L and M are free parameters, and the constant N is fixed by the normalization
condition Tr ρ = 1.

For the special value M = 0, the Gaussian state ρG has the form of a thermal state,
and we already know (see eqn (5.148)) how to calculate the Wigner characteristic
function for this case. We would therefore like to transform the general Gaussian state
into this form. If the operators a and a† were replaced by complex variables α and α∗,
this would be easy. The c-number quadratic form G (α, α∗) can always be expressed
as a sum of squares by a linear transformation to new variables

α̃ = µα + να∗ ,

α̃∗ = µ∗α∗ + ν∗α .
(5.214)

What is needed now is the quantum analogue of this transformation, i.e. the new and
old operators are related by

ã = UaU † , (5.215)
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where U is a unitary transformation. We must ensure that eqn (5.215) goes over into
eqn (5.214) in the classical limit, and the easiest way to do this is to assume that the
unitary transformation has the same form:

ã = UaU † = µa + νa† , (5.216)

where µ and ν are c-numbers. The unitary transformation preserves the commutation
relations, so the c-number coefficients µ and ν are constrained by

|µ|2 − |ν|2 = 1 . (5.217)

Since the overall phase of ã is irrelevant, we can choose µ to be real, and set

µ = cosh r , ν = e2iφ sinh r . (5.218)

The relation between a and ã is an example of the Bogoliubov transformation first
introduced in low temperature physics (Huang, 1963, Sec. 19.4).

The condition that the transformed Gaussian state is thermal-like is

ρ̃G = UρGU † = N e−g0a†a , (5.219)

where the constant g0 is to be determined. The ansatz (5.212) shows that this is
equivalent to

UGU † = g0a
†a , (5.220)

and taking the commutator of both sides of this equation with a produces[
a, Lã†ã +

1
2
Mã†2 +

1
2
M∗ã2

]
= g0a . (5.221)

Evaluating the commutator on the left by means of eqn (5.216) will produce two
terms, one proportional to a† and one proportional to a. No a†-term can be present
if eqn (5.221) is to be satisfied; therefore, the coefficient of a† must be set to zero. A
little careful algebra shows that the free parameter φ in eqn (5.218) can be chosen to
cancel the phase of M . This is equivalent to assuming that M is real and positive to
begin with, so that φ = 0. With this simplification, setting the coefficient of a† to zero
imposes tanh 2r = −L/M , and using this relation to evaluate the coefficient of the
a-term yields in turn g0 =

√
L2 − M2.

We will now show that the Gaussian state has the properties claimed for it by
applying the general definition (5.125) to ρG, with the result

χG
W (η) = Tr

(
ρGeηa†−η∗a

)
= Tr

(
UρGU †Ueηa†−η∗aU †

)
= N Tr

(
e−g0a†aeη�a†−η∗

�a
)

. (5.222)

The remaining ã-dependence can be eliminated with the aid of the explicit form
(5.216), so that
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χG
W (η) = N Tr

(
e−g0a†aeζa†−ζ∗a

)
, (5.223)

where
ζ = ηµ − η∗ν = η cosh r − η∗ sinh r . (5.224)

The parameter g0 in eqn (5.219) plays the role of �ω/kT for the thermal state, so
comparison with eqns (2.175)–(2.177) shows that N = [1 − exp (−g0)]. An application
of eqn (5.148) then yields the Wigner characteristic function

χG
W (η) = exp

[
−
(

nG +
1
2

)
|ζ|2

]
= exp

[
−
(

nG +
1
2

)
|η cosh r − η∗ sinh r|2

]
(5.225)

for the Gaussian state, where nG = 1/ (eg0 − 1) is the analogue of the thermal average
number of quanta. The Wigner distribution is given by eqn (5.126), which in the
present case becomes

WG (α) =
1
π2

∫
d2ηeη∗α−ηα∗

exp
[
−
(

nG +
1
2

)
|ζ|2

]
. (5.226)

After changing integration variables from η to ζ, this yields

WG (α) =
1
π2

∫
d2ζeζ∗β−ζβ∗

exp
[
−
(

nG +
1
2

)
|ζ|2

]
, (5.227)

where
β = µα − να∗ = cosh r α − sinh r α∗ . (5.228)

According to eqn (5.149), this means that

WG (α) =
1
π

1
nG + 1/2

exp

(
− |β|2

nG + 1/2

)

=
1
π

1
nG + 1/2

exp

(
−|cosh r α − sinh r α∗|2

nG + 1/2

)
. (5.229)

It is encouraging to see that the Wigner distribution for a Gaussian state is itself
Gaussian, but we previously found that positivity for the Wigner distribution does not
guarantee positivity for P (α). In order to satisfy ourselves that P (α) is also Gaussian,
we use the relation (5.182) between the normal-ordered and Wigner characteristic
functions to carry out a rather long evaluation of P (α) which leads to

PG (α) =
1
π

1√
(nG + 1/2)2 − (nG + 1/2) cosh 2r + 1/4

× exp

{
−|α|2 cosh 2r − 1

2 sinh 2r
(
α2 + α∗2)

nG cosh2 r + (nG + 1) sinh2 r

}
. (5.230)

Thus all Gaussian states are classical, and both the Wigner function WG (α) and the
PG (α)-function are Gaussian functions of α.
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5.8 Exercises

5.1 Are there eigenvalues and eigenstates of a†?

The equation
a† |φβ〉 = β |φβ〉 ,

where β is a complex number, is apparently analogous to the eigenvalue problem
a |α〉 = α |α〉 defining coherent states.

(1) Show that the coordinate-space representation of this equation is

1√
2�ω

(
ωQ − �

d

dQ

)
φβ (Q) = βφβ (Q) .

(2) Find the explicit solution and explain why it does not represent an eigenvector.
Hint: The solution violates a fundamental principle of quantum mechanics.

5.2 Expectation value of functions of N

Consider the operator-valued function f (N), where N = a†a and f (s) is a real func-
tion of the dimensionless, real argument s.

(1) Show that f (N) is represented by

f (N) =
∫ ∞

−∞

dθ

2π
f (θ) eiθN ,

where f (θ) is the Fourier transform of f (s).
(2) For any coherent state |α〉, show that〈

α
∣∣eiθN

∣∣α〉 = exp
{
|α|2 (eiθ − 1

)}
,

and use this to get a representation of 〈α |f (N)|α〉.

5.3 Approach to orthogonality

By analogy with ordinary vectors, define the angle Θαβ between the two coherent
states by cos (Θαβ) = |〈α |β 〉|. From a plot of Θαβ versus |α − β| determine the value
at which approximate orthogonality sets in. What is the physical significance of this
value?

5.4 Number-phase uncertainty principle

Assume that the quantum fuzzball in Fig. 5.1 is a circle of unit diameter.

(1) What is the physical meaning of this assumption?
(2) Define the phase uncertainty, ∆φ, as the angle subtended by the quantum fuzzball

at the origin. In the semiclassical limit |α0| � 1, show that ∆φ∆n ∼ 1, where ∆n
is the rms deviation of the photon number in the state |α0〉.
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5.5 Arecchi’s experiment

What is the relation of the fourth and second moments of a Poisson distribution?
Check this relation for the data given in Fig. 5.4.

5.6 The displacement operator

(1) Show that eqn (5.47) follows from eqn (5.46).
(2) Derive eqn (5.56) and explain why Φ (α, β) has to be real.
(3) Show that exp [−iτK (α)], with K (α) = iαa† − iα∗a, satisfies

∂

∂τ
exp [−iτK (α)] =

(
αa† − α∗a

)
exp [−iτK (α)] ,

and that exp [−iτK (α)] = D (τα).
(4) Let α → τα and β → τβ in eqn (5.56) and then differentiate both sides with

respect to τ . Show that the resulting operator equation reduces to the c-number
equation

∂Φ (τα, τβ)
∂τ

= 2τ Im (αβ∗) ,

and then conclude that Φ (α, β) = Im (αβ∗).

5.7 Wigner distribution

(1) Show that the Wigner distribution W (α) for the density operator

ρ = γ |1〉 〈1| + (1 − γ) |0〉 〈0| ,
with 0 < γ < 1, is everywhere positive.

(2) Determine if the state described by ρ is classical.

5.8 The antinormally-ordered characteristic function∗

The argument in Section 5.6.1-B begins by replacing the exponential in the classical
definition (5.114) by eηa†−η∗a, but one could just as well start with the classically
equivalent form e−η∗aeηa†

, which is antinormally ordered. This leads to the definition

χA (η) = Tr
(
ρe−η∗aeηa†)

of the antinormally-ordered characteristic function.

(1) Use eqn (5.72) to show that

χA (η) =
∫

d2αe(ηα∗−η∗α)Q (α) .

(2) Invert this Fourier integral, e.g. by using eqn (5.127), to find

Q (α) =
1
π2

∫
d2ηe−(ηα∗−η∗α)χA (η) .
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5.9 Classical states

(1) For classical states, with density operators ρ1 and ρ2, show that the convex com-
bination ρx = xρ1 + (1 − x) ρ2 with 0 < x < 1 is also a classical state.

(2) Consider the superposition |ψ〉 = C |α〉 + C |−α〉 of two coherent states, where C
and α are both real.

(a) Derive the relation between C and α imposed by the normalization condition
〈ψ |ψ 〉 = 1.

(b) For the state ρ = |ψ〉 〈ψ| calculate the probability for observing n photons,
and decide whether the state is classical.

5.10 Gaussian states∗

Apply the general relation (5.182) to the expression (5.225) for the Wigner character-
istic function of a Gaussian state to show that

PG (α) =
1
π2

∫
d2ζ exp [ζ∗β − ζβ∗] exp

[
|cosh r ζ + sinh r ζ∗|2 /2

]
× exp

[
− (nG + 1/2) |ζ|2

]
,

where β is given by eqn (5.228). Evaluate the integral to get eqn (5.230).
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Entangled states

The importance of the quantum phenomenon known as entanglement first became
clear in the context of the famous paper by Einstein, Podolsky, and Rosen (EPR)
(Einstein et al., 1935), which presented an apparent paradox lying at the foundations
of quantum theory. The EPR paradox has been the subject of continuous discussion
ever since. In the same year as the EPR paper, Schrödinger responded with several
publications (Schrödinger, 1935a, 1935b1) in which he pointed out that the essential
feature required for the appearance of the EPR paradox is the application of the
all-important superposition principle to the wave functions describing two or more
particles that had previously interacted. In these papers Schrödinger coined the name
‘entangled states’ for the physical situations described by this class of wave functions.

In recent times it has become clear that the importance of this phenomenon ex-
tends well beyond esoteric questions about the meaning of quantum theory; indeed,
entanglement plays a central role in the modern approach to quantum information
processing. The argument for the EPR paradox—which will be presented in Chapter
19—is based on the properties of the EPR states discussed in the following section.
After this, we will outline Schrödinger’s concept of entanglement, and then continue
with a more detailed treatment of the technical issues required for later applications.

6.1 Einstein–Podolsky–Rosen states

As part of an argument intended to show that quantum theory cannot be a com-
plete description of physical reality, Einstein, Podolsky, and Rosen considered two
distinguishable spinless particles A and B—constrained to move in a one-dimensional
position space—that are initially separated by a distance L and then fly apart like
the decay products of a radioactive nucleus. The particular initial state they used is
a member of the general family of EPR states described by the two-particle wave
functions

ψ (xA, xB) =
∫ ∞

−∞

dk

2π
F (k) eik(xA−xB) . (6.1)

Every function of this form is an eigenstate of the total momentum operator with
eigenvalue zero, i.e.

(p̂A + p̂B)ψ (xA, xB) = 0 . (6.2)

Peculiar phenomena associated with this state appear when we consider a measure-
ment of one of the momenta, say p̂A. If the result is �k0, then von Neumann’s projection

1An English translation of this paper is given in Trimmer (1980).



��� Entangled states

postulate states that the wave function after the measurement is the projection of the
initial wave function onto the eigenstate of p̂A associated with the eigenvalue �k0.
Combining this rule with eqn (6.1) shows that the two-particle wave function after the
measurement is reduced to

ψred (xA, xB) ∝ F (k0) eik0(xA−xB) . (6.3)

The reduced state is an eigenstate of p̂B with eigenvalue −�k0. Since p̂A and p̂B are
constants of the motion for free particles, a measurement of p̂B at a later time will
always yield the value −�k0. Thus the particular value found in the measurement of
p̂A uniquely determines the value that would be found in any subsequent measurement
of p̂B.

The true strangeness of this situation appears when we consider the timing of the
measurements. Suppose that the first measurement occurs at tA and the second at tB >
tA. It is remarkable that the prediction of the value −�k0 for the second measurement
holds even if (tB − tA) < L/c. In other words, the result of the measurement of p̂B

appears to be determined by the measurement of p̂A even though the news of the
first measurement result could not have reached the position of particle B at the time
of the second measurement. This spooky action-at-a-distance—which we will study in
Chapter 19—was part of the basis for Einstein’s conclusion that quantum mechanics
is an incomplete theory.

6.2 Schrödinger’s concept of entangled states

In order to understand Schrödinger’s argument, we first observe that a product wave
function,

φ (xA, xB) = η (xA) ξ (xB) , (6.4)

does not have the peculiar properties of the EPR wave function ψ (xA, xB). The joint
probability that the position of A is within dxA of xA0 and that the position of B is
within dxB of xB0 is the product

dp (xA0, xB0) = |η (xA0)|2 dxA |ξ (xB0)|2 dxB (6.5)

of the individual probabilities, so the positions can be regarded as stochastically inde-
pendent random variables. The same argument can be applied to the momentum-space
wave functions. The joint probability that measurements of p̂A/� and p̂B/� yield values
in the neighborhood dkA of kA0 and dkB of kB0 is the product

dp (kA0, kB0) = |η (kA0)|2 dkA |ξ (kB0)|2 dkB (6.6)

of independent probabilities, analogous to independent coin tosses. Thus a measure-
ment of x̂A tells us nothing about the values that may be found in a measurement of
x̂B , and the same holds true for the momentum operators p̂A and p̂B.

One possible response to the conceptual difficulties presented by the EPR states
would be to declare them unphysical, but this tactic would violate the superposi-
tion principle: every linear combination of product wave functions also describes a
physically possible situation for the two-particle system. Furthermore, any interaction
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between the particles will typically cause the wave function for a two-particle system—
even if it is initially described by a product function like φ (xA, xB)—to evolve into
a superposition of product wave functions that is nonfactorizable. Schrödinger called
these superpositions entangled states. An example is given by the EPR wave function
ψ (xA, xB) which is a linear combination of products of plane waves for the two par-
ticles. The choice of the name ‘entangled’ for these states is related to the classical
principle of separability:

Complete knowledge of the state of a compound system yields complete knowledge
of the individual states of the parts.

This general principle does not require that the constituent parts be spatially sep-
arated; however, experimental situations in which there is spatial separation between
the parts provide the most striking examples of the failure of classical separability. A
classical version of the EPR thought experiment provides a simple demonstration of
this principle. We now suppose that the two particles are described by the classical
coordinates and momenta (qA, pA) and (qB , pB), so that the composite system is rep-
resented by the four-dimensional phase space (qA, pA, qB, pB). In classical physics the
coordinates and momenta have definite numerical values, so a state of maximum pos-
sible information for the two-particle system is a point (qA0, pA0, qB0, pB0) in the two-
particle phase space. This automatically provides the points (qA0, pA0) and (qB0, pB0)
in the individual phase spaces; therefore, the maximum information state for the com-
posite system determines maximum information states for the individual parts. The
same argument evidently works for systems with any finite number of degrees of free-
dom.

In quantum theory, the uncertainty principle implies that the maximum possi-
ble information for a physical system is given by a single wave function, rather than
a point in phase space. This does not mean, however, that classical separability is
necessarily violated. The product function φ (xA, xB) is an example of a maximal in-
formation state of the two-particle system, for which the individual wave functions in
the product are also maximal information states for the parts. Thus the product func-
tion satisfies the classical notion of separability. By contrast, the EPR wave function
ψ (xA, xB) is another maximal information state, but the individual particles are not
described by unique wave functions. Consequently, for an entangled two-particle state
we do not possess the maximum possible information for the individual particles; or
in Schrödinger’s words (Schrödinger, 1935b):

Maximal knowledge of a total system does not necessarily include total knowledge
of all its parts, not even when these are fully separated from each other and at the
moment are not influencing each other at all.

6.3 Extensions of the notion of entanglement

The EPR states describe two distinguishable particles, e.g. an electron and a proton
from an ionized hydrogen atom. Most of the work in the field of quantum information
processing has also concentrated on the case of distinguishable particles. We will see
later on that particles that are indistinguishable, e.g. two electrons, can be effectively
distinguishable under the right conditions; however, it is not always useful—or even
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possible—to restrict attention to these special circumstances. This has led to a con-
siderable amount of recent work on the meaning of entanglement for indistinguishable
particles.

In the present section, we will develop two pieces of theoretical machinery that are
needed for the subsequent discussion: the concept of tensor product spaces and the
Schmidt decomposition. In the following sections, we will give a definition of entan-
glement for the general case of two distinguishable quantum objects, and then extend
this definition to indistinguishable particles and to the electromagnetic field.

6.3.1 Tensor product spaces

In Section 4.2.1, the Hilbert space HQED for quantum electrodynamics was constructed
as the tensor product of the Hilbert space Hchg for the atoms and the Fock space HF for
the field. This construction only depends on the Born interpretation and the superposi-
tion principle; consequently, it works equally well for any pair of distinguishable phys-
ical systems A and B described by Hilbert spaces HA and HB. Let {|φα〉} and {|ηβ〉}
be basis sets for HA and HB respectively, then for any pair of vectors (|ψ〉A, |ϑ〉B) the
product vector |Λ〉 = |ψ〉A |ϑ〉B is defined by the probability amplitudes

〈φα, ηβ |Λ 〉 = 〈φα |ψ 〉 〈ηβ |ϑ 〉 . (6.7)

Since {|φα〉} and {|ηβ〉} are complete orthonormal sets of vectors in their respective
spaces, the inner product between two such vectors is consistently defined by

〈Λ1 |Λ2 〉 =
∑
αβ

〈Λ1 |φα, ηβ 〉 〈φα, ηβ |Λ2 〉

=
∑
αβ

〈ψ1 |φα 〉 〈ϑ1 |ηβ 〉 〈φα |ψ2 〉 〈ηβ |ϑ2 〉

= 〈ψ1 |ψ2 〉 〈ϑ1 |ϑ2 〉 , (6.8)

where the inner products 〈ψ1 |ψ2 〉 and 〈ϑ1 |ϑ2 〉 refer respectively to HA and HB. The
linear combination of two product vectors is defined by component-wise addition, i.e.
the ket

|Φ〉 = c1 |Λ1〉 + c2 |Λ2〉 (6.9)

is defined by the probability amplitudes

〈φα, ηβ |Φ 〉 = c1 〈φα, ηβ |Λ1 〉 + c2 〈φα, ηβ |Λ2 〉
= c1 〈φα |ψ1 〉 〈ηβ |ϑ1 〉 + c2 〈φα |ψ2 〉 〈ηβ |ϑ2 〉 . (6.10)

The tensor product space HC = HA ⊗ HB is the family of all linear combinations of
product kets. The family of product kets,

{|χαβ〉 = |φα, ηβ〉 = |φα〉A |ηβ〉B} , (6.11)

forms a complete orthonormal set with respect to the inner product (6.8), i.e.

〈χα′β′ | χαβ 〉 = 〈φα′ | φα 〉 〈ηβ′ |ηβ 〉 = δαα′δββ′ , (6.12)
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and a general vector |Φ〉 in HC can be expressed as

|Φ〉 =
∑
α

∑
β

Φαβ |χαβ〉 =
∑
α

∑
β

Φαβ |φα〉A |ηβ〉B . (6.13)

The inner product between any two vectors is

〈Ψ |Φ 〉 =
∑

α

∑
β

Ψ∗
αβΦαβ . (6.14)

One can show that choosing new basis sets in HA and HB produces an equivalent
basis set for HC . This notion can be extended to composite systems composed of N
distinguishable subsystems described by Hilbert spaces H1, . . . ,HN . The composite
system is described by the N -fold tensor product space

HC = H1 ⊗ · · · ⊗ HN , (6.15)

which is defined by repeated use of the two-space definition given above.
It is useful to extend the tensor product construction for vectors to a similar one

for operators. Let A and B be operators acting on HA and HB respectively, then the
operator tensor product, A ⊗ B, is the operator acting on HC defined by

(A ⊗ B) |Φ〉 =
∑

α

∑
β

Φαβ A |φα〉AB |ηβ〉B . (6.16)

This definition immediately yields the rule

(A1 ⊗ B1) (A2 ⊗ B2) = (A1A2) ⊗ (B1B2) (6.17)

for the product of two such operators. Since the notion of the outer or tensor product
of matrices and operators is less familiar than the idea of product wave functions, we
sometimes use the explicit ⊗ notation for operator tensor products when it is needed
for clarity. The definition (6.16) also allows us to treat A and B as operators acting
on the product space HC by means of the identifications

A ↔ A ⊗ IB ,

B ↔ IA ⊗ B ,
(6.18)

where IA and IB are respectively the identity operators for HA and HB. These relations
lead to the rule

AB ↔ A ⊗ B , (6.19)

so we can use either notation as dictated by convenience.
As explained in Section 2.3.2, a mixed state of the composite system is described

by a density operator
ρ =

∑
e

Pe |Ψe〉 〈Ψe| , (6.20)

where Pe is a probability distribution on the ensemble {|Ψe〉} of pure states. The
expectation values of observables for the subsystem A are determined by the reduced
density operator
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ρA = TrB (ρ) , (6.21)

where the partial trace over HB of a general operator X acting on HC is the operator
on HA with matrix elements

〈φα′ |TrB (X)|φα〉 =
∑

β

〈χα′β |X |χαβ〉 . (6.22)

This can be expressed more explicitly by using the fact that every operator on HC can
be decomposed into a sum of operator tensor products, i.e.

X =
∑

n

An ⊗ Bn . (6.23)

Substituting this into the definition (6.22) defines the operator

TrB (X) =
∑

n

An TrB (Bn) (6.24)

acting on HA, where the c-number

TrB (Bn) =
∑

β

〈ηβ |Bn| ηβ〉 (6.25)

is the trace over HB. The average of an observable A for the subsystem A is thus given
by

Tr (ρA) = TrA (ρAA) . (6.26)

In the same way the average of an observable B for the subsystem B is

Tr (ρB) = TrB (ρBB) , (6.27)

where
ρB = TrA (ρ) . (6.28)

6.3.2 The Schmidt decomposition

For finite-dimensional spaces, the general expansion (6.13) becomes

|Ψ〉 =
dA∑

α=1

dB∑
β=1

Ψαβ |χαβ〉 , (6.29)

where Ψαβ = 〈χαβ |Ψ 〉. In the study of entanglement, it is useful to have an alternative
representation that is specifically tailored to a particular state vector |Ψ〉.

For our immediate purposes it is sufficient to explain the geometrical concepts
leading to this special expansion; the technical details of the proof are given in Section
6.3.3. The basic idea is illustrated in Fig. 6.1, which shows the original vector, |Ψ〉,
and the normalized product vector, |ζ1〉A |ϑ1〉B, that has the largest projection Y1

onto |Ψ〉.
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�Ψ�

�ζ�� �ϑ��

Fig. 6.1 A qualitative sketch of the procedure

for deriving the Schmidt decomposition, given

by eqn (6.30). The heavy arrow represents the

original vector |Ψ〉 and the plane represents

the set of all product vectors |ζ〉 |ϑ〉. The light

arrow denotes the projection of |Ψ〉 onto the

plane.

After determining this first product vector, we define a new vector, |Ψ1〉 = |Ψ〉 −
Y1 |ζ1〉A |ϑ1〉B, that is orthogonal to |ζ1〉A |ϑ1〉B. The same game can be played with
|Ψ1〉; that is, we find the normalized product vector |ζ2〉A |ϑ2〉B that has the maximum
projection Y2 onto |Ψ1〉 and is orthogonal to |ζ1〉A |ϑ1〉B. Since the spaces HA and HB

are finite dimensional, this process must terminate after a finite number r of steps, i.e.
when Yr+1 = 0. The orthogonality of the successive product vectors implies that they
are linearly independent; therefore, the largest possible number of steps is the smaller
of the two dimensions, min (dA, dB). The final result is the Schmidt decomposition

|Ψ〉 =
r∑

n=1

Yn |ζn〉A |ϑn〉B , (6.30)

where the Schmidt rank r � min (dA, dB). The density operator for this pure state
is therefore

ρ =
r∑

m=1

r∑
n=1

YmY ∗
n |ζm〉A |ϑm〉B A 〈ζn| B 〈ϑn|

=
r∑

m=1

r∑
n=1

YmY ∗
n (|ζm〉A A 〈ζn|) ⊗ (|ϑm〉B B 〈ϑn|) . (6.31)

The minimum value (r = 1) of the Schmidt rank occurs when |Ψ〉 is a product vector.
The product vectors |ζn〉A |ϑn〉B are orthonormal by construction, i.e. 〈ζn |ζm 〉 =
〈ϑn |ϑm 〉 = δnm, and the coefficients Yn satisfy the normalization condition

r∑
n=1

|Yn|2 = 1 . (6.32)

In applications of the Schmidt decomposition (6.30), it is important to keep in mind
that the basis vectors |ζn〉A |ϑn〉B themselves—and not just the coefficients Yn—are
uniquely associated with the vector |Ψ〉. The Schmidt decomposition for a new vector
|Φ〉 would require a new set of basis vectors.

6.3.3 Proof of the Schmidt decomposition∗

We offer here a proof—modeled on one of the arguments given by Peres (1995, Sec.
5-3)—that the expansion (6.30) exists. For normalized vectors |ζ1〉A and |ϑ1〉B: set
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|ζ1, ϑ1〉 = |ζ1〉A |ϑ1〉B, and consider the projection operator P1 = |ζ1, ϑ1〉 〈ζ1, ϑ1|. The
identity |Ψ〉 = P1 |Ψ〉 + (1 − P1) |Ψ〉 can then be written as |Ψ〉 = Y1 |ζ1, ϑ1〉 + |Ψ1〉,
where Y1 = 〈ζ1, ϑ1 |Ψ 〉 and the vector |Ψ1〉 = (1 − P1) |Ψ〉 is orthogonal to |ζ1, ϑ1〉. By
applying the general expansion (6.29) to the vectors |Ψ〉 and |ζ1, ϑ1〉, one can express
|Y1|2 as

|Y1|2 =

∣∣∣∣∣∣
dA∑

α=1

dB∑
β=1

Ψ∗
αβxαyβ

∣∣∣∣∣∣
2

� 1 , (6.33)

where xα = 〈φα |ζ1 〉, yβ = 〈ηβ |ϑ1 〉, and the upper bound follows from the normaliza-
tion of the vectors defining Y1.

From a geometrical point of view, |Y1| is the magnitude of the projection of |ζ1, ϑ1〉
onto |Ψ〉. In quantum terms, |Y1|2 is the probability that a measurement of P1 will
result in the eigenvalue unity and will leave the system in the state |ζ1, ϑ1〉. The
next step is to choose the product vector |ζ1, ϑ1〉—i.e. to find values of xα and yβ—
that maximizes |Y1|2. This is always possible, since |Y1|2 is a bounded, continuous
function of the finite set of complex variables (x1, . . . , xdA , y1, . . . , ydB ). The solution
is not unique, since the overall phase of |ζ1, ϑ1〉 is not determined by the maximization
procedure. This is not a real difficulty; the undetermined phases can be chosen so that
Y1 is real. In general, there may be several linearly independent solutions for |ζ1, ϑ1〉,
but this is also not a serious difficulty. By forming appropriate linear combinations of
the degenerate solutions it is always possible to make them mutually orthogonal. We
will therefore simplify the discussion by assuming that the maximum is always unique.
Note that the maximum value of |Y1|2 can only be unity if the original vector is itself
a product vector.

Now that we have made our choice of |ζ1, ϑ1〉, we pick a new product vector
|ζ2, ϑ2〉—with projection operator P2 = |ζ2, ϑ2〉 〈ζ2, ϑ2|—and write the identity |Ψ1〉 =
P2 |Ψ1〉 + (1 − P2) |Ψ1〉 as

|Ψ1〉 = Y2 |ζ2, ϑ2〉 + |Ψ2〉 , (6.34)

where Y2 = 〈ζ2, ϑ2 |Ψ1 〉 and |Ψ2〉 = (1 − P2) |Ψ1〉. Since |Ψ1〉 is orthogonal to |ζ1, ϑ1〉,
we can assume that |ζ2, ϑ2〉 is also orthogonal to |ζ1, ϑ1〉. Now we proceed, as in the
first step, by choosing |ζ2, ϑ2〉 to maximize |Y2|2. At this point, we have

|Ψ〉 = Y1 |ζ1, ϑ1〉 + Y2 |ζ2, ϑ2〉 + |Ψ2〉 , (6.35)

and this procedure can be repeated until the next projection vanishes. The last re-
mark implies that the number of terms is limited by the minimum dimensionality,
min (dA, dB); therefore, we arrive at eqn (6.30).

6.4 Entanglement for distinguishable particles

In Section 6.3.1 we saw that the Hilbert space for a composite system formed from any
two distinguishable subsystems A and B (which can be atoms, molecules, quantum
dots, etc.) is the tensor product HC = HA ⊗ HB. The current intense interest in
quantum information processing has led to the widespread use of the terms parties
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for A and B, and bipartite system, for what has traditionally been called a two-
particle system. Since our interests in this book are not limited to quantum information
processing, we will adhere to the traditional terminology in which the distinguishable
objects A and B are called particles and the composite system is called a two-particle
or two-part system.

In order to simplify the discussion, we will assume that the two Hilbert spaces have
finite dimensions, dA, dB < ∞. A composite system composed of two distinguishable,
spin-1/2 particles—for example, impurity atoms bound to adjacent sites in a crys-
tal lattice—provides a simple example that fits within this framework. In this case,
HA = HB = C2, and all observables can be written as linear combinations of the spin
operators, e.g.

OA = C0I
A + C1n · SA , (6.36)

where C0 and C1 are constants, IA is the identity operator, n is a unit vector, SA =
σA/2, and σ = (σx, σy, σz) is the vector of Pauli matrices. A discrete analogue of the
EPR wave function is given by the singlet state

|S = 0〉AB =
1√
2
{|↑〉A |↓〉B − |↓〉A |↑〉B} , (6.37)

where the spin-up and spin-down states are defined by

n · SA |↑〉A = +
1
2
|↑〉A , n · SA |↓〉A = −1

2
|↓〉A , etc. (6.38)

The singlet state has total spin angular momentum zero, so one can show—as in
Exercise 6.3—that it has the same expression for every choice of n. If several spin-
projections are under consideration, the notation |↑n〉A and |↓n〉A can be used to
distinguish them.

The most important feature of entanglement for pure states is that the result of
one measurement yields information about the probability distribution of a second,
independent measurement. For the two-spin system, a measurement of n ·SA with the
result ±1/2 guarantees that a subsequent measurement of n · SB will yield the result
∓1/2. A discrete version of the unentangled (separable) state (6.4) is

|φ〉 = {c↑ |↑〉A + c↓ |↓〉A} {b↑ |↑〉B + b↓ |↓〉B} . (6.39)

In this case, measuring n · SA provides no information at all on the distribution of
values for n · SB .

6.4.1 Definition of entanglement

We will approach the general idea of entanglement indirectly by first defining separable
(unentangled) pure and mixed states, and then defining entangled states as those that
are not separable. Since entangled states are the focus of this chapter, this negative
procedure may seem a little strange. The explanation is that separable states are simple
and entangled states are complicated. We will define separability and entanglement
in terms of properties of the state vector or density operator. This is the traditional
approach, and it provides a quick entry into the applications of these notions.
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A Pure states

The definitions we give here are simply generalizations of the examples presented in
Sections 6.1 and 6.2, or rather the finite-dimensional analogues given by eqns (6.37)
and (6.39). Thus we say that a pure state |Ψ〉 of the two-particle system described by
the Hilbert space HC = HA ⊗ HB is separable if it can be expressed as

|Ψ〉 = |Φ〉A |Ξ〉B , (6.40)

which is the general version of eqn (6.39), and entangled if it is not separable. This
awkward negative definition of entanglement as the absence of separability can be
avoided by using the Schmidt decomposition (6.30). A little thought shows that the
states that cannot be written in the form (6.40) are just the states with r > 1. With
this in mind, we could define entanglement positively by saying that |Ψ〉 is entangled
if it has Schmidt rank r > 1. The discrete analogue (6.37) of the continuous EPR wave
function is an example of an entangled state.

The definitions given above imply several properties of the state vector which,
conversely, imply the original definitions. Thus the new properties can be used as
equivalent definitions of separability and entanglement for pure states. For ease of
reference, we present these results as theorems.

Theorem 6.1 A pure state is separable if and only if the reduced density operators
represent pure states, i.e. separable states satisfy the classical separability principle.

There are two assertions to be proved.
(a) The reduced density operators for a separable pure state |Ψ〉 represent pure states

of A and B.

(b) If the reduced density operators for a pure state |Ψ〉 describe pure states of A and
B, then |Ψ〉 is separable.

Suggestions for these arguments are given in Exercise 6.1.
Since entanglement is the absence of separability, this result can also be stated as

follows.

Theorem 6.2 A pure state is entangled if and only if the reduced density operators
for the subsystems describe mixed states.

Mixed states are, by definition, not states of maximum information, so this result
explicitly demonstrates that possession of maximum information for the total system
does not yield maximum information for the constituent parts. However, the statistical
properties of the mixed states for the subsystems are closely related. This can be seen
by using the Schmidt decomposition (6.31) to evaluate the reduced density operators:

ρA = TrB (ρ) =
r∑

m=1

|Ym|2 (|ζm〉 〈ζm|) (6.41)

and
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ρB = TrA (ρ) =
r∑

m=1

|Ym|2 (|ϑm〉 〈ϑm|) . (6.42)

Comparing eqns (6.41) and (6.42) shows that the two reduced density operators—
although they act in different Hilbert spaces—have the same set of nonzero eigenvalues{|Y1|2 , . . . , |Yr|2

}
. This implies that the purities of the two reduced states agree,

P (ρA) = TrA

(
ρ2

A

)
=

r∑
m=1

|Ym|4 = P (ρB) < 1 , (6.43)

and that the subsystems have identical von Neumann entropies,

S (ρA) = −TrA [ρA ln ρA] = −
r∑

m=1

|Ym|2 ln |Ym|2 = S (ρB) . (6.44)

An entangled pure state is said to be maximally entangled if the reduced density
operators are maximally mixed according to eqn (2.141), where the number of degen-
erate nonzero eigenvalues is given by M = r. The corresponding values of the purity
and von Neumann entropy are respectively P (ρ) = 1/r and S (ρ) = ln r.

We next turn to results that are more directly related to experiment. For observ-
ables A and B acting on HA and HB respectively and any state |Ψ〉 in HC = HA⊗HB,
we define the averages 〈A〉 = 〈Ψ |A⊗IB |Ψ〉 and 〈B〉 = 〈Ψ |IA⊗B|Ψ〉 and the fluctu-
ation operators δA = A − 〈A〉 and δB = B − 〈B〉. The quantum fluctuations are
said to be uncorrelated if 〈Ψ |δA δB|Ψ〉 = 0. With this preparation we can state the
following.

Theorem 6.3 A pure state is separable if and only if the quantum fluctuations of all
observables A and B are uncorrelated.

See Exercise 6.2 for a suggested proof. Combining this result with the fact that entan-
gled states are not separable leads easily to the following theorem.

Theorem 6.4 A pure state |Ψ〉 is entangled if and only if there is at least one pair of
observables A and B with correlated quantum fluctuations.

Thus the observation of correlations between measured values of A and B is experi-
mental evidence that the pure state |Ψ〉 is entangled.

B Mixed states

Since the density operator ρ is simply a convenient description of a probability distri-
bution Pe over an ensemble, {|Ψe〉}, of normalized pure states, the analysis of entan-
glement for mixed states is based on the previous discussion of entanglement for pure
states.
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From this point of view, it is natural to define a separable mixed state by an
ensemble of separable pure states, i.e. |Ψe〉 = |ζe〉 |ϑe〉 for all e. The density operator
for a separable mixed state is consequently given by a convex linear combination,

ρ =
∑

e

Pe |ζe〉A |ϑe〉B A 〈ζe| B 〈ϑe| , (6.45)

of density operators for separable pure states. By writing this in the equivalent form

ρ =
∑

e

Pe (|ζe〉A A 〈ζe|) ⊗ (|ϑe〉B B 〈ϑe|) , (6.46)

we find that the reduced density operators are

ρA = TrB (ρ) =
∑

e

Pe |ζe〉 〈ζe| (6.47)

and
ρB = TrA (ρ) =

∑
e

Pe |ϑe〉 〈ϑe| . (6.48)

In the special case that both sets of vectors are orthonormal, i.e.

〈ζe |ζf 〉 = 〈ϑe |ϑf 〉 = δef , (6.49)

the reduced density operators have the same spectra, so that—just as in the discussion
following Theorem 6.2—the two subsystems have the same purity and von Neumann
entropy. In the general case that one or both sets of vectors are not orthonormal, the
statistical properties can be quite different. An entangled mixed state is one that
is not separable, i.e. the ensemble contains at least one entangled pure state. Defining
useful measures of the degree of entanglement of a mixed state is a difficult problem
which is the subject of current research.

The clear experimental tests for separability and entanglement of pure states, pre-
sented in Theorems 6.3 and 6.4, are not available for mixed states. To see this, we
begin by writing out the correlation function and the averages of the observables A
and B as

C (A, B) = 〈δA δB〉 = Tr ρδA δB

=
∑

e

Pe 〈Ψe |δA δB|Ψe〉 , (6.50)

and
〈A〉 =

∑
e

Pe 〈Ψe |A|Ψe〉 , 〈B〉 =
∑

e

Pe 〈Ψe |B|Ψe〉 . (6.51)

We will separate the quantum fluctuations in each pure state from the fluctuations
associated with the classical probability distribution, Pe, over the ensemble of pure
states, by expressing the fluctuation operator δA as

δA = A − 〈A〉 = A − 〈Ψe |A|Ψe〉 + 〈Ψe |A|Ψe〉 − 〈A〉 . (6.52)
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The operator
δeA = A − 〈Ψe |A|Ψe〉 (6.53)

represents the quantum fluctuations of A around the average defined by |Ψe〉, and the
c-number

δ 〈A〉e = 〈Ψe |A|Ψe〉 − 〈A〉 (6.54)

describes the classical fluctuations of the individual quantum averages 〈Ψe |A|Ψe〉
around the ensemble average 〈A〉. Using eqns (6.52)–(6.54), together with the analo-
gous definitions for B, in eqn (6.50) leads to

C (A, B) = Cqu (A, B) + Ccl (A, B) , (6.55)

where
Cqu (A, B) =

∑
e

Pe 〈Ψe |δeA δeB|Ψe〉 (6.56)

represents the quantum part and

Ccl (A, B) =
∑

e

Peδ 〈A〉e δ 〈B〉e (6.57)

represents the classical part.
For a separable mixed state, the quantum correlation functions for each pure state

vanish, so that
C (A, B) = Ccl (A, B) =

∑
e

Peδ 〈A〉e δ 〈B〉e . (6.58)

Thus the observables A and B are correlated in the mixed state, despite the fact that
they are uncorrelated for each of the separable pure states. An explicit example of this
peculiar situation is presented in Exercise 6.4. As a consequence of this fact, observing
correlations between two observables cannot be taken as evidence of entanglement for
a mixed state.

6.5 Entanglement for identical particles

6.5.1 Systems of identical particles

In this section, we will be concerned with particles having nonzero rest mass—e.g. elec-
trons, ions, atoms, etc.—described by nonrelativistic quantum mechanics. In quantum
theory, particles—as well as more complex systems—are said to be indistinguish-
able or identical if all of their intrinsic properties, e.g. mass, charge, spin, etc., are
the same. In classical mechanics, this situation poses no special difficulties, since each
particle’s unique trajectory provides an identifying label, e.g. the position and mo-
mentum of the particle at some chosen time. In quantum mechanics, the uncertainty
principle removes this possibility, and indistinguishability of particles has radically
new consequences.2

2A more complete discussion of identical particles can be found in any of the excellent texts on
quantum mechanics that are currently available, for example Cohen-Tannoudji et al. (1977b, Chap.
XIV) or Bransden and Joachain (1989, Chap. 10).
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For identical particles, we will replace the previous labeling A and B by 1, 2, . . . , N ,
for the general case of N identical particles. Since the particles are indistinguishable,
the labels have no physical significance; they are merely a bookkeeping device. An
N -particle state |Ψ〉 can be represented by a wave function

Ψ (1, 2, . . . , N) = 〈1, 2, . . . , N |Ψ 〉 , (6.59)

where the arguments 1, 2, . . . , N stand for a full set of coordinates for each particle.
For example, 1 = (r1, s1), where r1 and s1 are respectively eigenvalues of r̂1 and ŝ1z.

The permutations on the labels form the symmetric group SN (Hamermesh,
1962, Chap. 7), with group multiplication defined by successive application of permu-
tations. An element P in SN is defined by its action: 1 → P (1) , 2 → P (2) , . . . , N →
P (N). Each permutation P is represented by an operator ZP defined by

〈1, 2, . . . , N |ZP |Ψ〉 = 〈P (1) , P (2) , . . . , P (N) |Ψ〉 , (6.60)

or in the more familiar wave function representation,

ZP Ψ (1, 2, . . . , N) = Ψ (P (1) , P (2) , . . . , P (N)) . (6.61)

It is easy to show that ZP is both unitary and hermitian. A transposition is a permu-
tation that interchanges two labels and leaves the rest alone, e.g. P (1) = 2, P (2) = 1,
and P (j) = j for all other values of j. Every permutation P can be expressed as a prod-
uct of transpositions, and P is said to be even or odd if the number of transpositions
is respectively even or odd. These definitions are equally applicable to distinguishable
and indistinguishable particles.

One consequence of particle identity is that operators that act on only one of the
particles, such as A and B in Theorems 6.3 and 6.4, are physically meaningless. All
physically admissible observables must be unchanged by any permutation of the labels
for the particles, i.e. the operator F representing a physically admissible observable
must satisfy

(ZP )† FZP = F . (6.62)

Suppose, for example, that A is an operator acting in the Hilbert space H(1) of one-
particle states; then for N particles the physically meaningful one-particle operator
is

A = A (1) + A (2) + · · · + A (N) , (6.63)

where A (j) acts on the coordinates of the particle with the label j.
The restrictions imposed on admissible state vectors by particle identity are a

bit more subtle. For systems of identical particles, indistinguishability means that a
physical state is unchanged by any permutation of the labels assigned to the particles.
For a pure state, this implies that the state vector can at most change by a phase
factor under permutation of the labels:

ZP |Ψ〉 = eiξP |Ψ〉 . (6.64)
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By using the special properties of permutations, one can show that the only possibilities
are eiξP = 1 or eiξP = (−1)P , where (−1)P = +1 (−1) for even (odd) permutations.3

In other words, admissible state vectors must be either completely symmetric or com-
pletely antisymmetric under permutation of the particle labels. These two alternatives
respectively define orthogonal subspaces (HC)sym and (HC)asym of the N -fold tensor
product space HC = H(1) (1)⊗· · ·⊗H(1) (N). It is an empirical fact that all elementary
particles belong to one of two classes: the fermions, described by the antisymmetric
states in (HC)asym; and the bosons, described by the symmetric states in (HC)sym.
As a consequence of the antisymmetry of the state vectors, two fermions cannot oc-
cupy the same single-particle state; however the symmetry of bosonic states allows
any number of bosons to occupy a single-particle state. For large numbers of parti-
cles, these features lead to strikingly different statistical properties for fermions and
bosons; the two kinds of particles are said to satisfy Bose–Einstein or Fermi sta-
tistics. This fact has many profound physical consequences, ranging from the Pauli
exclusion principle to Bose–Einstein condensation.

In the following discussions, we will often be concerned with the special case of two
identical particles. In this situation, a basis for the tensor product space H(1) ⊗ H(1)

is provided by the family of product vectors {|χmn〉 = |φm〉1 |φn〉2}, where {|φn〉} is a
basis for the single-particle space H(1). A general state |Ψ〉 in H(1) ⊗ H(1) can then be
expressed as

|Ψ〉 =
∑
m

∑
n

Ψmn |χmn〉 , (6.65)

where
Ψmn = 〈χmn |Ψ〉 . (6.66)

The symmetric (bosonic) and antisymmetric (fermionic) subspaces are respectively
characterized by the conditions

Ψmn = Ψnm (6.67)

and
Ψmn = −Ψnm. (6.68)

6.5.2 Effective distinguishability

There must be situations in which the indistinguishability of particles makes no differ-
ence. If this were not the case, explanations of electron scattering on the Earth would
have to take into account the presence of electrons on the Moon. This would create
rather serious problems for experimentalists and theorists alike. The key to avoiding
this nightmare is the simple observation that experimental devices have a definite
position in space and occupy a finite volume. As a concrete example, consider a mea-
suring apparatus that occupies a volume V centered on the point R. Another fact
of life is that plane waves are an idealization. Physically meaningful wave functions
are always normalizable; consequently, they are localized in some region of space. In
many cases, the wave function falls off exponentially, e.g. like exp (− |r − r0| /Λ), or

3This is generally true when the particle position space is three dimensional. For systems restricted
to two dimensions, continuous values of ξP are possible. This leads to the notion of anyons, see for
example Leinaas and Myrheim (1977).
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exp
(− |r − r0|2 /Λ2

)
, where r0 is the center of the localization region. In either case,

we will say that the wave function is exponentially small when |r − r0| � Λ. With this
preparation, we will say that an operator F—acting on single-particle wave functions
in H(1)—is a local observable in the region V if Fηs (r) is exponentially small in V
whenever the wave function ηs (r) is itself exponentially small in V .

Let us now consider two indistinguishable particles occupying the states |φ〉 and
|η〉, where |φ〉 is localized in the volume V and |η〉 is localized in some distant region—
possibly the Moon or just the laboratory next door—so that ηs (r) = 〈rs |η 〉 is expo-
nentially small in V . The state vector for the two bosons or fermions has the form

|Ψ〉 =
1√
2
{|φ〉1 |η〉2 ± |η〉1 |φ〉2} , (6.69)

and a one-particle observable is represented by an operator F = F (1)+F (2). Let Z12

be the transposition operator, then Z12 |Ψ〉 = ± |Ψ〉 and Z12F (2)Z12 = F (1). With
these facts in hand it is easy to see that

〈Ψ |F |Ψ〉 = 2 〈Ψ |F (1)|Ψ〉
= 〈φ |F |φ〉 + 〈η |F | η〉 ± 〈φ |F | η〉 〈η |φ 〉 ± 〈η |F |φ〉 〈φ |η 〉 . (6.70)

The final two terms in the last equation are negligible because of the small overlap be-
tween the one-particle states, but the term 〈η |F | η〉 is not small unless the operator F
represents a local observable for V . When this is the case, the two-particle expectation
value,

〈Ψ |F |Ψ〉 = 〈φ |F |φ〉 , (6.71)

is exactly what one would obtain by assuming that the two particles are distinguish-
able, and that a measurement is made on the one in V .

The lesson to be drawn from this calculation is that the indistinguishability of two
particles can be ignored if the relevant single-particle states are effectively nonover-
lapping and only local observables are measured. This does not mean that an electron
on the Earth and one on the Moon are in any way different. What we have shown is
that the large separation involved makes the indistinguishability of the two electrons
irrelevant—for all practical purposes—when analyzing local experiments conducted on
the Earth. On the other hand, the measurement of a local observable will be sensitive
to the indistinguishability of the particles if the one-particle states have a significant
overlap. Consider the situation in which the distant particle is bound to a potential
well centered at r0. Bodily moving the potential well so that the original condition
|r0 − RA| � Λ is replaced by |r0 − RA| � Λ restores the effects of indistinguishability.

6.5.3 Definition of entanglement

For identical particles, there are no physically meaningful operators that can single out
one particle from the rest; consequently, there is no way to separate a system of two
identical particles into distinct subsystems. How then are we to extend the definitions
of separability and entanglement given in Section 6.4.1 to systems of identical particles?
Since definitions cannot be right or wrong—only more or less useful—it should not be
too surprising to learn that this question has been answered in at least two different
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ways. In the following paragraphs, we will give a traditional answer and compare
it to another definition that is preferred by those working in the field of quantum
information processing.

For single-particle states |ζ〉1 and |η〉2, of distinguishable particles 1 and 2, the
definition (6.40) tell us that the product vector

|Ψ〉 = |ζ〉1 |η〉2 (6.72)

is separable, but if the particles are identical bosons then |Ψ〉 must be replaced by the
symmetrized expression

|Ψ〉 = C {|ζ〉1 |η〉2 + |η〉1 |ζ〉2} , (6.73)

where C is a normalization constant. Unless |η〉 = |ζ〉, this has the form of an en-
tangled state for distinguishable particles. The traditional approach is to impose the
symmetry requirement on the definition of separability used for distinguishable parti-
cles; therefore, a state |Ψ〉 of two identical bosons is said to be separable if it can be
expressed in the form

|Ψ〉 = |ζ〉1 |ζ〉2 . (6.74)

In other words, both bosons must occupy the same single-particle state.
It is often useful to employ the definition (6.66) of the expansion coefficients Ψmn

to rewrite the definition of separability as

Ψmn = ZmZn , (6.75)

where
Zn = 〈φn |ζ 〉 . (6.76)

Thus separability for bosons is the same as the factorization condition (6.75) for the
expansion coefficients. From the original form (6.74) it is clear that eqn (6.75) must
hold for all choices of the single-particle basis vectors |φn〉.

Entangled states are defined as those that are not separable, e.g. the state |Ψ〉
in eqn (6.73). This seems harmless enough for bosons, but it has a surprising result
for fermions. In this case eqn (6.72) must be replaced by

|Ψ〉 = C {|ζ〉1 |η〉2 − |η〉1 |ζ〉2} , (6.77)

and setting |η〉 = |ζ〉 gives |Ψ〉 = 0, which is simply an expression of the Pauli exclusion
principle. Consequently, extending the distinguishable-particle definition of entangle-
ment to fermions leads to the conclusion that every two-fermion state is entangled.

An alternative transition from distinguishable to indistinguishable particles is based
on the observation that the symmetrized states

|Ψ〉 = C {|ζ〉1 |η〉2 ± |η〉1 |ζ〉2} (6.78)

for identical particles seem to be the natural analogues of product vectors for distin-
guishable particles. From this point of view, states that have the minimal form (6.78)
imposed by Bose or Fermi symmetry should not be called entangled (Eckert et al.,
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2002). For those working in the field of quantum information processing, this view is
strongly supported by the fact that states of the form (6.78) do not provide a useful
resource, e.g. for quantum computing. This argument is, however, open to the objec-
tion that utility—like beauty—is in the eye of the beholder. We will illustrate this
point by way of an example.

A state |Ψ〉 of two electrons is described by a wave function Ψ (r1, s1; r2, s2) which
is antisymmetric with respect to the transposition (r1, s1) ↔ (r2, s2). For this example,
it is convenient to use the wave function representation for the spatial coordinates and
to retain the Dirac ket representation for the spins. With this notation, we consider
the spin-singlet state

|Ψ (r1, r2)〉 = ψ (r1)ψ (r2) {|↑〉1 |↓〉2 − |↓〉1 |↑〉2} , (6.79)

which is symmetric in the spatial coordinates and antisymmetric in the spins. If Alice
detects a single electron and measures the z-component of its spin to be sz = +1/2,
then an electron detected by Bob is guaranteed to have the value sz = −1/2. Thus the
state defined in eqn (6.79) displays the most basic feature of entanglement; namely,
that the result of one measurement gives information about the possible results of
measurements that could be made on another part of the system. This establishes the
fundamental utility of the state in eqn (6.79), despite the fact that it does not provide
a resource for quantum information processing. A similar example can be constructed
for bosons, so we will retain the traditional definition of entanglement for identical
particles.

Our preference for extending the traditional definition of entanglement to indistin-
guishable particles, as opposed to the more restrictive version presented above, does
not mean that the latter is not important. On the contrary, the stronger interpreta-
tion of entanglement captures an essential physical feature that plays a central role in
many applications. In order to distinguish between the two notions of entanglement,
we will say that a two-particle state that is entangled in the minimal form (6.78),
required by indistinguishability, is kinematically entangled, and that an entangled
two-particle state is dynamically entangled if it cannot be expressed in the form
(6.78). The use of the term ‘dynamical’ is justified by the observation that dynamically
entangled states can only be produced by interaction between the indistinguishable
particles. For photons, this distinction enters in a natural way in the analysis of the
Hong–Ou–Mandel effect in Section 10.2.1. For distinguishable particles, there is no
symmetry condition for multiparticle states; consequently, the notion of kinematical
entanglement cannot arise and all entangled states are dynamically entangled.

6.6 Entanglement for photons

Since photons are bosons, it seems reasonable to expect that the definition of entangle-
ment introduced in Section 6.5.3 can be applied directly to photons. We will see that
this expectation is almost completely satisfied, except for an important reservation
arising from the absence of a photon position operator.

The most intuitively satisfactory way to understand entanglement for bosons is in
terms of an explicit wave function like
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ψs1s2 (r1, r2) =
1√
2

[ζs1 (r1) ηs2 (r2) + ηs1 (r1) ζs2 (r2)] , (6.80)

where the subscripts describe internal degrees of freedom such as spin. If we recall that
ζs1 (r1) = 〈r1, s1 |ζ 〉, where |r1, s1〉 is an eigenstate of the position operator r̂ for the
particle, then it is clear that the existence of a wave function depends on the existence
of a position operator r̂. For applications to photons, this brings us face to face with the
well known absence—discussed in Section 3.6.1—of any acceptable position operator
for the photon. In Section 6.6.1 we will show that the absence of position-space wave
functions for photons is not a serious obstacle to defining entanglement, and in Section
6.6.2 we will find that the intuitive benefits of the absent wave function can be largely
recovered by considering a simple model of photon detection.

6.6.1 Definition of entanglement for photons

In Section 6.5.1 we observed that states of massive bosons belong to the symmetrical
subspace (HC)sym of the tensor product space HC describing a many-particle system.
For photons, the definitions of Fock space in Sections 2.1.2-C or 3.1.4 can be un-
derstood as a direct construction of (HC)sym that works for any number of photons.
In the example of a two-particle system, the Fock space approach replaces explicitly
symmetrized vectors like

|φm〉1 |φn〉2 + |φn〉1 |φm〉2 (6.81)

by Fock-space vectors,
a†
ksa

†
k′s′ |0〉 , (6.82)

generated by applying creation operators to the vacuum. Despite their different ap-
pearance, the physical content of the two methods is the same.

We will use box-quantized creation operators to express a general two-photon state
as

|Ψ〉 =
1√
2

∑
ks,k′s′

Cks,k′s′a†
ksa

†
k′s′ |0〉 , (6.83)

where the normalization condition 〈Ψ |Ψ 〉 = 1 is∑
ks,k′s′

|Cks,k′s′ |2 = 1 , (6.84)

and the expansion (6.83) can be inverted to give

Cks,k′s′ =
〈1ks, 1k′s′ |Ψ 〉√

2
. (6.85)

By comparing eqns (6.83) and (6.75), we can see that a two-photon state is sepa-
rable if the coefficients in eqn (6.83) factorize:

Cks,k′s′ = γksγk′s′ , (6.86)

where the γkss are c-number coefficients. In this case, |Ψ〉 can be expressed as
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|Ψ〉 =
1√
2

(
Γ†)2 |0〉 , (6.87)

where
Γ† =

∑
ks

γksa
†
ks , (6.88)

and the normalization condition (6.84) becomes∑
ks

|γks|2 = 1 . (6.89)

The normalization of the γkss in turn implies
[
Γ, Γ†] = 1; therefore, Γ† can be inter-

preted as a creation operator for a photon in the classical wave packet:

E (r) =
∑
ks

γksFkekse
ik·r , (6.90)

where

Fk = i

√
�ωk

2ε0V
. (6.91)

Thus the bosonic character of photons implies that a separable state necessarily con-
tains two photons in the same classical wave packet, in agreement with the definition
(6.74) for massive bosons.

A two-photon state that is not separable is said to be entangled. This leads in
particular to the useful rule

|1ks, 1k′s′〉 is entangled if ks �= k′s′ . (6.92)

The factorization condition (6.86) provides a definition of separable states and entan-
gled states that works in the absence of position-space wave functions for photons, but
the physical meaning of entanglement is not as intuitively clear as it is in ordinary
quantum mechanics. The best remedy is to find a substitute for the missing wave
function.

6.6.2 The detection amplitude

Let us pretend, for the moment, that the operator E
(−)
s (r) = e∗s · E(−) (r) creates a

photon, with polarization es, at the point r. If this were true, then the state vector
|r, s〉 = E

(−)
s (r) |0〉 would describe a situation in which one photon is located at r with

polarization es. For a one-photon state |Ψ〉, this suggests defining a single-photon ‘wave
function’ by

Ψ (r, s) = 〈r, s |Ψ 〉
=

〈
0
∣∣∣E(+)

s (r)
∣∣∣Ψ〉

= e∗sj

〈
0
∣∣∣E(+)

j (r)
∣∣∣Ψ〉

. (6.93)

Now that our attention has been directed to the appropriate quantity, we can discard
this very dubious plausibility argument, and directly investigate the physical signifi-
cance of Ψ (r, s). One way to do this is to use eqn (4.74) to evaluate the first-order



Entanglement for photons ���

field correlation function for the one-photon state |Ψ〉. For equal time arguments, the
result is

G
(1)
ij (r′; r) =

〈
Ψ
∣∣∣E(−)

i (r′)E
(+)
j (r)

∣∣∣Ψ〉
=

∑
n

〈
Ψ
∣∣∣E(−)

i (r′)
∣∣∣n〉〈n

∣∣∣E(+)
j (r)

∣∣∣Ψ〉
=

〈
Ψ
∣∣∣E(−)

i (r′)
∣∣∣ 0〉〈0

∣∣∣E(+)
j (r)

∣∣∣Ψ〉
, (6.94)

where the last line follows from the observation that the vacuum state alone can
contribute to the sum over the number states |n〉. By combining these two equations,
one finds that

G(1) (r′s′; rs) = es′ie
∗
sjG

(1)
ij (r′; r)

= Ψ (r, s)Ψ∗ (r′, s′) . (6.95)

This result for G(1) (rs; r′s′) is quite suggestive, since it has the form of the density
matrix for a pure state with wave function Ψ (r, s). On the other hand, the usual Born
interpretation does not apply to Ψ (r, s), since there is no photon position operator. An
important clue pointing to the correct physical interpretation of Ψ (r, s) is provided by
the theory of photon detection. In Section 9.1.2-A it is shown that the counting rate for
a photon detector—located at r and equipped with a filter transmitting polarization
es—is proportional to G(1) (rs; rs). According to eqn (6.95), this means that |Ψ (r, s)|2
is the probability that a photon is detected at r, the position of the detector. In view
of this fact, we will refer to Ψ (r, s) as the one-photon detection amplitude. The
important point to keep in mind is that the detector is a classical object which—unlike
the photon—has a well-defined location in space. This is what makes the detection
amplitude a useful replacement for the missing photon wave function.

We extend this approach to two photons by pretending that |r1, s1; r2, s2〉 =
E

(−)
s1 (r1)E

(−)
s2 (r2) |0〉 is a state with one photon at r1 (with polarization es1) and

another at r2 (with polarization es2). For a two-photon state |Ψ〉 this suggests the
effective wave function

Ψ (r1, s1; r2, s2) = 〈r1, s1; r2, s2 |Ψ 〉
=

〈
0
∣∣∣E(+)

s1
(r1) E(+)

s2
(r2)

∣∣∣Ψ〉
= e∗s1ie

∗
s2jΨij (r1, r2) , (6.96)

where
Ψij (r1, r2) =

〈
0
∣∣∣E(+)

i (r1)E
(+)
j (r2)

∣∣∣Ψ〉
. (6.97)

Applying the method used for G(1) to the evaluation of eqn (4.75) for the second-order
correlation function (with all time arguments equal) yields

G
(2)
klij (r′1, r

′
2; r1, r2) =

〈
E

(−)
k (r′1)E

(−)
l (r′2)E

(+)
i (r1)E

(+)
j (r2)

〉
= Ψij (r1, r2)Ψ∗

kl (r′1, r
′
2) , (6.98)
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which has the form of the two-particle density matrix corresponding to the pure two-
particle wave function Ψij (r1, r2).

The physical interpretation of Ψij (r1, r2) follows from the discussion of coincidence
counting in Section 9.2.4, which shows that the coincidence-counting rate for two fast
detectors placed at equal distances from the source of the field is proportional to

(es1)k (es2)l

(
e∗s1

)
i

(
e∗s2

)
j
G

(2)
klij (r1, r2; r1, r2) = |Ψ (r1, s1; r2, s2)|2 , (6.99)

where es1 and es2 are the polarizations admitted by the filters associated with the
detectors. Since |Ψ (r1, s1; r2, s2)|2 determines the two-photon counting rate, we will
refer to Ψ (r1, s1; r2, s2)—or Ψij (r1, r2)—as the two-photon detection amplitude.

6.6.3 Pure state entanglement defined by detection amplitudes

We are now ready to formulate an alternative definition of entanglement, for pure
states of photons, that is directly related to observable counting rates. The detection
amplitude for the two-photon state |Ψ〉, defined by eqn (6.83), can be evaluated by
using eqns (3.69) and (6.85) in eqn (6.97), with the result:

Ψij (r1, r2) =
√

2
∑

ks,k′s′
Cks,k′s′Fk (eks)i eik·r1Fk′ (ek′s′)j eik′·r2 . (6.100)

This expansion for the detection amplitude can be inverted, by Fourier transforming
with respect to r1 and r2 and projecting on the polarization basis, to get

Cks,k′s′ = − (2ε0/�)2√
2ωkωk′

Ψks,k′s′ , (6.101)

where

Ψks,k′s′ =
1
V

∫
d3r1

∫
d3r2e

−ik·r1e−ik′·r2 (e∗ks)i (e∗k′s′)j Ψij (r1, r2) . (6.102)

According to eqns (6.100) and eqn (6.101), the two-photon detection amplitude and
the expansion coefficients Cks,k′s′ provide equivalent descriptions of the two-photon
state. From eqn (6.100) we see that factorization of the expansion coefficients, accord-
ing to eqn (6.86), implies factorization of the detection amplitude, i.e.

Ψij (r1, r2) = φi (r1)φj (r2) , (6.103)

where
φi (r) = 21/4

∑
ks

γksFk (eks)i eik·r . (6.104)

In other words, the detection amplitude for a separable state factorizes, just as a two-
particle wave function does in nonrelativistic quantum mechanics. On the other hand,
eqn (6.101) shows that factorization of the detection amplitude implies factorization of
the expansion coefficients. Thus we are at liberty to use eqn (6.103) as a definition of
a separable state that agrees with the definition (6.86). This approach has the decided
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advantage that the detection amplitude is closely related to directly observable events,
e.g. current pulses emitted by the coincidence counter. The coincidence-counting rate
is proportional to the square of the amplitude, so for separable states the coincidence
rate is proportional to the product of the singles rates at the two detectors. This means
that the random counting events at the two detectors are stochastically independent,
i.e. the quantum fluctuations of the electromagnetic field at any pair of detectors are
uncorrelated. This is the analogue of Theorem 6.3, which states that a separable state
of two distinguishable particles yields uncorrelated quantum fluctuations for any pair
of observables.

For ks �= k′s′ the state |Ψ〉 = |1ks, 1k′s′〉 is entangled—according to the traditional
definition—and evaluating eqn (6.100) in this case gives

Ψij (r1, r2) = FkFk′
{
(eks)i eik·r1 (ek′s′)j eik′·r2 + (eks)j eik·r2 (ek′s′)i eik′·r1

}
.

(6.105)
The definition (6.96) in turn yields

Ψ (r1, s1; r2, s2) = φks (r1, s1)φk′s′ (r2, s2) + φks (r2, s2)φk′s′ (r1, s1) , (6.106)

where

φks (r, s1) = Fke∗s1
· ekse

ik·r . (6.107)

This has the structure of an entangled-state wave function for two bosons—as shown in
eqn (6.80)—with similar physical consequences. In particular, if one photon is detected
in the mode ks, then a subsequent detection of the remaining photon is guaranteed
to find it in the mode k′s′. More generally, quantum fluctuations in the electromag-
netic field at the two detectors are correlated. According to the general definition in
Section 6.5.3, an entangled two-photon state is dynamically entangled if the detection
amplitude cannot be expressed in the minimal form (6.106) required by Bose statistics.

We saw in Section 6.4.1 that reduced density operators, defined by partial traces,
are quite useful in the discussion of distinguishable particles, but systems of identical
particles—such as photons—cannot be divided into distinguishable subsystems. The
key to overcoming this difficulty is found in eqn (6.98) which shows that the second-
order correlation function has the form of a density matrix corresponding to the two-
photon detection amplitude Ψij (r1, r2). This suggests that the analogue of the reduced
density matrix is the first-order correlation function G

(1)
ij (r′; r), evaluated for the two-

photon state |Ψ〉.
The first evidence supporting this proposal is provided by considering a separable

state defined by eqn (6.87). In this case

G
(1)
ij (r′; r) =

〈
Ψ
∣∣∣E(−)

i (r′)E
(+)
j (r)

∣∣∣Ψ〉
=

1
2

〈
0
∣∣∣Γ2E

(−)
i (r′)E

(+)
j (r) Γ†2

∣∣∣ 0〉
=

1
2

〈
0
∣∣∣[Γ2, E

(−)
i (r′)

] [
E

(+)
j (r) , Γ†2

]∣∣∣ 0〉 , (6.108)
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where the last line follows from the identity E
(+)
j (r) |0〉 = 0 and its adjoint. The field

operators and the operators Γ and Γ† are both linear functions of the creation and
annihilation operators, so[

E
(+)
j (r) , Γ†2

]
= 2

[
E

(+)
j (r) , Γ†

]
Γ† . (6.109)

The remaining commutator is a c-number which is evaluated by using the expansions
(3.69) and (6.88) to get [

E
(+)
j (r) , Γ†

]
= 2−1/4φj (r) , (6.110)

where φi (r) is defined by eqn (6.104). Substituting this result, and the corresponding
expression for

[
Γ, E

(−)
i (r′)

]
, into eqn (6.108) yields

G
(1)
ij (r′; r) =

√
2φj (r)φ∗

i (r′) . (6.111)

The conclusion is that the first-order correlation function for a separable state factor-
izes. This is the analogue of Theorem 6.1 for distinguishable particles.

Next let us consider a generic entangled state defined by |Ψ〉 = Γ†Θ† |0〉, where

Θ† =
∑
ks

θksa
†
ks (6.112)

and ∑
ks

|θks|2 = 1 . (6.113)

For this argument, we can confine attention to operators satisfying
[
Γ, Θ†] = 0, which

is equivalent to the orthogonality of the classical wave packets:

(θ, γ) ≡
∑
ks

θ∗ksγks = 0 . (6.114)

The first-order correlation function for this state is

G
(1)
ij (r′; r) =

〈
Ψ
∣∣∣E(−)

i (r′)E
(+)
j (r)

∣∣∣Ψ〉
=

1√
2
{φj (r)φ∗

i (r′) + ηj (r) η∗
i (r′)} , (6.115)

where ηj (r) is defined by replacing γks with θks in eqn (6.104). Thus for the entangled,
two-photon state |Ψ〉, the first-order correlation function (reduced density matrix) has
the standard form of the density matrix for a one-particle mixed state. This is the
analogue of Theorem 6.2 for distinguishable particles.

6.7 Exercises

6.1 Proof of Theorem 6.1

(1) To prove assertion (a), use the expression for the density operator resulting from
eqns (6.40) and (2.81) to evaluate the reduced density operators.

(2) To prove assertion (b), assume that |Ψ〉 is entangled—so that it has Schmidt rank
r > 1—and derive a contradiction.



Exercises ���

6.2 Proof of Theorem 6.3

(1) For a separable state |Ψ〉 show that 〈Ψ |δA δB|Ψ〉 = 0.
(2) Assume that 〈Ψ |δA δB|Ψ〉 = 0 for all A and B. Apply this to operators that are

diagonal in the Schmidt basis for |Ψ〉 and thus show that |Ψ〉 must be separable.

6.3 Singlet spin state

(1) Use the standard treatments of the Pauli matrices, given in texts on quantum
mechanics, to express the eigenstates of n · σ in the usual basis of eigenstates of
σz.

(2) Show that the singlet state |S = 0〉, given by eqn (6.37), has the same form for all
choices of the quantization axis n.

(3) Show that
(
SA + SB

)2 |S = 0〉 = 0.

6.4 Correlations in a separable mixed state

Consider a system of two distinguishable spin-1/2 particles described by the ensemble

{|Ψ1〉 = |↑〉A |↓〉B , |Ψ2〉 = |↓〉A |↑〉B}

of separable states, where the spin states are eigenstates of sA
z and sB

z .

(1) Show that the density operator can be written as

ρ = p |Ψ1〉 〈Ψ1| + (1 − p) |Ψ2〉 〈Ψ2| ,

where 0 � p � 1.

(2) Evaluate the correlation function
〈
δsA

z δsB
z

〉
and use the result to show that the

spins are only uncorrelated for the extreme values p = 0, 1.
(3) For intermediate values of p, argue that the correlation is exactly what would be

found for a pair of classical stochastic variables taking on the values ±1/2 with
the same assignment of probabilities.
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Paraxial quantum optics

The generation and manipulation of paraxial beams of light forms the core of exper-
imental practice in quantum optics; therefore, it is important to extend the classical
treatment of paraxial optics to situations involving only a few photons, such as the
photon pairs produced by spontaneous down-conversion. In addition to the interac-
tion of quantized fields with standard optical elements, the theory of quantum paraxial
propagation has applications to fundamental issues such as the generation and control
of orbital angular momentum and the meaning of localization for photons.

In geometric optics a beam of light is a bundle of rays making small angles with a
central ray directed along a unit vector u0. The constituent rays of the bundle are said
to be paraxial. In wave optics, the bundle of rays is replaced by a bundle of unit vectors
normal to the wavefront; so a paraxial wave is defined by a wavefront that is nearly
flat. In this situation it is natural to describe the classical field amplitude, E (r, t), as a
function of the propagation variable ζ = r·u0, the transverse coordinates rᵀ tangent to
the wavefront, and the time t. Paraxial wave optics is more complicated than paraxial
ray optics because of diffraction, which couples the rᵀ-, ζ-, and t-dependencies of the
field. For the most part, we will only consider a single paraxial wave; therefore, we can
choose the z-axis along u0 and set ζ = z.

The definite wavevector associated with the plane wave created by a†
s (k) makes it

possible to recast the geometric-optics picture in terms of photons in plane-wave states.
This way of thinking about paraxial optics is useful but—as always—it must be treated
with caution. As explained in Section 3.6.1, there is no physically acceptable way to
define the position of a photon. This means that the natural tendency to visualize the
photons as beads sliding along the rays at speed c must be strictly suppressed. The
beads in this naive picture must be replaced by wave packets containing energy �ω
and momentum �k, where k is directed along the normal to the paraxial wavefront.

In the following section, we begin with a very brief review of classical paraxial
wave optics. In succeeding sections we will define a set of paraxial quantum states,
and then use them to obtain approximate expressions for the energy, momentum,
and photon number operators. This will be followed by the definition of a slowly-
varying envelope operator that replaces the classical envelope field E (r, t). Some more
advanced topics—including the general paraxial expansion, angular momentum, and
an approximate notion of photon localizability—will be presented in the remaining
sections.
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7.1 Classical paraxial optics

As explained above, each photon is distributed over a wave packet, with energy �ω and
momentum �k, that propagates along the normal to the wavefront. However, this wave
optics description must be approached with equal caution. The standard approach in
classical, paraxial wave optics (Saleh and Teich, 1991, Sec. 2.2C) is to set

E (r, t) = E (r, t) ei(k0·r−ω0t) , (7.1)

where ω0 and k0 = u0n (ω0)ω0/c are respectively the carrier frequency and the carrier
wavevector. The four-dimensional Fourier transform, E (k, ω), of the slowly-varying
envelope is assumed to be concentrated in a neighborhood of k = 0, ω = 0. The
equivalent conditions in the space–time domain are∣∣∣∣∂2E (r, t)

∂t2

∣∣∣∣ � ω0

∣∣∣∣∂E (r, t)
∂t

∣∣∣∣ � ω2
0

∣∣E (r, t)
∣∣ (7.2)

and ∣∣∣∣∂2E (r, t)
∂z2

∣∣∣∣ � k0

∣∣∣∣∂E (r, t)
∂z

∣∣∣∣ � k2
0

∣∣E (r, t)
∣∣ ; (7.3)

in other words, E (r, t) has negligible variation in time over an optical period and
negligible variation in space over an optical wavelength. As we have already seen in
the discussion of monochromatic fields, these conditions cannot be applied to the field
operator E(+) (r, t); instead, they must be interpreted as constraints on the allowed
states of the field.

7.2 Paraxial states

7.2.1 The paraxial ray bundle

A paraxial beam associated with the carrier wavevector k0, i.e. a bundle of wavevectors
k clustered around k0, is conveniently described in terms of relative wavevectors q =
k−k0, with |q| � k0. For each k = k0 +q the angle ϑk between k and k0 is given by

sin ϑk =
|k0 × k|

k0k
=

|k0 × q|
k0 |k0 + q| =

|qᵀ|
k0

[
1 + O

(
q

k0

)]
, (7.4)

where qᵀ = q − qzk̃0 and qz = q · k̃0. This shows that ϑk � |qᵀ| /k0, and further
suggests defining the small parameter for the paraxial beam as the maximum opening
angle,

θ =
∆qᵀ
k0

� 1 , (7.5)

where 0 < |qᵀ| < ∆qᵀ is the range of the transverse components of q. Variations in
the transverse coordinate rᵀ occur over a characteristic distance Λ� defined by the
Fourier transform uncertainty relation Λ�∆qᵀ ∼ 1; consequently, a useful length scale
for transverse variations is Λ� = 1/∆qᵀ = 1/ (θk0).

A natural way to define the characteristic length Λ‖ for longitudinal variations
is to interpret the transverse length scale Λ� as the radius of an effective circular
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aperture. The conventional longitudinal scale is then the distance over which a beam
waist, initially equal to Λ�, doubles in size. At this point, a strictly correct argument
would bring in classical diffraction theory; but the same end can be achieved—with
only a little sleight of hand—with geometric optics. By combining the approximation
tan θ ≈ θ with elementary trigonometry, it is easy to show that the geometric image
of the aperture on a screen at a distance Λ‖ has the radius Λ′

� = Λ� + θΛ‖. The trick
is to choose the longitudinal scale length Λ‖ so that Λ′

� = 2Λ�, and this requires

Λ‖ =
Λ�
θ

= k0Λ2
� =

1
θ2k0

. (7.6)

We will see in Section 7.4 that Λ‖ = k0Λ2
� is twice the Rayleigh range—as usually

defined in classical diffraction theory—for the aperture Λ�. Thus our geometric-optics
trick has achieved the same result as a proper diffraction theory argument. Since
propagation occurs along the direction characterized by Λ‖, the natural time scale is
T = Λ‖/ (c/n0) = 1/

(
θ2ω0

)
.

The spread, ∆qz, in the longitudinal component of q satisfies Λ‖∆qz ∼ 1, so the
longitudinal and transverse widths are related by

∆qz

k0
=

(
∆qᵀ
k0

)2

= θ2 , (7.7)

and the q-vectors are effectively confined to a disk-shaped region defined by

Q0 =
{
q satisfying |qᵀ| � θk0 , qz � θ2k0

}
. (7.8)

In a dispersive medium with index of refraction n (ω) the frequency ωk is a solution
of the dispersion relation ck = ωkn (ωk), and wave packets propagate at the group
velocity vg (ωk) = dωk/dk. The frequency width is therefore ∆ω = vg0∆k, where vg0

is the group velocity at the carrier frequency. The straightforward calculation outlined
in Exercise 7.1 yields the estimate

∆ω

ω0
≈ 1

2
θ2 � 1 , (7.9)

which is the criterion for a monochromatic field given by eqn (3.107).

7.2.2 The paraxial Hilbert space

The geometric-optics picture of a bundle of rays forming small angles with the central
propagation vector k0 is realized in the quantum theory by a family of states that only
contain photons with propagation vectors in the paraxial bundle. In order to satisfy
the superposition principle, the family of states must be chosen as the paraxial space,
H (k0, θ) ⊂ HF , spanned by the improper (continuum normalized) number states

|{qs}M 〉 =
M∏

m=1

a†
0sm

(qm) |0〉 , M = 0, 1, . . . , (7.10)

where a0s(q) = as(k0+q), {qs}M ≡ {q1s1, . . . ,qMsM}, and each relative propagation
vector is constrained by the paraxial conditions (7.8). If the paraxial restriction were
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relaxed, eqn (7.10) would define a continuum basis set for the full Fock space, so the
paraxial space is a subspace of HF . The states satisfying the paraxiality condition
(7.8) also satisfy the monochromaticity condition (3.107); consequently, H (k0, θ) is
a subspace of the monochromatic space H (ω0). A state |Ψ〉 belonging to H (k0, θ) is
called a pure paraxial state, and a density operator ρ describing an ensemble of
pure paraxial states is called a mixed paraxial state. A useful way to characterize
a paraxial state ρ in H (k0, θ) is to note that the power spectrum

p (k) =
∑

s

〈
a†

s (k) as (k)
〉

=
∑

s

Tr
[
ρa†

s (k) as (k)
]

(7.11)

is strongly concentrated near k = k0.
In the Schrödinger picture, a general paraxial state |Ψ (0)〉 has an expansion in the

basis {|{qs}M 〉}, and the time evolution is given by

|Ψ (t)〉 = e−itH/� |Ψ (0)〉 , (7.12)

where H is the total Hamiltonian, including interactions with atoms, etc. It is clear on
physical grounds that an initial paraxial state will not in general remain paraxial. For
example, a paraxial field injected into a medium containing strong scattering centers
will experience large-angle scattering and thus become nonparaxial as it propagates
through the medium. In more favorable cases, interaction with matter, e.g. transmis-
sion through lenses with moderate focal lengths, will conserve the paraxial property.

The only situation for which it is possible to make a rigorous general statement
is free propagation. In this case the basis vectors |{qs}M 〉 are eigenstates of the total
Hamiltonian, H = Hem, so that

|Ψ (t)〉 =
∞∑

M=0

∫
d3q1

(2π)3
∑
s1

· · ·
∫

d3qM

(2π)3
∑
sM

F ({qs}M )

× exp

{
−i

M∑
m=1

ω (|k0 + qm|) t

}
|{qs}M 〉 ,

(7.13)

where F ({qs}M ) = 〈{qs}M |Ψ (0)〉. Consequently, the state |Ψ (t)〉 remains in the
paraxial space H (k0, θ) for all times.

For the sake of simplicity, we have analyzed the case of a single paraxial ray bun-
dle, but in many applications several paraxial beams are simultaneously present. The
reasons range from simple reflection by a mirror to complex wave mixing phenomena
in nonlinear media. The necessary generalizations can be understood by considering
two paraxial bundles with carrier waves k1 and k2 and opening angles θ1 and θ2. The
two beams are said to be distinct if the vector ∆k = k1 − k2 satisfies

|∆k| � max [θ1 |k1| , θ2 |k2|] , (7.14)

i.e. the two bundles of wavevectors do not overlap. The multiparaxial space,
H (k1, θ1,k2, θ2), for two distinct paraxial ray bundles is spanned by the basis vec-
tors
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M∏
m=1

a†
1sm

(qm)
K∏

k=1

a†
2sk

(pk) |0〉 (M, K = 0, 1, . . .) , (7.15)

where a†
βs (q) ≡ a†

s (kβ + q) (β = 1, 2) and the qs and ps are confined to the respective
regions Q1 and Q2 defined by applying eqn (7.8) to each beam. The argument sug-
gested in Exercise 7.6 shows that the paraxial spaces H (k1, θ1) and H (k2, θ2)—which
are subspaces of H (k1, θ1,k2, θ2)—may be treated as orthogonal within the paraxial
approximation. This description is readily extended to any number of distinct beams.

7.2.3 Photon number, momentum, and energy

The action of the number operator N on the paraxial space H (k0, θ) is determined by
its action on the basis states in eqn (7.10); consequently, the commutation relation,[
N, a†

0s (q)
]

= a†
0s (q), permits the use of the effective form

N � N0 =
∫

Q0

d3q

(2π)3
∑

s

a†
0s (q) a0s (q) . (7.16)

Applying the same idea to the momentum operator, given by the continuum version
of eqn (3.153), leads to Pem = �k0N0 + P0, where

P0 =
∫

Q0

d3q

(2π)3
�q

∑
s

a†
0s (q) a0s (q) (7.17)

is the paraxial momentum operator.
The continuum version of eqn (3.150) for the Hamiltonian in a dispersive medium

can be approximated by

Hem =
∫

Q0

d3q

(2π)3
�ω|k0+q|

∑
s

a†
0s (q) a0s (q) , (7.18)

when acting on a paraxial state. The small spread in frequencies across the paraxial
bundle, together with the weak dispersion condition (3.120), allows the dispersion
relation ωk = ck/n (ωk) to be approximated by

ωk =
ck

n0 +
(

dn
dω

)
0
(ωk − ω0)

, (7.19)

and a straightforward calculation yields

ω|k0+q| = ω0 + vg0k0

{∣∣∣∣k̃0 +
q
k0

∣∣∣∣− 1
}

+ · · · . (7.20)

The conditions (7.8) allow the expansion∣∣∣∣k̃0 +
q
k0

∣∣∣∣ = 1 +
qz

k0
+

q2
ᵀ

2k2
0

+ O
(
θ2
)
, (7.21)
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which in turn leads to the expression Hem = �ω0N0 + HP + O
(
θ2
)
, where

HP =
∫

Q0

d3q

(2π)3

{
vg0�qz +

�vg0q
2
ᵀ

2k0

}∑
s

a†
0s (q) a0s (q) (7.22)

is the paraxial Hamiltonian for the space H (k0, θ).
The effective orthogonality of distinct paraxial spaces—which corresponds to the

distinguishability of distinct paraxial beams—implies that the various global operators
are additive. Thus the operators for the total photon number, momentum, and energy
for a set of paraxial beams are

N =
∑

β

Nβ , Pem =
∑

β

(�kβNβ + Pβ) , Hem =
∑

β

(�ωβNβ + HPβ) , (7.23)

where Nβ , Pβ , and HPβ are respectively the paraxial number, momentum, and energy
operators for the βth beam.

7.3 The slowly-varying envelope operator

We next use the properties of the paraxial space H (k0, θ) to justify an approximation
for the field operator, A(+) (r, t), that replaces eqn (7.1) for the classical field. In order
to emphasize the relation to the classical theory, we initially work in the Heisenberg
picture. The slowly-varying envelope operator Φ (r, t) is defined by

A(+) (r, t) =

√
� (vg0/c)
2ε0k0c

Φ (r, t) ei(k0·r−ω0t) . (7.24)

Comparing this definition to the general plane-wave expansion (3.149) shows that

Φ (r, t) =
∫

Q0

d3q

(2π)3
fq

∑
s

a0s (q) es (k0 + q) ei(q·r−δqt) , (7.25)

where

δq = ω|k0+q| − ω0 and fq =

√
vg (|k0 + q|)

vg0

k0

|k0 + q| . (7.26)

The corresponding expressions in the Schrödinger picture follow from the relation
A(+) (r) = A(+) (r, t = 0).

The envelope operator will only be slowly varying when applied to paraxial states
in H (k0, θ), so we begin by using eqn (7.10) to evaluate the action of the envelope
operator Φ (r) = Φ (r, 0) on a typical basis vector of H (k0, θ):

Φ (r) |{qs}M 〉 = Φ (r)
M∏

m=1

a†
0sm

(qm) |0〉

=

[
Φ (r) ,

M∏
m=1

a†
0sm

(qm)

]
|0〉

=
M∑

m=1

[
Φ (r) , a†

0sm
(qm)

]{ M∏
l=1

(1 − δlm) a†
0sl

(ql)

}
|0〉 , (7.27)
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where the last line follows from the identity (C.49). Setting t = 0 in eqn (7.25) produces
the Schrödinger-picture representation of the envelope operator,

Φ (r) =
∫

Q0

d3q

(2π)3
fq

∑
s

a0s (q) es (k0 + q) eiq·r , (7.28)

and using this in the calculation of the commutator yields[
Φ (r) , a†

0sm
(qm)

]
= fqmes (k0 + qm) eiqm·r

= es (k0) eiqm·r + O (θ) . (7.29)

Thus when acting on paraxial states the exact representation (7.28) can be replaced
by the approximate form

Φ (r) =
∑

s

φs (r) e0s + O (θ) , (7.30)

where e0s = es (k0), and

φs (r) =
∫

Q0

d3q

(2π)3
a0s (q) eiq·r . (7.31)

The subscript Q0 on the integral is to remind us that the integration domain is re-
stricted by eqn (7.8). This representation can only be used when the operator acts on
a vector in the paraxial space. It is in this sense that the z-component of the envelope
operator is small, i.e.

〈Ψ1 |Φz (r)|Ψ2〉 = O (θ) , (7.32)

for any pair of normalized vectors |Ψ1〉 and |Ψ2〉 that both belong to H (k0, θ). In the
leading paraxial approximation, i.e. neglecting O (θ)-terms, the electric field operator
is

E(+) (r, t) = i

√
�ω0 (vg0/c)

2ε0n0

∑
s

e0sφs (r, t) ei(k0·r−ω0t) . (7.33)

The commutation relations for the transverse components of the envelope operator
have the simple form[

Φi (r, t) , Φ†
j (r′, t)

]
= δijδ (r − r′) (i, j = 1, 2) , (7.34)

which shows that the paraxial electromagnetic field is described by two independent
operators Φ1 (r) and Φ2 (r) satisfying local commutation relations. This reflects the
fact that the paraxial approximation eliminates the nonlocal features exhibited in the
exact commutation relations (3.16) by effectively averaging the arguments r and r′

over volumes large compared to λ3
0. By the same token, the delta function appearing

on the right side of eqn (7.34) is coarse-grained, i.e. it only gives correct results
when applied to functions that vary slowly on the scale of the carrier wavelength. This
feature will be important when we return to the problem of photon localization.
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In most applications the operators φs (r, t), corresponding to definite polarization
states, are more useful. They satisfy the commutation relations[

φs (r, t) , φ†
s′ (r′, t)

]
= δss′δ (r − r′) (s, s′ = ± or 1, 2) . (7.35)

The approximate expansion (7.31) can be inverted to get

a0s (q) =
∫

d3rφs (r) e−iq·r =
∫

d3re∗s (k0) ·Φ (r) e−iq·r , (7.36)

which is valid for q in the paraxial region Q0. By using this inversion formula the
operators N0, P0, and HP can be expressed in terms of the slowly-varying envelope
operator:

N0 =
∫

d3r
∑

s

φ†
s (r)φs (r) , (7.37)

P0 =
∫

d3r
∑

s

φ†
s (r)

�

i
∇φs (r) , (7.38)

HP =
∫

d3r
∑

s

φ†
s (r)

{
vg0

�

i
∇z − �vg0∇2

ᵀ
2k0

}
φs (r) . (7.39)

We can gain a better understanding of the paraxial Hamiltonian by substituting
eqns (7.24) and (7.22) into the Heisenberg equation

i�
∂

∂t
A(+) (r, t) =

[
A(+) (r, t) , Hem

]
(7.40)

to get

�ω0Φ (r, t) + i�
∂

∂t
Φ (r, t) = �ω0 [Φ (r, t) , N0] + [Φ (r, t) , HP ] . (7.41)

Since the envelope operator Φ (r, t) is a sum of annihilation operators, it satisfies
[Φ (r, t) , N0] = Φ (r, t). Consequently, the term �ω0 [Φ (r, t) , N0] is canceled by the
time derivative of the carrier wave. The Heisenberg equation for the envelope field
Φ (r, t) is therefore

i�
∂

∂t
Φ (r, t) = [Φ (r, t) , HP ] . (7.42)

This shows that the paraxial Hamiltonian generates the time translation of the en-
velope field. By using the explicit form (7.22) of HP and the commutation relations
(7.34), it is simple to see that the Heisenberg equation can be written in the equivalent
forms

i

(
∇z +

1
vg0

∂

∂t

)
Φ (r, t) +

1
2k0

∇2
ᵀΦ (r, t) = 0 (7.43)

or

i

(
∇z +

1
vg0

∂

∂t

)
φs (r, t) +

1
2k0

∇2
ᵀφs (r, t) = 0 . (7.44)

Multiplying eqn (7.43) by the normalization factor in eqn (7.24) and passing to the
classical limit (A(+) (r, t) → A (r, t) exp [i (k0 · r− ω0t)]) yields the standard paraxial
wave equation of the classical theory.
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The single-beam argument can be applied to each of the distinct beams to give the
Schrödinger-picture representation,

A(+) (r) =
∑
βs

√
� (vgβ/c)
2ε0kβc

eβsφβs (r) eikβ ·r , (7.45)

where eβs = es (kβ), ωβ = ω (kβ) = ckβ/nβ, vgβ is the group velocity for the βth
carrier wave,

φβs (r) =
∫

Qβ

d3q

(2π)3
aβs (q) eiq·r , (7.46)

and [
φβs (r) , φ†

β′s′ (r′)
]
≈ δββ′δss′δ (r − r′) (s, s′ = ± or 1, 2) . (7.47)

The last result—which is established in Exercise 7.3—means that the envelope fields
for distinct beams represent independent degrees of freedom.

The corresponding expression for the electric field operator in the paraxial approx-
imation is

E(+) (r) =
∑
βs

i

√
�ωβ (vgβ/c)

2ε0nβ
eβsφβs (r) eikβ·r . (7.48)

The operators for the photon number Nβ , the momentum Pβ , and the paraxial Hamil-
tonian HβP of the individual beams are obtained by applying eqns (7.37)–(7.39) to
each beam.

7.4 Gaussian beams and pulses

It is clear from the relation E = −∂A/∂t that the electric field also satisfies the
paraxial wave equation. For the special case of propagation along the z-axis through
vacuum, we find

1
2k0

∇2
ᵀE + i

(
∂E
∂z

+
1
c

∂E
∂t

)
= 0 . (7.49)

For fields with pulse duration much longer than any relevant time scale—or equiva-
lently with spectral width much smaller than any relevant frequency—the time depen-
dence of the slowly-varying envelope function can be neglected; that is, one can set
∂E/∂t = 0 in eqn (7.49). The most useful time-independent solutions of the paraxial
equation are those which exhibit minimal diffractive spreading. The fundamental solu-
tion with these properties—which is called a Gaussian beam or a Gaussian mode
(Yariv, 1989, Sec. 6.6)—is

E (r, t) = E0 (rᵀ, z) = E0e0
w0 e−iφ(z)

w (z)
exp

[
ik0

ρ2

2R (z)

]
exp

[
− ρ2

w2 (z)

]
, (7.50)

where the polarization vector e0 is in the x–y plane and ρ = |rᵀ|. The functions of z
on the right side are defined by
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w (z) = w0

√
1 +

(
z − zw

ZR

)2

, (7.51)

R (z) = z − zw +
Z2

R

z − zw
, (7.52)

φ (z) = tan−1

(
z − zw

ZR

)
, (7.53)

where the Rayleigh range ZR is

ZR =
πw2

0

λ0
> 0 . (7.54)

The function w (z)—which defines the width of the transverse Gaussian profile—has
the minimum value w0 (the spot size) at z = zw (the beam waist). The solution is
completely characterized by e0, E0, w0, and zw. The function R (z)—which represents
the radius of curvature of the phase front—is negative for z < zw, and positive for
z > zw. The picture is of waves converging from the left and diverging to the right of
the focal point at the waist. The definition (7.51) shows that

w (zw + ZR) =
√

2w0 , (7.55)

so the Rayleigh range measures the distance required for diffraction to double the area
of the spot. There are also higher-order Gaussian modes that are not invariant under
rotations around the beam axis (Yariv, 1989, Sec. 6.9).

The assumption ∂E/∂t = 0 means that the Gaussian beam represents an infinitely
long pulse, so we should expect that it is not a normalizable solution. This is readily
verified by showing that the normalization integral over the transverse coordinates has
the z-independent value ∫

d2rᵀ |E0 (rᵀ, z)|2 = πw2
0 |E0|2 , (7.56)

so that the z-integral diverges. A more realistic description is based on the observation
that

EP (r, t) = FP (z − ct)E0 (rᵀ, z) (7.57)

is a time-dependent solution of eqn (7.49) for any choice of the function FP (z).
If FP (z) is normalizable, then the Gaussian pulse (or Gaussian wave packet)
EP (r, t) is normalizable at all times. The pulse-envelope function is frequently chosen
to be Gaussian also, i.e.

FP (z) = FP0 exp

[
− (z − z0)

2

L2
P

]
, (7.58)

where LP is the pulse length and TP = LP /c is the pulse duration.
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7.5 The paraxial expansion∗

The approach to the quantum paraxial approximation presented above is sufficient
for most practical purposes, but it does not provide any obvious way to calculate
corrections. A systematic expansion scheme is desirable for at least two reasons.
(1) It is not wise to depend on an approximation in the absence of any method for

estimating the errors involved.
(2) There are some questions of principle, e.g. the issue of photon localizability, which

require the evaluation of higher-order terms.
We will therefore very briefly outline a systematic expansion in powers of θ (Deutsch
and Garrison, 1991a) which is an extension of a method developed by Lax et al. (1974)
for the classical theory. In the interests of simplicity, only propagation in the vacuum
will be considered.

In order to construct a consistent expansion in powers of θ, it is first necessary
to normalize all physical quantities by using the characteristic lengths introduced in
Section 7.2.1. The first step is to define a characteristic volume

V0 = Λ2
ᵀΛ‖ = θ−4

(
λ0

2π

)3

, (7.59)

and a dimensionless wavevector q = qᵀ + qzk̃0, with qᵀ = qᵀΛ� and qz = qzΛ‖. In
terms of the scaled wavevector q, the paraxial constraints (7.8) are

Q0 = {q satisfying |q�| � 1 , qz � 1} . (7.60)

The operators a†
s (k) have dimensions L3/2, so the dimensionless operators a†

s (q) =
V

−1/2
0 a†

s (k0 + q) satisfy the commutation relation[
as (q) , a†

s′ (q′)
]

= δss′ (2π)3 δ (q−q′) . (7.61)

In the space–time domain, the operator Φ (r, t) has dimensions L−3/2, so it is
natural to define a dimensionless envelope field by Φ

(
r, t

)
=

√
V0Φ (r, t), where r =

rᵀ + zk̃0 and rᵀ = rᵀ/Λ�, z = z/Λ‖. The scaled position-space variables satisfy
q · r = q · r = qᵀ · rᵀ + qzz. The operator Φ

(
r, t

)
is related to as (q) by

Φ (r) =
∫

Q0

d3q

(2π)3
∑

s

as (q)Xs (q, θ) eiq·r , (7.62)

where Xs (q, θ) is the c-number function:

Xs (q, θ) =

√
k0

|k0 + q|es (k0 + q) =
∞∑

n=0

θnX(n)
s (q) . (7.63)

Substituting this expansion into eqn (7.62) and exchanging the sum over n with the
integral over q yields
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Φ (r) =
∞∑

n=0

θnΦ
(n)

(r) , (7.64)

where the nth-order coefficient is

Φ
(n)

(r) =
∫ ′ d3q

(2π)3
∑

s

as (q)X(n)
s (q) eiq·r . (7.65)

The zeroth-order relation

Φ
(0)

(r) =
∫ ′ d3q

(2π)3
∑

s

as (q) es (k0) eiq·r (7.66)

agrees with the previous paraxial approximation (7.31), and it can be inverted to give

as (q) =
∫

d3rΦ
(0)

(r) · e∗s (k0) e−iq·r . (7.67)

Carrying out Exercise 7.5 shows that all higher-order coefficients can be expressed in
terms of Φ

(0)

0 (r).
We can justify the operator expansion (7.64) by calculating the action of the exact

envelope operator on a typical basis vector in H (k0, θ), and showing that the expansion
of the resulting vector in θ agrees—order-by-order—with the result of applying the
operator expansion. In the same way it can be shown that the operator expansion
reproduces the exact commutation relations (Deutsch and Garrison, 1991a).

7.6 Paraxial wave packets∗

The use of non-normalizable basis states to define the paraxial space can be avoided
by employing wave packet creation operators. For this purpose, we restrict the polar-
ization amplitudes, ws (k), (introduced in Section 3.5.1) to those that have the form
ws (k0 + q) = V

1/2
0 ws (q). Instead of confining the relative wavevectors q to the re-

gion Q0 described by eqn (7.60), we define a paraxial wave packet (with carrier
wavevector k0 and opening angle θ) by the assumption that ws (q) vanishes rapidly
outside Q0, i.e. ws (q) belongs to the space

P (k0, θ) =
{

ws (q) such that lim
|q|→∞

|q|n |ws (q)| = 0 for all n � 0
}

. (7.68)

The inner product for this space of classical wave packets is defined by

(w, v) =
∫

d3q

(2π)3
∑

s

w∗
s (k0 + q) vs (k0 + q) . (7.69)

Since the two wave packets belong to the same space, this can be written in terms of
scaled variables as

(w, v) =
∫

d3q

(2π)3
∑

s

w∗
s (q) vs (q) . (7.70)
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For a paraxial wave packet, we set k = k0 + q in the general definition (3.191) to
get

a† [w] =
∫

d3q

(2π)3
∑

s

a†
0s (k0 + q) ws (k0 + q) =

∫
d3q

(2π)3
∑

s

a†
s (q)ws (q) . (7.71)

The paraxial space defined by eqn (7.10) can equally well be built up from the vacuum
by forming all linear combinations of states of the form

|{w}P 〉 =
P∏

p=1

a† [wp] |0〉 , (7.72)

where {w}P = {w1, . . . , wP }, P = 0, 1, 2, . . ., and the wps range over all of P (k0, θ).
The only difference from the construction of the full Fock space is the restriction of the
wave packets to the paraxial space P (k0, θ) ⊂ Γem, where Γem is the electromagnetic
phase space of classical wave packets defined by eqn (3.189).

The multiparaxial Hilbert spaces introduced in Section 7.2.2 can also be described
in wave packet terms. The distinct paraxial beams considered there correspond to the
wave packet spaces P (k1, θ1) and P (k2, θ2). Paraxial wave packets, w ∈ P (k1, θ1)
and v ∈ P (k2, θ2), are concentrated around k1 and k2 respectively, so it is eminently
plausible that w and v are effectively orthogonal. More precisely, it is shown in Exercise
7.6 that

lim
θ2→0

1
(θ2)

n |(w, v)| = 0 for all n � 1 , (7.73)

i.e. |(w, v)| vanishes faster than any power of θ2. The symmetry of the inner product
guarantees that the same conclusion holds for θ1; consequently, the wave packet spaces
P (k1, θ1) and P (k2, θ2) can be treated as orthogonal to any finite order in θ1 or θ2.

The approximate orthogonality of the wave packets w and v combined with the
general rule (3.192) implies [

a [w] , a† [v]
]

= 0 (7.74)

whenever w and v belong to distinct paraxial wave packet spaces. From this it is easy
to see that the quantum paraxial spaces H (k1, θ1) and H (k2, θ2) are orthogonal to any
finite order in the small parameters θ1 and θ2. In the paraxial approximation, distinct
paraxial wave packets behave as though they were truly orthogonal modes. This means
that the multiparaxial Hilbert space describing the situation in which several distinct
paraxial beams are present is generated from the vacuum by generalizing eqn (7.72)
to ∣∣{w1}P1

, {w2}P2
, . . . ,

〉
=

∏
β

Pβ∏
p=1

a† [wβp] |0〉 , (7.75)

where Pβ = 0, 1, . . ., and the wβps are chosen from P (kβ , θβ).

7.7 Angular momentum∗

The derivation of the paraxial approximation for the angular momentum J = L + S
is complicated by the fact—discussed in Section 3.4—that the operator L does not
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have a convenient expression in terms of plane waves. Fortunately, the argument used
to show that the energy and the linear momentum are additive also applies to the
angular momentum; therefore, we can restrict attention to a single paraxial space. Let
us begin by rewriting the expression (3.58) for the helicity operator S as

S = �

∫
P

d3q

(2π)3
k̃0 + q/k0∣∣∣k̃0 + q/k0

∣∣∣
[
a†
+ (q) a+ (q) − a†

− (q) a− (q)
]
. (7.76)

The ratio q/k0 can be expressed as

q
k0

=
Λᵀqᵀ
Λᵀk0

+
Λ‖qz

Λ‖k0
k̃0 = θqᵀ + θ2qzk̃0 , (7.77)

so expanding in powers of θ gives the simple result

S0 = k̃0S0 + O (θ) , (7.78)

where

S0 = �

∫
P

d3q

(2π)3
[
a†
+ (q) a+ (q) − a†

− (q) a− (q)
]

= �

∫
d3r

[
φ†

+ (r) φ+ (r) − φ†
− (r)φ− (r)

]
. (7.79)

Thus, to lowest order, the helicity has only a longitudinal component; the leading
transverse component is O (θ). This is the natural consequence of the fact that each
photon has a wavevector close to k0.

To develop the approximation for L we substitute the paraxial representation (7.24)
and the corresponding expression (7.48) for E(+) (r, t) into eqn (3.57) to get

L0 = 2iε0

∫
d3rE

(−)
j

(
r × 1

i
∇
)

A
(+)
j

=
∫

d3rΦ†
j (r, t) e−ik0·r

(
r × 1

i
∇
)

Φj (r, t) eik0·r

=
∫

d3rΦ†
j (r, t)

(
r× �k0 + r × 1

i
∇
)

Φj (r, t) , (7.80)

where the last line follows from the identity

e−ik0·r∇eik0·rΦj (r, t) = (∇ + ik0)Φj (r, t) . (7.81)

This remaining gradient term can be written as

r × �

i
∇ = r× �

i

(
k̃0∇z + ∇ᵀ

)
= r× k̃0

�

i
∇z + zk̃0 × �

i
∇ᵀ + rᵀ × �

i
∇ᵀ, (7.82)
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so that
L0 = L0ᵀ + k̃0L0z , (7.83)

where the transverse part is given by

L0ᵀ =
∫

d3rΦ†
j (r)

(
r× �k0 + r × k̃0

�

i
∇z + zk̃0 × �

i
∇ᵀ

)
Φj (r) , (7.84)

and the longitudinal component is

L0z =
∫

d3rΦ†
j (r)

{
rᵀ1

�

i
∇ᵀ2 − rᵀ2

�

i
∇ᵀ1

}
Φj (r) . (7.85)

The transverse part L0ᵀ is dominated by the term proportional to �k0. After
expressing the integral in terms of the scaled variable r and scaled field Φ, one finds
that L0ᵀ = O (1/θ). The similar terms �ω0N0 and �k0N0 in the momentum and energy
are O

(
1/θ2

)
, so they are even larger. This apparently singular behavior is physically

harmless; it simply represents the fact that all photons in the wave packet have energies
close to �ω0 and momenta close to �k0.

For the angular momentum the situation is different. The angular momenta of in-
dividual photons in plane-wave modes k0+q must exhibit large fluctuations due to the
tight constraints on the polar angle ϑk given by eqn (7.4). These fluctuations are not
conjugate to the longitudinal component J0z , since rotations around the z-axis leave
ϑk unchanged. On the other hand, the transverse components L0ᵀ generate rotations
around the transverse axes which do change the value of ϑk. Thus we should expect
large fluctuations in the transverse components of the angular momentum, which are
described by the large transverse term L0ᵀ. Thus only the longitudinal component L0z

is meaningful for a paraxial state. By combining eqns (7.85) and (7.79), we see that
the lowest-order paraxial angular momentum operator is purely longitudinal,

J0 = k̃0 [L0z + S0] . (7.86)

7.8 Approximate photon localizability∗

Mandel’s local number operator, defined by eqn (3.204), displays peculiar nonlocal
properties. Despite this apparent flaw, Mandel was able to demonstrate that N (V )
behaves approximately like a local number operator in the limit V � λ3

0, where λ0

is the characteristic wavelength for a monochromatic field state. The important role
played by this limit suggests using the paraxial expansion to investigate the alternative
definitions of the local number operator in a systematic way. To this end we first
introduce a scaled version of the Mandel detection operator by

M (r) =
1√
V0

M (r) eik0z . (7.87)

By combining the definition (3.203) with the expansion (7.64), the identity (7.81), and
the scaled gradient
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∇
k0

=
1
k0

∇� +
1
k0

u3
∂

∂z

= θ∇� + θ2u3∇z , (7.88)

one finds
M = M

(0)
+ θM

(1)
+ θ2M

(2)
+ O

(
θ3
)
, (7.89)

where M
(0)

= Φ, M
(1)

= Φ
(1)

, and

M
(2)

= Φ
(2) − 1

4

(
∇2

ᵀ + 2i∇z

)
Φ . (7.90)

The corresponding expansion for N (V ) is

N (V ) = N (0) (V ) + θ2N (2) (V ) + O
(
θ4
)
, (7.91)

where

N (0) (V ) =
∫

d3rΦ
(0)†

(r) · Φ(0)
(r) ,

N (2) (V ) =
∫

d3r
{
M

(1)† ·M(1)
+
[
M

(0)† · M(2)
+ HC

]}
.

(7.92)

A simple calculation using the local commutation relations (7.34) for the zeroth-
order envelope field yields [

N (0) (V ) , N (0) (V ′)
]

= 0 (7.93)

for nonoverlapping volumes, and[
N (0) (V ) ,Φ† (r)

]
= χV (r)Φ† (r) , (7.94)

where the characteristic function χV (r) is defined by

χV (r) =

{
1 for r ∈ V ,

0 for r /∈ V .
(7.95)

Thus N (0) (V ) acts like a genuine local number operator. The nonlocal features dis-
cussed in Section 3.6.2 will only appear in the higher-order terms. It is, however,
important to remember that the delta function in the zeroth-order commutation rela-
tion (7.34) is really coarse-grained with respect to the carrier wavelength λ0. For this
reason the localization volume V must satisfy V � λ3

0.
The paraxial expansion of the alternative operator G (V ), introduced in eqn (3.210),

shows (Deutsch and Garrison, 1991a) that the two definitions agree in lowest order,
G(0) (V ) = N (0) (V ), but disagree in second order, G(2) (V ) �= N (2) (V ). This disagree-
ment between equally plausible definitions for the local photon number operator is a
consequence of the fact that a photon with wavelength λ0 cannot be localized to a
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volume of order λ3
0. Since most experiments are well described by the paraxial approx-

imation, it is usually permissible to think of the photons as localized, provided that
the diameter of the localization region is larger than a wavelength.

The negative frequency part A
(−)
i (r) is a sum over creation operators, so it is

tempting to interpret A
(−)
i (r) as creating a photon at the point r. In view of the

impossibility of localizing photons, this temptation must be sternly resisted. On the
other hand, the cavity operator a†

κ can be interpreted as creating a photon described by
the cavity mode Eκ (r), since the mode function extends over the entire cavity. In the
same way, the plane-wave operator a†

ks can be interpreted as creating a photon in the
(box-normalized) plane-wave state with wavenumber k and polarization eks. Finally
the wave packet operator a† [w] can be interpreted as creating a photon described by
the classical wave packet w, but it would be wrong to think of the photon as strictly
localized in the region where w (r) is large. With this caution in mind, one can regard
the pulse-envelope w (r) as an effective photon wave function, provided that the pulse
duration contains many optical periods and the transverse profile is large compared
to a wavelength.

There are other aspects of the averaged operators that also require some caution.
The operator N [w] = a† [w] a [w] satisfies[

N [w] , a† [w]
]

= a† [w] , [N [w] , a [w]] = −a [w] , (7.96)

so it serves as a number operator for w-photons, but these number operators are not
mutually commutative, since

[N [w] , N [u]] = (w,u)
{
a† [u]a [w] − a† [w] a [u]

}
. (7.97)

Thus distinct w photons and u photons cannot be independently counted unless the
classical wave packets w and u are orthogonal. This lack of commutativity can be
important in situations that require the use of non-orthogonal modes (Deutsch et al.,
1991).

7.9 Exercises

7.1 Frequency spread for a paraxial beam

(1) Show that the fractional change in the index of refraction across a paraxial beam
is

∆n

n0
=

∆k

k0

ω0
n0

(
dn
dω

)
0

1 + ω0
n0

(
dn
dω

)
0

,

where n0 = n (ω0) =
√

ε (ω0) /ε0 and (dn/dω)0 is evaluated at the carrier fre-
quency.

(2) Combine the relation k =
√

k2
0 + |qᵀ|2 + q2

z with eqns (7.5) and (7.7) to get

∆k

k0
=

1
2

(
∆qᵀ
k0

)2

+ O
(
θ4
)

=
1
2
θ2 + · · · .
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(3) Combine this with ∆ω = vg0∆k to find

∆ω

ω0
=

n0vg0

ck0

1
2
k0θ

2 =
n0

n0 + ω0

(
dn
dω

)
0

1
2
θ2 <

1
2
θ2 .

7.2 Distinct paraxial Hilbert spaces are effectively orthogonal

Consider the paraxial subspaces H (k1, θ1) and H (k2, θ2) discussed in Section 7.2.2.

(1) For a typical basis vector |{qs}κ〉 in H (k1, θ1) show that as (k) |{qs}κ〉 ≈ 0 when-
ever |k − k1| � θ1 |k1|.

(2) Use this result to argue that each basis vector in H (k2, θ2) is approximately or-
thogonal to every basis vector in H (k1, θ1).

7.3 Distinct paraxial fields are independent

Combine the definition (7.46) with the definition (7.14) for distinct beams to show that
eqn (7.47) is satisfied in the same sense that distinct paraxial spaces are orthogonal.

7.4 An analogy to many-body physics∗

Consider a special paraxial state such that the z-dependence of the field φs (r) can
be neglected and only one polarization is excited, so that φs (r) → φ (r�) . Define an
effective photon mass M0 such that the paraxial Hamiltonian HP for this problem
is formally identical to a second quantized description of a two-dimensional, nonrela-
tivistic, many-particle system of bosons with mass M0 (Huang, 1963, Appendix A.3;
Feynman, 1972). This feature leads to interesting analogies between quantum optics
and many-body physics (Chiao et al., 1991; Deutsch et al., 1992; Wright et al., 1994).

7.5 Paraxial expansion∗

(1) Expand Xs (q, θ) through O
(
θ2
)
.

(2) Show that Φ
(1)

(r) = ik̃0∇ᵀ · Φ(0).

(3) Show that Φ
(2)

(r) = 1
2∇ᵀ

(∇ᵀ · Φ(0)
)

+ 1
4

(∇2
ᵀ + 2i∇z

)
Φ(0).

7.6 Distinct paraxial wave packet spaces are effectively orthogonal∗

Consider two paraxial wave packets, w ∈ P (k1, θ1) and v ∈ P (k2, θ2), where k1 and
k2 satisfy eqn (7.14).

(1) Apply the definitions of q (Section 7.5) and w∗
s (q) (Section 7.6) to show that

(w, v) =
√

V2

V1

∫
d3q

(2π)3
∑

s

w∗
s (q) vs

(
q + ∆k

)
,

where ∆k = k1 − k2 and the arguments of w∗
s and vs are scaled with θ1 and θ2

respectively.
(2) Calculate ∆k, explain why

∣∣∆k
∣∣ � |q|, and combine this with the rapid fall off

condition in eqn (7.68) to conclude that θ−n
2 (w, v) → 0 as θ2 → 0 for any value of

n.
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(3) Show that θ−n
2

[
a [w] , a† [v]

] → 0 as θ2 → 0.
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Linear optical devices

The manipulation of light beams by passive linear devices, such as lenses, mirrors,
stops, and beam splitters, is the backbone of experimental optics. In typical arrange-
ments the individual devices are separated by regions called propagation segments
in which the light propagates through air or vacuum. The index of refraction is usually
piece-wise constant, i.e. it is uniform in each device and in each propagation segment.
In most arrangements each device or propagation segment has an axis of symmetry
(the optic axis), and the angle between the rays composing the beam and the local
optic axis is usually small. The light beams are then said to be piece-wise paraxial.
Under these circumstances, it is useful to treat the interaction of a light beam with a
single device as a scattering problem in which the incident and scattered fields both
propagate in vacuum. The optical properties of the device determine a linear relation
between the complex amplitudes of the incident and scattered classical waves. After
a brief review of this classical approach, we will present a phenomenological descrip-
tion of quantized electromagnetic fields interacting with linear optical devices. This
approach will show that, at the quantum level, linear optical effects can be viewed—in
a qualitative sense—as the propagation of photons guided by classical scattered waves.
The scattered waves are a rough analogue of wave functions for particles, so the asso-
ciated classical rays may be loosely considered as photon trajectories. These classical
analogies are useful for visualizing the interaction of photons with linear optical de-
vices but—as is always the case with applications of quantum theory—they must be
used with care. A more precise wave-function-like description of quantum propagation
through optical systems is given in Section 6.6.2.

8.1 Classical scattering

The general setting for this discussion is a situation in which one or more paraxial
beams interact with an optical device to produce several scattered paraxial beams.
Both the incident and the scattered beams are assumed to be mutually distinct, in
the sense defined by eqn (7.14). Under these circumstances, the paraxial beams will
be called scattering channels; the incident classical fields are input channels and
the scattered beams are output channels. Since this process is linear in the fields, the
initial and final beams can be resolved into plane waves. The conventional classical de-
scription of propagation through optical elements pieces together plane-wave solutions
of Maxwell’s equations by applying the appropriate boundary conditions at the inter-
faces between media with different indices of refraction, as shown in Fig. 8.1(a). This
procedure yields a linear relation between the Fourier coefficients of the incident and
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Fig. 8.1 (a) A plane wave αkI exp (ikI · r)
incident on a dielectric slab. The re-

flected and transmitted waves are respec-

tively αkR exp (ikR · r) and αkT exp (ikT · r).
(b) The time reversed version of (a). The ex-

tra wave at −kTR is discussed in the text. ��� ���

−����

��

��

−��

−��

−���

scattered waves that is similar to the description of scattering in terms of stationary
states in quantum theory (Bransden and Joachain, 1989, Chap. 4). From the viewpoint
of scattering theory, the classical piecing procedure is simply a way to construct the
scattering matrix relating the incident and scattered fields. Before considering the
general case, we analyze two simple examples: a propagation segment and a thin slab
of dielectric.

For the propagation segment, an incident plane wave α exp (ik · r)—the input
channel—simply acquires the phase kL, where L is the length of the segment along
the propagation direction, i.e. the relation between the incident amplitude α and the
scattered amplitude α′—representing the output channel—is

α′ = eikLα = eiωL/cα . (8.1)

In some applications the propagation segment through vacuum is replaced by a length
L of dielectric. If the end faces of the dielectric sample are antireflection coated, then
the scattering relation is

α′ = eik(ω)Lα = ein(ω)ωL/cα , (8.2)

where n (ω) is the index of refraction for the dielectric. Since the transmitted wave
can be expressed as

α′eik(z−ωt) = αei[kz−ω(t−∆t)] , (8.3)

where ∆t = n (ω)L/c, the dielectric medium is called a retarder plate, or sometimes
a phase shifter.

We next turn to the example of a plane wave incident on a thin dielectric slab—
which is not antireflection coated—as shown in Fig. 8.1(a). Ordinary ray tracing,
using Snell’s law and the law of reflection at each interface between the dielectric
and vacuum, determines the directions of the propagation vectors kR and kT (where
R and T stand for the reflected and transmitted waves respectively) relative to the
propagation vector kI of the incoming wave. Since the transmitted wave crosses the
dielectric–vacuum interface twice, we find the familiar result kT = kI , i.e. the incident
and transmitted waves are described by the same spatial mode.

The plane of incidence is defined by the vectors kI and n, where n is the unit vector
normal to the slab. Every incident electromagnetic plane wave can be resolved into two
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polarization components: the TE- (or S-) polarization, with electric vector perpendic-
ular to the plane of incidence, and the TM- (or P-) polarization, with electric vector
in the plane of incidence. For optically isotropic dielectrics, these two polarizations
are preserved by reflection and refraction. Since scattering is a linear process, we lose
nothing by assuming that the incident wave is either TE- or TM-polarized. This allows
us to simplify the vector problem to a scalar problem by suppressing the polarization
vectors. The three waves outside the slab are then αkI exp (ikI · r), α′

kR
exp (ikR · r),

and α′
kT

exp (ikT · r). The solution of Maxwell’s equations inside the slab is a linear
combination of the transmitted wave at the first interface and the reflected wave from
the second interface. Applying the boundary conditions at each interface (Jackson,
1999, Sec. 7.3) yields a set of equations relating the coefficients, and eliminating the
coefficients for the interior solution leads to

α′
kR

= r αkI , α′
kT

= t αkI , (8.4)

where the complex parameters r and t are respectively the amplitude reflection and
transmission coefficients for the slab. This is the simplest example of the general piecing
procedure discussed above.

Important constraints on the coefficients r and t follow from the time-reversal
invariance of Maxwell’s equations. What this means is that the time-reversed final
field will evolve into the time-reversed initial field. This situation is shown in Fig.
8.1(b), where the incident waves have propagation vectors −kR and −kT and the
scattered waves have −kI and −kTR. The amplitudes for this case are written as αT

q ,
where T stands for time reversal. The usual calculation gives the scattered waves as

αT
−kI

= r α′T
−kR

+ t α′T
−kT

,

αT
−kTR

= t α′T
−kR

+ r α′T
−kT

.
(8.5)

In Appendix B.3.3 it is shown that the linear polarization basis can be chosen so that
the time-reversed amplitudes are related to the original amplitudes by eqn (B.80). In
the present case, this yields αT

−kI
= α∗

kI
, α′T

−kR
= α′∗

kR
, α′T

−kT
= α′∗

kT
, and αT

−kTR
=

α∗
kT R

. Substituting these relations into eqn (8.5) and taking the complex conjugate
gives a second set of relations between the amplitudes αkI , α′

kR
, and α′

kT
:

αkI = r∗ α′
kR

+ t∗ α′
kT

,

αkTR = t∗ α′
kR

+ r∗ α′
kT

.
(8.6)

There is an apparent discrepancy here, since the original problem had no wave with
propagation vector kTR. Time-reversal invariance for the original problem therefore
requires αkT R = 0. Using eqn (8.4) to eliminate αkR and αkT from eqn (8.6) and
imposing αkT R = 0 leads to the constraints

|r|2 + |t|2 = 1 ,

r t∗ + r∗t = 0 .
(8.7)

The first relation represents conservation of energy, while the second implies that
the transmitted part of −kR and the reflected part of −kT interfere destructively as
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required by time-reversal invariance. These relations were originally derived by Stokes
(Born and Wolf, 1980, Sec. 1.6).

Setting r = |r| exp (iθr) and t = |t| exp (iθt) in the second line of eqn (8.7) shows us
that time-reversal invariance imposes the relation

θr − θt = ±π/2 ; (8.8)

in other words, the phase of the reflected wave is shifted by ±90◦ relative to the
transmitted wave. This phase difference is a measurable quantity; therefore, the ± sign
on the right side of eqn (8.8) is not a matter of convention. In fact, this sign determines
whether the reflected wave is retarded or advanced relative to the transmitted wave.
In the extreme limit of a perfect mirror, i.e. |t| → 0, we can impose the convention
θt = 0, so that

θr = ±π/2 , |r| = 1 . (8.9)

For given values of the relevant parameters—the angle of incidence, the index of re-
fraction of the dielectric, and the thickness of the slab—the coefficients r and t can
be exactly calculated (Born and Wolf, 1980, Sec. 1.6.4, eqns (57) and (58)), and the
phases θr and θt are uniquely determined.

Let us now consider a more general situation in which waves with kI and kTR are
both incident. This would be the time-reverse of Fig. 8.1(b), but in this case αkTR �= 0.
The standard calculation then relates αkT and αkR to αkI and αkT R by(

α′
kT

α′
kR

)
=

[
t r
r t

](
αkI

αkT R

)
. (8.10)

The meaning of the conditions (8.7) is that the 2×2 scattering matrix in this equation
is unitary.

Having mastered the simplest possible optical elements, we proceed without hes-
itation to the general case of linear and nondissipative optical devices. The incident
field is to be expressed as an expansion in box-quantized plane waves,

fks (r) = eks exp (ik · r) /
√

V . (8.11)

For the single-mode input field E in = fkse
−iωkt, the general piecing procedure yields an

output field which we symbolically denote by (fks)scat. This field is also expressed as
an expansion in box-quantized plane waves. For a given basis function fks, we denote
the expansion coefficients of the scattered solution by Sk′s′,ks, so that

(fks)scat =
∑
k′s′

fk′s′Sk′s′,ks . (8.12)

Repeating this procedure for all elements of the basis defines the entire scattering
matrix Sk′s′,ks. The assumption that the device is stationary means that the frequency
ωk associated with the mode fks cannot be changed; therefore the scattering matrix
must satisfy

Sk′s′,ks = 0 if ωk′ �= ωk . (8.13)

In general, the sub-matrix connecting plane waves with a common frequency ωk = ω
will depend on ω.
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The incident classical wave packet is represented by the in-field

E(+)
in (r, t) =

∑
ks

i

√
�ωk

2ε0
αksfks (r) e−iωkt , (8.14)

where the time origin t = 0 is chosen so that the initial wave packet E in (r, 0) has not
reached the optical element. For t (> 0) sufficiently large, the scattered wave packet
has passed through the optical element, so that it is again freely propagating. The
solution after the scattering is completely over is the out-field

E(+)
out (r, t) =

∑
k′s′

i

√
�ωk′

2ε0
α′

k′s′fk′s′ (r) e−iωk′ t , (8.15)

where the two sets of expansion coefficients are related by the scattering matrix:

α′
k′s′ =

∑
ks

Sk′s′,ksαks . (8.16)

Time-reversal invariance can be exploited here as well. In the time-reversed prob-
lem, the time-reversed output field scatters into the time-reversed input field, so

αT
−ks =

∑
k′s′

S−ks,−k′s′ α′T
−k′s′ , (8.17)

where −ks is the time reversal of ks. Time-reversal invariance requires

S−ks,−k′s′ = Sk′s′,ks , (8.18)

where the transposition of the indices reflects the interchange of incoming and outgoing
modes. The classical rule (see Appendix B.3.3) for time reversal is

αT
−ks = −α∗

ks , (8.19)

so using eqn (8.18) in the complex conjugate of eqn (8.17) yields

αks =
∑
k′s′

S∗
k′s′,ksα

′
k′s′ . (8.20)

Combining this with eqn (8.16) leads to

αks =
∑
k′′s′′

[∑
k′s′

S∗
k′s′,ksSk′s′,k′′s′′

]
αk′′s′′ , (8.21)

which must hold for all input fields {αks}. This imposes the constraints∑
k′s′

S∗
k′s′,ksSk′s′,k′′s′′ = δkk′′δss′′ , (8.22)

that are generalizations of eqn (8.7). In matrix form this is S†S = SS† = 1; i.e. every
passive linear device is described by a unitary scattering matrix.
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8.2 Quantum scattering

We will take a phenomenological approach in which the classical amplitudes are re-
placed by the Heisenberg-picture operators aks (t). Let t = 0 be the time at which
the Heisenberg and Schrödinger pictures coincide, then according to eqn (3.95) the
operator

ãks (t) = aks (t) eiωkt (8.23)

is independent of time for free propagation. Thus in the scattering problem the time
dependence of ãk′s′ (t) comes entirely from the interaction between the field and the
optical element. The classical amplitudes αks represent the solution prior to scattering,
so it is natural to replace them according to the rule

αks → lim
t→0

{
aks (t) eiωkt

}
= aks (0) = aks . (8.24)

Similarly, α′
k′s′ represents the solution after scattering, and the corresponding rule,

α′
k′s′ → a′

k′s′ = lim
t→+∞

{
ak′s′ (t) eiωk′ t} = lim

t→∞ {ãk′s′ (t)} , (8.25)

implies the asymptotic ansatz

ak′s′ (t) → a′
k′s′e−iωk′ t . (8.26)

At late times the field is propagating in vacuum, so this limit makes sense by virtue
of the fact that ãk′s′ (t) is time independent for free propagation.

Thus aks and a′
k′s′ are respectively the incident and scattered annihilation op-

erators, and they will be linearly related in the weak-field limit. Furthermore, the
correspondence principle tells us that the relation between the operators must repro-
duce eqn (8.16) in the classical limit aks → αks. Since both relations are linear, this
can only happen if the incident and scattered operators also satisfy

a′
k′s′ =

∑
ks

Sk′s′,ksaks , (8.27)

where Sk′s′,ks is the classical scattering matrix. The in-field operator Ein and the
out-field operator Eout are given by the quantum analogues of eqns (8.14) and
(8.15):

E(+)
in (r, t) =

∑
ks

i

√
�ωk

2ε0
aksfks (r) e−iωkt , (8.28)

E(+)
out (r, t) =

∑
k′s′

i

√
�ωk′

2ε0
a′
k′s′fk′s′ (r) e−iωk′ t . (8.29)

The operators {aks} and {a′
k′s′} are related by eqn (8.27) and the inverse relation

aks =
∑
k′s′

(
S†)

ks,k′s′ a′
k′s′ =

∑
k′s′

S∗
k′s′,ksa

′
k′s′ . (8.30)

The unitarity of the classical scattering matrix guarantees that the scattered operators
{a′

k′s′} satisfy the canonical commutation relations (3.65), provided that the incident
operators {aks} do so.
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The use of the Heisenberg picture nicely illustrates the close relation between the
classical and quantum scattering problems, but the Schrödinger-picture description
of scattering phenomena is often more useful for the description of experiments. The
fixed Heisenberg-picture state vector |Ψ〉 is the initial state vector in the Schrödinger
picture, i.e. |Ψ (0)〉 = |Ψ〉, so the time-dependent Schrödinger-picture state vector is

|Ψ (t)〉 = U (t) |Ψ〉 , (8.31)

where U (t) is the unitary evolution operator. Combining the formal solution (3.83) of
the Heisenberg operator equations with the ansatz (8.26) yields

aks (t) = U † (t) aksU (t) → a′
kse

−iωkt as t → ∞ , (8.32)

which provides some asymptotic information about the evolution operator.
The task at hand is to use this information to find the asymptotic form of |Ψ (t)〉.

Since the scattering medium is linear, it is sufficient to consider a one-photon initial
state,

|Ψ〉 =
∑
ks

Cksa
†
ks |0〉 . (8.33)

The equivalence between the two pictures implies

〈0 |aks|Ψ (t)〉 = 〈0 |aks (t)|Ψ〉 , (8.34)

where the left and right sides are evaluated in the Schrödinger and Heisenberg pictures
respectively. Since there is neither emission nor absorption in the passive scattering
medium, |Ψ (t)〉 remains a one-photon state at all times, and

|Ψ (t)〉 =
∑
ks

〈0 |aks|Ψ (t)〉 a†
ks |0〉 . (8.35)

The expansion coefficients 〈0 |aks|Ψ (t)〉 are evaluated by combining eqn (8.34) with
the asymptotic rule (8.26) and the scattering law (8.27) to get 〈0 |aks (t)|Ψ〉 =
e−iωktC′

ks, where
C′

ks =
∑
k′s′

Sks,k′s′Ck′s′ . (8.36)

The evolved state is therefore

|Ψ (t)〉 =
∑
ks

e−iωktC′
ksa

†
ks |0〉 . (8.37)

In other words, the prescription for the asymptotic (t → ∞) form of the Schrödinger
state vector is simply to replace the initial coefficients Cks by e−iωktC′

ks, where C′
ks is

the transform of the initial coefficient vector by the scattering matrix.
In the standard formulation of scattering theory, the initial state is stationary—

i.e. an eigenstate of the free Hamiltonian—in which case all terms in the sum over
ks in eqn (8.33) have the same frequency: ωk = ω0. The energy conservation rule
(8.13) guarantees that the same statement is true for the evolved state |Ψ (t)〉, so the
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time-dependent exponentials can be taken outside the sum in eqn (8.37) as the overall
phase factor exp (−iω0t). In this situation the overall phase can be neglected, and the
asymptotic evolution law (8.37) can be replaced by the scattering law

|Ψ〉 → |Ψ〉′ =
∑
ks

C′
ksa

†
ks |0〉 . (8.38)

An equivalent way to describe the asymptotic evolution follows from the observa-
tion that the evolved state in eqn (8.37) is obtained from the initial state in eqn (8.33)
by the operator transformation

a†
ks → e−iωkt

∑
k′s′

a†
k′s′Sk′s′,ks . (8.39)

When applying this rule to stationary states, the time-dependent exponential can be
dropped to get the scattering rule

a†
ks → a′†

ks =
∑
k′s′

a†
k′s′Sk′s′,ks . (8.40)

For scattering problems involving one- or two-photon initial states, it is often more
convenient to use eqn (8.40) directly rather than eqn (8.38). For example, the scattering
rule for |Ψ〉 = a†

ks |0〉 is
a†
ks |0〉 → a′†

ks |0〉 . (8.41)

The rule (8.39) also provides a simple derivation of the asymptotic evolution law
for multi-photon initial states. For the general n-photon initial state,

|Ψ〉 =
∑
k1s1

· · ·
∑
knsn

Ck1s1,...,knsna†
k1s1

· · ·a†
knsn

|0〉 , (8.42)

applying eqn (8.39) to each creation operator yields

|Ψ (t)〉 =
∑
k1s1

· · ·
∑
knsn

exp

[
−i

n∑
m=1

ωkmt

]
C′

k1s1,...,knsn
a†
k1s1

· · · a†
knsn

|0〉 , (8.43)

where

C′
k1s1,...,knsn

=
∑
p1v1

· · ·
∑
pnvn

Sk1s1,p1v1 · · ·Sknsn,pnvnCp1ν1,...,pnνn . (8.44)

For scattering problems the initial state is stationary, so that
n∑

m=1

ωkm = ω0 , (8.45)

and the evolution equation (8.43) is replaced by the scattering rule

|Ψ〉 → |Ψ〉′ =
∑
k1s1

· · ·
∑
knsn

Ck1s1,...,knsna′†
k1s1

· · ·a′†
knsn

|0〉 . (8.46)

It is important to notice that the scattering matrix in eqn (8.27) has a special
property: it relates annihilation operators to annihilation operators only. The scattered
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annihilation operators do not depend at all on the incident creation operators. This
feature follows from the physical assumption that emission and absorption do not occur
in passive linear devices. The special form of the scattering matrix has an important
consequence for the commutation relations of field operators evaluated at different
times. Since all annihilation operators—and therefore all creation operators—commute
with one another, eqns (8.28), (8.29), and (8.27) imply[

E
(±)
out,i (r, +∞) , E

(±)
in,j (r′,−∞)

]
= 0 (8.47)

for scattering from a passive linear device. In fact, eqn (3.102) guarantees that the
positive- (negative-) frequency parts of the field at different finite times commute, as
long as the evolution of the field operators is caused by interaction with a passive
linear medium. One should keep in mind that commutativity at different times is
not generally valid, e.g. if emission and absorption or photon–photon scattering are
possible, and further that commutators like

[
E

(+)
i (r, t) , E

(−)
j (r′, t′)

]
do not vanish

even for free fields or fields evolving in passive linear media. Roughly speaking, this
implies that the creation of a photon at (r′, t′) and the annihilation of a photon at
(r, t) are not independent events.

Putting all this together shows that we can use standard classical methods to cal-
culate the scattering matrix for a given device, and then use eqn (8.27) to relate the
annihilation operators for the incident and scattered modes. This apparently simple
prescription must be used with care, as we will see in the applications. The utility of
this approach arises partly from the fact that each scattering channel in the classi-
cal analysis can be associated with a port, i.e. a bounding surface through which a
well-defined beam of light enters or leaves. Input and output ports are respectively
associated with input and output channels. The ports separate the interior of the de-
vice from the outside world, and thus allow a black box approach in which the device
is completely characterized by an input–output transfer function or scattering ma-
trix. The principle of time-reversal invariance imposes constraints on the number of
channels and ports and thus on the structure of the scattering matrix.

The simplest case is a one-channel device, i.e. there is one input channel and one
output channel. In this case the scattering is described by a 1×1 matrix, as in eqn (8.2).
This is more commonly called a two-port device, since there is one input port and one
output port. As an example, for an antireflection coated thin lens the incident light
occupies a single input channel, e.g. a paraxial Gaussian beam, and the transmitted
light occupies a single output channel. The lens is therefore a one-channel/two-port
device.

8.3 Paraxial optical elements

An optical element that transforms an incident paraxial ray bundle into another parax-
ial bundle will be called a paraxial optical element. The most familiar examples
are (ideal) lenses and mirrors. By contrast to the dielectric slab in Fig. 8.1, an ideal
lens transmits all of the incident light; no light is reflected or absorbed. Similarly an
ideal mirror reflects all of the incident light; no light is transmitted or absorbed. In
the non-ideal world inhabited by experimentalists, the conditions defining a paraxial
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element must be approximated by clever design. The no-reflection limit for a lens is
approached by applying a suitable antireflection coating. This consists of one or
more layers of transparent dielectrics with refractive indices and thicknesses adjusted
so that the reflections from the various interfaces interfere destructively (Born and
Wolf, 1980, Sec. 1.6). An ideal mirror is essentially the opposite of an antireflection
coating; the parameters of the dielectric layers are chosen so that the transmitted
waves suffer destructive interference. In both cases the ideal limit can only be approx-
imated for a limited range of wavelengths and angles of incidence. Compound devices
made from paraxial elements are automatically paraxial.

For optical elements defined by curved interfaces the calculation of the scattering
matrix in the plane-wave basis is rather involved. The classical theory of the interaction
of light with lenses and curved mirrors is more naturally described in terms of Gaussian
beams, as discussed in Section 7.4. In the absence of this detailed theory it is still
possible to derive a useful result by using the general properties of the scattering
matrix. We will simplify this discussion by means of an additional approximation. An
incident paraxial wave is a superposition of plane waves with wavevectors k = k0 +q,
where |q| � k0. According to eqns (7.7) and (7.9), the dispersion in qz = q·k̃0 and ω for
an incident paraxial wave is small, in the sense that ∆ω/ (c∆qᵀ) ∼ ∆qz/∆qᵀ = O (θ),
where q� = q−(

q·k̃0

)
k̃0 is the part of q transverse to k0 and θ is the opening angle of

the beam. This suggests considering an incident classical field that is monochromatic
and planar, i.e.

E(+)
in (r, t) =

{ ∑
q�, s

i

√
�ω0

2ε0V
αk0+q�,se0se

iq�·r�
}

ei(k0z−ω0t) . (8.48)

In the same spirit the scattering matrix will be approximated by

Sks,k′s′ ≈ δkzk0δk′
zk0 S̃q�s,q′

�s′ , (8.49)

with the understanding that the reduced scattering matrix S̃q�s,q′
�s′ effectively con-

fines q� and q′
� to the paraxial domain defined by eqn (7.8). In this limit, the unitarity

condition (8.22) reduces to∑
q′′
�, s′′

S̃∗
q′′
�s′′,q�sS̃q′′

�s′′,q′
�s′ = δq�q′

�δss′ . (8.50)

Turning now to the quantum theory, we see that the scattered annihilation opera-
tors are given by

a′
k0+q�,s =

∑
P�, v

S̃q�s,q′
�s′ak0+q′

�,s′ . (8.51)

Since the eigenvalues of the operator a†
ksaks represent the number of photons in the

plane-wave mode fks, the operator representing the flux of photons across a transverse
plane located to the left (z < 0) of the optical element is proportional to

F =
∑
q�, s

a†
k0+q�,sak0+q�,s , (8.52)
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and the operator representing the flux through a plane to the right (z > 0) of the
optical element is

F ′ =
∑
q�, s

a′†
k0+q�,sa

′
k0+q�,s . (8.53)

Combining eqn (8.51) with the unitarity condition (8.50) shows that the incident and
scattered flux operators for a transparent optical element are identical, i.e. F ′ = F .
This is a strong result, since it implies that all moments of the fluxes are identical,

〈Ψ |F ′n|Ψ〉 = 〈Ψ |Fn|Ψ〉 . (8.54)

In other words the overall statistical properties of the light, represented by the set of
all moments of the photon flux, are unchanged by passage through a two-port paraxial
element, even though the distribution over transverse wavenumbers may be changed
by focussing.

8.4 The beam splitter

Beam splitters play an important role in many optical experiments as a method of
beam manipulation, and they also exemplify some of the most fundamental issues in
quantum optics. The simplest beam splitter is a uniform dielectric slab—such as the
one studied in Section 8.1—but in practice beam splitters are usually composed of
layered dielectrics, where the index of refraction of each layer is chosen to yield the
desired reflection and transmission coefficients r and t . The results of the single-slab
analysis are applicable to the layered design, provided that the correct values of r
and t are used. If the surrounding medium is the same on both sides of the device,
and the optical properties of the layers are symmetrical around the midplane, then
the amplitude reflection and transmission coefficients are the same for light incident
from either side. This defines a symmetrical beam splitter. In order to simplify the
discussion, we will only deal with this case in the text. However, the unsymmetrical
beam splitter—which allows for more general phase relations between the incident and
scattered waves—is frequently used in practice (Zeilinger, 1981), and an example is
studied in Exercise 8.1.

In the typical experimental situation shown in Fig. 8.2, a classical wave,
α1 exp (ik1 · r), which is incident in channel 1, divides at the beam splitter into a

Fig. 8.2 A symmetrical beam splitter. The

surfaces 1, 2, 1′, and 2′ are ports and the mode

amplitudes α1, α2, α′
1, and α′

2 are related by

the scattering matrix.
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transmitted wave, α′
1 exp (ik1 · r), in channel 1′ and a reflected wave, α′

2 exp (ik2 · r),
in channel 2′. In the time-reversed version of this event, channel 2′ is an input channel
that scatters into the output channels 1 and 2, where channel 2 is associated with port
2 in the figure. The two output channels in the time-reversed picture correspond to
input channels in the original picture; therefore, time-reversal invariance requires that
channel 2 be included as an input channel, in addition to the original channel 1. Thus
the beam splitter is a two-channel device, and the two output channels are related
to the two input channels by a 2 × 2 matrix. The beam splitter can also be described
as a four-port device, since there are two input ports and two output ports. In the
present book we restrict the term ‘beam splitter’ to devices that are described by the
scattering matrix in eqn (8.63), but in the literature this term is often applied to any
two-channel/four-port device described by a 2 × 2 unitary scattering matrix.

In the classical problem, there is no radiation in channel 2, so α2 = 0, and port 2
is said to be an unused port. The transmitted and reflected amplitudes are then

α′
2 = r α1 , α′

1 = tα1 . (8.55)

The materials composing the beam splitter are chosen to have negligible absorption in
the wavelength range of interest, so the reflection and transmission coefficients must
satisfy eqn (8.7). Combining eqn (8.7) and eqn (8.55) yields the conservation of energy,

|α′
1|2 + |α′

2|2 = |α1|2 . (8.56)

In many experiments the output fields are measured by square law detectors that are
not phase sensitive. In this case the transmission phase θt can be eliminated by the
redefinition α1 → α1 exp (−iθt), and the second line of eqn (8.7) means that we can
set r = ±it, where t is real and positive. The important special case of the balanced
(50/50) beam splitter is defined by |r| = |t| = 1/

√
2, and this yields the simple rule

r =
±i√

2
, t =

1√
2

. (8.57)

Beam splitters are an example of a general class of linear devices called optical
couplers—or optical taps—that split and redirect an input optical signal. In practice
optical couplers often consist of one or more waveguides, and the objective is achieved
by proper choice of the waveguide geometry. A large variety of optical couplers are in
use (Saleh and Teich, 1991, Sec. 7.3), but their fundamental properties are all very
similar to those of the beam splitter.

8.4.1 Quantum description of a beam splitter

A loose translation of the argument leading from the classical relation (8.16) to the
quantum relation (8.27) might be that classical amplitudes are simply replaced by
annihilation operators, according to the rules (8.24) and (8.26). In the present case,
this procedure would replace the c-number relations (8.55) by the operator relations

a′
2 = r a1 , a′

1 = t a1 ; (8.58)

consequently, the commutation relations for the scattered operators would be
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a′
2, a

′†
2

]
= |r|2 ,

[
a′
1, a

′†
1

]
= |t|2 . (8.59)

These results are seriously wrong, since they imply a violation of Heisenberg’s uncer-
tainty principle for the scattered radiation oscillators. The source of this disaster is
the way we have translated the classical statement ‘no radiation enters through the
unused port 2’ to the quantum domain. The condition α2 = 0 is perfectly sensible
in the classical problem, but in the quantum theory, eqn (8.59) amounts to claiming
that the operator a2 can be set to zero. This is inconsistent with the commutation
relation

[
a2, a

†
2

]
= 1, so the classical statement α2 = 0 must instead be interpreted as

a condition on the state describing the incident field, i.e.

a2 |Φin〉 = 0 (8.60)

for a pure state, and
a2ρin = ρina

†
2 = 0 (8.61)

for a mixed state. It is customary to describe this situation by saying that vacuum
fluctuations in the mode k2 enter through the unused port 2. In other words, the correct
quantum calculation resembles a classical problem in which real incident radiation
enters through port 1 and mysterious vacuum fluctuations1 enter through port 2. In
this language, the statement ‘the operator a2 cannot be set to zero’ is replaced by
‘vacuum fluctuations cannot be prevented from entering through the unused port 2.’

Since we cannot impose a2 = 0, it is essential to use the general relation (8.27)
which yields (

a′
1

a′
2

)
= T

(
a1

a2

)
, (8.62)

where

T =
[
t r
r t

]
(8.63)

is the scattering matrix for the beam splitter. The unitarity of T guarantees that the
scattered operators obey the canonical commutation relations, which in turn guarantee
the uncertainty principle.

We can see an immediate consequence of eqns (8.62) and (8.63) by evaluating the
number operators N ′

2 = a′†
2 a′

2 and N ′
1 = a′†

1 a′
1. Now

N ′
2 =

(
r∗a†

1 + t∗a†
2

)
(r a1 + t a2)

= |r|2 N1 + |t|2 N2 + r∗t a†
1a2 + r t∗a†

2a1 . (8.64)

The corresponding formula for N ′
1 is obtained by interchanging r and t:

N ′
1 = |t|2 N1 + |r|2 N2 + r t∗a†

1a2 + r∗ ta†
2a1 , (8.65)

and adding the two expressions gives

1The universal preference for this language may be regarded as sugar coating for the bitter pill of
quantum theory.
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N ′
2 + N ′

1 = N1 + N2 + (r∗ t + t r∗)
(
a†
1a2 + a†

2a1

)
= N1 + N2 , (8.66)

where the Stokes relation (8.7) was used again. This is the operator version of the
conservation of energy, which in this case is the same as conservation of the number
of photons.

We now turn to the Schrödinger-picture description of scattering from the beam
splitter. In accord with the energy-conservation rule (8.13), the operators {a1, a2, a

′
1, a

′
2}

in eqn (8.62) all correspond to modes with a common frequency ω. We therefore begin
by considering single-frequency problems, i.e. all the incident photons have the same
frequency. For the beam splitter, the general operator scattering rule (8.40) reduces to(

a†
1

a†
2

)
→ T

(
a†
1

a†
2

)
=
(

t a†
1 + r a†

2

r a†
1 + t a†

2

)
, (8.67)

and to simplify things further we will only discuss two-photon initial states. With these
restrictions, the general input state in eqn (8.42) is replaced by

|Ψ〉 =
2∑

m=1

2∑
n=1

Cmna†
ma†

n |0〉 . (8.68)

Since the creation operators commute with one another, the coefficients satisfy the
bosonic symmetry condition Cmn = Cnm.

A simple example—which will prove useful in Section 10.2.1—is a two-photon state
in which one photon enters through port 1 and another enters through port 2, i.e.

|Ψ〉 = a†
1a

†
2 |0〉 . (8.69)

Applying the rule (8.67) to this initial state yields the scattered state

|Ψ〉′ = r t
(
a†2
1 + a†2

2

)
|0〉 +

(
r2 + t2

)
a†
1a

†
2 |0〉 . (8.70)

Some interesting properties of this solution can be found in Exercise 8.2.
The simplified notation, am = akmsm , employed above is useful because the Heisen-

berg-picture scattering law (8.62) does not couple modes with different frequencies and
polarizations. The former property is a consequence of the energy conservation rule
(8.13) and the latter follows from the fact that the optically isotropic material of the
beam splitter does not change the polarization of the incident light. There are, however,
interesting experimental situations with initial states involving several frequencies and
more than one polarization state per channel. In these cases the simplified notation is
less useful, and it is better to identify the mth input channel solely with the direction
of propagation defined by the unit vector k̃m. Photons of either polarization and
any frequency can enter and leave through these channels. A notation suited to this
situation is

ams (ω) = aqs with q =
ω

c
k̃m , (8.71)

where m = 1, 2 is the channel index and s labels the two possible polarizations. For the
following discussion we will use a linear polarization basis

{
eh

(
k̃m

)
, ev

(
k̃m

)}
for each
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channel, where h and v respectively stand for horizontal and vertical. The frequency ω
can vary continuously, but for the present we will restrict the frequencies to a discrete
set. With all this understood, the canonical commutation relations are written as[

ams (ω) , a†
nr (ω′)

]
= δmnδsrδωω′ , with m, n = 1, 2 and r, s = h, v , (8.72)

and the operator scattering law (8.67)—which applies to each polarization and fre-
quency separately—becomes(

a†
1s (ω)

a†
2s (ω)

)
→

(
t a†

1s (ω) + r a†
2s (ω)

r a†
1s (ω) + t a†

2s (ω)

)
. (8.73)

Since the coefficients t and r depend on frequency, they should be written as t (ω) and
r (ω), but the simplified notation used in this equation is more commonly found in the
literature.

We will only consider two-photon initial states of the form

|Ψ〉 =
2∑

m,n=1

∑
r,s

∑
ω,ω′

Cms,nr (ω, ω′) a†
ms (ω)a†

nr (ω′) |0〉 , (8.74)

where the sums over ω and ω′ run over some discrete set of frequencies, and the bosonic
symmetry condition is

Cnr,ms (ω′, ω) = Cms,nr (ω, ω′) . (8.75)

Just as in nonrelativistic quantum mechanics, Bose symmetry applies only to the simul-
taneous exchange of all the degrees of freedom. Relaxing the simplifying assumption
that a single frequency and polarization are associated with all scattering channels
opens up many new possibilities.

In the first example—which will be useful in Section 10.2.1-B—the incoming
photons have the same polarization, but different frequencies ω1 and ω2. In this
case the polarization index can be omitted, and the initial state expressed as |Ψ〉 =
a†
1 (ω1) a†

2 (ω2) |0〉. Applying the scattering law (8.67) to this state yields

|Ψ〉′ =
{
t r

[
a†
1 (ω1) a†

1 (ω2) + a†
2 (ω1) a†

2 (ω2)
]}

|0〉

+
{
t2a†

1 (ω1) a†
2 (ω2) + r2a†

2 (ω1) a†
1 (ω2)

}
|0〉 .

(8.76)

This solution has a number of interesting features that are explored in Exercise 8.3.
An example of a single-frequency state with two polarizations present is

|Ψ〉 =
1√
2

(
a†
1ha†

2v − a†
1va

†
2h

)
|0〉 , (8.77)

where the frequency argument has been dropped. In this case the expansion coefficients
in eqn (8.74) reduce to

Cms,nr =
1
4

(δm1δn2 − δn1δm2) (δshδrv − δrhδsv) . (8.78)

The antisymmetry in the polarization indices r and s is analogous to the antisymmetric
spin wave function for the singlet state of a system composed of two spin-1/2 particles,
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so |Ψ〉 is said to have a singlet-like character.2 The overall bosonic symmetry then
requires antisymmetry in the spatial degrees of freedom represented by (m, n). More
details can be found in Exercise 8.4.

8.4.2 Partition noise

The paraxial, single-channel/two-port devices discussed in Section 8.3 preserve the
statistical properties of the incident field. Let us now investigate this question for the
beam splitter. Combining the results (8.64) and (8.65) for the number operators of the
scattered modes with the condition (8.61) implies

〈N ′
2〉 = Tr (ρinN ′

2) = |r|2 〈N1〉 , 〈N ′
1〉 = |t|2 〈N1〉 . (8.79)

The intensity for each mode is proportional to the average of the corresponding number
operator, so the quantum averages reproduce the classical results, I ′2 = |r|2 I1 and
I ′1 = |r|2 I1. There are no surprises for the average values, so we go on to consider
the statistical fluctuations in the incident and transmitted signals. This is done by
comparing the normalized variance,

V (N ′
1) =

V (N ′
1)

〈N ′
1〉2

=

〈
N ′2

1

〉− 〈N ′
1〉2

〈N ′
1〉2

, (8.80)

of the transmitted field to the same quantity, V (N1), for the incident field. The cal-
culation of the transmitted variance involves evaluating

〈
N ′2

1

〉
, which can be done by

combining eqn (8.65) with eqn (8.61) and using the cyclic invariance property of the
trace to get 〈

N ′2
1

〉
= |t|4 〈N2

1

〉
+ |r|2 |t|2 〈N1〉 . (8.81)

Substituting this into the definition of the normalized variance leads to

V (N ′
1) = V (N1) +

∣∣∣r
t

∣∣∣2 1
〈N1〉 . (8.82)

Thus transmission through the beam splitter—by contrast to transmission through a
two-port device—increases the variance in photon number. In other words, the noise
in the transmitted field is greater than the noise in the incident field. Since the added
noise vanishes for r = 0, it evidently depends on the partition of the incident field into
transmitted and reflected components. It is therefore called partition noise.

Partition noise can be blamed on the vacuum fluctuations entering through the
unused port 2. This can be seen by temporarily modifying the commutation relation
for a2 to

[
a2, a

†
2

]
= ξ2, where ξ2 is a c-number which will eventually be set to unity.

This is equivalent to modifying the canonical commutator to [q2, p2] = i�ξ2, and this

2The spin-statistics connection (Cohen-Tannoudji et al., 1977b, Sec. XIV-C) tells us that spin-1/2
particles must be fermions not bosons. This shows that analogies must be handled with care.
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in turn yields the uncertainty relation ∆q2∆p2 � ξ2�/2. Using this modification in the
previous calculation leads to

V (N ′
1) = V (N1) + ξ2

∣∣∣ r
t

∣∣∣2 1
〈N1〉 . (8.83)

Thus partition noise can be attributed to the vacuum (zero-point) fluctuations of the
mode entering the unused port 2. Additional evidence that partition noise is entirely a
quantum effect is provided by the fact that it becomes negligible in the classical limit,
〈N1〉 → ∞. Note that if we consider only the transmitted light, the transparent beam
splitter acts as if it were an absorber, i.e. a dissipative element. The increased noise in
the transmitted field is then an example of a general relation between dissipation and
fluctuation which will be studied later.

8.4.3 Behavior of quasiclassical fields at a beam splitter

We will now analyze an experiment in which a coherent (quasiclassical) state is incident
on port 1 of the beam splitter and no light is injected into port 2. The Heisenberg
state |Φin〉 describing this situation satisfies

a1 |Φin〉 = α1 |Φin〉 ,

a2 |Φin〉 = 0 ,
(8.84)

where α1 is the amplitude of the coherent state. The scattering relation (8.62) combines
with these conditions to yield

a′
1 |Φin〉 = (r a2 + t a1) |Φin〉 = t α1 |Φin〉 ,

a′
2 |Φin〉 = (t a2 + r a1) |Φin〉 = r α1 |Φin〉 .

(8.85)

In other words, the Heisenberg state vector is also a coherent state with respect to a′
1

and a′
2, with the respective amplitudes t α1 and r α1. This means that the fundamental

condition (5.11) for a coherent state is satisfied for both output modes; that is,

V
(
a′†
1 , a′

1

)
= V

(
a′†
2 , a′

2

)
= 0 , (8.86)

where the variance is calculated for the incident state |Φin〉. This behavior is exactly
parallel to that of a classical field injected into port 1, so it provides further evidence
of the nearly classical nature of coherent states.

8.4.4 The polarizing beam splitter

The generic beam splitter considered above consists of a slab of optically isotropic
material, but for some purposes it is better to use anisotropic crystals. When light
falls on an anisotropic crystal, the two polarizations defined by the crystal axes are
refracted at different angles. Devices employing this effect are typically constructed
by cementing together two prisms made of uniaxial crystals. The relative orientation
of the crystal axes are chosen so that the corresponding polarization components of
the incident light are refracted at different angles. Devices of this kind are called
polarizing beam splitters (PBSs) (Saleh and Teich, 1991, Sec. 6.6). They provide
an excellent source for polarized light, and are also used to ensure that the two special
polarizations are emitted through different ports of the PBS.
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8.5 Y-junctions

In applications to communications, it is often necessary to split the signal so as to
send copies down different paths. The beam splitter discussed above can be used for
this purpose, but another optical coupler, the Y-junction, is often employed instead.
A schematic representation of a symmetric Y-junction is shown in Fig. 8.3, where the
waveguides denoted by the solid lines are typically realized by optical fibers in the
optical domain or conducting walls for microwaves.

The solid arrows in this sketch represent an input beam in channel 1 coupled to
output beams in channels 2 and 3. In the time-reversed version, an input beam (the
dashed arrow) in channel 3 couples to output beams in channels 1 and 2. Similarly, an
input beam in channel 2 couples to output beams in channels 1 and 3. Each output
beam in the time-reversed picture corresponds to an input beam in the original picture;
therefore, all three channels must be counted as input channels. The three input chan-
nels are coupled to three output channels, so the Y-junction is a three-channel device.
A strict application of the convention for counting ports introduced above requires us
to call this a six-port device, since there are three input ports (1, 2, 3) and three output
ports (1∗, 2∗, 3∗). This terminology is logically consistent, but it does not agree with
the standard usage, in which the Y-junction is called a three-port device (Kerns and
Beatty, 1967, Sec. 2.16). The source of this discrepancy is the fact that—by contrast
to the beam splitter—each channel of the Y-junction serves as both input and output
channel. In the sketch, the corresponding ports are shown separated for clarity, but it
is natural to have them occupy the same spatial location. The standard usage exploits
this degeneracy to reduce the port count from six to three.

Applying the argument used for the beam splitter to the Y-junction yields the
input–output relation ⎛⎝a′

1

a′
2

a′
3

⎞⎠ = Y

⎛⎝a1

a2

a3

⎞⎠ , (8.87)

where Y is a 3 × 3 unitary matrix. When the matrix Y is symmetric—(Y )nm =

Fig. 8.3 A symmetrical Y-junction. The in-

ward-directed solid arrow denotes a signal in-

jected into channel 1 which is coupled to the

output channels 2 and 3 as indicated by the

outward-directed solid arrows. The dashed ar-

rows represent the time-reversed process. Ports

1, 2, and 3 are input ports and ports 1∗, 2∗, and

3∗ are output ports.
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(Y )mn— the device is said to be reciprocal. In this case, the output at port n from
a unit signal injected into port m is the same as the output at port m from a unit
signal injected at port n.

For the symmetrical Y-junction considered here, the optical properties of the
medium occupying the junction itself and each of the three arms are assumed to
exhibit three-fold symmetry. In other words, the properties of the Y-junction are un-
changed by any permutation of the channel labels. In particular, this means that the
Y-junction is reciprocal. The three-fold symmetry reduces the number of independent
elements of Y from nine to two. One can, for example, set

Y =

⎡⎣y11 y12 y12

y12 y11 y12

y12 y12 y11

⎤⎦ , (8.88)

where
y11 = |y11| eiθ11 , y12 = |y12| eiθ12 . (8.89)

The unitarity conditions
|y11|2 + 2 |y12|2 = 1 , (8.90)

2 |y11| cos (θ11 − θ12) + |y12| = 0 (8.91)

relate the difference between the reflection phase θ11 and the transmission phase θ12 to
the reflection and transmission coefficients |y11|2 and |y12|2. The values of the two real
parameters left free, e.g. |y11| and |y12|, are determined by the optical properties of the
medium at the junction, the optical properties of the arms, and the locations of the
degenerate ports (1, 1∗), etc. For the symmetrical Y-junction, the unitarity conditions
place strong restrictions on the possible values of |y11| and |y12|, as seen in Exercise
8.5.

In common with the beam splitter, the Y-junction exhibits partition noise. For
an experiment in which the initial state has photons only in the input channel 1,
a calculation similar to the one for the beam splitter sketched in Section 8.4.2—see
Exercise 8.6—shows that the noise in the output signal is always greater than the
noise in the input signal. In the classical description of this experiment, there are no
input signals in channels 2 and 3; consequently, the input ports 2∗ and 3∗ are said
to be unused. Thus the partition noise can again be ascribed to vacuum fluctuations
entering through the unused ports.

8.6 Isolators and circulators

In this section we briefly describe two important and closely related devices: the optical
isolator and the optical circulator, both of which involve the use of a magnetic field.

8.6.1 Optical isolators

An optical isolator is a device that transmits light in only one direction. This prop-
erty is used to prevent reflected light from traveling upstream in a chain of optical
devices. In some applications, this feedback can interfere with the operation of the
light source. There are several ways to construct optical isolators (Saleh and Teich,
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1991, Sec. 6.6C), but we will only discuss a generally useful scheme that employs
Faraday rotation.

The optical properties of a transparent dielectric medium are changed by the pres-
ence of a static magnetic field B0. The source of this change is the response of the
atomic electrons to the combined effect of the propagating optical wave and the static
field. Since every propagating field can be decomposed into a superposition of plane
waves, we will consider a single plane wave. The linearly-polarized electric field E of the
wave is an equal superposition of right- and left-circularly-polarized waves E+ and E−;
consequently, the electron velocity v—which to lowest order is proportional to E—can
be decomposed in the same way. This in turn implies that the velocity components
v+ and v− experience different Lorentz forces ev+ × B0 and ev− × B0. This effect
is largest when E and B0 are orthogonal, so we will consider that case. The index of
refraction of the medium is determined by the combination of the original wave with
the radiation emitted by the oscillating electrons; therefore, the two circular polar-
izations will have different indices of refraction, n+ and n−. For a given polarization
s, the change in phase accumulated during propagation through a distance L in the
dielectric is 2πnsL/λ, so the phase difference between the two circular polarizations is
∆φ = (2π/λ) (n+ − n−)L, where λ is the wavelength of the light. The superposition of
phase-shifted, right- and left-circularly-polarized waves describes a linearly-polarized
field that is rotated through ∆φ relative to the incident field.

The rotation of the direction of polarization of linearly-polarized light propagating
along the direction of a static magnetic field is called the Faraday effect (Landau
et al., 1984, Chap. XI, Section 101), and the combination of the dielectric with the
magnetic field is called a Faraday rotator. Experiments show that the rotation angle
∆φ for a single pass through a Faraday rotator of length L is proportional to the
strength of the magnetic field and to the length of the sample: ∆φ = V LB0, where V
is the Verdet constant. Comparing the two expressions for ∆φ shows that the Verdet
constant is V = 2π (n+ − n−) / (λB0). For a positive Verdet constant the polarization
is rotated in the clockwise sense as seen by an observer looking along the propagation
direction k̃.

The Faraday rotator is made into an optical isolator by placing a linear polarizer
at the input face and a second linear polarizer, rotated by +45◦ with respect to the
first, at the output face. When the magnetic field strength is adjusted so that ∆φ =
45◦, the light transmitted through the input polarizer is also transmitted through the
output polarizer. On the other hand, light of the same wavelength and polarization
propagating in the opposite direction, e.g. the original light reflected from a mirror
placed beyond the output polarizer, will undergo a polarization rotation of −45◦, since
k̃ has been replaced by −k̃. This is a counterclockwise rotation, as seen when looking
along the reversed propagation direction −k̃, so it is a clockwise rotation as seen from
the original propagation direction. Thus the counter-propagating light experiences a
further polarization rotation of +45◦ with respect to the input polarizer. The light
reaching the input polarizer is therefore orthogonal to the allowed direction, and it
will not be transmitted. This is what makes the device an isolator; it only transmits
light propagating in the direction of the external magnetic field. This property has led
to the name optical diodes for such devices.



Isolators and circulators ���

Instead of linear polarizers, one could as well use anisotropic, linearly polarizing,
single-mode optical fibers placed at the two ends of an isotropic glass fiber. If the
polarization axis of the output fiber is rotated by +45◦ with respect to that of the
input fiber and an external magnetic field is applied to the intermediate fiber, then the
net effect of this all-fiber device is exactly the same, viz. that light will be transmitted
in only one direction.

It is instructive to describe the action of the isolator in the language of time reversal.
The time-reversal transformations (k, s) → (−k, s) for the wave, and B0 → −B0

for the magnetic field, combine to yield ∆φ → ∆φ for the rotation angle. Thus the
time-reversed wave is rotated by +45◦ clockwise. This is a counterclockwise rotation
(−45◦) when viewed from the original propagation direction, so it cancels the +45◦

rotation imposed on the incident field. This guarantees that the polarization of the
time-reversed field exactly matches the setting of the input polarizer, so that the
wave is transmitted. The transformation (k, s) → (−k, s) occurs automatically upon
reflection from a mirror, but the transformation B0 → −B0 can only be achieved by
reversing the currents generating the magnetic field. This is not done in the operation
of the isolator, so the time-reversed final state of the field does not evolve into the time-
reversed initial state. This situation is described by saying that the external magnetic
field violates time-reversal invariance. Alternatively, the presence of the magnetic field
in the dielectric is said to create a nonreciprocal medium.

8.6.2 Optical circulators

The beam splitter and the Y-junction can both be used to redirect beams of light,
but only at the cost of adding partition noise from the vacuum fluctuations entering
through an unused port. We will next study another device—the optical circulator,
shown in Fig. 8.4(a)—that can redirect and separate beams of light without adding
noise. This linear optical device employs the same physical principles as the older
microwave waveguide junction circulators discussed in Helszajn (1998, Chap. 1). As
shown in Fig. 8.4(a), the circulator has the physical configuration of a symmetric
Y-junction, with the addition of a cylindrical resonant cavity in the center of the
junction. The central part of the cavity in turn contains an optically transparent
ferromagnetic insulator—called a ferrite pill—with a magnetization (a permanent
internal DC magnetic field B0) parallel to the cavity axis and thus normal to the
plane of the Y-junction. In view of the connection to the microwave case, we will use
the conventional terminology in which this is called a three-port device. If the ferrite
pill is unmagnetized, this structure is simply a symmetric Y-junction, but we will see
that the presence of nonzero magnetization changes it into a nonreciprocal device.

The central resonant cavity supports circulating modes: clockwise (+)-modes, in
which the field energy flows in a clockwise sense around the cavity, and counterclock-
wise (−)-modes, in which the energy flows in the opposite sense (Jackson, 1999, Sec.
8.7). The (±)-modes both possess a transverse electric field E±, i.e. a field lying in the
plane perpendicular to the cavity axis and therefore also perpendicular to the static
field B0. In the Faraday-effect optical isolator the electromagnetic field propagates
along the direction of the static magnetic field B0, which acts on the spin degrees of
freedom of the field by rotating the direction of polarization. By contrast, the field in
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Fig. 8.4 (a) A Y-junction circulator consists of a three-fold symmetric arrangement of three

ports with a ‘ferrite pill’ at the center. All the incoming wave energy is directed solely in an

anti-clockwise sense from port 1 to port 2, and all the wave energy coming out of port 2 is

directed solely into port 3, etc. (b) Magnified view of central portion of (a). Wave energy can

only flow around the ferrite pill in an anti-clockwise sense, since the clockwise energy flow

from port 1 to port 3 is forbidden by the destructive interference at point C between paths

α and β (see text).

the circulator propagates around the cavity in a plane perpendicular to B0, and the
polarization—i.e. the direction of the electric field—is fixed by the boundary condi-
tions. Despite these differences, the underlying mechanism for the action of the static
magnetic field is the same. An electron velocity v has components v± proportional to
E±, and the corresponding Lorentz forces v+ × B0 and v− × B0 are different. This
means that the (+)- and (−)-modes experience different indices of refraction, n+ and
n−; consequently, they possess different resonant frequencies ωn,+ and ωn,−. In the
absence of the static field B0, time-reversal invariance requires ωn,+ = ωn,−, since the
(+)- and (−)-modes are related by a time-reversal transformation. Thus the presence
of the magnetic field in the circulator violates time-reversal invariance, just as it does
for the Faraday-effect isolator. There is, however, an important difference between the
isolator and the circulator. In the circulator, the static field acts on the spatial mode
functions, i.e. on the orbital degrees of freedom of the traveling waves, as opposed to
acting on the spin (polarization) degrees of freedom.

The best way to continue this analysis would be to solve for the resonant cavity
modes in the presence of the static magnetic field. As a simpler alternative, we offer
a wave interference model that is based on the fact that the cavity radius Rc is large
compared to the optical wavelength. This argument—which comes close to violating
Einstein’s rule—begins with the observation that the cavity wall is approximately
straight on the wavelength scale, and continues by approximating the circulating mode
as a plane wave propagating along the wall. For fixed values of the material properties,
the available design parameters are the field strength B0 and the cavity radius Rc.

Our first task is to impedance match the cavity by ensuring that there are no
reflections from port 1, i.e. y11 = 0. A signal entering port 1 will couple to both of the
modes (+) and (−), which will each travel around the full circumference, Lc = 2πRc,
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of the cavity to arrive back at port 1. In our wave interference model this implies
y11 ∝ eiφ+ + eiφ− , where φ± = n± (B0) k0Lc and k0 = 2π/λ0. The condition for no
reflection is then

eiφ+ + eiφ− = 0 or ei∆φ + 1 = 0 , (8.92)

where
∆φ = φ+ − φ− = [n+ (B0) − n− (B0)] k0Lc = ∆n (B0) k0Lc . (8.93)

The impedance matching condition (8.92) is imposed by choosing the field strength
B0 and the circumference Lc to satisfy

∆n (B0) k0Lc = ±π,±3π, . . . . (8.94)

The three-fold symmetry of the circulator geometry then guarantees that y11 = y22 =
y33 = 0.

The second design step is to guarantee that a signal entering through port 1 will
exit entirely through port 2, i.e. that y31 = 0. For a weak static field, ∆n (B0) is a
linear function of B0 and

n± (B0) = n0 ± ∆n (B0)
2

, (8.95)

where n0 is the index of refraction at zero field strength. A signal entering through
port 1 at the point A will arrive at the point C, leading to port 3, in two ways. In the
first way, the (+)-mode propagates along path α. In the second way, the (−)-mode
propagates along the path β. Consequently, the matrix element y31 is proportional to
eiφα + eiφβ , where

φα = n+ (B0) k0
Lc

3
= n0k0

Lc

3
+

∆n (B0)
2

k0
Lc

3
(8.96)

and

φβ = n− (B0) k0
2Lc

3
= n0k0

2Lc

3
− ∆n (B0)

2
k0

2Lc

3
. (8.97)

The condition y31 = 0 is then imposed by requiring φβ − φα to be an odd multiple of
π, i.e.

n0k0
Lc

3
− ∆n (B0)

2
k0Lc = ±π,±3π, . . . . (8.98)

The two conditions (8.94) and (8.98) determine the values of Lc and B0 needed
to ensure that the device functions as a circulator. With the convention that the net
energy flows along the shortest arc length from one port to the next, this device only
allows net energy flow in the counterclockwise sense. Thus a signal entering port 1
can only exit at port 2, a signal entering port 3 can only exit at port 1, and a signal
entering through port 2 can only exit at port 3. The scattering matrix

C =

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠ (8.99)

for the circulator is nonreciprocal but still unitary. By using the input–output relations
for this matrix, one can show—as in Exercise 8.7—that the noise in the output signal
is the same as the noise in the input signal.
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In one important application of the circulator, a wave entering the IN port 1 is
entirely transmitted—ideally without any loss—towards an active reflection device,
e.g. a reflecting amplifier, that is connected to port 2. The amplified and reflected
wave from the active reflection device is entirely transmitted—also without any loss—
to the OUT port 3. In this ideal situation the nonreciprocal action of the magnetic field
in the ferrite pill ensures that none of the amplified wave from the device connected to
port 2 can leak back into port 1. Furthermore, no accidental reflections from detectors
connected to port 3 can leak back into the reflection device. The same nonreciprocal
action prevents vacuum fluctuations entering the unused port 3 from adding to the
noise in channel 2.

In real devices conditions are never perfectly ideal, but the rejection ratio for wave
energies traveling in the forbidden direction of the circulator is quite high; for typical
optical circulators it is of the order of 30 dB, i.e. a factor of 1000. Moreover, the
transparent ferrite pill introduces very little dissipative loss (typically less than tenths
of a dB) for the allowed direction of the circulator. This means that the contribution
of vacuum fluctuations to the noise can typically be reduced also by a factor of 1000.
Fiber versions of optical circulators were first demonstrated by Mizumoto et al. (1990),
and amplification by optical parametric amplifiers connected to such circulators—
where the amplifier noise was reduced well below the standard quantum limit—was
demonstrated by Aytur and Kumar (1990).

8.7 Stops

An ancillary—but still important—linear device is a stop or iris, which is a small,
usually circular, aperture (pinhole) in an absorptive or reflective screen. Since the
stop only transmits a small portion of the incident beam, it can be used to eliminate
aberrations introduced by lenses or mirrors, or to reduce the number of transverse
modes in the incident field. This process is called beam cleanup or spatial filtering.

The problem of transmission through a stop is not as simple as it might appear.
The only known exact treatment of diffraction through an aperture is for the case of
a thin, perfectly conducting screen (Jackson, 1999, Sec. 10.7). The screen and stop
combination is clearly a two-port device, but the strong scattering of the incident field
by the screen means that it is not paraxial. It is possible to derive the entire plane-wave
scattering matrix from the known solution for the reflected and diffracted fields for a
general incident plane wave, but the calculations required are too cumbersome for our
present needs. The interesting quantum effects can be demonstrated in a special case
that does not require the general classical solution.

In most practical applications the diameter of the stop is large compared to optical
wavelengths, so diffraction effects are not important, at least if the distance to the
detector is small compared to the Rayleigh range defined by the stop area. By the
same token, the polarization of the incident wave will not be appreciably changed by
scattering. Thus the transmission through the stop is approximately described by ray
optics, and polarization can be ignored. If the coordinate system is chosen so that the
screen lies in the (x, y)-plane, then a plane wave propagating from z < 0 at normal
incidence, e.g. αk exp (ikz), with k > 0, will scatter according to
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αk exp (ikz) → α′
k exp (ikz) + α′

−k exp (−ikz) ,

α′
k = t αk , α′

−k = r αk ,
(8.100)

where the amplitude transmission coefficient t is determined by the area of the stop.
This defines the scattering matrix elements Sk,k = t and S−k,k = r. Performing this
calculation for a plane wave of the same frequency propagating in the opposite direction
(k < 0) yields S−k,−k = t and Sk,−k = r. In the limit of negligible diffraction, the
counter-propagating waves exp (±ikz) can only scatter between themselves, so the
scattering matrix for this problem reduces to

S =
[
t r
r t

]
. (8.101)

Consequently, the coefficients automatically satisfy the conditions (8.7) which guaran-
tee the unitarity of S. This situation is sketched in Fig. 8.5.

In the classical description, the assumption of a plane wave incident from z < 0 is
imposed by setting α−k = 0, so that P1 and P2 in Fig. 8.5 are respectively the input
and output ports. The explicit expression (8.101) and the general relation (8.16) yield
the scattered (transmitted and reflected) amplitudes as α′

k = t αk and α′
−k = r αk.

Warned by our experience with the beam splitter, we know that the no-input condition
and the scattering relations of the classical problem cannot be carried over into the
quantum theory as they stand. The appropriate translation of the classical assumption
α−k = 0 is to interpret it as a condition on the quantum field state. As a concrete
example, consider a source of light, of frequency ω = ωk, placed at the focal point of
a converging lens somewhere in the region z < 0. The light exits from the lens in the
plane-wave mode exp (ikz), and the most general state of the field for this situation is
described by a density matrix of the form

ρin =
∞∑

nk,mk=0

|n; k〉Pnm 〈m; k| , (8.102)

where |n; k〉 = (n!)−1/2 (a†
k

)n |0〉 is a number state for photons in the mode exp (ikz).
The density operator ρin is evaluated in the Heisenberg picture, so the time-independent
coefficients satisfy the hermiticity condition, Pnm = P ∗

mn, and the trace condition,

∞∑
n=0

Pnn = 1 . (8.103)

Fig. 8.5 A stop of radius a � λ. The ar-

rows represent a normally incident plane wave

together with the reflected and transmitted

waves. The surfaces P1 and P2 are ports.
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Every one of the number states |n; k〉 is the vacuum for a−k, therefore the density
matrix satisfies

a−kρin = ρina†
−k = 0 . (8.104)

This is the quantum analogue of the classical condition α−k = 0. Since we are not
allowed to impose a−k = 0, it is essential to use the general relation (8.27) which
yields

a′
k = t ak + r a−k ,

a′
−k = t a−k + r ak .

(8.105)

The unitarity of the matrix S in eqn (8.101) guarantees that the scattered operators
obey the canonical commutation relations.

Since each incident photon is randomly reflected or transmitted, partition noise is
to be expected for stops as well as for beam splitters. Just as for the beam splitter, the
additional fluctuation strength in the transmitted field is an example of the general
relation between dissipation and fluctuation. In this connection, we should mention
that the model of a stop as an aperture in a perfectly conducting, dissipationless screen
simplifies the analysis; but it is not a good description of real stops. In practice, stops
are usually black, i.e. apertures in an absorbing screen. The use of black stops reduces
unwanted stray reflections, which are often a source of experimental difficulties. The
theory in this case is more complicated, since the absorption of the incident light
leads first to excitations in the atoms of the screen. These atomic excitations are
coupled in turn to lattice excitations in the solid material. Thus the transmitted field
for an absorbing stop will display additional noise, due to the partition between the
transmitted light and the excitations of the internal degrees of freedom of the absorbing
screen.

8.8 Exercises

8.1 Asymmetric beam splitters

For an asymmetric beam splitter, identify the upper (U) and lower (L) surfaces as
those facing ports 1 and 2 respectively in Fig. 8.2. The general scattering relation is

a′
1 = tU a1 + rL a2 ,

a′
2 = rU a1 + tL a2 .

(1) Derive the conditions on the coefficients guaranteeing that the scattered operators
satisfy the canonical commutation relations.

(2) Model an asymmetric beam splitter by coating a symmetric beam splitter (coeffi-
cients r and t) with phase shifting materials on each side. Denote the phase shifts
for one transit of the coatings by ψU and ψL and derive the scattering relations.
Use your results to express tU , rL, rU , and tL in terms of ψU , ψL, r, and t, and
show that the conditions derived in part (1) are satisfied.

(3) Show that the phase shifts can be adjusted so that the scattering relations are

a′
1 =

√
1 − Ra1 − ε

√
Ra2 ,

a′
2 = ε

√
Ra1 +

√
1 − Ra2 ,
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where R = |r|2 is the reflectivity and ε = ±1. This form will prove useful in Section
20.5.3.

8.2 Single-frequency, two-photon state incident on a beam splitter

(1) Treat the coefficients Cmn in eqn (8.68) as a symmetric matrix and show that

C′ = SCST ,

where S is given by eqn (8.63) and ST is its transpose.

(2) Evaluate eqn (8.70) for a balanced beam splitter (r = i/
√

2, t = 1/
√

2). If there
are detectors at both output ports, what can you say about the rate of coincidence
counting?

(3) Consider the initial state |Ψ〉 = N0

[
cos θ a†2

1 + sin θ a†2
2

] |0〉.
(a) Evaluate the normalization constant N0, calculate the matrices C and C′, and

then calculate the scattered state |Ψ〉′.
(b) For a balanced beam splitter, explain why the values θ = ±π/4 are especially

interesting.

8.3 Two-frequency state incident on a beam splitter

(1) For the initial state |Ψ〉 = a†
1 (ω1) a†

2 (ω2) |0〉, calculate the scattered state for the
case of a balanced beam splitter, and comment on the difference between this
result and the one found in part (2) of Exercise 8.2.

(2) For the initial state |Ψ〉 no photons of frequency ω2 are found in channel 1, but
they are present in the scattered solution. Where do they come from?

(3) According to the definition in Section 6.5.3, the two states

|Θ± (0)〉 =
1√
2

[
a†
1 (ω1) a†

2 (ω2) ± a†
1 (ω2) a†

2 (ω1)
]
|0〉

are dynamically entangled. Evaluate the scattered states for the case of a balanced
beam splitter, and compare the different experimental outcomes associated with
these examples and with the initial state |Ψ〉 from part (1).

8.4 Two-polarization state falling on a beam splitter

Consider the initial state |Ψ〉 defined by eqn (8.77).

(1) Calculate the scattered state for a balanced beam splitter.

(2) Now calculate the scattered state for the alternative initial state

|Ψ〉 =
1√
2

(
a†
1ha†

2v + a†
1va

†
2h

)
|0〉 .

Comment on the difference between the results.
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8.5 Symmetric Y-junction scattering matrix

Consider the symmetric Y-junction discussed in Section 8.5.

(1) Use the symmetry of the Y-junction to derive eqn (8.88).
(2) Evaluate the upper and lower bounds on |y11| imposed by the unitarity condition

on Y .

8.6 Added noise at a Y-junction

Consider the case that photons are incident only in channel 1 of the symmetric Y-
junction.

(1) Verify conservation of average photon number, i.e. 〈N ′
1〉 + 〈N ′

2〉 + 〈N ′
3〉 = 〈N1〉.

(2) Evaluate the added noise in output channel 2 by expressing the normalized vari-
ance V (N ′

2) in terms of the normalized variance V (N1) in the input channel 1.
What is the minimum value of the added noise?

8.7 The optical circulator

For a wave entering port 1 of the circulator depicted in Fig. 8.4(b), paths α and β
lead to destructive interference at the mouth of port 3, under the choice of conditions
given by eqns (8.94) and (8.98).

(1) What conditions lead to constructive interference at the mouth of port 2?
(2) Show that the scattering matrix given by eqn (8.99) is unitary.
(3) Consider an experimental situation in which a perfect, lossless, retroreflecting

mirror terminates port 2. Show that the variance in photon number in the light
emitted through port 3 is exactly the same as the variance of the input light
entering through port 1.
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Photon detection

Any experimental measurement sensitive to the discrete nature of photons evidently
requires a device that can detect photons one by one. For this purpose a single photon
must interact with a system of charged particles to induce a microscopic change, which
is subsequently amplified to the macroscopic level. The irreversible amplification stage
is needed to raise the quantum event to the classical level, so that it can be recorded.
This naturally suggests dividing the treatment of photon detection into several sec-
tions. In Section 9.1 we consider the process of primary detection of the incoming
photon or photons, and in Section 9.2 we study postdetection signal processing, in-
cluding the quantum methods of amplification of the primary photon event. Finally in
Section 9.3 we study the important techniques of heterodyne and homodyne detection.

9.1 Primary photon detection

In the first section below, we describe six physical mechanisms commonly employed
in the primary process of photon detection, and in the second section we present a
theoretical analysis of the simplest detection scheme, in which individual atoms are
excited by absorption of a single photon. The remaining sections are concerned with
the relation of incident photon statistics to the statistics of the ejected photoelectrons,
the finite quantum efficiency of detectors, and some general statistical features of the
photon distribution.

9.1.1 Photon detection methods

Photon detection is currently based on one of the following physical mechanisms.
(1) Photoelectric detection. These detectors fall into two main categories:

(i) vacuum tube devices, in which the incident photon ejects an electron, bound
to a photocathode surface, into the vacuum;

(ii) solid-state devices, in which absorption of the incident photon deep within the
body of the semiconductor promotes an electron from the valence band to the
conduction band (Kittel, 1985).

In both cases the resulting output signal is proportional to the intensity of the
incident light, and thus to the time-averaged square of the electric field strength.
This method is, accordingly, also called square-law detection.
There are several classes of vacuum tube devices—for example, the photomultiplier
tubes and channeltrons described in Section 9.2.1—but most modern photoelectric
detectors are based on semiconductors. The promotion of an electron from the
valence band to the conduction band—which is analogous to photoionization of an
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atom—leaves behind a positively charged hole in the valence band. Both members
of the electron–hole pair are free to move through the material.
The energy needed for electron–hole pair production is substantially less than the
typical energy—of the order of electron volts—needed to eject a photoelectron
into the vacuum outside a metal surface; consequently, semiconductor devices can
detect much lower energy photons. Thus the sensitivity of semiconductor detectors
extends into the infrared and far-infrared parts of the electromagnetic spectrum.
Furthermore, the photon absorption length in the semiconductor material is so
small that relatively thin detectors will absorb almost all the incident photons. This
means that quantum efficiencies are high (50–90%). Semiconductor detectors are
very fast as well as very sensitive, with response times on the scale of nanoseconds.
These devices, which are very important for quantum optics, are also called single-
photon counters.
Solid-state detectors are further divided into two subcategories: photoconduc-
tive and photovoltaic. In photoconductive devices, the photoelectrons are re-
leased into a homogeneous semiconducting material, and a uniform internal elec-
tric field is applied across the material to accelerate the released photoelectrons.
Thus the current in the homogeneous material is proportional to the number of
photo-released carriers, and hence to the incident intensity of the light beam falling
on the semiconductor. In photovoltaic devices, photons are absorbed and photo-
electrons are released in a highly inhomogeneous region inside the semiconductor,
where there is a large internal electric field, viz., the depletion range inside a p–n
or p–i–n junction. The large internal fields then accelerate the photoelectrons to
create a voltage across the junction, which can drive currents in an external cir-
cuit. Devices of this type are commonly known as photodiodes (Saleh and Teich,
1991, Chap. 17).

(2) Rectifying detection. The oscillating electric field of the electromagnetic wave
is rectified, in a diode with a nonlinear I–V characteristic, to produce a direct-
current signal which is proportional to the intensity of the wave. The rectifica-
tion effect arises from a physical asymmetry in the structure of the diode, for
example, at the p–n junction of a semiconductor diode device. Such detectors
include Schottky diodes, consisting of a small metallic contact on the surface
of a semiconductor, and biased superconducting–insulator–superconducting
(SIS) electron tunneling devices. These rectifying detectors are used mainly in the
radio and microwave regions of the electromagnetic spectrum, and are commonly
called square-law or direct detectors.

(3) Photothermal detection. Light is directly converted into heat by absorption,
and the resulting temperature rise of the absorber is measured. These detectors
are also called bolometers. Since thermal response times are relatively long,
these detectors are usually slower than many of the others. Nevertheless, they are
useful for detection of broad-bandwidth radiation, in experiments allowing long
integration times. Thus they are presently being used in the millimeter-wave and
far-infrared parts of the electromagnetic spectrum as detectors for astrophysical
measurements, including measurements of the anisotropy of the cosmic microwave
background (Richards, 1994).
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(4) Photon beam amplifiers. The incoming photon beam is coherently amplified
by a device such as a maser or a parametric amplifier. These devices are primarily
used in the millimeter-wave and microwave region of the electromagnetic spectrum,
and play the same role as the electronic pre-amplifiers used at radio frequencies.
Rather than providing postdetection amplification, they coherently pre-amplify
the incoming electromagnetic wave, by directly providing gain at the carrier fre-
quency. Examples include solid-state masers, which amplify the incoming signal
by stimulated emission of radiation (Gordon et al., 1954), and varactor parametric
amplifiers (paramps), where a pumped, nonlinear, reactive element—such as a
nonlinear capacitance of the depletion region in a back-biased p–n junction—can
amplify an incoming signal. The nonlinear reactance is modulated by a strong,
higher-frequency pump wave which beats with the signal wave to produce an idler
wave at the difference frequency between the pump and signal frequencies. The
idler wave reacts back via the pump wave to produce more signal wave, etc. This
causes a mutual reinforcement, and hence amplification, of both the signal and
idler waves, at the expense of power in the pump wave. The idler wave power is
dumped into a matched termination.

(5) Single-microwave-photon counters. Single microwave photons in a supercon-
ducting microwave cavity are detected by using atomic beam techniques to pass
individual Rydberg atoms through the cavity. The microwave photon can cause
a transition between two high-lying levels (Rydberg levels) of a Rydberg atom,
which is subsequently probed by a state-selective field ionization process. The re-
sult of this measurement indicates whether a transition has occurred, and therefore
provides information about the state of excitation of the microwave cavity (Hulet
and Kleppner, 1983; Raushcenbeutal et al., 2000; Varcoe et al., 2000).

(6) Quantum nondemolition detectors. The presence of a single photon is de-
tected without destroying it in an absorption process. This detection relies on
the phase shift produced by the passage of a single photon through a nonlinear
medium, such as a Kerr medium. Such detectors have recently been implemented
in the laboratory (Yamamoto et al., 1986).

The last three of these detection schemes, (4) to (6), are especially promising for
quantum optics. However, all the basic mechanisms (1) through (3) can be extended,
by a number of important auxiliary methods, to provide photon detection at the
single-quantum level.

9.1.2 Theory of photoelectric detection

The theory presented here is formulated for the simplest case of excitation of free
atoms by the incident light, and it is solely concerned with the primary microscopic
detection event. In situations for which photon counting is relevant, the fields are
weak; therefore, the response of the atoms can be calculated by first-order perturbation
theory. As we will see, the first-order perturbative expression for the counting rate is
the product of two factors. The first depends only on the state of the atom, and the
second depends only on the state of the field. This clean separation between properties
of the detector and properties of the field will hold for any detection scheme that can
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be described by first-order perturbation theory. Thus the use of the independent atom
model does not really restrict the generality of the results. In practice, the sensitivity
function describing the detector response is determined empirically, rather than being
calculated from first principles.

The primary objective of the theory is therefore to exhibit the information on the
state of the field that the counting rate provides. As we will see below, this information
is naturally presented in terms of the field–field correlation functions defined in Section
4.7. In a typical experiment, light from an external source, such as a laser, is injected
into a sample of some interesting medium and extracted through an output port. The
output light is then directed to the detectors by appropriate linear optical elements. An
elementary, but nonetheless important, point is that the correlation function associated
with a detector signal is necessarily evaluated at the detector, which is typically not
located in the interior of the sample being probed. Thus the correlation functions
evaluated in the interior of the sample, while of great theoretical interest, are not
directly related to the experimental results. Information about the interaction of the
light with the sample is effectively stored in the state of the emitted radiation field,
which is used in the calculation of the correlation functions at the detectors. Thus
for the analysis of photon detection per se we only need to consider the interaction
of the electromagnetic field with the optical elements and the detectors. The total
Hamiltonian for this problem is therefore H = H0 + Hdet, where Hdet represents the
interaction with the detectors only. The unperturbed Hamiltonian is H0 = HD +
Hem + H1, where HD is the detector Hamiltonian and Hem is the field Hamiltonian.
The remaining term, H1, describes the interaction of the field with the passive linear
optical devices, e.g. lenses, mirrors, beam splitters, etc., that direct the light to the
detectors.

A Single-photon detection

The simplest possible photon detector consists of a single atom interacting with the
field. In the interaction picture, Hdet = −d (t) ·E (r, t) describes the interaction of the
field with the detector atom located at r. The initial state is |Θ (t0)〉 = |φγ , Φe〉 =
|φγ〉 |Φe〉, where |φγ〉 is the atomic ground state and |Φe〉 is the initial state of the
radiation field, which is, for the moment, assumed to be pure. According to eqns
(4.95) and (4.103) the initial state vector evolves into

|Θ (t)〉 = |Θ (t0)〉 − i

�

∫ t

t0

dt1Hdet (t1) |Θ (t0)〉 + · · · , (9.1)

so the first-order probability amplitude that a joint measurement at time t finds the
atom in an excited state |φε〉 and the field in the number state |n〉 is

〈φε, n |Θ (t) 〉 = − i

�

∫ t

t0

dt1 〈φε, n |Hdet (t1)|Θ (t0)〉 , (9.2)

where |φε, n〉 = |φε〉 |n〉. Only the Rabi operator Ω̂ (+) in eqn (4.149) can contribute
to an absorptive transition, so the matrix element and the probability amplitude are
respectively given by
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〈φε, n |Hdet (t1)|Θ (t0)〉 = −eiωεγt1dεγ ·
〈
n
∣∣∣E(+) (r, t1)

∣∣∣Φe

〉
(9.3)

and

〈φε, n |Θ (t) 〉 =
i

�

∫ t

t0

dt1e
iωεγ t1dεγ ·

〈
n
∣∣∣E(+) (r, t1)

∣∣∣Φe

〉
, (9.4)

where dεγ =
〈
φε

∣∣d̂∣∣φγ

〉
is the dipole matrix element for the transition γ → ε.

The conditional probability for finding |φε, n〉, given |φγ , Φe〉, is therefore

p (φε, n : φγ , Φe) =
∣∣∣∣ i

�

∫ t

t0

dt1e
iωεγt1dεγ ·

〈
n
∣∣∣E(+) (r, t1)

∣∣∣Φe

〉∣∣∣∣2
=

(
d∗εγ

)
i
(dεγ)j

�2

∫ t

t0

dt1

∫ t

t0

dt2e
iωεγ(t2−t1)

×
〈
n
∣∣∣E(+)

i (r, t1)
∣∣∣Φe

〉∗ 〈
n
∣∣∣E(+)

j (r, t2)
∣∣∣Φe

〉
. (9.5)

The relation E(−) = E(+)† implies
〈
n
∣∣E(+)

i (r, t1)
∣∣Φe

〉∗ =
〈
Φe

∣∣E(−)
i (r, t1)

∣∣n〉, so that
eqn (9.5) can be rewritten as

p (φε, n : φγ , Φe) =

(
d∗εγ

)
i
(dεγ)j

�2

∫ t

t0

dt1

∫ t

t0

dt2e
iωεγ (t2−t1)

×
〈
Φe

∣∣∣E(−)
i (r, t1)

∣∣∣n〉〈n
∣∣∣E(+)

j (r, t2)
∣∣∣Φe

〉
. (9.6)

Since the final state of the radiation field is not usually observed, the relevant quantity
is the sum of the conditional probabilities p (φε, n : φγ , Φe) over all final field states
|n〉:

p (φε : φγ , Φe) =
∑

n

p (φε, n : φγ , Φe) . (9.7)

The completeness identity (3.67) for the number states, combined with eqn (9.6) and
eqn (9.7), then yields

p (φε : φγ , Φe) =

(
d∗εγ

)
i
(dεγ)j

�2

∫ t

t0

dt1

∫ t

t0

dt2e
iωεγ(t2−t1)

×
〈
Φe

∣∣∣E(−)
i (r, t1)E

(+)
j (r, t2)

∣∣∣Φe

〉
. (9.8)

This result is valid when the radiation field is known to be initially in the pure state
|Φe〉. In most experiments all that is known is a probability distribution Pe over an
ensemble {|Φe〉} of pure initial states, so it is necessary to average over this ensemble
to get

p (φε : φγ) =
∑

e

p (φε : φγ , Φe)Pe

=

(
d∗εγ

)
i
(dεγ)j

�2

∫ t

t0

dt1

∫ t

t0

dt2e
iωεγ (t2−t1) Tr

[
ρE

(−)
i (r, t1) E

(+)
j (r, t2)

]
,

(9.9)
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where
ρ =

∑
e

Pe |Φe〉 〈Φe| (9.10)

is the density operator defined by the distribution Pe.
So far it has been assumed that the final atomic state |φε〉 can be detected with

perfect accuracy, but of course this is never the case. Furthermore, most detection
schemes do not depend on a specific transition to a bound level; instead, they involve
transitions into excited states lying in the continuum. The atom may be directly
ionized, or the absorption of the photon may lead to a bound state that is subject
to Stark ionization by a static electric field. The ionized electrons would then be
accelerated, and thereby produce further ionization by secondary collisions. All of
these complexities are subsumed in the probability D (ε) that the transition γ → ε
occurs and produces a macroscopically observable event, e.g. a current pulse. The
overall probability is then

p (t) =
∑

ε

D (ε) p (φε : φγ) . (9.11)

It should be understood that the ε-sum is really an integral, and that the factor
D (ε) includes the density of states for the continuum states of the atom. Putting this
together with the expression (9.9) leads to

p (t) =
∫ t

t0

dt1

∫ t

t0

dt2Sji (t1 − t2)G
(1)
ij (r, t1; r, t2) , (9.12)

where the sensitivity function

Sji (t) =
1
�2

∑
ε

D (ε)
(
d∗εγ

)
i
(dεγ)j e−iωεγt (9.13)

is determined solely by the properties of the atom, and the field–field correlation
function

G
(1)
ij (r, t1; r, t2) = Tr

[
ρE

(−)
i (r1, t1)E

(+)
j (r, t2)

]
(9.14)

is determined solely by the properties of the field.
Since D (ε) is real and positive, the sensitivity function obeys

S∗
ji (t) = Sij (−t) , (9.15)

and other useful properties are found by studying the Fourier transform

Sji (ω) =
∫

dtSji (t) eiωt

=
2π

�2

∑
ε

D (ε)
(
d∗εγ

)
i
(dεγ)j δ (ω − ωεγ) . (9.16)

The ε-sum is really an integral over the continuum of excited states, so Sji (ω) is a
smooth function of ω. This explicit expression shows that the 3 × 3 matrix S (ω),
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with components Sji (ω), is hermitian—i.e. Sji (ω) = Sij (ω)∗—and positive-definite,
since

v∗j Sji (ω) vi =
2π

�2

∑
ε

D (ε) |v∗ · dεγ |2 δ (ω − ωεγ) > 0 (9.17)

for any complex vector v. These properties in turn guarantee that the eigenvalues are
real and positive, so the power spectrum,

T (ω) = Tr [S (ω)] , (9.18)

of the dipole transitions can be used to define averages over frequency by

〈f〉T =
∫

dωT (ω) f (ω)∫
dωT (ω)

. (9.19)

The width ∆ωS of the sensitivity function is then defined as the rms deviation

∆ωS =
√
〈ω2〉T − 〈ω〉2T . (9.20)

The single-photon counting rate w(1) (t) is the rate of change of the probability:

w(1) (t) =
dp

dt
= 2 Re

∫ t

t0

dt′Sji (t′ − t)G
(1)
ij (r, t′; r, t) , (9.21)

where the final form comes from combining eqn (9.15) with the symmetry property

G
(1)∗
ij (r1, t1; r2, t2) = G

(1)
ji (r2, t2; r1, t1) , (9.22)

that follows from eqn (9.14). For later use it is better to express the counting rate as

w(1) (t) = 2 Re
∫

dω

2π
Sji (ω)Xij (ω, t) , (9.23)

where

Xij (ω, t) =
∫ t

t0

dt′eiω(t−t′)G(1)
ij (r, t′; r, t) . (9.24)

The value of the frequency integral in eqn (9.23) depends on the relative widths of
the sensitivity function and Xij (ω, t), considered as a function of ω with t fixed. One
way to get this information is to use eqn (9.24) to evaluate the transform

Xij (t′, t) =
∫

dω

2π
eiωt′Xij (ω, t)

= θ (t′) θ (t − t0 − t′)G
(1)
ij (r, t − t′; r, t) . (9.25)

The step functions in this expression guarantee that Xij (t′, t) vanishes outside the
interval 0 � t′ � t − t0. On the other hand, the correlation function vanishes for
t′ � Tc, where Tc is the correlation time. The observation time t − t0 is normally
much longer than the correlation time, so the t′-width of Xij (t′, t) is approximately
Tc. By the uncertainty principle, the ω-width of Xij (ω, t) is ∆ωX ∼ 1/Tc = ∆ωG,
where ∆ωG is the bandwidth of the correlation function G

(1)
ij .
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B Broadband detection

The detector is said to be broadband if the bandwidth ∆ωS of the sensitivity function
satisfies ∆ωS � ∆ωG = 1/Tc. For a broadband detector, Xij (ω) is sharply peaked
compared to the sensitivity function; therefore, Sji (ω) can be treated as a constant—
Sji (ω) ≈ Sji—and taken outside the integral. This is formally equivalent to setting
Sji (t′ − t) = Sjiδ (t′ − t) in eqn (9.21), and the result

w(1) (t) = SjiG
(1)
ij (r, t; r, t) (9.26)

is obtained by combining the end-point rule (A.98) for delta functions with the sym-
metries (9.15) and (9.22). Consequently, the broadband counting rate is proportional
to the equal-time correlation function. The argument leading to eqn (9.26) is similar
to the derivation of Fermi’s golden rule in perturbation theory. In practice, nearly all
detectors can be treated as broadband.

The analysis of ideal single-atom detectors can be extended to realistic many-atom
detectors when two conditions are satisfied: (1) single-atom absorption is the dominant
process; (2) interactions between the atoms can be ignored. These conditions will be
satisfied for atoms in a tenuous vapor or in an atomic beam—see item (5) in Section
9.1.1—and they are also satisfied by many solid-state detectors. For atoms located
at positions r1, . . . , rN , the total single-photon counting rate is the average of the
counting rates for the individual atoms:

w(1) (t) =
1
N

N∑
A=1

S
(A)
ji G

(1)
ij (rA, t; rA, t) . (9.27)

It is often convenient to use a coarse-grained description which replaces the last equa-
tion by

w(1) (t) =
1

nVD

∫
d3r n (r) Sji (r)G

(1)
ij (r, t; r, t) , (9.28)

where n (r) is the density of atoms, Sji (r) is the sensitivity function at r, n is the mean
density of atoms, and VD is the volume occupied by the detector. A point detector
is defined by the condition that the correlation function is essentially constant across
the volume of the detector. In this case, the counting rate is

w(1) (t) = SjiG
(1)
ij (r, t; r, t) , (9.29)

where Sji is the average sensitivity function and r is the center of mass of the detector.
Comparing this to eqn (9.26) shows that a point detector is like a single-atom detector
with a modified sensitivity factor.

The sensitivity factor, defined by eqn (9.16), is a 3× 3 hermitian matrix which has
the useful representation

Sij =
3∑

a=1

Saeaie
∗
aj , (9.30)

where the eigenvalues, Sa, are real and the eigenvectors, ea, are orthonormal: e∗b ·ea =
δab. Substituting this representation into eqn (9.26) produces
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w(1) (t) =
3∑

a=1

SaG(1)
a (r, t; r, t) , (9.31)

where the new correlation functions,

G(1)
a (r, t; r, t) = Tr

[
ρE(−)

a (r, t) E(+)
a (r, t)

]
, (9.32)

are defined in terms of the scalar field operators E
(−)
a (r, t) = ea · E(−) (r, t). This

form is useful for imposing special conditions on the detector. For example, a detector
equipped with a polarization filter is described by the assumption that only one of the
eigenvalues, say S1, is nonzero. The corresponding eigenvector e1 is the polarization
passed by the filter. In this situation, eqn (9.29) becomes

w(1) (t) = S G(1) (r, t; r, t)

= S Tr
[
ρE

(−)
1 (r, t) E

(+)
1 (r, t)

]
, (9.33)

where E
(+)
1 (r, t) = e∗ · E(+) (r, t), e is the transmitted polarization, and S is the

sensitivity factor. As promised, the counting rate is the product of the sensitivity
factor S and the correlation function G(1). Thus the broadband counting rate provides
a direct measurement of the equal-time correlation function G(1) (r, t; r, t).

C Narrowband detection

Broadband detectors do not distinguish between photons of different frequencies that
may be contained in the incident field, so they do not determine the spectral func-
tion of the field. For this purpose, one needs narrowband detection, which is
usually achieved by passing the light through a narrowband filter before it falls
on a broadband detector. The filter is a linear device, so its action can be repre-
sented mathematically as a linear operation applied to the signal. For a real signal,
X (t) = X(+) (t) + X(−) (t), the filtered signal at ω—i.e. the part of the signal
corresponding to a narrow band of frequencies around ω—is defined by

X(+) (ω; t) =
∫ ∞

−∞
dt′� (t′ − t) eiω(t′−t)X(+) (t′)

=
∫ ∞

−∞
dt′� (t′) eiωt′X(+) (t′ + t) , (9.34)

where the factor exp [iω (t′ − t)] serves to pick out the desired frequency. The weighting
function � (t) has the following properties.
(1) It is even and positive,

� (t) = � (−t) � 0 . (9.35)

(2) It is normalized by ∫ ∞

−∞
dt� (t) = 1 . (9.36)
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(3) It is peaked at t = 0.

The weighting function is therefore suitable for defining averages, e.g. the tempo-
ral width ∆T :

∆T =
[∫ ∞

−∞
dt � (t) t2

]1/2

< ∞ . (9.37)

A simple example of an averaging function satisfying eqns (9.35)–(9.37) is

� (t) =

{
1

∆T for − ∆T
2 � t � ∆T

2 ,

0 otherwise .
(9.38)

The meaning of filtering can be clarified by Fourier transforming eqn (9.34) to get

X(+) (ω′; ω) = F (ω′ − ω)X(+) (ω) , (9.39)

where the filter function F (ω) is the Fourier transform of � (t). Since the normal-
ization condition (9.36) implies F (0) = 1, the filtered signal is essentially identical to
the original signal in the narrow band defined by the width ∆ωF ∼ 1/∆T of the filter
function; but, it is strongly suppressed outside this band.

The frequency ω selected by the filter varies continuously, so the interesting quan-
tity is the spectral density S (ω), which is defined as the counting rate per unit
frequency interval. Applying the broadband result (9.33) to the filtered field operators
yields

S (ω, t) =
w(1) (ω, t)

∆ωF

=
S

∆ωF

〈
E

(−)
1 (r, t; ω)E

(+)
1 (r, t; ω)

〉
. (9.40)

For the following argument, we choose the simple form (9.38) for the averaging function
to calculate the filtered operator:

E
(+)
1 (r, t; ω) =

1
∆T

∫ ∆T/2

−∆T/2

dt′eiωt′E
(+)
1 (r, t′ + t) . (9.41a)

Substituting this result into eqn (9.40) and combining ∆ωF = 1/∆T with the definition
of the first-order correlation function yields

S (ω, t) =
S

∆T

∫ ∆T/2

−∆T/2

dt1

∫ ∆T/2

−∆T/2

dt2e
iω(t1−t2)G(1) (r, t2 + t; r, t1 + t) . (9.41b)

In almost all applications, we can assume that the correlation function only depends
on the difference in the time arguments. This assumption is rigorously valid if the
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density operator ρ is stationary, and for dissipative systems it is approximately satisfied
for large t. Given this property, we set

G(1) (r, t2 + t; r, t1 + t) =
∫

dω′

2π
G(1) (r, ω′; t) e−iω′(t1−t2) , (9.42)

and get

S (ω) = S

∫
dω′

2π
G(1) (r, ω′; t)

sin2 [(ω − ω′)∆T/2]
[(ω − ω′) /2]2 ∆T

. (9.43)

In this case, the width of the filter is assumed to be very small compared to the width
of the correlation function, i.e. ∆ωS � ∆ωG (∆T � Tc). By means of the general
identity (A.102), one can show that

lim
∆T→∞

sin2 [ν∆T/2]
[ν/2]2 ∆T

= πδ (ν/2) = 2πδ (ν) , (9.44)

and substituting this result into eqn (9.43) leads to

S (ω) = SG(1) (r, ω; t) = S

∫
dτe−iωτG(1) (r, τ + t; r, t) . (9.45)

In other words, the spectral density is proportional to the Fourier transform, with
respect to the difference of the time arguments, of the two-time correlation function
G(1) (r, t2 + t; r, t1 + t).

It is often useful to have a tunable filter, so that the selected frequency can be
swept across the spectral region of interest. The main methods for accomplishing this
employ spectrometers to spatially separate the different frequency components. One
technique is to use a diffraction grating spectrometer (Hecht, 2002, Sec. 10.2.8) placed
on a mount that can be continuously swept in angle, while the input and output
slits remain fixed. The spectrometer thus acts as a continuously tunable filter, with
bandwidth determined by the width of the slits. Higher resolution can be achieved
by using a Fabry–Perot spectrometer (Hecht, 2002, Secs 9.6.1 and 9.7.3) with an
adjustable spacing between the plates. A different approach is to use a heterodyne
spectrometer, in which the signal is mixed with a local oscillator—usually a laser—
which is close to the signal frequency. The beat signal oscillates at an intermediate
frequency which is typically in the radio range, so that standard electronics techniques
can be used. For example, the radio frequency signal is analyzed by a radio frequency
spectrometer or a correlator. The Fourier transform of the correlator output signal
yields the radio frequency spectrum of the beat signal.

9.1.3 Photoelectron counting statistics

How does one measure the photon statistics of a light field, such as the Poissonian
statistics predicted for the coherent state |α〉? In practice, these statistics must be in-
ferred from photoelectron counting statistics which, fortunately, often faithfully repro-
duce the counting statistics of the photons. For example, in the case of light prepared
in a coherent state, both the incident photon and the detected photoelectron statistics
turn out to be Poissonian.
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Consider a light beam—produced, for example, by passing the output of a laser
operating far above threshold through an attenuator—that falls on the photocathode
surface of a photomultiplier tube. The amplitude of the attenuated coherent state
is α = exp(−χL/2)α0, where χ is the absorption coefficient and L is the length of
the absorber. The photoelectron probability distribution can be obtained from the
probability distribution for the number of incident photons, p(n), by folding it into the
Bernoulli distribution function using the standard classical technique (Feller, 1957a,
Chap. VI). The probability P (m, ξ) of the detection of m photoelectrons found in this
way is

P (m, ξ) =
∞∑

n=m

p(n)
(

n

m

)
ξm (1 − ξ)n−m

, (9.46)

where ξ is the probability that the interaction of a given photon with the atoms in the
detector will produce a photoelectron. This quantity—which is called the quantum
efficiency—is given by

ξ = ζ

(
c�ω

V

)
T , (9.47)

where ζ (which is proportional to the sensitivity function S) is the photoelectron
ejection probability per unit time per unit light intensity, (c�ω/V ) is the intensity
due to a single photon, and T is the integration time of the photon detector. The
integration time is usually the RC time constant of the detection system, which in
the case of photomultiplier tubes is of the order of nanoseconds. The parameter ζ
can be calculated quantum mechanically, but is usually determined empirically. The
factors in the summand in eqn (9.46) are: the photon distribution p(n); the binomial
coefficient

(
n
m

)
(the number of ways of distributing n photons among m photoelectron

ejections); the probability ξm that m photons are converted into photoelectrons; and
the probability (1 − ξ)n−m that the remaining n− m photons are not detected at all.
One can show—see Exercise 9.1—that a Poissonian initial photon distribution, with
average photon number n, results in a Poissonian photoelectron distribution,

P (m, ξ) =
m m

m!
e−m , (9.48)

where m = ξn is the average ejected photoelectron number. In the special case ξ = 1,
there is a one–one correspondence between an incident photon and a single ejected
photoelectron. In this case, the Bernoulli sum in eqn (9.46) consists of only the single
term n = m, so that the photon and photoelectron distribution functions are identical.
Thus the photoelectron statistics will faithfully reproduce the photon statistics in the
incident light beam, for example, the Poissonian statistics of the coherent state dis-
cussed above. An experiment demonstrating this fact for a helium–neon laser operating
far above threshold is described in Section 5.3.2.

9.1.4 Quantum efficiency∗

The quantum efficiency ξ introduced in eqn (9.47) is a phenomenological parameter
that can represent any of a number of possible failure modes in photon detection:
reflection from the front surface of a cathode; a mismatch between the transverse
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profile of the signal and the aperture of the detector; arrival of the signal during a
dead time of the detector; etc. In each case, there is some scattering or absorption
channel in addition to the one that yields the current pulse signaling the detection
event. We have already seen, in the discussion of beam splitters in Section 8.4, that
the presence of additional channels adds partition noise to the signal, due to vacuum
fluctuations entering through an unused port. This generic feature allows us to model
an imperfect detector as a compound device composed of a beam splitter followed by
an ideal detector with 100% quantum efficiency, as shown in Fig. 9.1.

The transmission and reflection coefficients of the fictitious beam splitter must
be adjusted to obey the unitarity condition (8.7) and to account for the quantum
efficiency of the real detector. These requirements are satisfied by setting

t =
√

ξ , r = i
√

1 − ξ . (9.49)

The beam splitter is a linear device, so no generality is lost by restricting attention to
monochromatic input signals described by a density operator ρ that is the vacuum for
all modes other than the signal mode. In this case we can specialize eqn (8.28) for the
in-field to

E
(+)
in (r, t) = iE0sa1e

iksxe−iωst + E
(+)
vac,in (r, t) , (9.50)

where we have chosen the x- and y-axes along the 1 → 1′ and 2 → 2′ arms of the
device respectively, E0s =

√
�ωs/2ε0V is the vacuum fluctuation field strength for a

plane wave with frequency ωs, and a1 is the annihilation operator for the plane-wave
mode exp [i (ksx − ωst)]. In principle, the operator E

(+)
vac,in (r, t) should be a sum over

all modes orthogonal to the signal mode, but the discussion in Section 8.4.1 shows
that we need only consider the mode exp [i (ksy − ωst)] entering through port 2. This
leaves us with the simplified in-field

E
(+)
in (r, t) = iE0sa1e

iksxe−iωst + iE0sa2e
iksye−iωst . (9.51)

An application of eqn (8.63) yields the scattered annihilation operators

a′
1 =

√
ξa1 + i

√
1 − ξa2 ,

a′
2 = i

√
1 − ξa1 +

√
ξa2 ,

(9.52)

and the corresponding out-field
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Fig. 9.1 An imperfect detector modeled by

combining an ideal detector with a beam split-

ter. Esig is the signal entering port 1, Evac rep-

resents vacuum fluctuations (at the signal fre-

quency) entering port 2, ED is the effective sig-

nal entering the detector, and Elost describes

the part of the signal lost due to inefficiencies.
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E
(+)
out (r, t) = E

(+)
D (r, t) + E

(+)
lost (r, t) , (9.53)

where
E

(+)
D (r, t) = iE0sa

′
1e

iksxe−iωst (9.54)

and
E

(+)
lost (r, t) = iE0sa

′
2e

iksye−iωst . (9.55)

The counting rate of the imperfect detector is by definition the counting rate of the
perfect detector viewing port 1′ of the beam splitter, so—for the simple case of a
broadband detector—eqn (9.33) gives

w(1) (t) = S
〈
E

(−)
D (rD, t)E

(+)
D (rD, t)

〉
= S E2

0s

〈
a′†
1 a′

1

〉
= ξ S E2

0s

〈
a†
1a1

〉
, (9.56)

where 〈(· · · )〉 = Tr [ρ (· · · )], rD is the location of the detector, and we have used
a2ρ = ρa†

2 = 0. The operator E
(+)
lost represents the part of the signal lost by scattering

into the 2 → 2′ channel.
As expected, the counting rate of the imperfect detector is reduced by the quantum

efficiency ξ; and the vacuum fluctuations entering through port 2 do not contribute
to the average detector output. From our experience with the beam splitter, we know
that the vacuum fluctuations will add to the variance of the scattered number operator
N ′

1 = a′†
1 a′

1. Combining the canonical commutation relations for the creation and
annihilation operators with the scattering equation (9.52) and a little algebra gives us

V (N ′
1) = ξ2V (N1) + ξ (1 − ξ) 〈N1〉 . (9.57)

The first term on the right represents the variance in photon number for the inci-
dent field, reduced by the square of the quantum efficiency. The second term is the
contribution of the extra partition noise associated with the random response of the
imperfect detector, i.e. the arrival of a photon causes a click with probability ξ or no
click with probability 1 − ξ.

9.1.5 The Mandel Q-parameter

Most photon detectors are based on the photoelectric effect, and in Section 9.1.2
we have seen that counting rates can be expressed in terms of expectation values
of normally-ordered products of electric field operators. In the example of a single
mode, this leads to averages of normal-ordered products of the general form

〈
a†nan

〉
.

As seen in Section 5.6.3, the most useful quasi-probability distribution for the de-
scription of such measurements is the Glauber–Sudarshan function P (α). If this dis-
tribution function is non-negative everywhere on the complex α-plane, then there is
a classical model—described by stochastic c-number phasors α with the same P (α)
distribution—that reproduces the average values of the quantum theory. It is reason-
able to call such light distributions classical, because no measurements based on the
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photoelectric effect can distinguish between a quantum state and a classical stochastic
model that share the same P (α) distribution.

Direct experimental verification of the condition P (α) � 0 requires rather sophis-
ticated methods, which we will study in Chapter 17. A simpler, but still very useful,
distinction between classical and nonclassical states of light employs the global sta-
tistical properties of the state. Photoelectric counters can measure the moments 〈N r〉
(r = 1, 2, . . .) of the number operator N = a†a, where 〈(· · · )〉 = Tr [ρ (· · · )], and ρ
is the density operator for the state under consideration. We will study the second
moment, or rather the variance, V (N) =

〈
N2

〉 − 〈N〉2, which is a measure of the
noise in the light. In Section 5.1.3 we found that a coherent state ρ = |α〉 〈α| exhibits
Poissonian statistics, i.e. for a coherent state the variance in photon number is equal
to the average number: V (N) =

〈
N2

〉− 〈N〉2 = 〈N〉, which is the standard quantum
limit. Since the rms deviation is

√〈N〉, this is just another name for the shot noise1

in the photoelectric detector. The coherent states are constructed to be as classical as
possible, so it is useful to compare the variance for a given state ρ with the variance
for a coherent state with the same average number of photons. The fractional excess
of the variance relative to that of shot noise,

Q ≡ V (N) − 〈N〉
〈N〉 , (9.58)

is called the Mandel Q parameter (Mandel and Wolf, 1995, Sec. 12.10.3). This new
usage should not be confused with the Q-function defined by eqn (5.154).

The Q-parameter vanishes for a coherent state, so it can be regarded as a measure
of the excess photon-number noise in the light described by the state ρ. Since the
operator N is hermitian, the variance V (N) is non-negative, and it only vanishes for
number states. Consequently the range of Q-values is

−1 � Q < ∞ . (9.59)

A very useful property of the Q-parameter can be derived by first expressing the
numerator in eqn (9.58) as

V (N) − 〈N〉 =
〈
N2

〉− 〈N〉2 − 〈N〉
=

〈
a†2a2

〉− 〈
a†a

〉2
, (9.60)

where the last line follows from another application of the commutation relations[
a, a†] = 1. Since all the operators are now in normal-ordered form, we may use the

P -representation (5.168) to get

V (N) − 〈N〉 =
∫

d2α

π
|α|4 P (α) −

(∫
d2α

π
|α|2 P (α)

)2

. (9.61)

By using the fact that P (α) is normalized to unity, the first term can be expressed as
a double integral, so that

1Shot noise describes the statistics associated with the random arrivals of discrete objects at a
detector, e.g. the noise associated with raindrops falling onto a tin rooftop.
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V (N) − 〈N〉 =
∫

d2α

π
|α|4 P (α)

∫
d2α′

π
P (α′)

−
∫

d2α

π
|α|2 P (α)

∫
d2α′

π
|α′|2 P (α′) . (9.62)

The final step is to interchange the dummy integration variables α and α′ in the first
term, and then to average the two equivalent expressions; this yields the final result:

V (N) − 〈N〉 =
1
2

∫
d2α

π

∫
d2α′

π

(
|α|2 − |α′|2

)2

P (α) P (α′) . (9.63)

The right side is positive for P (α) � 0; therefore, classical states always correspond
to non-negative Q values. An equivalent, but more useful statement, is that negative
values of the Q-parameter always correspond to nonclassical states. A point which
is often overlooked is that the condition Q < 0 is sufficient but not necessary for a
nonclassical state. In other words, there are nonclassical states with Q > 0.

A coherent state has Q = 0 (Poissonian statistics for the vacuum fluctuations), so a
state with Q < 0 is said to be sub-Poissonian. These states are quieter than coherent
states as far as photon number fluctuations are concerned. We will see another example
later on in the study of squeezed states. By the same logic, super-Poissonian states,
with Q > 0, are noisier than coherent states. Thermal states, or more generally chaotic
states, are familiar examples of super-Poissonian statistics; and a nonclassical example
is presented in Exercise 9.3.

An overall Q-parameter for multimode states can be defined by using the total
number operator,

N =
∑
M

a†
MaM , (9.64)

in eqn (9.58). The definition of a classical state is P (α) � 0, where P (α) is the
multimode P -function defined by eqn (5.104). A straightforward generalization of the
single-mode argument again leads to the conclusion that states with Q < 0 are neces-
sarily nonclassical.

9.2 Postdetection signal processing

In the preceding sections, we discussed several processes for primary photon detection.
Now we must study postdetection signal processing, which is absolutely necessary for
completing a measurement of the state of a light field. The problem that must be faced
in carrying out a measurement on any quantum system is that microscopic processes,
such as the events involved in primary photon detection, are inherently reversible.
Consider, for example, a photon and a ground-state atom, both trapped in a small
cavity with perfectly reflecting walls. The atom can absorb the photon and enter an
excited state, but—with equal facility—the excited atom can return to the ground
state by emitting the photon. The photon—none the worse for its adventure—can
then initiate the process again. We will see in Chapter 12 that this dance can go
on indefinitely. In a solid-state photon detector, the cavity is replaced by the crystal
lattice, and the ground-state atom is replaced by an electron in the valence band.
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The electron can be excited to the conduction band—leaving a hole in the valence
band—by absorbing the photon. Just as for the atom, time-reversal invariance assures
us that the conduction band electron can return to the valence band by emitting the
photon, and so on. This behavior is described by the state vector

|photon-detector〉 = α (t) |photon〉 |valence-band-electron〉
+ β (t) |vacuum〉 |electron–hole-pair〉

= α (t) |photon-not-detected〉 + β (t) |photon-detected〉 (9.65)

for the photon-detector system. As long as the situation is described by this entangled
state, there is no way to know if the photon was detected or not.

The purpose of a measurement is to put a stop to this quantum dithering by
perturbing the system in such a way that it is forced to make a definite choice. An
interaction with another physical system having a small number of degrees of freedom
clearly will not do, since the reversibility argument could be applied to the enlarged
system. Thus the perturbation must involve coupling to a system with a very large
number of degrees of freedom, i.e. a macroscopic system. It could be—indeed it has
been—argued that this procedure simply produces another entangled state, albeit with
many degrees of freedom. While correct in principle, this line of argument brings us
back to Schrödinger’s diabolical machine and the unfortunate cat. Just as we can be
quite certain that looking into this device will reveal a cat that is either definitely dead
or definitely alive—and not some spooky superposition of |dead cat〉 and |live cat〉—
we can also be assured that an irreversible interaction with a macroscopic system will
yield a definite answer: the photon was detected or it was not detected. In the words
of Bohr (1958, p. 88):

. . .every atomic phenomenon is closed in the sense that its observation is based on
registrations obtained by means of suitable amplification devices with irreversible
functioning such as, for example, permanent marks on the photographic plate,
caused by the penetration of electrons into the emulsion (emphasis added).

Thus postdetection signal processing—which bring quantum measurements to a
close by processes involving irreversible amplification—is an essential part of pho-
ton detection. In the following sections we will discuss several modern postdetection
processes: (1) electron multiplication in Markovian avalanche processes, e.g. in vacuum
tube photomultipliers, channeltrons, and image intensifiers; (2) solid-state avalanche
photodiodes, and solid-state multipliers with noise-free, non-Markovian avalanche elec-
tron multiplication. Finally we discuss coincidence detection, which is an important
application of postdetection signal processing.

9.2.1 Electron multiplication

We begin with a discussion of electron multiplication processes in photomultipliers,
channeltrons, and solid-state avalanche photodiodes. As pointed out above, postde-
tection gain mechanisms are not only a practical, but also a fundamental, component
of all photon detectors. They are necessary for the closing of the quantum process
of measurement. As a practical matter, amplification is required to raise the micro-
scopic energy released in the primary photodetection event—�ω ∼ 10−19 J for a typical
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visible photon—to a macroscopic value much larger than the typical thermal noise—
kBT ∼ 10−20 J—in electronic circuits. From this point on, the signal processing can be
easily handled by standard electronics, since the noise in any electronic detection sys-
tem is determined by the noise in the first-stage electronic amplification process. The
typical electron multiplication factor in these postdetection mechanisms is between
104 to 106.

One amplification mechanism is electron multiplication by secondary impact ion-
izations occurring at the surfaces of the dynode structures of vacuum-tube photomul-
tipliers. A large electric field is applied across successive dynode structures, as shown
in Fig. 9.2. The initial photoelectron released from the photocathode is thus acceler-
ated to such high energies that its impact on the surface of the first dynode releases
many secondary electrons. By repeated multiplications on successive dynodes, a large
electrical signal can be obtained.

In channeltron vacuum tubes, which are also called image intensifiers, the pho-
toelectrons released from various spots on a single photocathode are collected by a
bundle of small, hollow channels, each corresponding to a single pixel. A large electric
field applied along the length of each channel induces electron multiplication on the
interior surface, which is coated with a thin, conducting film. Repeated multiplica-
tions by means of successive impacts of the electrons along the length of each channel
produce a large electrical signal, which can be easily handled by standard electronics.

There is a similar postdetection gain mechanism in solid-state photodiodes. The
primary event is the production of a single electron–hole pair inside the solid-state
material, as shown in Fig. 9.3. When a static electric field is applied, the initial electron
and hole are accelerated in opposite directions, in the so-called Geiger mode of
operation. For a sufficiently large field, the electron and hole reach such high energies
that secondary pairs are produced. The secondary pairs in turn cause further pair
production, so that an avalanche breakdown occurs. This process produces a large
electrical pulse—like the single click of a Geiger counter—that signals the arrival of
a single photon. In this strong-field limit, the secondary emission processes occur so
quickly and randomly that all correlations with previous emissions are wiped out. The
absence of any dependence on the previous history is the defining characteristic of a
Markov process.

Fig. 9.2 Schematic of a laser beam incident

upon a photomultiplier tube.
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Fig. 9.3 In a semiconductor photodetection

device, photoionization occurs inside the body

of a semiconductor. In (a) the photon enters

the semiconductor. In (b) a photoionization

event produces an electron–hole pair inside the

semiconductor.

9.2.2 Markovian model for avalanche electron multiplication

We now discuss a simple model (LaViolette and Stapelbroek, 1989) of electron multi-
plication, such as that of avalanche breakdown in the Geiger mode of silicon solid-state
avalanche photon detectors (APDs). This model is based on the Markov approxima-
tion; that is, the electron completely forgets all previous scatterings, so that its behav-
ior is solely determined by the initial conditions at each branch point of the avalanche
process. The model rests on two underlying assumptions.
(1) The initial photoelectron production always occurs at the same place (z = 0),

where z is the coordinate along the electric field axis.
(2) Upon impact ionization of an impurity atom, the incoming electron dies and two

new electrons are born. This is the Markov approximation. None of the electrons
recombine or otherwise disappear.
The probability that a new carrier is generated in the interval (z, z + ∆z) is

α (z)∆z, where the gain, α (z), is allowed to vary with z. The probability that n
carriers are present at z, given that one carrier is introduced at z = 0, is denoted by
p (n, z). There are two cases to examine p (1, z) (total failure) and p (n, z) for n > 1.

The probability that the incident carrier fails to produce a new carrier in the
interval (z, z + ∆z) is 1−α (z)∆z. Thus the probability of failure in the next z-interval
is

p (1, z + ∆z) = (1 − α (z)∆z) p (1, z) . (9.66)

Take the limit ∆z → 0, or Taylor-series expand the left side, to get the differential
equation

∂p (1, z)
∂z

= −α (z) p (1, z) , (9.67)

with the initial condition p (1, 0) = 1.
For the successful case that n > 1, there are more possibilities, since n carriers

at z + ∆z could come from n − k carriers at z by production of k carriers, where
k = 0, 1, . . . , n − 1. Adding up the possible processes gives

p (n, z + ∆z) = (1 − α (z)∆z)n
p (n, z) + (n − 1) (α (z)∆z) p (n − 1, z)

+
1
2

(n − 2) (n − 3) (α (z)∆z)2 p (n − 2, z) + · · · . (9.68)

In the limit of small ∆z this leads to the differential equation

∂p (n, z)
∂z

= −nα (z) p (n, z) + (n − 1)α (z) p (n − 1, z) , (9.69)
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with the initial condition p (n, z) = 0 for n > 1.
The solution of eqn (9.67) is easily seen to be

p (1, z) = e−ζ(z) , where ζ (z) =
∫ z

0

dz′α (z′) . (9.70)

The recursive system of differential equations in eqn (9.69) is a bit more complicated.
Perhaps the easiest way is to work out the explicit solutions for n = 2, 3 and use the
results to guess the general form:

p (n, z) =

(
eζ(z) − 1

)n−1

enζ(z)
. (9.71)

9.2.3 Noise-free, non-Markovian avalanche multiplication

One recent and very important development in postdetection gain mechanisms for
photon detectors is noise-free avalanche multiplication in silicon, solid-state photo-
multipliers (SSPMs) (Kim et al., 1997). Noise-free, postdetection amplification allows
the photon detector to distinguish clearly between one and two photons in the primary
photodetection event; i.e. the output electronic pulse heights can be cleanly resolved
as originating either from a one- or a two-photon primary event. This has led to the
direct detection, with high resolution, of the difference between even and odd photon
numbers in an incoming beam of light. Applying this photodetection technique to a
squeezed state of light shows that there is a pronounced preference for the occupation
of even photon numbers; the odd photon numbers are essentially absent. This striking
odd–even effect in the photon number distribution is not observed with a coherent
state of light, such as that produced by a laser.

A schematic of a noise-free avalanche multiplication device in a SSPM, also known
as a visible-light photon counter (VLPC), is shown in Fig. 9.4.

Fig. 9.4 Structure of a solid-state photomultiplier (SSPM) or a visible-light photon counter

(VLPC). (Reproduced from Kim et al. (1997).)
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In contrast to the APD, the SSPM is divided into two separate spatial regions: an
intrinsic region, inside which the incident photon is converted into a primary electron–
hole pair in an intrinsic silicon crystalline material; followed by a gain region, consisting
of n-doped silicon, inside which well-controlled, noise-free electron multiplication oc-
curs. The electric field in the gain region is larger than in the intrinsic region, due to
the difference between the respective dielectric constants. The primary electron and
hole, produced by the incoming visible photon, are accelerated in opposite directions
by the local electric field in the intrinsic region. The primary electron propagates to
the left towards a transparent electrode (the transparent contact) raised to a modest
positive potential +V . An anti-reflection coating applied to the transparent electrode
ensures that the incoming photon is admitted with high efficiency into the interior of
the silicon intrinsic region, so that the quantum efficiency of the device can be quite
high.

The primary hole propagates to the right and enters the gain region, whereupon
the higher electric field present there accelerates it up to the energy (54 meV) required
to ionize an arsenic n-type donor atom. The ionization is a single quantum-jump
event (a Franck–Hertz-type excitation) in which the hole gives up its entire energy
and comes to a complete halt. However, the halted hole is immediately accelerated
by the local electric field towards the right, so that the process repeats itself, i.e.
the hole again acquires an ionization energy of 54 meV, whereupon it ionizes another
local arsenic atom and comes to a complete halt, and so on. In this start-and-stop
manner, the hole generates a discrete, deterministic sequence of secondary electrons
in a well-controlled manner, as indicated in Fig. 9.4 by the electron vertices inside
the gain region. In this way, a sequence of leftwards-propagating secondary electrons
is emitted in regular, deterministic manner by the rightwards-propagating hole. Each
ionized arsenic atom thus releases a single secondary electron into the conduction
band, whereupon it is promptly accelerated to the left towards the interface between
the gain and intrinsic region. The secondary electrons enter the intrinsic region, where
they are collected, along with the primary electron, by the +V transparent electrode.
The result is a noise-free avalanche amplification process, whose gain is given by the
number of starts-and-stops of the hole inside the gain region. Measurements of the
noise factor, F ≡ 〈

M2
〉
/ 〈M〉2, where M is the multiplication factor, show that F =

1.00 ± 0.05 for M between 1 × 104 and 2 × 104 (Kim et al., 1997). This constitutes
direct experimental evidence that there is essentially no shot noise in the postdetection
electron multiplication process.

Note that this description of the noise-free amplification process depends on the
assumption that the motions of the holes and electrons are ballistic, i.e. they propagate
freely between collision events. Also, it is assumed that only holes have large enough
cross-sections to cause impact ionizations of the arsenic atoms. The resulting process is
non-Markovian, in the sense that there is a well-defined, deterministic, nonstochastic
delay time between electron multiplication events. Note also that charge conservation
requires the number of electrons—collected by the transparent electrode on the left—
to be exactly equal to the number of holes—collected on the right by the grounded
electrode, labeled as the contact region and degenerate substrate.
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9.2.4 Coincidence counting

As we have already seen in Section 1.1.4, one of the most important experimental
techniques in quantum optics is coincidence counting, in which the output signals
of two independent single-photon detectors are sent to a device—the coincidence
counter—that only emits a signal when the pulses from the two detectors both arrive
during a narrow gate window Tgate. For simplicity, we will only consider idealized,
broadband, point detectors equipped with polarization filters. This means that the
detectors can be treated as though they were single atoms, with the understanding
that the locations of the ‘atoms’ are to be treated classically. The detector Hamiltonian
is then

Hdet (t) =
2∑

n=1

Hdn (t) , (9.72)

Hdn (t) = −
(
d̂n (t) · en

)
En (t) , (9.73)

where rn, d̂n, en, and En are respectively the location; the dipole operator; the po-
larization admitted by the filter; and the corresponding field component

En (t) = en ·E (rn, t) (9.74)

for the nth detector. In the following discussion we will show that coincidence count-
ing can be interpreted as a measurement of the second-order correlation function,
G(2) (r1, t1, r2, t2; r3, t3, r4, t4), introduced in Section 4.7.

Since a general initial state of the radiation field is described by a density matrix,
i.e. an ensemble of pure states, we can begin by assuming that the radiation field is
described a pure state |Φe〉 and that both atoms are in the ground state. The initial
state of the total system is then

|Θi〉 = |φγ , φγ , Φe〉 = |φγ (1)〉 |φγ (2)〉 |Φe〉 , (9.75)

where |φγ (n)〉 denotes the ground state of the atom located at rn. For coincidence
counting, it is sufficient to consider the final states,

|Θf 〉 = |φε1 , φε2 , n〉 = |φε1 (1)〉 |φε2 (2)〉 |n〉 , (9.76)

where |φε (n)〉 denotes a (continuum) excited state of the atom located at rn and |n〉
is a general photon number state. The probability amplitude for this transition is

Afi = 〈Θf |V (t)|Θi〉 = δfi +
〈
Θf

∣∣∣V (1) (t)
∣∣∣Θi

〉
+
〈
Θf

∣∣∣V (2) (t)
∣∣∣Θi

〉
+ · · · , (9.77)

where the evolution operator V (t) is given by eqn (4.103), with Hint replaced by
Hdet. Both atoms must be raised from the ground state to an excited state, so the
lowest-order contribution to Afi comes from the cross terms in V (2) (t), i.e.

Afi =
(
− i

�

)2 ∫ t

t0

dt1

∫ t1

t0

dt2 〈Θf |Hd1 (t1) Hd2 (t2) + Hd2 (t1)Hd1 (t2)|Θi〉 . (9.78)

The excitation of the two atoms requires the annihilation of two photons; conse-
quently, in evaluating Afi the operator En (t) in eqn (9.73) can be replaced by the
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positive-frequency part E
(+)
n (t). The detectors are normally located in a passive linear

medium, so one can use eqn (3.102) to show that [Hd1 (t1) , Hd2 (t2)] = 0 for all (t1, t2).
This guarantees that the integrand in eqn (9.78) is a symmetrical function of t1 and
t2, so that eqn (9.78) can be written as

Afi =
(
− i

�

)2 ∫ t

t0

dt1

∫ t

t0

dt2 〈Θf |Hd1 (t1) Hd2 (t2)|Θi〉 . (9.79)

Finally, substituting the explicit expression (9.73) for the interaction Hamiltonian
yields

Afi =
(
− i

�

)2

dε1γdε2γ

∫ t

t0

dt1

∫ t

t0

dt2 exp (iωε1γt1) exp (iωε2γt2)

×
〈
n
∣∣∣E(+)

1 (t1)E
(+)
2 (t2)

∣∣∣Φe

〉
, (9.80)

where we have used the relation between the interaction and Schrödinger pictures to
get〈

φεn

∣∣∣d̂n (t) · en

∣∣∣φγ

〉
= exp (iωε1γt1)

〈
φεn

∣∣∣d̂n · en

∣∣∣φγ

〉
= exp (iωε1γt1) dεnγ . (9.81)

In a coincidence-counting experiment, the final states of the atoms and the radia-
tion field are not observed; therefore, the transition probability |Afi|2 must be summed
over ε1, ε2, and n. This result must then be averaged over the ensemble of pure states
defining the initial state ρ of the radiation field. Thus the overall probability, p (t, t0),
that both detectors have clicked during the interval (t0, t) is

p (t, t0) =
∑
ε1

D1 (ε1)
∑
ε2

D2 (ε2)
∑

n

∑
e

Pe |Afi|2 . (9.82)

A calculation similar to the one-photon case shows that p (t, t0) can be written as

p (t, t0) =
∫ t

t0

dt′1

∫ t

t0

dt′2

∫ t

t0

dt1

∫ t

t0

dt2S1 (t1 − t′1)S2 (t2 − t′2)

× G(2) (r1, t
′
1, r2, t

′
2; r1, t1, r2, t2) , (9.83)

where the sensitivity functions are defined by

Sn (t) =
1
�2

∑
ε

Dn (ε) |dεγ · en|2 eiωεγ t (n = 1, 2)

= e∗nienjSnij (t) , (9.84)

and G(2) is a special case of the scalar second-order correlation function defined by
eqn (4.77). The assumption that the detectors are broadband allows us to set Sn (t) =
Snδ (t) , and thus simplify eqn (9.83) to

p (t) =
∫ t

t0

dt1

∫ t

t0

dt2p
(2) (t1, t2) , (9.85)
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where
p(2) (t1, t2) = S1S2G

(2) (r1, t1, r2, t2; r1, t1, r2, t2) . (9.86)

Since p (t, t0) is the probability that detections have occurred at r1 and r2 sometime
during the observation interval (t0, t), the differential probability that the detections
at r1 and r2 occur in the subintervals (t1, t1 + dt1) and (t2, t2 + dt2) respectively is
p(2) (t1, t2) dt1dt2. The signal pulse from detector n arrives at the coincidence counter
at time tn+Tn, where Tn is the signal transit time from the detector to the coincidence
counter. The general condition for a coincidence count is

|(t2 + T2) − (t1 + T1)| < Tgate , (9.87)

where Tgate is the gate width of the coincidence counter. The gate is typically triggered
by one of the signals, for example from the detector at r1. In this case the coincidence
condition is

t1 + T1 < t2 + T2 < t1 + T1 + Tgate , (9.88)

and the coincidence count rate is

w(2) =
∫ T12+Tgate

T12

dτp(2) (t1, t1 + τ)

= S1S2

∫ T12+Tgate

T12

dτG(2) (r1, t1, r2, t1 + τ ; r1, t1, r2, t1 + τ) , (9.89)

where T12 = T1 − T2 is the offset time for the two detectors. By using delay lines
to adjust the signal transit times, coincidence counting can be used to study the
correlation function G(2) (r1, t1, r2, t2; r1, t1, r2, t2) for a range of values of (r1, t1) and
(r2, t2).

In order to get some practice with the use of the general result (9.89) we will revisit
the photon indivisibility experiment discussed in Section 1.4 and preview a two-photon
interference experiment that will be treated in Section 10.2.1. The basic arrangement
for both experiments is shown in Fig. 9.5.

Fig. 9.5 The photon indivisibility and

two-photon interference experiments both use

this arrangement. The signals from detectors

D1 and D2 are sent to a coincidence counter.
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For the photon indivisibility experiment, we consider a general one-photon input
state ρ, i.e. the only condition is Nρ = ρN = ρ, where N is the total number operator.
Any one-photon density operator ρ can be expressed in the form

ρ =
∑
κ,λ

|1κ〉 ρκλ 〈1λ| , (9.90)

where κ and λ are mode labels. The identity aκaλρ = 0 = ρa†
λa†

κ—which holds for any
pair of annihilation operators—implies that

ρE
(−)
2 (r2, t2)E

(−)
1 (r1, t1) = 0 = E

(+)
1 (r1, t1)E

(+)
2 (r2, t2) ρ . (9.91)

The coincidence count rate is determined by the second-order correlation function

G(2) (r2, t2, r1, t1; r2, t2, r1, t1) = Tr
[
ρE

(−)
2 (r2, t2)E

(−)
1 (r1, t1)

× E
(+)
1 (r1, t1)E

(+)
2 (r2, t2)

]
, (9.92)

but eqn (9.91) clearly shows that the general second-order correlation function for a
one-photon state vanishes everywhere:

G(2) (r1, t1, r2, t2; r′1, t
′
1, r

′
2, t

′
2) ≡ 0 . (9.93)

The zero coincidence rate in the photon indivisibility experiment is an immediate
consequence of this result.

The difference between the photon indivisibility and two-photon interference ex-
periments lies in the choice of the initial state. For the moment, we consider a general
incident state which contains at least two photons. This state will be used in the
evaluation of the correlation function defined by eqn (9.92). In addition, the original
plane-wave modes will be replaced by general wave packets wκ (r). The field operator
produced by scattering from the beam splitter can then be written as

E(+) (r, t) = i
∑

κ

√
�ωκ

2ε0
e−iωκtwκ (r) a′

κ . (9.94)

Substituting this expansion into the general definition (4.75) for G
(2)
ijkl yields

G
(2)
ijkl ({x} ; {x}) =

(
�

2ε0

)2 ∑
µκλν

√
ωµωκωλωνw∗

µi (r′)w∗
κj (r) wλk (r)wνl (r′)

× ei(ωµ−ων)t′ei(ωκ−ωλ)t Tr
[
ρa′†

µ a′†
κ a′

λa′
ν

]
, (9.95)

where {x} = {r′, t′, r, t}, but using this in eqn (9.92) would be wrong. The problem
is that the last optical element encountered by the field is not the beam splitter, but
rather the collimators attached to the detectors. The field scattered from the beam
splitter is further scattered, or rather filtered, by the collimators. To be completely
precise, we should work out the scattering matrix for the collimator and use eqn (9.94)
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as the input field. In practice, this is rarely necessary, since the effect of these filters is
well approximated by simply omitting the excluded terms when the field is evaluated
at a detector location. In this all-or-nothing approximation the explicit use of the
collimator scattering matrix is replaced by imposing the following rule at the nth
detector:

wκ (rn) = 0 if wκ is blocked by the collimator at detector n . (9.96)

We emphasize that this rule is only to be used at the detector locations. For other
points, the expression (9.95) must be evaluated without restrictions on the mode func-
tions.

A more realistic description of the incident light leads to essentially the same
conclusion. In real experiments, the incident modes are not plane waves but beams
(Gaussian wave packets), and the widths of their transverse profiles are usually small
compared to the distance from the beam splitter to the detectors. For the two modes
pictured in Fig. 9.5, this implies w2 (r1) ≈ 0 and w1 (r2) ≈ 0. In other words, the
beam w2 misses detector D1 and w1 misses detector D2. This argument justifies the
rule (9.96) even if the collimators are ignored.

For the initial state, ρ = |Φin〉 〈Φin|, with |Φin〉 = a†
2a

†
1 |0〉, each mode sum in eqn

(9.95) is restricted to the values κ = 1, 2. If the rule (9.96) were ignored there would
be sixteen terms in eqn (9.95), corresponding to all normal-ordered combinations of
a′†
1 and a′†

2 with a′
1 and a′

2. Imposing eqn (9.96) reduces this to one term, so that

G(2) ({x} ; {x}) =
(

�ω

2ε0

)2

|w2 (r2)|2 |w1 (r1)|2
〈
Φin

∣∣∣a′†
2 a′†

1 a′
1a

′
2

∣∣∣Φin

〉
, (9.97)

where ω2 = ω1 = ω. Thus the counting rate is proportional to the average of the
product of the intensity operators at the two detectors. Combining eqn (9.89) with
eqn (8.62) and the relation r = ±i |t| gives the coincidence-counting rate

w(2) = S2S1Tgate

(
�ω

2ε0

)2

|w2 (r2)|2 |w1 (r1)|2
∣∣∣|r|2 − |t|2

∣∣∣2 . (9.98)

The combination of eqn (9.95) and eqn (9.96) yields the correct expression for any
choice of the incident state. This allows for an explicit calculation of the coincidence
rate as a function of the time delay between pulses.

9.3 Heterodyne and homodyne detection

Heterodyne detection is an optical adaptation of a standard method for the detection
of weak radio-frequency signals. For almost a century, heterodyne detection in the
radio region has been based on square-law detection by diodes, in nonlinear devices
known as mixers. After the invention of the laser, this technique was extended to the
optical and infrared regions using square-law detectors based on the photoelectric ef-
fect. We will first give a brief description of heterodyne detection in classical optics,
and then turn to the quantum version. Homodyne detection is a special case of
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heterodyne detection in which the signal and the local oscillator have the same fre-
quency, ωL = ωs. One variant of this scheme (Mandel and Wolf, 1995, Sec. 21.6) uses
the heterodyne arrangement shown in Fig. 9.6, but we will describe a different method,
called balanced homodyne detection, that employs a balanced beam splitter and
two identical detectors at the output ports. This technique is especially important at
the quantum level, since it is one of the primary tools of measurement for nonclas-
sical states of light, e.g. squeezed states. More generally, it is used in quantum-state
tomography—described in Chapter 17—which allows a complete characterization of
the quantum state of the light entering the signal port.

9.3.1 Classical analysis of heterodyne detection

Classical heterodyne detection involves a strong monochromatic wave,

EL (r, t) = EL (t)wL (r) e−iωLt + CC , (9.99)

called the local oscillator (LO), and a weak monochromatic wave,

Es (r, t) = Es (t)ws (r) e−iωst + CC , (9.100)
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Fig. 9.6 Schematic for heterodyne detection. A strong local oscillator beam (the heavy solid

arrow) is combined with a weak signal beam (the light solid arrow) at a beam splitter, and

the intensity of the combined beam (light solid arrow) is detected by a fast photodetector.

The dashed arrows represent vacuum fluctuations.
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called the signal, where EL (t) and Es (t) are slowly-varying envelope functions. The
two waves are mixed at a beam splitter—as shown in Fig. 9.6—so that their combined
wavefronts overlap at a fast detector. In a realistic description, the mode functions
wL (r) and ws (r) would be Gaussian wave packets, but in the interests of simplicity
we will idealize them as S-polarized plane waves, e.g. wL = e exp (ikLy) /

√
V and

ws = e exp (iksy) /
√

V , where V is the quantization volume and e is the common
polarization vector. Since the output fields will also be S-polarized, the polarization
vector will be omitted from the following discussion. The two incident waves have
different frequencies, so the beam-splitter scattering matrix of eqn (8.63) has to be
applied separately to each amplitude. The resulting wave that falls on the detector is
ED (r, t) = ED (r, t) + CC, where

ED (r, t) = E ′
L (t)

1√
V

ei(kLx−ωLt) + E ′
s (t)

1√
V

ei(ksx−ωst) . (9.101)

Since the detector surface lies in a plane xD = const, it is natural to choose coordinates
so that xD = 0. The scattered amplitudes are given by E ′

L (t) = r EL (t) and E ′
s =

t Es (t), provided that the coefficients r and t are essentially constant over the frequency
bandwidth of the slowly-varying amplitudes EL (t) and Es (t). Since the signal is weak,
it is desirable to lose as little of it as possible. This requires |t| ≈ 1, which in turn
implies |r| � 1. The second condition means that only a small fraction of the local
oscillator field is reflected into the detector arm, but this loss can be compensated by
increasing the incident intensity |EL|2. Thus the beam splitter in a heterodyne detector
should be highly unbalanced.

The output of the square-law detector is proportional to the average of |ED (r, t)|2
over the detector response time TD, which is always much larger than an optical period.
On the other hand, the interference term between the local oscillator and the signal is
modulated at the intermediate frequency: ωIF ≡ ωs − ωL. In optical applications
the local oscillator field is usually generated by a laser, with ωL ∼ 1015 Hz, but ωIF

is typically in the radio-frequency part of the electromagnetic spectrum, around 106

to 109 Hz. The IF signal is therefore much easier to detect than the incident optical
signal. For the remainder of this section we will assume that the bandwidths of both
the signal and the local oscillator are small compared to ωIF. This assumption allows
us to treat the envelope fields as constants.

In this context, a fast detector is defined by the conditions 1/ωL � TD � 1/ |ωIF|.
This inequality, together with the strong-field condition |EL| � |Es|, allows the time
average over TD to be approximated by

1
TD

∫ TD/2

−TD/2

dτ |ED (r, t + τ)|2 ≈ |E ′
L|2 + 2 Re

[E ′∗
L E ′

se
−iωIFt

]
+ · · · . (9.102)

The large first term |E ′
L|2 can safely be ignored, since it represents a DC current

signal which is easily filtered out by means of a high-pass, radio-frequency filter. The
photocurrent from the detector is then dominated by the heterodyne signal

Shet (t) = 2 Re
[
r∗t E∗

LEse
−iωIFt

]
, (9.103)
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which describes the beat signal between the LO and the signal wave at the intermedi-
ate frequency ωIF. Optical heterodyne detection is the sensitive detection of the
heterodyne signal by standard radio-frequency techniques.

Experimentally, it is important to align the directions of the LO and signal beams
at the surface of the photon detector, since any misalignment will produce spatial
interference fringes over the detector surface. The fringes make both positive and neg-
ative contributions to Shet; consequently—as can be seen in Exercise 9.4—averaging
over the entire surface will wash out the IF signal. Alignment of the two beams can
be accomplished by adjusting the tilt of the beam splitter until they overlap interfer-
ometrically.

An important advantage of heterodyne detection is that Shet (t) is linear in the local
oscillator field E∗

L and in the signal field Es(t). Thus a large value for |E∗
L| effectively

amplifies the contribution of the weak optical signal to the low-frequency heterodyne
signal. For instance, doubling the size of E∗

L, doubles the size of the heterodyne signal
for a given signal amplitude E ′

s. Furthermore, the relative phase between the linear
oscillator and the incident signal is faithfully preserved in the heterodyne signal. To
make this point more explicit, first rewrite eqn (9.103) as Shet (t) = F cos (ωIFt) +
G sin (ωIFt), where the Fourier components are given by

F = 2 Re [r∗t E∗
LEs] , G = 2 Im [r∗t E∗

LEs] . (9.104)

We use the Stokes relation (8.7), in the form

r∗t = |r| |t| e±iπ/2 , (9.105)

to rewrite eqn (9.104) as

F = ±2 |E∗
LEs| |r| |t| sin (θL − θs) , G = ±2 |E∗

LEs| |r| |t| cos (θL − θs) , (9.106)

where θL and θs are respectively the phases of the local oscillator EL and the signal
Es.

The quantities F and G can be separately measured. For example, F and G can
be simultaneously determined by means of the apparatus sketched in Fig. 9.7. Note
that the insertion of a 90◦ phase shifter into one of the two local-oscillator arms
allows the measurement of both the sine and cosine components of the intermediate-
frequency signals at the two photon detectors. Each box labeled ‘IF mixer’ denotes the
combination of a radio-frequency oscillator—conventionally called a 2nd LO— that
operates at the IF frequency, with two local radio-frequency diodes that mix the 2nd
LO signal with the two IF signals from the photon detectors. The net result is that
these IF mixers produce two DC output signals proportional to the IF amplitudes F
and G. The ratio of F and G is a direct measure of the phase difference θL−θs relative
to the phase of the 2nd LO, since

F
G = tan (θL − θs) . (9.107)

The heterodyne signal corresponding to F is maximized when θL − θs = π/2 and
minimized when θL − θs = 0, whereas the heterodyne signal corresponding to G is
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Fig. 9.7 Schematic of an apparatus for two-quadrature heterodyne detection. The beam

splitters marked as ‘High trans’ have |t| ≈ 1.

maximized when θL − θs = 0 and minimized when θL − θs = π/2, where all the phases
are defined relative to the 2nd LO phase. The optical phase information in the signal
waveform is therefore preserved through the entire heterodyne process, and is stored
in the ratio of F to G. This phase information is valuable for the measurement of
small optical time delays corresponding to small differences in the times of arrival
of two optical wavefronts; for example, in the difference in the times of arrival at
two telescopes of the wavefronts emanating from a single star. Such optical phase
information can be used for the measurement of stellar diameters in infrared stellar
interferometry with a carbon-dioxide laser as the local oscillator (Hale et al., 2000).
This is an extension of the technique of radio-astronomical interferometry to the mid-
infrared frequency range.

Examples of important heterodyne systems include: Schottky diode mixers in the
radio and microwave regions; superconductor–insulator–superconductor (SIS) mixers,
for radio astronomy in the millimeter-wave range; and optical heterodyne mixers,
using the carbon-dioxide lasers in combination with semiconductor photoconductors,
employed as square-law detectors in infrared stellar interferometry (Kraus, 1986).

9.3.2 Quantum analysis of heterodyne detection

Since the field operators are expressed in terms of classical mode functions and their
associated annihilation operators, we can retain the assumptions—i.e. plane waves, S-
polarization, etc.—employed in Section 9.3.1. This allows us to use a simplified form
of the general expression (8.28) for the in-field operator to replace the classical field
(9.101) by the Heisenberg-picture operator

E
(+)
in (r, t) = ieLaL2e

ikLye−iωLt + iesas1e
iksxe−iωst + E

(+)
vac,in (r, t) , (9.108)

where eM =
√

�ωM/2ε0V is the vacuum fluctuation field strength for a plane wave
with frequency ωM . This is an extension of the method used in Section 9.1.4 to model
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imperfect detectors. The annihilation operators aL2 and as1 respectively represent the
local oscillator field, entering through port 2, and the signal field, entering through
port 1; and, we have again assumed that the bandwidths of the signal and local os-
cillator fields are small compared to ωIF. If this assumption has to be relaxed, then
the Schrödinger-picture annihilation operators must be replaced by slowly-varying en-
velope operators aL2 (t) and as1 (t). In principle, the operator E

(+)
vac,in (r, t) includes

all modes other than the signal and local oscillator, but most of these terms will
not contribute in the subsequent calculations. According to the discussion in Section
8.4.1, each physical input field is necessarily paired with vacuum fluctuations of the
same frequency—indicated by the dashed arrows in Fig. 9.6—entering through the
other input port. Thus E

(+)
vac,in (r, t) must include the operators aL1 and as2 describing

vacuum fluctuations with frequencies ωL and ωs entering through ports 1 and 2 respec-
tively. It should also include any other vacuum fluctuations that could combine with
the local oscillator to yield terms at the intermediate frequency, i.e. modes satisfying
ωM = ωL±ωIF. The +-choice yields the signal frequency ωs, which is already included,
so the only remaining possibility is ωM = ωL−ωIF. Again borrowing terminology from
radio engineering, we refer to this mode as the image band, and set M = IB and
ωIB = ωL − ωIF. The relevant terms in E

(+)
in (r, t) are thus

E
(+)
in (r, t) = ieLaL2e

ikLye−iωLt + ieLaL1e
ikLxe−iωLt

+ iesas1e
iksxe−iωst + iesas2e

iksye−iωst

+ ieIBaIB2e
ikIBye−iωIBt

+ ieIBaIB1e
ikIBxe−iωIBt . (9.109)

A The heterodyne signal

The scattered field operator E
(+)
out (r, t) is split into two parts, which respectively de-

scribe propagation along the 2 → 2′ arm and the 1 → 1′ arm in Fig. 9.6. The latter
part—which we will call E

(+)
out,D (r, t)—is the one driving the detector. The spatial

modes in E
(+)
out,D (r, t) are all of the form exp (ikx), for various values of k. Since we

only need to evaluate the field at the detector location xD, the calculation is simplified
by choosing the coordinates so that xD = 0. In this way we find the expression

E
(+)
out,D (t) = ieLa′

L1e
−iωLt + iesa

′
s1e

−iωst + ieIBa′
IB1e

−iωIBt . (9.110)

The scattered annihilation operators are obtained by applying the beam-splitter scat-
tering matrix in eqn (8.63) to the incident annihilation operators. This simply amounts
to working out how each incident classical mode is scattered into the 1 → 1′ arm, with
the results

a′
s1 = t as1 + r as2 , a′

L1 = t aL1 + r aL2 , a′
IB1 = t aIB1 + r aIB2 . (9.111)

The finite efficiency of the detector can be taken into account by using the technique
discussed in Section 9.1.4 to modify E

(+)
out,D (t).
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Applying eqn (9.33), for the total single-photon counting rate, to this case gives

w(1) (t) ∝
〈
E

(−)
out,D (t)E

(+)
out,D (t)

〉
, (9.112)

and the intermediate frequency part of this signal comes from the beat-note terms
between the local oscillator part of eqn (9.110)—or rather its conjugate—and the
signal and image band parts. This procedure leads to the operator expression

Shet =
[
E

(−)
out,D (t)E

(+)
out,D (t)

]
IF

= F cos (ωIFt) + G sin (ωIFt) , (9.113)

where the operators F and G—which correspond to the classical quantities F and G
respectively—have contributions from both the signal and the image band, i.e.

F = Fs + FIB , G = Gs + GIB , (9.114)

where
Fs = eLes

(
a′†

L1a
′
s1 + HC

)
, (9.115)

FIB = eLeIB

(
a′†

L1a
′
IB1 + HC

)
, (9.116)

Gs = −ieLes

(
a′†

L1a
′
s1 − HC

)
, (9.117)

and
GIB = −ieLeIB

(
a′†

L1a
′
IB1 − HC

)
. (9.118)

By assumption, the density operator ρin describing the state of the incident light
is the vacuum for all annihilation operators other than aL2 and as1, i.e.

aΛρin = ρina†
Λ = 0 , Λ = s2, L1, IB1, IB2 . (9.119)

These conditions immediately yield〈
a′†

L1a
′
IB1

〉
= 0 , (9.120)

and 〈
a′†

L1a
′
s1

〉
= r∗t

〈
a†

L2as1

〉
. (9.121)

Furthermore, the independently generated signal and local oscillator fields are uncor-
related, so the total density operator can be written as a product

ρin = ρLρs , (9.122)

where ρL and ρs are respectively the density operators for the local oscillator and the
signal. This leads to the further simplification〈

a†
L2as1

〉
=
〈
a†

L2

〉
L
〈as1〉s . (9.123)
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From eqn (9.120) we see that the expectation values of the operators F and G are
completely determined by Fs and Gs, and eqn (9.123) allows the final result to be
written as

〈F 〉 = eLes2 Re
[
r∗t

〈
a†

L2

〉
L
〈as1〉s

]
, (9.124)

〈G〉 = eLes2 Im
[
r∗t

〈
a†

L2

〉
L
〈as1〉s

]
, (9.125)

which suggests defining effective field amplitudes

EL = eL 〈aL2〉L , Es = es 〈as1〉s . (9.126)

With this notation, the expectation values of the operators F and G have the same
form as the classical quantities F and G:

〈F 〉 = ±2 |E∗
LEs| |r| |t| sin (θL − θs) ,

〈G〉 = ±2 |E∗
LEs| |r| |t| cos (θL − θs) .

(9.127)

This formal similarity becomes an identity, if both the signal and the local oscillator
are described by coherent states, i.e. aL2ρin = αLρin and as1ρin = αsρin.

The result (9.127) is valid for any state, ρin, that satisfies the factorization rule
(9.122). Let us apply this to the extreme quantum situation of the pure number state
ρs = |ns〉 〈ns|. In this case Es = es 〈as1〉s = 0, and the heterodyne signal vanishes. This
reflects the fact that pure number states have no well-defined phase. The same result
holds for any density operator, ρs, that is diagonal in the number-state basis. On the
other hand, for a superposition of number states, e.g.

|ψ〉 = C0 |0〉 + C1 |1s〉 , (9.128)

the effective field strength for the signal is

Es = es 〈ψ |as1|ψ〉 = esC
∗
0C1 . (9.129)

Consequently, a nonvanishing heterodyne signal can be measured even for superposi-
tions of states containing at most one photon.

B Noise in heterodyne detection

In the previous section, we carefully included all the relevant vacuum fluctuation terms,
only to reach the eminently sensible conclusion that none of them makes any contribu-
tion to the average signal. This was not a wasted effort, since we saw in Section 8.4.2
that vacuum fluctuations will add to the noise in the measured signal. We will next
investigate the effect of vacuum fluctuations in heterodyne detection by evaluating the
variance,

V (F ) =
〈
F 2

〉− 〈F 〉2 , (9.130)

of the operator F in eqn (9.114).
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Since the calculation of fluctuations is substantially more complicated than the
calculation of averages, it is a good idea to exploit any simplifications that may turn
up. We begin by using eqn (9.114) to write

〈
F 2

〉
as〈

F 2
〉

=
〈
F 2

s

〉
+ 〈FsFIB〉 + 〈FIBFs〉 +

〈
F 2

IB

〉
. (9.131)

The image band vacuum fluctuations and the signal are completely independent, so
there should be no correlations between them, i.e. one should find

〈FsFIB〉 = 〈Fs〉 〈FIB〉 = 〈FIBFs〉 . (9.132)

Since the density operator is the vacuum for the image band modes, the absence of
correlation further implies

〈FsFIB〉 = 〈FIBFs〉 = 0 . (9.133)

This result can be verified by a straightforward calculation using eqn (9.119) and the
commutativity of operators for different modes.

At this point we have the exact result

V (F ) =
〈
F 2

s

〉
+
〈
F 2

IB

〉− 〈Fs〉2
= V (Fs) + V (FIB) , (9.134)

where we have used 〈FIB〉 = 0 again to get the final form. A glance at eqns (9.115)
and (9.116) shows that this is still rather complicated, but any further simplifications
must be paid for with approximations. Since the strong local oscillator field is typically
generated by a laser, it is reasonable to model ρL as a coherent state,

aL2ρL = αLρL , ρLa†
L2 = α∗

LρL , (9.135)

with

αL = |αL| eiθL . (9.136)

The variance V (FIB) can be obtained from V (Fs) by the simple expedient of replacing
the signal quantities {as1, as2, es} by the image band equivalents {aIB1, aIB2, eIB}, so we
begin by using eqns (9.111), (9.119), and (9.135) to evaluate V (Fs). After a substantial
amount of algebra—see Exercise 9.5—one finds

V (Fs) = −e2s |r t|2 |EL|2
[
e−2iθLV (as1) + CC

]
+ 2e2s |r t|2 |EL|2

[〈
a†

s1as1

〉
− |〈as1〉|2

]
+ e2s |r|2 |EL|2 + (eLes)

2 |t|2
〈
a†

s1as1

〉
, (9.137)

where |EL| = eL |αL| is the laser amplitude. We may not appear to be achieving very
much in the way of simplification, but it is too soon to give up hope.
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The first promising sign comes from the simple result

V (FIB) = e2IB |r|2 |EL|2 . (9.138)

This represents the amplification—by beating with the local oscillator—of the vacuum
fluctuation noise at the image band frequency. With our normalization conventions,
the energy density in these vacuum fluctuations is

uIB = 2ε0e
2
IB =

�ωIB

V
. (9.139)

In Section 1.1.1 we used equipartition of energy to argue that the mean thermal energy
for each radiation oscillator is kBT , so the thermal energy density would be uT =
kBT/V . Equating the two energy densities defines an effective noise temperature

Tnoise =
�ωIB

kB
≈ �ωL

kB
. (9.140)

This effect will occur for any of the phase-insensitive linear amplifiers studied in Chap-
ter 16, including masers and parametric amplifiers (Shimoda et al., 1957; Caves, 1982).

With this encouragement, we begin to simplify the expression for V (Fs) by intro-
ducing the new creation and annihilation operators

b†s (θL) = eiθLa†
s1 , bs (θL) = e−iθLas1 . (9.141)

This eliminates the explicit dependence on θL from eqn (9.137), but the new oper-
ators are still non-hermitian. The next step is to consider the observable quantities
represented by the hermitian quadrature operators

X (θL) =
bs (θL) + b†s (θL)

2
=

e−iθLas1 + eiθLa†
s1

2
(9.142)

and

Y (θL) =
bs (θL) − b†s (θL)

2i
=

e−iθLas1 − eiθLas1

2i
. (9.143)

These operators are the hermitian and anti-hermitian parts of the annihilation oper-
ator:

bs (θL) = X (θL) + iY (θL) , (9.144)

and the canonical commutation relations imply

[X (θL) , Y (θL)] =
i

2
. (9.145)

By writing the defining equations (9.142) and (9.143) as

X (θL) = X (0) cos θL + Y (0) sin θL ,

Y (θL) = X (0) sin θL − Y (0) cos θL ,
(9.146)

the quadrature operators can be interpreted as a rotation of the phase plane through
the angle θL, given by the phase of the local oscillator field. In the calculations to
follow we will shorten the notation by X (θL) → X , etc.
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After substituting eqns (9.141) and (9.144), into eqn (9.134), we arrive at

V (F ) = 4 |r t|2 |EL|2 e2s

[
V (Y ) − 1

4

]
+ |r|2 |EL|2

[
e2s + e2IB

]
+ |t|2 e2s

〈
a†

s1as1

〉
e2L .

(9.147)
The combination V (Y ) − 1/4 vanishes for any coherent state, in particular for the
vacuum, so it represents the excess noise in the signal. It is important to realize that
the excess noise can be either positive or negative, as we will see in the discussion of
squeezed states in Section 15.1.2. The first term on the right of eqn (9.147) represents
the amplification of the excess signal noise by beating with the strong local oscillator
field. The second term represents the amplification of the vacuum noise at the signal
and the image band frequencies. Finally, the third term describes amplification—by
beating against the signal—of the vacuum noise at the local oscillator frequency. The
strong local oscillator assumption can be stated as |r|2 |αL|2 � |t|2, so the third term is
negligible. Neglecting it allows us to treat the local oscillator as an effectively classical
field.

The noise terms discussed above are fundamental, in the sense that they arise
directly from the uncertainty principle for the radiation oscillators. In practice, exper-
imentalists must also deal with additional noise sources, which are called technical in
order to distinguish them from fundamental noise. In the present context the primary
technical noise arises from various disturbances—e.g. thermal fluctuations in the laser
cavity dimensions, Johnson noise in the electronics, etc.—affecting the laser providing
the local oscillator field. By contrast to the fundamental vacuum noise, the technical
noise is—at least to some degree—subject to experimental control. Standard practice
is therefore to drive the local oscillator by a master oscillator which is as well controlled
as possible.

9.3.3 Balanced homodyne detection

This technique combines heterodyne detection with the properties of the ideal bal-
anced beam splitter discussed in Section 8.4. A strong quasiclassical field (the LO) is
injected into port 2, and a weak signal with the same frequency is injected into port
1 of a balanced beam splitter, as shown in Fig. 9.8. In practice, it is convenient to
generate both fields from a single master oscillator. Note, however, that the signal and
local oscillator mode functions are orthogonal, because the plane-wave propagation
vectors are orthogonal. If the beam splitter is balanced, and the rest of the system is
designed to be as bilaterally symmetric as possible, this device is called a balanced
homodyne detector. In particular, the detectors placed at the output ports 1′ and
2′ are required to be identical within close tolerances. In practice, this is made possible
by the high reproducibility of semiconductor-based photon detectors fabricated on the
same homogeneous, single-crystal wafer using large-scale integration techniques.

The difference between the outputs of the two identical detectors is generated by
means of a balanced, differential electronic amplifier. Since the two input transistors of
the differential amplifier—whose noise figure dominates that of the entire postdetection
electronics—are themselves semiconductor devices fabricated on the same wafer, they
can also be made identical within close tolerances. The symmetry achieved in this way
guarantees that the technical noise in the laser source—from which both the signal
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Fig. 9.8 Schematic of a balanced homodyne detector. Detectors D1 and D2 respectively

collect the output of ports 1′ and 2′. The outputs of D2 and D1 are respectively fed into the

non-inverting input (+) and the inverting input (−) of a differential amplifier. The output of

the differential amplifier, i.e. the difference between the two detected signals, is then fed into

a radio-frequency spectrum analyzer SA.

and the local oscillator are derived—will produce essentially identical fluctuations in
the outputs of detectors D1 and D2. These common-mode noise waveforms will cancel
out upon subtraction in the differential amplifier. This technique can, therefore, lead
to almost ideal detection of purely quantum statistical properties of the signal. We will
encounter this method of detection later in connection with experiments on squeezed
states of light.

A Classical analysis of homodyne detection

It is instructive to begin with a classical analysis for general values of the reflection and
transmission coefficients r and t before specializing to the balanced case. The classical
amplitudes at detectors D1 and D2 are related to the input fields by

ED1 = r EL + t Es ,

ED2 = t EL + r Es ,
(9.148)

and the difference in the outputs of the square-law detectors is proportional to the
difference in the intensities, so the homodyne signal is

Shom = |ED2|2 − |ED1|2

=
(
1 − 2 |r|2

)
|EL|2 −

(
1 − 2 |r|2

)
|Es|2 + 4 |t r| Im [E∗

LEs] , (9.149)

where we have used the Stokes relations (8.7) and set r∗t = i |r t| (this is the +-sign
in eqn (9.105)) to simplify the result. The first term on the right side is not sensitive
to the phase θL of the local oscillator, so it merely provides a constant background
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for measurements of the homodyne signal as a function of θL. By design, the signal
intensity is small compared to the local oscillator intensity, so the |Es|2-term can be
neglected altogether. As mentioned in Section 9.3.2, the local oscillator amplitude
is subject to technical fluctuations δEL—e.g. variations in the laser power due to
acoustical-noise-induced changes in the laser cavity dimensions—which in turn produce
phase-sensitive fluctuations in the output,

δShom = −
(
1 − 2 |r|2

)
2 Re [E∗

LδEL] + 4 |t r| Im [δE∗
LEs] . (9.150)

The fluctuations associated with the direct detection signal,
(
1 − 2 |r|2) |EL|2, for the

local oscillator are negligible compared to the fluctuations in the Es contribution if(
1 − 2 |r|2

)
� |Es|

|EL| , (9.151)

and this is certainly satisfied for an ideal balanced beam splitter, for which |r|2 =
|t|2 = 1/2, and

Shom = 2 Im [E∗
LEs] . (9.152)

B Quantum analysis of homodyne detection

We turn now to the quantum analysis of homodyne detection, which is simplified by the
fact that the local oscillator and the signal have the same frequency. The complications
associated with the image band modes are therefore absent, and the in-field is simply

E
(+)
in (r, t) = iesaLeiksye−iωst + iesase

iksxe−iωst . (9.153)

In this case all relevant vacuum fluctuations are dealt with by the operators aL and
as, so the operator E

(+)
vac,in (r, t) will not contribute to either the signal or the noise.

The homodyne signal. The out-field is

E
(+)
out (r, t) = E

(+)
D1 (r, t) + E

(+)
D2 (r, t) , (9.154)

where the fields
E

(+)
D1 (r, t) = iesa

′
se

iksxe−iωst (9.155)

and
E

(+)
D2 (r, t) = iesa

′
Leiksye−iωst (9.156)

drive the detectors D1 and D2 respectively, and the scattered annihilation operators
satisfy the operator analogue of (9.148):

a′
L = t aL + r as ,

a′
s = r aL + t as .

(9.157)

The difference in the two counting rates is proportional to
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Shom =
〈
E

(−)
D2 (r, t)E

(+)
D2 (r, t) − E

(−)
D1 (r, t)E

(+)
D1 (r, t)

〉
= e2s 〈N ′

21〉 , (9.158)

where

N ′
21 = a′†

La′
L − a′†

s a′
s

=
(
1 − 2 |r|2

)
a†

LaL −
(
1 − 2 |r|2

)
a†

sas − 2i |r t|
(
a†

Las − a†
saL

)
(9.159)

is the quantum analogue of the classical result (9.149). For a balanced beam splitter,
this simplifies to

N ′
21 = −i

(
a†

Las − a†
saL

)
; (9.160)

consequently, the balanced homodyne signal is

Shom = 2e2s Im
〈
a†

Las

〉
. (9.161)

If we again assume that the signal and local oscillator are statistically independent,
then

〈
a†

Las

〉
=
〈
a†

L

〉 〈as〉, and

Shom = 2 Im(E∗
LEs) , (9.162)

where the effective field amplitudes are again defined by

EL = es 〈aL〉 = es |〈aL〉| eiθL , (9.163)

and
Es = es 〈as〉 . (9.164)

Just as for heterodyne detection, the phase sensitivity of homodyne detection guaran-
tees that the detection rate vanishes for signal states described by density operators
that are diagonal in photon number. Alternatively, for the calculation of the signal we
can replace the difference of number operators by

a′†
La′

L − a′†
s a′

s → −i
(〈aL〉∗ as − a†

s 〈aL〉
)

= 2 |〈aL〉|Y , (9.165)

where Y is the quadrature operator defined by eqn (9.143). This gives the equivalent
result

Shom = 2 |EL| es 〈Y 〉 (9.166)

for the homodyne signal.

Noise in homodyne detection. Just as in the classical analysis, the first term in
the expression (9.159) for N ′

21 would produce a phase-insensitive background, but for
|r|2 significantly different from the balanced value 1/2, the variance in the homodyne
output associated with technical noise in the local oscillator could seriously degrade
the signal-to-noise ratio. This danger is eliminated by using a balanced system, so that
N ′

21 is given by eqn (9.160). The calculation of the variance V (N ′
21) is considerably
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simplified by the assumption that the local oscillator is approximately described by a
coherent state with αL = |αL| exp (iθL). In this case one finds

V (N ′
21) = |αL|2 +

〈
a†

sas

〉
+ 2 |αL|2 V

(
a†

s, as

)− |αL|2 V
(
e−iθLas

)− |αL|2 V
(
e−iθLa†

s

)
.

(9.167)
Expressing this in terms of the quadrature operator Y gives the simpler result

V (N ′
21) = 4 |αL|2 V (Y ) +

〈
a†

sas

〉 � 4 |αL|2 V (Y ) , (9.168)

where the last form is valid in the usual case that the input signal flux is negligible
compared to the local oscillator flux.

C Corrections for finite detector efficiency∗

So far we have treated the detectors as though they were 100% efficient, but perfect
detectors are very hard to find. We can improve the argument given above by using
the model for imperfect detectors described in Section 9.1.4. Applying this model to
detector D1 requires us to replace the operator a′

s—describing the signal transmitted
through the beam splitter in Fig. 9.8—by

a′′
s =

√
ξa′

s + i
√

1 − ξc′s , (9.169)

where the annihilation operator c′s is associated with the mode exp [i (ksy − ωst)] en-
tering through port 2 of the imperfect-detector model shown in Fig. 9.1. A glance
at Fig. 9.8 shows that this is also the mode associated with aL. Since the quantiza-
tion rules assign a unique annihilation operator to each mode, things are getting a
bit confusing. This difficulty stems from a violation of Einstein’s rule caused by an
uncritical use of plane-wave modes. For example, the local oscillator entering port 2
of the homodyne detector, as shown in Fig. 9.8, should be described by a Gaussian
wave packet wL with a transverse profile that is approximately planar at the beam
splitter and effectively zero at the detector D1. Correspondingly, the operator c′s, rep-
resenting the vacuum fluctuations blamed for the detector noise, should be associated
with a wave packet that is approximately planar at the fictitious beam splitter of the
imperfect-detector model and effectively zero at the real beam splitter in Fig. 9.8. In
other words, the noise in detector D1 does not enter the beam splitter. All of this can
be done precisely by using the wave packet quantization methods developed in Section
3.5.2, but this is not necessary as long as we keep our wits about us. Thus we impose
c′sρ = 0, aLρ �= 0, and

[
a†

L, c′s
]

= 0, even though—in the oversimplified plane-wave
picture—both operators c′s and aL are associated with the same plane-wave mode.
In the same way, the noise in detector D2 is simulated by replacing the transmitted
LO-field a′

L with
a′′

L =
√

ξa′
L + i

√
1 − ξc′L , (9.170)

where c′Lρ = 0, and
[
c′L, a†

s

]
= 0.

Continuing in this vein, the difference operator N ′
21 is replaced by

N ′′
21 = a′′†

L a′′
L − a′′†

s a′′
s

= ξN ′
21 + δN ′′

21 . (9.171)
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Each term in δN ′′
21 contains at least one creation or annihilation operator for the vac-

uum modes discussed above. Since the vacuum operators commute with the operators
for the signal and local oscillator, the expectation value of δN ′′

21 vanishes, and the
homodyne signal is

Shom = e2s 〈N ′′
21〉 = ξe2s 〈N ′

21〉 = 2ξ Im (E∗
LEs) . (9.172)

As expected, the signal from the imperfect detector is just the perfect detector result
reduced by the quantum efficiency.

We next turn to the noise in the homodyne signal, which is proportional to the
variance V (N ′′

21). It is not immediately obvious how the extra partition noise in each
detector will contribute to the overall noise, so we first use eqn (9.171) again to get〈

(N ′′
21)

2
〉

= ξ2
〈
(N ′

21)
2
〉

+ ξ 〈N ′
21δN

′′
21〉 + ξ 〈δN ′′

21N
′
21〉 +

〈
(δN ′′

21)
2
〉

. (9.173)

There are no correlations between the vacuum fields c′L and c′s entering the imperfect
detector and the signal and local oscillator fields, so we should expect to find that the
second and third terms on the right side of eqn (9.173) vanish. An explicit calculation
shows that this is indeed the case. Evaluating the fourth term in the same way leads
to the result

V (N ′′
21) = ξ2V (N ′

21) + ξ (1 − ξ)
[〈

a′†
La′

L

〉
+
〈
a′†

s a′
s

〉]
. (9.174)

Comparing this to the single-detector result (9.57) shows that the partition noises
at the two detectors add, despite the fact that N ′′

21 represents the difference in the
photon counts at the two detectors. After substituting eqn (9.168) for V (N ′

21); using
the scattering relations (9.157); and neglecting the small signal flux, we get the final
result

V (N ′′
21) = ξ24 |αL|2 V (Y ) + ξ (1 − ξ) |αL|2 . (9.175)

9.4 Exercises

9.1 Poissonian statistics are reproduced

Use the Poisson distribution p(n) = (n!)−1
nn exp (−n) for the incident photons in eqn

(9.46) to derive eqn (9.48).

9.2 m-fold coincidence counting

Generalize the two-detector version of coincidence counting to any number m. Show
that the m-photon coincidence rate is

w(m) =
(

1
m!

)2
(

m∏
n=1

Sn

)∫ T12+Tgate

T12

dτ2 · · ·
∫ T1m+Tgate

T1m

dτm

G(m) (r1, t1, . . . , rm, tm + τm; r1, t1, . . . , rm, tm + τm) ,

where the signal from the first detector is used to gate the coincidence counter and
T1n = T1 − Tn.
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9.3 Super-Poissonian statistics

Consider the state |Ψ〉 = α |n〉 + β |n + 1〉, with |α|2 + |β|2 = 1. Show that |Ψ〉 is a
nonclassical state that exhibits super-Poissonian statistics.

9.4 Alignment in heterodyne detection

For the heterodyne scheme shown in Fig. 9.6, assume that the reflected LO beam has
the wavevector kL = kL cosϕux + kL sin ϕuy. Rederive the expression for Shet and
show that averaging over the detector surface wipes out the heterodyne signal.

9.5 Noise in heterodyne detection

Use eqn (9.111), eqn (9.119), and eqn (9.135) to derive eqn (9.137).
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Experiments in linear optics

In this chapter we will study a collection of significant experiments which were carried
out with the aid of the linear optical devices described in Chapter 8 and the detection
techniques discussed in Chapter 9.

10.1 Single-photon interference

The essential features of quantum interference between alternative Feynman paths
are illustrated by the familiar Young’s arrangement—sketched in Fig. 10.1—in which
there are two pinholes in a perfectly reflecting screen. The screen is illuminated by a
plane-wave mode occupied by a single photon with energy �ω, and after many suc-
cessive photons have passed through the pinholes the detection events—e.g. spots on
a photographic plate—build up the pattern observed in classical interference experi-
ments.

An elementary quantum mechanical explanation of the single-photon interference
pattern can be constructed by applying Feynman’s rules of interference (Feynman
et al., 1965, Chaps 1–7).
(1) The probability of an event in an ideal experiment is given by the square of the

absolute value of a complex number A which is called the probability amplitude:

P = probability ,

A = probability amplitude ,

P = |A|2 .

(10.1)

��

��

��

��

���

���

Fig. 10.1 A two-pinhole interferometer. The

arrows represent an incident plane wave. The

four ports are defined by the surfaces P1, P1′,
P2, P2′, and the path lengths from the pin-

holes 1 and 2—bracketed by the ports (P1, P1′)
and (P2, P2′) respectively—to the interference

point are L1 and L2.
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(2) When an event can occur in several alternative ways, the probability amplitude
for the event is the sum of the probability amplitudes for each way considered
separately; i.e. there is interference between the alternatives:

A = A1 + A2 ,

P = |A1 + A2|2 .
(10.2)

(3) If an experiment is performed which is capable of determining whether one or
another alternative is actually taken, the probability of the event is the sum of the
probabilities for each alternative. In this case,

P = P1 + P2 , (10.3)

and there is no interference.
In applying rule (2) it is essential to be sure that the situation described in rule (3)
is excluded. This means that the experimental arrangement must be such that it is
impossible—even in principle—to determine which of the alternatives actually occurs.
In the literature—and in the present book—it is customary to refer to the alternative
ways of reaching the final event as Feynman processes or Feynman paths.

In the two-pinhole experiment, the two alternative processes are passage of the
photon through the lower pinhole 1 or the upper pinhole 2 to arrive at the final event:
detection at the same point on the screen. In the absence of any experimental procedure
for determining which process actually occurs, the amplitudes for the two alternatives
must be added. Let Ain be the quantum amplitude for the incoming wave; then the
amplitudes for the two processes are A1 = Ain exp (ikL1) and A2 = Ain exp (ikL2),
where k = ω/c. The probability of detection at the point on the screen (determined
by the values of L1 and L2) is therefore

|A1 + A2|2 = 2 |Ain|2 + 2 |Ain|2 cos [k (L2 − L1)] , (10.4)

which has the same form as the interference pattern in the classical theory.
This thought experiment provides one of the simplest examples of wave–particle

duality. The presence of the interference term in eqn (10.4) exhibits the wave-aspect
of the photon, while the detection of the photon at a point on the screen displays
its particle-aspect. Arguments based on the uncertainty principle (Cohen-Tannoudji
et al., 1977a, Complement D1; Bransden and Joachain, 1989, Sec. 2.5) show that any
experimental procedure that actually determines which pinhole the photon passed
through—this is called which-path information—will destroy the interference pat-
tern. These arguments typically involve an interaction with the particle—in this case
a photon—which introduces uncontrollable fluctuations in physical properties, such as
the momentum. The arguments based on the uncertainty principle show that which-
path information obtained by disturbing the particle destroys the interference pattern,
but this is not the only kind of experiment that can provide which-path information.
In Section 10.3 we will describe an experiment demonstrating that single-photon inter-
ference is destroyed by an experimental arrangement that merely makes it possible to
obtain which-path information, even if none of the required measurements are actually
made and there is no interaction with the particle.
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The description of the two-pinhole experiment presented above provides a simple
physical model which helps us to understand single-photon interference, but a more
detailed analysis requires the use of the scattering theory methods developed in Sec-
tions 8.1 and 8.2. For the two-pinhole problem, the effects of diffraction cannot be
ignored, so it will not be possible to confine attention to a small number of plane
waves, as in the analysis of the beam splitter and the stop. Instead, we will use the
general relations (8.29) and (8.27) to guide a calculation of the field operator in po-
sition space. This is equivalent to using the classical Green function defined by this
boundary value problem to describe the propagation of the field operator through the
pinhole.

In the plane-wave basis the positive frequency part of the out-field is given by

E(+)
out (r, t) =

√
�

2ε0cV

∑
ks

iωka′
ksese

i(k·r−ωkt) , (10.5)

where the scattered annihilation operators obey

a′
ks =

∑
k′s′

Sks,k′s′ak′s′ . (10.6)

If the source of the incident field is on the left (z < 0), then the problem is to calculate
the transmitted field on the right (z > 0). The field will be observed at points r lying
on a detection plane at z = L. The plane waves that impinge on a detector at r must
have kz > 0, and the terms in eqn (10.6) can be split into those with k′

z > 0 (forward
waves) and k′

z < 0 (backwards waves). The contribution of the forward waves to eqn
(10.5) represents the part of the incident field transmitted through the pinholes, while
the backward waves—vacuum fluctuations in this case—scatter into forward waves by
reflection from the screen. The total field in the region z > 0 is then the sum of three
terms:

E(+)
out (r, t) = E(+)

1 (r, t) + E(+)
2 (r, t) + E(+)

3 (r, t) , (10.7)

where E(+)
1 and E(+)

2 are the fields coming from pinholes 1 and 2 respectively, and the
field resulting from reflections of backwards waves at the screen is

E(+)
3 (r, t) =

√
�

2ε0cV

∑
ks,kz>0

iωka′<
ksese

i(k·r−ωkt) , (10.8)

where

a′<
ks =

∑
k′s′,k′

z<0

Sks,k′s′ak′s′ . (10.9)

In the absence of the reflected vacuum fluctuations, E(+)
3 , the total field E(+)

out would
not satisfy the commutation relation (3.17), and this would lead to violations of the
uncertainty principle, as shown in Exercise 10.1.
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If the distance to the observation point r is large compared to the sizes of the
pinholes and to the distance between them—this is called Fraunhofer diffraction or
the far-field approximation—the fields due to the two pinholes are given by

E(+)
p (r, t) = iDpE(+) (rp, t − Lp/c) (p = 1, 2) , (10.10)

where Lp is the distance from the pth pinhole to the observation point r, and Dp is
a real coefficient that depends on the pinhole geometry. For simplicity we will assume
that the pinholes are identical, D1 = D2 = D, and that the incident radiation is
monochromatic. If the direction of the incident beam and the vectors r − r1 and
r − r2 are approximately orthogonal to the screen, then Dp ≈ σ/ (λ0L), where σ is
the common area of the pinholes and λ0 is the average wavelength in the incident field
(Born and Wolf, 1980, Sec. 8.3). This is the standard classical expression, except for
replacing the classical field in the pinhole by the quantum field operator. The average
intensity in a definite polarization e at a detection point r is proportional to

Itot =
〈
E

(−)
out (r, t)E

(+)
out (r, t)

〉
=

3∑
q=1

3∑
p=1

〈
E(−)

q (r, t)E(+)
p (r, t)

〉
, (10.11)

where E
(−)
out = e · E(−)

out , E
(−)
q = e · E(−)

q , and the indices p and q represent the three
terms in eqn (10.7). The density operator, ρ, that defines the ensemble average, 〈· · · 〉,
contains no backwards waves, since it represents the field generated by a source to the
left of the screen. According to eqn (10.8) and eqn (10.9) the operator E

(+)
3 is a linear

combination of annihilation operators for backwards waves, therefore

E
(+)
3 ρ = 0 = ρE

(−)
3 . (10.12)

By using this fact, plus the cyclic invariance of the trace, it is easy to show that eqn
(10.11) reduces to

Itot =
2∑

q=1

2∑
p=1

〈
E(−)

q (r, t) E(+)
p (r, t)

〉
= I1 + I2 + I12 , (10.13)

where Ip is the intensity due to the pth pinhole alone,

Ip = |D|2
〈
E(−) (rp, t − Lp/c)E(+) (rp, t − Lp/c)

〉
(p = 1, 2) , (10.14)

I12 is the interference term,

I12 = 2 Re
〈
E

(−)
1 (r, t)E

(+)
2 (r, t)

〉
= 2D2 Re

〈
E(−) (r1, t − L1/c)E(+) (r2, t − L2/c)

〉
, (10.15)

and E(−) (r, t) = e · E(−) (r, t) .
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The expectation values appearing in these expressions are special cases of the first-
order field correlation function G(1) defined by eqn (4.76). In this notation, the results
are

Ip = |D|2 G(1) (rp, t − Lp/c; rp, t − Lp/c) (p = 1, 2) , (10.16)

and
I12 = 2D2 ReG(1) (r1, t − L1/c; r2, t − L2/c) . (10.17)

From the classical theory of two-pinhole interference we know that high visibility
interference patterns are obtained with monochromatic light. In quantum theory this
means that the power spectrum

〈
a†
ksaks

〉
is strongly peaked at |k| = k0 = ω0/c. If

the density operator ρ satisfies this condition, then the plane-wave expansion for E(+)

implies that the temporal Fourier transform of Tr
[
E(+) (r, t) ρ

]
is strongly peaked at

ω0. This means that the envelope operator E
(+)

defined by

E
(+)

(r, t) = E(+) (r, t) eiω0t (10.18)

can be treated as slowly varying—on the time scale 1/ω0—provided that it is applied
to the monochromatic density matrix ρ. In this case, the correlation functions can be
written as

G(1) (r1, t1; r2, t2) = Tr
[
ρE

(−)
(r1, t1)E

(+)
(r2, t2)

]
e−iω0(t2−t1)

≡ G
(1)

(r1, t1; r2, t2) e−iω0(t2−t1) , (10.19)

where G
(1)

(r1, t1; r2, t2) is a slowly-varying function of t1 and t2. For sufficiently long
pulses, the incident radiation is approximately stationary, so the correlation functions
are unchanged by a time translation tp → tp + τ . In other words they only depend on
the time difference t1 − t2, so the direct terms become

Ip = D2G
(1)

(rp, 0; rp, 0) (p = 1, 2) , (10.20)

while the interference term reduces to

I12 = 2D2 Re G
(1)

(r1, τ ; r2, 0) eiω0τ , (10.21)

where τ = (L2 − L1) /c is the difference in the light travel time for the two pinholes.
All three terms are independent of the time t. The direct terms only depend on the
average intensities at the pinholes, but the factor

eiω0τ = eik0(L2−L1) (10.22)

in the interference term produces rapid oscillations along the detection plane. This is
explicitly exhibited by expressing G

(1)
in terms of its amplitude and phase:

G
(1)

(r1, t1; r2, t2) =
∣∣∣G(1)

(r1, t1; r2, t2)
∣∣∣ eiΦ(r1,t1;r2,t2) , (10.23)

so that I12 is given by
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I12 = 2D2
∣∣∣G(1)

(r1, τ ; r2, 0)
∣∣∣ cos [Φ (r1, τ ; r2, 0) + ω0τ ] . (10.24)

The interference pattern is modulated by slow variations in the amplitude and phase
of G

(1)
due to the finite length of the pulse. When these modulations are ignored, the

interference maxima occur at the path length differences

L2 − L1 = cτ = nλ0 − Φλ0

2π
, n = 0,±1,±2, . . . . (10.25)

The interference pattern calculated from the first-order quantum correlation function
is identical to the classical interference pattern. Since this is true even if the field state
contains only one photon, first-order interference is also called one-photon interference.

An important quantity for interference experiments is the fringe visibility

V ≡ 〈I〉max − 〈I〉min

〈I〉max + 〈I〉min

, (10.26)

where 〈I〉max and 〈I〉min are respectively the maximum and minimum values of the

total intensity on the detection plane. If the slow variations in G
(1)

are neglected, then
one finds

〈I〉max = D2
{
G

(1)
(r1, 0; r1, 0) + G

(1)
(r2, 0; r2, 0) + 2

∣∣∣G(1)
(r1, τ ; r2, 0)

∣∣∣} , (10.27)

〈I〉min = D2
{
G

(1)
(r1, 0; r1, 0) + G

(1)
(r2, 0; r2, 0) − 2

∣∣∣G(1)
(r1, τ ; r2, 0)

∣∣∣} , (10.28)

so the visibility is

V =
2
∣∣∣G(1)

(r1, τ ; r2, 0)
∣∣∣

G
(1)

(r1, 0; r1, 0) + G
(1)

(r2, 0; r2, 0)
. (10.29)

The field–field correlation function G
(1)

(r1, τ ; r2, 0) is therefore a measure of the coher-
ence of the signals from the two pinholes. There are no fringes (V = 0) if the correlation
function vanishes. On the other hand, the inequality (4.85) shows that the visibility is
bounded by

V �
2
√

G
(1)

(r1, 0; r1, 0)G
(1)

(r2, 0; r2, 0)

G
(1)

(r1, 0; r1, 0) + G
(1)

(r2, 0; r2, 0)
� 1 , (10.30)

where the maximum value of unity occurs when the intensities at the two pinholes
are equal. This suggests introducing a normalized correlation function, the mutual
coherence function,

g(1) (x; x′) =
G

(1)
(x; x′)√

G
(1)

(x; x) G
(1)

(x′; x′)
, (10.31)
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which satisfies
∣∣g(1) (x; x′)

∣∣ � 1. In these terms, perfect coherence corresponds to∣∣g(1) (x; x′)
∣∣ = 1, and the fringe visibility is

V =
2
√

G
(1)

(r1, 0; r1, 0)G
(1)

(r2, 0; r2, 0)
∣∣g(1) (r1, τ ; r2, 0)

∣∣
G

(1)
(r1, 0; r1, 0) + G

(1)
(r2, 0; r2, 0)

. (10.32)

Thus measurements of the intensity at each pinhole, the fringe visibility, and the fringe
spacing completely determine the complex mutual coherence function g(1) (x; x′). This
means that the correlation function G(1) (x; x′) or g(1) (x; x′) can always be interpreted
in terms of a Young’s-style interference experiment.

10.1.1 Hanbury Brown–Twiss effect

We have just seen that first-order interference, e.g. in Young’s experiment or in the
Michelson interferometer, is described by the first-order field correlation function G(1).
The Hanbury Brown–Twiss effect (Hanbury Brown, 1974) was one of the earliest ob-
servations that demonstrated optical interference in the intensity–intensity correlation
function G(2). This observation was interpreted as a measurement of photon–photon
correlation, so it eventually led to the founding of the field of quantum optics. The
effect was originally discovered in a simple laboratory experiment in which light from
a mercury arc lamp passes through an interference filter that singles out a strong green
line of the mercury atom at a wavelength of 546.1 nm. The spectrally pure green light
is split by means of a balanced beam splitter into two beams, which are detected by
square-law detectors placed at the output ports of the beam splitter. The experimental
arrangement is shown in Fig. 10.2. The output current I (t) from each detector is a
measure of the intensity in that arm of the beam splitter. The intensities are slowly
varying on the optical scale, with typical Fourier components in the radio range. The
outputs of the two detectors are fed into a radio-frequency mixer that accumulates the
time integral of the product of the two signals. By sending the signal from one of the
detectors through a variable delay line the intensity–intensity correlation,

f(τ) =

∞∫
−∞

I(t)I(t − τ)dt , (10.33)
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Fig. 10.2 Experimental arrangement for ob-

serving the Hanbury Brown–Twiss effect. The

signal is split by a 50/50 beam splitter and

the split fields enter detectors at B and C. The

output of the detectors is fed into a radio-fre-

quency (RF) mixer which integrates the prod-

uct of the two signals.
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is measured as a function of the delay time τ . The data (Hanbury Brown and Twiss,
1957) show a peak in the intensity–intensity correlation function f(τ) near τ = 0.
Hanbury Brown and Twiss interpreted this as a photon-bunching effect explained
by the fact that the Bose character of photons enhances the probability that two
photons will arrive simultaneously at the two detectors. However, Glauber showed
that classical intensity fluctuations in the thermal light emitted by the mercury arc
lamp yield a completely satisfactory description, so that there is no need to invoke the
Bose statistics of photons.

The experimental technique for measuring the intensity–intensity correlation was
later changed from simple square-law detection to coincidence detection based on
a photoelectron counting technique using photomultipliers. Since this technique can
register clicks associated with the arrival of individual photons, it would seem to be
closer to a measurement of a photon–photon correlation function.

For the thermal light source which was used in this experiment, this hope is un-
justified, because we can explain the results on the basis of classical-field notions by
using the semiclassical theory of the photoelectric effect. A quantum description of this
experiment, to be presented later on, employs an expansion of the density operator
in the basis of coherent states. We will see that the radiation emitted by the thermal
source is described by a completely positive quasi-probability distribution function
P (α), which is consistent with a semiclassical explanation in terms of fluctuations in
the intensity of the classical electromagnetic field.

On the other hand, for a pure coherent state the Hanbury Brown–Twiss effect per se
does not exist. Thus if we were to replace the mercury arc lamp by a laser operating far
above threshold, the photon arrivals would be described by a pure Poissonian random
process, with no photon-bunching effect.

This intensity–intensity correlation method was applied to astrophysical stellar in-
terferometry to measure stellar diameters (Hanbury Brown and Twiss, 1956). Stellar
interferometry depends on the difference in path lengths to the telescope from points
on opposite limbs of the star. For example, Michelson stellar interferometry (Born and
Wolf, 1980, Sec. 7.3.6) is based on first-order interference—i.e. on the field–field corre-
lation function—so the optical path lengths must be equalized to high precision. This
is done by adjusting the positions of the interferometer mirrors attached to the tele-
scope so that all wavelengths of light interfere constructively in the field of view. Under
these conditions, white light entering the telescope will result in a bright white-light
fringe. The white-light fringe condition must be met before attempting to measure a
stellar diameter by this method.

By contrast, the beauty of the intensity stellar interferometer is that one can com-
pensate for the delays corresponding to the difference in path lengths in the radio-
wavelength region after detection, rather than in the optical-wavelength region before
detection. Compensating the optical delay by an electronic delay produces a maximum
in the intensity–intensity correlation function of the optical signals.

Furthermore, the optical quality of the telescope surfaces for the intensity inter-
ferometer can be much lower than that required for Michelson stellar interferometry,
so that one can use the reflectors of searchlights as light buckets, rather than astro-
nomical telescopes with optically perfect surfaces. However, the disadvantage of the
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intensity interferometer is that it requires higher intensity sources than the Michelson
stellar interferometer. Thus intensity interferometry can only be used to measure the
diameters of the brightest stars.

10.2 Two-photon interference

The results in Section 10.1 provide support for Dirac’s dictum that each photon inter-
feres with itself, but he went on to say (Dirac, 1958, Sec. I.3)

Each photon then interferes only with itself. Interference between two different pho-
tons never occurs.

This is one of the very few instances in which Dirac was wrong. Further experimental
progress in the generation of states containing exactly two photons has led to the
realization that different photons can indeed interfere. These phenomena involve the
second-order correlation function G(2), defined in Section 4.7, so they are sometimes
called second-order interference. Another terminology calls them fourth-order
interference, since G(2) is an average over the product of four electric field operators.

We will study two important examples of two-photon interference: the Hong–Ou–
Mandel interferometer, in which interference between two photons occurs locally at
a single beam splitter, and the Franson interferometer, where the interference occurs
between two photons falling on spatially-separated beam splitters.

10.2.1 The Hong–Ou–Mandel interferometer

The quantum property of photon indivisibility was demonstrated by allowing a single
photon to enter through one port of a beam splitter. In an experiment performed
by Hong, Ou, and Mandel (Hong et al., 1987), interference between two Feynman
processes was demonstrated by illuminating a beam splitter with a two-photon state
produced by pumping a crystal of potassium dihydrogen phosphate (KDP) with an
ultraviolet laser beam, as shown in Fig. 10.3. In a process known as spontaneous
down-conversion—which will be discussed in Section 13.3.2—a pump photon with
frequency ωp splits into a pair of lower frequency photons, traditionally called the

Fig. 10.3 The Hong–Ou–Mandel interferometer illuminated by a two-photon state, produced

by spontaneous down-conversion in the crystal labeled SDC. The two photon wave packets

are reflected from mirrors M1 and M2 so that they meet at the beam splitter BS. The output

of detectors D1 and D2 are fed to the coincidence counter CC. (Adapted from Hong et al.

(1987).)
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signal and idler.1 Since photons are indistinguishable, they cannot be assigned labels;
therefore, the traditional language must be used carefully and sparingly. The words
‘signal photon’ or ‘idler photon’ simply mean that a photon occupies the signal mode
or the idler mode. It is the modes, rather than the photons, that are distinguishable.
Prior to their arrival at the beam splitter, e.g. at the mirrors M1 and M2, the diffraction
patterns of the signal and idler modes do not overlap.

In the following discussion, the production process can be treated as a black box;
we only need to know that one pump photon enters the crystal and that two (down-
converted) photons are produced simultaneously and leave the crystal as wave packets
with widths of the order of 15 fs. In the notation used in Fig. 8.2, the signal mode
(ksig, ssig) enters through port 1 and the idler mode (kidl, sidl) enters through port 2
of the beam splitter BS.

A Degenerate plane-wave model

It is instructive to analyze this situation in terms of interference between Feynman
processes. We begin with the idealized case of plane-wave modes—propagating from
the beam splitter to the detectors—with degenerate frequencies: ωidl = ωsig = ω0 =
ωp/2. The experimental feature of interest is the coincidence-counting rate. Since a
given photon can only be counted once, the events leading to coincidence counts are
those in which each detector receives one photon.

There are, consequently, two processes leading to coincidence events.

(1) The reflection–reflection (rr) process: both wave packets are reflected from the
beam splitter towards the two detectors.

(2) The transmission–transmission (tt) process: both wave packets are transmitted
through the beam splitter towards the two detectors.

In the absence of which-path information these processes are indistinguishable, since
they both lead to the same final state: one scattered photon is in the idler mode
and the other is in the signal mode. This results in simultaneous clicks in the two
detectors, and one cannot know, even in principle, which of the two processes actually
occurred. According to the Feynman rules of interference we must add the probability
amplitudes for the two processes, and then calculate the absolute square of the sum
to find the total probability. If the incident amplitude is set to one, the amplitudes
of the two processes are Arr = r2 and Att = t2, where r and t are respectively the
complex reflection and transmission coefficients for the beam splitter; therefore, the
coincidence amplitude is

Acoinc = Arr + Att = r2 + t2 . (10.34)

According to eqn (8.8), r and t are π/2 out of phase; therefore the coincidence proba-
bility is

Pcoinc = |Acoinc|2 =
(
|r|2 − |t|2

)2

, (10.35)

1These names are borrowed from radio engineering, which in turn borrowed the ‘idler’ from the
mechanical term ‘idler gear’.
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which, happily, agrees with the result (9.98) for the coincidence-counting rate. The
partial destructive interference between the rr- and tt-processes, demonstrated by the
expression for Pcoinc, becomes total interference for the special case of a balanced
beam splitter, i.e. the coincidence probability vanishes. We will refer to this as the
Hong–Ou–Mandel (HOM) effect. This is a strictly quantum interference effect
which cannot be explained by any semiclassical theory.

Another way of describing this phenomenon is that two photons, in the appropriate
initial state, impinging simultaneously onto a balanced beam splitter will pair off and
leave together through one of the two exit ports, i.e. both photons occupy one of the
output modes, (ksig, ssig) or (kidl, sidl). This behavior is permitted for photons, which
are bosons, but it would be forbidden by the Pauli principle for electrons, which are
fermions. As a result of this pairing effect, detectors placed at the two exit ports of a
balanced beam splitter will never register a coincidence count. The exit port used by
the photon pair varies randomly from one incident pair to the next.

The argument based on the Feynman rules very effectively highlights the fundamen-
tal principles involved in two-photon interference, but it is helpful to derive the result
by using a Schrödinger-picture scattering analysis. The Schrödinger-picture state pro-
duced by degenerate, spontaneous down-conversion is a†

siga
†
idl |0〉, but the initial state

for the beam splitter scattering calculation is modified by the further propagation
from the twin-photon source to the beam splitter. According to eqn (8.1) the scatter-
ing matrix S for propagation through vacuum is simply multiplication by exp (ikL),
where k is the wavenumber and L is the propagation distance; therefore, the general
rule (8.44) shows that the state incident on the beam splitter is

|Φin〉 = eik0Lsigeik0Lidla†
siga

†
idl |0〉 , (10.36)

where Lidl and Lsig are respectively the distances along the idler and signal arms
from the point of creation of the photon pair to the beam splitter. For the present
calculation this phase factor is not important; however, it will play a significant role
in Section 10.2.1-B. According to eqn (6.92), |Φin〉 is an entangled state, and the final
state

|Φfin〉 = r t e−2iω0teik0Lsigeik0Lidl

{(
a†
idl

)2

+
(
a†
sig

)2
}
|0〉

+ eik0Lsigeik0Lidl
(
r2 + t2

)
a†
idla

†
sig |0〉 , (10.37)

obtained by using eqn (8.43), is also entangled. For a balanced beam splitter this
reduces to

|Φfin〉 =
i

2
e−2iω0teik0Lsigeik0Lidl

{(
a†
idl

)2

+
(
a†
sig

)2
}
|0〉 , (10.38)

which explicitly exhibits the final state as a superposition of paired-photon states.
Once again the conclusion is that the coincidence rate vanishes for a balanced beam
splitter.
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The quantum nature of this result can be demonstrated by considering a semiclassi-
cal model in which the signal and idler beams are represented by c-number amplitudes
αsig and αidl. The classical version of the beam splitter equation (8.62) is

α′
sig = t αsig + r αidl ,

α′
idl = r αsig + t αidl ,

(10.39)

and the singles counting rates at detectors D1 and D2 are respectively proportional
to |α′

idl|2 and
∣∣α′

sig

∣∣2. The coincidence-counting rate is proportional to |α′
idl|2

∣∣α′
sig

∣∣2 =∣∣α′
idlα

′
sig

∣∣2, and eqn (10.39) yields

α′
idlα

′
sig = r t

(
α2

sig + α2
idl

)
+
(
r2 + t2

)
αsigαidl

→ i

2
(
α2

sig + α2
idl

)
, (10.40)

where the last line is the result for a balanced beam splitter. This classical result
resembles eqn (10.38), but now the coincidence rate cannot vanish unless one of the
singles rates does. A more satisfactory model can be constructed along the lines of the
argument used for the discussion of photon indivisibility in Section 1.4. Spontaneous
emission is a real transition, while the down-conversion process depends on the virtual
excitation of the quantum states of the atoms in the crystal; nevertheless, spontaneous
down-conversion is a quantum event. A semiclassical model can be constructed by
assuming that the quantum down-conversion event produces classical fields that vary
randomly from one coincidence gate to the next. With this model one can show, as in
Exercise 10.2, that

pcoinc

psigpidl
>

1
2

, (10.41)

where pcoinc is the probability for a coincidence count, and psig and pidl are the prob-
abilities for singles counts—all averaged over many counting windows. This semiclas-
sical model limits the visibility of the interference minimum to 50%; the essentially
perfect null seen in the experimental data can only be predicted by using the complete
destructive interference between probability amplitudes allowed by the full quantum
theory. Thus the HOM null provides further evidence for the indivisibility of photons.

B Nondegenerate wave packet analysis∗

The simplified model used above suffices to explain the physical basis of the Hong–
Ou–Mandel interferometer, but it is inadequate for describing some interesting ap-
plications to precise timing, such as the measurement of the propagation velocity of
single-photon wave packets in a dielectric, and the nonclassical dispersion cancelation
effect, discussed in Sections 10.2.2 and 10.2.3 respectively. These applications exploit
the fact that the signal and idler modes produced in the experiment are not plane
waves; instead, they are described by wave packets with temporal widths T ∼ 15 fs.
In order to deal with this situation, it is necessary to allow continuous variation of the
frequencies and to relax the degeneracy condition ωidl = ωsig, while retaining the sim-
ple geometry of the scattering problem. To this end, we first use eqn (3.64) to replace
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the box-normalized operator aks by the continuum operator as (k), which obeys the
canonical commutation relations (3.26). In polar coordinates the propagation vectors
are described by k = (k, θ, φ), so the propagation directions of the modes (ksig, ssig)
and (kidl, sidl) are given by (θσ, φσ), where σ = sig, idl is the channel index. The as-
sumption of frequency degeneracy can be eliminated, while maintaining the scattering
geometry, by considering wave packets corresponding to narrow cones of propagation
directions. The wave packets are described by real averaging functions fσ (θ, φ) that
are strongly peaked at (θ, φ) = (θσ, φσ) and normalized by∫

dΩ |fσ (θ, φ)|2 = 1 , (10.42)

where dΩ = d (cos θ) dφ. In practice the widths of the averaging functions can be made
so small that ∫

dΩfσ (θ, φ) fρ (θ, φ) ≈ δσρ . (10.43)

With this preparation, we define wave packet operators

a†
σ (ω) ≡ ω

c3/2

∫
dΩ
2π

fσ (θ, φ) a†
sσ

(k) , (10.44)

that satisfy [
aσ (ω) , a†

ρ (ω′)
]

= δσρ2πδ (ω − ω′) ,

[aσ (ω) , aρ (ω′)] = 0 .
(10.45)

For a given value of the channel index σ, the operator a†
σ (ω) creates photons in a wave

packet with propagation unit vectors clustered near the channel value k̃σ = kσ/kσ,
and polarization sσ; however, the frequency ω can vary continuously. These operators
are the continuum generalization of the operators ams (ω) defined in eqn (8.71).

With this machinery in place, we next look for the appropriate generalization of
the incident state in eqn (10.36). Since the frequencies of the emitted photons are not
fixed, we assume that the source generates a state∫

dω

2π

∫
dω′

2π
C (ω, ω′) a†

sig (ω) a†
idl (ω

′) |0〉 , (10.46)

describing a pair of photons, with one in the signal channel and the other in the
idler channel. As discussed above, propagation from the source to the beam splitter
multiplies the state a†

sig (ω) a†
idl (ω

′) |0〉 by the phase factor exp (ikLsig) exp (ik′Lidl). It
is more convenient to express this as

eikLsigeik′Lidl = ei(k+k′)Lidleik∆L , (10.47)

where ∆L = Lsig−Lidl is the difference in path lengths. Consequently, the initial state
for scattering from the beam splitter has the general form

|Φin〉 =
∫

dω

2π

∫
dω′

2π
C (ω, ω′) eik∆La†

sig (ω)a†
idl (ω

′) |0〉 , (10.48)

where we have absorbed the symmetrical phase factor exp [i (k + k′)Lidl] into the
coefficient C (ω, ω′).
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By virtue of the commutation relations (10.45), every two-photon state
a†
sig (ω) a†

idl (ω
′) |0〉 satisfies Bose symmetry; consequently, the two-photon wave packet

state |Φin〉 satisfies Bose symmetry for any choice of C (ω, ω′). However, not all states
of this form will exhibit the two-photon interference effect. To see what further restric-
tions are needed, we consider the balanced case ∆L = 0, and examine the effects of the
alternative processes on |Φin〉. In the transmission–transmission process the directions
of propagation are preserved, but in the reflection–reflection process the directions of
propagation are interchanged. Thus the actions on the incident state are respectively
given by

|Φin〉 tt→ |Φin〉tt =
1
2

∫
dω

2π

∫
dω′

2π
C (ω, ω′) a†

sig (ω) a†
idl (ω

′) |0〉 , (10.49)

and

|Φin〉 rr→ |Φin〉rr = −1
2

∫
dω

2π

∫
dω′

2π
C (ω, ω′) a†

idl (ω) a†
sig (ω′) |0〉

= −1
2

∫
dω

2π

∫
dω′

2π
C (ω′, ω)a†

sig (ω)a†
idl (ω

′) |0〉 . (10.50)

For interference to take place, the final states |Φin〉tt and |Φin〉rr must agree up
to a phase factor, i.e. |Φin〉tt = exp (iΛ) |Φin〉rr. This in turn implies C (ω, ω′) =
− exp (iΛ) C (ω′, ω), and a second use of this relation shows that exp (2iΛ) = 1. Con-
sequently the condition for interference is

C (ω, ω′) = ±C (ω′, ω) . (10.51)

We will see below that the (+)-version of this condition leads to the photon pairing
effect as in the degenerate case. The (−)-version is a new feature which is possible
only in the nondegenerate case. As shown in Exercise 10.5, it leads to destructive
interference for the emission of photon pairs.

In order to see what happens when the interference condition is violated, consider
the function

C (ω, ω′) = (2π)2 C0δ (ω − ω1) δ (ω′ − ω2) (10.52)

describing the input state a†
sig (ω1) a†

idl (ω2) |0〉, where ω1 �= ω2. In this situation pho-
tons entering through port 1 always have frequency ω1 and photons entering through
port 2 always have frequency ω2; therefore, a measurement of the photon energy at ei-
ther detector would provide which-path information by determining the path followed
by the photon through the beam splitter. This leads to a very striking conclusion:
even if no energy determination is actually made, the mere possibility that it could be
made is enough to destroy the interference effect.

The input state defined by eqn (10.52) is entangled, but this is evidently not enough
to ensure the HOM effect. Let us therefore consider the symmetrized function

C (ω, ω′) = (2π)2 C0 [δ (ω − ω1) δ (ω′ − ω2) + δ (ω′ − ω1) δ (ω − ω2)] , (10.53)

which does satisfy the interference condition. The corresponding state
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|Φin〉 = C0

{
a†
sig (ω1) a†

idl (ω2) |0〉 + a†
sig (ω2) a†

idl (ω1) |0〉
}

(10.54)

is not just entangled, it is dynamically entangled, according to the definition in Section
6.5.3. Thus dynamical entanglement is a necessary condition for the photon pairing
or antipairing effect associated with the ± sign in eqn (10.51). This feature plays an
important role in quantum information processing with photons.

In the experiments to be discussed below, the two-photon state is generated by the
spontaneous down-conversion process in which momentum and energy are conserved:

�ωp = �ω + �ω′ ,
�kp = �k + �k′ ,

(10.55)

where (�ωp, �kp) is the energy–momentum four-vector of the parent ultraviolet photon,
and (�ω, �k) and (�ω′, �k′) are the energy–momentum four-vectors for the daughter
photons. The energy conservation law allows C (ω, ω′) to be written as

C (ω, ω′) = 2πδ (ω + ω′ − ωp) g (ν) , (10.56)

where

ν =
ω − ω′

2
, ω = ω0 + ν , ω′ = ω0 − ν . (10.57)

The interference condition (10.51), which ensures that the two Feynman processes lead
to the same final state, becomes g (ν) = ±g (−ν).

The conservation rule (10.55) tells us that the down-converted photons are anti-
correlated in energy. A bluer photon (ω > ω0) is always associated with a redder photon
(ω′ < ω0). Furthermore, the photons are produced with equal amplitudes on either
side of the degeneracy value, ω = ω0 = ωp/2, i.e. g (ν) = g (−ν). Thus the coefficient
function C (ω, ω′) for down-conversion satisfies the (+)-version of eqn (10.51). The
width, ∆ν, of the power spectrum |g (ν)|2 is jointly determined by the properties of
the KDP crystal and the filters that select out a particular pair of conjugate photons.
The two-photon coherence time corresponding to ∆ν is

τ2 ∼ 1
∆ν

. (10.58)

We are now ready to carry out a more realistic analysis of the Hong–Ou–Mandel
experiment in terms of the interference between the tt- and rr-processes. For a given
value of ν = (ω − ω′) /2, the amplitudes are

Att (ν) = t2g (ν) eiΦtt(ν) → 1
2
g (ν) eiΦtt(ν) (10.59)

and
Arr (ν) = r2g (ν) eiΦrr(ν) → −1

2
g (ν) eiΦrr(ν) , (10.60)

where the final forms hold for a balanced beam splitter and Φtt (ν) and Φrr (ν) are the
phase shifts for the rr- and tt-processes respectively. The total coincidence probability
is therefore
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Pcoinc =
∫

dν |Att (ν) + Arr (ν)|2

=
∫

dν |g (ν)|2 sin2

(
∆Φ (ν)

2

)
, (10.61)

where
∆Φ (ν) = Φtt (ν) − Φrr (ν) . (10.62)

The phase changes Φtt (ν) and Φrr (ν) depend on the frequencies of the two photons
and the geometrical distances involved. The distances traveled by the idler and signal
wave packets in the tt-process are

Ltt
idl = Lidl + L1 ,

Ltt
sig = Lsig + L2 ,

(10.63)

where L1 (L2) is the distance from the beam splitter to the detector D1 (D2). The
corresponding distances for the rr-process are

Lrr
idl = Lidl + L2 ,

Lrr
sig = Lsig + L1 .

(10.64)

In the tt-process the idler (signal) wave packet enters detector D1 (D2), so the phase
change is

Φtt (ν) =
ω

c
Ltt

idl +
ω′

c
Ltt

sig . (10.65)

According to eqn (10.50), ω and ω′ switch roles in the rr-process; consequently,

Φrr (ν) =
ω

c
Lrr

idl +
ω′

c
Lrr

sig . (10.66)

Substituting eqns (10.63)–(10.66) into eqn (10.62) leads to the simple result

∆Φ (ν) = 2ν
∆L

c
. (10.67)

Since the two photons are created simultaneously, the difference in arrival times of the
signal and idler wave packets is

∆t =
∆L

c
. (10.68)

The resulting form for the coincidence probability,

Pcoinc (∆t) =
∫

dν |g (ν)|2 sin2 (ν∆t) , (10.69)

has a width determined by |g (ν)|2 and a null at ∆t = 0, as shown in Exercise 10.3.
As expected, the null occurs for the balanced case,

Lsig = Lidl = L0 . (10.70)

In this argument, we have replaced the plane waves of Section 10.2.1-A with
Gaussian pulses. Each pulse is characterized by two parameters, the pulse width, Tσ,
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and the arrival time, tσ, of the pulse peak at the beam splitter. If the absolute differ-
ence in arrival times, |∆t| = |Lsig − Lidl| /c, is larger than the sum of the pulse widths
(|∆t| > Tsig + Tidl) the pulses are nonoverlapping, and the destructive interference
effect will not occur. This case simply represents two repetitions of the photon indivis-
ibility experiment with a single photon. What happens in this situation depends on the
width, Tgate, of the acceptance window for the coincidence counter. If Tgate < |∆t| no
coincidence count will occur, but in the opposite situation, Tgate > |∆t|, coincidence
counts will be recorded with probability 1/2. For ∆t = 0 the wave packets overlap, and
interference between the alternative Feynman paths prevents any coincidence counts.
In order to increase the contrast between the overlapping and nonoverlapping cases,
one should choose Tgate > ∆tmax, where ∆tmax is the largest value of the absolute
time delay. The result is an extremely narrow dip—the HOM dip—in the coinci-
dence count rate as a function of ∆t, as seen in Fig. 10.4.

The alternative analysis using the Schrödinger-picture scattering technique is also
instructive. For this purpose, we substitute the special form (10.56) for C (ω, ω′) into
eqn (10.48) to find the initial state for scattering by the beam splitter:

|Φin〉 = eiω0∆t

∫
dν

2π
g (ν) eiν∆ta†

sig (ω0 + ν) a†
idl (ω0 − ν) |0〉 . (10.71)

Applying eqn (8.76) to each term in this superposition yields

|Φfin〉 = |Φpair〉 + |Φcoinc〉 , (10.72)
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Fig. 10.4 Coincidence rate as a function of the relative optical time delay in the interfer-

ometer. The solid line is a Gaussian fit, with an rms width of 15.3 fs. This profile serves as a

map of the overlapping photon wave packets. (Reproduced from Steinberg et al. (1992).)
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where

|Φpair〉 = ieiωpteiω0∆t 1
2

∫
dν

2π
g (ν) cos (ν∆t)

×
[
a†
sig (ω0 + ν) a†

sig (ω0 − ν) |0〉 + a†
idl (ω0 + ν) a†

idl (ω0 − ν) |0〉
]

(10.73)

describes the pairing behavior, and

|Φcoinc〉 = ieiωpteiω0∆t 1
2

∫
dν

2π
g (ν) sin (ν∆t)

×
[
a†
sig (ω0 + ν) a†

idl (ω0 − ν) |0〉 − a†
idl (ω0 + ν) a†

sig (ω0 − ν) |0〉
]

(10.74)

represents the state leading to coincidence counts.

10.2.2 The single-photon propagation velocity in a dielectric∗

The down-converted photons are twins, i.e. they are born at precisely the same instant
inside the nonlinear crystal. On the other hand, the strict conservation laws in eqn
(10.55) are only valid if (�ωp, �kp) is sharply defined. In practice this means that the
incident pulse length must be long compared to any other relevant time scale, i.e.
the pump laser is operated in continuous-wave (cw) mode. Thus the twin photons
are born at the same time, but this time is fundamentally unknowable because of the
energy–time uncertainty principle.

These properties allow a given pair of photons to be used, in conjunction with
the Hong–Ou–Mandel interferometer, to measure the speed with which an individ-
ual photon traverses a transparent dielectric medium. This allows us to investigate
the following question: Does an individual photon wave packet move at the group ve-
locity through the medium, just as an electromagnetic wave packet does in classical
electrodynamics? The answer is yes, if the single-photon state is monochromatic and
the medium is highly transparent. This agrees with the simple theory of the quantized
electromagnetic field in a transparent dielectric, which leads to the expectation that an
electromagnetic wave packet containing a single photon propagates with the classical
group velocity through a dispersive and nondissipative dielectric medium.

A schematic of an experiment (Steinberg et al., 1992) which demonstrates that
individual photons do indeed travel at the group velocity is shown in Fig. 10.5. In this
arrangement an argon-ion UV laser beam, operating at wavelength of 351 nm, enters a
KDP crystal, where entangled pairs of photons are produced. Degenerate red photons
at a wavelength of 702 nm are selected out for detection by means of two irises, I1 and
I2, placed in front of detectors D1 and D2, which are single-photon counting modules
(silicon avalanche photodiodes). The signal wave packet, which follows the upper path
of the interferometer, traverses a glass sample of length L, and subsequently enters an
optical-delay mechanism, consisting of a right-angle trombone prism mounted on a
computer-controlled translation stage. This prism retroreflects the signal wave packet
onto one input port of the final beam splitter, with a variable time delay. Consequently,
the location of the trombone prism can be chosen so that the signal wave packet will
overlap with the idler wave packet.
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Fig. 10.5 Apparatus to measure photon propagation times. (Reproduced from Steinberg

et al. (1992).)

Meanwhile, the idler wave packet has been traveling along the lower path of the
interferometer, which is empty of all optical elements, apart from a single mirror which
reflects the idler wave packet onto the other input port of the beam splitter. If the
optical path length difference between the upper and lower paths of the interferometer
is adjusted to be zero, then the signal and idler wave packets will meet at the same
instant at the final beam splitter. For this to happen, the longitudinal position of the
trombone prism must be adjusted so as to exactly compensate for the delay—relative
to the idler wave packets transit time through vacuum—experienced by the signal
wave packet, due to its propagation through the glass sample at the group velocity,
vg < c.

As explained in Section 10.2.1, the bosonic character of photons allows a pair of
photons meeting at a balanced beam splitter to pair off, so that they both go towards
the same detector. The essential condition is that the initial two-photon state contains
no which-path hints. When this condition is satisfied, there is a minimum (a perfect
null under ideal circumstances) of the coincidence-counting signal. The overlap of the
signal and idler wave packets at the beam splitter must be as complete as possible, in
order to produce the Hong–Ou–Mandel minimum in the coincidence count rate. As the
time delay produced by the trombone prism is varied, the result is an inverted Gaussian
profile, similar to the one pictured in Fig. 10.4, near the minimum in the coincidence
rate. As can be readily seen from the first line in Table 10.1, a compensating delay of
35 219±1 fs must be introduced by the trombone prism in order to produce the Hong–
Ou–Mandel minimum in the coincidence rate. This delay is very close to what one
expects for a classical electromagnetic wave packet propagating at the group velocity
through a 1/2 inch length of SF11 glass.

This experiment was repeated for several samples of glass in various configurations.
From Table 10.1, we see that the theoretical predictions, based on the assumption
that single-photon wave packets travel at the group velocity, agree very well with
experimental measurements. The predictions based on the alternative supposition that
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Glass L τt (expt) τg (theory) τp (theory)
(µm) (fs) (fs) (fs)

SF11 ( 1
2

′′
) 12687 ± 13 35219 ± 1 35181 ± 35 32642 ± 33

SF11 ( 1
4

′′
) −6337 ± 13 −17559.6 ± 1 −17572 ± 35 −16304 ± 33

SF11 ( 1
2

′′
& 1

4

′′
) 19033 ± 0.5 52782.4 ± 1 52778.6 ± 1.4 48949 ± 46

BK7 ( 1
2

′′
& 1

4

′′
) 18894 ± 18 33513 ± 1 33480 ± 33 32314 ± 32

All BK7 & SF11 n/a∗ −19264 ± 1 −19269 ± 1.4 −16635 ± 56

BK7 ( 1
2

′′
) 12595 ± 13 22349.5 ± 1 22318 ± 22 21541 ± 21

∗This measurement involved both pieces of BK7 in one arm and both pieces of SF11
in the other, so no individual length measurement is meaningful.

Table 10.1 Measured delay times compared to theoretical values computed using the group

and phase velocities. (Reproduced from Steinberg et al. (1992).)

the photon travels at the phase velocity seriously disagree with experiment.

10.2.3 The dispersion cancelation effect∗

In addition to providing evidence that single photons propagate at the group velocity,
the experiment reported above displays a feature that is surprising from a classical
point of view. For the experimental run with the 1/2 in glass sample inserted in the
signal arm, Fig. 10.6 shows that the HOM dip has essentially the same width as
the vacuum-only case shown in Fig. 10.4. This is surprising, because a classical wave
packet passing through the glass sample experiences dispersive broadening, due to the
fact that plane waves with different frequencies propagate at different phase velocities.
This raises the question: Why is the width of the coincidence-count dip not changed
by the broadening of the signal wave packet? One could also ask the more fundamental
question: How is it that the presence of the glass sample in the signal arm does not
altogether destroy the delicate interference phenomena responsible for the null in the
coincidence count?

To answer these questions, we first recall that the existence of the HOM null
depends on starting with an initial state such that the rr- and tt-processes lead to the
same final state. When this condition for interference is satisfied, it is impossible—
even in principle—to determine which photon passed through the glass sample. This
means that each of the twin photons traverses both the rr- and the tt-paths—just
as each photon in a Young’s interference experiment passes through both pinholes.
In this way, each photon experiences two different values of the frequency-dependent
index of refraction—one in glass, the other in vacuum—and this fact is the basis for a
quantitative demonstration that the two-photon interference effect also takes place in
the unbalanced HOM interferometer.

The only difference between this experiment and the original Hong–Ou–Mandel
experiment discussed in Section 10.2.1-B is the presence of the glass sample in the
signal arm of the apparatus; therefore, we only need to recalculate the phase difference
∆Φ (ν) between the two paths. The new phase shifts for each path are obtained from
the old phase shifts by adding the difference in phase shift between the length L of
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Fig. 10.6 Coincidence profile after a 1/2 in piece of SF11 glass is inserted in the signal arm of

the interferometer. The location of the minimum is shifted by 35 219 fs from the corresponding

vacuum result, but the width is essentially unchanged. For comparison the dashed curve shows

a classically broadened 15 fs pulse. (Reproduced from Steinberg et al. (1992).)

the glass sample and the same length of vacuum; therefore

Φtt (ν) = Φ(0)
tt (ν) +

[
k (ω) − ω

c

]
L (10.75)

and

Φrr (ν) = Φ(0)
rr (ν) +

[
k (ω′) − ω′

c

]
L , (10.76)

where Φ(0)
tt (ν) and Φ(0)

rr (ν) are respectively given by eqns (10.65) and (10.66). The
new phase difference is

∆Φ (ν) = ∆Φ(0) (ν) +
{[

k (ω) − ω

c

]
−
[
k (ω′) − ω′

c

]}
L , (10.77)

so using eqn (10.67) for ∆Φ(0) (ν) yields

∆Φ (ν) =
2ν

c
(∆L − L) + [k (ω0 + ν) − k (ω0 − ν)] L , (10.78)

where ω0 = (ω + ω′) /2 = ωp/2. The difference k (ω0 + ν) − k (ω0 − ν) represents the
fact that both of the anti-correlated twin photons pass through the glass sample.

As a consequence of dispersion, the difference between the wavevectors is not in
general a linear function of ν; therefore, it is not possible to choose a single value of
∆L that ensures ∆Φ (ν) = 0 for all values of ν. Fortunately, the limited range of values
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for ν allowed by the sharply-peaked function |g (ν)|2 in eqn (10.69) justifies a Taylor
series expansion,

k (ω0 ± ν) = k (ω0) +
(

dk

dω

)
0

(±ν) +
1
2

(
d2k

dω2

)
0

(±ν)2 + O
(
ν3
)
, (10.79)

around the degeneracy value ν = 0 (ω = ω′ = ω0). When this expansion is substi-
tuted into eqn (10.78) all even powers of ν cancel out; we call this the dispersion
cancelation effect. In this approximation, the phase difference is

∆Φ (ν) =
2ν

c
(∆L − L) + 2

(
dk

dω

)
0

νL + O
(
ν3
)

=
2ν

c
(∆L − L) +

2ν

vg0
L + O

(
ν3
)
, (10.80)

where the last line follows from the definition (3.142) of the group velocity. If the
third-order dispersive terms are neglected, the null condition ∆Φ (ν) = 0 is satisfied
for all ν by setting

∆L =
(

1 − c

vg0

)
L < 0 , (10.81)

where the inequality holds for normal dispersion, i.e. vg0 < c. Thus the signal path
length must be shortened, in order to compensate for slower passage of photons through
the glass sample.

The second-order term in the expansion (10.79) defines the group velocity disper-
sion coefficient β:

β =
1
2

d2k

dω2

∣∣∣∣
ω=ω0

= −1
2

1
v2

g0

(
dvg

dω

)
0

. (10.82)

Since β cancels out in the calculation of ∆Φ (ν), it does not affect the width of the
Hong–Ou–Mandel interference minimum.

10.2.4 The Franson interferometer∗

The striking phenomena discussed in Sections 10.2.1–10.2.3 are the result of a quan-
tum interference effect that occurs when twin photons—which are produced simulta-
neously at a single point in the KDP crystal—are reunited at a single beam splitter.
In an even more remarkable interference effect, first predicted by Franson (1989), the
two photons never meet again. Instead, they only interact with spatially-separated
interferometers, that we will label as nearby and distant. The final beam splitter in
each interferometer has two output ports: the one positioned between the beam split-
ter and the detector is called the detector port, since photons emerging from this port
fall on the detector; the other is called the exit port, since photons emitted from this
port leave the apparatus. At the final beam splitter in each interferometer the photon
randomly passes through the detector or the exit port. Speaking anthropomorphically,
the choice made by each photon at its final beam splitter is completely random, but
the two—apparently independent—choices are in fact correlated. For certain settings
of the interferometers, when one photon chooses the detector port, so does the other,
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i.e. the random choices of the two photons are perfectly correlated. This happens de-
spite the fact that the photons have never interacted since their joint production in
the KDP crystal. Even more remarkably, an experimenter can force a change, from
perfectly correlated choices to perfectly anti-correlated choices, by altering the setting
of only one of the interferometers, e.g. the nearby one.

This situation is so radically nonclassical that it is difficult to think about it clearly.
A common mistake made in this connection is to conclude that altering the setting at
the nearby interferometer is somehow causing an instantaneous change in the choices
made by the photon in the distant interferometer. In order to see why this is wrong,
it is useful to imagine that there are two experimenters: Alice, who adjusts the nearby
interferometer and observes the choices made by photons at its final beam splitter;
and Bob, who observes the choices made by successive photons at the final beam
splitter in the distant interferometer, but makes no adjustments. An important part
of the experimental arrangement is a secret classical channel through which Alice is
informed—without Bob’s knowledge—of the results of Bob’s measurements. Let us
now consider two experimental runs involving many successive pairs of photons. In
the first, Alice uses her secret information to set her interferometer so that the choices
of the two photons are perfectly correlated. In the meantime, Bob—who is kept in
the dark regarding Alice’s machinations—accumulates a record of the detection-exit
choices at his beam splitter. In the second run, Alice alters the settings so that the
photon choices are perfectly anti-correlated, and Bob innocently continues to acquire
data. Since the individual quantum events occurring at Bob’s beam splitter are per-
fectly random, it is clear that his two sets of data will be statistically indistinguishable.
In other words, Bob’s local observations at the distant interferometer—made without
benefit of a secret channel—cannot detect the changes made by Alice in the settings
of the nearby interferometer. The same could be said of any local observations made
by Alice, if she were deprived of her secret channel. The difference between the two
experiments is not revealed until the two sets of data are brought together—via the
classical communication channel—and compared. Alice’s manipulations do not cause
events through instantaneous action at a distance; instead, her actions cause a change
in the correlation between distant events that are individually random as far as local
observations are concerned.

The peculiar phenomena sketched above can be better understood by describing
a Franson interferometer that was used in an experiment with down-converted pairs
(Kwiat et al., 1993). In this arrangement, shown schematically in Fig. 10.7, each photon
passes through one interferometer.

An examination of Fig. 10.7 shows that each interferometer Ij (defined by the
components Mj, B1j , and B2j , with j = 1, 2) contains two paths, from the initial
to the final beam splitter, that send the photon to the associated detector: a long
path with length Lj and a short path with length Sj . This arrangement is called
an unbalanced Mach–Zehnder interferometer. The difference ∆Lj = Lj − Sj in path
lengths serves as an optical delay line that can be adjusted by means of the trombone
prism. We will label the signal and idler wave packets with 1 and 2 according to the
interferometer that is involved.

A photon traversing an interferometer does not split at the beam splitters, but the
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Fig. 10.7 Experimental configuration for a Franson interferometer. (Reproduced from Kwiat

et al. (1993).)

probability amplitude defining the wave packet does; consequently—just as in Young’s
two-pinhole experiment—the two paths available to the photon could produce single-
photon interference. In the present case, the interference would appear as a temporal
oscillation of the intensity emitted from the final beam splitter. We will abuse the
terminology slightly by also referring to these oscillations as interference fringes. This
effect can be prevented by choosing the optical delay ∆Lj/c to be much greater than
the typical coherence time τ1 of a single-photon wave packet:

∆Lj

c
� τ1 . (10.83)

When this is the case, the two partial wave packets—one following the long path and
the other following the short path through the interferometer—completely miss each
other at the final beam splitter, so there is no single-photon interference.

The motivation for eliminating single-photon interference is that the oscillation
of the singles rates at one or both detectors would confuse the measurement of the
coincidence rate, which is the signal for two-photon interference. Further examination
of Fig. 10.7 shows that there are four paths that can result in the detection of both
photons: l–l (each wave packet follows its long path); l–s (wave packet 1 follows its
long path and wave packet 2 follows its short path); s–l (wave packet 1 follows its
short path and wave packet 2 follows its long path); and s–s (each wave packet follows
its short path).

According to Feynman’s rules, two paths leading to distinct final states cannot
interfere, so we need to determine which pairs of paths lead to different final states.
The first step in this task is to calculate the arrival time of the wave packets at their
respective detectors. For interferometer Ij , let Tj be the propagation time to the first
beam splitter plus the propagation time from the final beam splitter to the detector;
then the arrival times at the detector via the long or short path are

tjl = Tj + Lj/c (10.84)
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and
tjs = Tj + Sj/c , (10.85)

respectively. This experiment uses a cw pump to produce the photon pairs; therefore,
only the differences in arrival times at the detectors are meaningful. The four processes
yield the time differences

∆tls = t1l − t2s = T1 − T2 +
L1 − S2

c
, (10.86)

∆tsl = t1s − t2l = T1 − T2 − L2 − S1

c
, (10.87)

∆tll = t1l − t2l = T1 − T2 +
L1 − L2

c
, (10.88)

∆tss = t1s − t2s = T1 − T2 +
S1 − S2

c
, (10.89)

and two processes will not interfere if the difference between their ∆ts is larger than
the two-photon coherence time τ2 defined by eqn (10.58). For example, eqns (10.86)
and (10.87) yield the difference

∆tls − ∆tsl =
∆L1 + ∆L2

c
� τ2 , (10.90)

where the final inequality follows from the condition (10.83) and the fact that τ1 ∼ τ2.
The conclusion is that the processes l–s and s–l cannot interfere, since they lead to
different final states. Similar calculations show that l–s and s–l are distinguishable
from l–l and s–s ; therefore, the only remaining possibility is interference between l–l
and s–s. In this case the difference is

∆tll − ∆tss =
∆L1 − ∆L2

c
, (10.91)

so that interference between these two processes can occur if the condition

|∆L1 − ∆L2|
c

� τ2 (10.92)

is satisfied. The practical effect of these conditions is that the interferometers must be
almost identical, and this is a source of experimental difficulty.

When the condition (10.92) is satisfied, the final states reached by the short–short
and long–long paths are indistinguishable, so the corresponding amplitudes must be
added in order to calculate the coincidence probability, i.e.

P12 = |All + Ass|2 . (10.93)

The amplitudes for the two paths are

All = r1t
′
1r2t

′
2e

iΦll ,

Ass = r′1t1r
′
2t2e

iΦss ,
(10.94)

where (rj , tj) and
(
r′j , t

′
j

)
are respectively the reflection and transmission coefficients

for the first and second beam splitter in the jth interferometer, and the phases Φll
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and Φss are the sums of the one-photon phases for each path. We will simplify this
calculation by assuming that all beam splitters are balanced and that the photon
frequencies are degenerate, i.e. ω1 = ω2 = ω0 = ωp/2. In this case the phases are

Φll = ω0 (t1l + t2l) = ω0 (T1 + T2) +
ω0

c
(L1 + L2) ,

Φss = ω0 (t1s + t2s) = ω0 (T1 + T2) +
ω0

c
(S1 + S2) ,

(10.95)

and the coincidence probability is

P12 = cos2
(

∆Φ
2

)
, (10.96)

where
∆Φ = Φll − Φss =

ω0

c
(∆L1 + ∆L2) . (10.97)

Now suppose that Bob and Alice initially choose the same optical delay for their
respective interferometers, i.e. they set ∆L1 = ∆L2 = ∆L, then

∆Φ
2

=
ω0

c
∆L = 2π

∆L

λ0
, (10.98)

where λ0 = 2πc/ω0 is the common wavelength of the two photons. If the delay ∆L
is arranged to be an integer number m of wavelengths, then ∆Φ/2 = 2πm and P12

achieves the maximum value of unity. In other words, with these settings the behavior
of the photons at the final beam splitters are perfectly correlated, due to constructive
interference between the two probability amplitudes.

Next consider the situation in which Bob keeps his settings fixed, while Alice alters
her settings to ∆L1 = ∆L + δL, so that

∆Φ
2

= 2πm + π
δL

λ0
, (10.99)

and

P12 = cos2
(

π
δL

λ0

)
. (10.100)

For the special choice δL = λ0/2, the coincidence probability vanishes, and the be-
havior of the photons at the final beam splitters are anti-correlated, due to complete
destructive interference of the probability amplitudes. This drastic change is brought
about by a very small adjustment of the optical delay in only one of the interferom-
eters. We should stress the fact that macroscopic physical events—the firing of the
detectors—that are spatially separated by a large distance behave in a correlated or
anti-correlated way, by virtue of the settings made by Alice in only one of the inter-
ferometers.

In Chapter 19 we will see that these correlations-at-a-distance violate the Bell
inequalities that are satisfied by any so-called local realistic theory. We recall that a
theory is said to be local if no signals can propagate faster than light, and it is said to be
realistic if physical objects can be assumed to have definite properties in the absence of
observation. Since the results of experiments with the Franson interferometer violate
Bell’s inequalities—while agreeing with the predictions of quantum theory—we can
conclude that the quantum theory of light is not a local realistic theory.
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10.3 Single-photon interference revisited∗

The experimental techniques required for the Hong–Ou–Mandel demonstration of
two-photon interference—creation of entangled photon pairs by spontaneous down-
conversion (SDC), mixing at beam splitters, and coincidence detection—can also be
used in a beautiful demonstration of a remarkable property of single-photon interfer-
ence. In our discussion of Young’s two-pinhole interference in Section 10.1, we have
already remarked that any attempt to obtain which-path information destroys the
interference pattern. The usual thought experiments used to demonstrate this for the
two-pinhole configuration involve an actual interaction of the photon—either with
some piece of apparatus or with another particle—that can determine which pinhole
was used. The experiment to be described below goes even further, since the mere pos-
sibility of making such a determination destroys the interference pattern, even if the
measurements are not actually carried out and no direct interaction with the photons
occurs. This is a real experimental demonstration of Feynman’s rule that interference
can only occur between alternative processes if there is no way—even in principle—to
distinguish between them. In this situation, the complex amplitudes for the alterna-
tive processes must first be added to produce the total probability amplitude, and only
then is the probability for the final event calculated by taking the absolute square of
the total amplitude.

10.3.1 Mandel’s two-crystal experiment

In the two-crystal experiment of Mandel and his co-workers (Zou et al., 1991), shown in
Fig. 10.8, the beam from an argon laser, operating at an ultraviolet wavelength, falls on
the beam splitter BSp. This yields two coherent, parallel pump beams that enter into
two staggered nonlinear crystals, NL1 and NL2, where they can undergo spontaneous
down-conversion. The rate of production of photon pairs in the two crystals is so low
that at most a single photon pair exists inside the apparatus at any given instant. In
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Fig. 10.8 Spontaneous down-conversion (SDC) occurs in two crystals NL1 and NL2. The

two idler modes i1 and i2 from these two crystals are carefully aligned so that they coincide

on the face of detector Di. The dashed line in beam path i1 in front of crystal NL2 indicates a

possible position of a beam block, e.g. an opaque card. (Reproduced from Zou et al. (1991).)
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other words, we can assume that the simultaneous emission of two photon pairs, one
from each crystal, is so rare that it can be neglected.

The idler beams i1 and i2, emitted from the crystals NL1 and NL2 respectively,
are carefully aligned so that their transverse Gaussian-mode beam profiles overlap as
exactly as possible on the face of the idler detector Di. Thus, when a click occurs in Di,
it is impossible—even in principle—to know whether the detected photon originated
from the first or the second crystal. It therefore follows that it is also impossible—even
in principle—to know whether the twin signal wave packet, produced together with
the idler wave packet describing the detected photon, originated from the first crystal
as a signal wave packet in beam s1, or from the second crystal as a signal wave packet
in beam s2. The two processes resulting in the appearance of s1 or s2 are, therefore,
indistinguishable; and their amplitudes must be added before calculating the final
probability of a click at detector Ds.

10.3.2 Analysis of the experiment

The two indistinguishable Feynman processes are as follows. The first is the emission
of the signal wave packet by the first crystal into beam s1, reflection by the mirror
M1, reflection at the output beam splitter BSo, and detection by the detector Ds. This
is accompanied by the emission of a photon in the idler mode i1 that traverses the
crystal NL2—which is transparent at the idler wavelength—and falls on the detector
Di. The second process is the emission by the second crystal of a photon in the signal
wave packet s2, transmission through the output beam splitter BSo, and detection by
the same detector Ds, accompanied by emission of a photon into the idler mode i2
which falls on Di. This experiment can be analyzed in two apparently different ways
that we consider below.

A Second-order interference

Let us suppose that the photon detections at Ds are registered in coincidence with
the photon detections at Di, and that the two idler beams are perfectly aligned. If a
click were to occur in Ds in coincidence with a click in Di, it would be impossible to
determine whether the signal–idler pair came from the first or the second crystal. In
this situation Feynman’s interference rule tells us that the probability amplitude A1

that the photon pair originates in crystal NL1 and the amplitude A2 of pair emission
by NL2 must be added to get the probability

|A1 + A2|2 (10.101)

for a coincidence count. When the beam splitter BSo is slowly scanned by small trans-
lations in its transverse position, the signal path length of the first process is changed
relative to the signal path length of the second process. This in turn leads to a change
in the phase difference between A1 and A2; therefore, the coincidence count rate would
exhibit interference fringes.

From Section 9.2.4 we know that the coincidence-counting rate for this experiment
is proportional to the second-order correlation function

G(2) (xs, xi; xs, xi) = Tr
[
ρinE(−)

s (xs)E
(−)
i (xi)E

(+)
i (xi) E(+)

s (xs)
]
, (10.102)
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where ρin is the density operator describing the initial state of the photon pair produced
by down-conversion. The subscripts s and i respectively denote the polarizations of
the signal and idler modes. The variables xs and xi are defined as xs = (rs, ts) and
xi = (ri, ti), where rs and ri are respectively the locations of the detectors Ds and Di,
while ts and ti are the arrival times of the photons at the detectors. This description
of the experiment as a second-order interference effect should not be confused with the
two-photon interference studied in Section 10.2.1. In the present experiment at most
one photon is incident on the beam splitter BSo during a coincidence-counting window;
therefore, the pairing phenomena associated with Bose statistics for two photons in
the same mode cannot occur.

B First-order interference

Since the state ρin involves two photons—the signal and the idler—the description in
terms of G(2) offered in the previous section seems very natural. On the other hand,
in the ideal case in which there are no absorptive or scattering losses and the classical
modes for the two idler beams i1 and i2 are perfectly aligned, an idler wave packet will
fall on Di whenever a signal wave packet falls on Ds. In this situation, the detector Di is
actually superfluous; the counting rate of detector Ds will exhibit interference whether
or not coincidence detection is actually employed. In this case the amplitudes A1 and
A2 refer to the processes in which the signal wave packet originates in the first or the
second crystal. The counting rate |A1 + A2|2 at detector Ds will therefore exhibit the
same interference fringes as in the coincidence-counting experiment, even if the clicks
of detector Di are not recorded. In this case the interference can be characterized solely
by the first-order correlation function

G(1) (xs; xs) = Tr
[
ρinE

(−)
s (xs)E(+)

s (xs)
]
. (10.103)

In the actual experiment, no coincidence detection was employed during the collection
of the data. The first-order interference pattern shown as trace A in Fig. 10.9 was
obtained from the signal counter Ds alone. In fact, the detector Di and the entire
coincidence-counting circuitry could have been removed from the apparatus without
altering the experimental results.

10.3.3 Bizarre aspects

The interference effect displayed in Fig. 10.9 may appear strange at first sight, since the
signal wave packets s1 and s2 are emitted spontaneously and at random by two spatially
well-separated crystals. In other words, they appear to come from independent sources.
Under these circumstances one might expect that photons emitted into the two modes
s1 and s2 should have nothing to do with each other. Why then should they produce
interference effects at all? The explanation is that the presence of at most one photon
in a signal wave packet during a given counting window, combined with the perfect
alignment of the two idler beams i1 and i2, makes it impossible—even in principle—to
determine which crystal actually emitted the detected photon in the signal mode. This
is precisely the situation in which the Feynman rule (10.2) applies; consequently, the
amplitudes for the processes involving signal photons s1 or s2 must be added, and
interference is to be expected.
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Fig. 10.9 Interference fringes of the signal photons detected by Ds, as the transverse position

of the final splitter BSo is scanned (see Fig. 10.8). Trace A is taken with a neutral 91%

transmission density filter placed between the two crystals. Trace B is taken with the beam

path i1 blocked by an opaque card (i.e. a ‘beam block’). (Reproduced from Zou et al. (1991).)

Now let us examine what happens if the experimental configuration is altered
in such a way that which-path information becomes available in principle. For this
purpose we assign Alice to control the position of the beam splitter BSo and record
the counting rate at detector Ds, while Bob is put in charge of the entire idler arm,
including the detector Di. As part of an investigation of possible future modifications of
the experiment, Bob inserts a neutral density filter (an ideal absorber with amplitude
transmission coefficient t independent of frequency) between NL1 and NL2, as shown
by the line NDF in Fig. 10.8. Since the filter interacts with the idler photons, but
does not interact with the signal photons in any way, Bob expects that he can carry
out this modification without any effect on Alice’s measurements. In the extreme limit
t ≈ 0—i.e. the idler photon i1 is completely blocked, so that it will never arrive at
Di—Bob is surprised when Alice excitedly reports that the interference pattern at Ds

has completely disappeared, as shown in trace B of Fig. 10.9.
Alice and Bob eventually arrive at an explanation of this truly bizarre result by

a strict application of the Feynman interference rules (10.1)–(10.3). They reason as
follows. With the i1-beam block in place, suppose that there is a click at Ds but not at
Di. Under the assumption that both Ds and Di are ideal (100% effective) detectors, it
then follows with certainty that no idler photon was emitted by NL2. Since the signal
and idler photons are emitted in pairs from the same crystal, it also follows that the
signal photon must have been emitted by NL1. Under the same circumstances, if there
are simultaneous clicks at Ds and Di, then it is equally certain that the signal photon
must have come from NL2. This means that Bob and Alice could obtain which-path
information by monitoring both counters. Therefore, in the new experimental con-
figuration, it is in principle possible to determine which of the alternative processes
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actually occurred. This is precisely the situation covered by rule (10.3), so the proba-
bility of a count at Ds is the sum of the probabilities for the two processes considered
separately; there is no interference. A truly amazing aspect of this situation is that the
interference pattern disappears even if the detector Di is not present. In fact—just as
before—the detector Di and the entire coincidence-counting circuitry could have been
removed from the apparatus without altering the experimental results. Thus the mere
possibility that which-path information could be gathered by inserting a beam block
is sufficient to eliminate the interference effect.

The phenomenon discussed above provides another example of the nonlocal char-
acter of quantum physics. Bob’s insertion or withdrawal of the beam blocker leads to
very different observations by Alice, who could be located at any distance from Bob.
This situation is an illustration of a typically Delphic remark made by Bohr in the
course of his dispute with Einstein (Bohr, 1935):

But even at this stage there is essentially the question of an influence on the very
conditions which define the possible types of predictions regarding the future behavior
of the system.

With this hint, we can understand the effect of Bob’s actions as setting the overall
conditions of the experiment, which produce the nonlocal effects.

An interesting question which has not been addressed experimentally is the follow-
ing: How soon after a sudden blocking of beam path i1 does the interference pattern
disappear for the signal photons? Similarly, how soon after a sudden unblocking of
beam path i1 does the interference pattern reappear for the signal photons?

10.4 Tunneling time measurements∗

Soon after its discovery, it was noticed that the Schrödinger equation possessed real,
exponentially damped solutions in classically forbidden regions of space, such as the
interior of a rectangular potential barrier for a particle with energy below the top of
the barrier. This phenomenon—which is called tunneling—is mathematically similar
to evanescent waves in classical electromagnetism.

The first observation of tunneling quickly led to the further discoveries of important
early examples, such as the field emission of electrons from the tips of cold, sharp
metallic needles, and Gamow’s explanation of the emission of alpha particles (helium
nuclei) from radioactive nuclei undergoing α decay.

Recent examples of the applications of tunneling include the Esaki tunnel diode
(which allows the generation of high-frequency radio waves), Josephson tunneling be-
tween two superconductors separated by a thin oxide barrier (which allows the sensi-
tive detection of magnetic fields in a Superconducting QU antum Interference Device
(SQUID)), and the scanning tunneling microscope (which allows the observation of
individual atoms on surfaces).

In spite of numerous useful applications and technological advances based on tun-
neling, there remained for many decades after its early discovery a basic, unresolved
physics problem. How fast does a particle traverse the barrier during the tunneling
process? In the case of quantum optics, we can rephrase this question as follows: How
quickly does a photon pass through a tunnel barrier in order to reach the far side?



��� Experiments in linear optics

First of all, it is essential to understand that this question is physically meaningless
in the absence of a concrete description of the method of measuring the transit time.
This principle of operationalism is an essential part of the scientific method, but it is
especially crucial in the studies of phenomena in quantum mechanics, which are far re-
moved from everyday experience. A definition of the operational procedure starts with
a careful description of an idealized thought experiment. Thought experiments were
especially important in the early days of quantum mechanics, and they are still very
important today as an aid for formulating physically meaningful questions. Many of
these thought experiments can then be turned into real experiments, as measurements
of the tunneling time illustrate.

Let us therefore first consider a thought experiment for measuring the tunneling
time of a photon. In Fig. 10.10, we show an experimental method which uses twin
photons γ1 and γ2, born simultaneously by spontaneous down-conversion. Placing two
Geiger counters at equal distances from the crystal would lead—in the absence of any
tunnel barrier—to a pair of simultaneous clicks. Now suppose that a tunnel barrier
is inserted into the path of the upper photon γ1. One might expect that this would
impede the propagation of γ1, so that the click of the upper Geiger counter—placed
behind the barrier—would occur later than the click of the lower Geiger counter. The
surprising result of an experiment to be described below is that exactly the opposite
happens. The arrival of the tunneling photon γ1 is registered by a click of the upper
Geiger counter that occurs before the click signaling the arrival of the nontunneling
photon γ2. In other words, the tunneling photon seems to have traversed the barrier
superluminally. However, for reasons to be given below, we shall see that there is no
operational way to use this superluminal tunneling phenomenon to send true signals
faster than the speed of light.

This particular thought experiment is not practical, since it would require the use
of Geiger counters with extremely fast response times, comparable to the femtosecond
time scales typical of tunneling. However, as we have seen earlier, the Hong–Ou–
Mandel two-photon interference effect allows one to resolve the relative times of arrival
of two photons at a beam splitter to within fractions of a femtosecond. Hence, the

Fig. 10.10 Schematic of a thought experi-

ment to measure the tunneling time of the

photon. Spontaneous down-conversion gener-

ates twin photons γ1 and γ2 by absorption of a

photon from a UV pump laser. In the absence

of a tunnel barrier, the two photons travel the

same distance to two Geiger counters placed

equidistantly from the crystal, and two simul-

taneous clicks occur. A tunnel barrier (shaded

rectangle) is now inserted into the path of pho-

ton γ1. The tunneling time is given by the time

difference between the clicks of the two Geiger

counters.
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impractical thought experiment can be turned into a realistic experiment by inserting
a tunnel barrier into one arm of a Hong–Ou–Mandel interferometer (Steinberg and
Chiao, 1995), as shown in Fig. 10.11.

The two arms of the interferometer are initially made equal in path length (per-
fectly balanced), so that there is a minimum—a Hong–Ou–Mandel (HOM) dip—in
the coincidence count rate. After the insertion of the tunnel barrier into the upper
arm of the interferometer, the mirror M1 must be slightly displaced in order to recover
the HOM dip. This procedure compensates for the extra delay—which can be either
positive or negative—introduced by the tunnel barrier. Measurements show that the
delay due to the tunnel barrier is negative in sign; the mirror M1 has to be moved
away from the barrier in order to recover the HOM dip. This is contrary to the normal
expectation that all such delays should be positive in sign. For example, one would ex-
pect a positive sign if the tunnel barrier were an ordinary piece of glass, in which case
the mirror would have to be moved towards the barrier to recover the HOM dip. Thus
the sign of the necessary displacement of mirror M1 determines whether tunneling is
superluminal or subluminal in character.

The tunnel barrier used in this experiment—which was first performed at Berke-
ley in 1993 (Steinberg et al., 1993; Steinberg and Chiao, 1995)—is a dielectric mir-
ror formed by an alternating stack of high- and low-index coatings, each a quarter
wavelength thick. The multiple Bragg reflections from the successive interfaces of the
dielectric coatings give rise to constructive interference in the backwards direction of
propagation for the photon and destructive interference in the forward direction. The
result is an exponential decay in the envelope of the electric field amplitude as a func-
tion of propagation distance into the periodic structure, i.e. an evanescent wave. This
constitutes a photonic bandgap, that is, a range of classical wavelengths—equivalent
to energies for photons—for which propagation is forbidden. This is similar to the ex-
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Fig. 10.11 Schematic of a realistic tunneling-time experiment, such as that performed in

Berkeley (Steinberg et al., 1993; Steinberg and Chiao, 1995), to measure the tunneling time of

a photon by means of Hong–Ou–Mandel two-photon interference. The double-headed arrow to

the right of mirror M1 indicates that it can be displaced so as to compensate for the tunneling

time delay introduced by the tunnel barrier. The sign of this displacement indicates whether

the tunneling time is superluminal or subluminal.
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ponential decay of the electron wave function inside the classically forbidden region of
a tunnel barrier.

In this experiment, the photonic bandgap stretched from a wavelength of 600 nm
to 800 nm, with a center at 700 nm, the wavelength of the photon pairs used in the
Hong–Ou–Mandel interferometer. The exponential decay of the photon probability
amplitude with propagation distance is completely analogous to the exponential decay
of the probability amplitude of an electron inside a periodic crystal lattice, when its
energy lies at the center of the electronic bandgap. The tunneling probability of the
photon through the photonic tunnel barrier was measured to be around 1%, and
was spectrally flat over the typical 10 nm-wide bandwidths of the down-conversion
photon wave packets. This is much narrower than the 200 nm total spectral width of
the photonic bandgap. The carrier wavelength of the single-photon wave packets was
chosen to coincide with the center of the bandgap. After the tunneling process was
completed, the transmitted photon wave packets suffered a 99% reduction in intensity,
but the distortion from the initial Gaussian shape was observed to be completely
negligible.

In Fig. 10.12, the data for the tunneling time obtained using the Hong–Ou–Mandel
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Fig. 10.12 Summary of tunneling time data taken using the Hong–Ou–Mandel interferom-

eter, shown schematically in Fig. 10.11, as the tunnel barrier sample was tilted: starting from

normal incidence at 0◦ towards 60◦ for p-polarized down-converted photons. As the sample

was tilted towards Brewster’s angle (around 60◦), the tunneling time changed sign from a

negative relative delay, indicating a superluminal tunneling time, to a positive relative delay,

indicating a subluminal tunneling time. Note that the sign reversal occurs at a tilt angle of

40◦. Two different samples used as barriers are represented respectively by the circles and

the squares. (Reproduced from Steinberg and Chiao (1995).)
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interferometer are shown as a function of the tilt angle of the tunnel barrier sample
relative to normal incidence, with the plane of polarization of the incident photon lying
in the plane of incidence (this is called p-polarization). As the tilt angle is increased
towards Brewster’s angle (around 60◦), the reflectivity of the successive interfaces
between the dielectric layers tends to zero. In this limit the destructive interference in
the forward direction disappears, so the photonic bandgap, along with its associated
tunnel barrier, is eliminated.

Thus as one tilts the tunnel barrier towards Brewster’s angle, it effectively behaves
more and more like an ordinary glass sample. One then expects to obtain a positive
delay for the passage of the photon γ1 through the barrier, corresponding to a sublu-
minal tunneling delay time. Indeed, for the three data points taken at the large tilt
angles of 45◦, 50◦, and 55◦ (near Brewster’s angle) the mirror M1 had to be moved
towards the sample, as one would normally expect for the compensation of positive
delays. However, for the three data points at the small tilt angles of 0◦, 22◦, and 35◦,
the data show that the tunneling delay of photon γ1 is negative relative to photon γ2.
In other words, for incidence angles near normal the mirror M1 had to be moved in
the counterintuitive direction, away from the tunnel barrier. The change in sign of the
effect implies a superluminal tunneling time for these small angles of incidence. The
displacement of mirror M1 required to recover the HOM dip changed from positive to
negative at 40◦, corresponding to a smooth transition from subluminal to superluminal
tunneling times. From these data, one concludes that, near normal incidence, the tun-
neling wave packet γ1 passes through the barrier superluminally (i.e. effectively faster
than c) relative to wave packet γ2. The interpretation of this seemingly paradoxical
result evidently requires some care.

We first note that the existence of apparently superluminal propagation of classi-
cal electromagnetic waves is well understood. An example, that shares many features
with tunneling, is propagation of a Gaussian pulse with carrier frequency in a region
of anomalous dispersion. The fact that this would lead to superluminal propagation
of a greatly reduced pulse was first predicted by Garrett and McCumber (1969) and
later experimentally demonstrated by Chu and Wong (1982). The classical explanation
of this phenomenon is that the pulse is reshaped during its propagation through the
medium. The locus of maximum constructive interference—the pulse peak—is shifted
forward toward the leading edge of the pulse, so that the peak of a small replica of
the original pulse arrives before the peak of a similar pulse propagating through vac-
uum. Another way of saying this is that the trailing edge of the pulse is more strongly
absorbed than the leading edge. The resulting movement of the peak is described by
the group velocity, which can be greater than c or even negative. These phenomena
are actually quite general; in particular, they will also occur in an amplifying medium
(Bolda et al., 1993). In this case it is possible for a Gaussian pulse with carrier fre-
quency detuned from a gain line to propagate—with little change in amplitude and
shape—with a group velocity greater than c or negative (Chiao, 1993; Steinberg and
Chiao, 1994).

The method used above to explain classical superluminal propagation is mathemat-
ically similar to Wigner’s theory of tunneling in quantum mechanics (Wigner, 1955).
This theory of the tunneling time was based on the idea, roughly speaking, that the
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peak of the tunneling wave packet would be delayed with respect to the peak of a
nontunneling wave packet by an amount determined by the maximum constructive
interference of different energy components, which defines the peak of the tunneling
wave packet. The method of stationary phase then leads to the expression

τWigner = �
d arg T (E)

dE

∣∣∣∣
E0

(10.104)

for the group-delay tunneling time, where E0 is the most probable energy of the
tunneling particle’s wave packet, and T (E) is the particle’s tunneling probability am-
plitude as a function of its energy E. Wigner’s theory predicts that the tunneling
delay becomes superluminal because—for sufficiently thick barriers—the time τWigner

depends only on the tunneling particle’s energy, and not on the thickness of the bar-
rier. Since the Wigner tunneling time saturates at a finite value for thick barriers, this
produces a seeming violation of relativistic causality when τWigner < d/c, where d is
the thickness of the barrier.

Wigner’s theory was not originally intended to apply to photons, but we have
already seen in Section 7.8 that a classical envelope satisfying the paraxial approxima-
tion can be regarded as an effective probability amplitude for the photon. This allows
us to use the classical wave calculations to apply Wigner’s result to photons. From
this point of view, the rare occasions when a tunneling photon penetrates through the
barrier—approximately 1% of the photons appear on the far side—is a result of the
small probability amplitude that is transmitted. This in turn corresponds to the 1%
transmission coefficient of the sample at 0◦ tilt. It is only for these lucky photons that
the click of the upper Geiger counter occurs earlier than a click of the lower Geiger
counter announcing the arrival of the nontunneling photon γ2. The average of all data
runs at normal incidence shows that the peak of the tunneling wave packet γ1 arrived
1.47±0.21 fs earlier than the peak of the wave packet γ2 that traveled through the air.
This is in reasonable agreement (within two standard deviations) with the prediction
of 1.9 fs based on eqn (10.104).

Some caveats need to be made here, however. The first is this: the observation of
a superluminal tunneling time does not imply the possibility of sending a true signal
faster than the vacuum speed of light, in violation of special relativity. By ‘true signal’
we mean a signal which connects a cause to its effect; for example, a signal sent by
closing a switch at one end of a transmission-wire circuit that causes an explosion to
occur at the other end. Such causal signals are characterized by discontinuous fronts—
produced by the closing of the switch, for example—and these fronts are prohibited
by relativity from ever traveling faster than c. However, it should be stressed that
it is perfectly permissible, and indeed, under certain circumstances—arising from the
principle of relativistic causality itself—absolutely necessary, for the group velocity of
a wave packet to exceed the vacuum speed of light (Bolda et al., 1993; Chiao and
Steinberg, 1997). From a quantum mechanical point of view, this kind of superluminal
behavior is not surprising in the case of the tunneling phenomenon considered here.
Since this phenomenon is fundamentally probabilistic in nature, there is no determin-
istic way of controlling whether any given tunneling event will occur or not. Hence
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there is no possibility of sending a controllable signal faster than c by means of any
tunneling particle, including the photon.

It may seem paradoxical that a particle of light can, in some sense, travel faster
than light, but we must remember that it is not logically impossible for a particle of
light in a medium to travel faster than a particle of light in the vacuum. Nevertheless,
it behooves us to discuss the fundamental questions raised by these kinds of coun-
terintuitive superluminal phenomena concerning the meaning of causality in quantum
optics. This will be done in more detail below.

The second caveat is this: it would seem that the above data would rule out all
theories of the tunneling time other than Wigner’s, but this is not so. One can only
say that for the specific operational method used to obtain the data shown in Fig.
10.12, Wigner’s theory is singled out as the closest to being correct. However, by
using a different operational method which employs different experimental conditions
to measure a physical quantity—such as the time of interaction of a tunneling particle
with a modulated barrier, as was suggested by Büttiker and Landauer (1982)—one will
obtain a different result from Wigner’s. One striking difference between the predictions
of these two particular theories of tunneling times is that in Wigner’s theory, the
group-delay tunneling time is predicted to be independent of barrier thickness in the
case of thick barriers, whereas in Büttiker and Landauer’s theory, their interaction
tunneling time is predicted to be linearly dependent upon barrier thickness. A linear
dependence upon the thickness of a tunnel barrier has indeed been measured for one of
the two tunneling times observed by Balcou and Dutriaux (1997), who used a 2D tunnel
barrier based on the phenomenon of frustrated total internal reflection between two
closely spaced glass prisms. Thus in Balcou and Dutriaux’s experiment, the existence
of Büttiker and Landauer’s interaction tunneling time has in fact been established.
For a more detailed review of these and yet other tunneling times, wave propagation
speeds, and superluminal effects, see Chiao and Steinberg (1997).

The conflicts between the predictions of the various tunneling-time theories dis-
cussed above illustrate the fact that the interpretation of measurements in quantum
theory may depend sensitively upon the exact operational conditions used in a given
experiment, as was emphasized early on by Bohr. Hence it should not surprise us that
the operationalism principle introduced at the beginning of this chapter must always
be carefully taken into account in any treatment of these problems. More concretely,
the phrase ‘the tunneling time’ is meaningless unless it is accompanied by a precise
operational description of the measurement to be performed.

10.5 The meaning of causality in quantum optics∗

The appearance of counterintuitive, superluminal tunneling times in the above ex-
periments necessitates a careful re-examination of what is meant by causality in the
context of quantum optics. We begin by reviewing the notion of causality in classical
electromagnetic theory. In Section 8.1, we have seen that the interaction of a classical
electromagnetic wave with any linear optical device—including a tunnel barrier—can
be described by a scattering matrix. We will simplify the discussion by only considering
planar waves, e.g. superpositions of plane waves with all propagation vectors directed
along the z-axis. An incident classical, planar wave Ein (z, t) propagating in vacuum
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is a function of the retarded time tr = t − z/c only; therefore we replace Ein (z, t) by
Ein (tr). This allows the incident field to be expressed as a one-dimensional Fourier
integral transform:

Ein (tr) =
∫ ∞

−∞

dω

2π
Ein (ω) e−iωtr . (10.105)

The output wave, also propagating in vacuum, is described in the same way by a
function Eout(ω) that is related to Ein (ω) by

Eout(ω) = S(ω)Ein(ω) , (10.106)

where S(ω) is the scattering matrix—or transfer function—for the device in question.
The transfer function S(ω) describes the reshaping of the input wave packet to produce
the output wave packet. By means of the convolution theorem, we can transform the
frequency-domain relation (10.106) into the time-domain relation

Eout(tr) =
∫ +∞

−∞
S(τ)Ein(tr − τ)dτ , (10.107)

where

S(τ) =
∫ ∞

−∞

dω

2π
S(ω)e−iωτ . (10.108)

The fundamental principle of causality states that no effect can ever precede its
cause. This implies that the transfer function must strictly vanish for all negative
delays, i.e.

S(τ) = 0 for all τ < 0 . (10.109)

Therefore, the range of integration in eqn (10.107) is restricted to positive values, so
that

Eout(tr) =
∫ ∞

0

S(τ)Ein(tr − τ)dτ . (10.110)

Thus we reach the intuitively appealing conclusion that the output field at time tr can
only depend on values of the input field in the past. In particular, if the input signal
has a front at tr = 0, that is

Ein(tr) = 0 for all tr < 0 (or equivalently z > ct) , (10.111)

then it follows from eqn (10.110) that

Eout(tr) = 0 for all tr < 0 . (10.112)

Thus the classical meaning of causality for linear optical systems is that the reshaping,
by whatever mechanism, of the input wave packet to produce the output wave packet
cannot produce a nonvanishing output signal before the arrival of the input signal
front at the output face.

In the quantum theory, one replaces the classical electric field amplitudes by time-
dependent, positive-frequency electric field operators in the Heisenberg picture. By
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virtue of the correspondence principle, the linear relation between the classical input
and output fields must also hold for the field operators, so that

E(+)
out (tr) =

∫ +∞

0

S(τ)E(+)
in (tr − τ)dτ . (10.113)

One new feature in the quantum version is that the frequency ω in S(ω) is now
interpreted in terms of the Einstein relation E = �ω for the photon energy. Another
important change is in the definition of a signal front. We have already learnt that
field operators cannot be set to zero; consequently, the statement that the input signal
has a front must be reinterpreted as an assumption about the quantum state of the
field. The quantum version of eqn (10.111) is, therefore,

E(+)
in (tr)ρ = 0 for all tr < 0 , (10.114)

where ρ is the time-independent density operator describing the state of the system
in the Heisenberg picture. It therefore follows from eqn (10.113) that

E(+)
out (tr)ρ = 0 for all tr < 0 . (10.115)

The physics behind this statement is that if the system starts off in the vacuum state
at t = 0 at the input, nothing that the optical system can do to it can promote it out
of the vacuum state at the output, before the arrival of the front. Therefore, causality
has essentially similar meanings at the classical and the quantum levels of description
of linear optical systems.

10.6 Interaction-free measurements∗

A familiar procedure for determining if an object is present in a given location is to
illuminate the region with a beam of light. By observing scattering or absorption of the
light by the object, one can detect its presence or determine its absence; consequently,
the first step in locating an object in a dark room is to turn on the light. Thus in
classical optics, the interaction of light with the object would seem to be necessary for
its observation. One of the strange features of quantum optics is that it is sometimes
possible to determine an object’s presence or absence without interacting with the
object. The idea of interaction-free measurements was first suggested by Elitzur and
Vaidman (1993), and it was later dubbed ‘quantum seeing in the dark’ (Kwiat et al.,
1996). A useful way to think about this phenomenon is to realize that null events—
e.g. a detector does not click during a given time window—can convey information
just as much as the positive events in which a click does occur.

When it is certain that there is one and only one photon inside an interferom-
eter, some very counterintuitive nonlocal quantum effects—including interaction-free
measurements—are possible. In an experiment performed in 1995 (Kwiat et al., 1995a),
this aim was achieved by pumping a lithium-iodate crystal with a 351 nm wavelength
ultraviolet laser, in order to produce entangled photon pairs by spontaneous down-
conversion. As shown in Fig. 10.13, one member of the pair, the gate photon, is di-
rected to a silicon avalanche photodiode T , and the signal from this detector is used to
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Fig. 10.13 Schematic of an experiment using

a down-conversion source to demonstrate one

form of interaction-free measurement. The ob-

ject to be detected is represented by a trans-

latable 100% mirror, with translation denoted

by the double-arrow symbol ↔. (Reproduced

from Kwiat et al. (1995a).)
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open the gate for the other detectors. The other member of the pair, the test photon,
is injected into a Michelson interferometer, which is prepared in a dark fringe near the
equal-path length, white-light fringe condition; see Exercise 10.6. Thus the detector
Dark at the output port of the Michelson is a dark fringe detector. It will never reg-
ister any counts at all, if both arms of the interferometer are unblocked. However, the
presence of an absorbing or nontransmitting object in the lower arm of the Michelson
completely changes the possible outcomes by destroying the destructive interference
leading to the dark fringe.

In the real experimental protocol, the unknown object is represented by a translat-
able, 100% reflectivity mirror. In the original Elitzur–Vaidman thought experiment,
this role is played by a 100%-sensitivity detector that triggers a bomb. This raises the
stakes,2 but does not alter the physical principles involved. When the mirror blocks
the lower arm of the interferometer in the real experiment, it completely deflects the
test photon to the detector Obj. A click in Obj is the signal that the blocking ob-
ject is present. When the mirror is translated out of the lower arm, the destructive
interference condition is restored, and the test photon never shows up at the Dark
detector.

For a central Michelson beam splitter with (intensity) reflectivity R and transmis-
sivity T = 1−R (neglecting losses), an incident test photon will be sent into the lower
arm with probability R. If the translatable mirror is present in the lower arm, the pho-
ton is deflected into the detector Obj with unit probability; therefore, the probability
of absorption is

P (absorption) = P (failure) = R . (10.116)

This is not as catastrophic as the exploding bomb, but it still represents an unsuc-
cessful outcome of the interaction-free measurement attempt. However, there is also a
mutually exclusive possibility that the test photon will be transmitted by the central
beam splitter, with probability T , and—upon its return—reflected by the beam split-
ter, with probability R, to the Dark detector. Thus clicks at the Dark port occur with
probability RT . When a Dark click occurs there is no possibility that the test photon
was absorbed by the object—the bomb did not go off—since there was only a single
photon in the system at the time. Hence, the probability of a successful interaction-free
measurement of the presence of the object is

2One of the virtues of thought experiments is that they are not subject to health and safety
inspections.
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P (detection) = P (success) = RT . (10.117)

For a lossless Michelson interferometer, the fraction η of successful interaction-free
measurements is therefore

η ≡ P (success)
P (success) + P (failure)

=
P (detection)

P (detection) + P (absorption)

=
RT

RT + R
=

1 − R

2 − R
, (10.118)

which tends to an upper limit of 50% as R approaches zero.
This quantum effect is called an interaction-free measurement, because the

single photon injected into the interferometer did not interact at all—either by ab-
sorption or by scattering—with the object, and yet we can infer its presence by means
of the absence of any interaction with it. Furthermore, the inference of presence or ab-
sence can be made with complete certainty based on the principle of the indivisibility
of the photon, since the same photon could not both have been absorbed by the ob-
ject and later caused the click in the dark detector. Actually, it is Bohr’s wave–particle
complementarity principle that plays a central role in this kind of measurement. In
the absence of the object, it is the wave-like nature of light that ensures—through
destructive interference—that the photon never exits through the dark port. In the
presence of the object, it is the particle-like nature of the light—more precisely the
indivisibility of the quantum of light—which enforces the mutual exclusivity of a click
at the dark port or absorption by the object.

Thus a null event—here the absence of a click at Obj—constitutes just as much
of a measurement in quantum mechanics as the observation of a click. This feature of
quantum theory was already emphasized by Renninger (1960) and by Dicke (1981),
but its implementation in quantum interference was first pointed out by Elitzur and
Vaidman. Note that this effect is nonlocal, since one can determine remotely the pres-
ence or the absence of the unknown object, by means of an arbitrarily remote dark
detector. The fact that the entire interferometer configuration must be set up ahead
of time in order to see this nonlocal effect is another example of the general principle
in Bohr’s Delphic remark quoted in Section 10.3.3.

The data in Fig. 10.14 show that the fraction of successful measurements is nearly
50%, in agreement with the theoretical prediction given by eqn (10.118). By techni-
cal refinements of the interferometer, the probability of a successful interaction-free
measurement could, in principle, be increased to as close to 100% as desired (Kwiat
et al., 1995a). A success rate of η = 73% has already been demonstrated (Kwiat et al.,
1999a). In the 100% success-rate limit, one could determine the presence or absence
of an object with minimal absorption of photons.

This possibility may have important practical applications. In an extension of this
interaction-free measurement method to 2D imaging, one could use an array of these
devices to map out the silhouette of an unknown object, while restricting the num-
ber of absorbed photons to as small a value as desired. In conjunction with X-ray
interferometers—such as the Bonse–Hart type—this would, for example, allow X-ray
pictures of the bones of a hand to be taken with an arbitrarily low X-ray dosage.
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Fig. 10.14 (a) Data demonstrating interaction-free measurement. The Michelson beam split-

ter reflectivity for the upper set of data was 43%. (b) Data and theoretical fit for the figure

of merit η as a function of beam splitter reflectivity. (Reproduced from Kwiat et al. (1995a).)

10.7 Exercises

10.1 Vacuum fluctuations

Drop the term E(+)
3 (r, t) from the expression (10.7) for E(+)

out (r, t) and evaluate the
equal-time commutator

[
E(+)

out,i (r, t) ,E(−)
out,j (r′, t)

]
. Compare this to the correct form

in eqn (3.17) and show that restoring E(+)
3 (r, t) will repair the flaw.

10.2 Classical model for two-photon interference

Construct a semiclassical model for two-photon interference, along the lines of Section
1.4, by assuming: the down-conversion mechanism produces classical amplitudes ασn =√

Iσn exp (iθσn), where σ = sig, idl is the channel index and the gate windows are
labeled by n = 1, 2, . . .; the phases θσn vary randomly over (0, 2π); the phases and
intensities Iσn are statistically independent; the intensities Iσn for the two channels
have the same average and rms deviation.

Evaluate the coincidence-count probability pcoinc and the singles probabilities psig

and pidl, and thus derive the inequality (10.41).

10.3 The HOM dip∗

Assume that the function |g (ν)|2 in eqn (10.69) is a Gaussian:

|g (ν)|2 =
(
τ2/

√
π
)
exp

(−τ2
2 ν2

)
.

Evaluate and plot Pcoinc (∆t).
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10.4 HOM by scattering theory∗

(1) Apply eqn (8.76) to eqn (10.71) to derive eqn (10.72).
(2) Use the definition (6.96) to obtain a formal expression for the coincidence-counting

detection amplitude, and then use the rule (9.96) to show that |Φpair〉 will not
contribute to the coincidence-count rate.

10.5 Anti-HOM∗

Consider the two-photon state given by eqn (10.48), where C (ω, ω′) satisfies the (−)-
version of eqn (10.51).

(1) Why does C (ω, ω′) = −C (ω′, ω) not violate Bose symmetry?
(2) Assume that C (ω, ω′) satisfies eqn (10.56) and the (−)-version of eqn (10.51).

Use eqns (10.71)–(10.74) to conclude that the photons in this case behave like
fermions, i.e. the pairing behavior seen in the HOM interferometer is forbidden.

10.6 Interaction-free measurements∗

(1) Work out the relation between the lengths of the arms of the Michelson interfer-
ometer required to ensure that a dark fringe occurs at the output port.

(2) Explain why the probabilities P (failure) and P (success), respectively defined by
eqns (10.116) and (10.117), do not sum to one.



11

Coherent interaction of light with
atoms

In Chapter 4 we used perturbation theory to describe the interaction between light and
matter. In addition to the assumption of weak fields—i.e. the interaction energy is small
compared to individual photon energies—perturbation theory is only valid for times
in the interval 1/ω0 � t � 1/W , where ω0 and W are respectively the unperturbed
frequency and the perturbative transition rate for the system under study. When ω0

is an optical frequency, the lower bound is easily satisfied, but the upper bound can
be violated. Let ρ be a stationary density matrix for the field; then the field–field
correlation function, for a fixed spatial point r but two different times, will typically
decay exponentially:

G
(1)
ij (r, t1; r, t2) = Tr

[
ρE

(−)
i (r, t1)E

(+)
j (r, t2)

]
∼ exp (− |t1 − t2| /Tc) , (11.1)

where Tc is the coherence time for the state ρ. For some states, e.g. the Planck
distribution, the coherence time is short, in the sense that Tc � 1/W . Perturbation
theory is applicable to these states, but there are many situations—in particular for
laser fields—in which Tc > 1/W . Even though the field is weak, perturbation theory
cannot be used in these cases; therefore, we need to develop nonperturbative methods
that are applicable to weak fields with long coherence times.

11.1 Resonant wave approximation

The phenomenon of resonance is ubiquitous in physics and it plays a central role in
the interaction of light with atoms. Resonance will occur if there is an allowed atomic
transition q → p with transition frequency ωqp = (εq − εp) /� and a matching optical
frequency ω ≈ ωqp. In Section 4.9.2 we saw that the weak-field condition can be ex-
pressed as Ω � ω0, where Ω is the characteristic Rabi frequency defined by eqn (4.147).
In the interaction picture, the state vector satisfies the Schrödinger equation (4.94), in
which the full Hamiltonian is replaced by the interaction Hamiltonian; consequently,

i
∂

∂t
|Ψ (t)〉 ∼ Ω |Ψ (t)〉 . (11.2)

Thus the weak-field condition tells us that the changes in the interaction-picture state
vector occur on the time scale 1/Ω � 1/ω0. Consequently, the state vector does not
change appreciably over an optical period. This disparity in time scales is the basis
for a nonperturbative approximation scheme. In the interests of clarity, we will first
develop this method for a simple model called the two-level atom.
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11.1.1 Two-level atoms

The spectra of real atoms and the corresponding sets of stationary states display a
daunting complexity, but there are situations of theoretical and practical interest in
which this complexity can be ignored. In the simplest case, the atomic state vector is
a superposition of only two of the stationary states. Truncated models of this kind are
called two-level atoms. This simplification can occur when the atom interacts with
a narrow band of radiation that is only resonant with a transition between two specific
energy levels. In this situation, the two atomic states involved in the transition are the
only dynamically active degrees of freedom, and the probability amplitudes for all the
other stationary states are negligible.

In the semiclassical approximation, the Feynman–Vernon–Hellwarth theorem
(Feynman et al., 1957) shows that the dynamical equations for a two-level atom are
isomorphic to the equations for a spin-1/2 particle in an external magnetic field. This
provides a geometrical picture which is useful for visualizing the solutions. The general
zeroth-order Hamiltonian for the fictitious spin system is H0 = −µB · σ, and we will
choose the fictitious B-field as B = −Bu3, so that the spin-up state is higher in energy
than the spin-down state.

To connect this model to the two-level atom, let the two resonantly connected
atomic states be |ε1〉 and |ε2〉, with ε1 < ε2. The atomic Hilbert space is effectively
truncated to the two-dimensional space spanned by |ε1〉 and |ε2〉, so the atomic Hamil-
tonian and the atomic dipole operator d̂ are represented by 2×2 matrices. Every 2×2
matrix can be expressed in terms of the standard Pauli matrices; in particular, the
truncated atomic Hamiltonian is

Hat =
[
ε2 0
0 ε1

]
=

ε2 + ε1

2
I2 +

�ω21

2
σz , (11.3)

where I2 is the 2× 2 identity matrix and �ω21 = ε2 − ε1. The term proportional to I2

can be eliminated by choosing the zero of energy so that ε2 + ε1 = 0. This enforces
the relation µB ↔ �ω21/2 between the two-level atom and the fictitious spin.

When the very small effects of weak interactions are ignored, atomic states have
definite parity; therefore, the odd-parity operator d̂ has no diagonal matrix elements.
For the two-level atom, this implies d̂ = d∗σ− +d σ+, where d =

〈
ε2

∣∣d̂∣∣ε1

〉
, σ+ is the

spin-raising operator, and σ− is the spin-lowering operator. Combining this with the
decomposition E = E(+) + E(−) and the plane-wave expansion (3.69) for E(+) leads
to

Hint = H
(r)
int + H

(ar)
int , (11.4)

H
(r)
int = −d · E(+)σ+ − d∗ · E(−)σ−

= −i�
∑
ks

[√
�ωk

2ε0V

d · eks

�

]
aksσ+ + HC , (11.5)

H
(ar)
int = −d · E(−)σ+ − d∗ ·E(+)σ−

= −i�
∑
ks

[√
�ωk

2ε0V

d∗ · eks

�

]
aksσ− + HC . (11.6)
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In H
(r)
int the annihilation (creation) operator aks

(
a†
ks

)
is paired with the energy-raising

(-lowering) operator σ+ (σ−), while H
(ar)
int has the opposite pairings. In the perturba-

tive calculations of Section 4.9.3 the emission (absorption) of a photon is associated
with lowering (raising) the energy of the atom, subject to the resonance condition
ωk = ω21, so H

(r)
int and H

(ar)
int are respectively called the resonant and antiresonant

Hamiltonians.
The full Hamiltonian in the Schrödinger picture is

H = H0 + Hint , (11.7)

where
H0 =

∑
ks

�ωka†
ksaks +

�ω21

2
σz . (11.8)

In the interaction picture, the operators satisfy the uncoupled equations of motion

i�
∂

∂t
aks (t) = [aks (t) , H0] = �ωkaks (t) , (11.9)

i�
∂

∂t
σz (t) = [σz (t) , H0] = 0 , (11.10)

i�
∂

∂t
σ± (t) = [σ± (t) , H0] = ∓�ω21

2
σ± (t) , (11.11)

with the solution

aks (t) = akse
−iωkt , σz (t) = σz , σ± (t) = e±iω21tσ± , (11.12)

where aks, σz , and σ± are the Schrödinger-picture operators. Thus the time depen-
dence of the operators is explicitly expressed in terms of the atomic transition fre-
quency ω21 and the optical frequencies ωk. This is a great advantage for the calcula-
tions to follow.

The interaction-picture state vector |Θ (t)〉 satisfies the Schrödinger equation

i�
∂

∂t
|Θ (t)〉 = Hint (t) |Θ (t)〉 , (11.13)

where
Hint (t) = H

(r)
int (t) + H

(ar)
int (t) , (11.14)

H
(r)
int (t) = −i�

∑
ks

[√
�ωk

2ε0V

d · eks

�

]
ei(ω21−ωk)taksσ+ + HC (11.15)

and

H
(ar)
int (t) = −i�

∑
ks

[√
�ωk

2ε0V

d∗ · eks

�

]
e−i(ω21+ωk)taksσ− + HC (11.16)

are obtained by replacing the operators in eqns (11.5) and (11.6) by the explicit solu-
tions in eqn (11.12).
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11.1.2 Time averaging

The slow and fast time scales can be separated explicitly by means of a temporal
filtering operation, like the one introduced in Section 9.1.2-C to describe narrowband
detection. We use an averaging function, � (t), satisfying eqns (9.35)–(9.37), to define
running averages by

f (t) ≡
∫ ∞

−∞
dt′� (t − t′) f (t′) =

∫ ∞

−∞
dt′� (t′) f (t + t′) . (11.17)

The temporal width ∆T defined by eqn (9.37) will now be renamed the memory
interval Tmem. The idea behind this new language is that the temporally coarse-
grained picture imposed by averaging over the time scale Tmem causes amnesia, i.e.
averaged operators at time t will not be correlated with averaged operators at an
earlier time, t′ < t − Tmem. The average in eqn (11.17) washes out oscillations with
periods smaller than Tmem, and the average of the derivative is the derivative of the
average:

df

dt
(t) =

d

dt
f (t) . (11.18)

The separation of the two time scales is enforced by imposing the condition

1
ω21

� Tmem � 1
Ω

(11.19)

on Tmem. A function g (t) that varies on the time scale 1/Ω is essentially constant over
the averaging interval, so that

g (t) ≡
∫ ∞

−∞
dt′� (t − t′) g (t′) ≈ g (t) . (11.20)

The combination of this feature with the normalization condition (9.36) leads to the
following rule:

� (t − t′) ≈ δ (t − t′) when applied to slowly-varying functions . (11.21)

It is also instructive to describe the averaging procedure in the frequency domain.
We would normally denote the Fourier transform of � (t) by � (ω), but this particular
function plays such an important role in the theory that we will honor it with a special
name:

K (ω) =
∫ ∞

−∞
dt � (t) eiωt . (11.22)

The properties of � (t) guarantee that K (ω) is real and even, K∗ (ω) = K (−ω) =
K (ω), and that it has a finite width, wK , related to the averaging interval by wK ∼
1/Tmem. The frequency-domain conditions corresponding to eqn (11.19) are

Ω � wK � ω21 , (11.23)

and the time-domain normalization condition (9.36) implies K (0) = 1. Performing
the Fourier transform of eqn (11.17) gives the frequency-domain description of the
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averaging procedure as f (ω) = K (ω) f (ω). Thus for small frequencies, ω � wK , the
original function f (ω) is essentially unchanged, but frequencies larger than the width
wK are strongly suppressed. For this reason K (ω) is called the cut-off function.1

11.1.3 Time-averaged Schrödinger equation

Since |Θ (t)〉 only varies on the slow time scale, the rule (11.21) tells us that it is
effectively unchanged by the running average, i.e. |Θ (t)〉 ≈ |Θ (t)〉. Consequently,
averaging the Schrödinger equation (11.13), with the help of eqn (11.18), yields the
approximate equation

i�
∂

∂t
|Θ (t)〉 = H int (t) |Θ (t)〉 . (11.24)

According to eqn (11.16), all terms in H
(ar)
int (t) are rapidly oscillating; therefore, we

expect that H
(ar)

int (t) ≈ 0. This expectation is justified by the explicit calculation in
Exercise 11.1, which shows that the cut-off function in each term of H

(ar)

int (t) is evalu-
ated with its argument on the optical scale. In the resonant wave approximation
(RWA), the antiresonant part is discarded, i.e. the full interaction Hamiltonian Hint (t)
is replaced by the resonant part H

(r)

int (t). The traditional name, rotating wave approx-
imation, is suggested by the mathematical similarity between the two-level atom and
a spin-1/2 particle precessing in a magnetic field (Yariv, 1989, Chap. 15).

Turning next to the expression (11.15) for H
(r)

int (t), we see that the exponentials
involve the detuning ∆k = ωk −ω21 which will be small near resonance; therefore, the
average of H

(r)
int (t) will not vanish. The explicit calculation gives

Hrwa (t) ≡ H
(r)

int (t) = −i�
∑
ks

gkse
−i∆ktσ+aks + HC , (11.25)

where

gks = K (∆k)

[√
�ωk

2ε0V

d · eks

�

]
, (11.26)

and we have introduced the new notation Hrwa (t) as a reminder of the approximation
in use. The cut-off function in the definition of the coupling constant guarantees that
only terms satisfying the resonance condition |ω21 − ωk| < wK will contribute to
Hrwa.

With the resonant wave approximation in force, we can transform to the Schrö-
dinger picture by the simple expedient of omitting the time-dependent exponentials
in eqn (11.25). Thus the RWA Hamiltonian in the Schrödinger picture is

Hrwa = H0 − d · E(+)σ+ − d∗ · E(−)σ−

= H0 − i�
∑
ks

gksaksσ+ + i�
∑
ks

g∗ksa
†
ksσ− , (11.27)

where H0 is given by eqn (11.8). This observation provides the following general scheme
for defining the resonant wave approximation directly in the Schrödinger picture.

1This is physics jargon. An engineer would probably call K (ω) a low-pass filter.
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(1) Discard all terms in Hint that do not conserve energy in a first-order perturbation
calculation.

(2) Multiply the coupling constants in the remaining terms by the cut-off function
K (∆k).
It is also useful to note that this rule mandates that each term in Hrwa is the prod-

uct of an energy-raising (-lowering) operator for the atom with an energy-lowering
(-raising) operator for the field. We emphasize that the discarded part, H(ar), is not
unphysical; it simply does not contribute to the first-order transition amplitude. The
antiresonant Hamiltonian H(ar) can and does contribute in higher orders of perturba-
tion theory, but the time averaging argument shows that Hrwa is the dominant part
of the Hamiltonian for long-term evolution under the influence of weak fields.

11.1.4 Multilevel atoms

Our object is this section is to introduce a family of operators that play the role of the
Pauli matrices for an atom with more than two active levels. We will only consider the
interaction of the field with a single atom, since the generalization to the many-atom
case is straightforward. The atomic transition operators Sqp are defined by

Sqp = |εq〉 〈εp| , (11.28)

where |εq〉 and |εp〉 are eigenstates of Hat. As explained in Appendix C.1.2, this nota-
tion means that the operator Sqp projects any atomic state |Ψ〉 onto |εq〉 with coefficient
〈εp |Ψ 〉, i.e.

Sqp |Ψ〉 = |εq〉 〈εp |Ψ 〉 . (11.29)

When this definition is applied to the two-level case, it is easy to see that S21 =
σ+, S12 = σ−, and S22 − S11 = σz. The energy eigenvalue equation for the states,
Hat |εq〉 = εq |εq〉, implies the operator eigenvalue equation [Sqp, Hat] = −�ωqpSqp for
Sqp, so the transition operators are sometimes called eigenoperators.

The eigenstates |εq〉 of Hat satisfy the completeness relation∑
q

|εq〉 〈εq| = IA , (11.30)

where IA is the identity operator in HA; therefore,

O ≡ IAOIA =
∑

q

∑
p

〈εq |O| p〉Sqp . (11.31)

Thus the Sqps form a complete set for the expansion of any atomic operator, just as
every 2 × 2 matrix can be expressed as a linear combination of Pauli matrices.

The algebraic properties
Sqp = S†

pq , (11.32)

SqpSq′p′ = δpq′Sqp′ , (11.33)

[Sqp, Sq′p′ ] = {δpq′Sqp′ − δp′qSq′p} (11.34)

are readily derived by using the orthogonality of the eigenstates. The special case q = p
and q′ = p′ of eqn (11.33) shows that the Sqqs are a set of orthogonal projection oper-
ators for the atom. For any atomic state |Ψ〉, eqn (11.29) yields Sqq |Ψ〉 = |εq〉 〈εq |Ψ〉,
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i.e. Sqq projects out the |εq〉 component of |Ψ〉. The Sqqs are called population oper-
ators, since the expectation value,

〈Ψ |Sqq|Ψ〉 = |〈εq |Ψ 〉|2 , (11.35)

is the probability for finding the value εq, and the corresponding eigenstate |εq〉, in
a measurement of the energy of an atom prepared in the state |Ψ〉. Because of the
convention that q > p implies εq > εp, the operator Sqp for q > p is called a rais-
ing operator. It is analogous to the angular momentum raising operator, or to the
creation operator a†

ks for a photon. By the same token, Spq = S†
qp is a lowering op-

erator, analogous to the lowering operator for angular momentum, or to the photon
annihilation operator aks.

In this representation the atomic Hamiltonian in the Schrödinger picture has the
simple form

Hat =
∑

q

εqSqq , (11.36)

and the interaction Hamiltonian is given by

Hint = −
∑
q,p

Sqpdqp ·E (0) , (11.37)

where dqp =
〈
εq

∣∣d̂∣∣εp

〉
. Since dqq = 0, the sum over q and p splits into two parts

with q > p and p > q. Combining this with E = E(+) + E(−) leads to an expression
involving four sums. After interchanging the names of the summation indices in the
q < p sums, the result can be arranged as follows:

Hint = H
(r)
int + H

(ar)
int , (11.38)

H
(r)
int = −

∑
q>p

Sqpdqp ·E(+) (0) + HC ,

H
(ar)
int = −

∑
q>p

Sqpdqp ·E(−) (0) + HC .
(11.39)

In H
(r)
int the raising (lowering) operator Sqp (Spq) is associated with the annihilation

(creation) operator E(+)
(
E(−)

)
, while the opposite pairing appears in H

(ar)
int . It is

not necessary to carry out the explicit time averaging procedure; the results of the
two-level problem have already provided us with a general rule for writing down the
RWA Hamiltonian. Since all antiresonant terms are to be discarded, we can dispense
with H

(ar)
int and set

Hrwa = −
∑
q>p

Sqpdqp ·E(+) (0) + HC . (11.40)

Expanding the field operator in plane waves yields the equivalent form

Hrwa = −i�
∑
ks

∑
q>p

gqp,ksSqpaks + HC , (11.41)
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where the coupling frequencies,

gqp,ks =
√

�ωk

2ε0V
K (ωqp − ωk)

dqp · eks

�
, (11.42)

include the cut-off function, so that only those terms satisfying a resonance con-
dition |ωqp − ωk| < wK will contribute to the RWA interaction Hamiltonian. The
Schrödinger-picture form in eqn (11.41) becomes

Hrwa (t) = −i�
∑
ks

∑
q>p

gqp,kse
i(ωqp−ωk)tSqpaks + HC (11.43)

in the interaction picture.

11.2 Spontaneous emission II

11.2.1 Propagation of spontaneous emission

The discussion of spontaneous emission in Section 4.9.3 is concerned with the calcu-
lation of the rate of quantum jumps associated with the emission of a photon. This
approach does not readily lend itself to answering other kinds of questions. For ex-
ample, if an atom at the origin is prepared in its excited state at t = 0, what is the
earliest time at which a detector located at a distance r can register the arrival of a
photon? Questions of this kind are best answered by using the Heisenberg picture.

Since the Heisenberg, Schrödinger, and interaction pictures all coincide at t = 0,
the interaction Hamiltonian in the Heisenberg picture can be inferred from eqn (11.25)
by setting t = 0 in the exponentials. The total Hamiltonian in the resonant wave
approximation is therefore

H = Hat + Hem + Hrwa , (11.44)

Hat =
�ω21

2
σz (t) , Hem =

∑
ks

�ωka†
ks (t) aks (t) , (11.45)

Hrwa = −i�
∑
ks

(
gksσ+ (t) aks (t) − g∗ksσ− (t) a†

ks (t)
)

, (11.46)

where the operators are all evaluated in the Heisenberg picture. The Heisenberg equa-
tions of motion,

d

dt
σz (t) = −2

∑
ks

(
gksσ+ (t) aks (t) + g∗ksσ− (t) a†

ks (t)
)

, (11.47)

d

dt
σ− (t) = −iω21σ− (t) +

∑
ks

gksaks (t)σz (t) , (11.48)

d

dt
aks (t) = −iωkaks (t) + g∗ksσ− (t) , (11.49)

show that the field operators aks (t) and the atomic operators σ (t), which are inde-
pendent at t = 0, are coupled at all later times. For this reason, it is usually impossible
to obtain closed-form solutions.
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Let us study the time dependence of the field emitted by an initially excited atom.
In the Heisenberg picture, the plane-wave expansion (3.69) for the positive-frequency
part of the field is

E(+) (r, t) =
∑
ks

i

√
�ωk

2ε0V
aks (t) ekse

ik·r , (11.50)

so we begin by using the standard integrating factor method to get the formal solution,

aks (t) = aks (0) e−iωkt + g∗ks

∫ t

0

dt′e−iωk(t−t′)σ− (t′) , (11.51)

of eqn (11.49). Substituting this into eqn (11.50) gives E(+) (r, t) as the sum of two
terms:

E(+) (r, t) = E(+)
vac (r, t) + E(+)

rad (r, t) , (11.52)

where

E(+)
vac (r, t) =

∑
ks

i

√
�ωk

2ε0V
aks (0)ekse

i(k·r−ωkt) (11.53)

describes vacuum fluctuations and

E(+)
rad (r, t) =

∑
ks

i

√
�ωk

2ε0V
g∗ksekse

ik·r
∫ t

0

dt′e−iωk(t−t′)σ− (t′) (11.54)

represents the field radiated by the atom. The state vector,

|in〉 = |ε2, 0〉 = |ε2〉 |0〉 , (11.55)

describes the situation with the atom in the excited state and no photons in the field.
In Section 9.1 we saw that the counting rate for a detector located at r is proportional
to

〈
in
∣∣E(−) (r, t) · E(+) (r, t)

∣∣in〉. Since |in〉 is the vacuum for photons, E(+)
vac (r, t) will

not contribute, and the counting rate is proportional to
〈
in
∣∣E(−)

rad (r, t) ·E(+)
rad (r, t)

∣∣in〉.
Calculating the atomic radiation operator E(+)

rad (r, t) from eqn (11.54) requires an
evaluation of the sum over polarizations, followed by the conversion of the k-sum to an
integral, as outlined in Exercise 11.3. After carrying out the integral over the directions
of k, the result is

E(+)
rad (r, t) = i

∫
k2dk

(2π)3
ωkK (ωk − ω21)

2ε0

[
d∗ +

(d∗ · ∇)∇
k2

]
4π sin (kr)

kr

×
∫ t

0

dt′e−iωk(t−t′)σ− (t′) . (11.56)

The cut-off function K (ωk − ω21) imposes k ≈ k21 = ω21/c, so we can define the
radiation zone by kr ≈ k21r � 1. For a detector in the radiation zone,[

d∗ +
1
k2

(d∗ · ∇)∇
]

4π sin (kr)
kr

=
4π sin (kr)

kr
d∗
� + O

(
1

k2r2

)
, (11.57)
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where
d∗
� = d∗ − (r̃ · d∗) r̃ = (d∗ × r̃) × r̃ (11.58)

is the component of d∗ transverse to the vector r linking the atom to the detector.
This is the same as the rule for the polarization of radiation emitted by a classical
dipole (Jackson, 1999, Sec. 9.2). After changing the integration variable from k to
ω = ωk = ck, we find

E(+)
rad (r, t) =

i

4π2c2ε0

d∗
�
r

∫ ∞

0

dωω2K (ω − ω21) sin
(ωr

c

)
×
∫ t

0

dt′e−iω(t−t′)σ− (t′) . (11.59)

Approximating the slowly-varying factor ω2 by ω2
21, and unpacking sin (kr), yields the

expression

E(+)
rad (r, t) =

k2
21

8π2ε0

d∗
�
r

[I (r) − I (−r)] (11.60)

for the field, where

I (r) =
∫ t

0

dt′
[∫ ∞

0

dωK (ω − ω21) eiωr/ce−iω(t−t′)
]

σ− (t′)

= eik21re−iω21t

∫ t

0

dt′
[∫ ∞

−ω21

dωK (ω) eiω[r/c−(t−t′)]
]

eiω21t′σ− (t′) . (11.61)

The condition wK � ω21 allows us to extend the lower limit of the ω-integral to −∞
with negligible error, so∫ ∞

−ω21

dωK (ω) eiωτ ≈ 2π

∫ ∞

−∞

dω

2π
K (ω) eiωτ

= 2π� (τ) , (11.62)

where � (τ) is the averaging function introduced in eqn (11.17). The results derived
in Exercise 11.4 include the fact that

σ− (t′) = eiω21t′σ− (t′) (11.63)

is a slowly-varying envelope operator, i.e. it varies on the time scale set by |gks|.
Combining these observations with the approximate delta function rule (11.21) leads
to

I (r) = 2πeik21re−iω21t

∫ t

0

dt′δ (r/c − (t − t′))σ− (t′)

= 2πeik21re−iω21tσ− (t − r/c) , (11.64)

and

I (−r) = 2πe−ik21re−iω21t

∫ t

0

dt′δ (−r/c − (t − t′))σ− (t′) = 0 . (11.65)
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The final result for the radiated field is

E(+)
rad (r, t) =

k2
21d

∗
�

4πε0

eik21r

r
e−iω21tσ− (t − r/c) . (11.66)

Thus the field operator behaves as an expanding spherical wave with source given by
the atomic dipole operator at the retarded time t− r/c. Just as in the classical theory,
the detector will not fire before the first arrival time t = r/c. We should emphasize
that this fundamental result does not depend on the resonant wave approximation
and the other simplifications made here. A rigorous calculation leading to the same
conclusion has been given by Milonni (1994).

11.2.2 The Weisskopf–Wigner method

The perturbative calculation of the spontaneous emission rate can apparently be im-
proved by including higher-order terms from eqn (4.103). Since the initial and final
states are fixed, these terms must describe virtual emission and absorption of pho-
tons. In other words, the higher-order terms—called radiative corrections—involve
vacuum fluctuations. We know, from Section 2.5, that the contributions from vacuum
fluctuations are infinite, so it will not come as a surprise to learn that all of the integrals
defining the higher-order contributions are divergent.

A possible remedy would be to include the cut-off function K (∆k), in the coupling
frequencies, i.e. to replace Gks by gks. This will cure the divergent integrals, but it must
then be proved that the results do not depend on the detailed shape of K (∆k). This
can be done, but only at the expense of importing the machinery of renormalization
theory from quantum electrodynamics (Greiner and Reinhardt, 1994).

A more important drawback of the perturbative approach is that it is only valid
in the limited time interval t � 1/ |gks| ≈ τsp = 1/A2→1. Thus perturbation theory
cannot be used to follow the evolution of the system for times comparable to the spon-
taneous decay time. We will use the RWA to pursue a nonperturbative approach (see
Cohen-Tannoudji et al. (1977b, Complement D-XIII), or the original paper Weisskopf
and Wigner (1930)) which can describe the behavior of the atom–field system for long
times, t > τsp.

The key to this nonperturbative method is the following simple observation. In the
resonant wave approximation, the atom–field state |ε2; 0〉, in which the atom is in the
excited state and there are no photons, can only make transitions to one of the states
|ε1; 1ks〉, in which the atom is in the ground state and there is exactly one photon
present. Conversely, the state |ε1; 1ks〉 can only make a transition into the state |ε2; 0〉.
This is demonstrated more explicitly by using eqn (11.25) for Hrwa to find

Hrwa (t) |ε2; 0〉 = i�
∑
ks

g∗kse
i∆kt |ε1; 1ks〉 , (11.67)

and
Hrwa (t) |ε1; 1ks〉 = −i�gkse

−i∆kt |ε2; 0〉 . (11.68)

Consequently, the spontaneous emission subspace

Hse = span {|ε2; 0〉 , |ε1; 1ks〉 for all ks} (11.69)
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is sent into itself by the action of the RWA Hamiltonian: Hrwa (t)Hse → Hse. This
means that an initial state in Hse will evolve into another state in Hse. The time-
dependent state can therefore be expressed as

|Θ (t)〉 = C2 (t) |ε2; 0〉 +
∑
ks

C1ks (t) e−i∆kt |ε1; 1ks〉 , (11.70)

where the exponential in the second term is included to balance the explicit time depen-
dence of the interaction-picture Hamiltonian. Substituting this into the Schrödinger
equation (11.13) produces equations for the coefficients:

dC2 (t)
dt

= −
∑
ks

gksC1ks (t) , (11.71)

(
d

dt
+ i∆k

)
C1ks (t) = g∗ksC2 (t) . (11.72)

For the discussion of spontaneous emission, it is natural to assume that the atom is
initially in the excited state and no photons are present, i.e.

C2 (0) = 1 , C1ks (0) = 0 . (11.73)

Inserting the formal solution,

C1ks (t) =
∫ t

0

dt′g∗kse
−i∆k(t−t′)C2 (t′) , (11.74)

of eqn (11.72) into eqn (11.71) leads to the integro-differential equation

dC2 (t)
dt

= −
∫ t

0

dt′
{∑

ks

|gks|2 e−i∆k(t−t′)

}
C2 (t′) (11.75)

for C2. This presents us with a difficult problem, since the evolution of C2 (t) now
depends on its past history. The way out is to argue that the function in curly brackets
decays rapidly as t − t′ increases, so that it is a good approximation to set C2 (t′) =
C2 (t). This allows us to replace eqn (11.75) by

dC2 (t)
dt

= −
{∫ t

0

dt′
∑
ks

|gks|2 e−i∆kt′
}

C2 (t) , (11.76)

which has the desirable feature that C2 (t + ∆t) only depends on C2 (t), rather than
C2 (t′) for all t′ < t. As we already noted in Section 9.2.1, evolutions with this property
are called Markov processes, and the transition from eqn (11.75) to eqn (11.76) is called
the Markov approximation. In the following paragraphs we will justify the assumptions
underlying the Markov approximation by a Laplace transform method that is also
useful in related problems.
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The differential equations for C1 (t) and C2 (t) define a linear initial value problem
that can be solved by the Laplace transform method reviewed in Appendix A.5. Ap-
plying the general scheme in eqns (A.73)–(A.75) to the initial conditions (11.73) and
the differential equations (11.71) and (11.72) produces the algebraic equations

ζ C̃2 (ζ) = 1 −
∑
ks

gksC̃1ks (ζ) , (11.77)

(ζ + i∆k) C̃1ks (ζ) = g∗ksC̃2 (ζ) . (11.78)

Substituting the solution of the second of these equations into the first leads to

C̃2 (ζ) =
1

ζ + D (ζ)
, (11.79)

where

D (ζ) =
∑
ks

|gks|2
ζ + i∆k

. (11.80)

In order to carry out the limit V → ∞, we introduce

g2 (k) = V
∑

s

|gks|2 , (11.81)

which allows D (ζ) to be expressed as

D (ζ) =
1
V

∑
k

g2 (k)
ζ + i∆k

→
∫

d3k

(2π)3
g2 (k)

ζ + i∆k
. (11.82)

According to eqn (4.160),

g2 (k) =
ωk |K (∆k)|2

2ε0�

[
|d|2 −

∣∣∣d · k̃
∣∣∣2] , (11.83)

and the integral over the directions of k in eqn (11.82) can be carried out by the method
used in eqn (4.161). The relation |k| = ωk/c is then used to change the integration
variable from |k| to ∆ = ωk − ω21. The lower limit of the ∆-integral is ∆ = −ω21,
but the width of the cut-off function is small compared to the transition frequency
(wK � ω21); therefore, there is negligible error in extending the integral to ∆ = −∞
to get

D (ζ) =
w21

2π

∫ ∞

−∞
d∆

(
1 + ∆

ω21

)3

|K (∆)|2

ζ + i∆
, (11.84)

where

w21 =
|d|2 ω3

21

3πε0�c3
= A2→1 (11.85)

is the spontaneous decay rate previously found in Section 4.9.3.



Spontaneous emission II ���

The time dependence of C2 (t) is determined by the location of the poles in C̃2 (ζ),
which are in turn determined by the roots of

ζ + D (ζ) = 0 . (11.86)

A peculiar feature of this approach is that it is absolutely essential to solve this equa-
tion without knowing the function D (ζ) exactly. The reason is that an exact evaluation
of D (ζ) would require an explicit model for |K (∆)|2, but no physically meaningful
results can depend on the detailed behavior of the cut-off function. What is needed is
an approximate evaluation of D (ζ) which is as insensitive as possible to the shape of
|K (∆)|2. The key to this approximation is found by combining eqn (11.86) with eqn
(11.84) to conclude that the relevant values of ζ are small compared to the width of
the cut-off function, i.e.

ζ = O (w21) � wK . (11.87)

This is the step that will justify the Markov approximation (11.76). In the time do-
main, the function C2 (t) varies significantly over an interval of width ∆t ∼ 1/w21;
consequently, the condition (11.87) is equivalent to Tmem � ∆t; that is, the memory
of the averaging function is short compared to the time scale on which the function
C2 (t) varies. The physical source of this feature is the continuous phase space of final
states available to the emitted photon. Summing over this continuum of final photon
states effectively erases the memory of the atomic state that led to the emission of the
photon.

For values of ζ satisfying eqn (11.87), D (ζ) can be approximated by combining
the normalization condition K (0) = 1 with the identity

lim
ζ→0

1
ζ + i∆

= πδ (∆) − iP
1
∆

, (11.88)

where P denotes the Cauchy principal value—see eqn (A.93). The result is

D (ζ) =
w21

2
+ iδω21 , (11.89)

where the imaginary part,

δω21 = −w21

2π
P

∫ ∞

−∞
d∆

(
1 +

∆
ω21

)3 |K (∆)|2
∆

, (11.90)

is the frequency shift. It is customary to compare δω21 to the Lamb shift (Cohen-
Tannoudji et al., 1992, Sec. II-E.1), but this is somewhat misleading. The result for
Re D (ζ) is robust, in the sense that it is independent of the details of the cut-off
function, but the result for ImD (ζ) is not robust, since it depends on the shape
of |K (∆)|2. In Exercise 11.2, eqn (11.90) is used to get the estimate, δω21/w21 =
O (wK/ω21) � 1, for the size of the frequency shift. This is comforting, since it tells
us that δω21 is at least very small, even if its exact numerical value has no physical
significance. The experimental fact that measured shifts are small compared to the line
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widths is even more comforting. A strictly consistent application of the RWA neglects
all terms of the order wK/ω21; therefore, we will set δω21 = 0.

Substituting D (ζ) from eqn (11.89) into eqn (11.79) gives the simple result

C̃2 (ζ) =
1

ζ + w21/2
, (11.91)

and evaluating the inverse transform (A.72) by the rule (A.80) produces the corre-
sponding time-domain result

C2 (t) = e−w21t/2 . (11.92)

Thus the nonperturbative Weisskopf–Wigner method displays an irreversible decay,

|C2 (t)|2 = e−w21t , (11.93)

of the upper-level occupation probability. This conclusion depends crucially on the
coupling of the discrete atomic states to the broad distribution of electromagnetic
modes available in the infinite volume limit. In the time domain, we can say that
the atom forgets the emission event before there is time for reabsorption. We will see
later on that the irreversibility of the decay does not hold for atoms in a cavity with
dimensions comparable to a wavelength.

In addition to following the decay of the upper-level occupation probability, we can
study the probability that the atom emits a photon into the mode ks. According to
eqn (11.78),

C̃1ks (ζ) =
g∗ks

(ζ + i∆k) (ζ + w21/2)
. (11.94)

The probability amplitude for a photon with wavevector k and polarization eks is
C1ks (t) ei∆kt, so another application of eqn (A.80) yields

C1ks (t) = ig∗ks

e−i∆kt − e−w21t/2

∆k + iw21/2
. (11.95)

After many decay times (w21t � 1), the probability for emission is

pks = lim
t→∞

∣∣C1ks (t) ei∆kt
∣∣2

=
|gks|2

(∆k)2 +
(

w21
2

)2
=

[
ωk |K (∆k)|2

2ε0�V

]
|d · eks|2

(∆k)2 +
(

w21
2

)2 . (11.96)

The denominator of the second factor effectively constrains ∆k by |∆k| < w21, so it is
permissible to set |K (∆k)| = 1 in the following calculations.
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As explained in Section 3.1.4, physically meaningful results are found by passing
to the limit of infinite quantization volume. In the present case, this is done by using
the rule 1/V → d3k/ (2π)3, which yields

dps (k) =
[

ωk

2ε0�

] |d · eks|2
(∆k)2 +

(
w21
2

)2 d3k

(2π)3
(11.97)

for the probability of emitting a photon with polarization eks into the momentum-
space volume element d3k. Summing over polarizations and integrating over the angles
of k, by the methods used in Section 4.9.3, gives the probability for emission of a photon
in the frequency interval (ω, ω + dω):

dp (ω) =
w21
2

(ω − ω21)
2 +

(
w21
2

)2 dω

π
. (11.98)

This has the form of the Lorentzian line shape

L (ν) =
γ

ν2 + γ2
, (11.99)

where ν is the detuning from the resonance frequency, γ is the half-width-at-half-
maximum (HWHM), and the normalization condition is∫ ∞

−∞

dν

π
L (ν) = 1 . (11.100)

From eqn (11.98) we see that the line width w21 is the full-width-at-half-maximum,
but also that the normalization condition is not exactly satisfied. The trouble is that
ω = ωk is required to be positive, so the integral over all physical frequencies is∫ ∞

−ω21

dν

π

w21
2

ν2 +
(

w21
2

)2 < 1 . (11.101)

This is not a serious problem since ω21 � w21, i.e. the optical transition frequency
is much larger than the line width. Thus the lower limit of the integral can be ex-
tended to −∞ with small error. The spectrum of spontaneous emission is therefore
well represented by a Lorentzian line shape.

11.2.3 Two-photon cascade∗

The photon indivisibility experiment of Grangier, Roget, and Aspect, discussed in
Section 1.4, used a two-photon cascade transition as the source of an entangled two-
photon state. The simplest model for this process is a three-level atom, as shown in
Fig. 11.1.

This concrete example will illustrate the use of the general techniques discussed
in the previous section. The one-photon detunings, ∆32,k = ck − ω32 and ∆21,k′ =
ck′ − ω21, are related to the two-photon detuning, ∆31,kk′ = ck + ck′ − ω31, by

∆31,kk′ = ∆32,k + ∆21,k′ = ∆32,k′ + ∆21,k . (11.102)
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Fig. 11.1 Two-photon cascade emission from

a three-level atom. The frequencies are as-

sumed to satisfy ω = ck ≈ ω32, ω′ = ck′ ≈ ω21,

and ω32 � ω21.

�

�

�

��

����

According to the general result (11.43), the RWA Hamiltonian is

Hrwa (t) = −i�
∑
ks

[
g32,kse

−i∆32,ktS32aks + g21,kse
−i∆21,ktS21aks

]
+ HC , (11.103)

where the coupling constants are

g32,ks =

√
�ωk

2ε0V

d32 · eks

�
K (∆32,k) ,

g21,ks =
√

�ωk

2ε0V

d21 · eks

�
K (∆21,k) .

(11.104)

Initially the atom is in the uppermost excited state |ε3〉 and the field is in the
vacuum state |0〉, so the combined system is described by the product state |ε3; 0〉 =
|ε3〉 |0〉. The excited atom can decay to the intermediate state |ε2〉 with the emission of
a photon, and then subsequently emit a second photon while making the final transition
to the ground state |ε1〉. It may seem natural to think that the 3 → 2 photon must
be emitted first and the 2 → 1 photon second, but the order could be reversed. The
reason is that we are not considering a sequence of completed spontaneous emissions,
each described by an Einstein A coefficient, but instead a coherent process in which
the atom emits two photons during the overall transition 3 → 1. Since the final states
are the same, the processes (3 → 2 followed by 2 → 1) and (2 → 1 followed by 3 → 2)
are indistinguishable. Feynman’s rules then tell us that the two amplitudes must be
coherently added before squaring to get the transition probability. If the level spacings
were nearly equal, both processes would be equally important. In the situation we
are considering, ω32 � ω21, the process (2 → 1 followed by 3 → 2) would be far off
resonance; therefore, we can safely neglect it. This approximation is formally justified
by the estimate

g32,ksg21,ks ≈ 0 , (11.105)

which is a consequence of the fact that the cut-off functions |K (∆32,k)| and |K (∆21,k)|
do not overlap.

The states |ε2; 1ks〉 = |ε2〉 |1ks〉 and |ε1; 1ks, 1k′s′〉 = |ε1〉 |1ks, 1k′s′〉 will appear
as the state vector |Θ (t)〉 evolves. It is straightforward to show that applying the
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Hamiltonian to each of these states results in a linear combination of the same three
states. The standard terminology for this situation is that the subspace spanned by
|ε3; 0〉, |ε2; 1ks〉, and |ε1; 1ks, 1k′s′〉 is invariant under the action of the Hamiltonian.
We have already met with a case like this in Section 11.2.2, and we can use the ideas
of the Weisskopf–Wigner model to analyze the present problem. To this end, we make
the following ansatz for the state vector:

|Θ (t)〉 = Z (t) |ε3; 0〉 +
∑
ks

Yks (t) ei∆32,kt |ε2; 1ks〉

+
∑
ks

∑
k′s′

Xks,k′s′ (t) ei∆31,kk′ t |ε1; 1ks, 1k′s′〉 , (11.106)

where the time-dependent exponentials have been introduced to cancel the time de-
pendence of Hrwa (t). Note that the coefficient Xks,k′s′ is necessarily symmetric under
ks ↔ k′s′.

Substituting this expansion into the Schrödinger equation—see Exercise 11.5—
leads to a set of linear differential equations for the coefficients. We will solve these
equations by the Laplace transform technique, just as in Section 11.2.2. The initial
conditions are Z (0) = 1 and Yks (0) = Xks,k′s′ (0) = 0, so the differential equations
are replaced by the algebraic equations

ζZ̃ (ζ) = 1 −
∑
ks

g32,ksỸks (ζ) , (11.107)

[ζ + i∆32,k] Ỹks (ζ) = g∗32,ksZ̃ (ζ) − 2
∑
k′s′

g21,k′s′X̃ks,k′s′ (ζ) , (11.108)

[ζ + i∆31,kk′ ] X̃ks,k′s′ (ζ) =
1
2

[
g∗21,ksỸk′s′ (ζ) + g∗21,k′s′ Ỹks (ζ)

]
. (11.109)

Solving the final equation for X̃ks,k′s′ and substituting the result into eqn (11.108)
produces

[ζ + i∆32,k + Dk (ζ)] Ỹks (ζ) = g∗32,ksZ̃ (ζ) −
∑
k′s′

g21,k′s′g∗21,ks

ζ + i∆31,kk′
Ỹk′s′ (ζ) , (11.110)

where

Dk (ζ) =
∑
k′s′

|g21,k′s′ |2
ζ + i∆32,k + i∆21,k′

. (11.111)

As far as the k-dependence is concerned, eqn (11.110) is an integral equation for
Ỹks (ζ), but there is an approximation that simplifies matters. The first-order term
on the right side shows that Ỹks ∼ g∗32,ks, but this implies that the k′-sum in the
second term includes the product g21,k′s′g∗32,k′s′ , which can be neglected by virtue of
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eqn (11.105). Thus the second term can be dropped, and an approximate solution to
eqn (11.110) is given by

Ỹks (ζ) =
g∗32,ksZ̃ (ζ)

ζ + i∆32,k + Dk (ζ)
. (11.112)

Calculations similar to those in Section 11.2.2 allow us to carry out the limit V → ∞
and express Dk (ζ) as

Dk (ζ) =
w21

2π

∫
d∆′ |K (∆′)|2

ζ + i∆32,k + i∆′ , (11.113)

where w21, the decay rate for the 2 → 1 transition, is given by eqn (11.85).
The poles of Ỹks (ζ) are partly determined by the zeroes of ζ + i∆32,k + Dk (ζ), so

the relevant values of ζ satisfy

ζ + i∆32,k = O (w21) . (11.114)

Another application of the argument used in Section 11.2.2 yields Dk ≈ w21/2, so the
expression for Ỹks (ζ) simplifies to

Ỹks (ζ) =
g∗32,ksZ̃ (ζ)

ζ + i∆32,k + w21
2

. (11.115)

Substituting this into eqn (11.107) gives

Z̃ (ζ) =
1

ζ + F (ζ)
, (11.116)

where

F (ζ) =
w32

2π

∫
d∆

|K (∆)|2
ζ + w21

2 + i∆
, (11.117)

and w32 is the decay rate for the 3 → 2 transition. In this case ζ = O (w32), so ζ+w21/2
is also small compared to the width wK of the cut-off function. A third application of
the same argument yields F (ζ) = w32/2, so the Laplace transforms of the expansion
coefficients are given by

Z̃ (ζ) =
1

ζ + w32
2

, (11.118)

Ỹks (ζ) =
g∗32,ks[

ζ + i∆32,k + w21
2

] (
ζ + w32

2

) , (11.119)

X̃ks,k′s′ (ζ) =
1
2

g∗32,ksg
∗
21,k′s′

[ζ + i∆31,kk′ ]
(
ζ + w32

2

) [
ζ + i∆32,k + w21

2

] + (ks ↔ k′s′) . (11.120)

The rule (A.80) shows that the inverse Laplace transform of eqn (11.120) has the
form
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Xks,k′s′ (t) = G1 exp
(
−w32t

2

)
+ G2 exp

(
−w21t

2

)
exp [−i∆32,kt]

+ G3 exp [−i∆31,kk′t] . (11.121)

In the limit of long times, i.e. w32t � 1 and w21t � 1, only the third term survives.
Evaluating the residue for the pole at ζ = −i∆31,kk′ provides the explicit expression
for G3 and thus the long-time probability amplitude for the state |ε3; 1ks, 1k′s′〉:

X∞
ks,k′s′ = −1

2
g∗32,ksg

∗
21,k′s′[

∆31,kk′ + i
2w32

] [
∆21,k′ + i

2w21

] + (ks ↔ k′s′) . (11.122)

Since the two one-photon resonances are nonoverlapping, only one of these two terms
will contribute for a given (ks,k′s′)-pair. In order to pass to the infinite volume limit,
we introduce g32,s (k) =

√
V g32,ks and g21,s′ (k′) =

√
V g21,k′s′ and use the argument

leading to eqn (11.97) to get the differential probability

dp (ks,k′s′) =
1
4

|g32,s (k)|2{
[∆13,kk′ ]2 + 1

4w2
32

} |g21,s′ (k′)|2{
[∆21,k′ ]2 + 1

4w2
21

} d3k

(2π)3
d3k′

(2π)3
. (11.123)

For early times, i.e. w32t < 1, w21t < 1, the full solution in eqn (11.121) must be
used, and the expansion (11.106) shows that the atom and the field are described by
an entangled state. At late times, the irreversible decay of the upper-level occupation
probabilities destroys the necessary coherence, and the system is described by the
product state |ε3; 1ks, 1k′s′〉 = |ε3〉 |1ks, 1k′s′〉. Thus the atom is no longer entangled
with the field, but the two photons remain entangled with one another, as described by
the state |1ks, 1k′s′〉. The entanglement of the photons in the final state is the essential
feature of the design of the photon indivisibility experiment.

11.3 The semiclassical limit

Since we have a fully quantum treatment of the electromagnetic field, it should be pos-
sible to derive the semiclassical approximation—which was simply assumed in Section
4.1—and combine it with the quantized description of spontaneous emission. This is an
essential step, since there are many applications in which an effectively classical field,
e.g. the single-mode output of a laser, interacts with atoms that can also undergo
spontaneous emission into other modes. Of course, the entire electromagnetic field
could be treated by the quantized theory, but this would unnecessarily complicate
the description of the interesting applications. The final result—which is eminently
plausible on physical grounds—can be stated as the following rule.

In the presence of an external classical field E (r, t) = −∂A (r, t) /∂t, the total
Schrödinger-picture Hamiltonian is

H = Hsc
chg (t) + Hem + Hint , (11.124)

where
Hem =

∑
f

�ωfa†
faf (11.125)
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is the Hamiltonian for the quantized radiation field, and

Hint = −
∫

d3r ĵ (r) ·A(+) (r) (11.126)

is the interaction Hamiltonian between the quantized field and the charges. The re-
maining term,

Hsc
chg (t) =

N∑
n=1

p̂2
n

2Mn
+

1
4πε0

∑
n�=l

qnql

|̂rn − r̂l| −
N∑

n=1

qn

Mn
A (r̂n, t) · p̂n , (11.127)

includes the mutual Coulomb interaction between the charges and the interaction of
the charges with the external classical field.

The rule (11.124) is derived in Section 11.3.1—where some subtleties concerning
the separation of the quantized radiation field and the classical field are explained—
and applied to the treatment of Rabi oscillations and the optical Bloch equation in
the following sections.

11.3.1 The semiclassical Hamiltonian∗

In the presence of a classical source current J (r, t), the complete Schrödinger-picture
Hamiltonian is the sum of the microscopic Hamiltonian, given by eqn (4.29), and the
hemiclassical interaction term given by eqn (5.36):

H = Hem + Hchg + Hint + HJ (t) , (11.128)

where Hem, Hchg, Hint, and HJ are given by eqns (5.29), (4.31), (5.27), and (5.36)
respectively. The description of the internal states of atoms, etc. is contained in this
Hamiltonian, since Hchg includes all Coulomb interactions between the charges. The
hemiclassical interaction Hamiltonian is an explicit function of time—by virtue of the
presence of the prescribed external current—which is conveniently expressed as

HJ (t) = −
∑

κ

[
Gκ (t) a†

κ + G∗
κ (t) aκ

]
, (11.129)

where

Gκ (t) =
√

�

2ε0ωκ

∫
d3r J (r, t) · E∗

κ (r) (11.130)

is the multimode generalization of the coefficients introduced in eqn (5.39).
The familiar semiclassical approximation involves a prescribed classical field, rather

than a classical current, so our immediate objective is to show how to replace the
current by the field. For this purpose, it is useful to transform to the Heisenberg
picture, i.e. to replace the time-independent, Schrödinger-picture operators by their
time-dependent, Heisenberg forms:{

aκ, a†
κ, r̂n, p̂n

} → {
aκ (t) , a†

κ (t) , r̂n (t) , p̂n (t)
}

. (11.131)

The c-number current J (r, t) is unchanged, so the full Hamiltonian in the Heisenberg
picture is still an explicit function of time. The advantage of this transformation is that
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we can apply familiar methods for treating first-order, ordinary differential equations
to the Heisenberg equations of motion for the quantum operators.

By using the equal-time commutation relations to evaluate [aκ (t) , H (t)], one finds
the Heisenberg equation for the annihilation operator aκ (t):

i�
d

dt
aκ (t) = �ωκaκ (t) − Gκ (t) + [aκ (t) , Hint] . (11.132)

The general solution of this linear, inhomogeneous differential equation for aκ (t) is the
sum of the general solution of the homogeneous equation and any special solution of
the inhomogeneous equation. The result (5.40) for the single-mode problem suggests
the choice of the special solution ακ (t), where ακ (t) is a c-number function satisfying

i�
d

dt
ακ (t) = �ωκακ (t) − Gκ (t) . (11.133)

The ansatz
aκ (t) = ακ (t) + arad

κ (t) (11.134)

for the general solution defines a new operator, arad
κ (t), that satisfies the canonical,

equal-time commutation relations[
arad

κ (t) , arad †
λ (t)

]
= δκλ . (11.135)

Substituting eqn (11.134) into eqn (11.132) produces the homogeneous differential
equation

i�
d

dt
arad

κ (t) = �ωκarad
κ (t) +

[
arad

κ (t) , Hint

]
. (11.136)

In order to express Hint in terms of the new operators arad
κ (t), we substitute eqn

(11.134) into the Heisenberg-picture version of the expansion (5.28) to get

A(+) (r, t) = A(+) (r, t) + Arad(+) (r, t) . (11.137)

The operator part,

Arad(+) (r, t) =
∑

κ

√
�

2ε0ωκ
arad

κ (t)Eκ (r) , (11.138)

is defined in terms of the new annihilation operators arad
κ (t). The c-number part,

A(+) (r, t) =
∑

κ

√
�

2ε0ωκ
ακ (t)Eκ (r) =

〈
α
∣∣∣A(+) (r, t)

∣∣∣α〉 , (11.139)

is the positive-frequency part of the classical field A defined by the coherent state,
|α〉, that is emitted by the classical current J . Substitution of eqn (11.137) into eqn
(5.27) yields

Hint = Hsc
int + Hrad

int , (11.140)
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where

Hsc
int = −

∫
d3r ĵ (r, t) · A (r, t) (11.141)

and

Hrad
int = −

∫
d3r ĵ (r, t) ·Arad (r, t) (11.142)

respectively describe the interaction of the charges with the classical field, A (r, t),
and the quantized radiation field Arad (r, t). Since arad

κ (t) commutes with Hsc
int, the

Heisenberg equation for arad
κ (t) is

i�
d

dt
arad

κ (t) = �ωκarad
κ (t) +

[
arad

κ (t) , Hrad
int

]
. (11.143)

The operators r̂n (t) and p̂n (t) for the charges commute with HJ (t), so their
Heisenberg equations are

i�
d

dt
r̂n (t) = [r̂n (t) , Hchg] + [̂rn (t) , Hsc

int] +
[
r̂n (t) , Hrad

int

]
,

i�
d

dt
p̂n (t) = [p̂n (t) , Hchg] + [p̂n (t) , Hsc

int] +
[
p̂n (t) , Hrad

int

]
,

(11.144)

where Hchg is given by eqn (4.31).
The complete Heisenberg equations, (11.143) and (11.144), follow from the new

form,
H = Hsc

chg + Hrad
em + Hrad

int , (11.145)

of the Hamiltonian, where
Hsc

chg = Hchg + Hsc
int (11.146)

and
Hrad

em =
∑

κ

�ωκarad †
κ (t) arad

κ (t) . (11.147)

We have, therefore, succeeded in replacing the classical current J by the classical field
A .

The definition (5.26) of the current operator and the explicit expression (4.31) for
Hchg yield

Hsc
chg =

N∑
n=1

p̂2
n (t)

2Mn
+

1
4πε0

∑
n�=l

qnql

|r̂n (t) − r̂l (t)| −
N∑

n=1

qn

Mn
A (r̂n (t) , t) · p̂n (t) , (11.148)

which agrees with the semiclassical Hamiltonian in eqn (4.3), in the approximation
that the A2-terms are neglected. The explicit time dependence of the Schrödinger-
picture form for the Hamiltonian—which is obtained by inverting the replacement
rule (11.131)—now comes from the appearance of the classical field A (r, t), rather
than the classical current J (r, t).
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The replacement of aκ by arad
κ is not quite as straightforward as it appears to be.

The equal-time canonical commutation relation (11.135) guarantees the existence of a
vacuum state

∣∣0rad
〉

for the arad
κ s, i.e.

arad
κ (t)

∣∣0rad
〉

= 0 for all modes , (11.149)

but the physical interpretation of
∣∣0rad

〉
requires some care. The meaning of the new

vacuum state becomes clear if one uses eqn (11.134) to express eqn (11.149) as

aκ (t)
∣∣0rad

〉
= ακ (t)

∣∣0rad
〉
. (11.150)

This shows that the Heisenberg-picture ‘vacuum’ for arad
κ (t) is in fact the coherent

state |α〉 generated by the classical current. In the Schrödinger picture this becomes

aκ

∣∣0rad (t)
〉

= ακ (t)
∣∣0rad (t)

〉
, (11.151)

which means that the modified vacuum state is even time dependent. In either picture,
the excitations created by arad †

κ represent vacuum fluctuations relative to the coherent
state |α〉. These subtleties are not very important in practice, since the classical field
is typically confined to a single mode or a narrow band of modes. For other modes,
i.e. those modes for which ακ (t) vanishes at all times, the modified vacuum is the
true vacuum. For this reason the superscript ‘rad’ in arad

κ , etc. will be omitted in the
applications, and we arrive at eqn (11.124).

11.3.2 Rabi oscillations

The resonant wave approximation is also useful for describing the interaction of a
two-level atom with a classical field having a long coherence time Tc, e.g. the field of
a laser. From Section 4.8.2, we know that perturbation theory cannot be used if Tc >
1/A, where A is the Einstein A coefficient, but the RWA provides a nonperturbative
approach. We will assume that there is only one mode, with frequency ω0, which is
nearly resonant with the atomic transition. In this case the interaction-picture state
vector |Θ (t)〉 satisfies

i�
∂

∂t
|Θ (t)〉 = Hrwa (t) |Θ (t)〉 , (11.152)

and specializing eqn (11.25) to the single mode (k0, s0) gives

Hrwa (t) = −i�g0e
−iδtσ+a0 + i�g∗0e

iδtσ−a†
0 , (11.153)

where δ = ω0 − ω21 is the detuning.
In Chapter 12 we will study the full quantum dynamics associated with this Hamil-

tonian (also known as the Jaynes–Cummings Hamiltonian), but for our immediate pur-
poses we will assume that the combined system of field and atom is initially described
by the state

|Θ (0)〉 = |Ψ (0)〉 |α〉 , (11.154)

where |Ψ (0)〉 is the initial state vector for the atom and |α〉 is a coherent state for a0,
i.e.

a0 |α〉 = α |α〉 . (11.155)

This is a simple model for the output of a laser. As explained above, the operator
arad
0 = a0 − α represents vacuum fluctuations around the coherent state, so replacing
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a0 by α in eqn (11.153) amounts to neglecting all vacuum fluctuations, including spon-
taneous emission from the upper level. This approximation defines the semiclassical
Hamiltonian:

Hsc (t) = −i�ge−iδtσ+ + i�g∗eiδtσ−
= �ΩLe−iδtσ+ + �Ω∗

Leiδtσ− , (11.156)

where

ΩL = −ig0α = −d · EL

�
, (11.157)

and EL is the classical field amplitude corresponding to α. With the conventions
adopted in Section 11.1.1, the atomic state is described by

|Ψ〉 →
(

Ψ2

Ψ1

)
, (11.158)

where Ψ2 (Ψ1) is the amplitude for the excited (ground) state. In this basis the
Schrödinger equation becomes

i
d

dt

(
Ψ2

Ψ1

)
=
[

0 ΩLe−iδt

Ω∗
Leiδt 0

](
Ψ2

Ψ1

)
. (11.159)

The transformation Ψ2 = exp (−iδt/2)C2 and Ψ1 = exp (iδt/2)C1 produces an equa-
tion with constant coefficients,

i
d

dt

(
C2

C1

)
=

[− δ
2 ΩL

Ω∗
L

δ
2

](
C2

C1

)
. (11.160)

The eigenvalues of the 2 × 2 matrix on the right are ±ΩR, where

ΩR =

√
δ2

4
+ |ΩL|2 (11.161)

is the Rabi frequency. The general solution is(
C2 (t)
C2 (t)

)
= C+ξ+ exp (−iΩRt) + C−ξ− exp (iΩRt) , (11.162)

where ξ+ and ξ− are the eigenvectors corresponding to ±ΩR and the constants C± are
determined by the initial conditions. For exact resonance (δ = 0) and an atom initially
in the ground state, the occupation probabilities are

|Ψ1 (t)|2 = cos2 (ΩRt) , (11.163)

|Ψ2 (t)|2 = sin2 (ΩRt) . (11.164)

The oscillation between the ground and excited states is also known as Rabi flopping.
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11.3.3 The Bloch equation

The pure-state description of an atom employed in the previous section is not usually
valid, so the Schrödinger equation must be replaced by the quantum Liouville equation
introduced in Section 2.3.2-A. In the interaction picture, eqn (2.119) becomes

i�
∂

∂t
ρ (t) = [Hint (t) , ρ (t)] , (11.165)

where ρ (t) is the density operator for the system under study. We now consider a two-
level atom interacting with a monochromatic classical field defined by the positive-
frequency part,

E(+) (r, t) = E (r, t) e−iω0t , (11.166)

where ω0 is the carrier frequency and E (r, t) is the slowly-varying envelope. The RWA
interaction Hamiltonian is then

Hrwa (t) = −d · E(+) (t)σ+ (t) − d∗ · E(−) (t)σ− (t)

= −d · E (t) e−iδtσ+ − d∗ · E∗
(t) eiδtσ− , (11.167)

where E (t) = E (R, t) is the slowly-varying envelope evaluated at the position R of
the atom. The explicit time dependence of the atomic operators has been displayed by
using eqn (11.12). In this special case, the quantum Liouville equation has the form

i
d

dt
ρ (t) = −Ω (t) e−iδt [σ+, ρ (t)] − Ω∗ (t) eiδt [σ−, ρ (t)] , (11.168)

where the complex, time-dependent Rabi frequency is defined by

Ω (t) =
d · E (t)

�
. (11.169)

Combining the notation ρqp (t) = 〈εq |ρ (t)| εp〉 with the hermiticity condition
ρ12 (t) = ρ∗21 (t) allows eqn (11.168) to be written out explicitly as

i
d

dt
ρ11 (t) = −Ω (t) e−iδtρ21 (t) + Ω∗ (t) eiδtρ12 (t) , (11.170)

i
d

dt
ρ22 (t) = Ω (t) e−iδtρ21 (t) − Ω∗ (t) eiδtρ12 (t) , (11.171)

i
d

dt
ρ12 (t) = −Ω (t) e−iδt [ρ22 (t) − ρ11 (t)] , (11.172)

where ρ11 and ρ22 are the occupation probabilities for the two levels and the off-
diagonal term ρ12 is called the atomic coherence. For most applications, it is better
to eliminate the explicit exponentials by setting

ρ12 (t) = e−iδtρ12 (t) , ρ22 (t) = ρ22 (t) , ρ11 (t) = ρ11 (t) , (11.173)

to get
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d

dt
ρ22 (t) = i [Ω (t) ρ12 (t) − Ω∗ (t) ρ21 (t)] , (11.174)

d

dt
ρ11 (t) = −i [Ω (t) ρ12 (t) − Ω∗ (t) ρ21 (t)] , (11.175)

d

dt
ρ21 (t) = iδρ21 (t) + iΩ (t) (ρ11 (t) − ρ22 (t)) . (11.176)

The sum of eqns (11.174) and (11.175) conveys the reassuring news that the total
occupation probability, ρ11 (t) + ρ22 (t), is conserved.

For a strictly monochromatic field, Ω (t) = Ω, these equations can be solved to
obtain a generalized description of Rabi flopping, but there is a more pressing question
to be addressed. This is the neglect of the decay of the upper level by spontaneous
emission. We have seen in Section 11.2.2 that the upper-level amplitude C1 (t) ∼
exp (−Γt/2), so in the absence of the external field the occupation probability ρ11 of
the upper level and the coherence ρ12 (t) should behave as

ρ22 (t) ∼ C2 (t)C∗
2 (t) ∼ e−w21t ,

ρ21 (t) ∼ C2 (t)C∗
1 (t) ∼ e−w21t/2 .

(11.177)

An equivalent statement is that the terms −w21ρ22 (t) and −w21ρ21 (t) /2 should ap-
pear on the right sides of eqns (11.174) and (11.175) respectively. This would be the
end of the story if spontaneous emission were the only thing that has been left out,
but there are other effects to consider. In atomic vapors, elastic scattering from other
atoms will disturb the coherence ρ12 (t) and cause an additional decay rate, and in
crystals similar effects arise due to lattice vibrations and local field fluctuations.

The general description of dissipative effects will be studied Chapter 14, but for the
present we will adopt a phenomenological approach in which eqns (11.174)–(11.176)
are replaced by the Bloch equations:

d

dt
ρ22 (t) = −w21ρ22 (t) + i [Ω (t) ρ12 (t) − Ω∗ (t) ρ21 (t)] , (11.178)

d

dt
ρ11 (t) = w21ρ22 (t) − i [Ω (t) ρ12 (t) − Ω∗ (t) ρ21 (t)] , (11.179)

d

dt
ρ21 (t) = (iδ − Γ21) ρ21 (t) + iΩ (t) (ρ11 (t) − ρ22 (t)) , (11.180)

where the decay rate w21 and the dephasing rate Γ21 are parameters to be deter-
mined from experiment. In this simple two-level model the lower level is the ground
state, so the term w21ρ22 in eqn (11.179) is required in order to guarantee conserva-
tion of the total occupation probability. This allows eqns (11.179) and (11.180) to be
replaced by

ρ11 (t) + ρ22 (t) = 1 , (11.181)

d

dt
[ρ22 (t) − ρ11 (t)] = −w21 − w21 [ρ22 (t) − ρ11 (t)] + 2i [Ω (t) ρ12 (t) − Ω∗ (t) ρ21 (t)] ,

(11.182)
where ρ22 (t)− ρ11 (t) is the population inversion. In the literature, the parameters
w21 and Γ21 are often represented as
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w21 =
1
T1

, Γ21 =
1
T2

, (11.183)

where T1 and T2 are respectively called the longitudinal and transverse relaxation
times. This terminology is another allusion to the analogy with a spin-1/2 system
precessing in an external magnetic field. Another common usage is to call T1 and T2

respectively the on-diagonal and off-diagonal relaxation times.
In the frequency domain, the slow time variation of the field envelope E (t) is

represented by the condition ∆ω0 � ω0, where ∆ω0 is the spectral width of E (ω).
The detuning and the dephasing rate are also small compared to the carrier frequency,
but either or both can be large compared to ∆ω0. This limit can be investigated by
means of the formal solution,

ρ21 (t) = ρ21 (t0) e(iδ−Γ21)(t−t0) − i

∫ t

t0

dt′Ω (t′) [ρ22 (t′) − ρ11 (t′)] e(iδ−Γ21)(t−t′) ,

(11.184)
of eqn (11.180). Since Γ21 � w21/2 > 0, the formal solution has the t0 → −∞ limit

ρ21 (t) = −i

∫ t

−∞
dt′Ω (t′) [ρ22 (t′) − ρ11 (t′)] e(iδ−Γ21)(t−t′) . (11.185)

The exponential factor exp [−Γ21 (t − t′)] implies that the main contribution to the
integral comes from the interval t − 1/Γ21 < t′ < t, while the rapidly oscillating
exponential exp [iδ (t − t′)] similarly restricts contributions to the interval t− 1/ |δ| <
t′ < t. Thus if either of the conditions Γ21 � max (∆ω0, w21) or |δ| � max (∆ω0, w21)
is satisfied, the main contribution to the integral comes from a small interval t−∆t <
t′ < t. In this interval, the remaining terms in the integrand are effectively constant;
consequently, they can be evaluated at the upper limit to find:

ρ21 (t) =
Ω (t) [ρ22 (t) − ρ11 (t)]

δ + iΓ21
. (11.186)

The approximation of the atomic coherence by this limiting form is called adia-
batic elimination, by analogy to the behavior of thermodynamic systems. A ther-
modynamic parameter, such as the pressure of a gas, will change in step with slow
changes in a control parameter, e.g. the temperature. The analogous behavior is seen in
eqn (11.186) which shows that the atomic coherence ρ21 (t) follows the slower changes
in the populations. For a large dephasing rate, exponential decay drives ρ21 (t) to the
equilibrium value given by eqn (11.186). In the case of large detuning, the deviation
from the equilibrium value oscillates so rapidly that its contribution averages to zero.

Once the mechanism of adiabatic elimination is understood, its application reduces
to the following simple rule.

(a) If |Γqp + i∆qp| is large, set dρqp/dt = 0.

(b) Use the resulting algebraic relations to eliminate as many ρqps as possible.

(11.187)
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Substituting ρ21 (t) from eqn (11.186) into eqn (11.182) leads to

d

dt
[ρ22 (t) − ρ11 (t)] = −w21 −

{
w21 +

4 |Ω (t)|2 Γ21

δ2 + Γ2
21

}
[ρ22 (t) − ρ11 (t)] , (11.188)

which shows that the adiabatic elimination of the atomic coherence does not neces-
sarily imply the adiabatic elimination of the population inversion. The solution of this
differential equation also shows that no pumping scheme for a strictly two-level atom
can change the population inversion from negative to positive. Since laser amplifica-
tion requires a positive inversion, this implies that laser action can only be described
by atoms with at least three active levels.

If w21 = O (∆ω0) the population inversion and the external field change on the
same time scale. Adiabatic elimination of the population inversion will only occur for
w21 � ∆ω0. In this limit the adiabatic elimination rule yields

ρ22 (t) − ρ11 (t) = − w21

w21 + 4|Ω(t)|2Γ21

δ2+Γ2
21

< 0 . (11.189)

When adiabatic elimination is possible for both the atomic coherence and the popula-
tion inversion, the atomic density matrix appears to react instantaneously to changes
in the external field. What this really means is that transient effects are either sup-
pressed by rapid damping (w21 � ∆ω0, and Γ21 � ∆ω0) or average to zero due to
rapid oscillations (|δ| � ∆ω0). The apparently instantaneous response of the two-level
atom is also displayed by multilevel atoms when the corresponding conditions are
satisfied.

For later applications it is more useful to substitute the adiabatic form (11.186)
into the original equations (11.179) and (11.178) to get a pair of equations for the
occupation probabilities Pq = ρqq . In the strictly monochromatic case, one finds

dP2

dt
= W12P1 − (w21 + W12)P2 ,

dP1

dt
= −W12P1 + (w21 + W12) P2 ,

(11.190)

where

W12 =
2 |Ω|2 Γ21

δ2 + Γ2
21

(11.191)

is the rate of 1 → 2 transitions (absorptions) driven by the field. By virtue of the
equality B1→2 = B2→1, explained in Section 1.2.2, this is equal to the rate of 2 → 1
transitions (stimulated emissions) driven by the field. Equations (11.190) are called
rate equations and their use is called the rate equation approximation. The
occupation probability of |ε2〉 is increased by absorption from |ε1〉 and decreased by the
combination of spontaneous and stimulated emission to |ε1〉. The inverse transitions
determine the rate of change of P1, in such a way that probability is conserved. The
rate equations can be generalized to atoms with three or more levels by adding up all
of the (incoherent) processes feeding and depleting the occupation probability of each
level.
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11.4 Exercises

11.1 The antiresonant Hamiltonian

Apply the definition (11.17) of the running average to H
(ar)
int (t) to find:

H
(ar)

int (t) = −i�
∑
ks

[√
�ωk

2ε0V

d∗ · eks

�

]
e−i(ω21+ωk)tK (ω21 + ωk) aksσ− + HC .

Use the properties of the cut-off function and the conventions ω21 > 0 and ωk > 0 to
explain why dropping H

(ar)

int (t) is a good approximation.

11.2 The Weisskopf–Wigner method

(1) Fill in the steps needed to go from eqn (11.80) to eqn (11.84).

(2) Assume that |K (∆)|2 is an even function of ∆ and show that

δω21

w21
=

3
2πω21

∫ ∞

−∞
d∆ |K (∆)|2 +

1
2πω3

21

∫ ∞

−∞
d∆ ∆2 |K (∆)|2 .

Use this to derive the estimate δω21/w21 = O (wK/ω21) � 1.

11.3 Atomic radiation field

(1) Use the eqns (11.26) and (B.48) to show that

∑
s

√
�ωk

2ε0V
g∗ksekse

ik·r =
ωkK (∆k)

2ε0V

[
d∗ +

(d∗ · ∇)∇
k2

]
eik·r .

(2) With the aid of this result, convert the k-sum in eqn (11.54) to an integral. Show
that ∫

dΩkeik·r =
4π sin (kr)

kr
,

and then derive eqn (11.56).

11.4 Slowly-varying envelope operators

Define envelope operators σ− (t) = exp (iω21t)σ− (t), σz (t) = σz (t), and aks (t) =
exp (iωkt) aks (t).

(1) Use eqns (11.47)–(11.49) to derive the equations satisfied by the envelope opera-
tors.

(2) From these equations argue that the envelope operators are slowly varying, i.e.
essentially constant over an optical period.

11.5 Two-photon cascade∗

(1) Substitute the ansatz (11.106) into the Schrödinger equation for the Hamiltonian
(11.103) and obtain the differential equations for the coefficients.

(2) Use the given initial conditions to derive eqns (11.107)–(11.109).
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(3) Carry out the steps needed to arrive at eqn (11.113).

(4) Starting with the normalization |K (0)| = 1 and the fact that |K (∆′)|2 is an even
function, use an argument similar to the derivation of eqn (11.89) to show that
Dk ≈ w21/2.

(5) Evaluate the residue for the poles of X̃ks,k′s′ (ζ) to find the coefficients G1, G2,
and G3, and then derive eqn (11.122).
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Cavity quantum electrodynamics

In Section 4.9 we studied spontaneous emission in free space and also in the modified
geometry of a planar cavity. The large dimensions in both cases—three for free space
and two for the planar cavity—provide the densely packed energy levels that are
essential for the validity of the Fermi golden rule calculation of the emission rate.

Cavity quantum electrodynamics is concerned with the very different situation of an
atom trapped in a cavity with all three dimensions comparable to the wavelength of the
emitted radiation. In this case the radiation modes are discrete, and the Fermi golden
rule cannot be used. Instead of disappearing into the blackness of infinite space, the
emitted radiation is reflected from the nearby cavity walls, and soon absorbed again by
the atom. The re-excitation of the atom results in a cycle of emissions and absorptions,
rather than irreversible decay. In the limit of strong fields, i.e. many photons in a single
mode, this cyclic behavior is described in Section 11.3.2 as Rabi flopping. The exact
periodicity of Rabi flopping is, however, an artifact of the semiclassical approximation,
in which the discrete nature of photons is ignored. In the limit of weak fields, the grainy
nature of light makes itself felt in the nonclassical features of collapse and revival of
the probability for atomic excitation.

There are several possible experimental realizations of cavity quantum electrody-
namics, but the essential physical features of all of them are included in the Jaynes–
Cummings model discussed in Section 12.1. In Section 12.2 we will use this model to
describe the intrinsically quantum phenomena of collapse and revival of the radiation
field in the cavity. A particular experimental realization is presented in Section 12.3.

12.1 The Jaynes–Cummings model

12.1.1 Definition of the model

In its simplest form, the Jaynes–Cummings model consists of a single two-level atom
located in an ideal cavity. For the two-level atom we will use the treatment given in
Section 11.1.1, in which the two atomic eigenstates are |ε1〉 and |ε2〉 with ε1 < ε2. The
Hamiltonian is then

Hat =
�ω0

2
σz , (12.1)

where we have chosen the zero of energy so that ε2 + ε1 = 0, and set ω0 ≡ (ε2 − ε1) /�.
For the electromagnetic field, we use the formulation in Section 2.1, so that

Hem =
∑

κ

�ωκa†
κaκ (12.2)
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is the Hamiltonian, and

E(+) (r) = i
∑

κ

√
�ωκ

2ε0
aκEκ (r) (12.3)

is the positive-frequency part of the electric field (in the Schrödinger picture).
Adapting the general result (11.27) to the cavity problem gives the RWA interaction

Hamiltonian

Hrwa = −d · E(+)σ+ − d∗ · E(−)σ−

= −i�
∑

κ

gκaκσ+ + i�
∑

κ

g∗κa†
κσ− ; (12.4)

where d =
〈
ε1
∣∣d̂∣∣ε2〉 is the dipole matrix element; the coupling frequencies are

gκ = K (ω0 − ωκ)
√

�ωκ

2ε0

d · Eκ (R)
�

; (12.5)

K (ω0 − ωκ) is the RWA cut-off function; and R is the position of the atom.
We will now drastically simplify this model in two ways. The first is to assume

that the center-of-mass motion of the atom can be treated classically. This means
that ω0 should be interpreted as the Doppler-shifted resonance frequency. In many
cases the Doppler effect is not important; for example, for microwave transitions in
Rydberg atoms passing through a resonant cavity, or single atoms confined in a trap.
The second simplification is enforced by choosing the cavity parameters so that the
lowest (fundamental) mode frequency is nearly resonant with the atomic transition,
while all higher frequency modes are well out of resonance. This guarantees that only
the lowest mode contributes to the resonant Hamiltonian; consequently, the family of
annihilation operators aκ can be reduced to the single operator a for the fundamental
mode. From now on, we will call the fundamental frequency the cavity frequency
ωC and the corresponding mode function EC (R) the cavity mode.

The total Hamiltonian for the Jaynes–Cummings model is therefore HJC = H0 +
Hint, where

H0 = �ωCa†a + (�ω0/2)σz , (12.6)

Hint = −i�gaσ+ + i�ga†σ− , (12.7)

and

g =
√

�ωC

2ε0

d · EC (R)
�

. (12.8)

By appropriate choice of the phases in the atomic eigenstates |ε1〉 and |ε2〉, we can
always arrange that g is real.

12.1.2 Dressed states

The interaction Hamiltonian in eqn (12.7) has the same general form as the interac-
tion Hamiltonian (11.25) for the Weisskopf–Wigner model of Section 11.2.2, but it is
greatly simplified by the fact that only one mode of the radiation field is active. In
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the Weisskopf–Wigner case, the infinite-dimensional subspaces Hse are left invariant
(mapped into themselves) under the action of the Hamiltonian. Since the Hamiltonians
have the same structure, a similar behavior is expected in the present case.

The product states,

|εj , n〉(0) = |εj〉 |n〉 (n = 0, 1, . . .) , (12.9)

where the |εj〉s (j = 1, 2) are the atomic eigenstates and the |n〉s are number states
for the cavity mode, provide a natural basis for the Hilbert space HJC of the Jaynes–
Cummings model. The |εj , n〉(0)s are called bare states, since they are eigenstates of
the non-interacting Hamiltonian H0:

H0 |εj , n〉(0) = (εj + n�ωC) |εj, n〉(0). (12.10)

Turning next to Hint, a straightforward calculation shows that

Hint |ε1, 0〉(0) = 0 , (12.11)

which means that spontaneous absorption from the bare vacuum is forbidden in the
resonant wave approximation. Consequently, the ground-state energy and state vector
for the atom–field system are, respectively,

εG = ε1 = −�ω0

2
and |G〉 = |ε1, 0〉(0). (12.12)

Furthermore, for each photon number n the pairs of bare states |ε2, n〉(0) and
|ε1, n + 1〉(0) satisfy

Hint |ε2, n〉(0) = i�g
√

n + 1 |ε1, n + 1〉(0),
Hint |ε1, n + 1〉(0) = −i�g

√
n + 1 |ε2, n〉(0).

(12.13)

Consequently, each two-dimensional subspace

Hn = span
{
|ε2, n〉(0), |ε1, n + 1〉(0)

}
(n = 0, 1, . . .) (12.14)

is left invariant by the total Hamiltonian. This leads to the natural decomposition of
HJC as

HJC = HG ⊕ H0 ⊕ H1 ⊕ · · · , (12.15)

where HG = span
{|ε1, 0〉(0)} is the one-dimensional space spanned by the ground state.

In the subspace Hn the Hamiltonian is represented by a 2 × 2 matrix

HJC,n =
(

n +
1
2

)
�ωC

[
1 0
0 1

]
+

�

2

[
δ −2ig

√
n + 1

2ig
√

n + 1 −δ

]
, (12.16)

where δ = ω0 −ωC is the detuning. This construction allows us to reduce the solution
of the full Schrödinger equation, HJC |Φ〉 = ε |Φ〉, to the diagonalization of the 2 × 2-
matrix HJC,n for each n. The details are worked out in Exercise 12.1. For each subspace
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Hn, the exact eigenvalues and eigenvectors, which will be denoted by εj,n and |j, n〉
(j = 1, 2), respectively, are

ε1,n =
(

n +
1
2

)
�ωC +

�Ωn

2
, (12.17)

|1, n〉 = sin θn |ε2, n〉(0) + cos θn |ε1, n + 1〉(0), (12.18)

ε2,n =
(

n +
1
2

)
�ωC − �Ωn

2
, (12.19)

|2, n〉 = cos θn |ε2, n〉(0) − sin θn |ε1, n + 1〉(0), (12.20)

where
Ωn =

√
δ2 + 4g2 (n + 1) (12.21)

is the Rabi frequency for oscillations between the two bare states in Hn. The probability
amplitudes for the bare states are given by

cos θn =
Ωn − δ√

(Ωn − δ)2 + 4g2 (n + 1)
,

sin θn =
2g

√
n + 1√

(Ωn − δ)2 + 4g2 (n + 1)
.

(12.22)

The bare (g = 0) eigenvalues

ε
(0)
1,n = (n + 1/2)�ωC + �δ/2 ,

ε
(0)
2,n = (n + 1/2)�ωC − �δ/2

(12.23)

are degenerate at resonance (δ = 0), but the exact eigenvalues satisfy

ε1,n − ε2,n = �Ωn � 2�g
√

n + 1 . (12.24)

This is an example of the ubiquitous phenomenon of avoided crossing (or level
repulsion) which occurs whenever two states are coupled by a perturbation.

The eigenstates |1, n〉 and |2, n〉 of the full Jaynes–Cummings Hamiltonian HJC are
called dressed states, since the interaction between the atom and the field is treated
exactly. By virtue of this interaction, the dressed states are entangled states of the
atom and the field.

12.2 Collapses and revivals

With the dressed eigenstates of HJC in hand, we can write the general solution of the
time-dependent Schrödinger equation as

|Ψ (t)〉 = e−iεGt/�CG |G〉 +
∞∑

n=0

2∑
j=1

Cj,ne−iεj,nt/� |j, n〉 , (12.25)

where the expansion coefficients are determined by the initial state vector according
to CG = 〈G |Ψ (0)〉 and Cj,n = 〈j, n |Ψ (0)〉 (j = 1, 2) (n = 0, 1, . . .). If the atom
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is initially in the excited state |ε2〉 and exactly m cavity photons are present, i.e.
|Ψ (0)〉 = |ε2, m〉(0), the general solution (12.25) specializes to |Ψ (t)〉 = |ε2, m; t〉, where

|ε2, n; t〉 ≡ e−i(n+1/2)ωCt

[
cos

(
Ωnt

2

)
+ i cos (2θn) sin

(
Ωnt

2

)]
|ε2, n〉(0)

− ie−i(n+1/2)ωCt sin (2θn) sin
(

Ωnt

2

)
|ε1, n + 1〉(0). (12.26)

At resonance, the probabilities for the states |ε2, m〉(0) and |ε1, m + 1〉(0) are

P2,m (t) =
∣∣∣(0)〈ε2, m |Ψ (t) 〉

∣∣∣2 = cos2
(
g
√

m + 1t
)
,

P1,m+1 (t) =
∣∣∣(0)〈ε1, m + 1 |Ψ (t) 〉

∣∣∣2 = sin2
(
g
√

m + 1t
)
,

(12.27)

so—as expected—the system oscillates between the two atomic states by emission and
absorption of a single photon. The exact periodicity displayed here is a consequence
of the special choice of an initial state with a definite number of photons. For m > 0,
this is analogous to the semiclassical problem of Rabi flopping driven by a field with
definite amplitude and phase. The analogy to the classical case fails for m = 0, i.e. an
excited atom with no photons present. The classical analogue of this case would be
a vanishing field, so that no Rabi flopping would occur. The occupation probabilities
P2,0 (t) = cos2 (gt) and P1,1 (t) = sin2 (gt) describe vacuum Rabi flopping, which is
a consequence of the purely quantum phenomenon of spontaneous emission, followed
by absorption, etc.

For initial states that are superpositions of several photon number states, exact
periodicity is replaced by more complex behavior which we will now study. A super-
position,

|Ψ (0)〉 =
∞∑

n=0

Kn |ε2, n〉(0), (12.28)

of the initial states |ε2, n〉(0) that individually lead to Rabi flopping evolves into

|Ψ (t)〉 =
∞∑

n=0

Kn |ε2, n; t〉 , (12.29)

so the probability to find the atom in the upper state, without regard to the number
of photons, is

P2 (t) =
∞∑

n=0

∣∣∣(0)〈ε2, n |Ψ (t) 〉
∣∣∣2 =

∞∑
n=0

|Kn|2
∣∣∣(0)〈ε2, n |ε2, n; t 〉

∣∣∣2 . (12.30)

At resonance, eqn (12.27) allows this to be written as

P2 (t) =
1
2

+
1
2

∞∑
n=0

|Kn|2 cos
(
2
√

n + 1gt
)
. (12.31)

If more than one of the coefficients Kn is nonvanishing, this function is a sum of
oscillatory terms with incommensurate frequencies. Thus true periodicity is only found
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for the special case |Kn| = δnm for some fixed value of m. For any choice of the Kns
the time average of the upper-level population is 〈P2 (t)〉 = 1/2.

In order to study the behavior of P2 (t), we need to make an explicit choice for the
Kns. Let us suppose, for example, that the initial state is |Ψ (0)〉 = |ε2〉 |α〉, where |α〉 is
a coherent state for the cavity mode. The coefficients are then |Kn|2 = e−|α|2 |α|2n

/n!,
and

P2 (t) =
1
2

+
e−|α|2

2

∞∑
n=0

|α|2n

n!
cos

(
2
√

n + 1gt
)
. (12.32)

Photon numbers for the coherent state follow a Poisson distribution, so the main
contribution to the sum over n will come from the range (n − ∆n, n + ∆n), where
n = |α|2 is the mean photon number and ∆n = |α| is the variance. For large n,
the corresponding spread in Rabi frequencies is ∆Ω ∼ 2g. At very early times, t �
1/g, the arguments of the cosines are essentially in phase, and P2 (t) will execute an
almost coherent oscillation. At later times, the variation of the Rabi frequencies with
photon number will lead to an effectively random distribution of phases and destructive
interference. This effect can be estimated analytically by replacing the sum over n
with an integral and evaluating the integral in the stationary-phase approximation.
The result,

P2 (t) =
1
2

+
e−|gt|2

2
cos (2 |α| gt) for gt � 1 , (12.33)

describes the collapse of the upper-level population to the time-averaged value of
1/2. This decay in the oscillations is neither surprising nor particularly quantal in
character. A superposition of Rabi oscillations due to classical fields with random field
strengths would produce a similar decay.

What is surprising is the behavior of the upper-level population at still later times.
A numerical evaluation of eqn (12.32) reveals that the oscillations reappear after a
rephasing time trp ∼ 4π |α| /g. This revival—with P2 (t) = O (1)—is a specifically
quantum effect, explained by photon indivisibility. The revival is in turn followed by
another collapse. The first collapse and revival are shown in Fig. 12.1.

The classical nature of the collapse is illustrated by the dashed curve in the same
figure, which is calculated by replacing the discrete sum in eqn (12.32) by an integral.
The two curves are indistinguishable in the initial collapse phase, but the classical
(dashed) curve remains flat at the value 1/2 during the quantum revival. Thus the
experimental observation of a revival provides further evidence for the indivisibility
of photons. After a few collapse–revival cycles, the revivals begin to overlap and—as
shown in Exercise 12.2—P2 (t) becomes irregular.
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Fig. 12.1 The solid curve shows the probability P2 (t) versus gt, where the upper-level

population P2 (t) is given by eqn (12.32), and the average photon number is n = |α|2 = 10.

The dashed curve is the corresponding classical result obtained by replacing the discrete sum

over photon number by an integral.

12.3 The micromaser

The interaction of a Rydberg atom with the fundamental mode of a microwave cavity
provides an excellent realization of the Jaynes–Cummings model. The configuration
sketched in Fig. 12.2 is called a micromaser (Walther, 2003). It is designed so that—
with high probability—at most one atom is present in the cavity at any given time. A
velocity-selected beam of alkali atoms from an oven is sent into a laser excitation region,
where the atoms are promoted to highly excited Rydberg states. The size of a Rydberg
atom is characterized by the radius, aRyd = n2

p�2/me2, of its Bohr orbit, where np is

�������� �������	
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Fig. 12.2 Rubidium Rydberg atoms from an oven pass successively through a velocity selec-

tor, a laser excitation region, and a superconducting microwave cavity. After emerging from

the cavity, they are detected—in a state-selective manner—by field ionization, followed by

channeltron detectors. (Reproduced from Rempe et al. (1990).)
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the principal quantum number, and �2/me2 is the Bohr radius for the ground state of
the hydrogen atom. These atoms are truly macroscopic in size; for example, the radius
of a Rydberg atom with np � 100 is on the order of microns, instead of nanometers.
The dipole matrix element d = 〈np |er̂|np + 1〉 for a transition between two adjacent
Rydberg states np + 1 → np is proportional to the diameter of the atom, so it scales
as n2

p. On the other hand, for transitions between high angular momentum (circular)
states the frequency scales as ω ∝ 1/n3

p, which is in the microwave range. According to
eqn (4.162) the Einstein A coefficient scales like A ∝ |d|2 ω3 ∝ 1/n5

p. Thus the lifetime
τ = 1/A ∝ n5

p of the upper level is very long, and the neglect of spontaneous emission
is a very good approximation.

The opposite conclusion follows for absorption and stimulated emission, since the
relation (4.166) between the A and B coefficients shows that B ∝ n4

p. For the same
applied field, the absorption rate for a Rydberg atom with np � 100 is typically 108

times larger than the absorption rate at the Lyman transition between the 2p and
1s states of the hydrogen atom. Since stimulated emission is also described by the
Einstein B coefficient, stimulated emission from the Rydberg atom can occur when
there are only a few photons inside a microwave cavity.

As indicated in Fig. 12.2, a single Rydberg atom enters and leaves a supercon-
ducting microwave cavity through small holes drilled on opposite sides. During the
transit time of the atom across the cavity the photons already present can stimulate
emission of a single photon into the fundamental cavity mode; conversely, the atom
can sometimes reabsorb a single photon. The interaction of the atom with a single
mode of the cavity is described by the Jaynes–Cummings Hamiltonian in eqn (12.7).
By monitoring whether or not the Rydberg atom has made a transition, np + 1 → np,
between the adjacent Rydberg states, one can infer indirectly whether or not a single
microwave photon has been deposited in the cavity. This is possible because of the
entangled nature of the dressed states in eqns (12.18) and (12.20). A measurement of
the state of the atom, with the outcome |ε2〉, forces a reduction of the total state vector
of the atom–radiation system, with the result that the radiation field is definitely in
the state |n〉. In other words, the number of photons in the cavity has not changed.
Conversely, a measurement with the outcome |ε1〉 guarantees that the field is in the
state |n + 1〉, i.e. a photon has been added to the cavity.

The discrimination between the two Rydberg states is easily accomplished, since
the ionization of the Rydberg atom by a DC electric field depends very sensitively
on its principal quantum number np. The higher number np + 1 corresponds to a
larger, more easily ionized atom, and the lower number np corresponds to a smaller,
less easily ionized atom. The electric field in the first ionization region—shown in Fig.
12.2—is strong enough to ionize all (np + 1)-atoms, but too weak to ionize any np-
atoms. Thus an atom that remains in the excited state is detected in the first region.
If the atom has made a transition to the lower state, then it will be ionized by the
stronger field in the second region. In this way, it is possible sensitively to identify the
state of the Rydberg atom. If the atom is in the appropriate state, it will be ionized and
release a single electron into the corresponding ionizing field region. The free electron
is accelerated by the ionizing field and enters into an electron-multiplication region
of a channeltron detector. As explained in Section 9.2.1, the channeltron detector
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can enormously multiply the single electron released by the Rydberg atom, and this
provides an indirect method for continuously monitoring the photon-number state of
the cavity.

A frequency-doubled dye laser (λ = 297 nm) is used to excite rubidium (85Rb)
atoms to the np = 63, P3/2 state from the np = 5, S1/2 (F = 3) state. The cavity is
tuned to the 21.456 GHz transition from the upper maser level in the

(
np = 63, P3/2

)
state to the

(
np = 61, D5/2

)
lower maser state. For this experiment a superconducting

cavity with a Q-value of 3×108 was used, corresponding to a photon lifetime inside the
cavity of 2 ms. The transit time of the Rydberg atom through the cavity is controlled
by changing the atomic velocity with the velocity selector. On the average, only a
small fraction of an atom is inside the cavity at any given time. In order to reduce
the number of thermally excited photons in the cavity, a liquid helium environment
reduces the temperature of the superconducting niobium microwave cavity to 2.5 K,
corresponding to the average photon number n ≈ 2.

If the transit time of the atom is larger than the collapse time but smaller than
the time of the first revival, then the solution (12.32) tells us that the atom will come
into equilibrium with the cavity field, as seen in Fig. 12.1. In this situation the atom
leaving the chamber is found in the upper or lower state with equal probability, i.e.
P2 = 1/2. When the transit time is increased to a value comparable to the first revival
time, the probability for the excited state becomes larger than 1/2. The data in Fig.
12.3 show a quantum revival of the population of atoms in the upper maser state that
occurs after a transit time of around 150 µs. Such a revival would be impossible in any
semiclassical picture of the atom–field interaction; it is prima-facie evidence for the
quantized nature of the electromagnetic field.
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Fig. 12.3 Probability of finding the atom in the upper maser level as a function of the time

of flight of a Rydberg atom through a superconducting cavity. The flux of atoms was around

3000 atoms per second. Note the revival of upper state atoms which occurs at around 150 µs.

(Reproduced from Rempe et al. (1987).)
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12.4 Exercises

12.1 Dressed states

(1) Verify eqns (12.10)–(12.16).
(2) Solve the eigenvalue problem for eqn (12.16) and thus derive eqns (12.17)–(12.22).

(3) Display level repulsion by plotting the (normalized) bare eigenvalues ε
(0)
1,n/�ωC

and ε
(0)
2,n/�ωC , and dressed eigenvalues ε1,n/�ωC and ε2,n/�ωC as functions of the

detuning δ/ωC .

12.2 Collapse and revival for pure initial states

(1) For the initial state |Ψ (0)〉 = |ε2, m〉(0), verify the solution (12.26).
(2) Carry out the steps required to derive eqn (12.31).
(3) Write a program to evaluate eqn (12.32), and use it to study the behavior of P2 (t)

at times following the first revival.

12.3 Collapse and revival for a mixed initial state∗

Replace the pure initial state of the previous problem with the mixed state

ρ =
∞∑

n=0

pn |ε2, n〉(0) (0)〈ε2, n| .

(1) Show that this state evolves into

ρ =
∞∑

n=0

pn |ε2, n; t〉(0) (0)〈ε2, n; t| .

(2) Derive the expression for P2 (t).
(3) Assume that pn is the thermal distribution for a given average photon number n.

Evaluate and plot P2 (t) numerically for the value of n used in Fig. 12.1. Comment
on the comparison between the two plots.
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Nonlinear quantum optics

The interaction of light beams with linear optical devices is adequately described by
the quantum theory of light propagation explained in Section 3.3, Chapter 7, and
Chapter 8, but some of the most important applications involve modification of the
incident light by interactions with nonlinear media, e.g. by frequency doubling, spon-
taneous down-conversion, four-wave mixing, etc. These phenomena are the province
of nonlinear optics. Classical nonlinear optics deals with fields that are strong enough
to cause appreciable change in the optical properties of the medium, so that the weak-
field condition of Section 3.3.1 is violated. A Bloch equation that includes dissipative
effects, such as scattering from other atoms and spontaneous emission, describes the
response of the atomic density operator to the classical field.

For the present, we do not need the details of the Bloch equation. All we need to
know is that there is a characteristic response time, Tmed, for the medium. The classical
envelope field evolves on the time scale Tfld ∼ 1/Ω, where Ω is the characteristic Rabi
frequency. If Tmed ≈ Tfld the coupled equations for the atoms and the field must be
solved together. This situation arises, for example, in the phenomenon of self-induced
transparency and in the theory of free-electron lasers (Yariv, 1989, Chaps 13, 15).

In many applications of interest for nonlinear optics, the incident radiation is de-
tuned from the atomic resonances in order to avoid absorption. As shown in Section
11.3.3, this justifies the evaluation of the atomic density matrix by adiabatic elimi-
nation. In this approximation, the atoms appear to follow the envelope field instan-
taneously; they are said to be slaved to the field. Even with this simplification, the
Bloch equation cannot be solved exactly, so the atomic density operator is evaluated
by using time-dependent perturbation theory in the atom–field coupling. In this calcu-
lation, excited states of an atom only appear as virtual intermediate states; the atom
is always returned to its original state. This means that both spontaneous emission
and absorption are neglected.

13.1 The atomic polarization

Substituting the perturbative expression for the atomic density matrix into the source
terms for Maxwell’s equations results in the apparent disappearance, via adiabatic
elimination, of the atomic degrees of freedom. This in turn produces an expansion of
the medium polarization in powers of the field, which is schematically represented by

Pi = ε0

[
χ

(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + · · ·

]
, (13.1)
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where the χ(n)s are the tensor nonlinear susceptibilities required for dealing with
anisotropic materials and E is the classical electric field. The term χ

(2)
ijkEjEk describes

the combination of two waves to provide the source for a third, so it is said to describe
three-wave mixing. In the same way χ

(3)
ijklEjEkEl is associated with four-wave mix-

ing.
A substance is called weakly nonlinear if the dielectric response is accurately

represented by a small number of terms in the expansion (13.1). This approximation
is the basis for most of nonlinear optics,1 but there are nonlinear optical effects that
cannot be described in this way, e.g. saturation in lasers (Yariv, 1989, Sec. 8.7). The
higher-order terms in the polarization lead to nonlinear terms in Maxwell’s equations
that represent self-coupling of individual modes as well as coupling between differ-
ent modes. These terms describe self-actions of the electromagnetic field that are
mediated by the interaction of the field with the medium.

Quantum nonlinear optics is concerned with situations in which there are a small
number of photons in some or all of the field modes. In this case the quantized field
theory is required, but the correspondence principle assures us that the effects arising in
classical nonlinear optics must also be present in the quantum theory. Thus the classical
three- and four-wave mixing terms correspond to three- and four-photon interactions.
Since the quantum fields are typically weak, these nonlinear phenomena are often
unobservably small. There are, however, at least two situations in which this is not
the case. According to eqn (2.188), the vacuum fluctuation field strength in a physical
cavity of volume V is ef =

√
�ωf/2ε0V . This shows that substantial field strengths can

be achieved, even for a single photon, in a small enough cavity. A second exception
depends on the fact that the frequency-dependent nonlinear susceptibilities display
resonant behavior. If the detuning from resonance is made as small as possible—
i.e. without violating the conditions required for adiabatic elimination—the nonlinear
couplings are said to be resonantly enhanced.

When both of these conditions are met, the interaction between the medium and
the field can be so strong that the electromagnetic field will interact with itself, even
when there are only a few quanta present. This happens, for example, when microwave
photons inside a cavity interact with each other via a medium composed of Rydberg
atoms excited near resonance. In this case the interacting microwave photons can even
form a photon fluid.

In addition to these practical issues, there are situations in which the use of quan-
tum theory is mandatory. In the phenomenon of spontaneous down-conversion, a non-
linear optical process couples vacuum fluctuations of the electromagnetic field to an
incident beam of ultraviolet light so that an ultraviolet photon decays into a pair of
lower-energy photons. Effects of this kind cannot be described by the semiclassical
theory.

In Section 13.2 we will briefly review some features of classical nonlinear optics and
introduce the corresponding quantum description. In the following two sections we will
discuss examples of three- and four-photon coupling. In each case the quantum theory

1For a selection of recent texts on nonlinear optics, see Shen (1984), Schubert and Wilhelmi (1986),
Butcher and Cotter (1990), Boyd (1992), and Newell and Moloney (1992).
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will be developed in a phenomenological way, i.e. it will be based on a conjectured form
for the Hamiltonian. This is in fact the standard way of formulating a quantum theory.
The choice of the Hamiltonian must ultimately be justified by comparing the results of
calculations with experiment, as there will always be ambiguities—such as in operator
ordering, coordinate choices (e.g. Cartesian versus spherical), etc.—which cannot be
settled by theoretical arguments alone. Quantum theory is richer than classical theory;
consequently, there is no unique way of deriving the quantum Hamiltonian from the
classical energy.

13.2 Weakly nonlinear media

13.2.1 Classical theory

A Plane waves in crystals

Many applications of nonlinear optics involve the interaction of light with crystals, so
we briefly review the form of the fundamental plane waves in a crystal. As explained
in Appendix B.5.3, the field can be expressed as

E(+) (r, t) = i
1√
V

∑
ks

Fksαksεkse
i(k·r−ωkst) , (13.2)

where εks is a crystal eigenpolarization, the polarization-dependent frequency ωks is
a solution of the dispersion relation

c2k2 = ω2n2
s (ω) , (13.3)

and ns (ω) is the index of refraction associated with the eigenpolarization εks. The
normalization constant,

Fks =

√
�ωksvg (ωks)
2ε0ns (ωks) c

, (13.4)

has been chosen to smooth the path toward quantization, and vg (ωks) = dωks/dk is
the group velocity. For a polychromatic field, the expression (3.116) for the envelope
E(+)

β is replaced by

E(+)

β (r, t) =
1√
V

∑
ks

′
Fksαksεkse

i(k·r−∆βkt) , (13.5)

where the prime on the k-sum indicates that it is restricted to k-values such that the
detuning, ∆βks = ωks−ωβ , is small compared to the minimum spacing between carrier
frequencies, i.e. |∆βks| � min {|ωα − ωβ | , α �= β}.
B Nonlinear susceptibilities

Symmetry, or lack of symmetry, with respect to spatial inversion is a fundamental
distinction between different materials. A medium is said to have a center of sym-
metry, or to be centrosymmetric, if there is a spatial point (which is conventionally
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chosen as the origin of coordinates) with the property that the inversion transforma-
tion r → − r leaves the medium invariant. When this is true, the polarization must
behave as a polar vector, i.e. P → −P. The electric field is also a polar vector, so
eqn (13.1) implies that all even-order susceptibilities—in particular χ

(2)
ijk—vanish for

centrosymmetric media. Vapors, liquids, amorphous solids, and some crystals are cen-
trosymmetric. The absence of a center of symmetry defines a non-centrosymmetric
crystal. This is the only case in which it is possible to obtain a nonvanishing χ

(2)
ijk.

There is no such general restriction on χ
(3)
ijkl—or any odd-order susceptibility—since

the third-order polarization, P(3)
i = χ

(3)
ijklEjEkEl, is odd under E → −E.

The schematic expansion (13.1) does not explicitly account for dispersion, so we
now turn to the exact constitutive relation

P(n)
i (r, t) = ε0

∫
dt1 · · ·

∫
dtnχ

(n)
ij1j2···jn

(t − t1, t − t2, . . . , t − tn)

× Ej1 (r, t1) · · · Ejn (r, tn) (13.6)

for the nth-order polarization, which is treated in greater detail in Appendix B.5.4.
This time-domain form explicitly displays the history dependence of the polarization—
previously encountered in Section 3.3.1-B—but the equivalent frequency-domain form

P(n)
i (r, ν) = ε0

∫
dν1

2π
· · ·

∫
dνn

2π
2πδ

(
ν −

n∑
p=1

νp

)
χ

(n)
ij1j2···jn

(ν1, . . . , νn)

× Ej1 (r, ν1) · · · Ejn (r, νn) (13.7)

is more useful in practice.

C Effective electromagnetic energy

The derivation in Section 3.3.1-B of the effective electromagnetic energy for a linear,
dispersive dielectric can be restated in the following simplified form.
(1) Start with the expression for the energy in a static field.
(2) Replace the static field by a time-dependent field.
(3) Perform a running time-average—as in eqn (3.136)—on the resulting expression.

For a nonlinear dielectric, we carry out step (1) by using the result

Ues =
∫

Vc

d3r

∫ D

0

E (r) · d (D (r))

=
ε0
2

∫
Vc

d3rE2 (r) +
∫

Vc

d3r

∫ P

0

E (r) · d (P (r)) (13.8)

for the energy of a static field in a dielectric occupying the volume Vc (Jackson, 1999,
Sec. 4.7). Substituting eqn (13.1) into this expression leads to an expansion of the
energy in powers of the field amplitude:

Ues = U (2)
es + U (3)

es + U (4)
es + · · · . (13.9)
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The first term on the right is discussed in Section 3.3.1-B, so we can concentrate on
the higher-order (n � 3) terms:

U (n)
es =

1
n

∫
Vc

d3rEi (r)P(n−1)
i (r) .

In steps (2) and (3), we replace the static energy by the effective energy,

U (n)
es → U (n)

em (t) =
1
n

∫
Vc

d3r
〈
Ei (r, t)P(n−1)

i (r, t)
〉

for n � 3 , (13.10)

and use eqn (13.6) to evaluate the nth-order polarization. Our experience with the
quadratic term, U (2)

em (t), tells us that eqn (13.10) will only be useful for polychromatic
fields; therefore, we impose the condition 1/ωmin � T � 1/∆ωmax on the averaging
time, where ωmin is the smallest carrier frequency and ∆ωmax is the largest spectral
width for the polychromatic field. This time-averaging eliminates all rapidly-varying
terms, while leaving the slowly-varying envelope fields unchanged.

The lowest-order energy associated with the nonlinear polarizations is

U (3)
em (t) =

1
3

∫
Vc

d3r
〈
Ei (r, t)P(2)

i (r, t)
〉

, (13.11)

so the next task is to evaluate P(2)
i (r, t) for a polychromatic field. This is done by

applying the exact relation (13.7) for n = 2, and using the expansion (3.119) for a
polychromatic field to find:

P(2)
i (r, ν) = ε0

∑
β,γ

∑
σ′,σ′′=±

∫
dν1

2π

∫
dν2

2π
2πδ (ν − ν1 − ν2)χ

(2)
ijk (ν1, ν2)

× E(σ′)
βj (r, ν1 − σ′ωβ) E(σ′′)

γk (r, ν2 − σ′′ωγ) . (13.12)

Weak dispersion means that the susceptibility is essentially constant across the spectral
width of each sharply-peaked envelope function, E(±)

βj (r, ν); therefore, P(2)
i (r, ν) can

be approximated by

P(2)
i (r, ν) = ε0

∑
β,γ

∑
σ′,σ′′=±

∫
dν1

2π

∫
dν2

2π
2πδ (ν − ν1 − ν2)χ

(2)
ijk (σ′ωβ, σ′′ωγ)

× E(σ′)
βj (r, ν1 − σ′ωβ) E (σ′′)

γk (r, ν2 − σ′′ωγ) . (13.13)

Carrying out an inverse Fourier transform yields the time-domain relation,

P(2)
i (r, t) = ε0

∑
β,γ

∑
σ′,σ′′=±

χ
(2)
ijk (σ′ωβ , σ′′ωγ)

× E (σ′)
βj (r, t) E(σ′′)

γk (r, t) e−i(σ′ωβ+σ′′ωγ)t , (13.14)

which shows that the time-averaging has eliminated the history dependence of the
polarization.
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Using eqn (13.14) to evaluate the expression (13.11) for U (3)
em (t) is simplified by

the observation that the slowly-varying envelope fields can be taken outside the time
average, so that

U (3)
em (t) =

1
3

∫
Vc

d3r
∑

α,β,γ

∑
σ,σ′,σ′′

χ
(2)
ijk (σ′ωβ, σ′′ωγ) E(σ)

αi (r, t) E(σ′)
βj (r, t)

× E(σ′′)
γk (r, t)

〈
e−i(σωα+σ′ωβ+σ′′ωγ)t

〉
. (13.15)

The frequencies in the exponential all satisfy ωT � 1, so the remaining time-average,〈
e−i(σωα+σ′ωβ+σ′′ωγ)t

〉
=

1
T

∫ T/2

−T/2

dτe−i(σωα+σ′ωβ+σ′′ωγ)(t+τ) ,

vanishes unless
σωα + σ′ωβ + σ′′ωγ = 0 . (13.16)

This is called phase matching. By convention, the carrier frequencies are positive;
consequently, phase matching in eqn (13.15) always imposes conditions of the form

ωα = ωβ + ωγ . (13.17)

This in turn means that only terms of the form E(+)E (+)E(−)
or E(−)E (−)E(+)

will
contribute. By making use of the symmetry properties of the susceptibility, reviewed
in Appendix B.5.4, one finds the explicit result

U (3)
em (t) = ε0

∑
α,β,γ

χ
(2)
ijk (ωβ, ωγ) δωα,ωβ+ωγ

×
∫

Vc

d3r
[
E(−)

αi (r, t) E(+)

βj (r, t) E(+)

γk (r, t) + CC
]
. (13.18)

In many applications, the envelope fields will be expressed by an expansion in some
appropriate set of basis functions. For example, if the nonlinear medium is placed in a
resonant cavity, then the carrier frequencies can be identified with the frequencies of
the cavity modes, and each envelope field is proportional to the corresponding mode
function. More generally, the field can be represented by the plane-wave expansion
(13.2), provided that the power spectrum |αks|2 exhibits well-resolved peaks at ωks =
ωα, where ωα ranges over the distinct monochromatic carrier frequencies. With this
restriction held firmly in mind, the explicit sums over the distinct monochromatic
waves can be replaced by sums over the plane-wave modes, so that

U (3)
em =

i

V 3/2

∑
k0s0,k1s1,k2s2

g(3)
s0s1s2

(ω1, ω2) [α0α
∗
1α

∗
2 − CC]

× C (k0 − k1 − k2) δω0,ω1+ω2 , (13.19)

where α0 = αk0s0 , etc., and
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C (k) =
∫

Vc

d3reik·r (13.20)

is the spatial cut-off function for the crystal. The three-wave coupling strength is
related to the second-order susceptibility by

g(3)
s0s1s2

(ω1, ω2) = ε0F0F1F2 (εk0s0)i (εk1s1)j (εk2s2)k χ
(2)
ijk (ω1, ω2) , (13.21)

where ωp = ωkpsp and Fp = Fkpsp (p = 0, 1, 2).
In the limit of a large crystal, i.e. when all dimensions are large compared to optical

wavelengths,

C (k) ∼ Vcδk,0 → (2π)3 δ (k) . (13.22)

This tells us that for large crystals the only terms that contribute to U (3)
em are those

satisfying the complete phase-matching conditions

k0 = k1 + k2 , ω0 = ω1 + ω2 . (13.23)

The same kind of analysis for U (4)
em reveals two possible phase-matching conditions:

k0 = k1 + k2 + k3 , ω0 = ω1 + ω2 + ω3 , (13.24)

corresponding to terms of the form α∗
0α1α2α3 + CC, and

k0 + k1 = k2 + k3 , ω0 + ω1 = ω2 + ω3 , (13.25)

corresponding to terms like α∗
0α

∗
1α2α3 + CC. As shown in Exercise 13.1, the coupling

constants associated with these processes are related to the third-order susceptibility,
χ(3).

The definition (13.21) relates the nonlinear coupling term to a fundamental prop-
erty of the medium, but this relation is not of great practical value. The first-principles
evaluation of the susceptibilities is an important problem in condensed matter physics,
but such a priori calculations typically involve other approximations. With the excep-
tion of hydrogen, the unperturbed atomic wave functions for single atoms are not
known exactly; therefore, various approximations—such as the atomic shell model—
must be used. In the important case of crystalline materials, corrections due to local
field effects are also difficult to calculate (Boyd, 1992, Sec. 3.8). In practice, approx-
imate calculations of the susceptibilities can readily incorporate the symmetry prop-
erties of the medium, but otherwise they are primarily useful as a rough guide to
the feasibility of a proposed experiment. Fortunately, the analysis of experiments does
not require the full solution of these difficult problems. An alternative procedure is
to use symmetry arguments to determine the form of expressions, such as (13.19),
for the energy. The coupling constants, which in principle depend on the nonlinear
susceptibilities, can then be determined by ancillary experiments.
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13.2.2 Quantum theory

The approximate quantization scheme for an isotropic dielectric given in Section 3.3.2
can be applied to crystals by the simple expedient of replacing the classical amplitude
αks in eqn (13.5) by the annihilation operator aks, i.e.

E(+)

β (r, 0) → E
(+)

β (r) =
i√
V

∑
ks

′
Fksαksεkse

ik·r . (13.26)

In the linear approximation, the electromagnetic Hamiltonian in a crystal—which we
will now treat as the zeroth-order Hamiltonian, H

(0)
em—is obtained from eqn (3.150) by

using the polarization-dependent frequency ωks in place of ωk:

H(0)
em =

∑
ks

�ωksa
†
ksaks . (13.27)

The assumption that the classical power spectrum |αks|2 is peaked at the carrier
frequencies is replaced by the rule that the expressions (13.26) and (13.27) are only
valid when the operators act on a polychromatic space H ({ωβ}), as defined in Section
3.3.4.

In a weakly nonlinear medium, we will employ a phenomenological approach in
which the total electromagnetic Hamiltonian is given by

Hem = H(0)
em + HNL

em . (13.28)

The higher-order terms comprising HNL
em can be constructed from classical energy

expressions, such as (13.19), by applying the quantization rule (13.26) and putting all
the terms into normal order. An alternative procedure is to use the correspondence
principle and symmetry arguments to determine the form of the Hamiltonian. In this
approach, the weak-field condition is realized by assuming that the terms in the HNL

em

are given by low-order polynomials in the field operators. Since the field interacts with
itself through the medium, the coupling constants must transform appropriately under
the symmetry group for the medium. The coupling constants must, therefore, have
the same symmetry properties as the classical susceptibilities. The Hamiltonian must
also be invariant with respect to time translations, and—for large crystals—spatial
translations. The general rules of quantum theory (Bransden and Joachain, 1989, Sec.
5.9) tell us that these invariances are respectively equivalent to the conservation of
energy and momentum. Applying these conservation laws to the individual terms in
the Hamiltonian yields—after dividing through by �—the classical phase-matching
conditions (13.23)–(13.25).

The expansion (13.9) for the classical energy is replaced by

HNL
em = H(3)

em + H(4)
em + · · · , (13.29)

where the symmetry considerations mentioned above lead to expressions of the form

H(3)
em =

i

V 3/2

∑
k0s0,k1s1,k2s2

C (k0 − k1 − k2) δω0,ω1+ω2

× g(3)
s0s1s2

(ω1, ω2)
[
a†
k1s1

a†
k2s2

ak0s0 − HC
]

(13.30)
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and

H(4)
em =

1
V 2

∑
k0s0,...,k3s3

C (k0 − k1 − k2 − k3) δω0,ω1+ω2+ω3

× g(4)
s0s1s2s3

(ω1, ω2, ω3)
[
a†
k0s0

ak1s1ak2s2ak3s3 + HC
]

+
1

V 2

∑
k0s0,...,k3s3

C (k0 + k1 − k2 − k3) δω0+ω1,ω2+ω3

× f (4)
s0s1s2s3

(ω1, ω2, ω3)
[
a†
k2s2

a†
k3s3

ak0s0ak1s1 + HC
]
. (13.31)

Another important feature follows from the observation that the susceptibilities are
necessarily proportional to the density of atoms. When combined with the assumption
that the susceptibilities are uniform over the medium, this implies that the operators
H

(3)
em and H

(4)
em represent the coherent interaction of the field with the entire mate-

rial sample. First-order transition amplitudes are thus proportional to Nat, and the
corresponding transition rates are proportional to N2

at. In contrast to this, scattering
of the light from individual atoms adds incoherently, so that the transition rate is
proportional to Nat rather than N2

at.
The Hamiltonian obtained in this way contains many terms describing a variety of

nonlinear processes allowed by the symmetry properties of the medium. For a given
experiment, only one of these processes is usually relevant, so a model Hamiltonian is
constructed by neglecting the other terms. The relevant coupling constants must then
be determined experimentally.

13.3 Three-photon interactions

The mutual interaction of three photons corresponds to classical three-wave mixing,
which can only occur in a crystal with nonvanishing χ(2), e.g. lithium niobate, or am-
monium dihydrogen phosphate (ADP). A familiar classical example is up-conversion
(Yariv, 1989, Sec. 17.6), which is also called sum-frequency generation (Boyd, 1992,
Sec. 2.4). In this process, waves E1 and E2, with frequencies ω1 and ω2, mix in a non-
centrosymmetric

(
χ(2)

)
crystal to produce a wave E0 with frequency ω0 = ω1+ω2. The

traditional applications for this process involve strong fields that can be treated clas-
sically, but we are interested in a quantum approach. To this end we replace classical
wave mixing by a microscopic process in which photons with energy and momentum
(�k1, �ω1) and (�k2, �ω2) are absorbed and a photon with energy and momentum
(�k0, �ω0) is emitted. The phase-matching conditions (13.23) are then interpreted as
conservation of energy and momentum in each microscopic interaction.

As a result of crystal anisotropy, phase matching can only be achieved by an ap-
propriate choice of polarizations for the three photons. The uniaxial crystals usually
employed in these experiments—which are described in Appendix B.5.3-A—have a
principal axis of symmetry, so they exhibit birefringence. This means that there are
two refractive indices for each frequency: the ordinary index no (ω) and the extraor-
dinary index ne (ω, θ). The ordinary index no (ω) is independent of the direction of
propagation, but the extraordinary index ne (ω, θ) depends on the angle θ between the
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propagation vector and the principal axis. The crystal is said to be negative (positive)
when ne < no (ne > no). For typical crystals, the refractive indices exhibit a large
amount of dispersion between the lower frequencies of the input beams and the higher
frequency of the output beam; therefore, it is necessary to exploit the birefringence of
the crystal in order to satisfy the phase-matching conditions.

In type I phase matching, for negative uniaxial crystals, the incident beams
have parallel polarizations as ordinary rays inside the crystal, while the output beam
propagates in the crystal as an extraordinary ray. Thus the input photons obey

k1 =
ω1no (ω1)

c
, k2 =

ω2no (ω2)
c

, (13.32)

while the output photon satisfies the dispersion relation

k0 =
ω0ne (ω0, θ0)

c
, (13.33)

where θ0 is the angle between the output direction and the optic axis. In type II
phase matching, for negative uniaxial crystals, the linear polarizations of the input
beams are orthogonal, so that one is an ordinary ray, and the other an extraordinary
ray, e.g.

k1 =
ω1no (ω1)

c
, k2 =

ω2ne (ω2, θ2)
c

. (13.34)

In this case the output beam also propagates in the crystal as an extraordinary ray.
For positive uniaxial crystals the roles of ordinary and extraordinary rays are reversed
(Boyd, 1992).

With an appropriate choice of the angle θ0, which can be achieved either by suitably
cutting the crystal face or by adjusting the directions of the input beams with respect
to the crystal axis, it is always possible to find a pair of input frequencies for which
all three photons have parallel propagation vectors. This is called collinear phase
matching.

From Appendix B.3.3 and Section 4.4, we know that the classical and quantum
theories of light are both invariant under time reversal; consequently, the time-reversed
process—in which an incident high-frequency field E0 generates the low-frequency out-
put fields E1 and E2—must also be possible. This process is called down-conversion.
In the classical case, one of the down-converted fields, say E1, must be initially present;
and the growth of the field E2 is called parametric amplification (Boyd, 1992,
Sec. 2.5). The situation is quite different in quantum theory, since the initial state
need not contain either of the down-converted photons. For this reason the time-
reversed quantum process is called spontaneous down-conversion (SDC). Sponta-
neous down-conversion plays a central role in modern quantum optics. For somewhat
obscure historical reasons, this process is frequently called spontaneous parametric
down-conversion or else parametric fluorescence. In this context ‘parametric’ simply
means that the optical medium is unchanged, i.e. each atom returns to its initial state.

13.3.1 The three-photon Hamiltonian

We will simplify the notation by imposing the convention that the polarization index
is understood to accompany the wavevector. The three modes are thus represented
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by (k0, ω0), (k1, ω1), and (k2, ω2) respectively. The fundamental interaction processes
are shown in Fig. 13.1, where the Feynman diagram (b) describes down-conversion,
while diagram (a) describes the time-reversed process of sum-frequency generation.
Strictly speaking, Feynman diagrams represent scattering amplitudes; but they are
frequently used to describe terms in the interaction Hamiltonian. The excuse is that
the first-order perturbation result for the scattering amplitude is proportional to the
matrix element of the interaction Hamiltonian between the initial and final states.

Since the nonlinear process is the main point of interest, we will simplify the prob-
lem by assuming that the entire quantization volume V is filled with a medium hav-
ing the same linear index of refraction as the nonlinear crystal. This is called index
matching. The simplified version of eqn (13.30) is then

H(3)
em =

1
V 3/2

∑
k0

∑
k2

∑
k3

g(3)C (k0 − k1 − k2) a†
k1

a†
k2

ak0 + HC . (13.35)

This is the relevant Hamiltonian for detection in the far field of the crystal, i.e. when
the distance to the detector is large compared to the size of the crystal, since all atoms
can then contribute to the generation of the down-converted photons.

The two terms in H
(3)
em describe down-conversion and sum-frequency generation

respectively. Note that both terms must be present in order to ensure the Hermiticity
of the Hamiltonian. The down-conversion process is analogous to a radioactive decay
in which a single parent particle (the ultraviolet photon) decays into two daughter
particles, while sum-frequency generation is an analogue of particle–antiparticle anni-
hilation.

13.3.2 Spontaneous down-conversion

Spontaneous down-conversion is the preferred light source for many recent experi-
ments in quantum optics, e.g. single-photon number-state production, entanglement
phenomena (such as the Einstein–Podolsky–Rosen effect and Franson two-photon in-
terference), and tunneling time measurements. One reason for the popularity of this
light source is that it is highly directional, whereas the atomic cascade sources dis-
cussed in Sections 1.4 and 11.2.3 emit light in all directions. In SDC, correlated photon
pairs are emitted into narrow cones in the form of a rainbow surrounding the pump
beam direction. The two photons of a pair are always emitted on opposite sides of the
rainbow axis. Since the photon pairs are emitted within a few degrees of the pump

��� ���

����ω��

����ω��

����ω��

����ω��

����ω��

����ω��
Fig. 13.1 Three-photon interactions (time

flows upward in the diagrams): (a) represents

sum-frequency generation, and (b) represents

the time-reversed process of down-conversion.
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beam direction, detection of the output within small solid angles is relatively straight-
forward. Another practical reason for the choice of SDC is that it is much easier to
implement experimentally, since the heart of the light source is a nonlinear crystal.
This method eliminates the vacuum technology required by the use of atomic beams
in a cascade emission source.

A Generation of entangled photon pairs

In spontaneous down-conversion the incident field is called the pump beam, and the
down-converted fields are traditionally called the signal and idler. To accommodate
this terminology we change the notation (E0,k0, ω0) for the input field to (EP ,p, ωP ).
There is no physical distinction between the signal and idler, so we will continue to
use the previous notation for the conjugate modes in the down-converted light. The
emission angles and frequencies of the down-converted photons vary continuously,
but they are subject to overall conservation of energy and momentum in the down-
conversion process.

The interaction Hamiltonian (13.35) is more general than is required in practice,
since it is valid for any distribution in the pump photon momenta. In typical experi-
ments, the pump photons are supplied by a continuous wave (cw) ultraviolet laser, so
the pump field is well approximated by a classical plane-wave mode with amplitude
EP . A suitable quantum model is given by a Heisenberg-picture state satisfying

ak (t) |αp〉 = δk,pαpe−iωP t |αp〉 . (13.36)

In other words |αp〉 is a coherent state built up from pump photons that are all in the
mode p. The coherent-state parameter αp is related to the classical field amplitude
EP by

EP ≡ e−ip·r
〈
αp

∣∣∣ep · E(+) (r)
∣∣∣αp

〉
= iFp

αp√
V

, (13.37)

where the expansion (13.26) was used to get the final result. Since the number of
pump photons is large, the loss of one pump photon in each down-conversion event
can be neglected. This undepleted pump approximation allows the semiclassical
limit described in Section 11.3 to be applied. Thus we replace the Heisenberg-picture
operator ap (t) for the pump mode by αp exp (−iωP t) + δap (t), and then neglect the
terms involving the vacuum fluctuation operators δap (t).

Since the pump mode is treated classically and the coherent state |αp〉 is the vac-
uum for the down-converted modes, we replace the notation |αp〉 by |0〉. The classical
amplitude, αp exp (−iωP t), is unchanged by the transformation from the Heisenberg
picture to the Schrödinger picture; therefore, the semiclassical Hamiltonian in the
Schrödinger picture is

H = H0 + H(3)
em (t) , (13.38)

H0 = �ωP |αp|2 +
∑
q

�ωqa†
qaq , (13.39)

H(3)
em (t) = − i

V

∑
k1,k2

G(3)e−iωP tC (p− k1 − k2) a†
k1

a†
k2

+ HC , (13.40)
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where the pump-enhanced coupling constant is G(3) = EP g(3)/Fp. The explicit time
dependence of the Schrödinger-picture Hamiltonian is a result of treating the pump
beam as an external classical field. The c-number term, �ωP |αp|2, in the unperturbed
Hamiltonian can be dropped, since it shifts all unperturbed energy levels by the same
amount.

We will eventually need the limit of infinite quantization volume, so we use the
rules (3.64) to express the (Schrödinger-picture) Hamiltonian as

H = H0 + H(3)
em (t) , (13.41)

H0 =
∫

d3q

(2π)3
�ωqa† (q) a (q) , (13.42)

H(3)
em (t) = −i

∫
d3k1

(2π)3

∫
d3k2

(2π)3
G(3)e−iωP tC (p− k1 − k2) a† (k1) a† (k2) + HC .

(13.43)
The Hamiltonian has the same form in the Heisenberg picture, with a† (k1) replaced

by a† (k1, t), etc. Let
N (k1, t) = a† (k1, t) a (k1, t) (13.44)

denote the (Heisenberg-picture) number operator for the k1-mode, then a straightfor-
ward calculation using eqn (3.26) yields

[N (k1, t) , H ] = −2ie−iωP t

∫
d3k2

(2π)3
G(3)C (p − k1 − k2) a† (k1, t) a† (k2, t) − HC .

(13.45)
The illuminated volume of the crystal is typically large on the scale of optical wave-
lengths, so the approximation (13.22) can be used to simplify this result to

[N (k1, t) , H ] = −2ie−iωP tG(3)a† (k1, t) a† (p − k1, t) . (13.46)

In this approximation we see that

[N (k1, t) − N (p− k1, t) , H ] = 0 , (13.47)

i.e. the difference between the population operators for signal and idler photons is
a constant of the motion. An experimental test of this prediction is to measure the
expectation values n (k1, t) = 〈N (k1, t)〉 and n (p − k1, t) = 〈N (p− k1, t)〉. This can
be done by placing detectors behind each of a pair of stops that select out a particular
signal–idler pair (k1,p − k1). According to eqn (13.47), the expectation values satisfy

n (k1, t) − n (p − k1, t) = 〈N (k1, t) − N (p − k1, t)〉
= 〈N (k1, 0) − N (p− k1, 0)〉
= 0 , (13.48)

which provides experimental evidence that the conjugate photons are created at the
same time.
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B Entangled state of the signal and idler photons

Even with pump enhancement, the coupling parameter G(3) (k1,k2) is small, so the
interaction-picture state vector, |Ψ (t)〉, for the field can be evaluated by first-order per-
turbation theory. These calculations are simplified by returning to the box-quantized
form (13.40). In this notation, the interaction Hamiltonian is

H(3)
em (t) = −i

1
V

∑
k1,k2

G(3)C (p− k1 − k2) e−i∆ta†
k1

a†
k2

+ HC , (13.49)

where we have transformed to the interaction picture by using the rule (4.98), and in-
troduced the detuning, ∆ = ωP −ω2−ω1, for the down-conversion transition. Applying
the perturbation series (4.103) for the state vector leads to

|Ψ (t)〉 = |0〉 +
∣∣∣Ψ(1) (t)

〉
+ · · · ,∣∣∣Ψ(1) (t)

〉
= − 1

V

∑
k1,k2

2G(3)

�
C (p− k1 − k2) e−i∆t/2 sin [∆t/2]

∆
a†
k1

a†
k2

|0〉 .
(13.50)

According to the discussion in Chapter 6, each term in the k1,k2-sum (with the
exception of the degenerate case k1 = k2) describes an entangled state of the signal
and idler photons. Combining the limit, V → ∞, of infinite quantization volume with
the large-crystal approximation (13.22) for C yields

|Ψ (t)〉 = |0〉 −
∫

d3k1

(2π)3

∫
d3k2

(2π)3
2G(3)

�
(2π)3 δ (p − k1 − k2)

× e−i∆t/2 sin [∆t/2]
∆

a† (k1) a† (k2) |0〉 . (13.51)

The limit t → ∞ is relevant for cw pumping, so we can use the identity

lim
t→∞ e−i∆t/2 sin (∆t/2)

∆
=

π

2
δ (∆) , (13.52)

which is a special case of eqn (A.102), to find

|Ψ (∞)〉 = |0〉 −
∫

d3k1

(2π)3

∫
d3k2

(2π)3

(
1
2

G(3)

�

)
× (2π)3 δ (p− k1 − k2) (2π) δ (ωP − ω1 − ω2)
× a† (k1) a† (k2) |0〉 , (13.53)

where ω1 = ωk1 and ω2 = ωk2 .
The conclusion is that down-conversion produces a superposition of states that

are dynamically entangled in energy as well as momentum. The entanglement in en-
ergy, which is imposed by the phase-matching condition, ω1 + ω2 = ωP , provides
an explanation for the observation that the two photons are created almost simulta-
neously. A strictly correct proof would involve the second-order correlation function
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G(2) (r1, t1, r1, t1; r2, t2, r2, t2), but the same end is served by a simple uncertainty prin-
ciple argument. If we interpret t1 and t2 as the creation times of the two photons, then
the average time, tP = (t1 + t2) /2, can be interpreted as the pair creation time, and
the time interval between the two individual photon creation events is τ = t1− t2. The
respective conjugate frequencies are Ω = ω1+ω2 and ν = (ω1 − ω2) /2. The uncertainty
in the pair creation time, ∆tP ∼ 1/∆Ω, is large by virtue of the tight phase-matching
condition, Ω � ωP . On the other hand, the individual frequencies have large spectral
bandwidths, so that ∆ν is large and τ ∼ 1/∆ν is small. Consequently, the absolute
time at which the pair is created is undetermined, but the time interval between the
creations of the two photons is small.

13.3.3 Experimental techniques and results

Spontaneous down-conversion in a lithium niobate crystal was first observed by Harris
et al. (1967). Shortly thereafter, it was observed in an ammonium dihydrogen phos-
phate (ADP) crystal by Magde and Mahr (1967). A sketch of the apparatus used by
Harris et al. is shown in Fig. 13.2. The beam from an argon-ion laser, operating at a
wavelength of 488 nm, impinges on a lithium niobate crystal oriented so that collinear,
type I phase matching is achieved. The laser beam enters the crystal polarized as an
extraordinary ray. Temperature tuning of the index of refraction allows the adjust-
ment of the wavelength of the down-converted, collinear signal and idler beams, which
are ordinary rays produced inside the crystal. These beams are spectrally analyzed
by means of a prism monochromator, and then detected. In the Magde and Mahr ex-
periment, a pulsed 347 nm beam is produced by means of second-harmonic generation
pumped by a pulsed ruby laser beam. The peak pulse power in the ultraviolet beam is
1 MW, with a pulse duration of 20 ns. Spontaneous down-conversion occurs when the
pulsed 347 nm beam of light enters the ADP crystal. Instead of temperature tuning,
angle tuning is used to produce collinearly phase-matched signal and idler beams of
various wavelengths.

Zel’dovich and Klyshko (1969) were the first to notice that phased-matched, down-
converted photons should be observable in coincidence detection. Burnham and Wein-
berg (1970) performed the first experiment to observe these predicted coincidences,
and in the same experiment they were also the first to produce a pair of non-collinear
signal and idler beams in SDC. Their apparatus, sketched in Fig. 13.3, uses a 9 mW,
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Fig. 13.2 Apparatus used to observe spontaneous down-conversion in 1967 by Harris, Osh-

man, and Byer. (Reproduced from Harris et al. (1967).)
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Fig. 13.3 Apparatus used by Burnham and Weinberg (1970) to observe the simultaneity

of photodetection of the photon pairs generated in spontaneous down-conversion in an am-

monium dihydrogen phosphate (ADP) crystal. Coincidence-counting electronics (not shown)

is used to register coincidences between pulses in the outputs of the two photomultipliers

PM1 and PM2. These detectors are placed at angles φ1 and φ2 such that phase matching is

satisfied inside the crystal for the two members (i.e. signal and idler) of a given photon pair.

(Reproduced from Burnham and Weinberg (1970).)

continuous-wave, helium–cadmium, ultraviolet laser—operating at a wavelength of
325 nm—as the pump beam to produce SDC in an ADP crystal. The crystal is cut so
as to produce conical rainbow emissions of the signal and idler photon pairs around the
pump beam direction. The ultraviolet (UV) laser beam enters an inch-long ADP crys-
tal, and pairs of phase-matched signal (λ1 = 633 nm) and idler (λ2 = 668 nm) photons
emerge from the crystal at the respective angles of φ1 = 52 mrad and φ2 = 55 mrad,
with respect to the pump beam. After passing through the crystal, the pump beam
enters a beam dump which eliminates any background due to scattering of the UV
photons. After passing through narrowband filters—actually a combination of interfer-
ence filter and monochromator in the case of the idler photon—with 4 nm and 1.5 nm
passbands centered on the signal and idler wavelengths respectively, the individual sig-
nal and idler photons are detected by photomultipliers with near-infrared-sensitive S20
photocathodes. Pinholes with effective diameters of 2 mm are used to define precisely
the angles of emission of the detected photons around the phase-matching directions.
Most importantly, Burnham and Weinberg were also the first to use coincidence de-
tection to demonstrate that the phase-matched signal and idler photons are produced



Three-photon interactions ���

essentially simultaneously inside the crystal, within a narrow coincidence window of
±20 ns, that is limited only by the response time of the electronic circuit.

In more modern versions of the Burnham–Weinberg experiment, vacuum photomul-
tipliers are replaced by solid-state silicon avalanche photodiodes (single-photon count-
ing modules), which function exactly like a Geiger counter, except that—by means
of an internal discriminator—the output consists of standardized TTL (transistor–
transistor logic), five-volt level square pulses with subnanosecond rise times for each
detected photon. This makes the coincidence detection of single photons much easier.

13.3.4 Absolute measurement of the quantum efficiency of detectors

In Section 13.3.2 we have seen that the process of spontaneous down-conversion pro-
vides a source of entangled pairs of photons. Burnham and Weinberg (1970) used
coincidence-counting techniques—originally developed in nuclear and elementary par-
ticle physics—to observe the extremely tight correlation between the emission times of
the two photons. As they pointed out, this correlation allows a direct measurement of
the absolute quantum efficiency of a photon counter. Migdall (2001) subsequently de-
veloped this suggestion into a measurement protocol. The idea behind this technique is
as follows: when a click occurs in one photon counter (the trigger detector), we are then
certain that there must have been another photon emitted in the conjugate direction,
defined by momentum and energy conservation. Thus we know precisely the direction
of emission of the conjugate photon, and also its time of arrival—within a very nar-
row time window relative to the trigger photon—at any point along its direction of
propagation.

As shown in Fig. 13.4, the procedure is to place the detector under test (DUT) and
the trigger detector so that the coincidence counter can only be triggered by signals
from a single entangled pair. For a long series of measurements, the respective quantum
efficiencies η1 and η2 of the trigger detector and the DUT are defined by

N1 = η1N (13.54)
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Fig. 13.4 Scheme for absolute measurement of quantum efficiency. A pair of entangled

photons originating in the crystal head toward the ‘trigger’ detector and the ‘detector under

test’ (DUT). The parameter η2 is the quantum efficiency for the entire path from the point

of emission to the DUT. (Reproduced from Migdall (2001).)
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and
N2 = η2N , (13.55)

where N is the total number of conjugate photon pairs emitted by the crystal into the
directions of the two detectors, N1 is the number of counts registered by the trigger
detector, and N2 is the number of counts registered by the DUT. We may safely
assume that the clicks at the two detectors are uncorrelated, so the probability of a
coincidence count is ηcoinc = η1η2. Thus the number of coincidence counts is

Ncoinc = η1η2N , (13.56)

and combing this with eqn (13.54) shows that the absolute quantum efficiency η2 of
the DUT is the ratio

η2 =
Ncoinc

N1
(13.57)

of two measurable quantities. The beauty of this scheme is that this result is indepen-
dent of the quantum efficiency, η1, of the trigger detector.

Systematic errors, however, must be carefully taken into account. Any losses along
the optical path—from the point of emission of the twin photons inside the crystals
all the way to the point of detection in the DUT—will contribute to a systematic
error in the measurement. Thus the exit face of the crystal must be carefully anti-
reflection coated, and measured. Care also must be taken to use a large enough iris
in the collection optics for the conjugate photon. This will minimize absorption, by
the iris, of photons which should have impinged on the DUT. Furthermore, this iris
must be carefully aligned, so that it passes all photons propagating in the conjugate
direction determined by phase matching with the trigger photon. This ensures that no
conjugate photons are missed due to misalignment. This alignment error can, however,
be minimized by maximizing the detected signal as a function of small transverse
motions of the test detector.

However, the most serious systematic error arises in the electronic, rather than the
optical, part of the system. The electronic gate window used in the coincidence counter
is usually not a perfectly rectangular pulse shape; typically, it has small tails of lesser
counting efficiency, due to which some coincidence counts can be missed. These tails
can, however, be calibrated out in separate electronic measurements of the coincidence
circuitry.

13.3.5 Two-crystal source of hyperentangled photon pairs

For many applications of quantum optics, e.g. quantum cryptography, quantum dense
coding, quantum entanglement-swapping, quantum teleportation, and quantum com-
putation, it is very convenient—and often necessary—to employ an intense source of
hyperentangled pairs of photons, i.e. photons that are entangled in two or more
degrees of freedom. A particularly simple, and yet powerful, light source which yields
photon pairs entangled in polarization and momentum was demonstrated by Kwiat
et al. (1999b).

A schematic of the apparatus used for generating hyperentangled photon pairs
with high intensity is shown in Fig. 13.5. The heart of this photon-pair light source
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Fig. 13.5 (a) High-intensity spontaneous down-conversion light source: two identical, thin,

highly nonlinear crystals are stacked in a ‘crossed’ configuration, i.e. the crystal axes lie in

perpendicular planes, as indicated by the diagonal markings on the sides. The crystals are

so thin that it is not possible to tell if a given photon pair emitted by the stack comes from

the first or from the second crystal. Hence the crossed stack produces polarization-entangled

pairs of photons. (b) Schematic of apparatus to produce and to characterize this photon-pair

light source. (Reproduced from Kwiat et al. (1999b).)

consists of two identically cut, thin (0.59 mm), type I down-conversion crystals—β
barium borate (BBO)—that are stacked in a crossed configuration, i.e. with their
optic axes lying in perpendicular planes. What we will call the vertical plane is defined
by the optic axis of the first crystal and the direction of the pump beam, while the
horizontal plane is defined by the optic axis of the second crystal and the pump beam.
The crystals are sufficiently thin so that the waist of the pump beam—a continuous-
wave, ultraviolet (wavelength 351 nm), argon-ion laser—overlaps both. Since these
are birefringent (type I) crystals, the ultraviolet pump enters as an extraordinary
ray, and the pair of red, down-converted photon beams leave as ordinary rays. The
two crystals are identically cut with their optic axes oriented at 33.9◦ with respect
to the normal to the input face. The phase-matching conditions guarantee that two
degenerate-frequency photons at 702 nm wavelength are emitted into a cone with a
half-opening angle of 3.0◦.

Under certain conditions, this arrangement allows one to determine the crystal of
origin of the twin photons. For example, if the pump laser is V -polarized (i.e. linearly-
polarized in the vertical plane), then type I down-conversion would only occur in the
first crystal, which would produce H-polarized (i.e. linearly-polarized in the horizontal
plane) twin photons. Similarly, if the pump laser were H-polarized, then type I down-
conversion would only occur in the second crystal, which would produce V -polarized
twin photons. However, suppose that the pump laser polarization is neither horizontal
nor vertical, but instead makes an angle of 45◦ with respect to the vertical axis. This
state is a coherent superposition, with equal amplitudes, of horizontal and vertical
polarizations. Thus when this 45◦-polarized pump beam is incident on the two-crystal
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stack, a down-conversion event can occur, with equal probability, either in the first or
in the second crystal. If the photon pair originates in the first crystal, both photons
would be H-polarized, whereas if the photon pair originates in the second crystal, both
photons would be V -polarized.

The thickness of each crystal is much smaller than the Rayleigh range (a few
centimeters) of the pump beam, and diffraction ensures that the spatial modes—i.e.
the cones of emission in Fig. 13.5(a)—from the two crystals overlap in the far field,
where the photons are detected. This situation provides the guiding principle behind
this light source: for a 45◦-polarized pump beam, it is impossible—even in principle—
to know whether a given photon pair originated in the first or in the second crystal. We
must therefore apply Feynman’s superposition rule to obtain the state at the output
of the pair of tandem crystals. If the crystals are identical in thickness and the pump
is normally incident on the crystal face, the result is the entangled state∣∣Φ+

〉
=

1√
2
|1k1H , 1k2H〉 +

1√
2
|1k1V , 1k2V 〉 . (13.58)

The notation 1k1H denotes the horizontal polarization state of one member of the pho-
ton pair—originating in the first crystal—and 1k2H denotes the horizontal polarization
state of the conjugate member, also originating in the first crystal. Similarly, 1k1V de-
notes the vertical polarization state of one member of the photon pair—originating in
the second crystal—and 1k2V denotes the vertical polarization state of the conjugate
member, also originating in the second crystal. The phase-matching conditions ensure
that the down-converted photon pairs are emitted into azimuthally conjugate direc-
tions along rainbow-like cones, so that they are entangled both in momentum and in
polarization. Hence this light source produces hyperentangled photon pairs.

The entangled state |Φ+〉 is one of the four Bell states defined by∣∣Φ+
〉 ≡ 1√

2
|1k1H , 1k2H〉 +

1√
2
|1k1V , 1k2V 〉 , (13.59)

∣∣Φ−〉 ≡ 1√
2
|1k1H , 1k2H〉 − 1√

2
|1k1V , 1k2V 〉 , (13.60)

∣∣Ψ+
〉 ≡ 1√

2
|1k1H , 1k2V 〉 +

1√
2
|1k1V , 1k2H〉 , (13.61)

∣∣Ψ−〉 ≡ 1√
2
|1k1H , 1k2V 〉 − 1√

2
|1k1V , 1k2H〉 . (13.62)

These are maximally entangled states that form a basis set for the polarization states
of pairs of entangled photons with wavevectors k1 and k2. The states |Φ+〉 and |Φ−〉
can be generated by two crossed type I crystals, and the states |Ψ+〉 and |Ψ−〉 can be
generated by a pair of crossed type II crystals.

More generally, the two crystals could be tilted away from normal incidence around
an axis perpendicular to the direction of the pump laser beam. This would result in
phase changes which lead to the output entangled state∣∣Φ+; ξ

〉
=

1√
2
|1k1H , 1k2H〉 +

eiξ

√
2
|1k1V , 1k2V 〉 , (13.63)
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where the phase ξ depends on the tilt angle. Instead of tilting the two tandem crystals,
it is more convenient to tilt a quarter-wave plate placed in front of them, so that an
elliptically-polarized pump beam emerges from the quarter-wave plate with the major
axis of the ellipse oriented at 45◦ with respect to the vertical. Then the down-converted
photon pair emerges from the tandem crystals in the entangled state |Φ+; ξ〉, with
a nonvanishing phase difference ξ between the H–H and V –V polarization-product
states. The phase of the entanglement parameter ξ can be easily adjusted by changing
the relative phase between the horizontal and vertical polarization components of the
pump light, i.e. by changing the ellipticity of the ultraviolet laser beam polarization.

In the actual experiment, schematically shown Fig. 13.5(b), a combination of a
prism and an iris acts as a filter to separate out the ultraviolet laser pump beam from
the unwanted fluorescence of the argon-ion discharge tube. A polarizing beam splitter
(PBS) acts as a prefilter to select a linear polarization of the laser beam. Following
this, a half-wave plate (HWP) allows the selected linear polarization to be rotated
around the laser beam axis. The beam then enters a quarter-wave plate (QWP)—
whose tilt angle allows the adjustment of the relative phase ξ of the entangled state
in eqn (13.63)—placed in front of the tandem crystals (BBO).

Separate half-wave plates (HWP) and polarizing beam splitters (PBS) provide
polarization analyzers, placed in front of detectors 1 and 2, that allow independent
variations of the two angles of linear polarization, θ1 and θ2, of the photons detected
by Geiger counters 1 and 2, respectively. The irises in front of these detectors were
around 2 mm in size, and the interference filters (IF) had typical bandwidths of 5 nm
in wavelength. The iris sizes and interference-filter bandwidths were determined by
the criterion that the detection should occur in the far field of the crystals, and by
phase-matching considerations.

Under these conditions, with a 150 mW incident pump beam and a 10% solid-angle
collection efficiency—arising from the finite sizes of the irises placed in front of the
detectors—the hyperentangled pair production rate was around 20, 000 coincidences
per second. Standard coincidence detection of the correlated photon pairs in this ex-
periment was accomplished by means of solid-state Geiger counters (silicon avalanche
photodiodes with around 70% quantum efficiency, operated in the Geiger mode), in
conjunction with a time-to-amplitude converter and a single-channel analyzer, with a
coincidence time window of 7 ns. The polarization states of the individual photons were
analyzed by means of rotatable linear polarizers, with the analyzer angle for detector
2 being rotated relative to that of detector 1 (whose analyzer angle was kept fixed at
−45◦).

Typical data are shown in Fig. 13.6. The singles rate (the output of an individ-
ual Geiger counter) shows no dependence on the relative angle of the two analyzers,
indicating that the photons were individually unpolarized. On the other hand, coin-
cidence measurements showed that the relative polarization of one photon in a given
entangled pair with respect to the conjugate photon was very high (with a visibility
of 99.6 ± 0.3%). This means that an extremely pure two-photon entangled state has
been produced with a high degree of polarization entanglement. Such a high visibility
in the two-photon coincidence fringes indicates a violation of Bell’s inequalities—see
eqn (19.38)—by over 200 standard deviations, for data collected in about 3 minutes.
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Fig. 13.6 Coincidence rates (indicated by circles, with values on the left axis) and singles

rates—the outputs of the individual Geiger counters—(indicated by squares, with values on

the right axis) versus the relative angle θ2−θ1 between the two linear analyzers (i.e. polarizing

beam splitters, PBSs) placed in front of detectors 1 and 2 in Fig. 13.5(b). These data were

taken by varying θ2 with θ1 kept fixed at −45◦. (Reproduced from Kwiat et al. (1999b).)

A further experiment demonstrated that it is possible to tune the entanglement phase
ξ continuously over a range from 0 to 5.5π by tilting the quarter-wave plate, placed
in front of the tandem crystals, from 0◦ to 30◦.

13.4 Four-photon interactions

Four-photon processes correspond to classical four-wave mixing, so they involve the
third-order susceptibility χ(3). The parity argument shows that χ(3) can be nonzero
for an isolated atom, therefore four-photon processes can take place in any medium,
including a vapor. In Section 13.4.2-B we will describe experimental observation of
photon–photon scattering in a rubidium vapor cell.

13.4.1 Frequency tripling and down-conversion

The four-photon analogue of sum-frequency generation is frequency tripling or
third harmonic generation in which three photons are absorbed to produce a
single final photon. The energy and momentum conservation (phase matching) rules
are then

�ω0 = �ω1 + �ω2 + �ω3 , (13.64)

�k0 = �k1 + �k2 + �k3 , (13.65)

and the Feynman diagram is shown in Fig. 13.7(a). In the degenerate case ω1 = ω2 =
ω3 = ω, energy conservation requires ω0 = 3ω. This effect was first observed in the
early 1960s by Maker et al. (1963).

The time-reversed process, which describes down-conversion of one photon into
three, is shown in Fig. 13.7(b). In the photon indivisibility experiment described in
Section 1.4, one of the two entangled photons is used to trigger the counters. This
guaranteed that a genuine one-photon state would be incident on the beam splitter. In
nondegenerate three-photon down-conversion, the three final photons are all entangled.
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Fig. 13.7 (a) Sum-frequency generation with

three photons. (b) Down-conversion of one

photon into three.

It would therefore be possible to use one photon to trigger the counters, and thus
guarantee that a genuine entangled state of two photons is incident on another part
of the apparatus.

13.4.2 Photon–photon scattering

In three-photon coupling, the phase-matching conditions (13.23) are the only possi-
bility, but with four photons there are two arrangements for conserving energy and
momentum: namely, eqns (13.64) and (13.65), and

�ω0 + �ω1 = �ω2 + �ω3 , (13.66)
�k0 + �k1 = �k2 + �k3 . (13.67)

The corresponding Feynman diagram, shown in Fig. 13.8, describes photon–photon
scattering. In quantum electrodynamics, this process depends on the virtual produc-
tion of electron–positron pairs in the vacuum. This scattering cross-section is so small
that it cannot be observed with currently available techniques (Schweber, 1961, Chap.
16a). The situation in a nonlinear medium is quite different, since the incident pho-
tons can excite an atom near resonance and thus produce an enormously enhanced
photon–photon cross-section.

A The phenomenological Hamiltonian

We will restrict our attention to a vapor, since this is the simplest medium allowing
four-photon processes. In this case there are no preferred directions, so the coupling

����ω�� ����ω��
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Fig. 13.8 Photon–photon scattering medi-

ated by interaction with atoms in the medium.



��� Nonlinear quantum optics

between modes can only depend on the inner products of the polarization basis vec-
tors. These geometrical factors are readily calculated for any given process, so we will
simplify the notation by suppressing the polarization indices. From this point on, the
argument parallels the one used for the three-photon Hamiltonian, so the simplest
interaction Hamiltonian that yields Fig. 13.8 in lowest order is

Hint =
1
4

1
V 2

∑
k0,k1,k2,k3

natγ (k2,k3;k0,k1) C (k2 + k3 − k1 − k0) a†
k3

a†
k2

ak1ak0 ,

(13.68)
where the coupling constants satisfy γ (k2,k3;k0,k1) = γ∗ (k0,k1;k2,k3), and C (k)
is defined by eqn (13.20).

B Experimental observation of photon–photon scattering

An experiment has been performed to observe head-on photon–photon collisions—
mediated by the atoms in a rubidium vapor cell—leading to 90◦ scattering. In the
experiment the rubidium atoms are excited close enough to resonance to get resonant
enhancement, but far enough from resonance to eliminate photon absorption and res-
onance fluorescence. The resonant enhancement of the coupling is what makes this
experiment possible, by contrast to the observation of photon–photon scattering in
the vacuum.

The detailed theoretical analysis of this experiment is rather complicated (Mitchell
et al., 2000), but the model Hamiltonian of eqn (13.68) suffices for a qualitative treat-
ment. In particular, one would expect coincidence detections for pairs of photons
scattered in opposite directions—in the center-of-mass frame of a pair of incident
photons—as if the two incident photons had undergone an elastic hard-sphere scatter-
ing in a head-on collision.

As shown in Fig. 13.9, a diode laser beam at 780 nm wavelength passes through
two isolators (this prevents the retroreflected beam from a mirror placed behind the
cell from re-entering the laser, and thus interfering with its operation). In order to
minimize absorption and resonance fluorescence, the frequency of the laser beam is
detuned from the nearest rubidium-atom absorption line by 1.3 GHz, which is some-
what larger than the atomic Doppler line width at room temperature. The incident
diode laser beam passes through a single-mode, polarization-maintaining fiber that
spatially filters it. This produces a single-transverse (TEM00) mode beam that is inci-
dent onto a square, glass rubidium vapor cell. This cell is identical in shape and size to
the standard cuvettes used in Beckmann spectrophotometers. Two vertically-polarized
photons, one from the incident beam direction, and one from the retroreflecting mirror,
thus could collide head-on—inside a beam waist of area (0.026 cm)2—in the interior
of the vapor cell. The atomic density of rubidium atoms inside the cell is around
1.6 × 1010 atoms/cm3.

The two colliding photons—like two hard spheres—will sometimes scatter off each
other at right angles to the incident laser beam direction. The scattered photons
would be produced simultaneously, much like the twin photons in spontaneous down-
conversion. They could therefore be detected by means of coincidence counters, e.g.
two silicon avalanche photodiode Geiger counters, or single-photon counting modules
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Fig. 13.9 The apparatus used for observing photon–photon scattering mediated by rubidium

atoms excited off resonance. (Reproduced from Mitchell et al. (2000).)

(SPCM). The reference rubidium cell is used to monitor how close to atomic resonance
the diode laser is tuned, and an auxiliary helium–neon laser is used to align the optics
of the scattered-light detection system.

In Fig. 13.10, we show experimental data for the coincidence-counting signal as
a function of the time delay between coincidence-counting pulses. The coincidence-
counting electronic circuitry was used to scan the time delay from negative to positive
values. By inspection, there is a peak in coincidence counts around zero time delay,
which is consistent with the coincidence-detection window of 1 ns. This is evidence
for photon–photon collisions mediated by the atoms. As a control experiment, the
same scan of coincidence counts was made after a deliberate misalignment of the
two detectors by 0.14 rad with respect to the exact back-to-back scattering direction.
This misalignment was large enough to violate the momentum-conservation condition
(13.67). As expected, the coincidence peak disappeared.
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Fig. 13.10 Observed coincidence rates for 90◦ photon–photon scattering mediated by ru-

bidium atoms excited off resonance. See Fig. 13.9 for the setup of the apparatus. Error bars

indicate statistical errors on the data acquired with detectors aligned to collect back-to-back

scattering products. The observed maximum in the coincidence rate disappears when the

two detectors are deliberately misaligned from the back-to-back scattering direction. The

solid curve is a theoretical fit using three measured parameters: the beam shape, the finite

detection time, and the detector area. (Reproduced from Mitchell et al. (2000).)

13.4.3 Kerr media

For vapors and liquids the second-order susceptibility vanishes, and the absence of
any preferred direction implies that the third-order polarization envelope for a single
monochromatic wave, E (t) exp (−iω0t), is given by

P(3) = χ̃(3) |E|2 E . (13.69)

This is also valid for some centrosymmetric crystals, e.g. those with cubic symmetry. In
these cases the lowest-order optical response of the medium is given by the linear index
of refraction n =

√
1 + χ(1). The nonlinear optical response is conveniently described

in terms of a field-dependent index n (E) defined as

n2 (E) = 1 + χ = n2 + χ̃(3) |E|2 + · · · . (13.70)

Since χ̃(3) |E|2 is small, this can be approximated by

n (E) = n + ñ2 |E|2 + · · · ,

ñ2 =
1
2

χ̃(3)

n
.

(13.71)

This is more often expressed in terms of the intensity I as

n (E) = n + n2I + · · · ,

n2 =
√

µ0

ε0

χ̃(3)

n2
.

(13.72)
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The dependence of the atomic polarization, or equivalently the index of refraction, on
the intensity of the field is called the optical Kerr effect. Media with non-negligible
values of n2/n are called Kerr media. In a Kerr medium, the phase of a classical plane
wave traversing a distance L increases by ϕ = kL = n (E)L/c, and the increment in
phase due to the intensity-dependent term is

∆ϕ = n2I
ω

c
L =

2πn2I

λ0
L . (13.73)

This dependence of the phase on the intensity is called self-phase modulation. The
intensity dependence of the index of refraction also leads to the phenomenon of self-
focussing (Saleh and Teich, 1991, Sec. 19.3).

In the quantum description of the Kerr effect, the interaction Hamiltonian is given
by the general expression (13.68); but substantial simplifications occur in real applica-
tions. We consider an experimental configuration in which the Kerr medium is enclosed
in a resonant cavity with discrete modes. In this case, one mode is typically dominant.
In principle, the quantization scheme should be carried out from the beginning using
the cavity modes as a basis, but the result would have the same form as obtained from
the degenerate case k0 = k1 = k2 = k3 of Fig. 13.8. The model Hamiltonian is then

H = �ω0a
†a +

1
2

�ga†2a2 , (13.74)

where the coupling constant g is proportional to χ̃(3)and a is the annihilation op-
erator for the favored mode. By means of the canonical commutation relations, the
Hamiltonian can be expressed as

H = �ω0N +
1
2

�g
(
N2 − N

)
, (13.75)

where N = a†a. In the Heisenberg picture, this form makes it clear that N (t) is a
constant of the motion: N (t) = N (0) = N. This corresponds to the classical result
that the intensity is fixed and only the phase changes.

The evolution of the quantum amplitude is given by the Heisenberg equation for
the annihilation operator:

da (t)
dt

= −iω0a (t) − iga† (t) a2 (t)

= −i (ω0 + gN) a (t) . (13.76)

Since the number operator is independent of time, the solution is

a (t) = e−i(ω0+gN)ta , (13.77)

and the matrix elements of the annihilation operator in the number-state basis are

〈m |a (t)|m′〉 = e−i(ω0+gm)t 〈m |a|m′〉 = δm,m′−1

√
m + 1e−i(ω0+gm)t . (13.78)

Thus the modulus of the matrix element is constant, and the term mgt in the phase
represents the quantum analogue of the classical phase shift ∆ϕ.
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It is also useful to consider situations in which the classical field is the sum of two
monochromatic fields with different carrier frequencies:

E (t) = E1 (t) exp (−iω1t) + E2 (t) exp (−iω2t) . (13.79)

The polarization will then have contributions of the form |E1|2 E1 and |E2|2 E2—
describing self-phase modulation—and also terms proportional to |E1|2 E2 and |E2|2 E1

—describing cross-phase modulation. This is called a cross-Kerr medium, and
the Hamiltonian is

H = �ω1a
†
1a1 + �ω2a

†
2a2 +

�g1

2
a†2
1 a2

1 +
�g2

2
a†2
2 a2

2 + �g12 a†
1a

†
2a1a2 . (13.80)

The coupling frequencies g1, g2, and g12 are all proportional to components of the
χ(3)-tensor. For isotropic media, the three coupling frequencies are identical; but for
crystals it is possible to have g1 = g2 = 0, while g12 �= 0. This situation represents
pure cross-phase modulation.

13.5 Exercises

13.1 The fourth-order classical energy

Apply the line of argument used to derive the effective energy expression (13.18) for
U (3)

em to show that the fourth-order effective energy is

U (4)
em =

1
V 2

∑
k0s0,...,k3s3

g(4)
s0s1s2s3

(ω1, ω2, ω3) [α∗
0α1α2α3 + CC]

× δω0,ω1+ω2+ω3 C (k0 − k1 − k2 − k3)

+
1

V 2

∑
k0s0,...,k3s3

f (4)
s0s1s2s3

(ω1, ω2, ω3) [α0α1α
∗
2α

∗
3 + CC]

× δω0+ω1,ω2+ω3 C (k0 + k1 − k2 − k3) ,

where

g(4)
s0s1s2s3

(ω1, ω2, ω3) = −ε0F0F1F2F3χ
(3)
s0s1s2s3

(ω1, ω2, ω3) ,

f (4)
s0s1s2s3

(ω1, ω2, ω3) =
3
4
ε0F0F1F2F3χ

(3)
s0s1s2s3

(ω1,−ω2,−ω3) ,

and

χ(3)
s0s1s2s3

(ω1, ω2, ω3) = (εk0s0)i (εk1s1)j (εk2s2)k (εk3s3)l χ
(2)
ijkl (ω1, ω2, ω3) .

13.2 Kerr medium

Consider a Kerr medium with the Hamiltonian given by eqn (13.74).

(1) For a coherent state |α〉, use the result of part (2) of Exercise 5.2 to show that

〈α |a (t)|α〉 = exp
{(

e−igt − 1
) |α|2} .
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(2) For a nearly classical state, i.e. |α|2 � 1, one might intuitively expect that the
number operator N in eqn (13.77) could be replaced by |α|2 in the evaluation
of 〈α |a (t)|α〉. Write down the resulting expression and compare it to the exact
result given above to determine the range of values of t for which the conjectured
expression is valid. What is the behavior of the correct expression for 〈α |a (t)|α〉
as t → ∞?

(3) Using the form (13.75) of the Hamiltonian, exhibit the solution of the Schrödinger
equation i�∂/∂t |ψ (t)〉 = H |ψ (t)〉—with initial condition |ψ (0)〉 = |α〉—as an ex-
pansion in number states. Use this solution to explain the counterintuitive results
of part (2) and to decide if |ψ (t)〉 remains a nearly coherent state for all times t.

13.3 Cross-Kerr medium

Consider a cross-Kerr medium described by the Hamiltonian in eqn (13.80).

(1) Derive the Heisenberg equations of motion for the annihilation operators and show
that the number operators N1 (t) = a†

1 (t) a1 (t) and N2 (t) = a†
2 (t) a2 (t) are con-

stants of the motion.
(2) For the two-mode coherent state |α1, α2〉, evaluate 〈α1, α2 |a1 (t)|α1, α2〉.
(3) For a pure cross-Kerr medium, expand the interaction-picture state vector |Ψ (t)〉

in the number-state basis {|n1, n2〉} and show that the exact solution of the
interaction-picture Schrödinger equation is

|Ψ (t)〉 =
∑
n1n2

〈n1n2|Ψ (0)〉 e−ig12n1n2t .

13.4 The cross-Kerr medium as a QND∗

In a quantum nondemolition (QND) measurement (Braginsky and Khalili, 1996; Grang-
ier et al., 1998) the quantum back actions of normal measurements—e.g. the random-
ization of the momentum of a free particle induced by a measurement of its position—
are partially avoided by forming an entangled state of the signal with a second system,
called the meter. For the pure cross-Kerr medium in Section 13.4.3, identify a1 and a2

as the signal and meter operators respectively. Assume that the (interaction-picture)
input state is |Ψ (0)〉 = |n1, α2〉, i.e. a number state for the signal and a coherent state
for the meter.

(1) Use the results of Exercise 13.3 to show that |Ψ (t)〉 =
∣∣n1, α2e

−iγn1
〉
, where

γ = g12t.

(2) Devise a homodyne measurement scheme that can distinguish between the phase
shifts experienced by the meter beam for different values of n1, e.g. n1 = 0 and
n1 = 1. For example, measure the quadrature X2 =

(
a2 exp [−iϕ]+ a†

2 exp [iϕ]
)
/2,

where ϕ is the phase of the local oscillator in the homodyne apparatus.
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Quantum noise and dissipation

In the majority of the applications considered so far—e.g. photons in an ideal cavity,
photons passing through passive linear media, atoms coupled to the radiation field,
etc.—we have neglected all dissipative effects, such as absorption and scattering. In
terms of the fundamental microscopic theory, this means that all interactions between
the system under study and the external world have been ignored. When this assump-
tion is in force, the system is said to be closed. The evolution of a closed system
is completely determined by its Hamiltonian. A pure state of a closed system is de-
scribed by a state vector obeying the Schrödinger equation (2.108), and a mixed state
is represented by a density operator obeying the quantum Liouville equation (2.119).
With the possible exception of the entire universe, the assumption that a system is
closed is always an approximation. Every experimentally relevant physical system is
unavoidably coupled to other physical systems in its vicinity, and usually very little is
known about the neighboring systems or about the coupling mechanisms. If interac-
tions with the external world cannot be neglected, the system is said to be open. In
this chapter, we begin the study of open systems.

14.1 The world as sample and environment

For the discussion of open systems, we will divide the world into two parts: the
sample1—the physical objects of experimental interest—and the environment—
everything else. Deciding which degrees of freedom should be assigned to the sample
and which to the environment requires some care, as we will shortly see.

In fact, we have already studied three open systems in previous chapters. In the
discussion of blackbody radiation in Section 2.4.2, the radiation field is assumed to be
in thermal equilibrium with the cavity walls. In this case the sample is the radiation
field in the cavity, and some coupling to the cavity walls (the environment) is required
to enforce thermal equilibrium. In line with standard practice in statistical mechanics,
we simply assume the existence of a weak coupling that imposes equilibrium, but
otherwise plays no role. In the discussion of the Weisskopf–Wigner method in Section
11.2.2 the sample is a two-level atom, and the modes of the radiation field are assigned
to the environment. In this case, an approximate treatment of the coupling to the
environment leads to a derivation of the irreversible decay of the excited atom. A
purely phenomenological treatment of other dissipative terms in the Bloch equation
for the two-level atom can be found in Section 11.3.3.

1Overuse has leached almost all meaning from the word ‘system’, so we have replaced it with
‘sample’ for this discussion.
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As an illustration of the choices involved in separating the world into sample and
environment, we begin by revisiting the problem of transmission through a stop. In
Section 8.7 the radiation field is treated as a closed system by assuming that the
screen is a perfect reflector, and by including both the incident and the reflected
modes in the sample. Let us now look at this problem in a different way, by assigning
the reflected modes—i.e. the modes propagating from right to left in Fig. 8.5—to
the environment. The newly defined sample consists of the modes propagating from
left to right. It is clearly an open system, since the right-going modes of the sample
scatter into left-going modes that belong to the environment. The loss of photons from
the sample represents dissipation, and the result (8.82) shows that this dissipation is
accompanied by an increase in fluctuations of photon number in the transmitted field.
This is a simple example of a general principle which is often called the fluctuation
dissipation theorem.

14.1.1 Reservoir model for the environment

Our next task is to work out a more systematic way of dealing with open systems.
This effort would be doomed from the start if it required a detailed description of the
environment, but there are many experimentally interesting situations for which such
knowledge is not necessary. These favorable cases are characterized by generalizations
of the conditions required for the Weisskopf–Wigner (WW) treatment of spontaneous
emission.
(1) The modes of the environment (the radiation field for WW) have a continuous

spectrum.
(2) The sample (the two-level atom for WW) has—to a good approximation—the

following properties.
(a) The sample Hamiltonian has a discrete spectrum. This is guaranteed if the

sample (like the atom) has a finite number of degrees of freedom. If the sample
has an infinite number of degrees of freedom (like the radiation field) a discrete
spectrum is guaranteed by confinement to a finite region of space, e.g. a cavity.

(b) The sample is weakly coupled to a broad spectral range of environmental
modes.

In the Weisskopf–Wigner model these features justify the Markov approximation. Ap-
plying the general rule (11.23) of the resonant wave approximation to the WW model
provides the condition

|Ωks| � ∆K � ω21 , (14.1)

where |Ωks| is the one-photon Rabi frequency defined in eqn (4.153), and ∆K is the
width of the cut-off function for the RWA. This inequality defines what is meant by
coupling to a broad spectral range of the radiation field.

Turning now to the general problem, we assume the environmental degrees of free-
dom that couple to the sample have continuous spectra, and that the coupling is weak.
Expressing the characteristic coupling strength as �ΩS defines a characteristic response
frequency ΩS , and the condition of weak coupling to a broad range of environmental
excitations is

ΩS � ∆E � ωS . (14.2)
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Here ∆E is the spectral width of the environmental modes that are coupled to the
sample, and ωS is a characteristic mode frequency for the unperturbed sample.

In the Weisskopf–Wigner model, the environment is the radiation field, and we
have a detailed theory for this example. This luxury is missing in the general case,
so we will instead devise a generic model that is based on the assumption of weak
interaction between the sample and the environment. An important consequence of
this assumption is that the sample can only excite low energy modes of the environ-
ment. As we have previously remarked, the low-lying modes of many systems can be
approximated by harmonic oscillators. For example, suppose that the environment
includes some solid material, e.g. the walls of a cavity, and that interaction with the
sample excites vibrations in the crystal lattice of the solid. In the quantum theory
of solids, these lattice vibrations are called phonons (Cohen-Tannoudji et al. 1977a,
Complement JV, p. 586; Kittel 1985, Chap. 2). The νth phonon mode—which is an
analogue of the ks-mode of the radiation field—is represented by a harmonic oscil-
lator with fundamental frequency Ων , analogous to ωks. For macroscopic bodies, the
discrete index ν becomes effectively continuous, so this environment has a continuous
spectrum. Generalizing from this example suggests modeling the environment by one
or more families of harmonic oscillators with continuous spectra. Each family of oscil-
lators is called a reservoir. Weak coupling to the reservoir implies that the amplitudes
of the oscillator displacements and momenta will be small; therefore, we will make the
crucial assumption that the interaction Hamiltonian HSE is linear in the creation and
annihilation operators for the reservoir modes.

Within this schematic model of the world—the combined system of sample and
environment—the reservoirs can be grouped into two classes, according to their uses. A
reservoir which is not itself subjected to any experimental measurements will be called
a noise reservoir. In this case, the reservoir model simply serves as a useful theoretical
device for describing dissipative effects. This is the most common situation, but there
are important applications in which the primary experimental signal is carried by
the modes of one of the reservoirs. In these cases, we will call the reservoir under
observation a signal reservoir. In the optical experiments discussed below, the signal
reservoir excitations are—naturally enough—photons.

For noise reservoirs, the objective is to carry out an approximate elimination of
the reservoir degrees of freedom, in order to arrive at a description of the sample as
an open system. The two principal methods used for this purpose are the quantum
Langevin equations for the field operator and atomic operator (which are formulated
in the Heisenberg picture) and the master equation for the density operator (which
is expressed in the interaction picture). The Langevin approach is, in some ways,
more intuitive and technically simpler. It is particularly useful for problems that have
simple analytical solutions or are amenable to perturbation theory, but it produces
equations of motion for sample operators that do not lend themselves to the numerical
simulations required for more complex problems. For such cases, the approach through
the master equation is essential. We will explain the Langevin method in the present
chapter, and introduce the master equation in Chapter 18.

In the case of a signal reservoir—which, after all, carries the experimental inform-
ation—it would evidently be foolish to eliminate the reservoir degrees of freedom.
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Instead, the objective is to determine the effect of the sample on the reservoir modes
to be observed. Despite this difference in aim, the theoretical techniques developed
for dealing with noise reservoirs can also be applied to signal reservoirs. The principal
reason for this happy outcome is the assumption that both kinds of reservoirs are
coupled to the sample by an interaction Hamiltonian that is linear in the reservoir
operators. This approach to signal reservoirs, which is usually called the input–output
method, is described in Section 14.3.

A The world Hamiltonian

The division of the world into sample and environment implies that the Hilbert space
for the world is the tensor product,

HW = HS ⊗ HE , (14.3)

of the sample and environment spaces. For most applications, it is necessary to model
the environment by means of several independent reservoirs; therefore, the space HE

is itself a tensor product,

HE = H1 ⊗ H2 ⊗ · · · ⊗ HNres , (14.4)

of the Hilbert spaces for the Nres independent reservoirs that define the environment.
Pure states, |χ〉, in HW are linear combinations of product states:

|χ〉 = C1 |Ψ1〉 |Λ1〉 + C2 |Ψ2〉 |Λ2〉 + · · · , (14.5)

where |Ψj〉 and |Λj〉 belong respectively to HS and HE . In most situations, however,
both the sample and the reservoirs must be described by mixed states.

In general, the sample may be acted on by time-dependent external classical fields
or currents, and its constituent parts may interact with each other. Thus the total
Schrödinger-picture Hamiltonian for the sample is

HS (t) = HS0 + HS1 (t) , (14.6)

where HS0 is the noninteracting part of the sample Hamiltonian. The interaction term
HS1 (t) is

HS1 (t) = HSS + VS (t) , (14.7)

where HSS describes the internal sample interactions and VS (t) represents any inter-
actions with external classical fields or currents. The time dependence of the external
fields is the source of the explicit time dependence of VS (t) in the Schrödinger picture.
In typical cases, VS (t) is a linear function of the sample operators. The Hamiltonian
for the isolated sample is

HS = HS0 + HSS . (14.8)

The total Schrödinger-picture Hamiltonian for the world is then

HW = HS (t) + HE + HSE , (14.9)

where
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HE =
Nres∑
J=1

HJ (14.10)

is the free Hamiltonian for the environment, HJ is the Hamiltonian for the Jth reser-
voir,

HSE =
Nres∑
J=1

H
(J)
SE (14.11)

is the total interaction Hamiltonian between the sample and the environment, and
H

(J)
SE is the interaction Hamiltonian of the sample with the Jth reservoir. The world

is, by definition, a closed system.
We will initially use a box-quantization description of the reservoir oscillators that

parallels the treatment of the radiation field in Section 3.1.4, i.e. each family of oscil-
lators will be labeled by a discrete index ν. The free Hamiltonian for reservoir J is
therefore given by

HJ =
∑

ν

�Ωνb†JνbJν , (14.12)

where bJν is the annihilation operator for the νth mode of the Jth reservoir. We have
simplified the model by assuming that each reservoir has the same set of fundamen-
tal frequencies {Ων}, rather than a different set {ΩJν} for each reservoir. This is not
a serious restriction, since in the continuum limit each ΩJν is replaced by a contin-
uous variable Ω. The kinematical independence of the reservoirs is imposed by the
commutation relations

[bJν , bKµ] = 0 ,
[
bJν , b†Kµ

]
= δJKδνµ .

In typical applications, the sample is coupled to the environment through sample
operators, OJ , that can be chosen to satisfy

[OJ , HS0] ≈ �ωJOJ , (14.13)

where ωJ � 0. For ωJ > 0, this means that OJ is an approximate energy-lowering
operator for the unperturbed sample Hamiltonian HS0. We will also need the limiting
case ωJ = 0, which means that OJ is an approximate constant of the motion.

In the resonant wave approximation, the sample–environment interaction can be
written as

H
(J)
SE = i�

∑
ν

vJ (Ων)
(
O†

JbJν − b†JνOJ

)
, (14.14)

where vJ (Ων) is a real, positive coupling frequency. This ansatz incorporates the
assumption that each sample–reservoir interaction Hamiltonian is a linear function of
the reservoir operators. The restriction to real coupling frequencies is not significant, as
shown in Exercise 14.1. Each coupling frequency is a candidate for the characteristic,
sample-response frequency ΩS , so it must satisfy the condition

vJ (Ων) � ∆E � ωS . (14.15)

The choice of the sample operator OJ is determined by the physical damping mecha-
nism associated with the Jth reservoir.
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B The world density operator

The probability distributions relevant to experiments are determined by the Schrö-
dinger-picture density operator, ρS

W (t), that describes the state of the world. We
must, therefore, begin by choosing an initial form, ρS

W (t0), for the density operator.
The natural assumption is that the sample and the reservoirs are uncorrelated for
a sufficiently early time t0. Since the time-independent, Heisenberg-picture density
operator, ρH

W , satisfies ρH
W = ρS

W (t0), this is equivalent to assuming that

ρW = ρS ρE , (14.16)

where ρS acts on HS , and ρE acts on HE . We have dropped the superscript H , since
the remaining argument is conducted entirely in the Heisenberg picture. Furthermore,
it is equally natural to assume that the various reservoirs are mutually uncorrelated
at the initial time, so that

ρE = ρ1 ρ2 . . . ρNres , (14.17)

where ρJ acts on HJ for J = 1, 2, . . . , Nres. One or more of the density operators ρJ is
often assumed to describe a thermal equilibrium state, in which case the corresponding
reservoir is called a heat bath.

The average value of any observable O is given by

〈O〉 = TrW (ρW O) , (14.18)

where TrW is defined by the sum over a basis set for HW = HS ⊗ HE . By using the
definition of partial traces in Section 6.3.1, it is straightforward to show that

TrW (SR) = (TrS S) (TrE R) , (14.19)

if S acts only on HS and R acts only on HE . The average of an operator product, SR,
with respect to the world density operator ρW = ρSρE is then

〈SR〉 = TrW [(ρS ρE) (SR)]
= TrW [ρSS ρER]
= [TrS (ρSS)] [TrE (ρER)]
= 〈S〉 〈R〉 , (14.20)

where the identities (6.17) and (14.19) were used to get the second and third lines.
Applying this relation to S = 1 (more precisely, S = IS , where IS is the identity
operator for HS), and R = RJRK , where RJ acts on HJ , RK acts on HK , and J �= K,
yields

〈RJRK〉 = 〈RJ 〉 〈RK〉 . (14.21)

In other words, distinct reservoirs are statistically independent.

C Noise statistics

The statistical independence of the various reservoirs allows them to be treated indi-
vidually, so we drop the reservoir index in the present section. For most experimental
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arrangements, the reservoir is not subjected to any special preparation; therefore, we
will assume that distinct reservoir modes are uncorrelated, i.e. the reservoir density
operator is factorizable:

ρ =
⊗

ν

ρν , (14.22)

where ρν is the density operator for the νth mode. For operators Fν and Gµ that are
respectively functions of bν , b†ν and bµ, b†µ, this assumption implies 〈FνGµ〉 = 〈Fν〉 〈Gµ〉
for µ �= ν.

For the discussion of quantum noise, only fluctuations around mean values are of
interest. We will say that a factorizable density operator ρ is a noise distribution if
the natural oscillator variables bν and b†ν satisfy〈

b†ν
〉

= 〈bν〉 = 0 for all ν . (14.23)

These conditions can always be achieved by using the fluctuation operator δbν =
bν − 〈bν〉 in place of bν . By means of suitable choices of the operators Fν and Gµ,
the combination of eqns (14.23) and (14.22) can be used to derive restrictions on the
moments of a noise distribution ρ. For example, the results〈

b†νbµ

〉
=
〈
bµb†ν

〉
=
〈
b†ν
〉 〈bµ〉 = 0 and 〈bνbµ〉 = 〈bν〉 〈bµ〉 = 0 for µ �= ν (14.24)

lead to the useful rules〈
b†νbµ

〉
= δνµ

〈
b†νbν

〉
,

〈
bµb†ν

〉
= δνµ

〈
bνb†ν

〉
, (14.25)

〈bνbµ〉 = δνµ

〈
b2
ν

〉
(14.26)

for the fundamental second-order moments of a noise distribution ρ. For some appli-
cations it is more convenient to employ symmetrically-ordered moments, e.g.

1
2
〈
b†νbµ + bµb†ν

〉
= Nµδµν , (14.27)

where
Nµ =

〈
b†µbµ

〉
+

1
2

(14.28)

is the noise strength. One virtue of this choice is that the lower bound in the in-
equality Nµ � 1/2 represents the presence of vacuum fluctuations.

If we neglect the weak reservoir–sample interaction, the time-domain analogue of
these relations can be expressed in terms of the Heisenberg-picture noise operator,
ξ (t), defined as a solution of the Heisenberg equation,

i�
d

dt
ξ (t) = [ξ (t) , Hres] , (14.29)

where Hres is given by eqn (14.12). The value of ξ (t) at the initial time t = t0—when
the Schrödinger and Heisenberg pictures coincide—is taken to be

ξ (t0) =
∑

ν

Cνbν , (14.30)
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where Cν is a c-number coefficient. The explicit solution,

ξ (t) =
∑

ν

Cνbνe−iΩν(t−t0) , (14.31)

leads to the results

G (t, t′) =
〈
ξ† (t) ξ (t′)

〉
=
∑

ν

|Cν |2
〈
b†νbν

〉
eiΩν(t−t′) (14.32)

and
F (t, t′) = 〈ξ (t) ξ (t′)〉 =

∑
ν

C2
ν

〈
b2
ν

〉
e−iΩν(t+t′−2t0) (14.33)

for the second-order correlation functions G (t, t′) and F (t, t′).
The factorizability assumption (14.22) alone is sufficient to show that G (t, t′) is

invariant under the uniform time translation (t → t + τ , t′ → t′ + τ) for any set
of coefficients Cν , but the same cannot be said for F (t, t′). The only way to ensure
time-translation invariance of F (t, t′) is to impose〈

b2
ν

〉
= 0 , (14.34)

which in turn implies F (t, t′) ≡ 0. A distribution satisfying eqns (14.27) and (14.34) is
said to represent phase-insensitive noise. It is possible to discuss many noise prop-
erties using only the second-order correlation functions F and G (Caves, 1982), but for
our purposes it is simpler to impose the stronger assumption that the distribution ρ is
stationary. From the general discussion in Section 4.5, we know that a stationary den-
sity operator commutes with the Hamiltonian. The simple form (14.12) of H in turn
implies that each ρν commutes with the mode number operator Nν ; consequently, ρν

is diagonal in the number-state basis. This very strong feature subsumes eqn (14.34)
in the general result 〈(

b†ν
)n

(bν)m
〉

= δnm

〈(
b†ν
)n

(bν)n
〉

, (14.35)

which guarantees time-translation invariance for correlation functions of all orders.

14.1.2 Adiabatic elimination of the reservoir operators

In the Schrödinger picture, the reservoir and sample operators act in different spaces,
so [bJν , O] = 0 for any sample operator, O. Since the Schrödinger and Heisenberg
pictures are connected by a time-dependent unitary transformation, the equal-time
commutators vanish at all times,

[O (t) , bJν (t)] =
[
O (t) , b†Jν (t)

]
= 0 . (14.36)

With this fact in mind, it is straightforward to use the explicit form of HW to find the
Heisenberg equations for the reservoir operators:

∂bJν (t)
∂t

= −iΩνbJν (t) − vJ (Ων)OJ (t) . (14.37)
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Each of these equations has the formal solution

bJν (t) = bJν (t0) e−iΩν(t−t0) − vJ (Ων)
∫ t

t0

dt′e−iΩν(t−t′)OJ (t′) , (14.38)

where t0 is the initial time at which the Schrödinger and Heisenberg pictures coincide.
This convention allows the identification of bJν (t0) with the Schrödinger-picture op-
erator bJν . The first term on the right side of this equation describes free evolution of
the reservoir, and the second term represents radiation reaction, i.e. the emission and
absorption of reservoir excitations by the sample.

The Heisenberg equation for a sample operator OK is

∂OK (t)
∂t

=
1
i�

[OK (t) , HW (t)] =
1
i�

[OK (t) , HS (t)] +
1
i�

[OK (t) , HSE (t)] . (14.39)

The explicit form (14.14) for HSE (t), together with the equal-time commutation rela-
tions, allow us to express the final term in eqn (14.39) as

1
i�

[OK (t) , HSE (t)] =
∑

ν

vJ (Ων)
{[

OK (t) , O†
J (t)

]
bJν (t) − b†Jν (t) [OK (t) , OJ (t)]

}
.

(14.40)
The equal-time commutation relations (14.36) guarantee that the products of sam-

ple and reservoir operators in this equation can be written in any order without chang-
ing the result, but the individual terms in the formal solution (14.38) for the reservoir
operators do not commute with the sample operators. Consequently, it is essential to
decide on a definite ordering before substituting the formal solution for the reservoir
operators into eqn (14.40), and this ordering must be strictly enforced throughout the
subsequent calculation. The final physical predictions are independent of the original
order chosen, but the interpretation of intermediate results may vary. This is another
example of ordering ambiguities like those that allow one to have the zero-point en-
ergy by choosing symmetrical ordering, or to eliminate it by using normal ordering.
We have chosen to write eqn (14.40) in normal order with respect to the reservoir
operators.

Substituting the formal solution (14.38) into eqn (14.40) yields two kinds of terms.
One depends explicitly on the initial reservoir operators bJν (t0) and the other arises
from the radiation-reaction term. We can now proceed to eliminate the reservoir
degrees of freedom—in parallel with the elimination of the radiation field in the
Weisskopf–Wigner model—but the necessary calculations depend on the details of
the sample–environment interaction. Consequently, we will carry out the adiabatic
elimination process in several illustrative examples.

14.2 Photons in a lossy cavity

In this example, the sample consists of the discrete modes of the radiation field in an
ideal physical cavity, and the environment consists of one or more reservoirs which
schematically describe the mechanism for the loss of electromagnetic energy. For an
enclosed cavity—such as the microcavities discussed in Chapter 12—a single reservoir
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representing the exchange of energy between the radiation field and the cavity walls
will suffice. For the commonly encountered four-port devices—e.g. a resonant cavity
capped by mirrors—it is necessary to invoke two reservoirs representing the vacuum
modes entering and leaving the cavity through each port. In the present section we
will concentrate on the simpler case of the enclosed cavity; the four-port devices will
be discussed in Section 14.3.

In order for the discrete cavity modes to retain their identity, the characteristic
interaction energy, �ΩS , between the sample and the reservoir must be small compared
to the minimum energy difference, �∆ω, between adjacent modes, i.e.

ΩS � ∆ω . (14.41)

For example, a rectangular cavity with dimensions L1, L2, and L3 satisfying L1 �
L2 � L3 has ∆ω = 2πc/L3. When eqn (14.41) is satisfied the radiation modes are
weakly coupled through their interaction with the reservoir modes, and—to a good
approximation—we may treat each radiation mode separately.

We may, therefore, consider a reduced sample consisting of a single mode of the
field, with frequency ω0, and drop the mode index. The unperturbed sample Hamil-
tonian is then

HS0 = �ω0a
†a , (14.42)

and we will initially allow for the presence of an interaction term HS1 (t). In this case
there is only one sample operator and one reservoir, so the general expression (14.14)
reduces to

HSE = i�
∑

ν

v (Ων)
(
a†bν − b†νa

)
. (14.43)

The coupling constant v (Ων) is proportional to the RWA cut-off function defined by
eqn (11.22):

v (Ων) = v0 (Ων)K (Ων − ω0) . (14.44)

This is an explicit realization of the assumption that the sample is coupled to a broad
spectrum of reservoir excitations.

In this connection, we note that the interaction Hamiltonian HSE is similar to
the RWA interaction Hamiltonian Hrwa, in eqn (11.46), that describes spontaneous
emission by a two-level atom. In the present case, the annihilation operator a for the
discrete cavity mode plays the role of the atomic lowering operator σ− and the modes
of the radiation field are replaced by the reservoir excitation modes. The mathematical
similarity between HSE and Hrwa allows similar physical conclusions to be drawn. In
particular, a reservoir excitation—which carries positive energy—will never be reab-
sorbed once it is emitted. The implication that the interaction between the sample
and a physically realistic reservoir is inherently dissipative is supported by the explicit
calculations shown below.

This argument apparently rules out any description of an amplifying medium in
terms of coupling to a reservoir. There is a formal way around this difficulty, but it
requires the introduction of an inverted-oscillator reservoir which has distinctly
unphysical properties. In this model, all reservoir excitations have negative energy;
therefore, emitting a reservoir excitation would increase the energy of the sample.
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Since the emission is irreversible, the result would be an amplification of the cavity
mode. For more details, see Gardiner (1991, Chap. 7.2.1) and Exercise 14.5.

14.2.1 The Langevin equation for the field

The Heisenberg equation for a (t) is

d

dt
a (t) = −iω0a (t) +

∑
ν

v (Ων) bν (t) +
1
i�

[a (t) , HS1 (t)] , (14.45)

while the formal solution (14.38) for this case is

bν (t) = bν (t0) e−iΩν(t−t0) − v (Ων)
∫ t

t0

dt′e−iΩν(t−t′)a (t′) . (14.46)

The general rule (14.2) requires ω0 � |v (Ων)|, and we will also assume that HS1 is
weak compared to HS0. Thus the first term on the right side of eqn (14.45) describes
oscillations that are much faster than those due to the remaining terms. This suggests
the introduction of slowly-varying envelope operators,

a (t) = a (t) eiω0t , bν (t) = bν (t) eiω0t , (14.47)

that satisfy
d

dt
a (t) =

∑
ν

v (Ων) bν (t) +
1
i�

[a (t) , HS1 (t)] , (14.48)

and

bν (t) = bν (t0) e−i(Ων−ω0)(t−t0) − v (Ων)
∫ t

t0

dt′e−i(Ων−ω0)(t−t′)a (t′) . (14.49)

The envelope operator a (t) varies on the time scale TS = 1/ΩS, so it is the operator
version of the slowly-varying classical envelope introduced in Section 3.3.1.

We are now ready to carry out the elimination of the reservoir degrees of freedom,
by substituting eqn (14.49) into eqn (14.48). The HS1-term plays no role in this argu-
ment, so we will simplify the intermediate calculation by omitting it. The simplified
equation for a (t) is

d

dt
a (t) = −

∫ t

t0

dt′K (t − t′) a (t′) + ξ (t) , (14.50)

where
K (t − t′) =

∑
ν

|v (Ων)|2 e−i(Ων−ω0)(t−t′) , (14.51)

and
ξ (t) =

∑
ν

v (Ων) bν (t0) e−i(Ων−ω0)(t−t0) . (14.52)

At this stage, the passage to the continuum limit is essential; therefore, we change
the sum over the discrete modes to an integral according to the rule
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∑
ν

fν →
∫ ∞

0

dΩD (Ω) f (Ω) , (14.53)

where D (Ω) is the density of states for the reservoir modes. The exact form of D (Ω)
depends on the particular model chosen for the reservoir. For example, if the reservoir
is defined by modes of the radiation field, then D (Ω) is given by eqn (4.158). In practice
these details are not important, since they will be absorbed into a phenomenological
decay constant. Applying the rule (14.53) to K (t − t′) and using eqn (14.44) leads to
the useful representation

K (t − t′) =
∫ ∞

0

dΩD (Ω) |v0 (Ω)|2 |K (Ω − ω0)|2 e−i(Ω−ω0)(t−t′) . (14.54)

The frequency width of the Fourier transform K (Ω) of K (t − t′) is well approxi-
mated by the width ∆K of the cut-off function. According to the uncertainty principle
for Fourier transforms, the temporal width of K (t − t′) is therefore of the order of
1/∆K . Since K (t − t′) decays to zero for |t − t′| > 1/∆K , we use the terminology in-
troduced in Section 11.1.2 to call Tmem = 1/∆K the memory interval for the reservoir.
The general rule (14.2) for cut-off functions, which in the present case is

ΩS = max |v (Ω)| � ∆K � ω0 , (14.55)

imposes the relation Tmem � TS . In other words, the assumption of a broad spectral
range for the sample–reservoir interaction is equivalent to the statement that the
reservoir has a short memory. This assumption effectively restricts the integral in
eqn (14.50) to the interval t − Tmem < t′ < t, in which a (t′) is essentially constant.
The short memory of the reservoir justifies the Markov approximation, a (t′) ≈ a (t),
and this allows us to replace the integro-differential equation (14.50) by the ordinary
differential equation

d

dt
a (t) = −Λ (t)

2
a (t) + ξ (t) , (14.56)

where

Λ (t) = 2
∫ t

t0

dt′K (t − t′) . (14.57)

Substituting the explicit form for K (t − t′) gives

Λ (t) = 2
∫ t−t0

0

dτ

∫ ∞

0

dΩD (Ω) |v0 (Ω)|2 |K (Ω − ω0)|2 e−i(Ω−ω0)τ . (14.58)

We can assume that the cut-off function |K (Ω − ω0)|2 is sharply peaked with respect
to the prefactor in the Ω-integrand, so that D (Ω) |v0 (Ω)|2 can be removed from the
Ω-integral to get

Λ (t) = 2D (ω0) |v0 (ω0)|2
∫ t−t0

0

dτ

∫ ∞

−ω0

dΩ |K (Ω)|2 e−iΩτ . (14.59)

The width ∆K of the cut-off function satisfies ∆K � ω0, so the lower limit of the
Ω-integral can be replaced by −∞ with negligible error. This approximation ensures
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that Λ (t) is real. After interchanging the Ω- and τ -integrals and noting that |K (Ω)|2
is an even function of Ω, one finds that

Λ (t) = 2D (ω0) |v0 (ω0)|2
∫ ∞

−∞
dΩ |K (Ω)|2 1

2

∫ t−t0

−(t−t0)

dτe−iΩτ . (14.60)

The definition (14.57) shows that Λ (t0) = 0, but we are only concerned with much
later times such that t − t0 > TS � Tmem, where TS = 1/ΩS is the response time
for the slowly-varying envelope operator. In this limit, i.e. after several memory times
have passed, eqn (14.56) can be replaced by

d

dt
a (t) = −κ

2
a (t) + ξ (t) , (14.61)

where
κ = lim

t0→−∞Λ (t) = 2πD (ω0) |v (ω0)|2 . (14.62)

If we had not extended the lower integration limit in eqn (14.59) to −∞, the constant
κ would have a small imaginary part. This is reminiscent of the Weisskopf–Wigner
model, in which the decay constant for the upper level of an atom is found to have a
small imaginary part nominally related to the Lamb shift. In Section 11.2.2, we showed
that a consistent application of the resonant wave approximation requires one to drop
the imaginary part. Applying this idea to the present case implies that extending the
lower limit to −∞ is required for consistency with the resonant wave approximation.

The Fermi-golden-rule result, eqn (14.62), demonstrates that κ is positive for every
initial state of the reservoir. This agrees with the expectation—expressed at the be-
ginning of Section 14.2—that the interaction of the cavity mode and the reservoir
is necessarily dissipative. From now on we will call κ the decay rate for the cavity
mode. One can easily verify that the HS1-contribution could have been carried along
throughout this calculation, to get the complete equation

d

dt
a (t) = −κ

2
a (t) +

1
i�

[a (t) , HS1 (t)] + ξ (t) . (14.63)

The last vestiges of the reservoir degrees of freedom are in the operator ξ (t). This is
conventionally called a noise operator, since eqn (14.61) is the operator analogue of
the Langevin equations describing the evolution of a classical oscillator subjected to a
random driving force. The most famous application for these equations is the analysis
of Brownian motion (Chandler, 1987, Sec. 8.8). This formal similarity has led to the
name operator Langevin equation for eqn (14.61). This language is extended to
eqn (14.63), even when an internal interaction HSS contributes nonlinear terms.

According to eqn (14.52), ξ (t) is a linear function of the initial reservoir operators
bν (t0) alone; it does not depend on the field operators. Noise operators of this kind are
said to be additive, but not all noise operators have this property. In Section 14.4 we
will see that the noise operators for atoms involve products of reservoir operators and
atomic operators. Noise operators of this kind are said to represent multiplicative
noise. An example of multiplicative noise for the radiation field is given in Exercise
14.2.
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The additivity property of the noise operator ξ (t) implies that the initial sample
operators, a (t0) and a† (t0), commute with ξ (t) for any t. On the other hand, the
sample operators at later times depend on the operators bν (t0) and b†ν (t0); therefore,
they will not in general commute with ξ (t) or ξ† (t). This is an example of the general
ordering problem discussed in Section 14.1.2; it is solved by strictly adhering to the
original ordering of factors.

At first glance, the noise operator ξ (t) may appear to be merely another nuisance—
like the zero-point energy—but this is not true. To illustrate the importance of ξ (t),
let us drop the noise operator from eqn (14.61). The solution is then a (t) =
e−κ(t−t0)/2a (t0), which in turn gives the equal-time commutator[

a (t) , a† (t)
]

=
[
a (t) , a† (t)

]
= e−κ(t−t0)

[
a, a†] = e−κ(t−t0) . (14.64)

This is disastrously wrong! Unitary time evolution preserves the commutation re-
lations, so we should find

[
a (t) , a† (t)

]
= 1 at all times. This contradiction shows

that the noise operator is essential for preserving the canonical commutation relations
and, consequently, the uncertainty principle. In this example—with no HS1-term—the
Langevin equation is so simple that one can immediately write down the solution

a (t) = e−κ(t−t0)/2a +
∫ t

t0

dt′e−κ(t−t′)/2ξ (t′) , (14.65)

and then calculate the equal-time commutator explicitly:

[
a (t) , a† (t)

]
= e−κ(t−t0) +

∫ t

t0

dt′
∫ t

t0

dt′′e−κ(t−t′)/2e−κ(t−t′′)/2
[
ξ (t′) , ξ† (t′′)

]
.

(14.66)
The definition (14.52) leads to[

ξ (t′) , ξ† (t′′)
]

=
∑

ν

|v (Ων)|2 e−i(Ων−ω0)(t
′−t′′) . (14.67)

In the continuum limit, the arguments used to get from eqn (14.58) to eqn (14.60) can
be applied to get [

ξ (t′) , ξ† (t′′)
]

= κδ (t′ − t′′) . (14.68)

It should be understood that this result is valid only when applied to functions that
vary slowly on the time scale Tmem of the reservoir. Substituting eqn (14.68) into eqn
(14.66) shows that indeed

[
a (t) , a† (t)

]
= 1 at all times t.

14.2.2 Noise correlation functions

We next apply the general results in Section 14.1.1-C to study the properties of the
noise operator. According to the definition (14.52) of ξ (t) and the convention (14.23),
the average of ξ (t) vanishes, i.e.

〈ξ (t)〉 = TrE [ρEξ (t)] = 0 . (14.69)
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This is of course what one should expect of a sensible noise source. Turning next to the
correlation function, we know—from previous experience with vacuum fluctuations—
that we should proceed cautiously by evaluating

〈
ξ† (t) ξ (t′)

〉
for t′ �= t. Since ξ† (t) ξ (t′)

only acts on the reservoir degrees of freedom, an application of eqn (14.19) gives〈
ξ† (t) ξ (t′)

〉
= TrE

[
ρEξ† (t) ξ (t′)

]
. (14.70)

Substituting the explicit definition (14.52) of the noise operator yields〈
ξ† (t′) ξ (t)

〉
=

∑
ν

∑
µ

v (Ων) v (Ωµ)
〈
b
†
ν (t0) bµ (t0)

〉
E

× ei(Ων−ω0)(t
′−t0)e−i(Ων−ω0)(t−t0) , (14.71)

and the assumption of uncorrelated reservoir modes simplifies this to〈
ξ† (t′) ξ (t)

〉
=

∑
ν

|v (Ων)|2 nν ei(Ων−ω0)(t
′−t) , (14.72)

where
nν =

〈
b†νbν

〉
(14.73)

is the average occupation number of the νth mode of the reservoir. Taking the con-
tinuum limit and applying the Markov approximation yields the normal-ordered cor-
relation function,〈

ξ† (t′) ξ (t)
〉

=
∫

dΩD (Ω) |v (Ω)|2 |K (Ω − ω0)|2 n (Ω) ei(Ω−ω0)(t′−t)

≈ n0κδ (t − t′) , (14.74)

where n0 = n (ω0). A similar calculation yields the antinormal-ordered correlation
function 〈

ξ (t) ξ† (t′)
〉

= (n0 + 1)κδ (t − t′) . (14.75)

The noise operator is said to be delta correlated, because of the factor δ (t − t′).
Since this is an effect of the short memory of the reservoir, the delta function only
makes sense when applied to functions that vary slowly on the time scale Tmem. The
noise strength is given by the power spectrum, i.e. the Fourier transform of the corre-
lation function. For delta-correlated noise operators the spectrum is said to be white
noise, because the power spectrum has the same value, n0κ (or (n0 + 1)κ), for all fre-
quencies. This relation between the noise strength and the dissipation rate is another
example of the fluctuation dissipation theorem.

The delta correlation of the noise operator is the source of other useful properties
of the solutions of the linear Langevin equation (14.61). By using the formal solution
(14.65), one finds that〈

ξ† (t + τ) a (t)
〉

=
〈
ξ† (t + τ) a (t0)

〉
e−κ(t−t0)/2

+
∫ t

t0

dt1e
−κ(t−t1)/2

〈
ξ† (t + τ) ξ (t1)

〉
. (14.76)

The first term on the right side vanishes, by virtue of the assumption that the field
and the reservoir are initially uncorrelated. The second term also vanishes, because the
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delta function from eqn (14.74) vanishes for 0 � t1 � t and τ > 0. Thus the operator
a (t) satisfies 〈

ξ† (t + τ) a (t)
〉

= 0 for τ > 0 , (14.77)

and is consequently said to be nonanticipating with respect to the noise operator
(Gardiner, 1985, Sec. 4.2.4). In anthropomorphic language, the field at time t cannot
know what the randomly fluctuating noise term will do in the future.

14.3 The input–output method

In Section 14.2 our attention was focussed on the interaction of cavity modes with a
noise reservoir, but there are important applications in which the excitation of reservoir
modes themselves is the experimentally observable signal. In these situations some of
the reservoirs are not noise reservoirs; consequently, averages like 〈bν〉 need not vanish.
Consider—as shown in Fig. 14.1—an open-sided cavity formed by two mirrors M1 and
M2 that match the curvature of a particular Gaussian mode. Analysis of this classical
wave problem shows that the mode is effectively confined to the resonator (Yariv, 1989,
Chap. 7), so that the main loss mechanism is transmission through the end mirrors.

The geometry of the cavity might lead one to believe that it is a two-port device,
but this would be a mistake. The reason is that radiation can both enter and leave
through each of the mirrors. We have indicated this feature by drawing the input and
output ports separately in Fig. 14.1. The labeling conventions are modeled after the
beam splitter in Fig. 8.2, but in this case the radiation is normally incident to the
partially transmitting mirror. Thus the resonant cavity is a four-port device.

If we only consider the fundamental cavity mode with frequency ω0, the sample
Hamiltonian is

HS = HS0 + HS1 (t) , (14.78)

where
HS0 = �ω0a

†a , (14.79)

�� ��

� �
�� ��

Fig. 14.1 A Gaussian mode in a resonant cavity. The upper and lower dashed curves repre-

sent lines of constant intensity for a Gaussian solution given by eqn (7.50), and the left and

right dashed curves represent the local curvature of the wavefront. The curvature of mirrors

M1 and M2 are chosen to match the wavefront curvature at their locations. Under these

conditions the Gaussian mode is confined to the cavity. Ports 1 and 2 are input ports for

photons entering from the left and right respectively. Ports 1′ and 2′ are output ports for

photons exiting to the right and left respectively. The cavity is therefore a four-port device

like the beam splitter.
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and a is the mode annihilation operator. The internal sample interaction Hamiltonian
HS1 (t) can depend explicitly on time in the presence of external classical fields, and a
model of this sort will be used later on to describe nonlinear coupling between cavity
modes induced by spontaneous down-conversion.

Losses through the end mirrors are described by two reservoirs consisting of vac-
uum modes of the field propagating in space to the left and right of the cavity. We
could treat these reservoirs by using the exact theory of vacuum propagation, but
the simpler description in terms of the generic reservoir operators bJν introduced in
Section 14.1.1 is sufficient. For this application it is better to go to the continuum
limit from the beginning, as opposed to the end, of the analysis. For this purpose, we
construct a simplified reservoir model by imposing periodic boundary conditions on a
one-dimensional (1D) cavity of length L. The index ν then runs over the integers, and
the corresponding wavevectors are k = 2πν/L. In the limit L → ∞, the operators bJν

are replaced by new operators bJk =
√

LbJν satisfying[
bJk, b†Jk′

]
= 2πδ (k − k′) , (14.80)

and the environment Hamiltonian is

HE =
2∑

J=1

∫ ∞

−∞

dk

2π
�Ωk b†J,kbJ,k . (14.81)

The standard approach to in- and out-fields (Gardiner, 1991, Sec. 5.3) employs
creation and annihilation operators for modes of definite frequency Ω, rather than
definite wavenumber k. In the 1D model this can be achieved by assuming that the
mode frequency Ωk is a monotone-increasing function of the continuous label k. This
assumption justifies the change of variables k → Ω in eqn (14.81), with the result

HE =
∫ ∞

0

dΩ
2π

�Ω
2∑

J=1

b†J,ΩbJ,Ω , (14.82)

where
bJ,Ω =

1√|dΩk/dk|bJ,k . (14.83)

Using this definition in eqn (14.80) leads to the Heisenberg-picture, equal-time com-
mutation relations[

bJ,Ω (t) , b†K,Ω′ (t)
]

= 2πδJKδ (Ω − Ω′) , J, K = 1, 2 , (14.84)[
bJ,Ω (t) , a† (t)

]
= 0 , J = 1, 2 . (14.85)

It should be kept in mind that Ω simply replaces the mode label k; it is not a Fourier
transform variable.

We should also mention that the usual presentation of this theory extends the Ω-
integral in eqn (14.82) to −∞, and thus introduces unphysical negative-energy modes.
In expert hands, this formal device simplifies the mathematics without really violating
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any physical principles, but it clearly defies Einstein’s rule. Furthermore, the restriction
to the physically allowed, positive-energy modes clarifies the physical significance of
the approximations to be imposed below.

In our approach, the generic sample–environment Hamiltonian, given by eqn
(14.43), is

HSE = i�

2∑
J=1

∫ ∞

0

dΩ
2π

√
L

dk

dΩ
vJ (Ω)

{
a†bJ,Ω − b†J,Ωa

}
. (14.86)

The looming disaster of the uncompensated factor
√

L is an illusion. In the finite
cavity, the unit cell for wavenumbers is 2π/L; therefore, the density of states D (Ω)
satisfies

D (Ω) dΩ =
dk

2π/L
. (14.87)

This observation allows the dangerous-looking result for HSE to be replaced by

HSE = i�

2∑
J=1

∫ ∞

0

dΩ

√
D (Ω)

2π
vJ (Ω)

{
a†bJ,Ω − b†J,Ωa

}
. (14.88)

The terms in eqn (14.88) have simple interpretations; for example, b†2,Ωa represents
the disappearance of a cavity photon balanced by the emission of a photon into the
environment through the mirror M2.

The slowly-varying envelope operators—a (t) = a (t) exp (iω0t) and bJ,Ω (t) =
bJ,Ω (t) exp (iω0t) (J = 1, 2)—obey the Heisenberg equations of motion:

d

dt
bJ,Ω (t) = −i (Ω − ω0) bJ,Ω (t) −

√
2πD (Ω)vJ (Ω) a (t) (J = 1, 2) , (14.89)

d

dt
a (t) =

1
i�

[a (t) , HS1 (t)] +
2∑

J=1

∫ ∞

0

dΩ

√
D (Ω)

2π
vJ (Ω) bJ,Ω (t) . (14.90)

14.3.1 In-fields

We begin by choosing a time t0 earlier than any time at which interactions occur. A
formal solution of eqn (14.89) is given by

bJ,Ω (t) = bJ,Ω (t0) e−i(Ω−ω0)(t−t0) −
√

2πD (Ω)vJ (Ω)
∫ t

t0

dt′e−i(Ω−ω0)(t−t′)a (t′) ,

(14.91)
and substituting this into eqn (14.90) yields

d

dt
a (t) =

1
i�

[a (t) , HS1 (t)]

+
2∑

J=1

∫ ∞

0

dΩ

√
D (Ω)

2π
vJ (Ω) bJ,Ω (t0) e−i(Ω−ω0)(t−t0)

−
2∑

J=1

∫ ∞

−ω0

dΩD (Ω + ω0) |vJ (Ω + ω0)|2
∫ t

t0

dt′e−iΩ(t−t′)a (t′) ,

(14.92)
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where the integration variable Ω has been shifted by Ω → Ω + ω0 in the final term.
Since the operator a (t′) is slowly varying, the t′-integral in this term defines a function
of Ω that is sharply peaked at Ω = 0; in particular, the width of this function is small
compared to ω0. This implies that the lower limit of the Ω-integral can be extended to
−∞ with negligible error. In addition, we impose the Markov approximation by the
ansatz :

2πD (Ω) |vJ (Ω)|2 � κJ = 2πD (ω0) |vJ (ω0)|2 (J = 1, 2) , (14.93)

representing the assumption that the sample interacts with a broad spectrum of reser-
voir excitations. Note that this replaces eqn (14.91) by

bJ,Ω (t) = bJ,Ω (t0) e−i(Ω−ω0)(t−t0) −√
κJ

∫ t

t0

dt′e−i(Ω−ω0)(t−t′)a (t′) . (14.94)

When the approximation (14.93) is used in eqn (14.92), the extended Ω-integral in
the third term produces 2πδ (t − t′). Evaluating the t′-integral, with the aid of the
end-point rule (A.98), then leads to the Langevin equation,

d

dt
a (t) =

1
i�

[a (t) , HS1 (t)] − κC

2
a (t) + ξC (t) , (14.95)

where
κC = κ1 + κ2 (14.96)

is the total cavity damping rate. The cavity noise-operator,

ξC (t) =
2∑

J=1

√
κJ bJ,in (t) , (14.97)

is expressed in terms of the in-fields

bJ,in (t) =
∫ ∞

0

dΩ
2π

bJ,Ω (t0) e−i(Ω−ω0)(t−t0) . (14.98)

For later use it is convenient to write out the Langevin equation as

d

dt
a (t) =

1
i�

[a (t) , HS1 (t)] +
√

κ1 b1,in (t) +
√

κ2 b2,in (t) − κC

2
a (t) . (14.99)

The operator a (t) depends on the initial reservoir operators through the in-fields,
so eqn (14.99) is called the retarded Langevin equation. Since t0 precedes any
interactions, the reservoir fields and the sample fields are uncorrelated at t = t0.

The in-fields have an unexpected algebraic property. Combining the equal-time
commutation relations (14.84) with the definition (14.98) leads to[

bJ,in (t) , b
†
K,in (t′)

]
= δJK

∫ ∞

−ω0

dΩ
2π

e−iΩ(t−t′) . (14.100)

The correct interpretation of the ambiguous expression on the right side involves both
mathematics and physics. The mathematical part of the argument is to interpret the



The input–output method ���

Ω-integral as a generalized function of t−t′. According to Appendix A.6.2, this is done
by applying the generalized function to a good function f (t′) to find:∫ ∞

−∞
dt′

[∫ ∞

−ω0

dΩ
2π

e−iΩ(t−t′)
]

f (t′) =
∫ ∞

−ω0

dΩ
2π

e−iΩtf (Ω) . (14.101)

The physical part of the argument is that only slowly-varying good functions are
relevant. In the frequency domain, this means that f (Ω) is peaked at Ω = 0 and has
a width that is small compared to ω0. Thus, just as in the argument following eqn
(14.92), the lower limit can be extended to −∞ with negligible error. This last step
replaces the right side of eqn (14.101) by f (t), and this in turn implies the unequal-
time commutation relations:[

bJ,in (t) , b
†
K,in (t′)

]
= δJKδ (t − t′)[

bJ,in (t) , bK,in (t′)
]

= 0

⎫⎬⎭ (J, K = 1, 2) , (14.102)

for the in-fields.
If the environment density operator represents the vacuum, i.e.

bJ,Ω (t0) ρE = ρEb
†
J,Ω (t0) = 0 (J = 1, 2) , (14.103)

and 〈[a, Hss]〉 = 0, then one can show that

d

dt

〈
a† (t) a (t)

〉
= −2

κC

2
〈
a† (t) a (t)

〉
= − (κ1 + κ2)

〈
a† (t) a (t)

〉
. (14.104)

This justifies the interpretation of κ1 and κ2 as the rate of loss of cavity photons
through mirrors M1 and M2 respectively.

14.3.2 Out-fields

In most applications, only the emitted fields are experimentally accessible; thus we
will be interested in the reservoir fields at late times, after all interactions inside the
cavity have occurred. For this purpose, we choose a late time t1 and write a formal
solution of eqn (14.89) as

bJ,Ω (t) = bJ,Ω (t1) e−i(Ω−ω0)(t−t1) +
√

κJ

∫ t1

t

dt′e−i(Ω−ω0)(t−t′)a (t′) (J = 1, 2) .

(14.105)
After substituting this into eqn (14.90), we find the advanced Langevin equation

d

dt
a (t) =

1
i�

[a (t) , HS1 (t)] +
√

κ2 b2,out (t) +
√

κ1 b1,out (t) +
κC

2
a (t) , (14.106)

where the out-fields bJ,out (t) are defined by

bJ,out (t) =
∫ ∞

0

dΩ
2π

bJ,Ω (t1) e−i(Ω−ω0)(t−t1) . (14.107)

The sign difference between the final terms of eqns (14.106) and (14.99) can be traced
back to the minus sign in the second term of eqn (14.105). This in turn reflects the
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free evolution of b1,out (t) and b2,out (t) toward the future values b1,Ω (t1) and b2,Ω (t1).
Another important difference from the retarded case is that the operators b1,Ω (t1) and
b2,Ω (t1) are necessarily correlated with the sample operator a (t1), since the time t1
follows all interactions inside the cavity.

A relation between the in- and out-fields—similar to the scattering relations dis-
cussed in Section 8.2—follows from equating the alternate expressions (14.94) and
(14.105) for bJ,Ω (t) to get

bJ,Ω (t1) e−i(Ω−ω0)(t−t1) = bJ,Ω (t0) e−i(Ω−ω0)(t−t0) −√
κJ

∫ t1

t0

dt′e−i(Ω−ω0)(t−t′)a (t′) .

(14.108)
The left side of this equation is the integrand of the expression (14.107) defining
bJ,out (t), so we take the hint and integrate over Ω to find the input–output equation:

bJ,out (t) = bJ,in (t) −√
κJ a (t) . (14.109)

14.3.3 The empty cavity

In order to get some insight into the meaning of all this formalism, we consider the
case of an empty cavity, i.e. HS1 = 0. In this case, the equation of motion (14.99) for
the intracavity field is a linear differential equation with constant coefficients,

d

dt
a (t) =

√
κ2 b2,in (t) +

√
κ1 b1,in (t) − κC

2
a (t) . (14.110)

Equations of this type are commonly solved by introducing the Fourier transform pairs

F (ω) =
∫ ∞

−∞
dteiωtF (t) , (14.111)

F (t) =
∫ ∞

−∞

dω

2π
e−iωtF (ω) . (14.112)

In the present case, F (t) stands for any of the envelope operators a (t), b1,in (t), and
b2,in (t). Since these operators are not hermitian, a convention regarding adjoints is
needed. We choose to use the same convention in the time and frequency domains:

F
†
(t) =

[
F (t)

]†
, F

†
(ω) =

[
F (ω)

]†
. (14.113)

With this convention in force, the adjoint of eqn (14.112) yields

F
†
(t) =

∫ ∞

−∞

dω

2π
eiωtF

†
(ω) =

∫ ∞

−∞

dω

2π
e−iωtF

†
(−ω) . (14.114)

Substituting the expansions (14.112) and (14.114) into eqn (14.102) produces the
frequency-domain commutation relations[

bJ,in (ω) , b
†
K,in (ω′)

]
= 2πδJKδ (ω − ω′) ,[

bJ,in (ω) , bK,in (ω′)
]

= 0 .
(14.115)

In general, it is not correct to think of eqn (14.112) as a mode expansion for
F (t). For example, a (t) is the Heisenberg-picture annihilation operator associated



The input–output method ���

with a particular cavity mode; this is as far as mode expansions go. Consequently the
application of eqn (14.112) to a (t) cannot be regarded as a further mode expansion.
The in-fields are a special case in this regard, since Fourier transforming the definition
(14.98) yields

bJ,in (ω) = bJ,ω+ω0 (t0) eiωt0 (J = 1, 2) . (14.116)

This close relation between the Fourier transform and the mode expansion is a result of
the explicit definition of the in-field as a superposition of freely propagated annihilation
operators for the individual modes.

We can now proceed by Fourier transforming the differential equation (14.110) for
a (t) , to get the algebraic equation

−iωa (t) =
√

κ2 b2,in (ω) +
√

κ1 b1,in (ω) − κC

2
a (ω) , (14.117)

with the solution

a (ω) =
√

κ2 b2,in (ω) +
√

κ1 b1,in (ω)
κC/2 − iω

. (14.118)

In the frequency domain, the unmodified operators and the slowly-varying envelope
operators are related by the translation rule

F (ω) = F (ω + ω0) . (14.119)

This kind of rule is often expressed by saying that ω is replaced by ω + ω0, but this is
a bit misleading. The translation rule really means that the argument of the function
is translated; for example, F (−ω) is replaced by F (−ω + ω0), not F (−ω − ω0). Thus
the argument in F (ω) represents the displacement, either positive or negative, from
the carrier frequency ω0. Applying the translation rule to eqn (14.116) and to the
expression for a (ω) yields

bJ,in (ω) = bJ,ω (t0) eiωt0 (J = 1, 2) , (14.120)

and

a (ω) =
√

κ2 b2,in (ω) +
√

κ1 b1,in (ω)
κC/2 − i (ω − ω0)

. (14.121)

The frequency-domain version of the scattering equation (14.109) for b1,out (ω),
where b1,out (ω) = b1,out (ω − ω0), combines with the explicit solution (14.121) to yield
the input–output equation

b1,out (ω) =
[(κ2 − κ1) /2 − i (ω − ω0)] b1,in (ω) −√

κ1κ2 b2,in (ω)
κC/2 − i (ω − ω0)

. (14.122)

For far off-resonance radiation, i.e. |ω − ω0| � κC/2, this relation reduces to

b1,out (ω) ≈ b1,in (ω) , (14.123)

which corresponds to complete reflection of the radiation incident on M1. For a sym-
metrical resonator, i.e. κ1 = κ2 = κC/2, the input–output relation simplifies to
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b1,out (ω) =
i (ω − ω0) b1,in (ω) + (κC/2) b2,in (ω)

i (ω − ω0) − κC/2
, (14.124)

and for nearly resonant radiation, ω ≈ ω0, this becomes

b1,out (ω) =
(κC/2) b2,in (ω)

i (ω − ω0) − κC/2
. (14.125)

In this limit, the output field from mirror M1 is simply proportional to the input field
at mirror M2, i.e. there is essentially no reflection of radiation incident on mirror M2.
In this situation the cavity is called a Lorentzian filter, since the output intensity,

〈
b†1,out (ω) b1,out (ω)

〉
=

(κC/2)2

(κC/2)2 + (ω − ω0)
2

〈
b†2,ω (t0) b2,ω (t0)

〉
, (14.126)

has a typical Lorentzian line shape.

14.4 Noise and dissipation for atoms

In Section 11.3.3 we obtained a dissipative form of the Bloch equation for a two-level
atom by adding phenomenological damping terms to the quantum Liouville equation
for the atomic density operator. The Liouville equation is defined in the Schrödinger
picture, or sometimes in the interaction picture; consequently, the Bloch equation does
not immediately fit into the Heisenberg-picture formulation of the sample–reservoir
model employed above. In order to make the connection, we first recall that an N -
level atom is completely described by the transition operators, Sqp = |εq〉 〈εp|, defined
in Section 11.1.4. In particular, the matrix elements ρpq (t) = 〈εp |ρ (t)| εq〉 of the
density operator are given by

ρpq (t) = Tr ρ (t)Sqp . (14.127)

The trace is invariant under unitary transformations, so this result can equally well
be written as

ρpq (t) = Tr ρSqp (t) , (14.128)

where ρ and Sqp (t) are both expressed in the Heisenberg picture. Since the Heisenberg-
picture density operator ρ is time independent, the Bloch equation for the matrix
elements of the density operator is an immediate consequence of the Heisenberg equa-
tions of motion for the transition operators. For this reason, we will sometimes use the
name operator Bloch equation for these particular Heisenberg equations.

14.4.1 Two-level atoms

In order to avoid unnecessary complications, we will restrict the detailed discussion to
the simplest case of two-level atoms. With these results in hand, the generalization to
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N -level atoms is straightforward. For a sample consisting of a single two-level atom,
the sample Hamiltonian is HS = HS0 + HS1 (t), where

HS0 =
�ω21

2
[S22 − S11] . (14.129)

The terms in the Heisenberg equations of motion contributed by HS1 (t) play no role
in the following discussion, so we will omit them from the intermediate calculations
and restore them at the end to get the final form of the Langevin equations.

A Noise reservoirs

There are now two forms of dissipation to be considered: spontaneous emission (sp)
and phase-changing perturbations (pc). We already have the complete theory for
spontaneous emission, but in the present context it is more instructive to use the
schematic approach of Section 14.1.2. The creation and annihilation operators for the
reservoir excitations (photons) that are emitted and absorbed in the 2 ↔ 1 transition
are denoted by b†Ω and bΩ. The second form of dissipation is associated with the decay
of the atomic dipole, due to perturbations that do not cause real transitions between
the two levels. In the simplest case, the atom is excited from an initial state to a virtual
intermediate state and then returned to the original state. In a vapor, this effect arises
primarily from collisions with other atoms. In a solid, phase-changing perturbations
are often caused by local field fluctuations. The phase-changing perturbations of the
two levels may arise from different mechanisms, so we need a reservoir for each level,
with creation and annihilation operators c†qΩ and cqΩ (q = 1, 2).

The environment Hamiltonian is therefore

HE =
∫ ∞

0

dΩ
2π

�Ωb†ΩbΩ +
2∑

q=1

∫ ∞

0

dΩ
2π

�Ωc†qΩcqΩ , (14.130)

and the sample–environment interaction Hamiltonian HSE is

HSE = Hsp + Hpc , (14.131)

where Hsp and Hpc are responsible for spontaneous emission and phase-changing per-
turbations respectively. The spontaneous emission Hamiltonian,

Hsp = i�

∫ ∞

0

dΩ

√
D (Ω)

2π
v (Ω)

(
b†ΩS12 − S21bΩ

)
, (14.132)

is modeled directly on the RWA Hamiltonian of eqn (11.25), with the coupling constant
v (Ω) playing the role of the dipole matrix element.

The simplest phase-changing perturbation is a second-order process in which the
atom starts and ends in the same state. The transition from an initial state |εq〉 to
an intermediate state |εp〉 is represented by the operator Spq, and the return to the
original state is described by Sqp; consequently, the complete transition is described
by the product SqpSpq = Sqq. Since there is no overall change in energy, the resonance
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for this transition occurs at zero frequency. We model the phase-changing mechanism
by coupling the atom to two reservoirs according to

Hpc = i�
2∑

q=1

∫ ∞

0

dΩ

√
D (Ω)

2π
uq (Ω)

(
c†qΩSqq − SqqcqΩ

)
. (14.133)

Coupling to the zero-frequency resonance is enforced by assuming that the coupling
constant uq (Ω) is proportional to the cut-off function centered at zero frequency.

B Langevin equations

Since the sample and environment operators commute at equal times, the terms in the
total Hamiltonian can be written in any desired order. We chose to put them in normal
order with respect to the environment operators, so that the Heisenberg equations

d

dt
Sqp (t) =

1
i�

[Sqp (t) , HE + HS + Hsp + Hpc] (14.134)

are also normally ordered. The resonance frequencies for the interaction of the sample
with the spontaneous-emission and phase-changing reservoirs are ω = ω21 and ω = 0
respectively; therefore, we express eqn (14.134) in terms of the envelope operators

S12 (t) = S12 (t) eiω21t , Sqq (t) = Sqq (t) ,

bΩ (t) = bΩ (t) eiω21t , cqΩ (t) = cqΩ (t) ,
(14.135)

to find

d

dt
S12 (t) =

{
S22 (t) − S11 (t)

}
β (t) +

{
γ†
2 (t) − γ†

1 (t)
}

S12 (t)

− S12 (t) {γ2 (t) − γ1 (t)} , (14.136)

d

dt
S22 (t) = −β† (t)S12 (t) − S21 (t) β (t) , (14.137)

d

dt
bΩ (t) = −i (Ω − ω21) bΩ (t) +

√
2πD (Ω) v (Ω)S12 (t) , (14.138)

d

dt
cqΩ (t) = −iΩcqΩ (t) +

√
2πD (Ω) uq (Ω)Sqq (t) , (14.139)

where

β (t) =
∫ ∞

0

dΩ

√
D (Ω)

2π
v (Ω) bΩ (t) (14.140)

and

γq (t) =
∫ ∞

0

dΩ

√
D (Ω)

2π
uq (Ω) cqΩ (t) (q = 1, 2) . (14.141)

The equation for S11 (t) has been omitted, by virtue of the identity S11 (t)+S22 (t) = 1.
The Langevin equations for the atomic transition operators are derived by an ar-

gument similar to the one employed in Section 14.2.1. The formal solutions of eqns
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(14.138) and (14.139) for the reservoir operators are combined with the Markov con-
ditions

2πD (Ω) |v (Ω)|2 � w21 = 2πD (ω21) |v (ω21)|2 (14.142)

and
2πD (Ω) |uq (Ω)|2 � wqq = 2πD (0) |uq (0)|2 , (14.143)

to get
β (t) =

√
w21 bin (t) +

w21

2
S12 (t) (14.144)

and
γq (t) =

√
wqq cq,in (t) +

wqq

2
Sqq (t) (q = 1, 2) . (14.145)

The in-fields for the reservoirs are given by

bin (t) =
∫ ∞

0

dΩ
2π

bΩ (t0) e−i(Ω−ω21)(t−t0) (14.146)

and
cq,in (t) =

∫ ∞

0

dΩ
2π

cqΩ (t0) e−iΩ(t−t0) . (14.147)

Substituting these results into eqns (14.136) and (14.137) yields the Langevin equations
for the transition operators:

d

dt
S12 (t) = [iω12 − Γ12] S12 (t) +

1
i�

[S12 (t) , HS1 (t)] + ξ12 (t) , (14.148)

d

dt
S22 (t) = −w21S22 (t) +

1
i�

[S22 (t) , HS1 (t)] + ξ22 (t) , (14.149)

d

dt
S11 (t) = w21S22 (t) +

1
i�

[S11 (t) , HS1 (t)] + ξ11 (t) , (14.150)

where w21 is the spontaneous decay rate for the 2 → 1 transition, w11 and w22 are the
rates of the phase-changing perturbations, and

Γ12 =
1
2

(w21 + w22 + w11) (14.151)

is the dephasing rate for the atomic dipole. We have restored the HS1 (t)-terms and
also imposed ξ11 (t) = −ξ22 (t) in accord with the conservation of population.

The operators ξ12 (t) and ξ22 (t) represent multiplicative noise, since they involve
products of sample and reservoir operators. This raises a new difficulty, because there is
no general argument proving that multiplicative noise operators are delta correlated.
Even in the special cases for which a proof can be given—e.g. those considered in
Exercise 14.2—the calculations are quite involved. In this situation, the only general
procedure available is to include the delta-correlation assumption as part of the Markov
approximation. For the problem at hand the ansatz is〈

ξqp (t) ξ†q′p′ (t′)
〉

= Cqp,q′p′δ (t − t′) . (14.152)

The coefficients Cqp,q′p′ can be evaluated, at least partially, by the general methods
described in Section 14.6.
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We will see, in the following section, that the use of atomic transition operators
is a great advantage for the generalization from two-level to N -level atoms, but for
applications to two-level atoms themselves, it is often easier to work in terms of the
familiar Pauli matrices. The relations

S22 =
1
2

(1 + σz) , S11 =
1
2

(1 − σz) , S12 = σ− , S21 = σ+ (14.153)

lead to the equivalent Langevin equations

d

dt
σ− (t) = −Γ12σ− (t) +

1
i�

[σ− (t) , HS1 (t)] + ξ− (t) , (14.154)

d

dt
σz (t) = −w21 [1 + σz (t)] +

1
i�

[σz (t) , HS1 (t)] + ξz (t) , (14.155)

where ξ− (t) = ξ12 (t) and ξz (t) = 2ξ22 (t).

14.4.2 N-level atoms

The derivation of the Langevin equations for atoms with N levels could be carried
out by applying the approach followed for the two-level atom, but this would require
assigning a reservoir for every real decay and another reservoir for each level subjected
to phase-changing perturbations. One can escape burial under this avalanche of reser-
voirs by paying careful attention to the structure of eqns (14.148)–(14.151) for the
two-level atom. If we assume that the dissipative effects involve transitions between
pairs of atomic levels or phase-changing perturbations of single levels, then a little
thought shows that the N -level Langevin equations must have the general form

d

dt
Sqp (t) = (iωqp − Γqp)Sqp (t) +

1
i�

[Sqp (t) , HS1 (t)] + ξqp (t) for q �= p , (14.156)

d

dt
Sqq (t) =

∑
p

wpqSpp (t) −
∑

p

wqpSqq (t) +
1
i�

[Sqq (t) , HS1 (t)] + ξqq (t) . (14.157)

The envelope operators are defined by generalizing eqn (14.135) to

Sqp (t) = Sqp (t) eiωqptei[θq(t)−θp(t)] , (14.158)

where each θq (t) is a real function. The reason for including the θqs in this definition is
that—in favorable cases—they can be chosen to eliminate explicit time dependencies
due to

[
Sqp (t) , HS1 (t)

]
. Substituting eqn (14.158) into eqns (14.156) and (14.157)

leads to the envelope equations

d

dt
Sqp (t) =

[
−i

(
θ̇q − θ̇p

)
− Γqp

]
Sqp (t) +

1
i�

[
Sqp (t) , HS1 (t)

]
+ ξqp (t) for q �= p ,

(14.159)
d

dt
Sqq (t) =

∑
p

wpqSpp (t) −
∑

p

wqpSqq (t) +
1
i�

[
Sqq (t) , HS1 (t)

]
+ ξqq (t) , (14.160)

where
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wpq =

⎧⎪⎨⎪⎩
transition rate for p → q if εp > εq ,

0 if εp < εq ,

the phase-changing rate for the qth level when q = p .

(14.161)

For q �= p, Γqp =
1
2

∑
r

(wqr + wpr) is the dephasing rate for Sqp (t) . (14.162)

Strictly speaking, one should also define envelope noise operators,

ξqp (t) = e−iωqpte−i[θq(t)−θp(t)]ξqp (t) , (14.163)

but the assumption that the original operators ξqp (t) are delta correlated implies that
the envelope noise operators would have the same correlation functions. Since the
correlation functions are all that matters for noise operators, it is safe to ignore the
distinction between ξqp (t) and ξqp (t).

14.5 Incoherent pumping

Incoherent pumping processes—which raise rather than lower the energy of an atom—
are used to produce population inversion; consequently, they play a central role in
laser physics. As we have seen in Section 14.4, the interaction of an atom with a
short-memory reservoir is necessarily dissipative. This raises the following question:
Can incoherent pumping be described by a reservoir model? This feat has been ac-
complished, but only at the cost of introducing an unphysical reservoir (Gardiner,
1991, Sec. 7.2.1). The idea is to describe pumping by coupling the atom to a reservoir
composed of oscillators with an inverted energy spectrum, εΩ = −�Ω, as in Exercise
14.5. Emitting an excitation into this reservoir lowers the reservoir energy and there-
fore raises the energy of the atom. We have previously mentioned the formal use of
unphysical negative-energy modes in the discussion of the input–output method in
Section 14.3, but in that situation the probability for exciting the unphysical modes
is negligible. This cannot be the case for the inverted-oscillator reservoir; otherwise,
there would be no pumping. Since this model violates Einstein’s rule, we must accept
some added complexity.

The interaction between an atom and a classical field, with rapid fluctuations in
phase, provides a physically acceptable model for incoherent pumping. Unfortunately,
building such a model for the simplest case of a two-level atom is pointless, since the
discussion in Section 11.3.3 shows that no pumping scheme for a two-level atom can
produce an inverted population. We will, therefore, grudgingly admit that real atoms
have more than two levels and add a third. The added complexity will be offset by
ignoring phase-changing perturbations.

The sample is a collection of three-level atoms, with the energy-level diagram shown
in Fig. 14.2. The 3 ↔ 1 transition is driven by a strong, classical pump field

EP (t) = ePEP0e
iϑP (t)e−iωP t , (14.164)

where ωP ≈ ω31 and ϑP (t) is a rapidly fluctuating phase. Since there is no coupling
between the atoms, we can restrict our attention to a single atom located at r = 0.
For this reduced sample, the interaction Hamiltonian is HS1 = VP (t) + H ′

S1, where
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Fig. 14.2 A three-level atom with dipole al-

lowed transitions 1 ↔ 3 and 1 ↔ 2. The spon-

taneous emission rates are w31 and w21 respec-

tively. The 1 ↔ 3 transition is also driven by

a classical field with Rabi frequency ΩP . A

non-radiative decay 3 → 2, with rate w32, is

indicated by the dashed arrow. The wavy ar-

rows denote the spontaneous emissions.
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VP (t) = �
[
ΩP eiϑP (t)e−iωP teiω31tei[θ3(t)−θ1(t)]S31 + HC

]
, (14.165)

S31 is the envelope operator defined by eqn (14.158), ΩP is the Rabi frequency associ-
ated with the constant amplitude EP0, and H ′

S1 includes any other interactions with
external fields as well as any sample–sample interactions. The remaining interaction
term H ′

S1 influences some of the choices to be made, but the terms contributed by
H ′

S1 to the equations of motion play no direct role in the following argument. We
will therefore omit them from the intermediate steps and restore them at the end. In
addition to the spontaneous emissions, 2 → 1 and 3 → 1, we assume that there is a
non-radiative decay channel: 3 → 2.

The Langevin equations for this problem are derived in Exercise 14.6 by dropping
the phase-changing terms from the (N = 3)-case of eqns (14.159) and (14.160). It is
also useful to impose θ3 (t)−θ1 (t) = ∆P t−ϑP (t)—where ∆P = ωP −ω31 is the pump
detuning—in order to eliminate the explicit time dependence of VP (t). The remaining
phase differences θ1 − θ2 and θ2 − θ3 are related by

θ2 − θ3 = (θ1 − θ3) − (θ1 − θ2)
= ∆P t − ϑP (t) − (θ1 − θ2) , (14.166)

so we can only impose one more condition on the phases. The choice of this condition
depends on H ′

S1. In the problem at hand, we have assumed that the transition 2 ↔ 1
is dipole allowed, but the transition 3 ↔ 2 is not. Thus only the transition 2 ↔ 1 can
be dipole-coupled to the electromagnetic field. We therefore reserve θ1 − θ2 to deal
with any such coupling, and use eqn (14.166) as the definition of θ2 − θ3. For the sake
of simplicity, we will assume that ∆21 = θ̇2 − θ̇1 is a constant; this assumption is valid
in most applications.

The central idea of this approach is that the envelope operators are effectively in-
dependent of the randomly fluctuating pump phase ϑP (t). This means that

〈
Sqp

〉
P
�

Sqp, where 〈· · · 〉P denotes averaging over the distribution of pump phases. This al-
lows the rapid fluctuations in the phase to be exploited by a variant of the adiabatic
elimination argument. As an illustration of this approach, we start with the Langevin
equation,

dS23 (t)
dt

= −i
(
θ̇2 − θ̇3

)
S23 (t) − iΩP S21 (t) − Γ23S23 (t) + ξ23 (t) , (14.167)
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for the atomic coherence operator S23 (t), and impose the phase choice (14.166). Writ-
ing out the formal solution and averaging it over the phase distribution of the pump
then leads to

S23 (t) = S23 (t0) e(i∆P −i∆21−Γ23)(t−t0)CP (t, t0)

− iΩP

∫ t

t0

dt′e(i∆P −i∆21−Γ23)(t−t′)CP (t, t′)S21 (t′)

+
∫ t

t0

dt′e(i∆P−i∆21−Γ23)(t−t′)CP (t, t′) 〈ξ23 (t′)〉P , (14.168)

where
CP (t, t′) ≡

〈
e−iϑP (t)eiϑP (t′)

〉
P

. (14.169)

For a time-stationary distribution of pump phase, CP (t, t′) only depends on the time
difference t−t′; and it decays rapidly for |t − t′| larger than the pump correlation time.
For the function CP (t, t0), this means that transient effects, associated with turning
on the pump, will fade away for t − t0 larger than the pump correlation time. This
is mathematically equivalent to the limit t0 → −∞, so that CP (t, t0) → 0. In the
remaining terms, the rapid decay of CP (t, t′) justifies evaluating the other functions
in the t′-integrals at t′ = t. The result is

S23 (t) = −iΩP TP S21 (t) + TP 〈ξ23 (t)〉P , (14.170)

where

TP = lim
t0→−∞

∫ t

t0

dt′
〈
e−i[ϑP (t)−ϑP (t′)]

〉
P

(14.171)

is a measure of the correlation time for the incoherent pump. The same procedure
applied to S13 (t) yields

S13 (t) = −iΩP TP

{
S11 (t) − S33 (t)

}
+ TP 〈ξ13 (t)〉P . (14.172)

The strengths of the noise operators 〈ξqp (t)〉P are determined by the atomic tran-
sition rates, which we can assume are small compared to ΩP . This justifies neglecting
the noise terms in eqns (14.170) and (14.172) to get

S23 (t) = −iΩP TP S21 (t) ,

S13 (t) = −iΩP TP

[
S11 (t) − S33 (t)

]
.

(14.173)

Substituting these results in the remaining Langevin equations and restoring the con-
tributions from H ′

S1 produces the reduced equations:

dS11 (t)
dt

= −RP S11 (t) + w21S22 (t) + (w31 + RP )S33 (t) +
1
i�

[
S11 (t) , H ′

S1

]
+ ξ11 (t) ,

(14.174)
dS22 (t)

dt
= w32S33 (t) − w21S22 (t) +

1
i�

[
S22 (t) , H ′

S1

]
+ ξ22 (t) , (14.175)
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dS33 (t)
dt

= RP S11 (t)−(w31 + RP + w32)S33 (t)+
1
i�

[
S33 (t) , H ′

S1

]
+ξ33 (t) , (14.176)

dS12 (t)
dt

=
[
i∆21 − 1

2
(w21 + RP )

]
S12 (t) +

1
i�

[
S12 (t) , H ′

S1

]
+ ξ12 (t) , (14.177)

where RP = 2Ω2
P TP is the incoherent pumping rate. The more familiar c-number Bloch

equations describing incoherent pumping are derived in Exercise 14.7 by averaging
these equations with the initial density operator ρ. The correlation functions for the
remaining noise operators can be calculated by means of the Einstein relation discussed
in Section 14.6.2 and Exercise 14.8.

In eqn (14.177) we have explicitly exhibited the dephasing rate (w21 + RP ) /2, in
order to show that the pumping rate, RP , contributes to the dephasing rate in exactly
the same way as the decay rate w21. This suggests that we modify the general definition
(14.162) for Γpq to include the effects of any pumping transitions that may be present.
This is done by replacing the decay rates wqp with wqp + Rqp, where Rqp = Rpq is the
rate for an incoherent pump driving q ↔ p.

14.6 The fluctuation dissipation theorem∗

Now that we have seen several examples of the fluctuation dissipation theorem, it is
time to seek a more general result. In the examples considered above, the OJ s satisfy
commutation relations of the general form

[OJ , OK ] =
∑

I

ΛI
JKOI (14.178)

(e.g. the operators
{
1, a, a†} or

{
Sqp

}
), and in some cases product relations

OJOK =
∑

I

ΦI
JKOI (14.179)

(e.g. the transition operators
{
Sqp

}
), where the ΛI

JKs and ΦI
JKs are c-number coeffi-

cients. The OJ s in the previous examples also satisfy

[OJ , HS0] = �ωJOJ . (14.180)

The last property permits the definition of slowly-varying envelope operators OJ (t)
by

OJ (t) = OJ (t) exp (iωJ t) . (14.181)

In practice these features are quite typical; they are not restricted to the specific
examples in Sections 14.2 and 14.4. For a given sample, it is usually easy to pick out
these operators by inspection.

A potentially significant weakness of the discussions in Sections 14.2 and 14.4 is
their neglect of the effects of internal sample interactions or interactions with external
classical fields. In particular, the proof of the important nonanticipating property in
eqn (14.77) uses the explicit solution (14.65) of the linear Langevin equation (14.61),
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which is only correct for HS1 = 0. This is an example of the following general feature
of the theory of noise and dissipation. If the Heisenberg equations for the sample
operators are linear, then results that are needed for subsequent applications—such
as the nonanticipating property—can be proved by fairly simple arguments. Since the
internal interaction HSS describes coupling between different degrees of freedom of the
sample, it will necessarily produce nonlinear terms in the Heisenberg equations for
the sample operators. In order to avoid these complications as much as possible, we
will make two assumptions. The first is that the internal interactions can be neglected
when considering dissipative effects, i.e. HSS ∼ 0. The second is that any external
interactions produce linear terms in the Heisenberg equation, i.e.

1
i�

[
OJ (t) , VS (t)

]
= i

∑
K

ΩJK (t)OK (t) , (14.182)

where the ΩJK (t)s are c-number functions. The plausibility of these assumptions de-
pends on the following points.
(1) The effect of HSS and VS (t) is to cause additional unitary—and thus non-dissipa-

tive—evolution of the sample.
(2) By convention, HSS is weak compared to HS0.
(3) In typical cases—e.g. atoms interacting with a laser or field modes excited by a

classical current—VS (t) is linear in the sample operators, and they satisfy the
commutation relations (14.178).

With these facts in mind, it is quite plausible that ignoring HSS and imposing eqn
(14.182) on VS (t) will not cause any serious errors in the treatment of dissipation and
noise. A more sophisticated argument that dispenses with these simplifying assump-
tions is briefly sketched in Exercise 14.9.

14.6.1 Generic Langevin equations

The argument just given allows us to replace the general Heisenberg equation (14.39)
for the OJ s by the equation of motion

i�
d

dt
OJ (t) =

[
OJ (t) , HSE (t)

]
+
[
OJ (t) , VS (t)

]
(14.183)

for the slowly-varying envelope operators. We can then substitute the formal solutions
(14.38) for the reservoir operators into this equation, and impose the Markov approx-
imation, i.e. the assumption that the reservoir memory Tmem is much shorter than
any dynamical time scale for the sample. The resulting Langevin equations take the
general form

d

dt
OJ (t) = DJ (t) + ξJ (t) , (14.184)

where
DJ (t) =

∑
K

ZJK (t)OK (t) (14.185)

is the (generalized) drift term, and the noise operators are defined so that
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〈ξJ (t)〉 = 0 . (14.186)

The complex coefficients ZJK (t) are given by

ZJK (t) = −ΓJK + iΩJK (t) , (14.187)

where the real, positive constants ΓJK arise from the elimination of the reservoir
variables—combined with the Markov approximation—and the real functions ΩJK (t)
are defined by eqn (14.182). The decay constants ΓJK can be expressed as functions
of the coupling strengths vJ (Ων), but in practice they are treated as phenomenolog-
ical parameters. The Markov approximation includes the assumption that the noise
operators ξJ (t) are delta correlated,〈

ξJ (t) ξ†K (t′)
〉

= CJKδ (t − t′) . (14.188)

The coefficients CJK define the correlation matrix for the noise operators, and
CJK/2 is also known as the diffusion matrix. The names ‘drift term’ and ‘diffusion
matrix’ arise in connection with the master equation approach, which will be discussed
in Chapter 18.

14.6.2 The Einstein relations

The direct calculation of the correlation matrix CJK is very difficult, except in the case
of additive noise. Fortunately, yet another consequence of the Markov approximation
can be used to express the CJKs in terms of sample correlation functions. We first show
that the sample operators are nonanticipating with respect to the noise operators. For
this purpose we can use eqns (14.184) and (14.188) to find the equations of motion for
the correlation functions

〈
ξ†K (t′) OJ (t)

〉
:

∂

∂t

〈
ξ†K (t′)OJ (t)

〉
=
〈
ξ†K (t′)DJ (t)

〉
+ CKJδ (t − t′) . (14.189)

For t′ > t the delta function term vanishes, and we find a set of linear, homogeneous
differential equations

∂

∂t

〈
ξ†K (t′)OJ (t)

〉
=

∑
I

ZJI

〈
ξ†K (t′)OI (t)

〉
(14.190)

for the set of correlation functions
〈
ξ†K (t′)OJ (t)

〉
. The assumption that the sample

and the reservoirs are uncorrelated at t = t0 ensures that all the correlation functions
vanish at t = t0, 〈

ξ†K (t′)OI (t0)
〉

= 0 ; (14.191)

therefore, we can conclude that〈
ξ†K (t′)OJ (t)

〉
= 0 for t′ > t . (14.192)

Similar arguments show that
〈
OJ (t) ξ†K (t′)

〉
= 0 for t′ > t, etc.
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To use this fact, we start with the identity (Meystre and Sargent, 1990, Sec. 14-4)

OJ (t) = OJ (t − ∆t) +
∫ t

t−∆t

dt′
dOJ (t′)

dt′

= OJ (t − ∆t) +
∫ t

t−∆t

dt′′ {DJ (t′′) + ξJ (t′′)} , (14.193)

which in turn implies〈
OJ (t) ξ†K (t)

〉
=

〈
OJ (t − ∆t) ξ†K (t)

〉
+
∫ t

t−∆t

dt′
〈
DJ (t′) ξ†K (t)

〉
+
∫ t

t−∆t

dt′′
〈
ξJ (t′) ξ†K (t)

〉
. (14.194)

The nonanticipating property guarantees that the first term vanishes and that the
integrand of the second term also vanishes, except possibly at the end point t′ = t. Thus
the integral must vanish unless the correlation function

〈
DJ (t′) ξ†K (t)

〉
is proportional

to δ (t − t′). This cannot be the case, since the drift term is slowly varying compared
to the noise term. Thus only the third term contributes, and〈

OJ (t) ξ†K (t)
〉

=
∫ t

t−∆t

dt′′
〈
ξJ (t′) ξ†K (t)

〉
=

∫ t

t−∆t

dt′′CJKδ (t − t′) =
1
2
CJK . (14.195)

A similar calculation shows that〈
ξJ (t)O

†
K (t)

〉
=

1
2
CJK . (14.196)

We will now use these results to investigate the equation of motion of the equal-
time correlation function

〈
OJ (t)O

†
K (t)

〉
. The Langevin equation (14.184) combines

with eqns (14.195) and (14.196) to yield

d

dt

〈
OJ (t)O

†
K (t)

〉
=

〈
{DJ (t) + ξJ (t)}O

†
K (t)

〉
+
〈
OJ (t)

{
D†

K (t) + ξ†K (t)
}〉

=
〈
DJ (t)O

†
K (t)

〉
+
〈
OJ (t)D†

K (t)
〉

+
〈
OJ (t) ξ†K (t)

〉
+
〈
ξJ (t)O

†
K (t)

〉
=

〈
DJ (t)O

†
K (t)

〉
+
〈
OJ (t)D†

K (t)
〉

+ CJK . (14.197)

We turn this around to obtain the Einstein relation,

CJK =
d

dt

〈
OJ (t)O

†
K (t)

〉
−
〈
DJ (t)O

†
K (t)

〉
−
〈
OJ (t)D†

K (t)
〉

, (14.198)

that expresses the noise correlation matrix in terms of equal-time sample correlation
functions. The sample correlation functions depend on the decay constants, so this is
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the general form of the fluctuation dissipation theorem. The calculation of the noise
correlation matrix is thereby reduced to obtaining the values of the equal-time corre-
lation functions

〈
OI (t) O†

K (t)
〉
. In general the sample correlation functions must be

independently calculated—e.g. by means of the master equation discussed in Chapter
18—but approximate estimates are often sufficient.

For an illustration of the use of eqn (14.198), we turn to the incoherently pumped
three-level atom of Section 14.5. The index J now runs over the nine pairs (q, p), with
q, p = 1, 2, 3. Let us, for example, calculate the correlation coefficient C12,12 appearing
in 〈

ξ12 (t) ξ†12 (t′)
〉

= C12,12δ (t − t′) . (14.199)

For the case of pure pumping, i.e. H ′
S1 = 0, the Langevin equation (14.177) tells us

that the drift term D12 = −Γ12S12. Applying eqn (14.198) yields

C12,12 =
d

dt

〈
S12S

†
12

〉
−
〈
D12S

†
12

〉
−
〈
S12D

†
12

〉
=

d

dt

〈
S11

〉
+ 2Γ12

〈
S12S

†
12

〉
= −RP N1 (t) + w21N2 (t) + (w31 + RP ) N3 (t) + 2Γ12N1 (t) , (14.200)

where Nq (t) =
〈
Sqq (t)

〉
. At long times (i.e. for t0 → −∞) the populations are given

by the steady-state solution of the c-number Bloch equations obtained by averaging
eqns (14.174)–(14.177). One then finds

C12,12 =
2Γ12w21 (RP + w31 + w32)

RP (2w21 + w32) + w21 (w31 + w32)
. (14.201)

Note that C12,12, which represents the strength of the noise operator ξ12, vanishes for
w21 = 0. This justifies the interpretation of ξ12 as the noise due to the spontaneous
emission 2 → 1. A similar calculation yields

C21,21 =
2Γ12RP w32

RP (2w21 + w32) + w21 (w31 + w32)
, (14.202)

which implies〈
ξ†12 (t) ξ12 (t′)

〉
=

〈
ξ21 (t) ξ†21 (t′)

〉
= C21,21δ (t − t′) . (14.203)

14.7 Quantum regression∗

All experimentally relevant numerical information is contained in the expectation val-
ues of functions of the sample operators, so we begin by observing that the expectation
values

〈
OJ (t)

〉
obey the averaged form of the Langevin equations (14.184):

d

dt

〈
OJ (t)

〉
=
∑
K

ZJK (t)
〈
OK (t)

〉
. (14.204)
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A standard method for solving sets of linear first-order equations like (14.204) is to
define a Green function GJK (t, t′) by

d

dt
GJK (t, t′) =

∑
I

ZJI (t)GIK (t, t′) ,

GJK (t′, t′) = δJK ,

(14.205)

which allows the solution of eqn (14.204) to be written as〈
OJ (t)

〉
=

∑
K

GJK (t, t′)
〈
OK (t′)

〉
. (14.206)

In classical statistics, the relation (14.206) between the averages of the stochast-
ically-dependent variables OJ (t) and OK (t′) is called a linear regression. This so-
lution for the time dependence of the averages of the sample operators is moderately
useful, but the correlation functions

〈
OJ (t)OK (t′)

〉
are of much greater interest, since

their Fourier transforms describe the spectral response functions measured in experi-
ments. Using the Langevin equation for OJ (t) to evaluate the time derivative of the
correlation function leads to

d

dt

〈
OJ (t)OK (t′)

〉
= −

∑
I

ZJI (t)
〈
OI (t)OK (t′)

〉
+
〈
ξJ (t)OK (t′)

〉
. (14.207)

For t′ < t the nonanticipating property (14.192) imposes
〈
ξJ (t)OK (t′)

〉
= 0, and the

correlation function satisfies

d

dt

〈
OJ (t)OK (t′)

〉
= −

∑
I

ZJI (t)
〈
OI (t)OK (t′)

〉
. (14.208)

Since this has the same form as eqn (14.204), the solution is obtained by using the
same Green function:〈

OJ (t)OK (t′)
〉

=
∑

I

GJI (t, t′)
〈
OI (t′)OK (t′)

〉
. (14.209)

In other words, the two-time correlation function
〈
OJ (t)OK (t′)

〉
is related to the

equal-time correlation functions
〈
OI (t′)OK (t′)

〉
by the same regression law that re-

lates the single-time averages
〈
OJ (t)

〉
at time t to the averages

〈
OI (t′)

〉
at the earlier

time t′. A little thought shows that a similar derivation gives the more general result〈
X (t′)OJ (t)Y (t′)

〉
=
∑
K

GJK (t, t′)
〈
X (t′)OK (t′)Y (t′)

〉
, (14.210)

where X (t′) and Y (t′) are sample operators that depend on
{
OJ (t′′)

}
for t′′ < t′ <

t. Equations (14.209) and (14.210) are special cases of the quantum regression
theorem first proved by Lax (1963). We will study the general version in Chapter 18.
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14.8 Photon bunching∗

We mentioned in Section 10.1.1 that the Hanbury Brown–Twiss effect can be measured
by coincidence counting. As explained in Section 9.2.4, the coincidence-count rate is
proportional to the second-order correlation function

G(2) (r′, t′, r, t; r′, t′, r, t) =
〈
E(−) (r′, t′)E(−) (r, t)E(+) (r, t) E(+) (r′, t′)

〉
, (14.211)

where r′ and r are the locations of the detectors, t′ = t + τ , and the fields are all
projected on a common polarization vector. By placing suitable filters in front of the
detectors, we can confine our attention to a single mode, so that G(2) is proportional
to the correlation function

C (τ) =
〈
a† (t + τ) a† (t) a (t) a (t + τ)

〉
=
〈
a† (t)N (t + τ) a (t)

〉
, (14.212)

where N (t) = a† (t) a (t) is the mode number operator in the Heisenberg picture.
The quantum regression theorem can be applied to the evaluation of C (τ) by using

the Langevin equation for a (t) to derive the differential equation

d 〈N (t)〉
dt

= −κ 〈N (t)〉 +
〈
ξ† (t) a (t) + a† (t) ξ (t)

〉
(14.213)

for the average photon number. It is shown in Exercise 14.2 that〈
ξ† (t) a (t) + a† (t) ξ (t)

〉
= n0κ , (14.214)

so that the equation for 〈N (t)〉 can be rewritten as

d 〈δN (t)〉
dt

= −κ 〈δN (t)〉 , (14.215)

where δN (t) = N (t) − n0. The solution,

〈δN (t)〉 = e−κ(t−t0) 〈δN (t0)〉 , (14.216)

of this equation is a special case of the linear regression equation (14.206), with the
Green function G (τ) = exp (−κτ). According to the quantum regression theorem
(14.210), the correlation function

〈
a† (t) δN (t + τ) a (t)

〉
obeys the same regression

law, so 〈
a† (t) δN (t + τ) a (t)

〉
= e−κτ

〈
a† (t) δN (t) a (t)

〉
, (14.217)

and
C (τ) = e−κτ

〈
a†2 (t) a2 (t)

〉
+
(
1 − e−κτ

)
n0 〈N (t)〉 . (14.218)

For large times, κ (t − t0) � 1, eqn (14.216) shows that 〈N (t)〉 ≈ n0. The remaining
expectation value

〈
a†2 (t) a2 (t)

〉
can be calculated by using the solution (14.65) for
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a (t). In the same large-time limit, the initial-value term in eqn (14.65) can be dropped
to get the asymptotic result

〈
a†2 (t) a2 (t)

〉
=
∫ t

t0

dt1 · · ·
∫ t

t0

dt4 exp

⎡⎣−κ

2

4∑
j=1

(t − tj)

⎤⎦〈
ξ† (t1) ξ† (t2) ξ (t3) ξ (t4)

〉
.

(14.219)
For a thermal noise distribution,

ρE = exp

[
−β

∑
ν

�ΩνNν

]
, (14.220)

the discussion in Section 14.2.2 shows that〈
ξ† (t1) ξ† (t2) ξ (t3) ξ (t4)

〉
= (n0κ)2 {δ (t1 − t3) δ (t2 − t4) + δ (t1 − t4) δ (t2 − t3)} .

(14.221)
Substituting this result into eqn (14.219) and carrying out the integrals yields〈

a†2 (t) a2 (t)
〉

= 2n2
0 for κ (t − t0) � 1 . (14.222)

The correlation function C (τ) is then given by

C (τ) = n2
0

(
1 + e−κτ

)
, (14.223)

which shows that the coincidence rate is largest at τ = 0. In other words, photon
detections are more likely to occur at small rather than large time separations, as
shown explicitly by eqn (14.223) which yields

C (0) = 2C (∞) . (14.224)

This effect is called photon bunching; it represents the quantum aspect of the Han-
bury Brown–Twiss effect. For a contrasting situation, consider an experiment in which
the thermal light is replaced by light from a laser operated well above threshold. There
are no cavity walls and consequently no external reservoir, so the operator a (t) evolves
freely as a exp (−iω0t). The density operator for the field is a coherent state |α〉 〈α|,
so that

C (τ) =
〈
α
∣∣a†2a2

∣∣α〉 = |α|4 . (14.225)

In this case, the coincidence rate is independent of the delay time τ ; photon bunching
is completely absent.

14.9 Resonance fluorescence∗

When an atom is exposed to a strong, plane-wave field that is nearly resonant with
an atomic transition, some of the incident light will be inelastically scattered into
all directions. This phenomenon, which is called resonance fluorescence, has been
studied experimentally and theoretically for over a century. Early experiments (Wood,
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1904, 1912; Dunoyer, 1912) provided support for Bohr’s model of the atom, and af-
ter the advent of a quantum theory for light the effects were explained theoretically
(Weisskopf, 1931).

In the ideal case of scattering from an isolated atom at rest, the theory predicts
(Mollow, 1969) a three-peaked spectrum (the Mollow triplet) for the scattered radi-
ation. After the invention of the laser and the development of atomic beam techniques,
it became possible to approximate this ideal situation. The first experimental verifica-
tions of the Mollow triplet were obtained by crossing an atomic beam with a laser beam
at right angles, and observing the resulting fluorescent emission (Schuda et al., 1974;
Wu et al., 1975; Hartig et al., 1976). This experimental technique was later refined by
reducing the atomic beam current—so that at most one atom is in the interaction re-
gion at any given time—and by employing counter-propagating laser beams to reduce
the Doppler broadening due to atomic motion transverse to the beam direction. These
improvements cannot, however, eliminate the transit broadening ∆ωtran ∼ 1/Ttran

caused by the finite transit time Ttran for an atom crossing the laser beam. In more
recent experiments (Schubert et al., 1995; Stalgies et al., 1996) the ideal case is al-
most exactly realized by observing resonance fluorescence from a laser-cooled ion in
an electrodynamic trap.

In the interests of simplicity, we will only consider the case of resonance fluorescence
from a two-level atom. The previous discussion of Rabi oscillations, in Section 11.3.2,
neglected spontaneous emission, but a theory of resonance fluorescence must include
both the classical driving field and the quantized radiation field. This can be done by
using the result— obtained in Section 11.3.1—that the effective Hamiltonian is the
sum of the semiclassical Hamiltonian for the atom in the presence of the laser field
and the radiation Hamiltonian describing the interaction with the quantized radiation
field. In the present case, this yields the effective Schrödinger-picture Hamiltonian

HW = HS0 + VS (t) + HE + HSE , (14.226)

where

HS0 =
�ω21

2
σz , (14.227)

VS (t) = �ΩLe−iωLtσ+ + �Ω∗
LeiωLtσ− , (14.228)

HE =
∑
ks

�ωka†
ksaks , (14.229)

and

HSE = i�
∑
ks

vks

(
σ−a†

ks − σ+aks

)
. (14.230)

The explicit time dependence of VS (t) comes from the semiclassical treatment of the
laser field. Since we are dealing with a single atom, the location of the atom can be
chosen as the origin of coordinates.



Resonance fluorescence∗ ���

The quantity to be measured is the counting rate for photons of polarization e at
a detector located at r. According to eqn (9.33),

w(1) (t) = S G(1) (r, t; r, t)

= S Tr
[
ρe∗ ·E(−) (r, t) e ·E(+) (r, t)

]
, (14.231)

where S is the sensitivity factor for the detector, and the Heisenberg-picture density
operator,

ρW = ρatom |α0〉 〈α0| , (14.232)

is the product of the density operator for the coherent state |α0〉 describing the laser
field and the initial density operator ρatom for the atom. Our first objective is to show
that the counting rate can be expressed in terms of atomic correlation functions.

14.9.1 The counting rate

The discussion in Section 11.3, in particular eqn (11.149), shows that the density oper-
ator ρ in eqn (14.232) is the vacuum state for the fluorescent modes; consequently, the
only difference between the problem at hand and the spontaneous emission calculation
in Section 11.2.1 is the effect of the laser field on the atom. Furthermore, the operator
aks (t) commutes with Hsc (t), so the atom–laser coupling does not change the form of
the Heisenberg equation for aks (t). Consequently, we can still use the formal solution
(11.51) and the argument contained in eqns (11.52)–(11.66). The new feature is that
the definition (11.63) of the slowly-varying envelope operators for the atom must be
replaced by

σ− (t) = eiωLtσ− (t) , (14.233)

in order to eliminate the explicit time dependence in VS (t). This is permissible, because
of the near-resonance assumption |δ| � ω21, where δ = ω21 − ωL is the detuning. For
a detector in the radiation zone, the counting rate is therefore given by

w(1) (t) = S TrW

[
ρWe · E(−)

rad (r, t) e∗ · E(+)
rad (r, t)

]
, (14.234)

where

E(+)
rad (r, t) =

k2
L [(d∗ × r̃) × r̃]

4πε0

eikLr

r
e−iωLtσ− (t − r/c) , (14.235)

and kL = ωL/c. Combining the last two equations gives us the desired result

w(1) (t) = R 〈σ+ (t − r/c)σ− (t − r/c)〉S , (14.236)

where 〈X〉S = TrS (ρatomX), and the rate

R =
S

r2

(
k2

L

4πε0

)2

|(d∗ × r̃) × r̃|2 (14.237)

carries all the information on the angular distribution of the radiation.
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14.9.2 Langevin equations for the atom

The result (14.236) has eliminated any direct reference to the radiation field; therefore,
we are free to treat the fluorescent field modes as a reservoir and the atom—under the
influence of the laser field—as the sample. Elimination of the field operators by means
of the formal solution (11.51) and the Markov approximation yields the Langevin
equations

dσ+ (t)
dt

= − (Γ − iδ)σ+ (t) − iΩ∗
Lσz (t) + ξ+ , (14.238)

dσz (t)
dt

= −w [1 + σz (t)] + 2iΩ∗
Lσ− (t) − 2iΩLσ+ (t) + ξz , (14.239)

where Γ = Γ12 is the dipole dephasing rate, w = w21 is the spontaneous decay rate,
and the noise operators are defined in Section 14.4.

We begin with the averaged Langevin equations,

d 〈σ+ (t)〉
dt

= − (Γ − iδ) 〈σ+ (t)〉 − iΩ∗
L 〈σz (t)〉 , (14.240)

d 〈σz (t)〉
dt

= −w [1 + 〈σz (t)〉] + 2iΩ∗
L 〈σ− (t)〉 − 2iΩL 〈σ+ (t)〉 , (14.241)

and note that the averaged atomic operators approach steady-state values, 〈σ+〉ss and
〈σz〉ss, for times t � max (1/Γ, 1/w). These values are determined by setting the time
derivatives to zero and solving the resulting algebraic equations, to get

〈σz〉ss = − 1

1 + |ΩL|2 /Ω2
sat

, (14.242)

〈σ+〉ss = −i
Ω∗

L

Γ − iδ
〈σz〉ss , (14.243)

where

Ωsat =

√
w (Γ2 + δ2)

4Γ
(14.244)

is the saturation value for the Rabi frequency. For |ΩL| � Ωsat, 〈σz〉ss ≈ 0, which
means that the two levels are equally populated. In the same limit, one finds

〈σ+〉ss → 0 , (14.245)

i.e. the average dipole moment goes to zero for large laser intensities. This effect is
called bleaching. The ratio |ΩL|2 /Ω2

sat is often expressed as

|ΩL|2
Ω2

sat

=
IL

Isat
, (14.246)

where IL is the laser intensity and

Isat =
3�2ε0cw

(
δ2 + Γ2

)
8Γ |d|2 (14.247)

is the saturation intensity.



Resonance fluorescence∗ ���

The fact that the population difference 〈σz〉ss and the dipole moment 〈σ+〉ss are
independent of time raises a question: What happened to the Rabi oscillations of the
atom? The answer is that they are still present, but concealed by the ensemble average
defined by the initial density operator. This can be seen more explicitly by applying
the long-time averaging procedure

〈σλ〉∞ = lim
T→∞

1
T

∫ T

0

dt 〈σλ (t)〉 (λ = +, z,−) (14.248)

to eqns (14.240) and (14.241). It is easy to show that the average of the left side
vanishes in both equations, so that the time averages 〈σλ〉∞ satisfy the same equations
as the steady-state solutions 〈σλ〉ss. Thus the steady-state solutions are equivalent to
a long-time average over the Rabi oscillations. This result is conceptually similar to
the famous ergodic theorem in statistical mechanics (Chandler, 1987, Chap. 3).

Since the distance r to the detector is fixed, we can use the retarded time tr = t−r/c
instead of t. With this understanding, the total number of counts in the interval
(tr0, tr0 + T ) is

N (T ) = R

∫ tr0+T

tr0

dtr 〈σ+ (tr)σ− (tr)〉 , (14.249)

and the Pauli-matrix identity,

σ+ (tr)σ− (tr) =
1
2

[1 + σz (tr)] = S22 (tr) , (14.250)

allows this to be written in the equivalent form

N (T ) = R

∫ tr0+T

tr0

dtr 〈S22 (tr)〉 . (14.251)

For sufficiently large tr0 the average in eqn (14.251) can be replaced by the stationary
value, so that

N (T ) = RT 〈S22〉ss =
RT

2
|ΩL|2 /Ω2

sat

1 + |ΩL|2 /Ω2
sat

. (14.252)

This result tells us the total number of counts, but it does not distinguish between
the coherent contribution due to Rabi oscillations of the atomic dipole and the inco-
herent contribution arising from quantum noise, i.e. spontaneous emission. In order to
bring out this feature, we introduce the fluctuation operators

δσz (tr) = σz (tr) − 〈σz (tr)〉 , δσ± (tr) = σ± (tr) − 〈σ± (tr)〉 , (14.253)

and rewrite eqn (14.249) as

N (T ) = Ncoh (T ) + Ninc (T ) , (14.254)

with

Ncoh (T ) = R

∫ tr0+T

tr0

dtr 〈σ+ (tr)〉 〈σ− (tr)〉 (14.255)
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and

Ninc (T ) = R

∫ tr0+T

tr0

dtr 〈δσ+ (tr) δσ− (tr)〉 . (14.256)

The coherent contribution is what one would predict from forced oscillations of a
classical dipole with magnitude |〈σ− (tr)〉|, and the incoherent contribution depends
on the strength of the quantum fluctuation operators δσ+ (tr) and δσ− (tr). In the
limit of large tr0 the coherent contribution is obtained by substituting the asymptotic
result (14.243) into eqn (14.256), with the result

Ncoh (T ) = RT
w

4Γ
|ΩL|2 /Ω2

sat(
1 + |ΩL|2 /Ω2

sat

)2 . (14.257)

The incoherent contribution can be evaluated directly from eqn (14.256), but it is
easier to use eqns (14.252) and (14.254) to get

Ninc (T ) =
RT

2
IL

Isat

1 − (w/2Γ) +
(
|ΩL|2 /Ω2

sat

)
(
1 + |ΩL|2 /Ω2

sat

)2 . (14.258)

In the high intensity limit, the laser field should become more classical, and one might
expect that the coherent contribution would dominate the counting rate. Examination
of the results shows exactly the opposite; Ncoh (T ) → 0 and Ninc (T ) → RT/2. This
apparent paradox is resolved by the bleaching of the average dipole moment—shown in
eqn (14.245)—and the fact that half the atoms are in the excited state and consequently
available for spontaneous emission.

14.9.3 The fluorescence spectrum

Spectral data for fluorescent emission are acquired by using one of the narrowband
counting techniques discussed in Section 9.1.2-C. It is safe to assume that the field
correlation functions approximately satisfy time-translation invariance for times tr
much larger than the decay times for the sample; therefore, we can immediately use
the result (9.45) for the spectral density to get

S (ω, tr) = SG(1) (r, ω) = S

∫
dτe−iωτG(1) (r, τ + tr; r, tr) . (14.259)

Substituting the solution (14.235) for the radiation field into this expression yields

S (ω, tr) = R

∫
dτei(ωL−ω)τ 〈σ+ (τ + tr)σ− (tr)〉 . (14.260)

Once again, we can use the fluctuation operators defined by eqn (14.253) to split the
spectral density into a coherent contribution, due to oscillations driven by the external
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laser field, and an incoherent contribution, due to quantum noise. Thus S (ω, tr) =
Scoh (ω, tr) + Sinc (ω, tr), where

Scoh (ω, tr) = R

∫
dτei(ωL−ω)τ 〈σ+ (τ + tr)〉 〈σ− (tr)〉 (14.261)

and
Sinc (ω, tr) = R

∫
dτei(ωL−ω)τ 〈δσ+ (τ + tr) δσ− (tr)〉 . (14.262)

The assumption that tr is much larger than the atomic decay times means that
〈σ+ (τ + tr)〉 and 〈σ− (tr)〉 are respectively given by the asymptotic steady-state values
〈σ+〉ss and 〈σ+〉∗ss from eqn (14.243); consequently, the coherent contribution is

Scoh (ω, tr) = R |〈σ+〉ss|2
∫

dτei(ωL−ω)τ = 2πR |〈σ+〉ss|2 δ (ω − ωL) . (14.263)

The first step in the calculation of the incoherent contribution is to write eqn
(14.262) as

Sinc (ω, tr) = R

∫ ∞

0

dτei∆τ 〈δσ+ (τ + tr) δσ− (tr)〉

+ R

∫ 0

−∞
dτei∆τ 〈δσ+ (τ + tr) δσ− (tr)〉 , (14.264)

where ∆ = ωL − ω. In the second integral, one can change τ → −τ and use time-
translation invariance to get

〈δσ+ (−τ + tr) δσ− (tr)〉 = 〈δσ+ (tr) δσ− (τ + tr)〉
= 〈δσ+ (τ + tr) δσ− (tr)〉∗ , (14.265)

so that

Sinc (ω, tr) = 2R Re
∫ ∞

0

dτei∆τ 〈δσ+ (τ + tr) δσ− (tr)〉 . (14.266)

The correlation function in the integrand is one component of the matrix

Fλµ (τ, tr) = 〈δσλ (τ + tr) δσµ (tr)〉 (λ, µ = +, z,−) , (14.267)

so

Sinc (ω, tr) = 2R Re
∫ ∞

0

dτei∆τF+− (τ, tr)

= 2R lim
ε→0+

Re
∫ ∞

0

dτe−(ε−i∆)τF+− (τ, tr)

= 2R lim
ε→0+

F̃+− (ε − i∆, tr) , (14.268)

where F̃+− (ζ, tr) is the Laplace transform of F̃+− (τ, tr) with respect to τ .
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The evaluation of the Laplace transform is accomplished with the techniques used
to prove the quantum regression theorem. We begin by subtracting eqns (14.240)
and (14.241) from eqns (14.238) and (14.239), to get the equations of motion for the
fluctuation operators. By including the equation for δσ− (t)—the conjugate of eqn
(14.238)—the equations can be written in matrix form as

d

dt
δσλ (t) =

∑
µ

Vλµδσµ (t) + ξλ (t) , (14.269)

where

V =

⎡⎣− (Γ − iδ) −iΩ∗
L 0

−2iΩL −w 2iΩ∗
L

0 iΩL − (Γ + iδ)

⎤⎦ . (14.270)

After differentiating eqn (14.269) with respect to τ , with tr fixed, and using eqn
(14.269) one finds

∂

∂τ
Fλµ (τ, tr) =

∑
ν

VλνFνµ (τ, tr) , (14.271)

where we have used the nonanticipating property 〈ξλ (τ + tr) δσµ (tr)〉 = 0 for τ > 0.
The Laplace transform technique for initial value problems—explained in Appendix
A.5—turns these differential equations into the algebraic equations

ζF̃λµ (ζ, tr) −
∑

ν

Vλν F̃νµ (ζ, tr) = Fλµ (0, tr) , (14.272)

which determine the matrix F̃λµ (ζ, tr). Since tr is large, the initial values Fλµ (0, tr)
defined by eqn (14.267) are given by the steady-state average

Fλµ (0, tr) = 〈δσλδσµ〉ss
= 〈σλσµ〉ss − 〈σλ〉ss 〈σµ〉ss . (14.273)

The product of two Pauli matrices can always be reduced to an expression linear in
the Pauli matrices, so the initial values are determined by eqns (14.242) and (14.243).

The evaluation of the incoherent part of the spectral density by eqn (14.268) only
requires F̃+− (−i∆, tr), which is readily obtained by applying Cramers rule to eqn
(14.272) to find

F̃+− (−i∆, tr) =
N+− (∆)
D (∆)

≡ � (∆) . (14.274)

The numerator is a linear function of the initial values:

N+− (∆) = −2iΩ∗2
L F−− (0, tr) + iΩ∗

L (∆ + iΓ)Fz− (0, tr)

+ i
[
∆2 − 2 |ΩL|2 − Γw + i (Γ + w) ∆

]
F+− (0, tr) , (14.275)

and the denominator is the product of three factors: D (∆) = D0 (∆)D+ (∆)D− (∆),
where D0 (∆) = ∆ + iΓ,
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D± (∆) = ∆ ± 2Ω′
L + i

(
Γ + w

2

)
, (14.276)

and

Ω′
L =

√
|ΩL|2 −

(
Γ − w

4

)2

. (14.277)

The factorization of the denominator suggests using the method of partial fractions to
express � (∆) as

� (∆) =
C (∆)
D0 (∆)

+
C (∆)

D+ (∆)
+

C (∆)
D− (∆)

, (14.278)

with

C (∆) =
N+− (∆)

D0 (∆) [D+ (∆) + D− (∆)] + D+ (∆) D− (∆)
. (14.279)

The functions D0 (∆) and D± (∆) have zeroes at ∆0 = −iΓ and ∆± = ∓ 2Ω′
L −

i (Γ + w) /2 respectively, so � (∆) has three poles in the lower-half ∆-plane. If the
laser field is weak, in the sense that

|ΩL|2 <

(
Γ − w

4

)2

, (14.280)

then eqn (14.277) shows that Ω′
L is pure imaginary. All three poles are then located

on the negative imaginary axis, so that Re � (∆) will have a single peak at ∆ = 0,
on the real ∆-axis. For a strong laser, Ω′

L is real, and the poles at ∆± are displaced
away from the imaginary axis. In this case, Re � (∆) will exhibit three peaks on the
real ∆-axis, at ∆+ = −2Ω′

L, ∆0 = 0, and ∆− = 2Ω′
L.

An explicit evaluation of eqn (14.278) can be carried out in the general case, but the
resulting expressions are too cumbersome to be of much use. One then has the choice
of studying the behavior of the spectral density numerically, or making simplifications
to produce a manageable analytic result. We will leave the numerical study to the
exercises and impose three simplifying assumptions. The first is that the laser is exactly
on resonance with the atomic transition (δ = 0), and the second is that the laser field
is strong (|ΩL| � Γ, w). The third simplification is to evaluate the numerator C (∆) at
the location of the pole in each of the three terms. This procedure will give an accurate
picture of the behavior of the function Sinc (ω, tr) in the vicinity of the peaks, but will
be slightly in error in the regions between them. With these assumptions in place, one
finds

Sinc (ω, tr) = S(+)
inc (ω, tr) + S(0)

inc (ω, tr) + S(−)
inc (ω, tr) , (14.281)

S(0)
inc (ω, tr) =

R

2
Γ

(ω − ωL)2 + Γ2
, (14.282)

S(±)
inc (ω, tr) =

R

8
Γ + w

(ω − ωL ∓ 2 |ΩL|)2 + (Γ + w)2 /4
. (14.283)

This clearly displays the three peaks of the Mollow triplet. The presence of the side
peaks is evidence of persistent Rabi oscillations that modulate the primary resonance
at ω = ωL. The heights and widths of the peaks are related by
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central peak height
side peak height

= 1 +
w

Γ
(= 3 for the pure radiative case) , (14.284)

side peak width
central peak width

=
1
2

(
1 +

w

Γ

)(
=

3
2

for the pure radiative case
)

, (14.285)

where the pure radiative case occurs when spontaneous emission is the only decay
mechanism. In this situation eqn (14.151) yields w = 2Γ. These features have been
experimentally demonstrated.

14.10 Exercises

14.1 Sample–environment coupling

Consider a single reservoir, so that the index J in eqn (14.14) can be suppressed. The
general ansatz for an interaction, HSE, that is linear in both reservoir and sample
operators is

HSE = i�
∑

ν

(
v (Ων)O†bν − v∗ (Ων) b†νO

)
,

where v (Ων) is a complex coupling constant. Show that there is a simple unitary
transformation, bν → b′ν , that allows the complex v (Ων) to be replaced by |v (Ων)|.
14.2 Multiplicative noise for the radiation field∗

(1) Derive the evolution equation

dN (t)
dt

= −κN (t) + χ (t)

for the number operator, where χ (t) = ξ† (t) a (t) + a† (t) ξ (t) is a multiplicative
noise operator.

(2) Combine the nonanticipating property (14.77), the delta correlation property
(14.74), and the end-point rule (A.98) for delta functions to find 〈χ (t)〉 = n0κ.
Is this result consistent with interpreting the evolution equation as a Langevin
equation?

(3) Rewrite the equation for N (t) in terms of the new noise operator ξN (t) = χ (t)−
〈χ (t)〉, and then derive the result

〈N (t)〉 = 〈N (t0)〉 e−κ(t−t0) + n0

[
1 − e−κ(t−t0)

]
describing the relaxation of the average photon number to the equilibrium value
n0.

(4) Use the explicit solution (14.65) for a (t) to show that

〈ξN (t) ξN (t′)〉 = CNN (t) δ (t − t′) ,

where CNN (t) approaches a constant value for κt � 1.
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14.3 Approach to thermal equilibrium

The constant κ in eqn (14.61) represents the rate at which field energy is lost to the
walls, so it should be possible to recover the blackbody distribution for radiation in a
cavity with walls at temperature T . For this purpose, enlarge the sample to include
all the modes (ks) of the radiation field; but keep things simple by assuming that all
modes are coupled to a single reservoir with the same value of κ.
(1) Generalize the single-mode treatment by writing down the Langevin equation for

aks. Give the expression for the noise operator, ξk (t), and show that〈
ξ†k (t) ξk (t′)

〉
= κn (ωk) δ (t − t′) ,

where n (ωk) is the average number of reservoir excitations at the mode frequency
ωk.

(2) Apply the result in part (3) of Exercise 14.2 to find limt→∞ 〈Nks (t)〉 = n (ωk).
What is the physical meaning of the limit t → ∞?

(3) Finally, use the general result (2.177) to argue that the photon distribution in the
cavity asymptotically relaxes to a blackbody distribution.

14.4 Noise operators for the two-level atom

By following the derivation of the Langevin equations (14.148)–(14.150) show that the
noise operators are

ξ22 (t) = −√
w21

[
b†in (t)S12 (t) + HC

]
= −ξ11 (t) ,

ξ12 (t) =
{
S22 (t) − S11 (t)

}√
w21bin (t) +

{√
w22c

†
2,in (t) −√

w11c
†
1,in (t)

}
S12 (t)

− S12 (t) {√w22c2,in (t) −√
w11c1,in (t)} .

14.5 Inverted-oscillator reservoir∗

A gain medium enclosed in a resonant cavity has been modeled (Gardiner, 1991, Sec.
7.2.1) by the interaction of the cavity mode a (t) of Section 14.3 with an inverted-
oscillator reservoir described by the Hamiltonian

HIO = −
∫ ∞

0

dΩ
2π

�Ωc†ΩcΩ ,

where
[
cΩ, c†Ω′

]
= 2πδ (Ω − Ω′).

(1) Express the energy-raising and energy-lowering operators for the reservoir in terms
of cΩ and c†Ω.

(2) In addition to the two terms in eqn (14.88), the interaction Hamiltonian HSE now
has a third term, HS,IO describing the interaction with the inverted oscillators. In
the resonant wave approximation, show that HS,IO must have the form

HS,IO = i�

∫ ∞

0

dΩ
2π

χ (Ω)
(
cΩa − a†c†Ω

)
.
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(3) Using the discussion in Section 14.3 as a guide, derive the Langevin equation

d

dt
a (t) =

1
2

(g − κC) a (t) + ξ (t) ,

and give expressions for the gain g and the noise operator ξ (t).

14.6 Langevin equations for incoherent pumping

Use the (N = 3)-case of eqns (14.159) and (14.160), without the phase-changing terms,
to derive the full set of Langevin equations for the three-level atom of Fig. 14.2.

14.7 Bloch equations for incoherent pumping

Consider the case of pure pumping, i.e. H ′
S1 = 0.

(1) Derive the c-number Bloch equations by averaging eqns (14.174)–(14.177).
(2) Find the steady-state solutions for the populations.

14.8 Noise correlation coefficients

Consider the reduced Langevin equations (14.174)–(14.177), with H ′
S1 = 0.

(1) How many independent coefficients Cqp,lk (q, p, k, l = 1, 2, 3) are there?
(2) Use the Einstein relation and the steady-state populations to calculate the inde-

pendent coefficients in the limit w32 → ∞.

14.9 Generalized transition operators∗

The two important simplifying assumptions HSS ∼ 0 and eqn (14.182) were made
for the sole purpose of ensuring the linearity of the Heisenberg equations of motion,
which is essential for the relatively simple arguments establishing the nonanticipating
property (14.192) and the quantum regression theorem (14.209). Both of these as-
sumptions can be eliminated by a special choice of the sample operators. To this end,
define the stationary states, |ΦA〉, of the full sample Hamiltonian HS = HS0 +HSS by
HS |ΦA〉 = εA |ΦA〉, and for simplicity’s sake assume that A is a discrete label.
(1) Explain why the use of the |ΦA〉s renders the assumption HSS ∼ 0 unnecessary.
(2) Show that the generalized transition operators SAB = |ΦA〉 〈ΦB| satisfy the

following:
(a) [SAB, HS ] = −�ωABSAB, with ωAB = (εA − εB) /�;
(b) SABSCD = δBCSAD;
(c) [SAB, SCD] = δBCSAD − δADSCB;
(d) X =

∑
A

∑
B 〈ΦA |X |ΦB〉SAB, for any sample operator X .

(3) For an external field acting on the sample through VS (t), derive eqn (14.182) by
showing that

1
i�

[
SAB (t) , VS (t)

]
= i

∑
CD

ΩAB,CD (t)SCD (t) .

Give the explicit expression for ΩAB,CD (t) in terms of the matrix elements of
VS (t).
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14.10 Mollow triplet∗

Use eqn (14.268) for a numerical evaluation of Sinc/R as a function of ∆/Γ. Assume
resonance (δ = 0) and pure radiative decay (w = 2Γ), and consider two cases: |ΩL| =
5Γ and |ΩL| = Γ/

√
2. In each case, plot the numerical evaluation of eqn (14.278) and

the numerical evaluation of eqn (14.281) against ∆/Γ.
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Nonclassical states of light

In Section 5.6.3 we defined a classical state for a single mode of the electromagnetic
field by the requirement that the Glauber–Sudarshan P (α)-function is everywhere
non-negative. When this condition is satisfied P (α) may be regarded as a probability
distribution for the classical field amplitude α. Advances in experimental techniques
have resulted in the controlled generation of nonclassical states of the field, for which
P (α) is not a true probability density. In this chapter, we study the nonclassical states
that have received the most attention: squeezed states and number states.

15.1 Squeezed states

In the correspondence-principle limit, a coherent state of light approaches a noiseless
classical electromagnetic field as closely as allowed by the uncertainty principle for the
radiation oscillators. This might lead one to expect that a coherent state would describe
a light beam with the minimum possible quantum noise. On theoretical grounds, it
has long been known that this is not the case, and in recent years states with noise
levels below the standard quantum limit—known as squeezed states—have been
demonstrated experimentally.

15.1.1 Squeezed states for a radiation oscillator

As an introduction to the ideas involved, let us begin by considering a single field mode
which is described by the operators q and p for the corresponding radiation oscillator.
In Section 5.1 we saw that the coherent states are minimum-uncertainty states, with

∆q0 =
√

�/2ω , ∆p0 =
√

�ω/2 , ∆q0∆p0 = �/2 . (15.1)

The simplest example is the vacuum state, which is described, in the momentum
representation, by

Φ0 (P ) =
(
2π∆p2

0

)−1/4
exp

(
P 2

4∆p2
0

)
. (15.2)

Suppose that the radiation oscillator is prepared in the initial state,

ψ (P, 0) =
(
2π∆p2

)−1/4
exp

(
− P 2

4∆p2

)
, (15.3)

which is called a squeezed vacuum state if ∆p < ∆p0. This wave function cannot
be a stationary state of the oscillator; instead, it is a superposition over the whole
family of energy eigenstates:
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ψ (P, 0) =
∞∑

n=0

CnΦn (P ) , (15.4)

where Φn is the nth excited state (HΦn = n�ωΦn), and we have, as usual, subtracted
the zero-point energy. The excited state Φn (P ) is an n-photon state, so we have
reached the paradoxical sounding conclusion that the squeezed vacuum contains many
photons.

The energy eigenvalues are n�ω, so the initial state ψ (P, 0) evolves into

ψ (P, t) =
∞∑

n=0

CnΦn (P ) e−inωt . (15.5)

By virtue of the equal spacing of the energy levels—a unique property of the harmonic
oscillator—the wave function is periodic, with period T = 2π/ω. This in turn implies
that the time-dependent width,

∆p (t) =
√
〈ψ (t) |P 2|ψ (t)〉 − 〈ψ (t) |P |ψ (t)〉2 , (15.6)

will exhibit the same periodicity. In other words, ψ (P, t) is a breathing Gaussian wave
packet which expands in size—as measured by ∆p (t)—from its minimum initial value
to a maximum size half a period later, and then contracts back to its initial size. This
periodic cycling from minimum to maximum spread repeats indefinitely. We recall
from eqns (2.99) and (2.100) that the operators p and q respectively correspond to
the electric and magnetic fields. According to Section 2.5 this means that the variance
in the electric field for the squeezed vacuum state (15.3) is smaller than the vacuum-
fluctuation variance.

The Hamiltonian for a radiation oscillator is unchanged by the (unitary) parity
transformation p → −p, q → −q on the operators p and q; therefore the energy
eigenstates, e.g. the momentum-space eigenfunctions Φn (P ), are also eigenstates of
parity:

Φn (P ) → (−1)n Φn (P ) for P → −P .

An immediate consequence of this fact is that an initial state having definite parity,
i.e. a superposition of eigenstates which all have the same parity, will evolve into
a state with the same parity at all times. Inspection of eqn (15.3) shows that this
initial Gaussian state is an even function of P ; consequently, the coefficients Cn in the
expansion (15.5) must vanish for all odd integers n. In other words, the evolution of the
squeezed vacuum state can only involve even-parity eigenfunctions for the radiation
oscillators. Since these eigenfunctions represent number states, an equivalent statement
is that only even integer number states can be involved in the production and the time
evolution of a squeezed vacuum state. Thus we arrive at the important conclusion that
the simplest elementary process leading to such a state is photon pair production.

For production of photons in pairs one needs to look to nonlinear optical inter-
actions, such as those provided by χ(2) and χ(3) media. The first experiment demon-
strating a squeezed state of light was performed by Slusher et al. (1985), who used
four-wave mixing in an atomic-vapor medium with a χ(3) nonlinearity. More strongly
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squeezed states of light were subsequently generated in χ(2) crystals by Kimble and co-
workers (Wu et al., 1986). In both cases the internal interaction in the sample induced
by the external classical field has the form

HSS = iΩP

(
a†2 − HC

)
, (15.7)

for some c-number, phenomenological coupling constant ΩP . Long before these exper-
iments were performed, squeezed states were discovered theoretically by Stoler (1970),
in a study of minimum-uncertainty wave packets that are unitarily equivalent to co-
herent states. Yuen (1976) introduced squeezed states into quantum optics through
the notion of two-photon coherent states. He also made the important observation
that squeezed states would lead to the possibility of quantum noise reduction. Caves
(1981) studied squeezed states in the context of possible improvements in the fun-
damental sensitivity of gravitational-wave detectors based on optical interferometers
that use squeezed light.

But how are squeezed states of light to be detected? If there is a synchronous
experimental method to measure p (t), i.e. the electric field, just at the integer multiples
of the period—when the p-noise, ∆p (t), is at a minimum—it is plausible that one can
observe p-noise that is less than the standard quantum limit. The price we pay for
reduced p-noise at integer multiples of the period (t = 0, T, 2T, . . .) is an increased
p-noise at odd multiples of a half-period (t = T/2, 3T/2, 5T/2, . . .). This increase must
be such that the product of the alternating deviations, e.g. ∆p (T )∆p (3T/2), remains
larger than �/2. An equivalent argument is based on the fact that q̇ = p, so that
the deviation in displacement, ∆q (t), is 90◦ out of phase (in quadrature) with ∆p (t).
Consequently ∆q (t) is a maximum when ∆p (t) is a minimum, and the uncertainty
relation is maintained at all times. A synchronous measurement method is provided
by balanced homodyne detection, as discussed in Section 9.3.3. This kind of detection
scheme has blind spots precisely at those times when the p-noise is at a maximum, and
sensitive spots at the intermediate times when the p-noise is at a minimum. In this
way, the signal-to-noise ratio of a synchronous measurement scheme for the electric
field can, in principle, be increased over the prediction of the standard quantum limit
associated with a coherent state.

The theory required to describe the generation of squeezed states is significantly
more complex than the discussion showing that coherent states are generated by clas-
sical currents. For this reason, we will follow the historical sequence outlined above,
by first studying the formal properties of squeezed states. This background is quite
useful for the analysis of experiments, even in the absence of a detailed model of the
source. In subsequent sections we will present the theory of squeezed-light generation,
and finally describe an actual experiment.

15.1.2 General properties of squeezed states

A Quadrature operators

In place of eqn (15.3) we could equally well consider a squeezed vacuum for which
the deviation in the magnetic field (i.e. ∆q (t)) periodically achieves minimum values
less than the vacuum fluctuation value B0. This can be done by using the coordinate
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representation, and replacing P by Q everywhere in the discussion. More generally,
there is no reason to restrict attention to purely electric or purely magnetic fluctua-
tions; we could, instead, decide to measure any linear combination of the two. For this
discussion, let us first introduce the dimensionless canonical operators

X0 ≡ 1
2
(
a† + a

)
=

q

2∆q0
=
√

ω

2�
q ,

Y0 ≡ i

2
(
a† − a

)
=

p

2∆p0
=

√
1

2�ω
p ,

(15.8)

which satisfy the commutation relation

[X0, Y0] =
i

2
. (15.9)

Comparing this to the canonical relations [q, p] = i� and ∆q∆p � �/2 shows that the
corresponding uncertainty product is

∆X0∆Y0 � 1
4

. (15.10)

The solution a (t) = a exp (−iωt) of the free-field Heisenberg equations yields the
time evolution of X0 and Y0:

X0 (t) = X0 cos (ωt) + Y0 sin (ωt) ,

Y0 (t) = −X0 sin (ωt) + Y0 cos (ωt) ,
(15.11)

which describes a rotation in the phase plane. It is often useful to generalize the
conventional choice, t = 0, of the reference time to t = t0, so that the annihilation
operator is given by

a (t) = ae−iω(t−t0) = ae−iβe−iωt , (15.12)

where β = −ωt0. In a mechanical context, choosing t0 amounts to setting a clock; but
in the optical context, the preceding equation shows that choosing the reference time t0
is equivalent to choosing the reference phase β. In the homodyne detection experiments
to be described later on, the phase β can be controlled by means of changes in the
relative phase between a local oscillator beam and the squeezed light which is being
measured. With this choice of reference phase, the time evolution of the magnetic and
electric fields is given by

X0 (t) = X cos (ωt) + Y sin (ωt) ,

Y0 (t) = −X sin (ωt) + Y cos (ωt) ,
(15.13)

where
X =

1
2
(
ae−iβ + a†eiβ

)
= X0 cos (β) + Y0 sin (β) ,

Y =
1
2i

(
ae−iβ − a†eiβ

)
= −X0 sin (β) + Y0 cos (β) .

(15.14)

These are the same quadrature operators introduced in the analysis of heterodyne
and homodyne detection in Section 9.3; they are related to the canonical operators
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by a rotation through the angle β in the phase plane. The cases considered previously
correspond to β = −π/2 and β = 0 for the electric and magnetic fields respectively.

For any value of β, the quadrature operators satisfy eqns (15.9) and (15.10). Conse-
quently, for any coherent state |α〉—in particular for the vacuum state—the variances
of the quadrature operators are

V (X) = V (Y ) =
1
4

, (15.15)

and the uncertainty product ∆X∆Y = 1/4 has the minimum possible value at all
times. Fig. 5.1 shows that the phase space portrait of the coherent state in the dimen-
sionless variables (X0, Y0) consists of a circular quantum fuzzball, which surrounds
the tip of the coherent-state phasor α. The rotation to X and Y amounts to choos-
ing the X-axis along the phasor. The isotropic quantum fuzzball corresponds to a
quasi-probability distribution which has the form of an isotropic Gaussian in phase
space.

A state ρ is said to be squeezed along the quadrature X , if the variance
V (X) =

〈
X2

〉−〈X〉2 satisfies V (X) < 1/4, where 〈Z〉 = Tr (ρZ), for any operator Z.
This condition can be expressed more conveniently in terms of the normal-ordered
variance VN (X) ≡ 〈

: X2 :
〉−〈 : X : 〉2, where : Z : is the normal-ordering operation

defined by eqn (2.107). Since X is a linear function of the creation and annihilation
operators, : X : = X , but : X2 : �= X2. An explicit calculation leads to the relation

VN (X) = V (X) − 1
4

. (15.16)

With this notation, the squeezing condition becomes VN (X) < 0 and perfect squeez-
ing, i.e. V (X) = 0, corresponds to VN (X) = −1/4.

The straightforward calculation suggested in Exercise 15.1 establishes the relations

VN (X) =
1
2

Re
[
e−2iβV (a)

]
+

1
2
V
(
a†, a

)
, (15.17)

VN (Y ) = −1
2

Re
[
e−2iβV (a)

]
+

1
2
V
(
a†, a

)
, (15.18)

between the normal quadrature variances and variances of the annihilation opera-
tors. The quantity V

(
a†, a

)
=

〈
a†a

〉 − 〈
a†〉 〈a〉 is an example of the joint vari-

ance, V (F, G) = 〈FG〉 − 〈F 〉 〈G〉, introduced in Section 5.1.1. It is easy to see that
V
(
a†, a

)
� 0; therefore, necessary conditions for squeezing along X or Y are

Re
[
e−2iβV (a)

]
< 0 (15.19)

and
Re

[
e−2iβV (a)

]
> 0 (15.20)

respectively. Thus a state for which V (a) = 0 is not squeezed along any quadra-
ture. This fact excludes both number states and coherent states from the category of
squeezed states.
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B The squeezing operator

As an aid to understanding how single-mode squeezing is generated by the interaction
Hamiltonian (15.7), let us recall the argument used in Section 5.4.1 to guess the form
of the displacement operator that generates coherent states from the vacuum. The
Hamiltonian Hint describing the interaction of a classical current with a single mode
of the radiation field is linear in the creation and annihilation operators. For the mode
exactly in resonance with a purely sinusoidal current, the time evolution of the state
vector in the interaction picture is represented by the unitary operator exp (−itHint/�),
which leads to the form D (α) = exp

(
αa† − α∗a

)
for the displacement operator.

By analogy with this argument, the quadratic interaction Hamiltonian (15.7) sug-
gests that the squeezing operator should be defined by

S (ζ) = e
1
2 (ζ∗a2−ζa†2) , (15.21)

where the c-number ζ = r exp (2iφ) is called the complex squeeze parameter. The
modulus r = |ζ| describes the amount of squeezing, and the phase 2φ determines the
angle of the squeezing axis in phase space.

The unitary squeezing operator applied to a pure state |Ψ〉 defines the squeezing
transformation,

|Ψ (ζ)〉 = S (ζ) |Ψ〉 , (15.22)

for states. It is also useful to define squeezed operators by

X (ζ) = S (ζ)XS† (ζ) , (15.23)

so that expectation values are preserved, i.e.

〈Ψ (ζ) |X (ζ)|Ψ (ζ)〉 = 〈Ψ |X |Ψ〉 . (15.24)

Applying eqn (15.23) to the density operator describing a mixed state, as well as to
the observable X , shows that mixed-state expectation values are also preserved:

Tr [ρ (ζ)X (ζ)] = Tr [ρX ] . (15.25)

The first example is the squeezed vacuum state ψ (P, 0) in eqn (15.3). With the
correct choice for ζ this can be expressed as

ψ (P, 0) = 〈P |S (ζ)| 0〉 . (15.26)

In the limit of weak squeezing, i.e. |ζ| � 1, the operator in eqn (15.22) can be expanded
to get

S (ζ) |0〉 = |0〉 +
1
2
(
ζ∗a2 − ζa†2) |0〉 + · · ·

= |0〉 − 1
2
ζa†2 |0〉 + · · · . (15.27)

The first-order term on the right side is the output state for the degenerate case of
the down-conversion process discussed in Section 13.3.2. Thus down-conversion rep-
resents incipient single-mode squeezing. The transformation of a single pump photon
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of frequency ωP into a pair of photons, each with frequency ω0 = ωP /2, is the source
of the photons in the squeezed vacuum S (ζ) |0〉. The general case of nondegenerate
down-conversion can similarly serve as the source of a two-mode squeezed state. In
this case, the nonlocal phenomena associated with entangled states would play an
important role.

For general squeezed states, the features of experimental interest are expressible
in terms of variances of the quadrature operators or other observables, such as the
number operator. For example, the variance, V (X), of X in the squeezed state is

V (X) = Tr
[
ρ (ζ) X2

]− (Tr [ρ (ζ) X ])2 . (15.28)

The easiest way to evaluate these expressions is to use the relation (15.23) between the
original operators X and their squeezed versions X (ζ). Since all observables can be
expressed in terms of the creation and annihilation operators it is sufficient to consider

a (ζ) = S (ζ) aS† (ζ) . (15.29)

The first step in evaluating the right side of this equation is to define the squeezing
generator K (ζ) by

K (ζ) = − i

2
(
ζ∗a2 − ζa†2) , (15.30)

so that S (ζ) = exp [iK (ζ)]. The second step is to imitate eqn (5.49) by introducing
the interpolating operators

c (τ) = eiτK(ζ)ae−iτK(ζ) , (15.31)

where τ is a real variable in the interval (0, 1). The interpolation formula has the form
of a time evolution with Hamiltonian K, so the interpolating operators satisfy the
Heisenberg-like equations

i
d

dτ
c (τ) =

[
c (τ) , K̃

]
, (15.32)

where
K̃ = − i

2
[
ζ∗c2 (τ) − ζc†2 (τ)

]
. (15.33)

If we identify ζ with −2iΩP , then K has the general form (15.7). This means that
we will be able to use the results obtained here to treat the model for squeezed-state
generation to be given in Section 15.2.

The explicit form (15.33), together with the canonical commutation relation[
c (τ) , c† (τ)

]
= 1, yields a pair of first-order equations for c and c†:

dc

dτ
= ζc† ,

dc†

dτ
= ζ∗c , (15.34)

and eliminating c† produces a single second-order equation:

d2c

dτ2
= |ζ|2 c . (15.35)

Since |ζ|2 = r2 is real and positive the fundamental solutions are e±rτ and the general
solution is c (τ) = C+ erτ +C− e−rτ . Substituting this form into either of the first-order
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equations yields one relation between C+ and C−, and the initial condition c (0) = a
gives another. The solution of this pair of algebraic equations provides the expression
a (ζ) = µa + νa† for the squeezed annihilation operator, where the coefficients

µ = cosh (r) , ν = e2iφ sinh (r) , (15.36)

satisfy the identity µ2 − |ν|2 = 1. The relation between a and a (ζ) is another example
of the Bogoliubov transformation. The inverse transformation,

a = µa (ζ) − νa† (ζ) , (15.37)

will be useful in subsequent calculations.
Let us first apply eqn (15.37) to express the quadrature operators, defined by eqn

(15.14), as

X =
1
2

[
cosh (r) − e−2i(φ−β) sinh (r)

]
a (ζ) e−iβ + HC ,

Y =
i

2

{[
cosh (r) + e−2i(φ−β) sinh (r)

]
a (ζ) e−iβ − HC

}
.

(15.38)

For the quadrature angle β = φ this simplifies to X = e−rX (ζ) and Y = erY (ζ), so
that

V (X) = V
(
e−rX (ζ)

)
= e−2rV (X (ζ)) = e−2rV0 (X) ,

V (Y ) = V (erY (ζ)) = e2rV (Y (ζ)) = e2rV0 (Y ) ,
(15.39)

i.e. the X-quadrature is squeezed and the Y -quadrature is stretched, relative to the
variances V0 in the original state. The alternative choice β = φ−π/2 reverses the roles
of X and Y . For either choice, the deviations in the squeezed state satisfy

∆X =
√

V (X) = e±r∆0X , ∆Y =
√

V (Y ) = e∓r∆0Y , (15.40)

which shows that the uncertainty product is unchanged by squeezing. In particular, if
|Ψ〉 is a minimum-uncertainty state, then so is the squeezed state |Ψ (ζ)〉, i.e.

∆X∆Y = ∆0X∆0Y =
1
4

. (15.41)

We now turn to the question of the classical versus nonclassical nature of squeezed
states. Suppose that ρ (ζ) is squeezed along X . The P -representation (5.168) can be
used to express the variance as

V (X) =
∫

d2α

π
P (α)

〈
α
∣∣∣(X − 〈X〉)2

∣∣∣α〉
=

∫
d2α

π
P (α)

{〈
α
∣∣X2

∣∣α〉− 2 〈X〉 〈α |X |α〉 + 〈X〉2
}

, (15.42)

where P (α) is the P -function representing the squeezed state ρ (ζ) and 〈X〉 =
Tr [ρ (ζ)X ]. The coherent-state expectation values can be evaluated by first using eqn
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(15.14) and the commutation relations to express X2 in normal-ordered form. After a
little further algebra one finds that the normal-ordered variance is

VN (X) =
∫

d2α

π
P (α)

(
αe−iβ + α∗eiβ

2
− 〈X〉

)2

. (15.43)

Now let us suppose that the squeezed state ρ (ζ) is classical, i.e. P (α) � 0, then the
last result shows that VN (X) > 0. Since this contradicts the assumption that ρ (ζ) is
squeezed along X , we conclude that all squeezed states are nonclassical.

15.1.3 Multimode squeezed states∗

A description of multimode squeezed states can be constructed by imitating the treat-
ment of multimode coherent states in Section 5.5.1. The single-mode squeezing oper-
ator can be applied to any member of a complete set of modes, e.g. the plane waves
of a box-quantized description; consequently, the simplest definition of a multimode
squeezed state is ∣∣Ψ (

ζ
)〉

= S
(
ζ
) |Ψ〉 , (15.44)

where

S
(
ζ
)

=
∏
ks

exp
[
1
2

(
ζ∗ksa

2
ks − ζksa

†2
ks

)]
(15.45)

is the multimode squeezing operator. Since the individual squeezing generators com-
mute, the definition of S

(
ζ
)

can also be expressed as

S
(
ζ
)

= exp

[
1
2

∑
ks

(
ζ∗ksa

2
ks − ζksa

†2
ks

)]
. (15.46)

15.1.4 Special squeezed states∗

Coherent states are minimum-uncertainty states, so eqn (15.41) implies that the squee-
zed coherent states,

|ζ; α〉 ≡ S (ζ) |α〉 = S (ζ) D (α) |0〉 , (15.47)

are also minimum-uncertainty states. In this notation, the squeezed vacuum state dis-
cussed previously is denoted by |ζ; 0〉. The squeezed vacuum is generated by injecting
pump radiation into a nonlinear medium with an effective interaction given by eqn
(15.7), and the more general squeezed coherent state can be obtained by simultane-
ously injecting the pump beam and the output of a laser matching the squeezed mode.
Furthermore, the squeezed coherent states are eigenstates of the transformed operator
a (ζ), since

a (ζ) |ζ; α〉 = S (ζ) a |α〉 = α |ζ; α〉 . (15.48)

The state |ζ; α〉 is therefore an analogue of the coherent state |α〉, but it is generated by
creating and annihilating pairs of photons. The squeezed coherent states are therefore
the two-photon coherent states introduced by Yuen.
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For a fixed value of the squeezing parameter ζ, the squeezed coherent states have
the same orthogonality and completeness properties as the coherent states. The or-
thogonality property follows from the unitary relation (15.47), which shows that the
inner product of two squeezed coherent states is

〈ζ; β |ζ; α 〉 =
〈
β
∣∣S† (ζ)S (ζ)

∣∣α〉 = 〈β |α 〉 . (15.49)

The resolution of the identity follows in the same way, since combining eqn (15.47)
with eqn (5.69) gives us∫

d2α

π
|ζ; α〉 〈ζ; α| = S (ζ)

{∫
d2α

π
|α〉 〈α|

}
S† (ζ) = 1 . (15.50)

An alternative family of states is defined by the displaced squeezed states

|α; ζ〉 ≡ D (α) |ζ〉 = D (α) S (ζ) |0〉 , (15.51)

which are constructed by displacing a squeezed vacuum state. An idealized physical
model for this is to inject the output of a squeezed vacuum generator into a laser
amplifier for the squeezed mode. The squeezed vacuum is the simplest example of a
squeezed state, so the displaced squeezed states are also called ideal squeezed states
(Caves, 1981).

The states |ζ; α〉 and |α; ζ〉 are quite different, since the operators S (ζ) and D (α)
do not commute. For this reason it is important to remember that ζ is the squeezing
parameter and α is the displacement parameter. Despite their differences, these two
states are both normalized, so there must be a unitary transformation connecting
them. Indeed it is not difficult to show that they are related by

|ζ; α〉 = |α−; ζ〉 (15.52)

and
|α; ζ〉 = |ζ; α+〉 , (15.53)

where

α± = µα ± να∗

= α cosh r ± α∗e2iφ sinh r . (15.54)

According to eqn (15.53) the displaced squeezed state |α; ζ〉 is also an eigenvector of
a (ζ),

a (ζ) |α; ζ〉 = α+ |α; ζ〉 , (15.55)

but the eigenvalue is α+ rather than α.
The relation (15.53) allows us to transfer the orthogonality and completeness re-

lations for squeezed coherent states to the displaced squeezed states. Applying eqn
(15.53) to eqns (15.49) and (15.50) yields

〈β; ζ |α; ζ 〉 = 〈ζ; β+ |ζ; α+ 〉 = 〈β+ |α+ 〉 , (15.56)



��� Nonclassical states of light

and ∫
d2β

π
|β−; ζ〉 〈β−; ζ| =

∫
d2β

π
|ζ; β〉 〈ζ; β| = 1 . (15.57)

The general result (15.39) shows that squeezing any minimum-uncertainty state
produces the quadrature variances V (X) = e−r/4 and V (Y ) = er/4. For the case of
the squeezed coherent state |ζ; α〉, with α = |α| eiθ, the quadrature averages are given
by

〈ζ; α |X | ζ; α〉 = |α| e−r cos (θ − φ) ,

〈ζ; α |Y | ζ; α〉 = |α| er sin (θ − φ) .
(15.58)

For the special choice θ = φ one finds 〈ζ; α |Y | ζ; α〉 = 0 and

〈ζ; α |X | ζ; α〉 = |α| e−r , (15.59)

so the squeezed quadrature X represents the amplitude of the coherent state. Con-
sequently this process is called amplitude squeezing. This example has led to the
frequent use of the names amplitude quadrature and phase quadrature for X
and Y respectively.

Of course, the roles of X and Y can always be changed by making a different phase
choice. If we choose θ − φ = π/2, then 〈ζ; α |X | ζ; α〉 = 0 and 〈ζ; α |Y | ζ; α〉 = |α| er.
The amplitude of the coherent state is now carried by the stretched quadrature Y ,
and the squeezed quadrature X is conjugate to Y . Roughly speaking, the operator
conjugate to the amplitude is related to the phase; consequently, this process is called
phase squeezing.

15.1.5 Photon-counting statistics∗

The variances and averages of the quadrature operators were used in the interpretation
of the homodyne detection scheme discussed in Section 9.3.3, but photon-counting
experiments are related to the average and variance of the photon number operator.
For the special squeezed states defined by eqns (15.47) and (15.51), the most direct
way to calculate these quantities is first to use eqn (15.37) to express the operators N
and N2 in terms of the transformed operators a (ζ) and a† (ζ), and then to rearrange
these expressions in normal-ordered form with respect to a (ζ) and a† (ζ). Finally, the
eigenvalue equations (15.48) and (15.55), together with their adjoints, can be used to
get the expectation values of N and N2 as explicit functions of ζ and α.

By virtue of the relation (15.52), it is enough to consider the expectation values
for the displaced squeezed state |α; ζ〉. Using eqn (15.37) produces the expression

N = a†a =
(
µa† (ζ) − ν∗a (ζ)

) (
µa (ζ) − νa† (ζ)

)
=

(
µ2 + |ν|2

)
a† (ζ) a (ζ) − ν∗µa (ζ)2 − νµa† (ζ) + |ν|2 (15.60)

for the number operator, so eqn (15.55) and its adjoint yield

〈N〉 = 〈α; ζ |N |α; ζ〉 =
(
µα∗

+ − ν∗α+

) (
µα+ − να∗

+

)
+ |ν|2

= |α|2 + |ν|2 = |α|2 + sinh2 (r) . (15.61)

To get the final result we have used the solution α = µα+ − να∗
+ of eqn (15.54).
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For the calculation of
〈
N2

〉
, we first use the commutation relations to establish the

identity N2 = a†2a2 + N , which leads to〈
N2

〉
=
〈
a†2a2

〉
+ 〈N〉 . (15.62)

The next step is to use eqn (15.37) to derive the normal-ordered expression—with
respect to the squeezed operators a (ζ) and a† (ζ)—for a2:

a2 = µ2a (ζ)2 − 2µνa† (ζ) a (ζ) + ν2a† (ζ) − µν . (15.63)

This can be used in turn to derive the normal-ordered form for a†2a2 and thus to
evaluate

〈
a†2a2

〉
in the same way as 〈N〉. This calculation is straightforward but

rather lengthy. A somewhat more compact method is to use the completeness relation
(15.57) to get 〈

a†2a2
〉

=
〈
α; ζ

∣∣a†2a2
∣∣α; ζ

〉
= 〈α; ζ| a†2

(∫
d2β

π
|β−; ζ〉 〈β−; ζ|

)
a2 |α; ζ〉

=
∫

d2β

π

∣∣〈β−; ζ
∣∣a2

∣∣α; ζ
〉∣∣2 . (15.64)

Applying the eigenvalue equation (15.55) to |α; ζ〉 and the adjoint equation to 〈β−; ζ|
produces a (ζ) |α; ζ〉 = α+ |α; ζ〉 and 〈β−; ζ| a† (ζ) = 〈β−; ζ|β∗, so the matrix element
in the integrand is given by〈

β−; ζ
∣∣a2

∣∣α; ζ
〉

= f (β∗) 〈β−; ζ |α; ζ 〉 = f (β∗) 〈β |α+ 〉 , (15.65)

where
f (β∗) = µ2α2

+ − 2µνβ∗α+ + ν2β∗2 − µν . (15.66)
Substituting this result in eqn (15.64) and using the explicit formula (5.58) for the
inner product leaves us with〈

a†2a2
〉

=
∫

d2β

π
|f (β∗)|2 e−|β−α+|2

=
∫

d2β

π

∣∣f (
β∗ + α∗

+

)∣∣2 e−|β|2 , (15.67)

where the last line was obtained by the change of integration variables β → β + α+.
This rather elaborate preparation would be useless if the remaining integrals could

not be easily evaluated. Fortunately, the integrals can be readily done in polar co-
ordinates, β = b exp (iϑ), as can be seen in Exercise 15.4. After a certain amount of
algebra, one finds〈

a†2a2
〉

= |α|4 + µ2 |ν|2 − µ
(
α2ν∗ + CC

)
+ 4 |α|2 |ν|2 + 2 |ν|4 . (15.68)

Combining this result with eqns (15.36), (15.62), and (9.58) leads to the general ex-
pression

Q =
sinh2 r cosh 2r + 2 |α|2 sinh r [sinh r − cosh r cos (θ − φ)]

|α|2 + sinh2 r
(15.69)

for the Mandel Q parameter.
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The Q parameter is positive (super-Poissonian statistics) for cos (θ − φ) � 0, but
it can be negative (sub-Poissonian statistics) if cos (θ − φ) > 0. In the case θ = φ
we have amplitude squeezing (see eqn (15.59) for the squeezed quadrature X), so the
general result becomes

Q =
sinh2 r cosh 2r − |α|2 [1 − e−2r

]
|α|2 + sinh2 r

. (15.70)

In the strong-field limit |α| � exp (4r), Q becomes

Q ≈ − [
1 − e−2r

]
. (15.71)

If we also assume strong squeezing (r � 1), then Q ≈ −1, i.e. there is negligible noise
in photon number. Consequently, amplitude squeezed states are also called number
squeezed states. This terminology is rather misleading, since eqn (15.19) shows that
a squeezed state can never be a number state.

15.1.6 Are squeezed states robust?∗

In Section 8.4.3 we saw that a coherent state |α1〉 incident on a beam splitter is
scattered into a two-mode coherent state |α′

1, α
′
2〉, where α′

1 = t α1 and α′
2 = r α1. A

similar result would be found for any passive, linear optical element. An even more
impressive feature appears in Section 18.5.2, where it is shown that an initial coherent
state |α0〉 coupled to a zero-temperature reservoir evolves into the coherent state∣∣α0e

−Γt/2e−iω0t
〉
. In other words, the defining statistical property, V

(
a†, a

)
= 0, of

the coherent state is unchanged by this form of dissipation. Only the amplitude of the
parameter α0 is reduced. For these reasons the coherent state is regarded as robust.
The situation for squeezed states turns out to be a bit more subtle.

Let us first consider an experiment in which light in a squeezed state enters through
port 1 of a beam splitter, as shown in Fig. 8.2. The input state |Ψ〉 is the vacuum for
the mode entering through the unused port 2, i.e.

a2 |Ψ〉 = 0 , (15.72)

but it is squeezed along a quadrature

X1 =
1
2

[
a1e

−iβ + a†
1e

iβ
]

(15.73)

of the incident mode 1, i.e. VN (X1) < 0. According to eqn (8.62) the scattered oper-
ators a′

1 and a′
2 are related to the incident operators a1 and a2 by

a′
2 = r a1 + t a2 ,

a′
1 = t a1 + r a2 ,

(15.74)

where |t|2+|r|2 = 1. We choose the phases of r and t so that the transmission coefficient
t is real and the reflection coefficient r is purely imaginary.
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The question to be investigated is whether there is squeezing along any output
quadrature. We begin by examining general quadratures

X ′
1 =

1
2

[
a′
1e

−iβ1 + a′†
1 eiβ1

]
(15.75)

and
X ′

2 =
1
2

[
a′
2e

−iβ2 + a′†
2 eiβ2

]
(15.76)

for the transmitted and reflected modes respectively. Applying eqns (15.17), (15.72),
and (15.74) to the X ′

1-quadrature leads to

VN (X ′
1) =

1
2

Re
[
V
(
a′
1e

−iβ1
)]

+
1
2
V
(
a′†
1 , a′

1

)
=

1
2

Re
[
t2V

(
a1e

−iβ1
)]

+
1
2
|t|2 V

(
a†
1, a1

)
= t2VN (X1) +

t2

2
Re

[(
eiϕ − 1

)
V
(
a1e

−iβ
)]

, (15.77)

where ϕ = 2 (β − β1). Squeezing along X1 means that VN (X1) < 0, but the second
term depends on the value of β1. The simplest choice—β1 = β—leads to

VN (X ′
1) = t2VN (X1) , (15.78)

which shows that squeezing along X1 implies squeezing along X ′
1 for the quadrature

angle β1 = β. As might be expected, the inescapable partition noise at the beam
splitter reduces the amount of squeezing by the intensity transmission coefficient t2 <
1. This particular choice of output quadrature does answer the squeezing question,
but it does not necessarily yield the largest degree of squeezing.

A similar argument applied to X ′
2 begins with

VN (X ′
2) =

1
2

Re
[
V
(
a′
2e

−iβ2
)]

+
1
2
V
(
a′†
2 , a′

2

)
, (15.79)

but the relation r2 = − |r|2 produces

Re
[
V
(
a′
2e

−iβ2
)]

= Re
[
r2V

(
a1e

−iβ2
)]

= − |r|2 Re
[
V
(
a1e

−iβ2
)]

. (15.80)

The final result in this case is

V (X ′
2) = |r|2 VN (X1) − |r|2

2
Re

[(
eiϕ + 1

)
V
(
a1e

−iβ
)]

, (15.81)

where ϕ = 2 (β − β2). For the reflected mode, the choice β2 = β − π/2 (ϕ = π) shows
reduced squeezing along X ′

2. Alternatively, we can use the relation

X ′
2|β2=β−π/2 = − Y ′

2 |β2=β (15.82)

to say that squeezing occurs along the conjugate quadrature Y ′
2 for β2 = β.
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We next consider the evolution of a squeezed state coupled to a zero-temperature
reservoir. For the quadrature

Xβ =
1
2
(
ae−iβ + a†eiβ

)
, (15.83)

eqn (15.43) gives us

VN (Xβ; t) =
∫

d2α

π
P (α, α∗; t)

(
αe−iβ + α∗eiβ

2
− 〈Xβ; t〉

)2

, (15.84)

where

〈Xβ ; t〉 =
∫

d2α

π
P (α, α∗; t)

αe−iβ + α∗eiβ

2
. (15.85)

The assumption that the state is initially squeezed along Xβ means that

VN (Xβ ; 0) =
∫

d2α

π
P0 (α, α∗)

(
αe−iβ + α∗eiβ

2
− 〈Xβ〉0

)2

< 0 , (15.86)

where P0 (α, α∗) = P (α, α∗; t = 0). Anticipating the general solution (18.88) for dis-
sipation by interaction with a zero-temperature reservoir leads to

VN (Xβ ; t) =
∫

d2α

π
P0

(
e(Γ/2+iω0)tα, e(Γ/2−iω0)tα∗

)
eΓt

×
(

αe−iβ + α∗eiβ

2
− 〈Xβ; t〉

)2

, (15.87)

and

〈Xβ ; t〉 =
∫

d2α

π
P0

(
e(Γ/2+iω0)tα, e(Γ/2−iω0)tα∗

)
eΓt

×
(

αe−iβ + α∗eiβ

2

)
. (15.88)

Our next step is to make the change of integration variables α → α exp [− (Γ/2 + iω0) t]
in the last two equations. For eqn (15.88) the result is

〈Xβ ; t〉 = e−Γt/2

∫
d2α

π
P0 (α, α∗)

(
αe−i(β+ω0t) + α∗e−i(β+ω0t)

2

)
= e−Γt/2 〈Xβ+ω0t〉0 , (15.89)

and a similar calculation starting with eqn (15.87) yields

VN (Xβ ; t) = e−ΓtVN (Xβ+ω0t; 0) . (15.90)

Just as in the case of the beam splitter, we are free to choose new quadratures to
investigate, in this case at different times. At time t we take advantage of this freedom
to let β → β − ω0t, so that

VN (Xβ−ω0t; t) = e−ΓtVN (Xβ; 0) < 0 . (15.91)

Thus at any time t, there is a squeezed quadrature—with the amount of squeezing
reduced by exp (−Γt)—but the required quadrature angle rotates with frequency ω0.
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With the results (15.78) and (15.91) in hand, we can now judge the robustness
of squeezed states. Let us begin by recalling that coherent states are regarded as
robust because the defining property, V

(
a†, a

)
= 0, is strictly conserved by dissipa-

tive scattering—i.e. coupling to a zero-temperature reservoir—as well as by passage
through passive, linear devices. By contrast, dissipative scattering degrades the degree
of squeezing as well as the overall intensity of the squeezed input light, so that

|VN (X : t)| → 0 as t → ∞ . (15.92)

Even this result depends on the detection of a quadrature that is rotating at the
optical frequency ω0. Detector response times are large compared to optical periods,
so even the reduced squeezing shown by eqn (15.91) would be extremely difficult to
detect. Passage through a linear optical device also degrades the degree of squeezing,
as shown by eqn (15.78). This combination of properties is the basis for the general
opinion that squeezed states are not robust.

15.2 Theory of squeezed-light generation∗

The method used by Kimble and co-workers (Wu et al., 1986) to generate squeezed
states relies on the microscopic process responsible for the spontaneous down-conver-
sion effect discussed in Section 13.3.2; but two important changes in the experimental
arrangement are shown in Fig. 15.1. The first is that the χ(2) crystal is cut so as
to produce collinear phase matching with degenerate pairs (ω1 = ω2 = ω0 = ωP /2) of
photons, and also anti-reflection coated for both the first- and the second-harmonic
frequencies ω0 and ωP = 2ω0. In this configuration the down-converted photons have
identical frequencies and propagate in the same direction as the pump photons; in
other words, this is time-reversed second harmonic generation. The second change
is that the crystal is enclosed by a resonant cavity that is tuned to the degenerate
frequency ω0 = ωP /2 and, therefore, also to the pump frequency ωP .

The degeneracy conditions between the down-converted photons and the cavity
resonance frequency are maintained by a combination of temperature tuning for the
crystal and a servo control of the optical resonator length. This arrangement strongly
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Fig. 15.1 A simplified schematic for the squeezed state generator employed in the experiment

of Kimble and co-workers (Wu et al., 1986).
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favors the degenerate pairs over all other pairs of photons that are produced by down-
conversion. In this way, the crystal—pumped by the strong laser beam at the second-
harmonic frequency 2ω0—becomes an optical parametric amplifier1 (OPA) for the
degenerate photon pairs at the first-harmonic frequency ω0.

This device can be understood at the classical level in the following way. The χ(2)

nonlinearity couples the two weak down-converted light beams to the strong-pump
laser beam, so that the weak light signals can be amplified by drawing energy from
the pump. The basic process is analogous to that of a child pumping a swing by
standing and squatting twice per period of the swing, thus increasing the amplitude
of the motion. This kind of amplification process depends on the timing (phase) of the
pumping motion relative to the timing (phase) of the swinging motion.

In the case of light beams, the mechanism for the transfer of energy from the pump
to the degenerate weak beams is the mixing of the strong-pump beam,

EP = Re
(EP e−iωP t

)
= Re

(|EP | eiθP e−iωP t
)
, (15.93)

with the two weak beams via the χ(2) nonlinearity. This leads to a mutual reinforce-
ment of the weak beams at the expense of the pump beam. If the depletion of the
strong-pump beam by the parametric amplification process is ignored, the mutual-
reinforcement mechanism leads to an exponential growth of both of the weak beams.
With sufficient feedback from the mirrors surrounding the crystal, this amplifier—like
that of a laser—can begin to oscillate, and thereby become an optical parametric
oscillator (OPO). When operated just below the threshold of oscillation, the optical
parametric amplifier emits strongly squeezed states of light.

The resonant enhancement at the degenerate signal and idler frequencies justifies
the use of the phenomenological model Hamiltonian,

HS = HS0 + HSS , (15.94)

HS0 = �ω0a
†a , (15.95)

HSS =
i�

2
[
ΩP e−iωP ta†2 − Ω∗

P eiωP ta2
]
, (15.96)

for the sample shown in Fig. 15.1. The resonant mode associated with the annihilation
operator a is jointly defined by the collinear phase-matching condition for the non-
linear crystal and by the boundary conditions at the two mirrors forming the optical
resonator.

Note that HSS has exactly the form of the squeezing generator defined by eqn
(15.30). The coupling frequency ΩP , which is proportional to the product χ(2)EP ,
characterizes the strength of the nonlinear interaction. The term ΩP a†2 describes the
down-conversion process in which a pump photon is converted into the degenerate
signal and idler photons. It is important to keep in mind that the complex coupling
parameter ΩP is proportional to EP = |EP | exp (iθP ), so that the parametric gain
depends on the phase of the pump wave. The consequences of this phase dependence
will be examined in the following sections.

1The term ‘parametric’ amplifier was originally introduced in microwave engineering. The ‘para-
meter’ in the optical case is the pump wave amplitude, which is assumed to be unchanged by the
nonlinear interaction.
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A The Langevin equations

The experimental signal in this case is provided by photons that escape the cavity, e.g.
through the mirror M2. In Section 14.3 this situation was described by means of in-
and out-fields for a general interaction HSS. In the present application, HSS is given
by eqn (15.96), and an explicit evaluation of the interaction term [a, HSS] /i� gives us

d

dt
a (t) = −κC

2
a (t) + ΩP ei(2ω0−ωP )t a† (t) + ξC (t) , (15.97)

where a (t) = a (t) exp (iω0t) is the slowly-varying envelope operator, κC = κ1 + κ2

is the cavity damping rate, and ξC (t) is the cavity noise operator defined by eqn
(14.97). The explicit time dependence on the right side is eliminated by imposing the
resonance condition ωP = 2ω0 on the cavity. The equation for the adjoint envelope
operator a† (t) is then

d

dt
a† (t) = −κC

2
a† (t) + Ω∗

P a (t) + ξ†C (t) . (15.98)

Before considering the solution of the operator equations, it is instructive to write
the ensemble-averaged equations in matrix form:

d

dt

( 〈a (t)〉〈
a† (t)

〉) =
[−κC/2 ΩP

Ω∗
P −κC/2

]( 〈a (t)〉〈
a† (t)

〉) , (15.99)

where we have used 〈ξC (t)〉 = 0. The 2 × 2 matrix on the right side has eigenvalues
Λ± = −κC/2±|ΩP |, so the general solution is a linear combination of special solutions
varying as exp [Λ± (t − t0)]. Since κC > 0, the eigenvalue Λ− always describes an
exponentially decaying solution. On the other hand, the eigenvalue Λ+ can describe
an exponentially growing solution if |ΩP | > κC/2.

At the threshold value |ΩP | = κC/2, the average 〈a (t)〉 of the slowly-varying enve-
lope operator approaches a constant for times t−t0 � κC , so that 〈a (t)〉 ∼ exp (−iω0t)
is oscillatory at large times. This describes the transition from optical parametric am-
plification to optical parametric oscillation. Operation above the oscillation threshold
would produce an exponentially rapid build-up of the intracavity field that would
quickly lead to a violation of the weak-field assumptions justifying the model Hamil-
tonian HSS in eqn (15.96). Dealing with pump fields exceeding the threshold value
requires the inclusion of nonlinear effects that would lead to gain saturation and thus
prevent runaway amplification. We avoid these complications by imposing the condi-
tion |ΩP | < κC/2. On the other hand, we will see presently that the largest squeezing
occurs for pump fields just below the threshold value.

The coupled equations (15.97) and (15.98) for a (t) and a† (t) are a consequence of
the special form of the down-conversion Hamiltonian. Since the differential equations
are linear, they can be solved by a variant of the Fourier transform technique used for
the empty-cavity problem in Section 14.3.3. In the frequency domain the differential
equations are transformed into algebraic equations:

−iωa (ω) = −κC

2
a (ω) + ΩP a† (−ω) + ξC (ω) , (15.100)

−iωa† (−ω) = −κC

2
a† (ω) + Ω∗

P a (ω) + ξ†C (−ω) , (15.101)
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which have the solution

a (ω) =
(κC/2 − iω) ξC (ω) + ΩP ξ†C (−ω)

(κC/2 − iω)2 − |ΩP |2
,

a† (−ω) =
(κC/2 − iω) ξ†C (−ω) + Ω∗

P ξC (ω)

(κC/2 − iω)2 − |ΩP |2
.

(15.102)

Combining the definition (14.97) with the result (14.116) for the in-fields in the fre-
quency domain gives

ξC (ω) =
[√

κ1 b1,ω+ω0 (t0) +
√

κ2 b2,ω+ω0 (t0)
]
eiωt0 . (15.103)

This shows that a (ω) and a† (ω) are entirely expressed in terms of the reservoir op-
erators at the initial time. The correlation functions of the intracavity field a (t) are
therefore expressible in terms of the known statistical properties of the reservoirs.

Before turning to these calculations, we note that operator a (ω) has two poles—
determined by the roots of the denominator in eqn (15.102)—located at

ω = ω± = −i
[κC

2
± |ΩP |

]
. (15.104)

Since κC is positive, the pole at ω+ always remains in the lower half plane—correspon-
ding to the exponentially damped solution of eqn (15.99)—but when the coupling
frequency exceeds the threshold value, |ΩP |crit = κC/2, the pole at ω− infiltrates
into the upper half plane—corresponding to the exponentially growing solution of eqn
(15.99). Thus the OPA–OPO transition occurs at the same value for the operator
solution and the ensemble-averaged solution.

B Squeezing of the intracavity field

As explained in Section 15.1.2, the properties of squeezed states are best exhibited
in terms of the normal-ordered variances VN (X) and VN (Y ) of conjugate pairs of
quadrature operators. According to eqns (15.17) and (15.18), these quantities can be
evaluated in terms of the joint variance V

(
a† (t) , a (t)

)
and the variance V (a (t)),

which can in turn be expressed in terms of the Fourier transforms a† (ω) and a (ω).
For example, eqns (14.112) and (14.114) lead to

V
(
a† (t) , a (t)

)
=
∫

dω

2π

∫
dω′

2π
e−i(ω′+ω)tV

(
a† (−ω′) , a (ω)

)
. (15.105)

Applying the relations

a (ω) = a (ω − ω0) , a† (−ω′) = a† (−ω′ − ω0) (15.106)

that follow from eqn (14.119), and the change of variables ω → ω + ω0, ω′ → ω′ − ω0

allows this to be expressed in terms of the slowly-varying operators a (ω):

V
(
a† (t) , a (t)

)
=

∫
dω

2π

∫
dω′

2π
e−i(ω′+ω)tV

(
a† (−ω′) , a (ω)

)
. (15.107)

The solution (15.102) gives a (ω) and a† (ω) as linear combinations of the initial
reservoir creation and annihilation operators. In the experiment under consideration,
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there is no injected signal at the resonance frequency ω0, and the incident pump field
at ωP is treated classically. The Heisenberg-picture density operator can therefore be
treated as the vacuum for the initial reservoir fields, i.e. ρE = |0〉 〈0|, where

b1,Ω (t0) |0〉 = b2,Ω (t0) |0〉 = 0 . (15.108)

This means that only antinormally-ordered products of the reservoir operators will
contribute to the right side of eqn (15.107). The fact that the variance is defined with
respect to the reservoir vacuum greatly simplifies the calculation. To begin with, first
calculating a (ω) |0〉 provides the happy result that many terms vanish. Once this is
done, the commutation relations (14.115) lead to

V
(
a† (t) , a (t)

)
=

1
2

|ΩP |2
(κC/2)2 − |ΩP |2

. (15.109)

In the same way, the crucial variance V (a (t)) is found to be

V (a (t)) =
1
4

ΩP κC

(κC/2)2 − |ΩP |2
, (15.110)

so that

VN (Xβ) =
1
8

κC

(κC/2)2 − |ΩP |2
Re

[
e−2iβΩP

]
+

1
4

|ΩP |2
(κC/2)2 − |ΩP |2

. (15.111)

The minimum value of VN (X) is attained at the quadrature phase

β =
θP

2
− π

2
, (15.112)

where θP is the phase of ΩP . For this choice of β,

VN (X) = −1
4

|ΩP |
κC/2 + |ΩP | (15.113)

and

VN (Y ) =
1
4

|ΩP |
κC/2 − |ΩP | . (15.114)

Keeping in mind the necessity of staying below the oscillation threshold, i.e. |ΩP | <
κC/2, we see that VN (X) > −1/8. The relation (15.16) then yields

1
8

< V (X) <
1
4

; (15.115)

in other words, the cavity field cannot be squeezed by more than 50%. In this con-
nection, it is important to note that these results only depend on the symmetrical
combination κC = κ1 + κ2 and not on κ1 or κ2 separately. This feature reflects the
fact that the mode associated with a (t) is a standing wave that is jointly determined
by the boundary conditions at the two mirrors.
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C Squeezing of the emitted light

The limits on cavity field squeezing are not the end of the story, since only the output
of the OPA—i.e. the field emitted through one of the mirrors—can be experimentally
studied. We therefore consider a time t1 � t0 when the light emitted—say through
mirror M2—reaches a detector. The detected signal is represented by the out-field
operator b2,out (t) introduced in Section 14.3. We reproduce the definition,

b2,out (t) =
∫ ∞

−∞

dΩ
2π

b2,Ω (t1) e−iΩ(t−t1), (15.116)

here, in order to emphasize the dependence of the output signal on the final value
b2,Ω (t1) of the reservoir operator.

Combining the Fourier transforms of the scattering relations (14.109) with eqn
(15.102) produces the following relations between the in- and out-fields:

bJ,out (ω) =
2∑

L=1

PJL (ω) bL,in (ω) +
2∑

L=1

CJL (ω) b
†
L,in (−ω) , (15.117)

with

PJL (ω) = δJl −√
κJκL

[κC/2 − iω]

[κC/2 − iω]2 − |ΩP |2
, (15.118)

CJL (ω) = −√
κJκL

ΩP

[κC/2 − iω]2 − |ΩP |2
. (15.119)

The M2-output quadratures are defined by replacing a (t) with b2,out (t) in eqn (15.14)
to get

Xout (t) =
1
2

(
b2,out (t) e−iβ + b†2,out (t) eiβ

)
,

Yout (t) =
1
2i

(
b2,out (t) e−iβ − b†2,out (t) eiβ

) (15.120)

in the time domain, or

Xout (ω) =
1
2

(
b2,out (ω) e−iβ + b†2,out (−ω) eiβ

)
,

Yout (ω) =
1
2i

(
b2,out (ω) e−iβ − b†2,out (−ω) eiβ

) (15.121)

in the frequency domain. The parameter β is again chosen to satisfy eqn (15.112). The
normal-ordered variances for the output quadratures are

VN (Xout (t)) =
∫

dω′′

2π

∫
dω′

2π
e−i(ω′′+ω′)tVN (Xout (ω′′) , Xout (ω′)) , (15.122)

VN (Yout (t)) =
∫

dω′′

2π

∫
dω′

2π
e−i(ω′′+ω′)tVN (Yout (ω′′) , Yout (ω′)) , (15.123)

where
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VN (F, G) = 〈 : FG : 〉 − 〈 : F : 〉 〈 : G : 〉 (15.124)

is the joint normal-ordered variance. Calculations very similar to those for the
cavity quadratures lead to

VN (Xout (ω′′) , Xout (ω′)) = −1
2

|ΩP |κ2

[κC/2 + |ΩP |]2 + (ω′′ − ω0)
2 2πδ (ω′′ + ω′ − 2ω0) ,

(15.125)

VN (Yout (ω′′) , Yout (ω′)) =
1
2

|ΩP |κ2

[κC/2 − |ΩP |]2 + (ω′′ − ω0)
2 2πδ (ω′′ + ω′ − 2ω0) .

(15.126)
The delta functions in the last two equations reflect the fact that the output field

b2,out (t)—by contrast to the discrete cavity mode described by a (t)—lies in a contin-
uum of reservoir modes. In this situation, it is necessary to measure the time-dependent
correlation function VN (Xout (t) , Xout (0)), or rather the corresponding spectral func-
tion,

SN (ω) =
∫

dteiωtVN (Xout (t) , Xout (0)) ,

=
∫

dω′

2π
VN (Xout (ω) , Xout (ω′)) . (15.127)

Using eqn (15.125) to carry out the remaining integral produces

SN (ω) = −1
2

|ΩP |κ2

[κC/2 + |ΩP |]2 + (ω − ω0)
2 , (15.128)

which has its minimum value for |ΩP | = κC/2 = (κ1 + κ2) /2 and ω = ω0, i.e.

SN (ω) > −1
4

κ2

κ1 + κ2
. (15.129)

For a symmetrical cavity—i.e. κ1 = κ2—the degree of squeezing is bounded by

SN (ω) > −1
8

; (15.130)

therefore, the output field can at best be squeezed by 50%, just as for the intracavity
field. However, the degree of squeezing for the output field is not a symmetrical function
of κ1 and κ2. For an extremely unsymmetrical cavity—e.g. κ1 � κ2—we see that

SN (ω) � −1
4

; (15.131)

in other words, the output light can be squeezed by almost 100%.
The surprising result that the emitted light can be more squeezed than the light in

the cavity demands some additional discussion. The first point to be noted is that the
intracavity mode associated with the operator a (t) is a standing wave. Thus photons
generated in the nonlinear crystal are emitted into an equal superposition of left- and
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right-propagating waves. The left-propagating component of the intracavity mode is
partially reflected from the mirror M1 and then partially transmitted through the
mirror M2, together with the right-propagating component. Reflection from the ideal
mirror M1 does not introduce any phase jitter between the two waves; therefore,
interference is possible between the two right-propagating waves emitted from the
mirror M2. This makes it possible to achieve squeezing in one quadrature of the emitted
light.

In estimating the degree of squeezing that can be achieved, it is essential to account
for the vacuum fluctuations in the M1 reservoir that are partially transmitted through
the mirror M1 into the cavity. Interference between these fluctuations and the right-
propagating component of the intracavity mode is impossible, since the phases are
statistically independent. For a symmetrical cavity, κ1 = κ2, the result is that the
squeezing of the output light can be no greater than the squeezing of the intracavity
light. On the other hand, if the mirror M1 is a perfect reflector at ω0, i.e. κ1 = 0, then
the vacuum fluctuations in the M1 reservoir cannot enter the cavity. In this case it is
possible to approach 100% squeezing in the light emitted through the mirror M2.

15.3 Experimental squeezed-light generation

In Fig. 15.2, an experiment by Kimble and co-workers (Wu et al., 1986) to generate
squeezed light is sketched. The light source for this experiment is a ring laser contain-
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Fig. 15.2 Simplified schematic of an experiment to generate squeezed light. ‘PBS’ stands

for ‘polarizing beam splitter’ and ‘MLO’ is a mirror for the local oscillator (LO) beam at ωLO.

(Adapted from Wu et al. (1986).)



Experimental squeezed-light generation ���

ing a diode-laser-pumped, neodymium-doped, yttrium aluminum garnet (Nd:YAG)
crystal—which produces an intense laser beam at the first-harmonic frequency ω0—
and an intracavity, second-harmonic crystal (barium sodium niobate), which produces
a strong beam at the second-harmonic frequency 2ω0. The solid lines represent beams
at the first harmonic, corresponding to a wavelength of 1.06 µm, and the dashed lines
represent beams at the second harmonic, corresponding to a wavelength of 0.53 µm.

The two outputs of the ring laser source are each linearly polarized along orthogo-
nal axes, so that the polarizing beam splitter (PBS) can easily separate them into two
beams. The first-harmonic beam is transmitted through the polarizing beam splitter
and then directed downward by the mirror MLO. This beam serves as the local oscilla-
tor (LO) for the homodyne detector, and the mirror MLO is mounted on a translation
stage so as to be able to adjust the LO phase θLO. The second-harmonic beam is
directed downward by the polarizing beam splitter, and it provides the pump beam of
the optical parametric oscillator (OPO).

The heart of the experiment is the OPO system, which is operated just below the
threshold of oscillation, where a maximum of squeezed-light generation occurs. The
OPO consists of a χ(2) crystal (lithium niobate doped with magnesium oxide), sur-
rounded by the two confocal mirrors M1 and M2. The crystal is cut so that the signal
and idler modes have the same frequency, ω0, and are also collinear. The entrance mir-
ror M1 has an extremely high reflectivity at the first-harmonic frequency ω0, but only
a moderately high reflectivity at the second-harmonic frequency 2ω0. Thus M1 allows
the second-harmonic, pump light to enter the OPO, while also serving as one of the
reflecting surfaces defining a resonant cavity for both the first- and second-harmonic
frequencies. This arrangement enhances the pump intensity inside the crystal.

By contrast, the exit mirror M2 has an extremely high reflectivity for the second-
harmonic frequency, but only a moderately high reflectivity at the first-harmonic fre-
quency. Thus the mirrors M1 and M2 form a resonator—for both the first- and second-
harmonic frequencies—but at the same time M2 allows the degenerate signal and idler
beams—at the first-harmonic frequency ω0—to escape toward the homodyne detector.

In Fig. 15.2, the left and right ports of the box indicating the homodyne detector
correspond to two ports of a central balanced beam splitter which respectively emit the
signal and local oscillator beams. The output ports of the beam splitter are followed
by two balanced photodetectors, and the detected outputs of the photodetectors are
then subtracted by means of a balanced differential amplifier. Finally, the output of
the differential amplifier is fed into a spectrum analyzer, as explained in Section 9.3.3.

It is important to emphasize that the extremely high reflectivity, for frequency ω0,
of the entrance mirror, M1, blocks out vacuum fluctuations from entering the system,
thereby preventing them from contributing unwanted vacuum fluctuation noise at this
frequency. As explained in Section 15.2-C, the asymmetry in the reflectivities of the
mirrors M1 and M2 at the first-harmonic frequency ω0 allows more squeezing of the
light to occur outside than inside the cavity.

The resulting data is shown in Fig. 15.3, where the output noise voltage, V (θ), of
the spectrum analyzer associated with the homodyne detector is plotted versus the
local oscillator phase θ = θLO, for a fixed intermediate frequency of 1.8 MHz.

The crucial comparison of this noise output is with the noise from the standard
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Fig. 15.3 Homodyne-detector, spectrum-analyzer output noise voltage (i.e. the rms noise

voltage at an intermediate frequency of 1.8 MHz) versus the local oscillator phase. (Repro-

duced from Wu et al. (1986).)

quantum limit (SQL), which is determined either by blocking the output of the OPO,
or by changing the temperature of the lithium niobate crystal so that the signal and
idler modes are detuned away from the cavity resonance. The SQL level—which repre-
sents the noise from vacuum fluctuations—is indicated by the dashed line in this figure.
By inspection of these and similar data, the authors concluded that, in the absence
of linear attenuation, the light output from the OPO would have been squeezed by a
factor e2r > 10. This means the semiminor axis of the noise ellipse of the Gaussian
Wigner function in phase space would be more than ten times the semimajor axis.

Strictly speaking, this experiment in squeezed state generation and detection did
not involve exactly degenerate photon pairs, since the detected photons were symmet-
rically displaced from exact degeneracy by 1.8 MHz (within a bandwidth of 100 kHz).
The exact conservation of energy in parametric down-conversion guarantees that the
shifts in the two frequencies are anti-correlated, i.e. ω′

i = ω0 +∆ωi and ω′
s = ω0 +∆ωs,

with ∆ωi = −∆ωs. Thus the beat notes produced by interference of the upper and
lower sidebands with the local oscillator are exactly the same. Both sidebands are de-
tected in the balanced homodyne detector, but their phases are correlated in just such
a way that for one particular phase θLO of the local oscillator—which can be adjusted
by the piezoelectric translator that controls the location of the mirror MLO—the sen-
sitive spots of homodyne detection coincide with the least noisy quadrature of the
squeezed light. This is true in spite of the fact that the two conjugate photons may
not be exactly degenerate in frequency, as long as they are inside the gain-narrowed
line width of the optical parametric amplification profile just below threshold. The
noise analysis for this case of slightly nondegenerate parametric down-conversion can
be found in Kimble (1992).
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15.4 Number states

We have seen in Section 2.1.2 that the number states provide a natural basis for the
Fock space of a single mode of the radiation field. Any state, whether pure or mixed,
can be expressed in terms of number states. By definition, the variance of the number
operator vanishes for a number state |n〉; so evaluating eqn (9.58) for the Mandel
Q-parameter of the number state |n〉 gives

Q (|n〉) ≡ V (N) − 〈N〉
〈N〉 = −1 , (15.132)

where 〈X〉 = 〈n |X |n〉. Thus the number states saturate the general inequality
Q (|Ψ〉) � −1. Furthermore, every state with negative Q is nonclassical; consequently,
a pure number state is as nonclassical as it can be. Since this is true no matter how
large n is, the classical limit cannot be identified with the large-n limit. Further ev-
idence of the nonclassical nature of number states is provided by eqn (5.153), which
shows that the Wigner distribution W (α) for the single-photon number state |1〉 is
negative in a neighborhood of the origin in phase space.

15.4.1 Single-photon wave packets from SDC

States containing exactly one photon in a classical traveling-wave mode, e.g. a Gaussian
wave packet, are of particular interest in contemporary quantum optics. In the approx-
imate sense discussed in Section 7.8 the photon is localized within the wave packet.
With almost complete certainty, such a single-photon wave packet state would register
a single click when it falls on an ideal photodetector with unit quantum efficiency.

The first experiment demonstrating the existence of single-photon wave packet
states was performed by Hong and Mandel (1986). The single-photon state is formed
by one of the pair of photons emitted in spontaneous down-conversion, using the appa-
ratus shown in Fig. 15.4. An argon-ion UV laser beam at a wavelength of λ = 351 nm
enters a crystal—potassium dihydrogen phosphate (KDP)—with a χ(2) nonlinearity.
Conjugate down-converted photon pairs are generated on opposite sides of the UV
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Fig. 15.4 Schematic of Hong and Mandel’s experiment to generate and detect single-photon

wave packets. (Reproduced from Hong and Mandel (1986).)
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beam wavelength at the signal and idler wavelengths of 746 nm and 659 nm, respec-
tively, and enter the photon counters A and B. Counter B is gated by the pulse derived
from counter A, for a counting time interval of 20 ns.

Whenever a click is registered by counter A—and the less-than-unity quantum
efficiency of counter B is accounted for—there is one and only one click at counter B.
This is shown in Fig. 15.5, in which the derived probability p(n) for a count at counter
B—conditioned on the detection of a signal photon at counter A—is plotted versus
the photon number n.

The data show that within small uncertainties (indicated by the cross-hatched
regions),

p(n) = δn,1 ; (15.133)

that is, the idler photons detected by B have been prepared in the single-photon
number state |n = 1〉. In other words, the moment that the click goes off in counter A,
one can, with almost complete certainty, predict that there is one and only one photon
within a well-defined wave packet propagating in the idler channel. The Mandel Q-
parameter derived from these data, Q = −1.06±0.11, indicates that this state of light
is maximally nonclassical, as expected for a number state.

15.4.2 Single photons on demand

The spontaneous down-conversion events that yield the single-photon wave packet
states occur randomly, so there is no way to control the time of emission of the wave
packet from the nonlinear crystal. Recently, work has been done on a controlled pro-
duction process in which the time of emission of a well-defined single-photon wave
packet is closely determined. Such a deterministic emission process for an individual
photon wave packet is called single photons on demand or a photon gun. One such
method involves quantum dots placed inside a high-Q cavity. When a single electron is
controllably injected into the quantum dot—via the Coulomb blockade mechanism—
the resonant enhancement of the rate of spontaneous emission by the high-Q cavity
produces an almost immediate emission of a single photon. Deterministic production
of single-photon states can be useful for quantum information processing and quantum
computation, since often the photons must be synchronized with the computer cycles
in a controllable manner.

Fig. 15.5 The derived probability p(n) for

the detection of n idler photons conditioned

on the detection of a single signal photon in

the 1986 experiment of Hong and Mandel. The

cross-hatched regions indicate the uncertain-

ties of p(n). (Reproduced from Hong and Man-

del (1986).)
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15.4.3 Number states in a micromaser

Number states have been produced in a standing-wave mode inside a cavity, as opposed
to the traveling-wave packet described above. In the microwave region, number states
inside a microwave cavity have been produced by means of the micromaser described
in Section 12.3. This is accomplished by two methods described below.

In the first method, a completed measurement of the final state of the atom after it
exits the cavity allows the experimenter to know—with certainty—whether the atom
has made a downwards transition inside the cavity. Combining this knowledge with
the conservation of energy determines—again with certainty—the number state of the
cavity field.

In the second method, an exact integer number of photons is maintained inside
the cavity by means of a trapping state (Walther, 2003). According to eqn (12.21),
the effective Rabi frequency for an on-resonance, n-photon state is Ωn = 2g

√
(n + 1),

where g is the coupling constant of the two-level atom with the cavity mode. The
Rabi period is therefore Tn = 2π/Ωn = π/

(
g
√

n + 1
)
. If the interaction time Tint of

the atom with the field satisfies Tint = kTn, where k is an integer, then an atom that
enters the cavity in an excited state will leave in an excited state. Thus the number of
photons in the cavity will be unchanged—i.e. trapped—if the condition

√
n + 1gTint = kπ (15.134)

is satisfied.
Trapping states are characterized by the number of photons remaining in the cav-

ity, and the number of Rabi cycles occurring during the passage of an atom through the
cavity. Thus the trapping state (n, k) = (1, 1) denotes a state in which a one-photon,
one-Rabi-oscillation trapped field state is maintained by a continuous stream of Ry-
dberg atoms prepared in the upper level. Experiments show that, under steady-state
excitation conditions, the one-photon cavity state is stable. Although this technique
produces number states of microwave photons in a beautifully simple and clean way, it
is difficult to extract them from the high-Q superconducting cavity for use in external
experiments.

15.5 Exercises

15.1 Quadrature variances

(1) Use eqn (15.14) and the canonical commutation relations to calculate : X2 : and
to derive eqns (15.17) and (15.18).

(2) Are the conditions (15.19) and (15.20) sufficient, as well as necessary? If not, what
are the sufficient conditions?

(3) Explain why number states and coherent states are not squeezed states.

(4) Is the state |ψ〉 = cos θ |0〉+ sin θ |1〉 squeezed for any value of θ? In other words,
for a given θ, is there a quadrature X with VN (X) < 0?
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15.2 Squeezed number state

Number states are not squeezed, but it is possible to squeeze a number state. Consider
|ζ, n〉 = S (ζ) |n〉.
(1) Evaluate the Mandel Q-parameter for this state and comment on the result.
(2) What quadrature exhibits maximum squeezing?

15.3 Displaced squeezed states and squeezed coherent states∗

Use the properties of S (ζ) and D (α) to derive the relations (15.52)–(15.54).

15.4 Photon statistics for the displaced squeezed state∗

Carry out the integral in eqn (15.67) using polar coordinates and combine this with
the other results to get eqn (15.69).

15.5 Squeezing of emitted light∗

(1) Carry out the calculations required to derive eqns (15.125) and (15.126).
(2) Use these results to derive eqn (15.128).
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Linear optical amplifiers∗

Generally speaking, an optical amplifier is any device that converts a set of input modes
into a set of output modes with increased intensity. The only absolutely necessary
condition is that the creation and annihilation operators for the two sets of modes
must be connected by a unitary transformation. Paradoxically, this level of generality
makes it impossible to draw any general conclusions; consequently, further progress
requires some restriction on the family of amplifiers to be studied.

To this end, we consider the special class of unitary input–output transformations
that can be expressed as follows. The annihilation operator for each output mode
is a linear combination, with c-number coefficients, of the creation and annihilation
operators for the input modes. Devices of this kind are called linear amplifiers. We
note in passing that linear amplifiers are quite different from laser oscillator-amplifiers,
which typically display the highly nonlinear phenomenon of saturation (Siegman, 1986,
Sec. 4.5).

For typical applications of linear, optical amplifiers—e.g. optical communication or
the generation of nonclassical states of light—it is desirable to minimize the noise added
to the input signal by the amplifier. The first source of noise is the imperfect coupling
of the incident signal into the amplifier. Some part of the incident radiation will be
scattered or absorbed, and this loss inevitably adds partition noise to the transmitted
signal. In the literature, this is called insertion-loss noise, and it is gathered together
with other effects—such as noise in the associated electronic circuits—into the category
of technical noise. Since these effects vary from device to device, we will concentrate
on the intrinsic quantum noise associated with the act of amplification itself.

In the present chapter we first discuss the general properties of linear amplifiers
and then describe several illustrative examples. In the final sections we present a
simplified version of a general theory of linear amplifiers due to Caves (1982), which
is an extension of the earlier work of Haus and Mullen (1962).

16.1 General properties of linear amplifiers

The degenerate optical parametric amplifier (OPA) studied in Section 15.2 is a linear
device, by virtue of the assumption that depletion of the pump field can be neglected. In
the application to squeezing, the input consists of vacuum fluctuations—represented
by b2,in (t)—entering the mirror M2, and the corresponding output is the squeezed
state—represented by b2,out (t)—emitted from M2. Both the input and the output
have the carrier frequency ω0. Rather than extending this model to a general theory
of linear amplifiers that allows for multiple inputs and outputs and frequency shifts
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between them, we choose to explain the basic ideas in the simplest possible context:
linear amplifiers with a single input field and a single output field—denoted by bin (t)
and bout (t) respectively—having a common carrier frequency.

We will also assume that the characteristic response frequency of the amplifier and
the bandwidth of the input field are both small compared to the carrier frequency. This
narrowband assumption justifies the use of the slowly-varying amplitude operators
introduced in Chapter 14, but it should be remembered that both the input and the
output are reservoir modes that do not have sharply defined frequencies. Just as in the
calculation of the squeezing of the emitted light in Section 15.2, the input and output
are described by continuum modes.

All other modes involved in the analysis are called internal modes of the amplifier.
In the sample–reservoir language, the internal modes consist of the sample modes and
any reservoir modes other than the input and output. A peculiarity of this jargon is
that some of the ‘internal’ modes are field modes, e.g. vacuum fluctuations, that exist
in the space outside the physical amplifier.

The definition of the amplifier is completed by specifying the Heisenberg-picture
density operator ρ that describes the state of both the input field and the internal
modes of the amplifier. This is the same thing as specifying the initial value of the
Schrödinger-picture density operator. Since we want to use the amplifier for a broad
range of input fields, it is natural to require that the operating state of the amplifier is
independent of the incident field state. This condition is imposed by the factorizability
assumption

ρ = ρinρamp , (16.1)

where ρin and ρamp respectively describe the states of the input field and the amplifier.
In the generic states of interest for communications, the expectation value of the

input field does not vanish identically:

〈bin (t)〉 = Tr [ρinbin (t)] �= 0 . (16.2)

Situations for which 〈bin (t)〉 = 0 for all t—e.g. injecting the vacuum state or a
squeezed-vacuum state into the amplifier—are to be treated as special cases.

The identification of the measured values of the input and output fields with the
expectation values

〈
bin (t)

〉
and

〈
bout (t)

〉
runs into the apparent difficulty that the

annihilation operators bin (t) and bout (t) do not represent measurable quantities. To
see why this is not really a problem, we recall the discussion in Section 9.3, which
showed that both heterodyne and homodyne detection schemes effectively measure a
hermitian quadrature operator. For example, it is possible to measure one member of
the conjugate pair (Xβ,in (t) , Yβ,in (t)), where

Xβ,in (t) =
1
2

[
e−iβbin (t) + eiβb

†
in (t)

]
,

Yβ,in (t) =
1
2i

[
e−iβbin (t) − eiβb

†
in (t)

]
.

(16.3)

The quadrature angle β is determined by the relative phase between the input signal
and the local oscillator employed in the detection scheme. The operational significance
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of the complex expectation value
〈
bin (t)

〉
is established by carrying out measurements

of Xβ,in (t) for several quadrature angles and using the relation

〈Xβ,in (t)〉 =
1
2

[
e−iβ

〈
bin (t)

〉
+ eiβ

〈
b
†
in (t)

〉]
= Re

[
e−iβ

〈
bin (t)

〉]
. (16.4)

With this reassuring thought in mind, we are free to use the algebraically simpler
approach based on the annihilation operators. An important example is provided by
the phase transformation,

bin (t) → b
′
in (t) = e−iθbin (t) , (16.5)

of the annihilation operator. The corresponding transformation for the quadratures,

Xβ,in (t) → X ′
in (t) = Xβ,in (t) cos θ + Yβ,in (t) sin θ , (16.6)

Yβ,in (t) → Y ′
in (t) = Yβ,in (t) cos θ − Xβ,in (t) sin θ , (16.7)

represents a rotation through the angle θ in the (X, Y )-plane. As explained in Section
8.1, these transformations are experimentally realized by the use of phase shifters.

16.1.1 Phase properties of linear amplifiers

From Section 14.1.1-C, we know that the noise properties of the input/output fields are
described by the correlation functions of the fluctuation operators, δbγ (ω) ≡ bγ (ω)−〈
bγ (ω)

〉
, where γ = in, out. Thus the input/output noise correlation functions are

defined by

Kγ (ω, ω′) =
1
2

〈
δbγ (ω) δb

†
γ (ω′) + δb

†
γ (ω′) δbγ (ω)

〉
(γ = in, out) . (16.8)

The definitions (14.98) and (14.107) relating the input/output fields to the reservoir
operators allow us to apply the conditions (14.27) and (14.34) for phase-insensitive
noise. The input/output noise reservoir is phase insensitive if the following conditions
are satisfied.
(1) The noise in different frequencies is uncorrelated, i.e.

Kγ (ω, ω′) = Nγ (ω) 2πδ (ω − ω′) , (16.9)

where
Nγ (ω) =

〈
δb

†
γ (ω) δbγ (ω)

〉
+

1
2

(16.10)

is the noise strength.
(2) The phases of the fluctuation operators are randomly distributed, so that〈

δbγ (ω) δbγ (ω′)
〉

= 0 . (16.11)

With this preparation, we are now ready to introduce an important division of the
family of linear amplifiers into two classes. A phase-insensitive amplifier is defined
by the following conditions.
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(i) The output field strength,
∣∣〈bout (ω)

〉∣∣2, is invariant under phase transformations
of the input field.

(ii) If the input noise is phase insensitive, so is the output noise.
Condition (i) means that the only effect of a phase shift in the input field—i.e. a rota-
tion of the quadratures—is to produce a corresponding phase shift in the output field.
Condition (ii) means that the noise added by the amplifier is randomly distributed in
phase. An amplifier is said to be phase sensitive if it fails to satisfy either one of
these conditions.

In addition to the categories of phase sensitive and phase-insensitive, amplifiers
can also be classified according to their physical configuration. In the degenerate OPA
the gain medium is enclosed in a resonant cavity, and the input field is coupled into
one of the cavity modes. The cavity mode in turn couples to an output mode to
produce the amplified signal. This configuration is called a regenerative amplifier,
which is yet another term borrowed from radio engineering. One way to understand
the regenerative amplifier is to visualize the cavity mode as a traveling wave bouncing
back and forth between the two mirrors. These waves make many passes through the
gain medium before exiting through the output port.

The advantage of greater overall gain, due to multiple passes through the gain
medium, is balanced by the disadvantage that the useful gain bandwidth is restricted
to the bandwidth of the cavity. This restriction on the bandwidth can be avoided
by the simple expedient of removing the mirrors. In this configuration, there are no
reflected waves—and therefore no multiple passes through the gain medium—so these
devices are called traveling-wave amplifiers.

16.2 Regenerative amplifiers

In this section we take advantage of the remarkable versatility of the spontaneous
down-conversion process to describe three regenerative amplifiers, two phase insensi-
tive and one phase sensitive.

16.2.1 Phase-insensitive amplifiers

A modification of the degenerate OPA design of Section 15.2 provides two examples
of phase-insensitive amplifiers. In the modified design, shown in Fig. 16.1, the signal
and idler modes are frequency degenerate, but not copropagating. In the absence
of the mirrors M1 and M2, down-conversion of the pump radiation would produce
symmetrical cones of light around the pump direction, but this azimuthal symmetry
is broken by the presence of the cavity axis joining the two mirrors. This arrangement
picks out a single pair of conjugate modes: the idler and the signal.

The boundary conditions at the mirrors define a set of discrete cavity modes, and
the fundamental cavity mode—which we will call the idler—is chosen to satisfy the
phase-matching condition ω0 = ωP /2. The discrete idler mode is represented by a
single operator a (t). On the other hand, the signal mode is a traveling wave with
propagation direction determined by the phase-matching conditions in the nonlin-
ear crystal. Thus the signal mode is represented by a continuous family of operators
bsig,Ω (t).
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Fig. 16.1 Two examples of phase-insensitive optical amplifiers based on down-conversion in

a χ(2) crystal: (a) taking the signal-mode in- and out-fields as the input and output of the

amplifier defines a phase-preserving amplifier; (b) taking the signal-mode in-field as the input

and the out-field through mirror M2 as the output defines a phase-conjugating amplifier.

The first step in dividing the world into sample and reservoirs is to identify the
sample. From the experimental point of view, the sample in this case evidently consists
of the atoms in the nonlinear crystal, combined with the idler mode in the cavity. The
theoretical description is a bit simpler, since—as we have seen in Chapter 13—the
atoms in the crystal are only virtually excited. This means that the effect of the
atoms is completely accounted for by the signal–idler coupling constant; consequently,
the sample can be taken to consist of the idler mode alone. There are then three
environmental reservoirs: the signal reservoir represented by the operators bsig,Ω (t)
and two noise reservoirs represented by the operators b1,Ω (t) and b2,Ω (t) describing
radiation entering and leaving the cavity through the mirrors.

Analyzing this model requires a slight modification of the method of in- and out-
fields described in Section 14.3. The new feature requiring the modification is the form
of the coupling between the idler (sample) mode and the signal (reservoir) mode. This
term in the interaction Hamiltonian HSE does not have the generic form of eqn (14.88);
instead, it is described by eqn (15.7). In a notation suited to the present discussion:

Hsig−idl
SE = i�

∫ ∞

0

dΩ

√
D (ω)
2π

{
vP (Ω) e−iωP tb†sig,Ωa† − v∗P (Ω) eiωP tabsig,Ω

}
, (16.12)

where vP (Ω) is the strength of the coupling—induced by the nonlinear crystal—
between the signal mode, the idler mode, and the pump field. The presence of the
products b†sig,Ωa† and absig,Ω represents the fact that the signal and idler photons are
created and annihilated in pairs in down-conversion.

After including this new term in HSE, the procedures explained in Section 14.3 can
be applied to the present problem. The interaction term in eqn (16.12) leads to the
modified Heisenberg equations

d

dt
a (t) =

∫ ∞

0

dΩ

√
D (ω)
2π

vP (Ω) b
†
sig,Ω (t) +

2∑
m=1

∫ ∞

0

dΩ

√
D (ω)
2π

vm (Ω) bm,Ω (t) ,

(16.13)
d

dt
bsig,Ω (t) = −i (Ω − ω0) bsig,Ω (t) +

√
D (ω)
2π

vP (Ω) a† (t) , (16.14)
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where vm (Ω) describes the coupling of the idler to the noise modes, and a (t) =
a (t) exp (iω0t), etc. The equations for the noise reservoir operators bm,Ω (t) have the
generic form of eqn (14.89). The retarded and advanced solutions of eqn (16.14) for
the signal mode are respectively

bsig,Ω (t) = bsig,Ω (t0) e−i(Ω−ω0)(t−t0) + vP (Ω)
∫ t

t0

dt′a† (t′) e−i(Ω−ω0)(t−t′) (16.15)

and

bsig,Ω (t) = bsig,Ω (t1) e−i(Ω−ω0)(t−t1) − vP (Ω)
∫ t1

t

dt′a† (t′) e−i(Ω−ω0)(t−t′). (16.16)

The corresponding results for the noise reservoir operators, bm,Ω (t), are given by eqns
(14.94) and (14.105).

After substituting the retarded solutions for bsig,Ω (t) and bm,Ω (t) into the equation
of motion (16.13), we impose the Markov approximation by assuming that the idler
mode is coupled to a broad band of excitations in the two mirror reservoirs and in
the signal reservoir. The general discussion in Section 14.3 yields the broadband rule
vm (Ω) ∼ √

κm for the noise modes. The signal mode must be treated differently, since
vP (Ω) is proportional to the classical pump field, which has a well-defined phase θP .
In this case the broadband rule is vP (Ω) ∼ √

gP exp (iθP ), where gP is positive.
The contributions from the noise reservoirs yield the expected loss term−κCa (t) /2,

but the contribution from the signal reservoir instead produces a gain term +gP a (t) /2.
This new feature is another consequence of the fact that the down-conversion mech-
anism creates and annihilates the signal and idler photons in pairs. Emission of a
photon into the continuum signal reservoir can never be reversed; therefore, the asso-
ciated idler photon can also never be lost. On the other hand, the inverse process—in
which a signal–idler pair is annihilated to create a pump photon—does not contribute
in the approximation of constant pump strength. Consequently, in the linear approx-
imation the coupling of the signal and idler modes through down-conversion leads
to an increase in the strength of both signal and idler fields at the expense of the
(undepleted) classical pump field.

After carrying out these calculations, one finds the retarded Langevin equation for
the idler mode:

d

dt
a (t) = −1

2
(κC − gP ) a (t)+

√
gP eiθP b

†
sig,in (t)+

√
κ1 b1,in (t)+

√
κ2 b2,in (t) , (16.17)

where
bsig,in (t) =

∫ ∞

−∞

dΩ
2π

bsig,Ω (t0) e−i(Ω−ω0)(t−t0) (16.18)

is the signal in-field, and the in-fields for the mirrors are given by eqn (14.98). For
gP > κC , eqn (16.17) predicts an exponential growth of the idler field that would
violate the weak-field assumptions required for the model. Consequently—just as in
the treatment of squeezing in Section 15.2-A—the pump field must be kept below the
threshold value (gP < κC).
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We now imitate the empty-cavity analysis of Section 14.3.3 by transforming eqn
(16.17) to the frequency domain and solving for a (ω), with the result

a (ω) =
eiθP

√
gP b

†
sig,in (−ω) +

√
κ1 b1,in (ω) +

√
κ2 b2,in (ω)

1
2 (κC − gP ) − iω

. (16.19)

The input–output relation for the signal mode is obtained by equating the right sides
of eqns (16.15) and (16.16) and integrating over Ω to get

bsig,out (t) = bsig,in (t) +
√

gP eiθP a† (t) (16.20)

in the time domain, or

bsig,out (ω) = bsig,in (ω) +
√

gP eiθP a† (−ω) (16.21)

in the frequency domain. The input–output relations for the mirror reservoirs are given
by the frequency-domain form of eqn (14.109):

b1,out (ω) = b1,in (ω) −√
κ1 a (ω) , (16.22)

b2,out (ω) = b2,in (ω) −√
κ2 a (ω) . (16.23)

A Phase-transmitting OPA

The first step in defining an amplifier is to decide on the identity of the input and
output fields. In other words: What is to be measured? For the first example, we choose
the in-field and out-field of the signal mode as the input and output fields, i.e. bin (ω) =
bsig,in (ω) and bout (ω) = bsig,out (ω). The idler field and the two mirror reservoir in-
fields are then internal modes of the amplifier. Substituting these identifications and
the solution (16.19) into eqn (16.21) yields the amplifier input–output equation

bout (ω) = P (ω) bin (ω) + η (ω) , (16.24)

where the coefficient

P (ω) =
1
2 (κC + gP ) − iω
1
2 (κC − gP ) − iω

(16.25)

has the symmetry property
P (ω) = P ∗ (−ω) , (16.26)

and the operator

η (ω) =
√

gP eiθP ξ†C (−ω)
1
2 (κC − gP ) − iω

=
√

gP eiθP

1
2 (κC − gP ) − iω

[√
κ1 b

†
1,in (−ω) +

√
κ2 b

†
2,in (−ω)

]
(16.27)

is called the amplifier noise.
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This result shows that the noise added by the amplifier is entirely due to the noise
reservoirs associated with the mirrors. The absence of noise added by the atoms in
the nonlinear crystal is a consequence of the fact that the excitations of the atoms
are purely virtual. In most applications, only vacuum fluctuations enter through M1
and M2, but the following calculations are valid in the more general situation that
both mirrors are coupled to any phase-insensitive noise reservoirs. In particular, the
vanishing ensemble average of the noise operator η (ω) implies that the input–output
equation for the average field is〈

bout (ω)
〉

= P (ω)
〈
bin (ω)

〉
. (16.28)

Subtracting this equation from eqn (16.24) yields the input–output equation

δbout (ω) = P (ω) δbin (ω) + η (ω) (16.29)

for the fluctuation operators.
The first step in the proof that this amplifier is phase insensitive is to use eqn

(16.28) to show that the effect of a phase transformation applied to the input field is〈
b
′
out (ω)

〉
= P (ω)

〈
b
′
in (ω)

〉
= eiθ

〈
bout (ω)

〉
. (16.30)

In other words, changes in the phase of the input signal are simply passed through the
amplifier. Amplifiers with this property are said to be phase transmitting. The field
strength

∣∣〈bout (ω)
〉∣∣2 is evidently unchanged by a phase transformation; therefore the

amplifier satisfies condition (i) of Section 16.1.1.
Turning next to condition (ii), we note that the operators δbin (ω) and η (ω) are lin-

ear functions of the uncorrelated reservoir operators bsig,Ω (t0) and bm,Ω (t0) (m = 1, 2).
This feature combines with eqn (16.29) to give

Kout (ω, ω′) = P (ω)P ∗ (ω′)Kin (ω, ω′) + Kamp (ω, ω′) , (16.31)

where
Kamp (ω, ω′) =

1
2
〈
η (ω) η† (ω′) + η† (ω′) η (ω)

〉
(16.32)

is the amplifier–noise correlation function. Since η (ω) is a linear combination of the
mirror noise operators, the assumption that the mirror noise is phase insensitive guar-
antees that

Kamp (ω, ω′) = Namp (ω) 2πδ (ω − ω′) , (16.33)
where Namp (ω) is the amplifier noise strength. If the correlation function Kin (ω, ω′)
satisfies eqn (16.9), then eqns (16.31) and (16.33) guarantee that Kout (ω, ω′) does
also. The output noise strength is then given by

Nout (ω) = |P (ω)|2 Nin (ω) + Namp (ω) . (16.34)

It is also necessary to verify that the output noise satisfies eqn (16.11), when the
input noise does. This is an immediate consequence of the phase insensitivity of the
amplifier noise and the input–output equation (16.29), which together yield

〈δbout (ω) δbout (ω′)〉 = P (ω)P (ω′) 〈δbin (ω) δbin (ω′)〉 . (16.35)

Putting all this together shows that the amplifier is phase insensitive, since it satisfies
conditions (i) and (ii) from Section 16.1.1.
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For this amplifier, it is reasonable to define the gain as the ratio of the output field
strength to the input field strength:

G (ω) =

∣∣〈bout (ω)
〉∣∣2∣∣〈bin (ω)
〉∣∣2 =

|〈bout (ω + ω0)〉|2
|〈bin (ω + ω0)〉|2

. (16.36)

Using eqn (16.28) yields the explicit expression

G (ω − ω0) =
(κC + gP )2 /4 + (ω − ω0)

2

(κC − gP )2 /4 + (ω − ω0)
2 , (16.37)

which displays the expected peak in the gain at the resonance frequency ω0. An alter-
native procedure is to define the gain in terms of the quadrature operators, and then
to show—see Exercise 16.1—that the gain is the same for all quadratures.

B Phase-conjugating OPA

The crucial importance of the choice of input and output fields is illustrated by using
the apparatus shown in Fig. 16.1 to define a quite different amplifier. In this version the
input field is still the signal-mode in-field bsig,in (ω), but the output field is the out-field
b2,out (ω) for the mirror M2. The internal modes are the same as before. The input–
output equation for this amplifier—which is derived from eqn (16.23) by using the
solution (16.19) and the identifications bin (ω) = bsig,in (ω) and bout (ω) = b2,out (ω)—
has the form

bout (ω) = C (ω) eiθP b
†
in (−ω) + η (ω) . (16.38)

The coefficient C (ω) and the amplifier noise operator are respectively given by

C (ω) = −
√

κ2gP

1
2 (κC − gP ) − iω

(16.39)

and

η (ω) =
1
2 (κ1 − κ2 − gP ) − iω

1
2 (κC − gP ) − iω

b2,in (ω) −
√

κ1κ2

1
2 (κC − gP ) − iω

b1,in (ω) . (16.40)

The important difference from eqn (16.24) is that the output field depends on the
adjoint of the input field. Note that C (ω) has the same symmetry as P (ω):

C (ω) = C∗ (−ω) . (16.41)

The ensemble average of eqn (16.38) is〈
bout (ω)

〉
= C (ω)

〈
b
†
in (−ω)

〉
, (16.42)

so the phase transformation bin (ω) → b
′
in (ω) = exp (iθ) bin (ω) results in〈

b
′
out (ω)

〉
= e−iθC (ω)

〈
b
†
in (−ω)

〉
= e−iθ

〈
bout (ω)

〉
. (16.43)

Instead of being passed through the amplifier unchanged, the phasor exp (iθ) is re-
placed by its conjugate. A device with this property is called a phase-conjugating
amplifier.
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This amplifier nevertheless satisfies condition (i) of Section 16.1.1, since∣∣∣〈b
′
out (ω)

〉∣∣∣2 =
∣∣〈bout (ω)

〉∣∣2 . (16.44)

The argument used in Section 16.2.1-A to establish condition (ii) works equally well
here; therefore, the alternative design also defines a phase-insensitive amplifier. The
form of the input–output relation in this case suggests that the gain should be defined
as

G (ω) =

∣∣〈bout (ω)
〉∣∣2∣∣∣〈b

†
in (−ω)

〉∣∣∣2 = |C (ω)|2 =
κ2gP

1
4 (κC − gP )2 + ω2

. (16.45)

16.2.2 Phase-sensitive OPA

In the design shown in Fig. 16.2 the fields entering and leaving the cavity through
the mirror M1 are designated as the input and output fields respectively, i.e. bin (t) =
b1,in (t) and bout (t) = b1,out (t). The degenerate signal and idler modes of the cavity
and the input field b2,in (t) for the mirror M2 are the internal modes of the amplifier.
The input–output relation is obtained from eqn (15.117) by applying this identification
of the input and output fields:

bout (ω) = P (ω) bin (ω) + C (ω) eiθP b
†
in (−ω) + η (ω) . (16.46)

The phase-transmitting and phase-conjugating coefficients are respectively

P (ω) = 1 − κ1 (κC/2 − iω)
(κC/2 − iω)2 − |ΩP |2

(16.47)

and

C (ω) = − |ΩP |κ1

(κC/2 − iω)2 − |ΩP |2
. (16.48)

M1 M2

Pump

1, in

1, out 2, in

2, out

1 2

Fig. 16.2 A phase-sensitive amplifier based on the degenerate OPA. The heavy solid arrow

represents the classical pump; the thin solid arrows represent the input and output modes

for the mirror M1; and the dashed arrows represent the input and output for the mirror M2.
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The functions P (ω) and C (ω) satisfy eqns (16.26) and (16.41) respectively. The am-
plifier noise operator,

η (ω) = −
√

κ1κ2

(κC/2 − iω)2 − |ΩP |2
[
(κC/2 − iω) b2,in (ω) + ΩP b

†
2,in (−ω)

]
, (16.49)

only depends on the reservoir operators associated with the mirror M2, so the amplifier
noise is entirely caused by vacuum fluctuations passing through the unused port at
M2.

According to eqn (16.46), the output field strength is

∣∣〈bout (ω)
〉∣∣2 = |P (ω)|2 ∣∣〈bin (ω)

〉∣∣2 + |C (ω)|2
∣∣∣〈b

†
in (−ω)

〉∣∣∣2
+ 2 Re

[
P (ω)C∗ (ω)

〈
bin (ω)

〉 〈
b
†
in (−ω)

〉∗]
. (16.50)

We first test condition (i) of Section 16.1.1, by applying the phase transformation
(16.5) to the input field and evaluating the difference between the transformed and
the original output intensities to get

δ
∣∣〈bout (ω)

〉∣∣2 =
∣∣∣〈b

′
out (ω)

〉∣∣∣2 − ∣∣〈bout (ω)
〉∣∣2

= 2 Re
[(

e2iθ − 1
)
P (ω)C∗ (ω)

〈
bin (ω)

〉 〈
b
†
in (−ω)

〉∗]
.

(16.51)

Satisfying condition (i) would require the right side of this equation to vanish as an
identity in θ. The generic assumption (16.2) combined with the explicit forms of the
functions P (ω) and C (ω) makes this impossible; therefore, the amplifier is phase
sensitive.

This feature is a consequence of the fact that P (ω) and C (ω) are both nonzero, so
that the right side of eqn (16.46) depends jointly on bin (ω) and b

†
in (−ω). A straight-

forward calculation shows that condition (ii) of Section 16.1.1 is also violated, even
for the simple case that the reservoir for the mirror M2 is the vacuum. Choosing an
appropriate definition of the gain for a phase-sensitive amplifier is a bit trickier than
for the phase-insensitive cases, so this step will be postponed to the general treatment
in Section 16.4.

The alert reader will have noticed that the amplified signal is propagating back-
wards toward the source of the input signal. Devices of this kind are sometimes called
reflection amplifiers. This is not a useful feature for communications applications;
therefore, it is necessary to reverse the direction of the amplifier output so that it
propagates in the same direction as the input signal. Mirrors will not do for this task,
since they would interfere with the input. One solution is to redirect the amplifier
output by using an optical circulator, as described in Section 8.6. This device will
redirect the output signal, but it will not interfere with the input signal or add further
noise.
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16.3 Traveling-wave amplifiers

The regenerative amplifiers discussed above enhance the nonlinear interaction for a
relatively weak cw pump beam by means of the resonant cavity formed by the mirrors
M1 and M2. This approach has the disadvantage of restricting the useful bandwidth to
that of the cavity. An alternative method is to remove the mirrors M1 and M2 to get
the configuration shown in Fig. 16.3, but this experimental simplification inevitably
comes at the expense of some theoretical complication.

The mirrors in the regenerative amplifiers perform two closely related functions.
The first is to guarantee that the field inside the cavity is a superposition of a discrete
set of cavity modes. In practice, the design parameters are chosen so that only one
cavity mode is excited. The position dependence of the field is then entirely given by
the corresponding mode function; in effect, the cavity is a zero-dimensional system.
The second function—which follows from the first—is to justify the sample–reservoir
model that treats the discrete modes inside the cavity and the continuum of reservoir
modes outside the cavity as kinematically-independent degrees of freedom.

Removing the mirrors eliminates both of these conceptual simplifications. Since
there are no discrete cavity modes, each of the continuum of external modes propagates
through the amplifier and interacts with the gain medium. Thus all field modes are
reservoir modes, and the sample consists of the atoms in the gain medium.

The interaction of the field with the gain medium could be treated by generalizing
the scattering description of passive, linear devices developed in Section 8.2, but this
approach would be quite complicated in the present application. The fact that the
sample occupies a fixed interval, say 0 � z � LS , along the propagation (z) axis
violates translation invariance and therefore conservation of momentum. Consequently,
the scattering matrix for the amplifier connects each incident plane wave, exp (ikz),
to a continuum of scattered waves exp (ik′z).

We will avoid this complication by employing a position–space approach that
closely resembles the classical theory of parametric amplification (Yariv, 1989, Chap.
17). This technique can also be regarded as the Heisenberg-picture version of a method
developed to treat squeezing in a traveling-wave configuration (Deutsch and Garrison,
1991b).

16.3.1 Laser amplifier

As a concrete example, we consider a sample composed of a collection of three-level
atoms—with the level structure displayed in Fig. 16.4—which is made into a gain

Fig. 16.3 A black box schematic of a travel-

ing-wave amplifier. The shaded box indicates

the gain medium and the fields at the two ports

are the input and output values of the signal.

The vacuum fluctuations entering port 2 are

not indicated, since they do not couple to the

signal.
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Fig. 16.4 A three-level atom with a popula-

tion inversion between levels 1 and 2, main-

tained by an incoherent pump (dark double ar-

row) with rate RP . The solid arrow, the dashed

arrow, and the wavy arrows respectively rep-

resent the amplified signal transition, a nonra-

diative decay, and spontaneous emission.

medium by maintaining a population inversion between levels 1 and 2 through the
use of the incoherent pumping mechanism described in Section 14.5. By virtue of
the cylindrical shape of the gain medium, the end-fire modes—i.e. field modes with
frequencies ω � ω21 and propagation vectors, k, lying in a narrow cone around the
axis of the cylinder—will be preferentially amplified.

This new feature requires a modification of the reservoir assignment used for the
pumping calculation. The noise reservoir previously associated with the spontaneous
emission 2 → 1 is replaced by two reservoirs: (1) a noise reservoir associated with
spontaneous emission into modes with propagation vectors outside the end-fire cone;
and (2) a signal reservoir associated with the end-fire modes.

In the undepleted pump approximation, the back action of the atoms on the pump
field can be ignored. This certainly cannot be done for the interaction with the signal
reservoir; after all, the action of the gain medium on the signal is the whole purpose of
the device. Thus the coupling of the entire collection of atoms to the signal reservoir
must be included by using the interaction Hamiltonian

H ′
S1 = −

∑
n

[
S

(n)
21 (t)d21 · E(+) (rn, t) + HC

]
, (16.52)

where the sum runs over the atoms in the sample and the coordinate, rn, of the nth
atom is treated classically.

The description of the signal reservoir given above amounts to the assumption that
the Heisenberg-picture density operator for the input signal is a paraxial state with
respect to the z-axis; consequently, the contribution of the end-fire modes to the field
operator can be represented in terms of the slowly-varying envelope operators φs (r, t)
appearing in eqn (7.33). We will assume that the amplifier has been designed so that
only one polarization will be amplified; consequently, only one operator φ (r, t) will be
needed.

Turning next to the input signal, we recall that a paraxial state is characterized
by transverse and longitudinal length scales Λ� = 1/ (θk0) and Λ‖ = 1/

(
θ2k0

)
re-

spectively, where θ is the opening angle of the paraxial ray bundle. The scale lengths
Λ� and Λ‖ correspond respectively to the spot size and Rayleigh range of a classical
Gaussian beam. We choose θ so that Λ� > 2RS and Λ‖ � LS, where RS and LS are
respectively the radius and length of the cylinder. This allows a further simplification
in which diffraction is ignored and the envelope operator is approximated by
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φ (r, t) =
1√
σ

φ (z, t) , (16.53)

where σ = πR2
S . In this 1D approximation, the field expansion (7.33) and the commu-

tation relation (7.35) are respectively replaced by

E(+) (r, t) = i

√
�ω0 (vg0/c)

2ε0n0σ
e0φ (z, t) ei(k0z−ω0t) (16.54)

and [
φ (z, t) , φ† (z′, t)

]
= δ (z − z′) . (16.55)

The discretely distributed atoms and the continuous field are placed on a more
even footing by introducing the spatially coarse-grained operator density

Sqp (z, t) =
1

∆z

∑
n

S(n)
qp (t)χ (z − zn) . (16.56)

The averaging interval ∆z is chosen to satisfy the following two conditions. (1) A slab
with volume σ∆z contains many atoms. (2) The envelope operator φ (z, t) is essentially
constant over an interval of length ∆z. The function

χ (z − zn) = θ (∆z/2 − z + zn) θ (z − zn + ∆z/2) (16.57)

serves to confine the n-sum to the atoms in a slab of thickness ∆z centered at z. The
atomic envelope operators are defined by

Sqp (z, t) = Sqp (z, t) eiωqptei[ψq(z,t)−ψp(z,t)] , (16.58)

where the phases satisfy

ψ2 (z, t) − ψ1 (z, t) = ∆0t − k0z . (16.59)

Using this notation, together with eqn (16.54), allows us to rewrite eqn (16.52) as

H ′
S1 = −i�

∫ LS

0

dz
[
f S21 (z, t)φ (z, t) − HC

]
, (16.60)

where

f ≡
√

� (vg0/c)ω0

2ε0σ

d21 · e0

�
(16.61)

is the coupling constant.
The total electromagnetic part of the Hamiltonian for this 1D model is, therefore,

Hem =
∫ ∞

−∞
dzφ† (z, t) vg0

�

i
∇zφ (z, t) + H ′

S1 . (16.62)

This leads to the corresponding Heisenberg equation(
∂

∂t
+ vg0

∂

∂z

)
φ (z, t) = f∗S12 (z, t) for 0 � z � LS , (16.63)(

∂

∂t
+ vg0

∂

∂z

)
φ (z, t) = 0 for z < 0 or z > LS (16.64)

for the field.
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The atomic operators are coupled to the reservoirs describing the incoherent pump
and spontaneous emission into off-axis modes; therefore, we insert eqn (16.60) into the
coarse-grained version of eqn (14.177) to find

d

dt
S12 (z, t) = [i∆0 − Γ12] S12 (z, t) − f

{
S11 (z, t) − S22 (z, t)

}
φ (z, t) + ξ12 (z, t) .

(16.65)
The coarse-grained noise operator

ξ12 (z, t) =
1

∆z

∑
n

ξ
(n)
12 (t)χ (z − zn) (16.66)

has the correlation function〈
ξ12 (z, t) ξ†12 (z′, t′)

〉
= natσC12,12δ (t − t′) δ (z − z′) , (16.67)

where δ (z − z′) is a coarse-grained delta function, nat is the density of atoms, and
C12,12 is an element of the noise correlation matrix discussed in Section 14.6.2.

In the strong-pump limit, the dephasing rate Γ12 = (w21 + RP ) /2 is large com-
pared to the other terms in eqn (16.65); therefore, applying the adiabatic elimination
rule (11.187) provides the approximate solution

S12 (z, t) = f
S22 (z, t) − S11 (z, t)

Γ12 − i∆0
φ (z, t) +

ξ12 (z, t)
Γ12 − i∆0

. (16.68)

We have to warn the reader that this procedure is something of a swindle, since
ξ12 (z, t) is not a slowly-varying function of t. Fortunately, the result can be justified—
see Exercise 16.3—by interpreting δ (t − t′) in eqn (16.67) as an even coarser-grained
delta function, that only acts on test functions that vary slowly on the dephasing time
scale T12 = 1/Γ12.

In the linear approximation for eqn (16.68), the operator S22 (z, t)− S11 (z, t) can
be simplified in two ways. The first is to neglect the small quantum fluctuations,
i.e. to replace the operator by its average

〈
S22 (z, t) − S11 (z, t)

〉
. The next step is to

solve the averaged form of the operator Bloch equations (14.174)–(14.177), with the
approximation that H ′

S1 = 0. The result is

S22 (z, t) − S11 (z, t) ≈ 〈
S22 (z, t) − S11 (z, t)

〉
= natσD , (16.69)

where D is the steady-state inversion for a single atom. With these approximations,
the propagation equation (16.63) becomes(

∂

∂t
+ vg0

∂

∂z

)
φ (z, t) =

|f|2 natσD

Γ12 − i∆0
φ (z, t) +

f∗

Γ12 − i∆0
ξ12 (z, t) . (16.70)

This equation is readily solved by transforming to the wave coordinates:

τ = t − z/vg0 (the retarded time for the signal wave) ,

z = z ,
(16.71)



��� Linear optical amplifiers∗

to get
∂

∂z
φ (z, τ) = gφ (z, τ) +

f∗

vg0 (Γ12 − i∆0)
ξ12 (z, τ) , (16.72)

where

g =
|f|2
vg0

natσD

[Γ12 − i∆0]
=

k0 |d21 · e0|2 natD

2ε0� [Γ12 − i∆0]
(16.73)

is the (complex) small-signal gain. The retarded time τ can be treated as a parameter
in eqn (16.72), so the solution is

φ (z, τ) = φ (0, τ) egz +
f∗

vg0 (Γ12 − i∆0)

∫ z

0

dz1e
g(z−z1)ξ12 (z1, τ) , (16.74)

which has the form

φ (z, t) = φ (0, t − z/vg0) egz +
f∗

vg0 (Γ12 − i∆0)

∫ z

0

dz1e
g(z−z1)ξ12

(
z1, t − z − z1

vg0

)
(16.75)

in the laboratory coordinates (z, t).
Setting z = LS and letting t → t + LS/vg0 gives the field value at the output face:

φ (LS, t + LS/vg0) = φ (0, t) egLS +
f∗

vg0 (Γ12 − i∆0)

∫ LS

0

dz1e
g(z−z1)ξ12

(
z1, t +

z1

vg0

)
.

(16.76)
In order to recover the standard form for input–output relations we introduce the
representations

φ (z, t) =
1√
vg0

∫
dω

2π
bin (ω) e−iω(t−z/vg0) for z < 0 (16.77)

and
φ (z, t) =

1√
vg0

∫
dω

2π
bout (ω) e−iω(t−z/vg0) for z > LS , (16.78)

for the solutions of eqn (16.64) outside the crystal. The factor 1/
√

vg0 is inserted to
guarantee that the commutation relation (16.55) for φ (z, t) and the standard input–
output commutation relations[

bγ (ω) , b†γ (ω′)
]

= 2πδ (ω − ω′) (γ = in, out) (16.79)

are both satisfied. Substituting eqns (16.77) and (16.78) into eqn (16.76) and carrying
out a Fourier transform produces the input–output relation

bout (ω) = egLSbin (ω) + η (ω) , (16.80)

where

η (ω) =
f∗

√
vg0 (Γ12 − i∆0)

∫ LS

0

dz1e
g(z−z1)e−iωz1/vg0ξ12 (z1, ω) (16.81)
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is the amplifier noise operator. By using the frequency-domain form of eqn (16.67),
one can show that the noise correlation function is

Kamp (ω, ω′) =
1
2
〈
η (ω) η† (ω′) + η† (ω) η (ω′)

〉
= Namp2πδ (ω − ω′) , (16.82)

where the noise strength is

Namp =
natk0 |d21 · e0|2
2ε0� (Γ2

12 + ∆2
0)

e2gLS − 1
2g

1
2

(C12,12 + C21,21) . (16.83)

Comparing eqn (16.80) to eqn (16.46) shows that P (ω) = egLS and C (ω) = 0. Con-
sequently, this amplifier is phase insensitive and phase transmitting.

16.3.2 Traveling-wave OPA

For this example, we return to the down-conversion technique by removing the mir-
rors from the phase-sensitive design shown in Fig. 16.2. Even without the mirrors,
appropriately cutting the ends of the crystal will guarantee that the pump beam and
the degenerate signal and idler beams copropagate along the length of the crystal. We
assume a Gaussian pump beam with spot size w0 and Rayleigh range ZR focussed on
a nonlinear crystal with radius RS and length LS .

If w0 > 2RS and ZR � LS, the effects of diffraction are negligible; consequently,
the problem is effectively one-dimensional. In this limit, the classical pump field can
be expressed as

EP (r, t) = eP |EP0| eiθP fP (t − z/vgP ) ei(kP z−ωP t) , (16.84)

where we have assumed that the medium outside the crystal is linearly index matched.
The temporal shape of the pump pulse is described by the function fP (τ), with max-
imum value fP (0) = 1 and pulse duration τP . In the long-pulse limit, τP → ∞, the
problem is further simplified by setting fP (t − z/vgP ) = 1.

In the 1D limit the signal–idler mode is described by a paraxial state, so the
field can again be represented by eqn (16.54), with ω0 = ωP /2. The polarization of
the signal–idler mode is fixed, relative to that of the pump, by the phase-matching
conditions in the nonlinear crystal. Applying the 1D approximation and the long-pulse
limit to the expressions (7.39) and (13.30) yields the effective field Hamiltonian

Hem =
∫ ∞

−∞
dzφ† (z, t) vg0

�

i
∇zφ (z, t)+

�

2
g(3)

∫ LS

0

dz
{
e−iθP φ2 (z, t) + HC

}
. (16.85)

The special form of the interaction Hamiltonian—which represents the pair-produc-
tion aspect of down-conversion—produces a propagation equation(

∂

∂t
+ vg0

∂

∂z

)
φ (z, t) = −ig(3)eiθP φ† (z, t) (16.86)
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that couples the field φ (z, t) to its adjoint φ† (z, t). This means that the propagation
equation and its adjoint must be solved together. In the wave coordinates defined by
eqn (16.71) the equations to be solved are

∂

∂z
φ (z, τ) = −igeiθP φ† (z, τ) , (16.87)

∂

∂z
φ† (z, τ) = ige−iθP φ (z, τ) , (16.88)

where g = g(3)/vg0 is the weak signal gain. Since the retarded time τ only appears as
a parameter, these equations can be solved by standard techniques to find

φ (z, t) = φ (0, t − z/vg0) cosh (gz) − ieiθP φ† (0, t − z/vg0) sinh (gz) , (16.89)

where we have reverted to the original (z, t)-variables. Thus the solution at z, t is
expressed in terms of the field operators evaluated at the input face, z = 0, and the
retarded time τ = t − z/vg0.

The time-domain, input–output relation for the traveling-wave amplifier is obtained
by evaluating this solution at the output face, z = LS , and letting t → t + LS/vg0:

φ (LS , t + LS/vg0) = φ (0, t) cosh (gLS) − ieiθP φ† (0, t) sinh (gLS) . (16.90)

Fourier transforming this equation yields

e−iLS/vg0φ (LS, ω) = φ (0, ω) cosh (gLS) − ieiθP φ† (0,−ω) sinh (gLS) , (16.91)

which can be brought into the standard form for input–output relations by using the
representations (16.77) and (16.78) to find

bout (ω) = Pbin (ω) − ieiθP Cb†in (0,−ω) , (16.92)

with
P = cosh (gLS) and C = sinh (gLS) . (16.93)

Comparing this to eqn (16.46) reveals two things: (1) the amplifier is phase sensi-
tive; and (2) the noise operator is missing! In other words, the degenerate, traveling-
wave, parametric amplifier is intrinsically noiseless. This does not mean that the
right-to-left propagating vacuum fluctuations entering port 2 have been magically
eliminated; rather, they do not contribute to the output noise because they are not
scattered into the left-to-right propagating signal–idler mode.

16.4 General description of linear amplifiers

We now turn from the examples considered above to a general description of the
class of single-input, single-output linear amplifiers introduced at the beginning of
this chapter. This will be a black box treatment with no explicit assumptions about
the internal structure of the amplifier.
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At a given time t, bin (t) and bout (t) are annihilation operators for photons in the
input and output modes respectively. The basic assumption for linear amplifiers is
that bout (t) can be expressed as a linear combination of the input-mode creation and
annihilation operators b†in (t′) and bin (t′), for times t′ < t, plus an operator representing
additional noise contributed by the amplifier. The mathematical statement of this
physical assumption is

bout (t) =
∫

dt′P (t − t′) bin (t′) +
∫

dt′C (t − t′) b†in (t′) + η (t) . (16.94)

Carrying out a Fourier transform, and combining the convolution theorem (A.55)
with the representation (14.114) leads to the frequency-domain form

bout (ω) = P (ω) bin (ω) + C (ω) b
†
in (−ω) + η (ω) . (16.95)

Since the right side involves both bin (ω) and b
†
in (−ω), the adjoint equation

b
†
out (−ω) = C∗ (−ω) bin (ω) + P ∗ (−ω) b

†
in (−ω) + η† (−ω) (16.96)

is also required. This construction guarantees that the amplifier noise operator η (ω)
only depends on the internal modes of the amplifier.

The input–output relations (16.46) for the phase-sensitive amplifier described in
Section 16.2.2 have the form of eqns (16.95) and (16.96), except for the explicit phase
factor exp (iθP ) associated with the particular pumping mechanism for that example.
This blotch can be eliminated by carrying out the uniform phase transformation

bout (ω) = b
′
out (ω) eiθP /2 , bin (ω) = b

′
in (ω) eiθP /2 , b2,in (ω) = b

′
2,in (ω) eiθP /2 .

(16.97)
When expressed in terms of the transformed (primed) operators the input–output
relation (16.46) is scrubbed clean of the offending phase factor.

This kind of maneuver is usually expressed in a condensed form something like this:
let bout (ω) → bout (ω) exp (iθP /2), etc. This is all very well, except for the following
puzzle: What has happened to the reference phase that was supposed to be provided by
the pump? The answer is that the input–output relation is only half the story. The rest
is provided by the density operator ρ = ρinρamp. For the amplifier of Section 16.2.2,
ρamp is assumed to be a phase-insensitive noise reservoir, so the phase transformation
of b2,in (ω) is not a problem. On the other hand, the input signal state ρin is not—one
hopes—pure noise; therefore, more care is needed.

To illustrate this point, consider the opposite extreme ρin =
∣∣β〉 〈β∣∣, where

∣∣β〉 is
a multimode coherent state defined in Section 5.5.1. In the present case, this means

bΩ (t0)
∣∣β〉 = βΩ

∣∣β〉 , (16.98)

which in turn yields
bin (t)

∣∣β〉 = βin (t)
∣∣β〉 , (16.99)

where
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βin (t) =
∫ ∞

−∞

dΩ
2π

βΩe−i(Ω−ω0)(t−t0) . (16.100)

This coherent state is defined with respect to the original in-field operators; conse-
quently, the action of the transformed operators is given by

b
′
in (ω)

∣∣β〉 = e−iθP /2βin (t)
∣∣β〉 . (16.101)

Thus the pump phase removed from the input–output relation is not lost; it reappears
in the calculation of the ensemble averages that are to be compared to experimental
results.

The same trick works for the examples of phase-insensitive amplifiers in Sections
16.2.1-A and 16.2.1-B. With this reassurance, we can assume that the most general
input–output equation can be written in the form of eqns (16.95) and (16.96).

16.4.1 The input–output equation

The linearity assumption embodied in eqns (16.95) and (16.96) does not in itself impose
any additional conditions on the coefficients P (ω) and C (ω), but in all the three of
the examples given above the explicit expressions for these functions satisfy the useful
symmetry condition

P ∗ (−ω) = P (ω) , C∗ (−ω) = C (ω) . (16.102)

It is worthwhile to devote some effort to finding out the source of this property. The
first step is to recall that the Langevin equations for the sample and reservoir modes
are derived from the Heisenberg equations for the fields. In the three examples con-
sidered above, a (t) is the only sample operator; and the internal sample interaction
Hamiltonian HSS is a quadratic function of a (t) and a† (t). The Heisenberg equation
for a (t) is therefore linear. The equations for the reservoir variables are also linear
by virtue of the general assumption, made in Section 14.1.1-A, that the interaction
Hamiltonian is linear in the reservoir operators.

In all three examples, these properties allow the Langevin equations for a (t) and
a† (t) to be written in the form

d

dt
ϕS (t) = −WϕS (t) + F (t) , (16.103)

where

ϕS (t) =
(

a (t)
a† (t)

)
, F (t) =

(
ξ (t)
ξ† (t)

)
, (16.104)

W is a 2 × 2 hermitian matrix, and the noise operator ξ (t) is a linear combination of
reservoir operators. Solving eqn (16.103) via a Fourier transform leads to

ϕS (ω) = V (ω)F (ω) , (16.105)

where the 2 × 2 matrix
V (ω) = (W − iω)−1 (16.106)
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satisfies

V † (−ω) = V (ω) . (16.107)

Substituting this solution into an input–output relation, such as eqn (14.109), produces
coefficients that have the symmetry property (16.102).

This analysis raises the following question: How restrictive is the assumption that
the sample operators satisfy linear equations of motion? To address this question, let us
assume that HSS contains terms that are more than quadratic in the sample operators,
so that the equations of motion are nonlinear. The solution would then express the
sample operators as nonlinear functions of the noise operators. This situation raises
two further questions, one physical and the other mathematical.

The physical question concerns the size of the higher-order terms in HSS. If they
are small, then HSS can be approximated by a quadratic form, and the linear model
is regained. If the higher-order terms cannot be neglected, then the sample must be
experiencing large amplitude excitations. Under these circumstances it is difficult to
see how the overall amplification process could be linear.

The mathematical issue is that nonlinear differential equations for the sample op-
erators cannot readily be solved by the Fourier transform method. This makes it hard
to see how a frequency-domain relation like (16.95) could be derived.

These arguments are far from conclusive, but they do suggest that imposing the
assumption of weak sample excitations will not cause a significant loss of generality.
We will therefore extend the definition of linear amplifiers to include the assumption
that the internal modes all satisfy linear equations of motion. This in turn implies that
the symmetry property (16.102) can be applied in general.

The necessity of working with the pair of input–output equations (16.95) and
(16.96) suggests that a matrix notation would be useful. The input–output equations
can be written as

ϕout (ω) = R (ω)ϕin (ω) + ζ (ω) , (16.108)

where

ϕγ (ω) =

(
bγ (ω)

b
†
γ (−ω)

)
(γ = in, out) , ζ (ω) =

(
η (ω)

η† (−ω)

)
, (16.109)

and

R (ω) =
[
P (ω) C (ω)
C (ω) P (ω)

]
(16.110)

is the input–output matrix. In this notation the symmetry condition (16.102) is

R† (−ω) = R (ω) . (16.111)

The matrix R (ω) is neither hermitian nor unitary, but it does commute with
its adjoint, i.e. R† (ω)R (ω) = R (ω)R† (ω). Matrices with this property are called
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normal, and all normal matrices have a complete, orthonormal set of eigenvectors. An
explicit calculation yields the eigenvalue–eigenvector pairs

z1 (ω) = P (ω) + C (ω) , Θ1 =
1√
2

(
1
1

)
,

z2 (ω) = P (ω) − C (ω) , Θ2 =
i√
2

(
1
−1

)
.

(16.112)

It is instructive to express the input–output equation in the basis {Θ1, Θ2}. By writing
the expansion for the in-operator ϕin as

ϕin (ω) =
√

2Xin (ω)Θ1 +
√

2Yin (ω)Θ2 , (16.113)

one finds the operator-valued coefficients to be

Xin (ω) =
1√
2
Θ†

1ϕin (ω) =
1
2

[
bin (ω) + b

†
in (−ω)

]
= Xβ=0,in (ω) ,

Yin (ω) =
1√
2
Θ†

2ϕin (ω) =
1
2i

[
bin (ω) − b

†
in (−ω)

]
= Yβ=0,in (ω) .

(16.114)

The special value, β = 0, of the quadrature angle is an artefact of the phase transfor-
mation trick—explained at the beginning of Section 16.4—used to ensure the absence
of explicit phase factors in the general input–output equation (16.95).

In this basis the input–output relations have the diagonal form

Xout (ω) = [P (ω) + C (ω)] Xin (ω) + ζ1 (ω) ,

Yout (ω) = [P (ω) − C (ω)] Yin (ω) + ζ2 (ω) ,
(16.115)

where
ζ1 (ω) =

1√
2
Θ†

1ζ (ω) =
1
2
[
η (ω) + η† (−ω)

]
= ζ†1 (−ω) ,

ζ2 (ω) =
1√
2
Θ†

2ζ (ω) =
1
2i

[
η (ω) − η† (−ω)

]
= ζ†2 (−ω) .

(16.116)

We will refer to Xout (ω) and Yout (ω) as the principal quadratures.
The ensemble average of eqn (16.108) is

Φout (ω) = R (ω)Φin (ω) , (16.117)

where

Φγ (ω) = 〈ϕγ (ω)〉 =

( 〈
bγ (ω)

〉〈
b
†
γ (−ω)

〉) =
( 〈

bγ (ω)
〉〈

bγ (−ω)
〉∗) (γ = in, out) . (16.118)

Subtracting eqn (16.117) from eqn (16.108) produces the input–output equation

δϕout (ω) = R (ω) δϕin (ω) + ζ (ω) , (16.119)
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where δϕin (ω) = ϕin (ω)−Φin (ω) and δϕout (ω) = ϕout (ω)−Φout (ω) are respectively
the fluctuation operators for the input and output. In the principal quadrature basis
this becomes

δXout (ω) = [P (ω) + C (ω)] δXin (ω) + ζ1 (ω) ,

δYout (ω) = [P (ω) − C (ω)] δYin (ω) + ζ2 (ω) .
(16.120)

The diagonalized form (16.115) of the input–output relation suggests two natural
definitions for gain in a general linear amplifier. These are the principal gains defined
by

G1 (ω) =
|〈Xout (ω)〉|2
|〈Xin (ω)〉|2 = |P (ω) + C (ω)|2 , (16.121)

G2 (ω) =
|〈Yout (ω)〉|2
|〈Yin (ω)〉|2 = |P (ω) − C (ω)|2 . (16.122)

The principal gains can also be defined as the eigenvalues of the gain matrix

G (ω) = R† (ω)R (ω) , (16.123)

which has the same eigenvectors as the input–output matrix. For phase-insensitive
amplifiers, the gain matrix is diagonal, and the principal gains are the same: G1 (ω) =
G2 (ω).

The complex functions P (ω)±C (ω) that appear in eqn (16.115) are expressed in
terms of the principal gains as

P (ω) + C (ω) =
√

G1 (ω) eiϑ1(ω) , (16.124)

P (ω) − C (ω) =
√

G2 (ω) eiϑ2(ω) , (16.125)

so that the symmetry condition (16.102) becomes

Gj (ω) = Gj (−ω) ,

ϑj (ω) = −ϑj (−ω) mod 2π

}
(j = 1, 2) . (16.126)

With this notation eqn (16.115) is replaced by

Xout (ω) =
√

G1 (ω) eiϑ1(ω)Xin (ω) + ζ1 (ω) ,

Yout (ω) =
√

G2 (ω) eiϑ2(ω)Yin (ω) + ζ2 (ω) .
(16.127)

16.4.2 Conditions for phase insensitivity

According to eqn (16.51), imposing condition (i) of Section 16.1.1 requires

2 Re
[(

e2iθ − 1
)
P (ω)C∗ (ω)

〈
bin (ω)

〉 〈
bin (−ω)

〉]
= 0 . (16.128)

This is supposed to hold as an identity in θ for all input values
〈
bin (ω)

〉
; consequently,

the coefficients must satisfy
P (ω)C∗ (ω) = 0 . (16.129)

Thus all phase-insensitive amplifiers fall into one of the two classes illustrated in Sec-
tion 16.2.1: (1) phase-transmitting amplifiers, with C (ω) = 0 and P (ω) �= 0; or (2)
phase-conjugating amplifiers, with P (ω) = 0 and C (ω) �= 0.
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Turning next to condition (ii), we recall that the fluctuation operators satisfy the
input–output relation (16.95), and that the amplifier noise operator is not correlated
with the input fields. Combining these observations with the condition (16.129) yields

Kout (ω, ω′) = P (ω)P ∗ (ω′)Kin (ω, ω′) + C (ω)C∗ (ω′)Kin (−ω′,−ω) + Kamp (ω, ω′) .
(16.130)

Imposing eqn (16.9) on both Kout (ω, ω′) and Kin (ω, ω′) then implies that

Kamp (ω, ω′) = Namp (ω) 2πδ (ω − ω′) , (16.131)

where
Namp (ω) = Nout (ω) − G (ω)Nin (ω) , (16.132)

and

G (ω) =
{ |P (ω)|2 (phase-transmitting amplifier) ,

|C (ω)|2 (phase-conjugating amplifier)
(16.133)

is the gain for the phase-insensitive amplifier. A similar calculation yields〈
δbout (ω) δbout (ω′)

〉
= P (ω)P (ω′)

〈
δbin (ω) δbin (ω′)

〉
+ C (ω)C (ω′)

〈
δb

†
in (−ω) δb

†
in (−ω′)

〉
+ 〈η (ω) η (ω′)〉 . (16.134)

Imposing eqn (16.11) on the input and output fields implies

〈η (ω) η (ω′)〉 = 0 . (16.135)

In other words, the amplifier noise is itself phase insensitive, since it satisfies eqns
(16.9) and (16.11).

16.4.3 Unitarity constraints

The derivation of the Langevin equation from the linear Heisenberg equations of mo-
tion imposes the symmetry condition (16.102) on the coefficients P (ω) and C (ω), but
the sole constraint on the amplifier noise is that it can only depend on the internal
modes of the amplifier. Additional constraints follow from the requirement that the
out-field operators are related to the in-field operators by a unitary transformation.

An immediate consequence is that the out-field operators and the in-field operators
satisfy the same canonical commutation relations:[

bγ (ω) , b
†
γ (ω′)

]
= 2πδ (ω − ω′) ,[

bγ (ω) , bγ (ω′)
]

= 0

⎫⎬⎭ (γ = in, out) . (16.136)

Substituting eqns (16.95) and (16.96) into eqn (16.136), with γ = out, imposes con-
ditions on the amplifier noise operator. Once again, we recall that bin (ω) and b

†
in (ω)

are linear functions of the input field operators evaluated at the initial time t = t0.
The amplifier noise operator depends on the noise reservoir operators evaluated at the
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same time t0, e.g. see eqn (16.49). The equal-time commutators between the internal
mode operators and the input operators all vanish; therefore, the in-field operators
bin (ω) and b

†
in (ω) commute with the amplifier noise operators η (ω) and η† (ω).

With this simplification in mind, eqn (16.136) imposes two relations between the
amplifier noise operator and the c-number coefficients:

[η (ω) , η (ω′)] = i
√

G1 (ω)G2 (ω) sin [ϑ12 (ω)] 2πδ (ω + ω′) , (16.137)

and [
η (ω) , η† (ω′)

]
=
{

1 −
√

G1 (ω)G2 (ω) cos [ϑ12 (ω)]
}

2πδ (ω − ω′) , (16.138)

where ϑ12 (ω) = ϑ1 (ω) − ϑ2 (ω). The two kinds of phase-insensitive amplifiers corre-
spond to the values ϑ12 (ω) = 0—the phase-transmitting amplifiers—and ϑ12 (ω) =
π—the phase-conjugating amplifiers.

Combining the expression (16.114) for the input quadratures with eqn (16.136)
and the identities

X†
β,in (ω) = Xβ,in (−ω) , Y †

β,in (ω) = Yβ,in (−ω) (16.139)

yields the commutation relations

[Xin (ω) , Xin (ω′)] = [Yin (ω) , Yin (ω′)] = 0 , (16.140)

and [
Xin (ω) , Y †

in (ω′)
]

=
i

2
2πδ (ω − ω′) . (16.141)

The unitary connection between the in- and out-fields requires the output quadratures
to satisfy the same relations. Substituting the input–output equation (16.115) into eqns
(16.140) and (16.141) yields an equivalent form of the unitarity conditions:

[ζj (ω) , ζj (ω′)] = 0 (j = 1, 2) , (16.142)[
ζ1 (ω) , ζ†2 (ω′)

]
=

i

2

{
1 −

√
G1 (ω)G2 (ω) eiϑ12(ω)

}
2πδ (ω − ω′) . (16.143)

16.5 Noise limits for linear amplifiers

The familiar uncertainty relations of quantum mechanics can be derived from the
canonical commutation relations by specializing the general result in Appendix C.3.7.
By a similar argument, the unitarity constraints on the noise operators impose lower
bounds on the noise added by an amplifier.

16.5.1 Phase-insensitive amplifiers

For phase-insensitive amplifiers, the commutation relations (16.137) and (16.138) re-
spectively reduce to

[η (ω) , η (ω′)] = 0 , (16.144)

and [
η (ω) , η† (ω′)

]
= {1 ∓ G (ω)} 2πδ (ω − ω′) , (16.145)

where G (ω) is the gain. The upper and lower signs correspond respectively to phase-
transmitting and phase-conjugating amplifiers. In both cases, the amplifier noise is
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phase insensitive, so Kamp (ω, ω′) satisfies eqn (16.131). Substituting this form into
the definition (16.32) then leads to

Namp (ω) 2πδ (ω − ω′) =
1
2
〈
η (ω) η† (ω′) + η† (ω′) η (ω)

〉
=

〈
η† (ω′) η (ω)

〉
+

1
2
〈[

η (ω) , η† (ω′)
]〉

=
〈
η† (ω′) η (ω)

〉
+

1
2
{1 ∓ G (ω)} 2πδ (ω − ω′) .

(16.146)

Since
〈
η† (ω′) η (ω)

〉
is a positive-definite integral kernel, we see that

Namp (ω) � 1
2
|1 ∓ G (ω)| . (16.147)

Thus a phase-insensitive amplifier with G (ω) > 1 necessarily adds noise to any input
signal.

For phase-insensitive input noise, the output noise is also phase insensitive; and
eqn (16.132) can be rewritten as

Nout (ω) = G (ω)Nin (ω) + Namp (ω) . (16.148)

For some purposes it is useful to treat the amplifier noise as though it were due to the
amplification of a fictitious input noise A (ω). This additional input noise—which is
called the amplifier noise number—is defined by

A (ω) =
Namp (ω)

G (ω)
. (16.149)

With this notation, the relation (16.148) and the inequality (16.147) are respectively
replaced by

Nout (ω) = G (ω) [Nin (ω) + A (ω)] (16.150)

and

A (ω) � 1
2

∣∣∣∣1 ∓ 1
G (ω)

∣∣∣∣ . (16.151)

Applying this inequality to eqn (16.150) yields a lower bound for the output noise:

Nout (ω) � G (ω)
{

Nin (ω) +
1
2

∣∣∣∣1 ∓ 1
G (ω)

∣∣∣∣} . (16.152)

If the input noise is due to a heat bath at temperature T , the continuum versions
of eqns (14.28) and (2.177) combine to give the noise strength,

Nin (ω) =
1

exp [β� (ω0 + ω)] − 1
+

1
2

=
1
2

coth
[

� (ω0 + ω)
2kBT

]
. (16.153)

This result suggests a more precise definition of the effective noise temperature, first
discussed in Section 9.3.2-B. The idea is to ask what increase in temperature (T → T +
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Tamp) is required to blame the total pre-amplification noise on a fictitious thermal
reservoir. A direct application of this idea leads to

1
2

coth
[

� (ω0 + ω)
2kB (T + Tamp)

]
=

1
2

coth
[

� (ω0 + ω)
2kBT

]
+ A (ω) , (16.154)

but this would make Tamp depend on the input-noise temperature T and on the fre-
quency ω. A natural way to get something that can be regarded as a property of the
amplifier alone is to impose eqn (16.154) only for the case T = 0 and for the resonance
frequency ω = 0. This yields the amplifier noise temperature

kBTamp =
�ω0

ln (1 + 1/A (0))
. (16.155)

For G (0) = G (ω0) > 1, eqns (16.155) and (16.151) provide the lower bound

kBTamp � �ω0

ln
(

3G(ω0)∓1
G(ω0)∓1

) → �ω0

ln (3)
(16.156)

on the noise temperature. The final form is the limiting value for high gains, i.e.
G (ω0) � 1.

16.5.2 Phase-sensitive amplifiers

The definition of a phase-sensitive amplifier is purely negative. An amplifier is phase
sensitive if it is not phase insensitive. One consequence of this broad definition is that
explicit constraints—such as the special form imposed on the noise correlation func-
tion by eqn (16.131)—are not available for phase-sensitive amplifiers. In the general
case, e.g. when considering broadband amplifiers, further restrictions on the family of
amplifiers are used to make up for the absence of constraints (Caves, 1982). For the
narrowband amplifiers we are studying, an alternative approach will be described be-
low. It is precisely the presence of the constraint (16.131) which makes the alternative
approach unnecessary for the noise analysis of phase-insensitive amplifiers.

The basic idea of the alternative approach is to treat narrow frequency bands of the
input and output as though they were discrete modes. For this purpose, let ∆ω be a
frequency interval that is small compared to the characteristic widths of the functions
Gj (ω) and ϑj (ω)—or P (ω) and C (ω)—and define coarse-grained quadratures and
noise operators by

F c (ω) =
∫ ω+∆ω/2

ω−∆ω/2

dω1√
2π∆ω

F (ω1) , (16.157)

where F stands for any of the operators in the set

F = {Xin (ω) , Yin (ω) , Xout (ω) , Yout (ω) , ζ1 (ω) , ζ2 (ω)} . (16.158)

All of these operators satisfy F † (ω) = F (−ω), and this property is inherited by the
coarse-grained versions: F c† (ω) = F c (−ω). From the experimental point of view, the
coarse-graining operation is roughly equivalent to the use of a narrowband-pass filter.
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The noise strength for the non-hermitian operator F c (ω) is

[∆F c (ω)]2 =
1
2
〈
δF c (ω) δF c† (ω) + δF c† (ω) δF c (ω)

〉
, (16.159)

but this general result can be simplified by using the special properties of the oper-
ators in F. The commutation relations (16.140) and (16.142) guarantee that all the
operators in F satisfy [F (ω) , F (ω′)] = 0, and the property F † (ω) = F (−ω) shows
that this is equivalent to

[
F (ω) , F † (ω′)

]
= 0. Averaging ω and ω′ over the interval

(ω − ∆ω/2, ω + ∆ω/2) in the latter form yields the coarse-grained relation[
F c (ω) , F c† (ω)

]
= 0 , (16.160)

and this allows eqn (16.159) to be replaced by

[∆F c (ω)]2 =
〈
δF c† (ω) δF c (ω)

〉
=
〈
δF c (ω) δF c† (ω)

〉
. (16.161)

The output noise strength can be related to the input noise strength and the
amplifier noise by means of the coarse-grained input–output equations:

Xc
out (ω) =

√
G1 (ω) eiϑ1(ω)Xc

in (ω) + ζc
1 (ω) ,

Y c
out (ω) =

√
G2 (ω) eiϑ2(ω)Y c

in (ω) + ζc
2 (ω) .

(16.162)

These relations are obtained by applying the averaging procedure (16.157) to eqn
(16.127), and using the assumption that the gain functions are essentially constant over
the interval (ω − ∆ω/2, ω + ∆ω/2). The lack of correlation between the in-fields and
the amplifier noise implies that the output noise strength in each principal quadrature
is the sum of the amplified input noise and the amplifier noise in that quadrature:

[∆Xc
out (ω)]2 = G1 (ω) [∆Xc

in (ω)]2 + [∆ζc
1 (ω)]2 ,

[∆Y c
out (ω)]2 = G2 (ω) [∆Y c

in (ω)]2 + [∆ζc
2 (ω)]2 .

(16.163)

In this situation there is an amplifier noise number for each principal quadrature:

Aj (ω) =

[
∆ζc

j (ω)
]2

Gj (ω)
(j = 1, 2) , (16.164)

so that eqn (16.163) can be written as

[∆Xc
out (ω)]2 = G1 (ω)

{
[∆Xc

in (ω)]2 + A1 (ω)
}

,

[∆Y c
out (ω)]2 = G2 (ω)

{
[∆Y c

in (ω)]2 + A2 (ω)
}

.
(16.165)

The signal-to-noise ratios for the principal quadratures are defined by

[SNR (X)]γ =

∣∣〈Xc
γ (ω)

〉∣∣2[
∆Xc

γ (ω)
]2 (γ = in, out) ,

[SNR (Y )]γ =

∣∣〈Y c
γ (ω)

〉∣∣2[
∆Y c

γ (ω)
]2 (γ = in, out) .

(16.166)
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Input–output relations for the signal-to-noise ratios follow by combining the ensemble
average of the operator input–output equation, eqn (16.162), with eqn (16.165) to get

[SNR (X)]out =
[SNR (X)]in

1 + A1 (ω) / [∆Xc
in (ω)]2

,

[SNR (Y )]out =
[SNR (Y )]in

1 + A2 (ω) / [∆Y c
in (ω)]2

.

(16.167)

Lower bounds on the amplifier noise strengths ∆ζc
1 (ω) and ∆ζc

2 (ω) can be derived
by applying the coarse-graining operation to the commutation relation (16.143) to get[

ζc
1 (ω) , ζc†

2 (ω)
]

=
{

1 −
√

G1 (ω)G2 (ω)eiϑ12(ω)
} i

2
. (16.168)

This looks like the commutation relations between a canonical pair, except for the fact
that the operators ζc

1 (ω) and ζc†
2 (ω) are not hermitian. This flaw can be circumvented

by applying the generalized uncertainty relation, 2∆C∆D � |〈[C, D]〉|, that is derived
in Appendix C.3.7. This result is usually quoted only for hermitian operators, but it
is actually valid for any pair of normal operators C and D, i.e. operators satisfying[
C, C†] =

[
D, D†] = 0. By virtue of eqn (16.160), ζc

1 (ω) and ζc†
2 (ω) are both normal

operators; therefore, the product of the noise strengths in the principal quadratures
satisfies the amplifier uncertainty principle:

∆ζc
1 (ω)∆ζc

2 (ω) � 1
4

∣∣∣1 −
√

G1 (ω)G2 (ω) eiϑ12(ω)
∣∣∣ . (16.169)

This can be expressed in terms of the amplifier noise numbers as

√
A1 (ω)A2 (ω) � 1

4

∣∣∣∣∣1 − 1√
G1 (ω)G2 (ω)

e−iϑ12(ω)

∣∣∣∣∣ . (16.170)

At the carrier frequency, ω = 0, the symmetry condition (16.126) only allows the
values ϑ12 (0) = 0, π, and the general amplifier uncertainty principle is replaced by

√
A1 (0)A2 (0) � 1

4

∣∣∣∣∣1 ∓ 1√
G1 (0)G2 (0)

∣∣∣∣∣ , (16.171)

where the upper and lower signs correspond to ϑ12 (0) = 0 and ϑ12 (0) = π respectively.

16.6 Exercises

16.1 Quadrature gain

(1) Show that the frequency-domain form of eqn (16.3) is

Xβ,in (ω) =
1
2

[
e−iβbin (ω) + eiβb

†
in (−ω)

]
,

Yβ,in (ω) =
1
2i

[
e−iβbin (ω) − eiβb

†
in (−ω)

]
.
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(2) Show that the frequency-domain operators satisfy X†
β,in (ω) = Xβ,in (−ω), Y †

β,in (ω)
= Yβ,in (−ω), and[

Xβ,in (ω) , X†
β,in (ω′)

]
= [Xβ,in (ω) , Xβ,in (−ω′)] = 0 ,[

Yβ,in (ω) , Y †
β,in (ω′)

]
= [Yβ,in (ω) , Yβ,in (−ω′)] = 0 .

(3) Use the input–output relation (16.24) and its adjoint to conclude that the output
quadrature is related to the input quadrature by

Xβ,out (ω) = P (ω)Xβ,in (ω) +
1
2
[
e−iβη (ω) + eiβη† (−ω)

]
.

(4) Define the gain for this quadrature by

Gβ (ω) =
|〈Xβ,out (ω)〉|2
|〈Xβ,in (ω)〉|2 ,

and show that the gain is the same for all quadratures.

16.2 Phase-insensitive traveling-wave amplifier

(1) Work out the coarse-grained version of eqns (14.174)–(14.177), and then use eqn
(16.60) for H ′

S1 to derive the reduced Langevin equations for the amplifier.

(2) Use the properties of ξ
(n)
12 (t) to derive eqn (16.67).

(3) Show that[
Sqp (z, t) , Skl (z′, t)

]
=
{
δpkSql (z, t) − δlqSkp (z, t)

}
δ (z − z′) .

(4) Show that
〈
S22 (z, t) − S11 (z, t)

〉 ≈ natσD.
(5) Derive eqns (16.82) and (16.83).

16.3 Colored noise

Reconsider the use of adiabatic elimination to solve eqn (16.65).

(1) Use the formal solution of eqn (16.65) to conclude that the noise term on the right
side of eqn (16.68) should be replaced by

ζ12 (z, t) =
∫ t

t0

dt1e
(i∆0−Γ12)(t−t1)ξ12 (z, t1) .

(2) Use the properties of ξ12 (z, t1) to show that〈
ζ12 (z, t) ζ†12 (z′, t′)

〉
= natσC12,12δ (z − z′) ei∆0(t−t′) e

−Γ12|t−t′|

2Γ12
.

(3) Justify eqn (16.68) by evaluating∫
dt′

〈
ζ12 (z, t) ζ†12 (z′, t′)

〉
f (t′) ,

where f (t′) is slowly varying on the scale T12 = 1/Γ12.
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Quantum tomography

Classical tomography is an experimental method for examining the interior of a phys-
ical object by scanning a penetrating beam of radiation, for example, X-rays, through
its interior. In medicine, the density profile of the interior of the body is reconstructed
by using the method of CAT scans (computer-assisted tomographic scans). This pro-
cedure allows a high-resolution image of an interior section of the human body to be
formed, and is therefore very useful for diagnostics.

In quantum tomography, the subject of interest is not the density distribution
inside a physical object, but rather the Wigner distribution describing a quantum state.
By exploiting the mathematical similarity between a physical density distribution and
the quasiprobability distribution W (α), the methods of tomography can be applied to
perform a high-resolution determination of a quantum state of light. We begin with a
review of the mathematical techniques used in classical tomography, and then proceed
to the application of these methods to the Wigner function and the description of a
representative set of experiments.

17.1 Classical tomography

Classical tomography consists of a sequence of measurements, called scans, of the
detected intensity of an X-ray beam at the end of a given path through the object.
The fraction of the intensity absorbed in a small interval ∆s is κρ∆s, where κ is
the opacity and ρ the density of the material. For the usual case of uniform opacity,
the ratio of the detected intensity to the source intensity is proportional to the line
integral of the density along the path. After a scan of lateral displacements through
the object is completed, the angle of the X-ray beam is changed, and a new sequence
of lateral scans is performed. When these lateral scans are completed, the angle is
then again incremented, etc. Thus a complete set of data for X-ray absorption can
be obtained by translations and rotations of the path of the X-ray beam through the
object. The density profile is then recovered from these data by the mathematical
technique described below.

The medical motivation for this procedure is the desire to locate a single lump
of matter—such as a tumor which possesses a density differing from that of normal
tissue—in the interior of a body. The source and the detector straddle the body in
such a way that the line of sight connecting them can be stepped through lateral
displacements, and then stepped through different angles with respect to the body. One
can thereby determine—in fact, overdetermine—the location of the lump by observing
which of the translational and rotational data sets yield the maximum absorption.



��� Quantum tomography

17.1.1 Procedure for classical tomography

Consider an object whose density profile ρ(x, y, z) we wish to map by probing its
interior with a thin beam of X-rays directed from the source S to the detector D, as
shown in Fig. 17.1. We place the origin O of coordinates near the center of the object,
and choose a plane containing the source and the detector as the (x, y)-plane, i.e. the
(z = 0)-plane. The line SD that joins the source to the detector is traditionally called
the line of sight. For a given line of sight, we introduce a rotated coordinate system
(x′, y′), where the y′-axis is parallel to the line of sight, the x′-axis is perpendicular
to it, and θ is the rotation angle between the x′- and x-axes. Two lines of sight that
differ only by interchanging the source and detector are redundant, since they provide
the same information; consequently, the rotation angle θ can be restricted to the range
0 < θ < π.

The intensity ratio measured by passing the X-ray beam along the line of sight SD
is proportional to the line integral

Pθ(x′) =
∫

SD

ρ(x, y, 0) ds , (17.1)

where s is a coordinate measured along the line of sight. We will call this line integral
the projection of the density along the SD direction. It is also commonly called a line-
out of the density. Incrementing the x′-value, while keeping the line of sight parallel
to the y′-axis, generates a set of data which yields information about the integrated
column density of the object as a function of x′. After a sequence of scans at different
x′-values has been completed, a new set of line-outs can be generated by incrementing
the rotation angle θ. For applications of classical tomography to real three-dimensional
objects, data for slices at z �= 0 can be obtained by translating the source–detector
system in the z-direction, and then repeating the steps listed above. This part of the
procedure will not be relevant for the application to quantum tomography, so from
now on we only consider z = 0 and replace ρ (x, y, z = 0) by ρ (x, y).

From the above considerations, we formulate the following (not necessarily optimal)
procedure for collecting tomographic data.

Fig. 17.1 Coordinate system used in tomog-

raphy.
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(1) Collect the projections for lines of sight at a fixed angle θ, while scanning the
coordinate x′ from one side of O to the other.

(2) Repeat this procedure after incrementing the angle θ by a small amount.
(3) Repeat steps (1) and (2), collecting data for Pθ(x′) for −∞ < x′ < ∞ and 0 <

θ < π.
(4) Determine the original density ρ(x, y) by means of the inverse Radon transform

described below.

17.1.2 The Radon transform

The rotated coordinates (x′, y′) are related to the fixed coordinates by

x′ = x cos θ + y sin θ , y′ = −x sin θ + y cos θ , (17.2)

and the inverse relation is

x = x′ cos θ − y′ sin θ , y = x′ sin θ + y′ cos θ . (17.3)

The projection Pθ(x′) defines the forward Radon transform:

Pθ(x′) =
∫

SD

ρ(x, y) ds (17.4)

=
∫ +∞

−∞
ρ(x′ cos θ − y′ sin θ, x′ sin θ + y′ cos θ) dy′ . (17.5)

For the application at hand, the convention for Fourier transforms used in the other
parts of this book can lead to confusion; therefore, we revert to the usual notation in
which f̃ denotes the Fourier transform of f . Let us then consider the one-dimensional
Fourier transform of the projection Pθ(x′),

P̃θ(k) ≡
∫ +∞

−∞
dx′ Pθ(x′)e−ikx′

, (17.6)

and the two-dimensional Fourier transform of the density,

ρ̃(u, v) ≡
∫ +∞

−∞
dx

∫ +∞

−∞
dy ρ(x, y)e−i(xu+yv). (17.7)

The Fourier slice theorem states that

P̃θ(k) = ρ̃(k cos θ, k sin θ) . (17.8)

The proof proceeds as follows. Inspection of Fig. 17.1 shows that the two-dimensional
wavevector

k = (k cos θ, k sin θ) (17.9)

is directed along the line OP, i.e. the x′-axis. For any point on the line of sight, with
coordinates r = (x, y), one finds k · r = kx cos θ + ky sin θ = kx′. Substituting this
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relation and the definition (17.5) of the forward Radon transform into eqn (17.6) then
leads to

P̃θ(k) =
∫ +∞

−∞
dx′

∫ +∞

−∞
dy′ e−ik·rρ(x(x′, y′), y(x′, y′))

=
∫ +∞

−∞
dx

∫ +∞

−∞
dy e−ik·rρ(x, y) , (17.10)

where the last form follows by changing integration variables and using the fact that
the transformation linking (x′, y′) to (x, y) has unit Jacobian. This result is just the
definition of the Fourier transform of the density, so we arrive at eqn (17.8).

For the final step, we first express the density in physical space, ρ(x, y), as the
inverse Fourier transform of the density in reciprocal space:

ρ(x, y) =
1

4π2

∫ ∞

−∞
du

∫ ∞

−∞
dv ρ̃(u, v)ei(xu+yv) . (17.11)

In order to use the Fourier slice theorem, we identify (u, v) with the two-dimensional
vector k, defined in eqn (17.9), so that u = k cos θ and v = k sin θ. This resembles the
familiar transformation to polar coordinates, but one result of Exercise 17.1 is that
the restriction 0 < θ < π requires k to take on negative as well as positive values, i.e.
−∞ < k < ∞. This transformation implies that du dv = dk |k| dθ, so that eqn (17.11)
becomes

ρ(x, y) =
1

4π2

∫ ∞

−∞
|k| dk

∫ π

0

dθ ρ̃ (k cos θ, k sin θ) eik(x cos θ+y sin θ) , (17.12)

and the Fourier slice theorem allows this to be expressed as

ρ(x, y) =
1

4π2

∫ ∞

−∞
|k| dk

∫ π

0

dθ P̃θ(k)eik(x cos θ+y sin θ) . (17.13)

Substituting eqn (17.6) in this relation yields the inverse Radon transform:

ρ(x, y) =
1

4π2

∫ ∞

−∞
|k| dk

∫ π

0

dθ

∫ ∞

−∞
dx′ Pθ(x′)eik(x cos θ+y sin θ−x′) . (17.14)

This result reconstructs the density distribution ρ(x, y) from the measured data set
Pθ(x′).

17.2 Optical homodyne tomography

In eqn (5.126) we introduced a version of the Wigner distribution, W (α), that is
particularly well suited to quantum optics. The complex argument α, which is the
amplitude defining a coherent state, is equivalent to the pair of real variables x = Re α
and y = Imα; consequently, W (α) can equally well be regarded as a function of x and
y, as in Exercise 17.2. Expressing the Wigner distribution in this form suggests that
W (x, y) is an analogue of the density function ρ (x, y). With this interpretation, the
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mathematical analysis used for classical tomography can be applied to recover W (x, y)
from an appropriate set of measurements. The objection that the quasiprobability
W (x, y) can be negative—as shown by the number-state example in eqn (5.153)—
does not pose a serious difficulty, since negative absorption in the classical problem
would simply correspond to amplification.

In order to apply the inverse Radon transform (17.14) to quantum optics, we must
first understand the physical significance of the projection Pθ (x′). In this context, the
parameter θ is not a geometrical angle; instead, it is the phase of the local oscillator
field in a homodyne measurement scheme. As explained in Section 9.3, this parameter
labels the natural quadratures,

Xθ = X0 cos θ + Y0 sin θ , Yθ = X0 sin θ − Y0 cos θ , (17.15)

for homodyne measurement. Generalizing eqn (5.123) tells us that integrating the
Wigner distribution over one of the conjugate variables generates the marginal prob-
ability distribution for the other; so applying the forward Radon transform (17.5) to
the Wigner distribution leads to the conclusion that the projection,

Pθ(x′) =
∫ +∞

−∞
W (x′ cos θ − y′ sin θ, x′ sin θ + y′ cos θ)dy′ , (17.16)

is the probability distribution for measured values x′ of the operator Xθ.
The difference between the physical interpretations of Pθ(x′) in classical and quan-

tum tomography requires corresponding changes in the experimental protocol. Setting
the phase of the local oscillator in a homodyne measurement scheme is analogous to
setting the angle θ of the X-ray beam, but there is no analogue for setting the lateral
position x′. In the quantum optics application, the variable x′ is not under experimen-
tal control. Instead, it represents the possible values of the quadrature Xθ, which are
subject to quantum fluctuations.

In this situation, the procedure is to set a value of θ and then carry out many
homodyne measurements of Xθ. A histogram of the results determines the fraction of
the values falling in the interval x′ to x′ + ∆x′, and thus the probability distribution
Pθ(x′). This is easier said than done, and it represents a substantial advance beyond
previous experiments, that simply measured the average and variance of the quadra-
ture. Once Pθ(x′) has been experimentally determined, the inverse Radon transform
yields the Wigner function as

W (x, y) =
1

4π2

∫ ∞

−∞
|k|dk

∫ π

0

dθ

∫ ∞

−∞
dx′ Pθ(x′)eik(x cos θ+y sin θ−x′) . (17.17)

As shown in Section 5.6.1, the Wigner distribution permits the evaluation of the av-
erage of any observable; consequently, this reconstruction of the Wigner distribution
provides a complete description of the quantum state of the light.

17.3 Experiments in optical homodyne tomography

The method of optical homodyne tomography sketched above is one example from a
general field variously called quantum-state tomography (Raymer and Funk, 2000)
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or quantum-state reconstruction (Altepeter et al., 2005). Techniques for recovering
the density matrix from measured values have been applied to atoms (Ashburn et al.,
1990), molecules (Dunn et al., 1995), and Bose–Einstein condensates (Bolda et al.,
1998). In the domain of quantum optics, Raymer and co-workers (Smithey et al.,
1993) studied the properties of squeezed states by using pulsed light for the signal and
the local oscillator. This is an important technique for obtaining time-resolved data
for various processes (Raymer et al., 1995), but the simple theory presented above is
more suitable for describing experiments with continuous-wave (cw) beams.

17.3.1 Optical tomography for squeezed states

Following Raymer’s pulsed-light, quantum-state tomography experiments, Mlynek and
his co-workers (Breitenbach et al., 1997) performed experiments in which they gener-
ated and then analyzed squeezed states. The description of the experiment is therefore
naturally divided into the generation and measurement steps.

A Squeezed state generation

The light used in this experiment is provided by an Nd: YAG (neodymium-doped,
yttrium–aluminum garnet) laser (1064 nm and 500 mW) operated in cw mode. As
shown in Fig. 17.2, the laser beam, at frequency ω, first passes through a mode clean-
ing cavity (a high finesse Fabry–Perot resonator with a 170 kHz bandwidth) in order
to reduce technical noise arising from relaxation oscillations in the laser. The filtered
beam is then split into three parts: the upper part is sent into a second-harmonic
generator (SHG); the middle part is sent into an electro-optic modulator (EOM)
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Fig. 17.2 Experimental setup used for generating and detecting squeezed light in a tomo-

graphic scheme. (Reproduced from Mlynek et al. (1998).)
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(Saleh and Teich, 1991, Sec. 18.1-B); and the lower part serves as the local oscillator
for the homodyne detector.

The resonant SHG—a χ(2) crystal placed inside a 2ω-resonator—produces a second-
harmonic pump beam that enters the OPA through the right-hand mirror. This mirror
also serves as the output port for the squeezed light near frequency ω. The OPA con-
sists of a χ(2) crystal coated on the left end with a mirror (HR) that is highly reflective
at both ω and 2ω and on the right end with the output mirror. The two mirrors define
a cavity that is resonant at both the first and second harmonics. For an unmodulated
input, e.g. vacuum fluctuations, this is a degenerate OPA configuration.

The down-converted photons in each pair share the same spatial mode, polar-
ization, and frequency. For a sufficiently high transmission coefficient of the output
mirror at frequency ω, the OPA produces an intense, squeezed-light output signal in
the vicinity of ω. The parametric gain of the OPA at the pump frequency is maximized
by adjusting the temperature of the crystal. The dichroic mirror (DM)—located to
the right of the output mirror—transmits the incoming 2ω-pump beam toward the
OPA, but deflects the outgoing squeezed-light beam into the homodyne detector.

The EOM voltage is modulated at frequency Ω, where Ω/2π = 1.5 or 2.5 MHz.
This adds two side bands to the coherent middle beam, at frequencies ω ±Ω that are
well within the cavity bandwidth, Γ/2π = 17 MHz. The OPA is operated in a dual port
configuration, i.e. the pump beam enters through the output mirror on the right and
the coherent signal is injected through the mirror HR on the left. The OPA cavity is
also highly asymmetric; the transmission coefficient at frequency ω is less than 0.1%
for the mirror HR, but about 2.1% for the output mirror.

Due to this high asymmetry, the transmitted sidebands and their quantum fluctu-
ations are strongly attenuated, as shown in Exercise 17.3, so that the squeezed output
comes primarily from the vacuum fluctuations at ω, entering through the output cou-
pler. The output of the OPA then consists of squeezed vacuum at ω together with
bright sidebands at ω ± Ω. If the output from the EOM is blocked, the OPA emits a
pure squeezed vacuum state. If the output from the SHG is blocked, the OPA emits a
coherent state.

B Tomographic measurements

The output of the OPA is sent into the homodyne detector, but this is a new way of
using homodyne methods. The usual approach, presented in Section 9.3, assumes that
the detectors are only sensitive to the overall energy flux of the light; consequently,
the homodyne signal is defined by averaging over the field state: Shom ∝ 〈N ′

21〉, where
〈N ′

21〉 represents the difference in the firing rates of the two detectors.
For photoemissive detectors, i.e. those with frequency-independent quantum ef-

ficiency (Raymer et al., 1995), the quantum fluctuations represented by the operator
N ′

21 are visible as fluctuations in the difference between the output currents of the
detectors. In the present case, N ′

21 = −i
(
α∗

Lbout − b†outαL

)
, where αL = |αL| exp (−iθ)

is the classical amplitude of the local oscillator and bout describes the output field of
the OPA. Expressing N ′

21 in terms of quadrature operators as

N ′
21 ∝ X cos θ + Y sin θ = Xθ (17.18)
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shows that observations of the current fluctuations represent measurements of the
quadrature Xθ.

The data (about half a million points per trace) for the current iΩ were taken with
a high-speed 12 bit analog-to-digital converter, as the phase of the local oscillator was
swept by 360◦ in approximately 200 ms. Time traces of iΩ for coherent states and for
squeezed states are shown in the left-most column of Fig. 17.3.

The top trace represents the coherent state output, which is obtained by blocking
the second-harmonic pump beam. This characterizes and calibrates the laser system
used for the local oscillator and the first-harmonic input into the resonant, second-
harmonic generator crystal. The next three traces represent squeezed coherent states.
The second trace is the waveform for a phase-squeezed state, where the noise is mini-
mum at the zero-crossings of the waveform. The third trace represents a state squeezed
along the φ = 48◦ quadrature, where φ is the relative phase between the pump wave
and the coherent input wave. The fourth trace represents the waveform for amplitude-
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Fig. 17.3 Data showing noise waveforms for a coherent state (top trace) and various kinds

of squeezed states (lower traces), along with their phase space tomographic portraits on the

right. (Reproduced from Mlynek et al. (1998).)
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squeezed light, where the noise is minimum at the maxima of the waveform. Finally,
the fifth trace represents the squeezed vacuum state, where the coherent state input
to the parametric amplifier has been completely blocked, so that only vacuum fluctu-
ations are admitted into the OPA. Ones sees that the noise vanishes periodically at
the zero-crossings of the noise envelope.

The middle column of Fig. 17.3 depicts the tomographic projections Pθ(x′), which
are substituted into the inverse Radon transform (17.17) to generate the portraits of
Wigner functions depicted in the third column of the figure. Numerical analysis of
the distributions for the second through the fifth traces shows that they all have the
Gaussian shape predicted for squeezed coherent states.

17.4 Exercises

17.1 Radon transform

(1) For the transformation u = k cos θ, v = k sin θ, with the restriction 0 < θ < π,
work out the inverse transformation expressing k and θ as functions of u and v,
and thus show that k must have negative as well as positive values.

(2) Derive the relation du dv = |k| dk dθ by evaluating the Jacobian or else by just
drawing the appropriate picture.

17.2 Wigner distribution

Starting from the definition (5.126), show that W (α) = W (x, y) can be written in the
form

W (x, y) =
∫

d2k

(2π)2
eik·rχW (k) ,

where k = (k1, k2) and r = (x, y). Derive the explicit form of the Wigner characteristic
function in terms of the density operator ρ and the quadrature operators X0 and Y0.
What normalization condition does W (x, y) satisfy?

17.3 Dual port OPA∗

Model the dual port OPA discussed in Section 17.3.1 by identifying the input and
output fields as bout = b1,out and bin = b2,in, where the notation is taken from Fig.
16.2.

(1) Use eqn (15.117) to work out the coefficients P and C in the input–output relations
for this amplifier.

(2) Explicitly evaluate the amplifier noise operator.
(3) For the unbalanced case κ2 � κ1 show that the incident field is strongly attenuated

and that the primary source of the squeezed output is the vacuum fluctuations
entering through the mirror M1.
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The master equation

In this chapter we will study the time evolution of an open system—the sample dis-
cussed in Chapter 14—by means of the quantum Liouville equation for the world
density operator. This approach, which employs the interaction-picture description of
the density operator, is complementary to the Heisenberg-picture treatment presented
in Chapter 14. The physical ideas involved in the two methods are, however, the same.

The equation of motion of the reduced sample density operator is derived by an
approximate elimination of the environment degrees of freedom that depends crucially
on the Markov approximation. This approximate equation of motion for the sample
density operator is mainly used to derive c-number equations that can be solved by
numerical methods. In this connection, we will discuss the Fokker–Planck equation in
the P -representation and the method of quantum Monte Carlo wave functions.

18.1 Reduced density operators

As explained in Section 14.1.1, the world—the composite system of the sample and
the environment—is described by a density operator ρW acting on the Hilbert space
HW = HS ⊗HE. The application of the general definition (6.21) of the reduced density
operator to ρW produces two reduced density operators: �S = TrE (ρW ) and �E =
TrS (ρW ), that describe the sample and the environment respectively. For example,
the rule (6.26) for partial traces shows that the average of a sample operator Q,

〈Q〉 = TrW [ρW (Q ⊗ IE)] = TrS (�SQ) , (18.1)

is entirely determined by the reduced density operator for the sample.
For an open system, the reduced density operator �S will always describe a mixed

state. According to Theorem 6.1 in Section 6.4.1, the reduced density operators for the
sample and the environment can only describe pure states if the world density operator
describes a separable pure state, i.e. ρW = |ΩW 〉 〈ΩW |, and |ΩW 〉 = |ΨS〉 |ΦE〉. Even
if this were initially the case, the interaction between the sample and the environment
would inevitably turn the separable pure state |ΩW 〉 into an entangled pure state. The
reduced density operators for an entangled state necessarily describe mixed states, so
the sample state will always evolve into a mixed state.

18.2 The environment picture

In the Schrödinger picture, the world density operator satisfies the quantum Liouville
equation
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i�
∂

∂t
ρW (t) = [HW (t) , ρW (t)]

= [HS (t) + HE + HSE, ρW (t)] , (18.2)

where the terms in HW are defined in eqns (14.6)–(14.11). Since the sample–environ-
ment interaction is assumed to be weak, it is natural to regard HW0 (t) = HS (t)+HE

as the zeroth-order part, and HSE (t) as the perturbation. This allows us to introduce
an interaction picture, through the unitary transformation,

|Ψenv (t)〉 = U †
W0 (t) |Ψ (t)〉 , (18.3)

where UW0 (t) satisfies

i�
∂

∂t
UW0 (t) = HW0 (t)UW0 (t) , UW0 (0) = 1 . (18.4)

We will call this interaction picture the environment picture, since it plays a special
role in the theory.

The differential equation (18.4) has the same form as eqn (4.90), but now the
ordering of the operators UW0 (t) and HW0 (t) is important, since the time-dependent
Hamiltonian HW0 (t) will not in general commute with UW0 (t). If this warning is kept
firmly in mind, the formal procedure described in Section 4.8 can be used again to
find the Schrödinger equation

i�
∂

∂t
|Ψenv (t)〉 = Henv

SE (t) |Ψenv (t)〉 , (18.5)

and the quantum Liouville equation

i�
∂

∂t
ρenv

W (t) = [Henv
SE (t) , ρenv

W (t)] (18.6)

in the environment picture. The transformed operators,

Oenv (t) = U †
W0 (t)OUW0 (t) , (18.7)

satisfy the equations of motion

i�
∂

∂t
Oenv (t) = [Oenv (t) , Henv

W0 (t)] . (18.8)

One should keep in mind that Henv
W0 (t) = Henv

S (t) + Henv
E (t), and that the sample

Hamiltonian, Henv
S (t), still contains all interaction terms between different degrees

of freedom in the sample. Only the sample–environment interaction is treated as a
perturbation. Thus the environment-picture sample operators obey the full Heisenberg
equations for the sample.

18.3 Averaging over the environment

In line with our general convention, we will now drop the identifying superscript ‘env’,
and replace it by the understanding that states and operators in the following discus-
sion are normally expressed in the environment picture. Exceptions to this rule will
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be explicitly identified. Our immediate task is to derive an equation of motion for the
reduced density operator ρS . In pursuing this goal, we will generally follow Gardiner’s
treatment (Gardiner, 1991, Chap. 5).

The first part of the argument corresponds to the formal elimination of the reser-
voir operators in Section 14.1.2, and we begin in a similar way by incorporating the
quantum Liouville equation (18.6) and the initial density operator ρW (0) into the
equivalent integral equation,

ρW (t) = ρW (0) − i

�

∫ t

0

dt1 [HSE (t1) , ρW (t1)] . (18.9)

The assumption that HSE is weak—compared to HS and HE—suggests solving
this equation by perturbation theory, but a perturbation expansion would only be
valid for a very short time. From Chapter 14, we know that typical sample correlation
functions decay exponentially:

〈Q1 (t + τ) Q2 (t)〉 ∼ e−γτ , (18.10)

with a decay rate, γ ∼ g2, where g is the sample–environment coupling constant. This
exponential decay can not be recovered by an expansion of ρW (t) to any finite order
in g.

As the first step toward finding a better approach, we iterate the integral equation
(18.9) twice—this is suggested by the fact that γ is second order in g—to find

ρW (t) = ρW (0) − i

�

∫ t

0

dt1 [HSE (t1) , ρW (0)]

+
(
− i

�

)2 ∫ t

0

dt1

∫ t1

0

dt2 [HSE (t1) , [HSE (t2) , ρW (t2)]] . (18.11)

Tracing over the environment then produces the exact equation

ρS (t) = ρS (0) − i

�

∫ t

0

dt1 TrE ([HSE (t1) , ρW (0)])

+
(
− i

�

)2 ∫ t

0

dt1

∫ t1

0

dt2 TrE ([HSE (t1) , [HSE (t2) , ρW (t2)]]) (18.12)

for the reduced density operator. Since our objective is an equation of motion for
ρS (t), the next step is to differentiate with respect to t to find

∂

∂t
ρS (t) = − i

�
TrE ([HSE (t) , ρW (0)])

− 1
�2

∫ t

0

dt′ TrE ([HSE (t) , [HSE (t′) , ρW (t′)]]) . (18.13)

This equation is exact, but it is useless as it stands, since the unknown world den-
sity operator ρW (t′) appears on the right side. Further progress depends on finding
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approximations that will lead to a manageable equation for ρS (t) alone. The first sim-
plifying assumption is that the sample and the environment are initially uncorrelated:
ρW (0) = ρS (0) ρE (0). By combining the generic expression,

HSE = i�
∑

r

∑
ν

(
g∗rνb†rνQr − grνQ†

rbrν

)
, (18.14)

for the sample–environment interaction with the conventional assumption, 〈brν〉E = 0,
and the initial factorization condition, it is straightforward to show that

TrE ([HSE (t) , ρW (0)]) = 0 . (18.15)

If one or more of the reservoirs has 〈brν〉E �= 0, one can still get this result by
writing HSE in terms of the fluctuation operators δbrν = brν − 〈brν〉E , and absorbing
the extra terms by suitably redefining HS and HE , as in Exercise 18.1.

Thus the initial factorization assumption always allows eqn (18.13) to be replaced
by the simpler form

∂

∂t
ρS (t) = − 1

�2

∫ t

0

dt′ TrE {[HSE (t) , [HSE (t′) , ρW (t′)]]} . (18.16)

Replacing ρW (t′) by ρW (0) = ρS (0)ρE (0) in eqn (18.16) would provide a perturba-
tive solution that is correct to second order, but—as we have just seen—this would
not correctly describe the asymptotic time dependence of the correlation functions.

The key to finding a better approximation is to exploit the extreme asymmetry
between the sample and the environment. The environment is very much larger than
the sample; indeed, it includes the rest of the universe. It is therefore physically rea-
sonable to assume that the fractional change in the sample, caused by interaction
with the environment, is much larger than the fractional change in the environment,
caused by interaction with the sample. If this is the case, there will be no reciprocal
correlation between the sample and the environment, and the density operator ρW (t′)
will be approximately factorizable at all times.

This argument suggests the ansatz

ρW (t′) ≈ ρS (t′) ρE (0) , (18.17)

and using this in eqn (18.16) produces the master equation:

∂

∂t
ρS (t) = − 1

�2

∫ t

0

dt′ TrE {[HSE (t) , [HSE (t′) , ρS (t′) ρE (0)]]} . (18.18)

The double commutator in eqn (18.18) can be rewritten in a more convenient way
by exploiting the fact that typical interactions have the form

HSE (t) = �
{
F (t) + F† (t)

}
. (18.19)

This in turn allows the double commutator to be written as
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C2 (t, t′) =
1
�2

[HSE (t) , [HSE (t′) , ρS (t′) ρE (0)]]

= {[F (t) , G (t′)] + HC} +
{[

F† (t) , G (t′)
]
+ HC

}
, (18.20)

where
G (t′) = [F (t′) , ρS (t′) ρE (0)] . (18.21)

18.4 Examples of the master equation

In order to go on, it is necessary to assume an explicit form for HSE. For this purpose,
we will consider the two concrete examples that were studied in Chapter 14: the single
cavity mode and the two-level atom.

18.4.1 Single cavity mode

In the environment picture, the definition (14.43) of system–reservoir interaction for
a single cavity mode becomes

HSE = i�
∑

ν

v (Ων)
{
a† (t) bν (t) − HC

}
. (18.22)

Since a (t) and bν (t) are evaluated in the environment picture, they satisfy the Heisen-
berg equations

∂

∂t
a (t) =

1
i�

[a (t) , HS (t)]

= −iω0a (t) +
1
i�

[a (t) , HS1 (t)] , (18.23)

and
∂

∂t
bν (t) = −iΩνbν (t) . (18.24)

By introducing the slowly-varying envelope operators a (t) = a (t) exp (iω0t) and
bν (t) = bν (t) exp (iω0t), we can express HSE (t) in the form (18.19), with

F (t) = −iξ† (t) a (t) , (18.25)

where we recognize

ξ (t) =
∑

ν

v (Ων) bν (t0) e−i(Ων−ω0)(t−t0) (18.26)

as the noise operator defined in eqn (14.52).
The terms in [F (t) , G (t′)] contain products of ξ† (t), ξ† (t′), and ρE (0) in various

orders. When the partial trace over the environment states in eqn (18.18) is performed,
the cyclic invariance of the trace can be exploited to show that all terms are propor-
tional to 〈

ξ† (t) ξ† (t′)
〉

E
= TrE

[
ρE (0) ξ† (t) ξ† (t′)

]
. (18.27)

Just as in Section 14.2, we will assume that ρE (0) is diagonal in the reservoir
oscillator occupation number—this amounts to assuming that ρE (0) is a stationary
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distribution—so that the correlation functions in eqn (18.27) all vanish. This assump-
tion is convenient, but it is not strictly necessary. A more general treatment—that
includes, for example, a reservoir described by a squeezed state—is given in Walls and
Milburn (1994, Sec. 6.1).

When ρE (0) is stationary, [F (t) , G (t′)] and its adjoint will not contribute to the
master equation. By contrast, the commutator

[
F† (t) , G (t′)

]
is a sum of terms con-

taining products of ξ (t), ξ† (t′), and ρE (0) in various orders. In this case, the cyclic
invariance of the partial trace produces two kinds of terms, proportional respectively
to 〈

ξ† (t) ξ (t′)
〉

E
= ncavκδ (t − t′) (18.28)

and 〈
ξ (t) ξ† (t′)

〉
= (ncav + 1)κδ (t − t′) , (18.29)

where ncav is the average number of reservoir oscillators at the cavity-mode frequency
ω0.

The explicit expressions on the right sides of these equations come from eqns (14.74)
and (14.75), which were derived by using the Markov approximation. Thus the master
equation also depends on the Markov approximation, in particular on the assump-
tion that the envelope operator a (t) is essentially constant over the memory interval
(t − Tmem/2, t + Tmem/2).

After evaluating the partial trace of the double commutator C2 (t, t′)—see Exercise
18.2—the environment-picture form of the master equation for the field is found to be

∂

∂t
ρS (t) = −κ

2
(ncav + 1)

{
a† (t) a (t) ρS (t) + ρS (t) a† (t) a (t) − 2a (t) ρS (t) a† (t)

}
− κ

2
ncav

{
a (t) a† (t) ρS (t) + ρS (t) a (t) a† (t) − 2a† (t) ρS (t) a (t)

}
.

(18.30)

The slowly-varying envelope operators a (t) and a† (t) are paired in every term;
consequently, they can be replaced by the original environment-picture operators a (t)
and a† (t) without changing the form of the equation. The right side of the equation
of motion is therefore entirely expressed in terms of environment-picture operators, so
we can easily transform back to the Schrödinger picture to find

∂

∂t
ρS (t) = LSρS (t) + LdisρS (t) . (18.31)

The Liouville operators LS—describing the free Hamiltonian evolution of the sam-
ple—and Ldis—describing the dissipative effects arising from coupling to the environ-
ment—are respectively given by

LSρS (t) =
1
i�

[
�ω0a

†a + HS1 (t) , ρS (t)
]

(18.32)

and
LdisρS (t) = −κ

2
(ncav + 1)

{[
a†, aρS (t)

]
+
[
ρS (t) a†, a

]}
− κ

2
ncav

{[
a, a†ρS (t)

]
+
[
ρS (t) a, a†]} .

(18.33)
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The operators we are used to, such as the Hamiltonian or the creation and annihi-
lation operators, send one Hilbert-space vector to another. By contrast, the Liouville
operators send one operator to another operator. For this reason they are sometimes
called super operators.

A Thermal equilibrium again

In Exercise 14.2 it is demonstrated that the average photon number asymptotically
approaches the Planck distribution. With the aid of the master equation, we can study
this limit in more detail. In this case, HS1 (t) = 0, so we can expect the density operator
to be diagonal in photon number. The diagonal matrix elements of eqn (18.31) in the
number-state basis yield

dpn (t)
dt

= −κ {(ncav + 1)n + ncav (n + 1)} pn (t)

+ κ (ncav + 1) (n + 1) pn+1 (t) + κncavn pn−1 (t) ,
(18.34)

where pn (t) = 〈n |ρ (t)|n〉. The first term on the right represents the rate of flow
of probability from the n-photon state to all other states, while the second and third
terms represent the flow of probability into the n-photon state from the (n + 1)-photon
state and the (n − 1)-photon state respectively.

In order to study the approach to equilibrium, we write the equation as

dpn (t)
dt

= Zn+1 (t) − Zn (t) , (18.35)

where
Zn (t) = nκ {(ncav + 1) pn (t) − ncavpn−1 (t)} . (18.36)

The equilibrium condition is Zn+1 (∞) = Zn (∞), but this is the same as Zn (∞) = 0,
since Z0 (t) ≡ 0. Thus equilibrium imposes the recursion relations

(ncav + 1) pn (∞) = ncavpn−1 (∞) . (18.37)

This is an example of the principle of detailed balance; the rate of probability
flow from the n-photon state to the (n − 1)-photon state is the same as the rate of
probability flow of the (n − 1)-photon state to the n-photon state. The solution of this
recursion relation, subject to the normalization condition

∞∑
n=0

pn (∞) = 1 , (18.38)

is the Bose–Einstein distribution

pn (∞) =
(ncav)

n

(ncav + 1)n+1 . (18.39)
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18.4.2 Two-level atom

For the two-level atom, the sample–reservoir interaction Hamiltonian HSE is given by
eqns (14.131)–(14.133). In this case, the operator F (t) in eqn (18.19) is the sum of two
terms: F (t) = Fsp (t) + Fpc (t), that are respectively given by

Fsp (t) = i
√

w21b
†
in (t)S12 (t) = i

√
w21b

†
in (t)σ− (t) (18.40)

and

Fpc (t) = i
{√

w11c
†
1,in (t)S11 (t) +

√
w22c

†
2,in (t)S11 (t)

}
= i

{√
w11c

†
1,in (t)

(
1 − σz (t)

2

)
+

√
w22c

†
2,in (t)

(
1 + σz (t)

2

)}
.

(18.41)

The envelope operators σ− (t) and σz (t) are related to the environment-picture forms
by σ− (t) = σ− (t) exp (iω21t) and σz (t) = σz (t), while the operators b†in (t) and c†q,in (t)
are the in-fields defined by eqns (14.146) and (14.147) respectively.

We will assume that the reservoirs are uncorrelated, i.e. ρE (0) = ρsp (0) ρpc (0),
and that the individual reservoirs are stationary. These assumptions guarantee that
most of the possible terms in the double commutator will vanish when the partial trace
over the environment is carried out.

After performing the invigorating algebra suggested in Exercise 18.4.2, the surviv-
ing terms yield the Schrödinger-picture master equation

∂

∂t
ρS (t) = LSρS (t) + LdisρS (t) , (18.42)

where the Hamiltonian part,

LSρS (t) =
1
i�

[
�ω21

2
σz + HS1 (t) , ρS (t)

]
, (18.43)

includes HS1 (t). The dissipative part is

LdisρS (t) = −w21

2
(nsp + 1) {[σ+, σ−ρ] + [ρσ+, σ−]}

− w21

2
nsp {[σ−, σ+ρ] + [ρσ−, σ+]}

− wpc

2
[ρσz , σz] , (18.44)

where nsp is the average number of reservoir excitations (photons) at the transition
frequency ω21. The phase-changing rate in the last term is

wpc =
1
2

2∑
q=1

(2npc,q + 1)wqq , (18.45)

where npc,q is the average number of excitations in the phase-perturbing reservoir
coupled to the atomic state |εq〉.
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18.5 Phase space methods

In Section 5.6.3 we have seen that the density operator for a single cavity mode can be
described in the Glauber–Sudarshan P (α) representation (5.165). As we will show be-
low, this representation provides a natural way to express the operator master equation
(18.31) as a differential equation for the P (α)-function. In single-mode applications—
and also in some more complex situations—this equation is mathematically identical
to the Fokker–Planck equation studied in classical statistics (Risken, 1989, Sec. 4.7).

By defining an atomic version of the P -function—as the Fourier transform of a
properly chosen quantum characteristic function—it is possible to apply the same
techniques to the master equation for atoms, but we will restrict ourselves to the
simpler case of a single mode of the radiation field. The application to atomic master
equations can be found, for example, in Haken (1984, Sec. IX.2) or Walls and Milburn
(1994, Chap. 13).

For the discussion of the master equation in terms of P (α), it is better to use
the alternate convention in which P (α) is regarded as a function, P (α, α∗), of the
independent variables α and α∗. In this notation the P -representation is

ρS (t) =
∫

d2α

π
|α〉P (α, α∗; t) 〈α| . (18.46)

The function P (α, α∗; t) is real and satisfies the normalization condition∫
d2α

π
P (α, α∗; t) = 1 , (18.47)

but it cannot always be interpreted as a probability distribution. The trouble is that,
for nonclassical states, P (α, α∗; t) must take on negative values in some region of the
α-plane.

18.5.1 The Fokker–Planck equation

In order to use the P -representation in the master equation, we must translate the
products of Fock space operators, e.g. a, a†, and ρ, in the master equation into the
action of differential operators on the c-number function P (α, α∗; t). For this purpose
it is useful to write the coherent state |α〉 as

|α〉 = e−|α|2/2 |α; B〉 , (18.48)

where the Bargmann state |α; B〉 is

|α; B〉 =
∞∑

n=0

αn

√
n!

|n〉 . (18.49)

The virtue of the Bargmann states is that they are analytic functions of α. More
precisely, for any fixed state |Ψ〉 the c-number function

〈Ψ |α; B 〉 =
∞∑

n=0

αn

√
n!

〈Ψ |n〉 (18.50)

is analytic in α. In the same sense, 〈α; B| is an analytic function of α∗, so it is inde-
pendent of α.
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Since |α; B〉 is proportional to |α〉, the action of a on the Bargmann states is just

a |α; B〉 = α |α; B〉 . (18.51)

The action of a† is found by using eqn (18.49) to get

a† |α; B〉 =
∞∑

n=0

αn

√
n!

√
n + 1 |n + 1〉

=
∂

∂α
|α; B〉 . (18.52)

The adjoint of this rule is

〈α; B| a =
∂

∂α∗ 〈α; B| . (18.53)

In the Bargmann notation, the P -representation of the density operator is

ρS (t) =
∫

d2α

π
P (α, α∗; t) e−|α|2 |α; B〉 〈α; B| . (18.54)

The rule (18.51) then gives

aρS (t) =
∫

d2α

π
P (α, α∗; t) e−|α|2α |α; B〉 〈α; B|

=
∫

d2α

π
αP (α, α∗; t) |α〉 〈α| . (18.55)

Applying the rule (18.52) yields

a†ρS (t) =
∫

d2α

π
P (α, α∗; t) e−|α|2

{
∂

∂α
|α; B〉

}
〈α; B| , (18.56)

but this is not expressed in terms of a differential operator acting on P (α, α∗; t).
Integrating by parts on α leads to the desired form:

a†ρS (t) = −
∫

d2α

π

∂

∂α

{
P (α, α∗; t) e−αα∗} |α; B〉 〈α; B|

=
∫

d2α

π

{(
α∗ − ∂

∂α

)
P (α, α∗; t)

}
|α〉 〈α| . (18.57)

This result depends on the fact that the normalization condition requires P (α, α∗; t)
to vanish as |α| → ∞.

Combining eqns (18.55) and (18.57) with their adjoints gives us the translation
table

aρS (t) ↔ αP (α, α∗; t) ρS (t) a ↔ (α − ∂/∂α∗)P (α, α∗; t)

a†ρS (t) ↔ (α∗ − ∂/∂α)P (α, α∗; t) ρS (t) a† ↔ α∗P (α, α∗; t) .
(18.58)
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Applying the rules in eqn (18.58) to eqn (18.32)—for the simple case with HS1 =
0—and to eqn (18.33) yields the translations

LSρS (t) =
1
i�

[
�ω0a

†a, ρS (t)
] ↔ iω0

(
∂

∂α
α − ∂

∂α∗ α∗
)

P (α, α∗; t) (18.59)

and

LdisρS (t) ↔ Γ
2

{
∂

∂α
[αP (α, α∗; t)] +

∂

∂α∗ [α∗P (α, α∗; t)]
}

+ Γncav
∂2

∂α∂α∗P (α, α∗; t) , (18.60)

for the Hamiltonian and dissipative Liouville operators respectively.
In the course of carrying out these calculations, it is easy to get confused about

the correct order of operations. The reason is that products like a†aρ—with operators
standing on the left of ρ—and products like ρa†a—with operators standing to the
right of ρ—are both translated into differential operators acting from the left on the
function P (α, α∗; t).

Studying a simple example, e.g. carrying out a direct derivation of both a†aρ and
ρa†a, shows that the order of the differential operators is reversed from the order of the
Fock space operators when the Fock space operators stand to the right of ρ. Another
way of saying this is that one should work from the inside to the outside; the first
differential operator acting on P corresponds to the Hilbert space operator closest to
ρ. This rule gives the correct result for Fock space operators to the left or to the right
of ρ.

The master equation for an otherwise unperturbed cavity mode is, therefore, rep-
resented by

∂

∂t
P (α, α∗; t) =

∂

∂α
[Z (α) P (α, α∗; t)] +

∂

∂α∗ [Z∗ (α) P (α, α∗; t)]

+ Γncav
∂2

∂α∂α∗P (α, α∗; t) , (18.61)

where

Z (α) =
(

Γ
2

+ iω0

)
α . (18.62)

We can achieve a firmer grip on the meaning of this equation by changing variables
from (α, α∗) to u = (u1, u2), where u1 = Re α and u2 = Im α. In these variables,
P (α, α∗; t) = P (u; t), and the α-derivative is

∂

∂α
=

1
2

(
∂

∂u1
− i

∂

∂u2

)
. (18.63)

In this notation, the master equation takes the form of a classical Fokker–Planck
equation in two dimensions:

∂

∂t
P (u; t) = −∇ · [F (u) P (u; t)] +

D0

2
∇2P (u; t) , (18.64)
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where
D0 = Γncav/2 (18.65)

is the diffusion constant, and we have introduced the following shorthand notation:

∇ ·X =
∂X1

∂u1
+

∂X2

∂u2
,

F (u) = (−ReZ,− ImZ) =
(

ω0u2 − Γ
2

u1,−ω0u1 − Γ
2

u2

)
,

∇2 =

[(
∂

∂u1

)2

+
(

∂

∂u2

)2
]

.

(18.66)

The first- and second-order differential operators in eqn (18.64) are respectively called
the drift term and the diffusion term.

A Classical Langevin equations

The Fokker–Planck equation (18.64) is a special case of a general family of equations
of the form

∂

∂t
P (u; t) = −∇ · [F (u, t)P (u; t)] +

1
2

N∑
m=1

N∑
n=1

∂

∂um

∂

∂un
Dmn (u, t)P (u; t) , (18.67)

where u = (u1, . . . , uN), F = (F1, . . . , FN ), Dmn is the diffusion matrix, and

X · Y = X1Y1 + · · · + XNYN . (18.68)

For the two-component case, given by eqn (18.64), the diffusion matrix is diagonal,
Dmn = D0δmn, so it has a single eigenvalue D0 > 0. The corresponding condition in
the general N -component case is that all eigenvalues of the diffusion matrix D are
positive, i.e. D is a positive-definite matrix. In this case D has a square root matrix
B that satisfies D = BBT .

When D is positive definite, then eqn (18.67) is exactly equivalent to the set of
classical Langevin equations (Gardiner, 1985, Sec. 4.3.5)

dun (t)
dt

= Cn (u, t) +
N∑

m=1

Bnm (u, t)wm (t) , (18.69)

where the uns are stochastic variables and the wms are independent white noise sources
of unit strength, i.e. 〈wm (t)〉 = 0 and

〈wm (t)wn (t′)〉 = δmnδ (t − t′) . (18.70)

In particular, the Langevin equations corresponding to eqn (18.64) are

du (t)
dt

= F (u) +
√

D0w (t) . (18.71)



��� The master equation

These real Langevin equations are essential for numerical simulations, but for ana-
lytical work it is useful to write them in complex form. This is done by combining
α = u1 + iu2 with eqns (18.62) and (18.66) to get

dα (t)
dt

= −Z (α (t)) +
√

2D0η (t) , (18.72)

where α (t) is a complex stochastic variable, and

η (t) =
1√
2

[w1 (t) + iw2 (t)] (18.73)

is a complex white noise source satisfying

〈η (t)〉 = 0 , 〈η (t) η (t′)〉 = 0 , 〈η∗ (t) η (t′)〉 = δ (t − t′) . (18.74)

The equivalence of the Fokker–Planck equation and the classical Langevin equa-
tions for a positive-definite diffusion matrix is important in practice, since the nu-
merical simulation of the Langevin equations is usually much easier than the direct
numerical solution of the Fokker–Planck equation itself.

For some problems—e.g. when the appropriate reservoir is described by a squeezed
state—the diffusion matrix derived from the Glauber–Sudarshan P -function is not
positive definite, so the Fokker–Planck equation is not equivalent to a set of classical
Langevin equations. In such cases, another representation of the density operator may
be more useful (Walls and Milburn, 1994, Sec. 6.3.1).

18.5.2 Applications of the Fokker–Planck equation

A Coherent states are robust

Let us begin with a simple example in which ncav = 0, so that the diffusion term in eqn
(18.64) vanishes. If we interpret the reservoir oscillators as phonons in the cavity walls,
then this model describes the idealized situation of material walls at absolute zero.
Alternatively, the reservoir could be defined by other modes of the electromagnetic
field, into which the particular mode of interest is scattered by a gas of nonresonant
atoms. In this case, it is natural to assume that the initial reservoir state is the vacuum.
In other words, the universe is big and dark and cold.

The terms remaining after setting ncav = 0 can be rearranged to produce

∂

∂t
P (u; t) + F (u) · ∇P (u; t) = ΓP (u; t) . (18.75)

Let us study the evolution of a field state initially defined by P (u; 0) = P0 (u). The
general technique for solving linear, first-order, partial differential equations like eqn
(18.75) is the method of characteristics (Zauderer, 1983, Sec. 2.2), but we will employ
an equivalent method that is well suited to the problem at hand.

The first step is to introduce an integrating factor, by setting

P (u; t) = P (u; t) eΓt , (18.76)
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so that
∂

∂t
P (u; t) + F (u) · ∇P (u; t) = 0 . (18.77)

The second step is to transform to new variables (u′, t′) by

u′ = V (u, t) , t′ = t , (18.78)

where we require u′ = u at t = 0, and also assume that the function V (u, t) is linear
in u, i.e.

Vn (u, t) =
2∑

m=1

Gnm (t)um . (18.79)

The reason for trying a linear transformation is that the coefficient vector,

Fj (u) =
∑

l

Wjlul , where W =
[−Γ/2 ω0

−ω0 −Γ/2

]
, (18.80)

is itself linear in u.
The chain rule calculation in Exercise 18.5 yields expressions for the operators ∂/∂t

and ∂/∂ul in terms of the new variables, so that eqn (18.77) becomes

∂

∂t′
P (u′; t′) +

∑
n

{∑
l

[
G (t)W +

dG (t)
dt

]
nl

ul

}
∂

∂u′
n

P (u′; t) = 0 . (18.81)

Choosing the matrix G (t) to satisfy

dG (t)
dt

+ G (t)W = 0 (18.82)

ensures that the coefficient of ∂/∂u′
n vanishes identically in u, and this in turn simplifies

the equation for P (u′; t′) to
∂

∂t′
P (u′; t′) = 0 . (18.83)

Thus P (u′; t′) = P (u′; 0), but t′ = 0 is the same as t = 0, so P (u′; t′) = P0 (u′).
In this way the solution to the original problem is found to be

P (u, t) = eΓtP0 (V (u, t)) , (18.84)

and the only remaining problem is to evaluate V (u, t). This is most easily done by
writing G (t) as

G (t) =
[
b1 (t) b2 (t)
c1 (t) c2 (t)

]
, (18.85)

and substituting this form into eqn (18.82). This yields simple differential equations
for the vectors b (t) and c (t), with initial conditions b (0) = (1, 0) and c (0) = (0, 1).
The solution of these auxiliary equations gives
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G (t) = eΓt/2R (t) = eΓt/2

[
cos (ω0t) − sin (ω0t)
sin (ω0t) cos (ω0t)

]
, (18.86)

so that
P (u; t) = P0

(
eΓt/2R (t)u

)
eΓt . (18.87)

Thus, in the absence of the diffusive term, the shape of the distribution is un-
changed; the argument u is simply scaled by exp (Γt/2) and rotated by the angle ω0t.
In the complex-α description the solution is given by

P (α, α∗; t) = P0

(
e(Γ/2+iω0)tα, e(Γ/2−iω0)tα∗

)
eΓt . (18.88)

This result is particularly interesting if the field is initially in a coherent state |α0〉,
i.e. the initial P -function is P0 (u) = δ2 (u − u0). In this case, the standard properties
of the delta function lead to

P (u; t) = eΓtδ2

(
eΓt/2R (t)u − u0

)
= δ2 (u− u (t)) , (18.89)

where
u (t) = e−Γt/2 [R (t)]−1 u0 . (18.90)

The conclusion is that a coherent state interacting with a zero-temperature reservoir
will remain a coherent state, with a decaying amplitude

α (t) = α0e
−Γt/2e−iω0t . (18.91)

Consequently, the time-dependent joint variance of a† and a vanishes at all times:

V
(
a†, a ; t

)
=

〈
α (t)

∣∣a†a
∣∣α (t)

〉− 〈
α (t)

∣∣a†∣∣α (t)
〉 〈α (t) |a|α (t)〉 = 0 . (18.92)

In other words, coherent states are robust : scattering and absorption will not destroy
the coherence properties, as long as the environment is at zero temperature.

This apparently satisfactory result raises several puzzling questions. The first is that
the initially pure state remains pure, even after interaction with the environment. This
seems to contradict the general conclusion, established in Section 18.1, that interaction
with a reservoir inevitably produces a mixed state for the sample.

The resolution of this discrepancy is that the general argument is true for the exact
theory, while the master equation is derived with the aid of the approximation—see
eqn (18.17)—that back-action of the sample on the reservoir can be neglected. This
means that the robustness property of the coherent states is only as strong as the
approximations leading to the master equation. Furthermore, we will see in Section
18.6 that coherent states are the only pure states that can take advantage of this
loophole in the general argument of Section 18.1.

The second difficulty with the robustness of coherent states is that it seems to
violate the fluctuation dissipation theorem. The field suffers dissipation, but there is
no added noise. Consequently, it is a relief to realize that the strength of the noise
term in the equivalent classical Langevin equations (18.71) vanishes for ncav = 0.
Further reassurance comes from the operator Langevin approach, in particular eqn
(14.74), which shows that the strength of the Langevin noise operator also vanishes
for ncav = 0.
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B Thermalization of an initial coherent state

The coordinates defined by eqn (18.78) are also useful for solving eqn (18.64), the
Fokker–Planck equation with diffusion. According to eqn (18.86), the transformation
from u to u′ is a rotation followed by scaling with exp (Γt/2). The operator ∇2 on
the right side of eqn (18.64) is invariant under rotations, so ∇2 = eΓt∇′2 and the
Fokker–Planck equation becomes

∂

∂t′
P (u′; t′) =

D0

2
eΓt∇′2P (u′; t′) , (18.93)

which is the diffusion equation with a time-dependent diffusion coefficient. The Fourier
transform,

P (q′; t′) =
∫

d2u′P (u′; t′) e−iq′·u′
, (18.94)

then satisfies the ordinary differential equation

d

dt′
P (q′; t′) =

D0

2
eΓtq′2P (q′; t′) , (18.95)

which has the solution

P (q′; t′) = exp
[
D0

2Γ
(
eΓt − 1

)
q′2

]
P 0 (q′) . (18.96)

For the initial coherent state, P0 (u) = δ2 (u − u0), one finds

P 0 (q′) = exp [−iq′ · u0] , (18.97)

and the inverse transform can be explicitly evaluated to yield

P (u; t) =
1

πw (t)
exp

[
− (u− u (t))2

w (t)

]
, (18.98)

where u (t) is given by eqn (18.90) and

w (t) = ncav

(
1 − e−Γt

)
. (18.99)

For long times (t � 1/Γ) u (t) → 0, and the P -function approaches the thermal
distribution given by eqn (5.176); in other words, the field comes into equilibrium with
the cavity walls as expected. At short times, t � 1/Γ, we see that w (t) ∼ ncavΓt � 1
and the initial delta function is recovered.

C A driven mode in a lossy cavity

In Section 5.2 we presented a simple model for generating a coherent state of a sin-
gle mode in a lossless cavity. We can be sure that losses will be present in any real
experiment, so we turn to the Fokker–Planck equation for a more realistic treatment.
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The off-resonant term in the Heisenberg equation (5.38) defining our model can
safely be neglected, so the situation is adequately represented by the simplified Hamil-
tonian

HS (t) = �ω0a
†a − �We−iΩta† − �W ∗eiΩta , (18.100)

that leads to the Liouville operator

LSρS (t) =
1
i

[
ω0a

†a, ρS (t)
]− 1

i

[
We−iΩta† + W ∗eiΩta, ρS (t)

]
. (18.101)

After including the new terms in the master equation and applying the rules (18.58),
one finds an equation of the same form as eqn (18.61), except that the Z (α) function
is replaced by

Z (α) =
(

Γ
2

+ iω0

)
α − iWe−iΩt . (18.102)

Instead of directly solving the Fokker–Planck equation, it is instructive to use the
equivalent set of classical Langevin equations. Substituting the new Z (α) function
into the general result (18.72) yields

dα (t)
dt

= −
(

Γ
2

+ iω0

)
α (t) + iWe−iΩt +

√
2D0η (t) , (18.103)

which has the solution

α (t) = α (0) e−(iω0+Γ/2)t + αcoh (t) +
√

2D0ϑ (t) , (18.104)

where

αcoh (t) =
iW

i∆ + Γ/2
e−(iω0+Γ/2)t

[
e(i∆+Γ/2)t − 1

]
(18.105)

is a definite (i.e. nonrandom) function, and

ϑ (t) =
∫ t

0

dt1e
−(iω0+Γ/2)(t−t1)η (t1) . (18.106)

The initial value, α (0), is a complex random variable, not a definite complex number.
The average of any function f (α (0)) is given by

〈f (α (0))〉 =
∫

d2α (0)P0 (α (0) , α∗ (0)) f (α (0)) , (18.107)

but special problems arise if the initial state is not classical. For a classical state—
i.e. P0 (α, α∗) � 0—standard methods can be used to draw α (0) randomly from the
distribution, but these methods fail when P0 (α, α∗) is negative. For these nonclas-
sical states, the c-number Langevin equations are of doubtful utility for numerical
simulations.
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For the problem at hand, the initial state is the vacuum, with the positive distri-
bution P0 (α (0) , α∗ (0)) = δ (α (0)). The initial value α (0) and the noise term ϑ (t)
both have vanishing averages, so the average value of α (t) is given by

〈α (t)〉 = αcoh (t) . (18.108)

For the nondissipative case, Γ = D0 = 0, the average agrees with eqn (5.41); but,
when dissipation is present, the long time (t � 1/Γ) solution approaches

〈α (t)〉 =
iW

i∆ + Γ/2
e−iΩt . (18.109)

Thus the decay of the average field due to dissipation—shown by eqn (18.91)—is
balanced by radiation from the classical current, and the average field amplitude has
a definite phase determined by the phase of the classical current. This would also be
true if the sample were described by the coherent state ρcoh (t) = |αcoh (t)〉 〈αcoh (t)|,
so it will be necessary to evaluate second-order moments in order to see if eqn (18.104)
corresponds to a true coherent state.

We will first investigate the coherence properties of the state by using the explicit
solution (18.104) to get

〈
α2 (t)

〉
=

〈[
α (0) e−(iω0+Γ/2)t + αcoh (t) +

√
2D0ϑ (t)

]2
〉

= α2
coh (t) + 2D0

〈
ϑ2 (t)

〉
. (18.110)

The simple form of the second line depends on two facts: (i) αcoh (t) is a definite
function; and (ii) the distribution of α (0) is concentrated at α (0) = 0. A further
simplification comes from using eqn (18.105) to evaluate

〈
ϑ2 (t)

〉
. The result is a double

integral with integrand proportional to 〈η (t1) η (t2)〉, but eqn (18.74) shows that this
average vanishes for all values of t1 and t2. The final result is then〈

α2 (t)
〉

= α2
coh (t) = 〈α (t)〉2 , (18.111)

which also agrees with the prediction for a true coherent state.
Before proclaiming that we have generated a true coherent state in a lossy cavity,

we must check the remaining second-order moment,
〈|α (t)|2〉, which represents the

average of the number operator a†a. Since α (t) is concentrated at the origin, we can
simplify the calculation by setting α (0) = 0 at the outset. This gives us〈

|α (t)|2
〉

= |αcoh (t)|2 + 2D0

〈
|ϑ (t)|2

〉
. (18.112)

Combining eqns (18.106) and (18.74) leads to〈
|ϑ (t)|2

〉
=

∫ t

0

dt1

∫ t

0

dt2e
−(−iω0+Γ/2)(t−t1)e−(iω0+Γ/2)(t−t2) 〈η∗ (t1) η (t2)〉

=
∫ t

0

dt1e
−Γ(t−t1) =

1 − e−Γt

Γ
, (18.113)
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so that 〈
|α (t)|2

〉
− |αcoh (t)|2 =

2D0

Γ
(
1 − e−Γt

)
= ncav

(
1 − e−Γt

)
, (18.114)

where we used eqn (18.65) to get the final result. The left side of this equation would
vanish for a true coherent state, so the state generated in a lossy cavity is only coherent
if ncav = 0, i.e. if the cavity walls are at zero temperature.

18.6 The Lindblad form of the master equation∗

The master equations (18.31) and (18.42) share three important properties.
(a) The trace condition, Tr [ρS (t)] = 1, is conserved.
(b) The positivity of ρS is conserved, i.e. 〈Ψ |ρS (t)|Ψ〉 � 0 for all states |Ψ〉 and all

times t.
(c) The equations are derivable from a model of the sample interacting with a collec-

tion of reservoirs.
The most general linear, dissipative time evolution that satisfies (a), (b), and (c)

is given by
∂ρS

∂t
= LSρS + LdisρS , (18.115)

where
LSρS =

1
i�

[HS (t) , ρS ] (18.116)

describes the Hamiltonian evolution of the sample, and the dissipative term has the
Lindblad form (Lindblad, 1976)

LdisρS = −1
2

K∑
k=1

{
C†

kCkρS + ρSC†
kCk − 2CkρSC†

k

}
. (18.117)

Each of operators C1, C2, . . . , CK acts on the sample space HS and there can be a
finite or infinite number of them, depending on the sample under study.

One can see by inspection that there are two Lindblad operators, i.e. K = 2, for
the single-mode master equation (18.31):

C1 =
√

Γ (ncav + 1)a , C2 =
√

Γncava
† . (18.118)

A slightly longer calculation—see Exercise 18.6—shows that there are three operators
for the master equation (18.42) describing the two-level atom.

The Lindblad form (18.117) for the dissipative operator can be used to investigate
a variety of questions. For example, in Section 2.3.4 we introduced a quantitative
measure of the degree of mixing by defining the purity of the state ρS as P (t) =
Tr

[
ρ2

S (t)
]

� 1. One can show from eqn (18.115) that the time derivative of the purity
is

d

dt
P (t) = −2

K∑
k=1

Tr
{
ρS (t)C†

kCkρS (t) − ρS (t)CkρS (t)C†
k

}
. (18.119)

At first glance, it may seem natural to assume that interaction with the environment
can only cause further mixing of the sample state, so one might expect that the time
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derivative of the purity is always negative. If ρS (0) is a mixed state this need not be
true. For example, the purity of a thermal state would be increased by interaction
with a colder reservoir, as seen in Exercise 18.7.

On the other hand, for a pure state there is no way to go but down; therefore, the
intuitive expectation of declining purity should be satisfied. In order to check this, we
evaluate eqn (18.119) for an initially pure state ρS (0) = |Ψ〉 〈Ψ|, to find

d

dt
P (t)

∣∣∣∣
t=0

= −2
K∑

k=1

{〈
Ψ
∣∣∣C†

kCk

∣∣∣Ψ〉
−
〈
Ψ
∣∣∣C†

k

∣∣∣Ψ〉
〈Ψ |Ck|Ψ〉

}

= −2
K∑

k=1

〈
Ψ
∣∣∣δC†

kδCk

∣∣∣Ψ〉
� 0 , (18.120)

where
δCk = Ck − 〈Ψ |Ck|Ψ〉 . (18.121)

Thus the Lindblad form guarantees the physically essential result that initially pure
states cannot increase in purity (Gallis, 1996).

The appearance of an inequality like eqn (18.120) prompts the following question:
Are there any physical samples possessing states that saturate the inequality? We can
answer this question in one instance by studying the master equation (18.31) with a
zero-temperature reservoir. In this case eqn (18.118) gives us C2 = 0 and C1 =

√
Γa,

so that eqn (18.120) becomes

d

dt
P (t)

∣∣∣∣
t=0

= −2Γ
〈
Ψ
∣∣∣(a − α)† (a − α)

∣∣∣Ψ〉
� 0 , (18.122)

where α = 〈Ψ |a|Ψ〉. The inequality can only be saturated if |Ψ〉 satisfies

a |Ψ〉 = α |Ψ〉 , (18.123)

i.e. when |Ψ〉 is a coherent state. For all other pure states, interaction with a zero-
temperature reservoir will decrease the purity, i.e. the state becomes mixed.

18.7 Quantum jumps

18.7.1 An elementary description of quantum jumps

The notion of quantum jumps was a fundamental part of the earliest versions of
the quantum theory, but for most of the twentieth century it was assumed that the
phenomenon itself would always be unobservable, since there were no experimental
methods available for isolating and observing individual atoms, ions, or photons.

This situation began to change in the 1980s with Dehmelt’s proposal (Dehmelt,
1982) for an improvement in frequency standards based on observations of a single
ion, and the subsequent development of electromagnetic traps (Paul, 1990) that made
such observations possible.

The following years have seen a considerable improvement in both experimental
and theoretical techniques. The improved experimental methods have made possible
the direct observation of the quantum jumps postulated by the founders of quantum
theory.
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Fig. 18.1 A three-level ion with dipole-al-

lowed transitions 3 ↔ 2 and 3 ↔ 1, indicated

by wavy arrows, and a dipole-forbidden tran-

sition 2 → 1, indicated by the light dashed

arrow. The heavy double arrows denote strong

incoherent couplings on the 3 ↔ 1 and 3 → 2

transitions.
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A A three-level model

It is always good to have a simple, concrete example in mind, so we will study a single,
trapped, three-level ion, with the level structure shown in Fig. 18.1. The dipole-allowed
transitions, 3 → 1 and 3 → 2, have Einstein-A coefficients Γ31 and Γ32 respectively, so
the total decay rate of level 3 is Γ3 = Γ31 + Γ32. Since the dipole-forbidden transition,
2 → 1, has a unique final state, it is described by a single decay rate Γ2, which is small
compared to both Γ31 and Γ32.

In addition to the spontaneous emission processes, we assume that an incoher-
ent radiation source, at the frequency ω31, drives the ion between levels 1 and 3 by
absorption and spontaneous emission. As explained in Section 1.2.2, both of these
processes occur with the rate W31 = B31ρ (ω31), where ρ (ω31) is the energy density of
the external field and B31 is the Einstein-B coefficient.

When level 3 is occupied, the ion can isotropically emit fluorescent radiation, i.e.
radiation at frequency ω31. Another way of saying this is that the ion scatters the pump
light in all directions. Consequently, observing the fluorescent intensity—say at right
angles to the direction of the pump radiation—effectively measures the population of
level 3.

We will further assume that the levels 2 and 3 are closely spaced in energy, com-
pared to their separation from level 1, so that ω32 � ω31. From eqn (4.162) we know
that the Einstein-A coefficient is proportional to the cube of the transition frequency;
therefore, the transition rate for 3 → 2 will be small compared to the transition rate
for 3 → 1, i.e. Γ32 � Γ31. In some cases, the small size of Γ32 may cause an excessive
delay in the transition from 3 to 2, so we also allow for an incoherent driving field on
the 3 ↔ 2 transition such that

Γ32 � W32 = B32ρ (ω32) � Γ31 . (18.124)

Under these conditions, the ion will spend most of its time shuttling between levels
1 and 3, with infrequent transitions from 3 to the intermediate level 2. The forbidden
transition 2 → 1 occurs very slowly compared to 3 → 1 and 3 → 2, so level 2 effectively
traps the occupation probability for a relatively long time. When this happens the
fluorescent signal will turn off, and it will not turn on again until the ion decays back
to level 1. We will refer to these transitions as quantum jumps.1

1It would be equally correct—but not nearly as exciting—to refer to this phenomenon as ‘inter-
rupted fluorescence’.
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During the dark interval the ion is said to be shelved and |ε2〉 is called a shelving
state. The shelving effect is emphasized when the 1 ↔ 3 transition is strongly saturated
and the state |ε2〉 is long-lived compared to |ε3〉, i.e. when

W31 � Γ3 � Γ2 . (18.125)

During the bright periods when fluorescence is observed, the state vector |Ψion〉 will
be a linear combination of |ε1〉 and |ε3〉; in other words, |Ψion〉 is in the subspace H13.

B A possible experimental realization

As a possible experimental realization of the three-level model, consider the intermit-
tent resonance fluorescence of the strong Lyman-alpha line, emitted by a singly-ionized
helium ion (He+) in a Paul trap. One advantage of this choice is that the spectrum is
hydrogenic, so that it can be calculated exactly.

The complementary relation between theory and experiment guarantees the pres-
ence of several real-world features that complicate the situation. The level diagram
in part (a) of Fig. 18.2 shows not one, but two intermediate states, 2S1/2 and 2P1/2,
that are separated in energy by the celebrated Lamb shift, ∆EL/� = 14.043 GHz.
The 2S1/2-level is a candidate for a shelving state, since there is no dipole-allowed
transition to the 1S1/2 ground state, but the 2P1/2-level does have a dipole-allowed
transition, 2P1/2 → 1S1/2. This adds unwanted complexity.

An additional theoretical difficulty is caused by the fact that the dominant mech-
anism for the transition 2S1/2 → 1S1/2 is a two-photon decay. This is a problem,
because the reservoir model introduced in Section 14.1.1 is built on the emission or
absorption of single reservoir quanta; consequently, the standard reservoir model would
not apply directly to this case.

Fortunately, these complications can be exploited to achieve a closer match to our
simple model. The first step is to apply a weak DC electric field E0 to the ion. In this

��� ���
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Fig. 18.2 (a) Level diagram for the He+ ion. The spacing between the 2S1/2 and 2P1/2 levels

is exaggerated for clarity. (b) The unperturbed
�
�2S1/2

�
and

�
�2P1/2

�
states are replaced by the

Stark-mixed states |ε2〉 and |ε′2〉. The wavy arrows indicate dipole-allowed decays, while the

solid arrows indicate incoherent driving fields. A dipole-allowed decay 2′ → 1 is not shown,

since 2′ is effectively isolated by the method explained in the text.
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application ‘weak’ means that the energy-level shift caused by the static field is small
compared to the Lamb shift, i.e.∣∣〈2S1/2 |E0 · d| 2P1/2

〉∣∣ � ∆EL . (18.126)

In this case there will be no first-order Stark shift, and the second-order Stark effect
(Bethe and Salpeter, 1977) mixes the 2S1/2 and 2P1/2 states to produce two new
states,

|ε2〉 = CS

∣∣2S1/2

〉
+ CP

∣∣2P1/2

〉
, (18.127)

|ε′2〉 = C′
S

∣∣2S1/2

〉
+ C′

P

∣∣2P1/2

〉
, (18.128)

as illustrated in part (b) of Fig. 18.2.
A second-order perturbation calculation—using the Stark interaction HStark =

−d · E0—shows that |CS | � |CP |, i.e. |ε2〉 is dominantly like
∣∣2S1/2

〉
, while |ε′2〉 is

mainly like
∣∣2P1/2

〉
. The states |ε1〉 and |ε3〉 of the simple model pictured in Fig. 18.1

are identified with
∣∣1S1/2

〉
and

∣∣2P3/2

〉
respectively.

Since neither |ε2〉 nor |ε′2〉 has definite parity, the dipole selection rules now allow
single-photon transitions 2 → 1 and 2′ → 1. The rate for 2 → 1 is proportional
to |CP |2, so a proper choice of |E0| will guarantee that the single-photon process
dominates the two-photon process, while still being slow compared to the rate Γ31 for
the Lyman-alpha transition.

By the same token, there are dipole-allowed transitions from 3 to both 2 and 2′.
The unwanted level 2′ can be effectively eliminated by applying a microwave field
resonant with the 3 → 2 transition, but not with the 3 → 2′ transition. The strength
of this field can be adjusted so that the stimulated emission rate for 3 → 2 is large
compared to the spontaneous rates for 3 → 2′ and 3 → 2, but small compared to
the stimulated and spontaneous rates for the 3 → 1 transition. These settings ensure
that the population of |ε′2〉 will remain small at all times and that |ε2〉 is an effective
shelving state.

The main practical difficulty for this experiment is that the pump would have to
operate at the vacuum-UV wavelength, 30.38 nm, of the Lyman-alpha line of the He+

ion. One possible way around this difficulty is to use the radiation from a synchrotron
light source.

The transition 3 → 2 is primarily due to the microwave-frequency transition
2P3/2 → 2S1/2, which occurs at 44 GHz. Our assumption that the spontaneous emis-
sion rate for this transition is small compared to the transition rate for the Lyman-
alpha transition is justified by the rough estimate

A (Lyman alpha)
A
(
2P3/2 → 2S1/2

) ∼
(

ν (Lyman alpha)
ν
(
2P3/2 → 2S1/2

))3

∼ 1016 (18.129)

(Bethe and Salpeter, 1977), which uses the values 2.47 × 1015 Hz and 11 GHz for the
Lyman-alpha transition and the 2P3/2 → 2S1/2 microwave transition in hydrogen
respectively.

The combination of the low rate for the 3 → 2 transition and the long lifetime of
the shelving level 2 will permit easy observation of interrupted resonance fluorescence
at the helium ion Lyman-alpha line, i.e. quantum jumps.
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For hydrogen, the lifetime of the 2P3/2 state is 1.595 ns, so the estimate (18.129)
tells us that the lifetime for the microwave transition is approximately 2 × 107 s, i.e.
of the order of a year. The lifetime of the same transition for a hydrogenic ion scales
as Z−4, so for Z = 2 the microwave transition lifetime is 1.5 × 106 seconds, which is
about a month.

This is still a rather long time to wait for a quantum jump. The solution is to
adjust the strength of the resonant microwave field driving the 3 ↔ 2 transition to
bring this lifetime within the limits of the experimentalist’s patience.

C Rate equation analysis

The assumption that the driving field is incoherent allows us to extend the rate equa-
tion approximation (11.190) for two-level atoms to our simple model to get

dP3

dt
= − (Γ3 + W31 + W32)P3 + W31P1 + W32P2 , (18.130)

dP2

dt
= − (Γ2 + W32)P2 + (Γ32 + W32)P3 , (18.131)

dP1

dt
= −W31P1 + (W31 + Γ31)P3 + Γ2P2 . (18.132)

Adding the equations shows that the sum of the three probabilities is constant:

P1 + P2 + P3 = 1 . (18.133)

The inequalities (18.125) suggest that the adiabatic elimination rule (11.187) can
be applied to the rate equations (18.130)–(18.132). To see how the rule works in this
case, it is useful to express the rate equations in terms of the probability P31 = P3+P1

that the ionic state is in H13, and the inversion D31 = P3 − P1. The new form of the
rate equations is

d

dt
D31 = −

(
2W31 + Γ31 +

1
2
Γ32 +

1
2
W32

)
D31

−
(

Γ31 +
1
2
Γ32 +

1
2
W32

)
P31 + (W32 − Γ2)P2 , (18.134)

d

dt
P31 = −1

2
(Γ32 + W32)P31 − 1

2
(Γ32 + W32) D31 + (Γ2 + W32)P2 , (18.135)

d

dt
P2 = − (Γ2 + W32)P2 +

1
2

(Γ2 + W32)P31 +
1
2

(Γ2 + W32) D31 . (18.136)

The rate multiplying D31 on the right side of eqn (18.134) is much larger than any
other rate in the equations; therefore, D31 (t) will rapidly decay to the steady-state
solution of eqn (18.134), i.e.

D31 = − Γ31 + 1
2Γ32 + 1

2W32

2W31 + Γ31 + 1
2Γ32 + 1

2W32

P31 +
W32 − Γ2

2W31 + Γ31 + 1
2Γ32 + 1

2W32

P2 . (18.137)

The coefficients of the probabilities P31 and P2 are very small, so we can set D31 � 0
in the rest of the calculation.
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With this approximation, the remaining rate equations are

dP2

dt
= −RonP2 + RoffP31 (18.138)

and
dP31

dt
= RonP2 − RoffP31 , (18.139)

where Ron = Γ2 + W32 is the rate at which the fluorescence turns on, and Roff =
(Γ32 + W32) /2 is the rate at which fluorescence turns off. Solving eqns (18.138) and
(18.139) for P31 (t) yields

P31 (t) = P31 (0) e−(Ron+Roff)t +
Ron

Ron + Roff

[
1 − e−(Ron+Roff)t

]
. (18.140)

The fluorescent intensity IF (t) is proportional to P31 (t), so IF (t) evolves smoothly
from its initial value IF (0) to the steady-state value

IF ∝ Ron

Ron + Roff
. (18.141)

This result is completely at odds with the flickering on-and-off behavior predicted
above. The source of this discrepancy is the fact that the quantities P1, P2, and P3 in
the rate equations (18.138) and (18.139) are unconditional probabilities. This means
that P1, for example, is the probability that the ion is in level 1 without regard to its
past history or any other conditions. Another way of saying this is that P1 refers to
an ensemble of ions which have reached level 1 in all possible ways.

Before the development of single-ion traps, resonance fluorescence experiments
dealt with dilute atomic gases, and the total fluorescence signal would be correctly
described by eqn (18.140). In this case, the on-and-off behavior of the individual atoms
would be washed out by averaging over the random fluorescence of the atoms in the
gas. For a single trapped ion, the smooth behavior in eqn (18.140) can only be recov-
ered by averaging over many observations, all starting with the ion in the same state,
e.g. the ground state.

In addition to the inability of the rate equations to predict quantum jumps, it
is also the case that statistical properties—such as the distribution of waiting times
between jumps—are beyond their reach. Thus any improvement must involve putting
in some additional information; that is, reducing the size of the ensemble.

The first step in this direction was taken by Cook and Kimble (1985) who intro-
duced the conditional probability P31,n (t, t + T ) that the ion is in H13 after making
n transitions between H13 and |ε2〉 during the interval (t, t + T ). The number of tran-
sitions defines a subensemble of ions with this history. The complementary object
P2,n (t, t + T ) is the probability that the ion is in level |ε2〉 after n transitions between
H13 and |ε2〉 during the interval (t, t + T ).

By using the approximations leading to eqns (18.138) and (18.139), it is possi-
ble to derive an infinite set of coupled rate-like equations for P31,n (t, t + T ) and
P2,n (t, t + T ), with n = 0, 1, . . .. This approach permits the calculation of various
statistical features of the quantum jumps, but it is not easy to connect it with the
more refined quantum-jump theories to be developed later on.
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D A stochastic model

We will now consider a simple on-and-off model which is qualitatively similar to the
more sophisticated quantum-jump theories. In this approach, the analytical treatment
based on conditional probabilities is replaced by an equivalent stochastic simulation.

We first assume that the fluorescent intensity can only have the values I = 0 (off)
or I = IF (on). If the signal is on at time t, then the probability that it will turn off
in the interval (t, t + ∆t) is ∆poff = Roff∆t. Conversely, if the signal is off at time t,
then the probability that it will turn on in the interval (t, t + ∆t) is ∆pon = Ron∆t.
For sufficiently small ∆t, we can assume that only one of these events occurs.

The fluorescent intensities In at the discrete times tn = (n − 1)∆t can then be
calculated by the following algorithm.

For In = 0 choose a random number r in (0, 1) ;
then set In+1 = 0 if ∆pon < r or In+1 = IF if ∆pon > r .

For In = IF choose a random number r in (0, 1) ;
then set In+1 = IF if ∆poff < r or In+1 = 0 if ∆poff > r .

(18.142)

The random choices in this algorithm are a special case of the rejection method (Press
et al., 1992, Sec. 7.3) for choosing random variables from a known distribution.

From a physical point of view, the algorithm is an approximate embodiment of the
collapse postulate for measurements in quantum theory. The value In is the outcome of
a measurement of the fluorescent intensity at t = tn, so it corresponds to a collapse of
the state vector of the ion into the state with the value In. If In+1 = In the subsequent
collapse at t = tn+1 is into the same state as at t = tn. For In+1 �= In the collapse at
tn+1 is into the other state, so we see a quantum jump.

A typical2 sequence of quantum jumps is shown in Fig. 18.3. Random sequences of
binary choices (dots and dashes) of this kind are called random telegraph signals.
This plot exhibits the expected on-and-off behavior for a single ion, but the smooth
fluorescence curve predicted by the rate equations is nowhere to be seen.

In order to recover an approximation to eqn (18.140), we consider M experiments,
all starting with I1 = IF , and define the average fluorescent intensity at time tn by

In,av =
1
M

M∑
j=1

In,j , (18.143)

where In,j is the fluorescent intensity at time tn for the jth run. A comparison of In,av

with the values predicted by eqn (18.140) is shown in Fig. 18.4, for M = 100.

E Experimental evidence

We have demonstrated a simple model displaying quantum jumps and a plausible
experimental realization for it, but the question remains if any such phenomena have

2The stochastic algorithm (18.142) gives a different plot for each run with the same input para-
meters. The ‘typical’ plot shown here was chosen to illustrate the effect most convincingly. This kind
of data selection is not unknown in experimental practice.
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Fig. 18.3 Normalized fluorescent intensity I/IF versus time (in units of the radiative lifetime

1/Γb of the shelving state). In these units, Ron = 1.6, Roff = 0.3, and ∆t = 0.1. The initial

intensity is I (0) = IF .
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Fig. 18.4 Fluorescent intensity (normalized to IF and averaged over 100 runs) versus time

(measured in units of the radiative lifetime of the shelving state). The initial intensity in each

run is I (0) = IF , and the parameter values are those used in Fig. 18.3.

been seen in reality. For this evidence we turn to an experiment in which intermittent
fluorescence was observed from a single, laser-cooled Ba+ ion in a radio frequency trap
(Nagourney et al., 1986).

The complementary relation between theory and experiment is in full play in this
case, as seen by comparing the level diagram for this experiment—shown in Fig. 18.5—
with Fig. 18.1. Fortunately, the complications involved in the real experiment do not
change the essential nature of the effect, which is seen in Fig. 18.6.
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Fig. 18.5 Level structure of Ba+. The states in the simple three-level model discussed in

the text are |ε1〉 =
�
�62S1/2

�
, |ε2〉 =

�
�62P3/2

�
, and |ε3〉 =

�
�52D5/2

�
, which is the shelf state.

The remaining states are only involved in the laser cooling process indicated by the heavy

solid lines. The 1 ↔ 2 transition is driven by an incoherent source (a lamp) indicated by the

light solid line. (Reproduced from Nagourney et al. (1986).)
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Fig. 18.6 A typical trace of the 493 nm fluorescence from the 62P1/2-level showing the

quantum jumps after the hollow cathode lamp is turned on. The atom is definitely known to

be in the shelf level during the low fluorescence periods. (Reproduced from Nagourney et al.

(1986).)

18.7.2 Quantum jumps and the master equation∗

Many features of quantum-jump experiments are well described—at least semi-quantit-
atively—by the rate equation approximation for the conditional probabilities, e.g.
P31,n, or by the equivalent stochastic simulation; but the rate equation model has
definite limitations. The most important of these is the restriction to incoherent ex-
citation of the atomic states. Many experiments employ laser excitation, which is
inherently coherent in character.
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The effort required to incorporate coherence effects eventually led to the creation of
several closely related approaches to the problem of quantum jumps. These techniques
are known by names like the Monte Carlo wave function method, quantum trajectories,
and quantum state diffusion. Sorting out the relations between them is a complicated
story, which we will not attempt to tell in detail. For an authoritative account, we
recommend the excellent review article of Plenio and Knight (1998) which carries the
history up to 1999.

We will present a brief account of the Monte Carlo wave function technique for the
solution of the master equation. The other approaches mentioned above are technically
similar; but they differ in the original motivations leading to them, in their physical
interpretations, and in the kinds of experimental situations they can address.

There are two complementary views of these theoretical approaches. One may re-
gard them simply as algorithms for the solution of the master equation, or as concep-
tually distinct views of quantum theory. The discussion therefore involves both com-
putational and fundamental physics issues. We will first consider the computational
aspects of the Monte Carlo wave function technique, and then turn to the conceptual
relations between this method and the approaches based on quantum trajectories or
quantum state diffusion.

The master equation (18.115) is a differential equation describing the time evolu-
tion of the sample density operator. Except in highly idealized situations—for which
analytical solutions are known—the solution of the master equation requires numeri-
cal methods. Even for the apparently simple case of a single cavity mode, the sample
Hilbert space HS is infinite dimensional, so the annihilation operator a is represented
by an infinite matrix. A direct numerical attack would therefore require replacing
HS by a finite-dimensional space, e.g. the subspace spanned by the number states
|0〉 , . . . , |M − 1〉. This would entail representing the creation and annihilation opera-
tors and the density operator by M × M matrices.

In some situations, such as those discussed in Section 18.5.2, an alternative ap-
proach is to replace the infinite-dimensional space HS by the two-dimensional quan-
tum phase space, and to use—for a restricted class of problems—the Fokker–Planck
equation (18.61) or the equivalent classical Langevin equation (18.72). In general, this
method will fail if the diffusion matrix D is not positive definite.

The master equation for an atom can also be represented by a Fokker–Planck
equation on a finite-dimensional phase space, but the collection of problems amenable
to this treatment is restricted by the same kind of considerations, e.g. a positive-definite
diffusion kernel, that apply to the radiation field. In many cases the center-of-mass
motion of the atom can be neglected—or at least treated classically—so the sample
Hilbert space is finite dimensional. In this situation the master equation for a two-level
atom is simply a differential equation for a 2 × 2 hermitian matrix. This is equivalent
to a set of four coupled ordinary differential equations, so it is not computationally
onerous.

Unfortunately, in the real world of experimental physics, atoms often have more
than two relevant levels, or it may be necessary to consider more than one atom at a
time. In either case the computational difficulty grows rapidly with the dimensionality
of the sample Hilbert space.
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In general, a numerical simulation will take place in a sample Hilbert space with
some dimension M . The master equation is then an equation for an M × M matrix,
and the computational cost for solving the problem scales as M2. This is an impor-
tant consideration, since increasing the accuracy of the simulation typically requires
enlarging the Hilbert space. On the other hand, if one could work with a state vector
instead of the density operator, the cost of a solution would only scale as M . This gain
alone justifies the development of the Monte Carlo wave function technique described
below.

18.7.3 The Monte Carlo wave function method∗

According to eqn (18.115), the change in the density operator over a time step ∆t is

ρS (t + ∆t) = ρS (t) +
∆t

i�
[HS , ρS ] + ∆tLdisρS + O

(
∆t2

)
. (18.144)

By combining the first two terms in eqn (18.117) for Ldis with the Hamiltonian term,
this can be rewritten as

ρS (t + ∆t) = ρS (t)− i∆t

�
HdisρS (t) +

i∆t

�
ρS (t)H†

dis + ∆t

K∑
k=1

CkρS (t)C†
k , (18.145)

where the dissipative Hamiltonian is

Hdis = HS − i�

2

K∑
k=1

C†
kCk . (18.146)

This suggests defining a dissipative, nonunitary time translation operator,

Udis (∆t) = e−i∆tHdis/� = 1 − i∆t

�
Hdis + O

(
∆t2

)
, (18.147)

and then using it to rewrite eqn (18.145) as

ρS (t + ∆t) = Udis (∆t) ρS (t)U †
dis (∆t) + ∆t

K∑
k=1

CkρS (t) C†
k , (18.148)

correct to O (∆t).
The ensemble definition (2.116) of the density operator shows that this is equivalent

to ∑
e

|Ψe (t + ∆t)〉 Pe 〈Ψe (t + ∆t)| =
∑

e

PeUdis (∆t) |Ψe (t)〉 〈Ψe (t)|U †
dis (∆t)

+
∑

e

Pe∆t

K∑
k=1

Ck |Ψe (t)〉 〈Ψe (t)|C†
k ,

(18.149)

where the Pes are the probabilities defining the initial state, and |Ψe (0)〉 = |Θe〉.
The first term on the right side of this equation evidently represents the dissipative
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evolution of each state in the ensemble. This is closely related to the Weisskopf–Wigner
approach to perturbation theory, which we used in Section 11.2.2 to derive the decay
of an excited atomic state by spontaneous emission.

This is all very well, but what is the meaning of the second term on the right side
of eqn (18.149)? One way to answer this question is to fix attention on a single state
in the ensemble, say |Ψe (t)〉, and to define the normalized states

|φek (t)〉 =
Ck |Ψe (t)〉√〈

Ψe (t)
∣∣∣C†

kCk

∣∣∣Ψe (t)
〉 , k = 1, . . . , K . (18.150)

With this notation, the contribution of |Ψe (t)〉 to the second term in eqn (18.149) is
(Γe (t)∆t) ρe

meas (t), where

ρe
meas (t) =

K∑
k=1

Pe
k |φek (t)〉 〈φek (t)| , (18.151)

Pe
k =

〈
Ψe (t)

∣∣∣C†
kCk

∣∣∣Ψe (t)
〉

Γe (t)
, (18.152)

and

Γe (t) =
K∑

k=1

〈
Ψe (t)

∣∣∣C†
kCk

∣∣∣Ψe (t)
〉

(18.153)

is the total transition (quantum-jump) rate of |Ψe (t)〉 into the collection of normalized
states defined by eqn (18.150). Since the coefficients Pe

k satisfy 0 � Pe
k � 1 and

K∑
k=1

Pe
k = 1 , (18.154)

they can be treated as probabilities.
With this interpretation, ρe

meas has the form (2.127) of the mixed state describing
the sample after a measurement has been performed, but before the particular outcome
is known. This suggests that we interpret the second term on the right side of eqn
(18.149) as a wave packet reduction resulting from a measurement-like interaction
with the reservoir.

After summing over the ensemble, eqn (18.148) becomes

ρS (t + ∆t) = Udis (∆t) ρS (t)U †
dis (∆t) +

(
Γ (t)∆t

)
ρmeas (t) , (18.155)

where
ρmeas (t) =

∑
e

P ′
eρ

e
meas (t) , (18.156)

P ′
e =

PeΓe (t)
Γ (t)

, (18.157)

and
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Γ (t) =
∑

e

PeΓe (t) (18.158)

is the ensemble-averaged transition rate.

A The Monte Carlo wave function algorithm

In quantum theory, a system evolves smoothly by the Schrödinger equation until a
measurement event forces a discontinuous change. This feature is the basis for the
procedure described here.

It is plausible to expect that only one of the two terms in eqn (18.155)—dissipative
evolution or wave packet reduction—will operate during a sufficiently small time step.
We will first describe the Monte Carlo wave function algorithm (MCWFA) that follows
from this assumption, and then show that the density operator calculated in this way
is an approximate solution of the master equation (18.115).

In order to simplify the presentation we assume that the initial ensemble is defined
by

states {|Θ1〉 , . . . , |ΘM 〉} ,

probabilities {P1, . . . ,PM} ,
(18.159)

so that the index e = 1, 2, . . . , M .
In each time step, a choice between dissipative evolution and wave packet reduc-

tion—i.e. a quantum jump—has to be made. For this purpose, we note that the prob-
ability of a quantum jump during the interval (t, t + ∆t) is ∆Pe (t) = Γe (t)∆t, where
Γe (t) is the total transition rate defined by eqn (18.153). The discrete scheme will
only be accurate if the jump probability during a time step is small, i.e. ∆Pe (t) � 1.
Consequently, the time step ∆t must satisfy Γe (t)∆t � 1.

With this preparation, we are now ready to state the algorithm for integrating the
master equation in the interval (0, T ).
(1) Set e = 1 and define the discrete times tn = (n − 1)∆t, where 1 � n � N and

(N − 1)∆t = T .
(2) At the initial time t = 0, set |Ψ (0)〉 = |Ψe (0)〉 = |Θe〉.
(3) For n = 2, . . . , N choose a random number r in the interval (0, 1). If ∆Pe (tn−1) < r

go to (a), and if ∆Pe (tn−1) > r go to (b). Since we have imposed ∆Pe (t) � 1,
this procedure guarantees that quantum jumps are relatively rare interruptions of
continuous evolution.
(a) In this case there is no quantum jump, and the state vector is advanced from

tn−1 to tn by dissipative evolution followed by normalization:

|Ψe (tn)〉 =
Udis (∆t) |Ψe (tn−1)〉√〈

Ψe (tn−1)
∣∣∣U †

dis (∆t)Udis (∆t)
∣∣∣Ψe (tn−1)

〉
=

(
1 − i∆t

�
Hdis

) |Ψe (tn−1)〉√
1 − ∆Pe (tn−1)

, (18.160)

where the last line follows from the definition (18.147) of Udis (∆t).
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(b) In this case there is a quantum jump, and the new state vector is defined
by choosing k randomly from {1, 2, . . . , K}—conditioned by the probability
distribution Pe

k defined in eqn (18.152)—and setting

|Ψe (tn)〉 = |φek (tn−1)〉 , (18.161)

i.e. |Ψe (tn)〉 jumps to one of the states permitted by the second term in eqn
(18.148).

(4) Repeat step (3) Ntraj times to get Ntraj discrete representations

{|Ψej (tn)〉 , 1 � n � N} , j = 1, . . . , Ntraj (18.162)

of the state vector. These representations are distinct, due to the random choices
made in each time step. The density operator that evolves from the original pure
state |Θe〉 is then given by

ρe (tn) =
1

Ntraj

Ntraj∑
j=1

|Ψej (tn)〉 〈Ψej (tn)| . (18.163)

(5) Replace e by e + 1. If e + 1 � M go to step (2). If e + 1 > M go to step (6).
(6) The density operator ρ (t) that evolves from the initial density operator ρ (0)—

defined by the ensemble (18.159)—is given by

ρ (tn) =
M∑

e=1

Peρe (tn) . (18.164)

The computational cost of this method scales as NtrajN , where N is the dimen-
sionality of the sample Hilbert space HS . Consequently, the MCWFA would not be
very useful as a technique for solving the master equation, if the required number of
trials is itself of order N . Fortunately, there are applications with large N for which
one can get good statistics with Ntraj � N .

B Proof that the MCWFA generates a solution

If each of the density operators ρe (t) satisfies the master equation, then so will the
overall density operator defined by eqn (18.164); therefore, it is sufficient to give the
proof for a single ρe (t). For a sufficiently large number of trials, the evolution of the
pure state operators,

ρej (tn) = |Ψej (tn)〉 〈Ψej (tn)| , (18.165)

is effectively given by step (2a) with probability 1−∆Pe (tn−1) and by step (2b) with
probability ∆Pe (tn−1). In other words,

ρej (tn) = (1 − ∆Pe (tn−1))
∣∣Ψdis

ej (tn)
〉 〈

Ψdis
ej (tn)

∣∣
+ ∆Pe (tn−1)

∑
k

Pe
k (tn−1) |φek (tn−1)〉 〈φek (tn−1)| , (18.166)
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where ∣∣Ψdis
ej (tn)

〉
=

(
1 − i∆t

�
Hdis

) |Ψej (tn−1)〉√
1 − ∆Pe (tn−1)

. (18.167)

The |φek (tn−1)〉s are defined by substituting |Ψej (tn−1)〉 for |Ψe (tn−1)〉 in eqn (18.150).
Using the definitions of ∆Pe, Pe

k, and Hdis in this equation and neglecting O
(
∆t2

)
-

terms leads to
ρej (tn) − ρej (tn−1)

∆t
= − i

�
[HS , ρej (tn−1)] + Ldisρej (tn−1) . (18.168)

Averaging this result over the trials, according to eqn (18.163), and taking the limit
∆t → 0 shows that ρe (t) satisfies the master equation (18.115).

18.7.4 Laser-induced fluorescence∗

For a concrete application of the MCWFA, we return to the trapped three-level ion
considered in Section 18.7.1. For this example, however, we replace the incoherent
source driving 3 ↔ 1 by a coherent laser field ELe−iωLt that is close to resonance,
i.e. |ωL − ω31| � ωL. In the interests of simplicity, we also drop the field driving
3 ↔ 2. The semiclassical approximation for the laser is applied by substituting E(+) →
ELe−iωLt in the general results (11.36) and (11.40) of Section 11.1.4.

In the resonant wave approximation, the Schrödinger-picture Hamiltonian is HS =
HS0 + HS1, where

HS0 =
∑

q

εqSqq , (18.169)

HS1 = �ΩLS31e
−iωLt + HC , (18.170)

and ΩL = −d31 ·EL/� is the Rabi frequency for the laser driving the 1 ↔ 3 transition.
The Sqps are the atomic transition operators defined in Section 11.1.4, and the labels
q and p range over the values 1, 2, 3.

The form of the dissipative operator Ldis for the three-level ion can be inferred from
the result (18.44) for the two-level atom, by identifying each pair of levels connected
by a decay channel with a two-level atom. For example, the lowering operator σ− in
eqn (18.44) will be replaced by S13 for the 3 → 1 decay channel, and the remaining
transitions are treated in the same way.

There are two important simplifications in the present case. The first is that the
phase-changing collision term in eqn (18.44) is absent for an isolated ion. The second
simplification is the assumption that the reservoirs coupled to the three transitions—
i.e. the modes of the radiation field near resonance—are at zero temperature. This
approximation is generally accurate at optical frequencies, since kBT � ωopt for any
reasonable temperature.

One can use these features to show that Ldis is defined by

LdisρS = −Γ31

2
(S31S13ρS + ρSS31S13 − 2S13ρSS31)

− Γ32

2
(S32S23ρS + ρSS32S23 − 2S23ρSS32)

− Γ2

2
(S21S12ρS + ρSS21S12 − 2S12ρSS21) . (18.171)
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This expression for Ldis can be cast into the general Lindblad form (18.117) by setting
K = 3 and defining the operators

C1 =
√

Γ31S13 , C2 =
√

Γ32S23 , C3 =
√

Γ2S12 , (18.172)

corresponding respectively to the decay channels 3 → 1, 3 → 2, and 2 → 1.
The Rabi frequency ΩL is small compared to the laser frequency ωL, so the

Schrödinger-picture master equation,

i�
∂

∂t
ρS (t) = [HS , ρS (t)] + LdisρS (t) , (18.173)

involves two very different time scales, 1/ωL � 1/ΩL. Differential equations with this
feature are said to be stiff, and it is usually very difficult to obtain accurate numerical
solutions for them (Press et al., 1992, Sec. 16.6). In the case at hand, this difficulty
can be avoided by transforming to the interaction picture.

The general results in Section 4.8 yield the transformed master equation

i�
∂

∂t
ρI

S (t) =
[
HI

S1, ρ
I
S (t)

]
+ U †

0 (t)LdisρS (t)U0 (t) , (18.174)

where U0 (t) = exp (−iHS0t/�) and the transform of any operator X is XI (t) =
U †

0 (t)XU0 (t). Applying this rule to the transition operators gives

SI
qp (t) = U †

0 (t)SqpU0 (t) = eiωqptSqp , (18.175)

and this in turn leads to

U †
0 (t)LdisρS (t) U0 (t) = Ldisρ

I
S (t) . (18.176)

Thus we arrive at the useful conclusion that Ldis has the same form in both pictures.
The transformed interaction Hamiltonian is

HI
S1 = �ΩLS31e

−iδt + HC , (18.177)

where δ = ωL −ω31. The interaction-picture master equation (18.174) is not stiff, but
it still has time-dependent coefficients. This annoyance can be eliminated by a further
transformation

ρS (t) = eitF ρI
S (t) e−itF , (18.178)

where
F =

∑
q

fqSqq . (18.179)

The algebra involved here is essentially identical to the original transformation to
the interaction picture, and it is not difficult to show that the equation of motion
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for ρ (t) will have constant coefficients provided that the parameters fq are chosen to
satisfy

f3 − f1 = δ . (18.180)

The simple solution f1 = f2 = 0, and f3 = δ, leads to

i�
∂

∂t
ρS (t) =

[
HS1, ρS (t)

]
+ LdisρS (t) , (18.181)

where the transformed interaction Hamiltonian is

HS1 = �

⎡⎣ 0 0 Ω∗
L

0 0 0
ΩL 0 −δ

⎤⎦ . (18.182)

We are now in a position to calculate all the bits and pieces that are needed for the
direct solution of the master equation (18.181), or the application of the MCWFA. We
leave the algebra as an exercise for the reader and proceed directly to the numerical
solution of the master equation. The density operator for this problem is represented
by a 3 × 3 hermitian matrix which is determined by nine real numbers. Thus the
master equation in this case consists of nine linear, ordinary differential equations
with constant coefficients. There are many packaged programs that can be used to
solve this problem.

Of course, this means that we do not really need the MCWFA, but it is still useful
to have a solvable problem as a check on the method. In Fig. 18.7 we compare the
direct solution to the average over 48 trials of the MCWFA. The match between the
averaged results and the direct solution can be further improved by using more trials
in the average, but it should already be clear that the MCWFA is converging on a
solution of the master equation.

Following the general practice in physics, we assume—on the basis of this special
case—that the MCWFA can be confidently applied in all cases. In particular, this
includes those applications for which the dimension of the relevant Hilbert space is
large compared to the number of trials needed.

18.7.5 Quantum trajectories∗

The results displayed in Fig. 18.7 show that the full-blown master equation—whether
solved directly or by averaging over repeated trials of the MCWFA—does no better
than the rate equations of Section 18.7.1 in describing the phenomenon of interrupted
fluorescence. This should not be a surprise, since the master equation describes the
evolution of the entire ensemble of state vectors for the ion.

What is needed for the description of quantum jumps (interrupted fluorescence)
is an improved version of the simple on-and-off model used to derive the random
telegraph signal in Fig. 18.3. This is where single trials of the MCWFA come into
play. Each trial yields a sequence of state vectors

|Ψ (t1)〉 , |Ψ (t2)〉 , . . . , |Ψ (tN )〉 , (18.183)

which is a discrete sampling of a continuous function |Ψ (t)〉. This has led to the use
of the name discrete quantum trajectory for each individual trial of the MCWFA.
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Fig. 18.7 The population of |ε3〉 as a function of time. The smooth curve represents the

direct solution of eqn (18.181) and the jagged curve is the result of averaging over 48 trials of

the Monte Carlo wave function algorithm. Time is measured in units of the decay time 1/Γ31

for the 3 → 1 transition. In these units ΩL = 0.5, δ = 0, Γ32 = 0.01, and Γ21 = 0.001.

An example of the upper-level population P3 obtained from a single quantum trajec-
tory is shown in Fig. 18.8. Once again, a judicious choice from the results for several
trajectories nicely exhibits the random telegraph signal characterizing interrupted flu-
orescence.

According to the standard rules of quantum theory, the information from a com-
pleted measurement—in particular, the collapse of the state vector—should be taken
into account immediately. In the algorithm presented in Section 18.7.3 the new infor-

��

�

Fig. 18.8 The population of |ε3〉 as a function of time for a single quantum trajectory. The

parameter values are the same as in Fig. 18.7.
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mation is not used until the next time step at tn + ∆t, so single trials of the Monte
Carlo wave function method are approximations to the true quantum trajectory.

A more refined treatment involves allowing for the projection or collapse event to
occur one or more times during the interval ∆t, and using the dissipative Hamiltonian
to propagate the state vector in the subintervals between collapses. With this kind
of analysis, it can be shown that the Monte Carlo method is accurate to order ∆t.
Increasing the accuracy to order ∆t2 requires the inclusion of jumps at both ends of
the interval and also the possibility that two jumps can occur in succession (Plenio
and Knight, 1998).

Results like that shown in Fig. 18.8 might tempt one to believe that the Monte Carlo
technique—or the more refined quantum trajectory method—provides a description of
single quantum events in isolated microscopic samples. Any such conclusion would be
completely false. A large sample of trials for the Monte Carlo technique will resemble
a corresponding set of experimental runs, but the relation between the two sets is
purely statistical. Both will yield the same expectation values, correlation functions,
etc. In other words, the Monte Carlo or quantum trajectory methods are still based
on ensembles. The difference between these methods and the full master equation is
that the ensembles are conditioned, i.e. reduced, by taking experimental results into
account.

18.7.6 Quantum state diffusion∗

As explained above, the standard formulations of quantum theory do not apply to
individual microscopic samples, but rather to ensembles of identically prepared sam-
ples. Several of the founders of the quantum theory, including Einstein (Einstein et al.,
1935) and Schrödinger (Schrödinger, 1935b), were not at all satisfied with this feature,
and there have been many subsequent efforts to reformulate the theory so that it ap-
plies to individual microscopic objects. One approach, which has attracted a great deal
of attention, is to replace the Schrödinger equation for an ensemble by a stochastic
equation—e.g. a diffusion equation in the Hilbert space of quantum states—for an
individual system.

The universal empirical success of conventional quantum theory evidently requires
that the new stochastic equation should agree with the Schrödinger equation when ap-
plied to ensembles. Many such equations are possible, but symmetry considerations—
see Gisin and Percival (1992) and references contained therein—have led to an essen-
tially unique form.

For a sample described by the Lindblad master equation (18.115) the stochastic
equation for the state vector can be written as

d

dt
|Ψ (t)〉 =

1
i�

Hdis |Ψ (t)〉 +
∑

k

〈
C†

k (t)
〉

Ψ

[
Ck (t) − 1

2
〈Ck (t)〉Ψ

]
|Ψ (t)〉

+
∑

k

[Ck (t) − 〈Ck (t)〉Ψ] |Ψ (t)〉 ζk (t) , (18.184)

where Hdis is the dissipative Hamiltonian defined by eqn (18.146), and

〈X〉Ψ = 〈Ψ |X |Ψ〉 (18.185)
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is the expectation value in the state. The c-numbers ζk (t) are delta-correlated random
variables, i.e.

〈ζ∗k (t) ζk′ (t′)〉P = δkk′δ (t − t′) , (18.186)

where the average 〈· · · 〉P is defined by the probability distribution P for the random
variables ζk.

We have chosen to write the stochastic equation for the state vector so that it
resembles the operator Langevin equations discussed in Chapter 14, but most authors
prefer to use the more mathematically respectable Ito form (Gardiner, 1991). The
presence of the averages 〈Ck (t)〉Ψ makes this equation nonlinear, so that analytical
solutions are hard to come by.

In this approach, quantum jumps appear as smooth transitions between discrete
quantum states. The transitions occur on a short time scale, that is determined by
the equation itself. Physical interactions describing measurements of an observable
lead to irreversible diffusion toward one of the eigenstates of the observable, so that
no separate collapse postulate is required. In applications, the numerical solution of
eqn (18.184) has the same kind of advantage over the direct solution of the master
equation as the Monte Carlo wave function method.

Given the close relation between the master equation, quantum jumps, and quan-
tum state diffusion, it is not very surprising to learn that quantum state diffusion
can be derived as a limiting case of the quantum-jump method. The limiting case is
that of infinitely many jumps, where each jump causes an infinitesimal change in the
state vector. This mathematical procedure is related to the experimental technique
of balanced heterodyne detection discussed in Section 9.3. Thus the quantum state
diffusion method can be regarded as a new conceptual approach to quantum theory,
or as a particular method for solving the master equation.

18.8 Exercises

18.1 Averaging over the environment

(1) Combine ρW (0) = ρS (0) ρE (0) and the assumption 〈brν〉E = 0 with eqn (18.14)
to derive eqn (18.15).

(2) Drop the assumption 〈brν〉E = 0, and introduce the fluctuation operators δbrν =
brν − 〈brν〉E . Show how to redefine HS and HE , so that eqn (18.15) will still be
valid.

18.2 Master equation for a cavity mode

(1) Use the discussion in Section 18.4.1 to argue that the general expression (18.20)
for the double commutator C2 (t, t′) can be replaced by C2 (t, t′) =

{[
F† (t) , G (t′)

]
+ HC

}
.

(2) Use the expression (18.25) for F to show that TrE

[
F† (t) , G (t′)

]
can be expressed

in terms of the correlation functions in eqns (18.28) and (18.29).
(3) Put everything together to derive eqn (18.30). Do not forget the end-point rule.
(4) Transform back to the Schrödinger picture to derive eqns (18.31)–(18.33).
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18.3 Master equation for a two-level atom

(1) Use the Markov assumptions (14.142) and (14.143) to verify eqns (18.40) and
(18.41).

(2) Use these expressions to evaluate the double commutator G2.
(3) Given the assumptions made in Section 18.4.2, find out which terms in G2 have

vanishing traces over the environment.
(4) Evaluate the traces of the surviving terms and thus derive the master equation in

the environment picture.
(5) Transform back to the Schrödinger picture to derive eqns (18.42)–(18.44).

18.4 Thermal equilibrium for a cavity mode

(1) Derive eqn (18.34) from eqn (18.31).
(2) Solve the recursion relation (18.37), subject to eqn (18.38), to find eqn (18.39).

18.5 Fokker–Planck equation

(1) Carry out the chain rule calculation needed to derive eqn (18.81).
(2) Derive and solve the differential equations for the functions introduced in eqn

(18.85).
(3) Derive eqn (18.93).

18.6 Lindblad form for the two-level atom∗

Determine the three operators C1, C2, and C3 for the two-level atom.

18.7 Evolution of the purity of a general state∗

(1) Use the cyclic invariance of the trace operation to deduce eqn (18.119) from eqn
(18.115).

(2) Suppose that a single cavity mode is in thermal equilibrium with the cavity walls at
temperature T . At t = 0 the cavity walls are suddenly cooled to zero temperature.
Calculate the initial rate of change of the purity.
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Bell’s theorem and its optical tests

Since this is a book on quantum optics, we have assumed throughout that quantum
theory is correct in its entirety, including all its strange and counterintuitive predic-
tions. As far as we know, all of these predictions—even the most counterintuitive
ones—have been borne out by experiment. Einstein accepted the experimentally ver-
ified predictions of quantum theory, but he did not believe that quantum mechanics
could be the entire story. His position was that there must be some underlying, more
fundamental theory, which satisfied the principles of locality and realism.

According to the principle of locality, a measurement occurring in a finite volume
of space in a given time interval could not possibly influence—or be influenced by—
measurements in a distant volume of space at a time before any light signal could
connect the two localities. In the language of special relativity, two such localities are
said to be space-like separated.

The principle of realism contains two ideas. The first is that the physical properties
of objects exist independently of any measurements or observations. This point of view
was summed up in his rhetorical question to Abraham Pais, while they were walking
one moonless night together on a path in Princeton: ‘Is the Moon there when nobody
looks?’ The second is the condition of spatial separability: the physical properties
of spatially-separated systems are mutually independent.

The combination of the principles of locality and realism with the EPR thought
experiment convinced Einstein that quantum theory must be an incomplete description
of physical reality.

For many years after the EPR paper, this discussion appeared to be more concerned
with philosophy than physics. The situation changed dramatically when Bell (1964)
showed that every local realistic theory—i.e. a theory satisfying a plausible inter-
pretation of the metaphysical principles of locality and realism favored by Einstein—
predicts that a certain linear combination of correlations is uniformly bounded. Bell
further showed that this inequality is violated by the predictions of quantum mechan-
ics.

Subsequent work has led to various generalizations and reformulations of Bell’s orig-
inal approach, but the common theme continues to be an inequality satisfied by some
linear combination of correlations. We will refer to these inequalities generically as
Bell inequalities. Most importantly, two-photon, coincidence-counting experiments
have shown that a particular Bell inequality is, in fact, violated by nature. One must
therefore give up one or the other—or possibly even both—of the principles of locality
and realism (Chiao and Garrison, 1999).
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Bell thereby successfully transformed what seemed to be an essentially philosoph-
ical problem into experimentally testable physical propositions. This resulted in what
Shimony has aptly called experimental metaphysics. The first experiment to test Bell’s
theorem was performed by Freedman and Clauser (1972). This early experiment al-
ready indicated that there must be something wrong with Einstein’s fundamental
principles.

One of the most intriguing developments in recent years is that the Bell inequalities
—which began as part of an investigation into the conceptual foundations of quantum
theory—have turned out to have quite practical applications to fields like quantum
cryptography and quantum computing.

Quantum optics is an important tool for investigating the phenomenon of quantum
nonlocality connected with EPR states and the EPR paradox. Although Einstein,
Podolsky, and Rosen formulated their argument in the language of nonrelativistic
quantum mechanics, the problem they posed also arises in the case of two relativistic
particles flying off in different directions, for example, the two photons emitted in
spontaneous down-conversion.

19.1 The Einstein–Podolsky–Rosen paradox

The Einstein–Podolsky–Rosen paper (Einstein et al., 1935) adds two further ideas to
the principles of locality and realism presented above. The first is the definition of an
element of physical reality:

If, without in any way disturbing a system, we can predict with certainty (i.e. with
probability equal to unity) the value of a physical quantity, then there exists an
element of physical reality corresponding to this physical quantity.

The second is a criterion of completeness for a physical theory:

. . .every element of the physical reality must have a counterpart in the physical
theory.

The argument in the EPR paper was formulated in terms of the entangled two-body
wave function

ψ (xA, xB) =
∫ ∞

−∞

dk

2π
eik(xA−xB−L) , (19.1)

which is a special case of the EPR states defined by eqn (6.1), but we will use a
simpler example due to Bohm (1951, Chap. 22), which more closely resembles the
actual experimental situations that we will study. Hints for carrying out the original
argument can be found in Exercise 19.1.

Bohm’s example is modeled on the decay of a spin-zero particle into two distin-
guishable spin-1/2 particles, and it—like the original EPR argument—is expressed in
the language of nonrelativistic quantum mechanics. In the rest frame of the parent
particle, conservation of the total linear momentum implies that the daughter parti-
cles are emitted in opposite directions, and conservation of spin angular momentum
implies that the total spin must vanish.
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In this situation, the decay channel in which the particles travel along the z-axis,
with momenta �k0 and −�k0, is described by the two-body state

|Ψ〉AB = eik0(zA−zB) |Φ〉AB , (19.2)

where the spins σA and σB are described by the Bohm singlet state

|Φ〉AB =
1√
2
{|↑〉A |↓〉B − |↓〉A |↑〉B} , (19.3)

which is expressed in the notation introduced in eqns (6.37) and (6.38).
The choice of the quantization axis n is left open, since—as seen in Exercise 6.3—

the spherical symmetry of the Bohm singlet state guarantees that it has the same form
for any choice of n. Since only spin measurements will be considered, the following
discussion will be carried out entirely in terms of the spin part |Φ〉AB of the two-body
state vector.

The spins of the daughter particles can be measured separately by means of two
Stern–Gerlach magnets placed to intercept them, as shown in Fig. 19.1. Correlations
between the spatially well-separated spin measurements can then be determined by
means of coincidence-counting circuitry connecting the four counters.

Let us first suppose that the magnetic fields—and consequently the spatial quan-
tization axes—of the two Stern–Gerlach magnets are directed along the x-axis, i.e.
n = ux. A measurement of the spin component SA

x with the result +1/2 is signalled
by a click in the upper Geiger counter of the Stern–Gerlach apparatus A. Applying
von Neumann’s projection postulate to the Bohm singlet state yields the reduced state

|Φ〉 x
AB = |↑x〉A |↓x〉B , (19.4)

where |↑x〉A is an eigenstate of SA
x with eigenvalue +1/2, etc.

The reduced state is also an eigenstate of SB
x with eigenvalue −1/2; therefore, any

measurement of SB
x would certainly yield the value −1/2, corresponding to a click

in the lower counter of apparatus B. Since this prediction of a definite value for SB
x

� �

−−

Fig. 19.1 The Bohm singlet version of the EPR experiment. σA and σB are spin-1/2 particles

in a singlet state, and α and β are the angles of orientation of the two Stern–Gerlach magnets.
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does not require any measurement at all, the system is not disturbed in any way.
Consequently, SB

x is an element of physical reality at B.
Now consider the alternative scenario in which the quantization axes are directed

along y. In this case, a measurement of SA
y with the outcome +1/2 leaves the system

in the reduced state
|Φ〉 y

AB = |↑y〉A |↓y〉B , (19.5)

and this in turn implies that the value of SB
y is certainly −1/2. This prediction is also

possible without disturbing the system; therefore, SB
y is also an element of physical

reality at B.
From the local-realistic point of view, a believer in quantum theory now faces a

dilemma. The spin components SB
x and SB

y are represented by noncommuting opera-
tors: [

SB
x , SB

y

]
= i�SB

z �= 0 , (19.6)

so they cannot be simultaneously predicted or measured. This leaves two alternatives.
(1) If SB

x and SB
y are both elements of physical reality, then quantum theory—which

cannot predict values for both of them—is incomplete.
(2) Two physical quantities, like SB

x and SB
y , that are associated with noncommuting

operators cannot be simultaneously real.
The latter alternative implies a more restrictive definition of physical reality in

which, for example, two quantities cannot be simultaneously real unless they can be
simultaneously measured or predicted. This would, however, mean that the physical
reality of SB

x or SB
y at B depends on which measurement was carried out at the distant

apparatus A.
The state reductions in eqns (19.4) or (19.5), i.e. the replacement of the original

state |Φ〉AB by |Φ〉 x
AB or |Φ〉 y

AB respectively, occur as soon as the measurement at
A is completed. This is true no matter where apparatus B is located; in particular,
when the light transit time from A to B is larger than the time required to complete
the measurement at A. Thus the global change in the state vector occurs before any
signal could travel from A to B. This evidently violates local realism.

In the words of Einstein, Podolsky, and Rosen, ‘No reasonable definition of real-
ity could be expected to permit this.’ On this basis, they concluded that quantum
theory is incomplete. In this connection, it is interesting to quote Einstein’s reaction
to Schrödinger’s introduction of the notion of entangled states. In a letter to Born,
written in 1948, Einstein wrote the following (Einstein, 1971):

There seems to me no doubt that those physicists who regard the descriptive meth-
ods of quantum mechanics as definitive in principle would react to this line of thought
in the following way: they would drop the requirement for the independent existence
of the physical reality present in different parts of space; they would be justified in
pointing out that the quantum theory nowhere makes explicit use of this require-
ment. [Emphasis added ]

19.2 The nature of randomness in the quantum world

If the EPR claim that quantum theory is incomplete is accepted, then the next step
would be to find some way to complete it. One advantage of such a construction would
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be that the randomness of quantum phenomena, e.g. in radioactive decay, might be
explained by a mechanism similar to ordinary statistical mechanics.

In other words, there may exist some set of hidden variables within the radioac-
tive nucleus that evolve in a deterministic way. The apparent randomness of radioactive
decay would then be merely the result of our ignorance of the initial values of the hid-
den variables. From this point of view, there is no such thing as an uncaused random
event, and the characteristic randomness of the quantum world originates at the very
beginning of each microscopic event.

This should be contrasted with the quantum description, in which the state vector
evolves in a perfectly deterministic way from its initial value, and randomness enters
only at the time of measurement.

A simple example of a hidden variable theory is shown in Fig. 19.2. Imagine a
box containing many small, hard spheres that bounce elastically from the walls of the
box, and also scatter elastically from each other. The properties of such a system of
particles can be described by classical statistical mechanics.

Cutting a small hole into one of the walls of the box will result in an exponential
decay law for the number of particles remaining in the box as a function of time. In this
model for a nucleus undergoing radioactive decay, the apparent randomness is ascribed
to the observers ignorance of the initial conditions of the balls, which obey completely
deterministic laws of motion. The unknown initial conditions are the hidden variables
responsible for the observed phenomenon of randomness.

For an alternative model, we jump from the nineteenth to the twentieth century,
and imagine that the box is equipped with a computer running a program generating
random numbers, which are used to decide whether or not a particle is emitted in a
given time interval. In this case the apparently random behavior is generated by a
deterministic algorithm, and the hidden variables are concealed in the program code
and the seed value used to begin it.

Let us next consider a series of random events occurring in a time interval
(t − ∆t/2, t + ∆t/2) at two distant points r1 and r2. If the two sets of events are
space-like separated, i.e. |r1 − r2| > c∆t, then the principle of local realism requires
that correlations between the random series can only occur as a result of an earlier,
common cause. We will call this the principle of statistical separability.

In the absence of a common cause, the separated random events are like inde-
pendent coin tosses, located at r1 and r2, so it would seem that they must obey a
common-sense factorization condition. For example, the joint probability of the out-
comes heads-at-r1 and heads-at-r2 should be the product of the independent proba-
bilities for heads at each location.

Fig. 19.2 A simple model for radioactive de-

cay, consisting of small balls inside a large box

with a small hole cut into one of the walls.

Einstein’s ‘hidden variables’ would be the un-

known initial conditions of these balls.
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In quantum mechanics, the factorizability of joint probabilities implies the factor-
izability of joint probability amplitudes (up to a phase factor); for example, a situation
in which measurements at r1 and r2 are statistically independent is described by a
separable two-body wave function, i.e. the product of a wave function of r1 and a
wave function of r2. Conversely, the absolute square of a product wave function is the
product of two separate probabilities, just as for two independent coin tosses at r1 and
r2.

By contrast, an entangled state of two particles, e.g. a superposition of two prod-
uct wave functions, is not factorizable. The result is that the probability distribution
defined by an entangled state does not satisfy the principle of statistical separability,
even when the parts are far apart in space.

The EPR argument emphasizes the importance of these disparities between the
classical and quantum descriptions of the world, but it does not point the way to an
experimental method for deciding between the two views. Bell realized that the key is
the fact that the nonfactorizability of entangled states in quantum mechanics violates
the common-sense, independent-coin-toss rule for joint probabilities.

He then formulated the statistical separability condition in terms of a factoriz-
ability condition on the joint probability for correlations between measurements on
two distant particles. Bell’s analysis applies completely generally to all local realistic
theories, in a sense to be explained in the next section.

19.3 Local realism

Converting the qualitative disparities between the classical and quantum approaches
into experimentally testable differences requires a quantitative formulation of local
realism that does not depend on quantum theory. We will follow Shimony’s version
(Shimony, 1990) of Bell’s solution for this problem. This analysis can be presented in
a very general way, but it is easier to understand when it is described in terms of a
concrete experiment. For this purpose, we first sketch an optical version of the Bohm
singlet experiment.

19.3.1 Optical Bohm singlet experiment

As shown in Fig. 19.3, the entangled pair of spin-1/2 particles in Fig. 19.1 is replaced
by a pair of photons emitted back-to-back in an entangled state, and the Stern–Gerlach
magnets are replaced by calcite prisms that act as polarization analyzers. The beam of
unpolarized right-going photons γA is split by the calcite prism A into an extraordinary
ray e and an ordinary ray o. Similarly, the beam of left-going photons γB is split by
calcite prism B into e and o rays.

The ordinary-ray and extraordinary-ray output ports of the calcite prisms are
monitored by four counters. The two calcite prisms A and B can be independently
rotated around the common decay axis by the azimuthal angles α and β respectively.
The values of α and β—which determine the division of the incident wave into e-
and o-waves—correspond to the direction of the magnetic field in a Stern–Gerlach
apparatus.
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Fig. 19.3 An optical implementation of the EPR experiment. Calcite prisms replace the

Stern–Gerlach magnets shown in Fig. 19.1. The source emits an entangled state of two oppo-

sitely-directed photons, such as the Bell state
�
�Ψ−�

. The birefringent prisms split the light

into ordinary ‘o’ and extraordinary ‘e’ rays. The vertical dotted lines inside the prisms in-

dicate the optic axes of the calcite crystals. Coincidence-counting circuitry connecting the

Geiger counters is not shown.

The counters on each side of the apparatus are mounted rigidly with respect to
the calcite prisms, so that they corotate with the prisms. Thus the four counters will
constantly monitor the o and e outputs of the calcite prisms for all values of α and β.

The azimuthal angles α and β are examples of what are called parameter set-
tings, or simply parameters, of the EPR experiment. The experimentalist on the right
side of the apparatus, Alice, is free to choose the parameter setting α (the azimuthal
angle of rotation of calcite prism A) as she pleases. Likewise, the experimentalist on
the left side, Bob, is free to choose the parameter setting β (the azimuthal angle of
rotation of calcite prism B) as he pleases, independently of Alice’s choice.

19.3.2 Conditions defining locality and realism

Bell’s seminal paper has inspired many proposals for realizations of the metaphysical
notions of realism and locality, including both deterministic and stochastic forms of
hidden variables theories. In this section we present a general class of realizations by
specifying the conditions that a theory must satisfy in order to be called local and
realistic.

We will say that a theory is realistic if it describes all required elements of physical
reality for a system by means of a space, Λ, of completely specified states λ—i.e. the
states of maximum information—satisfying the following two conditions.

Objective reality
Λ is defined without reference to any measurements. (19.7)

Spatial separability

The state spaces ΛA and ΛB for the spatially-separated systems
A and B are independently defined. (19.8)

The only other condition imposed on Λ is that it must support probability distributions
ρ (λ) in order to describe situations in which maximum information is not available.
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The only conditions imposed on an admissible distribution ρ (λ) are that it be
positive definite, i.e. ρ (λ) � 0, normalized to unity,∫

dλρ (λ) = 1 , (19.9)

and independent of the parameter values α and β. The last condition incorporates the
intuitive idea that the states λ are determined at the source S, before any encounters
with the measuring devices at A and B.

One possible example for Λ would be the classical phase space involved in the simple
model of radioactive decay presented above. In this case, the completely specified states
λ are simply points in the phase space, and a probability distribution ρ (λ) would be
the usual phase space distribution.

A much more surprising example comes from a disentangled version of quantum
theory, which is defined by excluding all entangled states of spatially-separated sys-
tems. This mutilated theory violates the superposition principle, but by doing so it
allows us to identify Λ with the Hilbert space H for the local system. An individual
state λ is thereby identified with a pure state |ψ〉.

According to the standard interpretation of quantum theory, this choice of λ gives
a complete description of the state of an isolated system. In this case ρ (λ) is just the
distribution defining a mixed state. The fact that the disentangled version of quantum
theory is realistic illustrates the central role played by entanglement in differentiating
the quantum view from the local realistic view.

We next turn to the task of developing a quantitative realization of locality. For this
purpose, we need a language for describing measurements at the spatially-separated
stations A and B, shown in Fig. 19.3. For the sake of simplicity, it is best to consider
experiments that have a discrete set of possible outcomes {Am, m = 1, . . . , M} and
{Bn, n = 1, . . . , N} at the stations A and B respectively, e.g. A1 could describe a
detector firing at station A during a certain time interval. With each outcome Am, we
associate a numerical value, Am, called an outcome parameter. The definition of
the output parameters is at our disposal, so they can be chosen to satisfy the following
convenient conditions:

−1 � Am � +1 and − 1 � Bn � +1 . (19.10)

For the two-calcite-prism experiment, sketched in Fig. 19.3, the indices m and n
can only assume the values o and e, corresponding respectively to the ordinary and the
extraordinary rays emerging from a given prism. The source S emits a pair of photons
prepared at birth in some state λ. The experimental signals in this case are clicks in
one of the counters, so one useful definition of the outcome parameters is

Ae = 1 for outcome Ae (Alice’s e-counter clicks) ,

Ao = −1 for outcome Ao (Alice’s o-counter clicks) ,

Be = 1 for outcome Be (Bob’s e-counter clicks) ,

Bo = −1 for outcome Bo (Bob’s o-counter clicks) .

(19.11)

The outcome Ae occurs when a rightwards-propagating photon from the source S
is deflected through the e port of the calcite prism A, and subsequently registered by
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Alice’s e-counter, etc. In this thought experiment we imagine that all counters have
100% sensitivity; consequently, if an e-counter does not click, we can be sure that the
corresponding o-counter will click.

The following conditional probabilities will be useful.

p(Am|λ, α, β) ≡ probability of outcome Am, given
the system state λ and parameter settings α, β . (19.12)

p(Bn|λ, α, β) ≡ probability of outcome Bn, given
the system state λ and parameter settings α, β . (19.13)

p(Am|λ, α, β, Bn) ≡ probability of outcome Am, given
the system state λ, parameter settings α, β ,

and outcome Bn . (19.14)
p(Bn|λ, α, β, Am) ≡ probability of outcome Bn, given

the system state λ, parameter settings α, β ,

and outcome Am . (19.15)
p(Am, Bn|λ, α, β) ≡ joint probability of outcomes Am and Bn ,

given the system state λ and
the parameter settings α, β . (19.16)

Following the work of Jarrett (1984), as presented by Shimony (1990), we will say
that a theory is local if it satisfies the following conditions.

Parameter independence
p(Am|λ, α, β) = p(Am|λ, α) , (19.17)
p(Bn|λ, α, β) = p(Bn|λ, β) . (19.18)

Outcome independence

p(Am|λ, α, β, Bn) = p(Am|λ, α, β) , (19.19)
p(Bn|λ, α, β, Am) = p(Bn|λ, α, β) . (19.20)

Parameter independence states that the parameter settings chosen by one observer
have no effect on the outcomes seen by the other. For example, eqn (19.17) tells us that
the probability distribution of the outcomes observed by Alice at A does not depend
on the parameter settings chosen by Bob at B.

This apparently innocuous statement is, in fact, extremely important. If parameter
independence were violated, then Bob—who might well be space-like separated from
Alice—could send her an instantaneous message by merely changing β, e.g. twisting
his calcite crystal. Such a possibility would violate the relativistic prohibition against
sending signals faster than light. Likewise, eqn (19.18) prohibits Alice from sending
instantaneous messages to Bob.

The principle of outcome independence states that the probability of outcomes seen
by one observer does not depend on which outcomes are actually seen by the other.
This is what one would expect for two independent coin tosses—since the outcome of
one coin toss is clearly independent of the outcome of the other—but eqns (19.19) and
(19.20) also seem to prohibit correlations due to a common cause, e.g. in the source S.



Local realism ���

This incorrect interpretation stems from overlooking the assumption that λ is a
complete description of the state, including any secret mechanism that builds in corre-
lations at the source (Bub, 1997, Chap. 2). With this in mind, the conditions (19.19)
and (19.20) simply reflect the fact that the actual outcomes Bn or Am are superfluous,
if λ is given as part of the conditions. We will return to the issue of correlations after
deriving Bell’s strong-separability condition.

It is also important to realize that the individual events at A and B can be truly
random, even if they are correlated. This situation is exhibited in the experiment
sketched in Fig. 19.3. When the polarizations of photons γA and γB, in the Bell state
|Ψ−〉, are measured separately—i.e. without coincidence counting—they are randomly
polarized; that is, the individual sequences of e- or o-counts at A and B are each as
random as two independent sequences of coin tosses.

Finally, we note that a violation of outcome independence does not imply any viola-
tions of relativity. The conditional probability p(Am|λ, α, β, Bn) describes a situation
in which Bob has already performed a measurement and transmitted the result to Al-
ice by a respectably subluminal channel. Thus protecting the world from superluminal
messages and the accompanying causal anomalies is the responsibility of parameter
independence alone.

19.3.3 Strong separability

Bell’s theorem is concerned with the strength of correlations between the random out-
comes at A and B, so the first step is to find the constraints imposed by the combined
effects of realism and locality—in the form of parameter and outcome independence—
on the joint probability p(Am, Bn|λ, α, β) defined by eqn (19.16).

We begin by applying the compound probability rule (A.114) to find

p(Am, Bn|λ, α, β) = p(Am|λ, α, β, Bn)p(Bn|λ, α, β) . (19.21)

In other words, the joint probability for outcome Am and outcome Bn is the product
of the probability for outcome Am (conditioned on the occurrence of the outcome Bn)
with the probability that outcome Bn actually occurred. All three probabilities are
conditioned by the assumption that the state of the system was λ and the parameter
settings were α and β. The situation is symmetrical in A and B, so we also find

p(Am, Bn|λ, α, β) = p(Bn|λ, α, β, Am)p(Am|λ, α, β) . (19.22)

Applying outcome independence, eqn (19.19), to the right side of eqn (19.21) yields

p(Am, Bn|λ, α, β) = p(Am|λ, α, β)p(Bn|λ, α, β) , (19.23)

and applying parameter independence to both terms on the right side of this equation
results in the strong-separability condition:

p(Am, Bn|λ, α, β) = p(Am|λ, α)p(Bn|λ, β) . (19.24)

This is the mathematical expression of the following, seemingly common-sense,
statement: for a given specification, λ, of the state, whatever Alice does or observes
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must be independent of whatever Bob does or observes, since they could reside in
space-like separated regions.

Before using the strong-separability condition to prove Bell’s theorem, we return
to the question of correlations that might be imposed by a common cause. In typical
experiments, the complete specification of the state represented by λ is not available—
for example, the values of the hidden variables cannot be determined—so the strong-
separability condition must be averaged over a distribution ρ (λ) that represents the
experimental information that is available.

The result is

p(Am, Bn|α, β) =
∫

dλρ (λ) p(Am|λ, α)p(Bn|λ, β) , (19.25)

where
p(Am, Bn|α, β) =

∫
dλρ (λ) p(Am, Bn|λ, α, β) . (19.26)

The corresponding averaged probabilities for single outcomes are

p(Am|α) =
∫

dλρ (λ) p(Am|λ, α) ,

p(Bn|β) =
∫

dλρ (λ) p(Bn|λ, β) ;
(19.27)

consequently, the condition for statistical independence,

p(Am, Bn|α, β) = p(Am|α)p(Bn|β) , (19.28)

can only be satisfied—for general choices of Am and Bn—when ρ (λ) = δ (λ − λ0).
A closer connection with experiment is afforded by defining Bell’s expectation

values.
(1) The expectation value of outcomes seen by Alice is

E(λ, α) =
∑
m

p(Am|λ, α)Am . (19.29)

(2) The expectation value of outcomes seen by Bob is

E(λ, β) =
∑

n

p(Bn|λ, β)Bn . (19.30)

(3) The expectation value of joint outcomes seen by both Alice and Bob is

E(λ, α, β) =
∑
m,n

p(Am, Bn|λ, α, β)AmBn . (19.31)

The quantity E(λ, α, β) is the average value of joint outcomes as measured, for
example, in a coincidence-counting experiment. The bounds |Am| � 1 and |Bn| � 1,
together with the normalization of the probabilities, imply that the absolute values of
all these expectation values are bounded by unity.



Bell’s theorem ���

From Bell’s strong-separability condition, it follows that the joint expectation
value—for a given complete state λ—also factorizes:

E(λ, α, β) = E(λ, α)E(λ, β) , (19.32)

but in the absence of complete state information, the relevant expectation values are

E (α) ≡
∫

dλρ (λ) E(λ, α) =
∑
m

p(Am|α)Am , (19.33)

etc. Thus the correlation function

C (α, β) = E(α, β) − E (α)E (β) (19.34)

can only vanish in the extreme case, ρ (λ) = δ (λ − λ0), of perfect information.

19.4 Bell’s theorem

An evaluation of any one of Bell’s expectation values, e.g. E(λ, α), would depend
on the details of the particular local realistic theory under consideration. One of the
consequences of Bell’s original work (Bell, 1964) has been the discovery of various
linear combinations of expectation values, which have the useful property that upper
and lower bounds can be derived for the entire class of local realistic theories defined
above. We follow Shimony (1990), by considering the particular sum

S (λ) ≡ E(λ, α1, β1) + E(λ, α1, β2) + E(λ, α2, β1) − E(λ, α2, β2) , (19.35)

which was first suggested by Clauser et al. (1969). With a fixed value, λ, of the hid-
den variables, the four combinations (α1, β1), (α1, β2), (α2, β1), and (α2, β2) represent
independent choices α1 or α2 by Alice and β1 or β2 by Bob, as shown in Fig. 19.4.

For the typical situation in which the complete state λ is not known, S (λ) should
be replaced by the experimentally relevant quantity:

S ≡ E(α1, β1) + E(α1, β2) + E(α2, β1) − E(α2, β2) . (19.36)

Bell’s theorem is then stated as follows.
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Fig. 19.4 The four terms in the sum S defined in eqn (19.35). The dependence of the

expectation values E(λ,α, β) on the system state λ has been suppressed in this figure.
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Theorem 19.1 For all local realistic theories,

−2 � E(λ, α1, β1) + E(λ, α1, β2) + E(λ, α2, β1) − E(λ, α2, β2) � +2 . (19.37)

Averaging over the distribution of states produces the Bell inequality:

−2 � E(α1, β1) + E(α1, β2) + E(α2, β1) − E(α2, β2) � +2 . (19.38)

This result limits the total amount of correlation, as measured by S, that is allowed
for a local realistic theory. Experiments using coincidence-detection measurements
performed on two-photon decays have shown that this bound can be violated.

19.4.1 Mermin’s lemma

In order to prove Bell’s theorem, we first prove the following lemma due to Mermin.
Lemma 19.2 If x1, x2, y1, y2 are real numbers in the interval [−1, +1], then the sum
S ≡ x1y1 + x1y2 + x2y1 − x2y2 lies in the interval [−2, +2], i.e. |S| � 2.

Proof Since S is a linear function of each of the four variables x1, x2, y1, y2, it must
take on its extreme values when the arguments of the function themselves are extrema,
i.e. when (x1, x2, y1, y2) = (±1,±1,±1,±1), where the four ±s are independent. There
are four terms in S, and each term is bounded between −1 and +1; consequently,
|S| � 4. However, we can also rewrite S as

S = (x1 + x2) (y1 + y2) − 2x2y2 . (19.39)

The extrema of x1 + x2 are 0 or ±2, and similarly for y1 + y2. Therefore the extrema
of the product (x1 + x2) (y1 + y2) are 0 or ±4. The extrema for 2x2y2 are ±2. Hence
the extrema for S are ±2 or ±6. The latter possibility is ruled out by the previously
determined limit |S| � 4; therefore, the extrema of S are ±2, i.e. |S| � 2. �

19.4.2 Proof of Bell’s theorem

Proof Bell’s theorem now follows as a corollary of Mermin’s lemma. With the iden-
tifications

x1 = E(λ, α1) , where |E(λ, α1)| � 1 ,

x2 = E(λ, α2) , where |E(λ, α2)| � 1 ,

y1 = E(λ, β1) , where |E(λ, β1)| � 1 ,

y2 = E(λ, β2) , where |E(λ, β2)| � 1 ,

(19.40)

Lemma 19.2 implies

|E(λ, α1)E(λ, β1) + E(λ, α1)E(λ, β2) + E(λ, α2)E(λ, β1) − E(λ, α2)E(λ, β2)| � 2 .
(19.41)

Using the strong-separability condition (19.32) for each term, i.e. E(λ, α, β) =
E(λ, α)E(λ, β), we now arrive at

−2 � E(λ, α1, β1) + E(λ, α1, β2) + E(λ, α2, β1) − E(λ, α2, β2) � +2 , (19.42)

and averaging over λ yields eqn (19.38). �



Quantum theory versus local realism ���

19.5 Quantum theory versus local realism

As a prelude to the experimental tests of local realism, we first support our previous
claim that quantum theory violates outcome independence and satisfies parameter in-
dependence. In addition, we give an explicit example for which the quantum prediction
of the correlations violates Bell’s theorem.

19.5.1 Quantum theory is not local

The issues of parameter independence and outcome independence will be studied by
considering an experiment simpler than the one presented in Section 19.3.1. In this
arrangement, shown in Fig. 19.5, pairs of polarization-entangled photons are produced
by down-conversion, and Alice and Bob are supplied with linear polarization filters and
a single counter apiece. This reduces the outcomes for Alice to: Ayes (Alice’s detector
clicks) and Ano (there is no click). The corresponding outcome parameters are Ayes = 1
and Ano = 0. Bob’s outcomes and outcome parameters are defined in the same way.

We begin by assuming that the source produces the entangled state

|χ〉 = F |hA, vB〉 + G |vA, hB〉 , (19.43)

where
|hA, vB〉 ≡ a†

kAha†
kBv |0〉 , |vA, hB〉 ≡ a†

kAva
†
kBh |0〉 , (19.44)

kA and kB are directed toward Alice and Bob respectively, and h and v label orthog-
onal polarizations: eh (horizontal) and ev (vertical). The parameters are the angles α
and β defining the linear polarizations eα and eβ transmitted by the polarizers.

Since akAh ∝ ekAh · E(+), etc., the annihilation operators in the (h, v)-basis are
related to the annihilation operators in the (α, α = π/2 − α)-basis by(

akAα

akAα

)
=

[
cosα sin α
− sinα cosα

](
akAh

akAv

)
. (19.45)

The corresponding relation for Bob follows by letting α → β and kA → kB.

A Parameter independence

For this experiment, the role of p(Am|λ, α, β) in eqn (19.17) is played by p(Ayes|χ, α, β),
the probability that Alice’s detector clicks for the given state and parameter settings.
This is proportional to the detection rate for eα-polarized photons, i.e.

� �

Fig. 19.5 Schematic of an apparatus to measure the polarization correlations of the entan-

gled photon pair γA and γB emitted back-to-back from the source S. The coincidence-counting

circuitry connecting the two Geiger counters is not shown.
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p(Ayes|χ, α, β) ∝ G(1)
α (rA, tA; rA, tA) ∝

〈
χ
∣∣∣a†

kAαakAα

∣∣∣χ〉 . (19.46)

A calculation—see Exercise 19.2 —using eqns (19.43)–(19.45) yields

p(Ayes|χ, α, β) ∝ |F |2 cos2 α + |G|2 sin2 α . (19.47)

Thus the quantum result for the probability of a click of Alice’s detector is independent
of the setting β of Bob’s polarizer, although it can depend on her own polarizer setting
α. In other words, quantum theory—at least in this example—satisfies parameter
independence. The symmetry of the experimental arrangement guarantees that the
probability, p(Byes|χ, α, β), seen by Bob is independent of α.

This single example does not constitute a general proof that quantum theory sat-
isfies parameter independence, but the features of the calculation provide guidance
for crafting such a proof. In general, the calculation of outcome probabilities for Alice
take the same form as in the example, i.e. the expectation value of an operator—which
may well depend on Alice’s parameter settings—is evaluated by using the state vector
determined by the source. Neither Alice’s operator nor the state vector depend on
Bob’s parameter settings; therefore, parameter independence is guaranteed for quan-
tum theory.

For the special values F = −G = 1/
√

2, the entangled state |χ〉 becomes the
singlet-like Bell state

∣∣Ψ−〉 =
1√
2
{|hA, vB〉 − |vA, hB〉} , (19.48)

first defined in Section 13.3.5. In this case, p(Ayes|χ, α, β) is independent of α as well
as β, so that Alice’s singles-counting measurements are the same as expected from an
unpolarized beam. This supports our previous claim that the individual measurements
can be as random as coin tosses.

B Outcome independence

Checking outcome independence requires the evaluation of the conditional probability
p(Ayes|λ, α, β, Brslt) that Alice hears a click, given that Bob has observed the outcome
Brslt, where rslt = yes, no. In this case, we will simplify the calculation by setting
|χ〉 = |Ψ−〉 at the beginning.

With the usual assumption of 100% detector sensitivity, both possible outcomes
for Bob—Byes (click) or Bno (no click)—constitute a measurement. According to von
Neumann’s projection postulate, we must then replace the original state |Ψ−〉 by the
reduced state |Ψ−〉 rslt, to find

p(Ayes|λ, α, β, Brslt) ∝ rslt

〈
Ψ−

∣∣∣a†
kAαakAα

∣∣∣Ψ−
〉

rslt . (19.49)

The reduced state for either of Bob’s outcomes can be constructed by inverting
Bob’s version of eqn (19.45) to express the creation operators in the (h, v)-basis in
terms of the creation operators in the

(
β, β

)
-basis:
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a†
kBh

a†
kBv

)
=

[
cosβ − sinβ
− sin β cosβ

](
a†
kBβ

a†
kBβ

)
. (19.50)

Using this in the definition (19.44) exhibits the original states as superpositions of
states containing β-polarized photons and states containing β-polarized photons.

For the outcome Byes—Bob heard a click—the projection postulate instructs us
to drop the states containing the β-polarized photons, since they are blocked by the
polarizer. This produces the reduced state∣∣Ψ−〉

yes =
1√
2
{sin β |hA, βB〉 − cosβ |vA, βB〉} , (19.51)

where |βB〉 = a†
kBβ |0〉. Substituting this into eqn (19.49) leads—by way of the calcu-

lation in Exercise 19.3—to the simple result

p(Ayes|λ, α, β, Byes) ∝ sin2 (α − β) . (19.52)

For the opposite outcome, Bno, the projection postulate tells us to drop the states
containing β-polarized photon states instead, and the result is

p(Ayes|λ, α, β, Bno) ∝ cos2 (α − β) . (19.53)

The conclusion is that quantum theory violates outcome independence, since the
probability that Alice hears a click depends on the outcome of Bob’s previous mea-
surement. The fact that Alice’s probabilities only depend on the difference in polarizer
settings follows from the assumption that the source produces the special state |Ψ−〉,
which is invariant under rotations around the common propagation axis.

The violation of outcome independence implies that the two sets of experimental
outcomes must be correlated. The probability that both detectors click is proportional
to the coincidence-count rate, which—as we learnt in Section 9.2.4—is determined by
the second-order Glauber correlation function; consequently,

p
(
Ayes, Byes

∣∣Ψ−, α, β
) ∝ G

(2)
αβ(r1t1; r2t2)

∝ 〈
Ψ−∣∣ a†

kAαa†
kBβakBβakAα

∣∣Ψ−〉 . (19.54)

The techniques used above give

p
(
Ayes, Byes

∣∣Ψ−, α, β
)

= sin2 (α − β)

=
1
2
− 1

2
cos(2α − 2β) , (19.55)

which describes an interference pattern, e.g. if β is held fixed while α is varied. Fur-
thermore, this pattern has 100% visibility, since perfect nulls occur for the values
α = β, β + π, β + 2π, . . ., at which the planes of polarization of the two photons are
parallel. The surprise is that an interference pattern with 100% visibility occurs in the
second-order correlation function G

(2)
αβ while the first-order functions G

(1)
α and G

(1)
β

display zero visibility, i.e. no interference at all.
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19.5.2 Quantum theory violates Bell’s theorem

The results (19.52), (19.53), and (19.55) show that quantum theory violates outcome
independence and the strong-separability principle; consequently, quantum theory does
not satisfy the hypothesis of Bell’s theorem. Nevertheless, it is still logically possible
that quantum theory could satisfy the conclusion of Bell’s theorem, i.e. the inequality
(19.37). We will now dash this last, faint hope by exhibiting a specific example in
which the quantum prediction violates the Bell inequality (19.38).

For the experiment depicted in Fig. 19.3, let us now calculate what quantum theory
predicts for S (λ) when λ is represented by the Bell state |Ψ−〉. For general parameter
settings α and β, the definition (19.31) for Bell’s joint expectation value can be written
as

E(α, β) = pee(α, β)AeBe + peo(α, β)AeBo + poe(α, β)AoBe + poo(α, β)AoBo , (19.56)

where we have omitted the λ-dependence of the expectation value, and adopted the
simplified notation

pmn(α, β) ≡ p(Am, Bn|λ, α, β) (19.57)

for the joint probabilities.
In Exercise 19.4, the calculation of the probabilities is done by using the techniques

leading to eqn (19.55), with the result

pee(α, β) = poo(α, β) =
1
2

sin2 (α − β) , (19.58)

peo(α, β) = poe(α, β) =
1
2

cos2 (α − β) . (19.59)

After combining these expressions for the probabilities with the definition (19.11) for
the outcome parameters, Bell’s joint expectation value (19.56) becomes

E(α, β) = sin2 (α − β) − cos2 (α − β) = − cos (2α − 2β) . (19.60)

Our objective is to choose values (α1, β1, α2, β2) such that S violates the inequality
|S| � 2. A set of values that accomplishes this,

α1 = 0◦ , α2 = 45◦ , β1 = 22.5◦ , β2 = −22.5◦ , (19.61)

is illustrated in Fig. 19.6.

Fig. 19.6 A choice of angular settings

α1, α2, β1, β2 in the calcite-prism-pair experi-

ment (see Fig. 19.3) that maximizes the viola-

tion of Bell’s bounds (19.42) by the quantum

theory.

α�

β�

β�

α� = �



Quantum theory versus local realism ���

For these settings, the expectation values are given by

E(α1 = 0, β1 = 22.5◦) = − cos (45◦) = − 1√
2

,

E(α1 = 0, β2 = −22.5◦) = − cos (−45◦) = − 1√
2

,

E(α2 = 45◦, β1 = 22.5◦) = − cos (−45◦) = − 1√
2

,

E(α2 = 45◦, β2 = −22.5◦) = − cos (−135◦) = +
1√
2

,

(19.62)

so that S = −2
√

2. This violation of the bound |S| � 2 by a factor of
√

2 shows that
quantum theory violates the Bell inequality (19.38) by a comfortable margin.

19.5.3 Motivation for the definition of the sum S

What motivates the choice of four terms and the signs (+, +, +,−) in eqn (19.35)?
The answers to this question now becomes clear in light of the above calculation. The
independent observers, Alice and Bob, need to make two independent choices in their
respective parameter settings α and β, in order to observe changes in the correlations
between the polarizations of the photons γA and γB. This explains the four pairs of
parameter settings appearing in the definition of S, and pictured in Fig. 19.4.

The motivation for the choice of signs (+, +, +,−) in S can be explained by refer-
ence to Fig. 19.6. Alice and Bob are free to choose the first three pairs of parameters
settings, (α1, β1), (α1, β2), and (α2, β1), so that all three pairs have the same setting
difference, 22.5◦, and negative correlations. In the quantum theory calculation of S for
the Bell state |Ψ−〉, these choices yield the same negative correlation, −1/

√
2, since

the expectation values only depend on the difference in the polarizer settings.
By contrast, the fourth pair of settings, (α2, β2), describes the two angles that are

the farthest away from each other in Fig. 19.6, and it yields a positive expectation
value E(α2, β2) = +1/

√
2. This arises from the fact that, for this particular pair of

angles (α2 = 45◦, β2 = −22.5◦), the relative orientations of the planes of polarization
of the back-to-back photons γA and γB are almost orthogonal. The opposite sign of
this expectation value compared to the first three can be exploited by deliberately
choosing the opposite sign for this term in eqn (19.35). This stratagem ensures that
all four terms contribute with the same sign, and this gives the best chance of violating
the inequality.

It should be emphasized that the violation of this Bell inequality by quantum
theory is not restricted to this particular example. However, it turns out that this
special choice of angular settings defines an extremum for S in the important case
of maximally entangled states. Consequently, these parameter settings maximize the
quantum theory violation of the Bell inequality (Su and Wódkiewicz, 1991).
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19.6 Comparisons with experiments

19.6.1 Visibility of second-order interference fringes

For comparison with experiments with two counters, such as the one sketched in Fig.
19.5, the visibility of the second-order interference fringes observed in coincidence
detection can be defined—by analogy to eqn (10.26)—as

V ≡
G

(2)
αβ

∣∣∣
max

− G
(2)
αβ

∣∣∣
min

G
(2)
αβ

∣∣∣
max

+ G
(2)
αβ

∣∣∣
min

, (19.63)

where G
(2)
αβ

∣∣
max

and G
(2)
αβ

∣∣
min

are respectively the maximum and minimum, with respect
to the angles α and β, of the second-order Glauber correlation function. Let us assume
that data analysis shows that an empirical fit to the second-order interference fringes
has the form

G
(2)
αβ ∝ 1 − η cos (2α − 2β) , (19.64)

for some value of the fitting parameter η. Given appropriate assumptions about the
curve-fitting technique, one can show that

η = V . (19.65)

The physical meaning of a high, but imperfect (V < 1), visibility is that decoherence
of some sort has occurred between the two photons γA and γB during their propagation
from the source to Alice and Bob. Thus the entangled pure state emitted by the source
changes, for either fundamental or technical reasons, into a slightly mixed state before
arriving at the detectors.

Next, let us consider experiments with four counters, such as the one sketched in
Fig. 19.3. Again, using data analysis that assumes a finite-visibility fitting parameter
η, the joint probabilities (19.58) and (19.59) have the following modified forms:

pee(α, β) = poo(α, β) =
1
2
− 1

2
η cos(2α − 2β) , (19.66)

peo(α, β) = poe(α, β) =
1
2

+
1
2
η cos(2α − 2β) , (19.67)

so that Bell’s joint expectation value becomes

E(α, β) = −η cos(2α − 2β) . (19.68)

For the special settings in eqn (19.61), one finds

S = − 4√
2
η = −2

√
2η . (19.69)

This implies that the maximum amount of visibility Vmax permitted by Bell’s inequal-
ity |S| � 2 is

Vmax = ηmax =
1√
2

= 70.7% . (19.70)
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19.6.2 Data from the tandem-crystal experiment violates the Bell
inequality |S| ��� 2

For comparison with experiment, we show once again the data from the tandem two-
crystal experiment discussed in Section 13.3.5, but this time we superpose a finite-
visibility, sinusoidal interference-fringe pattern, of the form (19.64), with the maximum
visibility Vmax = 70.7% permitted by Bell’s theorem. This is shown as a light, dotted
curve in Fig. 19.7.

One can see by inspection that the data violate the Bell inequality (19.38) by many
standard deviations. Indeed, detailed statistical analysis shows that these data violate
the constraint |S| � 2 by 242 standard deviations. However, this data exhibits a high
signal-to-noise ratio, so that systematic errors will dominate random errors in the data
analysis.

19.6.3 Possible experimental loopholes

A The detection loophole

Since the quantum efficiencies of photon counters are never unity, there is a possible
experimental loophole, called the detection loophole, in most quantum optical tests
of Bell’s theorem. If the quantum efficiency is less than 100%, then some of the photons
will not be counted. This could be important, if the ensemble of photons generated by
the source is not homogeneous. For example, it is conceivable—although far-fetched—
that the photons that were not counted just happen to have different correlations than
the ones that were counted. For example, the second-order interference fringes for the
undetected photons might have a visibility that is less than the maximum allowable
amount Vmax = 70.7%. Averaging the visibility of the undetected photons with the
visibility of the detected photons, which do have a measured visibility greater than
70.7%, might produce a total distribution which just barely manages to satisfy the
inequality (19.38).
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Fig. 19.7 Data from the tandem-crystals experiment (discussed in Section 13.3.5) compared

to maximum-visibility sinusoidal interference fringes with Vmax = 70.7% (light, dotted curve),

which is the maximum visibility permitted by Bell’s theorem. (Adapted from Kwiat et al.

(1999b).)
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This scenario is ruled out if one adopts the entirely reasonable, fair-sampling as-
sumption that the detected photons represent a fair sample of the undetected photons.
In this case, the undetected photons would not have substantially distorted the ob-
served interference fringes if they had been included in the data analysis. Nevertheless,
the fair-sampling assumption is difficult to prove or disprove by experiment.

One way out of this difficulty is to repeat the quantum optical tests of Bell’s
theorem with extremely high quantum efficiency photon counters, such as solid-state
photomultipliers (Kwiat et al., 1994). This would minimize the chance of missing any
appreciable fraction of the photons in the total ensemble of photon pairs from the
source. To close the detection loophole, a quantum efficiency of greater than 83% is
required for maximally entangled photons, but this requirement can be reduced to
67% by the use of nonmaximally entangled photons (Eberhard, 1993).

Replacing photons by ions allows much higher quantum efficiencies of detection,
since ions can be detected much more efficiently than photons. In practice, nearly
all ions can be counted, so that almost none will be missed. An experiment using
entangled ions has been performed (Rowe et al., 2001). With the detection loophole
closed, the experimenters observed an 8 standard deviation violation of the Clauser–
Horne–Shimony–Holt inequality (Clauser et al., 1969)

|E (α1, β1) + E (α2, β1)| + |E (α1, β2) − E (α2, β2)| � 2 . (19.71)

This is one of several experimentally useful Bell inequalities that are equivalent in
physical content to the condition |S| � 2 discussed above.

B The locality loophole

Another possible loophole—which is conceptually much more important than the ques-
tion of detector efficiency—is the locality loophole. Closing this loophole is especially
vital in light of the incorporation of the extremely important Einsteinian principle of
locality into Bell’s theorem.

Since photons travel at the speed of light, they are much better suited than atoms or
ions for closing the locality loophole. Using photons, it is easy to ensure that Alice’s and
Bob’s decisions for the settings of their parameters α and β are space-like separated,
and therefore truly independent.

For example, Alice and Bob could randomly and quickly reset α and β during the
time interval after emission from the source and before arrival of the photons at their
respective calcite prisms. There would then be no way for any secret machinery at
the source to know beforehand what values of α and β Alice or Bob would eventu-
ally decide upon for their measurements. Therefore, properties of the photons that
were predetermined at the source could not possibly influence the outcomes of the
measurements that Alice and Bob were about to perform.

The first attempt to close the locality loophole was an experiment with a separation
of 12 m between Alice and Bob. Rapidly varying the settings of α and β, by means of
two acousto-optical switches (Aspect et al., 1982), produced a violation of the Clauser–
Horne–Shimony–Holt inequality (19.71) by 6 standard deviations.

However, the time variation of the two polarizing elements in this experiment was
periodic and deterministic, so that the settings of α and β at the time of arrival of the
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photons could, in principle, be predicted. This would still allow the properties of the
photons that led to the observed outcomes of measurements to be predetermined at
the source.

A more satisfactory experiment vis-à-vis closing the locality loophole was per-
formed with a separation of 400 m between the two polarizers. Two separate, ultrafast
electro-optic modulators, driven by two local, independent random number genera-
tors, rapidly varied the settings of α and β in a completely random fashion. The result
was a violation of the Clauser–Horne–Shimony–Holt inequality (19.71) by 30 standard
deviations.

The two random number generators operated at the very high toggle frequency
of 500 MHz. After accounting for various extraneous time delays, the experimenters
concluded that no given setting of α or β could have been influenced by any event that
occurred more than 0.1 µs earlier, which is much shorter than the 1.3 µs light transit
time across 400meters.

Hence the locality loophole was firmly closed. However, the detection loophole was
far from being closed in this experiment, since only 5% of all the photon pairs were
detected. Thus a heavy reliance on the fair-sampling assumption was required in the
data analysis.

19.6.4 Relativistic issues

An experiment with a very large separation, of 10.9 km, between Alice and Bob has
been performed using optical fiber technology, in conjunction with a spontaneous
down-conversion light source (Tittel et al., 1998). A violation of Bell’s inequalities
by 16 standard deviations was observed in this experiment.

Relativistic issues, such as putting limits on the so-called speed of collapse of the
two-photon wave function, could then be examined experimentally using this type of
apparatus. Depending on assumptions about the detection process and about which
inertial frame is used, the speed of collapse was shown to be at least 104c to 107c
(Zbinden et al., 2001). Further experiments with rapidly rotating absorbers ruled out
an alternative theory of nonlocal collapse (Suarez and Scarani, 1997).

19.6.5 Greenberger–Horne–Zeilinger states

The previous discussion of experiments testing Bell’s theorem was based on constraints
on the total amount of correlation between random events observable in two-particle
coincidence experiments. These constraints are fundamentally statistical in nature.
Greenberger, Horne, and Zeilinger (GHZ) (Kafatos, 1989, pp. 69–72) showed that
using three particles, as opposed to two, in a maximally entangled state such as

|ψGHZ〉 ∝ |a, b, c〉 − |a′, b′, c′〉 , (19.72)

allows a test of the combined principles of locality and realism by observing, or failing
to observe, a single triple-coincidence click. Thus, in principle, the use of statistical
correlations is unnecessary for testing local realistic theories. However, in practice,
the detectors with quantum efficiencies less than 100% used in real experiments again
required the use of inequalities. Violations of these inequalities have been observed
in experiments involving nonmaximally entangled states generated by spontaneous
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down-conversion (Torgerson et al., 1995; White et al., 1999). Once again, the results
contradict all local realistic theories.

For a review of these and other quantum optical tests of the foundations of physics,
see Steinberg et al. (2005).

19.7 Exercises

19.1 The original EPR argument

(1) Show that the EPR wave function, given by eqn (19.1), is an eigenfunction of
the total momentum p̂A + p̂B, with eigenvalue 0, and also an eigenfunction of the
operator x̂A − x̂B, with eigenvalue L.

(2) Calculate the commutator [p̂A + p̂B, x̂A − x̂B] and use the result to explain why
(1) does not violate the uncertainty principle.

(3) If p̂A is measured, show that p̂B has a definite value. Alternatively, if x̂A is mea-
sured, show that x̂B has a definite value.

(4) Argue from the previous results that both x̂B and p̂B are elements of physical
reality, and explain why this leads to the EPR paradox.

19.2 Parameter independence for quantum theory

(1) Use eqns (19.43)–(19.45) to derive eqn (19.47).
(2) Verify parameter independence when |χ〉 is replaced by any of the four Bell states

{|Ψ±〉 , |Φ±〉} defined by eqns (13.59)–(13.62).

19.3 Violation of outcome independence

(1) Use eqn (19.50) to expand |hA, vB〉 and |vA, hB〉 in terms of |hA, βB〉 and
∣∣vA, βB

〉
.

(2) Evaluate the reduced states |Ψ−〉 yes and |Ψ−〉 no.
(3) Calculate the conditional probabilities p(Ayes|λ, α, β, Byes) and p(Ayes|λ, α, β,

Bno).
(4) Calculate the joint probability p (Ayes, Byes |Ψ−, α, β ).
(5) If |Ψ−〉 is replaced by |φ〉 = |hA, vB〉, is outcome independence still violated?

19.4 Violation of Bell’s inequality

(1) Carry out the calculations needed to derive eqns (19.58) and (19.59).
(2) If |Ψ−〉 is replaced by |φ〉 = |hA, vB〉, is the Bell inequality still violated?
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Quantum information

Quantum optics began in the early years of the twentieth century, but its applications
to communications, cryptography, and computation are of much more recent vintage.
The progress of communications technology has made quantum effects a matter of
practical interest, as evidenced in the discussion of noise control in optical transmission
lines in Section 20.1. The issue of inescapable quantum noise is also related to the
difficulty—discussed in Section 20.2—of copying or cloning quantum states.

Other experimental and technological advances are opening up new directions for
development in which the quantum properties of light are a resource, rather than a
problem. Streams of single photons with randomly chosen polarizations have already
been demonstrated as a means for the secure transmission of cryptographic keys, as
discussed in Section 20.3. Multiphoton states offer additional options that depend on
quantum entanglement, as shown by the descriptions of quantum dense coding and
quantum teleportation in Section 20.4. This set of ideas plays a central role in the
closely related field of quantum computing, which is briefly reviewed in Section 20.5.

20.1 Telecommunications

Optical methods of communication—e.g. signal fires, heliographs, Aldis lamps, etc.—
have been in use for a very long time, but high-speed optical telecommunications
are a relatively recent development. The appearance of low-loss optical fibers and
semiconductor lasers in the 1960s and 1970s provided the technologies that made new
forms of optical communication a practical possibility.

The subsequent increases in bandwidth to 104 GHz and transmission rates to the
multiterabit range have led—under the lash of Moore’s law—to substantial decreases
in the energy per bit and the size of the physical components involved in switching
and amplification of signals. An inevitable consequence of this technologically driven
development is that phenomena at the quantum level are rapidly becoming important
for real-world applications.

Long-haul optical transmission lines require repeater stations that amplify the
signal in order to compensate for attenuation. This process typically adds noise to the
signal; for example, erbium doped fiber amplifiers (EDFA) degrade the signal-to-noise
ratio by about 4 dB. Only 1 dB arises from technical losses in the components; the
remaining 3 dB loss is due to intrinsic quantum noise.

Thus quantum noise is dominant, even for apparently classical signals containing
a very large number of photons. Similar effects arise when the signal is divided by a
passive device such as an optical coupler. Future technological developments can be
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expected to increase the importance of quantum noise; therefore, we devote Sections
20.1.2 and 20.1.3 to the problem of quantum noise management.

20.1.1 Optical transmission lines∗

Let us consider an optical transmission line in which the repeater stations employ
phase-insensitive amplifiers. For phase-insensitive input noise, the input and output
signal-to-noise ratios are defined by

[SNR]γ =

∣∣〈bγ (ω)
〉∣∣2

Nγ (ω)
(γ = in, out) , (20.1)

where Nin and Nout are the noise in the input and output respectively. The relation
between the input and output signal-to-noise ratios is obtained by combining eqns
(16.36) and (16.150) to get

[SNR]out =

∣∣〈bout (ω)
〉∣∣2

Nout (ω)
=

∣∣〈bin (ω)
〉∣∣2

Nin (ω) + A (ω)
=

[SNR]in
1 + A (ω) /Nin (ω)

. (20.2)

The most favorable situation occurs when the input noise strength has the standard
quantum limit value 1/2. In this case one finds

[SNR]out

[SNR]in
=

1
1 + 2A (ω)

� 1
2 ∓ 1/G (ω)

→ 1
2

. (20.3)

The inequality follows from eqn (16.151) and the final result represents the high-gain
limit. The decibel difference between the signal-to-noise ratios is therefore bounded by

d = 10 log
[
[SNR]out

[SNR]in

]
� −10 log 2 ≈ −3 . (20.4)

In other words, the quantum noise added by a high-gain, phase-insensitive amplifier
degrades the signal-to-noise ratio by at least three decibels. This result holds even for
strong input fields containing many photons. For example, if the input is described by
the multi-mode coherent state defined by eqns (16.98)–(16.100), then the input noise
strength is Nin (ω) = 1/2. In this case the inequality (20.4) is valid for any value of
the effective classical intensity |βin (t)|2, no matter how large.

This result demonstrates that high-gain, phase-insensitive amplifiers are intrinsi-
cally noisy. This noise is generated by fundamental quantum processes that are at
work even in the absence of the technical noise—e.g. insertion-loss noise and Johnson
noise in the associated electronic circuits—always encountered in real devices.

20.1.2 Reduction of amplifier noise∗

In the discussion of squeezing in Section 15.1 we have seen that quantum noise can be
unequally shared between different field quadratures by using nonlinear optical effects.
This approach—which can yield essentially noise-free amplification for one quadrature
by dumping the unwanted noise in the conjugate quadrature—is presented in the
present section.
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There is an alternative scheme, based on the special features of cavity quantum
electrodynamics, in which the signal propagates through a photonic bandgap. This
is a three-dimensional structure in which periodic variations of the refractive index
produce a dispersion relation that does not allow propagating solutions in one or more
frequency bands—the bandgaps—so that vacuum fluctuations and the associated noise
are forbidden at those frequencies (Abram and Grangier, 2003).

In the discussion of linear optical amplifiers in Chapter 16, we derived the in-
equality (16.147) which shows that the amplifier noise for a phase-conjugating am-
plifier is always larger than the vacuum noise, i.e. Namp > 1/2. On the other hand,
the noise added by a phase-transmitting amplifier can be made as small as desired
by allowing G (ω) to approach unity. Thus noise reduction can be achieved with a
phase-transmitting amplifier, provided that we are willing to give up any significant
amplification.

Achieving noise reduction by giving up amplification scarcely recommends itself
as a useful strategy for long-haul communications, so we turn next to phase-sensitive
amplifiers. In this case, the lower bound (16.147) on amplifier noise is replaced by the
amplifier uncertainty principle (16.169). The resemblance between eqn (16.169) and
the standard uncertainty principle for canonically conjugate variables is promising,
since the latter is known to allow squeezing.

Furthermore, the amplifier uncertainty principle has the additional advantage that
the lower bound is itself adjustable; indeed, it can be set to zero. Even when this is
not possible, the noise in one quadrature can be reduced at the expense of increasing
the noise in the conjugate quadrature. We first demonstrate two examples in which
the amplifier noise actually vanishes, and then discuss what can be achieved in less
favorable situations.

The phase-sensitive, traveling-wave amplifier described in Section 16.3.2 is intrinsi-
cally noiseless, so the lower bound of the amplifier uncertainty principle automatically
vanishes. For applications requiring the generally larger gains possible for regenerative
amplifiers, the phase-sensitive OPA presented in Section 16.2.2 can be modified to
provide noise-free amplification.

For the phase-sensitive OPA, the amplifier noise comes from vacuum fluctuations
entering the cavity through the mirror M2, as shown in Fig. 16.2. Thus the amplifier
noise would be eliminated by preventing the vacuum fluctuations from entering the
cavity. In an ideal world, this can be accomplished by making M2 a perfect reflector,
i.e. setting κ2 = 0 in eqns (16.47)–(16.49). Under these circumstances, eqn (16.49)
reduces to η (ω) = 0, so that the amplifier is noiseless.

In these examples, the noise vanishes for both of the principal quadratures, i.e.
A1 (ω) = A2 (ω) = 0. According to eqn (16.167), this means that the signal-to-noise
ratio is preserved by amplification. This is only possible if the lower bound in eqn
(16.170) vanishes, and this in turn requires G1 (ω)G2 (ω) = 1. Consequently, the price
for noise-free amplification is that one quadrature is attenuated while the other is
amplified.

In the real world—where traveling-wave amplifiers may not provide sufficient gain
and there are no perfect mirrors—other options must be considered. The general idea is
to achieve high gain and low noise for the same quadrature. For this purpose, the signal
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should be carried by modulation of either the amplitude or the phase of the chosen
quadrature, e.g. Xc

in (ω); and the input noise should be small, i.e. ∆Xc
in (ω) � 1/2.

In the high-gain limit, the lower bound in eqn (16.169) is proportional to√
G1 (ω)G2 (ω); consequently, the amplifier noise in the conjugate quadrature is nec-

essarily large. This is not a problem as long as the noisy quadrature is strongly rejected
by the detectors in use. The degree to which these objectives can be attained depends
on the details of the overall design.

20.1.3 Reduction of branching noise

The information encoded in an optical signal is often intended for more than one
recipient, so that it is necessary to split the signal into two or more identical parts,
usually by means of a directional coupler. These junction points—which are often
called optical taps—may also be used to split off a small part of the signal for
measurement purposes.

Whatever the motive for the tap, it is in effect a measurement of the radiation
field. A measurement of any quantum system perturbs it in an uncontrollable fashion;
consequently, the optical tap must add noise to the signal. A succession of taps will
therefore degrade the signal, even if there is no associated amplifier noise.

In fact, we have already met with this effect, in the guise of the partition noise
at a beam splitter. The explanation that partition noise arises from vacuum fluctu-
ations entering through the unused port of the beam splitter suggests that injecting
a squeezed vacuum state into the unused port might help with the noise problem.
This idea was initially proposed in 1980 (Shapiro, 1980) and experimentally realized
in 1997 (Bruckmeier et al., 1997). We discuss below a simple model that illustrates
this approach.

The idea is to add two elements, shown in Fig. 20.1, to the simple beam splitter
described in Section 8.4: (1) a squeezed-light generator (SQLG); and (2) a pair of
variable retarder plates (see Exercise 20.1). The SQLG, which is the essential part
of the modified beam splitter, injects squeezed light into the previously unused input
port 2. The function of the variable retarder plates, which are placed at the input port
2 and the output port 2′, is to simplify the overall scattering matrix.

The phase transformations, a2 → eiθa2 and a′
2 → eiθ′

a′
2, imposed by the retarder

plates are more usefully described as rotations of the input and output quadratures
through the angles θ and θ′. Combining the phase transformations with eqn (8.63)—as
outlined in Exercise 20.2—yields the scattering matrix

S =

[ √
T i

√
Reiθ

i
√

Reiθ′ √
Tei(θ+θ′)

]
. (20.5)

The phases of the beam splitter coefficients have been chosen so that t =
√

T is real and
r = i

√
R is pure imaginary, where T and R are respectively the intensity transmission

and reflection coefficients.
The SQLG is designed to emit a squeezed state for the quadrature

X2 =
1
2

(
e−iβa2 + eiβa†

2

)
, (20.6)
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Fig. 20.1 Modified beam splitter for noiseless

branching. The OPA injects squeezed light into

port 2 and the phase plates are used to obtain

a convenient form for the scattering matrix.

so an application of eqn (15.39) produces the variances

V (X2) =
e−2r

4
, V (Y2) =

e2r

4
, (20.7)

where Y2 is the conjugate quadrature and r is the magnitude of the squeezing para-
meter. For the special values θ = −π/2 and θ′ = π/2 the input–output relations for
the amplitude quadratures are(

X ′
1

X ′
2

)
=

[ √
T

√
R

−√
R

√
T

](
X1

X2

)
, (20.8)

where the quadratures for the input channel 1, and the output channels 1′ and 2′ are
defined by the angle β used in eqn (20.6).

Let us now specialize to a balanced beam splitter, and assume that the signal is
carried by X1. The squeezed state satisfies 〈X2〉 = 0; consequently, the two output
signals have the same average:

〈X ′
1〉 = 〈X ′

2〉 =
1√
2
〈X1〉 . (20.9)

Since the input signal X1 and the SQLG output are uncorrelated, the variances of the
output signals X ′

1 and X ′
2 are also identical:
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V (X ′
1) = V (X ′

2) =
1
2
V (X1) +

e−r

8
. (20.10)

The 50% reduction of the output variances compared to the input variance does
not mean that the output signals are quieter; it merely reflects the reduction of the
amplitudes by the factor 1/

√
2. This can be seen by defining the signal-to-noise ratios,

SNR (Xm) =
|〈Xm〉|2
V (Xm)

, SNR (X ′
m) =

|〈X ′
m〉|2

V (X ′
m)

(m = 1, 2) , (20.11)

and using the previous results to find

SNR (X ′
1) = SNR (X ′

2) =
SNR (X1)

1 + e−r/ [4V (X1)]
. (20.12)

In the limit of strong squeezing, this coupler almost exactly preserves the signal-
to-noise ratio of the input signal. Consequently, the output signals are faithful copies
of the input signal down to the level of the quantum fluctuations. The injection of the
squeezed light into port 2 has effectively diverted almost all of the partition noise into
the unobserved output quadratures Y ′

1 and Y ′
2 .

This scheme succeeds in splitting the signal without adding any noise, but at the
cost of reducing the intensity of the output signals by 50%. This drawback can be
overcome by inserting a noiseless amplifier, e.g. the traveling-wave OPA described in
Section 16.3.2, prior to port 1 of the beam splitter. The gain of the amplifier can
be adjusted so that each of the split signals has the same strength and the same
signal-to-noise ratio as the original signal.

20.2 Quantum cloning

At first glance, it may seem that the noiseless beam splitter of Section 20.1.3 produces
a perfect copy or clone of the input signal. This impression is misleading, since only the
expectation values and variances of the particular input quadrature X1 are faithfully
copied; indeed, the variance of the output conjugate quadrature Y ′

1 is much larger than
the variance of Y1.

This observation suggests a general question: To what extent does quantum theory
allow cloning? In the following section, we will review the famous no-cloning theorem
(Dieks, 1982; Wootters and Zurek, 1982), which outlaws perfect cloning of an unknown
quantum state.

We should note that this work was not done to answer the question we have
just raised. It was a response to a proposal by Herbert (1982) for a superluminal
communications scheme employing EPR correlations. The connection between no-
cloning and no-superluminal-signaling is a recurring theme in later work (Ghirardi
and Weber, 1983; Bussey, 1987).

The no-cloning theorem quickly became an important physical principle which
was, for example, used to argue for the security of quantum cryptography (Bennett
and Brassard, 1984). The final step in the initial development was the extension of the
result from pure to mixed states (Barnum et al., 1996).



Quantum cloning ���

This was immediately followed by the work of Bužek and Hillery (1996) who began
the investigation of imperfect cloning. We will study the degree of cloning allowed by
quantum theory in Section 20.2.2.

In the study of quantum information, the systems of interest are usually described
by states in a finite-dimensional Hilbert space Hsys. For the special case of two-state
systems—e.g. a two-level atom, a spin-1/2 particle, or the two polarizations of a
photon—Hsys is two-dimensional, and a vector |γ〉 in Hsys is called a qubit. The
generic description of qubits employs the so-called computational basis {|0〉 , |1〉}
defined by

σz |0〉 = |0〉 , σz |1〉 = − |1〉 . (20.13)

In this notation a general qubit is represented by |γ〉 = γ0 |0〉 + γ1 |1〉.
In the more general case, dim (Hsys) = d > 2, the state is called a qudit. We will

follow the usual convention by referring to the systems under study as qubits, but
it should be kept in mind that many of the results also hold in the general finite-
dimensional case. In the interests of simplicity, we will only treat closed systems un-
dergoing unitary time evolution.

For the applications considered below, it is often necessary to consider one or more
ancillary (helper) systems in addition to the system of interest. The reservoirs used
in the treatment of dissipation in Chapter 14 are an example of ancillary systems or
ancillas. In that case the unitary evolution of the closed sample–reservoir system was
used to derive the dissipative equations by tracing over the ancilla degrees of freedom.

Another common theme in this field is the assumption that the total system consists
of a family of distinguishable qubits. The Hilbert space H for the system is H =
HQ ⊗ Hanc, where Hanc and HQ are respectively the state spaces for the ancillas and
the family of qubits. This abstract approach has the great advantage that the results
do not depend on the specific details of particular physical realizations, but there are,
nevertheless, some implicit physical assumptions involved.

If the qubits are particles, then—as we learnt in Section 6.5.1—the Hilbert space
HQ for two qubits is

HQ =

{
(Hsys ⊗ Hsys)sym for bosons ,

(Hsys ⊗ Hsys)asym for fermions .
(20.14)

For massive particles—e.g. atoms, molecules, quantum dots, etc.—a way around this
complication is to choose an experimental arrangement in which each particle’s center-
of-mass position can be treated classically. In these circumstances, as we saw in Section
6.5.2, the symmetrization or antisymmetrization normally required for identical par-
ticles can be ignored. In this model, a qubit located at ra is described by a copy of
Hsys, called Ha. The vectors |γ〉a in Ha represent the internal states of the qubit.

For a family of two qubits, located at ra and rb, the space HQ is the unsymmetrized
tensor product: HQ = Ha ⊗ Hb. The Bell states, first defined in Section 13.3.5 for
photons, are represented by
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∣∣Ψ±〉
ab

=
1√
2
{|1, 0〉ab ± |0, 1〉ab} ,∣∣Φ±〉

ab
=

1√
2
{|0, 0〉ab ± |1, 1〉ab} ,

(20.15)

where
|u, v〉ab ≡ |u〉a |v〉b . (20.16)

More features of the Bell states can be found in Exercise 20.3.
In the general case of qubits located at r1, . . . , rN the qubit space is

HQ =
N⊗

a=1

Ha , (20.17)

and a generic state is denoted by |u1, . . . , uN〉12···N . When no confusion will result, the
notation is simplified by omitting the subscripts on the kets, e.g. |u, v〉ab → |u, v〉. The
application of these ideas to photons requires a bit more care, as we will see below.

20.2.1 The no-cloning theorem

For closed systems, we can assume that every physically permitted operation is de-
scribed by a unitary transformation U acting on the Hilbert space H describing the
qubits and the ancillas. To set the scene for the cloning discussion, we assume that
there is a set of qubits, |B〉b, all in the same (internal) blank state |B〉, and a cloning
device which is initially in the ready state |R〉anc ∈ Hanc.

If we only want to make one copy—this is called 1 → 2 cloning—the total initial
state is

|γ, B, R〉 ≡ |γ〉a ⊗ |B〉b ⊗ |R〉anc = |γ〉a |B〉b |R〉anc . (20.18)

The cloning assumption is that there is a unitary operator U such that

U |γ, B, R〉 = |γ, γ, Rγ〉 = |γ〉a |γ〉b |Rγ〉anc , (20.19)

where |Rγ〉anc is the state of the cloner after it has cloned the state |γ〉a. In this
approach, cloning is not the creation of a new particle, but instead the imposition of
a specified internal state on an existing particle.

After this preparation, the no-cloning theorem can be stated as follows (Scarani
et al., 2005).

Theorem 20.1 There is no quantum operation that can perfectly duplicate an un-
known quantum state.

We will use a proof given by Peres (1995, Sec. 9-4) that exhibits a contradiction
following from the assumption that a cloning operation does exist, i.e. that there is a
unitary operator satisfying eqn (20.19).
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Since the cloning device is supposed to work in the absence of any knowledge of
the initial state, it must be possible to use U to clone a different state |ζ〉, so that

U |ζ, B, R〉 = |ζ, ζ, Rζ〉 . (20.20)

A direct use of the unitarity of U yields

〈γ, γ, Rγ | ζ, ζ, Rζ〉 = 〈γ, B, R| ζ, B, R〉 = 〈γ |ζ 〉 , (20.21)

where we have imposed the convention that the initial states |R〉anc, |γ〉a, |B〉b, and
|ζ〉a are all normalized and that the inner product between internal states does not
depend on the location of the qubit.

Using the explicit tensor products in eqns (20.19) and (20.20) produces the alter-
native form

〈γ, γ, Rγ| ζ, ζ, Rζ〉 = 〈Rγ |Rζ 〉 〈γ |ζ 〉2 . (20.22)

For non-orthogonal qubits, |γ〉 and |ζ〉, equating the two results leads to

〈Rγ |Rζ 〉 〈γ |ζ 〉 = 1 . (20.23)

The inner product 〈Rγ |Rζ 〉 automatically satisfies |〈Rγ |Rζ 〉| � 1, and we can
always choose |γ〉 and |ζ〉 so that |〈γ |ζ 〉| < 1; therefore, there are states |γ〉 and |ζ〉
for which eqn (20.23) cannot be satisfied. This contradiction proves the theorem.

This elegant proof shows that the impossibility of perfect cloning of unknown, and
hence arbitrary, states is a fundamental feature of quantum theory; indeed, the only
requirement is that quantum operations are represented by unitary transformations.
In this respect it is similar to the Heisenberg uncertainty principle, for which the sole
requirement is the canonical commutation relation [q̂, p̂] = i�.

We should emphasize, however, that this argument only excludes universal clon-
ing machines, i.e. those that can clone any given state. This leaves open the possibility
that specific states could be cloned. In fact the argument does not prohibit the cloning
of each member of a known set of mutually orthogonal states.

The application of this theorem in the context of quantum optics raises some
problems. The proof rests on the assumption that the qubits are distinguishable and
localizable, but photons are indistinguishable, massless bosons that cannot be precisely
localized and are easily created and destroyed. Thus it is not immediately obvious that
the proof of the no-cloning theorem given above applies to photons.

A second problem arises from the observation that stimulated emission—which
produces new photons with the same wavenumber and polarization as the incident
photons—would seem to provide a ready-made copying mechanism. Why is it that
stimulated emission is not a counterexample to the no-cloning theorem? In the follow-
ing paragraphs we will address these questions in turn.

Since photons are indistinguishable bosons, we cannot add any identifying subscript
to a photonic qubit |γ〉, and the two-qubit space is the two-photon Fock space, H(2).
The simplest way to define a photonic qubit is to choose a specific wavevector k, and
set |γ〉 = Γ† |0〉, where

Γ† =
∑

s

γksa
†
ks . (20.24)

Since s takes on two values, the state |γ〉 qualifies as a qubit.
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Cloning this qubit can only mean that a second photon is added in the same mode;
therefore, the cloning transformation (20.19) for this case would be

UΓ† |0〉 |R〉anc =
1√
2
Γ†2 |0〉 |Rγ〉anc . (20.25)

By contrast to the distinguishable qubit model, the polarization state is not imposed
on an existing photon in a blank state; instead, a new photon is created with the same
polarization as the original. Despite this significant physical difference, a similar proof
of the no-cloning theorem can be constructed by following the hints in Exercise 20.4.

The proof of the no-cloning theorem—either the standard version starting with
eqn (20.19) or the photonic version treated in Exercise 20.4—does not suggest any
specific mechanism that prevents cloning. Finding a mechanism of this sort for photons
turns out to be related to the second problem noted above. Could stimulated emission
provide a cloning method?

The discussion of stimulated emission starts with a photon incident on an atom in
an excited state. In this case, the nonzero ratio A/B = �k3/π2 �= 0 of the Einstein
A and B coefficients provides the essential clue: stimulated emission is unavoidably
accompanied by spontaneous emission. Since the spontaneously emitted photons have
random directions and polarizations, they will violate the cloning assumptions (20.25).

This argument eliminates cloning machines based on excited atoms, but what about
parametric amplifiers, such as the traveling-wave OPA in Section 16.3.2, in which
there are no population inversions and, consequently, no excited atoms? This possible
loophole was closed by the work of Milonni and Hardies (1982), in which it is shown
that stimulated emission is necessarily accompanied by spontaneous emission, even in
the absence of inverted atoms.

In the context of quantum optics, the impossibility of perfect, universal cloning
can therefore be understood as a consequence of the unavoidable pairing of stimulated
and spontaneous emission.

The no-cloning theorem does not exclude devices that can clone each member of a
known set of orthogonal states. For example, two orthogonal polarization states can be
cloned by exploiting stimulated emission. For this purpose, suppose that the sum over
polarizations in eqn (20.24) refers to the linear polarization vectors eh (horizontal)
and ev (vertical).

The cloning device consists of a trap containing a single excited atom, followed by
a polarizing beam splitter. The PBS is oriented so that h- and v-polarized photons
are sent through ports 1 and 2 respectively. For an initial state |1kh〉, the first-order
perturbation calculation suggested in Exercise 20.5 shows that the combination of
stimulated and spontaneous emission produces an output state proportional to

√
2 |2kh〉 + |1kh, 1kv〉 . (20.26)

Since the PBS sends the unwanted v-polarized photon through port 2, the only two-
photon state emitted through port 1 is the desired cloned state |2kh〉. The argument
is symmetrical under the simultaneous exchange of h with v and port 1 with port 2;
therefore, the device is equally good at cloning v-polarized photons.
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This design produces perfect clones of each state in the basis, but only if the
basis is known in advance, so that the PBS can be properly oriented. As usual, the
experimental realization is a different matter. This idea depends on having detectors
that can reliably distinguish between one and two photons in a given mode, but such
detectors are—to say the least—very hard to find.

Since classical theory is an approximation to quantum theory, we are left with a
final puzzle: How is it that the no-cloning theorem does not prohibit the everyday
practice of amplifying and copying classical signals? To understand this, we observe
that for an incident state with ni photons, the total emission probability for the
amplifier is proportional to ni+1, where ni and 1 respectively correspond to stimulated
and spontaneous emission.

If ni = 1, the two processes are equally probable, but if ni � 1, then stimulated
emission dominates the output signal. Thus the classical copying process can achieve
its aim, despite the fact that it cannot create a perfect clone of the input.

20.2.2 Quantum cloning machines∗

The ideal cloning operation in eqn (20.19) would—if only it were possible—produce
an exact copy of a qubit without damaging the original. In their seminal paper on
imperfect cloning, Hillery and Bužek posed two questions: (1) How close can one come
to perfect cloning? (2) What happens to the original qubit in the process?

Attempts to answer these questions have generated a large and rapidly developing
field of research. In the remainder of this section, we will give a very brief outline of the
basic notions, and discuss one optical implementation. For those interested in a more
detailed account, the best strategy is to consult a recent review article, e.g. Scarani
et al. (2005) or Fan (2006).

A Cloning distinguishable qubits∗

The unattainable ideal of perfect cloning is replaced by the idea of a quantum cloning
machine (QCM), which consists of a chosen ancillary state |R〉anc in Hanc and a
unitary transformation U acting on H = HQ ⊗Hanc. We will only discuss the simplest
case of 1 → 2 cloning, for which the action of U on the initial state |γ, B, R〉 defines
the cloned state

|γ; γ〉 ≡ U |γ, B, R〉 . (20.27)

In general, the vector |γ; γ〉 represents an entangled state of the ancilla and the two
qubits, so the state of the qubits alone is described by the reduced density operator

ρab = Tranc |γ; γ〉 〈γ; γ| , (20.28)

where the trace is defined by summing over a basis for the ancillary space Hanc. The
states of the individual qubits are in turn represented by the reduced density operators

ρa = Trb ρab and ρb = Tra ρab . (20.29)

The task is to choose |R〉anc and U to achieve the best possible result, as opposed
to imposing the form of |γ; γ〉 a priori. This effort clearly depends on defining what is
meant by ‘best possible’.
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Of the many available measures of success, the most commonly used is the fidelity:

Fa (γ) = a 〈γ |ρa| γ〉 a , Fb (γ) = b 〈γ |ρb| γ〉 b , (20.30)

which measures the overlap between the mixed state produced by the cloning operation
and the original pure state. A QCM is said to be a universal QCM if the fidelities
are independent of |γ〉, i.e. the machine does equally well at cloning every state.

A nonuniversal QCM is called a state-dependent QCM. The QCM is a sym-
metric QCM if the fidelities of the output states are equal, i.e. Fa (γ) = Fb (γ), and
it is an optimal QCM if the fidelities are as large as quantum theory allows.

The unitary operator U for a QCM is linear, so its action on the general input
state |γ, B, R〉 is completely determined by its action on the special states |0, B, R〉
and |1, B, R〉, where 0 and 1 label the computational basis vectors defined by eqn
(20.13). For the Bužek–Hillery QCM, the ancilla consists of a single qubit, |R〉anc =
R0 |0〉anc + R1 |1〉anc, and the transformation U is defined by

U |0, B, R〉 =

√
2
3
|0〉a |0〉b |1〉anc −

√
1
3

∣∣Ψ+
〉

ab
|0〉anc , (20.31)

U |1, B, R〉 = −
√

2
3
|1〉a |1〉b |1〉anc +

√
1
6

∣∣Ψ+
〉

ab
|1〉anc . (20.32)

The Bell state |Ψ+〉ab is defined in eqn (20.15). In Exercise 20.6, these explicit
expressions are used to evaluate the reduced density operators ρa and ρb which yield
the fidelities Fa (γ) = Fb (γ) = 5/6. Thus the Bužek–Hillery QCM is universal and
symmetric. It has also been shown—see the references given in Scarani et al. (2005)—
that it is optimal.

B Cloning photons∗

In order to carry out an actual experiment, the abstractions of the preceding discus-
sion must be replaced by real hardware. Furthermore, the application of these ideas
in quantum optics also requires a more careful use of the theory. Both of these con-
siderations are illustrated by an experimental demonstration of a cloning machine for
photons (Lamas-Linares et al., 2002).

The basic idea, as shown in Fig. 20.2, is to use stimulated emission in a type
II down-conversion crystal, which is adjusted so that the down-converted photons
propagating along certain directions are entangled in polarization (Kwiat et al., 1995b).

Fig. 20.2 Schematic for a photon cloning ma-

chine. The type II down-converter produces

nondegenerate signal and idler modes with

wavevectors k1 (mode 1) and k2 (mode 2). The

photons are entangled in polarization.
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The pump beam and the single photon to be injected into the crystal are both derived
from a Ti–sapphire laser producing 120 fs pulses. The pump is created by frequency-
doubling the laser beam, and the single-photon state is generated by splitting off a
small part of the beam, which is then attenuated below the single-photon level.

With this method, there is still a small probability that two photons could be
injected. If no down-conversion occurs, the transmitted two-photon state will appear as
a false count for cloning. These false counts can be avoided by triggering the detectors
for the k1-photons with the detection of the conjugate k2-photon, which is a signature
of down-conversion.

To model this situation, we first pick a pair of orthogonal linear polarizations, eh

and ev, for each of the wavevectors. The production of polarization-entangled signal
and idler modes is then described by the interaction Hamiltonian

HSS = �ΩP

(
a†
k1va†

k2h − a†
k1ha†

k2v

)
+ HC . (20.33)

By following the hints in Exercise 20.7, one can show that this Hamiltonian is invariant
under joint and identical rotations of the two polarization bases around their respective
wavevectors.

The cloning effect is consequently independent of the polarization of the input
photon; that is, this should be a universal QCM. It is therefore sufficient to con-
sider a particular input state, say |1k1v〉 = a†

k1v |0〉, which evolves into |ϕ (t)〉 =
exp (−iHSSt/�) |1k1v〉. The relevant time t is limited by the pulse duration of the
pump, which satisfies ΩP tP � 1; therefore, the action of the evolution operator can
be approximated by a Taylor series expansion of the exponential in powers of ΩP t:

|ϕ (t)〉 ≈ {1 − iHSSt/� + · · · } |1k1v〉
= |1k1v〉 − iΩP t

{√
2 |2k1v, 1k2h〉 − |1k1v, 1k1h, 1k2v〉 + · · ·

}
. (20.34)

This result for |ϕ (t)〉 displays the probabilistic character of this QCM; the most
likely outcome is that the injected photon passes through the crystal without producing
a clone. The cloning effect occurs with a probability determined by the first-order
term in the expansion. The factor

√
2 in the first part of this expression represents the

enhancement due to stimulated emission.
According to von Neumann’s projection rule, the detection of a trigger photon with

wavevector k2 and either polarization leaves the system in the state

|ϕ (t)〉red =
P2 |ϕ (t)〉√〈ϕ (t) |P2|ϕ (t)〉 , (20.35)

where
P2 = |1k2v〉 〈1k2v| + |1k2h〉 〈1k2h| (20.36)

is the projection operator describing the reduction of the state associated with this
measurement. Combining eqns (20.34) and (20.36) yields

|ϕ (t)〉red = −i

{√
2
3
|2k1v, 1k2h〉 −

√
1
3
|1k1v, 1k1h, 1k2v〉

}
. (20.37)
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The probability of detecting two photons in the mode k1v is 2/3 and the probability
of detecting one photon in each of the modes k1v and k1h is 1/3. The factor of two
between the probabilities is also a consequence of stimulated emission.

The indistinguishability of the photons guarantees that the QCM is symmetric, but
it also prevents the definition of reduced density operators like those in eqn (20.29).
In this situation, the cloning fidelity can be defined as the probability that an output
photon with wavevector k1 has the same polarization as the input photon. This hap-
pens with unit probability for the first term in |ϕ (t)〉red and with probability 1/2 in
the second term; therefore, the fidelity is

F =
(

2
3

)
× (1) +

(
1
3

)
×
(

1
2

)
=

5
6

. (20.38)

The theoretical model for this QCM therefore predicts that it is universal, symmetric,
and optimal.

In the experiment, the incident photon first passes through an adjustable optical
delay line, which is used to control the time lapse ∆T between its arrival and that of
the laser pulse that generates the down-converted photons. Stimulated emission should
only occur when the photon wave packet and the pump pulse overlap. The results of
the experiment, which are shown in Fig. 20.3, support this prediction.

The number of counts, N (2, 0), with two photons in the mode k1v and no photon in
the mode k1h is shown in Fig. 20.3 as a function of the distance c∆T , for three different
polarization states—curves (a)–(c)—of the injected photon. As expected, there is a
pronounced peak at zero distance. The corresponding plots (d)–(f) of N (1, 1)—the
number of counts with one photon in each polarization mode—show no such effect.

The experimental fidelity can be derived from the ratio

R =
Npeak (2, 0)
Nbase (2, 0)

(20.39)

between the peak value and the base value of the N (2, 0) curve. At maximum overlap
between the incident single-photon wave packet and the pump pulse (c∆T = 0), the
probability of the (2, 0)-configuration is

P (2, 0) =
Npeak (2, 0)

Npeak (2, 0) + Npeak (1, 1)
, (20.40)

which becomes

P (2, 0) =
R

R + Npeak (1, 1) /Nbase (2, 0)
(20.41)

when expressed in terms of R.
The base values Nbase (1, 1) and Nbase (2, 0) represent the situation in which there

is no overlap between the single-photon wave packet and the pump pulse. In this case,
the detection of the original photon and a down-converted photon in the spatial mode
k1 are independent events. Down-conversion produces k1v and k1h photons with equal
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Fig. 20.3 Plots (a)–(c) show N (2, 0) as a function of c∆T for linear at 0◦ (vertical), linear

at 45◦, and left circular polarizations respectively. Plots (d)–(f) show N (1, 1) for the same

polarizations. (Reproduced from Lamas-Linares et al. (2002).)

probability; therefore, the probability that the polarizations of the two k1-photons are
the same is 1/2. This implies that

Nbase (1, 1) = Nbase (2, 0) . (20.42)

The apparent disagreement between eqn (20.42) and the data in the plot pairs (a) and
(d), (b) and (e), and (c) and (f) is an artefact of the detection method used to count
the (2, 0)-configurations; see Exercise 20.7.

The data show that Npeak (1, 1) = Nbase (1, 1); therefore

P (2, 0) =
R

R + 1
, (20.43)
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and
P (1, 1) =

1
R + 1

. (20.44)

Applying the argument used to derive eqn (20.38) leads to

F =
(

R

R + 1

)
× 1 +

(
1

R + 1

)
× 1

2
=

R + 1/2
R + 1

. (20.45)

The data yield essentially the same fidelity, F = 0.81±0.01, for all polarizations. This
is close to the optimal value F = 5/6 � 0.833; consequently, this QCM is very nearly
universal and optimal.

20.3 Quantum cryptography

The history of cryptography—the art of secure communication through the use of
secret writing or codes—can be traced back at least two thousand years (Singh, 1999),
and the importance of this subject continues to increase. In current practice, the
message is expressed as a string of binary digits M , and then combined with a second
string, known as the key, by an algorithm or cipher. The critical issue is the possibility
that the encrypted message could be read by an unauthorized person.

For most applications, it is sufficient to make this task so difficult that the message
remains confidential for as long as the information has value. The commonly employed
method of public key cryptography enforces this condition by requiring the solution
of a computationally difficult problem, e.g. factoring a very large integer. This kind of
encryption is not provably secure, since it is subject to attack by cryptanalysis, e.g.
through the use of better factorization algorithms or faster computers.

In classical cryptography, the only provably secure method is the one-time pad,
i.e. the key is only used once (Gisin et al., 2002). In one version of this scheme, the
key shared by Alice and Bob is a randomly generated number K which must have a
binary representation at least as long as the message. Since the binary digits of K are
random, the key itself contains no information. Alice encrypts her message as the signal
S = M ⊕ K, where ⊕ indicates bit-wise addition without carry, i.e. addition modulo
2. This means that corresponding bits are added according to the rules 0 + 0 = 0,
0 + 1 = 1, and 1 + 1 = 0.

The bits of S are as random as those of K, so the signal carries no information
for Eve, the lurking eavesdropper. On the other hand, Bob can decipher the message
by bit-wise subtraction of K from S to recover M . The security of the messages is
weakened by repeated use of the key. For example, if two messages M1 and M2 are
sent, then the identity K ⊕ K = 0 implies

S1 ⊕ S2 = M1 ⊕ K ⊕ M2 ⊕ K

= M1 ⊕ M2 ⊕ K ⊕ K

= M1 ⊕ M2 . (20.46)

The bits in M1 and M2 are not random; therefore, Eve gains some information about
the messages themselves. With enough messages, the encryption system could be bro-
ken.
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The use of a one-time pad solves the problem of secure communication, only to raise
a new problem. How is the key itself to be safely transmitted through a potentially
insecure channel? If Alice and Bob have to meet for this purpose, she might as well
deliver the message itself.

One of the most intriguing discoveries in recent years (Wiesner, 1983; Bennett and
Brassard, 1984, 1985) is that the peculiar features of quantum theory offer a solution
to the problem of secure transmission of cryptographic keys. Once this is done, the
message itself can be sent as a string of classical bits. Thus quantum cryptography
really reduces to the secure transmission of keys, i.e. quantum key distribution.

A quantum method for distributing a key evidently involves encoding the key in the
quantum states of some microscopic system. Since the electromagnetic field provides
the most useful classical communication channel, it is natural to use a property of
photons, e.g. polarization, to carry the information in a quantum channel.

As a concrete illustration, consider orthogonal linear polarizations eh (k) and ev (k)
that define the basis of single-photon states:

B =
{
|h〉 = a†

kh |0〉 , |v〉 = a†
kv |0〉

}
. (20.47)

One can then encode 0 as |h〉 and 1 as |v〉. We will see below that a scheme based on
B alone is too simple to foil Eve, so we add a second basis

B =
{∣∣h〉 = a†

kh
|0〉 , |v〉 = a†

kv |0〉
}

, (20.48)

where the new polarization basis

eh (k) =
1√
2

[eh (k) + ev (k)] ,

ev (k) =
1√
2

[ev (k) − eh (k)]
(20.49)

is the first polarization basis rotated through 45◦. The creation operators and the
single-photon basis states transform just like the polarization vectors. The correspond-
ing encoding for B is: 0 ↔ ∣∣h〉 and 1 ↔ |v〉.

The two basis sets have the essential property that no member of one basis is
orthogonal to either member of the other. The bases are also as different as possible,
in the sense that |〈s |s 〉|2 = 1/2 for s = h, v and s = h, v. Pairs of bases related in this
way are said to be mutually unbiased, and they are a feature of many quantum key
distribution schemes.

20.3.1 The BB84 protocol

We now consider the BB84 protocol, named after Bennett and Brassard and the year
they proposed the scheme (Bennett and Brassard, 1984). In the initial step, Alice sends
a string of photons to Bob. For each photon, she uses a random number generator to
choose a polarization from the four possibilities in B and B. At this stage, the only
restriction is that Bob and Alice must be able to establish a one–one correspondence
between the transmitted and received photons.
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Bob, who is equipped with an independent random number generator, chooses one
of the basis sets, B or B, in which to measure each incoming photon. If Alice sends |h〉
or |v〉 and Bob happens to choose B, his measurement will pick out the correct state,
and his bit assignment will exactly match the one Alice sent. If, on the other hand,
Bob chooses B, then a measurement on |h〉 will yield

∣∣h〉 or |v〉 with equal probability.
Thus if Alice sent 0, Bob will assign 1 half the time. Since Bob will make the wrong
choice of basis about half the time, his average error rate will be 25%. The bit string
resulting from this procedure is called the raw key.

An error rate of 25% would overwhelm any standard error correction scheme, but
the BB84 protocol provides another option. For each bit, Bob announces—through
the insecure public channel—his choice of measurement basis, but not the result of
his measurement. Alice replies by stating whether or not the encoding basis and the
measurement basis agree for that bit. If their bases agree, the bit is kept; otherwise,
it is discarded. The remaining bit string, which is about half the length of the raw
string, is called the sifted key.

The first experimental demonstration of this scheme was a table top experiment
in which the signals from Alice to Bob were carried by faint pulses of light containing
less than one photon on average (Bennett et al., 1992). The distance between sender
and receiver in this experiment was only 30 cm, but within a few years quantum key
distribution was demonstrated (Muller et al., 1995, 1996) over a distance of 23 km with
signals carried by a commercial optical fiber network.

In order to understand the quantum basis for the security of the BB84 protocol,
let us first imagine an alternative in which the bits are encoded in classical pulses of
polarized light. If Eve intercepts a particular pulse, so that it does not arrive at Bob’s
detector, then Alice and Bob can agree to discard that bit from the string. This lowers
the bit rate for transmitting the key, but Eve gains no information.

Thus it is not enough for Eve to detect the pulse; she must also make a copy
for herself and send the original on to Bob. This tactic would provide information
about the key without alerting Alice and Bob. In the classical case, this procedure
is—at least in principle—always possible. For example, Eve could split off a small
part of each pulse by means of a strongly unbalanced beam splitter, and record the
polarization. The remaining pulse could then be amplified to match the original, and
sent on to Bob.

Eve faces the same problem for the quantum BB84 protocol. She must make a
copy of each single-photon state sent by Alice, and then send the original on to Bob.
Furthermore, she must be able to do this for photons described by either of the bases
B or B. Since the basis vectors in B are not orthogonal to the basis vectors in B, this
is precisely what the no-cloning theorem says cannot be done.

Furthermore, when Eve intercepts a signal and sends a new signal on to Bob,
she is bound—again according to the no-cloning theorem—to make a certain number
of errors on average. If she carries out this strategy too often, Alice and Bob will
become aware of her activity. According to this ideal description, the BB84 protocol
is invulnerable to attack.

In practice—as one might expect—things are more complicated. Transmission of
the key will be degraded by technical imperfections as well as Eve’s machinations. It
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is also possible for Eve to gain some knowledge of the key by means of the imperfect
cloning methods discussed in Section 20.2.2, without necessarily revealing her presence
to Alice and Bob. The techniques for countering such attacks are primarily classical
in nature (Gisin et al., 2002), so we will not pursue them further.

Thus the no-cloning theorem—which was originally introduced as a purely negative
statement about quantum theory—is the conceptual basis for the security of quantum
key distribution protocols. In this connection, it is important to realize that the classi-
cal proof of the absolute security of the one-time pad depends on the assumption that
the bits of K are truly random. For this reason, the choices made by Alice and Bob
must be equally random.

This turns out to be a rather delicate issue. The standard random number gen-
erators for computers are deterministic programs of finite length; consequently, their
output cannot be truly random. The ultimate security of BB84, or any other quantum
key distribution protocol, therefore depends on generating a truly random sequence
of numbers by some physical means. The behavior of a single photon at a beam split-
ter provides a natural way to satisfy this need. A single photon incident on an ideal
balanced beam splitter with 100% detectors at each output port will—according to
quantum theory—generate a perfectly random sequence of firings in the detectors.
Associating 0 with one detector and 1 with the other defines a perfect coin flip.

As always, reality is more complicated; for example, the dead time of real detectors
can impose a strong anti-correlation between successive bits. This effect limits the bit
rate of quantum random number generation to a few megahertz (Gisin et al., 2002).
Leaving these practical issues aside, we see that the security of quantum key distribu-
tion is guaranteed by the perfectly random nature of individual quantum events. This
is a historically unique situation; the security of quantum cryptography ultimately
depends on the validity of quantum theory itself.

20.4 Entanglement as a quantum resource

The quantum effects on communications studied in the previous sections are primarily
a source of difficulties. The use of phase-sensitive amplifiers to eliminate the quantum
noise added by amplification, and the injection of squeezed light to minimize branching
noise at an optical coupler are responses to these difficulties.

The role of the no-cloning theorem in providing a basis for the secure transmission
of a cryptographic key is usually presented in a positive light, but this is a partisan
view. For the frustrated Eve, the no-cloning theorem is still a negative result.

In these applications, quantum theory may provide new options, but it does not
provide any new resources. For example, the qubits used by Alice and Bob in the key
distribution protocol each carry only one classical bit, sometimes called a cbit.

It is the fundamental quantum property of entanglement that provides a novel
communications resource. In the present section, we will consider two examples, quan-
tum dense coding and quantum teleportation, which employ this resource. In both
cases the ancilla is an entangled qubit pair provided by an external source, and Alice
and Bob are each provided with one qubit of the pair. Local operations carried out
by Alice and Bob on their respective qubits change the entangled state in a nonlocal
way, and detection of these changes can be used to transfer information.
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Before considering the specific applications, we must discuss some special features
arising from the use of photons to carry the qubits. The abstract language used above
implicitly assumes that the qubits are distinguishable quantum systems with definite
locations. Since photons are indistinguishable bosons that cannot be precisely local-
ized, there appears to be a conceptual problem.

The first point to note is that the indistinguishability of photons renders state-
ments like ‘Bob carries out a local operation on his photon’ meaningless. The correct
statement is ‘Bob carries out a local operation on a photon.’ This brings us to the
second point: the word ‘local’ in ‘local operation’ applies to the hardware that realizes
the theoretical manipulation, not to the photon.

We made this remark for detectors in Section 6.6.2, but it applies equally to retarder
plates, beam splitters, etc. These classical devices—unlike photons—are both distin-
guishable and localizable. On the other hand, the physical operations they perform are
represented by unitary operators that apply to the entire state of the electromagnetic
field. By virtue of the peculiar properties of entangled states, this means that local
operations can have nonlocal effects.

In the experiments we will discuss, the photons in the pair are ideally described
by plane waves, with wavevectors kA (directed toward Alice) and kB (directed to-
ward Bob), and equal frequencies, ωA = ωB. An example is shown in Fig. 20.4. The
polarization-entangled, two-photon state emitted by the source is therefore a super-
position of the states |1kAs, 1kBs′〉, where s, s′ = h, v.

We will only consider situations with fixed directions for the wavevectors, so the
shorthand notation

Fig. 20.4 Quantum dense coding: a source
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∣∣sγ , s′γ′
〉 ≡ a†

kγsa
†
kγ′s′ |0〉 for (γ, s) �= (γ′, s′) ,

|sγ , sγ〉 ≡ 1√
2
a†2
kγs |0〉 ,

(20.50)

with γ, γ′ ∈ {A, B}, s, s′ ∈ {h, v}, is adequate.
A third point related to local operations is that these plane waves are idealizations

of Gaussian wave packets with finite transverse widths. This means that the realistic
kA-mode is effectively zero at Bob’s location, and the kB-mode is effectively zero at
Alice’s location. The mathematical consequence is that Bob’s local manipulations are
represented by unitary operators that only act on the kB-mode, i.e. on the second
argument of the two-photon state |sA, s′B〉. By the same token, Alice’s operations
only act on the first argument. This is formally similar to performing operations on
distinguishable qubits, but we emphasize that it is the modes that are distinguishable,
not the photons.

20.4.1 Quantum dense coding

The common currency for classical digital communication and computation is the bit,
i.e. the binary digits 0 and 1, which are physically represented by classical two-state
systems. For storage, e.g. in a magnetic storage device, 0 and 1 can be respectively
represented by a spin-down state (a downwards-pointing net magnetization), and a
spin-up state of a magnetic resolution element. For transmission, 0 and 1 are typically
represented by two resolvable voltages V0 and V1.

In either case, the two states of a macroscopic system encode the binary choice
between 0 and 1; that is, one bit of information is carried by a classical two-state
system. Conversely, the one-to-one relation between the two states of the classical
system and the two logical states 0 and 1 assures us that a classical, two-state system
can carry at most one bit of information.

For a two-state quantum system the outcome is quite different. A surprising result
of quantum theory is that two bits of information can be transmitted by sending
a single qubit. This apparent doubling of the transmission rate is called quantum
dense coding.

A A generic model for quantum dense coding

A thought experiment (Bennett and Wiesner, 1992) to implement quantum dense
coding is sketched in Fig. 20.4. In this scenario, Bob has received two bits of classical
information through his input port IN, and he wants to communicate this news to
Alice. Since there are four possible two-bit messages, an encoding scheme with four al-
ternatives is needed. The resource Bob will use is the pair of entangled qubits provided
by the source.

Bob can carry out local operations to change the original two-qubit state into any
one of the four Bell states, chosen according to a prearranged mapping of the four
possible messages onto the four Bell states. Once this is done, Bob sends the qubit in
his apparatus to Alice, so that she has the entire entangled state at her disposal. Alice
then performs a Bell state measurement, i.e. an observation that determines which
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of the four Bell states describes the two-qubit state. By means of this measurement
Alice acquires the two bits of information sent by Bob.

The fact that Alice obtains the message after receiving the qubit sent by Bob
suggests that the two classical bits were somehow packed into this single qubit. This
is an essentially classical point of view that does not really fit the present case. Alice
receives two qubits, one from the original source of the entangled state and one sent
by Bob. The qubit from the original source may well have been sent long before Bob’s
actions, so it seems eminently reasonable to assume that it carries no information.

On the other hand, Bob’s qubit by itself also carries no information. For example,
if the ever resourceful Eve manages to intercept Bob’s qubit, she will learn absolutely
nothing. Furthermore, if Alice’s qubit from the source does not arrive, then she also
will learn nothing from receiving Bob’s qubit. This should make it clear that the
information is carried, nonlocally, by the entangled state itself.

The real advantage of this scheme is that Bob can send two bits with a single
operation. This is twice the rate possible for a classical channel; consequently, quantum
dense coding might better be called quantum rapid coding.

B Quantum dense coding with photons

In an experimental demonstration of quantum dense coding (Mattle et al., 1996), a
polarization-entangled, two-photon state is generated by means of down-conversion in
a type II crystal, as shown for example in Fig. 13.5. The two down-converted photons
have the same frequency, but different propagation directions, selected by means of
irises. The source is adjusted so that it emits the state

|Θ〉 =
i√
2
|hA, vB〉 +

1√
2
|vA, hB〉 . (20.51)

Bob allows the input photon in the kB-mode to pass successively through a half-
wave and a quarter-wave retarder. These devices are reviewed in Exercise 20.8. The
experimentally adjustable parameter for each retarder is the angle ϑ between the
fast axis and the horizontal polarization vector eh. The unitary operations needed to
generate the four Bell states,∣∣Φ±〉 ≡ 1√

2
|hA, hB〉 ± 1√

2
|vA, vB〉 , (20.52)

∣∣Ψ±〉 ≡ 1√
2
|hA, vB〉 ± 1√

2
|vA, hB〉 , (20.53)

correspond to different settings of the retarder angles, ϑλ/2 and ϑλ/4.
The source of entangled pairs has been arranged so that the emitted state |Θ〉

scatters into the Bell state |Ψ+〉, for the settings ϑλ/2 = ϑλ/4 = 0. Using the operations
discussed in Exercise 20.9, Bob encodes his two bits by choosing the two angles ϑλ/2

and ϑλ/4, and then sends the photon to Alice. Bob’s local operations have changed the
entangled state, but Alice can only detect these changes by a Bell state measurement
that requires both photons.

This means that Alice cannot begin to decode the message before she receives the
photon sent by Bob, as well as the photon from the source. In common with all other



Entanglement as a quantum resource ���

communication schemes, the time required for transmission of information by quantum
dense coding is restricted by the speed of light.

The next step is for Alice to decode the message, which turns out to be quite
a bit more difficult than encoding it. Linear optical techniques are constrained by a
no-go theorem, which states that the four Bell states cannot be distinguished with a
probability greater than 50% (Calsamiglia and Lutkenhaus, 2001). Indeed, the Bell
state analysis used in the particular experiment discussed above could not distinguish
between the states |Φ+〉 and |Φ−〉.

However, for entangled photon pairs produced by down-conversion, there is a way
around this prohibition. The proof of the no-go theorem involves the assumption that
the Bell states are not entangled in any degrees of freedom other than the polarization;
consequently, the no-go theorem can be circumvented by the use of hyperentangled
states (Kwiat and Weinfurter, 1998). The example discussed in Section 13.3.5—in
which the photons are entangled in both polarization and momentum—is one candi-
date.

An alternative, and experimentally easier, scheme exploits the fact that down-
conversion automatically produces photon pairs that are entangled in both energy
and polarization. As we have seen in Section 13.3.2-B, energy entanglement implies
that the two photons are produced at essentially the same time.

This feature is the basis for a complete Bell state analysis. In addition to its intrinsic
interest, this scheme illustrates the application of various theoretical and experimental
techniques; therefore, we will discuss it in some detail. A schematic diagram illustrating
the idea for this measurement is shown in Fig. 20.5.

As one can see from Exercise 20.10, the Bell state |Ψ−〉 has the curious property
that it is unchanged by scattering from a balanced beam splitter, i.e. |Ψ−〉′ = |Ψ−〉.
This implies that the photons exhibit anti-pairing, i.e. one photon exits through each
of the two output ports. The other Bell states display the opposite behavior; whenever
|Ψ+〉 or |Φ±〉 are incident, the photons are paired, as discussed in Section 10.2.1. In
other words, both scattered photons are emitted through one or the other of the two
output ports.

This difference allows |Ψ−〉 to be distinguished from the remaining Bell states:
when |Ψ−〉 is incident, detectors in the A and B arms of the apparatus will both fire
so that a coincidence count is registered. For the other Bell states, only the detectors
in one arm will fire, so there will be no coincidence counts between the two arms. This
effect only depends on the behavior at the beam splitter, so it would work even if the
photons were not hyperentangled.
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Fig. 20.5 Schematic of an experiment for a

complete Bell state analysis using hyperentan-

gled photons. (1) The beam splitter (BS) iden-

tifies
�
�Ψ−�

. (2) The birefringent elements (BR-

FEs) identify
�
�Ψ+

�
. (3) The polarizing beam

splitters (PBSs) distinguish
�
�Φ−�

from
�
�Φ+

�
.

(Adapted from Kwiat and Weinfurter (1998).)
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Next we turn to the task of distinguishing |Ψ+〉 from |Φ±〉. This is accomplished
by means of the two birefringent elements, which have optic axes aligned along the h-
and v-polarizations. The two down-converted photons are emitted simultaneously in
matched wave packets with widths of the order of 15 fs, but the h- and v-components
experience different group velocities due to the difference between the indices of re-
fraction for the two polarizations.

The resulting separation between the two wave packets means that the detections
of the two photons will also be separated in time. In principle, it is only necessary
to separate the two packets by an amount greater than their widths, but in practice
the delay must be larger than the resolution time—of the order of 1 ns—of the detec-
tors. The detection events for |Φ±〉 are expected to be simultaneous, since |Φ±〉 is a
superposition of states with pairs of photons having the same polarization.

The final task of separating |Φ+〉 and |Φ−〉 begins with the action of the beam
splitter: ∣∣Φ±〉 → ∣∣Φ±〉′ =

i

2
√

2
{|hA, hA〉 ± |vA, vA〉} + (A ↔ B) . (20.54)

Applying eqn (8.2) to each polarization produces the scattering matrix for a birefrin-
gent element of length L:

Sks,k′s′ = eiφsδkk′δss′ , (20.55)

where φs = ns (ω)L/c is the phase shift for the s-polarization. Propagation through
the birefringent elements therefore produces

∣∣Φ±〉′′ =
ie2iφ0

2
√

2

{
eiδ |hA, hA〉 ± e−iδ |vA, vA〉

}
+ (A ↔ B) , (20.56)

where φ0 = (φh + φv) /2, and δ = φh − φv.
For both |Φ+〉′′ and |Φ−〉′′ two photons will strike a single detector, so the two

states are still not distinguished. The last trick is to send the light into a polarizing
beam splitter oriented along the 45◦-rotated basis B defined in eqn (20.48). In Exercise
20.11, it is shown that expressing |Φ±〉′′ in the new basis yields∣∣Φ+

〉′′ =
i

2
e2iφ0

{
cos δ

[∣∣hA, hA

〉
+ |vA, vA〉

]−√
2i sin δ

∣∣hA, vA

〉}
+ (A ↔ B) ,

(20.57)∣∣Φ−〉′′ =
i

2
e2iφ0

{
i sin δ

[∣∣hA, hA

〉
+ |vA, vA〉

]−√
2 cos δ

∣∣hA, vA

〉}
+ (A ↔ B) .

(20.58)

Coincidence counts between the detectors at the output ports of the PBS will arise
from

∣∣hA, vA

〉
, but not from

∣∣hA, hA

〉
and |vA, vA〉. Since the coefficients depend on

the phase difference δ, the two outcomes—coincidence counts or counts in one detector
only—can be separated by choosing δ to achieve destructive interference for one of the
terms. For example, adjusting L so that

δ =
(nh − nv)ω

c
L = nπ (20.59)
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leads to the greatly simplified states

∣∣Φ+
〉′′ =

i

2
e2iφ0 (−)n [∣∣hA, hA

〉
+ |vA, vA〉

]
+ (A ↔ B) (20.60)

and ∣∣Φ−〉′′ =
i√
2
e2iφ0 (−)n+1 ∣∣hA, vA

〉
+ (A ↔ B) . (20.61)

In this case |Φ−〉′′ produces coincidence counts between the h- and v-counters, while
|Φ+〉′′ leads to two-photon counts in one or the other of the detectors.

The procedure outlined above constitutes a complete Bell measurement, but the
two photons must be hyperentangled. This Bell state analysis also makes substantial
demands on the photon counters. A demonstration experiment based on this scheme
has recently been carried out (Schuck et al., 2006). The result was that the four Bell
states could be identified with a probability in the range of 81%–89%. This is already
substantially greater than the 50% bound imposed by the no-go theorem for linear
optics, and further improvements of the experimental technique are to be expected.

20.4.2 Quantum teleportation

In quantum dense coding, the apparently arcane and counterintuitive property of
entanglement is precisely what allows Bob to transmit two classical bits of information
by means of local operations carried out on a single qubit. We next consider an even
more remarkable demonstration of the power of entanglement. In this scenario, Alice
has received a qubit in an unknown state |γ〉T ∈ HT —where HT is the internal state
space of the qubit—and she wants to transmit this quantum information to Bob by
sending him two classical bits. This is the inverse of the quantum dense coding problem,
and the method used to accomplish this magic feat is called quantum teleportation
(Bennett et al., 1993).

If Alice were sent an unknown classical signal, she could simply make a copy and
send it to Bob, but the no-cloning theorem prohibits this action for an unknown
quantum signal. What, then, is Alice to do in the quantum case? Let us first consider
what can be done without the aid of any ancilla. In this situation, the only available
option is to measure the value of some observable OT = n · σT , where n is a unit
vector. Alice can measure OT and then tell Bob the components of n and the result,
ε (= ±1), of the measurement.

Bob’s task is to generate an approximation to the unknown state by using this
information. The only thing Bob knows is that the state |γ〉T has a nonvanishing
projection on the eigenstate |ε〉T of OT , so the best he can do is to prepare a qubit in
the mixed state

ρ = (1 + εn · σB) /2 ; (20.62)

see Ralph (2006) and Exercise 20.12. Under these circumstances, the average fidelity
is 2/3. Since the attempt to send classical instructions for replicating |γ〉T does not
seem to be very promising, we next turn to the situation shown in Fig. 20.6, in which
Alice and Bob are supplied with an ancilla.
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Fig. 20.6 Schematic for quantum teleporta-

tion, in which an unknown polarization state

of a photon entering Alice’s IN port is tele-

ported to become the same unknown polariza-

tion state for the photon leaving Bob’s OUT

port.
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A A generic teleportation model

In order to emphasize that the remarkable results of the following discussion apply to
all quantum systems, not just to photons, we will use the generic computational basis
defined in eqn (20.13). In this notation, one example of an ancilla is provided by the
Bell state |Ψ−〉AB defined in eqn (20.15).

The complete three-particle system is described by the state

|Θ〉ABT =
∣∣Ψ−〉

AB
|γ〉T

=
1√
2

[|0〉A |1〉B |γ〉T − |1〉A |0〉B |γ〉T ] . (20.63)

The order of the Hilbert-space vectors in the tensor product has no physical signifi-
cance, so the three-particle state is equally well represented by

|Θ〉ATB =
1√
2
|0〉A |γ〉T |1〉B − 1√

2
|1〉A |γ〉T |0〉B ∈ HA ⊗ HT ⊗ HB . (20.64)

The tensor products |u〉A |γ〉T (u = 0, 1) are given by

|u〉A |γ〉T = γ0 |u, 0〉AT + γ1 |u, 1〉AT , (20.65)

and the vectors |u, v〉AT are linear combinations of the Bell states spanning HA ⊗HT ;
consequently—as one can show in Exercise 20.13—eqn (20.64) can be rewritten as
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|Θ〉ATB =
1
2

∣∣Ψ−〉
AT

{γ0 |0〉B + γ1 |1〉B}

+
1
2

∣∣Ψ+
〉

AT
{−γ0 |0〉B + γ1 |1〉B}

+
1
2

∣∣Φ−〉
AT

{γ1 |0〉B + γ0 |1〉B}

+
1
2

∣∣Φ+
〉

AT
{−γ1 |0〉B + γ0 |1〉B} . (20.66)

Having mastered this theory, Alice now performs a Bell measurement on her two
qubits. According to von Neumann, the result will be to project |Θ〉ATB onto one
of the four Bell states of HA ⊗ HT . Alice then sends Bob a message—of length two
bits—informing him which of the four possible outcomes actually occurred.

Bob, who has also learnt the theory, then knows that his qubit is in one of the states
shown in the four lines of eqn (20.66). For example, if Alice found |Ψ−〉AT , then Bob
knows that his qubit is guaranteed to be in the original unknown state |γ〉T . The other
three states are related to the original state in one of three ways: (1) a phase-flip
(changing the relative phase of |0〉B and |1〉B by 180◦); (2) a bit-flip (interchanging
|0〉B and |1〉B); and (3) a combined phase- and bit-flip. In each of these cases, there
is a unitary operator—Upf for the phase-flip, Ubf for the bit-flip, and UpfUbf for the
combination—that transforms the corresponding state into the state |γ〉B.

In an optical experiment, the unitary operators are realized by appropriate combi-
nations of beam splitters and phase shifters (Reck et al., 1994). By sending the photon
in his apparatus through the optical elements corresponding to the appropriate uni-
tary transformation, Bob can be sure that the qubit emitted from his OUT port is an
exact replica of the qubit given to Alice.

In this process, the only physical objects transferred from Alice to Bob are the
carriers of the two bits delivered through the classical channel. Consequently, the
teleportation process is limited by the speed of light, and it does not violate any
conservation laws.

This result raises several puzzles. The first is: What happened to the no-cloning
theorem? After all, we have just claimed that the procedure ends with Bob in posses-
sion of a perfect copy of the qubit sent to Alice. The answer is that the original qubit
no longer exists, so that the no-cloning theorem is not violated.

For any outcome of Alice’s Bell state measurement, the T -qubit is described by
the corresponding Bell state of HA ⊗ HT ; no information about the original state
|γ〉T is left in the A–T subsystem. In fact, any attempt on Alice’s part to find out
something about |γ〉T , before performing the Bell state measurement, would frustrate
the teleportation process. This is analogous to the destruction of the interference
pattern by any attempt to determine which pinhole a photon passes through in a
Young’s-type experiment. This leads to the very strange conclusion that neither Alice
nor Bob has any information about the mystery qubit |γ〉T , despite the fact that Bob
can be certain that he has a perfect copy.

An equally puzzling issue is the apparent discrepancy between the amount of in-
formation that is needed to specify |γ〉T and the two bits actually sent by Alice. To
see this explicitly, let us write
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|γ〉T = cos
(

θT

2

)
|0〉T + eiφT sin

(
θT

2

)
|1〉T , (20.67)

so that the state is represented by the point (θT , φT ) on the Poincaré sphere. Precisely
specifying this point would require an infinite number of bits, and even a crude ap-
proximation would require many more than two bits. Thus it would seem that Alice
is getting an infinite return on her two bit investment.

The key to understanding this situation is that quantum results require careful
interpretation. In the present instance, the apparently infinite information carried by
|γ〉T is only potentially available. Measuring an observable OB = n · σB will provide
exactly one bit of information: the binary choice between the eigenvalues +1 and −1.
This is, nevertheless, an amazing result. A potentially infinite number of bits have
been delivered by combining the entanglement resource with just two classical bits of
information.

Finally, there is a conceptual issue arising from the use of the word ‘teleportation’.
The question is: What has actually been transported? For this discussion, it is better
to replace the abstract formulation used above by a concrete example. Suppose that
the mystery qubit |γ〉T is a superposition of the states of a two-level atom, and that
the ancilla is an entangled state of a photon (sent to Alice) and an electron (sent to
Bob).

At the end of the process, Bob’s particle is described by the same superposition
as the one supplied to Alice, but the physical substrate is the two spin states of the
electron, not another two-level atom. For this example, one could argue that the term
quantum faxing might be more appropriate. It is true that quantum faxing—unlike
classical faxing—requires the destruction of the original information, but that is simply
the price that must be paid for working in the quantum domain.

A sceptically inclined onlooker might conclude that ‘teleportation’ is simply an-
other example of the irrationally exuberant terminology sometimes found in the field
of quantum information, but this would not be quite fair. Let us now consider a dif-
ferent example in which all three particles are photons. In this case, the photon in
Bob’s possession at the end is physically indistinguishable—at the most fundamental
level—from the original photon supplied to Alice; consequently, using the evocative
term ‘teleportation’ seems entirely reasonable.

B Teleportation of photons

Since this is a book on quantum optics, we will now concentrate on the three-photon
case. The only formal change in the theory is that the tensor products of states used
above are replaced by products of creation operators acting on the vacuum. Thus the
initial three-photon state is

|Θ〉ABT = a†
T [γ]

∣∣Ψ−〉
AB

, (20.68)

where a†
T [γ] = γha†

Th + γva
†
Tv creates the unknown photon state in the T -channel,

and the ancilla shared by Alice and Bob is given by the Bell state∣∣Ψ−〉
AB

=
1√
2
{|hA, vB〉 − |vA, hB〉}
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=
1√
2

{
a†
kAha†

kBv − a†
kAva

†
kBh

}
|0〉 . (20.69)

The tensor product algebra used in the generic discussion is exactly mirrored by alge-
braic manipulations of the products of creation operators, so the theoretical argument,
as seen in Exercise 20.14, goes through as before.

The first laboratory demonstration of quantum teleportation for photons was car-
ried out by Bouwmeester et al. (1997). In this experiment a pulse of UV light produces
the ancillary photons in the A- and B-channels by down-conversion. The pulse is then
retroreflected to pass through the nonlinear crystal again, and thus produce another
pair of photons in the T - and T ′-channels. The T -channel photon is prepared in the
polarization state γ = (γh, γv), and detection of the T ′ photon signals that the mystery
photon is on the way.

In this proof-of-principle experiment the full Bell state analysis was replaced by
a simpler procedure in which the A–T pair is allowed to fall on the two input ports
of a beam splitter. The experimental arrangement can be extracted from Fig. 20.5
by changing B to T and omitting the birefringent elements and the polarizing beam
splitters.

The necessary two-photon interference effects at the beam splitter will only occur
if the two wave packets overlap. In other words, it must not be possible to distinguish
the A- and T -wave packets by their arrival times. For this purpose, both photons
were sent through frequency filters that narrowed their frequency spread and therefore
broadened their temporal spread. Of course, the filters also cut down substantially on
the count rate, but this sort of trade-off is a common feature of optical experiments.

As we have already seen, coincidence counts in the detectors in the A and B arms
of the apparatus signal that the Bell state |Ψ−〉AT has been detected. Alice relays this
information to Bob, who then knows that the photon in the B-channel is in the same
polarization state as the photon that was sent to Alice. This will happen only one time
out of four, so the success rate for teleportation is less than 25%. In a later version of
this experiment (Pan et al., 2003) fidelity in the successful cases exceeded 80%.

It should now be clear that Alice’s Bell state measurement poses substantial ex-
perimental difficulties. In Section 20.4.1-B we presented a complete Bell state analysis
due to Kwiat and Weinfurter (1998), but their method avoids the no-go theorem by
relying on the hyperentanglement of down-converted photon pairs.

In a teleportation experiment, the photon state to be teleported and the two ancilla
photons are generated by independent sources; consequently, the photon in the T -
channel is only entangled with the ancilla photons in the A- and B-channels to the
minimal extent required by Bose statistics. Thus the no-go theorem limits any linear
optical scheme for discriminating between the photonic Bell states {|Ψ±〉AT , |Φ±〉AT }
in a teleportation experiment to a 50% success rate.

This limitation on the success rate does not, however, mean that only one Bell state
can be detected. A three-Bell-state analyzer (van Houwelingen et al., 2006)—employing
only linear optics and no additional ancillary photons—and a four-Bell-state analyzer
(Walther and Zeilinger, 2005)—depending on additional ancillary photons—have both
been experimentally demonstrated.

The obstacles presented by the no-go theorem for linear optics suggest exploiting
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nonlinear optical effects. An experiment of this kind has been performed (Kim et al.,
2001) by using sum-frequency generation (SFG)—the inverse of down-conversion—in
type-I and type-II crystals. This technique permits a full Bell state analysis, but the
efficiency is strongly limited by the weakness of the SFG effect and the necessity of
ensuring a good overlap between the spatial modes. The observed fidelity of F = 0.83
is a convincing demonstration of quantum teleportation, but the low count rate means
that this method is not yet useful for quantum communication protocols.

20.5 Quantum computing

The first proposals for quantum computing were independently made in 1982 by Be-
nioff (1982) and Feynman (1982). Benioff presented a quantum version of a Turing
machine that would operate without dissipation of energy, while Feynman was inter-
ested in the possible use of a quantum computer to simulate the behavior of other
quantum systems.

These papers excited a substantial amount of interest at the time, but the rapid
growth in this field was first stimulated by the work of Deutsch and Jozsa (1992),
Grover (1997), and Shor (1997).

Deutsch and Jozsa demonstrated a quantum algorithm for a certain decision prob-
lem that is guaranteed to be exponentially faster than any classical algorithm.

Grover showed that a quantum computer could search a database of length N
in a time—i.e. a number of steps—proportional to

√
N . The optimum time for a

classical search strategy is proportional to N , so Grover’s work constitutes a rigorous
demonstration of a problem of practical interest for which a quantum computer is
superior to any classical computer.

Shor’s work concerned the problem of finding the prime factors of an integer N .
The most efficient known classical algorithm, the number field sieve, requires a time
t ∼ exp

[
2 (ln N)1/3 (ln lnN)2/3] to find the factors. This time grows faster than any

power of lnN , and it is firmly believed—but not proven—that all classical factoriza-
tion algorithms share this property. Shor demonstrated a quantum algorithm with a
factorization time t ∼ (lnN)3, i.e. it is only polynomial in lnN . The appearance of a
quantum computer would therefore be very bad news for those using trapdoor codes
that depend on the difficulty of factoring large integers.

The Grover and Shor algorithms are quite complicated, and in any case are be-
yond the purview of this book. For the general topic of quantum computing, we will
restrict ourselves to a very brief discussion of the prevailing generic model. More de-
tailed descriptions can be found in several texts, e.g. Nielsen and Chuang (2000). This
introduction will be followed by a brief discussion of a proposed all-optical scheme.
For topics like this that are the subject of current investigations the best strategy is
to consult recent review articles, e.g. Ralph (2006).

20.5.1 A generic model for quantum computers

Feynman’s original proposal was motivated by the extreme computational demands
of quantum theory. Consider, for example, a very simple classical system composed of
N bits. In this case there are 2N possible states, each labeled by an N -digit binary
number.
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By contrast, the states of a quantum system consisting of N qubits occupy a
Hilbert space of dimension 2N . The number of basis vectors is the same as the number
of classical states, but the superposition principle requires the inclusion of all possible
linear combinations of the basis vectors.

As we have seen in Section 18.7.2, the density matrix for this system has O
(
22N

)
elements. For a system of modest size, e.g. N = 100, the dimension of the quantum
state space is O

(
1030

)
. Simulating this system on a classical computer is possible in

principle, but the memory and running time needed make it impossible in practice.
This prompted Feynman to consider replacing the classical computer by a quantum
computer.

Generally speaking, a quantum computer is any device that employs specifically
quantum effects, such as entanglement, to accomplish a computational task. The stan-
dard conceptual model currently in use includes a collection of N qubits called a quan-
tum register, which is initially in some state |Λin〉, and a unitary transformation Ualg

that implements the algorithm.
Since unitary transformations are invertible, this scheme represents a reversible

quantum computer. The unitary transformation is expressed as the product of a
set of standard transformations, called quantum gates, that operate on a few qubits
at a time. The result of the computation is read out by performing measurements
on some or all of the qubits. The corresponding theoretical operation is the projec-
tion of the output state Ualg |Λin〉 onto the basis vector describing the measurement
outcome.

A Quantum parallelism

The procedure outlined above has two crucial features related to the unitary trans-
formation and the measurement step respectively. The unitary transformation is in-
vertible, so it preserves the enormous amount of information in the state vector. This
property, which is called quantum parallelism, offers the possibility of converting
the high dimension of the Hilbert space from a difficulty into an advantage.

The measurement step renders the outcome probabilistic; there is no way of pre-
dicting which of the possible measurement outcomes will occur. Running the algorithm
twice will in general produce different results. Furthermore, the reduction of the state
vector accompanying the measurement destroys all the information associated with
the measurement outcomes that did not occur.

Successful quantum algorithms—such as those of Grover and Shor—are cleverly
contrived to achieve good results in spite of the evident tension between the unitary
algorithm and the reductive measurement. For example, Shor’s algorithm does not
always result in factorization, but it does succeed with high probability.

A simple example illustrating quantum parallelism is provided by the following toy
problem which employs a variant of the Deutsch–Jozsa algorithm. Consider a function,
f (x), where x ranges over {0, 1} and f (x) can only have the values 0 or 1. There are
exactly four such functions, so a classical algorithm for f (x) must be provided with
two bits of data to specify which function is to be evaluated.

The computer and the algorithm are shrouded in secrecy inside a black box, but
we are allowed to submit values of x in order to get f (x). If we want to know both
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f (0) and f (1), then we must either run the algorithm twice—once for each input—or
else run two identically programmed computers in parallel.

As an alternative, suppose there is a hidden quantum computer with a two-qubit
register. In this situation, programming the computer to yield a given set of values
f = (f (0) , f (1)) is the same as the quantum dense coding problem. In Section 20.4.1
we saw that it is always possible to devise a set of unitary operations that convert a
known initial state into one of the Bell states. We may as well simplify this part of
the problem by assuming that the initial state of the quantum register is itself a Bell
state, e.g. the initial state |Θ〉 of the dense coding discussion is replaced by |Φ+〉.

In accord with the usual conventions in the field of quantum information processing,
we will also assume that the unitary operators act on the first, rather than the second,
qubit. If we associate the possible functions f with operators Uf according to the
encoding scheme

U (0,0) =
[
1 0
0 1

]
, U (1,1) =

[
1 0
0 −1

]
,

U (0,1) =
[
0 1
1 0

]
, U (1,0) =

[
0 1
−1 0

]
,

(20.70)

then it is easy to verify that

U (1,1)
∣∣Φ+

〉
=
∣∣Φ−〉 , U (0,1)

∣∣Φ+
〉

=
∣∣Ψ+

〉
, U (1,0)

∣∣Φ+
〉

=
∣∣Ψ−〉 . (20.71)

After the programmer supplies the two bits needed to choose the operator Uf—
i.e. the one that gives the same output as the classical computer—the output of the
computation is obtained by performing a Bell state measurement. If the result is |Ψ+〉,
then f = (0, 1), etc. The important point is that it is only necessary to run the quantum
algorithm once to get both values f (0) and f (1). Thus quantum parallelism gives the
same result as classical parallelism, but the work of the two classical computers is done
by one quantum computer.

B Quantum logic gates∗

The description of the simple quantum computer given in the last section fits con-
veniently with the discussion of quantum dense coding in Section 20.4.1, but it does
not have the form commonly used in the quantum computing literature. The usual
procedure is to express the operator Ualg as the product of a standard set of unitary
operators, called quantum logic gates, that typically act on one or two qubits out
of the N qubits in the register. Since the output of each gate serves as input to the
next, the collection of gates can be visualized as a quantum circuit.

Classical computers employ operations on single bits and pairs of bits, and it has
been shown that the most general computation can be performed by means of a single
kind of two-bit gate combined with a collection of single-bit gates. An analogous result
holds for quantum computers, so we only need to consider a single kind of two-qubit
gate.

A one-qubit logic gate is completely specified by its action on the basis vectors |0〉
and |1〉; for example, the X gate is defined by X |0〉 = |1〉, and X |1〉 = |0〉. This is
analogous to the classical NOT gate that interchanges 0 (false) and 1 (true). There
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are also useful one-qubit gates that do not have classical analogues, such as the Z
gate: Z |0〉 = |0〉, Z |1〉 = − |1〉, and the Hadamard gate:

H |0〉 =
1√
2
{|0〉 + |1〉} , H |1〉 =

1√
2
{|0〉 − |1〉} .

These gates can all be expressed as 2 × 2 matrices, and—as seen in Exercises 20.15
and 20.16—they are also related to rotations on the Poincaré sphere.

An important two-qubit gate is the controlled-NOT (C-NOT) gate, defined by

CNOT |a, b〉 = |a, b ⊕ a〉 (a, b = 0, 1) , (20.72)

where ⊕ represents addition modulo 2. The first and second qubits in the two-qubit
state |a, b〉 = |a〉 |b〉 are conventionally called the control qubit and the target qubit
respectively.

Thus the C-NOT gate has the following effects. (1) The control qubit is left un-
changed. (2) The target qubit is flipped if the control qubit is 1, and left alone if the
control qubit is 0. A convenient graphical notation for these standard gates is shown
in Fig 20.7.

Another useful two-qubit gate is the controlled-sign or controlled-phase gate
defined by

CS |a, b〉 = (−1)ab |a, b〉 (a, b = 0, 1) . (20.73)

This operation does nothing unless both the control and target qubits are |1〉, in which
case it multiplies the two-qubit state by −1.

C Quantum circuits∗

In Section 20.5.1-A we flouted the convention that the register always begins in a
standard state, e.g. |Λin〉 = |0, 0〉. It is easy to verify that |Φ+〉 = CNOTH |0, 0〉, i.e.
the initial state used in the previous discussion is built up from the standard state by
applying a Hadamard gate followed by a controlled-NOT gate.

Inspection of eqn (20.70) shows that the operator U (0,1) leading to the outcome
|Ψ+〉 is an X gate, so the result f = (0, 1) is achieved by the unitary transformation
|Ψ+〉 = U (0,1) |Φ+〉 = XCNOTH |0, 0〉. The corresponding quantum circuit diagram,
shown in Fig. 20.8, is to be read from left to right. Other examples are considered in
Exercise 20.17.

Fig. 20.7 Graphical representations of quantum logic gates: (a) a generic one-qubit gate,

and (b) a controlled-NOT gate, with control qubit |a〉 and target qubit |b〉.
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Fig. 20.8 Quantum circuit diagram for

the program implemented by the sequence:

Hadamard gate, controlled-NOT gate, and X

gate.

20.5.2 Quantum computing experiments∗

Experimental realizations of the idealized devices discussed above must overcome a
number of very serious difficulties. To begin with, the qubits must be controllable
to one part in 104 by means of analog pulses (Berggren, 2004). This is an especially
acute problem if the qubits are carried by photons. The dissipative interaction of the
qubits with the environment poses a still more daunting obstacle, since the resulting
decoherence will destroy the entangled state.

Decoherence can be reduced by clever design, but it is impossible to eliminate it
altogether. This fact has necessitated the introduction of error-correction protocols,
first by Shor (1995), and later by Bennett et al. (1996) and Knill and Laflamme (1997).
A common feature of these schemes is the use of a large number of ancillary qubits to
guarantee the accuracy of the computation.

The necessity of error correction is a strong contributor to estimates that something
like 106 qubits would be needed for a computation of practical interest (Berggren,
2004). Experiments performed to date only involve a few qubits, but scalability, i.e.
the potential for extending a scheme to a very large number of qubits, is a primary
concern.

The first experimental demonstrations of quantum computing (Chuang et al., 1998;
Vandersypen et al., 2001) used the method of bulk quantum computation (Knill et al.,
1998), in which a large number of qubits—provided by spin-1/2 nuclei in molecules—
are manipulated in parallel by nuclear magnetic resonance (NMR) techniques. This
approach is adequate for proof-of-principle demonstrations but cannot be used for
register sizes much greater than ten.

In order to achieve scalability, subsequent proposals have concentrated on vari-
ous solid-state systems, e.g. nuclear spins of donor atoms in Si (Kane, 1998), elec-
tron spins in quantum dots (Loss and DiVincenzo, 1998; Petta et al., 2005), qubits
formed by counter-circulating persistent currents in Josephson junction circuits (Mooij
et al., 1999), electron-spin-resonance transistors (Vrijen et al., 2000), and electron spins
bound to deep donor states in Si (Stoneham et al., 2003).

The physical system of greatest interest for us—the photon—is conspicuously ab-
sent from this list of candidates for quantum computers. The reason is that a two-qubit
logic gate, such as the C-NOT gate discussed in Section 20.5.1-B, can only produce an
entangled state—in our terminology a dynamically entangled state—of two photons
by means of photon–photon coupling, i.e. an optical nonlinearity.

As suggested by Milburn (1989), one way to do this would be to induce a cross-
Kerr coupling—see Section 13.4.3—between two optical modes. Unfortunately, the
materials provided by nature have χ(3)s that are orders-of-magnitude too small to
accomplish the desired effects. Increasing the length of the nonlinear region does not
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help, because the accompanying linear absorption will defeat the purpose of the device.
Another possibility is to trap an atom in a very small, high finesse cavity, but this

approach has not yet been successful. This situation led to the general feeling that
large-scale quantum computing by optical means is not a practical possibility.

20.5.3 Two-photon logic gates with linear optics∗

The consensus view that optical methods are not suitable for quantum computing
was challenged by the work of Knill, Laflamme, and Milburn (KLM) (Knill et al.,
2001), who showed that quantum algorithms could be implemented by combining
single-photon sources, photon detectors, and passive linear optical elements.

Their scheme eliminated the need for strong optical nonlinearities in the manipula-
tion of photonic qubits. This is a complex and rapidly evolving subject, so we will only
sketch the first step in its development. More details can be found in recent review
articles, e.g. Ralph (2006).

One possible design—adapted from the work of Hofmann and Takeuchi (2002)—for
a two-photon logic gate utilizing only linear optics and photon detection is shown in
Fig. 20.9.

This is a four channel/eight port device; the four input ports are the Control-
in port, the Target-in port, and the unused ports of beam splitters 1 and 3, that
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Fig. 20.9 Schematic for a nondeterministic control-NOT gate. The polarizing beam splitters

transmit v-polarized light and reflect h-polarized light at 90◦. The half-wave plate (hwp) at

the control input is aligned at ϑ = 0, while the hwps at the target input and output ports

are aligned at ϑ = −22.5◦, where ϑ is the angle between the h-polarization and the fast axis;

see Exercise 20.8. The beam splitters are asymmetric.
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communicate with the vacuum channels Vac-1 and Vac-2. The beam splitters are
asymmetric, with scattering laws of the general form

a′
1 =

√
1 − Ra1 − ε

√
Ra2 ,

a′
2 = ε

√
Ra1 +

√
1 − Ra2 ,

(20.74)

worked out in Exercise 8.1. All three beam splitters are assumed to have the same
reflectivity R, and the sign factors ε = ±1 are chosen to accomplish the design objec-
tives. The half-wave plate at the control input is a Z gate, and the half-wave plates at
the target ports are Hadamard gates.

The use of passive optical elements ensures that photon number is conserved, so for
two incident photons—one in the control channel and one in the target channel—we
can be sure that exactly two photons will be emitted. However, the mixing occurring at
the beam splitters implies that the output state will be a superposition of all possible
two-photon states in the output channels: Control-out, Target-out, Loss-1, and Loss-2.

The central beam splitter is particularly important in this regard, since photons
are incident from both sides. As we have seen in Section 10.2.1, this is precisely the
situation required for the strictly quantum interference effects associated with different
Feynman paths having the same end point.

The key to the operation of this gate is postselection, i.e. discarding all outcomes
that do not satisfy a chosen criterion. In the present case, the first part of the criterion
is that detectors in the Control-out and Target-out channels should eventually register
a coincidence count. The states that can contribute to such a coincidence event are su-
perpositions of the coincidence basis states {|hC , hT 〉 , |hC , vT 〉 , |vC , hT 〉 , |vC , vT 〉}.

Satisfying the condition (20.72) for a control-NOT gate further requires that ex-
actly one member of the coincidence basis occurs in the output state for each of the four
possible input states. A rather lengthy calculation, outlined in Exercise 20.18, shows
that this goal can only be reached for the value R = 1/3 and asymmetry parameters
satisfying ε2 = −ε3 = ε1.

With these values, the operation of the gate is given by

CNOT |hC , hT 〉 =
1
3
|hC , hT 〉 + · · · , CNOT |hC , vT 〉 =

1
3
|hC , vT 〉 + · · · ,

CNOT |vC , hT 〉 =
1
3
|vC , vT 〉 + · · · , CNOT |vC , vT 〉 =

1
3
|vC , hT 〉 + · · · ,

(20.75)

where ‘· · · ’ contains the terms that are not in the subspace spanned by the coincidence
basis. The target photon polarization is unchanged if the control photon is h-polarized
but flipped (h ↔ v), when the control photon is v-polarized. With the identification
h ↔ 0 and v ↔ 1, this is the photonic version of eqn (20.72).

A simple modification of the design in Fig. 20.9 yields the gate action

CS |hC , hT 〉 =
1
3
|hC , hT 〉 + · · · , CS |hC , vT 〉 =

1
3
|hC , vT 〉 + · · · ,

CS |vC , hT 〉 =
1
3
|vC , hT 〉 + · · · , CS |vC , vT 〉 = −1

3
|vC , vT 〉 + · · · ,

(20.76)

which satisfies the definition (20.73) of a controlled-sign gate.
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The postselection criterion picks out the appropriate outcomes, but the probability
for successful operation is (1/3)2 = 1/9. Eight times out of nine, the two photons are
emitted into the wrong channels, e.g. one photon into Loss-2 and one into Control-1,
or two photons into Control-out, etc. The success or failure of the gate is heralded—
i.e. the outcome is known—by the presence or absence of a coincidence between the
Control-out and Target-out channels. Additional checks could be made by detecting
photons emitted into the loss channels, or by discriminating between one- or two-
photon events in the control and target channels.

This gate has been experimentally realized (O’Brien et al., 2003) by using down-
conversion to produce the input photons and quantum state tomography to verify
that the output states agreed with the theoretical model. In this approach, the neces-
sity for dynamically coupling the two photons has been avoided by incorporating the
coincidence measurement as part of the action of the device.

20.5.4 Linear optical quantum computing∗

The quantum logic gate discussed above does provide a nontrivial two-qubit operation,
but it fails the scalability test. A device containing many such gates, each with a success
probability of 1/9, would almost never work. In their general scheme, KLM answered
this objection by making use of the ideas involved in quantum teleportation.

The use of quantum teleportation to carry out general quantum computations was
first suggested by Gottesman and Chuang (1999), and KLM showed that a so-called
teleportation gate could be realized with a high probability of success, given a
sufficiently complex entangled state.

The KLM approach avoids the failure mode associated with a vanishingly small
success probability, but the resources required are too large for practical scalability.
For example, the number of Bell pairs—i.e. pairs of photons described by a Bell
state—needed to implement a single controlled-sign gate with success probability of
95% is of the order 10 000 (Ralph, 2006).

This resource cost can be greatly reduced by using parity-state encoding (Hayes
et al., 2004). Single-qubit parity states are the alternative basis states,

|±〉 = (|0〉 ± |1〉) /
√

2 , (20.77)

that satisfy X |±〉 = ± |±〉. In parity-state encoding, the logical 0 and 1 are represented
by n-qubit states:

|0〉(n) =
1√
2

[
⊗n

j=1 |+〉j + ⊗n
j=1 |−〉j

]
,

|1〉(n) =
1√
2

[
⊗n

j=1 |+〉j −⊗n
j=1 |−〉j

]
.

(20.78)

A clever application of this encoding scheme reduces the overhead cost to the order of
100 Bell pairs per gate.

An alternative scheme—which actually amounts to a fundamentally different model
for quantum computing—grew out of a theoretical proposal by Raussendorf and Briegel
(2001). In the standard model sketched in Section 20.5.1, an algorithm is represented
as a sequence of unitary operators that are physically realized by quantum logic gates.
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The logic gates produce a sequence of entangled states that ends in the desired final
state, which is measured to produce the computational result.

In the new model, the entanglement resource is prepared beforehand, in the form
of a highly entangled, multi-qubit, initial state. The nature of this state is most easily
understood by visualizing the qubits as spin-1/2 particles attached to the sites of a
lattice and interacting through nearest-neighbor coupling. A cluster is a collection
of occupied lattice points such that each pair of sites is connected by jumps across
nearest-neighbor links. Each qubit is initially prepared in the parity state |+〉 and a
cluster state is generated by pair-wise entanglement of the initial qubits.

As an example, consider a one-dimensional lattice with three occupied sites, 1, 2,
3, so that the initial state is |+〉1 |+〉2 |+〉3. The corresponding cluster state can be
generated by successive application of controlled-sign gates as follows:

|Φlin3〉 = C
(1,2)
S |+〉1

{
C

(2,3)
S |+〉2 |+〉3

}
, (20.79)

where C
(i,j)
S acts on two-qubit states |a〉i |b〉j . Carrying out the gate operations, with

the aid of the definitions (20.73) and (20.77), leads to the explicit expression

|Φlin3〉 =
1√
2

[|+〉1 |0〉2 |+〉3 + |−〉1 |1〉2 |−〉3] (20.80)

for the cluster state. The cluster states needed for nontrivial calculations generally
involve clusters on two-dimensional lattices and many more qubits.

The cluster state provides the essential substrate for the computation, but the al-
gorithm itself is defined by combining two further elements: (1) a sequence of local
measurements (von Neumann measurements on individual qubits); and (2) classi-
cal feedforward. The latter term means that the result of one measurement in the
sequence can be used to determine the choice of the measurement basis used in a
subsequent measurement.

These two elements can replace any of the operations considered in Section 20.5.1.
For example, any unitary operation on a single qubit can be simulated by means of a
four-qubit cluster state and three measurements. In general, one-qubit measurements
are used to imprint the initial data onto the cluster state, and then process it to yield
the final result.

The use of irreversible measurements as an integral part of the algorithm, rather
than just the final readout step, has led to the name one-way quantum computing
for this approach. For a sufficiently large cluster state, it has been shown that these
elements are sufficient to implement a universal quantum computer. The different
structures of reversible and one-way computing make comparisons a bit difficult, but
the current estimate is that one-way computing requires roughly 60 Bell pairs per
two-qubit gate operation.

Highly entangled states of many atoms have been experimentally produced by
precise control of the interactions between neutral atoms bound by dipole forces to
the sites of an optical lattice (Mandel et al., 2003), but we are more interested in
optical realizations of cluster states. Walther et al. (2005) demonstrated a one-way
version of a simple example of Grover’s search algorithm.
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In their experiment, a four-photon cluster state was directly produced by down-
conversion techniques. Four-qubit cluster states have also been produced by entangling
EPR pairs with a controlled-sign gate (Kiesel et al., 2005), and by a technique called
type-I qubit fusion (Zhang et al., 2006), which combines Bell states by mixing at a
beam splitter and postselection. One-way quantum computing may, therefore, be a
promising application of quantum optics to quantum computing.

20.6 Exercises

20.1 Variable retarder plate

Design a variable retarder plate by joining two identical, thin, right-angle prisms along
their hypotenuses. Sketch the appropriate arrangement and carry out the following.

(1) Assuming that the light passes through the central part of the retarder, show how
the optical path length can be adjusted by sliding the prisms along their common
hypotenuse.

(2) Express the optical path length in terms of the index of refraction and the geo-
metrical parameters of the device. Assign numerical values for a practical design.

(3) Calculate the optical path lengths required to obtain the phase shifts θ = −π/2
and θ′ = π/2.

20.2 Modified beam splitter

Consider the modified beam splitter pictured in Fig. 20.1.

(1) Derive eqn (20.5) for the scattering matrix.
(2) For general values of θ and θ′, use the scattering matrix to express the output

quadratures X ′
1, Y ′

1 , X ′
2, Y ′

2 in terms of the input quadratures X1, Y1, X2, Y2.
Calculate the variances of the output quadratures. Explain why the values θ =
−π/2 and θ′ = π/2 are particularly useful.

(3) If no variable retarder plates are available, i.e. θ = θ′ = 0, how can the operation
of the SQLG be changed to achieve the same noiseless splitting of the input signal
X1.

20.3 Bell states

Consider the Bell states defined in eqn (20.15).

(1) Show that the Bell states are mutually orthogonal and all normalized to unity.
(2) Explain—ideally without any further algebra—why the Bell states form a basis

for Ha ⊗ Hb.

20.4 No-cloning theorem for photons

Consider cloning the one-photon states |γ〉 = Γ† |0〉 and |ζ〉 = Z† |0〉, where

Z† =
∑

s

ζksa
†
ks .
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(1) Derive the commutator [
Z, Γ†] =

∑
ks

ζ∗ksγks ≡ (ζ, γ) .

(2) Adapt the general proof for the no-cloning theorem to show that the cloning
assumption (20.25), and the corresponding assumption for |ζ〉, cannot be satisfied
for all choices of the operators Γ† and Z†.

20.5 Cloning a known state

For the device in Section 20.2.1 that clones a known state, assume the model interaction
Hint = gσ−

(
a†
kh + a†

kv

)
+HC, between the two-level atom and the field. For the initial

state |1kh〉, use first-order, time-dependent perturbation theory to calculate the change
in the initial state vector and thus derive eqn (20.26).

20.6 Bužek–Hillery QCM∗

Use the explicit expressions (20.31) and (20.32) to evaluate the reduced qubit density
operators ρab, ρa, and ρb. Use the results to calculate the fidelities for the clones a and
b.

20.7 Photon cloning machine∗

Consider the photon cloning machine described in Section 20.2.2-B.

(1) Denote the polarization basis for the kn-mode (n = 1, 2) by {eh (kn) , ev (kn)}.
For a rotation of each basis around kn by the angle θ, i.e.

e′h (kn) = cos θ eh (kn) + sin θ ev (kn) ,

e′v (kn) = − sin θ eh (kn) + cos θ ev (kn) ,

derive the corresponding transformation of the creation operators a†
knh, a†

knv and
show that the Hamiltonian in eqn (20.33) has the same form in the new basis.

(2) The (2, 0)-events in which two photons are present in the k1v-mode are counted
by letting the output fall on a beam splitter with detectors at each output port.
A coincidence count shows that two photons were present. For an ideal balanced
beam splitter and 100% detectors, show that the probability of a coincidence count
is 1/2. Use this to explain the discrepancy between eqn (20.42) and the baseline
data in Fig. 20.3.

20.8 Wave plates

A polarization-dependent retarder plate (wave plate) is made from an anisotropic
crystal, with indices of refraction nF and nS for light polarized along the fast axis eF

and the slow axis eS respectively (Saleh and Teich, 1991, Sec. 6.1-B).
Consider a classical field with amplitude E = Eheh + Evev propagating in the

z-direction, that falls on a retarder plate of thickness ∆z lying in the (x, y)-plane.
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(1) By discarding an overall phase factor show that the output field E ′ = E ′
heh + E ′

vev

is related to the input field by col (E ′
h,E ′

v) = Tξ (ϑ) col (Eh,Ev), where the Jones
matrix Tξ (ϑ) is given by

Tξ (ϑ) =
[

cos2 ϑ + sin2 ϑeiξ − sinϑ cosϑ
(
1 − eiξ

)
− sinϑ cosϑ

(
1 − eiξ

)
sin2 ϑ + cos2 ϑeiξ

]
,

ϑ is the angle between eh and eF , and ξ = (nS − nF )ω∆z/c.

(2) Evaluate the Jones matrix for ξ = π/2 (the quarter-wave plate) and ξ = π (the
half-wave plate).

(3) For ϑ = 0 and a 45◦-polarized input, i.e. Eh = Ev, what is the output polarization
state? Answer the same question if ϑ = π/4 and the input field is h-polarized.

20.9 Quantum dense coding

The unitary operators used by Bob for quantum dense coding are defined by
U
(
ϑλ/4, ϑλ/2

)
= Tπ/2

(
ϑλ/4

)
Tπ

(
ϑλ/2

)
, where Tξ (ϑ) is given by the result of the previ-

ous exercise. As explained in the text, this operator only acts on the second argument
of |sA, s′B〉.
(1) For the general state

|Θ〉 = chh |hA, hB〉 + chv |hA, vB〉 + cvh |vA, hB〉 + cvv |vA, vB〉

determine the expansion coefficients for which U (0, 0) |Θ〉 = |Ψ+〉.
(2) Find three other sets of values

(
ϑλ/4, ϑλ/2

)
such that U

(
ϑλ/4, ϑλ/2

) |Θ〉 is equal
(up to a phase factor) to the remaining Bell states.

20.10 Bell states incident on a balanced beam splitter

For the Bell states in eqns (20.52) and (20.53) use the method described in Section
8.4.1 to show that the scattered states produced by a balanced beam splitter are∣∣Ψ−〉′ =

∣∣Ψ−〉 ,∣∣Ψ+
〉′ =

1√
2
|hA, vA〉 + (A ↔ B) ,∣∣Φ±〉′ =

i

2
{|hA, hA〉 ± |vA, vA〉} + (A ↔ B) .

20.11 Rotated polarization basis

Consider the 45◦-rotated polarization basis defined by eqn (20.48).

(1) Derive

a†
γh =

(
a†

γh
− a†

γv

)
/
√

2 , a†
γv =

(
a†

γh
+ a†

γv

)
/
√

2 ,

where γ ∈ {A, B}.



��� Quantum information

(2) Show that

|hA, hA〉 =
1
2
{∣∣hA, hA

〉
+ |vA, vA〉

}− 1√
2

∣∣hA, vA

〉
,

|vA, vA〉 =
1
2
{∣∣hA, hA

〉
+ |vA, vA〉

}
+

1√
2

∣∣hA, vA

〉
.

(3) Starting with eqn (20.56), derive eqns (20.57) and (20.58).

20.12 Insufficient information

Consider Alice’s attempt to give Bob instructions for making an approximate copy of
her unknown qubit |γ〉.
(1) Given the unit vector n and the eigenvalue ε of n · σ, explain why Bob’s best

estimate for the unknown state |γ〉 is given by eqn (20.62).

(2) Why cannot Alice get more information for Bob by making further measurements?

(3) Suppose that the sender of Alice’s qubit, who does know the state |γ〉, is willing
to send her an endless stream of qubits, all prepared in the same state. Alice’s
research budget, however, limits her to a finite number of measurements. Can
Alice supply Bob with enough information to permit an exact reproduction (up
to an overall phase) of |γ〉?

20.13 Teleportation of qubits

(1) Express the basis states |u, v〉AT (u, v = 0, 1) as linear combinations of the Bell
states, and then derive eqn (20.66).

(2) Show that the Pauli matrices are unitary as well as hermitian, and use this fact
to construct unitary operators for the phase-flip and the bit-flip.

(3) Suppose that Alice does her Bell state measurement, but that Eve intercepts the
message to Bob. Calculate the reduced density operator ρB that Bob must use in
this circumstance, and comment on the result.

(4) Now suppose that Alice misunderstands the theory, and thinks that she should
make a measurement that projects onto the basis vectors |u, v〉AT . After Alice
tells Bob which of the four possibilities occurred, what information does Bob have
about his qubit?

20.14 Teleportation of photons

Consider the application of the teleportation protocol to photons.

(1) Write out the explicit expressions for the Bell states in the A–T subsystem.

(2) Derive the photonic version of eqn (20.66).

(3) Give explicit forms for the action of the unitary transformations Upf (phase-flip)
and Ubf (bit-flip) on the creation operators.
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20.15 Quantum logic gates∗

(1) Show that the X, Z, and Hadamard gates are unitary operators.
(2) Use the representation |γ〉 = γ0 |0〉 + γ1 |1〉 of a general qubit to express all three

gates as 2×2 matrices. Explain the names for the X and Z gates by relating them
to Pauli matrices.

(3) For a spin-1/2 particle, the operator for a rotation through the angle α around the
axis directed along the unit vector u is (Bransden and Joachain, 1989, Sec. 6.9)

Ru (α) = cos
(α

2

)
− i sin

(α

2

)
u · σ .

Combine this with the Poincaré-sphere representation

|γ〉 = cos
(

θ

2

)
|0〉 + eiφ sin

(
θ

2

)
|1〉

for qubits to show that the X, Z, and Hadamard gates are respectively given by
iRux (π), iRuz (π), and iRh (π), where ux, uy, uz are the coordinate unit vectors
and h = ux/

√
2 + uz/

√
2.

(4) Show that the control-NOT operator CNOT, defined by eqn (20.72), is unitary.
Use the basis {|0, 0〉 , |0, 1〉 , |1, 0〉 , |1, 1〉} to express CNOT as a 4 × 4 matrix.

20.16 Single-photon gates∗

Identify the polarization states of a single photon with the logical states by |h〉 ↔ |0〉
and |v〉 ↔ |1〉. Use the results of Exercise 20.8 to show that the Z and Hadamard gates
can be realized by means of half-wave plates.

20.17 Quantum circuits∗

Work out the gates required for the outcomes |Φ−〉 and |Ψ−〉 in the computation
discussed in Section 20.5.1-A and draw the corresponding quantum circuit diagrams.

20.18 Controlled-NOT gate∗

For the nondeterministic control-NOT gate sketched in Section 20.5.3, use the notation
aCh, aCv, aTh, aTv for the control and target modes and b1h, b2h for h-polarized
vacuum fluctuations in the Vac-1 and Vac-2 channels. Devise a suitable notation for
the operators associated with the internal lines in Fig. 20.9, and carry out the following
steps.

(1) Write out the scattering relations for each of the optical elements in the gate. For
this purpose it is useful to impose a consistent convention for assigning the ±εs
to the asymmetric beam splitters, e.g. assign −ε

√
R for reflection from the lower

surface of a beam splitter.
(2) Explain why the vacuum v-polarizations b1v, b2v can be omitted.
(3) Use the scattering relations to eliminate the internal variables and thus find the

overall scattering relations (aCh, aCv, . . .) → (a′
Ch, a′

Cv, . . .) which define the ele-
ments of the scattering matrix for the gate.
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(4) Employ the general result (8.40) to determine the action of the gate on each input
state in the coincidence basis, and thus show that

|hC , hT 〉 → 1
2
ε1 (ε2 − ε3)R |hC , hT 〉 − 1

2
ε1 (ε2 + ε3)R |hC , vT 〉 + · · · ,

|hC , vT 〉 → −1
2
ε1 (ε2 + ε3)R |hC , hT 〉 +

1
2
ε1 (ε2 − ε3)R |hC , vT 〉 + · · · ,

|vC , hT 〉 → 1
2

[(2 − ε2ε3)R − 1] |vC , hT 〉 +
1
2

[1 − (2 + ε2ε3)R] |hC , vT 〉 + · · · ,

|vC , vT 〉 → 1
2

[1 − (2 + ε2ε3)R] |vC , hT 〉 +
1
2

[(2 − ε2ε3)R − 1] |hC , vT 〉 + · · · .

Determine the value of R and the assignment of the εs needed to define a control-
NOT gate.
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Mathematics

A.1 Vector analysis

Our conventions for elementary vector analysis are as follows. The unit vectors cor-
responding to the Cartesian coordinates x, y, z are ux, uy, uz . For a general vector
v, we denote the unit vector in the direction of v by ṽ = v/ |v|.

The scalar product of two vectors is a · b = axbx + ayby + azbz, or

a · b =
3∑

i=1

aibi , (A.1)

where (a1, a2, a3) = (ax, ay, az), etc. Since expressions like this occur frequently, we will
use the Einstein summation convention: repeated vector indices are to be summed
over; that is, the expression aibi is understood to imply the sum in eqn (A.1). The
summation convention will only be employed for three-dimensional vector indices. The
cross product is

(a × b)i = εijkajbk , (A.2)

where the alternating tensor εijk is defined by

εijk =

⎧⎪⎨⎪⎩
1 ijk is an even permutation of 123 ,

−1 ijk is an odd permutation of 123 ,

0 otherwise .

(A.3)

A.2 General vector spaces

A complex vector space is a set H on which the following two operations are defined.

(1) Multiplication by scalars. For every pair (α, ψ), where α is a scalar, i.e. a complex
number, and ψ ∈ H, there is a unique element of H that is denoted by αψ.

(2) Vector addition. For every pair ψ, φ of vectors in H there is a unique element of H
denoted by ψ + φ.

The two operations satisfy (a) α(βψ) = (αβ) ψ, and (b) α (ψ + φ) = αψ + αφ. It
is assumed that there is a special null vector, usually denoted by 0, such that α0 = 0
and ψ + 0 = ψ. If the scalars are restricted to real numbers these conditions define a
real vector space.
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Ordinary displacement vectors, r, belong to a real vector space denoted by R3. The
set Cn of n-tuplets ψ = (ψ1, . . . , ψn), where each component ψi is a complex number,
defines a complex vector space with component-wise operations:

αψ = (αψ1, . . . , αψn) ,

ψ + φ = (ψ1 + φ1, . . . , ψn + φn) .
(A.4)

Each vector in R3 or Cn is specified by a finite number of components, so these spaces
are said to be finite dimensional.

The set of complex functions, C (R), of a single real variable defines a vector space
with point-wise operations:

(αψ) (x) = αψ (x) , (A.5)
(ψ + φ) (x) = ψ (x) + φ (x) , (A.6)

where α is a scalar, and ψ (x) and φ (x) are members of C (R). This space is said to
be infinite dimensional, since a general function is not determined by any finite set
of values.

For any subset U ⊂ H, the set of all linear combinations of vectors in U is called
the span of U , written as span (U). A family B ⊂ H is a basis for H if H = span (B),
i.e. every vector in H can be expressed as a linear combination of vectors in B. In this
situation H is said to be spanned by B.

A linear operator is a rule that assigns a new vector Mψ to each vector ψ ∈ H,
such that

M (αψ + βφ) = αMψ + βMφ (A.7)

for any pair of vectors ψ and φ, and any scalars α and β. The action of a linear operator
M on H is completely determined by its action on the vectors of a basis B.

A.3 Hilbert spaces

A.3.1 Definition

An inner product on a vector space H is a rule that assigns a complex num-
ber, denoted by (φ, ψ), to every pair of elements φ and ψ ∈ H, with the following
properties:

(φ, αψ + βχ) = α (φ, ψ) + β (φ, χ) , (A.8a)
(φ, ψ) = (ψ, φ)∗ , (A.8b)

0 � (φ, φ) < ∞ , (A.8c)
(φ, φ) = 0 if and only if φ = 0 . (A.8d)

An inner product space is a vector space equipped with an inner product. The
inner product satisfies the Cauchy–Schwarz inequality:

|(φ, ψ)|2 � (φ, φ) (ψ, ψ) . (A.9)

Two vectors are orthogonal if (φ, ψ) = 0. If F is a subspace of H, then the orthogonal
complement of F is the subspace F⊥ of vectors orthogonal to every vector in F.
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The norm ‖ψ‖ of ψ is defined as ‖ψ‖ =
√

(ψ, ψ), so that ‖ψ‖ = 0 implies ψ = 0.
Vectors with ‖ψ‖ = 1 are said to be normalized. A set of vectors is complete if
the only vector orthogonal to every vector in the set is the null vector. Each complete
set contains a basis for the space. A vector space with a countable basis set, B ={
φ(1), φ(2), . . .

}
, is said to be separable. The vector spaces relevant to quantum theory

are all separable. A basis for which
(
φ(n), φ(m)

)
= δnm holds is called orthonormal.

Every vector in H can be uniquely expanded in an orthonormal basis, e.g.

ψ =
∞∑

n=1

ψnφ(n) , (A.10)

where the expansion coefficients are ψn =
(
φ(n), ψ

)
.

A sequence ψ1, ψ2, . . . , ψk, . . . of vectors in H is convergent if∥∥ψk − ψj
∥∥ → 0 as k, j → ∞ . (A.11)

A vector ψ is a limit of the sequence if∥∥ψk − ψ
∥∥ → 0 as k → ∞ . (A.12)

A Hilbert space is an inner product space that contains the limits of all convergent
sequences.

A.3.2 Examples

The finite-dimensional spaces R3 and CN are both Hilbert spaces. The inner product
for R3 is the familiar dot product, and for CN it is

(ψ, φ) =
N∑

n=1

ψ∗
nφn . (A.13)

If we constrain the complex functions ψ (x) by the normalizability condition∫ ∞

−∞
dx |ψ (x)|2 < ∞ , (A.14)

then the Cauchy–Schwarz inequality for integrals,∣∣∣∣∫ ∞

−∞
dxψ∗ (x) φ (x)

∣∣∣∣2 �
∫ ∞

−∞
dx |ψ (x)|2

∫ ∞

−∞
dx |φ (x)|2 , (A.15)

is sufficient to guarantee that the inner product defined by

(ψ, φ) =
∫ ∞

−∞
dxψ∗ (x) φ (x) (A.16)

makes the vector space of complex functions into a Hilbert space, which is called
L2 (R).
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A.3.3 Linear operators

Let A be a linear operator acting on H; then the domain of A, called D (A), is the
subspace of vectors ψ ∈ H such that ‖Aψ‖ < ∞. An operator A is positive definite
if (ψ, Aψ) � 0 for all ψ ∈ D (A), and it is bounded if ‖Aψ‖ < b ‖ψ‖, where b is a
constant independent of ψ. The norm of an operator is defined by

‖A‖ = max
‖Aψ‖
‖ψ‖ for ψ �= 0 , (A.17)

so a bounded operator is one with finite norm.
If Aψ = λψ, where λ is a complex number and ψ is a vector in the Hilbert space,

then λ is an eigenvalue and ψ is an eigenvector of A. In this case λ is said to belong
to the point spectrum of A. The eigenvalue λ is nondegenerate if the eigenvector
ψ is unique (up to a multiplicative factor). If ψ is not unique, then λ is degenerate.
The linearly-independent solutions of Aψ = λψ form a subspace called the eigenspace
for λ, and the dimension of the eigenspace is the degree of degeneracy for λ. The
continuous spectrum of A is the set of complex numbers λ such that: (1) λ is not
an eigenvalue, and (2) the operator λ − A does not have an inverse.

The adjoint (hermitian conjugate) A† of A is defined by(
ψ, A†φ

)
= (φ, Aψ)∗ , (A.18)

and A is self-adjoint (hermitian) if D (
A†) = D (A) and (φ, Aψ) = (Aφ, ψ). Bounded

self-adjoint operators have real eigenvalues and a complete orthonormal set of eigen-
vectors. For unbounded self-adjoint operators, the point and continuous spectra are
subsets of the real numbers. Note that

(
ψ, A†Aψ

)
= (φ, φ), where φ = Aψ, so that(

ψ, A†Aψ
)

� 0 , (A.19)

i.e. A†A is positive definite.
A self-adjoint operator, P , satisfying

P 2 = P (A.20)

is called a projection operator; it has only a point spectrum consisting of {0, 1}.
Consider the set of vectors PH, consisting of all vectors of the form Pψ as ψ ranges
over H. This is a subspace of H, since

αPφ + βPχ = P (αφ + βχ) (A.21)

shows that every linear combination of vectors in PH is also in PH. Conversely, let S
be a subspace of H and

{
φ(n)

}
an orthonormal basis for S. The operator P , defined

by
Pψ =

∑
n

(
φ(n), ψ

)
φ(n) , (A.22)

is a projection operator, since

P 2ψ =
∑

n

(
φ(n), ψ

)
Pφ(n) =

∑
n

(
φ(n), ψ

)
φ(n) = Pψ . (A.23)

Thus there is a one-to-one correspondence between projection operators and subspaces
of H. Let P and Q be projection operators and suppose that the vectors in PH are
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orthogonal to the vectors in QH; then PQ = QP = 0 and P and Q are said to be
orthogonal projections. In the extreme case that S = H, the expansion (A.10)
shows that P is the identity operator, Pψ = ψ.

A self-adjoint operator with pure point spectrum {λ1, λ2, . . .} has the spectral
resolution

A =
∑

n

λnPn , (A.24)

where Pn is the projection operator onto the subspace of eigenvectors with eigenvalue
λn. The spectral resolution for a self-adjoint operator A with a continuous spectrum
is

A =
∫

λ dµ (λ) , (A.25)

where dµ (λ) is an operator-valued measure defined by the following statement:
for each subset ∆ of the real line,

P (∆) =
∫

∆

dµ (λ) (A.26)

is the projection operator onto the subspace of vectors ψ such that
∥∥(λ − A)−1

ψ
∥∥ < ∞

for all λ /∈ ∆ (Riesz and Sz.-Nagy, 1955, Chap. VIII, Sec. 120).
A linear operator U is unitary if it preserves inner products, i.e.

(Uψ, Uφ) = (ψ, φ) (A.27)

for any pair of vectors ψ, φ in the Hilbert space. A necessary and sufficient condition
for unitarity is that the operator is norm preserving, i.e.

(Uψ, Uψ) = (ψ, ψ) for all ψ if and only if U is unitary . (A.28)

The spectral resolution for a unitary operator with a pure point spectrum is

U =
∑

n

eiθnPn , θn real , (A.29)

and for a continuous spectrum

U =
∫

eiθ dµ (θ) , θ real . (A.30)

A linear operator N is said to be a normal operator if[
N, N†] = 0 . (A.31)

The hermitian and unitary operators are both normal. The hermitian operators N1 =(
N + N †) /2 and N2 =

(
N − N †) /2i satisfy N = N1 + iN2 and [N1, N2] = 0. Normal

operators therefore have the spectral resolutions

N =
∑

n

(xnP1n + iynP2n) , [P1n, P2m] = 0 (A.32)
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for a point spectrum, and

N =
∫

x dµ1 (x) + i

∫
y dµ2 (y) ,

[∫
∆1

dµ1 (x) ,

∫
∆1

dµ2 (y)
]

= 0 (A.33)

for a continuous spectrum.

A.3.4 Matrices

A linear operator X acting on an N -dimensional Hilbert space, with basis
{
f (1), . . . ,

f (N)
}
, is represented by the N × N matrix

Xmn =
(
f (m), Xf (n)

)
. (A.34)

The operator and its matrix are both called X . The matrix for the product XY of
two operators is the matrix product

(XY )mn =
N∑

k=1

XmkYkn . (A.35)

The determinant of X is defined as

det (X) =
∑

n1···nN

εn1···nN X1n1 · · ·XNnN , (A.36)

where the generalized alternating tensor is

∑
n1···nN

εn1···nN =

⎧⎪⎨⎪⎩
1 n1 · · ·nN is an even permutation of 12 · · ·N ,

−1 n1 · · ·nN is an odd permutation of 12 · · ·N ,

0 otherwise .

(A.37)

The trace of X is

Tr X =
N∑

n=1

Xnn . (A.38)

The transpose matrix XT is defined by XT
nm = Xmn. The adjoint matrix X†

is the complex conjugate of the transpose: X†
nm = X∗

mn. A matrix X is symmetric if
X = XT , self-adjoint or hermitian if X† = X , and unitary if X†X = XX† = I, where I
is the N ×N identity matrix. Unitary transformations preserve the inner product. The
hermitian and unitary matrices both belong to the larger class of normal matrices
defined by X†X = XX†.

A matrix X is positive definite if all of its eigenvalues are real and non-negative.
This immediately implies that the determinant and trace of the matrix are both non-
negative. An equivalent definition is that X is positive definite if

φ†Xφ � 0 (A.39)

for all vectors φ. For a positive-definite matrix X , there is a matrix Y such that
X = Y Y †.

The normal matrices have the following important properties (Mac Lane and Birk-
hoff, 1967, Sec. XI-10).
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Theorem A.1 (i) If f is an eigenvector of the normal matrix Z with eigenvalue z,
then f is an eigenvector of Z† with eigenvalue z∗, i.e. Zf = zf ⇒ Z†f = z∗f .

(ii) Every normal matrix has a complete, orthonormal set of eigenvectors.

Thus hermitian matrices have real eigenvalues and unitary matrices have eigenvalues
of modulus 1.

A.4 Fourier transforms

A.4.1 Continuous transforms

In the mathematical literature it is conventional to denote the Fourier (integral)
transform of a function f (x) of a single, real variable by

f̃ (k) =
∫ ∞

−∞
dxf (x) e−ikx , (A.40)

so that the inverse Fourier transform is

f (x) =
∫ ∞

−∞

dk

2π
f̃ (k) eikx . (A.41)

The virtue of this notation is that it reminds us that the two functions are, generally,
drastically different, e.g. if f (x) = 1, then f̃ (k) = 2πδ (k) .

On the other hand, the ˜ is a typographical nuisance in any discussion involving
many uses of the Fourier transform. For this reason, we will sacrifice precision for
convenience. In our convention, the Fourier transform is indicated by the same letter,
and the distinction between the functions is maintained by paying attention to the
arguments.

The Fourier transform pair is accordingly written as

f (k) =
∫ ∞

−∞
dxf (x) e−ikx , (A.42)

f (x) =
∫ ∞

−∞

dk

2π
f (k) eikx . (A.43)

This is analogous to the familiar idea that the meaning of a vector V is independent
of the coordinate system used, despite the fact that the components (Vx, Vy, Vz) of
V are changed by transforming to a new coordinate system. From this point of view,
the functions f (x) and f (k) are simply different representations of the same physical
quantity. Confusion is readily avoided by paying attention to the physical significance
of the arguments, e.g. x denotes a point in position space, while k denotes a point
in the reciprocal space or k-space.

If the position-space function f (x) is real, then the Fourier transform satisfies

f∗ (k) = [f (k)]∗ = f (−k) . (A.44)

When the position variable x is replaced by the time t, it is customary in physics to
use the opposite sign convention:
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f (ω) =
∫ ∞

−∞
dxf (x) eiωt , (A.45)

f (t) =
∫ ∞

−∞

dω

2π
f (k) e−iωt . (A.46)

Fourier transforms of functions of several variables, typically f (r), are defined
similarly:

f (k) =
∫

d3rf (r) e−ik·r , (A.47)

f (r) =
∫

d3k

(2π)3
f (k) eik·r , (A.48)

where the integrals are over position space and reciprocal space (k-space) respectively.
If f (r) is real then

f∗ (k) = f (−k) . (A.49)
Combining these conventions for a space–time function f (r, t) yields the transform

pair

f (k, ω) =
∫

d3r

∫
dtf (r, t) e−i(k·r−ωt) , (A.50)

f (r, t) =
∫

d3k

(2π)3

∫
dω

2π
f (k, ω) ei(k·r−ωt) . (A.51)

The last result is simply the plane-wave expansion of f (r, t). If f (r, t) is real, then
the Fourier transform satisfies

f∗ (k, ω) = f (−k,−ω) . (A.52)

Two related and important results on Fourier transforms—which we quote for the
one- and three-dimensional cases—are Parseval’s theorem:∫

dtf∗ (t) g (t) =
∫

dω

2π
f∗ (ω) g (ω) , (A.53)∫

d3rf∗ (r) g (r) =
∫

d3k

(2π)3
f∗ (k) g (k) , (A.54)

and the convolution theorem:

h (t) =
∫

dt′f (t − t′) g (t′) if and only if h (ω) = f (ω) g (ω) , (A.55)

h (ω) =
∫

dω′

2π
f (ω − ω′) g (ω′) if and only if h (t) = f (t) g (t) , (A.56)

h (r) =
∫

d3r′f (r − r′) g (r′) if and only if h (k) = f (k) g (k) , (A.57)

h (k) =
∫

d3k′

(2π)3
f (k − k′) g (k′) if and only if h (r) = f (r) g (r) . (A.58)

These results are readily derived by using the delta function identities (A.95) and
(A.96).



Fourier transforms ���

A.4.2 Fourier series

It is often useful to simplify the mathematics of the one-dimensional continuous trans-
form by considering the functions to be defined on a finite interval (−L/2, L/2) and
imposing periodic boundary conditions. The basis vectors are still of the form
uk (x) = C exp (ikx), but the periodicity condition, uk (−L/2) = uk (L/2), restricts k
to the discrete values

k =
2πn

L
(n = 0,±1,±2, . . .) . (A.59)

Normalization requires C = 1/
√

L, so the transform is

fk =
1√
L

∫ L/2

−L/2

dxf (x) e−ikx , (A.60)

and the inverse transform f (x) is

f (x) =
1√
L

∑
k

fkeikx . (A.61)

The continuous transform is recovered in the limit L → ∞ by first using eqn (A.60)
to conclude that √

Lfk → f (k) as L → ∞ , (A.62)

and writing the inverse transform as

f (x) =
1
L

∑
k

√
Lfkeikx . (A.63)

The difference between neighboring k-values is ∆k = 2π/L, so this equation can be
recast as

f (x) =
∑

k

∆k

2π

√
Lfkeikx →

∫
dk

2π
f (k) eikx . (A.64)

In Cartesian coordinates the three-dimensional discrete transform is defined on a
rectangular parallelepiped with dimensions Lx, Ly, Lz. The one-dimensional results
then imply

fk =
1√
V

∫
V

d3rf (r) e−ik·r , (A.65)

where the k-vector is restricted to

k =
2πnx

Lx
ux +

2πny

Ly
uy +

2πnz

Lz
uz , (A.66)

and V = LxLyLz. The inverse transform is

f (r) =
1√
V

∑
k

fkeik·r , (A.67)

and the integral transform is recovered by
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√
V fk → f (k) as V → ∞ . (A.68)

The sum and integral over k are related by

1
V

∑
k

→
∫

d3k

(2π)3
, (A.69)

which in turn implies
V δk,k′ → (2π)3 δ (k − k′) . (A.70)

A.5 Laplace transforms

Another useful idea—which is closely related to the one-dimensional Fourier trans-
form—is the Laplace transform defined by

f̃ (ζ) =
∫ ∞

0

dt e−ζtf (t) . (A.71)

In this case, we will use the standard mathematical notation f̃ (ζ), since we do not use
Laplace transforms as frequently as Fourier transforms. The inverse transform is

f (t) =
∫ ζ0+i∞

ζ0−i∞

dζ

2πi
eζtf̃ (ζ) . (A.72)

The line (ζ0 − i∞, ζ0 + i∞) in the complex ζ-plane must lie to the right of any poles
in the transform function f̃ (ζ).

The identity (̃
df

dt

)
(ζ) = ζf̃ (ζ) − f (0) (A.73)

is useful in treating initial value problems for sets of linear, differential equations. Thus
to solve the equations

dfn

dt
=

∑
m

Vnmfm , (A.74)

with a constant matrix V , and initial data fn (0), one takes the Laplace transform to
get

ζf̃n (ζ) −
∑
m

Vnmf̃m (ζ) = fn (0) . (A.75)

This set of algebraic equations can be solved to express f̃n (ζ) in terms of fn (0).
Inverting the Laplace transform yields the solution in the time domain.

The convolution theorem for Laplace transforms is∫ t

0

dt′g (t − t′) f (t′) =
∫ ζ0+i∞

ζ0−i∞

dζ

2πi
g̃ (ζ) f̃ (ζ) eζt , (A.76)

where the integration contour is to the right of any poles of both g̃ (ζ) and f̃ (ζ).
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An important point for applications to physics is that poles in the Laplace trans-
form correspond to exponential time dependence. For example, the function f (t) =
exp (zt) has the transform

f̃ (ζ) =
1

ζ − z
. (A.77)

More generally, consider a function f̃ (ζ) with N simple poles in ζ:

f̃ (ζ) =
1

(ζ − z1) · · · (ζ − zN )
, (A.78)

where the complex numbers z1, . . . , zN are all distinct. The inverse transform is

f (t) =
∫ ζ0+i∞

ζ0−i∞

dζ

2πi

eζt

(ζ − z1) · · · (ζ − zN )
, (A.79)

where ζ0 > max[Re z1, . . . ,Re zN ]. The contour can be closed by a large semicircle in
the left half plane, and for N > 1 the contribution from the semicircle can be neglected.
The integral is therefore given by the sum of the residues,

f (t) =
N∑

n=1

eznt
∏
j �=n

1
zn − zj

, (A.80)

which explicitly exhibits f (t) as a sum of exponentials.

A.6 Functional analysis

A.6.1 Linear functionals

In normal usage, a function, e.g. f (x), is a rule assigning a unique value to each value
of its argument. The argument is typically a point in some finite-dimensional space,
e.g. the real numbers R, the complex numbers C, three-dimensional space R3, etc. The
values of the function are also points in a finite-dimensional space. For example, the
classical electric field is represented by a function E (r) that assigns a vector—a point
in R3—to each position r in R3.

A rule, X , assigning a value to each point f in an infinite-dimensional space M
(which is usually a space of functions) is called a functional and written as X [f ].
The square brackets surrounding the argument are intended to distinguish functionals
from functions of a finite number of variables.

If M is a vector space, e.g. a Hilbert space, then a functional Y [f ] that obeys

Y [αf + βg] = αY [f ] + βY [g] , (A.81)

for all scalars α, β and all functions f, g ∈ M, is called a linear functional. The
family, M′, of linear functionals on M is called the dual space of M. The dual space
is also a vector space, with linear combinations of its elements defined by

(αX + βY ) [f ] = αX [f ] + βY [f ] (A.82)

for all f ∈ M.
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A.6.2 Generalized functions

In Section 3.1.2 the definition (3.18) and the rule (3.21) are presented with the cavalier
disregard for mathematical niceties that is customary in physics. There are however
some situations in which more care is required. For these contingencies we briefly
outline a more respectable treatment. The chief difficulty is the existence of the in-
tegrals defining the operators s

(−∇2
)
. This problem can be overcome by restricting

the functions ϕ (r) in eqn (3.18) to good functions (Lighthill, 1964, Chap. 2), i.e.
infinitely-differentiable functions that fall off faster than any power of |r|. The Fourier
transform of a good function is also a good function, so all of the relevant integrals
exist, as long as s (|k|) does not grow exponentially at large |k|. The examples we need
are all of the form |k|α, where −1 � α � 1, so eqns (3.18) and (3.21) are justified.
For physical applications the really important assumption is that all functions can be
approximated by good functions.

A generalized function is a linear functional, say G [ϕ], defined on the good
functions, i.e.

G [ϕ] is a complex number and G [αϕ + βψ] = αG [ϕ] + βG [ϕ] (A.83)

for any scalars α, β and any good functions ϕ, ψ. A familiar example is the delta
function. The rule ∫

d3rδ (r − R)ϕ (r) = ϕ (R) (A.84)

maps the function ϕ (r) into the single number ϕ (R). In this language, the transverse
delta function ∆⊥

ij (r − r′) is also a generalized function. An alternative terminology,
often found in the mathematical literature, labels good functions as test functions and
generalized functions as distributions.

In quantum field theory, the notion of a generalized function is extended to linear
functionals sending good functions to operators, i.e. for each good function ϕ,

X [ϕ] is an operator and X [αϕ + βψ] = αX [ϕ] + βX [ϕ] . (A.85)

Such functionals are called operator-valued generalized functions. For any density
operator ρ describing a physical state, X [ϕ] defines an ordinary (c-number) generalized
function Xρ [ϕ] by

Xρ [ϕ] = Tr (ρX [ϕ]) . (A.86)

A.7 Improper functions

A.7.1 The Heaviside step function

The step function θ (x) is defined by

θ (x) =

{
1 for x > 0 ,

0 for x < 0 ,
(A.87)

and it has the useful representation
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θ (x) = − lim
ε→0

∫ ∞

−∞

ds

2πi

e−isx

s + iε
, (A.88)

which is proved using contour integration.

A.7.2 The Dirac delta function

A Standard properties

(1) If the function f (x) has isolated, simple zeros at the points x1, x2, . . . then

δ (f(x)) =
∑

i

1∣∣∣( df
dx

)
x=xi

∣∣∣δ
(
x − xi

)
. (A.89)

The multidimensional generalization of this rule is

δ
(
f(x)

)
=

∑
i

1∣∣∣∣det
(

∂f

∂x

)
x=xi

∣∣∣∣δ
(
x − xi

)
, (A.90)

where x = (x1, x2, . . . , xN ), f(x) = (f1 (x) , f2 (x) , . . . , fN (x)),

δ
(
f(x)

)
= δ (f1 (x)) · · · δ (fN (x)) ,

δ
(
x − xi

)
= δ

(
x1 − xi

1

) · · · δ (xN − xi
N

)
,

(A.91)

the Jacobian ∂f/∂x is the N × N matrix with components ∂fn/∂xm, and xi

satisfies fn

(
xi
)

= 0, for n = 1, . . . , N .
(2) The derivative of the delta function is defined by∫ ∞

−∞
dxf (x)

d

dx
δ (x − a) = −

(
df

dx

)
x=a

. (A.92)

(3) By using contour integration methods one gets

lim
ε→0

1
x + iε

= P
1
x
− iπδ (x) , (A.93)

where P is the principal part defined by

P

∫ ∞

−∞
dx

f (x)
x

= lim
a→0

{∫ −a

−∞
dx

f (x)
x

+
∫ ∞

a

dx
f (x)

x

}
. (A.94)

(4) The definition of the Fourier transform yields∫
dtei(ω−ν)t = 2πδ (ω − ν) (A.95)

in one dimension, and ∫
d3rei(k−q)·r = (2π)3 δ (k− q) (A.96)

in three dimensions.
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(5) The step function satisfies
d

dx
θ (x) = δ (x) . (A.97)

(6) The end-point rule is ∫ a

−∞
dxδ (x − a) f (x) =

1
2
f (a) . (A.98)

(7) The three-dimensional delta function δ (r− r′) is defined as

δ (r− r′) = δ (x − x′) δ (y − y′) δ (z − z′) , (A.99)

and is expressed in polar coordinates by

δ (r − r′) =
1
r2

δ (r − r′) δ (cos θ − cos θ′) δ (φ − φ′) . (A.100)

B A special representation of the delta function

In many calculations, particularly in perturbation theory, one encounters functions of
the form

ξ (ω, t) =
η (ωt)

ω
, (A.101)

which have the limit
lim

t→∞ ξ (ω, t) = ξ0δ (ω) , (A.102)

provided that the integral

ξ0 =
∫ ∞

−∞
du

η (u)
u

(A.103)

exists.

A.7.3 Integral kernels

The definition of a generalized function as a linear rule assigning a complex number
to each good function can be extended to a linear rule that maps a good function, e.g.
f (t), to another good function g (t). The linear nature of the rule means that it can
always be expressed in the form

g (t) =
∫

dt′W (t, t′) f (t′) . (A.104)

For a fixed value of t, W (t, t′) defines a generalized function of t′ which is called an
integral kernel. This definition is easily extended to functions of several variables,
e.g. f (r). The delta function, the Heaviside step function, etc. are examples of integral
kernels. An integral kernel is positive definite if∫

dt

∫
dt′f∗ (t)W (t, t′) f (t′) � 0 (A.105)

for every good function f (t).
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A.8 Probability and random variables

A.8.1 Axioms of probability

The abstract definition of probability starts with a set Ω of events and a probability
function P that assigns a numerical value to every subset of Ω. In principle, Ω could be
any set, but in practice it is usually a subset of RN or CN , or a subset of the integers.
The essential properties of probabilities are contained in the axioms (Gardiner, 1985,
Chap. 2):

(1) P (S) � 0 for all S ⊂ Ω;

(2) P (Ω) = 1;

(3) if S1, S2, . . . is a discrete (countable) collection of nonoverlapping sets, i.e.

Si ∩ Sj = ∅ for i �= j , (A.106)

then
P (S1 ∪ S2 ∪ · · · ) =

∑
j

P (Sj) . (A.107)

The familiar features 0 � P (S) � 1, P (∅) = 0, and P (S′) = 1 − P (S), where S′

is the complement of S, are immediate consequences of the axioms. If Ω is a discrete
(countable) set, then one writes P (x) = P ({x}), where {x} is the set consisting of
the single element x. If Ω is a continuous (uncountable) set, then it is customary to
introduce a probability density p (x) so that

P (S) =
∫

S

dx p (x) , (A.108)

where dx is the natural volume element on Ω.
If Ω = Rn, the probability density is a function of n variables: p (x1, x2, . . . , xn).

The marginal distribution of xj is then defined as

pj (xj) =
∫

dx1 · · ·
∫

dxj−1

∫
dxj+1 · · ·

∫
dxn p (x1, x2, . . . , xn) . (A.109)

The joint probability for two sets S and T is P (S ∩ T ); this is the probability
that an event in S is also in T . This is more often expressed with the notation

P (S, T ) = P (S ∩ T ) , (A.110)

which is used in the text. The conditional probability for S given T is

P (S |T ) =
P (S, T )
P (T )

=
P (S ∩ T )

P (T )
; (A.111)

this is the probability that x ∈ S, given that x ∈ T .
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The compound probability rule is just eqn (A.111) rewritten as

P (S, T ) = P (S |T )P (T ) . (A.112)

This can be generalized to joint probabilities for more than two outcomes by applying
it several times, e.g.

P (S, T, R) = P (S |T, R)P (T, R)
= P (S |T, R)P (T |R)P (R) . (A.113)

Dividing both sides by P (R) yields the useful rule

P (S, T |R) = P (S |T, R)P (T |R) . (A.114)

Two sets of events S and T are said to be independent or statistically inde-
pendent if the joint probability is the product of the individual probabilities:

P (S, T ) = P (S)P (T ) . (A.115)

A.8.2 Random variables

A random variable X is a function X (x) defined on the event space Ω. The function
can take on values in Ω or in some other set. For example, if Ω = R, then X (t) could
be a complex number or an integer. The average value of a random variable is

〈X〉 =
∫

dx p (x) X (x) . (A.116)

If the function X does take on values in Ω, and is one–one, i.e. X (x1) = X (x2) implies
x1 = x2, then the distinction between X (x) and x is often ignored.



Appendix B

Classical electrodynamics

B.1 Maxwell’s equations

In SI units the microscopic form of Maxwell’s equations is

∇ · E =
ρ

ε0
, (B.1)

∇ × B = µ0

(
j + ε0

∂E
∂t

)
, (B.2)

∇ × E = −∂B
∂t

, (B.3)

∇ · B = 0 . (B.4)

The homogeneous equations (B.3) and (B.4) are identically satisfied by introducing
the scalar potential ϕ and the vector potential A (r) and setting

B = ∇ × A ,

E = −∂A
∂t

− ∇ϕ .
(B.5)

A further consequence of this representation is that eqn (B.1) becomes the Poisson
equation

∇2ϕ = − ρ

ε0
, (B.6)

which has the Coulomb potential as its solution.
The vector and scalar potentials A and ϕ are not unique. The same electric and

magnetic fields are produced by the new potentials A′ and ϕ′ defined by a gauge
transformation,

A → A′ = A + ∇χ , (B.7)
ϕ → ϕ′ = ϕ − ∂χ/∂t , (B.8)

where χ (r, t) is any differentiable, real function. This is called gauge invariance.
This property can be exploited to choose the gauge that is most convenient for the
problem at hand. For example, it is always possible to perform a gauge transformation
such that the new potentials satisfy ∇ · A = 0 and ϕ = Φ, where Φ is a solution of
eqn (B.6). This is called the Coulomb gauge, since ϕ = Φ is the Coulomb potential,
or the radiation gauge, since the vector potential is transverse (Jackson, 1999, Sec.
6.3).
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The flow of energy in the field is described by the continuity equation (Poynting’s
theorem),

∂u (r, t)
∂t

+ ∇ · S (r, t) = 0 , (B.9)

where
u (r, t) =

ε0
2

E2 (r, t) +
1

2µ0
B2 (r, t) (B.10)

is the electromagnetic energy density, and the Poynting vector

S =
1
µ0

E × B (B.11)

is the energy flux.

B.2 Electrodynamics in the frequency domain

It is often useful to describe the field in terms of its frequency and/or wavevector con-
tent. Let F (r,t) be a real function representing any of the components of E , B, or A .
Under the conventions established in Appendix A.4, the four-dimensional (frequency
and wavevector) Fourier transform of F (r, t) is

F (k, ω) =
∫

d3r

∫
dte−i(k·r−ωt)F (r, t) , (B.12)

and the inverse transform is

F (r, t) =
∫

d3k

(2π)3

∫ ∞

−∞

dω

2π
F (k, ω) ei(k·r−ωt) . (B.13)

According to eqn (A.52) the reality of F (r, t) imposes the conditions

F ∗ (k, ω) = F (−k,−ω) . (B.14)

For many applications it is also useful to consider the temporal Fourier transform at
a fixed position r:

F (r, ω) =
∫ ∞

−∞
dteiωtF (r, t) , (B.15)

with the inverse transform

F (r, t) =
∫ ∞

−∞

dω

2π
F (r, ω) e−iωt . (B.16)

The function F (r, ω) satisfies

F ∗ (r, ω) = F (r,−ω) . (B.17)

The quantity
∣∣F (+) (r, ω)

∣∣2 is called the power spectrum of F ; it can be used to
define an average frequency, ω0, by
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ω0 = 〈ω〉 =

∫
d3r

∫∞
−∞

dω
2π

∣∣F (+) (r, ω)
∣∣2 ω∫

d3r
∫∞
−∞

dω
2π

∣∣F (+) (r, ω)
∣∣2 . (B.18)

The frequency spread of the field is characterized by the rms deviation ∆ω—the
frequency or spectral width—defined by

(∆ω)2 =
〈
(ω − ω0)

2
〉

=

∫
d3r

∫∞
−∞

dω
2π

∣∣F (+) (r, ω)
∣∣2 (ω − ω0)

2∫
d3r

∫∞
−∞

dω
2π

∣∣F (+) (r, ω)
∣∣2 . (B.19)

The average wavevector k0 and deviation ∆k are similarly defined by

k0 = 〈k〉 =

∫
d3k

(2π)3

∫∞
−∞

dω
2π

∣∣F (+) (k, ω)
∣∣2 k∫

d3k
(2π)3

∫∞
−∞

dω
2π

∣∣F (+) (k, ω)
∣∣2 , (B.20)

(∆k)2 =
〈
(k − k0)

2
〉

=

∫
d3k

(2π)3

∫∞
−∞

dω
2π

∣∣F (+) (k, ω)
∣∣2 (k − k0)

2∫
d3k

(2π)3

∫∞
−∞

dω
2π

∣∣F (+) (k, ω)
∣∣2 . (B.21)

B.3 Wave equations

The microscopic Maxwell equations (B.1)–(B.4) can be replaced by two second-order
wave equations for E and B:(

∇2 − 1
c2

∂2

∂t2

)
E = µ0

∂j
∂t

+
1
ε0

∇ρ , (B.22)(
∇2 − 1

c2

∂2

∂t2

)
B = −µ0∇ × j , (B.23)

and the first-order equations for the transverse vector potential A can be combined
to yield the wave equation (

∇2 − 1
c2

∂2

∂t2

)
A = −µ0j⊥ , (B.24)

where j⊥ is the transverse part (see Section 2.1.1-B) of the current.

B.3.1 Propagation in the vacuum

Since the B field and the transverse part of the E field are derived from the vector
potential, we can concentrate on the wave equation (B.24) for the vector potential. In
the vacuum case (j = 0), A satisfies(

∇2 − 1
c2

∂2

∂t2

)
A (r, t) = 0 , (B.25)

and the transversality condition ∇ · A = 0.
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The general solution of the wave equation can be obtained by a four-dimensional
Fourier transform, which yields(

−k2 +
ω2

c2

)
A (k, ω) = 0 . (B.26)

The solution of the last equation is

A (k, ω) = A(+) (k) 2πδ (ω − ck) + A(−) (k) 2πδ (ω + ck) , (B.27)

and the reality of A (r, t) requires[
A(+) (k)

]∗
= A(−) (−k) . (B.28)

The inverse transform yields the general solution in (r, t)-space as

A (r, t) = A(+) (r, t) + A(−) (r, t) , (B.29)

where

A(+) (r, t) =
∫

d3k

(2π)3
A(+) (k) ei(k·r−ωkt) =

[
A(−) (r, t)

]∗
, (B.30)

and ωk = ck.
The relation between the E and B fields and the vector potential can be used to

express them in the same way. In k-space

E(+) (k) = iωkA(+) (k) , B(+) (k) = ik × A(+) (k) , (B.31)

and in (r, t)-space
E (r, t) = E(+) (r, t) + E(−) (r, t) ,

B (r, t) = B(+) (r, t) + B(−) (r, t) ,
(B.32)

where

E(+) (r, t) =
∫

d3k

(2π)3
iωkA(+) (k) ei(k·r−ωkt) =

[
E(−) (r, t)

]∗
,

B(+) (r, t) =
∫

d3k

(2π)3
ik × A(+) (k) ei(k·r−ωkt) =

[
B(−) (r, t)

]∗
.

(B.33)

B.3.2 Linear and circular polarization

The forms in eqns (B.32) and (B.33) are valid for any real vector solutions of the wave
equation, but we are only interested in transverse fields, e.g. A (r, t) should satisfy
∇ ·A (r, t) = 0, as well as the wave equation. In k-space the transversality condition,
k ·A(+) (k) = 0, requires A(+) (k) to lie in the plane perpendicular to the direction of
the k-vector. We choose two unit vectors e1 (k) and e2 (k) such that

{
e1 (k) , e2 (k) , k̃

}
form a right-handed coordinate system, where k̃ = k/k is the unit vector along the
propagation direction. The unit vectors e1 and e2 are called polarization vectors.
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Since an arbitrary vector can be expanded in the basis
{
e1 (k) , e2 (k) , k̃

}
, the three

unit vectors satisfy the completeness relation∑
s

esiesj + k̃ik̃j = δij , (B.34)

as well as the conditions

k · es (k) = 0 , (B.35)
es (k) · es′ (k) = δss′ , (B.36)

e1 × e2 = k̃ (et cycl) , (B.37)

where s, s′ = 1, 2. The vector A(+) (k) can therefore be expanded as

A(+) (k) =
∑

s

A(+)
s (k) es (k) , (B.38)

where the polarization components A(+)
s (k) are defined by

A(+)
s (k) = es (k) · A(+) (k) . (B.39)

The general transverse solution of the wave equation is therefore given by eqn (B.29)
with

A(+) (r, t) =
∫

d3k

(2π)3
∑

s

A(+)
s (k) es (k) ei(k·r−ωkt) . (B.40)

Each plane-wave contribution to the solution of the wave equation, say for E and
B, has the form

E = Re
[
(E1e1 + E2e2) ei(k·r−ωkt)

]
, (B.41)

B =
1
c
k̃ × E , (B.42)

where E1 and E2 are complex scalar amplitudes, and e1 and e2 are real polarization
vectors k. If the phases of E1 and E2 are equal, the field is linearly polarized. If the
phases are different, the field is elliptically polarized. In general, the time-averaged
Poynting vector is

S =
1
µ0

Re 〈E × B∗〉 =
1
2

√
ε0
µ0

[
|E1|2 + |E2|2

]
k̃ , (B.43)

so the intensity is given by

I = |S| =
ε0
2

c
[
|E1|2 + |E2|2

]
. (B.44)

If the two phases differ by 90◦, then

E1e1 + E2e2 = E0 (e1 ± ie2) , (B.45)
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where E0 is real. The field is then said to be circularly polarized. In this case it is
useful to introduce the complex unit vectors

es =
1√
2

(e1 + ise2) , (B.46)

where s = ±1. The complex vectors satisfy the (hermitian) orthogonality relation

e∗s · es′ = δss′ , (B.47)

and the completeness relation ∑
s

esie
∗
sj + k̃ik̃j = δij . (B.48)

The transversality, orthogonality, and completeness properties of the linear and circular
polarization vectors are both incorporated in the relations

k · es (k) = 0 (transversality) ,

e∗s (k) · es′ (k) = δss′ (orthonormality) ,∑
s

esi (k) e∗sj (k) = δij − k̃ik̃j (completeness) .
(B.49)

Note that the completeness relation can also be written as∑
s

esi (k) e∗sj (k) = ∆⊥
ij (k) , (B.50)

where ∆⊥
ij (k) is the Fourier transform of the transverse delta function. The general

solution (B.40) has the same form as for linear polarizations, but the polarization
component is now given by

A(+)
s (k) = e∗s (k) · A(+) (k) . (B.51)

In addition to eqn (B.49), the circular polarization vectors satisfy

k̃ × es = −ises , (B.52)

es × e∗s′ = −isδss′ k̃ , (B.53)

where s, s′ = ±1.
The linear polarization basis for a given k-vector is not uniquely defined, since

a new basis defined by a rotation around the k-direction also forms a right-handed
coordinate system. It is therefore useful to consider the transformation properties of the
polarization basis. Let ϑ be the rotation angle around k̃; then the linear polarization
vectors transform by

e′1 = e1 cosϑ + e2 sinϑ ,

e′2 = −e1 sinϑ + e2 cosϑ ,
(B.54)

which implies
e′s = e′1 + ise′2 = e−isϑes . (B.55)

When viewed at a fixed point in space by an observer facing into the propagation
direction of the wave (toward the source), the unit vector e+ (e−) describes a phasor
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rotating counterclockwise (clockwise). In the traditional terminology of optics and
spectroscopy, e+ (e−) is said to be left (right) circularly polarized. In the fields of
quantum electronics and laser physics, the observer is assumed to be facing along the
propagation direction (away from the source), so the sense of rotation is reversed.
In this convention e+ (e−) is said to be right (left) circularly polarized. In more
modern language e+ (e−) is said to have positive (negative) helicity (Jackson, 1999,
Sec. 7.2).

For a plane wave with propagation vector k, there are two amplitudes Es (k), where
for circular (linear) polarization s = ±1 (s = 1, 2). The general vacuum solution can be
expressed as a superposition of plane waves. In this context it is customary to change
the notation by setting

Es (k) = 2i

√
�ωk

2ε0
αs (k) , (B.56)

where the � is introduced only to guarantee that |αs (k)|2 is a density in k-space,
i.e. the new amplitude αs (k) has dimensions L3/2. This yields the Fourier integral
expansion

E(+) (r, t) = i

∫
d3k

(2π)3

√
�ωk

2ε0

∑
s

αs (k) es (k) ei(k·r−ωkt) . (B.57)

The Fourier integral representation is often replaced by a discrete Fourier series:

E(+) (r, t) =
∑
ks

√
�ωk

2ε0V
αksekse

i(k·r−ωkt) , (B.58)

where eks = es (k), αks = αs (k) /
√

V , and V is the volume of the imaginary cube
used to define the discrete Fourier series.

B.3.3 Spatial inversion and time reversal

Maxwell’s equations are invariant under the discrete transformations

r →− r (spatial inversion or parity transformation) (B.59)

and
t → −t (time reversal) , (B.60)

as well as all continuous Lorentz transformations (Jackson, 1999, Sec. 6.10). The phys-
ical meaning of spatial inversion is as follows. If a system of charges and fields evolves
from an initial to a final state, then the spatially-inverted initial state will evolve
into the spatially-inverted final state. Time-reversal invariance means that the time-
reversed final state will evolve into the time-reversed initial state.

For any physical quantity X , let X → XP and X → XT denote the transforma-
tions for spatial inversion and time reversal respectively. The invariance of Maxwell’s
equations under spatial inversion is achieved by the transformation rules

ρP (r, t) = ρ (−r, t) , jP (r, t) = −j (−r, t) , (B.61)
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EP (r, t) = −E (−r, t) , (B.62)

BP (r, t) = B (−r, t) . (B.63)

Thus the current density and the electric field have odd parity, and the charge density
and the magnetic field have even parity. Vectors with odd parity are called polar
vectors, and those with even parity are called axial vectors, so E is a polar vector and
B is an axial vector.

Time-reversal invariance is guaranteed by

ρT (r, t) = ρ (r,−t) , jT (r, t) = −j (r,−t) , (B.64)

ET (r, t) = E (r,−t) , (B.65)

BT (r, t) = −B (r,−t) . (B.66)

As a consequence of these rules, the energy density and Poynting vector satisfy

uP (r, t) = u (−r, t) , SP (r, t) = −S (−r, t) ,

uT (r, t) = u (r,−t) , ST (r, t) = −S (r,−t) .
(B.67)

For many applications, e.g. to scattering problems, it is more useful to work out
the transformation laws for the amplitudes in a plane-wave expansion of the field. We
begin by using eqn (B.58) to express the two sides of eqn (B.62) as

EP (r, t) =
∑
ks

i

√
�ωk

2ε0V
αP

ksekse
i(k·r−ωkt) + CC (B.68)

and

−E (−r, t) = −
∑
ks

i

√
�ωk

2ε0V
αksekse

i(−k·r−ωkt) + CC . (B.69)

Changing k to −k in the last result and equating the coefficients of corresponding
plane waves yields ∑

s

αP
kseks = −

∑
s

α−k,se−k,s . (B.70)

In order to proceed, we need to relate the polarization vectors for k and −k. As
a shorthand notation, set es = eks, e′s = e−k,s, and k′ = −k. The vectors e′s lie in
the same plane as the vectors es, so they can be expressed as linear combinations of
e1 and e2. After imposing the conditions (B.35)–(B.37) on the basis {e′1, e′2,k′}, the
relation between the two basis sets must have the form

e′1 = e1 cosϑ + e2 sin ϑ ,

e′2 = e1 sin ϑ − e2 cosϑ .
(B.71)

The transformation matrices in eqns (B.54) and (B.71) represent proper and improper
rotations respectively. The improper rotation in eqn (B.71) can be expressed as the
product of a proper rotation and a reflection through some line in the plane orthogonal
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to k. Since the polarization basis can be freely chosen, it is convenient to establish a
convention by setting ϑ = 0, i.e.

e−k,1 = ek1 , e−k,2 = −ek2 . (B.72)

For the circular polarization basis, with s = ±, this rule takes the equivalent forms

e−k,s = e∗ks ,

e−k,−s = eks .
(B.73)

The transformation law derived by applying this rule to eqn (B.70) is

αP
ks = −α−k,−s (s = ±) , (B.74)

which relates the amplitude for a given wavevector and circular polarization to the
amplitude for the opposite wavevector and opposite circular polarization. For the linear
polarization basis the corresponding result is

αP
k1 = −α−k,1 ,

αP
k2 = α−k,2 .

(B.75)

Turning next to time reversal, we express the right side of eqn (B.65) as

E (r,−t) =
∑
ks

i

√
�ωk

2ε0V
αksekse

i(k·r+ωkt) −
∑
ks

i

√
�ωk

2ε0V
α∗

kse
∗
kse

−i(k·r+ωkt) , (B.76)

and again change the summation variable by k → −k. This is to be compared to the
expansion for ET (r, t), which is given by eqn (B.68) with αP

ks replaced by αT
ks. The

result is ∑
s

αT
kseks = −

∑
s

α∗
−k,se

∗
−k,s . (B.77)

The circular polarization vectors satisfy e∗−k,s = e∗k,−s = ek,s, so the transformation
law in this basis is

αT
ks = −α∗

−k,s . (B.78)

Thus for time reversal the amplitude for (k, s) is related to the conjugate of the
amplitude for (−k, s). The wavevector is reversed, but the circular polarization is
unchanged. For the linear basis the result is

αT
k1 = −α∗

−k,1 , (B.79)

αT
k2 = α∗

−k,2 . (B.80)

B.4 Planar cavity

A limiting case of the rectangular cavity discussed in Section 2.1.1 is the planar cavity,
with L1 = L2 = L and L3 = d � L. In most applications, only the limit L → ∞ will
be relevant, so the only physically meaningful boundary conditions are those at the
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planes z = 0 and z = d. Periodic boundary conditions can be used at the other faces
of the cavity. Thus the ansatz for the solution is E = eiq·rU(z), where q = (kx, ky)
is the transverse part of the wavevector k. Inserting this into eqns (2.11), (2.1), and
(2.13) leads to the mode functions Eqns. For n = 0 there is only one polarization:

Eq0 =
1√
L2d

eiq·r uz . (B.81)

For n � 1 there are two polarizations, the P polarization in the (q̃,uz)-plane and the
orthogonal S polarization along uz × q̃:

Eqn1 =

√
2

L2d

(
nλqn

2d

)
eiq·r

{
sin (kzz) q̃ + i

q

kz
cos (kzz)uz

}
, (B.82)

Eqn2 =

√
2

L2d
eiq·r sin (kzz)uz × q̃ , (B.83)

where λqn = 2πc/ωqn. The mode frequency is

ωqn = c

√
q2 + (nπ/d)2 , (B.84)

and the expansion of a general real field is

E (r) = i
∑
q

∞∑
n=0

Cn∑
s=1

{
aqnsEqns (z) eiq·r − CC

}
, (B.85)

where C0 = 1 and Cn = 2 for n � 1.

B.5 Macroscopic Maxwell equations

The macroscopic Maxwell equations are given by (Jackson, 1999, Sec. 6.1)

∇ · D (r, t) = ρ (r, t) , (B.86)

∇ × H (r, t) = J (r, t) +
∂D (r, t)

∂t
, (B.87)

∇ × E (r, t) = −∂B (r, t)
∂t

, (B.88)

∇ · B (r, t) = 0 , (B.89)
D (r, t) = ε0E (r, t) + P (r, t) , (B.90)

H (r, t) =
1
µ0

B (r, t) − M (r, t) . (B.91)

In these equations ρ and J respectively represent the charge density and current
density of the free charges, P is the polarization density (density of the electric
dipole moment), M is the magnetization (density of the magnetic dipole moment),
D is the displacement field, and H is the magnetic field.
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After Fourier transforming in r and t, Maxwell’s equations reduce to the algebraic
relations

k · D (k, ω) = −iρ (k, ω) , (B.92)
k× H (k, ω) = −iJ (k, ω) − ωD (k, ω) , (B.93)
k × E (k, ω) = ωB (k, ω) , (B.94)
k · B (k, ω) = 0 , (B.95)

D (k, ω) = ε0E (k, ω) + P (k, ω) , (B.96)

H (k, ω) =
1
µ0

B (k, ω) − M (k, ω) . (B.97)

The microscopic Poynting’s theorem (B.9) is replaced by

E · ∂D
∂t

+ H · ∂B
∂t

+ ∇ · S = 0 , (B.98)

where S = E × H (Jackson, 1999, Sec. 6.7).
For a nondispersive medium, i.e.

Di (r, t) = εijEj (r, t) , Bi (r, t) = µijHj (r, t) , (B.99)

where εij and µij are constant tensors, eqn (B.98) takes the form

∂u (r, t)
∂t

+ ∇ · S (r, t) = 0 , (B.100)

with the energy density

u =
1
2
{E · D + B · H} (B.101)

=
1
2

{
EiεijEj + Bi

(
µ−1

)
ij
Bj

}
. (B.102)

The most important materials for quantum optics are nonmagnetic dielectrics with
µij (ω) = µ0δij . In this case eqns (B.86)–(B.91) can be converted into a wave equation
for the transverse part of the electric field:(

∇2 − 1
c2

∂2

∂t2

)
E⊥ = µ0

∂2

∂t2
P⊥ + µ0

∂

∂t
J⊥ . (B.103)

B.5.1 Dispersive linear media

We consider a medium which interacts weakly with external fields. This can happen
either because the fields themselves are weak or because the effective coupling constants
are small. In general, the polarization and magnetization at a space–time point x =
(r, t) can depend on the action of the field at earlier times and at distant points
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in space. Combining this with the weak interaction assumption leads to the linear
constitutive equations (Jackson, 1999, p. 14)

Pi (r, t) = ε0

∫
d3r′

∫
dt′χ(1)

ij (r − r′, t − t′) Ej (r′, t′) , (B.104)

Mi (r, t) =
∫

d3r′
∫

dt′ξ(1)
ij (r − r′, t − t′)Hj (r′, t′) , (B.105)

where χ
(1)
ij (r − r′, t − t′) and ξ

(1)
ij (r − r′, t − t′) are respectively the (linear) electric

and magnetic susceptibility tensors. Thus the relation between the polarization P (r, t)
(magnetization M (r, t)) and the field E (r, t) (H (r, t)) is nonlocal in both space and
time. The principle of causality prohibits P (r, t) (M (r, t)) from depending on the
field E (r, t′) (H (r, t′)) at later times, t′ > t, so the susceptibilities must satisfy

χ
(1)
ij (r − r′, t − t′) = 0 ,

ξ
(1)
ij (r − r′, t − t′) = 0

}
for t′ > t . (B.106)

This leads to the famous Kramers–Kronig relations (Jackson, 1999, Sec. 7.10).
The four-dimensional convolution theorem, obtained by combining eqns (A.55) and

(A.57), allows eqns (B.104) and (B.105) to be recast in Fourier space as

Pi (k, ω) = ε0χ
(1)
ij (k, ω) Ej (k, ω) , (B.107)

Mi (k, ω) = ξ
(1)
ij (k, ω) Ej (k, ω) . (B.108)

Combining these relations with the definitions (B.90) and (B.91) produces

Di (k, ω) = εij (k, ω) Ej (k, ω) (B.109)

and
Bi (k, ω) = µij (k, ω) Hj (k, ω) , (B.110)

where
εij (k, ω) ≡ ε0

(
δij + χ

(1)
ij (k, ω)

)
(B.111)

and
µij (k, ω) ≡ µ0

(
δij + ξ

(1)
ij (k, ω)

)
(B.112)

are respectively the (electric) permittivity tensor and the (magnetic) permeabil-
ity tensor. The classical fields, the polarization, the magnetization, and the (space–
time) susceptibilities are all real; therefore, the Fourier transforms satisfy

P∗ (k, ω) = P (−k,−ω) , E∗ (k, ω) = E (−k,−ω) ,

M∗ (k, ω) = M (−k,−ω) , B∗ (k, ω) = B (−k,−ω) ,

χ
(1)∗
ij (k, ω) = χ

(1)
ij (−k,−ω) , ξ

(1)∗
ij (k, ω) = ξ

(1)
ij (−k,−ω) .

(B.113)

The dependence of χ
(1)
ij (k, ω) and ξ

(1)
ij (k, ω) on k is called spatial dispersion, and

the dependence on ω is called frequency dispersion. Interactions between atoms at
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different points in the medium can cause the polarization at a point r to depend on the
field in a neighborhood of r, defined by a spatial correlation length as. In gases, liquids,
and disordered solids as is of the order of the interatomic spacing, which is generally
very small compared to vacuum optical wavelengths λ0. Thus the polarization at r
can be treated as depending only on the field at r. Since the medium is assumed to
be spatially homogeneous, this means that χ

(1)
ij (r − r′, t − t′) = χ

(1)
ij (t − t′) δ (r − r′),

which is equivalent to χ
(1)
ij (k, ω) = χ

(1)
ij (ω). Similar relations hold for the magnetic

susceptibility. These three types of media are also isotropic (rotationally symmetric),
so the tensor quantities can be replaced by scalars which depend only on ω:

εij (k, ω) → ε (ω) δij ,

ε (ω) = ε0

(
1 + χ(1) (ω)

)
,

(B.114)

µij (k, ω) → µ (ω) δij ,

µ (ω) = µ0

(
1 + ξ(1) (ω)

)
.

(B.115)

Using eqn (B.114) in eqn (B.109) and transforming back to position space produces
the useful relation

D (r, ω) = ε (ω)E (r, ω) . (B.116)

For crystalline solids, rotational symmetry is replaced by symmetry under the
crystal group, and the tensor character of the susceptibilities cannot be ignored. In
this case as is the lattice spacing, so the ratio as/λ0 is still small, but spatial dispersion
cannot always be neglected. The reason is that the relevant parameter is n (ω0) as/λ0,
where n (ω0) is the index of refraction at the frequency ω0 = 2πc/λ0. Thus spatial
dispersion can be significant if the index is large.

In a rare stroke of good fortune, the crystals of interest for quantum optics satisfy
the condition for weak spatial dispersion, n (ω0) as/λ0 � 1 (Agranovich and Ginzburg,
1984); therefore, we can still use a permittivity tensor that only depends on frequency:

εij (k, ω) → εij (ω) . (B.117)

For most applications of quantum optics, we can also assume that the permittivity
tensor is symmetrical: εij (ω) = εji (ω). Physically this means that the crystal is both
transparent and non-gyrotropic (not optically active) (Agranovich and Ginzburg, 1984,
Chap. 1). We also assume the existence of the inverse tensor

(
ε−1

)
ij

.
There are other situations, e.g. propagation in a plasma exposed to an external

magnetic field, that require the full tensors εij (k, ω) and µij (k, ω) depending on k
(Pines, 1963, Chaps 3 and 4; Ginzburg, 1970, Sec. 1.2). For nearly all applications of
quantum optics, we can neglect spatial dispersion and assume the forms (B.114) or
(B.117) for the permittivity tensor.

The inertia of the charges and currents in the medium, together with dissipative
effects, imply that the medium cannot respond instantaneously to changes in the field
at a given point r. Thus the polarization at the position r and time t will in general
depend on the field at earlier times t′ < t. Since the response times of gases, liquids,
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and solids exhibit considerable variation, it is not generally possible to ignore frequency
dispersion.

B.5.2 Isotropic linear dielectrics

Here we assume that µij (ω) = µ0δij , so that H = B/µ0, and set εij (ω) = δijε (ω)
and ρ = J = 0 in eqns (B.92)–(B.95) to get

k · E (k, ω) = 0 , (B.118)

k × B (k, ω) = − ω

c2
εr (ω)E (k, ω) , (B.119)

k × E (k, ω) = ωB (k, ω) , (B.120)
k · B (k, ω) = 0 , (B.121)

where εr (ω) = ε (ω) /ε0 is the relative permittivity. The final equation follows from
eqn (B.120), and eliminating B between eqn (B.119) and eqn (B.120) leads to

k × [k × E (k, ω)] = −ω2

c2
εr (ω)E (k, ω) . (B.122)

The identity a× (b × c) = (a · c)b− (a · b) c, together with eqn (B.118), reduces this
to [

ω2

c2
n2 (ω) − k2

]
E (k, ω) = 0 , (B.123)

where n (ω) =
√

εr (ω) is the index of refraction. In general εr (ω) can be complex,
corresponding to absorption or gain at particular frequencies (Jackson, 1999, Chap. 7),
but for frequencies in the transparent part of the spectrum εr (ω) is real and positive.
The relation E = −∂A/∂t implies E (k, ω) = iωA (k, ω), so the vector potential
satisfies the same equation [

ω2

c2
n2 (ω) − k2

]
A (k, ω) = 0 . (B.124)

For a transparent medium the general transverse solution of eqn (B.124) is

A (k, ω) =
∑

s

As (k) es (k) δ (ω − ω (k)) +
∑

s

A∗
s (−k) e∗s (−k) δ (ω + ω (k)) ,

(B.125)
where ω (k) is a positive, real solution of the dispersion relation

ωn (ω) = ck . (B.126)

Thus the fundamental plane-wave solution in position–time is

ei(k·r−ω(k)t)es (k) , (B.127)

and the positive-frequency part has the general form
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A(+) (r, t) =
∫

d3k

(2π)3
∑

s

As (k) es (k) ei(k·r−ω(k)t) (B.128)

for the vector potential, and

E(+) (r, t) = i

∫
d3k

(2π)3
ω (k)

∑
s

As (k) es (k) ei(k·r−ω(k)t) (B.129)

for the electric field.

B.5.3 Anisotropic linear dielectrics

We again assume that µij (ω) = µ0δij and set ρ = J = 0 in eqns (B.92)–(B.95), but
we drop the assumption εij (ω) = δijε (ω). In this case E and D are not necessarily
parallel, so we combine eqn (B.93) with eqn (B.94) to get

k2∆⊥
ijEj = µ0ω

2Di . (B.130)

In the following we will use a matrix notation in which a second-rank tensor Xij is
represented as a 3× 3 matrix

←→
X and a vector V = V1ux +V2uy +V3uz is represented

by column or row matrices according to the convention

−→
V =

⎛⎝V1

V2

V3

⎞⎠ ,
−→
V T = (V1, V2, V3) . (B.131)

The polarization properties of the solution are best described in terms of D, since
eqn (B.92) guarantees that it is orthogonal to k. Thus we solve eqn (B.109) for

−→E and
substitute the result into the left side of eqn (B.130) to find

k2←→∆ ⊥−→E = k2←→∆ ⊥ 1
ε0

[←→ε r]
−1 −→D = k2←→∆ ⊥ 1

ε0
[←→ε r]

−1 ←→∆ ⊥−→D , (B.132)

where (εr)ij (ω) = εij (ω) /ε0 is the relative permittivity tensor. The last form

depends on the fact that
−→D is transverse. Putting this together with the right side of

eqn (B.130) yields
←→S −→D =

ω2

k2c2

−→D , (B.133)

where the transverse impermeability tensor,1

←→S (
k̃, ω

)
=

←→
∆ ⊥(k̃) [←→ε r (ω)]−1 ←→∆ ⊥(k̃) , (B.134)

depends on the frequency ω and the unit vector k̃ = k/k along the propagation vector.
The real, symmetric matrix

←→S annihilates
−→
k :

←→S −→
k = 0 , (B.135)

so
←→S has one eigenvalue zero, corresponding to the eigenvector k̃. From eqn (B.133),

it is clear that the transverse vector
−→D is one of the remaining two eigenvectors that

are orthogonal to k̃.

1This is a slight modification of the approach found in Yariv and Yeh (1984, Chap. 4).
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If ω lies in the transparent region for the crystal, the tensor ←→ε r (ω) is positive
definite, so that the nonzero eigenvalues of

←→S are positive. We write the positive
eigenvalues as 1/n2

s, so that the corresponding eigenvectors satisfy

←→S −→ε s =
1
n2

s

−→ε s (s = 1, 2) . (B.136)

If
−→D is parallel to an eigenvector, i.e.

−→D = Ys
−→ε s, one finds the dispersion relation

c2k2 = ω2n2
s (ω) ; (B.137)

in other words, ns is the index of refraction associated with the eigenpolarization
−→ε s (k). Since the matrix

←→S depends on the direction of propagation k̃, the indices
ns (ω) generally also depend on k̃. In order to simplify the notation, this dependence is
not indicated explicitly, e.g. as ns

(
ω, k̃

)
, but is implicitly indicated by the dependence

of the refractive index on the polarization index. An incident wave with propagation
vector k exhibits birefringence, i.e. it produces two refracted waves corresponding
to the two phase velocities c/n1 and c/n2. Since −→ε s (k) is real, the eigenpolarizations
are linear, and they can be normalized so that

−→ε T
s (k)−→ε s′ (k) = εs (k) · εs′ (k) = δss′ . (B.138)

Radiation is described by the transverse part of the electric field, and for the special
solution

−→D = Ys
−→ε s the transverse electric field in (k, ω)-space is

−→E s (k, ω) =
1
ε0

←→S Ys
−→ε s =

Ys

ε0n2
s

−→ε s , (B.139)

where ωs (k) is a solution of eqn (B.137) and ns (k) ≡ ns (ωs (k)). The general space–
time solution,

−→E (+) (r, t) =
1
ε0

∫
d3k

(2π)3

2∑
s=1

Ys (k)
n2

s (k)
−→ε s (k) ei(k·r−ωs(k)t) , (B.140)

is a superposition of elliptically-polarized waves with axes that rotate as the wave
propagates through the crystal. If only one polarization is present, e.g. Y2 (k) = 0, each
wave is linearly polarized, and the polarization direction is preserved in propagation.

It is customary and useful to get a representation similar to eqn (B.57) for the
isotropic problem by setting

Ys (k) = ins (k)

√
�ε0ωs (k)

2
αs (k) , (B.141)

so that the transverse part of the electric field is

E(+) (r, t) = i

∫
d3k

(2π)3

2∑
s=1

√
�ωs (k)

2ε0n2
s (k)

αs (k) εs (k) ei(k·r−ωs(k)t) . (B.142)
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The corresponding expansion using box-normalized plane waves is

E(+)
⊥ (r, t) = i

∑
ks

√
�ωks

2ε0V n2
ks

αksεkse
i(k·r−ωkst) , (B.143)

where ωks = ωs (k), nks = ns (k), εks = εs (k), and αks = αs (k) /
√

V .
In the presence of sources the coefficients are time dependent:

E(+) (r, t) = i

∫
d3k

(2π)3

2∑
s=1

√
�ωs (k)

2ε0n2
s (k)

αs (k, t) εs (k) ei(k·r−ωs(k)t) , (B.144)

or

E(+) (r, t) = i
∑
ks

√
�ωks

2ε0V n2
ks

αks (t) εkse
i(k·r−ωkst) . (B.145)

For fields satisfying eqns (3.107) and (3.120), the argument used for an isotropic
medium can be applied to the present case to derive the expressions

U =
∫

d3k

(2π)3
∑

s

�ωs (k) |αs (k, t)|2 (B.146)

or
U =

∑
ks

�ωks |αs (k, t)|2 (B.147)

for the energy in the electromagnetic field.

A Uniaxial crystals

The analysis sketched above is valid for general crystals, but there is one case of
special interest for applications. A crystal is uniaxial if it exhibits threefold, fourfold,
or sixfold symmetry under rotations in the plane perpendicular to a distinguished
axis, which we take as the z-axis. The x- and y-axes can be any two orthogonal
lines in the perpendicular plane. In general, the permittivity tensor is diagonal—
with diagonal elements εx, εy, εz—in the crystal-axis coordinates, but the symmetry
under rotations around the z-axis implies that εx = εy. We set εx = εy = ε⊥, but in
general ε⊥ �= εz. In these coordinates, the unit vector along the propagation direction
is k̃ = k/k = (sin θ cosφ, sin θ sinφ, cos θ), where θ and φ are the usual polar and
azimuthal angles. Consider a rotation about the z-axis by the angle ϕ; then

←→S ′ =
←→R (ϕ)

←→S ←→R −1 (ϕ)

=
←→
∆ ⊥(k̃′)←→R (ϕ) [←→ε r (ω)]−1 ←→R −1 (ϕ)

←→
∆ ⊥(k̃′)

=
←→
∆ ⊥(k̃′) [←→ε r (ω)]−1 ←→∆ ⊥(k̃′) , (B.148)

where k̃′ is the rotated unit vector and we have used the invariance of ←→ε r under
rotations around the z-axis. The matrices

←→S ′ and
←→S are related by a similarity

transformation, so they have the same eigenvalues for any ϕ. The choice ϕ = −φ
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effectively sets φ = 0, so the eigenvalues of
←→S can only depend on θ, the angle

between k̃ and the distinguished axis. Setting φ = 0 simplifies the calculation and the
two indices of refraction are given by

n2
o = ε⊥ , (B.149)

n2
e =

2ε⊥εz

ε⊥ (1 − cos 2θ) + εz (1 + cos 2θ)
. (B.150)

The phase velocity c/no, which is independent of the direction of k, characterizes
the ordinary wave, while the phase velocity c/ne, which depends on θ, describes the
propagation of the extraordinary wave. The corresponding refractive indices no and
ne are respectively called the ordinary and extraordinary index.

B.5.4 Nonlinear optics

Classical nonlinear optics (Boyd, 1992; Newell and Moloney, 1992) is concerned with
the propagation of classical light in weakly nonlinear media. Most experiments in
quantum optics involve substances with very weak magnetic susceptibility, so we will
simplify the permeability tensor to µij (ω) = µ0δij . On the other hand, the coupling to
the electric field can be strong, if the field is nearly resonant with a dipole transition
in the constituent atoms. In such cases, the relation between the polarization and
the field is not linear. In the simplest situation, the response of the atomic dipole
to the external field can be calculated by time-dependent perturbation theory, which
produces an expression of the form (Boyd, 1992, Chap. 3)

P (r, t) = P (1) (r, t) + PNL (r, t) , (B.151)

where the nonlinear polarization

PNL (r, t) = P (2) (r, t) + P(3) (r, t) + · · · (B.152)

contains the higher-order terms in the perturbation expansion and defines the nonlin-
ear constitutive relations. The transverse electric field describing radiation satisfies
eqn (B.103), and—after using eqn (B.151) and imposing the convention that E always
means the transverse part, E⊥—this can be written as

∇2E − 1
c2

∂2

∂t2
E − µ0

∂2

∂t2
P⊥(1) = µ0

∂2

∂t2
P⊥NL . (B.153)

The interesting materials are often crystals, so scalar relations between the polar-
ization and the field must be replaced by tensor relations for anisotropic media. In a
microscopic description, the polarization P is the sum over the induced dipoles in each
atom, but we will use a coarse-grained macroscopic treatment that is justified by the
presence of many atoms in a cubic wavelength. Thus the macroscopic susceptibilities
are proportional to the density, nat, of atoms, i.e. χ(n) = natγ

(n), where γ(n) is the
nth-order atomic polarizability. In addition to coarse graining, we will assume that the
polarization at r only depends on the field at r, i.e. the susceptibilities do not exhibit
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the property of spatial dispersion discussed in Appendix B.5.1. For the crystals used in
quantum optics spatial dispersion is weak, so this assumption is justified in practice.

In the time domain the nth-order polarization is given by

P(n)
i (r, t) = ε0

∫
dt1 · · ·

∫
dtnχ

(n)
ij1j2···jn

(t − t1, t − t2, . . . , t − tn)

× Ej1 (r, t1) · · · Ejn (r, tn) , (B.154)

where χ
(n)
ij1j2···jn

(τ1, τ2, . . . , τn) is real and symmetric with respect to simultaneous
permutations of the time arguments τp and the corresponding tensor indices jp. The
corresponding frequency-domain relation is

P(n)
i (r, ν) = ε0

∫ n∏
q=1

dνq

2π
2πδ

(
ν −

n∑
p=1

νp

)
χ

(n)
ij1j2···jn

(ν1, . . . , νn)

× Ej1 (r, ν1) · · · Ejn (r, νn) , (B.155)

where

χ
(n)
ij1j2···jn

(ν1, . . . , νn) =
∫ n∏

q=1

dτq exp

[
i

n∑
p=1

νpτp

]
χ

(n)
ij1j2···jn

(τ1, τ2, . . . , τn) . (B.156)

This notation agrees with one of the conventions (Newell and Moloney, 1992, Chap. 2d)
for the Fourier transforms of the susceptibilities, but there is a different—
and frequently used—convention in which χ

(n)
ij1j2···jn

(ν1, ν2, . . . , νn) is replaced by

χ
(n)
ij1j2···jn

(−ν0, ν1, ν2, . . . , νn), with the understanding that the sum of the frequency
arguments is zero (Boyd, 1992, Sec. 1.5). This is an example of the notational schisms
that are common in this field. The nth-order frequency-domain susceptibility tensor
is symmetrical under simultaneous permutations of νp and jp, and the reality of the
time-domain susceptibility imposes the conditions

χ
(n)∗
ij1j2···jn

(ν1, . . . , νn) = χ
(n)
ij1j2···jn

(−ν1, . . . ,−νn) (B.157)

in the frequency domain. For the transparent media normally considered, the Fourier
transform χ

(n)
ij1j2···jn

(ν1, . . . , νn) is also real, and eqn (B.157) becomes

χ
(n)
ij1j2···jn

(ν1, . . . , νn) = χ
(n)
ij1j2···jn

(−ν1, . . . ,−νn) . (B.158)

The properties listed above give no information regarding what happens if the first
index i is interchanged with one of the jps. For transparent media, the explicit quan-
tum perturbation calculation of the susceptibilities provides the additional symmetry
condition (Boyd, 1992, Sec. 3.2)

χ
(n)
ij1···jp···jn

(ν1, . . . , νp, . . . , νn) = χ
(n)
jpj1j2···i···jn

(
ν1, . . . ,−

n∑
k=1

νk, . . . , νn

)
. (B.159)



Appendix C

Quantum theory

Modern quantum theory originated with the independent inventions of matrix mechan-
ics by Heisenberg and wave mechanics by Schrödinger. It was essentially completed
by Schrödinger’s proof that the two formulations are equivalent and Born’s interpre-
tation of the wave function as a probability amplitude. The intuitive appeal of wave
mechanics, at least for situations involving a single particle, explains its universal use
in introductory courses on quantum theory. This approach does, however, have certain
disadvantages. One is that the intuitive simplicity of wave mechanics is largely lost
when it is applied to many-particle systems. For our purposes, a more serious objection
is that there are no wave functions for photons.

A more satisfactory approach is based on the fact that interference phenomena
are observed for all microscopic systems. For example, the two-slit experiment can
be performed with material particles to observe interference fringes. A comparison to
macroscopic wave phenomena suggests that the mathematical description of the states
of a system should satisfy the superposition principle, i.e. every linear combination
of states is also a state. In mathematical terms this means that the states are elements
of a vector space, and the Born interpretation—to be explained below—requires the
vector space to be a Hilbert space.

C.1 Dirac’s bra and ket notation

In Appendix A.3 Hilbert spaces are described with the standard notation used in
mathematics and in many textbooks on quantum theory. In the main text, we employ
an alternative notation introduced by Dirac (1958), in which a vector in a Hilbert space
H is represented by the symbol |ψ〉. In this notation | · 〉 represents a generic ket vector
and ψ is a label that distinguishes one vector from another. Linear combinations of
two kets, |ψ〉 and |φ〉, are written as α |ψ〉+ β |φ〉, and scalars, like α and β, are called
c-numbers.

In the Dirac notation, a bra vector 〈F | represents a rule that assigns a complex
number, denoted by 〈F |ψ 〉, to every ket vector |ψ〉. This rule is linear, i.e. if |ψ〉 =
α |χ〉 + β |φ〉, then

〈F |ψ 〉 = α 〈F |χ 〉 + β 〈F |φ 〉 . (C.1)

The Hilbert-space inner product (φ, ψ) is an example of such a rule, so for each ket
vector |φ〉 there is a corresponding bra vector 〈φ| (called the adjoint vector) defined
by

〈φ |ψ 〉 = (φ, ψ) for all ψ . (C.2)

With this understanding, we will use 〈ϕ |ψ 〉 from now on to denote the inner product.
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The linearity of the rule (C.1) guarantees that the set of bra vectors is in fact a
vector space. The official jargon—explained in Appendix A.6.1—is that the bra vectors
form the dual space H′ of linear functionals on H. The definition (C.2) of the adjoint
vectors shows that the Hilbert space H of physical states is isomorphic to a subspace
of H′.

The Hilbert spaces relevant for quantum theory are always separable; that is, every
ket |ψ〉 can be expanded as

|ψ〉 =
∑

n

|φn〉 〈φn |ψ 〉 , (C.3)

where {|φn〉 , n = 1, 2, . . .} is an orthonormal basis for H.

C.1.1 Examples

A Two-level system

The states of a two-level system, e.g. a spin-1/2 particle, are usually represented by
two-component column vectors that refer to a given basis, e.g. eigenstates of σz. The
relation between this concrete description and the Dirac notation is

|ψ〉 ∼
(

ψ1

ψ2

)
, 〈ψ| ∼ (ψ∗

1 , ψ∗
2) , 〈ϕ |ψ 〉 = (ϕ, ψ) = ϕ∗

1ψ1 + ϕ∗
2ψ2 . (C.4)

The symbol ‘∼’ is used instead of ‘=’ because the values of the components ψ1 and
ψ2 depend on the particular choice of basis in the concrete space C2. A different basis
choice would represent the same ket vector |ψ〉 by a different pair of components ψ′

1,
ψ′

2. An example of an orthonormal basis is

B =
{
|1〉 ∼

(
1
0

)
, |2〉 ∼

(
0
1

)}
, (C.5)

so the components are given by ψ1 = 〈1 |ψ 〉 and ψ2 = 〈2 |ψ 〉, and

|ψ〉 = ψ1 |1〉 + ψ2 |2〉 . (C.6)

This relation is invariant under a change of basis in C2, since the vectors |1〉 and |2〉
would also be transformed. Every bra vector (linear functional) on C2 is defined by
taking the inner product with some fixed vector in C2, so the space of bra vectors
(the dual space) is isomorphic to the space itself, i.e. H′ = H. This is true for any
finite-dimensional Hilbert space.

B Spinless particle in three dimensions

As a second example, consider the familiar description of a spinless particle by a
square-integrable wave function ψ(r). The square-integrability condition is∫ ∞

−∞
d3r |ψ (r)|2 < ∞ , (C.7)
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and the set of square-integrable functions is called L2

(
R3

)
. The relation between the

abstract and concrete descriptions is

|ψ〉 ∼ ψ (r) , 〈ψ| ∼ ψ∗ (r) , 〈ϕ |ψ 〉 =
∫

d3rϕ∗ (r) ψ (r) , (C.8)

where the vector operations are defined point-wise:

α |ψ〉 + β |ϕ〉 ∼ αψ (r) + βϕ (r) . (C.9)

For infinite-dimensional Hilbert spaces, such as H = L2

(
R3

)
, there are bra vectors

that are not adjoints of any vector in the space. In other words, the dual space H′ is
larger than the space H. For example, the delta function δ (r − r0) is not the adjoint
of any vector in L2

(
R3

)
, but it does define a bra vector 〈r0| by

〈r0 |ψ 〉 =
∫

d3rδ (r − r0)ψ (r) = ψ (r0) . (C.10)

This establishes the relation ψ (r) = 〈r |ψ 〉 between the concrete and abstract descrip-
tions.

Although the bra vector 〈r0| is not the adjoint of any proper ket vector (nor-
malizable wave function) in L2

(
R3

)
, it is common practice to define an improper

ket vector |r0〉 by the rule 〈ψ |r0 〉 = ψ∗ (r0) for all ψ ∈ H. The position opera-
tor r̂ is defined by r̂ψ (r) = rψ (r), and |r0〉 is an improper eigenvector of r̂—i.e.
r̂ |r0〉 = r0 |r0〉—by virtue of

〈ψ |r̂| r0〉 = 〈r0 |r̂|ψ〉∗ = r0ψ
∗ (r0) = r0 〈ψ |r0 〉 . (C.11)

In the same way, there is no proper eigenvector of the momentum operator p̂, but
there is an improper eigenvector |p0〉, i.e. p̂ |p0〉 = p0 |p0〉, associated with the bra
vector 〈p0| defined by

〈p0 |ψ 〉 =
∫

d3re−ip0·r/�ψ (r) . (C.12)

C.1.2 Linear operators

The action of a linear operator A is denoted by A |ψ〉, and the complex number
〈ψ |A|ϕ〉 is the matrix element of the operator A for the pair of vectors |ψ〉 and
|ϕ〉. The operator A is uniquely determined by any of the sets of matrix elements

{〈φn |A| φm〉} for all |φn〉 , |φm〉 in a basis B , (C.13)
{〈ψ |A|ϕ〉} for all |ψ〉 , |ϕ〉 in H , (C.14)
{〈ψ |A|ψ〉} for all |ψ〉 in H . (C.15)

The operator Tϕχ, defined by the rule

Tϕχ |ψ〉 = |ϕ〉 〈χ |ψ 〉 for all |ψ〉 , (C.16)

is usually written as |ϕ〉 〈χ|. The product of two such operators therefore acts by
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TϕχTβξ |ψ〉 = Tϕχ |β〉 〈ξ |ψ 〉 = |ϕ〉 〈χ |β 〉 〈ξ |ψ 〉 . (C.17)

This holds for all states |ψ〉, so the product rule is

TϕχTβξ = 〈χ |β 〉Tϕξ . (C.18)

The operator Tϕϕ = |ϕ〉 〈ϕ| is therefore a projection operator, provided that |ϕ〉 is
normalized.

Let {|φn〉} be an orthonormal basis for a subspace W ⊂ H; then the projection
operators Pn = |φn〉 〈φn| are orthogonal, i.e. PnPm = δnm. Every vector |ψ〉 in W has
the unique expansion

|ψ〉 =
∑

n

|φn〉 〈φn |ψ 〉 =
∑

n

Pn |ψ〉 , (C.19)

so the operator
PW =

∑
n

Pn =
∑

n

|φn〉 〈φn| (C.20)

acts as the identity for vectors in W. On the other hand, every vector |χ〉 in the
orthogonal complement W⊥ is annihilated by PW, i.e. PW |χ〉 = 0, so PW is the
projection operator onto W. When W = H the projection PH is the identity operator
and we get ∑

n

|φn〉 〈φn| = I , (C.21)

which is called the completeness relation, or a resolution of the identity into
the projection operators Pn = |φn〉 〈φn| .

If B = {|ϕ1〉 , |ϕ2〉 , . . .} is an orthonormal basis, then the trace of A is defined by

Tr (A) =
∑

n

〈φn |A|φn〉 . (C.22)

The value of Tr (A) is the same for all choices of orthonormal basis, and

Tr (AB) = Tr (BA) . (C.23)

The last property is called cyclic invariance, since it implies

Tr (A1A2 · · ·An) = Tr (AnA1A2 · · ·An−1) . (C.24)

C.2 Physical interpretation

The mathematical formalism is connected to experiment by the following assump-
tions.
(1) The states of maximum information, called pure states, are vectors in a Hilbert

space H.
(2) Each observable quantity is represented by a Hermitian operator A, and the value

obtained in a measurement is always one of the eigenvalues an of A. Hermitian
operators are, therefore, often called observables.
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(3) If the system is prepared in the state |ψ〉, then the probability that a measurement
of A yields the value an is |〈φn |ψ 〉|2, where A |φn〉 = an |φn〉. This is the Born
interpretation (Born, 1926). After the measurement is performed, the system is
described by the eigenvector |φn〉. This is the infamous reduction of the wave
packet.
(a) This description implicitly assumes that the eigenvalue an is nondegenerate. In

the more typical case of an eigenvalue with degeneracy d > 1, the probability
for finding an is

d∑
k=1

|〈φnk |ψ 〉|2 , (C.25)

where {|φnk〉 , k = 1, . . . , d} is an orthonormal basis for the an-eigenspace. The
corresponding projection operator is

Pn =
d∑

k=1

|φnk〉 〈φnk| . (C.26)

(b) Von Neumann’s projection postulate (von Neumann, 1955) states that
the probability of finding an is

〈ψ |Pn|ψ〉 =
d∑

k=1

|〈φnk |ψ 〉|2 , (C.27)

and—for 〈ψ |Pn|ψ〉 �= 0—the final state after the measurement is

|ψfin〉 =
1√〈ψ |Pn|ψ〉

Pn |ψ〉 . (C.28)

(c) An alternative way of dealing with degeneracies is to replace the single observ-
able A by a set of observables {A1, A2, . . . , AN} with the following properties.
(i) The operators are mutually commutative, i.e. [Ai, Aj ] = 0.
(ii) A vector |φ〉 that is a simultaneous eigenvector of all the Ais— i.e. Ai |φ〉 =

ai |φ〉 for i = 1, . . . , N—is uniquely determined (up to an overall phase
factor).

A set {A1, A2, . . . , AN} with these properties is called a complete set of
commuting observables (CSCO). A simultaneous measurement of the ob-
servables in the CSCO leaves the system in a state that is unique except for
an overall phase factor.

(4) The average of many measurements of A performed on identical systems prepared
in the state |ψ〉 is the expectation value 〈ψ |A|ψ〉.

(5) There is a special Hermitian operator, the Hamiltonian H , which describes
the time evolution—often called time translation—of the system through the
Schrödinger equation

i�
∂

∂t
|ψ (t)〉 = H (t) |ψ (t)〉 . (C.29)
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The explicit time dependence of the Hamiltonian can only occur in the presence
of external classical forces.

C.3 Useful results for operators

C.3.1 Pauli matrices

Consider linear operators on the space C2. It is easy to see that every operator is
represented by a 2 × 2 matrix, so it is determined by four complex numbers. The
Pauli matrices, defined by

σx = σ1 =
[
0 1
1 0

]
, σy = σ2 =

[
0 −i
i 0

]
, σz = σ3 =

[
1 0
0 −1

]
, (C.30)

are particularly important. They satisfy the commutation relations

[σi, σj ] = 2iεijkσk , (C.31)

where εijk is the alternating tensor defined by eqn (A.3), and the anticommutation
relations

[σi,σj ]+ = σiσj + σjσi = 2δij (i, j = x, y, z) , (C.32)

which combine to yield
σiσj = εijkσk + δij . (C.33)

It is often useful to use the so-called circular basis {σz , σ± = (σx ± iσy) /2} with the
commutation relations

[σz , σ±] = ±2σ± , [σ+, σ−] = σz , (C.34)

and the anticommutation relations

[σ±, σ±]+ = 0 , [σ±, σ∓]+ = 1 , [σz, σ±]+ = 0 . (C.35)

These fundamental relations yield the useful identities

σ+σ− =
1
2

(1 + σz) , (C.36)

σ−σ+ =
1
2

(1 − σz) , (C.37)

σzσ± = ±σ± = −σ±σz . (C.38)

The three Pauli matrices, together with the identity matrix, are linearly indepen-
dent and therefore constitute a complete set for the expansion of all 2 × 2 matrices.
Thus every 2 × 2 matrix A has the representation

A = a0σ0 + aiσi , (C.39)

where σ0 is the identity matrix. These properties, together with the observation that
Tr (σi) = 0, yield
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a0 =
1
2

Tr (A) ,

aj =
1
2

Tr (Aσj) .

(C.40)

Writing aiσi = a · σ and using the properties given above yields (a · σ)2 = |a|2, and
this in turn provides the useful identities (Cohen-Tannoudji et al., 1977b, Complement
A-IX)

eiαu·σ = cos (α) + i sin (α)u · σ , (C.41)

eβu·σ = cosh (β) + sinh (β)u · σ , (C.42)

where α and β are real constants and u is a real unit vector.

C.3.2 The operator binomial theorem

For c-numbers x and y the binomial theorem is

(x + y)n =
n∑

p=0

n!
p! (n − p)!

xn−pyp , (C.43)

but this depends on the fact that c-numbers commute. For noncommuting operators X
and Y the quantity (X + Y )n is to be evaluated by multiplying together the n factors
X + Y . Consider the terms of order (n − p, p) in this expansion, i.e. those in which X
occurs n− p times and Y occurs p times. Since each of these terms is the product of n
factors, there are a total of n! orderings. The orderings that differ only by exchanging
Xs with Xs or Y s with Y s are identical, and the number of these terms is precisely
the binomial coefficient n!/p! (n − p)!; therefore,

(X + Y )n =
n∑

m=0

n!
p! (n − p)!

S [
Xn−mY m

]
, (C.44)

where S [Xn−mY m] is the average of the terms with (n − m) Xs and m Y s arranged
in all possible orders. This is called the symmetrical or Weyl product.

For (n, 0) or (0, n) one has simply S [Xn] = Xn or S [Y n] = Y n. Examples of
mixed powers are

S [XY ] =
1
2

(XY + Y X) ,

S [
X2Y

]
=

1
3
(
X2Y + XY X + Y X2

)
,

S [
X2Y 2

]
=

1
6
(
X2Y 2 + XY 2X + XY XY + Y 2X2 + Y X2Y + Y XY X

)
,

... (C.45)
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C.3.3 Commutator identities

The Leibnitz rule
[A, BC] = A [B, C] + [A, B] C (C.46)

and the Jacobi identity

[[A, B] , C] + [[C, A] , B] + [[B, C] , A] = 0 (C.47)

are both readily verified by direct use of the definition [A, B] = AB −BA. The useful
identity

[A, B1B2 · · ·Bn] =
n∑

p=1

⎛⎝p−1∏
j=1

Bj

⎞⎠ [A, Bp]

⎛⎝ n∏
k=p+1

Bk

⎞⎠ (C.48)

can be established by an induction argument, combined with the convention that an
empty product has the value unity. In the special case that each single commutator
[A, Bp] commutes with the remaining Bjs, this becomes

[A, B1B2 · · ·Bn] =
n∑

p=1

[A, Bp]

⎛⎝ n∏
j �=p=1

Bj

⎞⎠ . (C.49)

C.3.4 Operator expansion theorems

Theorem C.1 Let X and Y be operators acting on a Hilbert space H. Then

eκXY e−κX =
∞∑

n=0

κn

n!
[X, Y ](n)

, (C.50)

where the iterated commutator [X, Y ](n) is defined by the initial value [X, Y ](0) = Y
and the recursion relations

[X, Y ](n+1) =
[
X, [X, Y ](n)

]
for n � 0 . (C.51)

Proof Let Y (κ) ≡ eκXY e−κX ; then dY (κ) /dκ = [X, Y (κ)]. Iterating this result
implies

dn+1Y (κ)
dκn+1

=
[
X,

dnY (κ)
dκn

]
, (C.52)

and eqn (C.50) follows by a Taylor series expansion around κ = 0. �

In the special case that the commutator [X, Y ] commutes with X , the series ter-
minates so that

eκXY e−κX = Y + κ [X, Y ] , (C.53)

i.e. X generates translations of Y . An important example is a canonically conjugate
pair: X = p̂, Y = q̂, with [q̂, p̂] = i�. Choosing κ = iu/�, where u is a c-number, gives
the familiar quantum mechanics result
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T †
u q̂Tu = q̂ + u , (C.54)

where the unitary operator
Tu = e−iu�p/� (C.55)

evidently generates translations in the position. For any well-behaved operator function
F (q̂), e.g. one that has a Taylor series expansion, the last result generalizes to

T †
uF (q̂)Tu = F (q̂ + u) . (C.56)

For infinitesimal values of u, expanding both sides leads to

[p̂, F (q̂)] = −i�
∂F (q̂)

∂q̂
. (C.57)

To see the action of Tu on a state vector, rewrite eqn (C.54) as q̂Tu = Tu (q̂ + u) and
apply this to an eigenvector |Q〉 of q̂ to get

q̂Tu |Q〉 = Tu (q̂ + u) |Q〉 = Tu (Q + u) |Q〉 = (Q + u)Tu |Q〉 ; (C.58)

in other words,
Tu |Q〉 = |Q + u〉 . (C.59)

Thus for any state |Ψ〉,
〈Q |Tu|Ψ〉 = 〈Q + u |Ψ〉 , (C.60)

or in more familiar notation

(TuΨ) (Q) = Ψ (Q + u) . (C.61)

It is also useful to consider the opposite assignment X = q̂, Y = p̂, κ = −iv/�, which
produces

e−iv�q/�q̂eiv�q/� = p̂ + v , (C.62)

and shows that the position operator generates translations in the momentum.
Another important special case is [X, Y ] = αY , where α is a c-number. Putting

this into the definition (C.51) gives

[X, Y ](n) = αnY , (C.63)

so that eqn (C.50) becomes
eκXY e−κX = eακY . (C.64)

As an example, let X = a†a, Y = a, and κ = iθ, where a is the lowering operator for a
harmonic oscillator. The commutation relation

[
a, a†] = 1 yields [X, Y ] =

[
a†a, a

]
=

−a, so
eiθa†aae−iθa†a = e−iθa . (C.65)
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C.3.5 Campbell–Baker–Hausdorff theorem

Theorem C.2 Let X and Y be operators such that [X, Y ] commutes with both X and
Y . Then

eXeY = eX+Y e
1
2 [X,Y ] . (C.66)

Proof See Peres (1995, Sec. 10-7). �

Two important special cases are needed in the text. The first is defined by setting
X = −ivq̂, Y = −iup̂, which leads to

e−i(u�p+v�q) = ei�uv/2e−iv�qe−iu�p . (C.67)

Interchanging the definitions of X and Y produces

e−i(u�p+v�q) = e−i�uv/2e−iu�pe−iv�q . (C.68)

The second example is X = κa†, Y = −κ∗a, which gives

eκa†−κ∗a = e−|κ|2/2eκa†
e−κ∗a . (C.69)

Interchanging X and Y yields the alternative identity

eκa†−κ∗a = e|κ|
2/2e−κ∗aeκa†

. (C.70)

C.3.6 Functions of operators

Let X be a Hermitian operator and f (u) be a real-valued function of the real variable
u. A vector |ψ〉 is uniquely represented by the expansion

|ψ〉 =
∑

n

|φn〉 〈φn |ψ 〉 , (C.71)

where the |φn〉s are the basis of eigenvectors of X , i.e. X |φn〉 = xn |φn〉. Then f (X)
is defined by

f (X) |φn〉 = f (xn) |φn〉 for all n , (C.72)

so that
f (X) |ψ〉 =

∑
n

|φn〉 f (xn) 〈φn |ψ 〉 . (C.73)

If the function f (u) has a Taylor series expansion around the value u = u0,

f (u) =
∞∑

n=0

fn (u − u0)
n

, (C.74)

then an alternative definition of f (X) is

f (X) =
∞∑

n=0

fn (X − u0)
n . (C.75)
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C.3.7 Generalized uncertainty relation

Choose a fixed vector |ψ〉 and a pair of normal operators C and D, i.e.
[
C, C†] =[

D, D†] = 0. Use the shorthand notation 〈C〉 = 〈ψ |C|ψ〉, 〈D〉 = 〈ψ |D|ψ〉 to define
the fluctuation operators δC = C−〈C〉 and δD = D−〈D〉. Note that [C, D] = [δC, δD].
The expectation value of the commutator is

〈[C, D]〉 = 〈[δC, δD]〉 = 〈δCδD〉 − 〈δDδC〉 ; (C.76)

consequently,
|〈[C, D]〉| � |〈δCδD〉| + |〈δDδC〉| . (C.77)

Next set 〈ψ |δCδD|ψ〉 = 〈φ |χ 〉, where |φ〉 = δC† |ψ〉 and |χ〉 = δD |ψ〉. The Cauchy–
Schwarz inequality (A.9) yields

|〈φ |χ 〉| �
√
〈φ |φ〉

√
〈χ |χ 〉 =

√
〈δCδC†〉

√
〈δD†δD〉 . (C.78)

With the definitions of the rms deviations

∆C2 =
〈
δC†δC

〉
=
〈
δCδC†〉 ,

∆D2 =
〈
δD†δD

〉
=
〈
δDδD†〉 ,

(C.79)

we find
|〈δCδD〉| = |〈φ |χ 〉| �

√
〈δCδC†〉

√
〈δD†δD〉 = ∆C ∆D . (C.80)

Interchanging C and D gives

|〈δDδC〉| �
√
〈δDδD†〉

√
〈δC†δC〉 = ∆C ∆D , (C.81)

and putting everything together yields the generalized uncertainty relation

∆C ∆D � 1
2
|〈[C, D]〉| (C.82)

for any pair of normal operators.

C.4 Canonical commutation relations

Hermitian operators Q and P that satisfy the canonical commutation relation
[Q, P ] = i� are said to be canonically conjugate. Applying eqn (C.82) to this case
yields the canonical uncertainty relation

∆Q ∆P � �/2 . (C.83)

A state for which equality is attained, i.e.

∆Q ∆P = �/2 , (C.84)

is called a minimum-uncertainty state or minimum-uncertainty wave packet.
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The creation and annihilation operators defined in Section 2.1.2 satisfy the alter-
native form [

aM , a†
M ′

]
= δMM ′ , [aM , aM ′ ] = 0 (C.85)

of the canonical commutation relations. We first show that these relations are preserved
by any unitary transformation. Let U be a unitary operator and define new operators

bM = UaMU † ; (C.86)

then [
bM , b†M ′

]
=
[
UaMU †, Ua†

M ′U
†
]

= δMM ′ ,

[bM , bM ′ ] =
[
UaMU †, UaM ′U †] = 0 .

(C.87)

The converse statement is also true. If the operators bM satisfy[
bM , b†M ′

]
= δMM ′ , [bM , bM ′ ] = 0 , (C.88)

then there is a unitary transformation U which relates the bMs and aMs by eqn (C.86).
The proof of this claim depends on the argument in Section 2.1.2-A showing that a
Hilbert space in which eqn (C.85) holds is spanned by the number states, which we
will now call |n; a〉, satisfying

a†
MaM |n; a〉 = nM |n; a〉 , n = (n1, n2, . . .) . (C.89)

This argument applies equally well to the bM s, so there is also a basis of states, |n; b〉,
satisfying

b†MbM |n; b〉 = nM |n; b〉 . (C.90)

It is easy to check that the operator U , defined by

U =
∑

n

|n; b〉 〈n; a| , (C.91)

is unitary, and that

UaMU † =
∑
m′

∑
m

|m′; b〉 〈m′; a |aM |m; a〉 〈m; b|

=
∑
m

|m − 1M ; b〉√mM 〈m; b| , (C.92)

where m − 1M signifies (m1, m2, . . . , mM − 1, . . .). Calculating the general matrix el-
ement of UaMU † in the |n; b〉 basis yields〈

n; b
∣∣UaMU †∣∣n′; b

〉
= δn,n′−1M

√
n′

M = 〈n; b |bM |n′; b〉 ; (C.93)

therefore, this U satisfies eqn (C.86).
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C.5 Angular momentum in quantum mechanics

In classical mechanics, the angular momentum of a particle (relative to the origin of
coordinates) is r×p, where p is the momentum. In quantum mechanics (Bransden and
Joachain, 1989, Chap. 6) this becomes the operator L = r × (−i�∇), which satisfies
the angular momentum commutation relations

[Li, Lj] = i�εijkLk . (C.94)

Because of its relation to the classical angular momentum used to describe orbits, L
is called the orbital angular momentum. This operator is also related to spatial
rotations, r → r′ = R (n, ϑ) r, where R (n, ϑ) is a 3 × 3 orthogonal matrix (RT R =
RRT = 1), n is a unit vector defining the axis of rotation, and ϑ is the angle of rotation
around the axis. For small ϑ one can show that

δrj = r′j − rj = δri = ϑεijknjrk . (C.95)

By definition, a vector V transforms like r under rotations.
A scalar wave function ψ (r) transforms according to ψ′ (r) = U (n, ϑ)ψ (r), where

the unitary operator U (n, ϑ) is given by

U (n, ϑ) = exp
[
− i

�
ϑn · L

]
. (C.96)

Thus L is the generator of spatial rotations.
The corresponding transformation for an operator O is O′ = U (R)OU † (R). Ex-

panding to first order for small ϑ gives the infinitesimal transformation

δO = O′ − O =
i

�
ϑ [O,n · L] . (C.97)

Combining eqn (C.95) with eqn (C.97) yields [Li, rj ] = i�εijkrk; therefore every vector
operator V satisfies

[Li, Vj ] = i�εijkVk . (C.98)

The infinitesimal rotation formula for an operator which is a vector field, V = V (r),
contains additional terms due to the argument r:

[Li, Vj (r)] = i� {(r × ∇)i Vj (r) + εijkVk (r)} . (C.99)

Now let us suppose that L is an operator satisfying eqn (C.98) for any choice of V;
then choosing V = L yields eqn (C.94). Therefore any operator L satisfying eqn (C.98)
for all V is the generator of spatial rotations.

In quantum mechanics, there is another kind of angular momentum, called spin,
which has no classical analogue. Particles (or other systems) with spin are described
by n-tuples of wave functions (ψ1 (r) , . . . , ψn (r)). The basic example is the spin-1/2
particle discussed in Appendix C.1.1-A. In the general case, the Hilbert space is a
tensor product, H = Horbital ⊗ Hspin, where the orbital (spatial) and spin degrees of
freedom are represented by Horbital and Hspin respectively. Thus the spatial and spin
degrees of freedom are kinematically independent.
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Since L acts only on the spatial arguments of the wave functions, i.e. on Horbital,
it can be expressed in the form L = L ⊗ Ispin. The spin angular momentum,
S = Iorbital⊗S acts only on the internal degrees of freedom, and satisfies the standard
commutation relations

[Si, Sj ] = i�εijkSk . (C.100)

Since L and S act on different parts of the product space H they must commute:

[Li, Sj ] = [Li ⊗ Ispin, Iorbital ⊗ Sj ] = [Li, Iorbital] ⊗ [Ispin, Sj ] = 0 , (C.101)

and the total angular momentum J = L + S satisfies

[Ji, Jj ] = i�εijkJk . (C.102)

This shows that J is the generator of both spatial and spin rotations. In particular,
vector operators will satisfy

[Ji, Vj ] = i�εijkVk . (C.103)

The decomposition of the total angular momentum into the sum of orbital and spin
parts is only possible when L and S commute, i.e. when the spatial and spin degrees
of freedom are kinematically independent.

C.6 Minimal coupling

In minimal coupling, the standard momentum operator −i�∇ is replaced by

−i�∇ → −i�∇ − qA , (C.104)

where A is the vector potential for an external, classical field. This notion is usually
presented as the simplest way to guarantee the gauge invariance of the quantum theory
for a charge interacting with an external electromagnetic field; but there is a simpler
explanation, which only involves classical electrodynamics and the correspondence
principle (Cohen-Tannoudji et al., 1977b, Appendix III.3).

The classical Lagrangian for a point particle with charge q interacting with the
classical field determined by the scalar potential Φ and the vector potential A is

L =
m

2
ṙ2 − qΦ + qṙ · A . (C.105)

The canonical momentum p conjugate to r is defined by

p =
∂L

∂ṙ
= mṙ + qA , (C.106)

so that the kinetic momentum mṙ is

mṙ = p− qA . (C.107)

The Hamiltonian is defined as a function of r and p by

H (r,p) = p · ṙ − L , (C.108)
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where eqn (C.107) is used to eliminate ṙ in favor of r and p. This leads to

H =
1

2m
(p − qA)2 + qΦ . (C.109)

The transition to quantum theory is now made by the correspondence-principle
replacement, p → p̂ = −i�∇. For transverse fields (∇ · A = 0), the quantum Hamil-
tonian is

H =
1

2m
(p̂− qA (r̂))2 + qΦ

=
p̂2

2m
− q

m
A (r̂) · p̂ +

q2A (r̂)2

2m
+ qΦ . (C.110)

For many applications the external field is weak, so the A (r̂)2-term can be neglected
and the Hamiltonian becomes

H =
p̂2

2m
+ qΦ − q

m
A (r̂) · p̂ . (C.111)

In accord with the classical terminology,

p̂ = −i�∇ (C.112)

is called the canonical momentum operator, and

p̂kin = p̂ − qA (r̂) (C.113)

is called the kinetic momentum operator. The velocity operator is v̂ = dr̂/dt,
and the Heisenberg equation of motion for r̂ (i�dr̂/dt = [r̂, H ]) yields

mv̂ = p̂kin = p̂ − qA (r̂) . (C.114)

Thus the kinetic momentum operator p̂kin approaches mvclass in the classical limit,
but the canonical momentum operator p̂ is the generator of spatial translations.
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Index

absorption
coefficient, 20
of light, 15

additive noise, 432
adiabatic elimination, 377, 427
adjoint

matrix, 650
operator, 648

alternating tensor, 70, 645
amplifier

noise, 505
noise number, 524
noise temperature, 525
uncertainty principle, 527

amplitude squeezing/quadrature, 480
ancilla, 607
angular momentum

electromagnetic, 100
orbital, 692
spin, 692
total, 77, 693

annihilation operator, 43, 74
antilinear, 119
antinormal ordering, 167, 179
antireflection coating, 238, 246
antiresonant Hamiltonian, 352
antiunitary, 119
atomic coherence, 375
atomic transition operator, 355, 442
avalanche

breakdown, 282
multiplication

noise-free, 284
avoided crossing, 384
axial vector, 668

balanced
beam splitter, 248
homodyne detector, 300

bare states, 383
Bargmann state, 546
basis

circular, 685
vector space, 646

beam
cleanup, 260
in geometric optics, 218
splitter, 247

balanced, 248
symmetrical, 247

waist, 80, 220, 227
Beer’s law, 20
Bell

expectation values, 588
inequality, 578, 590
pair, 637
state measurement, 621
states, 410
theorem, 589

bipartite system, 201
birefringence, 399, 676
bit-flip, 627
blackbody

cavity, 5
radiation, 5

bleaching, 460
Bloch equation, 375
Bogoliubov transformation, 188, 477
Bohm singlet state, 580
bolometers, 6, 266
Boltzmann’s principle, 17
Born

approximation, 31
interpretation, 39, 52, 684

Bose commutation relations, 46
Bose–Einstein statistics, 207
bosons, 46, 207
bounded operator, 54, 648
box quantization, 81
bra vector, 680
Bragg crystal spectrometer, 11
broadband detection, 272

Cn, 201, 646, 681
c-number, 680
Campbell–Baker–Hausdorff theorem, 689
canonical

commutation relation, 39–41, 690
momentum, 112, 693
momentum operator, 97, 694
quantization, 69

canonically conjugate variables
classical, 39
quantum, 85, 121, 690

carrier
frequency, 88, 219
wavevector, 219

cascade emission, 24
Casimir effect, 62
Cauchy–Schwarz inequality, 646
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cavity
frequency, 382
general, 37
ideal, 32
lossy, 428
mode cleaning, 534
modes, 32, 382
planar, 63, 138, 669
rectangular, 33

centrosymmetric medium, 393
channeltrons, 282, 388
chaotic state, 177
characteristic function, 172

antinormally-ordered, 191
normally-ordered, 183

charge density
classical, 670
quantum, 118

circular polarization, 666
right (left), 55, 667

classical
bit (cbit), 619
electromagnetic theory, 32
feedforward, 638
nonlinear optics, 678
oscillator, 149
states, 182

click (of a detector), 29
closed system, 420
cluster state, 638
coarse-grained

delta function, 224, 233
operator density, 512
polarization, 90, 678

coherence matrix, 56
coherence time, 350
coherent state

diagonal representation, 166
of a single mode, 151, 176
of a wave packet, 168

coincidence
basis, 636
counting, 286
detection, 12
rate, 25

collapse of a cavity state, 386
collinear phase matching, 400
complete

set of commuting observables (CSCO),
102, 684

set of vectors, 163, 196, 647
completeness relation, 44, 165, 355, 665, 683
compound probability rule, 660
Compton

scattering, 10
shift, 14
wavelength, 14

computational basis, 607
conditional probability, 586, 659
constant of the motion, 77, 403

constitutive equations
linear, 88, 672
nonlinear, 394, 678

continuous spectrum, 648
controlled

NOT gate, 633
sign (or phase) gate, 633

convergent sequence of vectors, 647
convex linear combination, 53, 192, 204
convolution theorem, 652
correlation matrix, 452
correspondence principle, 30, 148, 150
Coulomb gauge, 661
creation operator, 43, 74
cross-Kerr medium, 418, 634
cross-phase modulation, 418
cryptography

public key, 616
quantum, 617

current density
classical, 670
quantum, 117

cut-off function, 354
cyclic invariance of the trace, 683

debyes, 134
decay rate, 376
degenerate eigenvalue, 648

degree of degeneracy, 52, 648
degree of freedom

cavity radiation, 7
mechanical, 40

degree of polarization, 57
delta correlated, 434
delta function, 657
density

of states, 137
operator, 50, 270

dephasing rate, 376
detection

amplitude
one-photon, 213
two-photon, 214

loophole, 597
operator (Mandel), 108

dichroic mirror, 535
dielectrics

isotropic and anisotropic, 674, 675
diffusion term, 549
dipole

approximation, 131
matrix element, 136
selection rules, 133

discrete quantum trajectory, 573
dispersion

cancellation effect, 326
relation, 674

displaced squeezed states, 479
displacement

field, 670
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operator, 162
rule, 169

distinct paraxial beams, 221
distribution, see generalized function
Doppler shift, 134
down-conversion, 400
dressed

photon, 96
states, 384

drift term, 451, 549
dynamics, 13
dynodes, 282

eigenoperators, 355
eigenpolarization, 56, 393, 676
eigenspace, 52, 648
eigenvalue, 648
eigenvector, 648
Einstein

A and B coefficients, 17, 136
relation, 453
rule, vii, 98, 258
summation convention, 36, 645

Einstein–Podolsky–Rosen (EPR)
paradox, 579
states, 193

electric power density, 92
electro-optic modulator, 534
electron multiplication, 281
element of physical reality, 579
elliptical polarization, 665
end-point rule, 658
ensemble, 50
entangled state

distinguishable systems, 115, 200
dynamically entangled, 210, 321
hyperentangled photon pairs, 408
identical particles, 209
kinematically entangled, 210
maximally entangled, 203
mixed state, 204
pure state, 202
Schrödinger, 194
two-photon, 212

environment, 420
picture, 539

equal-time commutator, 86
equipartition of energy, 7
error correction, 634
events, 659
evolution operator, 84
excess noise, 300
expectation value, 684
extraordinary wave, 678

factorizable density operator, 426
fair-sampling assumption, 598
Faraday effect, 256
fast axis, 640
Fermi

golden rule, 128, 432
statistics, 207

fermions, 207
ferrite pill, 257
Feynman

diagrams, 136
paths/processes, 308
rules of interference, 307

fidelity, 612
field correlation functions, 123
filter function, 274
filtered signal, 273
finite-dimensional space, 646
first-order perturbation theory, 127
fluctuation operator, 203, 501, 690
fluorescence spectrum, 462
Fock space, 44, 46
Fokker–Planck equation, 546
four-port device, see two-channel device
four-wave mixing, 392
Fourier

integral transform, 651
series transform, 653
slice theorem, 531

Franson interferometer, 328
frequency

dispersion, 672
shift, 363
tripling, 412

fringe visibility, 312
functional, 655

gain
clamping, 157
matrix, 521
medium, 20, 511

gate
generator/width, 25
photon, 345

gauge transformation/invariance, 661
Gaussian

beams and pulses, 80, 103, 105, 226
probability density, 152
states, 187
wave packet, 227, 290

Geiger mode, 282
generalized function, 656
generator of

displacement, 162
spatial rotations, 76, 100, 692
spatial translations, 76, 97, 112, 694

good function, 656
group

delay, 342
velocity, 95

Hadamard gate, 633
half-wave plate, see retarder plate
Hanbury Brown–Twiss effect, 313
heat bath, 425
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Heisenberg
equations of motion, 85, 86
picture, 83

helicity, 667
operator, 78

hemiclassical approximation, 154
heralded, 637
hermitian, see self-adjoint
hermitian conjugate, see adjoint
heterodyne detection

classical, 291
noise, 297
optical, 293
quantum, 294
signal, 295

hidden variables, 582
Hilbert space, 647
history dependence, 93, 282, 361
homodyne detection, 300

classical, 301
noise, 303
quntum, 302
signal, 302

Hong–Ou–Mandel (HOM)
dip, 323, 339
effect, 317
interferometer, 315
null, 318

hyperentangled photon pairs, 408

ideal squeezed state, 479
identical particles, 205
image band mode, 295, 302
image intensifiers, see channeltrons
impermeability, 675
improper ket vector, 682
in-field

classical, 241
operator, 242, 437

incident
annihilation operator, 242
classical field, 237

incoherent pump, 447, 511
independent events, 660
index matching, 401, 515
index of refraction, 674

ordinary/extraordinary, 399
indistinguishable particles, 205
indivisibility of photons, 4, 24
infinite-dimensional space, 646
inner product, 646
input–output

equation, 440, 505, 518, 519
matrix, 519
method, 435

insertion-loss noise, 499
integral kernel, 73, 524, 658
interaction

Hamiltonian, 117, 124
picture, 124

interaction-free measurement, 347
interference

single-photon, 307, 333
two-photon, 315

intermediate
frequency, 292
state, 443
time scale, 92

internal amplifier modes, 500
interpolating operator, 162
inverted oscillator, 429
iris, see stop

Jacobi identity, 687
Jaynes–Cummings model, 381
joint

probability, 659
variance, 150, 474

normal-ordered, 491
Jones matrix, 641

Kerr media, 267, 417
ket vector, 680
kinematics, 13
kinetic momentum, 112, 693

Lagrangian formulation, 69, 103
Langevin equation

advanced, 439
classical, 549
quantum, 422
retarded, 438

Laplace transform, 654
laser amplifier, 510
Leibnitz rule, 687
level repulsion, see avoided crossing
line

of sight, 530
shape, 19
width, 365

line-out, 530
linear

amplifier, 499
functional, 655
operator, 646
polarization, 665
regression, 455

Liouville operator, 543
local

measurement, 638
number operator, 107
observable, 208
oscillator (LO), 291
realistic theory, 578

longitudinal
relaxation time, 377
vector field, 35

Lorentzian line shape, 365, 442
lowering operator, 43, 356, 424



��� Index

Mandel Q-parameter, 278
marginal distribution, 174, 533, 659
Markov

approximation, 283, 361
process, 282, 361

master equation, 541
matrix element, 682
maximally mixed state, 54
Maxwell’s equations

classical, 661
macroscopic, 670
quantum, 117

memory interval, 353
Mermin’s lemma, 590
micromaser, 387
minimal coupling, 693
minimum-uncertainty state, 45, 151, 690
mixed state, 49
mode cleaning cavity, 534
Mollow triplet, 458
monochromatic

field, 88, 324
space, 98
state, 56

multilevel atoms, 355
multiparaxial space, 221
multiplicative noise, 432, 445
mutual coherence function, 312
mutually unbiased bases, 617

narrowband detection and filter, 273
negative absorption, 20
negative-frequency part, 72, 87
noise

correlation function, 433
distribution, 426
in heterodyne detection, 297
in homodyne detection, 303
reservoir, 422
strength, 426, 501
temperature, 299

non-centrosymmetric crystal, 394
nonanticipating, 435
nonclassical states, 182, 306
nondegenerate eigenvalue, 648
nondispersive material, 671
nonlinear polarization, 678
norm

of a vector, 647
of an operator, 648
preserving, 649

normal
matrix, 520, 650
mode, 37
operator, 649
ordering, 48

normal-ordered variance, 474
normalized, 647
NOT gate, 632
null events, 345

number
field sieve, 630
squeezed states, 482
state, 43, 81, 178

number operator, 43, 74
local, 107
local (Mandel), 108
total, 46

observables, 683
Occam’s razor, vii
one-channel device, 245
one-particle operator, 206
one-time pad, 616
one-way quantum computing, 638
open system, 420
operator

binomial theorem, 686
Bloch equation, 442
continuous spectrum, 648
domain, 648
Langevin equation, 432
norm, 648
point spectrum, 648
spectral resolution, 649

operator-valued, 105, 649, 656
optic axis, 237
optical

circulator, 257
couplers or taps, 248, 604
diode, 256
isolator, 255, 414
Kerr effect, 417
parametric amplifier/oscillator, 486
torque wrench, 80
transmission line, 602
tweezer, 80

ordinary wave, 678
orthogonal

complement, 646
projection operators, 44, 355, 649
vectors, 646

orthonormal set of vectors, 196, 647
out-field

classical, 241
operator, 242, 439

outcome
independence, 586
parameter, 585

overcompleteness, 164

P (α), 181, 278
P-polarization, 239
parameter

settings, 584
parametric amplification, 267, 400
paramps, 267
paraxial

classical optics, 219
expansion, 228
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Hamiltonian, 223
Hilbert space, 220
mixed state, 221
momentum operator, 222
optical elements, 245
pure state, 221
ray bundle, 219
wave, 218
wave packets, 229

parity
electromagnetic fields, 668
state, 637
transformation, see spatial inversion

Parseval’s theorem, 652
partial trace, 198
partition

function, 58
noise, 252, 499

passive dielectric, 90
Pauli

exclusion principle, 207
matrices, 685

periodic boundary conditions, 81, 94, 653
permittivity/permeability, 672
perturbation

Hamiltonian, 124
theory, first-order, 127
theory, second-order, 129

phase
matching, 396

type I/type II, 400
squeezing/quadrature, 480
transformation, 501
velocity, 95, 678

phase space
electromagnetic, 103
for quantum optics, 172
mechanical, 8, 48, 103
multimode, 185
single-mode, 38

phase-changing perturbation, 443
phase-conjugating amplifier, 507
phase-flip, 627
phase-insensitive

amplifier, 501
noise, 427, 501

phase-sensitive amplifier, 502
phase-transmitting amplifier, 506
phasor, 149
phonons, 422
photoconductive devices, 266
photodiodes, 282
photoelectric

detection, 265, 267
effect, 9

photoelectron counting statistics, 275
photoemissive detection, 535
photomultiplier tube, 276, 281
photon, 43

anti-pairing, 623

approximate localizability, 232
beam amplifier, 267
bunching, 314, 456
gun, 496
indivisibility experiment, 25
light quanta, 3
localizability, 106
pairing, 317
position operator, 106

photonic bandgap, 339, 603
photothermal detection, 266
photovoltaic devices, 266
piece-wise paraxial, 237
planar

cavity, 669
wave, 95, 246

Planck
constant, 8
distribution, 16
spectrum, 5

Poincaré sphere, 57
point

detector, 272
spectrum, 648

Poisson
distribution, 153, 276
equation, 661

polar vector, 668
polarization

amplitude, 104
components, 665
density, 670
vector, 665

polarized light, 56
polarizing beam splitter, 253
polychromatic

field, 89
space, 98

population
inversion, 20, 376, 511
operator, 356

port, 245
position

operator, 106, 111, 682
space, 651

positive-definite
matrix, 124, 271, 650
operator, 108, 648

positive-frequency part, 72, 87
postselection, 636
power spectrum, 88, 97, 221, 271, 662
Poynting theorem, 92, 662
principal

gain, 521
part, 657
quadrature, 520

principle
of causality, 93, 672
of detailed balance, 7, 18, 544
of locality, 578
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of realism, 578
of separability, 195

probability
amplitude, 31, 106, 113, 127
density, 172, 659
distribution, 50
function, 659

product vector, 114
projection

of the density, 530
operator, 648

propagation segment, 237
pulse length, 227
pump beam, 402
pure state, 49, 683
purity (of a quantum state), 54, 203

Q-function, 178
quadrature operator, 299
quantum

back action, 153, 419
circuit, 632
cloning machine (QCM), 611
computer

one-way, 638
reversible, 631

dense coding, 621
efficiency, 159, 276
electrodynamics, 113
fuzzball, 474
gate, 631
jump, 557
key distribution, 617
Langevin equation, 422
Liouville equation, 51
nondemolition

counter, 267
measurement, 419

optics, 1
parallelism, 631
register, 631
regression, 454
state

diffusion, 575
reconstruction, see tomography

trajectory, 573
quarter-wave plate, see retarder plate
quasiclassical, 148
quasimonochromatic, 88
quasiprobability density, 173
qubit, 607

control/target, 633
qudit, 607

Rabi
frequency, 134
operator, 135, 268
oscillations (flopping), 373, 381

radiation
gauge, 22, 116, 661

oscillator, 38, 151
reaction, 428
zone, 358

radiative corrections, 360
Radon transform, 531
raising operator, 43, 356
Raman scattering, 143
random

telegraph signals, 563
variable, 660

rate equation, 378
raw key, 618
Rayleigh range, 220, 227, 515
Rayleigh–Jeans law, 8
realistic theory, 584
reciprocal

device, 255
space, 651

rectifying detection, 266
reduced density operator, 197, 538
reduction of the wave packet, 52, 194, 684
reflection amplifier, 509
regenerative amplifier, 502
rephasing time, 386
reservoir, 422
resolution of the identity, 683
resonance

condition, 354
fluorescence, 457

resonant
enhancement, 392
Hamiltonian, 352
wave approximation, 354

retarder plate, 238
half-wave plate, 641
phase shifter, 238
quarter-wave plate, 641
wave plate, 640

revival of a cavity state, 386
robust, 482, 552
root mean square (rms) deviation, 51
rotating wave approximation, 354
Rydberg

atom, 141, 267, 387
level, 141, 267

S-polarization, 239, 292
sample, 420, 538
saturation, 157

intensity, 460
scalability (for quantum computing), 634
scans (in tomography), 529
scattered

annihilation operator, 242
classical field, 237

scattering
channels, 237
matrix, 238, 242

Schmidt
decomposition, 198
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rank, 199
Schottky diodes, 266
Schrödinger

equation, 684
picture, 40

second-harmonic generator, 534
second-order perturbation theory, 129
self-action, 392
self-adjoint

matrix, 650
operator, 648

self-focussing, 417
self-phase modulation, 417
semiclassical

approximation, 111
electrodynamics, 4, 111
Hamiltonian, 370
limit, 369

sensitivity function, 270
separable

boson state, 209
Hilbert space, 170, 647, 681
mixed state, 204
pure state, 202
two-photon state, 211

shelving state, 559
sifted key, 618
signal and idler fields, 316, 402
signal reservoir, 422
signal-to-noise ratio, 526
single-microwave-photon counter, 267
single-photon

counter, 266
counting rate, 271
detection, 268
interference, see interference
on demand, 496
Rabi frequency, 136
velocity in a dielectric, 324

singlet state, 201
singlet-like state, 252
SIS (superconducting–insulator–

superconducting) devices,
266

slow axis, 640
slowly-varying envelope

approximation, 89
fields, 89
operator, 223, 430

space-like separation, 578
span of a set of vectors, 44, 646
spatial

dispersion, 88, 672
filtering, 260
inversion, 118, 667
separability, 578
translation, 112, 174

speckle pattern, 158
spectral

density, 274

function, 5, 273
width, 663

spectrometers, 275
spin-up/spin-down state, 201, 351
spontaneous

down-conversion (SDC), 400
emission, 16, 443

subspace, 360
spot size, 227, 515
square integrability, 681
square-law detection, 265
squeezed

along quadrature X, 474
coherent state, 478
multimode state, 478
states, 470
vacuum, 470

squeezing
generator, 476
of an intra-cavity field, 488
of emitted light, 490
operator, 475
parameter, 475
transformation, 475

standard quantum limit, 151, 279
states in quantum theory

mixed state, 49
pure state, 49, 683

stationary density operator, 121
statistical separability, 582
step function, 656
stiff differential equations, 572
stimulated emission, 16
Stokes parameters, 57
stop, 260
strictly monochromatic, 88
strong-separability condition, 587
sub- and super-Poissonian statistics, 280
sum-frequency generation, 399
summation convention, 645
super operator, 544
superposition

principle, 114, 680
state, 49

susceptibility
linear, 88, 94, 672
nonlinear, 392

symmetric group, 206
symmetrical

ordering, 48
product, 686

symmetry transformation, 119

TE-polarization, 239
technical noise, 300, 499
teleportation gate, 637
temporal width, 274
tensor product

for quantum electrodynamics, 116
of general Hilbert spaces, 196
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of operators, 197
test function, see good function
thermal

distribution in number, 59
state, 177

third-harmonic generation, 412
Thompson scattering, 11
three-wave mixing, 392
time

reversal, 118, 667
translation, 123, 225, 684

TM-polarization, 239
tomography

classical, 529
optical homodyne, 532
quantum, 529
quantum-state, 533

total number operator, 46
trace

of a matrix, 650
of an operator, 173, 683
partial, 198

trajectory
classical, 39, 103
quantum, 573

transit broadening, 458
transition

probability, 127
rate, 128, 130, 140

transpose matrix, 650
transversality condition, 663
transverse

delta function, 36
relaxation time, 377
vector field, 35

trapping state, 497
traveling-wave amplifier, 502
trombone prism, 324
tunneling time, 337
two-channel device, 248
two-level atoms, 351
two-photon

coherent state, 472, 478
interference, 315

uncertainty relation
canonical, 690
generalized, 690

uncorrelated quantum fluctuations, 203
undepleted pump approximation, 402
uniaxial crystal, 677
unitary

matrix, 650

operator, 649
universal cloning machine, 609
unperturbed Hamiltonian, 124
unpolarized light, 55
unused port, 248, 255
up-conversion, 399

vacuum
fluctuation, 45, 253

field strength, 61
Rabi flopping, 385
state, 43, 45

variance, 51, 150
normal-ordered, 474

vector
norm, 647
space, 645

velocity operator, 117, 694
Verdet constant, 256
von Neumann

entropy, 55
projection postulate, 52, 193, 684

wave
coordinates, 513
packet, 46, 74, 104, 168

operator, 104
quantization, 103

plate, see retarder plate
weakly dispersive medium, 91
weakly nonlinear media, 392
Weisskopf–Wigner method, 360
Weyl product, 175, 686
which-path information, 308, 325
white noise, 434
white-light fringe, 314, 346
Wien’s law, 18
Wigner

distribution and characteristic function,
173

theorem, 119
work function, 10
world, 422

density operator, 425
Hamiltonian, 423

X gate, 632

Y-junction, 254

Z gate, 633
zero-point energy, 45
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