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PHASE CONJUGATE OPTICS

This chapter deals with optical phase conjugation that can be generated in a medium
with third order nonlinear susceptibility. The path of the phase conjugate wave retraces
itself. This is analogous to playing a videotape backward, or in other words, a time-
reversed videotape. The chapter begins with an illustration of the striking differences
between an ordinary mirror and a phase conjugate mirror.

8.1 THE PHASE CONJUGATE MIRROR

The manner of reflection from a phase conjugate mirror is compared with that of a
plain, ordinary mirror in Fig. 8.1 [1]. With the ordinary mirror in Fig. 8.1a, the reflected
wave not only changes its direction in accordance with the orientation of the mirror, but
also keeps on diverging if the incident light is diverging. On the other hand, the wave
reflected from the phase conjugate mirror heads back to where it came from regardless
of the orientation of the mirror. Furthermore, if the incident wave is a diverging wave,
the reflected wave becomes a converging wave. The wave reflected from the phase
conjugate mirror is called a phase conjugate wave.

The phase conjugate wave formed by an ordinary hologram provides greater insight
into this phenomenon, as explained in the next section.

8.2 GENERATION OF A PHASE CONJUGATE WAVE USING A HOLOGRAM

A phase conjugate wave can be generated almost in real time if a special type of
nonlinear crystal or gas is used. Even though an ordinary hologram cannot operate in
real time, it is useful for explaining the principle of generating the phase conjugate
wave [2,3]. Figure 8.2 shows the geometry for recording a hologram using photo-
graphic film. Let O be the field emanating from a point object o onto the photographic
film, and R be the reference wave emanating from the reference point source r onto
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Figure 8.1 Difference between (a) a plain, ordinary mirror and (b) a phase conjugate mirror.

the same photographic film. The O and R waves form an interference fringe pattern.
The exposed and developed photographic film is filled with hyperbolic-shaped, silver-
grained, miniature mirrors as shown in Fig. 8.2. The transmittance of such a fringe
pattern was given in Eq. (1.261) as

t D t0 � ˇ[jRj2 C jOj2 C ORŁ C OŁR] �8.1	

When this hologram is illuminated by RŁ, the fourth term, ˇOŁR, in the square
bracket generates the phase conjugate wave jRj2OŁ. This is the shortest mathemat-
ical explanation of the generation of the phase conjugate wave OŁ. Here, however, a
graphical explanation is attempted because it can readily be used for explaining related
phenomena.

Referring back to Fig. 8.2, a new point light source r0 and a convex lens are arranged
such that its path retraces the original reference wave R from the opposite direction.
This light is RŁ, the complex conjugate of the original R (we see in Section 1.5.4 that
Eq. (1.162) is the complex conjugate of Eq. (1.161).), and the hologram is illuminated
by RŁ. The normals to the miniature mirrors are always oriented in the plane of the
bisector of the angle between the object O and reference R beams. For instance, the
surface of the small mirror at point c is in a plane that bisects 6 ocr made by oc and
cr, and thus, ˛ D ˛0 and RŁ is reflected toward the object point o.

In conclusion, RŁ (pump wave) from r0 generates a wave that traces back the object
wave O and converges to the source point. This wave is OŁ, the phase conjugate of the
O wave. The phase conjugate wave can be separated from the signal wave by means
of a half-mirror (HM). It would seem that the OŁ wave is the exact retrace of the O
wave but the photons of the OŁ wave come from the pump wave RŁ, and not from
the original point source o. The intensity of the reflected wave is controlled by the
efficiency of the small mirrors and the intensity of the pump wave RŁ. The intensity
of the phase conjugate wave OŁ can be even larger than that of the O wave and, as
such, serves as a useful way of amplifying the intensity.
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Figure 8.2 Phase conjugate wave generated by a hologram. HM is a half-mirror.

In the hologram in Fig. 8.2, the generation of the phase conjugate wave requires
the participation of the following three waves: the object wave O, the reference wave
R, and the reconstruction wave RŁ. Including the phase conjugate wave OŁ, a total of
four waves are involved — hence the term four-wave mixing (FWM). Discussions on
holography and phase conjugation generally use different terminology, as summarized
in Table 8.1.

Table 8.1 Comparison of terminology

Wave in Fig. 8.2 Holography Phase Conjugation

O Object wave Signal wave
R Reference wave First pump wave
RŁ Reconstruction wave Second pump wave
OŁ Phase conjugate of the object wave Phase conjugate wave
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In the present example, all the waves are at the same frequency, which is said to be
the degenerate case. In the nondegenerate case, a phase conjugate wave is generated
by mixing waves of different frequencies.

8.3 EXPRESSIONS FOR PHASE CONJUGATE WAVES

The expression for the phase conjugate wave will be explained taking a spherical wave
as an example. The expression for a diverging spherical wave is

Es�r, t	 D Re E�r, ω	e�jωt �8.2	

where

E�r, ω	 D A0

r
ejkrCj� �8.3	

and where A0 is a constant real number.
The phase conjugate wave Epc�r, t	 of this signal wave is obtained by performing

the conjugation operation on every term except the temporal term, namely,

Epc�r, t	 D Re [EŁ�r, ω	e�jωt] �8.4	

where

EŁ�r, ω	 D A0

r
e�jkr�j� �8.5	

The term e�jkr/r indicates a converging spherical wave (see Section 1.5.4). The phase
conjugation converts a diverging spherical wave into a converging spherical wave, and
vice versa.

The phase conjugate wave is sometimes called a time-reversed wave. If the sign of
the temporal term in Eq. (8.2) is reversed, that is, t ! �t, then

Epc�r, t	 D Re
(
A0

r
ejωtCjkrCj�

)
�8.6	

which is identical to Epc�r, t	 given by Eq. (8.4). This means that Epc�r, t	 is obtained
by reversing the time. Epc�r, t	 is like a motion picture played backward.

It is important to understand the meaning of �. Let us compare the phases between
two diverging spherical waves with and without �. From Eqs. (8.2) and (8.3), these
spherical waves are given by

Es�r, t	 D Re
(
A0

r
e�jωtCjkrCj�

)
�8.7	

Ed�r, t	 D Re
(
A0

r
e�jωtCjkr

)
�8.8	

The waves are observed at a particular radius r D r0. The phase of Es�r, t	 at t D t is
identical to the phase of Ed�r, t	 at t D t � �/ω. This means that the phase of Es�r, t	
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Ordinary reflection

Phase conjugate reflection

Comparison of ordinary reflection and phase conjugate reflection.

is equal to the phase that Ed�r, t	 had �/ω seconds earlier. Thus, � means that the
phase of Es�r, t	 is delayed from that of Ed�r, t	 by � radians.

On the other hand, when the phase conjugate waves with and without � are com-
pared, the corresponding expressions are

Epc�r, t	 D Re
(
A0

r
e�jωt�jkr�j�

)
�8.9	

Ec�r, t	 D Re
(
A0

r
e�jωt�jkr

)
�8.10	

The phase of Epc�r, t	 at t D t is equal to the phase that Ec�r, t	 will have at t D
t C �/ω. Hence, � means that the phase of Epc�r, t	 is leading by � radians.

In conclusion, the phase conjugate wave propagates in the reverse direction of the
signal wave. The phase is also reversed and if the phase of the signal wave is delayed
by � radians, then that of the phase conjugate wave is leading by � radians. This is
just like a train reversing its direction. The trailing coach becomes the leading coach
if the phase is compared to the location of the coach.

8.4 PHASE CONJUGATE MIRROR FOR RECOVERING
PHASEFRONT DISTORTION

One of the most important applications of the phase conjugate mirror is for eliminating
wavefront distortion incurred during light transmission through a turbulent atmosphere
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or dispersive optical fiber. The holographic principle will be used for explaining the
recovery of the wavefront free from distortion.

First, the amount of fringe pattern shift due to the phase shift of the incident wave
will be calculated. Figure 8.3a shows the fringe pattern formed by two counterpropa-
gating plane waves:

E1 D A1e
�jωtCjkz �8.11	

E2 D A2e
�jωt�jkz �8.12	

If the amplitudes are equal, A1 D A2 D A, then the sum of E1 C E2 can be expressed
as

E1 C E2 D 2Ae�jωt cos kz �8.13	

The intensity peaks of Eq. (8.13) appear at every half-wavelength, as shown by the
solid lines in Fig. 8.3a. Let us focus our attention on the particular peak at the center
z D 0 in order to find how much the peak moves when one of the two waves shifts its
phase. Let us say the phase of the forward wave E1 is delayed by � radians, and

E0
1 D A1e

�jωtCjkzCj� �8.14	

The interference pattern between E0
1 and E2 then becomes

E0
1 C E2 D 2Ae�jωtCj�/2 cos�kz C �/2	 �8.15	

Peaks appear when the value inside the parentheses in Eq. (8.15) is zero, and the new
location of the center peak is at

z D �1

k

�

2
�8.16	

As a matter of fact, all peaks shift by z toward the left or toward the source of
the delayed incident wave, as indicated by the dashed lines in Fig. 8.3a. This shift
of the fringe pattern plays an important role in recovering the wavefront free from
distortion.

Figure 8.3b explains how the wavefront disrupted by passing through a distorting
medium is restored by means of the phase conjugate mirror. Let us say a plane wave
whose wavefront is represented by the solid line in Fig. 8.3b(i) is incident from the
left to the right. A rectangular shaped distorting medium whose refractive index is
larger than that of the surrounding medium is placed in the way. The portion of the
wavefront that has passed through the distorting medium is delayed, and the shape of
the wavefront upon leaving the distorting medium becomes indented and resembles
the letter C, as indicated by the solid line in Fig. 8.3b(ii). A hologram is generated
from this distorted wavefront O and the reference wave R originating from point r.
The recorded fringes in the hologram have protrusions shaped like the letter C in their
pattern. The direction of the protrusion is toward the source of the incident wave as
explained using Fig. 8.3a.

Next, consider the case when this hologram is illuminated by the pump wave
RŁ from the point source r0. Compare the ray that is reflected from the protruding
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Figure 8.3 A phase conjugate wave is restored from the influence of a phase-distorting medium.
(a) Fringe pattern formed by two counterpropagating plane waves. (b) Explanation of how the wavefront
disrupted by passing through a distorting medium is restored by means of the phase conjugate mirror.

section of the small mirror and the ray reflected from the nonprotruding section.
Not only does the ray reflected from the protruding section reach the mirror sooner,
but also the point of reflection is shifted toward the left, and the wavefront OŁ
reflected from the hologram has a C-shaped dent as indicated by the dashed line
in Fig. 8.3b(iii).

The shapes of the indentation in the O wave in Fig. 8.3b(ii) and the OŁ wave in
Fig. 8.3b(iii) are the same, but the difference is in their direction of propagation. They
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Figure 8.4 Recovery of the original parallel beam from a disturbed beam by means of a phase
conjugate mirror. , Signal beam. - - - - , Phase conjugate beam.

are propagating in opposite directions, and the indented part of the O wave is delayed,
but that of the OŁ wave is in the lead.

If the OŁ wave continues to propagate to the left and passes through the same
distorting medium again, only the distorted portion of the wavefront is delayed, and
the wavefront of the emerging wave recovers from the distortion, as indicated by the
dashed line in Fig. 8.3b(iv).

Next, let us consider the more general case where the distorting medium has an
irregular shape, as shown in Fig. 8.4. The particular ray path abcd is examined. At
point d, the nature of the phase conjugate mirror directs the reflected wave exactly
toward the direction from which it came. Once this direction of the retrace is set at
point d, the rest of the paths are solely determined by Snell’s refraction law. Snell’s
law is reciprocal, which means that regardless of whether the ray goes from left to right
or right to left, it takes the same path. Thus, the reflected ray takes the path of dcba,
which is exactly the reversal of abcd, and the reflected wave becomes an undistorted
parallel beam.

8.5 PHASE CONJUGATION IN REAL TIME

In the previous sections, in order to explain the method of generating a phase conjugate
wave, a photographic film was used as the recording medium. For most applications,
however, it is unrealistic to wait for the film to be developed. For real-time operation,
the film has to be replaced by a more suitable recording medium. Third order nonlinear
media are used. The refractive indices of such media change in real time when exposed
to light [3,4].

The most commonly used materials are photorefractive crystals such as BaTiO3,
LiNbO3, LiTaO3, and Bi12SiO20 (BSO). These photorefractive crystals have a large
nonlinear susceptibility, and the values of �eff are in the range of 10�20 –10�23�V/m	2.
The light intensity required to produce a noticeable effect can be as small as 1 mW/cm2,
which means lasers with output powers of the order of tens of milliwatts will suffice.
The drawback with these crystals is the slow response time, which ranges from a few
seconds to hours.
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Nonlinear Kerr media such as glass, calcite, YAG, sapphire, benzene, liquid crystal,
and semiconductors are an alternative to photorefractive crystals. Semiconductors like
chromium-doped gallium arsenide (GaAs:Cr), iron-doped indium phosphide (InP:Fe),
or titanium-doped indium phosphide (InP:Ti) change their energy band gap when illu-
minated by high-intensity light and hence change their refractive index. Their nonlinear
susceptibility is low and �eff D 10�22 –10�32�V/m	2, but the response time is as fast
as 10�8 –10�12 seconds.

Yet another possibility are materials that display either stimulated Brillouin scat-
tering (SBS) or stimulated Raman scattering (SRS). Examples of such materials are
gaseous methane �CH4	, carbon dioxide �CO2	, liquid carbon disulfide �CS2	, alcohol
�C2H5OOH	, and glass. The magnitude of �eff is 10�32 –10�34�V/m	2 and the response
time is 10�8 –10�9 seconds.

8.6 PICTURE PROCESSING BY MEANS OF A PHASE
CONJUGATE MIRROR

If the distorting medium in Fig. 8.3b is replaced by an inhomogeneous medium such as
turbulent air, the system in Fig. 8.3b can be used immediately for correcting a distorted
image.

Figure 8.5 shows an arrangement for compensating for the distortion caused by
transmission of the signal light through an in homogeneous medium. Referring to
Fig. 8.5, a light source illuminates the input mask, and the signal light from the input
mask undergoes distortion as it passes through the turbulent air. The distorted signal
is incident onto the phase conjugate mirror. The signal light reflected from the phase
conjugate mirror reverses the sign of its phase. By going through the same inhomoge-
neous medium a second time, the distortion in the reversed phase is exactly canceled.
The corrected wavefront reaches the image plane by way of the half-mirror. The loca-
tion of the image plane is set such that the total distance between the input mask to
the phase conjugate mirror is identical to that between the phase conjugate mirror and
the image plane.

Input mask Half-mirror

Turbulant air

Image plane

S

Phase conjugate
mirror

Figure 8.5 Arrangement designed to compensate for the wavefront distortion incurred during trans-
mission through turbulent air.
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(a) (b)

Figure 8.6 Image restoration by means of a phase conjugate mirror. (a) Image through a distorted
sheet of glass. (b) Image restored by means of a phase conjugate mirror. (Courtesy of J. Feinberg [5].)

It is important to realize that the wavefront has to retrace the same inhomogeneity.
For this to be true, the air turbulence has to be stationary for the duration of the round
trip of the signal light through the air turbulence.

Figure 8.6 shows the result of an experiment to demonstrate the effectiveness of
compensation using such an arrangement as shown in Fig. 8.5 [5,6]. A sheet of surface-
distorted glass was used instead of turbulent air. Figure 8.6a shows the image obtained
using an ordinary mirror in place of the phase conjugate mirror. Figure 8.6b shows the
restored image of the cat obtained using the phase conjugate mirror.

The arrangement shown in Fig. 8.5 has another application. By removing the inho-
mogeneous medium it can be used as a photolithography machine. The image of the
input mask can be projected onto a substrate in the image plane. The system not only
does away with imaging lenses but also avoids direct contact of the input mask with
the substrate.

8.7 DISTORTION-FREE AMPLIFICATION OF LASER LIGHT BY MEANS OF
A PHASE CONJUGATE MIRROR

The same principle for compensating distortion caused by inhomogeneity in Fig. 8.5
can be used to construct a light amplifier whose output light is free from distortion [7].
Problems of inhomogeneity normally occur within a high-power semiconductor laser
amplifier. This can be compensated using the arrangement shown in Fig. 8.7, which is
nothing but a modification of Fig. 8.5.

Figure 8.7a shows a semiconductor laser without compensation. The inhomogeneity
of the amplifier generates wavefront distortion in the output light. In Fig. 8.7b, a phase
conjugate mirror is placed in the amplified output light. The reflected phase conjugate
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Half-mirror
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Lower power laser
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High-power
laser beam
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Figure 8.7 Compensation of distortion with phase conjugate (PC) mirror. (a) Amplification of light
with distortion. (b) Amplification of light without distortion.

wave retraces through the inhomogeneity in the amplifier and takes the path of the
original laser beam without distortion. The distortion-free amplified output exits by
way of the half-mirror.

8.8 SELF-TRACKING OF A LASER BEAM

By nature, the phase conjugate wave retraces the path to the original source. Making
use of this property, optical tracking or self-targeting systems can be realized [1,7].

Figures 8.8 –8.10 show examples of such systems.
Figure 8.8 shows an arrangement for directing a high-intensity laser beam to a point

target. The target is illuminated by a laser. A portion of the light scattered by the target
is intercepted by the optical amplifier and is amplified. The amplified output is incident
onto the phase conjugate mirror. The reflected phase conjugate wave enters the optical
amplifier again. The output from the amplifier is not only amplified twice but also
converges to the point target. In Fig. 8.9, several self-targeting systems are combined
to achieve super-high-intensity light concentrated on a single target with the goal of
initiating thermal fusion of the pellet target. As long as the depth of the phase conjugate
mirror is longer than the longest path differences among the targeting systems, the
pulses from each system coincide at the pellet target and provide super-high-intensity
light to the target.

Figure 8.10 shows another example of a tracking system [8]. This time, however,
the arrangement is slightly different. Site A sends out a pilot light S through a turbulent
medium to Site B. The pilot light contains information about the turbulence. At Site B,
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Figure 8.8 Optical self-targeting by means of a phase conjugate (PC) mirror. (After V. V. Shkunov
and B. Ya Zel’dovich [7].)
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Figure 8.9 Synchronized pulses from parallel amplifiers. (After D. M. Pepper [3].)



516 PHASE CONJUGATE OPTICS

S
S*

Image plane

Site A

Turbulant median

P1

Pump 1
Photorefractive

crystal

Site B

Input
mask

Pump 2

P2

Figure 8.10 Tracking source with one-way transmission through turbulance. (After B. Fischer
et al. [8].)

the pilot light is mixed with the pump wave P1 to form a holographic fringe pattern
in a photorefractive crystal.

The information signal, a picture of the letter A, is to be sent back from Site B,
passing through the same turbulent medium to Site A. Pump beam P2 propagating in
the opposite direction from P1 illuminates the input mask of the letter A and then illu-
minates the holographic fringes. The wave SŁ diffracted from the holographic fringes is
the phase conjugate wave of the source wave S that has come through the turbulence.
SŁ goes through the turbulence and the original wavefront is recovered and propagates
toward Site A. The letter A will be imaged at Site A.

In the previous arrangements, the signal wave had to go through the turbulence
twice, but what is unique about the present arrangement is that the signal wave goes
through the turbulence once and the pump wave goes through once. It is a more
practical configuration for transmitting information over a distance.

An interesting modification is that if the mask of the letter A is replaced by a fast-
speed electronic shutter, then pump wave P2 is temporally modulated and a free-space
optical communication link immune to turbulence is established.
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Another application of the self-tracking capability of the phase conjugate wave is the
adaptive fiber coupler. The adaptive fiber coupler is a coupler that does not need critical
alignment between the two connecting fibers [9]. Figure 8.11a shows the geometry of
the coupling. A photorefractive crystal such as barium titanate �BaTiO3	 is placed
inside an optical resonator formed by a pair of ordinary mirrors. Mirror M1 is placed
on one side of the crystal. A partially reflecting mirror M2 has been deposited on the
facet of fiber 2. M2 is arranged to be parallel to M1 so as to form an optical resonator.
Light incident from fiber 1 is scattered by impurities in the crystal. The lightwave
scattered in the direction perpendicular to mirrors M1 and M2 bounces back and forth
between M1 and M2. Let the wave going horizontally from left to right be the pump
wave P1 and that going from right to left be pump wave P2.

Fringes

P2P1

M1 M2

Fiber 2

(a)

c

P2P1
M2

Fiber 2
c

F1

Fiber 1

(b)

F1

Fiber 1

Figure 8.11 Adaptive fiber coupler. (a) Coupling between fibers 1 and 2. (b) When fiber 1 is moved,
coupling adaptively continues.
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Note that there is no external pump wave in this configuration. There is a special reason
for using the photorefractive crystal as the phase conjugate element. For instance, when a
nonlinear Kerr medium such as calcite is used, the recorded fringe pattern is an exact replica
of the interference pattern of the incident lightwaves. However, when a photorefractive
medium like BaTiO3 is used, the recorded fringe pattern is shifted from that of the interference
pattern of the incident lightwaves because, as mentioned in Section 5.7.2, the change in
refractive index is proportional to the spatial derivative of the light intensity rather than the
light intensity itself. Because of this fringe pattern shift, when two beams of equal intensity
cross in a photorefractive medium as shown in Fig. 8.12a, the two outputs are uneven and
the power at d is larger than at b. The energy is pulled toward the direction of the crystal
axis c of the crystal. This is called the two-wave mixing gain of a photorefractive material.

With the configuration shown in Fig. 8.11, the light energy is preferentially bent toward
M2. This method of generating a conjugate wave without external pump waves is called
self-pumped phase conjugation (SPPC).

Figures 8.12b and 8.12c show a few more SPPC configurations of the conjugate mirrors.
In Fig. 8.12b, the walls of the crystal replace the external mirrors. Figure 8.12c makes use of
total internal reflection at the crystal walls [10,11]. The SPPC configurations have significant
practical value.

c

Equal power

a

c

c

c

d

b
Lower power

Higher power

(a)

(b)

(c)

Ep1

Ep1

Es

Ec

Ep2

Ep2

EcEs

Figure 8.12 Self-pumped phase conjugation. (a) The direction of the energy transfer. (b) SPPC
without external cavity. (c) SPPC with total internal reflection.
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The incident light F1 from fiber 1 and pump wave P1 start forming holographic
fringes. The direction of the fringes is such that the incident wave F1 from fiber 1 is
directed toward the input facet of fiber 2 and the connection is made between fibers 1
and 2.

If a misalignment of fiber 1 takes place, as shown in Fig. 8.11b, the direction of the
fringe pattern in the crystal rotates such that F1 is still reflected toward fiber 2. There
is, however, a decrease in the energy transfer into the optical resonator. As the bisect
between F1 and P1 moves away from the crystal axis, the diffraction efficiency from
the photorefractive crystal decreases.

It should be noted that no external pump light is necessary in this coupler. The
light F1 from fiber 1 is transferred to the pump waves, and light energy pours into the
optical resonator from the light F1 of fiber 1.

8.9 PICTURE PROCESSING

By combining a pair of phase conjugate mirrors and a multiexposed hologram, an
associative memory system such as shown in Fig. 8.13 can be constructed. The system
can identify which one of a collection of memorized pictures best fits the interrogating
obscure picture [12].

Let us say that the memorized pictures are of a cat, a dog, and a monkey. In
memorizing these animal pictures, the angle of incidence of the reference beam is
changed each time the input picture is exposed to the photographic film. Let us say
the incident angle of reference beam R1 used for recording the cat O1 is at 10° from
the normal to the photographic film. Reference beam R2 used for recording the dog
O2 is at 20°, and reference beam R3 used for the monkey O3 is at 30°. After all three
exposures are completed, the photographic film is developed and placed in the system
shown in Fig. 8.13b.

The operation of the system will be explained with a picture of a cat as the inter-
rogating picture. The transmittance t of the multiexposed hologram is

t D ˇ
3∑
iD1

�Ri C Oi	�R
Ł
i C OŁ

i 	

D ˇ
3∑
iD1

�jRij2 C jOij2 C RŁ
i Oi C RiO

Ł
i 	 �8.17	

where ˇ is a constant characterizing the photographic film. Only the fourth term,

t4 D ˇ
3∑
iD1

RiO
Ł
i �8.18	

is of concern. When the hologram is illuminated by the light pattern O1 of the cat, the
output light from the hologram is

t4O1 D ˇ�R1O
Ł
1O1 C R2O

Ł
2O1 C R3O

Ł
3O1	 �8.19	
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Figure 8.13 Associative memory system. (a) Multi-exposed hologram. Three exposures are made
on the same hologram. At each exposure, the direction of the reference beam is changed. (After
D. M. Pepper [3].) (b) Interrogation of the input image. (c) With a portion of the portrait as the input,
the image of the entire face is recovered. (Courtesy of Y. Owechko et al. [12].)
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The first term predominates in Eq. (8.19), because not only do the amplitude distri-
butions of O1 and OŁ

1 match, but also the phase angle of OŁ
1O1 is constant (zero)

throughout the pattern. The output t4O1 from the hologram is essentially R1 with
reduced intensity.

Beam R1 emergent from the hologram is now reflected by the right-hand-side phase
conjugate mirror and the reflected beam becomes RŁ

1. The hologram is now reillumi-
nated by RŁ

1. The contribution of the fourth term in Eq. (8.17) to the light transmitted
through the hologram is

t4R
Ł
1 D ˇ�OŁ

1R1R
Ł
1 C OŁ

2R2R
Ł
1 C OŁ

3R3R
Ł
1	 �8.20	

The contribution of the first term of Eq. (8.20) is predominant because the phase angle
of R1RŁ

1 is exactly zero, while that of R2RŁ
1 is 10° and that of R3RŁ

1 is 20° and propagates
off axis. The emergent beam from the hologram becomes OŁ

1.
OŁ

1 is further converted into O1 by the phase conjugate mirror on the left-hand side
and finally reaches the output image plane by way of the half-mirror HM2. The image
of the cat is formed by means of the imaging lens L2. The beam that passes through the
half-mirror HM2 will repeat the same process to enhance the sensitivity of the system.

The sensitivity of the system can be improved significantly if a photographic film
with a thick emulsion is used for fabricating the hologram. The sensitivity of the
brightness of the reconstructed image to the angle of incidence of the reconstructing
beam is enhanced due to the increased sizes of the miniature mirrors in the fringe
pattern in the emulsion [2]. In fact, if the photographic film is replaced by a volume
holographic material such as a BaTiO3 crystal, a significant improvement in sensitivity
and flexibility is achieved.

The power of discrimination can be adjusted by the threshold level of the phase
conjugate mirror, and even a picture of the cat’s brother or a faded imperfect input
image can still be interrogated. Such a system is useful for interrogating handwritten
letters or for fingerprint detection.

Figure 8.13c gives a similar demonstration for a portrait. Using only a portion of
the portrait as input, the entire portrait is generated as a result of the interrogation.

8.10 THEORY OF PHASE CONJUGATE OPTICS

The theory of phase conjugate optics will be presented. Even though the level of
treatment is elementary, it is still useful for solving practical problems.

8.10.1 Maxwell’s Equations in a Nonlinear Medium

Maxwell’s equations are the starting point for the quantitative representation of nonli-
near phenomena [13–19]. Maxwell’s equations are repeated here for convenience:

W× E D �∂B
∂t

�8.21	

W× H D J C ∂D
∂t

�8.22	

W · D D " �8.23	

W · B D 0 �8.24	
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where

D D #0E C P �8.25	

B D $0H C M �8.26	

P is the induced electric polarization and is the focus of attention in this chapter. The
medium is assumed to be nonconducting and nonmagnetic. This assumption leads to

J D " D M D 0 �8.27	

From Eqs. (8.21), (8.22), (8.25), and (8.27), the following expression is obtained:

W× W× E C 1

c2

∂2E
∂t2

D �$0
∂2P
∂t2

�8.28	

where c2 D �#0$0	�1. The identities involving differential operators that will be used
to simplify Eq. (8.28) are

W× W× E D W.W · E/ � W2E �8.29	

W · D D E · W#C #W · E �8.30	

If the spatial variation W# is negligible, then Eqs. (8.23), (8.27), and (8.30), lead to

W · E D 0 �8.31	

With Eqs. (8.29) and (8.31), Eq. (8.28) becomes

W2E � 1

c2

∂2E
∂t2

D $0
∂2P
∂t2

�8.32	

Equation (8.32) can be interpreted as the wave equation of E whose source of excitation
is $0∂2P/∂t2. However, the electric polarization P is induced by E; and P is

P D #0�c
�1	 Ð E C c�2	 : EE C c�3	

...EEE C Ð Ð Ð	 �8.33	

The first term in Eq. (8.33) is proportional to E, while the rest of the terms are propor-
tional to higher orders of E. The former is called the linear part PL; and the latter, the
nonlinear part PNL of the induced electric polarization

P D PL C PNL �8.34	

where

PL D #0c�1	 Ð E �8.35	

PNL D #0�c
�2	 : EE C c�3	

...EEE C Ð Ð Ð	 �8.36	

c�i	 is the ith order optical susceptibility and is a tensor of rank iC 1. A nonlinear
dielectric medium is characterized by PNL.
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Assuming a sinusoidal time dependence and substituting for PL from Eq. (8.35) and
PNL from Eq. (8.36), the wave equation Eq. (8.32) becomes

W2E C
(ω
c

)2
E D �$0#0ω

2c�1	 Ð E C $0
∂2PNL

∂t2
�8.37	

Noting that

εr D 1 C c�1	 �8.38	

Eq. (8.37) can be rewritten as

W2E C k2
0εr Ð E D $0

∂2PNL

∂t2
�8.39	

with

k2
0 D ω2$0#0 �8.40	

8.10.2 Nonlinear Optical Susceptibilities c.2/ and c.3/

Susceptibilities with i larger than 3 are hardly used, so that only the properties of ��2	

and ��3	 are investigated here. Certain materials such as glass or NaCl have zero ��2	

but have nonzero ��3	. For experiments to be performed based solely on ��3	, such
materials are attractive because there are no second order nonlinearities, which might
complicate the results. A slight detour will be taken to explain why some materials
have zero ��2	 but nonzero ��3	.

First of all, for simplicity, let us choose

E D �E cosωt	Ox �8.41	

Since only the Ox component is considered, Eq. (8.41) can be treated as a scalar quantity.
The second nonlinearity gives

P�2	NL D 1
2�

�2	E2�1 C cos 2ωt	 �8.42	

and becomes the expression for second harmonic generation (SHG). On the other hand,
the third nonlinearity gives

P�3	NL D 1
4�

�3	E3�3 cosωt C cos 3ωt	 �8.43	

and generates the third order higher harmonic.
Generation of the higher harmonics will be examined graphically in order to find out

why crystals with inversion symmetry do not display the second order nonlinearity [19].
Figure 8.14a shows a one-dimensional model of a crystal with inversion symmetry.

It possesses an inversion symmetry with respect to any one of the ions. Let us say that
with respect to the c axis ý and � charges are symmetrically distributed. Consider an
instant that the electric field E of the light is in the positive x direction. The positive
charges move to the right, and the negative charges move to the left, as shown in
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Figure 8.14 Induced electrical polarization in a crystal with inversion symmetry. (a) No light E D 0.
(b) Light is on with E D E Ox. (c) Light is on with E D �E Ox.

Fig. 8.14b. At the next instant, the direction of E is reversed, and each charge moves
in the opposite direction and the distribution of the charges becomes like the one shown
in Fig. 8.14c. The distribution of the charges that E sees is the same for both instances,
and the amounts of polarization are the same, except for the reversal of the outermost
charges that determine the polarization polarity.

Figure 8.15a shows a plot of PNL with respect to time. Even though the shape is
distorted from a sinusoidal curve due to the nonlinearity, the shape of the curve for
positive values of polarization in the range 0 < t < T/2 is identical to that for negative
values of polarization in the range T/2 < t < T except for its sign, where T is the
period of the fundamental frequency.

If the second harmonic is present, the shapes in the first half and the second half
cannot be identical, as will be illustrated using Fig. 8.15b in which the curves of the
fundamental and the second harmonic are plotted. In the region 0 < t < T/2, the signs
of the peaks of the fundamental and second harmonic are both positive; while in the
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Figure 8.15 Graphical illustration that a crystal with inversion symmetry has zero ��2	.

region T/2 < t < T, the peaks of the fundamental and second harmonic have opposite
signs. As long as the second harmonic is added to the fundamental, the response
curve cannot have the same shape in the regions 0 < t < T/2 and T/2 < t < T, as
shown in Fig. 8.15a for a crystal with inverse symmetry. Thus, the second order optical
susceptibility ��2	 has to be zero in a crystal with inversion symmetry.

The same crystal, however, can have a third order nonlinearity. Figure 8.15c shows
the plot of the fundamental and the third harmonic. In the region 0 < t < T/2, the
center peak of the third harmonic is negative while that of the fundamental is positive.
The resultant is the difference between these two peaks. In the region T/2 < t < T, the
center peak of the third harmonic is positive while that of the fundamental is negative.
The resultant is again the difference between the two peaks, and the shape in the region
0 < t < T/2 becomes identical to that in T/2 < t < T. Thus, a crystal with inversion
symmetry can support the third order nonlinearity.
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In summary, a crystal with inversion symmetry cannot support the second order
nonlinearity but can support the third order nonlinearity. Crystals that do not possess
inversion symmetry can, in principle, support simultaneously second and third order
nonlinearities.

In the next section, we return to solving the nonlinear Maxwell’s equation.

8.10.3 Coupled Wave Equations

The first step toward solving the nonlinear Maxwell’s equation, Eq. (8.39), is to find
an expression for PNL in Eq. (8.39). In the general case of four-wave mixing, PNL is
generated from a combination of four incident waves of different frequencies.

The analytic signal is one of the most common ways of solving differential equations
in electrical engineering. A sinusoidal function, say, cosωt, is replaced by the expo-
nential ejωt and the differential equations are solved. The final answer is obtained by
taking only the real part of the solution. This method does not necessarily work for
solving problems in nonlinear optics; therefore, cosωt D 1

2 �e
jωt C c.c.	 will be used.

See the boxed note and Appendix B of Volume 1.
All incident waves are assumed to be plane waves and are made up of four waves:

E�r, t	 D
4∑
jD1

OajjAj�r, ωj	j cos��ωjt C kj Ð r C �j	 �8.44	

where Oaj are the unit vectors of the direction of polarization. The exponential expression
that is exactly equivalent to Eq. (8.44) is

E�r, t	 D 1

2

4∑
jD1

Oaj[Ej�r, ωj	e�jωjt C c.c.] �8.45	

where

Ej�r, ωj	 D Aj�r, ωj	ejkj.r �8.46	

Aj�r, ωj	 D jAj�r, ωj	jej�j �8.47	

or simply

Ej D Ej�r, ωj	

Aj D Aj�r, ωj	
�8.48	

For instance, it is well known that if two signals with frequencies ω1 and ω2 are put
into a nonlinear element, the output contains both the upper beat frequency ω1 C ω2 and the
lower beat frequency ω1 � ω2. If the analytic signal method is used for this case,

Re �ejω1t C ejω2t	2 D cos 2ω1t C cos 2ω2t C cos�ω1 C ω2	t

the lower beat frequency component is missing. A more detailed explanation can be found
in Appendix B of Volume 1.
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Similarly, the induced electric polarization is expressed as

PNL�r, t	 D 1/2
4∑
jD1

Obj[PNLj �r, ωj	e
�jωjt C c.c.] �8.49	

PNLj �r, ωj	 D Bj�r, ωj	ejkjÐr �8.50	

or simply

PNLj D PNLj �r, ωj	 �8.51	

Next, the actual values of PNL will be calculated for a Kerr medium whose suscep-
tibility is predominantly the third order ��3	.

PNL D #0c�3	
...EEE �8.52	

We assume that all E’s are nothing but the waves polarized in the x direction. E,
however, consists of waves of four different frequencies, ω1, ω2, ω3, and ω4. All four
frequencies are assumed to be in the same frequency range, say, in the visible or
infrared region. Their propagation directions and wavelengths are specified by the
complex propagation constants k1, k2,k3, and k4.

Inserting Eq. (8.45) into (8.52) gives

PNL D Ox#0�xxxx
8

�E1e
�jω1t C EŁ

1e
jω1t C E2e

�jω2t C EŁ
2e
jω2t

C E3e
�jω3t C EŁ

3e
jω3t C E4e

�jω4t C EŁ
4e
jω4t	3 �8.53	

As far as the subscript of �xxxx is concerned, the first subscript indicates the direction
of polarization of the wave emergent from the nonlinear medium and the next three
subscripts indicate the directions of polarization of the incident waves. In the present
case, all are assumed in the Ox direction. Manipulation of the cubic in Eq. (8.53) no
doubt generates many beat frequencies. The manipulation is shown in Appendix C.
We assume that frequencies associated with the third power, such as 3ω1, 3ω2, ω1 C
ω2 C ω4, and 2ω2 C ω1, are all out of the range of interest and are discarded, but
all other terms are kept. Terms with frequencies such as ω1 C ω2 � ω3, ω1 C ω2 � ω4

or 2ω2 � ω3 are of particular interest because they are all in the visible and infrared
region.

In order that a significant exchange of energy take place among the frequency
components, the generated beat frequency components have to be recycled to partici-
pate over and over again in the beating process. For instance, the beating among ω2, ω3

and ω4 creates the original frequency ω1 if the condition

ω1 D ω3 C ω4 � ω2 �8.54	

is satisfied. This ω1 frequency component again participates in the beating and creates
component ω2 in accordance with Eq. (8.54), that is, ω2 D ω3 C ω4 � ω1. These cyclic
conversions among the four frequencies are essential for four-wave mixing. If Eq. (8.54)
is satisfied, the four frequencies are said to be commensurate. Among the terms in
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Appendix C of Volume 1, the following is the set of equations that are commensurate
with each other [18].

PNL D 1
2 Ox[PNL�ω1	e

�jω1t C PNL�ω2	e
�jω2t

C PNL�ω3	e
�jω3t C PNL�ω4	e

�jω4t C c.c.] �8.55	

PNL�ω1	 D �eff�Q1E1 C 2E3E4E
Ł
2	 �8.56	

PNL�ω2	 D �eff�Q2E2 C 2E3E4E
Ł
1	 �8.57	

PNL�ω3	 D �eff�Q3E3 C 2E1E2E
Ł
4	 �8.58	

PNL�ω4	 D �eff�Q4E4 C 2E1E2E
Ł
3	 �8.59	

where

Q1 D Q� jE1j2 �8.60	

Q2 D Q� jE2j2 �8.61	

Q3 D Q� jE3j2 �8.62	

Q4 D Q� jE4j2 �8.63	

Q D 2�jE1j2 C jE2j2 C jE3j2 C jE4j2	 �8.64	

�eff D 3#0

4
�xxxx �8.65	

Four frequency components are separately associated with the nonlinear wave
equation, Eq. (8.39). PNL�ω1	 is the source of excitation of E1, and PNL�ω2	 is the
source of excitation of E2, and so on. From Eq. (8.39) and Eqs. (8.56)–(8.59), the
following simultaneous differential equations are generated:

�r2 C k2
1	E1 D �$0ω

2
1�eff�Q1E1 C 2E3E4E

Ł
2	 �8.66	

�r2 C k2
2	E2 D �$0ω

2
2�eff�Q2E2 C 2E3E4E

Ł
1	 �8.67	

�r2 C k2
3	E3 D �$0ω

2
3�eff�Q3E3 C 2E1E2E

Ł
4	 �8.68	

�r2 C k2
4	E4 D �$0ω

2
4�eff�Q4E4 C 2E1E2E

Ł
3	 �8.69	

Equations (8.66)–(8.69) are called the coupled wave equations. It should be noted that it
is the condition of Eq. (8.54) that allows E3E4EŁ

2 to participate in the generation of E1.
Inserting Eq. (8.46) into Eqs. (8.66)–(8.69), the required vector propagation constants
are found. For instance, with Eq. (8.66), the induced polarization (2nd term) has a
vector propagation constant of k3 C k4 � k2 and the excited E1 field (1st term) has the
propagation constant k1. An important condition for the maximum transfer of energy
of the induced polarization PNL into the electric field E1 is that both waves propagate
in phase throughout their paths. The condition of maximum coupling, therefore, is

k1 D k3 C k4 � k2 �8.70	
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Similarly, the maximum transfer of energy with Eq. (8.67) is k2 D k3 C k4 � k1. This
equation is exactly identical to Eq. (8.70). Similar conditions generated by Eqs. (8.68)
and (8.69) also satisfy Eq. (8.70).

In addition to the previously mentioned frequency condition, Eq. (8.54), the phase
matching condition, Eq. (8.70), has to be satisfied simultaneously for the maximum
energy coupling.Ł

In summary, the coupled wave equations govern the exchange of energy among the
four different frequency components. In the next section, solutions will be found with
an approximation imposed on the coupled wave equation.

8.10.4 Solutions with Bohr’s Approximation

Assumptions and approximations are imposed on the coupled wave equations, Eqs.
(8.66)–(8.69), to find the differential equations for the amplitudes. The first assumption
is that all waves are propagating in the z direction and

Ej D Aj�z	e
jsjkjz �8.71	

with kj D ωj
p
$0#0#r , where sj D C1 when the jth wave propagates in the positive

z direction, and sj D �1 when the jth wave propagates in the negative z direction.
Inserting Eq. (8.71) into the left hand side of Eq. (8.39) gives

�r2 C k2
j	Ej D

(
j2sjkj

dAj
dz

C d2Aj
dz2

)
ejsjkjz �8.72	

The second assumption is that the variation of Aj�z	 with respect to z is so slow that
its second derivative can be ignored compared to other terms. This approximation is
called Bohr’s approximation or the slowly varying envelope approximation. With these
approximations, Eq. (8.39) finally becomes

dAj
dz

D jsj
ωj
2

√
$0

#0#r
PNL�ωj	e

�jsjkjz �8.73	

Insertion of Eqs. (8.56)–(8.59) into Eq. (8.73) results in the following set of equations:

dA1

dz
D js1K1�Q1A1 C 2A3A4A

Ł
2e
j�s3k3Cs4k4�s2k2�s1k1	z	 �8.74	

dA2

dz
D js2K2�Q2A2 C 2A3A4A

Ł
1e
j�s3k3Cs4k4�s1k1�s2k2	z	 �8.75	

Ł In quantum mechanics, the four-photon collision has to satisfy both the conservation of energy,

h̄ω1 D h̄ω3 C h̄ω4 � h̄ω2

and the conservation of momentum

h̄k1 D h̄k3 C h̄k4 � h̄k2

where h̄ D h/2, and h is Planck’s constant.
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dA3

dz
D js3K3�Q3A3 C 2A1A2A

Ł
4e
j�s1k1Cs2k2�s4k4�s3k3	z	 �8.76	

dA4

dz
D js4K4�Q4A4 C 2A1A2A

Ł
3e
j�s1k1Cs2k2�s3k3�s4k4	z	 �8.77	

Kj D ωj
2

√
$0

#0#r
�eff �8.78	

Example 8.1 Figure 8.16 shows an arrangement for generating a phase conjugate
wave using the principle of holography [20]. Explain the operation using the coupled
wave equations.

Solution All frequencies used in the hologram are the same and

ω1 D ω2 D ω3 D ω4 D ω �8.79	

This satisfies the frequency condition in Eq. (8.54). Let E3 and E4 be the signal wave
Es and phase conjugate wave Ec, respectively. Let the propagation directions of these
two waves be along the z axis as shown in Fig. 8.16, with s3 D C1 for E3 and s4 D �1
for E4.

E3 D Es D Ase
jksz

E4 D Ec D Ace
�jkcz

�8.80	

Phase conjugate

Pump wave

Pump wave

Signal

z = 0 z = L

Ep2

Ep2

Ep1

Ec Es

Figure 8.16 Generating a phase conjugate wave from a hologram.
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Let the two pump waves Ep1 and Ep2 be represented by

E1 D Ep1 D Ape
jkp1 Ðr

E2 D Ep2 D Ape
jkp2 Ðr �8.81	

Their amplitudes are assumed equal. Furthermore, the amplitudes of the pump waves
are assumed to be so large that the depletion of the energy into either the signal or
phase conjugate waves is negligible, and the amplitudes can be considered not only
constant with respect to distance but also

jApj2 >> jAsj2

jApj2 >> jAcj2
�8.82	

The signal and conjugate waves propagate in opposite directions, so that

k3 C k4 D 0 �8.83	

and

s3 D C1

s4 D �1
�8.84	

and in order to satisfy Eq. (8.70),

kp1 C kp2 D 0 �8.85	

With Eq. (8.80)–(8.85), the coupled wave equations, Eqs. (8.76) and (8.77), become

dAs
dz

D jKf2jApj2As C A2
pA

Ł
cg

dAc
dz

D �jKf2jApj2Ac C A2
pA

Ł
s g

�8.86	

where

K D ω
√
$0

#0#r
�eff �8.87	

In order to remove the first term from the right-hand side of Eq. (8.86), the amplitude
and phase factors of As and Ac are explicitly written as

As D As0e
CjˇNLz

Ac D Ac0e
�jˇNLz �8.88	

As0 D As0�z	

Ac0 D Ac0�z	
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where

ˇNL D 2KjApj2 �8.89	

Inserting Eq. (8.88) into (8.86) gives

dAs0
dz

D jKA2
pA

Ł
c0 �8.90	

dAc0
dz

D �jKA2
pA

Ł
s0 �8.91	

Taking the derivative of Eq. (8.90) and inserting Eq. (8.91) gives

d2Ac0
dz2

CK2jApj4Ac0 D 0 �8.92	

and similarly,

d2As0
dz2

CK2jApj4As0 D 0 �8.93	

The general solution of Eq. (8.92) is

Ac0 D A cosKjApj2z C B sinKjApj2z �8.94	

From Eqs. (8.91) and (8.94), AŁ
s0 is expressed as

AŁ
s0 D j

AŁ
p

Ap
��A sinKjApj2z C B cosKjApj2z	 �8.95	

The integration constants A and B are determined from the boundary conditions:

Ac0�L	 D 0 at z D L �8.96	

As�0	 D As0�0	 at z D 0 �8.97	

From Eqs. (8.94) and (8.96), the integration constant A is

A D �B tanKjApj2L �8.98	

From Eqs. (8.95) and (8.97), the integration constant B is

B D Ap
jAŁ

p

AŁ
s0�0	 �8.99	

Inserting these constants into Eq. (8.94) and using Eq. (8.88) gives

Ac�z	 D j
Ap
AŁ
p

AŁ
s �0	e

�jˇNLz
sinKjApj2�L � z	

cosKjApj2L �8.100	
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and similarly, inserting Eqs. (8.98) and (8.99) into Eq. (8.95) and using Eq. (8.88)
gives

As�z	 D As�0	e
jˇNLz

cosKjApj2�L � z	

cosKjApj2L �8.101	

Now let us interpret the calculated results. From Eq. (8.100), the magnitude of Ac�z	
increases with distance from the back surface at z D L. Referring to Fig. 8.16, the
pump wave Ep2 is depleted into the phase conjugate wave by the deflection from the
fringes established by Ep1 and Es and is accumulated toward the front surface at z D 0.
Similarly, the signal wave As�z	 grows from the front surface to the back surface z D L
by the depletion of the pump wave Ep1 into Es. �

8.11 THE GAIN OF FORWARD FOUR-WAVE MIXING

The geometry shown in Fig. 8.16 is one example that satisfies both the frequency and
phase matching conditions. In this geometry, not only the two pump waves are coun-
terpropagating but also the signal and phase conjugate waves are counterpropagating.
In order to meet the phase matching condition of Eq. (8.70), each side of

k1 C k2 D k3 C k4 �8.102	

was set individually to zero. The frequency condition, Eq. (8.54),

ω1 C ω2 D ω3 C ω4 �8.103	

was met by letting all the frequencies be the same.
Another geometry will be investigated here. This time, all the waves are copropa-

gating in the forward direction [16,21]. It is certainly possible to meet the condition
of Eq. (8.102) by choosing identical k’s and choosing identical frequencies to meet
the condition of Eq. (8.103). In the earlier counterpropagating case, a half-mirror was
good enough to separate the phase conjugate and signal waves. This is not possible
in the copropagating case. A remedy for this is the use of multiple frequencies that
meet the frequency condition of Eq. (8.103). One way this can be done is to set the
average value of ω3 and ω4 equal to the average value of ω1 and ω2, as shown in
Fig. 8.17a.

A special case of Fig. 8.17a is shown in Fig. 8.17b. That special case occurs when ω1

and ω2 are identical, and the four-wave mixing is semidegenerate. This arrangement,
when ω1 (or ω2) is taken as a pump wave, necessitates only one pump wave and
simplifies the implementation. Figure 8.18 shows the implementation. The signal and
pump waves are fed into a dispersion-shifted fiber and the outputs are the phase
conjugate, signal, and pump waves, among which the phase conjugate wave is selected
by means of an optical filter. The core glass of the dispersion-shifted fiber is used as
the ��3	 nonlinear medium.

Next, the output powers of the signal and phase conjugate waves are calculated
using the coupled wave equations, Eqs. (8.74)–(8.77). The procedure is quite similar to
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Figure 8.17 Spectra of forward four-wave mixing. (a) Nondegenerate case. (b) Semidegenerate case.
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Figure 8.18 Forward four-wave mixing.

the reflection type presented in Example 8.1, and emphasis is placed on pointing out
the differences, as well as the significance of the phase matching condition imposed
on kj by Eq. (8.70). Referring to Fig. 8.18, let us denote

E1 D E2 D Ape
jkpz �8.104	

E3 D Es D Ase
jksz �8.105	

E4 D Epc D Ace
jkcz �8.106	
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In this case, all waves are propagating in the forward direction, and

sj D 1 �8.107	

With Eq. (8.82), the coupled wave equations, Eqs. (8.74)–(8.77), become

dAp
dz

³ j 3
2KjApj2Ap �8.108	

dAs
dz

D jK�2jApj2As C A2
pA

Ł
ce
jkz	 �8.109	

dAc
dz

D jK�2jApj2Ac C A2
pA

Ł
s e
jkz	 �8.110	

k D k1 C k2 � k3 � k4 �8.111	

In order to remove the first terms from both Eqs. (8.109) and (8.110), the amplitude
and phase factors of As and Ac are explicitly written as

As D As0e
jˇNLz �8.112	

Ac D Ac0e
jˇNLz �8.113	

ˇNL D 2kjApj2

Inserting the expressions for As and Ac in Eqs. (8.112) and (8.113) into Eqs. (8.109)
and (8.110) gives

dAs0
dz

D jKA2
pA

Ł
c0e

j�k�2ˇNL	z �8.114	

dAc0
dz

D jKA2
pA

Ł
s0e

j�k�2ˇNL	z �8.115	

The procedure for solving the differential equations starts with Eq. (8.108). The solution
of Eq. (8.108) with the boundary condition Ap D Ap�0	 at z D 0 is

Ap D Ap�0	e
jˇpz �8.116	

where

ˇp D 3
2KjApj2 �8.117	

It should be noted that both ˇp and ˇNL are a function of the intensity jApj2 and are
nonlinear with the pump field.

Inserting Eq. (8.116) into Eqs. (8.114) and (8.115) gives

dAs0
dz

D jKA2
p�0	A

Ł
c0e

jz �8.118	

dAŁ
c0

dz
D �jKA2

p�0	As0e
�jz �8.119	

where

 D 2�ˇp � ˇNL	Ck �8.120	
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With Eqs. (8.89) and (8.117), Eq. (8.120) is further rewritten as

 D k �KA2
p�0	 �8.121	

Assumed solutions

As0 D [Aegz C Be�gz]ej�/2	z �8.122	

AŁ
c0 D [Cegz C De�gz]e�j�/2	z �8.123	

are put into Eqs. (8.118) and (8.119). The prime target of this calculation is to obtain
the value of the gain g.

Let

KA2
p�0	 D a �8.124	

Inserting Eqs. (8.122) and (8.123) into Eq. (8.118) gives

[�gC j/2	A� jaC]e�gCj/2	z C [��gC j/2	B � jaD]e��gCj/2	z D 0 �8.125	

For Eq. (8.125) to be satisfied for any value of z, the values in the square brackets
have to vanish:

�gC j/2	A� jaC D 0 �8.126	

��gC j/2	B � jaD D 0 �8.127	

Similarly, inserting Eqs. (8.122) and (8.123) into Eq. (8.119) gives

jaAC �g� j/2	C D 0 �8.128	

jaB� �gC j/2	D D 0 �8.129	

Equations (8.126)–(8.129) are rearranged in a matrix form as

∣∣∣∣∣∣∣

�gC j/2	 0 �ja 0
0 ��gC j/2	 0 �ja
ja 0 �g� j/2	 0
0 ja 0 ��gC j/2	

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

A
B
C
D

∣∣∣∣∣∣∣
D 0 �8.130	

For nonzero A, B, C, and D to exist, the determinant of Eq. (8.130) has to vanish. The
value of the determinant is

[g2 C �/2	2 � a2]2 D 0 �8.131	

and finally,

g D š
√
a2 � �/2	2 �8.132	
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Putting back the parameters from Eqs. (8.121) and (8.124) gives

g D
√
�2KA2

p�0		
2 � �k �KA2

p�0		
2/2 �8.133	

Thus, for a given value of Ap, the gain g becomes maximum when

k �KA2
p�0	 D 0

That is, when the combination of the linear and nonlinear phase factors becomes zero
rather than k alone becomes zero.

If Ac0 D 0, at z D 0, from Eq. (8.123),

C D �D �8.134	

and with Eqs. (8.113) and (8.134), Eq. (8.123) becomes

Ac�z	 D 2C sinh�gz	ej�ˇNLC/2	z �8.135	

The amplitude of the conjugate wave increases with the hyperbolic sine of the distance.

8.12 PULSE BROADENING COMPENSATION BY FORWARD
FOUR-WAVE MIXING

Pulse broadening in an optical fiber limits the transmission capability of fiber optic
communication. A method for narrowing a broadened light pulse is by means of
four-wave mixing [13,22–24]. The principle is exactly the same as that illustrated
in Fig. 8.5, where the distorted wave is reflected by a phase conjugator and retraces
the time history of the distortion up to the original waveform as it goes back through
the distorting medium again.

When applying this principle to fiber optic communication systems, a phase
conjugator is placed in the middle of the transmission cable. The signal wave propagates
down the first half of the fiber cable, and the phase conjugate wave is funneled into
the second half of the fiber cable. An assumption has to be made that both halves of
the fiber have the same physical properties and the same length.

Figure 8.19 shows the scheme for pulse broadening compensation by means of
semidegenerate forward four-wave mixing with ω1 D ω2 D ωp, ω3 D ωs and ω4 D ωc.
Referring to Fig. 8.19, the transmitter light pulse is fed into a single mode optical fiber
of length L1. At L1, the pulse enters the phase conjugator. The phase conjugator utilizes
the nonlinear property of the core glass of a dispersion-shifted fiber. The broadband
nature of the dispersion-shifted fiber allows for easy phase matching among the signal,
phase conjugate, and pump waves. The pump wave is added to the signal by means of
a beam combiner to drive the phase conjugator. Both the pump and the signal waves
are removed at the exit of the phase conjugator by means of an optical filter. Only the
phase conjugate wave is fed into the other half of the single mode fiber. The phase
conjugate wave travels a distance L2 to the receiver. If L1 D L2, then the transmitted
pulse will be recovered when the phase conjugate wave reaches the receiver.

Now let us analyze the compensation process in more detail. Referring again to
Fig. 8.19, a light pulse E1�z, t	 is launched into a single mode fiber at z D 0. The
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Figure 8.19 Pulse broadening compensation by four-wave mixing. DS fiber, dispersion-shifted fiber;
SM fiber, single mode fiber.

carrier frequency fs of the light pulse is modulated by an envelope function g�t	:

E1�0, t	 D g�t	 cos 2,fst �8.136	

The frequency spectra of the input light is obtained by the Fourier transform as

F�E1	 D 1
2 [G�f� fs	CG�fC fs	] �8.137	

where

Ffg�t	g D G�f	 �8.138	

The Fourier transform G�f	 of the envelope is shifted by fs to the right and by �fs
to the left in the frequency domain. The narrower the width of the input pulse in time,
the greater the spread of the spectra in the frequency domain.

Each frequency component in this spectra propagates at its own phase velocity and
reaches the receiver. Unless each frequency component propagates at the same velocity,
the relative phase relationship is upset and the received pulse becomes distorted.

First, the behavior of a single frequency wave as it propagates to its destination is
analyzed. Once the behavior of one frequency component is known, the received pulse
shape is obtained by integrating over frequency.

Let the chosen frequency be f D fs C 7, which is 7 away from fs. From Eq. (8.137),
this frequency component has an amplitude of 1

2G�7	. The propagation of this frequency
component through the first half L1 of a long fiber is

dE2 D 1
2G�7	 d7e

�j2,�fsC7	tCjˇ�fsC7	L1 C c.c. �8.139	

The value of the propagation constant ˇ at fs C 7 can be approximated by the Taylor
series expansion, 7 being usually at most one thousandth of fs,

ˇ�fs C 7	 D ˇ�fs	C ˇ0�fs	7C 1
2ˇ

00�fs	72 C Ð Ð Ð �8.140	

Thus, the expression for the single frequency spectrum at the input to the phase
conjugator is

dE2 D 1
2G�7	 d7e

�j2,�fsC7	teCjˇ�fs	L1Cjˇ0�fs	L17C 1
2 jˇ

00�fs	L172 C c.c. �8.141	
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The output dE3 from the phase conjugator is the phase conjugate of the input except
for the time factor,

dE3�7	 D 1
2

p
7cG

Ł�7	 d7e�j2,�fsC7	te�jˇ�fs	L1�jˇ0�fs	L17� 1
2 jˇ

00�fs	L172 C c.c. �8.142	

where 7c is the conversion efficiency, which is determined by such parameters as the
gain given by Eq. (8.133), fiber loss and beam combiner loss.

In the second half of the optical fiber, the phase conjugate wave propagates. In the
degenerate case of Eq. (8.103), the frequency fc of the phase conjugate wave is shifted
to the other side of the pump frequency fp, as shown in Fig. 8.17b, and

fc D 2fp � fs �8.143	

With the input of fs C 7, the new shifted frequency f0
c is

f0
c D fc � 7 �8.144	

The propagation constant in the second fiber at frequency fc � 7 is obtained from the
Taylor series expansion

ˇ�fc � 7	 D ˇ�fc	� ˇ0�fc	7C 1
2ˇ

00�fc	72 C Ð Ð Ð �8.145	

The signal reaching the receiver is therefore

dE4�7	 D 1
2

p
7cG

Ł�7	d7ej[�2,�fc�7	tCˇ�fc	L2�ˇ�fs	L1]

ð e�j[ˇ0�fs	L1Cˇ0�fc	L2]7C 1
2 j[ˇ00�fc	L2�ˇ00�fs	L1]72 C c.c. �8.146	

where the fs and fp components have been filtered out by filter F2.
Let us put

� D ˇ�fc	L2 � ˇ�fs	L1 �8.147	

8 D 1

2,
[ˇ0�fc	L2 C ˇ0�fs	L1] �8.148	

 D 1
2 [ˇ00�fc	L2 � ˇ00�fs	L1] �8.149	

dE4�7	 D 1
2

p
7cG

Ł�7	 d7e�j2,fctCj�Cj2,�t�8	7Cj 72 C c.c. �8.150	

The waveform of the received signal is obtained by integrating over frequency:

E4 D 1
2

p
7ce

�j2,fctCj�
∫
GŁ�7	ej2,�t�8	7Cj 72

d7C c.c. �8.151	

First, let us deal with the case when

 D 0 �8.152	
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Equation (8.151) is in the form of an inverse Fourier transform and

E4�L1 C L2, t	 D 1
2

p
7ce

�j2,fctCj�gŁ�8 � t	C c.c. �8.153	

If the envelope function g is assumed real, the final result is

E4�L1 C L2, t	 D p
7cg�8 � t	 cos��2,fct C �	 �8.154	

Equation (8.154) shows that the envelope function of the received pulse is exactly the
same as that of the transmitted pulse except that g�8 � t	 is time reversed. The original
envelope g(0) reappears 8 seconds later. Thus, 8 is the total transmission time of the
envelope from z D 0 to z D L1 C L2.

Next, the case when  6D 0 is considered. Equation (8.151) becomes

E4 D e�j2,fctCj�g�8 � t	 Ł F�1fe�j72g �8.155	

The pulse shape is now convolved with F�1fe�j 72g, creating a distortion in the
received pulse. The distortionless condition, however, can be achieved from Eq. (8.149)
by setting

ˇ00�fc	L2 D ˇ00�fs	L1 �8.156	

(a)

(b)

(c)

Figure 8.20 Received pulse shapes of (1110001100101010) coded patterns and eye-patterns for
a 10-Gb/s intensity modulated signal at P1 D P2 D C5 dBm. (a) A 5-m transmission without OPC.
(b) A 200-km transmission without OPC. (c) A 200-km transmission with OPC at the midpoint. (Scale
units of pulse shapes in left column: V, 50 mV/div.; H, 200 ps/div. Scale units of pulse shapes in right
column: V, 25 mV/div.; H, 20 ps/div. (After S. Watanabe et al. [22].)
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One way of obtaining this condition is to use a fiber with the same length for both
halves of the transmission cable.

Pulse broadening compensation with 10 Gb/s pulse modulated light is demonstrated
in Fig. 8.20 [22]. Figure 8.20a shows the input signal. Figure 8.20b shows the same
signal after 200-km transmission without the optical phase conjugator (OPC) and
Fig. 8.20c shows the result when the phase conjugator is inserted in the middle of
the fiber transmission. Figure 8.20 confirms the effectiveness of pulse broadening
compensation in an optical fiber by means of four-wave mixing.

PROBLEMS

8.1 In the text, the distorting medium in Fig. 8.4 was assumed to be free of temporal
variations: that is, the temporal variations either did not exist or were so slow that
they could be taken as constant for the duration of the experiment. Consider a
distorting medium in which temporal fluctuations cannot be ignored. For simpli-
city, assume that the fluctuation is sinusoidal with time and is expressed as
�t	 D  cosωt. What are the distances L between the distorting medium and
the phase conjugate mirror (Fig. P8.1) that make the best distortion-free image
and the worst distorted image?

8.2 Consider a crystal whose one-dimensional charge distribution is as shown in
Fig. P8.2.

(a) Does this crystal have inversion symmetry?

(b) Draw the redistributed charges when exposed to the E field of an incident
light wave.

(c) Does such a crystal possess a second order nonlinearity?

8.3 Does a crystal with inversion symmetry have a fourth order nonlinearity?

Distorting medium

Phase conjugate
mirror

Φ

L

S

Figure P8.1 Temporally varying distorting medium.
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+ − + +− −

c

E = 0

Figure P8.2 Does this crystal have nonzero ��2	?

8.4 Three lightwaves having adjacent frequencies are incident onto an optical fiber
(Fig. P8.4). Find the frequency spectra generated in the fiber due to the third
order nonlinear effect. All incident waves are assumed to be polarized in the x
direction [25].

8.5 Assuming the degenerate case, if the directions of k1 and k2 are set as shown in
Fig. P8.5, find the directions of k3 and k4 that sustain four-wave mixing.

8.6 Draw all possible fringe patterns in a medium when four waves are incident as
shown in Fig. P8.6.

f1 f2 f3 Frequency

Figure P8.4 Spectra of light incident onto an optical fiber having a third order nonlinearity.

k1 k2

Figure P8.5 Finding the condition of four-wave mixing.
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k1

k2

k3

k4

Figure P8.6 A configuration for a degenerate type of four-wave mixing.

8.7 In the text, the case of forward four-wave mixing was dealt with, but the
attenuation in the dispersion-shifted fiber was not taken into consideration. With
an amplitude attenuation constant ˛, Eqs. (8.108)–(8.111) become

dAp
dz

D ��˛C j 3
2KjApj2	Ap

dAs
dz

D ��˛C j2KjApj2	As C jKA2
pA

Ł
ce
jkz

dAc
dz

D ��˛C j2KjApj2	Ac C jKA2
pA

Ł
s e
jkz

Find the differential equations with attenuation in the fiber.
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